

Lecture Notes in Computer Science 6831
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Weifan Wang Xuding Zhu Ding-Zhu Du (Eds.)

Combinatorial
Optimization
and Applications

5th International Conference, COCOA 2011
Zhangjiajie, China, August 4-6, 2011
Proceedings

13

Volume Editors

Weifan Wang
Xuding Zhu
Zhejiang Normal University
688 Yingbin Road, Jinhua, Zhejiang Province, 321004 China
E-mail: wwf@zjnu.cn, xudingzhu@gmail.com

Ding-Zhu Du
University of Texas at Dallas, Department of Computer Science
Richardson, TX 75080, USA
E-mail: dzdu@utdallas.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22615-1 e-ISBN 978-3-642-22616-8
DOI 10.1007/978-3-642-22616-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931984

CR Subject Classification (1998): F.2, C.2, G.2-3, I.3.5, G.1.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 5th Annual International Conference on Combinatorial Optimization and
Applications, COCOA 2011, took place in Zhangjiajie, China, August 4-6, 2011.
Past COCOA conferences were held in Xi’an, China (2007), Newfoundland,
Canada (2008), Huangshan, China (2009) and Hawaii, USA (2010).

COCOA 2011 provided a forum for researchers working in the areas of com-
binatorial optimization and its applications. In addition to theoretical results,
the conference is particularly focused on recent works on experimental and ap-
plied research of general algorithmic interest. The Program Committee received
submissions from various countries and regions over the world. From 65 submis-
sions, 30 papers were selected for presentation at the conference. In addition, the
conference organized two invited sessions exploring recent developments of opti-
mizations in graphs and network technology, especially network optimizations.

We wish to thank the authors for submitting their papers to the conference.
We are grateful to the members of the Program Committee and the external
referees for their work within demanding time constraints. We thank the Or-
ganizing Committee for their contribution to making the conference a success.
We also thank Lidong Wu and Jiaofei Zhong for helping us create and update
the conference website and maintaining the Springer Online Conference Service
system. We also wish to thank all assistants and workers who served this confer-
ence at Qinghe Jin Jiang International Hotel, Zhangjiajie City, Hunan Province,
China. Without their service, this conference would not have been successful.

Finally, we thank the conference sponsors and supporting organizations for
their support and assistance. COCOA 2011 was supported in part by the Na-
tional Natural Science Foundation of China, the Chinese Academy of Sciences,
Zhejiang Normal University, and the University of Texas at Dallas.

August 2011 Weifan Wang
Xuding Zhu

Ding-Zhu Du

Organization

COCOA 2010 was organized by the Institute of Applied Mathematics, Academy
of Mathematics and Systems Science, Chinese Academy of Sciences, and the De-
partment of Computer Science, the University of Texas at Dallas, in cooperation
with the Zhejiang Normal University.

Executive Committee

General Co-chairs Yuehua Bu (Zhejiang Normal University, China)
Xiaodong Hu (Chinese Academy of Sciences, China)
Weili Wu (University of Texas at Dallas, USA)

PC Co-chairs Weifan Wang (Zhejiang Normal University, China)
Xuding Zhu (Zhejiang Normal University, China)
Ding-Zhu Du (University of Texas at Dallas, USA)

Publicity Co-chairs Jiaofei Zhong (University of Texas at Dallas, USA)
Lidong Wu (University of Texas at Dallas, USA)

Program Committee

Wolfgang Bein University of Nevada, USA
Xujin Chen Chinese Academy of Sciences, China
Yongxi Cheng Xi’an Jiaotong University, China
Bhadrachalam Chitturi Amrita Vishwa Vidyapeetham University, India
Ovidiu Daescu University of Texas at Dallas, USA
Bhaskar Dasgupta University of Illinois at Chicago, USA
Hongwei (David) Du Harbin Institute of Technology, China
Zhenhua Duan Xidian University, China
Omer Egecioglu University of California, Santa Barbara, USA
Xiaofeng Gao Georgia Gwinnett College, USA
Juraj Hromkovic ETH Zentrum, Switzerland
Wenlian Hsu Academia Sinica, Taiwan
Kazuo Iwama Kyoto University, Japan
Liying Kang Shanghai University, China
Donghyun (David) Kim North Carolina Central University, USA
Minming Li City University of Hong Kong, China
Mitsunori Ogihara University of Miami, USA
Suneeta Ramaswami Rutgers University, USA
Xiaoming Sun Tsinghua University, China

VIII Organization

My T. Thai University of Florida, USA
Feng Wang Arizona State University, USA
Lusheng Wang City University of Hong Kong, China
Hsu-Chun Yen National Taiwan University, Taiwan
Zhao Zhang Xingjiang University, China

Referees

Ferdinando Cicalese
Paolo D’Arco
Yuan-Shin Lee

Zaixin Lu
Gaolin Milledge
Seth Pettie

Salvatore La Torre
Lidong Wu
Jiaofei Zhong

Table of Contents

The Complexity of Testing Monomials in Multivariate Polynomials 1
Zhixiang Chen and Bin Fu

Algorithms for Testing Monomials in Multivariate Polynomials 16
Zhixiang Chen, Bin Fu, Yang Liu, and Robert Schweller

Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive
Selection for Examination Timetabling Problems . 31

Malek Alzaqebah and Salwani Abdullah

Heuristics for Parallel Machine Scheduling with Deterioration Effect 46
Ming Liu, Feifeng Zheng, Yinfeng Xu, and Lu Wang

A Comprehensive Study of an Online Packet Scheduling Algorithm 52
Fei Li

Optimal Policy for Single-Machine Scheduling with Deterioration
Effects, Learning Effects, Setup Times, and Availability Constraints 64

Sheng Yu, Yinfeng Xu, Ming Liu, and Feifeng Zheng

Algebraic Algorithm for Scheduling Data Retrieval in Multi-channel
Wireless Data Broadcast Environments . 74

Xiaofeng Gao, Zaixin Lu, Weili Wu, and Bin Fu

Hamiltonian Cycles through Prescribed Edges in k-Ary n-Cubes 82
Iain A. Stewart

A Fast Parallel Algorithm for Finding a Most Reliable Source on a
General Ring-Tree Graph with Unreliable Edges . 98

Wei Ding and Guoliang Xue

Restricted Edge Connectivity of Harary Graphs . 113
Qinghai Liu, Xiaohui Huang, and Zhao Zhang

Efficient Algorithms for Finding the k Most Vital Edges for the
Minimum Spanning Tree Problem . 126

Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

Euclidean Chains and Their Shortcuts . 141
Boting Yang

List Dynamic Coloring of Sparse Graphs . 156
Seog-Jin Kim and Won-Jin Park

X Table of Contents

Further Improvement on Maximum Independent Set in Degree-4
Graphs . 163

Mingyu Xiao and Hiroshi Nagamochi

Approximation Algorithms for Minimum Energy Multicast Routing
with Reception Cost in Wireless Sensor Networks . 179

Deying Li, Zewen Liu, Yi Hong, and Wenping Chen

Public Communication Based on Russian Cards Protocol: A Case
Study . 192

Jia He and Zhenhua Duan

Minimum Latency Data Aggregation in Wireless Sensor Network with
Directional Antenna . 207

Hui Liu, Zewen Liu, Hongwei Du, Deying Li, and Xianling Lu

A Near-Optimal Memoryless Online Algorithm for FIFO Buffering
Two Packet Classes . 222

Fei Li

On the Maximum Locally Clustered Subgraph and Some Related
Problems . 234

Bang Ye Wu

Quickest Paths in Anisotropic Media . 247
Radwa El Shawi and Joachim Gudmundsson

Mechanisms for Obnoxious Facility Game on a Path 262
Yukun Cheng, Wei Yu, and Guochuan Zhang

Algorithmic Aspects of Heterogeneous Biological Networks
Comparison . 272

Guillaume Blin, Guillaume Fertin, Hafedh Mohamed-Babou,
Irena Rusu, Florian Sikora, and Stéphane Vialette

Minimum Interval Cover and Its Application to Genome Sequencing 287
Liang Ding, Bin Fu, and Binhai Zhu

Exponential and Polynomial Time Algorithms for the Minimum
Common String Partition Problem . 299

Bin Fu, Haitao Jiang, Boting Yang, and Binhai Zhu

Complexity of the Stamp Folding Problem . 311
Takuya Umesato, Toshiki Saitoh, Ryuhei Uehara, and Hiro Ito

On the Number of Solutions of the Discretizable Molecular Distance
Geometry Problem . 322

Leo Liberti, Benôıt Masson, Jon Lee, Carlile Lavor, and
Antonio Mucherino

Table of Contents XI

Integration of an LP Solver into Interval Constraint Propagation 343
Ernst Althaus, Bernd Becker, Daniel Dumitriu, and
Stefan Kupferschmid

A Saturation Algorithm for Homogeneous Binomial Ideals 357
Deepanjan Kesh and Shashank K. Mehta

Improved Algorithms for Farthest Colored Voronoi Diagram of
Segments . 372

Yongding Zhu and Jinhui Xu

One-and-a-Half-Side Boundary Labeling . 387
Chun-Cheng Lin, Sheung-Hung Poon, Shigeo Takahashi,
Hsiang-Yun Wu, and Hsu-Chun Yen

Approximation Algorithms for a Bi-level Knapsack Problem 399
Lin Chen and Guochuan Zhang

On the Surface Area of the Asymmetric Twisted Cube 411
Eddie Cheng, Qiu Ke, and Zhizhang Shen

Tractable Feedback Vertex Sets in Restricted Bipartite Graphs 424
Wei Jiang, Tian Liu, and Ke Xu

On the Partition of 3-Colorable Graphs . 435
Yang Liu and Qing Wang

Kinetic Red-Blue Minimum Separating Circle . 448
Yam Ki Cheung, Ovidiu Daescu, and Marko Zivanic

A Semantic Model for Many-Core Parallel Computing 464
Nan Zhang and Zhenhua Duan

On Unique Games with Negative Weights . 480
Peng Cui, Tian Liu, and Ke Xu

A Note on Treewidth in Random Graphs . 491
Chaoyi Wang, Tian Liu, Peng Cui, and Ke Xu

On the Two-Stage Stochastic Graph Partitioning Problem 500
Neng Fan, Qipeng P. Zheng, and Panos M. Pardalos

A Spatio-Temporal Approach to the Discovery of Online Social
Trends . 510

Harshavardhan Achrekar, Zheng Fang, You Li, Cindy Chen,
Benyuan Liu, and Jie Wang

A New Approximation Algorithm for the Selective Single-Sink
Buy-at-Bulk Problem in Network Design . 525

Peng Zhang

XII Table of Contents

Greedy Algorithm for Least Privilege in RBAC Model 537
Jinling Liu, Hejiao Huang, and Hongwei Du

Towards Minimum Delay Broadcasting and Multicasting in Multihop
Wireless Networks . 546

Maggie X. Cheng and Quanmin Ye

Author Index . 561

The Complexity of Testing Monomials in

Multivariate Polynomials

Zhixiang Chen and Bin Fu

Department of Computer Science,
University of Texas-Pan American,

Edinburg, TX 78539, USA
{chen,binfu}@cs.panam.edu

Abstract. The work in this paper is to initiate a theory of testing mono-
mials in multivariate polynomials. The central question is to ask whether
a polynomial represented by certain economically compact structure has
a multilinear monomial in its sum-product expansion. The complexity
aspects of this problem and its variants are investigated with two objec-
tives. One is to understand how this problem relates to critical problems
in complexity, and if so to what extent. The other is to exploit pos-
sibilities of applying algebraic properties of polynomials to the study
of those problems. A series of results about ΠΣΠ and ΠΣ polynomials
are obtained in this paper, laying a basis for further study along this line.

Keywords: Multivariate polynomials, multilinear monomials,
monomial testing, algebra, complexity.

1 Introduction

We begin with two examples to exhibit the motivation and necessity of the
study about the monomial testing problem for multivariate polynomials. The
first is about testing a k-path in any given undirected graph G = (V, E) with
|V | = n, and the second is about the satisfiability problem. Throughout this
paper, polynomials refer to those with multiple variables.

For any fixed integer c ≥ 1, for each vertex vi ∈ V , define a polynomial pk,i

as follows:

p1,i = xc
i ,

pk+1,i = xc
i

⎛⎝ ∑
(vi,vj)∈E

pk,j

⎞⎠ , k > 1.

We define a polynomial for G as

p(G, k) =
n∑

i=1

pk,i.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 Z. Chen and B. Fu

Obviously, p(G, k) can be represented by an arithmetic circuit. It is easy to see
that the graph G has a k-path vi1 · · · vik

iff p(G, k) has a monomial of xc
i1
· · ·xc

ik

of degree ck in its sum-product expansion. G has a Hamiltonian path iff p(G, n)
has the monomial xc

1 · · ·xc
n of degree cn in its sum-product expansion. One can

also see that a path with some loop can be characterized by a monomial as well.
Those observations show that testing monomials in polynomials is closely related
to solving k-path, Hamiltonian path and other problems about graphs. When
c = 1, xi1 · · ·xik

is multilinear. The problem of testing multilinear monomials
has recently been exploited by Koutis [13] and Williams [18] to design innovative
randomized parameterized algorithms for the k-path problem.

Now, consider any CNF formula f = f1∧ · · · ∧ fm, a conjunction of m clauses
with each clause fi being a disjunction of some variables or negated ones. We may
view conjunction as multiplication and disjunction as addition, so f looks like
a ”polynomial”, denoted by p(f). p(f) has a much simpler ΠΣ representation,
as will be defined in the next section, than general arithmetic circuits. Each
”monomial” π = π1 . . . πm in the sum-product expansion of p(f) has a literal
πi from the clause fi. Notice that a boolean variable x ∈ Z2 has two properties
of x2 = x and xx̄ = 0. If we could realize these properties for p(f) without
unfolding it into its sum-product, then p(f) would be a ”real polynomial” with
two characteristics: (1) If f is satisfiable then p(f) has a multilinear monomial,
and (2) if f is not satisfiable then p(f) is identical to zero. These would give
us two approaches towards testing the satisfiability of f . The first is to test
multilinear monomials in p(f), while the second is to test the zero identity of
p(f). However, the task of realizing these two properties with some algebra
to help transform f into a needed polynomial p(f) seems, if not impossible,
not easy. Techniques like arithmetization in Shamir [17] may not be suitable in
this situation. In many cases, we would like to move from Z2 to some larger
algebra so that we can enjoy more freedom to use techniques that may not be
available when the domain is too constrained. The algebraic approach within
Z2[Zk

2] in Koutis [13] and Williams [18] is one example along the above line. It
was proved in Bshouty et al. [5] that extensions of DNF formulas over Zn

2 to
ZN -DNF formulas over the ring Zn

N are learnable by a randomized algorithm
with equivalence queries, when N is large enough. This is possible because a
larger domain may allow more room to utilize randomization.

There has been a long history in complexity theory with heavy involvement
of studies and applications of polynomials. Most notably, low degree polynomial
testing/representing and polynomial identity testing have played invaluable roles
in many major breakthroughs in complexity theory. For example, low degree
polynomial testing is involved in the proof of the PCP Theorem, the cornerstone
of the theory of computational hardness of approximation and the culmination
of a long line of research on IP and PCP (see, Arora at el. [2] and Feige et
al. [8]). Polynomial identity testing has been extensively studied due to its role
in various aspects of theoretical computer science (see, for example, Kabanets
and Impagliazzo [11]) and its applications in various fundamental results such
as Shamir’s IP=PSPACE [17] and the AKS Primality Testing [1]. Low degree

The Complexity of Testing Monomials in Multivariate Polynomials 3

polynomial representing [14] has been sought for so as to prove important re-
sults in circuit complexity, complexity class separation and subexponential time
learning of boolean functions (see, for examples, Beigel [4], Fu[9] and Klivans and
Servedio [12]). These are just a few examples. A survey of the related literature
is certainly beyond the scope of this paper.

The above two examples of the k-path testing and satisfiability problems,
the rich literature about polynomial testing and many other observations have
motivated us to develop a new theory of testing monomials in polynomials rep-
resented by economically compact structures. The monomial testing problem is
related to, and somehow complements with, the low degree testing and the iden-
tity testing of polynomials. We want to investigate various complexity aspects of
the monomial testing problem and its variants with two folds of objectives. One
is to understand how this problem relates to critical problems in complexity, and
if so to what extent. The other is to exploit possibilities of applying algebraic
properties of polynomials to the study of those critical problems.

The paper is organized as follows. We first define ΠΣΠ and ΠΣ polynomials.
The first is a product of clauses such that each clause is a sum of terms and each
term is a product of variables. The second is like the first except that each term
is just one variable. These polynomials have easy depth-3 or depth-2 circuit
representations that have been extensively studied for the polynomial identity
testing problem. We prove a series of results: The multilinear monomial testing
problem for ΠΣΠ polynomials is NP-hard, even when each clause has at most
three terms. The testing problem for ΠΣ polynomials is in P, and so is the
testing for two-term ΠΣΠ polynomials. However, the testing for a product of
one two-term ΠΣΠ polynomial and another ΠΣ polynomial is NP-hard. We
also prove that testing c-monomials for two-term ΠΣΠ polynomials is NP-hard
for any c > 2, but the same testing is in P for ΠΣ polynomials. Finally, two
parameterized algorithms was devised for three-term ΠΣΠ polynomials and
products of two-term ΠΣΠ and ΠΣ polynomials. These results have laid a
basis for further study about testing monomials.

2 Notations and Definitions

Let P be a field. For variables x1, . . . , xn, let P [x1, · · · , xn] denote the com-
municative ring of all the n-variate polynomials with coefficients from P . For
1 ≤ i1 < · · · < ik ≤ n, π = xj1

i1
· · ·xjk

ik
is called a monomial. The degree of π,

denoted by deg(π), is
∑k

s=1 js. π is multilinear, if j1 = · · · = jk = 1, i.e., π is
linear in all its variables xi1 , . . . , xik

. For any given integer c ≥ 1, π is called a
c-monomial, if 1 ≤ j1, . . . , jk < c.

An arithmetic circuit, or circuit for short, is a direct acyclic graph with + gates
of unbounded fan-ins, × gates of two fan-ins, and all terminals corresponding to
variables. The size, denoted by s(n), of a circuit with n variables is the number
of gates in it. A circuit is called a formula, if the fan-out of every gate is at most
one, i.e., the underlying direct acyclic graph is a tree.

4 Z. Chen and B. Fu

By definition, any polynomial p(x1, . . . , xn) can be expressed as a sum of a list
of monomials, called the sum-product expansion. The degree of the polynomial
is the largest degree of its monomials in the expansion. With this expression, it
is trivial to see whether p(x1, . . . , xn) has a multilinear monomial, or a monomial
with any given pattern. Unfortunately, this expression is essentially problematic
and infeasible to realize, because a polynomial may often have exponentially
many monomials in its expansion.

In general, a polynomial p(x1, . . . , xn) can be represented by a circuit or some
even simpler structure as defined in the following. This type of representation is
simple and compact and may have a substantially smaller size, say, polynomi-
ally in n, in comparison with the number of all monomials in the sum-product
expansion. The challenge is how to test whether p(x1, . . . , xn) has a multilin-
ear monomial or some needed monomial, efficiently without unfolding it into its
sum-product expansion?

Definition 1. Let p(x1, . . . , xn) ∈ P [x1, . . . , xn] be any given polynomial. Let
m, s, t ≥ 1 be integers.

– p(x1, . . . , xn) is said to be a ΠmΣsΠt polynomial, if p(x1, . . . , xn) =
∏t

i=1 Fi,
Fi =

∑ri

j=1 Xij and 1 ≤ ri ≤ s, and deg(Xij) ≤ t. We call each Fi a
clause. Note that Xij is not a monomial in the sum-product expansion of
p(x1, . . . , xn) unless m = 1. To differentiate this subtlety, we call Xij a
term.

– In particular, we say that p(x1, . . . , xn) is a ΠmΣs polynomial, if it is a
ΠmΣsΠ1 polynomial. Here, each clause is a linear addition of single vari-
ables. In other word, each term has degree 1.

– When no confusing arises from the context, we use ΠΣΠ and ΠΣ to stand
for ΠmΣsΠt and ΠmΣs respectively.
Similarly, we use ΠΣsΠ and ΠΣs to stand for ΠmΣsΠt and ΠmΣs respec-
tively, emphasizing that every clause in a polynomial has at most s terms or
is a linear addition of at most s single variables.

– For any given integer k ≥ 1, p(x1, . . . , xn) is called a k-ΠΣΠ polynomial, if
each of its terms has k distinct variables.

– p(x1, . . . , xn) is called a ΠΣΠ × ΠΣ polynomial, if p(x1, . . . , xn) = p1p2

such that p1 is a ΠΣΠ polynomial and p2 is a ΠΣ polynomial. Similarly,
p(x1, . . . , xn) is called a k-ΠΣΠ × ΠΣ polynomial, if p(x1, . . . , xn) = p1p2

such that p1 is a k-ΠΣΠ polynomial and p2 is a ΠΣ polynomial.

It is easy to see that a ΠmΣsΠt or ΠmΣs polynomial may has as many as sm

monomials in its sum-product expansion.
On the surface, a ΠmΣsΠt polynomial ”resembles” a SAT formula, especially

when t = 1. Likewise, a ΠmΣ3Πt (ΠmΣ2Πt) polynomial ”resembles” a 3SAT
(2SAT) formula, especially when t = 1. However, negated variables are not
involved in a polynomials. Furthermore, as pointed out in the previous section,
it is not easy, if not impossible, to have some easy algebra to deal with the
properties of x2 = x and x · x̄ = 0 in a field, especially when the field is larger

The Complexity of Testing Monomials in Multivariate Polynomials 5

than Z2. Also, as pointed out before, the arithmetization technique in Shamir
[17] is not applicable to this case.

Throughout the rest of the paper, we shall focus on nonnegative integer coef-
ficients in polynomials.

3 ΠΣΠ Polynomials

Given any ΠmΣsΠt polynomial p(x1, . . . , xn) = p1 · · · pm, one can nondetermin-
istically choose a term πi from the clause pi and then check whether π1 · · ·πm

is a multilinear monomial. So the problem of testing multilinear monomials in a
ΠΣΠ polynomial is in NP. In the following we show that this problem is also
NP-hard.

Theorem 1. It is NP-hard to test whether a 2-ΠmΣ3Π2 polynomial has a mul-
tilinear monomial in its sum-product expansion.

Note that every clause in such a 2-ΠmΣ3Π2 polynomial has at most three terms
such that each term has at most two distinct variables.

Proof. We reduce 3SAT to the given problem. Let f = f1 ∧ · · · ∧ fm be a 3SAT
formula. Without loss of generality, we assume that every variable xi in f appears
at most three times, and if xi appears three times, then xi itself occurs twice and
x̄i once. (It is easy to see that a simple preprocessing procedure can transform
any 3SAT formula to satisfy these properties.)

Let xi be any given variable in f , we introduce new variables to replace it. If xi

appears only once then we replace the appearance of xi (or x̄i) by a new variable
yi1. When xi appears twice, then we do the following: If xi (or its negation x̄i)
occurs twice, then replace the first occurrence by a new variable yi1 and the
second by yi2. If both xi and x̄i occur, then replace both occurrences by yi1.
When xi occurs three times with xi appearing twice and x̄i once, then replace
the first xi by yi1 and the second by yi2, and replace x̄i by yi1yi2. This procedure
of replacing all variables in f , negated or not, with new variables can be carried
out easily in quadratic time.

Let p = p1 · · · pm be polynomial resulting from the above replacement process.
Here, pi corresponds to fi with boolean literals being replaced. Clearly, p is a
2-ΠmΣ3Π2 polynomial.

We now consider the sum-product expansion of f = f1 · · · fm. It is easy to see
that f is satisfiable iff its sum-product expansion has a product

ψ = x̃i1 · · · x̃im ,

where the literal x̃ij is from the clause fj and is either xij or x̄ij , 1 ≤ j ≤ m.
Furthermore, the negation of x̃ij must not occur in π.

Let t(x̃ij) denote the replacement of x̃ij by new variables yij1 and/or yij2 as
described above to transform f to p. Then, t(x̃ij) is a term in the clause pj .
Hence,

t(ψ) = t(x̃ij) · · · t(x̃im)

6 Z. Chen and B. Fu

is a monomial in the sum-product expansion of p. Moreover, t(ψ) is multilinear,
because a variable and its negation cannot appear in ψ at the same time.

On the other hand, assume that

π = π1 · · ·πm

is a multilinear monomial in p with the term πij in the clause pj . Let t−1(·) denote
the reversal replacement of t(·). Then, by the procedure of the replacement above,
t−1(πij) is a variable or the negation of a variable in fj . Thus,

t−1(π) = t−1(π1) · · · t−1(πm)

is a product in the sum-product expansion of f . Since π is multilinear, a variable
and its negation cannot appear in t−1(π) at the same time. This implies that f
is satisfiable by an assignment of setting all the literals in t−1(π) true.

We give an example to illustrate the variable replacement procedure given in the
above proof. Given a 3SAT formula

f = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x4 ∨ x5),

the polynomial for f after variable replacements is

p(f) = (y11 + y21y22 + y31)(y11y12 + y21 + y41)(y12 + y22 + y31)(y42 + y51).

The truth assignment satisfying f as determined by the product x3 · x̄1 · x2 · x4

is one to one correspondent to the multilinear monomial y31 · y11y12 · y22 · y42 in
p(f).

Two corollaries follow immediately from this theorem.

Corollary 1. For any s ≥ 3, it is NP-hard to test whether a ΠmΣsΠt polyno-
mial has multilinear monomials in its sum-product expansion.

Corollary 2. It is NP-hard to test whether a polynomial has multilinear mono-
mials in its sum-product expansion, when the polynomial is represented by a
general arithmetic circuit.

The NP-hardness in Corollary 2 was obtained by Koutis [13].

4 ΠΣ Polynomials

Note that every clause in a ΠΣ polynomial p is a linear addition of single
variables. p looks very much like a SAT formula. But this kind of structural
”resemblance” is very superficial, as we will show in the following that the mul-
tilinear monomial testing problem for p is in P. This shows that terms with
single variables do not have the same expression power as boolean variables and
their negations together can achieve. As exhibited in the proof of Theorem 1,
terms with two variables are equally powerful as boolean variables together with
their negations. Hence, it is interesting to see that a complexity boundary exists
between polynomials with terms of degree 1 and those with terms of degree 2.

The Complexity of Testing Monomials in Multivariate Polynomials 7

Theorem 2. There is a O(ms
√

m + n) time algorithm to test if a ΠmΣs poly-
nomial has a multilinear monomial in its sum-product expansion.

Proof. Let f(x1, . . . , xn) = f1 . . . fm be any given ΠmΣs polynomial. Without
loss of generality, we assume that each clause has exactly s many terms, i.e.,
fi =

∑s
j=1 xij , 1 ≤ i ≤ s. We shall reduce the problem of testing multilinear

monomials in f(x1, . . . , xn) to the problem of finding a maximum matching in
some bipartite graph.

We construct a bipartite graph G = (V1∪V2, E) as follows. V1 = {v1, . . . , vm}
so that each vi represents the clause fi. V2 = {x1, . . . , xn}. For each clause fi, if
it contains a variable xj then we add an edge (vi, xj) into E.

Suppose that f(x1, . . . , xn) has a multilinear monomial

π = xi1 · · ·xim

with xij in fj, 1 ≤ j ≤ m. Then, all the variables in π are distinct. Thus, we
have a maximum matching of size m

(v1, xi1), . . . , (vm, xim).

Now, assume that we have a maximum matching of size m

(v1, x
′
i1), . . . , (v1, x

′
im

).

Then, all the variables in the matching are distinct. Moreover, by the construc-
tion of the graph G, x′

ij
are in the clause fj, 1 ≤ j ≤ m. Hence,

π′ = x′
i1 · · ·x′

im

is a multilinear monomial in f(x1, . . . , xn)
It is well-known that finding a maximum matching in a bipartite graph can

be done in O(|E|√|V |) time [3]. So the above reduction shows that we can test
whether f(x1, . . . , xn) has a multilinear monomial in O(ms

√
m + n) time, since

the graph G has m + n vertices and at most ms edges.

In the following, we give an extension of Theorem 2.

Theorem 3. There is a O(tckms
√

m + n) time algorithm to test whether any
given ΠkΣcΠt×ΠmΣs polynomial has a multilinear monomial in its sum-product
expansion.

Proof. Let p = p1p2 be any given ΠkΣcΠt × ΠmΣs polynomial such that p1 =
f1 · · · fk is a ΠkΣcΠt polynomial and p2 = g1 · · · gm is a ΠmΣs polynomial. Note
that every clause fi in p1 has at most c terms with degree at most t. So, p1 has
at most ck products in its sum-product expansion. Hence, in O(tck) time, we
can list all the products in that expansion, and let C denote the set of all those
products.

It is obvious that p has a multilinear monomial, iff there is one product ψ ∈ C
such that the polynomial ψp2 has a multilinear monomial.

8 Z. Chen and B. Fu

Now, for any product ψ ∈ C, we consider how to test whether the polynomial

p(ψ) = ψ · p2 = ψ · g1 · · · gm

have a multilinear polynomial. Let

π = ψ · π1 · · ·πm

be an arbitrary product in the sum-product expansion of p(ψ) with the term πi

in gi, 1 ≤ i ≤ m. Since ψ is fixed, in order to make π to be multilinear, each
πi must not have a variable in ψ. This observation helps us devise a one-pass
”purging” process to eliminate all the variables in every clause of gi that cannot
be included in a multilinear monomial in p(ψ). The purging works as follows:
For each clause gi, eliminate all its variables that also appear in ψ. Let g′i be
the resulting clause of gi, and p′2 = g′1 · · · g′m be the resulting polynomial of p2.
If any g′i is empty, then there is no multilinear monomials in ψ · p′2, hence no
multilinear monomials in p(ψ). Otherwise, by Theorem 2, we can decide whether
p′2 has a multilinear monomial, hence whether p(ψ) has a multilinear monomial,
in O(ms

√
m + n) time.

Putting all the steps together, we can test whether p has a multilinear mono-
mial in O(tckms

√
m + n) time.

5 ΠΣ2Π Polynomials

In Section 3, we has proved that the multilinear monomial testing problem for
any ΠΣsΠ polynomials with at most s ≥ 3 terms in each clause is NP-hard.
In this section, we shall show that another complexity boundary exists between
ΠΣ3Π polynomials and ΠΣ2Π polynomials. As noted before, a ΠΣ2Π poly-
nomial may look like a 2SAT formula, but they are essentially different from
each other. For example, unlike 2SAT formulas, no implication can be derived
for two terms in a clause. Thus, the classical algorithm based on implication
graphs for 2SAT formulas by Aspvall, Plass and Tarjan [3] does not apply to
ΠΣ2Π polynomials. The implication graphs can also help prove that 2SAT is
NL-complete [15]. But we do not know whether the monomial testing problem
for ΠΣ2Π polynomials is NL-complete or not. We feel that it may be not. There
is another algorithm for solving 2SAT in quadratic time via repeatedly ”purg-
ing” contradicting literals. The algorithm devised in the following more or less
follows a similar approach of that quadratic time algorithm.

Theorem 4. There is a quadratic time algorithm to test whether any given
ΠmΣ2Πt polynomial has a multilinear monomial in its sum-product expansion.

Proof. Let f = f1 · · · fm be any given ΠmΣ2Πt polynomial such that fi =
(Ti1 + Ti2) and each term has degree at most t. Let

π = π1 · · ·πm

The Complexity of Testing Monomials in Multivariate Polynomials 9

be any monomial in the sum-product expansion of f . Here term πi is either Ti1

or Ti2, 1 ≤ i ≤ m. Observe that π is multilinear, iff any two terms in it must
not share a common variable. We now devise a ”purging” based algorithm to
decide whether a multilinear monomial π exists in f . The purging part of this
algorithm is similar to what is used in the proof of Theorem 3.

The purging algorithm works as follows. We select any clause fi from f , and
choose a term in fi for πi. we purge all the terms in the remaining clauses that
share a common variable with πi. Once we find one clause with one term being
purged but with the other left, we then choose this remaining term in that clause
to repeat the purging process.

The purging stops for πi when one of the three possible scenarios happens:
(1) We find one clause fj with two terms being purged. In this case, any of

the two terms in fj cannot be chosen to form a multilinear monomial along with
πi. So, we have to choose the other term in fi for π, if that term has not been
chosen. We use this πi to repeat the same purging process. If fi has no term
left, then this means that neither term in fi can be chosen to form a multilinear
monomial, so the answer is ”NO”.

(2) We find that every clause fj contributes one term πj during the purging
process. This means that π = π1 · · ·πm has no variables appearing more than
once, hence it is a multilinear monomial, so an answer ”YES” is obtained.

(3) We find that the purging process fails to purge any terms in a subset
of clauses. Let S ⊂ I denote the set of the indexes of these clauses, where
I = {1, . . . , m}. Let π′ be the product of πj with j ∈ I − S. According to the
purging process, π′ does not share any common variables with terms in any
clause fu with u ∈ S. Hence, the input polynomial f has a multilinear monomial
iff the product of those clauses fu has a multilinear monomial. Therefore, we
recursively apply the purging process to this product of clauses. Note that this
product has at least one fewer clause than f .

With the help of some simple data structure, the purging process can be
implemented in quadratic time.

6 ΠΣ2Π × ΠΣ Polynomials vs. ΠΣ2Π and ΠΣ
Polynomials

In structure, a ΠΣ2Π ×ΠΣ polynomial is a product of one ΠΣ2Π polynomial
and another ΠΣ polynomial. It has been shown in Sections 4 and 5 that testing
multilinear monomials in ΠΣ2Π or ΠΣ polynomials can be done respectively
in polynomial time. This might encourage one to think that testing multilinear
monomials in ΠΣ2Π ×ΠΣ polynomials could also be done in polynomial time.
However, a little bit surprisingly the following theorem shows that a complexity
boundary exists, separating ΠΣ2Π × ΠΣ polynomials from ΠΣ2Π and ΠΣ
polynomials.

Theorem 5. The problem of testing multilinear monomials in ΠΣ2Π × ΠΣ
polynomials is NP-complete.

10 Z. Chen and B. Fu

Proof. It is easy to see that the given problem is in NP. To show that the problem
is also NP-hard, we consider any given ΠmΣ3Πt polynomial f = f1 · · · fm with
m ≥ 1 and t ≥ 2 such that each clause fi = (Ti1+Ti2+Ti3) and each term Tij has
degree at most t, 1 ≤ i ≤ m, 1 ≤ j ≤ 3. We shall reduce f into a ΠΣ2Π × ΠΣ
polynomial. Once this is done, the NP-hardness of the given problem follows
from Theorem 1.

We consider the clause

fi = (Ti1 + Ti2 + Ti3).

We want to represent fi by a ΠΣ2Π × ΠΣ polynomial so that selecting ex-
actly one term from fi is equivalent to selecting exactly one monomial from the
new polynomial with exactly one term Tij in fi under the constraint that the
newly introduced variables are linear in the monomial. We construct the new
polynomial, denoted by p(fi), as follows.

p(fi) = (Ti1ui + vi)(Ti2ui + wi)(Ti3ui + zi)(vi + wi + zi),

where ui, vi, wi and zi are new variables. It is easy to see that there are only
three monomials in p(fi) satisfying the constraint:

Ti1uiviwizi, Ti2uiviwizi, and Ti3uiviwizi.

Each of those three monomials corresponds to exactly one term in fi. Now, let

p(f) = p(f1) · · · p(fm)

be the new polynomial representing f and

π = π1 · · ·πm

be a monomial in f with terms πi in fi. If π is multilinear, then so is

π′ = (π1u1v1w1z1) · · · (πmumvmwmzm)

in p(f). On the other hand, if

ψ = ψ1 · · ·ψm

is multilinear monomial in p(f), then ψi = Tijiuiviwizi with ji ∈ {1, 2, 3}. This
implies that

ψ′ = T1j1 · · ·Tmjm

must be a multilinear monomial in f . Obviously, the reduction from f to p(f)
can be done in polynomial time.

The Complexity of Testing Monomials in Multivariate Polynomials 11

7 Testing c-Monomials

By definition, a multilinear monomial is a 2-monomial. It has been shown in
Section 5 that the problem of testing multilinear monomials in a ΠΣ2Π poly-
nomial is solvable in quadratic time. We shall show that another complexity
boundary exists to separate c-monomials from 2-monomials, even when c = 3.
On the positive side, we shall show that it is efficient to testing c-monomials for
ΠΣ polynomials.

Theorem 6. The problem of testing 3-monomials in any 3-ΠmΣ2Π6 polynomial
is NP-complete.

Proof. We only need to show that the problem is NP-hard, since it is trivial to
see that the problem is in NP.

Let f = f1 · · · fm be any given 2-ΠmΣ3Π2 polynomial, where each clause
fi = (Ti1 + Ti2 + Ti3) and each term Tij is multilinear with at most 2 distinct
variables, 1 ≤ i ≤ m, 1 ≤ j ≤ 3. By Theorem 1, testing whether f has a
multilinear monomial is NP-hard. We now show how to construct a 3-ΠmΣ2Π6

polynomial to represent f with the property that f has a multilinear monomial
iff the new polynomial has a 3-monomial.

We consider the clause

fi = (Ti1 + Ti2 + Ti3).

We want to represent fi by a 3-ΠΣ2Π6 polynomial so that selecting exactly
one term from fi is equivalent to selecting exactly one 3-monomial from the
new polynomial with exactly one term Tij in fi under the constraints that Tij

appears twice and the newly introduced variables are each of degree 2. The
idea for constructing the new polynomial seems like what is used in the proof
of Theorem 5, but it is different from that construction. We design the new
polynomial, denoted by p(fi), as follows.

p(fi) = (Ti1Ti1u
2
i + vi)(Ti2Ti2u

2
i + vi)(Ti3Ti3u

2
i + vi)

where ui and vi are new variables. Since each term Tij is multilinear with at
most two distinct variables, p(fi) is a 3-ΠmΣ2Π6 polynomial. It is easy to see
that there are no multilinear monomials in p(fi). But there are three monomials
in p(fi) satisfying the given constraints:

Ti1Ti1u
2
i v

2
i , Ti2Ti2u

2
i v

2
i , and Ti3Ti3u

2
i v

2
i .

Each of those three monomials corresponds to exactly one term in fi. Note that
only those three monomials in p(fi) can possibly be 3-monomials, depending on
whether TijTij is a 3-monomials. Now, let

p(f) = p(fi) · · · p(fm)

be the new polynomial representing f and

π = π1 · · ·πm

12 Z. Chen and B. Fu

be a monomial in f with terms πi in fi. If π is multilinear, then

π′ = (π1π1u
2
1v

2
1) · · · (πmπmu2

mv2
m)

is a 3-monomial in p(f). On the other hand, if

ψ = ψ1 · · ·ψm

is a 3-monomial in p(f), then ψi = TijiTijiu
2
i v

2
i with ji ∈ {1, 2, 3}. This implies

that
ψ′ = T1j1T1j1 · · ·TmjmTmjm

is a 3-monomial. Therefore,

ψ′′ = T1j1 · · ·Tmjm

must be a multilinear monomial in f . Obviously, reducing f to p(f) can be done
in polynomial time.

The following corollaries follows immediately from Theorem 7:

Corollary 3. For any c > 2, testing c-monomials in any ΠmΣsΠt polynomial
is NP-complete.

Corollary 4. For any c > 2, testing c-monomials in any polynomial represented
by a formula or a general arithmetic circuit is NP-complete.

Recall that by Theorem 2 the multilinear monomial testing problem for ΠΣ
polynomials is solvable in polynomial time. The following theorem shows a com-
plementary result about c-monomial testing for the same type of polynomials.

Theorem 7. There is a O(cms
√

m + cn) time algorithm to test whether any
ΠmΣs polynomial has a c-monomial or not, where c > 2 is a fixed constant.

Proof. We consider to generalize the maximum matching reduction in Theorem
2. Like before, Let f(x1, . . . , xn) = f1 . . . fm be any given ΠmΣs polynomial such
that fi =

∑s
j=1 xij , 1 ≤ i ≤ s. We construct a bipartite graph G = (V1 ∪ V2, E)

as follows. V1 = {v1, . . . , vm} so that each vi represents the clause fi. V2 =
∪n

i=1{ui1, ui2, . . . , ui(c−1)}, i.e., each variable xi corresponds to c − 1 vertices
ui1, ui2, . . . , ui(c−1). For each clause fi, if it contains a variable xj then we add
c − 1 edges (vi, ujt) into E, 1 ≤ t ≤ c − 1.

Suppose that f(x1, . . . , xn) has a c-monomial

π = xi1 · · ·xim

with xij in fj , 1 ≤ j ≤ m. Note that each variable xij appears k(xij) < c times
in π. Those appearances correspond to k(xij) clauses ft1 , . . . , ftk(xij

) from which
xij was respectively selected to form π. This implies that there are k(xij) edges
matching vt1 , . . . , vtk(xij

) with k(xij) vertices in V2 that represent xij . Hence,

The Complexity of Testing Monomials in Multivariate Polynomials 13

the collection of m edges for m appearances of all the variables, repeated or not,
in π forms a maximum matching of size m in the graph G.

Now, assume that we have a maximum matching of size m

(v1, ui1j1), . . . , (vm, uimjm).

Recall that uitjt , 1 ≤ t ≤ m, is designed to represent the variable xit . By the
construction of the graph G, xit are in the clause ft, 1 ≤ t ≤ m, and it may
appear c − 1 times. Hence,

π = xi1 · · ·xim

is a c-monomial in f(x1, . . . , xn).
With the help of the O(|E|√|V |) time algorithm [10] for finding a maximum

matching in a bipartite graph, testing whether f(x1, . . . , xn) has a c-monomial
can done in O(cms

√
m + cn), since the graph G has m+cn vertices and at most

cms edges.

8 Parameterized Algorithms

In this section, we shall devise two parameterized algorithms for testing multi-
linear monomials in ΠmΣ3Πt and ΠmΣ2Πt ×ΠkΣ3 polynomials. By Theorems
1 and 5, the multilinear monomial testing problem for each of these two types
of polynomials is NP-complete.

Theorem 8. There is a O(tm21.7751m) time algorithm to test whether any
ΠmΣ3Πt polynomial has a multilinear monomial in its sum-product expansion.

Proof. Let f = f1 · · · fm be any given ΠmΣ3Πt polynomial, where each clause

fi = (Ti1 + Ti2 + Ti3)

and each term Tij has degree at most t, 1 ≤ i ≤ m, 1 ≤ j ≤ 3.
We now consider to reduce f to an undirected graph G = (V, E) such that

f has a multilinear monomial iff G has a maximum m-clique. For each clause
fi, we design three vertices vi1, vi2 and vi3, representing the three corresponding
terms in fi. Let V be the collection of those vertices for all the terms in f . For
any two vertices vij and vi′j′ with i
= i′, we add an edge (vij , vi′j′) to E, if their
corresponding terms Tij and Ti′j′ do not share any common variable. Since any
two vertices designed for the terms in a clause are not connected, the maximum
cliques in G could have m vertices corresponding to m terms, each of which is
in one of those m clauses. Let

π = π1 · · ·πm

be any monomial in f with π being a term from fi. We consider two cases in
the following.

Assume that π is a multilinear monomial. Let πi = Tiji , ji ∈ {1, 2, 3}. Then,
any two terms Tiji and Ti′ji′ in π do not share any common variable. So, there is

14 Z. Chen and B. Fu

an edge (viji , vi′ji′) in E. Hence, the graph G has an m-clique {v1j1 , . . . , vmjm}.
Certainly, this clique is maximum.

Now, suppose that G has a maximum clique {v1j1 , . . . , vmjm}. Then, by the
construction of G, each vertex viji corresponds to the term Tiji in the clause fi.
Thus, the product of those m terms is a multilinear monomial, because any two
of those terms do not share a common variable.

Finally, we use Robson’s O(1.2108|V |) algorithm to find a maximum clique
for G. If the clique has size m, then f has a multilinear monomial. Otherwise,
it does not. Note that |V | = 3m. Combining the reduction time with the clique
finding time gives an overall O(tm21.7751m) time.

We now turn to ΠmΣ2Πt×ΠkΣ3 polynomials and give the second parameterized
algorithm for this type of polynomials.

Theorem 9. There is a O((mk)23k) time algorithm to test whether any
ΠmΣ2Πt × ΠkΣ3 polynomial has a multilinear monomial in its sum-product
expansion.

Proof. Let p = p1 · p2 such that p1 is a ΠmΣ2Πt polynomial and p2 is a ΠkΣ3

polynomial. In O(3k) time, we list all the products in the sum-product expansion
of p2. Let C be the collection of those products. It is obvious that p has a
multilinear monomial iff there is a product π ∈ C such that p1 ·π has a multilinear
monomial. Note that p1 · π is a Πm+1Σ2Πt polynomial. By Theorem 4, the
multilinear monomial testing problem for p1 · π can be solved by a quadratic
time algorithm. Hence, the theorem follows by applying that algorithm to p1 · π
for every π ∈ C to see if one of them has a multilinear monomial or not.

Acknowledgments. We thank Yang Liu and Robbie Schweller for many valu-
able discussions during our weekly seminar. Conversations with them help inspire
us to develop this study of testing monomials. We thank Yang Liu for present-
ing Koutis’ paper [13] at the seminar. The O((ms)23k) upper bound given in
Theorem 9 has been improved to O((ms)22k) in [7], along with several random-
ized and deterministic algorithms. The complexity of approximating monomial
coefficients are studies in citechen11a.

Bin Fu’s research is support by an NSF CAREER Award, 2009 April 1 to
2014 March 31.

References

1. Manindra, A., Neeraj, K., Nitin, S.: PRIMES is in P. Ann. of Math. 160(2), 781–793
(2004)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3), 121–
123 (1979)

The Complexity of Testing Monomials in Multivariate Polynomials 15

4. Beigel, R.: The polynomial method in circuit complexity. In: Proceedings of the
Eighth Conference on Structure in Complexity Theory, pp. 82–95 (1993)

5. Bshouty, N.H., Chen, Z., Decatur, S.E., Homer, S.: One the learnability of ZN -
DNF formulas. In: Proceedings of the Eighth Annual Conference on Computational
Learning Theory (COLT 1995), pp. 198–205. ACM, Santa Cruz (1995)

6. Chen, Z., Fu, B.: Approximating multilinear monomial coefficients and maximum
multilinear monomials in multivariate polynomials. In: Wu, W., Daescu, O. (eds.)
COCOA 2010, Part I. LNCS, vol. 6508, pp. 309–323. Springer, Heidelberg (2010)

7. Chen, Z., Fu, B., Liu, Y., Schweller, R.T.: Algorithms for Testing Monomials in
Multivariate Polynomials. In: Proceedings of the Fifth International Conference on
Combinatorial Optimization and Applications (2011)

8. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996)

9. Fu, B.: Separating PH from PP by relativization. Acta Math. Sinica 8(3), 329–336
(1992)

10. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

11. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. In: STOC, pp. 355–364 (2003)

12. Klivans, A., Servedio, R.A.: Learning DNF in time 2Õ(n1/3). In: STOC, pp. 258–265
(2001)

13. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

14. Minsky, M., Papert, S.: Perceptrons (expanded edition 1988). MIT Press,
Cambridge (1968)

15. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
16. Robson, J.M.: Algorithms for maximum independent sets. Journal of

Algorithms 7(3), 425–440 (1986)
17. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)
18. Williams, R.: Finding paths of length k in O∗(2k) time. Information Processing

Letters 109, 315–318 (2009)

Algorithms for Testing Monomials in

Multivariate Polynomials

Zhixiang Chen, Bin Fu, Yang Liu, and Robert Schweller

Department of Computer Science,
University of Texas-Pan American,

Edinburg, TX 78539, USA
{chen,binfu,yliu,schwellerr}@cs.panam.edu

Abstract. This paper is our second step towards developing a theory
of testing monomials in multivariate polynomials. The central question
is to ask whether a polynomial represented by an arithmetic circuit has
some types of monomials in its sum-product expansion. The complexity
aspects of this problem and its variants have been investigated in our
first paper by Chen and Fu (2010), laying a foundation for further study.
In this paper, we present two pairs of algorithms. First, we prove that
there is a randomized O∗(pk) time algorithm for testing p-monomials in
an n-variate polynomial of degree k represented by an arithmetic circuit,
while a deterministic O∗((6.4p)k) time algorithm is devised when the
circuit is a formula, here p is a given prime number. Second, we present
a deterministic O∗(2k) time algorithm for testing multilinear monomials
in ΠmΣ2Πt×ΠkΣ3 polynomials, while a randomized O∗(1.5k) algorithm
is given for these polynomials. Finally, we prove that testing some special
types of multilinear monomial is W[1]-hard, giving evidence that testing
for specific monomials is not fixed-parameter tractable.

Keywords: Multivariate polynomials, monomial testing, algebra,
complexity, randomization, derandomization.

1 Introduction

1.1 Overview

We begin with the k-path problem to exhibit the motivation and necessity of
the study about the monomial testing problem for multivariate polynomials.
Throughout this paper, polynomials refer to those with multiple variables. Let
G = (V, E) be an undirected graph with |V | = n. For any fixed integer c ≥ 1,
for each vertex vi ∈ V , define a polynomial Fk,i as follows:

F1,i = xc
i ,

Fk+1,i = xc
i

⎛⎝ ∑
(vi,vj)∈E

Fk,j

⎞⎠ , k > 1.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algorithms for Testing Monomials in Multivariate Polynomials 17

We define a polynomial for G as

F (G, k) =
n∑

i=1

Fk,i.

Obviously, F (G, k) can be represented by an arithmetic circuit. It is easy to see
that the graph G has a k-path vi1 · · · vik

iff F (G, k) has a monomial xc
i1
· · ·xc

ik
of

degree ck in its sum-product expansion. G has a Hamiltonian path iff F (G, n)
has the monomial xc

1 · · ·xc
n of degree cn in its sum-product expansion. One can

also see that a path with some loop can be characterized by a monomial as well.
Those observations show that testing monomials in polynomials is closely related
to solving k-path, Hamiltonian path and other problems about graphs. When
c = 1, xi1 · · ·xik

is multilinear. The problem of testing multilinear monomials
has recently been exploited by Koutis [14] and Williams [20] to design innovative
randomized parameterized algorithms for the k-path problem.

There has been a long history in theoretical computer science with heavy in-
volvement of studies and applications of polynomials. Most notably, low degree
polynomial testing/representing and polynomial identity testing have played in-
valuable roles in many major breakthroughs in complexity theory. For example,
low degree polynomial testing is involved in the proof of the PCP Theorem, the
cornerstone of the theory of computational hardness of approximation and the
culmination of a long line of research on IP and PCP (see, Arora et al. [3] and
Feige et al. [10]). Polynomial identity testing has been extensively studied due to
its role in various aspects of theoretical computer science (see, for example, Ka-
banets and Impagliazzo [12]) and its applications in various fundamental results
such as Shamir’s IP=PSPACE [19] and the AKS Primality Testing [2]. Low de-
gree polynomial representing [15] has been sought for so as to prove important
results in circuit complexity, complexity class separation and subexponential
time learning of boolean functions (see, for examples, Beigel [5], Fu[11], and Kli-
vans and Servedio [13]). These are just a few examples. A survey of the related
literature is certainly beyond the scope of this paper.

The above example of the k-path testing, the rich literature about polynomial
testing and many other examples and observations have motivated us to develop
a new theory of testing monomials in polynomials represented by arithmetic
circuits or even simpler structures. The monomial testing problem is related
to, and somehow complements with, the low degree testing and the identity
testing of polynomials. We want to investigate various complexity aspects of the
monomial testing problem and its variants with two folds of objectives. One is
to understand how this problem relates to critical problems in complexity, and
if so to what extent. The other is to exploit possibilities of applying algebraic
properties of polynomials to the study of those critical problems. As a first step,
Chen and Fu [6] have proved a series of results: The multilinear monomial testing
problem for ΠΣΠ polynomials is NP-hard, even when each clause has at most
three terms. The testing problem for ΠΣ polynomials is in P, and so is the testing
for two-term ΠΣΠ polynomials. However, the testing for a product of one two-
term ΠΣΠ polynomial and another ΠΣ polynomial is NP-hard. This type of

18 Z. Chen et al.

polynomial products is, more or less, related to the polynomial factorization
problem. We have also proved that testing c-monomials for two-term ΠΣΠ
polynomials is NP-hard for any c > 2, but the same testing is in P for ΠΣ
polynomials. Finally, two parameterized algorithms have been devised for three-
term ΠΣΠ polynomials and products of two-term ΠΣΠ and ΠΣ polynomials.
These results have laid a basis for further study about testing monomials.

1.2 Contributions and Methods

The major contributions of this paper are two pairs of algorithms. For the first
pair, we prove that there is a randomized O∗(pk) time algorithm for testing
p-monomials in an n-variate polynomial of degree k represented by an arith-
metic circuit, while a deterministic O∗((6.4p)k) time algorithm is devised when
the circuit is a formula, here p is a given prime number. The first algorithm
extends two recent algorithms for testing multilinear monomials, the O∗(23k/2)
algorithm by Koutis [14] and the O(2k) algorithm by Williams [20]. Koutis [14]
initiated the application of group algebra Z2[Zk

2] to randomized testing of mul-
tilinear monomials in a polynomial. Williams [20] incorporated the randomized
Schwartz-Zippel polynomial identity testing with the group algebra GF(2�)[Zk

p]
for some relatively small � in comparison with k to achieve the design of his algo-
rithm. The success of applying group algebra to designing multilinear monomial
testing algorithms is based on two simple but elegant properties found by Koutis,
by which annihilating non-multilinear monomials is possible via replacements of
variables by vectors in Zk

2 . When extending the group algebra from Z2[Zk
p] to

Zp[Zk
p] for a given prime p these two properties, as addressed in Section 3, are

unfortunately no longer valid. To make the matter worse, the Schwartz-Zippel
algorithm is not applicable to the larger algebra due to the lack of these two
properties. Nevertheless, we find new characteristics about Zp[Zk

p] and integrate
these with a more powerful randomized polynomial identity testing algorithm
by Agrawal and Biswas [1] to accomplish the design of our algorithm. Our de-
terministic algorithm is obtained via derandomizing the two random processes
involved in the first algorithm: deterministic selection of a set of linearly inde-
pendent vectors for an unknown monomial to guarantee its survivability from
vector replacements; and deterministic polynomial identity testing. The first part
is realized with the perfect hashing functions by Chen et al. [8], while the sec-
ond is carried out by the Raz and Shpilka [18] algorithm for noncommunicative
polynomials.

For the second pair of our algorithms, we present a deterministic O∗(2k) time
algorithm for testing multilinear monomials in ΠmΣ2Πt × ΠkΠ3 polynomials,
while a randomized O∗(1.5k) algorithm is given for these polynomials. It has been
proved in Chen and Fu [6] that testing multilinear monomials in ΠmΣ2Πt or
ΠkΠ3 polynomials is solvable in polynomial time. However, the problem becomes
NP-hard for ΠmΣ2Πt×ΠkΣ3 polynomials. Our two algorithms use the quadratic
algorithm by Chen and Fu [6] for testing multilinear monomials in ΠmΣ2Πt

polynomials as the base case algorithm. Both new algorithms improve the O∗(3k)
algorithm in [6].

Algorithms for Testing Monomials in Multivariate Polynomials 19

Finally, we prove that testing some special types of multilinear monomials
is W[1]-hard, giving evidence that testing for specific monomials is not fixed-
parameter tractable. One shall notice that difference between the general mono-
mial testing and the specific monomial testing. The former asks for the existence
of ”any one” from a set of possibly many monomials that are needed. The latter
asks for ”a specific one” from the set.

2 Preliminaries

2.1 Notations and Definitions

For variables x1, . . . , xn, let P [x1, · · · , xn] denote the communicative ring of all
the n-variate polynomials with coefficients from a finite field P . For 1 ≤ i1 <
· · · < ik ≤ n, π = xj1

i1
· · ·xjk

ik
is called a monomial. The degree of π, denoted by

deg(π), is
∑k

s=1 js. π is multilinear, if j1 = · · · = jk = 1, i.e., π is linear in all
its variables xi1 , . . . , xjk

. For any given integer c ≥ 2, π is called a c-monomial,
if 1 ≤ j1, . . . , jk < c.

An arithmetic circuit, or circuit for short, is a direct acyclic graph with + gates
of unbounded fan-in, × gates of fan-in two, and all terminals corresponding to
variables. The size, denoted by s(n), of a circuit with n variables is the number
of gates in it. A circuit is called a formula, if the fan-out of every gate is at most
one, i.e., its underlying direct acyclic graph is a tree.

Throughout this paper, the O∗(·) notation is used to suppress poly(n, k) fac-
tors in time complexity bounds.

Definition 1. Let F (x1, . . . , xn) ∈ P [x1, . . . , xn] be any given polynomial. Let
m, s, t ≥ 1 be integers.

– F (x1, . . . , xn) is said to be a ΠmΣsΠt polynomial, if F (x1, . . . , xn) =
∏m

i=1

Fi, Fi =
∑ri

j=1 Xij and 1 ≤ ri ≤ s, and Xij is a product of variables with
deg(Xij) ≤ t. We call each Fi a clause. Note that Xij is not a monomial in
the sum-product expansion of p(x1, . . . , xn) unless m = 1. To differentiate
this subtlety, we call Xij a term.

– In particular, we say F (x1, . . . , xn) is a ΠmΣs polynomial, if it is a ΠmΣsΠ1

polynomial. Here, each clause in f is a linear addition of single variables. In
other word, each term has degree 1.

– F (x1, . . . , xn) is called a ΠmΣsΠt × ΠkΣ� polynomial, if F (x1, . . . , xn) =
f1 · f2 such that f1 is a ΠmΣsΠt polynomial and f2 is a ΠkΣ� polynomial.

When no confusion arises from the context, we use ΠΣΠ and ΠΣ to stand for
ΠmΣsΠt and ΠmΣs, respectively.

2.2 The Group Algebra F [Zk
p]

For any prime p and integer k ≥ 2, we consider the group Zk
p with the multi-

plication · defined as follows. For k-dimensional column vectors x, y ∈ Zk
p with

20 Z. Chen et al.

x = (x1, . . . , xk)T and y = (y1, . . . , yk)T , x · y = (x1 + y1 (mod p), . . . , xk + yk

(mod p))T . 0 = (0, . . . , 0)T is the zero element in the group. For any field F , the
group algebra F [Zk

p] is defined as follows. Every element u ∈ F [Zk
p] is a linear

addition of the form

u =
∑

x∈Zk
p ,ax∈F

axx. (1)

For any element v =
∑

x∈Zk
p ,bx∈F bxx, We define

u + v =
∑

ax,bx∈F, x∈Zk
p

(ax + bx (mod p))x, and

u · v =
∑

ax,by∈F, and x,y∈Zk
p

(axby (mod p))(x · y).

For any scalar w ∈ F ,

wu = w

⎛⎝ ∑
x∈Zk

p , ax∈F

axx

⎞⎠ =
∑

x∈Zk
p , ax∈F

(wax (mod p))x.

The zero element in F [Zk
p] is the one as represented in expression (1) with

zero coefficients in F : 0 =
∑

x∈Zk
p

0x = 00. The identity element in F [Zk
p] is

1 = 10 = 0. For any vector v = (v1, . . . , vk)T ∈ Zk
p , for i ≥ 0, let (v)i = (iv1

(mod p), . . . , ivk (mod p))T . In particular, we have (v)0 = (v)p = 0. When it
is clear from the context, we will simply use xy and x+y to stand for xy(mod p)
and x + y (mod p), respectively.

3 Randomized Testing of p-Monomials

Group algebra Z2[Zk
2] was first used by Koutis [14] and later by Williams [20]

to devise a randomized O∗(2k) time algorithm to test multilinear monomials in
n-variate polynomials represented by arithmetic circuits. We shall extend Z2[Zk

2]
to Zp[Zd

p] to test p-monomials for some d > k. Two key properties in Z2[Zk
2],

as first found by Koutis [14], that are crucial to multilinear monomial testing
are unfortunately no longer valid in Zp[Zd

p]. Instead, we establish new properties
in Lemmas 3 and 4. Also, the Schwartz-Zippel algorithm [16] for randomized
polynomial identity testing adopted by Williams [20] is not applicable to our
case. Instead, we have to use a more advanced randomized polynomial identity
testing algorithm, the Agrawal and Biswas algorithm [1].

Let p be a prime number. Following conventional notations in linear algebra,
for any vectors v1, . . . , vt ∈ Zk

p with k ≥ 1 and t ≥ 1, let span(v1, . . . , vt) be the
linear space spanned by these vectors. That is, span(v1, . . . , vt) = {a1v1 + · · ·+
atvt|a1, . . . , at ∈ Zp}.

We first give two simple properties about (modp) operation.

Algorithms for Testing Monomials in Multivariate Polynomials 21

Lemma 1. For any x, y ∈ Zp, we have (x + y)p = xp + yp (mod p).

Proof. (x+y)p =
∑p

i=0(
p
i)x

p−iyi = xp+yp+
∑p−1

i=1 (p
i)x

p−iyi. Since p is prime, (p
i)

has a factor p, implying (p
i) = 0 (mod p), 1 ≤ i ≤ p−1. Hence, (x+y)p = xp+yp

(mod p).

Lemma 2. For any x, y ∈ Zp, we have ((p−1)x+y)p = (p−1)xp+yp (mod p).

Proof. By Lemma 1, ((p − 1)x + y)p ≡ (p − 1)pxp + yp (mod p). By Fermat’s
Little Theorem, (p−1)p = (p−1) (mod p). Thus, ((p−1)x+y)p = (p−1)xp+yp

(mod p).

The first crucial, though simple, property observed by Koustis [14] about testing
multilinear monomials is that replacing any variable x by (v +0) will annihilate
xt for any t ≥ 2, where v ∈ Zk

2 and v0 is the zero vector. This property is
not valid in Zp[Zd

p]. However, we shall prove the following lemma that helps
annihilate any monomials that are not p-monomials.

Lemma 3. Let v0 ∈ Zd
p be the zero vector and vi ∈ Zd

p be any vector. Then, we
have

((p − 1)vi + v0)p = 0, (2)

i.e., the zero element in Zp[Zd
p].

Proof. By Lemma 2, we have ((p−1)vi+v0)p = (p−1)(vi)p+(v0)p (mod p) =
(p − 1)v0 + v0 = pv0 (mod p) = 0.

The second crucial property found by Koutis [14] has two parts: (a) Replacing
variables xij in a multilinear monomial xi1 · · ·xik

with (vij + v0) will annihilate
the monomial, if the vectors vij are linearly dependent in Zk

2 . (b) If these vectors
are linearly independent, then the sum-product expansion of the monomial after
the replacements will yield a sum of all 2k vectors in Zk

2 . However, neither (a)
nor (b) is in general true in Zp[Zk

p]. Fortunately, we have the following lemma,
though not as ”structurally” perfect as (b).

Lemma 4. Let xm1
1 · · ·xmt

t be any given p-monomial of degree k. If vectors
v1, . . . , vt ∈ Zd

p are linearly independent, then there are nonzero coefficients
ci ∈ Zp and pairwise distinct vectors ui ∈ Zd

p such that

((p − 1)v1 + v0)m1 · · · ((p − 1)vt + v0)mt =
(m1+1)(m2+1)···(mt+1)∑

i=1

ciui, (3)

where c1 = 1 and u1 = 0.

Proof.

((p − 1)v1 + v0)m1 · · · ((p − 1)vt + v0)
mt

=

⎛⎝ m1∑
i1=0

(
m1
i1

)(p − 1)i1(v1)i1

⎞⎠ ⎛⎝ m2∑
i2=0

(
m2
i2

)(p − 1)i2 (v2)
i2

⎞⎠ · · ·
⎛⎝ mt∑

it=0

(
mt
it

)(p − 1)it (vt)
it

⎞⎠
=

m1∑
i1=0

m2∑
i2=0

· · ·
mt∑

it=0

(
m1
i1

)(
m2
i2

) · · · (mt
it

)(p − 1)i1+t2···+it(v1)i1(v2)i2 · · · (vt)
it (4)

22 Z. Chen et al.

As noted in the previous section, in the vector space Zd
p , we have

(v1)i1 (v2)i2 · · · (vt)it = i1vi + i2v2 + · · · + ttvt. (5)

Since v1, v2, . . . , vt are linearly independent, by expression (5) we have

(v1)i1(v2)i2 · · · (vt)it = 0 iff i1 = i2 = · · · = it = 0. (6)

The linear independence of v1, v2, . . . , vt implies that any non-empty subset of
these vectors are also linearly independent. Similar to expression (6), this further
implies that, for any 0 ≤ ji ≤ mi, i = 1, 2, . . . , t,

(v1)i1(v2)i2 · · · (vt)it = (v1)j1(v2)j2 · · · (vt)jt

iff i1 = j1, i2 = j2, . . . , and it = jt. (7)

Furthermore, since p is prime and mi ∈ Zp, we have

c(i1, i2, . . . ct) = (m1
i1

)(m2
i2

) · · · (mt

it
)(p − 1)i1+t2···+it (mod p)

= 0 (mod p) (8)

Combining expressions (7) and (8), we have

((p − 1)v1 + v0)m1 · · · ((p − 1)vt + v0)mt

=
∑

0≤ij≤mj ,0≤j≤t,i1+i2···+it≥0

c(i1, i2, . . . , it) · ((v1)i1(v2)i2 · · · (vt)it). (9)

In the above expression (9), all the coefficients are nonzero, and all the (m1 +
1)(m2+1) · · · (mt+1) ≤ pk vectors are distinct. Hence, expression (3) is obtained.

Theorem 1. Let p be a prime number. Let F (x1, x2, . . . , xn) be an n-variate
polynomial of degree k represented by an arithmetic circuit C of size s(n). There
is a randomized O∗(pk) time algorithm to test with high probability whether F
has a p-monomial of degree k in its sum-product expansion.

Proof. Let d = k + logp k + 1, we consider the group algebra Zp[Zd
p]. As in

Williams [20], we first expand the circuit C to a new circuit C′ as follows. For
each multiplication gate gi, we attach a new gate g′i that multiplies the output
of gi with a new variable yi, and feed the output of g′i to the gate that reads
the output of gi. Assume that C has h multiplication gates. Then, C′ will have
h new multiplication gates corresponding to new variables y1, y2, . . . , yh. Let
F ′(y1, y2, . . . , yh, x1, x2, . . . , xn) be he new polynomial represented by C′. The
algorithm for testing whether F has a p-monomial of degree k is given in the
following.

Algorithm RT-MLM (Randomized Testing of Multilinear Monomials):
1. Select uniform random vectors v1, . . . , vn ∈ Zd

p − {0}.
2. Replace each variable xi with (vi + v0), 1 ≤ i ≤ n.

Algorithms for Testing Monomials in Multivariate Polynomials 23

3. Use C′ to calculate

F ′(y1, . . . , yh, (v1 + v0), . . . , (vn + v0))

=
2d∑

j=1

fj(y1, . . . , yh) · zj , (10)

where each fj is a polynomial of degree k over the finite field Zp,
and zj with 1 ≤ j ≤ 2d are the 2d distinct vectors in Zd

p .
4. Perform polynomial identity testing with the Agrawal and Biswas

algorithm [1] for every fj over Zp. Return ”yes” if one of them is not
identical to zero, or ”no” otherwise.

It follows from Lemma 3 that all monomials that are not p-monomials in F
(and hence in F ′) will become zero, when variables xi is replaced by (vi + v0)
at Step ii. We shall estimate that with high probability some p-monomials will
survive from those replacements, i.e., will not become the zero element 0 in
Zp[Zd

p].
Consider any given p-monomial π = xm1

i1
· · ·xmt

it
of degree k with 1 ≤ mi < p

and k = m1 + · · · + mt, i = 1, . . . , t. For any 1 ≤ j ≤ t,

Pr
[
vj ∈ span(vi1 , . . . , vij−1)

]
=

pj−1

pd
,

since |span(vi1 , . . . , vij−1)| = pj−1 and |Zd
p | = pd. Hence,

Pr
[
(∃j ∈ {1, . . . , t})[vij ∈ span(vi1 , . . . , vij−1)]

]
= Pr

[
[v1 = 0] ∨ [vi2 ∈ span(vi1)] ∨ · · · ∨ [vit ∈ span(vi1 , . . . , vit−1)]

]
≤ Pr[v1 = 0] + Pr[vi2 ∈ span(vi1)] + · · · + Pr[vit ∈ span(vi1 , . . . , vit−1)]

=
p0

pd
+

p1

pd
+ · · · + pt−1

pd
≤ t

pt−1

pd

≤ k
pk−1

pk+logp k+1
≤ 1

p2
≤ 1

4
. (11)

Because vi1 , . . . , vit are linearly independent iff there is no vij ∈ span(vi1 ,
. . . , vij−1), by expression (11) the probability that vi1 , . . . , vit are linearly in-
dependent is at least 3

4 . This implies, by Lemma 4, that the monomial π will
survive from the replacements at Step ii with probability at least 3

4 . Furthermore,
by expression (3) in Lemma 4,

((p − 1)v1 + v0)mi · · · ((p − 1)vt + v0)mt =
pk∑
i=1

c(π)iui(π), (12)

where c(π)i are coefficients in Zp such that (m1 +1)(m2 +1) · · · (mt +1) of them
are nonzero, and ui(π) are distinct vectors in Zd

p . Let ψ(π) be the product of the

24 Z. Chen et al.

new variables yj that are added with respect to the gates in C such that those
gates produce the monomial π. Then, ψ(π) is a monomial that is generated by
C′. Hence, at Step iii, by expression (12) F ′ will have monomials respect to π
as given in the following expansion:

φ(π) = ψ(π) · ((p − 1)v1 + v0)mi · · · ((p − 1)vt + v0)mt

=
pk∑
i=1

c(π)i · ψ(π) · ui(π). (13)

Let S be the set of all those p-monomials that survive from the variable replace-
ments. Then,

F ′(y1, . . . , yh, (v1 + v0), . . . , (vn + v0)) =
∑
π∈S

φ(π)

=
∑
π∈S

⎛⎝ pk∑
i=1

c(π)i · ψ(π) · ui(π)

⎞⎠
=

2d∑
j=1

⎛⎝ ∑
π∈S and zj=ui(π)

c(π)i · ψ(π)

⎞⎠ · zj (14)

Let

fj(y1, . . . , yh) =
∑

π∈S and zj=ui(π)

c(π)i · ψ(π),

then the degree k polynomial with respect to zj is obtained for F ′ in expression
(10).

Recall that when constructing the circuit C′, each new gate is associated
with a new variable. This means that for any two monomials π′ and π′′ in
F , we have ψ(π′)
= ψ(π′′). This implies that we cannot add c(π′) · ψ(π′) to
c(π′′) · ψ(π′′) in fj. Thus, the possibility of a ”zero-sum” of coefficients from
different surviving monomials is completely avoided during the construction of
fj. Therefore, conditioned on that S is not empty, F ′ must not be identical to
zero, i.e., there exists at least one fj that is not identical to zero. At Step iv,
we use the randomized algorithm by Agrawal and Biswas [1] to test whether fj

is identical to zero. It follows from Theorem 4.6 in Agrawal and Biswas [1] that
this testing can be done with probability at least 5

6 in time polynomially in s(n)
and log q. Since S is not empty with probability at least 3

4 , the probability of
overall success of testing whether F has a p-monomial is at least 5

8 .
Finally, we address the issues about how to calculate F ′ and the time needed

to do so. Naturally, every element in the group algebra Zp[Zd
p] can be represented

by a vector in Zpd

p . Adding two elements in Zp[Zd
p] is equivalent to adding the two

corresponding vectors in Zpd

p , and the latter can be done in O(pd log p) time via

Algorithms for Testing Monomials in Multivariate Polynomials 25

component-wise sum. In addition, multiplying two elements in Zp[Zd
p] is equiva-

lent to multiplying the two corresponding vectors in Zpd

p , and the latter can be
done in O(dpd log2 p) with the help of a similar Fast Fourier Transform style algo-
rithm as in Williams [20]. Calculating F ′ consists of s(n) arithmetic operations of
either adding or multiplying two elements in Zp[Zd

p] based on the circuit C or C′.
Hence, the total time needed is O(s(n)dpdlog2p). At Step iv, we run the Agrawal
and Biswas [1] algorithm to F ′ to simultaneously test whether there is one fj

such that fj is not identical to zero. We choose a probability 5
6 . By Theorem 4.6

in Agrawal and Biswas [1], this testing can be done in O∗((s(n))4n4log2p) time,
suppressing a poly(log s(n), log n, log log p) factor. Recall that d = k + logpk + 1.
The total time for the entire algorithm is O∗(pk).

4 Derandomization

In this section, we turn our attention to formulas instead of general arithmetic
circuits. We shall derandomize Steps i and iv in algorithm RT-MLM respectively
with the help of two advanced techniques of perfect hashing by Chen et al.
[8] (see also Naor et al. [17]) and noncommunicative multivariate polynomial
identity testing by Raz and Shpilka [18].

Let n and k be two integers such that 1 ≤ k ≤ n. Let A = {1, 2, . . . , n}
and K = {1, 2, . . . , k}. A k-coloring of the set A is a function from A to K. A
collection F of k-colorings of A is a (n, k)-family of perfect hashing functions if
for any subset W of k elements in A, there is a k-coloring h ∈ F that is injective
from W to K, i.e., for any x, y ∈ W , h(x) and h(y) are distinct elements in K.

Theorem 2. Let p be a prime number. Let F (x1, x2, . . . , xn) be an n-variate
polynomial of degree k represented by a formula C of size s(n). There is a de-
terministic O((6.4p)k) time algorithm to test whether F has a p-monomial of
degree k in its sum-product expansion.

Proof. As in the proof of Theorem 1, we consider the group algebra Zp[Zk
p].

Here, we do not need to expand the dimension k to d > k. We also construct a
new formula C′ from C by adding new variable yi for each multiplication gate
gi in the same way as what we did for Theorem 1. Assume that C has h many
multiplication gates, then C′ will have h new multiplication gates corresponding
to new variables y1, y2, . . . , yh. The algorithm for testing whether F has a p-
monomial of degree k is given as follows.

Algorithm DT-MLM (Deterministic Testing of Multilinear Monomials):
1. Construct with the algorithm by Chen at el. [8] an (n, k)-family of

perfect hashing functions H of size O(6.4k log2 n).
2. Select k linearly independent vectors v1, . . . , vk ∈ Zk

p . (No random-
ization is needed at this step.)

3. For each perfect hashing function τ ∈ H do

26 Z. Chen et al.

a. For each variable xi, replace it by (vτ(i) + v0).
b. Use C′ to calculate

F ′(y1, . . . , yh, (v1 + v0), . . . , (vn + v0))

=
2k∑

j=1

fj(y1, y2, . . . , yh) · zj , (15)

where each fj is a polynomial of degree k over the finite field
Zp, and vectors zj with 1 ≤ j ≤ 2k are the 2k distinct vectors
in Zk

p .
c. Perform polynomial identity testing with the Raz and Sh-
pilka algorithm [18] for every fj over Zp. Stop and return
”yes” if one of them is not identical to zero.

iv. If all perfect hashing functions in H have been tried without return-
ing ”yes”, then stop and output ”no”.

By Chen at el.[8], Step i can be done in O(6.4kn log2 n) times. Step ii can be
easily done in O(k2 log p) time.

It follows from Lemma 3 that all those monomials that are not p-monomials
in F , and hence in F ′, will be annihilated, when variables xi are replaced by
(vi + v0) at Step iii.a.

Consider any given p-monomial π = xm1
i1

· · ·xmt

it
of degree k with 1 ≤ mi < p

and k = m1 + · · · + mt, i = 1, . . . , t. Because of the nature of H, there is at
least one perfect hashing function τ in H such that τ(ij′)
= τ(ij′′) if ij′
= ij′′ ,
1 ≤ j′, j′′ ≤ t ≤ k. This means that vτ(i1), . . . , vτ(it) are distinct and hence
linearly independent. By Lemma 4, π will survive from the replacements at Step
iii.a. Let S be the set of all surviving p-monomials. Following the same analysis
as in the proof of Theorem 1, we have F ′ that is not identical to zero if S is not
empty. That is, there is at least one fj that is not identical to zero, if S is not
empty. Moreover, the time needed for calculating F ′ is O(kpk log2 p).

We now consider imposing noncommunicativity on C′ as follows. Inputs to
an arithmetic gate are ordered so that the formal expressions yi1 · yi2 · · · · · yir

and yj1 · yj2 · · · · · yjl
are the same iff r = l and iq = jq for q = 1, . . . , r. Finally,

we use the algorithm by Raz and Shpilka [18] to test whether fj(y1, . . . , yh) is
identical to zero of not. This can be done in time polynomially in s(n) and n,
since fj is a non-communicative polynomial represented by a formula.

Combining the above analysis, the total time of the algorithm DT-MLM is
O∗((6.4p)k).

5 ΠmΣ2Πt × ΠkΣ3 Polynomials

It has been proved by Chen and Fu [6] that the problem of testing monomials
in ΠmΣs (or ΠmΣ2Πt) polynomials is solvable in O(ms

√
m + s) (or O((mt)2))

time, but the problem for ΠmΣ3 (or ΠmΣ2Πt × ΠkΣ3) polynomials is NP-
complete. Moreover, a O(tm21.7751m) time algorithm was obtained for ΠmΣ3Πt

Algorithms for Testing Monomials in Multivariate Polynomials 27

polynomials, and so was a O((mt)23k) algorithm for ΠmΣ2Πt × ΠkΣ3 poly-
nomials. In this section, we shall devise two parameterized algorithms, one
deterministic and the other randomized, for testing multilinear monomials in
ΠmΣ2Πt × ΠkΣ3 polynomials, improving the O((mt)23k) upper bound in [6].

Theorem 3. There is a deterministic algorithm of time O(((mt + k)2 + k)2k)
to test whether any ΠmΣ2Πt ×ΠkΣ3 polynomial has a multilinear monomial in
its sum-product expansion.

Proof. Let F = F1 · F2 such that F1 = f1 · · · fm is a ΠmΣ2Πt polynomial
and F2 = g1 · · · gk is a ΠkΣ3 polynomial, where fi = (Ti1 + Ti2) and gj =
(xj1 + xj2 + xj3), 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Consider variable x11 in the clause g1. We devise a branch and bound process
to divide the testing for F into the testing for two new polynomials. We eliminate
all x11 in gj for j = 1, . . . , k. Let g′j be the clause resulted from gj after the
eliminating process. Let h1 = F1 · g′1, h2 = F1 · x11, q = g′2 . . . g′k. Note that
exactly one of the three variable x11, x12 and x13 in the clause g1 must be selected
to form a monomial (hence a multilinear monomial) for F in the sum-product
expansion of F . We have two cases concerning the selection of x11:

(1) x11 can not be selected to help form any multilinear monomial. In this
case, F has a multilinear monomial, iff h1 · q has a multilinear monomial.

(2) x11 can be selected to form a multilinear monomial. Thus, F has a mul-
tilinear monomial, iff h2 · q has a multilinear monomial.

In either case, the new polynomial is a product of two polynomials with the
first being a Πm+1Σ2Πt polynomial and the second a ΠkΣ3 polynomial. Fur-
thermore, the second is the common q, which has one fewer clause than F2.

Let T (k) denote the time for testing multilinear monomials in F . Notice that
the eliminating process for x11 takes O(k) time. Then, T (k) is bounded as follows

T (k) ≤ 2T (k − 1) + O(k) ≤ 2k(T (0) + O(k)).

T (0) is the time to test multilinear monomials in a Πm+kΣ2Πt polynomial with
a size of O(mt + k). By the algorithm in [6] for this type of polynomials, T (0) =
O((mt + k)2). Therefore, T (k) = O(((mt + k)2 + k)2k).

We now show that the upper bound in the above theorem can be further im-
proved via randomization.

Theorem 4. There is a O((mt+k)21.5k)) time randomized algorithm that finds
a multilinear monomial for any ΠmΣ2Πt ×ΠkΣ3 polynomial with probability at
least 1 − 1

e if such monomials exist, or returns ”no” otherwise.

Proof. Like in Theorem 3, let F = F1 ·F2 such that F1 = f1 · · · fm is a ΠmΣ2Πt

polynomial and F2 = g1 · · · gk is a ΠkΣ3 polynomial with fi = (Ti1 + Ti2) and
gj = (xj1 + xj2 + xj3).

Assume that F has a multilinear monomial π. Then, one of the three variables
in gj must be included in π, 1 ≤ j ≤ k. We uniformly select two distinct variables

28 Z. Chen et al.

yj1 and yj2 from gj , then g′j = (yj1 + yj2) contains a desired variable for π with
a probability at least 2/3. Let

F ′ = F1 · (g′1 · · · g′k),

then F ′ has a multilinear monomial with a probability at least (2
3)k. On the

other hand, if F does not have any multilinear monomials in its sum-product
expansion, then F ′ must not have any multilinear monomials. Notice that F ′ is
a Πm+kΣ2Πt polynomial with a size of O(mt + k). By the algorithm for this
type of polynomials by Chen and Fu in [6], one can find a multilinear monomial
in F ′ in time O((mt + k)2). In other words, the above randomized process will
fail to find a multilinear monomial in F with a probability of at most 1 − (2

3

)k
if such monomials exist, or return ”no” otherwise.

Repeat the above randomized process
(

3
2

)k many times. If F has multilinear
monomials, then these processes will fail to find one with a probability of at
most [

1 −
(

2
3

)k
](3

2)
k

<
1
e
.

Hence, the processes will find a multilinear monomial in F with a probability
of at least 1 − 1

e . If F does not have any multilinear monomial, then none of
these repeated processes will find one in F . The total time of all the repeated
processes is O((mt + k)21.5k).

6 W[1]-Hardness

Although deterministic and randomized parameterized algorithms have been
devised for testing monomials in previous three sections as well as in [14,20,6],
yet we shall prove in this section that testing some special type of monomials in
polynomials represented by arithmetic circuits is not fixed-parameter tractable,
unless some unlikely collapse occurs in the fixed parameter complexity theory.

One shall notice that difference between the general monomial testing and the
specific monomial testing. The former asks for the existence of ”any one” from a
set of possibly many monomials that are needed. The latter asks for ”a specific
one” from the set. For example, there may be 2n − 1 multilinear monomials in
the sum-product expansion of a n-variate polynomials. Testing for any one from
these many monomials is certainly different from testing for a specific one, say,
x1x3x7x11.

Downey and Fellows [9] have established a hierarchy of parameterized com-
plexity, named the W hierarchy, and proved that the k-Clique problem is W[1]-
hard.

Definition 2. Let C = {i1, i2, . . . , ik} be a set of k positive integers. A k-clique
monomial with respect to C is the multilinear monomial

∏
1≤j<�≤k xij i�

of degree
k(k−1)

2 .

Algorithms for Testing Monomials in Multivariate Polynomials 29

Theorem 5. It is W[1]-hard to test whether any given n−variate polynomial of
degree k(k−1)

2 represented by an arithmetic circuit has a k-clique monomial in
its sum-product expansion.

Proof. We shall reduce the k-clique problem to the k-clique monomial testing
problem. Let G = (V, E) be an undirected graph and k an integer parameter.
V = {v1, v2, . . . , vm} is the set of vertices. Each (i, j) ∈ E represents the edge
connecting vertices vi and vj . For each edge (i, j) ∈ E, we define a variable xij .
Let n = |E|. We construct a polynomial f with n variables.

f(G, 1) = 1,

f(G, 2) =
∑

(i,j)∈E

xij ,

f(G, t + 1) =
m∑

i=1

⎛⎝ ∑
(i,j)∈E

xij

⎞⎠t

· f(G, t)

As followed from the above definition, f(G, k) has n = |E| variables and its
degree is k(k−1)

2 . It is easy to see that f(G, k) can be computed by an arithmetic
circuit.

If G has a k-clique A = {i1, i2 . . . , ik}, then there are k(k−1)
2 edges connecting

any two vertices in A. By definition, f(G, k) has a term (xi1i2 + · · ·+xi1ik
+ · · ·+

xik−1ik
)k−1 ·f(G, k−1). So, we can select π1 = xi1i2 · · ·xi1ik

from the first factor
of this term. By simple induction, we can select a (k − 1)-clique monomial of
degree (k−1)(k−2)

2 with respect to A−{i1}. Then, π1 · π2 is a k-clique monomial
with respect to A. On the other hand, it f(G, k) has a k-clique monomial with
respect to A, then by definition, A is a k-clique for G.

References

1. Agrawal, M., Biswas, S.: Primality and identity testing via Chinese remaindering.
Journal of the ACM 50(4), 429–443 (2003)

2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math. 160(2), 781–
793 (2004)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

4. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3), 121–
123 (1979)

5. Beigel, R.: The polynomial method in circuit compplexity. In: Proceedings of the
Eighth Conference on Structure in Complexity Theory, pp. 82–95 (1993)

6. Chen, Z., Fu, B.: The complexity of testting monomials in multivariate polynomials.
In: Proceedings of the Fifth International Conference on Combinatorial Optimiza-
tion and Applications (2011)

7. Chen, Z., Fu, B.: Approximating multilinear monomial coefficients and maximum
multilinear monomials in multivariate polynomials. In: Wu, W., Daescu, O. (eds.)
COCOA 2010, Part I. LNCS, vol. 6508, pp. 309–323. Springer, Heidelberg (2010)
(The full version will appear in Journal of Combinatorial Optimization)

30 Z. Chen et al.

8. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: SODA, pp. 298–307 (2007)

9. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. II.
On completeness for W(1). Theoretical Computer Science 141(1-2), 109–131 (1995)

10. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996)

11. Fu, B.: Separating PH from PP by relativization. Acta Math. Sinica 8(3), 329–336
(1992)

12. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. In: STOC, pp. 355–364 (2003)

13. Klivans, A., Servedio, R.A.: Learning DNF in time 2Õ(n1/3). In: STOC, pp. 258–265
(2001)

14. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

15. Minsky, M., Papert, S.: Perceptrons (expanded edition 1988). MIT Press,
Cambridge (1968)

16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

17. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: FOCS, pp. 182–191 (1995)

18. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative
models. Computational Complexity 14(1), 1–19 (2005)

19. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)
20. Williams, R.: Finding paths of length k in O∗(2k) time. Information Processing

Letters 109, 315–318 (2009)

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 31–45, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Hybrid Artificial Bee Colony Search Algorithm Based on
Disruptive Selection for Examination Timetabling

Problems

Malek Alzaqebah and Salwani Abdullah

Data Mining and Optimisation Research Group (DMO),
Center for Artificial Intelligence Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
{malek_zaqeba,salwani}@ftsm.ukm.my

Abstract. Artificial Bee Colony (ABC) is a population-based algorithm that
employed the natural metaphors, based on foraging behavior of honey bee
swarm. In ABC algorithm, there are three categories of bees. Employed bees
select a random solution and apply a random neighborhood structure
(exploration process), onlooker bees choose a food source depending on a
selection strategy (exploitation process), and scout bees involves to search for
new food sources (scouting process). In this paper, firstly we introduce a
disruptive selection strategy for onlooker bees, to improve the diversity of the
population and the premature convergence, and also a local search (i.e.
simulated annealing) is introduced, in order to attain a balance between
exploration and exploitation processes. Furthermore, a self adaptive strategy for
selecting neighborhood structures is added to further enhance the local
intensification capability. Experimental results show that the hybrid ABC with
disruptive selection strategy outperforms the ABC algorithm alone when tested
on examination timetabling problems.

Keywords: Artificial Bee Colony, Simulated Annealing, Examination
Timetabling Problems, Disruptive Selection.

1 Introduction

The examination timetabling problem is concerned with allocating a set of
examinations into a limited number of timeslots (periods), subject to a set of
constraints. The basic challenge of examination timetabling is to schedule
examinations over a limited number of timeslots, so as to avoid conflicts (refer to hard
constraints) and to satisfy a number of side constraints (refer to soft constraints) [5].
In recent years, a variety of constraints has been addressed in the scientific literature
to model the real-world problems and try to close the gap between theory and practice
in automated timetabling, as presented by the 2nd International Timetabling
Competition (ITC2007) where three tracks of problems are proposed i.e. one for exam
timetabling and two for course timetabling.

32 M. Alzaqebah and S. Abdullah

In the past, a wide variety of approaches for solving the examination timetable
problem have been described and discussed in the literature, that basically can be
divided into population-based approaches and single solution based approaches. For a
recent detailed overview readers should consult [8].

In this paper, we employ a population-based approach that is based on a swarm
intelligence algorithm, called artificial bee colony (ABC). It was proposed by
Karaboga [1]. ABC algorithm has been successfully developed to solve many
optimisation problems [18, 13, and 19]. It mimics the foraging behavior of honey bee
swarms. This work concentrates incorporation of the ABC algorithm with a local
search (a simulated annealing in this case) to compensate for the insufficiency of
using each type of method in isolation. The details of the proposed approach are
discussed later.

The paper is organised as follows. Section 2 presents the examination timetabling
problem and its formulation. The original Artificial Bee Colony algorithm is
presented in Section 3. The proposed approach is discussed in Section 4. Our
experimental results are presented in Section 5. This is followed by conclusion and
comments in Section 6.

2 Problem Description and Formulation

The problem description in this paper is divided into two parts as discussed below:

• Problem I: This problem is introduced by Carter et al. (1996) [5], which
considered as an uncapacitated examination timetabling problem, where a
room capacity requirement is not taking into account.

• Problem II: International timetabling competition (ITC2007) datasets
which consist of three tracks. In this work, we consider the first track that
represents an exam timetabling model which includes a number of real
world constraints.

2.1 Problem I

The problem description that is utilised in this paper is adapted from the description
presented in Burke et al. (Burke et al., 2004). Examination timetabling problems
consist of these inputs as stated below:

• N is the number of exams
• Ei is an exam, i ∈ {1,…,N}
• T is the given number of available timeslots
• M is the number of students
• C = (cij)NxN is the conflict matrix where each element denoted by cij, i,j ∈{1,…,N}

is the number of students taking exams i and j.
• tk (1≤ tk ≤T) specifies the assigned timeslot for exam k (k ∈{1,…,N})

We formulate an objective function which tries to space out students’ exams
throughout the exam period (Expression (1)) that can then be formulated as the
minimisation of:

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 33

 M

iF
N

i
∑

−

=

1

1
1)(

 (1)
where

),(.)(∑
+=

=
N

ij

jiij ttproximityciF

1
1

 (2)

and

⎩
⎨
⎧ ≤−≤=

−

otherwise

ttif
ttproximity ji

tt

ji

ji

0

5||12/2
),(

||5
 (3)

subject to:

() 0,
1

1 1

=⋅∑ ∑
−

= +=
ji

N

i

N

ij
ij ttc λ

where

()

⎩
⎨
⎧ =

=
otherwise

ttif
tt ji

ji
0

1
,λ

 (4)

Equation (2) presents the cost for an exam i which is given by the proximity value
multiplied by the number of students in conflict. Equation (3) represents a proximity
value between two exams [5]. Equation (4) represents a clash-free requirement so that
no student is asked to sit two exams at the same time. The clash-free requirement is
considered to be a hard constraint.

2.2 Problem II

International timetabling competition (ITC2007) introduces three tracks of problems
i.e. examination timetabling, curriculum-based course timetabling problem and post-
enrolment course timetabling problems. In this paper, we concentrate on the first track
i.e. examination timetabling problems that include a number of real world constraints
[8]. A set of hard and soft constraints are listed in Table 1 and Table 2, respectively.

Table 1. Hard Constraints

Hard Constraints Explanation
H1 There cannot be any students sitting for more than one exam at the

same time.
H2 The total number of students assigned to each room cannot exceed the

room capacity.
H3 The length of exams assigned to each timeslot should not violate the

timeslot length.
H4

Some sequences of exams have to be respected. e.g. Exam_A must be
schedule after Exam_B.

H5 Room related hard constraints must be satisfied e.g. Exam_A must be
scheduled in Room 80.

34 M. Alzaqebah and S. Abdullah

Table 2. Soft Constraints

Soft
Constraints

Mathematical
Symbol

Explanation

S1 C
R

S

2

Two exams in a row: Minimise the number of
consecutive exams in a row for a student.

S2 C
D

S

2

Two exams in a day: student should not be assigned to
sit more than two exams in a day. Of course, this
constraint only becomes important when there are more
than two examination periods in the same day.

S3 C
PS

S
Periods spread: all students should have a fair
distribution of exams over their timetable.

S4 C
NMD

S

2

Mixed durations: The numbers of exams with different
durations that are scheduled into the same room has to
be minimised as much as possible.

S5 C
FL

Larger examinations appearing later in the timetable:
Minimise the number of examinations of large class
size that appear later in the examination timetable (to
facilitate the assessment process)

S6 C
P

Period Penalty: some periods have an associated
penalty, minimise the number of exams scheduled in
penalised periods.

S7 C
R

Room Penalty: some rooms have an associated penalty,
minimise the number of exams scheduled in penalised
rooms.

A feasible timetable is one in which all examinations have been assigned to a

period and room, and there is no violation of hard constraints. The objective function
is to minimise the violation of soft constraints as given in expression (5) [8].

)5()(min
22222

CwCwCwCwCwCwCw
RRPpFLFLNMDNMD

Ss

PS

S

PSD

S

DR

S

R

s ++++++∑
∈

Each dataset has its own weight as shown in Table 3 [8].

Table 3. The Associate Weight of ITC2007 Collection of Examination Datasets

Datasets w
2

w
2

w
PS

w
N

w
FL

w
P

w
R

Exam_1 5 7 5 10 100 30 5
Exam_2 5 15 1 25 250 30 5
Exam_3 10 15 4 20 200 20 10
Exam_4 5 9 2 10 50 10 5
Exam_5 15 40 5 0 250 30 10
Exam_6 5 20 20 25 25 30 15
Exam_7 5 25 10 15 250 30 10
Exam_8 0 150 15 25 250 30 5

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 35

3 Artificial Bee Colony Algorithm (ABC)

 3.1 Basic Artificial Bee Colony (ABC) Algorithm

Artificial Bee Colony (ABC) algorithm is a global optimisation algorithm that
replicates the real behavior of honey bees, introduced by Karaboga [1]. The algorithm
classifies the bees in the hive into three groups i.e. employed bees, onlooker bees and
scouts bees. In this algorithm, employed bees fly around the search space to collect
the information of food sources, and share the information with onlooker bees through
a wiggle dance. Then onlooker bees choose their food sources based on this
information. During the search process, the employed bees whose food source has
been abandoned become scout bees and start to search for new food sources randomly
without any previous information. In ABC algorithm, the position of a food source
represents a possible solution, and the nectar amount of a food source corresponds to
the quality (fitness value) of the associated solution. The number of the employed
bees is tied to the number of solutions in the population. Figure 1 shows the pseudo
code of the ABC algorithm [1].

Initial food sources are produced for all employed bees
REPEAT

Each employed bee fly’s to a food source in her memory and
determines a neighbour source, then evaluates its nectar
amount and dances in the hive

Each onlooker watches the dance of employed bees and chooses one
of their sources depending on the dances, and then goes to that
source. After choosing a neighbour around that, she evaluates
its nectar amount.

Abandoned food sources are determined and are replaced with the
new food sources discovered by scouts.

The best food source found so far is registered.
UNTIL (requirements are met)

Fig. 1. Original artificial bee colony search algorithm

As shown in Figure 1, at the first step, a constructive heuristic algorithm is applied
to initialise the population (food source positions). After the initialization, an
employed bee produces an adjustment on the source position in her memory and
discovers a new food source position. If the nectar amount of the new food source is
higher than the previous food source, the bee memorises the new source position and
forgets the old one. Otherwise, she keeps the position of the one in her memory. After
all the employed bees complete the search process, they share the information of the
sources with the onlookers on the dance area. Each onlooker bee evaluates the
nectar information taken from all employed bees and then chooses a food source

36 M. Alzaqebah and S. Abdullah

depending on the nectar amounts. Finally scout bees find out the abandoned sources
and replace it by randomly produced sources.

3.2 Onlooker Bees Selection Process

Onlooker bees choose the solution by a stochastic selection strategy, which is
summarised as below:

1. Calculates the fitness value (fiti) by using the fitness function as follow:

 (6)

where fi is fitness function.

2. Calculate the probability value by using the following expression:

 (7)

where SN is the number of food sources, fi is the fitness function of the ith food
source.

3. Finally, chose a candidate solution based on the selection probability by
“roulette wheel selection” method.

As stated in [10], there are two problems of using basic ABC selection strategy i.e.
(i) A “super- individual” being too often selected the whole population tends to
converge towards his position. The diversity of the population is then too reduced to
allow the algorithm to progress; (ii) with the progression of the algorithm, the
differences between fitness are reduced. The best ones then get quite the same
selection probability as the others and the algorithm stops progressing.” Thus, this
selection strategy is hard to keep the diversity and to avoid the premature
convergence. In order to alleviate these problems, this paper employed a disruptive
selection strategy to improve the performance of the ABC algorithm.

3.3 Disruptive Selection Strategy

Disruptive selection gives more chances for higher and lower individuals to be
selected by changing the definition of the fitness function as in Equation (8) [13].

0

0

)(1
1

1

<

≥

⎪⎩

⎪
⎨
⎧

+
+=

i

i

i

ii

f

f

fabs
ffit

∑ =

=
SN

i

i
fi

fip

1

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 37

 (8)

Where is the fitness function, is the average value of the fitness function

of the individuals in the population. By using a disruptive selection, it has a tendency
to maintain the diversity slightly longer, because both higher and lower quality of the
solutions is more preferable.

4 The Proposed Algorithm

4.1 Neighborhood Search Operations

In this paper, four neighborhood search operations are employed in order to enhance
the performance of searching algorithms i.e. [2]:

Nbs1: Select 2 exams at random and swap timeslots.
Nbs2: Select a single exam at random and move to a new random feasible

timeslots.
Nbs3: Select 4 exams randomly and swap the timeslots between them feasibly.
Nbs4: Select 2 exams at random and move to a new random feasible timeslots.

4.2 Self-adaptive Method for Neighbouring Search

To find neighbouring food sources, both employee and onlooker bees apply a self-
adaptive strategy that is explained as follows [21]:

1. At the beginning, the neighbour list (NL) with a specified length is generated
by filling the list randomly from four neighbourhood search operations as
explained in Section 4.1.

2. During the evolution process, one neighbourhood is taken from NL and is
used to generate a new food source for an employed bee or onlooker bee.

3. If the new food source is better than the current one, this approach will put
the employed neighbourhood search operation into a new list, called a
winning neighboring list (WNL).

4. When the NL became empty, it will be refilled as follow: 75% is refilled
from the WNL list, and 25% is refilled randomly from four neighbourhood
search operations, and also WNL is reset to zero to keep away of any
accumulation effects.

5. If the WNL is empty (this perhaps happen when the search perform near an
optimal with negligible population variety) the most recent NL is used again.

∑
=

−= n

i
i

i
itii

fit

fit
Pfffit

0

||

if tf
if

38 M. Alzaqebah and S. Abdullah

By using this method, the suitable neighboring search operation can be learned
based on the current search process and the solution state. The length of NL is set to
200 as stated in [21].

4.3 A Local Search Algorithm (Simulated Annealing)

A simple local search (i.e. simulated annealing) is embedded to the basic ABC
algorithm in order to enhance the utilisation capability of the algorithm. This is due to
the basic ABC that uses a greedy acceptance criterion i.e. only accepts an improved
solution and eliminate the worse.

Simulated annealing has been proposed by Kirkpatrick et al. [12]. It mimics the
annealing process of metals molten that is heated and then slowly cooled. A simulated
annealing algorithm works on a single solution and tries to improve it by finding
nearby solutions, and slowly amending a parameter called temperature. The algorithm
always accepts a better solution. In SA, a worse solution is accepted with the a certain
probability between [0,1] if it less than e-δ/Temp where δ is the difference between the
penalty cost of the new and current solutions (i.e. δ = f(Sol*)-f(Sol)). The process is
repeated until the temperature Temp is less than the final temperature Tf , as shown in
Figure 2. In this paper, the parameter used for the simulated annealing algorithm are set as
follow (adapted from Abdullah and Burke [20]): the initial temperature (T0) is set to
5000, final temperature (Tf) is set to 0.05, and the number of iterations, NumOfIteSA is set
to 200000.

4.4 Constructive Heuristic

In this paper, we use a graph colouring approach (i.e. largest degree heuristic) to
generate the initial solution, where the examination with the largest number of
conflicts are scheduled first. For more details about graph colouring applications to
timetabling see Burke et al. [3]

4.5 Improvement Algorithm

Figure 2 illustrates the pseudo-code that represents our approach, and also a SA
pseudo-code. The algorithm starts with feasible initial solutions which are generated
by a largest degree heuristic.

The algorithm starts with initial population that is generated using a graph
colouring approach. The employed bees work on random solutions and apply a
neighborhood structure based on self-adaptive method (as explained in Section 4.2)
on each solution. The solutions are arranged based on the profitability. Onlooker bees
calculate the selection probability based on disruptive selection as in Equation (8) and
then she applies a local search (SA) (as explained in Section 4.3) on the highest
probability solution. Finally, scout bees determine the abandoned food source and
replace it with the new food source.

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 39

Fig. 2. The pseudo code for the artificial bee colony search algorithm

Initialisation:
Initialise the initial population and evaluate the fitness;
Calculate the initial fitness value, f(Sol);
Set best solution, Solbest ← Sol;
Set maximum number of iteration, NumOfIte;
Set the population size;
//where population size = OnlookerBee = EmployeedBee;

iteration ← 0;
Improvement:
do while (iteration < NumOfIte)
 for i=1: EmployeedBee

Select a random solution and apply neighborhood
structure based on Self-Adaptive;

 end for
 for i=1: OnlookerBee

Calculate the selection probability Pi, based on
disruptive selection as in Equation (8).
Sol* ← select the solution depending on Pi;
Start local search(SA) on Sol*;
Set initial temperature T0;
Set final temperature Tf;
Set number of iteration NumOfIteSA;
Set decreasing temperature rate as α
where α = (log(T0) – log(Tf))/NumOfIteSA;
Set Temp ← T0;
Set SolbestSA ← Sol*;
Set SolSA ← Sol*;do while (Temp > Tf)
SolSA* ← Apply neighbourhood structure on SolSA;
Calculate cost function f(SolSA*);
if (f(SolSA*) < f(SolbestSA))
 SolSA ← SolSA*;
 SolbestSA ← SolSA*;
else
 Generate a random number called RandNum;
 if (RandNum ≤ e-δ/Temp) where δ = f(SolSA*)-f(SolSA)

SolSA ← SolSA*;
 Temp = Temp–Temp*α;
end while

end local search
if (f(SolbestSA) < f(Sol*))
 Sol* ← SolbestSA;end if

end for
 Solbest ← best solution found so far;
e

Scoutbee determines the abandoned food source and replace
it with the new food source.

 iteration++;
end do

40 M. Alzaqebah and S. Abdullah

5 Simulation Results

In our experimental results we employed three different modifications of ABC
algorithm, called ABC algorithm based on disruptive selection (coded as DABC),
DABC algorithm with a local search (i.e. Simulated Annealing) (coded DABCSA) and
DABCSA algorithm with a self-adaptive method for neighbouring search (coded as
self-adaptive DABCSA). We compare the performance of these modifications with the
basic ABC in order to show the effects of employing different modification on basic
ABC algorithm. The parameter settings used in this work are shown in Table 4.

Table 4. Parameters setting

Parameter Value
Iteration 500

population size 50
Scout Bee 1

5.1 Problem I

Table 5 provides the comparison of basic ABC, DABC, DABCSA and self-adaptive
DABCSA results, and compared with the best known results in the literature. The
purpose here is to compare the performance among the three versions of ABC
algorithms when tested in Problem I which represents the uncapacitated examination
timetabling problem.

Table 5. Results Comparison on Uncapacitated Problems

Instance Basic
ABC

DABC DABCSA
Self adaptive

DABCSA
Best
known

Authors for best known

car91 5.86 5.42 5.33 5.19 4.50 Yang and Petrovic (2004)
car92 4.92 4.84 4.39 4.36 3.98 Yang and Petrovic (2004)

ear83 I 38.34 37.54 35.17 32.26 29.3 Caramia et al. (2001)
hec92 I 11.51 11.21 11.19 10.89 9.2 Caramia et al. (2001)
kfu93 16.04 15.13 14.07 13.73 13.0 Burke et al. (2010)
lse92 12.42 12.06 11.89 11.15 9.6 Caramia et al. (2001)

sta83 I 158.12 157.52 157.39 157.23 156.9 Burke et al. (2010)
tre92 9.58 9.23 9.41 9.22 7.9 Burke et al. (2010)

uta92 I 3.99 3.94 3.89 3.83 3.14 Yang and Petrovic (2004)
ute92 27.80 27.57 27.11 26.73 24.8 Burke et al. (2010)

yor83 I 41.44 40.94 40.76 40.63 34.9 Burke et al. (2010)

The comparison between basic ABC, DABC, DABCSA and the self-adaptive

DABCSA shows, that the three modified version of ABC perform much better than the
basic ABC. From Table 5, we can say that the disruptive selection strategy
outperform the basic ABC, and then after applying the local search on DABC
(DABCSA) the algorithm is able to produce better solutions. The comparison between
the DABCSA and the self-adaptive DABCSA shows that, by employing a self-adaptive
method for neighbouring search helps the algorithm to perform better than with the
local search alone (i.e. that select the neighbourhood search operations at random).

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 41

Overall comparison with the best known results shows that even we are unable to beat
any of the best known results in the literature, we are still able to produce good
enough solutions.

ABC+DABC DABCSA self-adaptive DABCSA

(a) hec92I

(b) car91

(c) kfu93

Fig. 3. Convergence graph for hec92I, car91 and kfu93

Figure 3 shows the behavior of the algorithm over three datasets. The x-axis
represents the number of iterations, while the y-axis represents the penalty cost. The
first column is the basic ABC convergence, the middle is the DABCSA, and the right
column is the self-adaptive DABCSA. These graphs show how our algorithm explores
the search space in which we believe that the way the algorithm behaves has a
correlation with the complexity of the datasets (represented by the conflict density
value). Note that the details of the conflict density values can be found in Qu et al.
(2009). The higher conflict density signifies that more exams are conflicting with
each other. The conflict density value for hec92I is 0.42, car91 is 0.13 and kfu93 is
0.06. The behavior of the algorithm works similar at the beginning of the iterations

42 M. Alzaqebah and S. Abdullah

where the improvement of the solution can easily be obtained. Later it becomes
steady and hard to be improved. However, for the kfu93 dataset (where the conflict
density value is low compared to hec92I and car91 datasets), the algorithm is able to
slowly improve the quality of the solution until it get stuck in the local optimum when
the number of iteration almost reaches the maximum number of iteration used in this
experiment.

(a) (b)

Fig. 4. The effects of using the disruptive selection strategy

Figure 4 shows the effects of using the disruptive selection strategy (as explained
in Section 3.3). The x-axis represents the number of solution, while the y-axis
represents the penalty cost. The graph shows that DABC can explore the search space
better than basic ABC. This is due to the behavior of the selection strategy i.e. in the
basic ABC, a random selection is used to select the solution (as explained in Section
3.2) where the solution with highest fitness value will be the most selected during the
improvement process. However, the disruptive selection strategy concentrates on both
worse and high fitness solutions, and trying to keep the population diversity by
improving the worse fitness solutions in concurrency with the high fitness solutions.
This can be seen in Figure 4 (b) where all the solutions (improved population) are
converged together after the improvement step are executed.

5.2 Problem II

The three modified version of ABC algorithm are also tested on Problem II which
represents the (ITC2007). The results are shown in Table 6, which provides the
comparison between the basic ABC, DABC, DABCSA and self-adaptive DABCSA,
and with other available results in the literature.

As shown in Table 6, the results for the three modified version of ABC (DABC,
DABCSA and the self-adaptive DABCSA) perform better than the basic ABC. The
efficiency of the algorithm increases starting with applying a disruptive selection
(DABC) and then the hybridization with a local search (DABCSA). Form Table 6, we
can conclude that the self-adaptive DABCSA shows better result in comparison with
the three version of ABC, and they are comparable with some of other results in the
literature.

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 43

Table 6. Results Comparison on ITC2007 Datasets

Datasets Müller
(2009)

Atsuta
et al. (2007)

Pillay
(2007)

Gogos
et al. (2009)

ABC DABC DABCSA Self-adaptive
DABCSA

Exam_1 4370 8006 12035 4699 6582 6552 6361 6354

Exam_2 400 3470 3074 385 1517 1455 1377 1352

Exam_3 10049 18622 15917 8500 11912 11441 10867 10146

Exam_4 18141 22559 23582 14879 19657 19591 18929 18214

Exam_5 2988 4714 6860 2795 17659 17104 16942 16124

Exam_6 26950 29155 32250 25410 26905 23309 21309 22309

Exam_7 4213 10473 17666 3884 6840 6747 6692 6317

Exam_8 7861 14317 16184 7440 11464 10948 10857 10293

ABC+DABC DABCSA self-adaptive DABCSA

 (a) (b) (c)

Fig. 5. Convergence graph for Exam_3

Figure 5 shows the behavior of the algorithm when tested on Problem II where the
conflict density for Exam_3 is equal to 2.62 [15]. The x-axis represents the number of
iterations, while the y-axis represents the penalty cost. As in Figure 5 (a, b and c), all
of three modified algorithms are better than the basic ABC (based on the results
obtained). Figure 5(a) shows that the DABC algorithm with disruptive selection
strategy able to better explore the search space and brings all solutions to converge
together. By incorporating the simulated annealing algorithm with DABC algorithm
create a balance of exploration and exploitation. This is evidenced from the obtained
results where the local search helps to further improve the obtained solutions.
Introducing a self-adaptive strategy (compare to random) in selecting neighbourhood
structures is managed to enhance the local intensification capability as shown in
Figure 5(c). The results from Table 6 also show that the self-adaptive DABCSA is able
to obtain solutions that are better than other proposed approaches here on almost of
the tested datasets. Note that, the experiment carried out here is terminated when the
time reach to 600 seconds (as set in the ITC2007 computation rules).

44 M. Alzaqebah and S. Abdullah

6 Conclusion and Future Work

The primary aim of this paper is to enhance the performance of the basic ABC
algorithm by using a disruptive selection strategy (DABC), and later incorporate with
a local search algorithm (i.e. a simulated annealing in this case) (DABCSA). Adding a
self adaptive strategy (self-adaptive DABCSA) for selecting a neighborhood structure
helps to further enhance the performance of DABCSA. Experimental results show that
the three modified version of ABC algorithm outperforms the ABC algorithm alone
and are comparable with state-of-the-art when tested on examination timetabling
problems. As a future work, we will investigate the effect of adaptively incorporating
a different local search algorithm and tested its performance on broader timetabling
problems.

References

1. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report TR06, Erciyes University, Engineering Faculty, Computer Engineering
Department (2005)

2. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja-Orlin’s large
neighbourhood search approach for examination timetabling. OR Spectrum 29(2), 351–
372 (2007)

3. Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A time-predefined local search
approach to exam timetabling problem. IIE Transactions 36(6), 509–528 (2004)

4. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination timetabling.
In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer,
Heidelberg (2001)

5. Carter, M.W., Laporte, G.: Examination Timetabling: Algorithmic Strategies and
Applications. Journal of the Operational Research Society 47, 373–383 (1996)

6. Carter, M.W.: A survey of practical applications of examination timetabling algorithms.
Operations Research 34(2), 193–202 (1986)

7. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum 30(1), 167–190 (2008)

8. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G.: A survey of search methodologies
and automated system development for examination timetabling. Journal of
Scheduling 12, 55–89 (2009)

9. Abdullah, S., Turabeih, H., McCollum, B.: A hybridization of electromagnetic like
mechanism and great deluge for examination timetabling problems. In: Blesa, M.J., Blum,
C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818,
pp. 60–72. Springer, Heidelberg (2009)

10. Bao, L., Zeng, J.: Comparison and Analysis of the Selection Mechanism in the Artificial
Bee Colony Algorithm. HIS 1, 411–416 (2009)

11. Abdullah, S., Burke, E.K., McCollum, B.: Using a Randomised Iterative Improvement
Algorithm with Composite Neighbourhood Structures for University Course Timetabling.
In Metaheuristics: Progress in complex systems optimization (Operations Research /
Computer Science Interfaces Series). Ch. 8. Springer, Heidelberg (2007) ISBN:978-0-387-
71919-1

 Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection 45

12. Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G.: Bonabeau.Self-
Organization in Biological Systems. Princeton University Press, Princeton (2003)

13. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital
IIR filters. Journal of the Franklin Institute 346(4), 328–348 (2009)

14. Karaboga, N., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm.
Applied Soft Computing 8, 687–697 (2008)

15. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm, Applied
Mathematics and Computation (2009) doi:10.1016/j.amc.2009.03.90

16. Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical
Report TR06, Computer Engineering Department, Erciyes University, Turkey (2005)

17. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39,
459–471 (2007)

18. Kang, F., Li, J., Xu, Q.: Structural inverse analysis by hybrid simplex artificial bee colony
algorithms. Computers and Structures 87, 861–870 (2009)

19. Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning
tree problem. Applied Soft Computing 9, 625–631 (2009)

20. Abdullah, S., Burke, E.K.: A Multi-start large neighbourhood search approach with local
search methods for examination timetabling. In: Long, D., Smith, S.F., Borrajo, D.,
McCluskey, L. (eds.) The International Conference on Automated Planning and
Scheduling (ICAPS 2006), Cumbria, UK, June 6-10, pp. 334–337 (2006)

21. Pan, Tasgetiren, Q.-K., Suganthan, M.F., N., P., Chua, T.J.: A Discrete Artificial Bee
Colony Algorithm for the Lot-streaming Flow Shop Scheduling Problem, Information
Sciences. Elsevier, Netherlands (2010)

22. Burke, Eckersley, E.K., J. A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable
neighbourhood approaches to university exam timetabling. European Journal of Operation
Research 206(1), 46–53 (2010)

23. Yang, Y., Petrovic, S.: A novel similarity measure for heuristic selection in examination
timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–
269. Springer, Heidelberg (2005)

Heuristics for Parallel Machine Scheduling with

Deterioration Effect

Ming Liu1, Feifeng Zheng2,3,4, Yinfeng Xu2,3,4, and Lu Wang5

1 School of Economomics & Management Tongji University,
Shanghai, 200092, P.R. China

2 School of Management, Xi’an JiaoTong University,
Xi’an, Shaanxi, 710049, P.R. China

3 The State Key Lab for Manufacturing Systems Engineering,
Xi’an, Shaanxi, 710049, P.R. China

4 Ministry of Education Key Lab for Intelligent Networks and Network Security,
Xi’an, 710049, China

5 Shanghai Vocational School of CAAC,
Shanghai 200232, P.R. China
zhengff@mail.xjtu.edu.cn

Abstract. This paper considers one parallel machine scheduling prob-
lem in which the processing time of a job is a simple linear increasing
function of its starting time. The objective is to minimize the makespan,
and our focus is on the case with an arbitrary number of parallel ma-

chines. We prove that LIST rule is (1 + bmax)
m−1

m -approximation where
m is the number of machines and bmax is the maximum deteriorating
rate of job. We then propose one heuristic LDR (Largest deteriorating

Rate first). The heuristic is proved (1 + bmin)
m−1

m -approximation where
bmin is the minimum deteriorating rate. We further show that this ratio
is tight when m = 2, 3 and 4.

Keywords: Scheduling, Parallel machine, Simple linear deterioration,
Makespan, Approximation.

1 Introduction

In classical scheduling theory, job processing times are assumed to be fixed, i.e.,
independent of their starting times [1]. In real-life applications, however, we often
encounter the situations where the processing times are time-dependent. Exam-
ples can be found in steel production, machine maintenance and fire fighting, in
which any delay in dealing with a task may increase its processing time [2]. Such
problems are generally known as scheduling with deterioration effect.

Gupta and Gupta [3], as well as Browne and Yechiali [4], first introduced job’s
deterioration. They defined linear deteriorating job whose actual processing time
increases in its starting time. More precisely, the actual processing time of job Jj

is defined as pj = aj + bjt (bj > 0), where aj is the basic processing time, bj the
deteriorating rate, and t the starting time. They showed that sequencing jobs in

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 46–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Heuristics for Parallel Machine Scheduling with Deterioration Effect 47

non-decreasing order of aj/bj minimizes the makespan. Mosheiov [5] studied a
special case where there is a common basic processing time, i.e., aj = a. For the
objective to minimize total flow time or total completion time, it was showed
that an optimal schedule is V -shaped with respect to bj . Mosheiov [6] further
introduced the concept of simple linear deteriorating job such that pj = bjt
for each job Jj . Several polynomial algorithms were proposed for the objectives
to minimize makespan, flow time, total weighted flow time, maximum lateness,
maximum tardiness and the number of tardy jobs, respectively. Cheng and Ding
[7] considered a variant with step-deteriorating and gave a pseudo-polynomial
algorithm for makespan minimization problem. The above literature focuses on
linear deteriorating job scheduling on a single machine, and it is already well
done for most scenarios.

For simple linear deteriorating jobs scheduling in the environment of m
parallel-machines, the problems become more complex. Mosheiov [8] proved that
the makespan minimization problem is strong NP-hard even for two-machine
case. An asymptotically optimal heuristic was given in the paper. Chen [9,10]
showed that the problem to minimize total completion time is NP-hard even
with a fixed number of machines. For the case with two machines, Chen pre-
sented an approximation scheme with a parameter dependent worst-case ratio.
Ji and Cheng [11] further gave a fully polynomial-time approximation scheme
(FPTAS) for the case with any a fixed number of machines. Ji and Cheng [12]
investigated three problems to minimize the makespan, total machine load, and
total completion time. They proved that all the problem are strongly NP-hard
with an arbitrary number of machines and NP-hard in the ordinary sense with a
fixed number of machines, respectively. For the former two problems, they proved
the non-existence of polynomial time approximation algorithm with a constant
ratio when the number of machines is arbitrary, and proposed FPTASs when the
number of machines is fixed. Kang and Ng [13] considered the makespan min-
imization problem with linear deteriorating function (i.e., pj = aj + bjt), and
also proposed an FPTAS. For more results on linear deteriorating job scheduling,
please refer to [14,15,16,17].

We already know by Ji and Cheng [12] that for the m parallel machine schedul-
ing problem to minimize the makespan, when the value of m is arbitrary, there
are no polynomial algorithms with constant approximation ratios. In this pa-
per, we present two heuristics for the concerned problem, and investigate their
approximation ratios related to parameter m. The remainder of this paper is
organized as follows. Section 2 gives problem statement and some notations. Sec-
tion 3 shows the worst case performance of LIST rule. In Section 4, we present
heuristic LDR and its worst case analysis as well.

2 Problem Statement and Notations

There are a set of simple linear deteriorating jobs I = {J1, J2, ..., Jn} to be
scheduled on m (> 0) identical parallel machines. Each machine processes at
most one job at a time and preemption is not allowed. For each job Jj , its actual

48 M. Liu et al.

processing time pj = bjt, where bj (> 0) and t are its deteriorating rate and
starting time respectively. All the jobs are simultaneously available at time t0.
We assume that t0 > 0 since otherwise if t0 = 0, it is trivial that the makespan
is equal to 0 due to pj = 0 (j ∈ {1, ..., n}). The objective is to minimize the
makespan, i.e., the completion time of the last job. The problem is denoted by
Pm|rj ≥ r0, pj = bjt|Cmax.

Denote by Mi (i ∈ {1, ..., m}) the ith machine in the system. Given a schedule,
let ni (i ∈ {1, ..., m}) be the number of jobs scheduled on machine Mi. Then
ni = 1, . . . , n for i ∈ {1, ..., m} and

∑
ni = n. Let J[i,j] (j ∈ {1, ..., ni}) be the

jth job on Mi, and C[i,j] the completion time of the job. By pj = bjt,

C[i,1] = t0 + p[i,1] = t0(1 + b[i,1])
C[i,2] = C[i,1] + p[i,2] = t0(1 + b[i,1])(1 + b[i,2])
C[i,3] = t0

∏3
l=1(1 + b[i,l])

. . .

It can be verified that for i ∈ {1, ..., m} and j ∈ {1, ..., ni},

C[i,j] = t0

j∏
l=1

(1 + b[i,l]). (1)

Thus, Cmax = max
i=1,...,m;j=1,...,ni

C[i,j]. Since t0 > 0 is an extraneously given

constant, we assume without loss of generality that t0 = 1.

3 Heuristic LIST

LIST is a well known heuristic in scheduling theory. It only considers the current
loads of processing on machines when to assign a job, and always selects the
machine with smallest load. In the following, we present the heuristic and give
its worst case analysis.

LIST works as follows:
Assign jobs {J1, J2, ..., Jn} in sequence, and assign each job to the ma-
chine with smallest current load. Ties are broken by selecting the machine
with smallest index.

By LIST, J1 is the first assigned job and Jn is the last one. Let CT
max be the

makespan of LIST schedule, and C∗
max the makespan of a (possibly unknown)

optimal schedule, respectively. We upper bound the ratio CT
max/C∗

max in the
following. Let bmax = max

j=1,...,n
bj.

Theorem 1. For Pm|rj ≥ r0, pj = bjt|Cmax, LIST is (1 + bmax)
m−1

m

-approximation.

Heuristics for Parallel Machine Scheduling with Deterioration Effect 49

Proof. Given jobs {J1, . . . , Jn}. By Formula (1), the starting time of the last job
in LIST schedule is CT

max/(1 + bn). Since all the machines are kept busy during
[1,

CT
max

1+bn
),

CT
max

1 + bn
≤
(

n−1∏
l=1

(1 + bl)

) 1
m

.

The right-hand side is an upper bound on the starting time of Jn. The inequality
is verified when scheduling the first n−1 jobs results in the same processing load
on each machine. It follows that

CT
max ≤ (1 + bn)

(
n−1∏
l=1

(1 + bl)

) 1
m

= (1 + bn)
m−1

m

(
n∏

l=1

(1 + bl)

) 1
m

.

Since C∗
max ≥ (

∏n
l=1(1 + bl))

1
m , we have

CT
max

C∗
max

≤ (1 + bn)
m−1

m ≤ (1 + bmax)
m−1

m .

This completes the proof.

Theorem 2. The ratio (1 + bmax)
m−1

m is tight for LIST.

Proof. It suffices to present a specific job instance in which the ratio (1 +
bmax)

m−1
m is satisfied.

Given an instance I = {J1, J2, ..., Jn} where n = m(m − 1) + 1, b1 = · · · =
bn−1 = 1 and bn = 2m − 1. Then bmax = bn and (1 + bmax)

m−1
m = (1 + 2m −

1)
m−1

m = 2m−1. By LIST , CT
max = 2m−1 · 2m = 22m−1. In an optimal schedule,

Jn is assigned to one machine and all the previous n−1 jobs are equally assigned
to the other m − 1 machines. This yields to C∗

max = 2m. Thus,

CT
max

C∗
max

= 2m−1.

The theorem is proved.

4 Heuristic LDR

By Formula (1), the load of each machine depends on the set of jobs assigned to
the machine but not the processing order of the jobs. Moreover, by the proof of
Theorem 2, we observe that the makespan is much related to the deteriorating
rate of the last assigned job. Hence, the idea of heuristic LDR (Largest Deterio-
rating Rate first) is to process jobs in non-increasing order of deteriorating rate.
This ensures that the last assigned job is of smallest deteriorating rate and all
the machines have balanced loads.

50 M. Liu et al.

LDR rule:
Assign jobs {J1, J2, ..., Jn} in non-decreasing order of deteriorating rate,
and assign each job to the machine with smallest current load. Ties are
broken by selecting the machine with smallest index.

In the following we upper bound the ratio CR
max/C∗

max where CR
max is the

makespan of LDR schedule and C∗
max is the makespan of an optimal sched-

ule. Let bmin = minj=1,...,n bj . Without loss of generality, assume that the n
jobs {J1, J2, ..., Jn} are indexed in non-decreasing order of deteriorating rate.
Let bmin = min

j=1,...,n
bj = bn.

Theorem 3. For Pm|rj ≥ r0, pj = bjt|Cmax, LDR is (1 + bmin)
m−1

m -
approximation.

The proof of the above theorem is similar to that of Theorem 1, and the only
difference lies in that bn ≤ bmax for LIST while bn = bmin for LDR. We omit
the details of the proof here.

Theorem 4. When m = 2, 3 and 4, the ratio (1 + bmin)
m−1

m is tight for LDR.

Proof. For the three cases of m, it is sufficient to present specific job instances
in which CR

max/C∗
max ≥ (1 + bmin)

m−1
m .

Case 1. m = 2.

Given a job instance I = {J1, J2, J3, J4, J5} where b1 = b2 = 23 − 1 and b3 =
b4 = b5 = 22 − 1. Since bmin = 22 − 1 and m = 2, we have (1 + bmin)

m−1
m =

(1+22−1)
1
2 = 2. LDR assigns J1, J3 and J5 to machine M1, and assigns J2 and

J4 to M2. CR
max = 23 ·22 ·22 = 27. In an optimal schedule, J1 and J2 are assigned

to one machine and the last three jobs are assigned to the other machine. This
yields to C∗

max = 26, and the ratio CR
max/C∗

max = 2.

Case 2. m = 3.

Given a job instance I = {J1, J2, J3, J4, J5, J6, J7} where b1 = 212−1, b2 = b3 =
210 − 1, b4 = b5 = 28 − 1 and b6 = b7 = 26 − 1. Similarly, (1 + bmin)

m−1
m =

(1 + 26 − 1)
2
3 = 24. LDR assigns J1, J6 and J7 to machine M1, assigns J2 and

J4 to M2, and assigns the rest two jobs to M3. CR
max = 212 · 26 · 26 = 224. In an

optimal schedule, J1 and J4 are assigned to M1, J2 and J3 are assigned to M2,
and all the remaining jobs are scheduled on M3. This yields to C∗

max = 220, and
thus CR

max

C∗
max

= 24.

Case 3. m = 4.

Given a job instance I = {J1, J2, J3, J4, J5, J6, J7, J8, J9} where b1 = b2 =
221 − 1, b3 = b4 = 218 − 1, b5 = b6 = 215 − 1 and b7 = b8 = b9 = 212 − 1.
(1 + bmin)

m−1
m = (1 + 212 − 1)

3
4 = 29. According to LDR heuristic, CR

max =

Heuristics for Parallel Machine Scheduling with Deterioration Effect 51

221 · 212 · 212 = 245. In an optimal schedule, J1 and J5 are assigned to machine
M1, J2 and J6 are assigned to M2, J3 and J4 are scheduled on M3 and the last
three jobs are assigned to M4. C∗

max = 236, and CR
max

C∗
max

= 29.
This completes the proof.

Acknowledgements. This work was partially supported by NSF of China un-
der Grants 71071123, 70832005, 60736027, 60921003 and 71090404 / 71090400.

References

1. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice-Hall,
Englewood Cliffs (2000)

2. Cheng, T., Ding, Q., Lin, B.: A concise survey of scheduling with time-dependent
processing times. European Journal of Operational Research 152, 1–13 (2004)

3. Gupta, J., Gupta, S.: Single facility scheduling with nonlinear processing times.
Computers and Industrial Engineering 14, 387–393 (1988)

4. Browne, S., Yechiali, U.: Scheduling deteriorating jobs on a single processor.
Operations Research 38, 495–498 (1990)

5. Mosheiov, G.: V -shaped policies for scheduling deteriorating jobs. Operations
Research 39, 979–991 (1991)

6. Mosheiov, G.: Scheduling jobs under simple linear deterioration. Computers and
Operations Research 21, 653–659 (1994)

7. Cheng, T., Ding, Q.: Single machine scheduling with step-deteriorating processing
times. European Journal of Operational Research 134, 623–630 (2001)

8. Mosheiov, G.: Multi-machine scheduling with linear deterioration. INFOR 36(4),
205–214 (1998)

9. Chen, Z.L.: Parallel machine scheduling with time dependent processing times.
Discrete Applied Mathematics 70, 81–93 (1996)

10. Chen, Z.L.: Erratum to Parallel machine scheduling with time dependent
processing times. Discrete Applied Mathematics 70, 81–93 (1996); Discrete Ap-
plied Mathematics 75, 103 (1997)

11. Ji, M., Cheng, T.C.E.: Parallel-machine scheduling with simple linear deterioration
to minimize total completion time. European Journal of Operational Research 188,
342–347 (2008)

12. Ji, M., Cheng, T.C.E.: Parallel-machine scheduling of simple linear deteriorating
jobs. Theoretical Computer Science 410, 38–40 (2009)

13. Kang, L., Ng, C.T.: A note on a fully polynomial-time approximation scheme
for parallel-machine scheduling with deteriorating jobs. International Journal of
Production Economics 109, 180–184 (2007)

14. Alidaee, B., Womer, N.: Scheduling with time dependent processing times: Review
and extentions. Journal of the Operational Research Society 50, 711–720 (1999)

15. Cheng, T., Kang, L., Ng, C.: Due-date assignment and single machine scheduling
with deteriorating jobs. Journal of Operational Research Society 55, 198–203 (2004)

16. Lodree, E., Gerger, C.: A note on the optimal sequence position for a rate-modifying
activity under simple linear deterioration. European Journal of Operational Re-
search 201, 644–648 (2010)

17. Cheng, Y., Sun, S.: Scheduling linear deterorating jobs with rejection on a single
machine. European Journal of Operational Research 194, 18–27 (2009)

A Comprehensive Study of an Online Packet

Scheduling Algorithm

Fei Li�

Department of Computer Science, George Mason University,
Fairfax, VA 22030, USA

http://www.cs.gmu.edu/~lifei

Abstract. We study the bounded-delay model for Qualify-of-Service
buffer management. Time is discrete. There is a buffer. Unit-length jobs
(also called packets) arrive at the buffer over time. Each packet has an
integer release time, an integer deadline, and a positive real value. A
packet’s characteristics are not known to an online algorithm until the
packet actually arrives. In each time step, at most one packet can be
sent out of the buffer. The objective is to maximize the total value of the
packets sent by their respective deadlines in an online manner. An on-
line algorithm’s performance is usually measured in terms of competitive
ratio, when this online algorithm is compared with a clairvoyant algo-
rithm achieving the best total value. In this paper, we study a simple
and intuitive online algorithm. We analyze its performance in terms of
competitive ratio for the general model and a few important variants.

Keywords: online algorithm, competitive analysis, buffer management,
packet scheduling.

1 Model Description

We consider the bounded-delay model introduced in [6][7]. Time is discrete. The
t-th (time) step presents the time interval (t − 1, t]. There is a buffer and unit-
length jobs (also called packets) arrive at the buffer over time. Each packet p has
an integer release time rp ∈ Z+, an integer deadline dp ∈ Z+, and a positive real
value vp ∈ R+. A packet p’s characteristics are not known to an online algorithm
until p actually arrives at the buffer at time rp. In each step, at most one packet
in the buffer can be sent. A packet p is said to be successfully sent at time t if
rp ≤ t ≤ dp. The objective is to maximize the total value of the packets that are
successfully sent in an online manner.

As people have noted, the offline version of this problem can be solved effi-
ciently using the Hungarian algorithm [8] in time O(n3), where n is the number
of packets in the input instance.

In the framework of competitive analysis which provides worst-case guaran-
tees, an online algorithm’s performance is measured in terms of competitive ra-
tio [1]. For a maximization problem, an online algorithm is called c-competitive
� Research partially supported by NSF Grant CCF-0915681.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 52–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.gmu.edu/~lifei

A Comprehensive Study of an Online Packet Scheduling Algorithm 53

if for any finite instance, its total value is no less than 1/c times of what an
optimal offline algorithm achieves. In competitive analysis, an input instance is
allowed to be generated in an adversarial way so as to maximize the competitive
ratio. The upper bound of competitive ratio is achieved by some online algo-
rithms. A competitive ratio strictly less than the lower bound cannot be reached
by any online algorithm. If an online algorithm has its competitive ratio same as
the lower bound, we say that this online algorithm is optimal. For the bounded-
delay model, the currently best known result is 2

√
2−1 ≈ 1.828 [5] and the lower

bound is (1 +
√

5)/2 ≈ 1.618 [6][3]. If an online algorithm decides which packet
to send only based on the contents of its current buffer, and independent of the
packets that have already been released and processed, we call it memoryless.

In this paper, we study a simple, intuitive memoryless online algorithm called
MG (‘Modified Greedy’). We analyze MG’s performance in terms of competitive
ratio for the general bounded-delay model and some important variants. Define
a packet p’s slack-time sp as the difference between its deadline dp and release
time rp, sp = dp − rp. The variants that we consider include:

– Agreeable deadline setting. In an agreeable deadline instance, for any two
packets p and q with rp ≤ rq, we have dp ≤ dq. This variant has been
studied in [9].

– Anti-agreeable deadline setting. In an anti-agreeable deadline instance, for
any two packets p and q with rp ≤ rq, we have dp ≥ dq.

– Agreeable value setting. In an agreeable value instance, for any two packets
p and q with rp ≤ rq, we have vp ≤ vq.

– Anti-agreeable value setting. In an anti-agreeable value instance, for any two
packets p and q with rp ≤ rq, we have vp ≥ vq.

– Agreeable deadline/value setting. In an agreeable deadline/value instance,
for any two packets p and q with dp ≤ dq, we have vp ≤ vq.

– Anti-agreeable deadline/value setting. In an anti-agreeable deadline/value
instance, for any two packets p and q with dp ≤ dq, we have vp ≥ vq.

– Agreeable slack-time/value setting. In an agreeable slack-time/value instance,
for any two packets p and q with sp ≤ sq, we have vp ≤ vq.

– Anti-agreeable slack-time/value setting. In an anti-agreeable slack-time/value
instance, for any two packets p and q with sp ≤ sq, we have vp ≥ vq.

Our results are summarized in Table 1. Note that the lower bounds shown in
Table 1 are the lower bounds of MG’s performance but not the lower bounds for
any online algorithms.

In the following, we present the online algorithm MG in Section 2 and analyze
its performance in Section 3.

2 Algorithm MG

The idea of designing MG is motivated by the greedy algorithm: In each step, the
highest-value pending packet is sent. This algorithm is proved 2-competitive [6][7].
In one attempt to beat the greedy algorithm in competitiveness, Chin et al. [2] pro-
posed an algorithm called EDFα, bearing the idea of sending the earliest-deadline

54 F. Li

Table 1. Summary of MG’s performance for the bounded-delay model and its variants.
The results without references are the work presented in this paper. In this table,
φ = (1 +

√
5)/2 ≈ 1.618.

models upper bounds lower bounds notes

general 2 2 [10] A detailed analysis of
the lower bound is
given in this paper.

agreeable deadline φ [9] φ [3] MG is optimal.

anti-agreeable deadline 2 2 [10] -

agreeable value 2 2 [10] -

anti-agreeable value 1 1 MG is optimal.

agreeable deadline/value φ φ [3] MG is optimal.

anti-agreeable deadline/value 1 1 MG is optimal.

agreeable slack-time/value φ 1 -

anti-agreeable slack-time/value 1 1 MG is optimal.

packet with a sufficiently large value (for instance, at least 1/α times of the highest
value of a pending packet where α ≥ 1). Note that EDFα generalizes the greedy
algorithm, which is EDF1. Same as the greedy algorithm, EDFα is asymptotically
not better than 2-competitive. For EDFα, it is possible that the expiring packet in
the algorithm’s buffer is the one that an optimal offline algorithm sends and this
packet has only a slightly less value than the packet that EDFα sends.

Recall that a memoryless online algorithm makes its decision only based on
the contents of its current buffer. Thus, it is natural to send a packet from
a set of packets, all of which are eligible of being sent successfully under the
assumption of no future arrivals. We consider provisional schedules. A provisional
schedule [4][5] at time t is a schedule specifying the set of pending packets to
be transmitted and for each it specifies the delivery time, assuming no newly
arriving packets. An optimal provisional schedule achieves the maximum total
value among all the provisional schedules. At the beginning of each step, we
calculate an optimal provisional schedule S and the packets in S are arranged in
a canonical order: increasing order of deadlines, with ties broken in decreasing
order of values.

Let e denote the first packet in S and h denote the first highest-value packet
in S. Motivated by the idea of EDFα, we would like to send a packet with
a sufficiently large value compared with vh. At the same time, from the tight
example for EDFα, we would like to send a packet to compensate the potential
loss due to not sending the earliest-deadline packet e. Thus, we send a packet
f in the optimal provisional schedule satisfying vf ≥ vh/α if f = e and vf ≥
max{βve, vh/α} if f
= e, where α, β ≥ 1. In order to guarantee that at least
one packet in S can be a candidate packet for f , we have to have α ≥ β since
if ve < vh/α, we should have vh ≥ vf ≥ max{βve, αve} ≥ max{β, α}ve. The
algorithm MG is described in Algorithm 1.

Note that MG generalizes EDFα (and the greedy algorithm). If α = 1 (hence
β = 1 since α ≥ β ≥ 1), MG is the greedy algorithm. If β = 1, MG is no-worse
than EDFα in competitiveness.

A Comprehensive Study of an Online Packet Scheduling Algorithm 55

Algorithm 1. MG (t, 1 ≤ β ≤ α)
1. Calculate an optimal provisional schedule S. All the packets in S are sorted in a

canonical order: increasing order of deadlines, with ties broken in decreasing order
of values. In S, let e denote the first packet; let h denote the first highest-value
packet.

2. if ve ≥ vh/α then
3. send e;
4. else
5. send the first packet f satisfying vf ≥ max{vh/α, βve}.
6. end if

Theorem 1. If β = 1, MG is no-worse than EDFα in competitiveness.

Proof. We inductively prove that (1) MG with β = 1 and EDFα share the
same buffer at any time; (However, we note here that MG’s optimal provisional
schedule may not be identical to EDFα’s buffer.) and (2) in each step, the charged
value to MG is no less than the charged value to EDFα.

Assume MG sends f
= e. EDFα must send f as well since all the packets
with values ≥ vh/α must be in MG’s optimal provisional schedule. Assume MG
sends the e-packet and EDFα sends a packet p not in MG’s optimal provisional
schedule. If EDFα does not send e in its schedule, we have ve ≥ vp and we can
use e to replace p for EDFα. ��

3 Analysis

Let OPT denote an optimal offline algorithm and O denote the set of packets
that OPT sends. Let ADV denote a (modified) adversary. In our proof, we will
create ADV and make sure that ADV gains a total value no less than

∑
p∈O vp.

3.1 The General Setting

Theorem 2. MG is 2-competitive for the bounded-delay model, for any 1 ≤ β ≤
α ≤ 2.

Proof. We assume that there exists an adversary called ADV. We modify ADV
such that ADV and MG share the same buffer at the beginning of each step.
ADV does not have to send every packet in its buffer. In a step, MG sends the
packet f .

1. Assume ADV sends the same packet f in this step.
ADV and MG gain the same value.

2. Assume ADV sends a packet j (
= f) with dj < df .
We modify ADV by sending both j and f in the current step. We then insert
j into ADV’s buffer as a gift packet. As assumed, j is in MG’s buffer at the
beginning of this step. From the canonical order and MG choosing f but not
j to send, we have vj ≤ vf . Then vj + vf ≤ 2vf .

56 F. Li

3. Assume ADV sends a packet j (
= f) with dj > df .
As assumed, j is in MG’s buffer at the beginning of this step. No matter
f = e or f
= e, we have vf ≥ vh/α ≥ vj/α ≥ vj/2. Note that vf < vj (and
df < dj) since otherwise, ADV prefers to sending f instead of j. We then
insert j into ADV’s buffer to replace f .

At the end of this step, ADV and MG share the same buffer again. The
modifications that we make favor the adversary but not MG. In this step, ADV’s
modified gain is bounded by 2 times of what MG achieves. ��
Theorem 3. MG is asymptotically no better than 2-competitive for the bounded-
delay model, with α = β = φ.

A sketched proof of Theorem 3 has been given in [10]. We detail the analysis in
this paper.

Proof. We construct an example to prove Theorem 3. We use ∞ in the deadline
field of a packet to show that this packet’s deadline is very large. Let n = 2k.
The packets are released in a stage-manner. There are log n = k stages. The
superscript of a packet shows the stage in which it is released.

At the beginning of step 1, there are 3 packets in MG’s buffer. The adversary
has the same buffer. These 3 packets are e1

1 := (1+ ε, 2), f1
1 := (φ− ε, 2k+1−k),

and h1
1 := (φ, ∞). MG sends h1

1, and e1
1 is dropped out of the buffer due to its

deadline.
In each of the following (2k−k+1) time steps, say step i, a group of 3 packets

are released: e1
i := (1+ε, i+1), f1

i := (φ−ε, 2k+1−k), and h1
i := (φ, ∞). In step

i, MG sends h1
i and drops e1

i due to its deadline. At the end of the (2k−k+1)-th
step, MG’s buffer is full of (2k−k+1) f1

i -packets (∀i = 1, 2, . . . , 2k−k+1). The
first stage ends. The length of stage 1 guarantees that no f1

i packet, especially
packet f1

1 , becomes the first packet in the buffer.
At the beginning of step 2k − k + 1, the second stage starts. The adversary

releases a pair of packets f2
1 := (φ(φ − ε)− ε, 2k+1 − k + 1) and h2

1 := (φ2, ∞).
The newly released packets have later deadlines and are sorted canonically after
the packets already in MG’s buffer. MG sends h2

i . Stage 2 contains 2k−1 − k + 2
steps. The length of stage 2 guarantees that no packet f2

i becomes the first
packet in the buffer. In each of those 2k−1 − k + 2 steps, say step i, 2 packets
are released f2

i := (φ(φ− ε)− ε, 2k+1 − k + 1) and h2
i := (φ2, ∞). MG sends h2

i

in step i. Stage 2 is half as long as stage 1.
We repeat this pattern in each stage, for k stages. Stage i + 1 is half as long

as stage i. In each step j of stage i, 2 packets are released, f i
j := (φ(wfi−1

1
−

ε), 2k+1 − k + i) and hi
j := (φi, ∞). MG sends hi

j in step j. In the last stage,
which is step 2k+1, the adversary only releases 2 packets fk

1 := (φk, 2n) and
hk

1 := (φk+1 + ε, ∞). MG sends hk
1 and fk

1 is dropped out of the buffer due to
its deadline.

For each step in stage i, MG only delivers the hi packets, and eventually, all
packet f i are dropped out of the buffer due to their deadlines. On the contrary,
the adversary sends all f i packets and all hi packets. A routine calculation shows

A Comprehensive Study of an Online Packet Scheduling Algorithm 57

that the optimal weighted throughput is nearly twice MG’s weighted throughput.
We remove ε in the following calculation for the sake of clearness.

c =
2
(
φ0 · 2k + φ1 · 2k−1 + . . . + φk · 20

)
+ φk+1

(φ0 · 2k + φ1 · 2k−1 + . . . + φk · 20) + φk+1

=
2
(
φ0 · 2k

)(
φ0

20 + φ1

21 + φ2

22 + . . . + φk

2k

)
+ φk+1

(φ0 · 2k)
(

φ0

20 + φ1

21 + φ2

22 + . . . + φk

2k

)
+ φk+1

=
2k+1 1−(φ

2)k+1

1−φ
2

+ φk+1

2k 1−(φ
2)k+1

1−φ
2

+ φk+1

=
2k+1 − φk+1 + φk+1 − φk+2

2

2k − φk+1

2 + φk+1 − φk+2

2

=
2
(

2
φ

)k

− φ2

2(
2
φ

)k

− 1
2

= 2. ��

3.2 The Agreeable Deadline Setting

In [9], the authors have shown that MG is φ-competitive for agreeable deadline
instances. The lower bound φ constructed in [3] for the general model holds
as well for scheduling packets with agreeable deadlines and MG. We list MG’s
performance in the agreeable deadline setting here for its optimality and signif-
icance. We include this variant for comparison with others.

3.3 The Anti-agreeable Deadline Setting

Both Theorem 2 and Theorem 3 hold for anti-agreeable deadline instances. Both
the upper bound and lower bound for MG are 2.

3.4 The Agreeable Value Setting

Both Theorem 2 and Theorem 3 hold for anti-agreeable deadline instances. Both
the upper bound and lower bound for MG are 2.

3.5 The Anti-agreeable Value Setting

Theorem 4. MG is 1-competitive for the anti-agreeable value setting when α =
∞. MG is optimal.

Proof. When α = ∞, MG sends the earliest-deadline packet e in the optimal
provisional schedule in each step. To prove Theorem 4, we only need to induc-
tively show that for each step, an optimal offline algorithm OPT sends e in each
step as well. In anti-agreeable value instances, any later released packet has a
value ≤ ve. If any later released packet belongs to O, so does e. If no later re-
leased packet belongs to O, OPT sends e to maximize its total gain. Thus, OPT
sends e in each step. ��

58 F. Li

3.6 The Agreeable Deadline/Value Setting

The lower bound φ constructed in [3] for the general model holds as well for
agreeable deadline/value instances.

Theorem 5. MG is φ-competitive for the agreeable deadline/value setting when
α = β = φ2 ≈ 2.618. MG is optimal.

Proof. We are using a charging scheme to prove Theorem 5. Let OPT denote an
optimal offline algorithm. Without loss of generality, we assume that OPT only
accepts O-packets and sends them in EDF manner. Let QOPT denote OPT’s
buffer.

At time t, let the optimal provisional schedule be S and we index the buffer
slots as t, t + 1, The packets in S are sorted in increasing deadline order,
with ties broken in decreasing value order and these packets are buffered in slots
t, t+1, . . . , t+ |S|− 1 consecutively. The packets not in S are appended at the
end of S. Let us study the optimal provisional schedule S at first. The packets in
S thus are grouped into multiple (≥ 1) batches of packets G1, G2, . . ., in order
of strictly increasing deadlines. The packets in the same batch share the same
deadline. (Note that G1 is the first batch in S.) We have

Remark 1. All the packets in the same batch share the same deadline. For any
two batches Gi and Gj with indexes i < j, all the packets in Gi have strictly
earlier deadlines and strictly lower values than all the packets in Gj .

We will introduce a charging scheme and this charging scheme may use the
following observations.

Remark 2. In the agreeable deadline/value setting, if a packet p is inserted into
the optimal provisional schedule, then all the packets with value > vp are shifted
into one buffer slot later since they have strictly larger deadlines. Also, for any
two time steps, the relative order among the packets in both MG’s optimal
provisional schedules is not changed.

Lemma 1. In the agreeable deadline/value setting, if a packet p is evicted out
of MG’s optimal provisional schedule at time t, then in each step from time t
till p’s deadline dp, MG’s optimal provisional schedules for these steps do not
contain any packet with a value < dp.

Proof. If a packet p is evicted out of MG’s optimal provisional schedule at time
t, then either dp < t or in each of the buffer slots t, t+1, . . . , dp, MG’s current
optimal provisional schedule at time t buffers one packet with value > vp. From
Remark 1 and the assumption of agreeable deadline/value, dp should not be
larger than those of packets in the batch G1.

– Assume MG sends the e-packet in a step before dp.
Then for those packets arranged in the buffer slots belonging to batch G1,
they have their deadlines no smaller than dp and they are tight, that is,
they cannot be shifted into later buffer slots and provide buffer slots to

A Comprehensive Study of an Online Packet Scheduling Algorithm 59

accommodate less-value packets with no-later deadlines (see Remark 2). For
packets in batches G2, G3, . . ., if any, they have strictly larger deadlines
than dp and strictly larger values than vp.

– Assume MG sends a packet f
= e in a step before dp.
All the unsent packets in the optimal provisional schedule can be shifted
by at most one step to their later steps and the relative order among all
these packets keep unchanged (see Remark 1 and Remark 2). Any newly
released packets with later deadlines have no smaller values. Any newly
released packets with values < vp are rejected by MG’s optimal provisional
schedules since all the packets with deadlines = dp are tight. Thus, for the
new optimal provisional schedule generated at the beginning of the next step,
Lemma 1 still holds. ��

Lemma 2. Consider a chain of k steps. In the steps 1, 2, . . . , k (these steps
may not be continues), we charge OPT the values vq1 , vq2 , . . . , vqk

and MG
the values vp1 , vp2 , . . . , vpk

, respectively. If for all i with 1 ≤ i ≤ k − 1,
we have vqi ≤ α · vpi , and if vqi ≤ vpi+1 and vqk

≤ vpk
, then

∑k
i=1 vqi ≤

1
αk−1

((
2 − 1

α

)
αk − α

)∑k
i=1 vpi .

Proof.∑k
i=1 vqi∑k
i=1 vpi

=
vq1 + vq2 + · · · + vqk

vp1 + vp2 + · · · + vpk

≤ vq1 + vq2 + · · · + vqk
vq1
α + max{vq1 ,

vq2
α } + · · · + vpk

≤
vq2
α + vq2 + · · · + vqk

vq2
α2 + vq2

α + · · · + vpk

≤ · · · ≤
vqk−1
αk−2 + · · · + vqk−1

α + vqk−1 + vqk

vqk−1
αk−1 + · · · + vqk−1

α2 + vpk−1 + vpk

≤
vqk−1
αk−2 + · · · + vqk−1

α + vqk−1 + vqk

vqk−1
αk−1 + · · · + vqk−1

α2 +
vqk−1

α + max{vqk
, vqk−1}

≤
vqk−1
αk−2 + · · · + vqk−1

α + vqk−1 + vqk−1
vqk−1
αk−1 + · · · + vqk−1

α2 +
vqk−1

α + vqk−1

=
1−α1−k

1−α−1 + 1
1−α−k

1−α−1

=
(2 − α−1)αk − α

αk − 1
.

Note that when α ≥ 1, 1
αk−1

((
2 − 1

α

)
αk − α

) ≤ 2 − 1
α . Also, note φ + 1

φ2 = 2,
we have

Corollary 1. Consider a chain of k steps. In the steps 1, 2, . . . , k (these steps
may not be continues), we charge OPT the values vq1 , vq2 , . . . , vqk

and ON the
values vp1 , vp2 , . . . , vpk

. If for all i with 1 ≤ i ≤ k − 1, we have vqi ≤ α · vpi ,
and if vqi ≤ vpi+1 , and vqk

≤ vpk
, then we have

∑k
i=1 vqi ≤ φ

∑k
i=1 vpi when

α = φ2.

We say that a chain of steps is open if we have not charged the values to OPT
and MG in these steps. Otherwise, we say that it is closed.

60 F. Li

Definition 1 (Canonical Order). Packets in MG’s optimal provisional sched-
ule are order in a canonical order: in increasing order of deadlines, with ties
broken in decreasing order of values.

Our charging scheme guarantees the following three invariants:

I1. In each step or in a closed chain of a group of steps, the total charged values
to OPT are bounded by φ times of the total charged values to MG. Chains
do not share steps.

I2. For any packet q in OPT’s buffer, if vq has not been charged to OPT in our
charging scheme, then q must map uniquely to a packet p in MG’s optimal
provisional schedule with vq ≤ vp and dq ≤ dp. (p may be the packet q itself.)
In the canonical order, for any packet j before p in MG’s optimal provisional
schedule S, if p is not in S, then we have vj ≥ vq.

I3. A packet p in MG’s optimal provisional schedule S may correspond to at
most one open chain and vp is no less than the value of the packet OPT
sends in the last step of this open chain. If p corresponds to an open chain
and is mapped by a packet in OPT’s buffer, p is called overloaded. If p is
overloaded, then any packet before p in S is overloaded as well.

Note that Invariant I1 results in Theorem 5 automatically.
The charging scheme is described below. We consider packet arrivals and

packet deliveries separately.

Packet arrivals. For any packet p evicted out of MG’s optimal provisional
schedule S due to accepting a new arrival p′, we have vp′ ≥ vp and dp′ ≥ dp

in the agreeable deadline/value setting. After dropping p, MG has at least one
packet q in S such that q is not mapped by a packet in OPT’s buffer, due to
Invariant I2. In the canonical order of S, we pick up the first packet not in
mapping and let it be q. q should have a deadline ≥ vp and thus, vq ≥ vp, due
to the assumption of agreeable deadline/value setting. Furthermore, any packet
in MG’s current optimal provisional schedule has a no-less value and no-earlier
deadline than p. We transfer the open chain mapping to p, if any, to q. Hence
for packet arrivals, all the invariants hold.

Packet deliveries. In each step, OPT sends the earliest-deadline packet q in
its buffer. MG sends either e or f
= e. Remember that we use S denotes MG’s
optimal provisional schedule and the packets in S are sorted in a canonical order.

Assume MG sends e and OPT sends q /∈ S or OPT sends q = e. From Invariant
I2, if q has not been charged to OPT, then vq ≤ ve. Assume q maps to p in S.
vq ≤ vp ≤ ve. We charge OPT vq and the packets in the open chain mapping to
e, if any. We close the open chain. The ratio of total charged values of this chain
or this single step is bounded by φ (see Corollary 1).

Assume MG sends e and OPT sends q ∈ S with q
= e. Due to Invariants I2

and I3, there is no overloaded packets in MG’s optimal provisional schedule.
Otherwise, OPT sends a packet with an earlier deadline than dq and less-value

A Comprehensive Study of an Online Packet Scheduling Algorithm 61

than ve since it sends packets in the EDF order. We start a new open chain from
this step mapping to q in MG’s optimal provisional schedule. Note that q is not
an overloaded packet yet since it is not mapped by any packet in OPT’s buffer.

Assume MG sends f
= e and OPT sends q /∈ S or OPT sends q = e. From
Algorithm 1, we have vf ≥ αve = φ2ve. If q is evicted out of the provisional
schedule, we have vq ≤ ve (from Lemma 1). We close the open chain if e belongs
to any one. The ratio of total charged values of this chain or this single step is
bounded by φ (see Corollary 1).

Assume MG sends f
= e and OPT sends q ∈ S with dq < df .

– Assume f = h.
We have vq < vh/α = vf/α = vf/φ2.

If q = e, we close the open chain mapping to e, if any. We also charge vh

to OPT in this step. The ratio of total charged values of this chain or this
single step is bounded by φ (see Corollary 1).

If q
= e, then no open chains exist since otherwise e is a candidate packet
for OPT to send. We charge OPT the value vq + vf in this step and MG
the value vf . Furthermore, we split this step into two fractional steps: In
one fractional step, OPT is charged a value vf and MG vf/φ. In this single
fractional step, the gain ratio is φ. In another fractional step, we charge OPT
the value vq and MG the value vf/φ2 ≥ vq/φ2. This step maps to q in MG’s
optimal provisional schedule at the end of this step since e with de ≥ t is
not the packet q.

– Assume f
= h.
If q is not in MG’s optimal provisional schedule S, q must map to a packet
p ∈ S and vq ≤ ve. From Algorithm 1, we have vf ≥ αve = αvq = φ2vq.
f is not in any open chain (from Invariant I3). We close the open chain,
if any, mapping to p. We also charge vf to OPT in this step. The ratio of
total charged values of this chain or this single step is bounded by φ (see
Corollary 1).

If q is in S, then q is not in any open chain, from Invariant 1. We charge
OPT the value vq + vf in this step and MG the value vf . Furthermore,
we split this step into two fractional steps: In one fractional step, OPT is
charged a value vf and MG vf/φ. In this single fractional step, the gain
ratio is φ. In another fractional step, we charge OPT the value vq and MG
the value vf/φ2 ≥ vq/φ2. This step maps to q in MG’s optimal provisional
schedule at the end of this step since e with de ≥ t is not the packet q.

Assume MG sends f
= e and OPT sends q ∈ S with dq > df . Due to Invariants
I2 and I3, there is no overloaded packets in MG’s optimal provisional schedule.
From Algorithm 1, we have vq > vf ≥ αve = φ2ve. We start a new open chain
from this step mapping to q in MG’s optimal provisional schedule. Note that q
is not an overloaded packet yet since it maps no packet in OPT’s buffer. ��

62 F. Li

3.7 The Anti-Agreeable Deadline/Value Setting

Consider the anti-agreeable deadline/value setting. In MG’s optimal provisional
schedule, for any two packets p and q with dp < dq, we have vp ≥ vq. Applying
the same proof of Theorem 4, we have

Theorem 6. MG is 1-competitive for the anti-agreeable deadline/value setting
when α = ∞. MG is optimal.

3.8 The Agreeable Slack-Time/Value Setting

Lemma 3. In the agreeable slack-time/value setting, if a packet p is evicted out
of MG’s optimal provisional schedule at time t, then from time t till p’s deadline
dp, all the MG’s optimal provisional schedules do not contain any packet with a
value < vp.

Proof. If a packet p is evicted out of MG’s optimal provisional schedule at time
t, then either dp < t or in each of the buffer slots t, t+1, . . . , dp, MG’s current
optimal provisional schedule at time t buffers one packet with value > vp.

In each step, MG either sends e or f
= e. For time t when a packet p is
rejected, those packets unsent by MG but staying in MG’s optimal provisional
schedule at time t are tight and cannot be shifted into later buffer slots. Note that
for any two packets with the same deadline, the earlier released one has a larger
slack time, hence, a larger value. Thus, the later released packet is preferred to
be evicted if two packets share the same deadline and MG’s optimal provisional
schedule cannot accommodate both. Lemma 3 holds. ��
Using Lemma 3, we apply the proof of Theorem 5 directly and have

Theorem 7. MG is φ-competitive for the agreeable slack-time/value setting
when α = β = φ = (1 +

√
5)/2 ≈ 1.618.

3.9 The Anti-Agreeable Slack-Time/Value Setting

Property 1. Consider the anti-agreeable slack-time/value setting. In MG’s opti-
mal provisional schedule, for any two packets p and q with dp < dq, we have
vp ≥ vq.

Property 1 can be proved inductively. Assume at time t, Property 1 holds. Con-
sider a packet p in the optimal provisional schedule at the end of step t. We
have rp ≤ t < dp. For any released packet q at time t + 1, if dq < dp, we have
sq = dq − (t + 1) < dp − t = sp and vq > vp. Thus, Property 1 holds again.
Property 1 results in that all the e-packets in the optimal provisional schedules
are O-packet. Applying a slightly modified version of the proof of Theorem 4,
we have

Theorem 8. MG is 1-competitive for the anti-agreeable slack-time/value setting
when α = ∞. MG is optimal.

A Comprehensive Study of an Online Packet Scheduling Algorithm 63

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, Cambridge (1998)

2. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichy, T.: Online
competitive algorithms for maximizing weighted throughput of unit jobs. Journal
of Discrete Algorithms 4(2), 255–276 (2006)

3. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: Does time-
sharing or randomization help? Algorithmica 37(3), 149–164 (2003)

4. Chrobak, M., Jawor, W., Sgall, J., Tichy, T.: Online scheduling of equal-length jobs:
Randomization and restart help? SIAM Journal on Computing (SICOMP) 36(6),
1709–1728 (2007)

5. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in QoS switches. In: Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 209–218 (2007)

6. Hajek, B.: On the competitiveness of online scheduling of unit-length packets with
hard deadlines in slotted time. In: Proceedings of 2001 Conference on Information
Sciences and Systems (CISS), pp. 434–438 (2001)

7. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM Journal on Computing
(SICOMP) 33(3), 563–583 (2004)

8. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

9. Li, F., Sethuraman, J., Stein, C.: An optimal online algorithm for packet schedul-
ing with agreeable deadlines. In: Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 801–802 (2005)

10. Li, F., Sethuraman, J., Stein, C.: Better online buffer management. In: Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
199–208 (2007)

Optimal Policy for Single-Machine Scheduling

with Deterioration Effects, Learning Effects,
Setup Times, and Availability Constraints

Sheng Yu1,�, Yinfeng Xu1,2, Ming Liu3, and Feifeng Zheng1,2

1 School of Management, Xi’an Jiaotong University,
Xi’an, Shaanxi Province, 710049, P.R. China

2 Ministry of Education Key Lab for Process Control and
Efficiency Engineering, Xi’an, 710049, P.R. China

3 School of Economics & Management,
Tongji University, Shanghai, 200092, P.R. China

Abstract. In this paper, we introduce a single-machine scheduling
model considering all of the following parameters: general deterioration
and learning effects as well as general setup times. We prove that the
shortest processing time (SPT) rule produces optimal schedules for the
following seven minimization objectives: makespan, sum of αth (α ≥ 0)
power of jobs’ completion times, total weighted completion time, maxi-
mum lateness, total tardiness, total weighted tardiness, and number of
tardy jobs. We further show that in the case of resumable scheduling
with availability constraints, the above conclusions are still valid.

Keywords: Single-machine scheduling, Deterioration effects, Learning
effects, Past-sequence-dependent setup times, Availability constraints.

1 Introduction

Scheduling a set of jobs on single or multiple machines is a classical problem, in
which jobs are assumed to have fixed processing times [13]. Yet, there are numer-
ous situations that the processing time deteriorates as the start time delays. A
daily life example is to schedule maintenance or cleaning, in which a delay often
requires additional effort to accomplish the task. Other examples can be found in
fire fighting, steel production and financial management [11,12]. Scheduling of de-
teriorating jobs was first introduced by Browne and Yechiali [3], and Gupta and
Gupta [9] independently. Another line is to consider learning effect of process-
ing system. One system may gain more and more experience during processing
jobs with similar characters, and then its speed of job processing may rise as the
number of completed jobs increases. For the model with learning effect, the actual
processing time of a job is a decreasing function with respect to its position in a
processing sequence. Comprehensive surveys on these models have been given by
Cheng, Ding and Lin [4], Biskup [2] and Gawiejnowicz [6].
� Corresponding author, a.sheng@stu.xjtu.edu.cn

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 64–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimal Policy for Single-Machine Scheduling 65

In the above papers on scheduling deteriorating jobs, the parameter of setup
cost or setup times is often neglected, while it is reasonable and necessary in
many scheduling businesses (see Allahverdi, Gupta and Aldowaisan [1]). There
are two types of setup times: sequence-independent and sequence-dependent.
The first type of setup time just depends on the task to be processed, regardless
of its preceding tasks. While for the sequence-dependent type of setup time, it
depends on both the current task and its preceding ones. Koulamas and Kypari-
sis [10] first introduced a scheduling case with past-sequence-dependent (p-s-d)
setup times. They considered several objectives including makespan, total com-
pletion time, and total absolute differences in completion times and a bicriteria
combination of the last two objectives. They proved that for single-machine
scheduling with p-s-d setup times, the problems with the above objectives can
be solved in polynomial time by a sorting procedure. Cheng, Lee and Wu [5]
first addressed the problem of single-machine scheduling with p-s-d setup times,
deterioration and learning effects simultaneously. Motivated by [5], we propose
a model generalizing the forms of the functions mentioned as follows. Sun [14]
introduced a new scheduling model, in which the actual processing time pj[r]

is defined as an integrated function of learning and deterioration effects. More
precisely, if j is scheduled in the rth position in a processing sequence, then

pj[r] = pj(1 +
r−1∑
l=1

p[l])a1ra2 where a1 ≥ 1 and a2 < 0 denote deterioration and

learning rates respectively. For the setup time of job j, i.e., sj[r], as proposed in
Koulamas and Kyparisis [10] and Cheng, Lee and Wu [5], it depends on the in-
formation of those satisfied jobs before j, and it is said past-sequence-dependent
(p-s-d). This is motivated from applications like high-tech manufacturing. In

these two papers, sj[r] was defined as sj[1] = 0 and sj[r] = γ
r−1∑
l=1

p∗[l] where γ > 0

is a constant number.
By combining these models, we propose a general model with deterioration

effects, learning effects and setup times. Here, the actual processing time of
a job is a general function of the normal processing times of the jobs already
processed and its scheduling position, as while as the p-s-d setup times of a job is
a general function of the normal processing times of the jobs already processed.
The proposed model is a generalized version of the Sun [14] and the Koulamas
and Kyparisis [10] models, as discussed in the next section. The remainder of
this paper is organized as follows. We introduce some notations and problem
formulation in the next section. For this model, we prove the optimality of SPT
for the following minimization objectives: makespan, sum of αth (α ≥ 0) power of
jobs completion times, total weighted completion time, maximum lateness, total
weighted tardiness, total tardiness, and number of tardy jobs. Moreover, the
above conclusions are still valid even under resumable availability constraints.

The remainder of this paper is organized as follows. We introduce some no-
tations and problem formulation in the next section. In Section 3 we prove that
the shortest processing time (SPT) rule is optimal for several single-machine

66 S. Yu et al.

scheduling problems, and derive some corresponding corollaries in the case with
availability constraints. The last section concludes this work.

2 Problem Definition and Notations

In this section, we introduce some notations to be used throughout the paper.

n the number of jobs
pj the normal processing time of job j
dj the due date of job j
pj[r] the actual processing time of job j scheduled in the rth position
p[r] the normal processing time of a job scheduled in the rth position
p∗[r] the actual processing time of a job scheduled in the rth position
sj[r] the p-s-d setup time of job j scheduled in the rth position
Cj the completion time of job j
Lj the lateness of job j, i.e., Lj = Cj − dj

Tj the tardiness of job j, i.e., Tj = max{Lj , 0}∑
Uj the number of tardy jobs

Cmax the makespan, i.e., Cmax = max{Cj |j = 1, 2, · · · , n}∑
Cj the total completion time of all the jobs∑
Cα

j the sum of the αth power of the job completion times of the jobs∑
wjCj the total weighted completion time of all the jobs

γ the normalizing constant number with γ ≥ 0

The formulation of the proposed problem is as follows. There is a single ma-
chine and n jobs to be processed on the machine. At most one job can be pro-
cessed on the machine at a time. Each job j has a normal processing time pj ,
a due date dj and a weight wj . Due to the deteriorating jobs with setup times
and learning effect, the actual processing time and the p-s-d setup time of job

j are pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 and sj[r] = γ
r−1∑
l=1

g(p∗[l]) respectively, if it

is scheduled in the rth position in a sequence where a1 ≥ 1 or a1 = 0, a2 ≤ 0
and sj[1] = 0. It is assumed that f and g are non-decreasing functions, and
f(x), g(x) > 0 for x > 0.

If f(pj) = pj and γ = 0, it is the Sun [14] model. On the other hand, if
f(pj) = g(pj) = pj and a1 = a2 = 0, it is the Koulamas and Kyparisis [10]
model. Throughout the paper, we use the three-field notation scheme α|β|γ
introduced by Graham et al. [8]. We denote each scheduling model with objective

F considered in this paper as 1|pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|F where

F ∈ {Cmax, Lmax,
∑

Cα
j ,
∑

wjCj ,
∑

Tj ,
∑

wjTj,
∑

Uj}.

3 Optimality of SPT

In this section ,we consider in total seven objectives. Before presenting the main
results, we first state two lemmas which will be used later.

Optimal Policy for Single-Machine Scheduling 67

Lemma 1. (θ + (1 + θc0)a1ca2
1) − (1 + θ(1 + c0)a1ca2

1) ≥ 0, if θ ≥ 1, a1 ≥ 1 or
a1 = 0, a2 ≤ 0, c0 > 0, and c1 > 1.

Proof. Let h(θ) = (θ + (1 + θc0)a1ca2
1) − (1 + θ(1 + c0)a1ca2

1). When a1 = 0,
h(θ) = (θ − 1)(1 − ca2

1) ≥ 0 for θ ≥ 1, a2 ≤ 0, and c1 > 1.
When a1 ≥ 1, taking the first and second derivatives of h(θ) with respect to

θ, for θ ≥ 1, a2 ≤ 0, c0 > 0, and c1 > 1 we have

h′(θ) = 1 + a1c0(1 + θc0)a1−1ca2
1 − (1 + c0)a1ca2

1 , and

h′′(θ) = a1(a1 − 1)c2
0(1 + θc0)a1−2ca2

1 ≥ 0.

Hence, h′(θ) is non-decreasing and h′(θ) ≥ h′(1). Let m(c0) = h′(1). Taking
the first derivative of m(c0) with respect to c0, we have m′(c0) = a1(a1−1)c0(1+
c0)a1−2ca2

1 ≥ 0. Therefore, h′(θ) ≥ m(c0) > m(0) = 1 − ca2
1 ≥ 0. Thus, h(θ) ≥

h(1) = 0. The lemma holds. ��
Lemma 2. (θ+x1(1+θc0)a1ca2

1)−(1+θx2(1+c0)a1ca2
1) ≥ 0, if 0 < x2 ≤ x1 < 1,

θ ≥ 1, a1 ≥ 1 or a1 = 0, a2 ≤ 0, c0 > 0 and c1 > 1.

Proof. Let h(θ) = (θ + x1(1 + θc0)a1ca2
1)− (1 + θx2(1 + c0)a1ca2

1). When a1 = 0,
h(θ) = (θ− 1)− (θx2 − x1)ca2

1 ≥ (θ− 1)− (θx1 − x1)ca2
1 = (θ− 1)(1− x1c

a2
1) ≥ 0

for 0 < x2 ≤ x1 < 1, θ ≥ 1, a2 ≤ 0, and c1 > 1.
When a1 ≥ 1, let H(θ) = (θ + x2(1 + θc0)a1ca2

1)− (1 + θx2(1 + c0)a1ca2
1), then

h(θ) ≥ H(θ). Taking the first and second derivatives of H(θ) with respect to θ,
we have

H ′(θ) = 1 + a1x2c0(1 + θc0)a1−1ca2
1 − x2(1 + c0)a1ca2

1 , and

H ′′(θ) = a1(a1 − 1)x2c
2
0(1 + θc0)a1−2ca2

1 ≥ 0.

Hence, similar to the proof of Lemma 1, we have H(θ) ≥ 0. Therefore, h(θ) ≥
H(θ) ≥ 0 for a1 ≥ 1.

The lemma holds. ��
In the proofs of all the following theorems, we mainly adopt a basic method called
adjacent job interchange technique. We first give some notations to be used in
the proofs. Given an instance I, let S and S′ be two job related schedules such
that the difference between S and S′ is a pairwise interchange of two adjacent
jobs i and j. More precisely, let S = (π i j π′) and S′ = (π j i π′), where pi ≤ pj ,
and π and π′ are partial sequences respectively. Either π or π′ may be empty.
We assume without loss of generality that there are r − 1(≥ 0) jobs in π. Thus,
i and j are rth and (r + 1)th jobs in S, respectively, whereas jobs j and i are
scheduled in the rth and (r + 1)th positions in S′, respectively. Let C(π) denote
the completion time of the last job in π.

Theorem 1. For problem 1|pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|Cmax, an

optimal schedule is obtained by sequencing jobs in the SPT order.

68 S. Yu et al.

Proof. Since pi ≤ pj , to prove that the SPT order is optimal, it suffices to prove
that S dominates S′, i.e., the (r + 1)th jobs in S and S′ satisfy Cj(S) ≤ Ci(S′).
By definition, the completion times of jobs i and j in S and S′ are given by,
respectively,

Ci(S) = C(π) + f(pi)(1 +
r−1∑
l=1

f(p[l]))a1ra2 + γ

r−1∑
l=1

g(p∗[l]),

Cj(S) = C(π) + f(pi)(1 +
r−1∑
l=1

f(p[l]))a1ra2 + γ

r−1∑
l=1

g(p∗[l])

+ f(pj)(1 +
r−1∑
l=1

f(p[l]) + f(pi))a1(r + 1)a2

+ γ[
r−1∑
l=1

g(p∗[l]) + g(f(pi)(1 +
r−1∑
l=1

f(p[l]))a1ra2)], (1)

Cj(S′) = C(π) + f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 + γ

r−1∑
l=1

g(p∗[l]), and

Ci(S′) = C(π) + f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 + γ

r−1∑
l=1

g(p∗[l])

+ f(pi)(1 +
r−1∑
l=1

f(p[l]) + f(pj))a1(r + 1)a2

+ γ[
r−1∑
l=1

g(p∗[l]) + g(f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2)]. (2)

Taking the difference between (1) and (2), it is obtained that

Ci(S
′) − Cj(S)

= (f(pj) − f(pi))(1 +

r−1∑
l=1

f(p[l]))
a1ra2 + f(pi)(1 +

r−1∑
l=1

f(p[l]) + f(pj))
a1(r + 1)a2

− f(pj)(1 +
r−1∑
l=1

f(p[l]) + f(pi))
a1(r + 1)a2

+γ[g(f(pj)(1 +

r−1∑
l=1

f(p[l]))
a1ra2) − g(f(pi)(1 +

r−1∑
l=1

f(p[l]))
a1ra2)]. (3)

By substituting θ = f(pj)
f(pi)

, c0 = f(pi)

1+
r−1∑
l=1

f(p[l])

, and c1 = r+1
r into (3), and

simplifying, we obtain

Optimal Policy for Single-Machine Scheduling 69

Ci(S′) − Cj(S)

= f(pi)(1 +
r−1∑
l=1

f(p[l]))a1ra2 {(θ + (1 + θc0)a1ca2
1) − (1 + θ(1 + c0)a1ca2

1)}

+γ[g(f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2) − g(f(pi)(1 +
r−1∑
l=1

f(p[l]))a1ra2)]. (4)

Since the first term on the right-hand-side of (4) is non-negative by lemma

1. For pj − pi ≥ 0, we have f(pj) − f(pi) ≥ 0 and f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 ≥

f(pi)(1 +
r−1∑
l=1

f(p[l]))a1ra2 . Since γ ≥ 0 and g(x) is a non-decreasing function,

the second term is non-negative. Therefore, we have Ci(S′) − Cj(S) ≥ 0.
Thus, S dominates S′. Therefore, repeating this interchange argument for all

the jobs not sequenced according to the SPT rule will yield the theorem. ��

Corollary 1. For problem 1|dj =d, pj[r] = f(pj)(1+
r−1∑
l=1

f(p[l]))a1ra2 , spsd|
∑

Uj,

an optimal schedule is obtained by sequencing jobs in the SPT order.

Proof. According to the SPT rule, for an arbitrary job instance, the number of
completed jobs in the schedule by the SPT rule is not less than that of any other
schedule at any time. Thus, the corollary is straightforward. ��

Theorem 2. For problem 1|pj[r] = f(pj)(1+
r−1∑
l=1

f(p[l]))a1ra2 , spsd|
∑

Cα
j where

α ≥ 0 is a constant number, an optimal schedule is obtained by sequencing jobs
in the SPT order.

Proof. The completion time of job i in S and the completion time of job j in S′

are shown as Theorem 1. Since pj ≥ pi and f(x) is a non-decreasing function,
we have

Cj(S′) − Ci(S) = (f(pj) − f(pi))(1 +
r−1∑
l=1

f(p[l]))a1ra2 ≥ 0 (5)

From the proof of Theorem 1, we know Cj(S) ≤ Ci(S′). Since the completion
time of a job is always at least zero, we can get (i) Cα

j (S) ≤ Cα
i (S′), (ii) Cα

i (S) ≤
Cα

j (S′). Thus, Cα
i (S)+Cα

j (S) ≤ Cα
j (S′)+Cα

i (S′) which shows that S dominates
S′. This completes the proof of the theorem. ��
For any two jobs i and j in an instance I, if pi ≤ pj implies wi ≥ wj , we say the
jobs’ processing times and the weights are agreeable.

70 S. Yu et al.

Theorem 3. For problem 1|pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|
∑

wjCj , if

the jobs have agreeable weights, an optimal schedule can be obtained by sequencing
the jobs in the SPT order.

Proof. Since pi ≤ pj , which implies wi ≥ wj . In order to show S dominates S′,
it suffices to show that (i) Cj(S) ≤ Ci(S′), (ii) wiCi(S)+wjCj(S) ≤ wjCj(S′)+
wiCi(S′). The proof of part (i) is given in Theorem 1. Therefore, we present the
proof of part (ii) as follows.

Under S and S′, the completion times of jobs i and j are shown as Theorem
1. Thus, we have

{
wjCj(S

′) + wiCi(S
′)
} − {wiCi(S) + wjCj(S)}

= (f(pj) − f(pi))(wi + wj)(1 +

r−1∑
l=1

f(p[l]))
a1ra2

+ wif(pi)(1 +

r−1∑
l=1

f(p[l]) + f(pj))
a1 (r + 1)a2 − wjf(pj)(1 +

r−1∑
l=1

f(p[l]) + f(pi))
a1(r + 1)a2

+ wiwjγ{wi − wj

wiwj

r−1∑
l=1

g(p∗
[l]) + (

1

wj

− 1

wi

)[g(f(pj)(1 +

r−1∑
l=1

f(p[l]))
a1ra2)

−g(f(pj)(1 +

r−1∑
l=1

f(p[l]))
a1ra2)]}. (6)

Let x1 = wi

wi+wj
, x2 = wj

wi+wj
, θ = f(pj)

f(pi)
, c0 = f(pi)

1+
r−1∑
l=1

f(p[l])

, and c1 = r+1
r .

Hence, 0 < x2 ≤ x1 < 1, θ ≥ 1, c0 > 0 for f(pj) ≥ f(pi) > 0, wi ≥ wj > 0, and
c1 > 1. Thus, the first three terms on the right-hand-side of (6) can be rewritten
as

(wi+wj)f(pi)(1+
r−1∑
l=1

f(p[l]))a1ra2((θ+x1(1+θc0)a1ca2
1)−(1+θx2(1+c0)a1ca2

1)).

The above expression is non-negative by Lemma 2. Since wi ≥ wj and 1
wi

≤
1

wj
, similar to the proof of Theorem 2 the last term on the right-hand-side of (6) is

also non-negative. Therefore, we have wiCi(S)+wjCj(S) ≤ wjCj(S′)+wiCi(S′).
This completes the proof of part (ii) and thus of the theorem. ��

For any two jobs i and j in an instance I, if pi ≤ pj implies di ≤ dj , we say the
jobs’ processing times and the due dates are disagreeable.

Theorem 4. For problem 1|pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|Lmax, an

optimal schedule is obtained by sequencing jobs in the SPT order if the job pro-
cessing times and the due dates are disagreeable.

Optimal Policy for Single-Machine Scheduling 71

Proof. Hence di ≤ dj for pi ≤ pj . From the proof of Theorem 1, we have
Cj(S′) ≤ Ci(S′). Since di ≤ dj , we obtain that Lj(S′) ≤ Li(S′). In order to
show S dominates S′, it suffices to show that max {Li(S) , Lj(S)} ≤ Li(S′).
Since Cj(S) ≤ Ci(S′) and Ci(S) ≤ Ci(S′) by the proof of Theorem 1, together
with di ≤ dj , we have that Lj(S) ≤ Li(S′) and Li(S) ≤ Li(S′).

Therefore, max {Li(S) , Lj(S)} ≤ max {Lj(S′) , Li(S′)}. This completes the
proof. ��

Theorem 5. For problem 1|pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|
∑

wjTj, an

optimal schedule is obtained by sequencing jobs in the SPT order if the job pro-
cessing times and the due dates are disagreeable while the jobs have agreeable
weights at the same time.

Proof. By the assumption in the theorem, if pi ≤ pj , then wi ≥ wj and di ≤
dj . In order to show that S dominates S′, it suffices to show that wiTi(S) +
wjTj(S) ≤ wjTj(S′) + wiTi(S′). We consider two cases.

Case 1. Cj(S′) ≤ dj . By definition, the weighted tardiness of jobs i and j in
S and in S′ are

wiTi(S) + wjTj(S) = wi max {Ci(S) − di , 0} + wj max {Cj(S) − dj , 0} , and
wjTj(S′) + wiTi(S′) = wi max {Ci(S′) − di , 0} .

Suppose that neither Ti(S) nor Tj(S) is zero since otherwise we already have
the desired result. Then,

{wjTj(S′) + wiTi(S′)} − {wiTi(S) + wjTj(S)}
= (wjdj + wiCi(S′)) − (wiCi(S) + wjCj(S))
≥ {wjCj(S′) + wiCi(S′)} − {wiCi(S) + wjCj(S)} .

By Theorem 3, {wjTj(S′) + wiTi(S′)} ≥ {wiTi(S) + wjTj(S)} in this case.
Case 2. Cj(S′) > dj . By definition, the weighted tardiness of jobs i and j in

S and in S′ are

wiTi(S) + wjTj(S) = wi max {Ci(S) − di , 0} + wj max {Cj(S) − dj , 0} , and
wjTj(S′) + wiTi(S′) = wj(Cj(S′) − dj) + wi max {Ci(S′) − di , 0} .

Suppose neither Ti(S) nor Tj(S′) is zero. If not, it is easy to get the result.

{wjTj(S′) + wiTi(S′)} − {wiTi(S) + wjTj(S)}
= {wjCj(S′) + wiCi(S′)} − {wiCi(S) + wjCj(S)} ≥ 0.

This completes the proof of theorem. ��

Corollary 2. For problem 1|pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|
∑

Tj, an

optimal schedule is obtained by sequencing jobs in the SPT order if the job pro-
cessing times and the due dates are disagreeable.

72 S. Yu et al.

In the following we consider another situation where the machine is not con-
tinuously available, i.e., there are h ≥ 1 disjoint unavailable periods. Denote
these periods as time intervals [ek,1, ek,2] where ek,1 < ek,2 for 1 ≤ k ≤ h, and
e0,1 = e0,2 = 0 (see Gawiejnowicza and Kononovb [7]). We focus on resumable
model such that a job interrupted by an unavailable period will be processed
from where it was preempted at the end of the unavailable period. Note that
one job may be interrupted by more than one unavailable periods.

Given one instance I, let σ and S denote the schedules obtained by the SPT

rule for problems 1|h, res, pj[r] = f(pj)(1+
r−1∑
l=1

f(p[l]))a1ra2 , spsd|F and 1|pj[r] =

f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|F , respectively. As a consequence, we know that

the job processing sequence of σ is the same as that of S. Let Cj[l]k denote the
completion time of job j which is scheduled in the lth position in σ and satisfies
ek,1 < Cj[l]k(σ) ≤ ek,2 for some k. So,

Cj[l]k(σ) = Cj[l](S) +
k∑

i=0

(ei,2 − ei,1),

and
k−1∑
i=0

(ei+1,1 − ei,2) < Cj[l](S) ≤
k∑

i=0

(ei+1,1 − ei,2).

Corollary 3. For problem 1|h, res, pj[r] = f(pj)(1+
r−1∑
l=1

f(p[l]))a1ra2 , spsd|Cmax,

an optimal schedule is obtained by sequencing jobs in the SPT order.

Proof. We still use the same notations about sets S and S′ in Theorem 1. Similar
to the definition of S′, σ′ is defined to be an (i, j)-pairwise interchanged variant
of σ. From Theorem 1, we have Ci(S′) ≥ Cj(S), which implies Cik′ (σ′) ≥ Cjk(σ)
where k′ ≥ k. This completes the proof. ��
Similar to the proofs of Theorems 2 to 5, for the case with availability con-
straints, the SPT rule is still optimal for problem 1|h, res, pj[r] = f(pj)(1 +
r−1∑
l=1

f(p[l]))a1ra2 , spsd|F , where pj , wj and dj have the same agreeable and dis-

agreeable properties as for the previous theorems and corollaries.

4 Conclusion

In this paper, we studied single-machine scheduling with general deterioration
and learning effects as well as general p-s-d setup times. We proved that for
seven minimization objectives such as makespan, sum of αth (α ≥ 0) power
of jobs’ completion times, etc., the SPT rule produces optimal schedules. We
further extend the results to the case with unavailable periods and resumable
preemption. Future research may focus on analyzing the above minimization
objectives in parallel machines or flow shop, and other environments.

Optimal Policy for Single-Machine Scheduling 73

Acknowledgments. This work is partially supported by NSF of China under
Grants 71071123, 60736027 and 60921003.

References

1. Allahverdi, A., Gupta, J.N.D., Aldowaisan, T.: A review of scheduling research
involving setup considerations. Omega 27, 219–239 (1999)

2. Biskup, D.: A state-of-the-art review on scheduling with learning effects. European
Journal of Operational Research 188, 315–329 (2008)

3. Browne, S., Yechiali, U.: Scheduling deteriorating jobs on a single processor. Op-
erations Research 38(3), 495–498 (1990)

4. Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with time-
dependent processing times. European Journal of Operational Research 152, 1–13
(2004)

5. Cheng, T.C.E., Lee, W.C., Wu, C.C.: Scheduling problems with deteriorating jobs
and learning effects including proportional setup times. Computers and Industial
Engineering 58, 326–331 (2010)

6. Gawiejnowicz, S.: Time-Dependent Scheduling. Springer, Berlin (2008)
7. Gawiejnowicza, S., Kononovb, A.: Complexity and approximability of scheduling

resumable proportionally deteriorating jobs. European Journal of Operational Re-
search 200, 305–308 (2010)

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Annals of Dis-
crete Mathematics 5, 287–326 (1979)

9. Gupta, J.N.D., Gupta, S.K.: Single facility scheduling with nonlinear processing
times. Computers and Industrial Engineering 14(4), 387–393 (1988)

10. Koulamas, C., Kyparisis, G.J.: Single-machine scheduling problems with past-
sequence-dependent setup times. European Journal of Operational Research 187,
1045–1049 (2008)

11. Kunnathur, A.S., Gupta, S.K.: Minimizing the makespan with late start penalties
added to processing times in a single facility scheduling problem. European Journal
of Operation Research 47(1), 56–64 (1990)

12. Mosheiov, G.: Scheduling jobs under simple linear deterioration. Computers and
Operations Research 21(6), 653–659 (1994)

13. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Upper
Saddle River (2002)

14. Sun, L.: Single-machine scheduling problems with deteriorating jobs and learning
effects. Computers and Industial Engineering 57, 843–846 (2009)

Algebraic Algorithm for Scheduling Data

Retrieval in Multi-channel Wireless Data
Broadcast Environments�

Xiaofeng Gao1, Zaixin Lu2, Weili Wu2, and Bin Fu3

1 Department of Computer Science and Engineering,
Shanghai JiaoTong University, Shanghai, P.R. China

xgao@cs.sjtu.edu.cn
2 Department of Computer Science,

University of Texas at Dallas, Richardson, TX 75080, USA
{zaixinlu,weiliwu}@utdallas.edu
3 Department of Computer Science,

University of Texas–Pan American, Edinburg, TX 78539, USA
binfu@cs.panam.edu

Abstract. Due to more and more customers keen on mobile services,
we may face the mobile network congestion problem. Therefore, it is
necessary to develop new data retrieval method to provide users with re-
liable and timely access to the data scourers. In this paper, we study the
scheduling problem for retrieving data from multi-channel data broad-
cast environments. In general conditions, the most important two issues
for queries in mobile computing systems are the energy cost and the
query response time. In order to improve the query efficiency, we de-
velop a randomized algebraic algorithm that takes both energy cost and
access time into consideration to schedule the data retrieval process in
multi-channel environments. It can be used in almost any broadcast en-
vironment, in which the data access frequencies, data sizes, and channel
bandwidths can all be non-uniform.

Keywords: Wireless data broadcast, Multi-channel, Mobile computing,
Data retrieval optimization.

1 Introduction

Wireless data broadcast is very suitable for disseminating public information to
large number of mobile users. Generally, there are two major measures when
evaluating the query efficiency in such environments. One is access time and the
other is energy efficiency. The access time denotes the time interval between
the moment a query starts to the moment all the requested data have been
downloaded. Obviously, users prefer short access time. In addition, the power

� This work is supported in part by National Science Foundation under grant
CNS1016320 and CCF0829993.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 74–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algebraic Algorithm for Scheduling Data Retrieval 75

supply is finite for mobile devices, which means energy efficiency is also very
important when design data retrieval method in mobile computing environments.

In a general data broadcast network, a base station disseminates data to mo-
bile users via one or multiple channels; so there are totally two entities: mobile
client and base station. Fig. 1 shows a typical broadcast network. A base station
can send information via radio waves to large number of mobile clients simulta-
neously, and the cost at the server site will not change as the number of clients
increases. For instance, the base station B2 in Fig. 1 provide services to more
users, but its costs is nearly the same as that of B1. Moreover, the mobile client
may has two modes: active mode and sleep mode. With the help of index, clients
can get the arriving time of their requested data in advance and “sleep” to save
energy when there are no data of interests.

Although, it is relatively easy for data retrieving if all the data are scheduled
on one channel, users may prefer partition the data onto multiple channels to
reduce the average expected access time. But it should be noticed that if a
client is downloading a data from channel ci at time t0, then it cannot switch
to channel cj , where j
= i, to download another data at time t0 + 1. The reason
is that switching the channels takes time, and if a client want to download data
from another channel, it needs one time slot for channel switching. Fig. 2 gives
a typical process of data retrieval in multi-channel broadcast environments. The
query data set is {d1, d3, d5}, and a user can download data object d1 and d3

from channel c1, and then switch to channel c3 at time 6 to download data object
d5 at time 7. However, after time 5, the user cannot switch from channel c1 to c2

to download data d5 at time 6. From Fig. 2, we also can get that the bandwidths
of different channels are non-necessarily the same. Actually, the bandwidth of
channel c2 is twice as that of c1 or c3, thus d3 or d5, which take two time slots
on c1 or c3, can be broadcasted in one time slot by c2.

In most situations, it is much more likely a client query a set of data instead of
only one data at a time. After obtaining the locations of requested data items,
we need to make a schedule to download the data one by one in some order.

Fig. 1. Data Broadcast Network

76 X. Gao et al.

An unwise retrieving schedule may result in long access time and unnecessary
energy consumption. Usually, the energy consumption is evaluated base on the
following two metrics: 1) tune-in time and 2) the number of channel switchings.
Assume the arriving time of each requested data item is already known from the
index, then the energy consumption depends purely on the number of channel
switching happens during the retrieval process. In this paper we propose a ran-
domized algebraic algorithm to reduce the access time and channel switchings
for data retrieval in multi-channel environments. It can be used in almost any
data broadcast programs, in which the data access frequencies, data sizes, and
channel bandwidths can all be non-uniform.

The remainder of this paper is organized as follows. Section 2 presents the
related works to wireless data broadcast. In section 3, we give an algebraic
algorithm that considers both access latency and energy cost to get optimal
solutions for data retrieving in multi-channel environments. Finally, in section
4, we conclude this paper.

Fig. 2. Data Retrieval Process

2 Previous Works

Scheduling is an important issue in the area of wireless data broadcast. Acharya et
al. first proposed the scheduling problem for data broadcast [1], and Prabhakara et
al. suggested the multi-channel model for data broadcast to improve the data de-
livery performance [2]. After that, many works have been done for scheduling data
on multiple channels to reduce the expected access time [5,6,12]. Besides, some re-
searches began to study how to allocate dependent data on broadcast channels.
(see e.g. [14,10,11]). With respect to index, many methods have been proposed
to improve the search efficiency in data broadcast systems (see e.g. [8,3,9,10,11]).
Furthermore, Jung et al. proposed a tree-structured index algorithm that allocates
indices and data on different channels [7]. Lo and Chen designed a parameterized
schema for allocating indices and data optimally on multiple channels such that
the average expected access latency is minimized [4].

In terms of data retrieval scheduling, Hurson et al. proposed two heuristic
algorithms for downloading multiple data items from multiple channels [15]. Shi

Algebraic Algorithm for Scheduling Data Retrieval 77

et al. investigated how to schedule multiple processes to download a set of data
items [16]. Both of them investigate the data retrieval problem by assuming
that the data are allocated on multiple channels without replication. However,
as shown in the prior studies [1,20,21,22], employing data replication in data
broadcast programs will reduce the expected access time. Fig. 3 shows why
disseminating replicative data by multiple channels can reduce both access time
and energy consumption. The first program allocates data without replication.
d1 and d2 are separately scheduled on channels c1 and c2. we can download d1

or d2 in one time slot, but we need at least 3 time slots and 1 channel switching
to download both d1 and d2 in such a system. If allocating data on channels like
the way of program 2, we can still retrieve each datum in one time slot and we
can retrieve both of them in 2 time slots without channel switching.

In this paper, we develop an algebraic algorithm for solving the problem of re-
trievingmultiple data frommultiple channels, inwhich the data canbe non-uniform
length and are replication-allowed to be broadcasted via multiple channels.

Fig. 3. Two Types of Broadcasting Database

3 Methodology

In this section we present an algebraic algorithm for the data retrieval problem
in multi-channel environments. It can detect if a given problem has a schedule
to download all the requested data before time t and with at most h channel
switchings in O(2k(hnt)O(1)) time, where n is the number of channels and k is
the number of required data items. We first give a problem definition in section
3.1, and then present the algorithm in section 3.2.

3.1 Problem Description

Let’s consider a mobile user wants to query a set of data D = {d1, d2, · · · , dk},
which are broadcasted via channels in C = {c1, c2, · · · , cn}. We assume the lo-
cations of all the data in D are known; and we also assume each channel is
partitioned into discrete time slots and one time slot is the smallest unit for
storing data. Let a tuple s = {is, js, ts, t

′
s} denote the data dis can be down-

loaded from channel cjs during the time span [ts,t′s], then it is clear that a valid

78 X. Gao et al.

data retrieval schedule is a sequence of k intervals s1, s2, · · · , sk, each tuple cor-
responds to a distinct data item in D and there is no conflicts between any two
of the k tuples.

A Decision Problem: Given a data set D, a channel set C, a time threshold
t and a switching threshold h, find a valid data retrieval schedule to download
all the data in D from C before time t with at most h switchings.

To solve the above decision problem, we developed a randomized algebraic
algorithm. We present it in detail next.

3.2 Algorithm

The basic idea of our algebraic algorithm is that for each data item di ∈ D,
where D is the query data set, we create a variable xi to represent it. Therefore,
given D = {d1, d2, · · · , dk}, we construct a variable set X = {x1, x2, · · · , xk}.
We then design a circuit Ht,h,n such that a schedule without conflict will be
generated by a multilinear monomial in the sum of product expansion of the
circuit. A multilinear monomial is a monomial such that each variable has de-
gree exactly one, for examples, x3x5x6 is a multilinear monomial, but x3x

3
5x

2
6 is

not. The existence of schedules to download all the data items in D from the
multiple channels of C is converted into the existence of multilinear monomials
of Ht,h,n. Replace each variable by a specified binary vector can remove all of the
non-multilinear monomials by converting them to zero. Thus, the data retrieval
problem is transformed into testing if a multivariate polynomial is zero. It is well
known that randomized algorithms can be used to check if a circuit is identical
to zero in polynomial time.

Lemma 1. There is a polynomial time algorithm such that given a channel ci,
a time interval [t1, t2], and an integer m, it constructs a circuit of polynomial
Pi,t1,t2,m such that for any subset D′ = {di1 , · · · , dim} ⊆ D which has a size of
m and is downloadable in the time interval [t1, t2] from channel ci, the product
expansion of Pi,t1,t2,m contains a multilinear monomial xi1xi2 · · ·xim .

Proof. We can use a recursive way to compute the circuit Pi,t1,t2,m in polynomial
time.

1. Pi,t1,t2,0 = 0.
2. Pi,t1,t2,1 =

∑
j xj , xj ⊆ X and the corresponding datadj is entirely in the

time interval [t1, t2] of channel ci.
3. Pi,t1,t2,l+1 =

∑
j xj · Pi,t1,t′2,l + Pi,t1,t′2,l+1, dj starts at time t′2 + 1 and ends

before time t2 on channel ci.

When computing Pi,t1,t2,l+1, xj multiplies Pi,t1,t′2,l is based on the case that
dj is downloadable from time t′2 +1 to t2 in the final phase, and the other l data
items are downloadable before time t′2. The term Pi,t1,t′2,l+1 is the case that l+1
items are downloaded before time t′2. Note that the parameter m in Pi,t1,t2,m

controls the total number of data to be downloaded.

Algebraic Algorithm for Scheduling Data Retrieval 79

Definition 1. A subset data items D′ = {di1 , · · · , dim} ⊆ D is (i, t, h)-
downloadable if we can download all data items in D′ before time t, the total
number of channel switches is at most h, and the last downloaded item is from
channel ci.

Lemma 2. Given two integers t and h, there is a polynomial time algorithm to
construct a circuit of polynomial Fi,t,h,m such that for any (i, t, h)-downloadable
subset D′ = {di1 , · · · , dim} ⊆ D, the product expansion of Fi,t,h,m contains a
multilinear monomial (xi1 , · · · , xim)Y , where Y is a multilinear monomial doesn’t
include any variable in X.

Proof. We still use a recursive way to construct the circuit. Some additional
variables are used as needed. Without loss of generality, we assume the data
retrieval process start at time 0.

1. Fi,t,0,0 = 0.
2. Fi,t,0,1 = Pi,1,t,1 · yi,t,0,1.
3. Fi,t,h′+1,m′+1 = yi,t,h′+1,m′+1,0(

∑
t′<t Fi,t′,h′+1,m′ · Pi,t′+1,t,1)

+ yi,t,h′+1,m′+1,1(
∑

j �=i

∑
t′<t Fi,t′−1,h′,m′ · Pi,t′+1,t,1)

The computing of Fi,t,h′+1,m′+1 is based on two cases, and we use two variables,
yi,t,h′+1,m′+1,0 and yi,t,h′+1,m′+1,1, to mark them respectively. We now present
an algorithm that involves one layer randomization to determine if there is a
schedule to download all the data items in D before time t and with at most h
channel switchings.

Theorem 1. There is an O(2k(hnt)O(1)) time randomized algorithm to deter-
mine if there is a scheduling to download k = |D| data items before time t and
the number of channel switches is at most h, where n is the total number of
channels.

Proof. By Lemma 2, we can construct a circuit Ht,h,n =
∑n

i=1 Fi,t,h,k in poly-
nomial time. It is easy to see there is a scheduling for downloading the k data
items before time t and with h channel switches, if and only if the sum product
expansion of Ht,h,n has a multilinear monomial (x1, · · · , xk)Y .

Replace each xi by a vector wi = wT
0 + vT

i , where w0 is the all-zeros vector of
dimension k, and vi is a binary vector of dimension k with its ith element is 1
and all other elements are 0. Assume k = 3, we define the following operations:

va · vb =

⎛⎝a1

a2

a3

⎞⎠ ·
⎛⎝ b1

b2

b3

⎞⎠ =

⎛⎝ (a1 + b1)(mod2)
(a1 + b2)(mod2)
(a1 + b3)(mod2)

⎞⎠ (1)

(va + vb) · vc = va · vc + vb · vc (2)

By Equation 1 and 2, for any k-dimensional binary vector w′ = w0 + v,
we have w′2 = w2

0 + 2w0 · v + v2 = w0 + 2(w0 · v) + w0 = 2(w0 · v) + 2w0 = 0,

80 X. Gao et al.

because of the coefficients are in the field of G2. The replacement xi = wi(i =
1, · · · , m) make all the non-multilinear monomials become zero. Meanwhile, all
the multilinear monomials remain non-zero. Hence, it is clear that there is a
scheduling to download all the data items in D before time t and with at most h
channel switchings if and only if Ht,h,n|xi=wi(i=1,···,k) is a non-zero polynomial.
The variables in Y makes it impossible to have cancelation when adding two
identical multilinear monomials, which can be generated from different paths
with variables in {x1, · · · , xk}. It is well known that randomized algorithms can
be used to check if a circuit is identical to zero in polynomial time [17], [18].

The algorithm generates less than 2k terms during the computing process
since there are at most 2k distinct binary vectors. Therefore, the computational
time is O(2k(nht)O(1)).

4 Conclusions

In this paper, we take both access time and channel switchings into consider-
ation to investigate the minimum cost data retrieval problem in multi-channel
data broadcast environments. The algorithm proposed can detect if a given data
retrieval problem has a solution with access time t and number of switchings h
in O(2k(hnt)O(1)) time, where n is the number of channels and k is the number
of requested data items. It can be used in almost any broadcast environment,
in which the data access frequencies, data sizes, and channel bandwidths can all
be non-uniform.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast Disks: Data Manage-
ment for Asymmetric Communication Environments. In: The 1995 ACM Special
Interest Group on Management of Data Conference, pp. 199–210 (1995)

2. Prabhakara, K., Hua, K.A., Oh, J.: Multi-Level Multi-Channel Air Cache Designs
for Broadcasting in a Mobile Environment. In: The 2000 International Conference
on Data Engineering, pp. 167–176 (2000)

3. Shivakumar, N., Venkatasubramanian, S.: Efficient Indexing for Broadcast based
Wireless Systems. ACM/Baltzer Mobile Network and Application 1(4), 433–446
(1996)

4. Lo, S.C., Chen, A.L.P.: Optimal Index and Data Allocation in Multiple Broadcast
Channels. In: The 2000 International Conference on Data Engineering, pp. 293–302
(2000)

5. Yee, W.G., Navathe, S.B., Omiecinski, E., Jermaine, C.: Efficient Data Alloca-
tion over Multiple Channels at Broadcast Servers. IEEE Transactions on Comput-
ers 51(10), 1231–1236 (2002)

6. Zheng, B., Wu, X., Jin, X., Lee, D.L.: Tosa: a Near-Optimal Scheduling Algo-
rithm for Multi-Channel Data Broadcast. In: The 2005 International Conference
on Mobile Data Management, pp. 29–37 (2005)

7. Jung, S., Lee, B., Pramanik, S.: A Tree-Structured Index Allocation Method with
Replication over Multiple Broadcast Channels in Wireless Environment. IEEE
Transaction on Knowledge and Data Engineering 17(3), 311–325 (2005)

Algebraic Algorithm for Scheduling Data Retrieval 81

8. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on Air: Organization and
Access. IEEE Transactions on Knowledge and Data Engineering 9, 353–372 (1996)

9. Xu, J., Lee, W.C., Tang, X., Gao, Q., Li, S.: An Error-Resilient and Tunable
Distributed Indexing Scheme for Wireless Data Broadcast. IEEE Transactions on
Knowledge and Data Engineering 18(3), 392–404 (2006)

10. Yao, Y., Tang, X., Lim, E.P., Sun, A.: An Energy-Efficient and Access Latency
Optimized Indexing Scheme for Wireless Data Broadcast. IEEE Transactions on
Knowledge and Data Engineering 18(8), 1111–1124 (2006)

11. Zheng, B., Lee, W.C., Liu, P., Lee, D.L., Ding, X.: Tuning On-Air Signatures for
Balancing Performance and Confidentiality. IEEE Transactions on Knowledge and
Data Engineering 21(12), 1783–1797 (2009)

12. Ardizzoni, E., Bertossi, A.A., Ramaprasad, S., Rizzi, R., Shashanka, M.V.S.:
Optimal Skewed Data Allocation on Multiple Channels with Flat Broadcast per
Channel. IEEE Transactions on Computers 54(5), 558–572 (2005)

13. Huang, J.L., Chen, M.S.: Dependent Data Broadcasting for Unordered Queries in
a Multiple Channel Mobile Environment. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1143–1156 (2004)

14. Lee, G., Yeh, M.S., Lo, S.C., Chen, A.: A Strategy for Efficient Access of Multiple
Data Items in Mobile Environments. In: The 2002 International Conference on
Mobile Data Management, pp. 71–78 (2002)

15. Hurson, A.R., Munoz-Avila, A.M., Orchowski, N., Shirazi, B., Jiao, Y.: Power
Aware Data Retrieval Protocols for Indexed Broadcast Parallel Channels. Pervasive
and Mobile Computing 2(1), 85–107 (2006)

16. Shi, Y., Gao, X., Zhong, J., Wu, W.: Efficient Parallel Data Retrieval Protocols
with MIMO Antennae for Data Broadcast in 4G Wireless Communications. In:
The 2010 International Conference on Database and Expert Systems Applications
(2010)

17. Williams, R.: Finding Paths of Length k in O ∗ (2k)T ime. Information Processing
Letters 109(6), 315–318 (2009)

18. Koutis, I.: Faster Algebraic Algorithms for Path and Packing Problems. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg
(2008)

19. Huang, J.L., Chen, M.S., Peng, W.C.: Broadcasting Dependent Data for Ordered
Queries without Replication in a Multi-Channel Mobile Environment. In: The 2003
International Conference on Data Engineering, pp. 692–694 (2003)

20. Huang, J.L., Chen, M.S.: Broadcast Program Generation for Unordered Queries
with Data Replication. In: The 2003 ACM Symposium on Applied Computing, pp.
866–870 (2003)

21. Foltz, K., Xu, L., Bruck, J.: Scheduling for Efficient Data Broadcast over Two
Channels. In: The 2004 International Symposium on Information Theory, pp. 113–
116 (2004)

22. Lu, Z., Shi, Y., Wu, W., Fu, B.: Efficient Data Retrieval Scheduling for Multi-
Channel Wireless Data Broadcast. IEEE Transaction on Knowledge and Data En-
gineering (submitted to 2011)

Hamiltonian Cycles through

Prescribed Edges in k-Ary n-Cubes

Iain A. Stewart

School of Engineering and Computing Sciences, Durham University,
Science Labs, South Road, Durham DH1 3LE, U.K.

Abstract. We prove that if P is a set of at most 2n − 1 edges in a
k-ary n-cube, where k ≥ 4 and n ≥ 2, then there is a Hamiltonian cycle
on which every edge of P lies if, and only if, the subgraph of the k-ary
n-cube induced by the edges of P is a vertex-disjoint collection of paths.
This answers a question posed by Wang, Li and Wang who proved the
analogous result for 3-ary n-cubes.

Keywords: Hamiltonian cycles, k-ary n-cubes, prescribed edges.

1 Introduction

A whole range of families of graphs have been proposed for use as interconnection
networks in the design of distributed-memory multiprocessors, where the vertices
of a graph represent the processors of a machine and the edges between vertices
the physical interconnections between processors. There are numerous properties
such a family of graphs should have in order to be deemed suitable for such a
purpose. For example, the graphs of such families should have small diameter
(so as to aid message latency), be recursively decomposable (so as to aid scal-
ability), have low degree (so as to lessen communication overheads), have high
connectivity (so as to aid fault tolerance or data transfer), possess embeddings of
other standard graphs (so as to aid simulations) and so on. The study of families
of graphs suitable for use as interconnection networks has motivated new purely
graph-theoretic research where the properties under consideration are relevant
to the intended usage of these graphs in the context of parallel computation. Un-
fortunately the properties one might require are so diverse that there does not
exist a family of graphs possessing every one of these properties and in practice
trade-offs have to be made. Perhaps the most ubiquitous family of graphs in the
landscape of interconnection networks are the hypercube Qn and its close rela-
tion the k-ary n-cube Qk

n (of course, such graphs are also common-place across
discrete mathematics in general). The reader is referred to, for example, [6] for
more on the relationship between graph theory and interconnection networks.

The study of Hamiltonian cycles in graphs is widespread. The basic prob-
lem of deciding whether an arbitrary graph has a Hamiltonian cycle is one of
the canonical NP-complete problems, and there has been much research into
restrictions upon arbitrary graphs under which this problem becomes solvable

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 82–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hamiltonian Cycles in k-Ary n-Cubes 83

in polynomial-time. With respect to graphs used as interconnection networks, if
such a graph possesses a Hamiltonian cycle then this cycle can, for example, eas-
ily be utilized so that all-to-all broadcasts can be accomplished and ring-based
simulations undertaken (in the underlying distributed-memory multiprocessor).
Many of the families of graphs used as interconnection networks possess Hamil-
tonian cycles: for instance, it has long been known that hypercubes [7] and k-ary
n-cubes do [2].

Whilst the question of existence of Hamiltonian cycles in graphs such as hy-
percubes and k-ary n-cubes becomes a non-event, the question of efficiently
constructing Hamiltonian cycles (especially using distributed-memory multipro-
cessors whose interconnection network is the graph in question) is still pertinent
as is the consideration of additional impositions under which Hamiltonian cy-
cles still exist. These impositions are usually related to avoiding or prescribing
specific edges. For example, Chan and Lee [4] showed that an n-dimensional
hypercube with at most 2n− 5 ‘faulty links’ (that is, with at most 2n− 5 edges
missing) but where every vertex has degree at least 2, still has a Hamiltonian
cycle but that there exist such faulty hypercubes with 2n − 4 faulty links (but
so that every vertex has degree at least 2) that do not possess a Hamiltonian
cycle. Ashir and Stewart [1] proved an analogous result for k-ary n-cubes with
at most 4n−5 faulty links. Chan and Lee also showed that it is NP-complete to
decide whether a hypercube with an arbitrary set of faulty links is Hamiltonian
[4], with Ashir and Stewart doing likewise for k-ary n-cubes [1].

However, it is with the prescription of specific vertices that we are concerned
in this paper, which is, in some sense, complementary to edge avoidance. With
regard to hypercubes, Caha and Koubek [3] proved that if the dimension n of
a hypercube is at least 3 then for any set P of at most n − 1 edges, there is a
Hamiltonian cycle on which every edge of P lies if, and only if, the subgraph
of the hypercube induced by the edges of P is a vertex-disjoint collection of
paths. This result was extended by Dvořák [5] who showed that it holds when
P consists of 2n − 3 edges and that this result is optimal (in that there are
sets of 2n− 2 edges in an n-dimensional hypercube where the subgraph induced
by these edges consists of vertex-disjoint paths but where there does not exist
a Hamiltonian cycle upon which all of these edges lie). Consequently, Dvořák’s
result provides a precise classification as to when prescribed edges are guaranteed
to lie upon a Hamiltonian cycle in a hypercube. Recently, Wang, Li and Wang
[9] have embarked upon classifying when prescribed edges are guaranteed to lie
upon a Hamiltonian cycle in a k-ary n-cube. Their result states that if P is a
set of at most 2n − 1 edges in a 3-ary n-cube, where n ≥ 2, then there is a
Hamiltonian cycle on which every edge of P lies if, and only if, the subgraph
of the 3-ary n-cube induced by the edges of P is a vertex-disjoint collection of
paths. They make no comment as regards whether the number of edges in P can
be increased so that the statement still holds (though they show that their result
is optimal for n = 2) and pose the question of what happens in k-ary n-cubes
when k ≥ 4 as an open problem which we answer in this paper. In particular,
we prove here that if P is a set of at most 2n− 1 edges in a k-ary n-cube, where

84 I.A. Stewart

n ≥ 2 and k ≥ 4, then there is a Hamiltonian cycle on which every edge of P
lies if, and only if, the subgraph of the k-ary n-cube induced by the edges of P
is a vertex-disjoint collection of paths.

2 Basic Definitions and Results

For n ≥ 1 and k ≥ 3, the k-ary n-cube Qk
n is the graph whose vertex set

is {(un, un−1, . . . , u1) : ui ∈ {0, 1, . . . , k − 1}, for i ∈ {1, 2, . . . , n}} and whose
edge set consists of those pairs ((un, un−1, . . . , u1), (vn, vn−1, . . . , v1)) where there
exists some d ∈ {1, 2, . . . , n} such that ui = vi, whenever i
= d, and either ud =
vd + 1 or ud = vd − 1, with addition and subtraction modulo k (throughout this
paper we assume that addition and subtraction on the components of vertices
of Qk

n is always modulo k). A path in some graph is a sequence of distinct
vertices written (x1, x2, . . . , xm), for some m ≥ 1, so that (xi, xi+1) is an edge,
for i ∈ {1, 2, . . . , m−1}. The vertices x1 and xm of the path (x1, x2, . . . , xm) are
its terminal vertices , with all other vertices (when m ≥ 3) its internal vertices .
A path in a graph is maximal if it cannot be extended to a longer path in the
graph. A cycle is a path (x1, x2, . . . , xm), for some m ≥ 3, for which we also
have that (xm, x1) is an edge. Although a path and the corresponding cycle are
written identically as sequences of vertices, it is always apparent as to whether
we are referring to the sequence as a path or as a cycle.

Consider Qk
n, where n ≥ 2. Fix some d ∈ {1, 2, . . . , n}. For any i ∈ {0, 1, . . . ,

k − 1}, consider those vertices of Qk
n whose dth component is fixed at i. It is

trivial to see that the subgraph of Qk
n induced by these vertices is isomorphic to

Qk
n−1. We denote this subgraph by Qi (when n, k and d are understood). We

say that Q0, Q1, . . . , Qk−1 are formed by partitioning Qk
n over dimension d. Note

that any vertex x of Qi has a corresponding vertex, denoted nj(x), in Qj , for
j ∈ {0, 1, . . . , k−1}, where nj(x) is identical to x as a k-bit-string except that the
dth component is equal to j. The vertex x = ni(x) is a neighbour of ni−1(x) and
ni+1(x) in Qk

n (with addition and subtraction on the indices modulo k), and the
subgraph induced by the vertices of {x}∪{nj(x) : j ∈ {0, 1, . . . , k−1}\{i}} is the
cycle (n0(x), n1(x), . . . , ni−1(x), x, ni+1(x), . . . , nk−1(x)). Any edge of Qk

n that is
not in Q0, Q1, . . . , Qk−1 is said to lie in dimension d. Let G be some subgraph
of Qi and let G′ be the subgraph of Qj , where j
= i, induced by the edges
of {(x, y) : (x, y) is an edge of Qj such that (ni(x), ni(y)) is an edge of G}. The
graph G′ is clearly isomorphic to G and is said to be the isomorphic copy of G in
Qj. Let X be a set of edges of Qk

n. We write 〈X〉 to denote the subgraph induced
by the edges of X . If every edge of X lies in some Qi then the isomorphic copy
of X in Qj , where i
= j, is the set of edges X ′ so that 〈X ′〉 is the isomorphic
copy of 〈X〉 in Qj. We shall be interested in specific sets of edges in Qk

n which
we denote by P . We write Pj to denote those edges of Qj that are in P , for
j ∈ {0, 1, . . . , k − 1}. Edges in P \ ∪k−1

i=0 Pi clearly lie in dimension d.

Hamiltonian Cycles in k-Ary n-Cubes 85

Suppose that we have partitioned Qk
n over some dimension d to get Q0, Q1,

. . . , Qk−1 and we have a specific set of edges P . If (x, y) is an edge of Qi then
we say that the cycle (x, ni+1(x), ni+1(y), y) is a bridge joining Qi and Qi+1.
Of course, (ni+1(x), ni(ni+1(x)), ni(ni+1(y)), ni+1(y)) = (ni+1(x), x, y, ni+1(y))
is the same bridge. Let (x, ni+1(x), ni+1(y), y) be a bridge joining Qi and Qi+1.
We say that this bridge is right-useable if

1. (ni+1(x), ni+1(y))
∈ Pi+1

2. ni+1(x) and ni+1(y) are not terminal vertices on some maximal path of
〈Pi+1〉 of length at least 2

3. both ni+1(x) and ni+1(y) are incident with at most 1 edge of Pi+1.

Note that if 〈Pi+1〉 consists of a set of vertex-disjoint paths and the bridge
(x, ni+1(x), ni+1(y), y) is right-useable then by conditions 2 and 3 of the defini-
tion of right-useability, 〈Pi+1 ∪ {(ni+1(x), ni+1(y))}〉 consists of a set of vertex-
disjoint paths also. Our bridge is left-useable if (x, y)
∈ Pi, x and y are not
terminal vertices on some maximal path of 〈Pi〉 of length at least 2, and both x
and y are incident with at most 1 edge of Pi. Our bridge is useable if it is both
left-useable and right-useable. We shall use bridges to build larger cycles out of
smaller cycles as follows. Suppose that Ci is a cycle in Qi and Ci+1 is a cycle in
Qi+1 so that (x, y) is an edge of Ci and (ni+1(x), ni+1(y)) is an edge of Ci+1. The
cycle D formed by removing the edges (x, y) and (ni+1(x), ni+1(y)) from Ci and
Ci+1, respectively, and including the edges (x, ni+1(x)) and (y, ni+1(y)) is said to
have been formed by joining Ci and Ci+1 using the bridge (x, ni+1(x), ni+1(y), y).
We also say that D has been formed by extending Ci or Ci+1.

The following result will prove very useful.

Theorem 1. [8] Let k ≥ 3 be odd and let n ≥ 2. Given any two distinct vertices
x and y of Qk

n, there exists a Hamiltonian path from x to y.

Our primary motivation is the following result due to Wang, Li and Wang.

Theorem 2. [9] Let n ≥ 2 and let P be any set of 2n − 1 edges in Q3
n. The

3-ary n-cube Q3
n has a Hamiltonian cycle on which every edge of P lies if, and

only if, 〈P 〉 consists of pairwise vertex-disjoint paths.

3 The Main Result

In this section we prove our main result, namely Theorem 4. The proof of The-
orem 4 is by induction. Due to space limitations, we simply state the base case
as Theorem 3 (though it is not difficult to prove).

Theorem 3. Let k ≥ 4 and let P be a set of 3 edges in Qk
2. The k-ary 2-cube

Qk
2 has a Hamiltonian cycle on which every edge of P lies if, and only if, 〈P 〉

consists of pairwise vertex-disjoint paths.

Theorem 4. Let n ≥ 2, let k ≥ 4 and let P be a set of edges of Qk
n with

|P | ≤ 2n− 1. There exists a Hamiltonian cycle of Qk
n on which every edge of P

lies if, and only if, 〈P 〉 consists of pairwise vertex-disjoint paths.

86 I.A. Stewart

Proof. Note that because k ≥ 4, we may assume that Qk
n contains no cycles of

length 3. We proceed by induction on n. As our induction hypothesis, suppose
that n ≥ 3 and that whenever we have a set P ′ of at most 2n − 3 edges of
Qk

n−1, there exists a Hamiltonian cycle of Qk
n−1 on which every edge of P ′ lies

if, and only if, 〈P ′〉 consists of pairwise vertex-disjoint paths. The base case of
our induction follows by Theorem 3. Let P be a set of at most 2n − 1 edges
in Qk

n. If Qk
n has a Hamiltonian cycle containing every edge of P then trivially

〈P 〉 consists of pairwise vertex-disjoint paths. So, assume that 〈P 〉 consists of
pairwise vertex-disjoint paths.

There exists some dimension d such that at most 1 edge of P lies in di-
mension d. Partition Qk

n over dimension d to obtain the k-ary (n − 1)-cubes
Q0, Q1, . . . , Qn−1, with Pj consisting of those edges of P that lie in Qj, for
j ∈ {0, 1, . . . , k − 1}. W.l.o.g. assume that |P0| ≥ |Pj |, for j ∈ {1, 2, . . . , k − 1}.
There are two essential cases: when there is 1 edge in dimension d; and when
there are no edges in dimension d. However, we begin with two useful lemmas.

Lemma 1. Let X be a set of edges in Qi where 〈X〉 consists of a set of vertex-
disjoint paths or cycles. Let the set of edges X ′ be the set of edges of Qi+1 isomor-
phic to X. The number of right-useable bridges of the form (x, ni+1(x), ni+1(y),
y) joining Qi and Qi+1, where (x, y) ∈ X, is at least max{|X | − |X ′ ∩ Pi+1| −
2|Pi+1|, 0}.
Proof. Throughout this proof, by a bridge we mean a bridge of the form (x,
ni+1(x), ni+1(y), y), where (x, y) ∈ X . Consider some edge f ∈ Pi+1. If f ∈ X ′

then this makes the bridge containing f not right-useable: so, |X ′∩Pi+1| bridges
are not right-useable because condition 1 of the definition of right-useability fails.

Suppose that the edge f ∈ X ′ \ Pi+1 is such that its 2 incident vertices are
the terminal vertices of a maximal path of 〈Pi+1〉 of length at least 2. As there
are no cycles of length 3, this path must have length at least 3. Thus, if α is
the number of vertex-disjoint maximal paths in 〈Pi+1〉 of length at least 3 then
at most α bridges are not right-useable because condition 2 of the definition of
right-useability fails.

Consider some edge f ∈ X ′ \ Pi+1 where its 2 incident vertices are not the
terminal vertices of a maximal path of 〈Pi+1〉 of length at least 2. However, sup-
pose that the bridge involving f is still not right-useable. So, one of its incident
vertices is incident with 2 edges of Pi+1: that is, this vertex is an internal vertex
of some maximal path in 〈Pi+1〉. As 〈X ′〉 is such that every vertex has degree
at most 2, any such internal vertex renders at most 2 bridges not right-useable.
Hence, the maximum number of bridges rendered not right-useable because con-
dition 3 of the definition of right-useability fails is at most 2(|Pi+1| − β), where
β is the number of vertex-disjoint maximal paths in 〈Pi+1〉.

Consequently, the total number of bridges rendered not right-useable is at
most |X ′ ∩ Pi+1| + α + 2(|Pi+1| − β) ≤ |X ′ ∩ Pi+1| + 2|Pi+1|.
Lemma 2. Let D be a cycle spanning all vertices of Qi, Qi+1, . . . , Ql, for some
i and l (with possibly i = l), where

– |Pj | ≤ 2n − 4, for j ∈ {0, 1, . . . , k − 1} \ {i, i + 1, . . . , l}

Hamiltonian Cycles in k-Ary n-Cubes 87

– D contains all edges of Pi ∪ Pi+1 ∪ . . .∪ Pl as well as any dimension d edge
of P that might happen to join vertices of Qi, Qi+1, . . . , Ql

– there are no edges of P lying in dimension d and incident with a vertex from
Qj, for j ∈ {0, 1, . . . , k − 1} \ {i, i + 1, . . . , l}

– the number of edges of D lying in Qi is greater than 6n − 9.

The cycle D can be extended to a Hamiltonian cycle of Qk
n containing every edge

of P .

Proof. Let X be the set of edges of D lying in Qi and let X ′ be the
isomorphic copy of X in Qi−1. By Lemma 1, there are at least max{|X | − |X ′ ∩
Pi−1| − 2|Pi−1|, 0} left-useable bridges joining D and Qi−1. Moreover, at least
max{|X |−|X ′∩Pi−1|−|X∩Pi|−2|Pi−1|, 0} = max{|X |−(2n−1)−2(2n−4), 0} =
max{|X | − 6n + 9, 0} > 0 of these bridges are such that the edge of the bridge
lying in Qi is not in Pi.

Let (u, u′, v′, v) be such a left-useable bridge joining the edge (u, v) of D
lying in Qi to the edge (u′, v′) of Qi−1. By the induction hypothesis applied to
(Pi−1∪{(u′, v′)}, Qi−1) (see the remark immediately after the definition of right-
useability), there exists a Hamiltonian cycle Ci−1 in Qi−1 containing every edge
of Pi−1 as well as the edge (u′, v′). Join D and Ci−1 using the bridge (u, u′, v′, v)
to obtain a cycle spanning the vertices of Qi−1, Qi, . . . , Ql and containing every
edge of Pi−1 ∪ Pi ∪ . . . ∪ Pl as well as any dimension d edge of P that might
happen to join vertices of Qi, Qi+1, . . . , Ql. Proceeding iteratively in this way
(noting that kn−1 − 1 > 6n − 9 and repeatedly applying Lemma 1) yields the
result.

Case (a): |P \ ∪k−1
i=0 Pi| = 1.

Let the edge of P that is not in ∪k−1
i=0 Pi be e = (x, y).

Lemma 3. Suppose that x lies in Qi, y lies in Qi+1 and both |Pi| and |Pi+1|
are at most 2n− 4. There exists a cycle D spanning all vertices of Qi and Qi+1

that contains every edge of Pi ∪ Pi+1 ∪ {e} and is such that only 2 edges of D
do not lie in Qi or Qi+1 (one of which is e) with these 2 edges being part of a
bridge joining Qi and Qi+1.

Proof. Let x′ be a neighbour of x in Qi with y′ the corresponding neighbour of
y in Qi+1 (so y′ = ni+1(x′)). Consider the bridge (x, x′, y′, y). Suppose that this
bridge is useable. We can apply the induction hypothesis to (Pi ∪ {(x, x′)}, Qi)
and to (Pi+1 ∪{(y, y′)}, Qi+1) and obtain Hamiltonian cycles Ci and Ci+1 of Qi

and Qi+1, respectively, so that Ci contains every edge of Pi, as well as (x, x′),
and Ci+1 contains every edge of Pi+1, as well as (y, y′). We can join Ci and Ci+1

using the bridge (x, x′, y′, y) to obtain a cycle D as in the lemma.
Suppose that the bridge (x, x′, y′, y) is not useable. So, as x is incident with

at most 1 edge of Pi and at most 1 edge of Pi+1, we must have (at least) one
of the following six occurrences: (x, x′) ∈ Pi; x and x′ are the terminal vertices
of some maximal path in 〈Pi〉 of length at least 2; x′ is incident with at least 2

88 I.A. Stewart

edges of Pi; (y, y′) ∈ Pi+1; y and y′ are the terminal vertices of some maximal
path in 〈Pi+1〉; y′ is incident with at least 2 edges of Pi+1. Let us count the
maximal number of bridges joining Qi and Qi+1 involving x that are rendered
not useable due to the edges of Pi, i.e., not left-useable. As x is incident with
at most 1 edge of Pi, at most 1 bridge of the form (x, x′′, y′′, y) is rendered not
useable because (x, x′′) ∈ Pi or because x and x′′ are the terminal vertices of
some maximal path in 〈Pi〉 of length at least 2. Alternatively, if a bridge of the
form (x, x′, y′, y) is rendered not useable because x′ is incident with at least 2
edges of Pi then x′ must be some internal vertex of a maximal path of 〈Pi〉.

– Suppose that there exists an edge (x, x′′) ∈ Pi. This leaves at most |Pi| −
2 internal vertices of paths in 〈Pi〉 that might be used to render bridges
involving x not useable.

– Suppose that x and x′′ are the terminal vertices of some maximal path in
〈Pi〉 of length at least 2. Consider the vertex z of this path adjacent to
x′′. The vertex z cannot be adjacent to x as Qk

n has no cycles of length 3.
Thus, the (internal) vertex z (of our path) cannot be used to render a bridge
involving x not useable, and this leaves at most |Pi| − 2 internal vertices of
maximal paths in 〈Pi〉 that can.

– Suppose that there does not exist an edge (x, x′′) ∈ Pi nor is it the case that
there exists a neighbour x′′ of x in Qi such that x and x′′ are the terminal
vertices of some maximal path in 〈Pi〉 of length at least 2. The maximal
number of internal vertices of paths in 〈Pi〉 that can be used to render a
bridge involving x not useable is at most |Pi| − 1.

So, the maximal number of bridges involving x not useable because of edges of
Pi is at most |Pi| − 1. The same goes for the edges of Pi+1. Thus, as: there are
2n − 2 bridges involving x and at most |Pi| + |Pi+1| − 2 are not useable; and
|Pi| + |Pi+1| ≤ 2n − 1, at least one bridge must be useable. The result follows.

Suppose that |P0| ≤ 2n − 4. By Lemmas 2 and 3, there is a Hamiltonian cycle
in Qk

n containing all edges of P . So, we assume that |P0| ≥ 2n − 3.

Lemma 4. Suppose that x is a vertex of Q0, y is a vertex of Q1 and |P0| =
2n − 3. There is a Hamiltonian cycle in Qk

n containing all edges of P .

Proof. By the induction hypothesis applied to (P0, Q0), there is a Hamiltonian
cycle in Q0 containing all edges of P0. Let x′ and x′′ be the neighbours of x on
C0, with y′ and y′′, respectively, their neighbours in Q1. W.l.o.g. (x, x′)
∈ P0

(as (x, y) ∈ P). Consider the bridge (x, y, y′, x′). If (y, y′)
∈ P1 then apply the
induction hypothesis to (P1 ∪ {(y, y′)}, Q1) to obtain a Hamiltonian cycle C1 in
Q1 that contains all edges of P1 as well as (y, y′). We can join C0 and C1 using
the bridge (x, y, y′, x′) to obtain a cycle spanning all vertices of Q0 and Q1 and
containing all edges of P0 ∪ P1 ∪ {e}. The result follows by Lemma 2.

So, suppose that (y, y′) ∈ P1: that is, P1 = {(y, y′)} and ∪k−1
j=2Pj = ∅. Let C′

1

be the isomorphic copy of C0 in Q1. In particular, C′
1 contains (y, y′). Consider

the path obtained by starting from y′′ and traversing C′
1 to y (omitting (y′′, y)),

Hamiltonian Cycles in k-Ary n-Cubes 89

taking the edge (y, x), and then traversing C0 to x′ (omitting (x, x′)). This path
contains every vertex of Q0 and Q1 and every edge of P . Extend this path by
the edges (y′′, n2(x′′)) and (x′, nk−1(x′)) to obtain the path ρ.

If k = 5 then we can, first, apply Theorem 1 three times to obtain Hamiltonian
paths in Q2, Q3 and Q4 from n2(x′′) to n2(x′), from n3(x′′) to n3(x′), and from
n4(x′′) to n4(x′), respectively, and, second, easily compose these paths with ρ to
obtain a Hamiltonian cycle in Q5

n containing all edges of P . Indeed, by proceeding
similarly, we can obtain a Hamiltonian cycle in any Qk

n containing all edges of
P whenever k ≥ 5 is odd.

Suppose that k = 4. Applying the induction hypothesis to ({(n2(x′′),
n2(x))}, Q2) and to ({(n3(x′), n3(x))}, Q3) yields Hamiltonian cycles C2 and
C3 in Q2 and Q3, respectively: that is, Hamiltonian paths in Q2 from n2(x′′)
to n2(x) and in Q3 from n3(x′) to n3(x). These paths can easily be composed
with ρ to obtain a Hamiltonian cycle in Q4

n containing all edges of P . When
k ≥ 6 is even, we proceed similarly by applying the induction hypothesis to
({(n2(x′′), n2(x))}, Q2) and to ({(nj(x′), nj(x))}, Qj), if 3 ≤ j ≤ k − 1, before
composing the resulting paths. The result follows.

Lemma 5. Suppose that x is a vertex of Qi, y is a vertex of Qi+1 and |P0| =
2n − 3, where i
= 0
= i + 1. There is a Hamiltonian cycle in Qk

n containing all
edges of P .

Proof. As in the proof of Lemma 3, there is a useable bridge (x, y, y′, x′) joining
Qi and Qi+1. Let the edge of P \(P0∪{e}) be (p, q). By the induction hypothesis
applied to (P0, Q0), there is a Hamiltonian cycle C0 in Q0 containing every edge
of P0. The cycle C0 contains kn−1 − (2n − 3) ≥ 13 edges not in P0.

Choose two non-incident edges (u, v) and (s, t) of C0 that are not in P0

where {u, v, s, t} ∩ {n0(x), n0(x′), n0(p), n0(q)} = ∅. Applying the induction
hypothesis to (Pi ∪ {(x, x′), (ni(u), ni(v))}, Qi) yields a Hamiltonian cycle in
Qi containing all edges of Pi as well as (x, x′) and (ni(u), ni(v)). Applying
the induction hypothesis to (Pj ∪ {(nj(u), nj(v)), (nj(s), nj(t))}, Qj), for j ∈
{2, 3, . . . , i − 1}, yields a Hamiltonian cycle Cj in Qj containing all edges of Pj

as well as (nj(u), nj(v)) and (nj(s), nj(t)). We can join Ci and Ci−1 using the
bridge (ni(u), ni−1(u), ni−1(v), ni(v)), and then using the bridge (nj(u), nj−1(u),
nj−1(v), nj(v)) or (nj(s), nj−1(t), nj−1(t), nj(s)), for j ∈ {1, 2, . . . , i−1}, we can
join the Hamiltonian cycles C0, C1, . . . , Ci so as to obtain a cycle D spanning all
vertices of Q0, Q1, . . . , Qi and containing all edges of P0 ∪ P1 ∪ . . . ∪ Pi.

Applying the induction hypothesis to (Pi+1∪{(y, y′)}, Qi+1) yields a Hamilto-
nian cycle in Qi+1 containing all edges of Pi+1 and (y, y′). Join D and Ci+1 using
the bridge (x, y, y′, x′) to obtain a cycle spanning all vertices of Q0, Q1, . . . , Qi+1

and containing all edges of P0 ∪P1 ∪ . . .∪Pi+1 ∪{e}. This cycle can be extended
to a Hamiltonian cycle in Qk

n containing all edges in P by Lemma 2.

Suppose that |P0| = 2n − 3. By Lemmas 4 and 5, there is a Hamiltonian cycle
in Qk

n containing all edges of P . Henceforth, we assume that |P0| = 2n − 2.
There are two possibilities: x is a vertex of Q0 and y is a vertex of Q1; x is a

vertex of Qi, where i
= 0, and y is a vertex of Qi+1, where i + 1
= 0.

90 I.A. Stewart

Lemma 6. Suppose that x is a vertex of Q0, y is a vertex of Q1 and |P0| =
2n − 2. There is a Hamiltonian cycle in Qk

n containing every edge of P .

Proof. As x is incident with at most 1 edge of P0, let (a, b) be some edge of
P0 that is not incident with x. Applying the induction hypothesis to (P0 \
{(a, b)}, Q0) results in a Hamiltonian cycle C0 in Q0 containing every edge of
P0 \ {(a, b)}. Suppose that C0 also contains (a, b). Let x′ and x′′ be the neigh-
bours of x on C0, with y′ and y′′, respectively, their neighbours in Q1. W.l.o.g.
(x, x′)
∈ P0 (as (x, y) ∈ P). Consider the bridge (x, y, y′, x′). Apply the induc-
tion hypothesis to ({(y, y′)}, Q1) to obtain a Hamiltonian cycle C1 in Q1 that
contains (y, y′). We can join C0 and C1 using the bridge (x, y, y′, x′) to obtain
a cycle spanning all vertices of Q0 and Q1 and containing all edges of P . The
result follows by Lemma 2.

So, suppose that (a, b)
∈ P0. Let a′ and a′′ be the neighbours of a on C0,
and let b′ and b′′ be the neighbours of b on C0. Moreover, assume that there
is a sub-path of C0 joining to a′ to b′ on which x does not lie. Let x′ be the
neighbour of x on C0 so that x′ does not lie on the sub-path of C0 from x to
a avoiding b, and let x′′ be the other neighbour of x on C0. W.l.o.g. we may
assume that (x, x′)
∈ P0 (as (x, y) ∈ P). Note that a′
= b′ as otherwise there
would be a cycle of length 3 in Qk

n. However, it may be the case that x′ = b′′,
x′ = b, x′′ = a′′ or x′′ = a.

There are 4 different essential cases to consider depending upon whether or
not the edges (a, a′) and (b, b′) are in P0. Some of these cases have sub-cases.
All cases and their sub-cases are described below and illustrated in Fig. 1, as
are the paths ρ1 and ρ2 (except for Cases 2.b, 2.c and 3.b where there is only ρ1

and Case 4.a where there is also the path ρ3).

1. (a, a′)
∈ P0 and (b, b′)
∈ P0.
2.a (a, a′)
∈ P0, (b, b′) ∈ P0 and b′′
= x′
= b (note that (b, b′′)
∈ P0).
2.b (a, a′)
∈ P0, (b, b′) ∈ P0 and b′′ = x′ (note that the path ρ2 does not include

x′ = b′′ and that (b, x′)
∈ P0).
2.c (a, a′)
∈ P0, (b, b′) ∈ P0 and x′ = b.
3.a (a, a′) ∈ P0, (b, b′)
∈ P0 and a′′
= x (note that (a, a′′)
∈ P0).
3.b (a, a′) ∈ P0, (b, b′)
∈ P0 and a′′ = x (note that (a, a′′)
∈ P0).
4.a If (a, a′) ∈ P0, (b, b′) ∈ P0, x′′
= a and x′
= b′′ then let (c, d)
∈ P0 be an

edge on the sub-path of C0 joining a′ and b′ avoiding a so that c is closer to
a′ on this path than d is and
• define ρ1 to be the sub-path of C0 from c to a avoiding b, concatenated

with (a, b), concatenated with the sub-path of C0 from b to d avoiding a
• define ρ2 to be the sub-path of C0 from x to a′′ avoiding a
• if x′
= b then define ρ3 to be the sub-path of C0 from x′ to b′′ avoiding

a

(note that both (a, a′′) and (b, b′′) are not in P0).

Hamiltonian Cycles in k-Ary n-Cubes 91

a
a''

a'

b

b'

b''

x

x''

x'

edges not in P0

ρ
1ρ

2

a
a''

a'

b

b'

b''

x

x''

x'

edges not in P0

ρ
2

ρ
1

a
a''

a'

b

b'

x

x''

edges not in P0

ρ
1

Case 1 Case 2.a

x' = b''

Case 2.b

a
a''

a'

b'

x

x''

ρ
1

aa'

b

b'

b''

x

x''

x'

edges not in P0

ρ
2

ρ
1

aa'

b

b'
edges not in P0

ρ
1

Case 2.c Case 3.a

x'

Case 3.b

b = x'

edges not in P0

a''

b''

a'' = x

aa'

b'

x

x''

ρ
1

aa'

b

b'

x

x''

edges not in P0

ρ
2

a = x''a'

b

b'
edges not in P0

ρ
3

Case 4.a Case 4.b

x'

Case 4.c

b

edges not in P0

b''

x

b''

c

d

c

d

c

d

x'

a''

x' = b''

a''ρ
1

ρ
2

ρ
1

ρ
2

Fig. 1. The different cases for the edge (a, b)

4.b If (a, a′) ∈ P0, (b, b′) ∈ P0, x′′
= a and x′ = b′′ then let (c, d)
∈ P0 be an
edge on the sub-path of C0 joining a′ and b′ avoiding a so that c is closer to
a′ on this path than d is and
• define ρ1 to be the sub-path of C0 from c to a avoiding b, concatenated

with (a, b), concatenated with the sub-path of C0 from b to d avoiding a
• define ρ2 to be the sub-path of C0 from x to a′′ avoiding a

(note that these paths do not include x′ = b′′ and that both (a, a′′) and
(b, b′′) are not in P0).

4.c If (a, a′) ∈ P0, (b, b′) ∈ P0 and x′′ = a then let (c, d)
∈ P0 be an edge on the
sub-path of C0 joining a′ and b′ avoiding a so that c is closer to a′ on this
path than d is and
• define ρ1 to be the sub-path of C0 from c to a avoiding b, concatenated

with (a, b), concatenated with the sub-path of C0 from b to d avoiding a
• define ρ2 to be the sub-path of C0 from x to b′′ avoiding a

(note that both (a, a′′) and (b, b′′) are not in P0, and that x′
= b as otherwise
there would be a cycle of length 3 in Qk

n).

92 I.A. Stewart

Consider Case 1. Let ρ′1 and ρ′2 be the isomorphic copies of ρ1 and ρ2, respec-
tively, in Q1. Join ρ1 and ρ′1 using the edges (a′, n1(a′)) and (b′, n1(b′)) to form
the cycle D1, and join ρ2 and ρ′2 using the edges (x, y) and (x′, n1(x′)) to form
the cycle D2. Every edge of P lies on one of these cycles. Take any edge f of D1

lying within Q1 and any edge g of D2 lying within Q1, and let f ′ and g′ be the
isomorphic copies of f and g, respectively, in Q2. By the induction hypothesis
applied to ({f ′, g′}, Q2), there is a Hamiltonian cycle C2 in Q2 containing f ′

and g′. Join D1 and D2 to C2 using the bridges involving f and f ′ and g and
g′, respectively. We obtain a cycle spanning all vertices of Q0, Q1 and Q2 and
containing all edges of P . We can extend this cycle to a Hamiltonian cycle of
Qk

n containing all edges of P by Lemma 2 (as kn−1 − 2 > 6n − 9). Analogous
constructions apply in Cases 2.a, 2.c, 3.a, 3.b and 4.c.

We are left with Cases 2.b, 4.a and 4.b. Consider Case 2.b. Let ρ′1 be the
isomorphic copy of ρ1 in Q1. Join ρ1 and ρ′1 using the edges (x, y) and (a′, n1(a′))
to form the cycle D.

Suppose that k is even. For every j ∈ {2, 3, . . . , k − 1}, apply the induction
hypothesis to ({(nj(x′), nj(x)), (nj(x), nj(x′′))}, Qj) to obtain a Hamiltonian cy-
cle Cj in Qj upon which both edges (nj(x′), nj(x)) and (nj(x), nj(x′′)) lie. For
j ∈ {2, 3, . . . , k − 1}, let πj by the sub-path of Cj from nj(x′) to nj(x) of length
kn−1 − 1. Form the cycle D′ by starting from the path (x′, n1(x′), n2(x′)), con-
catenating π2, concatenating the edge (n2(x), n3(x)), concatenating the path π3,
concatenating the edge (n3(x′), n4(x′)), concatenating π4, . . ., concatenating the
edge (nk−2(x), nk−1(x)), concatenating the path πk−1 and finally concatenating
the edge (nk−1(x′), x′). The cycles D and D′ span all vertices of Qk

n. Join D and
D′ using the bridge (y, n2(x), n2(x′′), n1(x′′)) to obtain a Hamiltonian cycle of
Qk

n containing all edges of P (note that neither (y, n1(x′′)) nor (n2(x), n2(x′′))
lies in P). The construction can be visualised as in Fig. 2. There is an analogous
construction for Case 4.b except that instead of one cycle D we have two cycles
D1 and D2, formed by composing the paths ρ1 and ρ′1 and the paths ρ2 and ρ′2,
respectively. We build the cycle D′ as we did before except that when building
D′ we ensure that all Hamiltonian cycles Cj , for j ∈ {2, 3, . . . , k − 1}, contain
the edges of {(nj(x′), nj(x)), (nj(x), nj(x′′)), (nj(a), nj(b))}. We join D1 and D
using the bridge (n1(a), n2(a), n2(b), n1(b)) and the resulting cycle to D2 using
the bridge (y, n2(x), n2(x′′), n1(x′′)).

Suppose that k is odd. Let ρ′′1 be the isomorphic copy of ρ1 in Q2. For every
j ∈ {3, 4, . . . , k − 2}, we use Lemma 1 to obtain a Hamiltonian path πj in Qj

from nj(a′) to nj(x). We use Lemma 1 to obtain a Hamiltonian path πk−1 in
Qk−1 from nk−1(x) to nk−1(x′). We build the cycle D′ by starting from the
path (x′, n1(x′), n2(x′)), concatenating the edge (n2(x′), n2(x)), concatenating
the path ρ′′1 , concatenating the edge (n2(a′), n3(a′)), concatenating the path π3,
concatenating the edge (n3(x), n4(x)), concatenating the path π4, concatenating
the edge (n4(a′), n5(a′)), concatenating the path π5, . . ., concatenating the edge
(nk−2(x), nk−1(x)), concatenating the path πk−1 and concatenating the edge
(nk−1(x′), x′). The cycles D and D′ span all vertices of Qk

n. Join D and D′

using the bridge (y, n2(x), n2(x′′), n1(x′′)) to obtain a Hamiltonian cycle of Qk
n

Hamiltonian Cycles in k-Ary n-Cubes 93

containing all edges of P (note that neither (y, n1(x′′)) nor (n2(x), n2(x′′)) lies
in P). There is an analogous construction for Case 4.b except that instead of
one cycle D we have two cycles D1 and D2, formed by composing the paths ρ1

and ρ′1 and the paths ρ2 and ρ′2, respectively. We build the cycle D′ as we did
before except that when building D′ we ensure that: the Hamiltonian path π2 in
Q2 is the sub-path of length kn−1 − 1 of the isomorphic copy of C0 in Q2 from
n2(x′) to n2(b); the Hamiltonian paths πj in Qj are from nj(b) to nj(x), for
j ∈ {3, 4, . . . , k−2}; and the Hamiltonian path πk−1 in Qk−1 is from nk−1(x) to
nk−1(x′). We join D1 and D′ using the bridge (n1(a), n2(a), n2(a′), n1(a′)), and
we join the resulting cycle with D2 using the bridge (y, n2(x), n2(x′′), n1(x′′)) to
obtain a Hamiltonian cycle of Qk

n containing all edges of P (see Fig. 3).

D

ρ'
1

... ...

ρ
1

D'

x

x'

x''

n (x)2

n (x')2

n (x'')2

n (x)4

n (x')4

n (x'')4

n (x'')1

y

n (x')1

n (x'')3

n (x')3

n (x)3

n (x'')k-1

n (x)k-1

n (x')k-1

a' n (a')1

Fig. 2. Case 2.b when k is even

D

ρ'
2

... ...

ρ
2

D'

x

x'

x''

n (x)2

n (x')2

n (x'')2

n (x'')1

y

n (x')1

n (x)k-1

n (x')k-1

a'' n (a'')1

2

c

d

a'

a

ρ
1

ρ'
1

n (d)1

n (a)1

n (a')1

n (c)1

n (b)2

π
2

n (a)2

n (a')2

n (x')3

n (x)3

π
3

n (b)3

n (x')4

n (x)4

π
4

n (b)4

n (x')5

n (x)5

π
5

n (b)5D1

π
k-1

Fig. 3. Case 4.b when k is odd

Finally, consider Case 4.a. Let ρ′1, ρ′2 and ρ′3 be the isomorphic copies of ρ1, ρ2

and ρ3, respectively, in Q1. Join corresponding pairs to form three cycles D1, D2

and D3, respectively, which span all vertices of Q0 and Q1. Choose an edge fi of
Di that lies in Q1 and let f ′

i be the isomorphic copy in Q2, for i = 1, 2, 3. Apply
the induction hypothesis to ({f ′

1, f
′
2, f

′
3}, Q2) to obtain a Hamiltonian cycle D in

Q2 containing f ′
1, f ′

2 and f ′
3. Join D to D1, D2 and D3 using the corresponding

94 I.A. Stewart

bridge to obtain a cycle D′ spanning all vertices of Q1, Q2 and Q3 and containing
all edges of P . The result follows by Lemma 2.

Lemma 7. Suppose that x is a vertex of Qi and y is a vertex of Qi+1 where
i
= 0
= i + 1. Suppose that |P0| = 2n − 2. There is a Hamiltonian cycle in Qk

n

containing every edge of P .

Proof. Let (p, q) be some edge of P0. By the induction hypothesis applied to
(P \ {(p, q)}, Q0), there is a Hamiltonian cycle C0 in Q0 containing every edge
of P0 \ {(p, q)}. If (p, q) lies in C0 then let D be the cycle C0. Suppose that (p, q)
does not lie on C0. There are two possibilities: we have a Hamiltonian path ρ1 in
Q0 (a sub-path of C0) containing all edges of P0; or we have two vertex-disjoint
(non-trivial) paths ρ1 and ρ2 in Q0 (sub-paths of C0) which span all vertices
of Q0 and contain all edges of P0 (see the diagrams in Case 1 and Case 2.a in
Fig. 1). In the first case, let ρ′1 be the isomorphic copy of ρ1 in Q1 and let D be
the cycle spanning all vertices of Q0 and Q1 obtained by joining ρ1 and ρ′1. In
the second case, let ρ′1 and ρ′2 be the isomorphic copies of ρ1 and ρ2, respectively,
in Q1, and let D1 and D2 be the cycles obtained by joining ρ1 and ρ′1 and by
joining ρ2 and ρ′2, respectively, so that the cycles D1 and D2 span the vertices
of Q0 and Q1. Now choose some edge f1 of D1 that lies in Q1 and some edge
f2 of D2 that lies in Q1, ensuring that f1 is incident with x if x lies in Q1. Let
f ′
1 and f ′

2 be the isomorphic copies of f1 and f2, respectively, in Q2. By the
induction hypothesis applied to ({f ′

1, f
′
2}, Q2), there is a Hamiltonian cycle C2

in Q2 containing f ′
1 and f ′

2. Join D1 and D2 to C2 using the bridges involving
f1 and f ′

1 and f2 and f ′
2 to obtain a cycle D.

So, we have a cycle D containing every edge of P0. We iteratively work through
the remaining k-ary (n−1)-cubes not yet spanned by the cycle D and, using the
induction hypothesis, extend D so that the edge (x, y) appears in the extension
of D (we do this as we did above by always choosing the bridge by which we
extend so that it contains (x, y)). The result follows.

Suppose that |P0| = 2n − 1. By Lemmas 6 and 7, there is a Hamiltonian cycle
in Qk

n containing all edges of P .

Case (b): P = ∪k−1
i=0 Pi.

Suppose that |P0| ≤ 2n − 3. By the induction hypothesis applied to (P0, Q0),
there is a Hamiltonian cycle C0 in Q0 containing every edge of P0. The result
follows by Lemma 2.

Suppose that |P0| = 2n − 2. Let (p, q) be some edge of P0. By the induc-
tion hypothesis applied to (P0 \ {(p, q)}, Q0), there is a Hamiltonian cycle C0 of
Q0 containing every edge of P0 \ {(p, q)}. If (p, q) lies on C0 then set D = C0.
Suppose that (p, q) does not lie on C0. There are two possibilities: we have a
Hamiltonian path ρ1 in Q0 (a sub-path of C0) containing all edges of P0; or we

Hamiltonian Cycles in k-Ary n-Cubes 95

have two vertex-disjoint (non-trivial) paths ρ1 and ρ2 in Q0 (sub-paths of C0)
which span all vertices of Q0 and contain all edges of P0. In the first case, w.l.o.g.
we may assume that P1 = ∅ (otherwise work in Qk−1). Let ρ′1 be the isomorphic
copy of ρ1 in Q1. Let D be the cycle spanning all vertices of Q0 and Q1 obtained
by joining ρ1 and ρ′1. In the second case, w.l.o.g. we may assume that P1 = ∅.
Let ρ′1 and ρ′2 be the isomorphic copies of ρ1 and ρ2, respectively, in Q1. Let D1

and D2 be the cycles obtained by joining ρ1 and ρ′1 and ρ2 and ρ′2, respectively.
Again, w.l.o.g. we may assume that P2 = ∅. Choose edges f1 and f2 in Q1 that
lie in D1 and D2, respectively, and let f ′

1 and f ′
2 be the isomorphic copies of f1

and f2 in Q2. By the induction hypothesis applied to ({f ′
1, f

′
2}, Q2), there is a

Hamiltonian cycle C2 in Q2 containing f ′
1 and f ′

2. Join D1, D2 and C2 using the
bridges involving f1 and f ′

1 and f2 and f2′ to obtain the cycle D. Whatever the
situation, we obtain the result using Lemma 2.

Suppose that |P0| = 2n − 1. Let e and f be two edges of P0. Applying the
induction hypothesis to (P0 \ {e, f}, Q0) yields a Hamlitonian cycle C0 of Q0

containing every edge of P0 \ {e, f}. Suppose that C0 contains at least one of e
and f also. Now we proceed exactly as we did in the case above when |P0| = 2n−2
and the edge (p, q) does not lie on (the previous cycle) C0. Doing so, and then
applying Lemma 2, yields the result. Hence, we may assume that both e and f
do not appear in C0. Consider e. Suppose that there is an edge of P0 lying on
C0 and incident with e. Let e′ and e′′ be the edges of the maximal path ρ′ of
〈P0〉 containing e that are incident with the terminal vertices of ρ′. Reapply the
induction hypothesis to (P0 \ {e′, e′′}, Q0) to obtain a Hamiltonian cycle C′

0 of
Q0 containing every edge of P0 \ {e′, e′′}. As above, we may assume that neither
e′ nor e′′ lies on C′

0. Let ρ be the sub-path of C′
0 joining the terminal vertices

of ρ′ and which contains no other vertex of ρ′. Let the terminal vertex of ρ′

incident with e′ (resp. e′′) be c′ (resp. c′′), and let d′ (resp. d′′) be the other
vertex incident with e′ (resp. e′′). W.l.o.g. we may assume that there is a sub-
path of C′

0 from c′ to d′ on which neither c′′ nor d′′ appears (in the alternative
situation we proceed almost identically). There are 3 cases: |ρ| = 1; |ρ| = 2; and
|ρ| > 2. These sub-cases can be visualised as in Fig. 4 (note that the sub-path
ρ′ \ {e′, e′′} might consist of one vertex only). Note that none of the edges of C′

0

incident with c′ or c′′ are in P0 and that all edges of ρ′, apart from e′ and e′′, lie
on C′

0. Let a (resp. b) be the vertex of the sub-path of C′
0 from c′ to d′ (resp. c′′

to d′′) and avoiding c′′ (resp. c′) that is adjacent to d′. In all cases, let ρ1 be the
path starting with the sub-path of C′

0 from a to c′ avoiding b, concatenated with
the path ρ′, and concatenated with the sub-path of C′

0 from c′′ to b avoiding a.
If |ρ| = 2 then let x be the solitary internal vertex of ρ, and if |ρ| > 2 then let the
vertex of ρ adjacent to c′ (resp. c′′) be x (resp. y). We now proceed essentially
as we did in Case 2.c, Case 2.b and Case 1 of Lemma 6 to obtain the result.

So, we may assume that we have a Hamiltonian cycle C0 of Q0 containing all
edges of P0 \ {e, f} so that the edges e and f do not lie on C0 and are such that
neither e nor f is incident with an edge of C0 lying on P0. We proceed as above
for each situation as in Fig. 4. The result follows.

96 I.A. Stewart

edges not in P0
ρ
1

|ρ| = 1

e'
e''

ρ

ρ'\{e', e''}

edges not in P0
ρ
1

|ρ| = 2

e'
e''

ρ'\{e', e''}

edges not in P0
ρ
1

|ρ| > 2

e'
e''

ρ'\{e', e''}

ρ ρ

ρ
2

a aa

b bb

c' c'c'
c'' c''c''

x
x y

d' d'd'

d'' d'' d''

Fig. 4. The case when |P0| = 2n − 1

4 Conclusions

A simple induction shows that we can select a set P of 4n − 2 edges in Qk
n,

where n ≥ 2 and k ≥ 3, so that 〈P 〉 consists of a set of vertex-disjoint paths
and there exists a vertex x of Qk

n so that all but 1 of x’s neighbours in Qk
n are

incident with exactly 2 edges of P . Thus, the maximal size of a set P of edges
of Qk

n for which a version of Theorem 3 or Theorem 4 holds is at most 4n − 3.
It would be interesting to establish exactly where this threshold lies. We expect
that given the more complex structure of the k-ary n-cube, the exact threshold
will be much more difficult to obtain than it was for the hypercube.

As we mentioned earlier, there has been a significant amount of research
undertaken as regards the necessity of the existence of Hamiltonian cycles in
hypercubes and k-ary n-cubes either avoiding or containing prescribed sets of
edges of a given size. The general question of given a set of edges of a hypercube
or a k-ary n-cube (with no bound on the size of the set), does there exist a
Hamiltonian cycle containing these edges, has yet to be considered as regards its
computational complexity. It could well be that the proof of related complexity-
theoretic results from [1,4] will provide an entry point into such an investigation.

References

1. Ashir, Y.A., Stewart, I.A.: Fault-tolerant embeddings of Hamiltonian circuits in
k-ary n-cubes. SIAM Journal on Discrete Mathematics 15(3), 317–328 (2002)

2. Bose, B., Broeg, B., Kwon, Y., Ashir, Y.: Lee distance and topological properties of
k-ary n-cubes. IEEE Transactions on Computers 44(8), 1021–1030 (1995)

3. Caha, R., Koubek, V.: Hamiltonian cycles and paths with a prescribed set of edges
in hypercubes and dense sets. Journal of Graph Theory 51(2), 137–169 (2006)

4. Chan, M.Y., Lee, S.J.: On the existence of Hamiltonian circuits in faulty hypercubes.
SIAM Journal on Discrete Mathematics 4(4), 511–527 (1991)

5. Dvořák, T.: Hamiltonian cycles with prescribed edges in hypercubes. SIAM Journal
on Discrete Mathematics 19(1), 135–144 (2005)

Hamiltonian Cycles in k-Ary n-Cubes 97

6. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC Press,
Boca Raton (2009)

7. Gros, L.: Théorie du Baguenodier, Aimé Vingtrinier, Lyon (1872)
8. Stewart, I.A., Xiang, Y.: Bipanconnectivity and bipancyclicity in k-ary n-cubes.

IEEE Transactions on Parallel and Distributed Systems 20(1), 25–33 (2009)
9. Wang, S., Li, J., Wang, R.: Hamiltonian cycles with prescribed edges in the 3-ary

n-cube. Information Sciences 181(14), 3054–3065 (2011)

A Fast Parallel Algorithm for Finding a Most

Reliable Source on a General Ring-Tree Graph
with Unreliable Edges

Wei Ding1 and Guoliang Xue2

1 Zhejiang Water Conservancy and Hydropower College,
Hangzhou, Zhejiang 310000, China

dingweicumt@163.com
2 Department of Computer Science and Engineering

Arizona State University, Tempe, AZ 85287-8809, USA
xue@asu.edu

Abstract. Given an unreliable communication network, we aim to find
a most reliable source (MRS) on the network, which maximizes the ex-
pected number of nodes that are reachable from it. Although the problem
of finding an MRS on general graphs is #P-hard, it is tractable in sev-
eral types of sparse graphs. The ring-tree graph is such a kind of sparse
graph that not only has the capability of failure tolerance but also holds
an underlying tree topology which facilitates network administration. In
this paper, we are concerned with unreliable general ring-tree graphs in
which each edge has an independent operational probability while all
nodes are immune to failures. We first design a complementary dynamic
programming algorithm and then develop a parallel algorithm based on
the underlying tree for finding an MRS on the network.

Keywords: Most reliable source, general ring-tree graph, complemen-
tary dynamic programming, parallel algorithm.

1 Introduction

A computer network or communication network is typically modeled as an undi-
rected graph G = (V, E), where V is a set of nodes that represent processing
or switching elements and E is a set of edges that represent communication
links [3]. Given any pair of nodes u and v, the communication between u and
v is achieved by a u-to-v path. Network failures may occur to links or nodes
[5,6,7,8,9,10,13,19]. As networks grow in size, they become increasingly vulnera-
ble to failures. In the past decade, a large number of network reliability problems
have been widely studied [1,2,11,14,15]. Many of them can be reduced to the
computation of a most reliable source, defined in the following.

Given two nodes u and v in an unreliable communication network, we let
Pr(u, v) denote the probability that a message can be transmitted correctly from
u to v. The expected number of nodes reachable from u is called the reachability
of u, denoted by E(u). Thus, we have

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 98–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Fast Parallel Algorithm for Finding a Most Reliable Source 99

E[u] =
∑
v∈V

Pr(u, v) . (1)

A node that maximizes its reachability is called a most reliable source (MRS) of
the network. The essence of computing an MRS of a given network is determining
a node u∗ in the network such that

E[u∗] = max
u∈V

∑
v∈V

Pr(u, v) . (2)

As we all know, an MRS is a good candidate as the source for data broadcast in
an unreliable network as the expected number of nodes reachable from an MRS
is maximized. The problem of computing an MRS of an unreliable network is one
of the network reliability problems, which has been studied widely in the past
decade. Although this problem is #P-hard in general graphs [5,17], it is tractable
in several types of sparse networks. Some papers are concerned with the case
in which each link has an independent operational probability while all nodes
are immune to failures. For tree networks, Melachrinoudis and Helander [13]
presented a quadratic time algorithm and Xue [19] developed an improved linear
time algorithm. For series-parallel graphs, Colbourn and Xue [6] devised a linear
time algorithm. For ring graphs, Ding [7] gave a quadratic time algorithm. Also,
Ding and Xue [10] studied another case in which each node has an independent
probability of being faulty while all links are immune to failures and proposed a
linear time algorithm for such tree networks.

The tree network is one of the most important network topologies as it has
a sparse and recursive structure which facilitates administrating it. However,
it has a principal weakness of low capability of failure tolerance under an un-
reliable setting, which stems from its low connectivity (there is a single path
between its each node pair). A general network has a higher capability of fail-
ure tolerance, but it is hard to administrate it, e.g., it is #P-hard [5,17] to
find its an MRS. The ring-tree network, formally defined in Sect. 2, is a good
compromise between the network capability of failure tolerance and the ease of
network administration. For instance, given a sample tree distinguished by bold
edges in Fig. 1–(b), adding five dashed edges {a, e}, {f, g}, {h, i}, {k, l}, {m,n}
results in five embedded rings abcdea, bfgb, chijc, jklj, dmnd. In contrast, there
is a single f -to-c path fbc in the original tree while there are four f -to-c paths
fbc, fgbc, fbaedc, fgbaedc in the resulting ring-tree. On the other hand, the ring-
tree holds an underlying tree topology, which facilitates network administration.
We can derive different ring-trees from any given tree by adding different edges
to it. Furthermore, we refer readers to [8] for the detailed analysis on both the
capability of failure tolerance of a general ring-tree graph and its reliability of
communication.

In [9], Ding and Xue designed a fast Divide-and-Conquer algorithm for com-
puting an MRS on m–rings graphs (a special type of ring-trees graph with
an underlying topology of a strip graph, see Fig. 1–(a)) where each edge has
an independent operational probability while all nodes are immune to failures.

100 W. Ding and G. Xue

a

b

c

d e

f

g h

i

j

k

l

m

a b c

de

f g h i

j k

l

n

m

(a) underlying topology: a strip graph

(b) underlying topology: a tree graph

underlying topology

underlying topology

Fig. 1. Bold solid edges of two left-hand graphs form two sample tree networks. Adding
several dashed edges to them yields two ring-tree networks, whose underlying topologies
are obtained by shrinking every ring into a vertex and using an edge to represent
the adjacency relationship of two rings, shown as right-hand graphs: (a) underlying
topology is a strip graph; (b) underlying topology is a tree graph. It is evident that (a)
is a special case of (b).

In this paper, we focus on a general ring-tree graph under a same unreliable set-
ting as above, and propose an efficient parallel algorithm based on its underlying
tree for finding its MRS with a time complexity of at most O((λ2 + λμ + 3λ +
μ)H(T)).

The rest of this paper is organized as follows. In Sect. 2, we define the gen-
eral ring-tree graph formally and some notations used frequently. In Sect. 3, we
complete some fundamental preliminaries, including the decomposition scheme
of ring-tree and several recurrence equations. In Sect. 4, we first design a comple-
mentary dynamic programming algorithm and then develop a parallel algorithm
for finding an MRS of a given unreliable general ring-tree graph. In Sect. 5, we
present some concluding remarks.

2 Definitions and Notations

Definition 1. Let T = (V (T), E(T)) be an undirected tree. A general ring-tree
graph RT = (V (RT), E(RT)) with an underlying topology T is constructed in
the following way: (i) each node vi ∈ V (T) is expanded into an undirected ring
Ci = (Vi, Ei); (ii) each edge e ∈ E(T) is removed. (see Fig. 1–(b))

In this paper, we concern with an edge-weighted ring-tree as follows. Given any
i ∈ {1, . . . , |V (T)|}, every e = {x, y} ∈ Ei is associated with a weight p(e)
representing the edge operational probability of e and two arcs of (x, y) from x to

A Fast Parallel Algorithm for Finding a Most Reliable Source 101

y and (y, x) from y to x. The operational probabilities of (x, y) and (y, x) are both
equal to the operational probability of {x, y}. As a consequence, we construct an
edge-weighted ring Ci = (Vi, Ei, p) and accordingly an edge-weighted ring-tree
graph RT = (V (RT), E(RT), p).

We can always take the underlying topology T as a rooted tree in this paper
since an unrooted tree can be transformed into a rooted tree by designating
any node of the tree as its root. For simplicity of presentation, we use numbers
i = 1, 2, . . . , |V (T)| to label all nodes of T in the order of from bottom to root
and from left to right on a level amongst T . Clearly |V (T)| just represents the
root of T . Let f(i) denote the parent of i and κ(i) denote the index of i in all
children of f(i) for every i ∈ {1, . . . , V (T) − 1}. All leaves of T form a set L.
Let S(i) denote the set of all children of i for every i ∈ {1, . . . , V (T)} \ L. By
investigation, we discover that

|E(T)| =
∑

i∈{1,...,|V (T)|}\L

|S(i)| . (3)

In RT , given a node i ∈ V (T) and its parent f(i), we call Cf(i) the parent
ring of Ci and Ci a child ring of Cf(i). A ring obtained by expanding a leaf of T
is called a leaf ring of RT and the ring obtained by expanding the root |V (T)| of
T is called the root ring of RT . Given any ring Ci, the common node of Ci and
Cf(i) is both called top joint of Ci and bottom joint of Cf(i). Note that the root
ring has no top joint and every leaf ring has no bottom joint. Let α(i) denote the
top joint of Ci and β(i; k) denote the k–th bottom joint of Ci. The relationship
of α(i) = β(f(i); κ(i)) holds for every i ∈ {1, . . . , |V (T)| − 1}.
Definition 2. Given i ∈ {1, . . . , |V (T)|} and any pair of nodes u, v ∈ Vi, let
Q+

i (u, v), Q−
i (u, v) denote the probability that a message is correctly transmitted

from u to v along Ci in the clockwise direction and in the counterclockwise direc-
tion respectively, and Qi(u, v) denote the probability that a message is correctly
transmitted from u to v along Ci.

For any node i ∈ {1, . . . , |V (T)|}, the subtree of T rooted at i is denoted by Ti.
The subgraph of RT constructed by Ti is denoted by RTi = (V (RTi), E(RTi)).
All nodes of RT outside RTi form a set V (RTi). In addition, we use A ⊕ B to
denote the union of two disjoint sets A and B. Obviously, V (RTi) ⊕ V (RTi) =
V (RT) for any i ∈ {1, . . . , |V (T)|}.
Definition 3. Given a node u ∈ Vi, let R[u; Ci] denote the expected number of
nodes in Ci other than u which are reached from u, X [u; Ci] denote the expected
number of nodes in V (RTi) other than u which are reached from u, and Y[u; Ci]
denote the expected number of nodes in V (RTi) which are reached from u.

For any u ∈ Vi, i ∈ {1, . . . , |V (T)|}, we can formulate R[u; Ci] as Eq. (4), X [u; Ci]
as Eq. (5) and Y[u; Ci] as Eq. (6) respectively according to their definitions in
Definition 3. Note that Qi(u, v) = Pr(u, v) for any u, v ∈ Vi.

R[u; Ci] =
∑

v∈Vi\{u}
Qi(u, v), i ∈ {1, . . . , |V (T)|} , (4)

102 W. Ding and G. Xue

X [u; Ci] =
∑

v∈V (RTi)\{u}
Pr(u, v), i ∈ {1, . . . , |V (T)|} , (5)

Y[u; Ci] =
∑

v∈V (RTi)

Pr(u, v), i ∈ {1, . . . , |V (T)|} . (6)

3 Fundamental Preliminaries

It is easy to observe that V (RTi) = Vi when i ∈ L and V (RT|V (T)|) = ∅. In other
cases, we can decompose V (RTi) and V (RTi) recursively using the approach
shown in Lemma 1. These decomposition schemes form the basis of our dynamic
programming algorithm DMRS in Sect. 4.2.

Lemma 1. For any i ∈ {1, . . . , |V (T)|} \ L, we can decompose V (RTi) as

V (RTi) = Vi ⊕
(⊕

k∈S(i)

(V (RTk) \ {α(k)})
)

. (7)

For any i ∈ {1, . . . , |V (T)| − 1}, we can decompose V (RTi) as

V (RTi) =
(
Vf(i) \{α(i)}

)
⊕V (RTf(i))⊕

(⊕
k∈S(f(i))\{i}

(V (RTk)\{α(k)})
)

. (8)

Given a node i ∈ {1, . . . , |V (T)|}, we can use the formula shown in Theorem 1 to
compute E[u] for every u ∈ Vi. When i ∈ L, we conclude that X [u; Ci] = R[u; Ci]
from Eq. (4) and (5) together with the fact that V (RTi) = Vi. When i /∈ L, we
can use the formula shown in Theorem 2 to compute X [u; Ci] for every u ∈ Vi.
On the other hand, when i = |V (T)|, we conclude that Y[u; C|V (T)|] = 0 from
Eq. (6) together with the fact that V (RT|V (T)|) = ∅. When i < |V (T)|, we can
use the formula shown in Theorem 3 to compute Y[u; Ci] for every u ∈ Vi.

Theorem 1. For any u ∈ Vi, i ∈ {1, . . . , |V (T)|}, we can compute E[u] by

E[u] = 1 + X [u; Ci] + Y[u; Ci] . (9)

Proof. For any u ∈ Vi, i ∈ {1, . . . , |V (T)|}, we have V (RT) = V (RTi)⊕V (RTi) =
{u}⊕ (V (RTi) \ {u})⊕V (RTi). Combing Eq. (1), (5) and (6), we conclude that

E[u]
Eq.(1)

=
∑

v∈V (RT)

Pr(u, v)

= Pr(u, u) +
∑

v∈V (RTi)\{u}
Pr(u, v) +

∑
v∈V (RTi)

Pr(u, v)

Eq.(5),(6)
= 1 + X [u; Ci] + Y[u; Ci] . ��

A Fast Parallel Algorithm for Finding a Most Reliable Source 103

i

k

j

path between i and j

Tk

S(i)

(b) Ti

Ci

u

Ck

Cj

RTk

(a) RTi

m-rings

v

(k)

Fig. 2. Illustrate the proof of Theorem 2. In subfigure (b), the subtree Ti of T is shown.
The unique path between two nodes i and j of Ti has m nodes, distinguished by bold
edges. In subfigure (a), the corresponding sub-ring-tree RTi of RT to Ti is shown.
A symbol � indicates a joint and specially symbol � indicates α(k), as well as the
resulting m-rings on RTi from the path is distinguished by color grey.

k

j3

path between f(i) and j2

Tk

S(i)

(b) Ti

Ci
u

Ck

Cj3

RTk

(a) RTi

m2-rings

v

(k)

Cf(i)
Cj2

v

(i)

(f(i)) RTf(i)

m3-rings

f(i)

i

j2

 Tf(i)

path between f(i) and j3

Fig. 3. Illustrate the proof of Theorem 3. In subfigure (b), the subgraph Ti of T is
shown. The unique path between two nodes f(i) and j2 ∈ Vf(i) has m2 nodes dis-
tinguished by bold black edges, and the unique path between two nodes f(i) and
j3 ∈ Vk, k ∈ S(f(i)) \ {i} has m3 nodes distinguished by bold grey edges. In subfigure
(a), the corresponding subgraph RTi of RT to Ti is shown. A symbol � indicates a
joint and specially three symbols � indicate α(i), α(f(i)), α(k) respectively, as well as
both the resulting m2-rings on RTi from the path with m2 nodes and the resulting
m3-rings from the path with m3 nodes are distinguished by color grey.

104 W. Ding and G. Xue

Theorem 2. For any u ∈ Vi, i ∈ {1, . . . , |V (T)|} \ L, we compute X [u; Ci] by

X [u; Ci] = R[u; Ci] +
∑

k∈S(i)

Qi(u, α(k)) · X [α(k); Ck] . (10)

Proof. For every i ∈ {1, . . . , |V (T)|} \L, we observe from Eq. (7) that any node
v ∈ V (RTi) lies in Vi or one of V (RTk) \ {α(k)}, k ∈ S(i). For any node u ∈ Vi,
when v ∈ Vi, we have Pr(u, v) = Qi(u, v). When v ∈ V (RTk) \ {α(k)}, k ∈ S(i),
without loss of generality, we suppose that v ∈ Vj and the unique path between
two indices i and j on T has m nodes. We can use the way in Definition 1 to
construct an m–rings and apply the related method in [9] to this m–rings to
obtain that Pr(u, v) = Qi(u, α(k)) ·Pr(α(k), v), see Fig. 2. Combing Eq. (4), (5)
and (7), we conclude that

X [u; Ci]
Eq.(5)

=
∑

v∈V (RTi)\{u}
Pr(u, v)

Eq.(7)
=

∑
v∈Vi\{u}

Qi(u, v) +
∑

k∈S(i)

∑
v∈V (RTk)\{α(k)}

Qi(u, α(k)) · Pr(α(k), v)

Eq.(4)
= R[u; Ci] +

∑
k∈S(i)

(
Qi(u, α(k)) ·

∑
v∈V (RTk)\{α(k)}

Pr(α(k), v)
)

= R[u; Ci] +
∑

k∈S(i)

Qi(u, α(k)) · X [α(k); Ck] . ��

Theorem 3. For any u ∈ Vi, i ∈ {1, . . . , |V (T)| − 1}, we compute Y[u; Ci] by

Y[u; Ci] = Qi(u, α(i)) · Y[α(i); Ci] , (11)

where

Y[α(i); Ci] = R[α(i); Cf(i)] + Qf(i)(α(i), α(f(i))) · Y[α(f(i)); Cf(i)]

+
∑

k∈S(f(i))\{i}
Qf(i)(α(i), α(k)) · X [α(k); Ck] . (12)

Proof. For every i ∈ {|V (T)| − 1, . . . , 1}, we see from Eq. (8) that any node
v ∈ V (RTi) lies in Vf(i) \ {α(i)} or V (RTf(i)) or one of V (RTk) \ {α(k)}, k ∈
S(f(i))\{i}. For any node u ∈ Vi, u reach v via α(i). Without loss of generality,
we suppose that v ∈ Vj1 and the unique path between two indices i and j1 on
T has m1 nodes. We can use the way in Definition 1 to construct an m1–rings
and apply the related method in [9] to this m1–rings to obtain that Pr(u, v) =
Qi(u, α(i)) · Pr(α(i), v). Combing Eq. (6), we conclude that

Y[u; Ci]
Eq.(6)

=
∑

v∈V (RTi)

Pr(u, v) =
∑

v∈V (RTi)

Qi(u, α(i)) · Pr(α(i), v)

= Qi(u, α(i)) ·
∑

v∈V (RTi)

Pr(α(i), v) = Qi(u, α(i)) · Y[α(i); Ci] .

A Fast Parallel Algorithm for Finding a Most Reliable Source 105

When v ∈ Vf(i) \ {α(i)}, we have Pr(α(i), v) = Qf(i)(α(i), v). When v ∈
V (RTf(i)), we suppose that v ∈ Vj2 and the unique path between two indices
f(i) and j2 on T has m2 nodes. We can use the way in Definition 1 to construct
an m2–rings and apply the related method in [9] to this m2–rings to obtain
that Pr(α(i), v) = Qf(i)(α(i), α(f(i))) ·Pr(α(f(i)), v), see Fig. 3. Likewise, when
v ∈ V (RTk) \ {α(k)}, k ∈ S(f(i)) \ {i}, we suppose that v ∈ Vj3 , construct an
m3–rings, and obtain that Pr(α(i), v) = Qf(i)(α(i), α(k)) · Pr(α(k), v), see Fig.
3. Combing Eq. (4) and (8), we conclude that

Y[α(i); Ci] =
∑

v∈V (RTi)

Pr(α(i), v)

Eq.(8)
=

∑
v∈Vf(i)\{α(i)}

Qf(i)(α(i), v) +
∑

v∈V (RTf(i))

Qf(i)(α(i), α(f(i))) · Pr(α(f(i)), v)

+
∑

k∈S(f(i))\{i}

∑
v∈V (RTk)\{α(k)}

Qf(i)(α(i), α(k)) · Pr(α(k), v)

Eq.(4)
= R[α(i); Cf(i)] + Qf(i)(α(i), α(f(i))) ·

∑
v∈V (RTf(i))

Pr(α(f(i)), v)

+
∑

k∈S(f(i))\{i}

(
Qf(i)(α(i), α(k)) ·

∑
v∈V (RTk)\{α(k)}

Pr(α(k), v)
)

= R[α(i); Cf(i)] + Qf(i)(α(i), α(f(i))) · Y[α(f(i)); Cf(i)]

+
∑

k∈S(f(i))\{i}
Qf(i)(α(i), α(k)) · X [α(k); Ck] . ��

Due to Theorem 2 and 3, we claim that we need get the related probability values
on Ci before computing X [u; Ci] and Y[u; Ci] for every i ∈ {1, . . . , |V (T)|}. Here
we pick up the formulas in [7,9] to compute these values, see Lemma 2.

Lemma 2. Given any ring Ci = (Vi, Ei, p), i ∈ {1, . . . , |V (T)|}, we have

Qi(u, v) = Q+
i (u, v) + Q−

i (u, v) − Q+
i (u, v) · Q−

i (u, v) . (13)

4 The Parallel Algorithm

In this section, we will design a dynamic programming algorithm DMRS in Sect.
4.2 and then develop a parallel algorithm PMRS on basis of algorithm DMRS in
Sect. 4.3 for finding an MRS on a general ring-tree graph with unreliable edges.
First of all, we give a procedure RMRS for finding an MRS on a ring in Sect.
4.1, which will be invoked by algorithm DMRS and PMRS.

4.1 An MRS on a Ring

Given any ring Ci = (Vi, Ei, p), i ∈ {1, . . . , |V (T)|}, for any u, v ∈ Vi, Lemma 2
implies that we need compute Q+

i (u, v) and Q−
i (u, v) so as to compute Qi(u, v).

106 W. Ding and G. Xue

Combing Eq. (4), this directly leads us to the following procedure RMRS, whose
time complexity is O(|Vi|2), see [7,9] for more related details.

Procedure RMRS:

Input: An edge-weighted ring Ci = (Vi, Ei, p).
Output: All of R[u; Ci], u ∈ Vi, all of Qi(β(i; k), α(i)), k ∈ {1, . . . , |S(i)|} and
all of Qi(β(i; k1), β(i; k2)), k1
= k2 ∈ {1, . . . , |S(i)|};
for every u ∈ Vi do

Compute all of Q+
i (u, v), v ∈ Vi in the clockwise direction;

Compute all of Q−
i (u, v), v ∈ Vi in the counterclockwise direction;

Compute all of Qi(u, v), v ∈ Vi using Eq. (13) and R[u; Ci] using Eq. (4);
end for

4.2 Dynamic Programming Algorithm

In this subsection, we will design a dynamic programming algorithm based on
T using the technique of complementary dynamic computing in [10] for finding
an MRS of a given general ring-tree graph RT with unreliable edges.

The essence of Theorem 1 provides us with a way of finding an MRS of RT .
For every i ∈ {1, . . . , |V (T)|}, we can first compute X [u; Ci],Y[u; Ci] and then
E[u] for all u ∈ Vi, finally determine the maximum of all E[u]. This maximum
corresponds to an MRS of RT . Hence, the key task is to compute X [u; Ci] and
Y[u; Ci] for all u ∈ Vi for every i ∈ {1, . . . , |V (T)|}. Theorem 2 implies that we
can compute all of X [u; Ci], u ∈ Vi using Eq. (10) for every i ∈ {1, . . . , |V (T)|}\L
by a bottom-up dynamic programming based on T . Theorem 3 implies that we
can first compute Y[α(i); Ci] using Eq. (12) and then all of Y[u; Ci], u ∈ Vi using
Eq. (11) for every i ∈ {|V (T)| − 1, . . . , 1} by a top-down dynamic programming
based on T . This forms our complementary dynamic programming algorithm
DMRS, whose time complexity is shown in Theorem 4.

Algorithm DMRS:

Input: An edge-weighted ring-tree RT = (V (RT), E(RT), p) with an underlying
topology T = (V (T), E(T)).
Output: All of E[u], u ∈ V (RT).

Step 1 {Initialize}
Use procedure RMRS to compute all of R[u; Ci], u ∈ Vi and
related values for every i ∈ {1, 2, . . . , |V (T)|};
for i from 1 up to |V (T)| do

Set X [u; Ci] ← R[u; Ci],Y[u; Ci] ← 0 for all u ∈ Vi;
endfor

Step 2 {Bottom-up dynamic programming on T }
for i from 1 up to |V (T)| do

if i ∈ L then break;
else Compute X [u; Ci] by Eq. (10) for all u ∈ Vi; endif

A Fast Parallel Algorithm for Finding a Most Reliable Source 107

endfor
Step 3 {Top-down dynamic programming on T }

for i from |V (T)| down to 1 do
if i = |V (T)| then break;
else First compute Y[α(i); Ci] by Eq. (12) and then

Y[u; Ci] by Eq. (11) for all u ∈ Vi;
endif

endfor
Step 4 {Compute the reachability of each node}

for i from 1 up to |V (T)| do
Compute E[u] by Eq. (9) for all u ∈ Vi;

endfor

Theorem 4. Given an edge-weighted ring-tree graph RT = (V (RT), E(RT), p)
with an underlying topology T = (V (T), E(T)), algorithm DMRS can find an
MRS on RT correctly, with a time complexity of O((λ2 + 4λ + μ)|V (T)|) where
λ = maxi∈{1,...,|V (T)|} |Vi| and μ = maxi∈{1,...,|V (T)|}\L |S(i)|.
Proof. Step 1 of algorithm DMRS, for every i = 1, . . . , |V (T)|, first takes O(|Vi|2)
time to use procedure RMRS and then O(|Vi|) time to initialize all of X [u; Ci]
and Y[u; Ci]. Thus, the running time of Step 1 is

|V (T)|∑
i=1

O(|Vi|2) +
|V (T)|∑

i=1

O(|Vi|) ≤ O((λ2 + λ)|V (T)|) .

Step 2 of algorithm DMRS, for every i = 1, . . . , |V (T)|, spends O(1) time to
break when i ∈ L and O(|S(i)|) time to compute X [u; Ci] using Eq. (10) for
every u ∈ Vi when i /∈ L. Thus, the running time of Step 2 is∑

i∈L

O(1) +
∑

i∈{1,...,|V (T)|}\L

∑
u∈Vi

O(|S(i)|)

= O(|L|) +
∑

i∈{1,...,|V (T)|}\L

O(|S(i)| · |Vi|)

≤ O(|V (T)|) +
∑

i∈{1,...,|V (T)|}\L

O(λ|S(i)|)

Eq.(3)
= O(|V (T)|) + O(λ|E(T)|) = O(λ|V (T)|) .

Step 3 of algorithm DMRS, for every i = |V (T)|, . . . , 1, spends O(1) time
to break when i = |V (T)|, as well as O(|S(f(i))|) time to compute Y[α(i); Ci]
using Eq. (12) and then O(1) time to compute Y[u; Ci] using Eq. (11) for every
u ∈ Vi when i < |V (T)|. Combing with the fact that

∑|V (T)|−1
i=1 |S(f(i))| =∑

i∈{1,...,|V (T)|}\L |S(i)|2, we conclude that the running time of Step 3 is

108 W. Ding and G. Xue

O(1) +
|V (T)|−1∑

i=1

(
O(|S(f(i))|) +

∑
u∈Vi

O(1)
)

=
∑

i∈{1,...,|V (T)|}\L

O(|S(i)|2) +
|V (T)|−1∑

i=1

O(|Vi|)

≤
∑

i∈{1,...,|V (T)|}\L

O(μ|S(i)|) + O(λ|V (T)|)

Eq.(3)
= O(μ|E(T)|) + O(λ|V (T)|) = O((μ + λ)|V (T)|) .

Step 4 of algorithm DMRS, for every i = 1, . . . , |V (T)|, spends O(1) time to
compute E[u] using Eq. (9) for every u ∈ Vi. Thus, the running time of Step 4
is
∑|V (T)|

i=1

∑
u∈Vi

O(1) =
∑|V (T)|

i=1 O(|Vi|) ≤ O(λ|V (T)|).
Therefore, it follows that the total time complexity of algorithm DMRS is

O((λ2 + 4λ + μ)|V (T)|). ��

4.3 Parallel Algorithm

The design and analysis of parallel algorithm has been extensively studied in past
decades [4,12,16,18,20]. In this subsection, we will develop a parallel algorithm
on basis of our dynamic programming algorithm DMRS for finding an MRS of
a given general ring-tree graph RT with unreliable edges.

Let H(T) denote the height of T and h denote the variable of current height.
Here we label the bottom level of T as the 1–th level. Let V (h) denote the set of
nodes on the h–level of T and K = maxh=1,...,H(T) |V (h)|. Let M1, M2, . . . , MK

represent a group of K identical processors. For every h ∈ {1, . . . , H(T)}, since
|V (h)| ≤ K, we can assign one of M1, M2, . . . , MK individually to accomplish re-
lated work on Ci for each i ∈ V (h). Consequently, some or all of M1, M2, . . . , MK

can be assigned to execute parallel computing on every level of T .
As discussed in Sect. 2, all nodes of T have been labeled by 1, 2, . . . , |V (T)|

from bottom to root and from left to right on a level amongst T . All node labels
on the h–level of T with h = 2, . . . , H(T) minus

∑h−1
k=1 |V (k)| are 1, . . . , |V (h)|.

Let π(i) be the index of processor assigned to Ci, i ∈ {1, . . . , |V (T)|} so that
π(i) = i when i ∈ V (1) and π(i) = i − ∑h−1

k=1 |V (k)| when i ∈ V (h), h ∈
{2, . . . , H(T)}. Thus, a sequence of π(i), i ∈ {1, . . . , |V (T)|} are listed as follows.

h = 1 : π(1) = 1, π(2) = 2, . . . , π(|V (1)|) = |V (1)|;
h = 2 : π(|V (1)| + 1) = 1,

π(|V (1)| + 2) = 2,
.
π(|V (1)| + |V (2)|) = |V (2)|;

...
...

A Fast Parallel Algorithm for Finding a Most Reliable Source 109

h = H(T) − 1 : π(
∑H(T)−2

k=1 |V (k)| + 1) = 1,

π(
∑H(T)−2

k=1 |V (k)| + 2) = 2,
.

π(
∑H(T)−1

k=1 |V (k)|) = |V (H(T) − 1)|;
h = H(T) : π(

∑H(T)−1
k=1 |V (k)| + 1) = π(|V (T)|) = 1.

Based on discussions above, we replace the one-by-one computing of a single
processor on every level of T in algorithm DMRS with the parallel computing
of multiple processors. The details are presented as follows. First, on every level
h = 1, . . . , H(T), each of Mπ(i), i ∈ V (h) uses procedure RMRS to compute all of
R[u; Ci], u ∈ Vi and related probability values simultaneously as well as initial-
izes X [u; Ci] = R[u; Ci] and Y[u; Ci] = 0. Next, on every level h = 1, . . . , H(T),
each of Mπ(i), i ∈ L does not work and each of Mπ(i), i /∈ L computes all of
X [u; Ci], u ∈ Vi using Eq. (10). Next, Mπ(|V (T)|) does not work when h = H(T).
On every level h = H(T) − 1, . . . , 1, all of Mπ(i), i ∈ V (h) compute Y[α(i); Ci]
using Eq. (12) and then all of Y[u; Ci], u ∈ Vi using Eq. (11). Finally, on every
level h = 1, . . . , H(T), each of Mπ(i), i ∈ V (h) computes all of E[u], u ∈ Vi us-
ing Eq. (9). This forms our parallel algorithm PMRS, whose time complexity is
shown in Theorem 5.

Algorithm PMRS

Input: An edge-weighted ring-tree RT = (V (RT), E(RT), p) with an
underlying topology T = (V (T), E(T)).
Output: All of E[u], u ∈ V (RT).

Step 1 {Initialize}
for h from 1 up to H(T) do

Each of Mπ(i), i ∈ V (h) uses procedure RMRS to compute all of
R[u; Ci], u ∈ Vi and related values, and sets X [u; Ci] ← R[u; Ci],
Y[u; Ci] ← 0 for all u ∈ Vi;

endfor
Step 2 {From bottom to top on T}

for h from 1 up to H(T) do
Each of Mπ(i), i ∈ V (h) \ L computes X [u; Ci] by Eq. (10) for
all u ∈ Vi, while each of Mπ(i), i ∈ V (h) ∩ L does not work;

endfor
Step 3 {From top to bottom on T}

for h from H(T) down to 1 do
When h = H(T), Mπ(|V (T)|) does not work; when h 	= H(T),
each of Mπ(i), i ∈ V (h) first computes Y[α(i); Ci] by Eq. (12)
and then Y[u; Ci] by Eq. (11) for all u ∈ Vi;

endfor
Step 4 {Compute the reachability of each node}

for h from 1 up to H(T) do
Each of Mπ(i), i ∈ V (h) computes E[u] by Eq. (9) for all u ∈ Vi;

endfor

110 W. Ding and G. Xue

Theorem 5. Given an edge-weighted ring-tree RT = (V (RT), E(RT), p) with
an underlying topology T = (V (T), E(T)), algorithm PMRS can find an MRS
on RT correctly, with a time complexity of O((λ2 + λμ + 3λ + μ)H(T)) where
λ = maxi∈{1,...,|V (T)|} |Vi| and μ = maxi∈{1,...,|V (T)|}\L |S(i)|.
Proof. In Step 1 of algorithm PMRS, on every h = 1, . . . , H(T), each of Mπ(i), i ∈
V (h) first spends O(|Vi|2) time to use procedure RMRS once and then O(|Vi|)
time to accomplish all initializations. The time occupied on the h–level of T is
decided by the maximum of all O(|Vi|2) + O(|Vi|), i ∈ V (h). Thus, the running
time of Step 1 is

H(T)∑
h=1

max
i∈V (h)

(O(|Vi|2) + O(|Vi|)) ≤
H(T)∑
h=1

O(λ2 + λ) = O((λ2 + λ)H(T)) .

In Step 2 of algorithm PMRS, on every h = 1, . . . , H(T), all of Mπ(i), i ∈
V (h) ∩ L do not work and each of Mπ(i), i ∈ V (h) \ L spends O(|S(i)|) time
to compute X [u; Ci] using Eq. (10) for every u ∈ Vi. The time occupied on the
h–level of T is decided by the maximum of all

∑
u∈Vi

O(|S(i)|), i ∈ V (h) \ L.
Thus, the running time of Step 2 is

H(T)∑
h=1

(
max

i∈V (h)\L

∑
u∈Vi

O(|S(i)|)
)

=
H(T)∑
h=1

max
i∈V (h)\L

O(|S(i)| · |Vi|) ≤ O(λμH(T)) .

In Step 3 of algorithm PMRS, Mπ(|V (T)|) does not work. On every h = H(T)−
1, . . . , 1, each of Mπ(i), i ∈ V (h) spends O(|S(f(i))|) time to compute Y[α(i); Ci]
using Eq. (12) and then O(1) time to compute Y[u; Ci] using Eq. (11) for ev-
ery u ∈ Vi. The time occupied on the h–level of T is decided by the maxi-
mum of all O(|S(f(i))|) +

∑
u∈Vi

O(1), i ∈ V (h). Combing with the fact that
maxi∈V (k) |S(f(i))| = maxi∈V (k+1)\L |S(i)| for every k = 1, . . . , H(T) − 1, we
conclude that the running time of Step 3 is

H(T)−1∑
h=1

max
i∈V (h)

(
O(|S(f(i))|) +

∑
u∈Vi

O(1)
)

≤
H(T)−1∑

h=1

max
i∈V (h)

O(|S(f(i))|) +
H(T)−1∑

h=1

(
max

i∈V (h)

∑
u∈Vi

O(1)
)

=
H(T)∑
h=2

max
i∈V (h)\L

O(|S(i)|) +
H(T)−1∑

h=1

max
i∈V (h)

O(|Vi|)

≤ O(μH(T)) + O(λH(T)) = O((μ + λ)H(T)) .

In Step 4 of algorithm PMRS, on every h = 1, . . . , H(T), each of Mπ(i), i ∈
V (h) spends O(1) time to compute E[u] using Eq. (9) for every u ∈ Vi. The time
occupied on the h–level of T is decided by the maximum of all O(|Vi|), i ∈ V (h).
Thus, the running time of Step 4 is

∑H(T)
h=1 maxi∈V (h) O(|Vi|) ≤ O(λH(T)).

Therefore, it follows that the total time complexity of algorithm PMRS is
O((λ2 + λμ + 3λ + μ)H(T)). ��

A Fast Parallel Algorithm for Finding a Most Reliable Source 111

5 Concluding Remarks

In this paper, given an unreliable general ring-tree network RT where each edge
has an independent operational probability and all nodes are immune to failures
and its underlying tree topology T , we have designed a dynamic programming
algorithm DMRS and then a parallel algorithm PMRS based on T for finding an
MRS on RT . According to Theorem 4 and 5, we can infer that PMRS is better
than DMRS in general with respect to the time complexity of algorithm.

Likewise, for an m–rings graph, we can develop a parallel algorithm BMRS
based on the binary division tree (BDT) from the Divide-and-Conquer algorithm
in [9]. This BDT has �log m� levels. On the other hand, this m–rings graph can
be transformed into a special ring-tree graph by designating the �m

2 �–th node
of its underlying strip topology as the root and transforming the strip into a
∧–type tree. The ∧–type tree has �m

2 � levels and its every level other than the
top level has exact two nodes. Hence, we can use algorithm PMRS based on the
∧–type tree to find an MRS on an unreliable m–rings graph. It always holds
that �log m� ≤ �m

2 � when m ≥ 4. As long as adequate processors are provided
to execute parallel computing, PMRS is no better than than BMRS with respect
to the time complexity of algorithm when m ≥ 4.

All of discussions above on parallel algorithms deal with the case of adequate
processors provided for parallel computing. However, provided that available
processors are inadequate, e.g., K < maxh∈{1,...,H(T)} |Vh|, it is also an interest-
ing topic how to devise an efficient parallel algorithm with a low time complexity
executed by these K processors.

References

1. Ball, M.O., Lin, F.L.: A Reliability Model Applied to Emergency Service Vehicle
Location. Oper. Res. 41(1), 18–36 (1993)

2. Ball, M.O., Provan, J.S., Shier, D.R.: Reliability Covering Problems. Net-
works 21(3), 345–357 (1991)

3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan, London
(1976)

4. Censor, Y., Gordon, D., Gordon, R.: Component Averaging: an Efficient Iterative
Parallel Algorithm for Large and Sparse Unstructured Problems. Parallel Comput-
ing 27(6), 777–808 (2001)

5. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University
Press, New York (1987)

6. Colbourn, C.J., Xue, G.: A Linear Time Algorithms for Computing the Most Re-
liable Source on a Series-Parallel Graph with Unreliable Edges. Theor. Comput.
Sci. 209, 331–345 (1998)

7. Ding, W.: Computing the Most Reliable Source on Stochastic Ring Networks. In:
2009 WRI World Congress on Software Engineering, Xiamen, China, May 19–21,
vol. 1, pp. 345–347 (2009)

8. Ding, W.: Embedded-Rings-Based Survivable Networks. In: 2010 International
Conference on Industrial and Information Systems, Dalian, China, July 10–11,
vol. 2, pp. 412–415 (2010)

112 W. Ding and G. Xue

9. Ding, W., Xue, G.: A divide-and-conquer algorithm for computing a most reliable
source on an unreliable ring-embedded tree. In: Wu, W., Daescu, O. (eds.) COCOA
2010, Part II. LNCS, vol. 6509, pp. 268–280. Springer, Heidelberg (2010)

10. Ding, W., Xue, G.: A Linear Time Algorithm for Computing a Most Reliable
Source on a Tree Network with Faulty Nodes. Theor. Comput. Sci. 412, 225–232
(2011)

11. Eiselt, H.A., Gendreau, M., Laporte, G.: Location of Facilities on a Network Sub-
ject to a Single-Edge Failure. Networks 22(3), 231–246 (1992)

12. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Prob-
lem. In: Proceedings of the seventeenth annual ACM symposium on Theory of
computing (STOC 1985), Toronto, Canada, pp. 1–10 (1985)

13. Melachrinoudis, E., Helander, M.E.: A Single Facility Location Problem on a Tree
with Unreliable Edges. Networks 27(3), 219–237 (1996)

14. Mirchandani, P.B., Odoni, A.R.: Locations of Medians on Stochastic Networks.
Transport. Sci. 13, 85–97 (1979)

15. Nel, L.D., Colbourn, C.J.: Locating a Broadcast Facility in an Unreliable Network.
INFOR 28, 363–379 (1990)

16. Pardalos, P.M., Xue, G., Panagiotopoulos, P.D.: Parallel Algorithms for Global Op-
timization Problems. In: Ferreira, A., Pardalos, P.M. (eds.) SCOOP 1995. LNCS,
vol. 1054, pp. 232–247. Springer, Heidelberg (1996)

17. Shier, D.R.: Network Reliability and Algebraic Structure. Oxford University Press,
New York (1991)

18. Sun, X.H., Rover, D.T.: Scalability of Parallel Algorithm-Machine Combinations.
IEEE Transactions on Parallel and Distributed Systtem 5(6), 599–613 (1994)

19. Xue, G.: Linear Time Algorithms for Computing the Most Reliable Source on an
Unreliable Tree Network. Networks 30(1), 37–45 (1997)

20. Zhang, T.Y., Suen, C.Y.: A Fast Parallel Algorithm for Thinning Digital Patterns.
Communications of the ACM 27(3), 236–239 (1984)

Restricted Edge Connectivity of Harary Graphs�

Qinghai Liu, Xiaohui Huang, and Zhao Zhang��

College of Mathematics and System Sciences, Xinjiang University,
Urumqi, Xinjiang, 830046, People’s Republic of China

Abstract. An edge subset F of a connected graph G = (V, E) is a k-
restricted edge cut if G − F is disconnected, and every component of
G − F has at least k vertices. The k-restricted edge connectivity of G,
denoted by λk(G), is the cardinality of a minimum k-restricted edge cut.
By the current studies on λk, it can be seen that the larger λk is, the more
reliable the graph is. Hence one expects λk to be as large as possible. A
possible upper bound for λk is ξk defined as ξk(G) = min{ω(S) : ∅ �=
S ⊂ V (G), |S| = k and G[S] is connected}, where ω(S) is the number
of edges with one end in S and the other end in V (G) \ S, and G[S]
is the subgraph of G induced by S. A graph G is called λk-optimal if
λk(G) = ξk(G). A natural question is whether there exists a graph G
which is λk-optimal for any k ≤ |V (G)|/2. In this paper, we show that
except for two cases, the Harary graph has this property.

1 Introduction

A network can be modelled as a graph G = (V, E). A classic measure of network
reliability is the edge connectivity λ(G). In general, the larger λ(G) is, the more
reliable the network is [2]. It is well known that λ(G) ≤ δ(G), where δ(G) is the
minimum degree of G. Hence a graph G is called maximally edge connected or
λ-optimal if λ(G) = δ(G).

For further study, the concept of restricted edge connectivity was proposed by
Esfahanian and Hakimi [6], and then generalized to k-restricted edge connectivity
by Fàbrega and Fiol [7]. An edge set F ⊂ E is a k-restricted edge cut of a
connected graph G if G− F is disconnected and every component of G− F has
at least k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is
the cardinality of a minimum k-restricted edge cut. Clearly, λ1(G) = λ(G). For
simplicity, a minimum k-restricted edge cut is abbreviated as a λk-cut. Not all
connected graphs have λk-cuts [4,6,13,19]. Those graphs which do have λk-cuts
are said to be λk-connected.

In view of current studies in this aspect [5,11,15,17], it seems that the larger
λk(G) is, the more reliable the network is. So, we expect λk(G) to be as large as
possible. The optimization of λk(G) requires an upper bound first.
� This research is supported by NSFC (10971255, 61063005), Program for New Cen-

tury Excellent Talents in University (NCET-08-0921), and The Project-sponsored
by SRF for ROCS, SEM.

�� Corresponding author.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 113–125, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

114 Q. Liu, X. Huang, and Z. Zhang

For S1, S2 ⊂ V (G), denote by [S1, S2]G the set of edges with one end in S1

and the other end in S2. For a vertex set S ⊆ V (G), G[S] is the subgraph of G
induced by S, S = V (G)\S is the complement of S. Denote by ωG(S) = |[S, S]G|
the number of edges between S and S. When the graph under consideration is
obvious, we omit the subscript G. Let

ξk(G) = min{ω(S) : ∅ �= S ⊂ V (G), |S| = k and G[S] is connected}.

Clearly, ξ1(G) = δ(G), and thus the upper bound for λ(G) is exactly λ1(G) ≤
ξ1(G). In [6], Esfahanian and Hakimi proved that λ2(G) ≤ ξ2(G) as long as G
is λ2-connected. In [4], Bonsma et al. proved that λ3(G) ≤ ξ3(G) as long as
G is λ3-connected. For k ≥ 4, the inequality λk(G) ≤ ξk(G) is no longer true
in general [19]. In [19], Zhang and Yuan showed that λk(G) ≤ ξk(G) for any
k ≤ δ(G) + 1. A graph G is called λk-optimal if λk(G) = ξk(G). For the studies
on λk-optimal graphs, we refer the reader to the nice survey [10] and references
therein.

We are interested in finding a graph which is λk-optimal for all k ≤ |V (G)|/2.
In this paper, we show that except for two cases, the Harary graph has this
property. The reason why we consider Harary graph is because it is the first
graph which was proved to have the highest possible connectivity over all graphs
with given order and size [8]. Later studies show that they are also optimal with
respect to some other measures of reliability [5,16].

A Harary graph Hm,d has vertex set {0, 1, ..., m−1}. According to the parities
of m and d, there are three types of Harary graphs. In the following, additions
are all taken modulo m.

Type 1. When d is even, suppose d = 2r. Two vertices i and j of Hm,2r are
adjacent if and only if |i − j| ≤ r.

Type 2. When d is odd and m is even, suppose d = 2r + 1. Then Hm,d is
obtained from Hm,2r by adding edges {(i, i + m

2) : i = 0, 1, . . . , m
2 − 1}.

Type 3. When d and m are both odd, suppose d = 2r+1. Then Hm,d is obtained
from Hm,2r by adding edges {(i, i + (m + 1)/2) : i = 0, 1, . . . , (m − 3)/2} ∪
{(0, (m − 1)/2)}.

Those edges in Hm,d which are not in Hm,2r are called diagonals. The classic
result on Harary graphs is that they are maximally vertex connected (that is,
κ(G) = δ(G), where κ(G) is the vertex connectivity of G), and hence maximally
edge connected. As consequences of [9,12], in which circulant graphs are studied,
the first and the second types of Harary graphs are λ2-optimal and λ3-optimal.
The λ2-optimality of Harary graphs (including the third type) can also be found
in [5]. In this paper, we determine λk(G) and ξk(G) for every Harary graph
G = Hm,d and every positive integer k ≤ m/2. As a consequence, every Harary
graph is λk-optimal except for two cases (Theorem 1 and Theorem 2).

Terminologies and notation not defined here are referred to [3].

Restricted Edge Connectivity of Harary Graphs 115

2 Preliminaries

In this section, the addition is always assumed to be modulo |V (G)|. In our
proofs, we determine the minimum value of ω(S) for vertex set S with |S| = k ≤
	 |V (G)|

2
. Then the values of λk(G) and ξk(G) can be determined by studying
the monotonicity of ξk(G) as a function on k. For the ease of statement, we say
that vertices in S are black and vertices in S are white.

We shall use induction on the order of the graph to determine ω(S). To reduce
the order, we contract consecutive vertices in Hm,d. Notice that the contracted
graph is no longer a Harary graph. In order that induction hypothesis can be
used on the smaller graph, some ‘new’ edges have to be added. This consideration
motivates the following operation on a Harary graph. We define the operation of
collapsing vertex i to vertex j as follows: suppose i and j are consecutive (in the
sense of cyclic order); identify vertex i and vertex j; label the new vertex as j and
keep the labels of all the other vertices (thus index i no longer appears in the new
graph); then add some edges such that Hm−1,2r is embedded in the new graph in
the natural way. Vertex i is called the collapsed vertex. For example, collapsing
vertex i to vertex i− 1 in the Harary graph H2t,2r+1 of the second type (Fig.1a)
results in a Harary graph H2t−1,2r+1 of the third type (Fig.1b), where new edges
{(t, t+ r +1) : t = i− r, . . . , i− 2} are added in order that H2t−1,2r is embedded
in the new graph. Note that the edge (i, i+r) in the original graph collapses onto
the edge (i − 1, i + r) in the new graph. In order to simplify our statement, we
regard all original edges incident with vertex i as disappeared edges and all edges
in the new graph whose labels (an edge is labeled by the pair of labels of its two
ends) are not in the original graph as new edges. Hence (i− 1, i + r) is regarded
as a new edge which is used to replace the disappeared edge (i, i + r). By the
same token, the new diagonal (i− 1, i+ m/2) is used to replace the disappeared
diagonal (i, i + m/2). It is easy to see that collapsing two consecutive vertices in
a Harary graph Hm,2r of the first type results in a smaller Harary graph Hm−1,2r

of the first type. Collapsing two consecutive vertices i to j in a Harary graph
Hm,2r+1 of the second type results in a smaller Harary graph Hm−1,2r+1 of the
third type; further collapsing i + m

2 to j + m
2 results in a smaller Harary graph

Hm−2,2r+1 of the second type.
For a Harary graph G and a vertex subset S of V (G), we use G′ to denote

the new graph obtained from G by one collapse or a sequence of collapses, and
use S′ to denote the vertex subset of V (G′) obtained from S by removing the
collapsed vertices (if necessary).

First, we consider changes of non-diagonal edges (that is, edges in Hm,2r)
after one collapse.

Lemma 1. Let G = Hm,2r be a Harary graph of the first type. Suppose i and j
are two consecutive vertices, and S is a vertex subset of V (G). Collapse i to j.
Then

ωG(S) = ωG′(S′) + 2�,

where � = |{(a, b) : (a, b) is a new edge and the color of i is different from that
of a and b}|.

116 Q. Liu, X. Huang, and Z. Zhang

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

i
i − 1 i − 1

(a) (b)

i + 1i + 1

i − 2 i − 2

Fig. 1. The dashed line is newly added. The dotted lines are new edges resulted from
collapse which are used to take the place of those disappeared edges incident with
vertex i in the original graph

Proof. By symmetry, we may assume that j = i − 1 and i ∈ S. After collapse,
edges incident with vertex i disappear, new edges {(t, t+r+1) | t = i−r, . . . , i−2}
are added, and new edge (i − 1, i + r) is used to replace the disappeared edge
(i, i + r). For each t ∈ {i − r, ..., i − 1}, a new edge (t, t + r + 1) corresponds to
two disappeared edges (t, i) and (t+ r+1, i). If exactly one of t and t+ r+1 has
the same color with i, say t, then the edge (i, t + r + 1) in [S, S]G disappear and
the new edge (t, t + r + 1) is in [S′, S′]G′ , while the edge (i, t) belongs to neither
[S, S]G nor [S′, S′]G′ . If the color of i is different from that of t and t + r + 1,
then the two edges (i, t) and (i, t + r + 1) in [S, S]G disappear and the new edge
(t, t + r + 1) belongs to neither [S, S]G nor [S′, S′]G′ . If both t and t + r + 1 have
the same color as i, then all the three edges (i, t), (i, t + r + 1) and (t, t + r + 1)
belong to neither [S, S]G nor [S′, S′]G′ . Hence only those edges described in the
definition of � contribute to ωG(S) − ωG′(S′), each contributing 2. The lemma
is proved.

Next, we take into account the changes of diagonals in one collapse.

Lemma 2. Let G be a Harary graph of the second or the third type. Suppose i
and j are two consecutive vertices, and S is a vertex subset of V (G). Collapse i
to j. Then

ωG(S) = ωG′(S′) + 2� + p − q + μ + ν, (1)

where � is as in Lemma 1 and
p = |{ai : (i, ai) is a diagonal of G; j is not adjacent with ai in G; (j, ai) is

not a new non-diagonal edge in G′; the color of i is different from that of j and
ai}|,

q = |{ai : (i, ai)is a diagonal of G; j isnot adjacent with ai inG; (j, ai) is not a
new non-diagonal edge in G′; the color of j is different from that of i and ai}|,

μ = |{ai : both (i, ai) and (j, ai) are diagonals of G; ai and i have different
colors}|,

ν = |{(a, b) is a diagonal of G : (a, b) collapses onto a new non-diagonal edge
of G′; a, b have different colors}|.

Restricted Edge Connectivity of Harary Graphs 117

Proof. In view of Lemma 1, we shall concentrate on the changes of diagonals
after the collapse. The number of diagonals in ωG(S) − ωG′(S′) is affected only
by the following three cases.

(1) Edge (i, ai) is a diagonal of G, vertex j is not adjacent with vertex ai in G,
and (j, ai) is not a new non-diagonal edge in G′. Then the new diagonal (j, ai)
takes the place of the disappeared diagonal (i, ai). If the color of i is different
from that of j and ai, then the number of diagonals is decreased by one because
the missing diagonal (i, ai) is in [S, S]G and the new diagonal (j, ai) is not in
[S′, S′]G′ . If the color of j is different from that of i and ai, then the number of
diagonals is increased by one because the new diagonal (j, ai) is in [S′, S′]G′ and
the missing diagonal (i, ai) is not in [S, S]G.

(2) Both (i, ai) and (j, ai) are diagonals of G. Then, the diagonal (i, ai) dis-
appears without any replacement. Hence if i and ai have different colors, then
the number of diagonals is decreased by one.

(3) Some diagonal (a, b) of G collapses onto a ‘new’ non-diagonal edge of G′.
Since such an edge has been considered in counting �, it should be viewed as a
disappeared edge without any replacement. Hence if a, b have different colors,
then the number of diagonals is decreased by one.

Combining Lemma 1 with the above analysis, the lemma is proved.

Corollary 1. Let G = Hm,d be a Harary graph of the second or the third type,
S be a vertex subset of V (G) with |S| ≤ m/2. If there exists a diagonal (i, ai)
such that i ∈ S and ai ∈ S, then there exist some collapses such that

ωG(S) ≥ ωG′(S′) + 2γ + 1, (2)

where |S| − 1 ≤ |S′| ≤ |V (G′)|/2, G′ is still a Harary graph of the second or the
third type, and γ is the sum of some �’s as in Lemma 1.

Proof. First, suppose G is of the third type and i = 0. In this case, |S| ≤
(m − 1)/2. Let (i, a′

i) be the other diagonal incident with i. Collapse ai to a′
i.

Then G′ is of the second type, |S′| = |S| ≤ (m−1)/2 = |V (G′)|/2, and inequality
(2) follows from Lemma 2 by noting that in this case q = 0 and μ = 1.

If G is of the third type and ai = 0, let (j, ai) be the other diagonal incident
with ai and collapse i to j. Then the result follows from a similar argument as
above. The only difference is that in this case |S′| = |S| − 1 < |V (G′)|/2.

In the above two cases, γ = �.
Next, suppose G is either of the second type or of the third type but 0 �∈ {i, ai}.

In this case, (i − 1, ai − 1) is a diagonal and i − 1 is not adjacent with ai.
Collapse i to i − 1 and ai to ai − 1. Then G′ is of the same type as G, and
|S′| = |S| − 1 ≤ |V (G′)|/2. By Lemma 2, we have

ωG(S) = ωG′(S′) + 2�1 + p1 − q1 + μ1 + ν1 + 2�2 + p2 − q2 + μ2 + ν2, (3)

where p1, q1, μ1, ν1 are the parameters corresponding to the collapse of i to i−1,
and p2, q2, μ2, ν2 correspond to the collapse of ai to ai − 1. By the definition of
q and the assumption that i and ai are of different colors, we have q1 = q2 = 0.

118 Q. Liu, X. Huang, and Z. Zhang

Furthermore, if i − 1 ∈ S and (i − 1, ai) is not a new non-diagonal edge, then
p1 ≥ 1; if i − 1 ∈ S and (i − 1, ai) is a new non-diagonal edge, then ν1 ≥ 1; if
i − 1 ∈ S, then μ2 ≥ 1. By setting γ = �1 + �2, inequality (2) follows from (3).

Next, we consider changes of non-diagonal edges after collapsing three consecu-
tive vertices.

Lemma 3. Let G = Hm,2r be a Harary graph of the first type, i − 1, i, i + 1 be
three consecutive vertices of G. If the color of i−1 is different from that of i and
i+1, then collapsing both i−1 and i+1 to i results in ωG(S) = ωG′(S′)+2γ for
some γ ≥ 0. Furthermore, γ = 0 if and only if all vertices i−1, i−2, . . . , i−r−1
are of the same color and all vertices i, i+1, . . . , i+ r ∈ S are of the other color.

Proof. For simplicity of statement, we assume that i − 1 ∈ S and i, i + 1 ∈ S.
Collapsing i−1 and i+1 to i can be carried out in two steps: First, collapse i−1
to i and let G1, S1 be the resulting graph and vertex subset respectively. Then,
collapse i+1 to i, resulting in G′ and S′. By Lemma 1, ωG(S) = ωG1(S1)+2�1 =
ωG′(S′) + 2(�1 + �2) = ωG′(S′) + 2γ, where �1 and �2 are the �’s as in Lemma 1
corresponding to the two collapses respectively.

Clearly, γ = 0 if and only if �1 = �2 = 0. In the first collapse, the set of
new edges is E1 = {(t, t − r − 1) : t = i, i + 1, ..., i + r − 1}. Since i − 1 ∈ S,
i, i + 1 ∈ S, and (i, i − r − 1), (i + 1, i − r) ∈ E1, it follows from �1 = 0 and
the definition of � that i − r − 1, i − r ∈ S. In the second collapse, the set of
new edges is E2 = {(i, i + r + 1)} ∪ {(t, t + r + 2) : t = i − 2, i − 3, ..., i − r}.
Since i + 1 ∈ S, i − r ∈ S, and (i − r, i + 2) ∈ E2, it follows from �2 = 0 that
i + 2 ∈ S. Since (i + 2, i − r + 1) ∈ E1, we obtain i − r + 1 ∈ S by �1 = 0. Since
(i − r + 1, i + 3) ∈ E2, we have i + 3 ∈ S by �2 = 0. Proceeding like this, the
second half of the lemma is proved.

3 Harary Graph of the First Type

In this section, we prove the λk-optimality of Harary graphs of the first type.

Lemma 4. Let G = Hm,2r be a Harary graph of the first type, S be a vertex
subset with |S| = k, where r ≤ k ≤ m

2 . Then ω(S) ≥ r(r + 1).

Proof. When k = r, we have ω(S) = 2rk−2|E(G[S])| ≥ 2rk−k(k−1) = r(r+1)
(equality holds if and only if G[S] is a complete subgraph). In the following, we
prove the lemma by induction on m. Since G is 2r-regular, we have m ≥ 2r + 1.
If m = 2r + 1, then by r ≤ k ≤ m/2, we have k = r, and the result is true.
Next, suppose m ≥ 2r + 2, k ≥ r + 1, and the result is true for any Harary
graph of the first type with fewer vertices. Let i be a vertex in S and collapse
i to i − 1. Since |S′| = |S| − 1 = k − 1 satisfies the induction hypothesis that
r ≤ |S′| ≤ (m−1)/2, it follows from Lemma 1 that ωG(S) ≥ ωG′(S′) ≥ r(r +1).

Restricted Edge Connectivity of Harary Graphs 119

Theorem 1. Let G = Hm,2r be a Harary graph of the first type. Then G is
λk-optimal for any 1 ≤ k ≤ m

2 . Furthermore,

λk(G) =

{
2rk − k(k − 1), when k < r,
r(r + 1), when r ≤ k ≤ m

2 .

Proof. When k ≤ r, a consecutive section of k vertices induces a complete sub-
graph of G, and thus achieves the minimum of ω(S) among all k-subsets S (since
G is regular). Hence ξk(G) = 2rk − k(k − 1) for k ≤ r. When r ≤ k ≤ m/2,
ω(S) ≥ r(r + 1) by Lemma 4. Since a consecutive section of k vertices achieves
this lower bound, we have ξk(G) = r(r + 1) for r ≤ k ≤ m/2.

Note that a λk-cut divides the graph into exactly two connected components.
Hence λk(G) can be re-expressed as

λk(G) = min{ω(S) : |S| ≥ k, |S| ≥ k, G[S] and G[S] are both connected}.
Note that for each 1 ≤ k ≤ m/2, there exists a k-subset S of V (G) such that
ω(S) = ξk(G) and both G[S] and G[S] are connected (any consecutive section of
k vertices may serve as such an S). Hence λk(G) = min{ξj(G) : k ≤ j ≤ m/2}.
Then the theorem follows from the observation that ξk(G) is a monotonely non-
decreasing function on k.

4 Harary Graphs of the Second or the Third Type

The proof of Theorem 1 illustrates the main idea of our proofs: Compare ωG(S)
and ωG′(S′), then use induction hypothesis on ωG′(S′) to find out a tight lower
bound for ωG(S).

The following lemma considers a special distribution of S.

Lemma 5. Let G = Hm,d be a Harary graph of the second type with m = 4L
for some integer L ≥ 2. Suppose d = 2r +1, S = {0, 2, 4, · · · , m− 4, m− 2}, and
k = m

2 .
(i) If k = r + 2, then ω(S) = r(r + 1) + k − 2;
(ii) If k > r + 2, then ω(S) ≥ r(r + 1) + k.

Proof. In this case, |S| = k = m
2 = 2L is an even number, and [S, S] does not

contain diagonals. For each vertex i, there are 2	 r+1
2
 edges in [S, S] incident

with i. It follows that ω(S) = 2k	 r+1
2
. If r is odd, then ω(S) = k(r + 1) =

kr + k ≥ r(r + 2) + k > r(r + 1) + k. Next, suppose r is even. Then r ≥ 2. If
k = r + 2, then ω(S) = kr = r(r + 1) + k − 2. If k ≥ r + 3, then k ≥ r + 4 since
both k and r are even. Thus ω(S) = kr = k(r − 1) + k ≥ (r + 4)(r − 1) + k =
r(r + 1) + 2(r − 2) + k ≥ r(r + 1) + k. The proof is completed.

Lemma 6. Let G be a Harary graph of the second or the third type, k be an
integer with r ≤ k ≤ min{r2 + r, m

2 }, S be a k-subset of V (G). Then, except for
the case in Lemma 5 (i),

ω(S) ≥ r(r + 1) + k.

120 Q. Liu, X. Huang, and Z. Zhang

Proof. The result is true if G is in the case of Lemma 5 (ii). Hence in the
following, we assume that G is not in the case of Lemma 5.

We prove the lemma by induction on k. Since G has minimum degree d =
2r + 1, we have

ω(S) =
∑
v∈S

d(v) − 2|E(G[S])| ≥ k · d − k(k − 1) = k(2r + 1 − k) + k.

Hence when k = r or r + 1, the result is true. For the induction step, suppose
k ≥ r + 2 and the result holds for any integers smaller than k. We consider two
cases:

Case 1. There exists a diagonal (i, ai) of G such that i ∈ S and ai ∈ S.
By Corollary 1, there exist some collapses such that G′ is of the second or the

third type, S′ satisfies r + 1 ≤ k − 1 = |S| − 1 ≤ |S′| ≤ |V (G′)|/2, and

ωG(S) ≥ ωG′(S′) + 2γ + 1.

If G′ and S′ are not in the case of Lemma 5 (i), then by induction hypothesis,

ωG(S) ≥ r(r + 1) + |S′| + 2γ + 1 ≥ r(r + 1) + k.

If G′ and S′ are in the case of Lemma 5 (i), then

ωG(S) ≥ r(r + 1) + |S′| − 2 + 2γ + 1 ≥ r(r + 1) + k + 2(γ − 1).

In this case, r = |S′| − 2 is even. Hence for each new non-diagonal edge (a, b)
in G′, since a and b are at distance r along the outer circle of G′, we see from
the distribution of S′ that a, b are of the same color. Furthermore, in the last
collapse of the sequence of collapses as described in the proof of Corollary 1,
which creates r new non-diagonal edges, r/2 of them have their ends having
different color from the collapsed vertex. Hence it follows from r ≥ 2 that γ ≥ 1.
The result follows.

Case 2. Every diagonal of G has its two ends having the same color.
In this case, there is no diagonal in [S, S]G. If m is odd, then G is of the

third type, and |S| ≤ 	m/2
 = (|V (G)| − 1)/2. It follows that there exist two
consecutive vertices in S. If m is even, then G is of the second type. Since we
have assumed that the case in Lemma 5 does not occur, the existence of two
consecutive vertices in S also holds. Hence we may assume that there are three
consecutive vertices i − 1, i, i + 1 such that i − 1 ∈ S and i, i + 1 ∈ S. Let
(i − 1, ai−1), (i, ai), (i + 1, ai+1) be three diagonals such that ai−1, ai, ai+1 are
consecutive. By the assumption of Case 2, ai−1 ∈ S and ai, ai+1 ∈ S. Hence ai+1

may coincide with ai but ai−1 is different from ai and ai+1. Collapse i− 1, i + 1
to i and ai−1 to ai. If ai+1 �= ai, also collapse ai+1 to ai.

First, we suppose G′, S′ are not in the case of Lemma 5 (i).
When either (a) G is of the second type, or (b) G is of the third type and

ai+1 = ai, or (c) G is of the third type, ai+1 �= ai, and 0 �∈ {i − 1, ai−1}, we see
that the number of diagonals in ωG(S) − ωG′(S′) does not change. Since |S′| =
k − 2 = |S| − 2 and r + 2 ≤ k ≤ m/2, we have r ≤ |S′| ≤ m/2 − 2 ≤ |V (G′)|/2.
Hence by Lemma 3 and Lemma 1, we have

ωG(S) = ωG′(S′) + 2(γ1 + γ2), (4)

Restricted Edge Connectivity of Harary Graphs 121

where γ1, γ2 result from collapsing i − 1, i + 1 to i and ai−1, ai+1 to ai (or ai−1

to ai if ai = ai+1) respectively. Then by induction hypothesis,

ωG(S) ≥ r(r + 1) + |S′| + 2(γ1 + γ2) ≥ r(r + 1) + k + 2(γ1 + γ2 − 1).

If γ1 ≥ 1, then we are done. If γ1 = 0, then by Lemma 3,

i − 1, i − 2, . . . , i − r − 1 ∈ S and i, i + 1 . . . , i + r ∈ S. (5)

When G is of the third type, ai+1 �= ai, and 0 ∈ {i − 1, ai−1} (say i − 1 = 0
by symmetry), let (i− 1, a′

i−1) be the other diagonal incident with i− 1. By the
assumption of Case 2, a′

i−1 ∈ S, and thus a′
i−1 = ai−2. Similar to the above

analysis, by noting that the number of diagonals in ωG(S)−ωG′(S′) is decreased
by one if (i, ai−2) is not a new non-diagonal edge after collapsing i−1 to i (since
in this case (i, ai−2) is a new diagonal in [S′, S′]G′ \ [S, S]G), we have

ωG(S) ≥ ωG′(S′) − 1 + 2(γ1 + γ2). (6)

Then by induction hypothesis,

ωG(S) ≥ r(r + 1) + k + 2(γ1 + γ2 − 1) − 1.

Recall that γ is the sum of some �’s. By the definition of �, the hypothesis of
Case 2, and the assumption at the beginning of this paragraph, we have γ1 = γ2.
If γ1 = γ2 ≥ 1, then we are done. Otherwise, γ1 = 0, and the distribution (5)
also holds by Lemma 3.

In view of the above analysis, with symmetry in mind, we may assume that
for any three consecutive vertices i − 1, i, i + 1 with i, i + 1 having different
color from i − 1, all vertices i − 1, i − 2, . . . , i − r − 1 are of the same color
and all vertices i, i + 1, . . . , i + r are of the other color. Thus the distribution
of vertices in S are such that each consecutive section of S has at least r + 1
vertices and the gap between any two consecutive sections of S has at least
r + 1 vertices of S. Combining this with the hypothesis of Case 2, we may
assume that S consists of 2p consecutive sections for some p ≥ 1. Since each
consecutive section R of S in such a configuration has [R, S]G = r(r + 1), we
have ωG(S) = 2p · r(r + 1) ≥ 2r(r + 1) ≥ r(r + 1) + k.

Next, Suppose G′ and S′ are in the case of Lemma 5 (i). Similar to the above
deduction, we still have inequalities (4) and (6), but the induction hypothesis
leads to

ωG(S) ≥ r(r + 1) + k + 2(γ1 + γ2 − 2) − 1.

Similar to the analysis in Case 1, each new non-diagonal edge of G′ has its ends
having the same color. Since (i, i− r−1) is a new non-diagonal edge whose ends
are in S which have different color from the collapsed vertex i − 1, (i + 2, i− r)
is a new non-diagonal edge whose ends are in S which have different color from
the collapsed vertex i + 1, and (ai, ai − r − 1) is a new non-diagonal edge whose
ends are in S which have different color from the collapsed vertex ai−1, we see
that γ1 + γ2 ≥ 3 and thus ωG(S) > r(r + 1) + k.

The lemma is proved.

122 Q. Liu, X. Huang, and Z. Zhang

Lemma 7. Let G = Hm,d be a Harary graph of the second or the third type, k
be an integer with r2 + r ≤ k ≤ m

2 , S be a k-subset of V (G). Then

ω(S) ≥
{

2r(r + 1) + 1, when k is odd and G is of the second type;
2r(r + 1), otherwise.

Proof. First, we see that r2 + r ≤ k ≤ m/2 ensures that G is not in the case of
Lemma 5 (i). Otherwise, r+2 = k ≥ r2+r implies that r = 1 and k = 3. But then
m = 2k = 6 is not divisible by four. In the following, all the collapsed graph G′

and the corresponding vertex subset S′ satisfy r2 + r ≤ |S′| ≤ |V (G′)|/2, hence
are not in the case of Lemma 5 (i) too.

We prove the lemma by induction on m. By r2 + r ≤ k ≤ m/2, we have
m ≥ 2r(r + 1). If m = 2r(r + 1) or 2r(r + 1) + 1, then k = r(r + 1) is even. By
Lemma 6, we have ω(S) ≥ r(r + 1) + k = 2r(r + 1).

For the induction step, suppose k ≥ r(r +1)+1 and the result is true for any
Harary graph of the second or the third type with fewer vertices. If there is a
diagonal (i, ai) with i ∈ S and ai ∈ S, then by Corollary 1 and the induction
hypothesis, we have ωG(S) ≥ ωG′(S′) + 1 ≥ 2r(r + 1) + 1.

Next, assume that

each diagonal of G has its two ends having the same color. (7)

If G is of the second type, then k is even by assumption (7), and thus k ≥
r(r + 1) + 1 implies that k ≥ r(r + 1) + 2. If k ≤ m/2 − 1, then there exist two
consecutive vertices i − 1 and i both in S. Collapse i to i − 1. By Lemma 2,
noting that i, ai, i − 1 ∈ S implies q = 0, and r(r + 1) < |S′| = |S| < |V (G′)|/2
satisfies the induction hypothesis, we have ωG(S) ≥ ωG′(S) ≥ 2r(r+1). Suppose
k = m/2. If there exist two consecutive vertices i − 1 and i both in S, we
collapse i to i − 1. Then the desired ωG(S) ≥ 2r(r + 1) follows from a similar
argument as the above, noting that in this case i, ai, i − 1 ∈ S implies q = 0,
and r(r + 1) ≤ |S′| = |S| − 1 < |V (G′)|/2 satisfies the induction hypothesis.
Hence suppose that no vertices in S are adjacent. Since |S| = k = m/2, vertices
in S and S appear on the circle alternately. By symmetry, we may assume that
S = {0, 2, 4, ..., m − 2}. Since k is even, m is divisible by four. Hence we are in
the case of Lemma 5, and thus ω(S) ≥ r(r + 1) + k − 2 ≥ 2r(r + 1).

If G is of the third type, then k ≤ m−1
2 . Collapse m−1

2 to m+1
2 . Then r(r+1) ≤

|S| − 1 ≤ |S′| ≤ |S| ≤ (m − 1)/2 = |V (G′)|/2. The result follows form Lemma 2
and the induction hypothesis, by noting that q = 0.

Lemma 8. Let G = Hm,d be a Harary graph. If G is of the third type, then

ξk(G) =

⎧⎪⎨⎪⎩
(2r + 1)k − k(k − 1), when k ≤ r + 1,

r(r + 1) + k, when r + 2 ≤ k ≤ min{r2 + r, m
2 },

2r(r + 1), when r2 + r + 1 ≤ k ≤ m
2 ;

if G is of the second type, then

Restricted Edge Connectivity of Harary Graphs 123

ξk(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2r + 1)k − k(k − 1), when k ≤ r + 1,

r(r + 1) + r, when k = r + 2 = 2L and m = 4L

for some L ≥ 2,

r(r + 1) + k, when r + 3 ≤ k ≤ min{r2 + r, m
2 }

or k = r + 2 and [m is not divisible

by 4 or k �= m
2],

2r(r + 1), when r2 + r + 1 ≤ k ≤ m
2 and k is even,

2r(r + 1) + 1, when r2 + r + 1 ≤ k ≤ m
2 and k is odd.

Furthermore, for each 1 ≤ k ≤ m/2, there exists a subset S of k vertices such
that ω(S) = ξk(G) and G[S], G[S] are both connected.

Proof. When k ≤ r+1, a consecutive section of {0, 1, . . . , m−1} avoiding vertex
0 induces a complete subgraph of Hm,d, and thus achieves the minimum of ω(S)
among all k-subsets S. Hence ξk(G) = (2r + 1)k − k(k − 1). In the following,
suppose k ≥ r + 1.

First, suppose G is of the third type. When r + 1 ≤ k ≤ r2 + r, we have
ω(S) ≥ r(r +1)+k by Lemma 6. Since a consecutive section of {0, 1, . . . , m−1}
avoiding vertex 0 achieves this lower bound, we have ξk(G) = r(r+1)+k. When
r2 +r ≤ k ≤ m

2 , by Lemma 7, we have ω(S) ≥ 2r(r+1). Let S0 = {0, . . . , k−3
2 }∪

{m−1
2 , . . . , m+k−2

2 } when k is odd and S0 = {1, . . . , k
2}∪{m+3

2 , . . . , m+k+1
2 } when

k is even. Then |S0| = k and ω(S0) achieves the above lower bound. Hence
ξk(G) = 2r(r + 1).

Next, suppose G is of the second type. When m = 4L for some L ≥ 2 and k =
r+2 = m/2, if S = {0, 2, 4, · · · , m−2}, then ω(S) = r(r+1)+k−2 = r(r+1)+r
by Lemma 5 (i); if S �= {0, 2, 4, · · · , m−2}, then by Lemma 6 or Lemma 7, either
ω(S) ≥ r(r + 1) + k > r(r + 1) + r or ω(S) ≥ 2r(r + 1) > r(r + 1) + r. Since
r = k − 2 = 2L− 2 is even, we have r ≥ 2. Hence S0 = {0, 2, . . . , m− 2} induces
a connected subgraph of G such that G[S0] is also connected and ω(S0) = kr =
r(r+2) achieves the lower bound r(r+1)+r. It follows that ξk(G) = r(r+1)+r.

When r + 1 ≤ k ≤ r2 + r and m, k are not in the above case, we have
ω(S) ≥ r(r + 1) + k by Lemma 6. Since a consecutive section of {0, 1, ..., m− 1}
achieves this lower bound, we have ξk(G) = r(r + 1) + k.

When r2 + r + 1 ≤ k ≤ m
2 , by Lemma 7, we have ω(S) ≥ 2r(r + 1)

for even k, and ω(S) ≥ 2r(r + 1) + 1 for odd k. Let S0 be a k-subset of
{0, 1, . . . , m− 1} consisting of two ‘nearly’ antipodal consecutive segments, that
is, S0 = {0, . . . , k

2−1}∪{m
2 , . . . , m

2 +k
2−1} when k is even and S0 = {0, . . . , k−3

2 }∪
{m

2 , . . . , m
2 + k−1

2 } when k is odd. Then ω(S0) achieves the above lower bound.
Hence ξk(G) = 2r(r + 1) for even k and ξk(G) = 2r(r + 1) + 1 for odd k.

Theorem 2. Let G = Hm,d be a Harary graph of the second or the third type.
For any integer 1 ≤ k ≤ m/2, G is λk-optimal except when G is of the second
type and

124 Q. Liu, X. Huang, and Z. Zhang

(1) either m ≥ 8 is divisible by 4, r = m/2 − 2, and k = r + 1, or
(2) r2 + r + 1 ≤ k < m/2 and k is odd.

Furthermore, in the case that G is of the second type, m ≥ 8 is divisible by 4,
and r = m/2 − 2,

λk(G) =

{
(2r + 1)k − k(k − 1), when k ≤ r,

r(r + 1) + r, when k = r + 1, r + 2.

Except for the above case,

λk(G) =

⎧⎪⎨⎪⎩
(2r + 1)k − k(k − 1), when k ≤ r + 1,

r(r + 1) + k, when r + 2 ≤ k ≤ min{r2 + r, m
2 },

2r(r + 1), when r2 + r + 1 ≤ k ≤ m
2 .

Proof. The proof is similar to that in Theorem 1, except that ξk(G) is not always
monotonely non-decreasing when G is of the second type and one of the following
two cases occurs:

(1) m ≥ 8 is divisible by 4 and r = m/2 − 2. In this case, ξk(G) strictly
increases up to k ≤ r + 1 and ξr+2(G) = r(r + 1) + r = ξr+1(G) − 1.

(2) r2+r+1 ≤ m/2−2. In this case, ξk(G) strictly increases up to k ≤ r2+r+2.
After that, for k = r2 + r + 3, r2 + r + 4, ..., m/2, the values of ξk(G) alternate
between 2r(r + 1) and 2r(r + 1) + 1.

The remaining proofs are exactly the same as that in Theorem 1.

5 Concluding Remark

In this paper, we show that except for two cases, the Harary graph is λk-optimal
for any k ≤ |V (G)|/2. In recent years, there are a lot of studies on λk-optimal
graphs for k = 2, 3, while the studies for general k are relatively less. The general
rules for general k need to be explored further.

An important problem in network design is as follows: given the number of ver-
tices and the number of edges, how to find a graph which are optimal with respect
to some criteria? Notice that in the three types of Harary graphs, which are known
as elementary Harary graphs, the number of edges are determined by the number
of vertices. Hence the results in this paper is not a complete solution to the above
problem with λk-optimality being the criteria. A possible way might be to consider
the generalized Harary graph which is obtained from the elementary Harary graph
by adding more edges while keeping the minimum degree.

References

1. Balbuena, C., Carmona, A., Fàbrega, J., Fiol, M.A.: Extraconnectivity of graphs
with large minimum degree and girth. Discrete Mathematics 167/168, 85–100
(1997)

Restricted Edge Connectivity of Harary Graphs 125

2. Bauer, D., Boesch, F., Suffel, C., Van Slyke, R.: On the validity of a reduction
of reliable network design to a graph extremal problem. IEEE Tran. Circuits and
Systems 34, 1579–1581 (1989)

3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan, London
(1976)

4. Bonsma, P., Ueffing, N., Volkmann, L.: Edge-cuts leaving components of order at
least three. Discrete Math. 256, 431–439 (2002)

5. Deng, H., Chen, J., Li, Q., Li, R., Gao, Q.: On the construction of most reliable
networks. Discrete Appl. Math. 140, 19–33 (2004)

6. Esfahanian, A.H., Hakimi, S.L.: On computing a conditional edge connectivity of
a graph. Inform. Process. Lett. 27, 195–199 (1988)

7. Fàbrega, J., Fiol, M.A.: Extraconnectivity of graphs with large girth. Discrete
Math. 127, 163–170 (1994)

8. Harary, F.: The maximum connectivity of a graph. Proc. Nat. Acad. Sci. U.S.A. 48,
1142–1146 (1962)

9. Li, Q.L., Li, Q.: Reliability analysis of circulant graphs. Networks 31, 61–65 (1998)
10. Hellwig, A., Volkmann, L.: Maximally edge-connected and vertex-connected graphs

and digraphs: A survey. Discrete Math. 308, 3265–3296 (2008)
11. Meng, J.X.: Optimally super-edge-connected transitive graphs. Discrete Math. 260,

239–248 (2003)
12. Meng, J.X., Ji, Y.H.: On a kind of restricted edge connectivity of graphs. Discrete

Applied Math. 117, 183–193 (2002)
13. Ou, J.P.: Edge cuts leaving components of order at least m. Discrete Math. 305,

365–371 (2005)
14. Wang, G., Zhang, L.: The structure of maxλ-minmλ+1 graphs used in the design

of reliable networks. Networks 30, 231–242 (1997)
15. Wang, M., Li, Q.: Conditional edge connectivity properties, reliability comparison

and transitivity of graphs. Discrete Math. 258, 205–214 (2002)
16. Wang, S.Y., Lin, S.W., Li, C.F.: Sufficient conditions for super k-restricted edge

connectivity in graphs of diameter 2. Discrete Mathematics 309, 908–919 (2009)
17. Xu, J.M., Xu, K.L.: On restricted edge-connectivity of graphs. Discrete Math. 243,

291–298 (2002)
18. Zhang, Z., Yuan, J.J.: Degree conditions for restricted-edge-connectivity and iospe-

rimetric-edge-connecitivity to be optimal. Discrete Math. 307, 293–298 (2007)
19. Zhang, Z., Yuan, J.J.: A proof of an inequality concerning k-restricted edge con-

nectivity. Discrete Math. 304, 128–134 (2005)

Efficient Algorithms for Finding the k Most Vital
Edges for the Minimum Spanning Tree Problem

Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

Université Paris-Dauphine, LAMSADE,
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

{bazgan,toubaline,vdp}@lamsade.dauphine.fr

Abstract. We study in this paper the problem of finding in a graph a
subset of k edges whose deletion causes the largest increase in the weight
of a minimum spanning tree. We propose for this problem an explicit
enumeration algorithm whose complexity, when compared to the current
best algorithm, is better for general k but very slightly worse for fixed k.
More interestingly, unlike in the previous algorithms, we can easily adapt
our algorithm so as to transform it into an implicit exploration algorithm
based on a branch and bound scheme. We also propose a mixed integer
programming formulation for this problem. Computational results show
a clear superiority of the implicit enumeration algorithm both over the
explicit enumeration algorithm and the mixed integer program.

Keywords: most vital edges, minimum spanning tree, exact algorithms,
mixed integer program.

1 Introduction

In many applications involving the use of communication or transportation net-
works, we often need to identify critical infrastructures. By critical infrastructure
we mean a set of links whose damage causes the largest perturbation within the
network. Modeling this network by a weighted graph, identifying critical infras-
tructures amounts to finding a subset of edges whose removal from the graph
causes the largest increase in the cost. In the literature this problem is referred
to as the k most vital edges problem. In this paper, we are interested in deter-
mining a subset of edges of the graph whose deletion causes the largest increase
in the weight of a minimum spanning tree (MST). This problem is referred to
as k Most Vital Edges MST.

The problem of finding the k most vital edges of a graph has been studied for
various problems including shortest path [1,7,11] and maximum flow [18,14,19].
For the minimum spanning tree problem defined on a graph G with n vertices and
m edges, Frederickson et al. [4] showed that, for general k, k Most Vital Edges

MST is NP -hard and proposed an O(log k)-approximation algorithm. For a fixed
k the problem is obviously polynomial. The case k = 1 has been largely studied
in the literature [5,6,16]. Hsu et al. [5] gave two algorithms in O(m log m) and

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 126–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The k Most Vital Edges for MST 127

O(n2). Iwano and Katoh [6] proposed an algorithm in O(mα(m, n)) using Tar-
jan’s result [17], where α is the inverse-Ackermann function. Pettie [12] improved
the results of Tarjan[17] and Dixon et al. [3], and therefore the current best de-
terministic algorithm for solving the case k = 1 is in O(m log α(m, n)). Several
exact algorithms based on an explicit enumeration of possible solutions have
been proposed [8,9,15]. The best one [8] runs in time O(nkα((k + 1)(n − 1), n))
and was achieved by reducing G to a sparse graph. Using Pettie’s result [12], the
running time of the later algorithm becomes O(nk log α((k + 1)(n − 1), n)).

In this paper we propose a new efficient algorithm also based on an explicit
enumeration of all possible solutions for k Most Vital Edges MST. Its com-
plexity O(nk log α(2(n − 1), n)) for fixed k is theoretically very slightly worse
than the complexity of the algorithm proposed by Liang [8] using Pettie’s result
[12]. However, given the fact that α(m, n) is always less than 4 in practice, the
complexity of these two algorithms can be deemed as equivalent. Moreover, the
complexity of our algorithm is better than that of Liang’s algorithm for general
k. More interestingly, unlike any other algorithm, our algorithm has two specific
useful features. First, it can also determine an optimal solution for i Most Vi-

tal Edges MST, for each 1 ≤ i ≤ k, with the same time complexity. Second, it
can be easily adapted to establish an implicit enumeration algorithm based on a
branch and bound procedure. We also present in this paper a formulation by a
mixed integer program to solve k Most Vital Edges MST. We implement and
test all these proposed algorithms using, for the implicit enumeration algorithm,
different branching and evaluation strategies. The results show that the implicit
enumeration algorithm is much faster than the explicit enumeration algorithm
as well as the resolution of the mixed integer program and its use of memory
space can handle instances of significantly larger size. Moreover, we propose an
ε-approximate algorithm.

The rest of the paper is organized as follows. In section 2 we introduce no-
tations and some results related to our problem. In section 3 we present a new
explicit enumeration algorithm that solves k Most Vital Edges MST. In sec-
tion 4 we propose another exact algorithm based on an implicit enumeration
scheme. In section 5, we present a mixed integer programming formulation for
k Most Vital Edges MST. Computational results are presented in section 6.
In section 7, we present an ε-approximate algorithm and compare it with the
exact one. Conclusions are provided in section 8.

2 Basic Concepts and Preliminary Results

Let G = (V, E) be a weighted undirected connected graph with |V | = n, |E| = m
and w(e) ≥ 0 is the integer weight of each edge e ∈ E. We denote by G − E′

the graph obtained from G by removing the subset of edges E′ ⊆ E. k Most

Vital Edges MST consists of finding a subset of edges S∗ ⊆ E with |S∗| = k
that maximizes the weight of a MST in the graph G − S∗. We assume that
G is at least (k + 1) edge-connected, since otherwise any selection of k edges
including the edges of a minimum unweighted cut is a trivial solution. Therefore,

128 C. Bazgan, S. Toubaline, and D. Vanderpooten

we assume k ≤ λ(G)−1, where λ(G) is the edge-connectivity of G. Also, without
loss of generality, we suppose in the following that all weights are different (by
introducing, if necessary, an arbitrary total order on edges with the same weight).
This assumption implies the uniqueness of minimum spanning trees or forests.
For a non necessarily connected graph, a minimum spanning forest (MSF) is the
union of minimum spanning trees for each of its connected components. In this
paper a tree or a forest is considered as a graph but also, for convenience, as a
subset of edges. For a set of edges F , w(F) represents the sum of the weights of
the edges in F .

We denote by T0 the MST of G. Remark that an optimal solution of k Most

Vital Edges MST must contain at least one edge of T0. For i ≥ 1, let Ti be
the MSF of the graph Gi = G − ∪i−1

j=0Tj. We use in the following the graph
UG

k = (V,∪k
j=0Tj) which has the following interesting property.

Lemma 1. (Liang and Shen [9]) For any S ⊆ E, |S| ≤ k, any edge of the MST
of graph G − S belongs to UG

k .

By Lemma 1, solving k Most Vital Edges MST on G reduces to solving
the same problem on the sparser graph UG

k whose number of edges is at most
(k + 1)(n − 1).

Considering T a MST of a graph, the replacement edge r(e) for an edge
e ∈ T is defined as the edge e′ �= e of minimum weight which connects the two
disconnected components of T \{e}. The sensitivity of a minimum spanning tree
T , i.e. the allowable variation for each edge weight so that T remains a minimum
spanning tree, can be computed in O(m log α(m, n)) [12]. In particular, for edges
in T , this algorithm provides replacement edges. As a consequence, we get the
following result.

Lemma 2. 1 Most Vital Edges MST defined on a graph with n vertices and
m edges is solvable in O(m log α(m, n)).

Proof : Let T ∗ be a minimum spanning tree in a given graph. We calculate the
replacement edges r(e) for all edges e ∈ T ∗. The most vital edge is the edge e∗

such that w(r(e∗)) − w(e∗) = max
e∈T∗

w(r(e)) − w(e). �

Actually, replacement edges belong to a specific subset of edges as shown by the
following result.

Lemma 3. For each edge e ∈ Ti, we have r(e) ∈ Ti+1 for i = 0, . . . , k − 1.

Proof : Given a graph G, Liang [8] shows that for each edge e ∈ T0, r(e) ∈ T1.
Applying this to graph Gi, for which Ti is the MSF, we get the result. �

3 An Explicit Enumeration Algorithm for Finding the k
Most Vital Edges

We propose an algorithm that constructs a search tree of depth k − 1 in a
breadth-first mode. At the ith level of this search tree, i = 0, . . . , k − 1, a node
s is characterized by:

The k Most Vital Edges for MST 129

• mv(s): a subset of i edges, corresponding to a tentative partial selection of
the k most vital edges.

• Ũ(s) = U
G′(s)
k−|mv(s)| where G′(s) = (V, E\mv(s)). Hence,

Ũ(s) = (V,∪k−|mv(s)|
i=0 Ti(s)) where Ti(s) is the MSF in G′(s) − ∪i−1

j=0Tj(s).
• mst(s): a subset of edges forbidden to deletion. These edges belonging to

T0(s), will necessary belong to any MST associated with any descendant of
s. Depending on the position of s in the search tree, the cardinality of mst(s)
varies from 0 to n − 2.

Denote by Ni, for i = 0, . . . , k − 1, the set of nodes of the search tree at the
ith level. We describe in the following the exact algorithm.

We first construct the graph UG
k . Let a be the root of the search tree with

mv(a) = mst(a) = ∅, Ũ(a) = UG
k , w(T0(a)) = w(T0), and N0 = {a}.

For a level i, 0 ≤ i ≤ k − 2, we compute for each node s ∈ Ni and each
edge e ∈ T0(s), the replacement edges r(e) in T1(s). Node s gives rise to
|T0(s)\mst(s)| children in Ni+1. Each such child d, corresponding to an edge
ej in T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|}, is characterized by:

• mv(d) = mv(s) ∪ {ej}.
• mst(d) = mst(s) ∪ (∪j−1

�=1{e�}).
• Ũ(d) is updated from Ũ(s) as follows (using Lemma 3):

• T0(d) = T0(s)∪ {r(ej)} \ {ej} and hence w(T0(d)) = w(T0(s))−w(ej) +
w(r(ej)).

• For j = 1, . . . , k − |mv(d)|, Tj(d) is obtained from Tj(s) by deleting the
replacement edge erep of the edge deleted from Tj−1(s) and replacing it
by its replacement edge r(erep) ∈ Tj+1(s).
If for a level i and an edge erep, the replacement edge r(erep) does not ex-
ist, Tj(d) = Tj(s)\{erep} and T�(d) = T�(s) for � = j+1, . . . , k−|mv(d)|.

If for a level i, Ti(s) = ∅ then T�(d) = ∅ for � = i, . . . , k − |mv(d)|.

At level k − 1, for each node s ∈ Nk−1 and for all edges e ∈ T0(s) \ mst(s),
we find r(e) in T1(s) and we determine a node s∗ that verifies
max

s∈Nk−1
max

e∈T0(s)\mst(s)
(w(T0(s))−w(e)+w(r(e))). An optimal solution is the subset

mv(s∗) ∪ {e∗} where e∗ = arg max
e∈T0(s∗)\mst(s∗)

w(T0(s∗)) − w(e) + w(r(e)). The

largest weight of a MST in the partial graph obtained by deleting this subset is
w(T0(s∗)) − w(e∗) + w(r(e∗)).

Algorithm 1 describes this procedure. Its correctness and complexity are given
in Theorem 1.

Theorem 1. Algorithm 1 computes an optimal solution for an instance of k
Most Vital Edges MST with n vertices and m edges in O(kmα(m, n) +
nk log α(2(n − 1), n)) time.

130 C. Bazgan, S. Toubaline, and D. Vanderpooten

Algorithm 1. Explicit resolution of k MVE MST
/* Let a be the root of the search tree */
Construct UG

k ;1
mv(a) ← ∅; mst(a) ← ∅; w(T0(a)) ← w(T0); Ũ(a) ← UG

k ;2
N0 ← {a}; Ni ← ∅, i = 1, . . . , k − 1;3
for i ← 0 to k − 2 do4

forall s ∈ Ni do5
forall e ∈ T0(s) do6

find r(e) in T1(s);7

/* T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|} */
forall ej ∈ T0(s)\mst(s) do8

/* create a new node d, a child of s */
mv(d) ← mv(s) ∪ {ej};9
w(T0(d)) ← w(T0(s)) − w(ej) + w(r(ej));10
mst(d) ← mst(s) ∪ (∪j−1

�=1{e�});11
determine Ũ(d);12
Ni+1 ← Ni+1 ∪ {d};13

max ← 0;14
forall s ∈ Nk−1 do15

forall e ∈ T0(s) do16
find r(e) in T1(s);17

forall e ∈ T0(s)\mst(s) do18
if w(T0(s)) − w(e) + w(r(e)) > max then19

max ← w(T0(s)) − w(e) + w(r(e));20
e∗ ← e;21
s∗ ← s;22

/* The largest weight of a MST in the partial obtained graph is
w(T0(s

∗)) − w(e∗) + w(r(e∗)) */
return S∗ = mv(s∗) ∪ {e∗};23

Proof : We first show that Algorithm 1 gives an optimal solution for k Most

Vital Edges MST. Let S∗ be the solution returned by Algorithm 1, and w∗

the weight of the MST in UG
k − S∗. Consider any solution S′, with |S′| = k,

and w′ the weight of the MST in UG
k − S′. Let r be a node of the search tree

such that mv(r) ⊆ S′ and for any child d of r, mv(d) � S′. Clearly, r exists and
corresponds at worst to root a when S′ ∩ T0 = ∅. Since, by definition, r is such
that no edge of T0(r) belongs to S′, we have w′ = w(T0(r)). Moreover, since
w(T0(r)) ≤ w∗, we have w′ ≤ w∗.

We compute now the complexity of Algorithm 1. The construction of UG
k

requires O(kmα(m, n)) using k times the best current algorithms for MST [2,13].
Denote by tu the time for constructing UG

k , by tedge−rep the time for finding the
replacement edges for all edges of a minimum spanning tree, and by tgen the time
for generating any node s of the search tree (that is determining mv(s), mst(s)
and Ũ(s)). Level 0 requires |N0|tedge−rep time. Level i takes |Ni|tedge−rep +
|Ni|tgen time, for 1 ≤ i ≤ k − 1. At level k, we compute the k most vital edges.
Thus, the total time of Algorithm 1 is given by

tu +
k−1∑
i=0

|Ni|tedge−rep +
k−1∑
i=1

|Ni|tgen + |Nk|

The k Most Vital Edges for MST 131

For each node s ∈ Ni, subset mv(s) consists of � tree edges of T0(a) and
(i− �) edges belonging to the union set of the (i− �) replacement edges of these
� edges, 1 ≤ � ≤ i (the p replacement edges of an edge e ∈ T0(a) are the p
edges of minimum weight which connect the two disconnected components of
T0(a)\{e}). This implies that |Ni| =

∑i
�=1

(
n−1

�

)
Ki−�

� =
∑i

�=1

(
n−1

�

)(
i−1
i−�

)
=(

n+i−2
i

)
= O(ni), where Kp

n =
(
n+p−1

p

)
is the number of combinations with

repetition of p elements chosen from a set of n elements.
For a node s ∈ Ni, 1 ≤ i ≤ k − 1, Ũ(s) contains at most k − i + 1 forests.

Then, tgen is in O((k − i + 1)n) time. Since the replacement edges of a MST
in a graph with n vertices and m edges can be computed in O(m log α(m, n))
[12], tedge−rep is in O(n log α(2(n − 1), n)) time. Therefore, the complexity of
Algorithm 1 is in O(kmα(m, n)+nk log α(2(n− 1), n)) time. Note that the time
needed to generate all the nodes of the search tree is dominated by the total
time to find, for all nodes s of the search tree, the replacement edges r(e) in
T1(s) for all edges e ∈ T0(s). �

Remark 1. For each node s of the search tree, we could use, instead of the
graph Ũ(s), the graph U(s) = U

G′′(s)
k−|mv(s)| where G′′(s) is the graph obtained

from G by contracting the edges of mst(s) and removing the edges of mv(s).
Thus, U(s) = (V,∪k−|mv(s)|

i=0 Ti(s)) where Ti(s) is the MSF of G′′(s)−∪i−1
j=0Tj(s).

Unfortunately, given a child d of a node s of the search tree, updating efficiently
U(d) from U(s) is not as straightforward as for Ũ . However, even if updating U
could be performed more efficiently than Ũ , we would get the same complexity
since the time for generating all nodes of the search tree is dominated by the
total time for finding the replacement edges for all nodes in the search tree.

Discussion. For fixed k, by using the result of Dixon et al. [3], Liang [8] proposes
an algorithm to solve k Most Vital Edges MST in O(nkα((k +1)(n− 1), n))
time. Using Pettie’s result [12] Liang’s algorithm can be implemented in O(tu +
nk log α((k + 1)(n − 1), n)) time, where tu is the time for constructing UG

k . Our
algorithm has a complexity that is theoretically slightly worse than that of Liang.
Nevertheless, since α(m, n) is always less than or equal to 4 in practice, the
complexity of these two algorithms can be considered as equivalent. Moreover,
the advantage of our algorithm is to determine, with the same time complexity,
an optimal solution for i Most Vital Edges MST, for 1 ≤ i ≤ k. Indeed, at
each level i, we can find among nodes of Ni, the node with the largest weight of
a MST.

For general k, our bound is clearly better than that of Liang. Indeed, in
Liang’s algorithm, after the determination of UG

k , Liang divides the problem
into two cases: (i) |T0 ∩ S∗| = i, 1 ≤ i < k and (ii) |T0 ∩ S∗| = k where S∗

represents a subset of k most vital edges. In (i), for every possible combination
of i edges among the n − 1 edges of T0, 1 ≤ i < k, the author constructs a
specific graph G with a number of nodes and edges depending only on k, and
determines the k − i remaining edges in G. In (ii), from every possible choice
of (k − 1) edges among the n − 1 edges of T0, the author constructs a MST
T ′ in the graph obtained by deleting these (k − 1) edges and finds the kth

132 C. Bazgan, S. Toubaline, and D. Vanderpooten

edge to be removed by using the replacement edges of T ′. Therefore, (i) and
(ii) are performed respectively in

∑k−1
i=1

(
n−1

i

)
(tG + tk−i) and

(
n−1
k−1

)
tlast time,

where tG , tk−i and tlast are respectively the time to construct G, the time to
determine the k − i remaining edges to be removed from G and the time to
find the kth edge to be removed from T ′ ∩ T0. Note that Liang, who considers
only the case where k is fixed, does not need to explicit the term involving tk−i.
However, for general k, even if expressing the complexity of his algorithm as in
O(tu + k3nk +

∑k−1
i=1

(
n−1

i

)
tk−i + knk log α((k + 1)(n − 1), n)), one can observe

that it is relatively larger than the complexity of our proposed algorithm that
remains in O(tu + nk log α(2(n − 1), n)) time.

The other exact algorithms proposed in the literature [9,15] have a worse
complexity than our algorithm both for fixed ad general k.

4 An Implicit Enumeration Algorithm for Finding the k
Most Vital Edges

An interesting feature of our explicit enumeration algorithm is that, unlike the
algorithms previously proposed, it can easily be adapted to design an implicit
algorithm based on a branch and bound scheme. To do this, we use for each
node s an upper bound UB(s) based on successive replacements of edges. We
also use lower bounds LB(s) constructed by extending the forest, corresponding
to s, to a particular minimum spanning tree.

In order to obtain the best possible bounds, we construct U(s) for each node
s, instead of using Ũ(s). For each child d of s, U(d) is determined by constructing
Ti(d), for 0 ≤ i ≤ k − |mv(d)| from the edges of U(s).

4.1 Lower Bounds

For a fixed node s of the search tree, k−|mv(s)| edges remain to be deleted from
U(s). We present different ways of determining these remaining edges giving rise
to three possible lower bounds.

1. LBgreedy(s): Given T0(s), we compute r(ej) for all ej ∈ T0(s). We delete the
edge e∗j which realizes maxej∈T0(s)\mst(s)(w(r(ej))−w(ej)) and replace it by
r(e∗j). We update U(s) and repeat the process until we remove k − |mv(s)|
edges. The value of this bound is the weight of the last MST obtained.

2. LBfirst(s): We remove the k − |mv(s)| edges of T0(s) \ mst(s) having the
smallest weight, and we construct a MST from the remaining edges in T0(s).
The weight of the MST obtained is the value of this bound.

3. LBbest(s): Given T0(s), we compute r(ej) for all ej ∈ T0(s). We remove
the k − |mv(s)| edges in T0(s) \mst(s) whose difference between the weight
of their replacement edge and their weight is the largest, and we construct
a MST from the remaining edges in T0(s). The value of this bound is the
weight of the MST obtained.

The k Most Vital Edges for MST 133

In order to test these bounds, we computed, for instances with different values
of n and k, these three lower bounds at the root a of the search tree. The
instances are generated as explained in section 6. Due to space limitation, we
give in Table 1, results for two types of instances. We note that there is no
dominance between these three bounds. We also note that LBfirst is the fastest
in terms of running time but gives bad values. LBgreedy, which gives the best
values in most cases, takes much more time than the other bounds. LBbest, which
gives similar values as LBgreedy, takes only about twice as much time as LBfirst

and about 40 to 100 times less time than LBgreedy.

Table 1. Values of the lower and upper bounds at the root of the search tree

n k LBgreedy(a) LBfirst(a) LBbest(a) w(T0) UB(a)
value time(s) value time(s) value time(s) in G \ S∗

20 9 265 0.873 255 0.016 250 0.047 282 719
221 0.889 219 0.015 222 0.032 229 711
178 0.982 179 0.032 180 0.031 211 669
166 0.842 157 0.000 157 0.016 186 681
276 0.624 268 0.015 267 0.016 278 726
246 0.904 243 0.016 240 0.000 279 764
236 0.764 232 0.031 235 0.047 239 682
272 0.967 254 0.031 255 0.031 272 712
205 1.060 193 0.016 203 0.000 207 668
245 0.748 216 0.000 225 0.016 249 716

100 7 185 5.912 173 0.032 184 0.062 185 253
192 5.554 186 0.031 192 0.062 199 264
215 5.850 192 0.031 212 0.047 215 274
211 5.585 193 0.031 211 0.062 212 278
201 5.651 186 0.035 201 0.056 201 265
215 5.446 194 0.035 215 0.052 215 279
220 5.028 202 0.034 220 0.052 223 279
218 5.048 201 0.031 218 0.051 220 284
202 5.772 192 0.031 202 0.047 204 276
207 5.616 191 0.031 205 0.047 210 274

4.2 Upper Bound

Let s be a given node of the search tree. To compute UB(s), we select the edge
in T1(s) of largest weight and we replace the edge deleted from Tj(s) by the
edge with largest weight belonging to Tj+1(s), for j = 1, . . . , k−|mv(s)|−1. We
repeat this process k − |mv(s)| − 1 times.

Let F be the set of the k − |mv(s)| edges selected from T1(s) in this process.
Then, we must determine the k − |mv(s)| edges to remove. To obtain an upper
bound for all feasible solutions obtained from s, we delete the k−|mv(s)| edges of
smallest weight among the edges of F ∪T0(s)\mst(s). Denote by Emin the subset
of these selected edges removed. Therefore, UB(s) = w(T0(s))+w(F)−w(Emin).

We computed, for instances with different values of n and k, this upper bound
at the root a of the search tree (see Table 1). The main observation is that UB(a)
is rather close to the optimal value for small values of k and deteriorates as k
increases.

134 C. Bazgan, S. Toubaline, and D. Vanderpooten

4.3 Branching Strategy

Let a be the root of the search tree. The branching strategy is the same as for
the explicit enumeration algorithm. We start with a feasible solution value cor-
responding to max{LBgreedy(a), LBfirst(a), LBbest(a)}. We tested two different
best first search strategies. The first one is the standard strategy (Branching:
best upper bound) where the node with the largest upper bound is selected first.
No lower bound is computed and the fathoming test is performed only when we
update the current best feasible solution value, which can occur only at level
k − 1 of the search tree. In the second strategy (Branching: best lower bound),
the node with the largest lower bound is selected first. Lower and upper bounds
are computed at every node. Since LBbest gives values close to the best ones
and takes less time, we use this bound for computing a lower bound. Here, the
fathoming test is performed at each node by comparing each lower bound value
with the current best feasible solution value.

5 A Mixed Integer Programming Formulation for Finding
the k Most Vital Edges

Consider the graph UG
k = (V, Eu) with Eu = ∪k

j=0Tj . Let D = (V, Au) be
the digraph obtained by replacing each edge (i, j) in Eu by two arcs (i, j) and
(j, i) in Au and let wij = w(e) for each edge e ∈ Eu. In [10], Magnanti and
Wolsey present a formulation of the minimum spanning tree problem, called the
directed multicommodity flow model. Using this model, we propose the following
formulation for k Most Vital Edges MST:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
z∈Z

min
∑

(i,j)∈Eu

(wij + Mij zij)(yij + yji)∑
(j,1)∈Au

f�
j1 − ∑

(1,j)∈Au

f�
1j = −1 ∀� ∈ V \{1}∑

(j,i)∈Au

f�
ji −

∑
(i,j)∈Au

f�
ij = 0 ∀i, � ∈ V \{1}, i �= �∑

(j,�)∈Au

f�
j� −

∑
(�,j)∈Au

f�
�j = 1 ∀� ∈ V \{1}

f�
ij ≤ yij ∀(i, j) ∈ Au, ∀� ∈ V \{1}∑

(i,j)∈Au

yij = n − 1

fij ≥ 0, yij ≥ 0 ∀(i, j) ∈ Au

where Z = {zij ∈ {0, 1}, ∀(i, j) ∈ Eu :
∑

(i,j)∈Eu

zij = k}

In this formulation, we consider node 1 as the root of a MST and every node
� �= 1 defines a commodity. Denote by f �

ij the flow of � passing through (i, j).
Variable zij is equal to 1 if edge (i, j) is deleted and 0 otherwise. In order to
discard this edge from any MST, we assign it the weight wij + Mij where Mij

is a large enough constant, e.g. Mij = max(i,j)∈E wij + 1 − wij .
Using the dual of the inner program, we obtain the following mixed integer

programming formulation for k Most Vital Edges MST.

The k Most Vital Edges for MST 135

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

�∈V, � �=1

(α�
� − α�

1) + (n − 1)μ

σ�
ij ≥ α�

j − α�
i ∀(i, j) ∈ Au, ∀� ∈ V \{1}∑

� �=1

σ�
ij + μ ≤ wij + Mij zij ∀(i, j) ∈ Eu∑

� �=1

σ�
ji + μ ≤ wij + Mij zij ∀(i, j) ∈ Eu∑

(i,j)∈Eu

zij = k

zij ∈ {0, 1} ∀(i, j) ∈ Eu

σ�
ij ≥ 0 ∀(i, j) ∈ Au, ∀� ∈ V \{1}

α�
i ≥ 0 ∀i ∈ V, � ∈ V \{1}

μ unrestricted

6 Computational Results

All experiments presented here were performed on a 3.4GHz computer with 3Gb
RAM. All proposed algorithms are implemented in C. All instances are complete
graphs defined on n vertices. Weights w(e) for all e ∈ E are generated randomly,
uniformly distributed in [1, 100]. For each value of n and k presented in this
study, 10 different instances were generated and tested. The results are reported
in Table 2 where each given value is the average over 10 instances. For the implicit
enumeration algorithm, treated and generated nodes represent respectively nodes
for which we have computed mv, mst, and U and nodes satisfying the condition
of not fathoming (UB > bestvalue). Column opt corresponds to the number of
instances solved optimally.

We first compare the explicit and implicit enumeration algorithms. The re-
sults show that implicit enumeration algorithms are much faster than the explicit
enumeration algorithm and can handle instances of considerably larger size. Ob-
serve that, for the explicit enumeration algorithm, the search tree size is identical
for any instance of the same (n, k) type. As a consequence, either all or none
of the instances of a same (n, k) type can be solved. Moreover, for the same
reason, computation times show a low variance for all instances of a same (n, k)
type. Regarding the implicit enumeration algorithm, the "Branching: best upper
bound" strategy yields slightly better running times than the "Branching: best
lower bound" strategy. However, the "Branching: best upper bound" strategy,
for which fathoming tests are performed less frequently, generates more nodes.
Thus, owing to the limited memory capacity, the "Branching: best lower bound"
strategy can handle instances of larger size.

We compare now the results obtained by the mixed integer program with those
of the implicit enumeration algorithm. For this, we implemented the mixed inte-
ger program using the solver CPLEX 12.1 and we run it on the same generated
instances. We limited the running time to 1 hour for the instances with 20, 25,
30 and 50 vertices, and to 2 hours for the other instances. The results are also
reported in Table 2 where

• Time, given in seconds, is the average running time on the 10 instances. For
any instance which is not solved optimally within the time limit, the running
time is set to this limit;

136 C. Bazgan, S. Toubaline, and D. Vanderpooten

• Generated nodes represents the average number of nodes created in the
search tree corresponding to instances giving a feasible solutions;

• Gap, expressed as a percentage, represents the average over ratios UB − BS
UB

computed on all instances returning at least one feasible solution, where UB
is the final best upper bound and BS is the best solution value found;

• Opt/Feas represents the number of instances solved optimally /for which at
least one feasible solution was found within the time limit.

We note that the mixed integer program reaches the optimal value for very
small instances only. Actually, for n < 100, we only obtain in most cases feasible
solutions with rather large gaps which indicates that optimality is far from being
reached. Finally, for instances with n ≥ 100, no feasible solutions are returned
within the time limit. Moreover, for n = 300 and 400, the execution of the
program exceeds the memory after a few seconds (297.437 and 0.56 seconds in
average respectively).

From all these remarks, we can conclude that our proposed implicit enumer-
ation algorithm gives better results than the explicit enumeration algorithm as
well as the resolution of the mixed integer program and this both in terms of
running time and using memory capacity.

7 ε-Approximate Algorithm

The proposed algorithm is based on the previous implicit algorithm. The aim
being to obtain an ε-approximate solution of the optimum, the condition to
generate a node s in the search tree is now (1 − ε)UB(s) > bestvalue. Indeed,
the value v returned by the approximate algorithm must verify opt(G)(1 − ε) ≤
v ≤ opt(G). Since v is equal to bestvalue, any node for which UB(s)(1 − ε) ≤
bestvalue is fathomed.

The algorithm is implemented in C and tested on the same instances gen-
erated in Section 6 and this for ε = 0.01; 0.05 and 0.1. Thus, we compare the
ε-approximate algorithm with the implicit algorithm. The results are summa-
rized in Table 3. The meaning of treated and generated nodes is the same as in
Section 6 and each given value in the table represents the average over the 10
generated instances for each value of n and k.

We note that the running times of the ε-approximate algorithm are signifi-
cantly lower than those of the implicit enumeration algorithm. Running times
do not exceed 21 seconds for ε = 0.1, 180 seconds for ε = 0.05 and 1 215 seconds
for ε = 0.01. We also note that for large instances with n = 300 and 400 nodes,
the ε-approximate algorithm solves the problem for ε = 0.05 and 0.1 at the root
in a time less than 1 second, and for ε = 0.1 in a time less than 90 seconds while
the implicit enumeration algorithm requires 1 793.460 and 7 265.850 seconds
respectively.

The k Most Vital Edges for MST 137

T
ab

le
2.

C
om

pa
ri
so

n
of

ex
pl

ic
it

en
um

er
at

io
n,

im
pl

ic
it

en
um

er
at

io
n

an
d

M
IP

-b
as

ed
al

go
ri

th
m

s

n
k

E
xp

lic
it

Im
pl

ic
it

en
um

er
at

io
n

M
ix

ed
In

te
ge

r
P

ro
gr

am
en

um
er

at
io

n
B

ra
nc

hi
ng

:b
es

t
lo

w
er

bo
un

d
B

ra
nc

hi
ng

:b
es

t
up

pe
r

bo
un

d
T

im
e

N
od

es
T

im
e

N
od

es
T

im
e

N
od

es
�o

pt
T

im
e

G
en

er
at

ed
G

ap
O

pt
/F

ea
s

(s
)

(s
)

T
re

at
ed

G
en

er
at

ed
(s

)
T
re

at
ed

G
en

er
at

ed
(s

)
no

de
s

(%
)

20
3

0.
00

0
21

0
0.

00
0

16
5.

1
33

.5
0.

00
1

16
5.

1
34

.3
10

35
.7

50
1

63
8.

2
0

10
/

10
5

0.
13

5
8

85
5

0.
03

2
3

28
0.

6
42

2.
3

0.
03

2
3

23
0.

9
46

3.
2

10
69

2.
98

4
21

79
2.

4
0

10
/

10
7

2.
73

2
17

7
10

0
0.

41
9

35
71

4.
0

4
79

2.
0

0.
38

0
35

65
9.

2
5

91
8.

2
10

3
60

0.
00

0
61

38
6.

5
23

.9
1

0
/

10
9

36
.0

20
22

0
07

5
3.

32
2

25
8

32
1.

8
35

63
9.

1
3.

04
7

25
7

77
6.

0
44

03
7.

4
10

3
60

0.
00

0
36

90
8.

1
46

.4
9

0
/

10
25

3
0.

00
0

32
5

0.
00

0
24

5.
0

29
.8

0.
00

3
24

5.
0

31
.4

10
14

1.
27

0
2

06
6.

5
0

10
/

10
5

0.
31

8
20

47
5

0.
09

5
7

14
6.

4
70

5.
1

0.
08

9
7

04
7.

2
86

6.
7

10
2

98
4.

02
1

29
30

0.
4

8.
69

5
/

10
7

8.
78

3
59

3
77

5
1.

77
2

12
8

80
2.

5
15

14
3.

4
1.

61
7

12
8

74
2.

2
16

92
6.

0
10

3
60

0.
00

0
14

21
8.

1
46

.0
5

0
/

10
8

52
.0

68
2

62
9

57
5

3.
76

5
24

7
90

0.
6

26
07

6.
8

3.
56

6
24

7
82

2.
8

31
93

8.
3

10
3

60
0.

00
0

10
73

3.
5

66
.4

3
0

/
10

30
3

0.
00

7
46

5
0.

00
0

34
5.

1
47

.7
0.

00
5

34
5.

1
49

.7
10

42
4.

17
1

3
83

1.
9

0
10

/
10

5
0.

81
2

40
92

0
0.

26
0

16
75

6.
3

1
37

3.
7

0.
23

1
16

62
5.

9
1

58
8.

7
10

3
45

8.
33

0
13

15
6.

2
26

.0
3

1
/

10
7

40
.4

61
1

62
3

16
0

3.
89

9
23

1
52

3.
5

20
77

9.
0

3.
55

3
23

1
21

0.
2

25
73

7.
4

10
3

60
0.

00
0

4
85

5.
9

63
.6

5
0

/
10

50
3

0.
88

0
1

27
5

0.
02

8
94

9.
1

64
.9

0.
02

6
94

9.
1

85
.3

10
3

60
0.

00
0

1
28

5.
8

17
.2

8
0

/
10

5
15

.3
90

29
2

82
5

2.
04

3
76

84
0.

3
4

64
9.

3
1.

85
6

74
55

0.
2

5
13

8.
1

10
3

60
0.

00
0

50
3.

0
43

.5
9

0
/

10
7

-
-

88
.8

86
3

15
6

47
1.

8
16

8
12

7.
4

81
.7

07
3

15
6

17
0.

1
21

8
83

0.
4

10
3

60
0.

00
0

21
.3

3
80

.4
7

0
/

9
75

3
0.

37
6

2
85

0
0.

10
1

2
29

6.
8

11
4.

8
0.

09
6

2
29

6.
8

11
7.

7
10

7
20

0.
00

0
43

0.
2

17
.8

3
0

/
10

5
-

-
11

.2
48

25
9

73
8.

0
8

13
0.

7
10

.4
59

25
9

73
7.

6
10

51
9.

6
10

6
49

0.
23

8
0.

3
39

.2
2

1
/

10
7

-
-

65
0.

00
8

13
33

0
59

1.
9

47
4

91
2.

7
46

3.
38

5
9

60
8

53
1.

7
37

9
17

9.
2

7
7

20
0.

00
0

0
55

.7
5

0
/

3
10

0
3

1.
08

3
5

05
0

0.
22

4
3

61
7.

1
83

.3
0.

21
0

3
61

7.
1

89
.9

10
7

20
0.

00
0

0
0

/
0

5
-

-
54

.1
48

90
4

66
2.

4
19

38
3.

8
49

.8
95

90
4

66
2.

4
23

80
0.

1
10

7
20

0.
00

0
0

0
/

0
7

-
-
2

01
6.

41
0

26
83

5
60

0.
6

72
1

12
0.

4
93

5.
77

7
11

98
6

04
9.

2
36

8
18

0.
0

4
7

20
0.

00
0

0
0

/
0

20
0

5
-

-
57

2.
55

7
2

93
3

54
7.

2
46

23
6.

3
67

0.
34

0
2

93
3

29
6.

1
49

07
3.

6
10

7
20

0.
00

0
0

0
/

0
30

0
5

-
-
1

79
3.

46
0

3
99

6
19

2.
1

43
67

1.
2

2
16

3.
35

0
3

98
0

31
1.

0
56

92
4.

5
10

7
20

0.
00

0
0

0
/

0
40

0
5

-
-
7

26
5.

85
0

10
95

6
32

1.
8

10
6

43
3.

4
6

19
5.

18
2

5
92

7
37

6.
8

56
42

4.
5

7
-

-
-

0
/

0
it
al

ic
s:

av
er

ag
e

ov
er

in
st

an
ce

s
so

lv
ed

op
ti

m
al

ly
-:

m
em

or
y

ov
er

flo
w

138 C. Bazgan, S. Toubaline, and D. Vanderpooten

T
ab

le
3.

R
es

ul
ts

of
th

e
ε-

ap
pr

ox
im

at
e

al
go

ri
th

m

n
k

ε-
ap

pr
ox

im
at

e
al

go
ri
th

m
ε

=
0
.0

1
ε

=
0
.0

5
ε

=
0
.1

T
im

e
N

od
es

ε′
T

im
e

N
od

es
ε′

T
im

e
N

od
es

ε′

(s
)

T
re

at
ed

G
en

er
at

ed
(s

)
T
re

at
ed

G
en

er
at

ed
(s

)
T
re

at
ed

G
en

er
at

ed
20

3
0.

00
0

16
2.

9
30

.6
0.

00
00

0
0.

00
0

13
6.

9
14

.0
0.

00
00

0
0.

00
0

10
0.

6
7.

4
0.

00
19

8
5

0.
03

5
3

10
8.

2
38

4.
6

0.
00

00
0

0.
02

4
2

06
8.

8
21

1.
1

0.
00

04
3

0.
01

2
1

25
8.

4
11

3.
1

0.
00

26
7

7
0.

39
3

33
25

8.
5

4
35

6.
0

0.
00

00
0

0.
27

3
21

82
0.

0
2

57
5.

7
0.

00
32

3
0.

17
4

13
20

9.
9

1
45

1.
0

0.
00

92
2

9
3.

04
4

23
7

26
7.

0
32

08
5.

4
0.

00
00

0
2.

18
0

16
0

03
6.

0
20

09
3.

2
0.

00
42

1
1.

37
6

93
27

5.
6

10
88

8.
2

0.
00

73
5

25
3

0.
00

0
23

0.
8

26
.7

0.
00

00
0

0.
00

0
18

9.
8

13
.1

0.
00

26
3

0.
00

0
98

.2
5.

7
0.

00
26

3
5

0.
09

3
6

69
1.

6
63

7.
2

0.
00

06
0

0.
06

1
4

23
5.

5
34

5.
2

0.
00

21
3

0.
03

1
2

00
2.

0
14

6.
1

0.
00

77
9

7
1.

64
8

11
9

03
3.

8
13

60
3.

0
0.

00
00

0
1.

06
6

72
19

3.
8

7
17

8.
9

0.
00

14
8

0.
60

6
37

68
3.

2
3

37
9.

8
0.

00
41

6
8

3.
51

3
22

6
53

6.
1

23
38

9.
9

0.
00

00
0

2.
25

5
13

5
62

3.
2

12
79

2.
9

0.
00

14
2

1.
24

2
68

42
6.

4
5

90
0.

1
0.

00
31

9
30

3
0.

00
0

33
8.

1
38

.8
0.

00
00

0
0.

00
0

28
0.

1
17

.3
0.

00
45

3
0.

00
0

16
1.

6
7.

2
0.

00
45

2
5

0.
23

3
15

13
7.

4
1

17
1.

7
0.

00
00

0
0.

12
3

7
30

2.
6

47
0.

5
0.

00
30

7
0.

05
9

3
14

6.
2

18
1.

9
0.

00
36

3
7

3.
52

3
20

9
28

9.
3

18
25

6.
8

0.
00

00
0

2.
18

3
11

9
79

7.
9

9
36

3.
5

0.
00

47
0

1.
15

5
57

66
5.

1
4

06
2.

5
0.

00
72

1
50

3
0.

02
5

89
9.

4
48

.8
0.

00
00

0
0.

01
1

38
1.

6
14

.1
0.

00
00

0
0.

00
0

76
.5

2.
4

0.
00

64
6

5
1.

79
0

67
05

2.
0

3
75

7.
3

0.
00

00
0

0.
63

5
20

58
6.

6
86

6.
5

0.
00

17
8

0.
25

5
7

21
3.

3
24

1.
8

0.
00

27
9

7
74

.6
88

2
53

4
78

0.
6

13
0

68
5.

3
0.

00
00

0
28

.3
24

82
0

95
4.

5
36

72
2.

1
0.

00
05

3
7.

95
8

19
3

20
1.

5
7

82
7.

2
0.

00
31

6
75

3
0.

09
2

2
12

1.
1

75
.7

0.
00

00
0

0.
00

16
32

5.
4

5.
3

0.
00

24
1

0.
00

3
75

.0
1.

0
0.

00
35

5
5

8.
33

4
18

7
23

0.
6

5
44

4.
6

0.
00

00
0

1.
67

9
27

75
3.

6
61

6.
2

0.
00

16
8

0.
23

2
2

86
0.

8
50

.4
0.

00
38

7
7

51
0.

76
8

9
83

8
08

0.
8

33
6

99
3.

8
0.

00
00

0
10

9.
66

4
1

73
4

00
7.

8
51

51
4.

5
0.

00
19

5
20

.6
61

26
0

41
0.

7
6

58
4.

0
0.

00
53

6
10

0
3

0.
20

8
3

34
1.

4
57

.4
0.

00
00

0
0.

01
3

12
1.

6
1.

4
0.

00
05

1
0.

01
0

10
0.

0
1.

0
0.

00
30

8
5

34
.7

79
56

1
34

3.
8

10
61

9.
5

0.
00

00
0

3.
87

5
41

86
0.

1
61

1.
1

0.
00

14
3

0.
39

6
3

30
7.

4
41

.6
0.

00
29

7
7

1
21

4.
43

14
90

1
50

5.
8

37
7

86
1.

2
0.

00
00

0
17

9.
77

1
1

70
3

57
2.

1
34

19
6.

8
0.

00
14

3
13

.9
40

95
04

5.
1

1
49

2.
2

0.
00

37
1

20
0

5
16

5.
90

4
68

2
70

3.
2

10
14

7.
9

0.
00

00
0

0.
73

1
1

69
3.

0
11

.5
0.

00
16

3
0.

13
1

20
0.

0
1.

0
0.

00
16

3
30

0
5

87
.6

00
16

4
36

8.
6

1
12

9.
4

0.
00

03
0

0.
38

0
30

0.
0

1.
0

0.
00

24
5

0.
37

9
30

0.
0

1.
0

0.
00

24
1

40
0

5
89

.5
64

80
78

6.
1

25
7.

3
0.

00
00

0
0.

84
6

40
0.

0
1.

0
0.

00
00

0
0.

84
2

40
0.

0
1.

0
0.

00
00

0

The k Most Vital Edges for MST 139

Moreover, the approximate solutions a posteriori are within ε′ to the optimum,
with ε′ ≤ 0.0006 for ε = 0.01, ε′ ≤ 0.0047 for ε = 0.05 and ε′ ≤ 0.00922 for
ε = 0.1.

For ε = 0.01, we note that the problem is nearly solved to optimality (ε′ = 0).

All these remarks show that the proposed lower bounds and upper bound
are of very good quality and that the running time of the implicit enumeration
algorithm is the time needed to verify the optimality of the solution. Indeed,
this optimal solution is either found in a few seconds or determined at the root
of the search tree corresponding then to the maximum value of the three lower
bounds associated to the root.

8 Conclusions

Algorithms proposed in this paper can be easily adapted to solve some variants
of the k Most Vital Edges MST problem. In a first variant, a removing cost
is associated to each edge. The problem consists of finding a subset of edges
with total cost bounded by a budget limit whose deletion causes the largest
increase in the weight of a minimum spanning tree. In a second variant, we have
to determine a minimum number of edges to be removed such that the weight
of a minimum spanning tree in the resulting graph is at least a fixed value.

References

1. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs
and nodes. Technical Report CS-TR-3539, University of Maryland (1995)

2. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type
complexity. Journal of the ACM 47(6), 1028–1047 (2000)

3. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of mini-
mum spanning trees in linear time. SIAM Journal on Computing 21(6), 1184–1192
(1992)

4. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning
trees. In: Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms
(SODA 1996), pp. 539–546 (1996)

5. Hsu, L., Jan, R., Lee, Y., Hung, C., Chern, M.: Finding the most vital edge with
respect to minimum spanning tree in a weighted graph. Information Processing
Letters 39(5), 277–281 (1991)

6. Iwano, K., Katoh, N.: Efficient algorithms for finding the most vital edge of a
minimum spanning tree. Information Processing Letters 48(5), 211–213 (1993)

7. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao,
J.: On short paths interdiction problems: total and node-wise limited interdiction.
Theory of Computing Systems 43(2), 204–233 (2008)

8. Liang, W.: Finding the k most vital edges with respect to minimum spanning trees
for fixed k. Discrete Applied Mathematics 113(2-3), 319–327 (2001)

9. Liang, W., Shen, X.: Finding the k most vital edges in the minimum spanning tree
problem. Parallel Computer 23(3), 1889–1907 (1997)

140 C. Bazgan, S. Toubaline, and D. Vanderpooten

10. Magnanti, T.L., Wolsey, L.: Optimal trees. In: Ball, M.O., et al. (eds.) Network
Models. Handbook in Operations Research and Management Science, vol. 7, pp.
503–615. North-Holland, Amsterdam (1995)

11. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital
edge of a shortest path. Information Processing Letters 79(2), 81–85 (2001)

12. Pettie, S.: Sensitivity analysis of minimum spanning tree in sub-inverse-ackermann
time. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 964–973.
Springer, Heidelberg (2005)

13. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. Jour-
nal of the ACM 49(1), 16–34 (2002)

14. Ratliff, H.D., Sicilia, G.T., Lubore, S.H.: Finding the n most vital links in flow
networks. Management Science 21(5), 531–539 (1975)

15. Shen, H.: Finding the k most vital edges with respect to minimum spanning tree.
Acta Informatica 36(5), 405–424 (1999)

16. Suraweera, F., Maheshwari, P., Bhattacharya, P.: Optimal algorithms to find the
most vital edge of a minimum spanning tree. Technical Report CIT-95-21, School
of Computing and Information Technology, Griffith University (1995)

17. Tarjan, R.E.: Applications of path compression on balanced trees. Journal of the
ACM 26(4), 690–715 (1979)

18. Wollmer, R.: Removing arcs from a network. Operations Research 12(6), 934–940
(1964)

19. Wood, R.K.: Deterministic network interdiction. Mathematical and Computer
Modeling 17(2), 1–18 (1993)

Euclidean Chains and Their Shortcuts

Boting Yang

Department of Computer Science, University of Regina
boting@cs.uregina.ca

Abstract. A Euclidean graph is a straight line embedding of a graph
in the plane such that there is no crossing between any pair of edges
and the length of an edge is the Euclidean distance between its two
endpoints. A Euclidean chain C = (x1, x2, . . . , xn) is a planar straight
line graph with vertex set {x1, x2, . . . , xn} and edge set {xixi+1 : 1 ≤ i ≤
n − 1}. Given a Euclidean chain C in the plane, we study the problem
of finding a pair of points on C such that the new Euclidean graph
obtained from C by adding a straight line segment (called shortcut)
between this pair of points has the minimum diameter. We also study
the ratio between the diameter of the new graph and the length of C. We
give necessary and sufficient conditions for optimal shortcuts. We present
three approximation algorithms for computing the optimal shortcuts of
chains. One of them is a fully polynomial-time approximation scheme
(FPTAS). We introduce two types of chains, strongly monotonic chain
and simple chain. We provide properties for these two types of chains
and their shortcuts.

1 Introduction

A Euclidean graph is a straight line embedding of a graph in the plane such
that there is no crossing between any pair of edges and the length of an edge
is the Euclidean distance between its two endpoints. Diameter is an important
parameter for Euclidean graphs. For a Euclidean graph G with vertex set V (G)
and edge set E(G), we also use G to denote the set of all points on the Euclidean
graph G. Thus, V (G) ⊆ G. When we use G as a point set, we treat it as a
closed point set. A path between two points u and v in a Euclidean graph G is a
sequence ux1x2 . . . xkv such that xi are distinct vertices in V (G), xixi+1 ∈ E(G),
1 ≤ i ≤ k − 1, u is a point on an edge (�= x1x2) incident with x1, and v is a
point on an edge (�= xk−1xk) incident with xk. The distance between u and v is
the length of the shortest path between u and v in G, denoted as distG(u, v).

The diameter of a Euclidean graph G, denoted as diam(G), is defined as
max{distG(u, v): u and v are two points in G}. Note that the diameter of G
always exists because G is a closed set when it is considered as a point set in
the plane. A diameter path of G is a path in G such that the length of this path
is diam(G). Leizhen Cai [3] proposed the following minimum diameter problem:
Given a Euclidean graph G, find two points x and y in G such that the new
graph obtained from G by adding the segment xy has the minimum diameter.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 141–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

142 B. Yang

A Euclidean chain (x1, x2, . . . , xn) is a planar straight line graph with n dis-
tinct vertices xi (1 ≤ i ≤ n) and n − 1 edges xixi+1 (1 ≤ i ≤ n − 1). Euclidean
chains are also called simple polygonal chains, polylines, or linkages in the liter-
ature. We will simply call them chains in the remainder of the paper. Note that
there is no crossing between any pair of edges of a chain.

Given a chain C in the plane, we study the problem of finding a pair of points
on C such that the new Euclidean graph obtained from C by adding a straight
line segment between this pair of points has the minimum diameter. This problem
is relevant to the geometric minimum-diameter spanning tree problem. Given a
set P of points in the plane, a geometric minimum-diameter spanning tree of P
is a spanning tree of P such that the longest path through the tree is minimized.
Ho et al. [5] describe an algorithm that uses O(n3) time to generate a geometric
minimum-diameter spanning tree of n points. Spriggs et al. [7] give an algorithm
that generates a tree whose diameter is no more than (1 + ε) times that of a
geometric minimum-diameter spanning tree, for any ε > 0. Gudmundsson et al.
[4] show that this problem can be solved in O(n2 log n) time and that it yields a
factor-4/3 approximation of a geometric minimum-diameter spanning tree.

2 Preliminaries

Throughout this paper, let C be a chain in the plane with at least three distinct
vertices satisfying that no three vertices are collinear and no two edges are par-
allel. Note that we use this assumption only to simplify cases in proofs. We can
extend all results to general chains without technical difficulties. For any two
points u, v ∈ C, the subchain of C between u and v is denoted by chainC(u, v).
In the case with no ambiguity, we use chain(u, v) without subscripts. For conve-
nience, u is referred to the left end and v is referred to the right end of chain(u, v).
So, a chain (x1, x2, . . . , xn) is also denoted by chain(x1, xn), where x1 is the left
end and xn is the right end. A chain C is monotonic if there exists a straight line
L such that a line orthogonal to L intersects C in at most one point. We also
say that C is monotonic w.r.t. L. Monotonic chains have been widely used in
the literature of computational geometry[6]. We introduce two variants of mono-
tonic chains, one is a special case, the other is an extension. A chain C is called
strongly monotonic if for any edge pq of C and any point v ∈ pq, the orthogonal
line to pq and passing through v intersects C only at the point v. A chain C
is said to be simple if for any point u ∈ C, there is a straight line L such that
C ∩ L = {u}. It is easy to see that all monotonic chains are also simple chains,
but the reverse is not true.

For two points u and v in the plane, the straight line passing through u and
v is denoted as 〈uv〉, and the straight line segment between u and v is denoted
as uv. We also use uv to denote the set of all points on the segment uv. We use
int(uv) to denote the set of all interior points on the segment uv. The length of
a segment uv is denoted by |uv|. An edge between two vertices u, v ∈ V (G) is
the straight line segment uv with two endpoints u and v.

Euclidean Chains and Their Shortcuts 143

For a chain C and two points u, v ∈ C, the segment uv is called a shortcut of
C if u and v are isolated points in the intersection point set uv∩C. Furthermore,
if |uv∩V (C)| = k, then we call uv a node-k shortcut. The number of intersection
points between C and uv is called the size of the shortcut. We call uv a maximal
shortcut of C if there does not exist a shortcut S of C such that S contains uv.
We call uv a simple shortcut if uv ∩C = {u, v}. For a simple chain with left end
a and right end b and a shortcut uv of chain(a, b), if distC(a, u) < distC(a, v),
then u is referred to the left end and v is referred to the right end of the shortcut
uv.

Let C = chain(a, b), and xy be a shortcut of C such that xy ∩ C = {x1, x2,
. . . , xk}, where distC(a, x1) < distC(a, x2) < · · · < distC(a, xk). We use C ∪ xy
to denote the Euclidean graph obtained by adding vertices x1(= x), x2, . . . ,
xk(= y) and edges x1x2, . . . , xk−1xk to C. If xy ∩ C contains an edge of C, we
can define C ∪ xy similarly. The shortcut xy partitions C into a sequence of
subchains chainC(a, x1), chainC(x1, x2), . . . , chainC(xk, b).

Given a chain C, the problem of the minimum diameter with shortcut, briefly
MDS(C), is to find a shortcut x∗y∗ of C such that diam(C∪x∗y∗) ≤ diam(C∪xy)
for any xy that is a shortcut of C. Such a shortcut x∗y∗ is called an optimal
shortcut of C or optimal solution of MDS(C).

Let S be a straight line or a shortcut of a chain C(= chain(a, b)). The dual
of the intersection point set S ∩ C is the set of edges of C such that each edge
contains at least one point in S ∩ C. For simplicity, the dual of S ∩ C is also
called the dual of S and is denoted by Sdual. Recall that no three vertices of C
are collinear. If every point in S ∩ C is an interior point of an edge of C and
|S ∩C| = k, then Sdual contains k edges of C. If S ∩C contains only one vertex
in V (C) \ {a, b} and |S ∩ C| = k, then Sdual contains k + 1 edges of C. If S ∩C
contains two vertices in V (C) \ {a, b} and |S ∩C| = k, then Sdual contains k + 2
edges of C. If S ∩ C contains an edge of C and k interior points of edges of C,
then Sdual contains k + 3 edges of C.

3 Properties

In this section, we give characterizations of strongly monotonic chains and simple
chains. We also give some properties of shortcuts.

Theorem 1. A chain C is strongly monotonic if and only if for any two points
u, v ∈ C, C is monotonic w.r.t. the straight line 〈uv〉.
Proof. The sufficiency is easy to see. We only show the necessity by contradiction.
Let C be a strongly monotonic chain. Suppose there are two points u, v ∈ C such
that C is not monotonic w.r.t. the straight line 〈uv〉. Then, there is a point w on
〈uv〉 such that the line Lw passing through w and perpendicular to 〈uv〉 intersects
C in at least two points, say p and q. Note that the subchain chainC(p, q) is on a
simple polygon formed by chainC(u, v) and uv. Since 〈pq〉 is orthogonal to 〈uv〉,
there is an edge on chainC(p, q) such that a vertical line of this edge intersects C
in at least two points. This is a contradiction. Thus, for any two points u, v ∈ C,
C is monotonic w.r.t. the straight line 〈uv〉.

144 B. Yang

Theorem 2. If C is a strongly monotonic chain, then for any subchain
chainC(u, v) and any point p ∈ chainC(u, v), max{|up|, |vp|} ≤ |uv|.
Proof. Let L be a moving line which is always vertical to edges of C when
it moves from u to v. When L passes any interior point p on an edge xy of
chainC(u, v), it must be a bisector of some pair of points x′ and y′ on xy (x′ is
on the left side and y′ on the right side). Since L intersects C at only one point,
we know that |uy′| ≥ |up| and |vx′| ≥ |vp|. When L moves from u to v, by the
transitivity of inequalities, we know that max{|up|, |vp|} ≤ |uv|.

u

a

b

(a)
p’ p’’p

x

y

L

a

b

(b)

q
v

Fig. 1. Theorem 3

Theorem 3. A chain C is simple if and only if for any two points u, v ∈ C, all
intersection points between the straight line segment uv and C lie on the subchain
between u and v.

Proof. (Sufficiency.) Let p be an arbitrary point on C, p′p′′ be the edge of C
containing p and L be a straight line containing p but not containing p′p′′.
Suppose that L intersects C at more than one point. We will show that we
can always rotate L around p to find a position such that L intersects C only
at the point p. We first show by contradiction that L cannot intersect both
subchains chainC(a, p) and chainC(p, b) in the same open half plane divided by
〈p′p′′〉. Suppose that in the same open half plane, L intersects chainC(a, p) at x
and intersects chainC(p, b) at y (see Figure 1(a)). If x ∈ py, then x ∈ C ∩ py.
This is a contradiction because x �∈ chainC(p, y). If y ∈ xp, then y ∈ C ∩ xp.
This is a contradiction because y �∈ chainC(x, p). Thus, L cannot intersect both
subchains chainC(a, p) and chainC(p, b) in the same open half plane divided by
〈p′p′′〉. Similarly, we can show that L cannot intersect the subchain chainC(a, p)
(or chainC(p, b)) in both open half planes divided by 〈p′p′′〉. Therefore, when we
rotate L around p, we can find a position such that L intersects C only at p.

(Necessity.) Suppose that C has two points u and v such that there is a point
q ∈ uv ∩ C and q �∈ chainC(u, v) (see Figure 1(b)). Then for any straight line
passing through q must intersect a point in chainC(u, v). This is a contradiction.

Lemma 1. For any two points u and v on a chain C, diam(C∪uv) ≤ diam(C).

Note that Lemma 1 cannot be extended to graphs, even trees. For example,
consider a tree T with edges ab, ac and ad satisfying |ab| = |ac| = |bc| = 1,
|ad| = 0.8 and ad∩ bc = ∅. Then diam(T) = |ab|+ |ac| = 2. But diam(T ∪ bc) =
|ad| + |ab| + |bc|/2 = 2.3.

Euclidean Chains and Their Shortcuts 145

Lemma 2. For any two points u and v in a chain C, if there are two points
u′, v′ ∈ C such that the segment u′v′ contains uv, then diam(C ∪ u′v′) ≤
diam(C ∪ uv).

Corollary 1. For any chain C, there is a maximal shortcut which is an optimal
solution of MDS(C).

Let S be a shortcut of a chain C. Recall that Sdual is the set of edges of C such
that each edge contains at least one point in S ∩ C. For maximal shortcuts of
C, we can show that the number of different duals is bounded by 2n(n− 1).

Theorem 4. For a chain C with n vertices, the set {Sdual: S is a maximal
shortcut of C} has at most 2n(n − 1) elements.

Lemma 3. For any simple chain C with left end a and right end b, it has the
following two properties.

(i) There exist two unique points a∗, b∗ ∈ C such that distC(a, a∗) = distC(b, b∗)
and distC∪a∗b∗(a, b) = distC(a∗, b∗).

(ii) Forany shortcutuv ofC with left enduandright endv satisfying thatdistC(a, u)
= distC(b, v), if distC(a, u) < distC(a, a∗), then distC∪uv(a, b) < distC(u, v),
and if distC(a, u) > distC(a, a∗), then distC∪uv(a, b) > distC(u, v).

Proof. For any shortcut uv of C with left end u and right end v satisfying that
distC(a, u) = distC(b, v), let f(u, v) = distC∪uv(a, b) and g(u, v) = distC(u, v).
Since C is a simple chain, we know that chainC(a, u)∩uv = {u} and chainC(b, v)∩
uv = {v}. Thus, distC∪uv(a, b) = distC(a, u) + |uv| + distC(b, v). When u and v
move with the same speed from the ends a and b, respectively, towards the mid-
point of C, the function f(u, v) is strictly increasing from |ab| to distC(a, b), and
the function g(u, v) is strictly decreasing from distC(a, b) to 0. Thus, there exist
two unique points a∗, b∗ ∈ C such that distC(a, a∗) = distC(b, b∗) and f(a∗, b∗) =
g(a∗, b∗); furthermore, f(u, v) < g(u, v) when distC(a, u) < distC(a, a∗), and
f(u, v) > g(u, v) when distC(a, u) > distC(a, a∗).

4 Simple Shortcuts

Given a chain C with an optimal shortcut S∗, we call S∗ an optimal simple
shortcut of C if the optimal shortcut S∗ is also a simple shortcut. In this section
we consider the problem of finding optimal simple shortcuts. Note that some
chains may have no optimal simple shortcut.

From Lemma 3, we can see the importance of a∗ and b∗ regarding the diameter
of the new graph obtained by adding a shortcut.

Definition 1. For a simple chain C with left end a and right end b, if C has
a shortcut a∗b∗ with left end a∗ and right end b∗ such that distC(a, a∗) =
distC(b, b∗) and distC∪a∗b∗(a, b) = distC(a∗, b∗), then the two points a∗ and
b∗ are called the left critical point and the right critical point of C, respectively.

146 B. Yang

y*

a

a* b*

b
v

u

u’ x* y*

(b)(a)
a

a*

u v

b*

b
x*

Fig. 2. (a) v ∈ chainC(a∗, b∗). (b) v ∈ chainC(b∗, b).

Theorem 5. Let C = chain(a, b) be a simple chain with left critical point a∗

and right critical point b∗ such that for any two points p ∈ chainC(a, a∗) and
q ∈ chainC(b∗, b) with distC(a, p) = distC(q, b), pq is a simple shortcut of C. Let
Ec = {pq : p ∈ chainC(a, a∗), q ∈ chainC(b∗, b) and distC(a, p) = distC(q, b)}. If
x∗y∗ ∈ Ec is the segment with the minimum length among all segments in Ec,
then diam(C ∪ x∗y∗) ≤ diam(C ∪ uv) for any shortcut uv of C.

Proof. Note that all elements in Ec are simple shortcuts of C. From Lemma 3, we
have distC∪x∗y∗(a, b) = 2distC(a, x∗)+ |x∗y∗| ≤ distC(x∗, y∗). Thus, distC(a, x∗)
+ 1

2 (distC(x∗, y∗) + |x∗y∗|) ≥ 2distC(a, x∗) + |x∗y∗|. Hence,

diam(C ∪ x∗y∗) = distC(a, x∗) +
1
2
(distC(x∗, y∗) + |x∗y∗|).

Let uv be an arbitrary shortcut of C with left end u and right end v. We want
to prove that diam(C∪uv) ≥ diam(C∪x∗y∗). Without loss of generality, suppose
that distC(a, u) ≥ distC(v, b). There are two cases regarding the location of v.

Case 1. v ∈ chainC(a∗, b∗) (see Figure 2(a)). Since distC(a, u) < distC(a, v)
and distC(a, u) ≥ distC(v, b), we know that u ∈ chainC(a∗, b∗). Thus

diam(C ∪ uv) ≥ distC(a, u) + |uv| + distC(b, v)
≥ 2distC(a, a∗) + |a∗b∗|
= distC(a, a∗) + 1

2 (distC(a∗, b∗) + |a∗b∗|)
= distC(a, x∗) + 1

2 (distC(x∗, y∗) + |x∗y∗|)
+ 1

2 (|a∗b∗| − |x∗y∗|)
≥ distC(a, x∗) + 1

2 (distC(x∗, y∗) + |x∗y∗|)
= diam(C ∪ x∗y∗).

Case 2. v ∈ chainC(b∗, b) (see Figure 2(b)). Let u′ ∈ chainC(a, a∗) such that
distC(a, u′) = distC(v, b). Since u′v ∈ Ec, we have

Euclidean Chains and Their Shortcuts 147

diam(C ∪ uv) ≥ distC(a, u) + 1
2 (distC(u, v) + |uv|)

= distC(a, u′) + 1
2 (distC(u′, v) + |u′v|)

+ 1
2 (distC(u′, u) + |uv| − |u′v|)

≥ distC(a, u′) + 1
2 (distC(u′, v) + |u′v|)

= distC(a, x∗) + 1
2 (distC(x∗, y∗) + |x∗y∗|)

+ 1
2 (|u′v| − |x∗y∗|)

≥ distC(a, x∗) + 1
2 (distC(x∗, y∗) + |x∗y∗|)

= diam(C ∪ x∗y∗).

From the above cases, we know that diam(C ∪ x∗y∗) ≤ diam(C ∪ uv) for any
segment uv with u, v ∈ C.

Note that all chains considered in this paper have at least three distinct vertices
satisfying that no three vertices are collinear and no two edges are parallel. Thus,
any convex simple chain always has a unique optimal shortcut.

Corollary 2. Let C be a chain with left end a and right end b such that the
polygon formed by connecting a and b is a convex polygon. Let a∗ be the left
critical point and b∗ be the right critical point of C.

(i) If |a∗b∗| < |ab|, then a∗b∗ is a unique optimal shortcut of C.
(ii) If |a∗b∗| ≥ |ab|, then ab is a unique optimal shortcut of C.

As an application of Corollary 2, let us consider a chain that consists of two
edges.

Corollary 3. Let C be a chain consisting of two edges ac and bc. Then there
exist four points a′, a′′ ∈ ac and b′, b′′ ∈ bc such that |aa′| = |a′a′′| = |bb′| = |b′b′′|
and |a′b′| = |a′′c| + |cb′′|, moreover, a′b′ is a unique optimal shortcut of C.

Note that the optimal solution of the MDS problem may not be unique. For
example, if C = chain(a, b) is a simple chain satisfying the condition in Theo-
rem 5, and uv and xy are two segments in Ec with the minimum length among
all segments in Ec, then from Theorem 5, we know that both uv and xy are
optimal shortcuts of C. However, the optimal solution is unique for shortcuts
with the same dual.

Theorem 6. For a simple chain C, the optimal shortcut of C is unique among
all shortcuts with the same dual.

5 Node-0 Shortcuts

In Section 4, we give sufficient conditions for optimal simple shortcuts. In this
section, we consider necessary conditions of the optimal shortcut S∗ of a simple
chain C satisfying that |S∗ ∩ V (C)| = 0. We first consider necessary conditions
of optimal node-0 shortcuts of size 2. Note that a node-0 shortcut of size 2 is
always a simple shortcut, but a simple shortcut may not be a node-0 shortcut
of size 2.

148 B. Yang

y

(a)
a b

y*

x*

a’
x

a"

a b
(b)

x* y*
a’

a" b"

b’

x

Fig. 3. Node-0 shortcuts of size 2

Theorem 7. Let C be a simple chain with left end a and right end b. If C has an
optimal shortcut x∗y∗ with left end x∗ and right end y∗ such that |x∗y∗∩V (C)| =
0 and x∗y∗ ∩ C = {x∗, y∗}, then x∗ is the left critical point and y∗ is the right
critical point of C.

Proof. From Definition 1, we need to show that distC(a, x∗) = distC(b, y∗) and
distC(x∗, y∗) = distC∪x∗y∗(a, b). Let a′a′′ and b′b′′ be two edges of C such that
x∗ ∈ int(a′a′′), distC(a, a′) < distC(a, a′′), y∗ ∈ int(b′b′′), and distC(b, b′) <
distC(b, b′′). We first show that distC(a, x∗) = distC(b, y∗) by contradiction.
Suppose that distC(a, x∗) > distC(b, y∗) (see Figure 3(a)). Since x∗y∗ ∩ C =
{x∗, y∗}, there is a point x ∈ int(a′x∗) such that distC(a, x) > distC(b, y∗) and
xy∗ ∩ C = {x, y∗}. Since |xy∗| < |xx∗| + |x∗y∗|, we have

distC(a, x) + |xy∗| + distC(b, y∗) < distC(a, x∗) + |x∗y∗| + distC(b, y∗),

distC(a, x) +
1
2
(distC(x, y∗) + |xy∗|) < distC(a, x∗) +

1
2
(distC(x∗, y∗) + |x∗y∗|).

Thus, diam(C∪xy∗) < diam(C∪x∗y∗).This is a contradiction.Hence, distC(a, x∗)
≤ distC(b, y∗). Similarly, we can show that distC(b, y∗) ≤ distC(a, x∗). Therefore,
distC(a, x∗) = distC(b, y∗).

We now show that distC(x∗, y∗) = distC∪x∗y∗(a, b). Suppose distC(x∗, y∗) >
distC∪x∗y∗(a, b) (see Figure 3(b)). Then distC(a, x∗)+ 1

2 (distC(x∗, y∗)+|x∗y∗|) >
distC∪x∗y∗(a, b). Thus, diam(C∪x∗y∗) = distC(a, x∗)+ 1

2 (distC(x∗, y∗)+ |x∗y∗|).
Since x∗y∗∩C = {x∗, y∗} and the two edges a′a′′ and b′b′′ are not parallel, there
are two points x ∈ int(a′a′′) and y ∈ int(b′b′′) such that distC(a, x) = distC(b, y),
xy ∩ C = {x, y} and |xy| < |x∗y∗|. Then we have

diam(C ∪ x∗y∗) = distC(a, x∗) + 1
2 (distC(x∗, y∗) + |x∗y∗|)

> distC(a, x) + 1
2 (distC(x, y) + |xy|)

= diam(C ∪ xy).

This is a contradiction. Thus, distC(x∗, y∗) ≤ distC∪x∗y∗(a, b).
Suppose distC(x∗, y∗) < distC∪x∗y∗(a, b). Then distC(a, x∗)+ 1

2 (distC(x∗, y∗)+
|x∗y∗|) < distC∪x∗y∗(a, b). Thus, diam(C∪x∗y∗) = distC∪x∗y∗(a, b). Since x∗y∗∩

Euclidean Chains and Their Shortcuts 149

C = {x∗, y∗}, there are two points u ∈ int(a′x∗), v ∈ int(b′y∗) such that
distC(a, u) = distC(b, v), uv ∩C = {u, v} and distC(u, v) < distC∪uv(a, b). Then
we have diam(C ∪ x∗y∗) = distC∪x∗y∗(a, b) > distC∪uv(a, b) = diam(C ∪ uv).
This is a contradiction. Hence, distC(x∗, y∗) = distC∪x∗y∗(a, b).

Definition 2. Let C be a simple chain with left end a and right end b, and
v ∈ C. A point a∗

v ∈ chain(a, v) is called the left pivot of v if 2distC(a, a∗
v) +

|a∗
vv| = distC(a∗

v, v). A point b∗v ∈ chain(v, b) is called the right pivot of v if
2distC(b, b∗v) + |b∗vv| = distC(b∗v, v).

b

1

x2
x3

x*2
x*3

a

x*

Fig. 4. Node-0 shortcuts of size 3

We now consider necessary conditions of optimal node-0 shortcuts of size 3.

Theorem 8. Let C be a simple chain with left end a and right end b. If C has an
optimal shortcut x∗

1x
∗
3 with left end x∗

1 and right end x∗
3 such that |x∗

1x
∗
3∩V (C)| =

0 and x∗
1x

∗
3 ∩C = {x∗

1, x
∗
2, x

∗
3}, then x∗

1 is the left pivot of x∗
2 and x∗

3 is the right
pivot of x∗

2.

Proof. From Definition 2, we need to show that 2distC(a, x∗
1) + |x∗

1x
∗
2| =

distC(x∗
1, x

∗
2) and 2distC(b, x∗

3) + |x∗
2x

∗
3| = distC(x∗

2, x
∗
3). Let 〈X1, X2, X3〉 be

the dual of the optimal shortcut x∗
1x

∗
3 such that x∗

i ∈ int(Xi), 1 ≤ i ≤ 3. Sup-
pose that 2distC(b, x∗

3) + |x∗
2x

∗
3| > distC(x∗

2, x
∗
3). Thus, distC(b, x∗

3) + |x∗
2x

∗
3| >

1
2 (distC(x∗

2, x
∗
3) + |x∗

2x
∗
3|). Then we have two cases (see Figure 4).

Case 1. distC(a, x∗
1) + |x∗

1x
∗
2| ≥ 1

2 (distC(x∗
1, x

∗
2) + |x∗

1x
∗
2|). Let x∗

1x2x3 be a
node-0 shortcut of size 3 such that xi ∈ int(Xi), 2 ≤ i ≤ 3, x3 ∈ chainC(x∗

3, b),
and distC(b, x3) + |x2x3| > 1

2 (distC(x2, x3) + |x2x3|). Thus,

diam(C ∪ x∗
1x3) = distC(a, x∗

1) + |x∗
1x3| + distC(x3, b)

< distC(a, x∗
1) + |x∗

1x
∗
3| + distC(x∗

3, b)
= diam(C ∪ x∗

1x
∗
3).

This is a contradiction.
Case 2. distC(a, x∗

1) + |x∗
1x

∗
2| < 1

2 (distC(x∗
1, x

∗
2) + |x∗

1x
∗
2|). Let x∗

1x2x3 be a
node-0 shortcut of size 3 such that xi ∈ int(Xi), 2 ≤ i ≤ 3, x3 ∈ chainC(x∗

3, b),
distC(a, x∗

1) + |x∗
1x2| < 1

2 (distC(x∗
1, x2) + |x∗

1x2|), and distC(b, x3) + |x2x3| >
1
2 (distC(x2, x3) + |x2x3|). Thus,

150 B. Yang

diam(C ∪ x∗
1x3) = 1

2 (distC(x∗
1, x2) + |x∗

1x2|) + |x2x3| + distC(x3, b)
< 1

2 (distC(x∗
1, x

∗
2) + |x∗

1x
∗
2|) + |x∗

2x
∗
3| + distC(x∗

3, b)
= diam(C ∪ x∗

1x
∗
3).

This is a contradiction.
Similarly, we can derive contradictions if 2distC(b, x∗

3)+|x∗
2x

∗
3| < distC(x∗

2, x
∗
3).

Hence, 2distC(b, x∗
3) + |x∗

2x
∗
3| = distC(x∗

2, x
∗
3). Symmetrically, we know that

2distC(a, x∗
1) + |x∗

1x
∗
2| = distC(x∗

1, x
∗
2).

Definition 3. Let C be a simple chain with left end a and right end b, and xy be
a shortcut of C with left end x and right end y. Let chainC(a, x1), chainC(x1, x2),
. . . , chainC(xk, b) be a sequence of subchains of C partitioned by xy, where
distC(a, x1) < distC(a, x2) < · · · < distC(a, xk). Let Pi, 1 ≤ i ≤ k − 1, be
the simple polygon formed by the straight line segment xixi+1 and the sub-
chain chainC(xi, xi+1). The subchain chainC(a, x1) is considered as a degener-
ated polygon P0 whose perimeter is 2distC(a, x1); and the subchain chainC(xk, b)
is considered as a degenerated polygon Pk whose perimeter is 2distC(b, xk). The
polygon sequence (P0, P1, . . . , Pk) is called the partitioned polygon sequence of
xy. Let x0 = a and xk+1 = b. For each polygon Pi, 0 ≤ i ≤ k, we call xi the left
anchor of Pi and xi+1 the right anchor of Pi. The perimeter of Pi is denoted by
peri(Pi).

Theorem 9. Let C be a simple chain that has an optimal node-0 shortcut S∗

such that |S∗ ∩ V (C)| = 0 and |S∗ ∩ C| ≥ 4. Let P be the partitioned polygon
sequence of S∗. Then there are two polygons Q1 and Q2 in P listed from left to
right, in which Q1 and Q2 are on the different sides of S∗, such that 1

2peri(Q1)+
|xr

1x
r
2| = 1

2peri(Q2) or 1
2peri(Q1) = |xl

1x
l
2|+ 1

2peri(Q2), where xl
i is the left anchor

and xr
i is the right anchor of Qi.

6 Node-1 Shortcuts

Given a simple chain C, let x∗y∗ be an optimal shortcut of C. Since no three
vertices of C are collinear, there are three cases for x∗y∗ ∩ V (C): it is empty,
it contains only one vertex, or it contains two vertices. In Section 5, we give
necessary conditions for x∗y∗ when x∗y∗∩V (C) = ∅. When x∗y∗∩V (C) contains
two vertices, then it is easy to find x∗y∗. In this section, we consider necessary
conditions for x∗y∗ when x∗y∗ ∩ V (C) contains only one vertex of C.

Similar to Theorems 7 and 8, we can prove the following theorem.

Theorem 10. Let C = chain(a, b) be a simple chain and x∗y∗ be an optimal
shortcut of C with left end x∗ and right end y∗ such that x∗y∗∩V (C) = {v} and
x∗y∗ ∩ C = {x∗, v, y∗}. Let a∗

v be the left pivot of v, b∗v be the right pivot of v,
and a′a′′ and b′b′′ be two edges of C such that x∗ ∈ int(a′a′′) and y∗ ∈ int(b′b′′).
Then x∗y∗ has one of the following properties.

Euclidean Chains and Their Shortcuts 151

ba

x

a b

v
y*

(a) (b) (c)

x*x*x* v y
y*

v
y*

ba

v
b*va*

a*v

b*v va*
vb*

Fig. 5. (a) x∗ ∈ chain(a, a∗
v) and y∗ ∈ chain(v, b∗v). (b) x∗, y∗ ∈ chain(a∗

v, b∗v)−{a∗
v, b∗v}.

(c) x∗ ∈ chain(a, a∗
v) − {a∗

v} and y∗ ∈ chain(b∗v, b) − {b∗v}.

(i) x∗ = a∗
v and y∗ = b∗v (refer to Figure 4).

(ii) If x∗ ∈ chain(a, a∗
v) and y∗ ∈ chain(v, b∗v), then x∗ = a∗

v, or y∗ = b∗v, or
distC(a, x∗) = distC(b, y∗) + |y∗v|, or distC(b, y∗) = 1

2 (distC(v, x∗) + |x∗v|)
(see Figure 5(a)).

(iii) If x∗ ∈ chain(a∗
v, v) and y∗ ∈ chain(b∗v, b), then x∗ = a∗

v, or y∗ = b∗v, or
distC(a, x∗) = 1

2 (distC(v, y∗)+ |y∗v|), or distC(b, y∗) = distC(a, x∗)+ |x∗v|.
(iv) If x∗, y∗ ∈ chain(a∗

v, b
∗
v)−{a∗

v, b∗v}, then diam(C∪x∗y∗) = min{distC(a, x)+
|xy| + distC(b, y): x ∈ int(a′a′′), y ∈ int(b′b′′) and xy ∩ C = {x, v, y}}, or
distC(a, x∗) = distC(b, y∗) + |y∗v|, or distC(b, y∗) = distC(a, x∗) + |x∗v|
(see Figure 5(b)).

(v) If x∗ ∈ chain(a, a∗
v) − {a∗

v} and y∗ ∈ chain(b∗v, b) − {b∗v}, then diam(C ∪
x∗y∗) = min{ 1

2 (distC(x, y) + |xy|): x ∈ int(a′a′′), y ∈ int(b′b′′) and xy ∩
C = {x, v, y}}, or distC(a, x∗) = 1

2 (distC(v, y∗) + |y∗v|), or distC(b, y∗) =
1
2 (distC(v, x∗) + |x∗v|) (see Figure 5(c)).

7 Shortcut Ratio

Let C be a simple chain with left end a and right end b, and xy be a shortcut
of C with left end x and right end y. The shortcut ratio of xy is defined by
γC(xy) = diam(C ∪xy)/distC(a, b). In the case with no ambiguity, we use γ(xy)
without subscripts. In this section, we consider some upper bounds and lower
bounds on the shortcut ratio.

It is easy to see that the shortcut ratio can be used to measure whether it
is worth to build a shortcut in practice. It can also be used to measure the
oscillation of chains. For example, let us consider two extreme cases. In the first
case, the chain C is almost flat. Let C be a chain consisting of two edges ac
and bc such that |ac| = |bc| = 1, and x∗y∗ be an optimal shortcut of C. From
Corollary 3, we know that

γ(x∗y∗) =
diam(C ∪ x∗y∗)

distC(a, b)
=

4 +
√

2(1 − cos∠acb)
7 + cos∠acb

.

Thus, when ∠acb approaches 180 degrees, the shortcut ratio approaches 1, which
indicates that the chain is almost flat. We now consider the second case in which
the oscillation frequency of the chain is very high. Let (x1, x2, . . . , xn) be a simple

152 B. Yang

chain such that |x1xn| = 1, |x1x2| = |xn−1xn| = 1/2, |xixi+1| = 1 (2 ≤ i ≤ n−2),
and x1xn passes through all midpoints of edges xixi+1, 2 ≤ i ≤ n − 2. Notice
that

γ(x1xn) =
diam(chain(x1, xn) ∪ x1xn)∑n−1

i=1 |xixi+1|
<

2
n − 2

.

Thus, when n approaches infinite, the shortcut ratio approaches 0, which indi-
cates that the oscillation frequency of the chain is very high.

Theorem 11. For a simple chain C with left end a and right end b, let xy be
its optimal shortcut, and p and q be two points on C such that |pq| = max{|uv| :
u, v ∈ C}. Then

|pq|
distC(a, b)

≤ γ(xy) ≤ 1
2

+
|ab|

2distC(a, b)
.

bv

v’

p

u

w

a

Fig. 6. Strongly monotonic chain chain(a, b)

For simple chains, we know that the shortcut ratio can be very close to 0. But
for strongly monotonic chains, we can show that the shortcut ratio is bounded
from 3

2π .

Theorem 12. Let C be a strongly monotonic chain with left end a and right
end b, and xy be its optimal shortcut. Then γ(xy) > 3

2π .

Proof. We first consider the case that C ∩ ab = {a, b}. Let p and q be the two
intersection points of the two circles with the same radius |ab| and different
centers a and b, respectively. It follows from Theorem 2 that C is contained in

the region bounded by the four circular arcs
�
ap,

�

pb,
�

bq and
�
qa. Assume that

C is contained in the region bounded by the segment ab and two arcs
�
ap and

�

pb (see Figure 6). Note that the length of each arc is |ab|π/3. Let P be the
polygon formed by C ∪ ab. If P is convex, since P must be contained in the

region bounded by ab,
�
ap and

�

pb, we know that distC(a, b) < 2|ab|π/3. Thus
γ(xy) = diam(C∪xy)

distC(a,b) > |ab|
2|ab|π/3 = 3

2π .
If P is not convex, let v ∈ V (C) be a reflex vertex of P and uv and vw be

two edges of C incident on v. Let v′ be a point on the plane such that uvwv′ is a
parallelogram (see Figure 6). Let C′ be the chain obtained from C by replacing

Euclidean Chains and Their Shortcuts 153

the subchain (u, v, w) by (u, v′, w). Since |uv′| = |vw| and |v′w| = |uv|, we can
consider the edge sequence in C′ as a permutation of the edge sequence in C.
Since uv′ and vw have the same slope, and v′w and uv have the same slope, we
can show that C′ is also strongly monotonic.

Let P ′ be the polygon formed by C′∪ab. If P ′ is not convex, we can repeat the
above transformation until the resulted polygon is convex. Since the area of P ′

is strictly greater than that of P and C′ can be considered as a permutation of
C, the number of transformations is at most (|V (C)| − 3)!. Note that the length
of the chain is always equal to distC(a, b). Thus, γ(xy) > 3

2π .
We now consider the case that C ∩ ab = {x1, x2, . . . , xk}, where x1 = a, xk =

b and distC(x1, x2) < distC(x1, x3) < · · · < distC(x1, xk). For each subchain
chainC(xi, xi+1), 1 ≤ i < k, we know that C ∩ xixi+1 = {xi, xi+1}. Thus, from
the above, we have distC(xi, xi+1) < 2π

3 |xixi+1|. Hence,

distC(a, b) =
k−1∑
i=1

distC(xi, xi+1) <
k−1∑
i=1

2π

3
|xixi+1| =

2π

3
|ab| ≤ 2π

3
diam(C ∪ xy).

Therefore, γ(xy) > 3
2π

8 Algorithms

In any realistic computation model, it may be impossible to evaluate the diame-
ter exactly because it may contain square roots that can be irrational numbers.
In this section, we present three approximation algorithms for computing opti-
mal shortcuts of general chains.

Algorithm 1
Input: a chain C and a positive number ε.
Output: a shortcut of C.

1. For each pair of vertices in C, find the maximal shortcut that contains these
two vertices.

2. For each i = 0, 1, . . . , � 180
ε �, we sweep a line whose slope is tan(iε) to find

a shortcut X such that diam(C ∪ X) is minimum among all shortcuts with
slope tan(iε).

3. Find the shortcut S such that diam(C ∪S) is minimum among all shortcuts
found in Steps 1 and 2. Output S.

Theorem 13. Given a chain C with n vertices and a positive number ε, Algo-
rithm 1 can find a shortcut S of C in O(n2 + 1

ε n log n) time such that diam(C ∪
S) ≤ (1 + 1

2ε)diam(C ∪ S∗), where S∗ is an optimal shortcut of C.

From Theorem 13, we know that Algorithm 1 is a fully polynomial-time ap-
proximation scheme, that is, FPTAS. If the length of a chain is not very long,
we have a better approximation algorithm.

Algorithm 2
Input: a chain C and a positive number ε.
Output: a shortcut of C.

154 B. Yang

1. Add a set U of points on C to partition it into pieces such that the length
of each piece is at most ε.

2. For each pair of points in V (C)∪U , find the maximal shortcut that contains
these two points.

3. Find the shortcut S such that diam(C ∪ S) is minimum among all maximal
shortcuts found in Step 2. Output S.

Theorem 14. Given a chain C with n vertices and a positive number ε, Algo-
rithm 2 can find a shortcut S of C in O((n + 1

ε |C|)2n) time such that diam(C ∪
S) ≤ diam(C ∪ S∗) + 6ε, where S∗ is an optimal shortcut of C and |C| is the
length of C.

If the length of a chain is too long but the perimeter of its convex hull is not
long, we can modify algorithm 2 by adding points on the convex hull of the chain
as follows.

Algorithm 3
Input: a chain C and a positive number ε.
Output: a shortcut of C.

1. Find the convex hull CH(C) of V (C). Add a set U of points on CH(C) to
partition it into pieces such that the length of each piece is at most ε.

2. For each pair of points u, v ∈ U , find the maximal shortcut of C that is
contained in the segment uv.

3. For each pair of vertices in C, find the maximal shortcut that contains these
two vertices.

4. Find the shortcut S such that diam(C ∪ S) is minimum among all maximal
shortcuts found in Steps 2 and 3. Output S.

Theorem 15. Given a chain C with n vertices and a positive number ε, Algo-
rithm 3 can find a shortcut S of C in O((1

ε p)2n) time such that diam(C ∪ S) ≤
diam(C∪S∗)+O(ε), where S∗ is an optimal shortcut of C and p is the perimeter
of CH(C).

9 Concluding Remarks

In Section 8, we present three approximation algorithms for computing optimal
shortcuts of general chains. For simple chains, we can use the necessary condi-
tions of optimal shortcuts in Sections 5 and 6 and the following two lemmas to
improve the efficiency of these algorithms.

Let Lg(h) be a straight line with slope g and y-intercept h. When g is fixed,
and h changes, Lg(h) is a function of h, which represents a sweep line with slope
g. Given a chain C, let S(Lg(h)) denote the maximal shortcut induced by Lg(h).
Thus, diam(C∪S(Lg(h))) is a function of h. For simple chains we can show that
this function is unimodal.

Lemma 4. Given a simple chain C and a slope g, let Lg(h) be a sweep line
with y-intercept h and S(Lg(h)) be the maximal shortcut induced by Lg(h). Then
diam(C ∪ S(Lg(h))) is a unimodal function of h.

Euclidean Chains and Their Shortcuts 155

Lemma 5. Let C be a simple chain with left end a and right end b, and x∗y∗

be an optimal shortcut of C with left end x∗ and right end y∗. Let a′ and b′

be two points on C such that distC(a, a′) = distC(b, b′) = 1
3distC(a, b). Then

x∗ ∈ chain(a, a′) and y∗ ∈ chain(b, b′).

A number of interesting questions remain open:

1. Given a chain, how to add k shortcuts such that the new graph has the
minimum diameter?

2. Given a Euclidean graph, how to add a shortcut (or k shortcuts) such that
the new graph has the minimum diameter?

3. Given a Euclidean graph, how to add a k-chain to the graph such that the
new graph has the minimum diameter?

Acknowledgments. Part of this work was done when the author visited the
Chinese University of Hong Kong. The author would like to thank Leizhen Cai
for introducing the minimum diameter problem and having valuable discussions.

References

1. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. C 28, 643–647 (1979)

2. Brown, K.Q.: Comments on Algorithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. C-30, 147–148 (1981)

3. Cai, L.: Personal communication
4. Gudmundsson, J., Haverkort, H., Park, S., Shin, C., Wolff, A.: Facility location and

the geometric minimum-diameter spanning tree. Computational Geometry: Theory
and Applications 27, 87–106 (2004)

5. Ho, J., Lee, D., Chang, C., Wong, C.: Minimum diameter spanning trees and related
problems. SIAM Journal on Computing 20, 987–997 (1991)

6. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction.
Springer, Heidelberg (1985)

7. Spriggs, M., Keil, J.M., Bespamyatnikh, S., Segal, M., Snoeyink, J.: Computing a
(1 + ε)-approximate geometric minimum-diameter spanning tree. Algorithmica 38,
577–589 (2004)

List Dynamic Coloring of Sparse Graphs

Seog-Jin Kim� and Won-Jin Park��

Department of Mathematics Education, Konkuk University, Seoul, South Korea

Abstract. A dynamic coloring of a graph G is a proper coloring of the
vertex set V (G) such that each vertex neighborhood of size at least 2
receives at least two distinct colors. The list dynamic chromatic number
chd(G) of G is the least integer k such that for every list assignment of
size k to each vertex of G, there is a dynamic coloring of G such that
each vertex is colored by a color from its list. We proved that chd(G) ≤ 4
if Mad(G) < 8

3
where Mad(G) is the maximum average degree of G. And

chd(G) ≤ 4 if G is a planar graph of girth at least 7. Both results are
sharp. In addition, we show that chd(G) ≤ 6 for every planar graph G.

Keywords: Dynamic coloring, list coloring, planar graph, maximum
average degree.

1 Introduction

All graphs in this paper are finite, undirected and simple. A dynamic coloring
of a graph G is a proper coloring of the vertex set V (G) such that each vertex
neighborhood of size at least 2 receives at least two distinct colors.. A dynamic
k-coloring of a graph is a dynamic coloring by k colors. The smallest integer k
such that G has a dynamic k-coloring is called the dynamic chromatic number
χd(G) of G.

The relationship between χ(G) and χd(G) has been studied in several papers
(see [2], [5], [6], [9]). The gap χd(G) − χ(G) could be infinitely large for some
graphs, but for some graphs χd(G) − χ(G) is small. It is interesting problem to
study which graphs have small value of χd(G) − χ(G).

Fan, Lai, and Chen [4] showed that χd(G) ≤ 5 if G is a planar graph, and it
is conjectured that χd(G) ≤ 4 if G is a planar graph other than C5. However it
must be a very difficult conjecture by considering the Four color problem. Hence
it would be interesting to study which planar graphs have dynamic chromatic
number at most 4. Meng et al. [8] showed that the dynamic chromatic number
of Pseudo-Halin graphs, which is a class of planar graphs, is at most 4.

As an analogue of Grötzsch’s theorem for planar graph, one can wonder if
there is a constant integer k such that every planar graph of girth at least k has
dynamic chromatic number at most 3 or 4, where the girth of a graph G is the
length of the smallest cycle of G. Since χd(Ck) = 4 where k ≥ 7 and k is not

� skim12@konkuk.ac.kr
�� Department of Mathematics, Seoul National University, eotp11@math.snu.ac.kr

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 156–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

List Dynamic Coloring of Sparse Graphs 157

multiple of 3, it is a natural question what is the smallest integer k that every
planar graph of girth at least k has dynamic chromatic number at most 4, if it
exists.

In this paper, we find conditions on maximum average degree and girth to
guarantee that χd(G) ≤ 4. The maximum average degree, denoted Mad(G), is
maxH⊆G

2|E(H)|
|V (H)| . Since Mad(G) < 2g(G)

g(G)−2 for every planar graph G, studying
dynamic coloring in terms of maximum average degree is a natural approach.

For every vertex v ∈ V (G), let L(v) denote a list of colors available at v.
An L-coloring is a proper coloring φ such that φ(v) ∈ L(v) for every vertex
v ∈ V (G). A graph G is k-choosable if it has an L-coloring whenever all lists
have size at least k. The list chromatic number χl(G) of G is the least integer
k such that G is k-choosable. A dynamic L-coloring is a dynamic coloring of
G such that each vertex is colored by a color from its list. A graph G is called
dynamic k-choosable if it has a dynamic L-coloring whenever all lists have size
at least k. The list dynamic chromatic number chd(G) of G is the least integer
k such that G is dynamic k-choosable.

Note that χ(G) ≤ χd(G) ≤ chd(G) for every graph G. Hence the upper bounds
on chd(G) are also upper bounds on χd(G). In this paper, we find conditions
on maximum average degree and girth to guarantee that chd(G) ≤ 4. We show
that chd(G) ≤ 4 if Mad(G) < 8

3 . The maximum average degree condition is
tight, since there is a graph G such that Mad(G) = 8

3 but χd(G) = 5. The result
implies that chd(G) ≤ 4 if the girth of the planar graph is at least 8 by the
inequality Mad(G) < 2g(G)

g(G)−2 . We improve the girth bound further for planar
graph. We show that list dynamic chromatic number of planar graph G is at
most 4 if the girth of G is at least 7. Again the condition on girth is tight since
there is a planar graph H whose girth is 6 but chd(H) = 5.

In addition, we find an upper bound of list dynamic chromatic number of
planar graphs. We show that chd(G) ≤ 6 for every planar graph G.

2 List Dynamic Coloring of Sparse Graphs

Theorem 1. The list dynamic chromatic number chd(G) is at most 4 if Mad(G)
< 8

3 . This is sharp.

Proof. Suppose that the theorem is false. Let G be a counterexample. That is,
each vertex of G has list assignment L of size 4 and Mad(G) < 8

3 , but G has no
dynamic coloring from the lists. We assume that G has the smallest number of
vertices among such counterexamples.

Claim 1. Minimal counterexample G cannot have two adjacent 2-vertices.

Proof. Suppose that there are adjacent 2-vertices u, v. Without loss of gener-
ality, we may assume that the other neighbor w of u other than v has degree
at least 3 in G since we can select such adjacent 2-vertices. Let v1 be the other
neighbor of v other than u. Let H = G−{u, v}. Note that dH(w) ≥ 2. By induc-
tion hypothesis, H has a dynamic L-coloring c by the minimality of G. Color v

158 S.-J. Kim and W.-J. Park

by a color p in L(v) \ {c(w), c(v1), c(v2)} where v2 is a neighbor of v1 other than
v. And then color u by a color q in L(u) \ {c(w), c(v), c(v1)}. Note that we can
select such colors p and q since |L(v)| ≥ 4 and |L(u)| ≥ 4. Now G has a dynamic
L-coloring. This contradiction completes the proof of Claim 1.

Claim 2. Minimal counterexample G cannot have adjacent 2-vertex and 3-vertex.

Proof. Suppose that 2-vertex v is adjacent to a 3-vertex u. Let w1 and w2 be
the other two neighbors of u other than v, and w3 is the other neighbor of v
other than u. Then we have following two cases.

Case 1: d(wi) ≥ 3 for i = 1, 2.

Let H = G−{u, v}. Then by induction hypothesis, H has a dynamic L-coloring
c. Color the vertex u by a color x in L(u)\ {c(w1), c(w2), c(w3)}. And then color
v by a color in L(u) \ {c(w1), c(w3), x} if c(w1) = c(w2). Otherwise color v by a
color in L(v) \ {c(w3), x}. Then G has a L-dynamic coloring.

Case 2: d(w1) = 2 or d(w2) = 2.

Without loss of generality, we may assume that d(w1) = 2. Let z1 be the other
neighbor of w1 other than u. By Claim 1, d(z1) ≥ 3. Here w2 may be a 2-vertex.
In this case, let z2 be the other neighbor of w2. Again we know that d(z2) ≥ 3.

Let H = G − {u, v, w1} (H = G − {u, v, w1, w2} if d(w2) = 2). Then by
induction hypothesis, H has a dynamic L-coloring c. Color u by a color in
L(u) \ {c(z1), c(w2), c(w3)}. If d(w2) = 2, then color u by a color in L(u) \
{c(z1), c(z2), c(w3)}. And then color the remaining 2-vertices w1, v (w1, w2, v if
d(w2) = 2) greedily. Then G has a dynamic L-coloring. This contradiction com-
pletes the proof of Claim 2.

Now we use discharging method to show that the minimal counterexample
G has maximum average degree at least 8/3, which implies that there is no
counterexample.

We have the following discharging rules.

Discharging Rule: If v is adjacent to 2-vertex w where d(v) ≥ 4, then v gives
charge d(v)−8/3

d(v) to w.
By the discharging rule, we show that every vertex has new charge d∗(v) ≥

8/3. If d(v) = 2, then all neighbors of v have degree at least 4. Hence v receives at
least 2 ·(4−8/3

4). Hence d∗(v) ≥ 2+2/3 = 8/3. If d(v) = 3, then d∗(v) = d(v) = 3.
Now if d(v) ≥ 4, then d∗(v) ≥ d(v) − d(v) · (d(v)−8/3

d(v)) = 8/3.
Hence Mad(G) ≥ 8/3. This contradiction completes the proof of

Theorem 1. ��
Remark 1. The Mad(G) condition is tight. Let G be the graph obtained by
subdividing of the edges of K5. Then Mad(G) = 8/3, but χd(G) = 5. Hence
chd(G) = 5.

Theorem 2. The list dynamic chromatic number chd(G) is at most 4 if G is a
planar graph with girth at least 7.

List Dynamic Coloring of Sparse Graphs 159

Proof. Suppose that the theorem is false. Let G be a minimal counterexample.
Note that G has no cut-edge. Now Claim 1 and Claim 2 also hold for G. Hence
if v is a 2-vertex in G, then the both neighbors of v have degree at least 4.

Define charge φ(v) = d(v)− 4 if v ∈ V (G) and φ(F) = d(F)− 4 if F is a face.
Then ∑

v∈V (G)

φ(v) +
∑

F face
φ(F) = −8

Next we will distribute the charge φ between faces and vertices by the following
discharging rules.

Rule 1: Each face gives charge 1 to each incident 2-vertex.

Rule 2: Each face gives charge 1/3 to each incident 3-vertex.

After discharging, it is easy to show that φ∗(v) ≥ 0 for all vertices. Now we
will show that φ∗(F) ≥ 0 for all faces. Let F be a face and let C be a cycle
whose edge set is the same as the face F . Let n2, n3, and n+

4 be the number
of vertices of 2-vertices, 3-vertices, and vertices of degree at least 4 on the cycle
C, respectively. By Claim 1 and Claim 2, we know that n+

4 ≥ n2 if |C| ≥ 8 and
n+

4 ≥ n2 + 1 if |C| = 7. Hence, if |C| ≥ 8, then

|C| = n2 + n3 + n+
4 ≥ 2n2 + n3.

Thus n2 ≤ 1
2

(|C| − n3

)
. Hence

φ∗(F) ≥ (|C| − 4) − 1
2
(|C| − n3

)− 1
3
n3 =

1
2
(|C| − 8

)
+

1
6
n3 ≥ 0.

On the other hand, if |C| = 7, then

|C| = n2 + n3 + n+
4 ≥ 2n2 + 1 + n3.

Thus n2 ≤ 1
2

(|C| − 1 − n3

)
. Hence

φ∗(F) ≥ (|C| − 4) − 1
2
(|C| − 1 − n3

)− 1
3
n3 =

1
2
(|C| − 7

)
+

1
6
n3 ≥ 0.

Hence φ∗(F) ≥ 0 for every face F . Therefore φ∗(w) ≥ 0 for each w ∈ V (G) ∪
F (G). This implies that

−8 =
∑

v∈V (G)

φ(v) +
∑

F face
φ(F) =

∑
v∈V (G)

φ∗(v) +
∑

F face
φ∗(F) ≥ 0.

This contradiction complete the proof of the theorem. ��
It is a natural question whether there is a constant integer k such that χd(G) ≤ 3
for every connected planar graph G with g(G) ≥ k and Δ(G) ≥ 3. For an answer
for this question, we will show that for any positive integer k where k ≡ 1 (mod 3)
there is a planar graph G of girth k and arbitrary large maximum degree Δ(G)
such that χd(G) = 4.

160 S.-J. Kim and W.-J. Park

Example 1. For each integer k where k = 3s + 1 for some integer s, let G be a
planar graph consisted of (Δ − 1) cycle of length k with common edge uv. The
maximum degree of G is Δ and the girth of G is k. Note that dG(u) = Δ = dG(v)
and the other vertices have degree 2.

Now suppose that G has a dynamic 3-coloring φ. Then without loss of gen-
erality, we may assume that φ(u) = 1 and φ(v) = 2. Then u has a neighbor u1

whose color is 3 to satisfy dynamic coloring. Let C be the cycle that contains
the vertex u1. Since |C| = 3s + 1, the path P = V (C) − {u, v} has 3(s − 1) + 2
vertices. Since the cycle C must satisfy dynamic coloring, the color of the path P
should be repeated by 3, 2, 1, 3, 2, 1 . . . , from the vertex u1. But, since the path
has 3(s − 1) + 2 vertices, we can check easily that the cycle C cannot complete
dynamic coloring. This contradiction implies that χd(G) > 3.

Remark 2. In general, we can extend the result of Theorem 1 for arbitrary integer
k ≥ 4. We can show that chd(G) ≤ k if Mad(G) < 4k

k+2 for k ≥ 4 by an
similar argument in Theorem 1, and this result is also sharp. Note that the
graph G obtained from the complete graph Kk+1 by subdividing every edge has
Mad(G) = 4k

k+2 , but χd(G) = k + 1.

3 List Dynamic Chromatic Number of Planar Graphs

In this section, we will show that chd(G) ≤ 6 for every planar graph G. For an
edge e = v1v2 in G, let d1, d2 denote the degrees of the two endpoints v1 and v2,
respectively, and d∗1, d

∗
2 denote the length of the two faces adjacent to the edge

v1v2. The edge distribution of e is defined by φ(e) = 1
d1

+ 1
d2

+ 1
d∗
1

+ 1
d∗
2
− 1. We

have the following theorem that is essentially same as Lebesque Theorem [7].

Theorem 3. ([4]) If G is a planar graph, then
∑

e∈E(G)

φ(e) = 2.

The edge configuration of an edge is the 4-tuple (x1, x2, x3, x4) such that x1 ≤
x2 ≤ x3 ≤ x4 that are obtained by ordering d1, d2, d

∗
1, d

∗
2. For convenience, we

use (x1, x2, x3, S) where S is a set of numbers, meaning that x4 can be any
integer in S. The following configuration is obtained in [4].

Lemma 1. ([4]) Let G be a planar graph with δ(G) ≥ 3. Then there is an edge
whose configuration is one of the four cases.
(a) (3, 3, 3, [3,∞])
(b) (3, 3, 4, [4, 11])
(c) (3, 3, 5, [5, 7])
(d) (3, 4, 4, [4, 5]).

Theorem 4. chd(G) ≤ 6 for every planar graph G.

Proof. Suppose that the theorem does not hold, and assume that G is a coun-
terexample with |V (G)| minimized and let L be the list assignment of size 6 such
that G has no dynamic list coloring from L.

List Dynamic Coloring of Sparse Graphs 161

Claim 3. δ(G) ≥ 3.

If G has a vertex v of degree 1, then H = G − v is dynamic L-coloring φ. Let u
be the neighbor of v in G. Color v by a color c in L(v) \ {φ(u), φ(u1)} where u1

is a vertex in N(u) different from v. Then G has a dynamic L-coloring. It is a
contradiction.

If G has a vertex v of degree 2, then put H = G − v + xy where x, y are the
neighbors of v in G. Then by the hypothesis, H has a dynamic L-coloring φ.
Color v by a color c in L(v) \ {φ(x), φ(y), φ(x1), φ(y1)} where x1 is a neighbor
of x other than y and y1 is a neighbor of y other than x in G. Then G has a
dynamic L-coloring. It is a contradiction.

Hence we may assume that δ(G) ≥ 3. We prove the following two claims to
complete the proof.

Claim 4. If δ(G) ≥ 3, then G does not have a vertex v such that dG(v) ≤ 5 and
v has a pair of adjacent neighbors.

Let x, y be a pair of adjacent neighbors of v. Let H = G−v. Since G is a minimal
counterexample, H has a dynamic L-coloring φ. Since x, y are adjacent in H , at
least two colors are used in NG(v). Since δ(H) ≥ 2, each neighbor of v is adjacent
to at least two different colors. Color v by a color c in L(v) \ φ(NG(v)), then G
has a dynamic L-coloring. This contradiction completes the proof of Claim 4.

Claim 5. If δ(G) ≥ 3, then G does not have a pair of adjacent vertices u and v
such that dG(u) = 3 and dG(v) ≤ 5.

If NG(u)∩NG(v) �= ∅, then it is done by Claim 4. If NG(u)∩NG(v) = ∅, then let
H = G − {u, v}. Then since G is a minimal counterexample, H has a dynamic
L-coloring φ. Since δ(H) ≥ 2, the each of neighbors of u or v is adjacent to
at least two different colors. Color v by a color c1 in L(v) \ (φ(NG(v) \ {u}) ∪
{φ(u1)}

)
where u1 is a neighbor of u other than v. Also color u by a color c2 in

L(u) \ (φ(NG(u) \ {v}) ∪ {c1, φ(v1)}
)

where v1 is a neighbor of v other than u.
Since dG(u) = 3 and dG(v) ≤ 5, such colors c1, c2 are available. Hence G has a
dynamic L-coloring. It is a contradiction. Hence Claim 5 is proved.

By Lemma 1, there is an edge v1v2 whose configuration is one of the following
four cases. We may assume that d(v1) ≤ d(v2) and d∗1 ≤ d∗2.

Case 1: x1 = x2 = x3 = 3 and x4 ∈ [3,∞].

In this case, the degree of v1 is 3 and a pair of neighbors of v1 are adjacent. It
cannot happen by Claim 4.

Case 2: x1 = x2 = 3 and x3 = 4 and 4 ≤ x4 ≤ 11.

If d1 = d2 = 3, then it is a contradiction by Claim 5. Otherwise, d(v1) ≤ 4 and
a pair of neighbors of v1 are adjacent. It cannot happen by Claim 4.

Case 3: x1 = x2 = 3 and x3 = 5 and 5 ≤ x4 ≤ 7.

162 S.-J. Kim and W.-J. Park

If d1 = d2 = 3, then it is a contradiction by Claim 5. Otherwise, d(v1) ≤ 5 and
a pair of neighbors of v1 are adjacent. It cannot happen by Claim 4.

Case 4: x1 = 3, x2 = x3 = 4 and 4 ≤ x4 ≤ 5.

If d∗1 = 3, then it is a contradiction by Claim 4. Otherwise, d(v1) = 3 and
d(v2) = 4. It cannot happen by Claim 5.

Therefore none of the above four cases happens. It is a contradiction. Hence
there is no counterexample. Thus chd(G) ≤ 6 for every planar graph G. ��
We have found a sharp girth condition to guarantee that chd(G) ≤ 4 for every
planar graph G. But, we do not know a sharp girth condition to have that
χd(G) ≤ 4 for every planar graph G. It would be an interesting problem to
check if χd(G) ≤ 4 for every planar graph G of girth at least 4. We showed that
chd(G) ≤ 6 for every planar graph G. But, it is not known whether the upper
bound chd(G) ≤ 6 is tight or not. Hence it would be interesting to answer the
following question.

Question 1. Is it true that chd(G) ≤ 5 for every planar graph?

Acknowledgements. We thank Professor A.V. Kostochka and Professor D.B.
West for helpful discussion.

References

1. Akbari, S., Ghanbari, M., Jahanbekam, S.: On the list dynamic coloring of graphs.
Discrete Applied Mathematics 157, 3005–3007 (2009)

2. Alishahi, M.: On Dynamic coloring of graphs (2009) (manuscript)
3. Esperet, L.: Dynamic list coloring of bipartite graphs, to appear at Discrete Applied

Mathematics
4. Fan, S., Lai, H.-J., Chen, Y.: Conditional coloring for planar graphs and graphs of

higher genus (manuscript)
5. Lai, H.-J., Lin, J., Montgomery, B., Poon, H.: Upper bounds of dynamic chromatic

number. Ars Combinatoria 68, 193–197 (2003)
6. Lai, H.-J., Lin, J., Montgomery, B., Shui, T., Fan, S.: Conditional colorings of graphs.

Discrete Math. 306, 1997–2004 (2006)
7. Lebesque, H.: Quelques conséquences simples de la formule d’Euler. J. de Math. 9,

Sér. 19, 27–43 (1940)
8. Meng, X., Miao, L., Su, B., Li, R.: The Dynamic Coloring Numbers of Pseudo-Halin

Graphs. Ars Combinatoria 79, 3–9 (2006)
9. Montgomery, B.: Dynamic coloring of graphs, Ph.D. dissertation, West Virginia

University (2001)

Further Improvement on Maximum Independent

Set in Degree-4 Graphs�

Mingyu Xiao1 and Hiroshi Nagamochi2

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China

myxiao@gmail.com
2 Department of Applied Mathematics and Physics,

Graduate School of Informatics, Kyoto University, Japan
nag@amp.i.kyoto-u.ac.jp

Abstract. We present a simple algorithm for the maximum independent
set problem in an n-vertex graph with degree bounded by 4, which runs in
O∗(1.1526n) time and improves all previous algorithms for this problem.
In this paper, we use the “Measure and Conquer method” to analyze the
running time bound, and use some good reduction and branching rules
to avoid tedious checking on a large number of local structures.

Keywords: Exact Algorithm, Independent Set, Measure and Conquer.

1 Introduction

The maximum independent set problem (MIS), to find a maximum set of ver-
tices in a graph such that there is no edge between any two vertices in the set,
is not only a basic problem introduced in Garey and Johnson’s work [10] on
NP-completeness, but also one of the most important problems in the line of re-
search on worst-case analysis of algorithms for NP-hard optimization problems.
Since Tarjan and Trojanowski [16] published the first nontrivial O∗(2n/3)-time
algorithm in 1977, the bound of the running time to exactly solve the prob-
lem has been improved frequently [11,14,15,7,12,3]. One of the most important
results among them is that due to Fomin et al. [7], in which they use a new
method called “Measure and Conquer” to analyze simple algorithms. By using
this method together with other techniques, recently Kneis et al. [12] and Bour-
geois et al. [3] improved the running time bound to O∗(1.2132n) and O∗(1.2127n)
respectively. Up to till now, these are the best published results for MIS.

One of the most important subcases to solve MIS is the problem in low-degree
graphs. Since we can simply branch on a high-degree vertex by including it into
the independent set or excluding it from the independent set, and then reduce
the graph greatly in the subbranches, sometimes the problem in degree-i graphs
(graphs with maximum degree i) for small i will become the bottleneck for solving
the problem in general graphs. Bourgeois et al. [3] also used a bottom-up method

� Partially supported by National Natural Science Foundation of China under the
Grant 60903007.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 163–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 M. Xiao and H. Nagamochi

to get improvements on MIS. In this method, the running time bounds for MIS
in degree-3 graphs (MIS3) and MIS in degree-4 graphs (MIS4) will directly affect
the algorithms and running time bounds for the problem in other degree bounded
graphs and general graphs. Motivated by these, researchers have great interests in
designing fast algorithms for MIS3 and MIS4. For MIS3, we quote theO∗(1.1259n)-
time algorithm by Beigel [1], the O∗(1.1225n)-time algorithm by Fomin and Høie
[8], the O∗(1.1120n)-time algorithm by Fürer [9], the O∗(1.1034n)-time algorithm
by Xiao et al. [18], the O∗(1.0892n)-time algorithm by Razgon [13], the
O∗(1.0885n)-time algorithm by Xiao [19], and finally the O∗(1.0854n)-time algo-
rithm by Bourgeois et al. [2]. For MIS4, MIS in degree-5 graphs (MIS5) and MIS
in degree-6 graphs (MIS6), the best previous results are O∗(1.1571n), O∗(1.1918n)
and O∗(1.2071n) respectively [3], which are designed by using a bottom-up method
based on a fast algorithm for MIS3. In this paper, we will design a simple algorithm
for MIS4 by using “Measure and Conquer,” which runs in O∗(1.1526n) time and
improves all previous algorithms for this problem.

Most fast exponential-time algorithms are based on a branch-and-reduce
paradigm, which contains two main steps. We first check whether we can get
partial solution and reduce the current problem directly according the reduction
rules, and then branch the problem instance into several smaller instances ac-
cording to the branching rules. To scale the size of the instance, we may need to
use a parameter, such as the number of vertices or edges for graph problems, as
a measure of the size of the instance. By bounding the size of the search tree to
a function of the parameter, we will get a running time bound relating to the pa-
rameter for the problem. For MIS, we branch on the current graph G into several
graphs G1, G2, . . . , Gl such that the parameter wi of each graph Gi is less than
the parameter w of graph G, and a maximum independent set in G can be found
in polynomial time if a maximum independent set in each of the l graphs G1,
G2, . . . , Gl is known. Usually, Gi (i = 1, 2, . . . , l) are obtained by deleting some
vertices in G. We can build up a search tree according to our branching rules,
and the exponential part of the running time of the algorithm corresponds to the
size of the search tree. The running time analysis leads to a linear recurrence for
each node in the search tree that can be solved by using standard techniques. By
letting C(w) denote the worst-case size of the search tree when the parameter
of graph G is w, we get the recurrence relation C(w) ≤∑l

i=1 C(w − w′
i), where

w−w′
i = wi. Solving the recurrence, we get C(w) = [α(w′

1, w
′
2, . . . , w

′
l)]

w , where
α(w′

1, w
′
2, . . . , w

′
l) is the largest root of the function f(x) = 1 −∑l

i=1 x−w′
i . As

for the measure (the parameter w), we should guarantee that when parameter
w ≤ 0 the problem can be solved directly and in each step (applying reduction
rules or branching rules) the parameter will not increase. A natural measure is
the number of vertices or edges in the graph. Note that to get fast algorithms
by this method, we hope that w′

i (i = 1, 2, . . . , l) in the above recurrence are as
large as possible. To get large values of them, some papers check a large num-
ber of local structures of the graph and get numerous branching rules. However,
the “Measure and Conquer” method tries to improve the recurrences in another
way. In this method, we set a weight to each vertex in the graph according to

Further Improvement on Maximum Independent Set in Degree-4 Graphs 165

the degree of the vertex (usually vertices of the same degree receive the same
weight) and use the sum of the weights in the graph as the measure. Note that
when a vertex v is deleted, we may reduce the measure not only from v but also
from the neighbors of v (the degrees of the neighbors will decrease by 1). Com-
pared to traditional measures, the weighted measure may catch more structure
information of the graph and can get further improvement without modifying
the algorithms. Currently, the best exact algorithms for many NP-hard problems
are designed by this method. However, we should choose a good weight for the
vertices, which is an important step in this method. To do this, we may need to
solve a quasiconvex program. In this paper we also use the branch-and-reduce
paradigm and the “Measure and Conquer” method to design our algorithm.

The rest of the paper is organized as follows. Section 2 gives the notation that
maybeused in thepaper. Sections 3and4 introduce the reduction rules andbranch-
ing rules, respectively. Section 5 presents our simple algorithm. Section 6 analyzes
the running time bound. Finally Section 7 makes some concluding remarks.

2 Notation System

Given a graph G = (V, E), the number vertices of degree i in the graph is
denoted by ni and the total number of vertices in the graph is denoted by n. For
a vertex v in a graph, d(v) is the degree of v, N(v) the set of all neighbors of v,
N [v] = N(v)∪{v} the set of vertices with distance at most 1 from v, and N2(v)
the set of vertices with distance exactly 2 from v, and N2[v] = N2(v) ∪ N [v].
We may also use N(V ′) to denote the neighbors of a set V ′ of vertices, i.e.,
N(V ′) = ∪v∈V ′N(v) − V ′. A line graph of graph G is the graph whose vertices
are corresponding to the edges of G, and two vertices are adjacent if and only
if the corresponding two edges sharing a same endpoint in G. In our algorithm,
when we remove a set of vertices, we also remove all the edges that are incident
on it. Throughout the paper we use a modified O notation that suppresses all
polynomially bounded factors. For two functions f and g, we write f(n) =
O∗(g(n)) if f(n) = g(n)poly(n), where poly(n) is a polynomial in n.

3 Reduction Rules

Reduction rules are used to reduce the size of instances of the problem directly
before applying the branching rules. Reduction rules will not exponentially in-
crease the size of our search tree. Furthermore, the reduction operations will
reduce some special local structures of the graph, and then the branching rules
can apply effectively in the resulted graphs. Most of the reduction rules used
here are well-known in the literature. Some of them are newly introduced.

Folding degree-1 vertices
Folding a degree-1 vertex v means removing v together with its neighbor u from
the graph.

Folding degree-2 vertices
Folding a degree-2 vertex v (with two neighbors a and b) means

166 M. Xiao and H. Nagamochi

Fig. 1. Illustrations of folding operations

(a) removing v, a and b from the graph, when a and b are adjacent.
(b) contracting v, a and b into a single vertex s, when a and b are nonadjacent.

Figure 1 illustrates the operation in case (b) of folding a degree-2 vertex.
We may also reduce a special case of degree-3 vertices. Let v be a degree-3
vertex, and a, b, c the three neighbors of v. If two neighbors of v, say b and c, are
adjacent, then we say that the four vertices compose a bottle and denote it by
a-v-{b, c}. Specially, when a is a degree-3 vertex, we say that bottle a-v-{b, c} is
a weak bottle. For a bottle, we have the following reduction rule.

Folding bottles
In the operation of folding a bottle a-v-{b, c}, we add two adjacent vertices sab

and sac, add edges between sab and each vertices in N(a) ∪ N(b), add edges
between sac and each vertices in N(a) ∪ N(c), and delete N [v] from the graph.

Figure 1 illustrates the operation of folding a bottle. Let α(G) denote the size
of a maximum independent set of graph G and G�(v) the graph after folding
a degree-1 or degree-2 vertex v or a bottle a-v-{b, c} in G. Then we have the
following lemma.

Lemma 1. For any degree-1 or degree-2 vertex v or a bottle a-v-{b, c} in graph
G, we have α(G) = 1 + α(G�(v)).

The correctness of the reduction rules has been discussed in many references [4,7].
In fact, folding a bottle is a special case of a reduction rule introduced in [7]. We
give a new name of the local structure just for the convenience of the analysis.
Note that in our algorithm, we will just reduce weak bottles and keep some other
bottles, because applying this reduction rule to non-weak bottles increases our
measure (defined in Section 6), which is unexpected in our algorithm.

In our algorithm, we will also use the following reduction rule. If two inde-
pendent degree-3 vertices v and u have three common neighbors a, b and c, then
we say that the five vertices compose a 2-3 structure (see Figure 1), and denote
it by {v, u}-{a, b, c}.

Further Improvement on Maximum Independent Set in Degree-4 Graphs 167

Folding 2-3 structures
Folding a 2-3 structure A-B means contracting A ∪ B into a singe vertex and
deleting parallel edges and self-loops from the graph.

Lemma 2. If graph G has a 2-3 structure, then α(G) = 2 + α(G�), where G�

is the graph obtained from G by folding a 2-3 structure in G.

The above lemma is proved in [19]. In fact, it is a special case of the crown
reduction introduced in [5].

Dominance
We say that a vertex u dominates another vertex v if N [u] ⊆ N [v].

Lemma 3. If a vertex v is dominated by any other vertices in graph G, then

α(G) = α(G − {v}).

Line graphs
If graph G is a line graph of graph G′, we find a maximum independent set of
G directly by finding a maximum matching in G′ and taking the corresponding
vertex set in G as the solution.

Not every graph is a line graph. There are several good methods to check
whether a graph is a line graph or not, which depend on characterizations of
line graphs [17]. In this paper, we only need to check whether a graph is a line
graph of a 3-regular graph, which can be easily done (note that a graph is a line
graph of a 3-regular graph if and only if the graph has only degree-4 vertices
and each of them is contained in two edge-disjoint triangles).

Bipartite graphs
If graph G is a bipartite graph, we find a maximum independent set of G in
polynomial time by Hungarian Algorithm.

Definition 1. A graph is called a reduced graph, if it contains none of degree-1
vertices, degree-2 vertices, weak bottles, 2-3 structures and dominated vertices,
and has no connected component which is a line graph of a 3-regular graph or a
bipartite graph.

4 Branching Rules

In the algorithm, we may branch on a vertex v of maximum degree by including
it into the independent set or excluding it from the independent set. That is, in
the first branch we will delete N [v] from the graph and in the second branch
we will delete v from the graph. Besides this branching rule, we also use other
two branching rules, branching on a 4-cycle and branching on a bottle, first
introduced in [19].

For four vertices a, b, c and d in graph G, we say that abcd is a 4-cycle in G
if there are four edges ab, bc, cd and da.

168 M. Xiao and H. Nagamochi

Lemma 4. Let abcd be a 4-cycle in graph G. For any independent set S in G,
either a, c /∈ S or b, d /∈ S.

Proof. Since any independent set contains at most 2 vertices in a 4-cycle and the
two vertices cannot be adjacent, we know the lemma holds.

Based on Lemma 4, we get the following branching rule.

Branching on a 4-cycle
Branching on a 4-cycle abcd means branching by either excluding a and c from
the independent set or excluding b and d from the independent set.

We have introduced a reduction rule that can reduce bottles. However, we just
use the rule to reduce weak bottles. For other kinds of bottles, we may use some
branching rules to deal with them.

Lemma 5. Let a-v-{b, c} be a bottle in graph G. Then there is a maximum
independent set S in G such that either a ∈ S or v ∈ S.

Proof. If a is not in a maximum independent set, we can directly remove a from
the graph. In the remaining graph v becomes a degree-2 vertex and the two
neighbors of it are adjacent. In this case, there is a maximum independent set
that contains v.

Based on Lemma 5, we get the following branching rule.

Branching on a bottle
Branching on a bottle a-v-{b, c} means branching by either including a in the
independent set or including v in the independent set.

5 The Algorithm for MIS4

We call a degree-4 vertex a good degree-4 vertex if it is not contained in two
edge-disjoint triangles. Our algorithm for MIS4 is described in Figure 2.

6 The Analysis

We will use the measure and conquer method to analyze the running time bound
of our algorithm. We set a weight to each vertex in the graph according to the
degree of the vertex, w : Z+ → R+ (where Z+ and R+ denote the sets of
nonnegative integers and nonnegative reals, respectively): we denote by wi the
weight w(v) of a vertex v of each degree i ≥ 0. Then we adopt w =

∑
i wini as

the measure of the graph. We will show that when w ≤ 0, the problem can be
solved in polynomial time. Note that we allow the weight wi of a vertex to be a
number greater than 1. We predecide the value of wi for i �= 3 by the following
formula:

wi =

⎧⎪⎪⎨⎪⎪⎩
0 if i ≤ 2,
1 if i = 4,
1 + w3 if i = 5,
2 + (i − 6)(1 − w3) if i ≥ 6.

Further Improvement on Maximum Independent Set in Degree-4 Graphs 169

Input: A graph G.
Output: The size of a maximum independent set in G.

1. If {There is a degree-1 or degree-2 vertex v or a weak bottle a-v-{b, c}},
return 1 + MIS4(G�(v)).

2. If {There is a 2-3 structure}, return 2 + MIS4(G�).
3. If {∃v, u ∈ V : N [u] ⊆ N [v]}, return MIS4(G − {v}).
4. If {The graph has a component P that has at most 15 vertices, or is the

line graph of a 3-regular graph or a bipartite graph}, return t+MIS4(G−
P), where t is the size of a maximum independent set in P .

5. If {There is a vertex of degree ≥ 5}, pick up a vertex v of maximum
degree, and return max{MIS4(G − {v}), 1 + MIS4(G − N [v])}.

6. If {There is a bottle a-v-{b, c} such that one of b and c is a degree-4
vertex}, return max{1 + MIS4(G − N [a]), 1 + MIS4(G − N [v])}.

7. If{There is a 4-cycle abcd that contains a degree-4 vertex}, return
max{MIS4(G − {a, c}), MIS4(G − {b, d})}.

8. If {There are two adjacent degree-4 vertices}, pick up a good degree-
4 vertex v that is adjacent to at least one degree-4 vertex, and return
max{MIS4(G − {v}), 1 + MIS4(G − N [v])}.

9. If {There are still some degree-4 vertices}, pick up a degree-4 vertex v such
that the number of degree-3 vertices in N2(v) is maximized, and return
max{MIS4(G − {v}), 1 + MIS4(G − N [v])}.

10. Else {The graph is a 3-regular graph}, we use a fast algorithm for MIS3
to solve the problem and return a solution.

Note: With a few modifications, the algorithm can provide a maximum inde-
pendent set itself.

Fig. 2. The Algorithm MIS4(G)

We only need to assign the value to w3, which decides the value of wi for all
other i’s. In the analysis, by solving a finite dimensional quasiconvex program,
we will get that w3 = 0.5908. Note that when measure w = 0, the graph has
only degree-0, degree-1 and degree-2 vertices and the maximum independent set
problem can be solved in linear time. This is the boundary condition of our
search tree. Initially, the graph has no vertex of degree > 4. We also have that
wi ≤ 1 for i = 0, 1, 2, 3, 4. Then at the beginning the measure w is not greater
than the number n of vertices. If we can get a running time bound related to
measure w, then we can also get a running time bound related to n. To get
a running time bound of the algorithm, we show that the measure w will not
increase when we apply the reduction rules and analyze how much we can reduce
the measure w in each branching step in the algorithm.

6.1 Preliminaries

Lemma 6. The measure w of a graph will not increase, if we apply the reduction
rules of folding a degree-1 or degree-2 vertex, a weak bottle or a 2-3 structure,

170 M. Xiao and H. Nagamochi

or removing a dominated vertex, a connected component of a line graph of a
3-regular graph or a bipartite graph.

It is a simple matter to verify the lemma by straightforward calculations. Note
that folding non-weak bottles may increase w, which is not contained in our
reduction rules.

Next, we focus on the analysis for branching rules. We will use Δwi to denote
wi − wi−1 for i ≥ 1. Then

Δwi =

⎧⎨⎩
0 if i = 1 or 2,
w3 if i = 3 or 5,
1 − w3 if i = 4 or ≥ 6.

In our algorithm, to simplify the analysis, we will also require that 2/3 ≥ w3 ≥
0.5. This restriction is the 1-st constraint in our quasiconvex program to solve
the best value of w3. Then we have that w3 ≥ 1 − w3, w3 ≤ 2(1 − w3) and
Δwi ≥ 1−w3 for i ≥ 3. These properties will be used frequently in our analysis.
We may not claim this every time. For example, we consider the change of
weights when we remove a set X of vertices from a graph with minimum degree
at least 3. If there are 3k + i (i ∈ {−1, 0, 1}) edges between X and V −X , then
we observe that the total weight in the remaining set V − X decreases at least
by kw3 + (1 − w3)δ, where δ = 1 when i = 1, or δ = 0 otherwise.

6.2 Step 5

After Step 4, the graph is a reduced graph where the minimum degree is at least
3. In Step 5, the algorithm will branch on a vertex v of maximum degree by
excluding it from the independent set or including it into the independent set.
In the first branch, we will delete v from the graph. In the second branch, we will
delete N [v] from the graph. We use Δout(v) and Δin(v) to denote the amount
of w being reduced in the corresponding two branchings respectively. Assume
that v is of degree d ≥ 5 and has di neighbors of degree i. Then d =

∑d
i=3 di.

To analyze how much w can be reduced in each branch, we consider two cases.
When d ≥ 6, we get:

Δout(v) = wd +
d∑

i=3

diΔwi ≥ wd + d(1 − w3) ≥ w6 + 6(1 − w3) = 8 − 6w3,

and

Δin(v) = wd +
d∑

i=3

diwi ≥ w6 + 6w3 = 2 + 6w3.

Let C(w) denote the worst-case size of the search tree when the parameter of
the graph is w. We have the following recurrence

C(w) = C(w−Δout(v))+C(w−Δin(v)) ≤ C(w−(8−6w3))+C(w−(2+6w3)).

Further Improvement on Maximum Independent Set in Degree-4 Graphs 171

This recurrence will generate the 2-nd constraint in our quasiconvex program to
solve the best value of w3.

When d = 5, it holds d = d5 + d4 + d3, and we get:

Δout(v) = w5 + d5w3 + d4(1 − w3) + d3w3 = 1 + 6w3 + (1 − 2w3)d4.

In the branch where v is included into the independent set, we will reduce all
vertices in N [v] and reduce the degree of the vertices in N2(v). For each vertex
v′ ∈ N(v), there is an edge between v′ and a vertex in N2(v), otherwise v′ would
dominate v. Hence there are at least |N(v)| ≥ 5 edges between N [v] and N2(v),
and deleting N [v] reduces w by more than 2w3 from N2(v). We get

Δin(v) ≥ wd +
∑5

i=3 diwi + 2w3 ≥ w5 + d4 + (5 − d4)w3 + 2w3

= 1 + 8w3 + (1 − w3)d4.

Therefore, we get the recurrence for the case d = 5:

C(w) = C(w − Δout(v)) + C(w − Δin(v))
≤ C(w − (1 + 6w3 + (1 − 2w3)d4)) + C(w − (1 + 8w3 + (1 − w3)d4)).

By replacing d4 with 0, 1, 2, 3, 4 and 5 in the above relation, we can get six
different recurrences. These six recurrences will generate the 3-rd to the 8-th
constraints in our quasiconvex program to solve the best value of w3.

6.3 Step 6

In this step, the graph is a reduced graph where there is no weak bottle and each
vertex is of degree 3 or 4. If the graph contains a bottle a-v-{b, c} such that at
least one of b and c, say b, is a degree-4 vertex, then the algorithm will branch
on it by removing N [a] or N [v]. Note that the degree of a is 4, since there is
no weak bottle in the graph. Also there is no edge between a and b or a and c,
otherwise v would dominate b or c.

First, we look at the branch where N [a] is removed. There are at least 5 edges
between N [a] and N2(a), otherwise a neighbor of a would dominate a. We also
see that N2(a) contains at least three vertices, two of which are b and c, otherwise
the graph would not be a reduced graph. If |N [a]| = 3, then after removing N [a],
we can reduce w by at least 1+2(1−w3) = 3−2w3 from N2(a) (1 from b, 1−w3

from c and 1−w3 from another vertex in N2(v)). If |N [a]| > 3, we can reduce w by
at least 5(1−w3) from N2(a) after removing N [a]. Note that 5(1−w3) ≥ 3−2w3.
We can also reduce w by at least 1 + 4w3 from N [a] itself. Then in this branch,
we can always reduce w by at least 1 + 4w3 + 3 − 2w3 = 4 + 2w3.

For the branch where N [v] is removed, we consider two cases: the degree
of c is 3 or 4. When c is a degree-3 vertex, there are 6 edges between N(v)
and N2(v). Note that b and c have no common neighbor in N2(v), otherwise
c would dominate b. Hence it is impossible to create a degree-0 vertex after
removing N [v]. Then after removing N [v], we can reduce w by at least 3w3 from
N2(v) (note that w3 ≤ 2(1 − w3)). Then in this branch, totally we can reduce

172 M. Xiao and H. Nagamochi

w by at least 2 + 2w3 + 3w3 = 2 + 5w3. When c is a degree-4 vertex, there
are 7 edges between N(v) and N2(v). Note that b and c can have at most one
common neighbor in N2(v), otherwise c would dominate b. Hence it is impossible
to create two degree-0 vertices after removing N [v]. Then after removing N [v],
we can reduce w by at least 3w3 from N2(v) too. Totally we can reduce w by at
least 3 + w3 + 3w3 = 3 + 4w3 > 2 + 5w3.

In this step, we can always branch with the following recurrence

C(w) ≤ C(w − (4 + 2w3)) + C(w − (2 + 5w3)). (1)

Note that after this step, the graph has no triangle that contains both degree-3
and degree-4 vertices.

6.4 Step 7

In this step, we will branch on 4-cycles that contain at least one degree-4 vertex.
Without loss of generality, we assume that the algorithm will branch on 4-cycle
abcd, where a is a degree-4 vertex.

According to the branching rule, our algorithm will branch by removing either
{a, c} or {b, d} from the graph. We distinguish the following five cases.

Case 1: There is only one vertex a of degree 4 in the 4-cycle where a and c (b
and d) are not adjacent, otherwise a (b) would dominate c (d). We assume that
a′ and a′′ are the third and fourth neighbors of a, b′ is the third neighbor of b,
c′ is the third neighbor of c, and d′ is the third neighbor of d (see Figure 3(a)
for an illustration). Note that b′ �= d′, otherwise {b, d}-{a, c, b′ = d′} would be
a 2-3 structure. Also {b′, d′} ∩ {a′, a′′, c′} = ∅, otherwise there would be a weak
bottle.

In the branch where {a, c} are removed, b and d will become degree-1 vertices.
The algorithm will apply the reduction rules to reduce degree-1 vertices imme-
diately. Then b′ and d′ will be removed. Totally, at least 6 vertices a, b, c, d, b′

a′ a′′

a

b
d

c

b′

d ′

c′

a′

a

b
d

c

b′

d ′

c′′

a′ a′′

a

b
d

c

b′

d ′

c′

b′′

a′′

c′

Fig. 3. Branching on 4-cycles

Further Improvement on Maximum Independent Set in Degree-4 Graphs 173

and d′ are removed from the graph. There are also at least 5 edges between
V ′ = {a, b, c, d, b′, d′} and V − V ′ (there may not be 7 edges when b′ and d′ are
adjacent). We consider how much we can reduce w from V − V ′ after removing
V ′. If |N(V ′)| ≥ 3, we can reduce w by at least w3 + 2(1 − w3) = 2 − w3. If
|N(V ′)| = 2, we can either reduce w by 1 + (1 − w3) (at least one vertex in
N(V ′) is a degree-4 vertex) or reduce w by at least 2w3 (both vertices in N(V ′)
are degree-3 vertices) together with some degree-1 vertex created. For the later
case, we can further reduce w by at least 1 − w3 by folding degree-1 vertices,
and together can reduce w by at least 2w3 + (1 − w3) = 1 + w3 from V − V ′.
For any case, we can reduce w by at least 2−w3 from V −V ′ after removing V ′

(note the w3 ≥ 1 − w3). Then in this branch we can reduce w by at least

1 + 5w3 + 2 − w3 = 3 + 4w3.

In the branch where {b, d} are removed, c will become a degree-1 vertex and
we will further remove c′ from the graph. Note that there are at least 6 edges
between V ′ = {b, c, d, c′} and V − V ′. After removing V ′, we can reduce w by 1
from vertex a and reduce w by at least 2w3 from V − V ′ ∪ {a} (note that it is
impossible to create a degree-0 vertex after removing V ′, otherwise the graph is
not a reduced graph). Then in this branch we can reduce w by at least

4w3 + 1 + 2w3 = 1 + 6w3.

For this case, we can always branch with the following recurrence

C(w) ≤ C(w − (3 + 4w3)) + C(w − (1 + 6w3)). (2)

Case 2: There are two degree-4 vertices a and c in the 4-cycle. Let b′ and d′ be
the third neighbor of b and of d respectively. Note that b′ �= d′ holds, b′ (d′) is not
adjacent to a or c, and a and c are not adjacent to each other, since the graph
is a reduced graph that has no triangle containing both degree-3 and degree-4
vertices. See Figure 3(b) for an illustration of this case.

It is easy to see that in the branch where {b, d} are removed, we can reduce w
by 2w3 from b and d, by 2 from a and c, and by at least 2(1−w3) from b′ and d′.
Totally, we can reduce w by 2w3 + 2 + 2(1−w3) = 4. In the branch where {a, c}
are removed, b and d become degree-1 vertices and we will also further remove
b′ and d′. Let V ′ = {a, b, c, d, b′, d′}. We consider how much we can reduce w
from V − V ′ after removing V ′. Note that there are at least 6 edges between V ′

and V − V ′ (b′ and d′ may be adjacent) and |N(V ′)| ≥ 4. Then we can reduce
w by at least w3 + 3(1 − w3) from V − V ′. Totally we can reduce w by at least
2 + 4w3 + w3 + 3(1 − w3) = 5 + 2w3. For this case, we can branch with

C(w) ≤ C(w − 4) + C(w − (5 + 2w3)). (3)

Case 3: There are two degree-4 vertices a and b (or a and d) in the 4-cycle. Assume
without loss of generality that a and b are the degree-4 vertices in the cycle where
c (d) is not adjacent to a (b) since it dominates no other vertex. Define a′, a′′, b′,

174 M. Xiao and H. Nagamochi

c′ and d′ as in Case 1, and let b′′ be the fourth neighbor of b (see Figure 3(c) for
an illustration). Since the graph has no weak bottle, c′ (d′) is different from any
of b′, b′′ (a′, a′′) whereas d′ ∈ {b′, b′′} and {a′, a′′}∩{b′, b′′, c′} �= ∅ and c′ = d′ are
possible. We look at the branch where {a, c} are removed. Vertex d will become a
degree-1 vertex and we will further fold the degree-1 vertex d by removing d and
its third neighbor d′. Then in this branch we will remove N [d]. We consider how
much we can reduce w from V −N [d] after removing N [d]. Note that at most one
pair of vertices in N(d) can be adjacent (for this case, c′ = d′). There are at least
5 edges between N(d) and N2(d). Since a′, a′′, b ∈ N2(d), it holds |N2(d)| ≥ 3. If
|N2(d)| ≥ 4, then we can reduce w by at least 1+3(1−w3) from N2(d) (1 from b
and 3(1−w3) from the other vertices in N2(d)). For the case of |N2(d)| = 3, we
may only guarantee that w will be reduced by at least 1+2(1−w3) from N2(d).
However, when the worst case happens, a′ or a′′ ∈ N2(d) will become a degree-1
vertex. By further reducing degree-1 vertices, we can further reduce w by at least
1 − w3 (note that the graph has more than 15 vertices). Therefore, we still can
reduce w by at least 1 + 3(1 − w3) from V − N [d]. In the branch where {a, c}
are removed, we can always reduce w by at least 1 + 3w3 + 1 + 3(1 − w3) = 5.
This also holds for the branch where {b, d} are removed. We can branch with

C(w) ≤ 2C(w − 5). (4)

Case 4: There are three degree-4 vertices in the 4-cycle. Without loss of gener-
ality, we assume that the three degree-4 vertices are a, b and c. Note that a and
c are not adjacent and the third neighbor d′ of d is not adjacent to a or c. In
the branch where {a, c} are removed, vertex d becomes a degree-1 vertex and we
further fold d by removing {d, d′}. Then we can reduce w by 3 from {a, b, c}, at
least 2w3 from {d, d′}, and at least 2w3 from V − {a, b, c, d, d′}. Totally, we can
reduce w by at least 3 + 4w3. In the other branch, we can reduce w by at least
3 + w3 + 2w3 = 3 + 3w3. We get recurrence

C(w) ≤ C(w − (3 + 4w3)) + C(w − (3 + 3w3)). (5)

Case 5: All the vertices in the 4-cycle are degree-4 vertices. Note that for this
case, a and c (also, b and d) may be adjacent to each other. It is easy to see that in
each branch we can reduce w by 4 from {a, b, c, d} and at least w3 +(1−w3) = 1
from V − {a, b, c, d}. We get the same recurrence as (4).

Note that after this step, no degree-4 vertex is contained in a 4-cycle.

6.5 Step 8

First of all, we show that there is always a good degree-4 vertex adjacent to
another degree-4 vertex if the graph has two adjacent degree-4 vertices in this
step. Note that if all vertices in a connected component are degree-4 vertices
and none is a good degree-4 vertex, then this component is the line graph of a
3-regular graph, which will be reduced in Step 4. Otherwise, there is a degree-4
vertex v adjacent to both degree-3 and degree-4 vertices. If v is contained in

Further Improvement on Maximum Independent Set in Degree-4 Graphs 175

two edge-disjoint triangles, then there is triangle that contains both degree-3
and degree-4 vertices, which will form a weak bottle or a bottle satisfying the
condition in Step 6. Then v is a good degree-4 vertex.

Let v be the good degree-4 vertex selected in this step. We will branch by
either deleting v from the graph or deleting N [v] from the graph. We distinguish
the following five cases according to the number of degree-4 vertices in N(v).
Note that there is at least one degree-4 vertex in N(v).

Case 1: There is only one degree-4 vertex in N(v). Then |N2(v)| = 9, otherwise
there would be a 4-cycle containing a degree-4 vertex or a triangle containing
both degree-3 and degree-4 vertices. The only case of the local structure is showed
in Figure 4. In the branch where v is removed, we can reduce w by 1 + 3w3 +
(1 − w3) = 2 + 2w3. In the branch where N [v] is removed, we can reduce w by
at least 2 + 3w3 + 9(1 − w3) = 11 − 6w3. We get recurrence

C(w) ≤ C(w − (2 + 2w3)) + C(w − (11 − 6w3)). (6)

v v v

Fig. 4. Some cases of branching on a degree-4 vertex

Case 2: There are two degree-4 vertices in N(v). We have two subcases: the two
degree-4 vertices are adjacent or not. It is easy to see that the case of adjacent
will cover the other case. We assume that the two degree-4 vertices are adjacent
to each other (see Figure 4). Then |N2(v)| = 8. When v is removed, we can
reduce w by 1 + 2w3 + 2(1 − w3) = 3. When N [v] is removed, we can reduce w
by at least 3 + 2w3 + 8(1 − w3) = 11 − 6w3. We get recurrence

C(w) ≤ C(w − 3) + C(w − (11 − 6w3)). (7)

Case 3: There are three degree-4 vertices in N(v). There is also at most one
edge with two endpoints in N(v). Then |N2(v)| ≥ 9. When v is removed, we can
reduce w by 1+w3 +3(1−w3) = 4−2w3. When N [v] is removed, we can reduce
w by at least 4 + w3 + 9(1 − w3) = 13 − 8w3. We get recurrence

C(w) ≤ C(w − (4 − 2w3)) + C(w − (13 − 8w3)). (8)

Case 4: All vertices in N(v) are degree-4 vertices. Since v is a good degree-4
vertex that is not contained in any 4-cycles. There is also at most one edge with
two endpoints in N(v) (see Figure 4). For this case, |N2(v)| ≥ 10. When v is

176 M. Xiao and H. Nagamochi

removed, we can reduce w by 1 + 4(1 − w3) = 5 − 4w3. When N [v] is removed,
we can reduce w by at least 5 + 10(1 − w3) = 15 − 10w3. We get recurrence

C(w) ≤ C(w − (5 − 4w3)) + C(w − (15 − 10w3)). (9)

6.6 Step 9

In this step, the set of degree-4 vertices is an independent set. Let v be a degree-4
vertex selected in this step. Then the neighbors of v are four degree-3 vertices. We
show that there is at least one degree-3 vertex in N2(v). Assume to the contrary
that for each vertex v′, N2(v′) contains only degree-4 vertices. Then the graph
is a bipartite graph with one side of degree-3 vertices and the other degree-4
vertices, which will be reduced by our reduction rules. Now we branch on v. In
the branching where v is removed, we can reduce w by 1+4w3 directly. Note that
|N2(v)| = 8 (v is not contained in any 3-cycle or 4-cycle). Then in the branching
where N [v] is removed we can reduce w by at least 7(1 − w3) + w3 = 7 − 6w3

from N2(v) and reduce w by 1 + 4w3 from N [v] itself. Totally we can reduce w
by at least 8 − 2w3. We get recurrence

C(w) ≤ C(w − (1 + 4w3)) + C(w − (8 − 2w3)). (10)

6.7 Step 10

It is easy to see that if none of the first 9 steps can be executed, the graph is a
3-regular graph. We will use a fast algorithm for MIS3 to solve it. Here we use
the O∗(1.0854n)-time algorithm by Bourgeois et al. [2], and then this step will
not be the bottleneck of our algorithm. For this step, we get running time bound

C(w) = O(1.0854
w

w3), (11)

which will generate the last constraint in our quasiconvex program.

6.8 Putting All Together

Recurrences (1) to (10) generate the 9-th to 18-th constraint in our quasiconvex
program. Consider an assignment of w3 satisfying 0.5 ≤ w3 ≤ 2/3. By solving
the i-th recurrence (2 ≤ i ≤ 18), we will get that C(w) ≤ (αi(w3))w. We need
to choose a value of w3 such that max(α2(w3), α3(w3), · · · , α18(w3), 1.0854

1
w3)

is minimized. By solving this quasiconvex program according to the method
introduced in [6], we get a running time bound of O(1.1526w) by setting w3 =
0.5908 for our problem. Now the bottlenecks are (7) and (10), i.e., the 15-th and
18-th constraints in our quasiconvex program.

Theorem 1. A maximum independent set in a degree-4 graph of n vertices can
be found in O∗(1.1526n) time.

Further Improvement on Maximum Independent Set in Degree-4 Graphs 177

7 Concluding Remarks

In this paper, we have designed a fast algorithm for the maximum independent
set problem in graphs with degree bounded by 4, which is analyzed by the
“Measure and Conquer” method. Different from most previous “Measure and
Conquer” algorithms, our algorithm allows the weight of vertices greater than
1 and do not require Δwi ≥ Δwi+1. We get rid of these two frequently used
assumptions to simplify the analysis. In this paper, we have clearly listed out
all constraints in our quasiconvex program and pointed out the bottlenecks of
the algorithm. However, it is hard for most previous “Measure and Conquer”
algorithms to do that, since there are a huge number of constraints in their
quasiconvex programs.

References

1. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In:
SODA 1999, pp. 856–857. ACM Press, New York (1999)

2. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Maximum indepen-
dent set in graphs of average degree at most three in O(1.08537n). In: Kratochv́ıl,
J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 373–384.
Springer, Heidelberg (2010)

3. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: A bottom-up
method and fast algorithms for max independent set. In: Kaplan, H. (ed.) SWAT
2010. LNCS, vol. 6139, pp. 62–73. Springer, Heidelberg (2010)

4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40-42), 3736–3756 (2010)

5. Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save
k colors in O(n2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

6. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: SODA, pp. 781–
790. ACM Press, New York (2004)

7. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n)
independent set algorithm. In: SODA, pp. 18–25. ACM Press, New York (2006)

8. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Pro-
cess. Lett. 97(5), 191–196 (2006)

9. Fürer, M.: A faster algorithm for finding maximum independent sets in sparse
graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 491–501. Springer, Heidelberg (2006)

10. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco (1979)

11. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem.
IEEE Transactions on Computers 35(9), 847–851 (1986)

12. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple indepen-
dent set algorithm. In: Kannan, R., Kumar, K.N. (eds.) FSTTCS 2009, Dagstuhl,
Germany. LIPIcs, vol. 4, pp. 287–298 (2009)

13. Razgon, I.: Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3. J. of Discrete Algorithms 7(2),
191–212 (2009)

178 M. Xiao and H. Nagamochi

14. Robson, J.: Algorithms for maximum independent sets. J. of Algorithms 7(3), 425–
440 (1986)

15. Robson, J.: Finding a maximum independent set in time O(2n/4). Technical Report
1251-01, LaBRI, Univsersite Bordeaux I (2001)

16. Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. on
Computing 6(3), 537–546 (1977)

17. West, D.: Introduction to Graph Theory. Prentice Hall, Englewood Cliffs (1996)
18. Xiao, M., Chen, J.E., Han, X.L.: Improvement on vertex cover and independent

set problems for low-degree graphs. Chinese J. of Computers 28(2), 153–160 (2005)
19. Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree

graphs. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp.
281–292. Springer, Heidelberg (2010)

Approximation Algorithms for Minimum Energy

Multicast Routing with Reception Cost in
Wireless Sensor Networks

Deying Li1, Zewen Liu2, Yi Hong1, and Wenping Chen1

1 School of Information, Renmin University of China, Beijing100872, P.R. China
2 Nanchang University, Nanchang 330031, P.R. China

Abstract. In this paper, we study the minimum energy multicast prob-
lem with reception cost in wireless sensor networks. Suppose there are
n nodes in the network. Each node v has l(v) transmission power lev-
els to be chosen and its reception cost is B(v) if it receives a message.
The problem of our concerning is: given a multicast request, how to find
a multicast tree such that the total energy cost of the multicast tree
including transmitting cost and reception cost is minimized. We firstly
propose a general algorithm Fix-MEM-R-G for the case while each node
has the fixed power level. Based on Fix-MEM-R-G algorithm, we propose
an approximation algorithm. We also propose a heuristic algorithm for
this special case. For the general case that each node has multiple power
levels, we propose a general algorithm NF-MEM-R-G and an approxi-
mation algorithm based on NF-MEM-R-G algorithm. We also propose a
heuristic algorithm for general case.

Keywords: Energy efficient, Multicast routing, Reception cost,
Approximation algorithm, Wireless sensor networks.

1 Introduction

Wireless sensor networks have received significant attention in recent years due
to their potential applications in battlefield, emergency disaster relief and etc.
Broadcast and multicast are important functions in these applications, such as
cooperative operation, data dissemination, routing discover, and so on. Energy-
efficiency is an important issue in sensor networks, where nodes are powered by
batteries that may not be possible to be recharged or replaced during a mission.
Therefore, the energy efficient multicast(broadcast) routing is one of the most
fundamental and important problems in wireless sensor networks.

There has been a lot of works on energy efficient broadcast/multicast routing
in ad hoc networks [1]-[16]. Most of the existing works assume the reception of
signals costs no extra energy. However, some research works such as [17] show
that power spent in transmit, receive and idle states is between 0.34W and
0.7W. It is necessary to consider reception cost in multicast routing problem. In
this paper, we focus on the multicast routing problem with reception cost. We
assume that each node v has l(v) transmission power levels and reception cost

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 179–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

180 D. Li et al.

B(v) if it receive a signal, and we aim at, for each multicast request, finding a
multicast tree that has the minimum energy consumption including transmitting
cost and reception cost, we call it as Minimum Energy Multicast with reception
cost (MEM-R) problem. We firstly propose an algorithm, called Fix-MEM-R-
G for the case where each node has fixed power level. Based on Fix-MEM-R-
G algorithm, we have an approximation algorithm for the fix power level case.
Moreover, we propose a heuristic algorithm. For the general case where each node
has several fixed power levels, we also propose a general algorithm, namely NF-
MEM-R-G and an approximation algorithm. Furthermore, a heuristic algorithm
is presented for the general case.

The remainder of this paper is structured as follows: Section 2 surveys the
related works. Section 3 introduces network model. The algorithms including
approximation algorithms solving the MEM-R problem are proposed in Section
4. Finally, we give a conclusion in Section 5.

2 Related Work

There are two types on energy efficient multicast/broadcast tree problem with
adjustable transmission range: (1) one is focusing on configuring energy power of
each node while each node can adjust its transmission power continuously. That
is, given the geometric positions of a set of nodes in a plane, find the transmitting
power for each node, such that the energy cost of the multicast/broadcast tree
is minimized. (2) Another is focusing on configuring energy power of each node
while each node can adjust its transmission power in a discrete way.

For the first type, some energy-efficient broadcast/multicast algorithms were
proposed in [2][3], namely BIP (Broadcast Incremental Power), MST (Minimum
Spanning Tree), SPT (Shortest Path Tree), and MIP (Multicast Incremental
Power). The authors in [4] quantitatively analyzed performances of these three
greedy heuristics. In [5], the problem of broadcasting in large ad hoc wireless
networks was discussed and a method MLE(Minimum Longest Edge) based on
MST was proposed. This algorithm provided a scheme to balance the energy
consumption among all nodes. In [6], the GPLE(Greedy Perimeter Broadcast
Efficiency) algorithm was proposed. Some fundamental issues associated with
energy-efficient multicast were discussed in [7], and several multicast schemes
were proposed and evaluated. In [8], the authors first proved the approximation
ratios of the pruned based multicast tree algorithms p-SPT, p-MST and p-BIP,
and all the three heuristics have Ω(n) lower bounds. Then two constant ap-
proximation ratio algorithms, SPF (Shortest Path First) and MIPF (Minimum
Increment Path First), were proposed.

Other works [9]-[16] applied graph theories and techniques to construct broad-
cast or multicast trees. In [9], the minimum-energy broadcast problem was proved
to be NP-hard in general, and an O(nk+2) algorithm was proposed for the prob-
lem under the assumption that each node is able to reach all the other nodes
in the network, where n is the number of nodes and k is the number of trans-
mitters. In [10], authors first gave a formal proof of the NP-hardness for the

Approximation Algorithms for Minimum Energy Multicast Routing 181

minimum energy broadcast problem for both geometrical version and graph ver-
sion. A heuristic algorithm based on MST was proposed, but no performance
ratio was given. In [11], another heuristic algorithm for constructing minimum-
energy broadcast trees was proposed, which was based on directed Steiner tree.
Its performance ratio is nε, where ε is a constant between 0 and 1. For the special
case where each node has the same transmission power level, an algorithm with
performance ratio log3n was proposed. In [12], an approximation algorithm for
the multicast tree problem in symmetric wireless ad hoc networks was proposed,
and the solution delivered by the proposed algorithm is within 4lnK times of the
optimum if the transmission power at each node is finitely adjustable, where K
is the number of destination nodes in a multicast request. In [15], we study the
multicast tree problem with discrete power levels. [16] presented an energy ef-
ficient multicast routing protocol for MANET with minimum control overhead,
which created shared multicast tree using the physical location of the nodes
for the multicast sessions. In [13], three heuristic algorithms were proposed for
broadcast routing in asymmetric wireless ad hoc networks where each node has
fixed power, and one of them has an approximation ratio 1 + 2ln(n− 1), where
n is a number of nodes in the network. In [14], three heuristic algorithms were
proposed for multicast in asymmetric wireless ad hoc networks where each node
has fixed power.

The above works ignore the energy consumption of receiving signals. However,
the authors [17] presented that the energy consumption for receiving is consid-
erable even though it is smaller than that of transmitting. In [18], a polynomial-
time near-optimal algorithm was proposed for solving maximum lifetime data
gathering problem for sensor networks, in which the reception cost is a constant
and irrelevant with distance and depends on the hardware. [19] proposed an
energy efficient routing protocol E-PULRP (Energy optimized Path Unaware
Layered Routing Protocol) for underwater sensor networks, which considered
each node had uniform energy consumption for receiving/processing. In [20],
the authors proved that maximizing multicast lifetime with transmitter-receiver
power tradeoff is NP-Hard.

In this paper, we study minimum energy multicast tree problem that each
node has discrete power levels, while reception cost is considered, which is dif-
ferent from [18]-[20].

3 Network Model and Problem Specification

Suppose there is a set V of n nodes which are deployed in a plane, each node vi

has l(i) transmission power levels, p1
i , p

2
i , ..., p

l(i)
i , and its reception cost is B(vi)

if it receives a signal, the reception cost is a constant and irrelevant with distance
and depends on the hardware [18].

For a given power assignment, the network is modeled by a directed graph
G = (V,A), where V represents the set of n nodes and A the set of arcs in the
network. Each node, v ∈ V , p(v) is the transmission power assigned. For any two
nodes v1 and v2, if v2 is in the transmission range of v1 (i.e., dα(v1, v2) ≤ p(v1)),

182 D. Li et al.

α is a constant value between 2 and 4), then there is an arc (a directed link)
(v1, v2) ∈ A from v1 to v2.

Given a multicast request (s,D), where s is the source and D is a set of des-
tinations, let T be a multicast tree rooted at s for a given power assignment.
There are three kinds of nodes in T : the source node that only transmits mes-
sages, the nodes that only receive multicast messages, i.e., the leaf-nodes in T ,
and the nodes that need to transmit/relay multicast messages and receive mul-
ticast messages simultaneously, i.e., non-leaf nodes. Let NL(T) denote the set of
non-leaf nodes of T which includes the source node. The total energy cost C(T)
of T can be represented as:

C(T) =
∑

v∈NL(T)

p(v) +
∑

v∈T−s

B(v) (1)

Our problem is how to, given a multicast request (s,D) and l(v) power levels of
transmission p1

v, p
2
v, ..., p

l(v)
v and reception cost B(v) for each node v, find a power

assignment such that there exists a multicast tree rooted at s and spanning all
nodes in D and total energy cost defined in (1) is minimized. We call it Minimum
Energy Multicast with reception cost (MEM-R) problem.

4 Algorithms for the MEM-R Problem

The MEM-R problem becomes the G-MEB problem [13] when setting B(v) = 0,
∀v ∈ V and D = V − {s}. Since the G-MEB problem is proved to be NP-hard
[13], therefore the MEM-R problem is NP-hard.

4.1 Fixed Power Level

In this subsection, we study the MEM-R problem for the special case that each
node has a fixed power level. The problem is: Given n nodes, while each node v
has a fixed power level p(v), and a reception cost B(v) if it receives a message,
and given a multicast request (s,D), find a multicast tree such that the total
cost is minimized. We call it Fix-MEM-R problem.

The network can be modeled by a directed graph G = (V,E), where V is a
set of n nodes and E is a set of directed edges. For any two nodes u, v ∈ V ,
(u, v) ∈ E if and only if dα(u, v) ≤ p(u). There are two kinds of weight for each
node v. p(v) is the power level of v, i.e., transmission cost, B(v) is the reception
cost of v if it receives a message.

Approximation Algorithm for the Fix-MEM-R Problem. In order to
design an approximation algorithm for the Fix-MEM-R problem, we first con-
struct an auxiliary node-weighted directed graph Gw = (Vw, Ew, w) based on
original directed graph G = (V,E).

For each node v ∈ V , there are two vertices v1, v2 ∈ Vw corresponding to v,
and there is a directed edge from v1 to v2.

Approximation Algorithms for Minimum Energy Multicast Routing 183

For any directed edge (u, v) ∈ E, there is a corresponding directed edge
(u2, v1) ∈ Ew. Therefore,

Vw = {v1, v2|∀v ∈ V };
Ew = {(v1, v2)|∀v ∈ V } ∪ {(u2, v1)|∀e = (u, v) ∈ E}.

Fig. 1 shows process of constructing auxiliary graph. Fig. 1(a) shows a directed
graph of the network model. Fig. 1(b) shows the auxiliary graph corresponding
to Fig. 1(a).

()B u
((), ())P u B u

()P u

()B v

()B u()P v

()B w

()P w

()B t

()P t

1u

1w1v 1t

2u

2w2v 2t

u

v w t

() (,)a G V E () (, ,)w w wb G V E w

Fig. 1. Constructing an auxiliary graph

We assign a weight to each node in Gw: w(v1) = B(v) and w(v2) = p(v) for
v ∈ V . For a multicast request (s,D) in G, there is a corresponding multicast
request (s2, D2) in Gw, where D2 = {v2|∀v ∈ D}.

The Fix-MEM-R problem is transformed to the minimum node-weighted
Steiner tree problem on Gw: finding a multicast tree Tw on Gw rooted at s2

and spanning all nodes in D2 such that w(Tw) =
∑

v∈NL(Tw)

w(v) is minimized.

It is easy to get the following theorem:

Theorem 1. The Fix-MEM-R problem is equivalent to the minimum node-
weight directed Steiner tree in Gw. That is, for any multicast request (s,D)
in Fix-MEM-R problem, (1) for any multicast tree T in Fix-MEM-R problem,
there is a multicast tree Tw in Gw corresponding to T , and vice versa. (2) T opt

E

is a minimum energy multicast tree in V rooted at the source s and spanning all
nodes in D for Fix-MEM-R problem, T opt

NW is a minimum node-weight directed
Steiner tree for (s,D) in corresponding graph Gw, then C(T opt

E) = C(T opt
NW).

From Theorem 1, we can design a general algorithm for Fix-MEM-R problem as
follows:

From the Fix-MEM-R-G algorithm for the Fix-MEM-R problem and Theorem
1, we can get the following theorem.

184 D. Li et al.

Algorithm 1. General Algorithm for the Fix-MEM-R Problem(Fix-MEM-R-G
Algorithm)
Input: n nodes in V while each node has a fixed power level, its reception cost and a
multicast request (s,D).
output: a multicast tree rooted at s and spanning all nodes in D.

1: Construct a node-weighted auxiliary, directed graph Gw ;
2: Find an approximate, minimum node-weighted directed Steiner Tree Tw in Gw ,

such as using algorithms in [14];
3: Transfer Tw to T such that T is a multicast tree for the Fix-MEM-R problem.

Theorem 2. If there is an approximation algorithm for the minimum node-
weighted directed Steiner tree problem with ratio θ, then using the algorithm in
general algorithm for Fix-MEM-R problem, we can get an approximation algo-
rithm with ratio θ for the Fix-MEM-R problem.

We use our algorithm: Steiner Tree Based Algorithm in [14] on Gw to get cor-
responding algorithm for the Fix-MEM-R problem: F-DSTR. From theorem 2
and the theorem in [14], we have:

Corollary 1. The F-DSTR algorithm has an approximation ratio with i(i −
1)|D|1/i and time complexity of O((2|V |)i|D|2i) for any fixed i > 1.

A Heuristic for the Fix-MEM-R Problem. In this subsection, we propose
another algorithm with lower time complexity using the original network graph
directly for Fix-MEM-R problem since the F-DSTR algorithm has a high time
complexity. According to idea of selecting node to join tree [14] and property of
the Fix-MEM-R problem, we use a greedy function as following:

Suppose (s,D) is a multicast request and G = (V,E) is the network model for
the Fix-MEM-R problem. Let C be a set of nodes which transmit, and U be an
un-covered set, i.e., a subset of nodes of D which is not covered by C. Let S be
a candidate-set which is candidate for C. N+(v) denotes a set of out-neighbors.

f(v) =

p(v) +
∑

u∈U∩N+(v)

B(u)

|U ∩ N+(v)|
For a path P = v1v2...vt, the total cost of transmission cost and reception

cost is

w(P) =
t−1∑
i=1

p(vi) +
t∑

i=2

B(vi)

F-NJTR algorithm is represented as follows:

Theorem 3. Given a request (s,D), the F-NJTR algorithm can output a mul-
ticast tree in time O(|V |3).

Approximation Algorithms for Minimum Energy Multicast Routing 185

Algorithm 2. F-NJTR Algorithm
Input: V in which each node v has a fixed power level p(v) and a reception cost B(v),
and a multicast request (s, D)
Output: A multicast tree T for (s, D).

1: C ← {s};
2: U ← D − N+(s);
3: S ← N+(s);
4:
5: while (U �= ∅) do
6: if ∃v ∈ S such that U ∩ N+(v) �= ∅ then
7: Choose vi such that f(vi) = min{f(vk)|vk ∈ S and U ∩ N+(vk) �= ∅}
8: C ← C ∪ {vi};
9: U ← U − N+(vi);

10: S ← S ∪ N+(vi) − C;
11: end if
12: Find a shortest path P = sv1v2...vtu from s to node u in U ;
13: C ← C ∪ (P − {u});
14: U ← U − N+(vi);
15: S ← S ∪ (∪t

i=1N
+(vi)) − C;

16: end while
17: Transfer C in G to a multicast tree for (s,D).

Proof. It is easy to know that the greedy algorithm can output a multicast tree.
In the while-loop, there is at most |V | loops and for each of them, or finding the
maximum value takes O(|V |), and finding a shortest path takes O(|V |2), thus
the while-loop can finish in the time of O(|V |3). In addition, the transformation
from C to a multicast tree in the last line takes the time of O(|V |2). Therefore,
the whole algorithm ends in the time of O(|V |3).

4.2 l(v) Power Levels

In this subsection, we study the MEM-R problem for the general case that each
node v has l(v) power levels, we call it as NF-MEM-R problem. We will propose
two algorithms for the problem.

General Algorithm for the NF-MEM-R Problem. Given n nodes set V

in a plane, each node vi has l(i) power levels, p1
i < p2

i < ... < p
l(i)
i , and B(vi) is

the reception cost of vi if it receives a signal. We first construct a node-weighted
auxiliary directed graph G = (V,E) as follows:

For each node vi ∈ V , we construct a component Gi = (Vi, Ei) corresponding
to vi.

Vi = {v1
i , v

2
i , pi1, pi2, ..., pil(i)}

Ei = {(v1
i , v

2
i)} ∪ {(v2

i , pij)|1 ≤ j ≤ l(i)}
Where vertices v1

i , v
2
i correspond original node vi in V , vertex pij represents

original node vi’s transmission power level j, a directed edge (v2
i , pij) from v2

i to

186 D. Li et al.

pij represents vi works at its power level j, 1 ≤ j ≤ l(i). We assign weights to
vertices: w(v1

i) = B(vi), w(v2
i) = 0, and w(pij) = pj

i , 1 ≤ j ≤ l(i).
Having a component Gi for every node vi in V , we construct Gaux =

(Vaux, Eaux). Let Vaux = ∪n
i=1Vi and Eaux = ∪n

i=1Ei ∪ Ediff , where Ediff is
defined as follows: Given two nodes vi and vj in V with i �= j , there is a di-
rected edge (pik, v

1
j) in Ediff if and only if vj is within vi’s the kth transmission

range, 1 ≤ i, j ≤ n and 1 ≤ k ≤ l(i).
Fig. 2 shows an example that how to construct the auxiliary graph. Fig.2(a)

shows a component for node vi, Fig. 2(b) shows that how to connect components
to get the auxiliary graph.

1
iv 2

iv

1ip

2ip

()il ip

1
ip

2
ip

()l i
ip

()iB v 0

…

(a)

(b)

1
iv 2

iv

1ip

ikp

()il ip

…
…

1
jv 2

jv

1jp

jsp

()jl jp

…
…

…

Fig. 2. Example for constructing an auxiliary graph Gaux

Having the auxiliary directed graph Gaux, let D2 = {v2
j |vj ∈ D}, we denote

(s2, D2) as a multicast request in Gaux corresponding to the multicast request
(s,D) in V .

The MEM-R problem can be transformed to the minimum node-weighted
Steiner tree problem on Gaux: to find a multicast tree Taux on Gaux rooted at s2

and spanning all nodes in D2 such that w(Taux) =
∑

v∈NL(Taux)

w(v) is minimized.

We have the following theorem:

Theorem 4. The MEM-R problem is equivalent to the minimum node-weight
directed Steiner tree problem in Gaux. That is: given any multicast request (s,D)
in MEM-R problem, we have: (1) for any multicast tree T for the MEM-R prob-
lem, there is a multicast tree Taux for the minimum node-weighted Steiner tree

Approximation Algorithms for Minimum Energy Multicast Routing 187

problem for (s2, D2) in Gaux corresponding to T , and vice versa. (2) T opt
E is

a minimum energy multicast tree in V rooted at the source s and spanning all
nodes in D for the MEM-R problem, T opt

NW is an optimal tree for (s2, D2) in
corresponding graph Gaux for the minimum node-weighted Stenier tree problem,
then C(T opt

E) = C(T opt
NW).

Proof. It is obvious that for any multicast tree T of the MEM-R problem, there
is a multicast tree Taux for the minimum node-weighted Steiner tree problem for
(s2, D2) in Gaux corresponding to T .

For any multicast tree Taux of the minimum node-weighted Steiner tree prob-
lem for (s2, D2) in Gaux, If Taux meets Fact: (1) no more than one directed edge
derived from an original node is included in Taux, then we can set power level for
each original node using the information provided by Taux to get the correspond-
ing tree of the MEM-R problem. If Taux does not meet Fact (1), that is, there is
one vertex v2

i in Vaux, there are directed edges (v2
i , pij), (v2

i , pi(j+1)), ..., (v2
i , pil)

in Taux, and l − j ≥ 1. Because the out-neighbors of pij , pi(j+1), , pi(l−1) in T
must be out-neighbors of pil in Gaux, we can modify it to get T 1

aux along mod-
ification rule in Fig. 3 such that T 1

aux meets the Fact (1). Therefore, there is a
corresponding multicast tree of the MEM-R problem.

… …

…

()a T

1
kv 1

tv 1
mv 1

nv

2
kv 2

tv 2
mv 2

nv

1
iv

2
iv

ijp ilp

1()b T

1
iv

2
iv

1
kv 1

tv 1
mv 1

nv

2
kv 2

tv 2
mv 2

nv

ilp

… … …

Fig. 3. Modification Rule

In the following, we will prove (2).
We first prove that C(T opt

NW) ≤ C(T opt
E). Since T opt

E is a minimum-energy
multicast tree in V rooted at the source s and spanning all nodes in D for the
MEM-R problem, according to the construction of Gaux, there is a corresponding
multicast tree Taux in Gaux rooted at s2 and spanning all vertices in D2, and
the weighted sum of vertices in Taux is equal to the sum of transmission power
at the non-leaf nodes and reception cost of all nodes except source s in T opt

E .
Since T opt

NW is a minimum multicast tree in Gaux for (s2, D2), then C(T opt
NW) ≤

C(T) = C(T opt
E).

188 D. Li et al.

Secondly, we prove that C(T opt
NW) ≥ C(T opt

E).
Since T opt

NW is a minimum node-weight directed Steiner tree for (s2, D2) in
Gaux, T opt

NW must meet the fact: no more than one directed edge derived from
an original node is included in T opt

NW . If T opt
NW does not meet fact, that is, there is

one vertex v2
i in Vaux, there are directed edges (v2

i , pij), (v2
i , pij+1), , (v2

i , pil) in
T opt

NW , and l− j ≥ 1. We can modify it to get T ′ such that T ′ meets the fact, but
C(T opt

NW) > C(T ′), which is contradict to that T opt
NW is a minimum node-weight

directed Steiner tree for (s2, D2) in Gaux.
Therefore, we can get a multicast tree T in V for the MEM-R problem corre-

sponding to T opt
NW . Since T opt

E is a minimum energy multicast tree for the MEM-R
problem, then C(T opt

E) ≤ C(T) = C(T opt
NW).

From above discussions, the theorem holds. �
When we get a node-weight directed Steiner tree in Gaux which meets the fact

that no more than one directed edge derived from an original node is included
in Taux, then we can set power level for each original node using the information
provided by Taux. This can be done as follows: for a node vi in V , if there is a
directed edge (v2

i , pij) in Taux, then set that the power level at vi is pij . Then,
we get a multicast tree rooted at s and spanning all nodes in D for the MEM-R
problem.

From Theorem 3, we can design a general algorithm for the MEM-R problem.

Algorithm 3. General Algorithm for the MEM-R Problem(NF-MEM-R-
GAlgorithm)
Input: n nodes in V for each node has its power levels, its reception cost and a
multicast request (s,D).
output: a multicast tree rooted at s and spanning all nodes in D.

1: Construct a node-weighted auxiliary, directed graph Gaux = (Vaux, Eaux);
2: Find a multicast tree Taux in Gaux for the minimum node-weighted Steiner tree

problem, for example, using algorithms in [14].
3: Modify Taux to T such that T meets Fact 1.
4: Set the power level for each node, using the information provided by T to get a

multicast tree for (s, D).

From this general algorithm for the MEM-R problem and Theorem 3, we can
get the following theorem.

Theorem 5. If there is an approximation algorithm B for the minimum node-
weighted Steiner tree problem with ratio θ, then using the algorithm B in general
algorithm for the MEM-R problem, we can get an approximation algorithm with
ratio θ for the MEM-R problem.

Proof. Suppose Taux is a multicast tree got by algorithm B for the minimum
node-weighted Steiner tree problem, and T opt

NW is its optimal multicast tree. Since
algorithm B for the minimum node-weighted Steiner tree problem has approxi-
mation ratio θ, then

Approximation Algorithms for Minimum Energy Multicast Routing 189

C(Taux) ≤ θC(T opt
NW)

We modify Taux to T 1
aux such that T 1

aux meets the fact (1) and get T 1 which is
a multicast tree for the MEM-R problem corresponding to T 1

aux. Then, C(T 1) =
C(T 1

aux) ≤ C(Taux).
Suppose T opt

E is an optimal multicast tree for the MEM-R problem. From
theorem 3, C(T opt

NW) = C(T opt
E), then:

C(T 1) = C(T 1
aux) ≤ C(Taux) ≤ θC(T opt

NW) = θC(T opt
E)

Therefore, T 1 is θ-approximation solution for the MEM-R problem. The the-
orem holds. 	

We use our algorithm: Steiner Tree Based Algorithm in [14] on Gaux to get cor-
responding algorithms for the NF-MEM-R problem: NF-DSTR. From theorem
4 and the theorem in [14], we have:

Corollary 2. The NF-DSTR algorithm has an approximation ratio with i(i −
1)|D|1/i and its time complexity is O((2|V |)i|D|2i) for any fixed i > 1.

Heuristic for the MEM-R Problem. In this subsection, we will propose
another heuristic NF-MIPR for the MEM-R problem, which is similar with MIP.
Main idea of heuristic NF-MIPR is as follows. First, we define T only contains
node s. Suppose Pij is the minimum power level in which node i can reach node
j and Pi is the power level of node i at present (if node i is currently a leaf
node, Pi = 0). Second, find node j in V − T with minimum incremental cost
P 1

ij = Pij − Pi + Bj while Bj being the reception cost of node j and add node j
into T , repeat till all the nodes in D are included in the tree.

Algorithm 4. NF-MIPR Algorithm
Input: n nodes in V while each node has its power levels, its reception cost and a
multicast request (s,D).
output: a multicast tree rooted at s and spanning all nodes in D.

1: T ← {s}
2: ∀i ∈ V , Pi ← 0
3: while ((V − T) ∩ D �= ∅) do
4: Find a node i ∈ T and a node j ∈ V − T such that P 1

ij = min{P 1
xy|∀x ∈ T ,

∀y ∈ V − T and P 1
xy = Pxy − Px + By}

5: T ← T ∪ {j}
6: Pi ← Pij

7: end while

It is easy to get the following corollary.

Corollary 3. The NF-MIPR algorithm can output a multicast tree in the time
of O(|V |2).

190 D. Li et al.

5 Conclusion

In this paper, we discuss the energy efficient multicast problem with reception
cost in wireless ad hoc and sensor networks. We propose two algorithms for
special case that each node has a fixed power level. We also get two algorithms
for the general case. We prove that one of them is an approximation algorithm
respectively.

Acknowledgment. This research was jointly supported in part by the National
Natural Science Foundation of China under grant 61070191, the Fundamental
Research Funds for the Central Universities and the Research Funds of Renmin
University of China under Grant 10XNJ032, and Research Fund for the Doctoral
Program of Higher Education of China(Grant 20100004110001).

References

1. Guo, S., Yang, O.: Energy-aware Multicasting in Wireless Ad Hoc Networks: A
Survey and Discussion. Computer Communications 30(9), 2129–2148 (2007)

2. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the Construction of Energy-
efficient Broadcast and Multicast Trees in Wireless Networks. In: IEEE INFOCOM
2002, New York (June 2002)

3. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-efficient Broadcast and
Multicast Trees in Wireless Networks. Mobile Networks and Applications 7, 481–
492 (2002)

4. Wan, P.J., Calinescu, G., Li, X.Y., Frieder, O.: Minimum-energy Broadcast Rout-
ing in Static Ad Hoc Wireless Networks. In: IEEE INFOCOM 2001, Anchorage,
Alaska USA (April 2001)

5. Cheng, M.X., Sun, J., Min, M., Du, D.-Z.: Energy Efficient Broadcast and Mul-
ticast Routing in Ad Hoc Wireless Networks. In: Proceedings of 22nd IEEE In-
ternational Performance, Computing, and Communications Conference, Phoenix,
Arizona, USA (2003)

6. Kang, I., Poovendran, R.: A Novel Power-efficient Broadcast Routing Algorithm
Exploiting Broadcast Efficiency. In: Proceedings of IEEE Vehicular Technology
Conference (VTC), Orlando, pp. 2926–2930 (October 2003)

7. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Algorithm for Energy-efficient
Multicasting in Static Ad Hoc Wireless Networks. Mobile Networks and Applica-
tions 6, 251–263 (2001)

8. Wan, P.J., Calinescu, G., Yi, C.: Minimum-power Multicast Routing in Static Ad
Hoc Wireless Networks. IEEE/ACM Transactions on Networking 12(3), 507–514
(2004)

9. Egecioglu, O., Gonzalez, T.F.: Minimum-energy Broadcast in Simple Graphs with
Limited Node Power. In: Proceedings of IASED International Conference on Par-
allel and Distributed Computing and Systems, Anaheim, CA, pp. 334–338 (August
2001)

10. Cagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy Broadcast in All-wireless Net-
works: NP-completeness and Distribution Issues. In: Proceedings of 8th Annual
International Conference on Mobile Computing and Networking, Atlanta, Georgia
(September 2002)

Approximation Algorithms for Minimum Energy Multicast Routing 191

11. Liang, W.: Constructing Minimum-energy Broadcast Trees in Wireless Ad Hoc
Networks. In: Proceedings of 3th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, Lausanne, Switzerland, pp. 112–122 (June 2002)

12. Liang, W.: Approximate Minimum-energy Multicasting in Wireless Ad Hoc Net-
works. IEEE Transactions on Mobile Computing 5(4), 377–387 (2006)

13. Li, D., Jia, X., Liu, H.: Energy Efficient Broadcast Routing in Ad Hoc Wireless
Networks. IEEE Transactions On Mobile Computing 3(2), 144–151 (2004)

14. Li, D., Liu, Q., Hu, X., Jia, X.: Energy Efficient Multicast Tree in Ad Hoc Networks.
Computer Communications 30(18), 3746–3756 (2007)

15. Li, D., Zhu, Q.: Approximation Algorithms for Multicast Routing in Ad Hoc Wire-
less Networks. Journal of Combinatorial Optimization 21(3), 293–305 (2011)

16. Kamboj, P., Sharma, A.K.: Energy Efficient Multicast Routing Protocol for
MANET with Minimum Control Overhead (EEMPMO). International Journal of
Computer Applications 8(7), 1–11 (2010)

17. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B.: Energy-aware Wireless
Microsensor Networks. IEEE Signal Processing Magazine 19, 40–50 (2002)

18. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Efficient Algorithms for Maximum Life-
time Data Gathering and Aggregation in Wireless Sensor Networks. In: MobiHoc
(2002)

19. Gopi, S., Govindan, K., Chander, D., Desai, U.B., Merchant, S.N.: E-PULRP:
Energy Optimized Path Unaware Layered Routing Protocol for Underwater Sensor
Networks. IEEE Transaction on Wireless Communications 9(11), 1–6 (2010)

20. Deng, G., Gupta, S.K.S., Varsamopoulos, G.: Maximizing Multicast Lifetime
with Transmitter-receiver Power Tradeoff is NP-Hard. IEEE Communications Let-
ters 12(9), 666–668 (2008)

Public Communication Based on Russian Cards
Protocol: A Case Study�

Jia He and Zhenhua Duan��

Institute of Computing Theory and Technology, and ISN Laboratory
Xidian University, Xi’an 710071, P.R. China

���������	
������ �������	�����������������

Abstract. This paper is concerned with public communication with the Russian
Cards protocol. First, a couple of small flaws in [10] are corrected. Then an im-
proved Russian Cards protocol is presented. As a case study, R(6� 31)(6 players
and 31 cards) protocol is used to generate a common password for 5 parties who
wish to access a shared file over the Internet.

Keywords: improved Russian Cards protocol, secured communication, password
generation.

1 Introduction

Traditional cryptography is composed of symmetrical cryptography and asymmetrical
cryptography. In symmetrical cryptography, encryption and decryption use the same
key. However, the management of the key is quite diÆcult and violence analysis could
be an e�ective approach to decrypt the message. The security of asymmetrical cryptog-
raphy, i.e., public key cryptography, generally depends upon computational problems
from number-theory and the assumption that the agents are computationally limited. For
instance, Rivest-Shamir-Adleman (RSA)[8] lies on factoring a large product of primes;
Digital Signature Algorithm (DSA)[7] relies on the discrete logarithm problem; Ellip-
tic Curve Cryptography (ECC)[2] depends on elliptic curve discrete logarithm problem.
All of the above problems are considered to be intractable[9] with computational limits.
However, there exist unconditionally secured communication protocols, whose security
does not rely on the above restrictions. Some of such protocols have been studied re-
cently in the cryptography and information theory community[3,5]. These protocols
show to be safe even against the adversaries with unlimited computational powers,
because they guarantee that the adversary cannot learn the secrets for the reasons of
information theory rather than computation.

Russian Cards problem was originally presented at the Moscow Mathematics Olym-
piad in 2000. Several solutions were given to the primary problem with 3 players and
7 cards. Since then some researchers studied the problem[1,4,6,10]. Further, some of
them generalized the problem and applied it in public communication. In particular, in

� This research is supported by the NSFC Grant No. 60910004, 60873018, 91018010, 61003078
and 61003079, 973 Program Grant No.2010CB328102 and SRFDP Grant No.200807010012
and ISN1102001.

�� Corresponding author.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 192–206, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Public Communication Based on Russian Cards Protocol: A Case Study 193

[10], authors put forward a formalized Russian Cards protocol, which can be used in
unconditionally secured communication. In this paper, we first correct a couple of small
flaws in the algorithm presented in [10] and give an improved protocol. Then as a case
study for public unconditional communication, we use the R(6� 31)(6 players and 31
cards) protocol to generate a password for 5 parties who wish to access a shared file
over the Internet. In addition, the complexity analysis for the public communication is
also given in details.

The paper is organized as follows. The Russian Cards Protocol is briefly reviewed in
section 2. Further, a few flaws in the protocol are corrected and an improved algorithm
is proposed. In section 3, a case of public communication for 5 participants is studied
by means of the Russian Cards protocol. Some related works are introduced simply in
section 4. Finally, the conclusion is drawn in section 5.

2 An Improved Russian Cards Protocol

In order to describe the improved algorithm clearly and conveniently, we borrow the
notations from [10]. We use R(n, n(n-1)�1) to represent the Russian Cards problem
with n players and n(n� 1)� 1 cards. We call the allocation of cards a card deal,the set
of cards held by a player a hand, and the set of hands appearing in the announcement
a hand set. Some other notations are also re-used without declaration as seen in Fig.1,
and Fig.2. Note that, the notations in column case are di�erent from the original ones
presented in [10]. After the allocation of the cards to five parties, there leaves only one
card we call key card.

Fig. 1. Hand matrix of Pk in row case

The Russian Cards problem has been generalized to n players and n(n� 1) � 1 cards
in [10], so that more players are able to communicate using the unconditional proto-
col. It formalizes picking and deleting rules as well as safe communication condition.
Unfortunately, there exist some small flaws in the algorithm given in [10].

2.1 Correction of the Algorithm

Problems in section 3.1.2 of [10]: (1) In the process of generating B1, sharing card,
i.e. Y[2], is placed into the matrix twice, leading to one card left; (2) In the process of

194 J. He and Z. Duan

Fig. 2. Hand matrix of Pk in column case

generating Bk, the sharing card is from hPk instead of hPk�1 actually, which is inconsistent
with the assumption that ”The first column we call sharing column is filled with a
card from hPk�1 which we call sharing card”. The problems can be illustrated in terms
of R(5� 21). Here we assume the card deal is as follows: hP1 � �0� 1� 2� 3� 4�, hP2 �

�5� 6� 7� 8� 9�, hP3 � �10� 11� 12� 13� 14�, hP4 � �15� 16� 17� 18� 19� and key card � �20�.
Then we randomly choose card 9 from hP2 as the sharing card of B1.

According to the algorithm in column case, firstly, we put the sharing card into the
first column, the hand cards into the second column, and the key card into the fourth
column within the fourth row of B1, as shown in matrix B10.

Secondly, we divide hP3 into X[3] and Y[3], X[3]�Y[3] � �10� 11� 12� 13���14�, and
hP4 into X[4] and Y[4], X[4] � Y[4] � �15� 16� 17� 18� � �19�. According to step(c)[10],
X[2] � �5� 6� 7� 8�. Thirdly, we put X[2] into B1 (based on 3.7[10]: q[i] � �3� 4� 5� 3�) as
shown in matrix B11.

After the placement of X[2], we place X[3] and X[4] into B1, then we get B12.

B10 �

�
������������������

9 0
9 1
9 2
9 3 20
9 4

�
������������������

� B11 �

�
������������������

9 0 5
9 1 6
9 2 7
9 3 20
9 4 8

�
������������������

� B12 �

�
������������������

9 0 5 10 15
9 1 16 6 11
9 2 12 17 7
9 3 20
9 4 8 13 18

�
������������������

Fourthly, we need to put Y[k] into B1. However, we haven’t got Y[2] yet, although,
according to step(b) and step(c), we can figure out Y[2] � b1

1�1 � 9 (sharing card)
which has been placed in the first column within the redundant row. Then problem (1)
is encountered. Step(d) tells us ”Since there exists only one card in Y[2], we place it
randomly in any column within the redundant row. We assume the card is in tith column,
ti � T, in the redundant row.”, which means Y[2] should be placed in the third or fifth
column within the redundant row instead of the first column in this example. As a result,
we put Y[2] into B1 once again. Finally, we get only one empty place in the redundant
row to place Y[3] and Y[4]. Unfortunately, this causes a conflict.

If we ignored problem (1), and went to step(d), according to Algorithm 3.9[10], we
could get B1; thus, following Algorithm 3.12[10], we could get a wrong Bk, because the
sharing card of Bk is from hPk instead of hPk�1 ; this causes the problem (2). The wrong

Public Communication Based on Russian Cards Protocol: A Case Study 195

result is su�ered from the statement that ”The first column we call sharing column is
filled with a card from hPk�1 which we call sharing card”.

To deal with the above problems, we modify part of the algorithms given in subsec-
tion 3.1.2[10] as follows:

a. In Algorithm 3.9[10], we modify line 5 to Let c � Y[3]; Let i � H and line 7 to
for k � 4 to n � 1 do.

b. In Algorithm 3.12[10], we correct line 5 as for j � 0 to n� 4 do �*locate the card
of Y[k � 1] in redundant row*� and line 6 as if fp� t j � Y[k � 1] then.

2.2 Improvement of the Algorithm

As the row case and the column case are symmetrical, we consider merging the two
algorithms of generating Bk into one. Thus, we abandon the algorithm of the column
case given in [10], and put forward a symmetrical algorithm for the column case. And
then, we merge the two algorithms to cover both row and column cases. In the previous
algorithm given in [10], in the row case, the hand row is fixed in the first row and the
sharing column is fixed in the first column. Actually, there is no need to make such
restrictions. Therefore, we improve the algorithm so that we can randomly choose the
hand row and the sharing column. The improvement of the column case is similar to that
of the row case and omitted here. Further, the generation process of Bk adhibits some
auxiliary matrices. As a result, we can combine the algorithms generating Bk into one.
Following the improved algorithm, we can get the matrix Bk as the output according to
the input B1 directly.

Now, we present the improved algorithm in detail. Since the row case and the column
case are symmetrical, if some steps cannot be combined to one, we only give the details
in column case. For the algorithms given in the following, if some of them only applies to
the column case, we will give an explanation, otherwise they can be used in both cases.

Here, we give an example R(6� 31) to show how the improved protocol works in
column case. We assume the card deal is as follows: hP1 � �30� 17� 6� 22� 25� 11�, hP2 �

�19� 7� 2� 14� 1� 21�, hP3 � �23� 4� 18� 27� 20� 0�, hP4 � �8� 10� 9� 5� 12� 13�, hP5 � �15� 16�

24� 26� 28� 29�, key card � 3. Suppose card 30 as the sharing card of B1.
Algorithm 2.1: RC � 1� col � 2� share � 3� p � 4� q � 5. In column case, RC � 1.

We select the third column as the hand column. We get the fourth row as the sharing row.
Notice that, we cannot place the key card in the sharing row or the hand column(Fig.3).

Algorithm 2.2: s[0] � 0� s[1] � 1� s[2] � 2� s[3] � 5; t[0] � 0� t[1] � 1� t[2] �
3� t[3] � 4. Then, we get indices s[4] � �0� 1� 2� 5�� t[4] � �0� 1� 3� 4�. This algorithm

Fig. 3. Placing hP1 and key card into B1

196 J. He and Z. Duan

Algorithm 2.1. B1RC Init (Initialization: assignment of row,col,RC,share,p,q)

input: integer r� c� n; boolean V RC; array hand[0 : n � 1] ;1

output: integer row� col� share� p� q;2

temp variable: set H;3

Let row � r; �� ���� ���� r � �0� 1� � � � � n � 1� ��4

Let col � c; �� ���� ������ c � �0� 1� � � � � n � 1� ��5

Let RC � V RC; �� �������� ��� ���
������ ��� ��6

Let H � �0� 1� � � � � n � 1�; �� ���!� "��� � #� �$
 ��7

Let share � H; �� �����������! ����� ���
�������! ��� ��8

if RC�0 then �� �������� ��� ��9

Let p � H � �row�; �� p � row ��10

Let q � H � �share�; �� q � share ��11

else12

�� ���
������ ��� ��

Let p � H � �share�; �� p � share ��13

Let q � H � �col�; �� q � col ��14

end15

just works in column case. As for the row case, we can easily get a similar algorithm
based on Algorithm 2.2, so we omitted here.

Algorithm 2.3: We randomly divide each hand of parties P2� P3� P4� P5 into three
parts:X2 �Y2 �Z2 � �19� 2� 7� 14�� �1�� �21�, X3 �Y3 �Z3 � �23� 4� 18� 27�� �20�� �0�,
X4 � Y4 � Z4 � �12� 9� 13� 5� � �8� � �10�, X5 � Y5 � Z5 � �29� 28� 16� 24� � �26� � �15�.

We re-use the definition of positive integers odk and edk (2 � k � n � 1) in [10].
Algorithm 2.4: We first put cards of X2 � �19� 2� 7� 14� into B1. Card 14 is placed as

b1
0�4, card 2 as b1

1�0, card 19 as b1
2�3, card 7 as b1

5�1. According to the location of X2, we
place cards of X3 � �23� 4� 18� 27�� X4 � �12� 9� 13� 5� and X5 � �29� 28� 16� 24� in B1.
For instance, in sth

0 (� 0) row, since card 14 from X2 � �19� 2� 7� 14� is in tth
3 (� 4) column

and (3 � ed3) mod (6 � 2) � 2(ed3 � 6 � 3 � 3), we randomly choose card 27 from X3

and place it in sth
0 (� 0) row and tth

2 (� 3) column(Fig.4).

(a) placing X2 into B1 (b) placing X3� X4� X5 into B1

Fig. 4. Placing X2� X3� X4� X5 into B1

Algorithm 2.5: We randomly place card of Y2 � �1� in redundant column and sth
0 row.

According to the location of Y2, we then place Y3 � �20�� Y4 � �8� and Y5 � �26� into
B1. For example, since card 1 is in sth

0 row and 0 � ed3 mod (6 � 2) � 3, we place card
20 from Y3 in sth

3 row within the redundant column(Fig.5).

Public Communication Based on Russian Cards Protocol: A Case Study 197

Algorithm 2.2: B1C a(step(a) of generating B1(column case): S ,T)
input: integer p, q, n, col, share;1
output: array S ,T ;2
temp variable: integer i;3
for i � 0 to n − 1 do /* range from 0 to n-1 */4

if p > share then5
if i < share then6

si � i;7
else if i = share then8

skip;9
else if i > share && i < p then10

si−1 � i;11
else if i = p then12

skip;13
else14

si−2 � i;15
end16

else17
if i < p then18

si � i;19
else if i = p then20

skip;21
else if i > p && i < share then22

si−1 � i;23
else if i = share then24

skip;25
else26

si−2 � i;27
end28

end29
if q > col then30

if i < col then31
ti � i;32

else if i = col then33
skip;34

else if i > col && i < q then35
ti−1 � i;36

else if i = q then37
skip;38

else39
ti−2 � i;40

end41

else42
if i < q then43

ti � i;44
else if i = q then45

skip;46
else if i > q && i < col then47

ti−1 � i;48
else if i = col then49

skip;50
else51

ti−2 � i;52
end53

end54

end55

198 J. He and Z. Duan

(a) placing Y2 into B1 (b) placing Y3� Y4� Y5 into B1

Fig. 5. Placing Y2� Y3� Y4� Y5 into B1

Algorithm 2.3. B1RC b(step(b) of generating B1: generating Xk� Yk� Zk)

input: integer n, set hpk (k � 2� � � � � n � 1);1

output: set Xk� Yk� Zk(k � 2� � � � � n � 1);2

temp variable: set M, integer k� c;3

for k :� 2 to n � 1 do4

M :� hPk ; �� M �� � �%& �" hPk ��5

for i :� 1 to n�2 do �� %�' n�2 ���� "��� M ��� %�# #��� ��#� Xk ��6

Let c � M;7

M :� M � �c�; Xk :� Xk
�

�c�;8

end9

�� %�# #�� ��������! #�� ���� "��� M ��#� Yk ��� Zk ���%�#�(��&

��

Let c � M; M :� M � �c�; Yk :� �c�; Zk :� M;10

end11

We randomly place card of Z2 � �21� in redundant row and tth
3 column. On the basis

of the location of Z2, we then place Z3 � �0�� Z4 � �10� and Z5 � �15� into B1. For
example, since card 21 is in tth

3 column and 3 � ed3 mod (6 � 2) � 2, we place card 0
from Z3 in tth

2 column within the redundant row(Fig.6).
Finally, we get the announcement matrix of P1 : B1 (Fig.6(b)). Then we construct

B2 as an example of Bk. According to the Algorithm 2.6, we get B2 as shown below.
Like Algorithm 2.2, Algorithm 2.6 only applies to column case. However, we can get a
suitable algorithm for row case based on the same idea. We leave out the details here.

B2 �

�
������������������������

12 16 2 18 17 8
23 6 19 9 24 26
11 13 7 29 4 20
1 1 1 1 1 1

15 0 21 25 10 3
28 27 14 22 5 30

�
������������������������

Public Communication Based on Russian Cards Protocol: A Case Study 199

Algorithm 2.4. B1RC c(step(c) of generating B1: put Xk into B1)

input: array S � T , set Xk(k � 2� � � � � n � 1),integer n;1

output: matrix B1
x;2

temp variable: set H, integer k� c� d� i, array Q;3

Let H � �0� 1� � � � � n � 3�;4

for i :� 0 to n � 3 do �� %��� ��� ���� �" X2 �� B1 ��5

Let c � X2; X2 :� X2 � �c�; �� %�' � ��� ��# �" X2 ��6

Let d � H; H � H � �d�;7

if RC�0 then8

b1
sd � ti

� c; �� ��� c �� %���� �� sd
th ��� ��� ti

th����� ��9

else10

b1
si �td

� c; �� ��� c �� %���� �� si
th ��� ��� td

th����� ��11

end12

qi � d;13

�� qi �����)������ ti
th ������ ��� c "��� X2 �� �� sd

th ��

end14

�� "�� �(��& �#��� %��#& Pk� ��� ���� �" Xk ��� %���� ��B1 ��

for i � 0 to n � 3 do15

for k � 3 to n � 1 do16

Let c � Xk; Xk � Xk � �c�;17

if n is odd then18

�� ��� c ����� "��� Xk �� %���� �� ti
th ����� ��

d � (qi � odk) mod (n � 2);
else19

d � (qi � edk) mod (n � 2);20

end21

if RC�0 then22

b1
sd � ti

� c;23

�� ��� c �� %���� �� sd
th ��� ��� ti

th ����� ��

else24

b1
si � td

� c;25

�� ��� c �� %���� �� si
th ��� ��� td

th ����� ��

end26

end27

end28

200 J. He and Z. Duan

Algorithm 2.5: B1RC d(step(d) of constructing B1: put Yk,Zk into B1)
input: array S ,T , set Yk,Zk(k = 2, . . . , n − 1),integer n;1
output: matrix B1;2
temp variable: set H, integer k, c, d, i;3
Let H � {0, 1, · · · , n − 3}; Let c ∈ Y2; Let i ∈ H;4
if RC=0 then5

b1
p, ti � c;6

/* in redundant row,card of Y2 is placed in ti
th column */

else7
b1

si , q � c;8

/* in redundant column, card of Y2 is placed in si
th row */

end9
/* for every other party Pk, card of Y[k] is placed into redundant
row(column) */

for k := 3 to n − 1 do10
Let c ∈ Yk;11
if n is odd then12

d := (i + odk) mod (n − 2);13
else14

d := (i + edk) mod (n − 2);15
end16
if RC=0 then17

b1
p, td � c; /* row case */18

else19
b1

sd , q � c; /* column case */20

end21

end22
Let H := {0, 1, · · · , n − 3}; Let c ∈ Z2; Let i ∈ H;23
if RC=0 then24

b1
si , q := c;25

/* in redundant column, card of Z2 is placed in si
th row */

else26
b1

p, ti := c;27

/* in redundant row, card of Z2 is placed in si
th column */

end28
/* for every other parity Pk, card of Zk is placed into redundant

column(row) */

for k := 3 to n − 1 do29
Let c ∈ Zk;30
if n is odd then31

d := (i + odk) mod (n − 2);32
else33

d := (i + edk) mod (n − 2);34
end35
if RC=0 then36

b1
sd , q := c; /* row case */37

else38
b1

p, td := c; /* column case */39

end40

end41

Public Communication Based on Russian Cards Protocol: A Case Study 201

Algorithm 2.6. B1toBkC: column case: construct Bk based on B1

input: matrix B1, integer n� p� k� share� col;1

output: matrix Bk;2

temp variable: integer i� j;3

Bk :� B1;4

for i :� 0 to n � 3 do5

j :� (i � (k � 1) � n � 2) mod (n � 2);6

swap(BCk
t j

� BCk
ti
); �� ���% ti

th ����� ��#� ti�k�1
th ����� ��7

end8

for i :� 0 to n � 3 do9

j :� (i � (k � 1) � n � 2) mod (n � 2);10

swap(BRk
sj

� BRk
si

); �� ���% si
th��� ��#� si�k�1

th ��� ��11

end12

for i :� 0 to n � 3 do �� ���#� #�� ��� �" Yk �� ��������# ����� ��13

if bk
si � q � Yk then14

break;15

end16

end17

g :� bk
si � q; bk

si � q :� bk
share�col;18

for j :� 0 to n � 1 do �� "��� #�� ������! ��� ��#� ��� g ��19

bk
share� j :� g;20

end21

�� ���% #�� ��� �" P1 ��#� ��� �" Pk �� �(��& �#��� ��� ��

for i :� 0 to n � 1 do22

if i � share then23

for j :� 0 to n � 3 do �� ���#� #�� ��� �" hPk �� ith ��� ��24

if bk
i�t j

� h then �� ��� �" Pk �� �� ith ��� ��25

break;26

end27

end28

g :� bk
i�t j

; bk
i�t j

:� bk
i�col; bk

i�col :� g;29

�� ���% ��� bi�t j ��#� ��� bi�col ��

end30

end31

202 J. He and Z. Duan

(a) placing Z2 into B1 (b) placing Z3� Z4� Z5 into B1

Fig. 6. Placing Z2� Z3� Z4� Z5 into B1

3 A Case Study

As a case study, we are concerned with the following public communication.
Five parties want to make a password through consultation by public communica-

tions in order to access a shared file over the Internet. It is quite necessary that they
should ensure that all of them can get the correct password while others cannot.

Obviously, how to produce the required password is the issue of unconditionally
secured communication. Fortunately, we are able to solve this problem by means of the
Russian Cards protocol R(6,31). The details of generating the password are as follows.

Fig. 7.

As shown in Fig.7, each party is responsible for generating one digit of the password.
At the end of the communication, five digits are obtained in the order of n1� n2� n3� n4

and n5 to form the required password.
We use the row case to illustrate how the improved Russian Cards protocol works.

To do so, we assume the card deal is as follows: hP1 � �30� 17� 6� 22� 25� 11�, hP2 �

�19� 7� 2� 14� 1� 21�, hP3 � �23� 4� 18� 27� 20� 0�, hP4 � �8� 10� 9� 5� 12� 13�, hP5 � �15� 16�

24� 26� 28� 29� and key card � 3. Suppose that card 30 is the sharing card of B1, and
other parameters are as follows: row � 3� share � 3� p � 4 and q � 2.

Public Communication Based on Russian Cards Protocol: A Case Study 203

According to the improved protocol, a hand matrix is generated for each party as
shown below.

B1 �

�
������������������������

20 28 23 30 10 7
2 4 21 30 24 5

12 14 8 30 0 29
22 17 6 30 25 11
13 15 3 30 27 1
16 9 26 30 19 18

�
������������������������

� B2 �

�
������������������������

4 24 6 1 5 22
17 0 8 1 29 12
9 25 26 1 18 16

14 19 21 1 7 2
15 27 3 1 30 13
28 10 23 1 11 20

�
������������������������

B3
�

�
������������������������

25 29 8 27 12 14
19 11 26 27 16 9
10 7 6 27 22 28
0 18 23 27 20 4

30 1 3 27 13 15
24 5 21 27 2 17

�
������������������������

� B4
�

�
������������������������

18 16 26 13 17 19
7 20 23 13 28 25

11 2 21 13 4 24
5 12 8 13 9 10
1 30 3 13 15 27

29 22 6 13 14 0

�
������������������������

In the communication, after P1� P2� P3 and P4 announce their hand matrices one
by one, they know each other’s hand. As an exception, P5 figures out the hands of
P1� P2� P3 and P4 according to his own hand and B1

� B2
� B3 and B4 respectively; further,

he can also figure out the key card. After that, P5 announces the key card: B5 � 3.
As the key card is known, P1� P2� P3 and P4 are able to work out P5’s hand. Thus, the
communication comes to the end, and every party knows the card deal, i.e., every party’s
hand. In accordance with each one’s hand, part of the password can be generated. See
Fig.8.

Fig. 8. hPi: hand of party i

In line with one party’s hand cards, one digit of the password can be figured out. A
variety of rules can be used to get the digit on the basis of the hand cards. Here, we
define the rule as ni � (c2

i1 � c2
i2 � c2

i3 � c2
i4 � c2

i5 � c2
i6) mod 36, in which ni contributes

the ith digit of the password and ci j (j � 1� 2� 3� 4� 5� 6) presents one card of Pi’s hand.
We choose 36 as the module because passwords generally consist of numbers (0-9) and
letters (a-z). If the remainder drops in the range of 0 - 9, ni equals to the remainder. If
the remainder lies in the range of 10-35, we correspond it to a letter from a to z. For
instance, remainder 10 indicates ni � a while remainder 11 means ni � b, etc. The sum
of the squares of all the card numbers covers the information of every card in the hand.

204 J. He and Z. Duan

As we can see, it is not too complex to figure out the password. Hence, this is a proper
rule to generate the password. We take P2 as an example to explain the generation of
the password in detail.

Fig. 9. Hand matrix of P1

Firstly, according to P1’s hand matrix, P2 is able to figure out the hand of P1: 22 17
6 30 25 11, as shown in Fig.9. Then, based on the rule we defined, n1 � (222 � 172 �

62 � 302 � 252 � 112) mod 36 � 7. Next, P2 can work out n2 based on his own hand:
n2 � (192 � 72 � 22 � 142 � 12 � 212) mod 36 � 8. When the communication comes to
the end, P2 knows B3 and B4. Moreover, similarly to the process of B1, P2 can get n3

and n4. On the basis of P5’s announcement, i.e., the key card, P2 can get the hand of P5

and n5. Finally P2 obtain the password 7867a, as shown in Fig.10.

Fig. 10. Password: 7867a

The participated parties in the generation of the password can get the correct pass-
word like P2, while others can get nothing about it as expected.

Public Communication Based on Russian Cards Protocol: A Case Study 205

Complexity Analysis:
Now, we assume Tinea as an intruder from the Internet. We suppose Tinea knows the
protocol used in the communication is the Russian Cards protocol. Since the communi-
cation is public, Tinea can get hand matrices B1, B2, B3, B4 and B5 easily. We take B1

as an example to show what Tinea should do to decrypt the message. The announce-
ment of P1, i.e., the hand set of P1 is composed of rows and columns except the sharing
column of matrix P1. So, a hand set includes 11 hands (10 fake hands � 1 real hand).
As the Russian Cards protocol is open to the public, Tinea can get the information that
B5 is the key card without diÆculty. According to the key card, Tinea can remove two
hands which insect with the key card from the hand set. As a result, 9 hands are left.
However, Tinea could not decide which one is the real hand. For P2, P3 and P4, it can
be explained in the same way. As P5’s hand matrix is actually the key card, Tinea has
to try 9� 9� 9� 9 times to get the real card deal. Maybe Tinea can find a card deal that
satisfies the conditions well, but she could not make sure whether or not it is the real
one. For instance, suppose Tinea tries the following allocation of cards: P1’s hand: 20
28 23 30 10 7, P2’s hand: 4 24 6 1 5 22, P3’s hand: 25 29 8 27 12 14 and P4’s hand: 18
16 26 13 17 19, then Tinea gets P5’s hand: 0 2 9 11 15 21. Although the assignment can
satisfy the restriction that the cards should cover all the cards except the key card and
every party has a di�erent hand of 6 cards from each other, however, it is not the card
deal we assumed. Further, Tinea could not get the correct password at all.

As for the generalized Russian Cards protocol (n players and n(n � 1) � 1 cards), an
intruder can filter 3 hands from the matrix according to the key card and 2n�3 hands are
left. Since n�2 matrices are generated during the communication, (2n�3)n�2 card deal
choices will be produced. Therefore, the complexity of decrypting the message comes
to be O(nn). The intruder needs to try all the combinations to achieve the real card deal,
otherwise he may get the wrong card deal. What’s more, he cannot guarantee the card
deal he gets is the real one.

4 Related Works

We use (a� b� c) to denote that the first player holds a cards, the second b cards, and the
third c cards.

The Russian Cards problem is generalized to (k� k� l) in [1]. Authors analyze the
problem and the generalization (k� k� l) in the framework of Dynamic Epistemic Logic.
They draw the conclusion that there is no one-announcement solution to the Russian
Cards problem in general and no two announcement solution to (k� k� l) problem. In
[6], authors talk about the solutions to the original Russian Cards problem (3� 3� 1), and
put forward a two-step protocol. Further, they increase the number of cards while they
keep the number of players fixed and explore solutions to the updated problem (a� b� c).
Compared with [6], authors of [10] generalize the primary problem to n players and
n(n� 1)� 1 cards so that it can be used to deal with multi-party communication instead
of only two parties and formalize a Russian Cards protocol. However, the number of
cards is relevant to the the number of players in [10]. As a result, neither the protocol
given in [10] nor the improved one given in this paper work well in common case with
n players and m cards. Also none of them does the two-step protocol presented in [6].
This remains open for further investigation.

206 J. He and Z. Duan

In [6], authors study the problem in purely combinatorial terms. In [10], authors
also give formalized protocol without practical communication examples. Therefore,
we show how the Russian Cards protocol can be used in practical communication and
give a paradigm as an application in this paper.

5 Conclusion

We corrected and improved the original Russian Cards protocol algorithm. The im-
proved protocol can generate more complex and random matrices. Therefor, it will be
more diÆcult to decrypt the message. Further, a case study using the protocol for com-
munication is given. However, the paradigm is just the generation of a password. In the
future, we will further explore the communication on the text using the Russian Cards
protocol.

References

1. Cryriac, A., Murali Krishnan, K.: Lower Bound for the Communication Complexity of the
Russian Cards Problem. CoRR abs�0805.1974 (2008)

2. Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Springer, Heidelberg (1993) ISBN:
9780792393689

3. Fischer, M.J., Wright, R.N.: Bounds on Secret Key Exchange Using a Random Deal of Cards.
Journal of Cryptography 9(2), 71–99 (1996)

4. van Ditmarsch, H.: The Russian Cards Problem: a Case Study in Cryptography with Public
Announcements. In: Proceedings of AWCL 2002 (Australasian Workshop on Computational
Logic) Canberra, pp. 47-67. Technical Report TR2002�6, Department of Computer Science,
University of Melbourne (2002)

5. Makarychev, K.: Logicheskie Voprosy Peredachi Informacii (Logical Issues of Information
Transmission). Master’s thesis, Moscow State University, Diplomnaja rabota, part1 (2001)

6. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., van Ditmarsch, H.P., Handley, C.C.: Safe
Communication for Card Players by Combinatorial Designs for Two-step Protocols. Aus-
tralasian Journal of Combinatorics 33, 33–46 (2005)

7. National Institute of Standards and Technology, A Proposed Federal Information Processing
Standard for Digital Signature Standard (DSS), Federal Register, vol. 56(169), pp. 42.980-
42.982, (August 30,1991)

8. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-
key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

9. Vasilenko, O.: Number-theoretic Algorithms in Cryptography (Translations of Mathematical
Monographs). American Mathematical Society, Boston (2006)

10. Duan, Z., Yang, C.: Unconditional Secure Communication: a Russian Cards Protocol.
Journal of Combinatorial Optimization 19(4), 501–530 (2010)

Minimum Latency Data Aggregation in Wireless

Sensor Network with Directional Antenna

Hui Liu1, Zewen Liu2, Hongwei Du3, Deying Li1,�, and Xianling Lu1

1 School of Information, Renmin University of China, Beijing 100872, P.R. China
deyingli@ruc.edu.cn

2 Nanchang University, Nanchang 330031, P.R. China
3 Department of Computer Science and Technology, HITSGS, China

Abstract. Real-time data aggregation is one of important issues in wire-
less sensor network. Using directional antenna to transmit data can save
energy and reduce interference. In this paper, we study the minimum
latency data aggregation problem with directional antenna model under
protocol interference model. We propose an approximation directional
data aggregation algorithm to schedule data transmissions, which can
save energy and reduce interference to reduce latency.

Keywords: data aggregation, conflict-aware, minimum latency, direc-
tional antenna, wireless sensor network.

1 Introduction

A wireless sensor networks (WSN) consists of sensor nodes using radio transmis-
sions to organize a temporary network dynamically. It has played an important
role in many practical applications such as fire detection, battlefield surveillance
and healthcare [1]. In these applications, quite often we need to collect(or aggre-
gate) data from these sensor nodes to a fixed sink. Real-time is very important
in most applications. Therefore, reducing the data aggregation latency is very
important in wireless sensor networks.

In wireless sensor networks, each sensor node is powered by battery that may
not be possible to be recharged or replaced during a mission. Consequently, the
limited energy makes the energy efficiency become one of the primary issues
in such networks. Compared with the omni-directional antenna, the directional
antenna could save energy and reduce the number of received duplicate packets.
On the other hand, as the spatial reuse it will produce less interference and
decrease the latency of the data aggregation process.

In this paper, we focus on minimum latency conflict-aware aggregation sched-
ule problem under the directional antenna model. As many sensors which lie
far away from the sink node need intermediate nodes to relay their messages,
it is necessary to schedule the data aggregation. In this paper, we consider the
protocol interference model under the directional antenna model. We propose
an approximation algorithm for the problem.
� Corresponding author.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 207–221, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

208 H. Liu et al.

The rest of this paper is organized as follows. Section 2 reviews related works.
Section 3 describes directional antenna model, network model and problem def-
inition. Section 4 discusses the minimum latency data aggregation problem and
proposes an approximation algorithm. Section 5 gives the proof about algorithm
performance ratio.

2 Related Work

There have been many works for the minimum latency data aggregation prob-
lem. In [2], the authors studied the minimum data aggregation time (MDAT)
problem in wireless sensor networks on unit disk graph, and designed a (Δ− 1)-
approximation algorithm for the MDAT problem. Huang et al. [3] also focused
on the MDAT problem in which the transmission range equals to interference
range, and proposed an algorithm with a latency bound of 23R+Δ−18, where R
is the transmission radius. Authors of [12] proposed a distributed approximation
algorithm with latency bound 24D + 6Δ + 6, while D is the network diame-
ter. [5] studied the minimum-latency aggregation schedule (MLAS) problem in
which the interference radius is ρ times the transmission range. Shang et al. [4]
studied the minimal convergecast time problem and P.-J. Wan et al. [6] focused
on utilizing the multiple channels to speed up some communications problems.
Q. Zhu et al. [13] studied the minimum latency conflict-aware many-to-one data
aggregation scheduling problem considering the carrier sensing range and pro-
posed an approximation algorithm with a nearly constant ratio. P.-J. Wan et
al. [11] studied the minimum-latency beaconing schedule(MLBS) which seeks a
schedule for beaconing with the shortest latency in synchronous multihop wire-
less networks and presented strip coloring approximation algorithm for MLBS
under general protocol interference model.

Recently directional sensors are widely used in many applications. Guo et al.
[7] presented a distributed constant-factor approximation algorithm for the max-
imum multicast lifetime problem under directional communications. Kathiravan
et al. [8] proposed a directional broadcast protocol (DBP) to alleviate broadcast
storm in ad hoc networks using directional antennas. Li et al. [9] discussed the
energy efficient broadcast problem with a directional antenna model which could
select propagation area. Yang et al. [10] designed an energy efficient broadcast
algorithm with network coding mechanism and directional antenna to reduce
the transmission number of the data packet and energy consumption.

[15] first discussed the directional data aggregation problem, and they pro-
posed a directional flooding with data aggregation using hop-count values of
sensor node for wireless sensor network. However, it just uses flooding to send
data, there are many unnecessary transmissions. In this paper, we will propose a
new deterministic algorithm to deal with conflict-aware data aggregation prob-
lem with directional antenna for reducing aggregation latency.

Minimum Latency Data Aggregation in WSN with Directional Antenna 209

3 Network Model and Directional Antenna Model

3.1 Directional Antenna Model

In directional wireless sensor networks, each node device is capable of sensing,
processing data, and communicating. All sensors are equipped with directional
sending antennas and omni-directional receiving antennas. And the propagating
area of the sending antenna is a sector of the disk centered at the sending sensor
node with unit transmission radius. It can be effectively controlled by the beam-
width θ and the antenna orientation p which can steer to any desired direction,
where the orientation p denotes the bisector of included angle of the propagation
sector. The interference range of the sending antenna is also a sector of the disk
centered at the sending sensor node but with the interference radius rd, rd � 1.
Fig.1 shows an example of sensor node’s directional antenna model.

u

r

1

up

Fig. 1. The propagation area and interference area of node u

3.2 Network Model

There are n sensor nodes and a sink node s which are deployed on 2-D plane.
Each sensor node transmits data using directional antenna, while all sensor nodes
including the sink node receive data using omni-directional antenna.

With the directional antenna model, node v can receive messages from node
u only when v is located within u’s propagating area. If v is located within
the propagating area of u, there is a directed edge from node u to v in the
corresponding communication graph.

While the data transmission is deterministic and proceeds in synchronous
rounds controlled by a global clock, the interference may be generated when the
nodes simultaneously transmit messages in the network. Now we consider the
potential conflicts in parallel transmissions. Two parallel transmissions from u
and v can be expected to succeed in the same slot only if they avoid all the
following three conditions:

(1) at least one of nodes u and v is within the other’s propagation area, as Fig.2
(a)(b) shown;

(2) there is a node w other than node u and node v such that w is within u’s
propagation area and v’s interference area respectively, as Fig.2(c) shown;

210 H. Liu et al.

u v up

(a)

vp

vu

(b)

u
v

w
up

vp

(c)

u
v

w

up

vp

(d)

Fig. 2. Three possible scenarios of conflict between node u and node v under the
protocol interference model

(3) there is a node w other than node u and node v, which is within v’s propa-
gation area and u’s interference area respectively, as Fig.2(d) shown.

Obviously, we know that the directional antenna can not only save the energy
but also reduce the interference in the process of transmission compared with
the omni-directional antenna.

3.3 Problem Definition

Suppose that there is a set of sensors V including sink node s. The parameters
of the directional antenna are beam-width θ and the tunable orientation p. The
transmission radius is unit and interference radius is rd, rd ≥ 1. Given V , θ, p and
rd for each sensor, the network can be modeled as a directed graph G = (V,E).
For any two nodes u, v, there is a directed edge

−−−→
(v, u) if and only if u is in the

propagation area of v. We suppose that when each node receives the packets from
its children, it can aggregate these packets with itself packet into one packet.

The data aggregation schedule is a sequence of parallel transmis-
sions. We formulate it as Asch = {A1, A2, · · · , Al}, where Ai =
{(v, u)|(v, u) is in the time slot i} (1 ≤ i ≤ l). Let Si = {v|(v, u) ∈ Ai} and
Ri = {u|(v, u) ∈ Ai} (∀1 � i � l), where Si and Ri respectively represent
that the senders and the receivers of transmissions scheduled in time slot i. The
number l is called the data aggregation latency.

The parallel and collision-free transmissions in a schedule need to satisfy that
(1) a node can either send or receive at one time slot. (2) each node can receive
data from at most one of its neighbors in one schedule. (3) every node just

Minimum Latency Data Aggregation in WSN with Directional Antenna 211

transmits data once and doesn’t receive data after being scheduled to transmit.
(4) the data of each node can be sent to the sink node. (5) the transmissions in
each time slot are collision-free.

Definition 1. The minimum latency conflict-aware data aggregation scheduling
with directional antenna (LMASD) problem: Given a sink node s that collects
the information of all sensors, the parameters unit 1 and rd, and the directional
antenna beam-width θ and the tunable orientation p, to find a conflict-aware
data aggregation schedule with minimum latency by the directional antenna.

Theorem 1. The MLASD problem is NP-hard.

Proof: The Minimum-Latency Aggregation Schedule (MLAS)[2] is a special case
of our MLASD problem. This is because when r = 1 and θ = 2π for each sensor,
the MLASD problem becomes the MLAS problem. Since the MLAS problem is
NP-hard [2], thus the MLASD problem is NP-hard.

4 Algorithm

In order to construct a data aggregation tree and its scheduling, we first con-
struct an undirected connected graph Go by setting θ = 2π, where there is
an edge (v, u) if and only if the distance between u and v is not larger than
1. Secondly, we construct a data aggregation tree based on Go, then initially
determine the orientation of directional antenna of each sensor. Finally, adjust
the initial data aggregation tree to a final directional data aggregation tree and
construct a conflict-aware data aggregation scheduling under the protocol inter-
ference model.

4.1 Constructing Initial Data Aggregation Tree

In this subsection, we will structure a directional data aggregation tree. At first,
we construct a BFS tree on Go, and find a MIS. And then, we build an initial
directional data aggregation tree and determine the initial orientation of the
directional antenna of each transmitting sensor.

Constructing a BFS Tree. Firstly, each sensor node including the sink node
s opens its directional propagating antenna with the beam-width 2π to get its
neighbor set NGo(v), the omni-directional connected graph Go = (V,E) is got,
which is an UDG. We construct a BFS tree with the root s denoted by TBFS

for Go.
Secondly, we construct a MIS D of Go and a partition D0, D1, · · · , DL of the

set D got layer by layer, L is the depth of the BFS tree. The nodes in D denote
the dominator nodes. We get the MIS from the root s to the leaves of the BFS
tree TBFS. Initially, set D = ∅, D0 = ∅. We firstly construct one subset of
the partition of MIS D1 in the 1st level by checking each node in L(1) and set
D = D∪D1 . In the next steps, for each level i, we repeat checking each node in

212 H. Liu et al.

L(i) whether it is independent of all nodes in D by the graph Go till i = L. If it
is, we take it in the MIS D and its subset Di. The algorithm is similar with our
work in [13]. We denote as BFS(Go, s), where we get each node v’s parent node
Fa(v) except sink s and output the independent set D and its one partition
D0, D1, · · · , DL and the node set of L(0), L(1), · · · , L(L) for each level in TBFS .

Constructing Initial Data Aggregation Tree. We construct an initial di-
rectional aggregation tree Gd by the MIS D and its partition. The main idea is
that we connect all the nodes in D by some nodes which denote the connectors
and achieve a directed graph. Initially, Gd contains all nodes of TBFS and no
edges. Starting from the 1st level, we choose some nodes to be connectors of the
nodes in D in TBFS . Let Ci denote the connector set of nodes in Di , which
is the parent set of nodes in Di. For ∀1 ≤ i ≤ L, we need to find a connector
u in the (i − 1)th level which connects to node v in Di. Then add u into Ci

and its directed edge
−−−→
(v, u) into Gd and initialize the orientation pv =

−−−→
(v, u).

Nextly, we are able to find one dominator w to be its parent for each node u in
Ci, where w ∈ Di−1 ∪ Di−2, Di−1 ⊆ L(i − 1) and Di−2 ⊆ L(i − 2), which are
easily obtained by the property of MIS. We take

−−−→
(u,w) into Gd and pu =

−−−→
(u,w).

After that, all the dominators can be connected to the sink s. At last, check the
directed graph Gd and we may find some nodes isolated in Gd. We set these
nodes to be NC = V − (

⋃L
i=1 Ci ∪ D). They are certain to have dominators in

D by the MIS so we do the same procedure as Ci. Consequently, the graph Gd

is the initial directional aggregation tree. The algorithm is formally represented
as follow:

4.2 Scheduling for the Directional Data Aggregation

In this subsection, we schedule the conflict-aware directional data aggregation
by the protocol interference model shown in Fig 2.

Before constructing the conflict-aware directional data aggregation schedule,
we get the following lemma.

There are two transmissions “a → b” and “c → d” which are non-conflicting
parallel if they can be scheduled in one time slot.

Lemma 1. Two parallel transmissions “a → b” and “c → d” are said to be
non-conflicting if and only if any one of the following three conditions is not
satisfied (based the protocol interference model shown in section 3.2):

(1) If d(a, c) ≤ 1, then ̂(pa,−→ac) ≤ θ/2 and ̂(pc,−→ca) ≤ θ/2 ;

(2) If d(a, d) ≤ r, then ̂(pa,
−→
ad) ≤ θ/2 ;

(3) If d(c, b) ≤ r, then ̂(pc,
−→
cb) ≤ θ/2 .

Construct conflict-aware sub-schedule. In this subsection, we construct the
sub-schedule for given sender set S and receiver set B based on given connected
graph Go. The schedule from the senders to their receivers is given as follows.
Let A be the set of parallel transmissions shown in Lemma 1, which can be

Minimum Latency Data Aggregation in WSN with Directional Antenna 213

Algorithm 1. Initial-DA-Tree(Go, TBFS , θ,D, {D0, D1, · · · , DL})
Input: A connected sensor network Go, a breadth first search tree TBF S , the beam-

width θ, a maximal independent set D and its partition {D0, D1, · · · , DL}
Output: The initial directional data aggregation tree Gd, some connector sets

{C1, C2, · · · , CL}, and an isolated node set NC
1: Let pv denote the orientation of node v’s directional propagation antenna, θv denote

the beam-width of node v’s directional propagation antenna.
2: Gd = (V, E′

d), where E′
d = ∅

3: for each node v ∈ V do
4: θv = θ
5: end for
6: C1 = {s}
7: for each node v ∈ D1 do
8: E′

d = E′
d ∪ {−−−→(v, s)}, pv =

−−−→
(v, s)

9: end for
10: for i = 2 to L do
11: Ci = ∅
12: for each node v ∈ Di do
13: u = Fa(v), pv =

−−−→
(v, u), E′

d = E′
d ∪ {−−−→(v, u)}, Ci = Ci ∪ {u}

14: Select one of u’s dominators w, w ∈ Di−1 ∪ Di−2

15: Fa(u) = w, pv =
−−−→
(u, w), E′

d = E′
d ∪ {−−−→(u, w)}

16: end for
17: end for
18: NC = V − (

⋃L
i−1 Ci ∪ D)

19: for each node v ∈ NC do
20: Select one of v’s dominators u, u ∈ D
21: Fa(v) = u, E′

d = E′
d ∪ {−−−→(v, u)}, pv =

−−−→
(v, u)

22: end for
23: return Gd, {C1, C2, · · · , CL}, and NC

scheduled at the same time slot. First, we set A = ∅, and put a directed edge−−−−−−→
(v, Fa(v))(v ∈ S) into A and remove v from set S. Then select another edge−−−−−−−→
(u, Fa(u))(u ∈ S) to check whether it is parallel with any transmission in A, by
the conditions given in Lemma 1. If it won’t conflict with any one, add it into
A and move u out of set S. Repeat these steps till there is no collision-free edge
with transmissions in A. Finally, repeat this process till all nodes in S can be
scheduled.

When we find no conflict-free transmission, we can re-adjust some sensors’
direction such that more non-conflicted transmissions can be transmitted in same
slot. Two cases for senders need to be considered. Set M =

⋃L
i=1 Ci ∪ NC =

V −D.
Case 1: S ⊆ M . It is either the isolate node NC set or the connector set

Ci, 1 ≤ i ≤ L. When S = Ci, we pick up a node v(v ∈ H) (H is the set of
nodes in S which are not senders in A), then check each directed edge from v
to each node u of v’s neighbors which are in B(B = L(i − 1) ∪ L(i − 2)), that
is u ∈ ((NGo(v) ∩ (L(i − 1) ∪ L(i − 2)) − {Fa(v)}, whether this directional

214 H. Liu et al.

transmission
−−−→
(v, u) conflicts with any transmission in A or not. If no, we add

the transmission
−−−→
(v, u) into A, delete the directed edge

−−−−−−−→
(V, Fa(v)) from the edge

set Ed of the input data aggregation Td and add
−−−→
(v, u) into Ed, and change v’s

parent Fa(v) = u and remove v from H . Let Tag(v) denote whether node v has
been scheduled as a sender. Repeat to check every neighbor in B of all nodes of
H till there is no suitable transmission. Let Tag(v) denote whether node v has
been scheduled as a sender. Here, we don’t care whether u is dominator, we only
need that value of Tag(u) must be zero, i.e., we only need u didn’t send data till
now. For S = NC, nodes in NC are isolate nodes and will be scheduled at first,
and their neighbors may be in all the levels of the BFS tree, that is B = V .

Case 2: S ⊆ D, to take S = Di as an example, we pick up a node v(v ∈ H ,
H is a parent set) and then check each directed edge from v to each node u
of v’s neighbors which are in set B(B = L(i − 1)), where u ∈ ((NGo(v) ∩
L(i − 1)) − {Fa(v)}, whether this directional transmission

−−−→
(v, u) conflict with

any transmission in A or not. If no, we add the transmission
−−−→
(v, u) into A, delate

the directed edge
−−−−−−−→
(V, Fa(v)) from Ed and add

−−−→
(v, u) into Ed, set Tag(v) = 1

and change v’s parent Fa(v) = u and remove v from H . Repeat to check every
neighbor in B of all nodes of H till there is no suitable transmission. Because
node u in B is in the upper level of node v in S, that the value of Tag(u) is 0
means that receiver u does not been scheduled as a sender.

S

1 32 13 16

5 6 7 8 10 11 12 9 4 18 15 17

L(L) DL

L(i) Di Ci + 1

L(i - 1) Di - 1 Ci

L(1) D1 C2

L(0) D0 C1

(a)

S

1 32 13 16

5 6 7 8 10 11 12 9 4 18 15 17

L(L) DL

L(i) Di Ci + 1

L(i - 1) Di - 1 Ci

L(1) D1 C2

L(0) D0 C1

(b)

Directed edge from source to its parent in Gd

Edge in omni-direction connected graph Go

Dominator Node Connector Node or Isolated Node

Fig. 3. An example of the procedure of adjusting initial directional data aggregation
tree in the ith lever

Repeat these steps till all the nodes in S are checked.
Now, we give an example for adjusting initial directional data aggregation

tree Gd in the ith lever. Fig.3(a) presents the ith and (i − 1)th level of Gd.
Here, Ci+1 = {4, 9, 10, 11, 12, 15, 17, 18} and Di = {5, 6, 7, 8}. The first step
is to schedule nodes in Ci+1 to their parents. The sender node with smaller
label is checked firstly. Checking these transmissions by conditions in lemma
1, we find an initial collision-free schedule A = {−−−→(9, 3),

−−−−→
(4, 13),

−−−−→
(15, 16)}. Then

Minimum Latency Data Aggregation in WSN with Directional Antenna 215

H = Ci+1 − {4, 9, 15} = {10, 11, 12, 17, 18}. Now, we find their new father
nodes from these nodes’ neighbors in Go in the same level ith and upper level
(i− 1)th if there are directed edges from nodes in H to their neighbors. For
node 10, the directed edge

−−−−→
(10, 8) does not conflict with any transmission in

A and Tag(8) = 0, change the parent of 10 to its neighbor 8 and add
−−−−→
(10, 8)

into A and Ed and move
−−−−→
(10, 3) out of Ed, where Td = (V,Ed) is the finial

directional data transmission tree. For node 11, we can add
−−−−→
(11, 12) into A.

For node 12, we find the directed edges
−−−−→
(12, 9),

−−−−→
(12, 11) and

−−−−→
(12, 13) to con-

flict with
−−−→
(9, 3) or

−−−−→
(11, 12) in A so that the parent of node 12 can not be

changed. Repeat these processes for node 17 and 18 and get the first conflict-
aware schedule {−−−→(9, 3),

−−−−→
(4, 13),

−−−−→
(15, 16),

−−−−→
(10, 8),

−−−−→
(11, 12)}. Moreover, we construct

the next schedule from sender set H = {12, 17, 18} and find the initial schedule
{−−−−→(12, 3),

−−−−→
(17, 16)}. Nextly, for node 18 its neighbor 4 has Tag(4) = 1 which means

that it has been scheduled, so we check its another neighbor 13 to find 13 is suit-
able. Then the second conflict-aware is {−−−−→(12, 3),

−−−−→
(17, 16),

−−−−→
(18, 13)}. As H = ∅,

the connector set Ci+1 has been scheduled over and we catch two conflict-aware
schedules {{−−−→(9, 3),

−−−−→
(4, 13),

−−−−→
(15, 16),

−−−−→
(10, 8),

−−−−→
(11, 12)}, {−−−−→(12, 3),

−−−−→
(17, 16),

−−−−→
(18, 13)}},

which need two time slots. The second step is to schedule nodes in D1 to
their parents. We find an initial collision-free schedule A = {−−−→(5, 1),

−−−→
(8, 2)}. Then,

H = {6, 7}, we adjust the parents of the nodes in H to their neighbors in the
upper level (i−1)th and find that there is no suitable neighbor to be as their new
parents. Thus, the first schedule is {−−−→(5, 1),

−−−→
(8, 2)}. Nextly, we schedule H = {6, 7}

and find the second initial conflict-aware schedule {−−−→(6, 1)}. Then H = {7} and−−−→
(7, 2) is a suitable choice. Thus, the second schedule is {−−−→(6, 1),

−−−→
(7, 2)}. There-

fore, there are two conflict-aware schedules {−−−→(5, 1),
−−−→
(8, 2)}, {−−−→(6, 1),

−−−→
(7, 2)} which

also need two time slots. At last, we get finial directional data aggregation tree
Td as shown in Fig.3(b). There are four conflict-aware schedules for the sender
set L(i) in level ith and they takes four time slots. However, if we don’t ad-
just the initial directional data aggregation tree Gd, we will construct seven
conflict-aware schedules as follows: { {−−−→(9, 3),

−−−−→
(4, 13),

−−−−→
(15, 16)}, {−−−−→(10, 3),

−−−−→
(17, 16)},

{−−−−→(11, 3),
−−−−→
(18, 16)}, {−−−−→(12, 3)},{−−−→(5, 1),

−−−→
(8, 2)}, {−−−→(6, 1)}, {−−−→(7, 1)} }, which take seven

time slots. We can see that the adjusting procedure could reduce the aggregation
schedule latency.

The detail of the conflict-aware scheduling and modulating algorithm is given
as follows.

Construct conflict-aware directional data aggregation scheduling. In
this subsection, we construct a conflict-free data aggregation scheduling based
on above algorithms. After we constructed an initial data aggregation tree Gd,
it is obvious that the isolate nodes in NC are leaves in Gd. Therefore, firstly,
we schedule all nodes in NC to send data to their parents by algorithm 3. And
then, schedule conflict-aware transmissions from the level Lth. Obviously, the
set of nodes that has not been scheduled after the first step in L(L) is DL.
Suppose L > 1. For ∀1 ≤ i ≤ L, we schedule all nodes in Di ⊆ L(i) to transmit

216 H. Liu et al.

Algorithm 2. Sub-DATree-SCH(S,B,Go, θ, r, Td)
Input: A part sender set S, a node set B, the interference range r, the beam-width θ,

the connected sensor graph Go and the adjusting directional data aggregation tree
Td.

Output: A conflict-aware sub-schedule Sch.
1: Let Tag(v) denote whether node v has been scheduled as a sender, Ed denote the

edge set of the input data aggregation tree.
2: A = ∅, Sch = {∅}
3: while S �= ∅ do
4: for each node v, (v ∈ S) do

5: if ∀−−−−−−−→(u, Fa(u)) ∈ A, it is not satisfied the following three conditions: (1) If

d(v, u) ≤ 1, then ̂(pv,−→vu) ≤ θ/2 and ̂(pu,−→uv) ≤ θ/2; (2) If d(v, Fa(u)) ≤ r,

then
̂

(pv,
−−−−→
vFa(u)) ≤ θ/2; (3) If d(u, Fa(v)) ≤ r, then

̂
(pu,

−−−−→
uFa(v)) ≤ θ/2

then
6: A = A ∪ {(v, Fa(v))}, Tag(v) = 1, S = S − {v}
7: end if
8: end for
9: for each node v, (v ∈ S) do

10: while each node u, u ∈ (B ∩ NGo(v)) − {Fa(v)} and Tag(u) = 0 do

11: if ∀−−−−−−−→(w, Fa(w)) ∈ A, it is not satisfied the following three conditions: (1) If

d(v, w) ≤ 1, then ̂(pv,−→vw) ≤ θ/2 and ̂(pw,−→wv) ≤ θ/2; (2) If d(v, Fa(w)) ≤ r,

then
̂

(pv,
−−−−−→
vFa(w)) ≤ θ/2; (3) If d(w, u) ≤ r, then ̂(pw,−→wu) ≤ θ/2 then

12: Ed = {Ed ∪ {−−−→(v, u)}} − {−−−−−−−→(v, Fa(v))}, Fa(v) = u,A = A ∪ {(v, Fa(v))},
Tag(v) = 1, S = S − {v}

13: end if
14: end while
15: end for
16: Sch = Sch ∪ {A}, A = ∅
17: end while
18: return Sch

data to their parents in L(i − 1). Nextly, we schedule nodes in Ci ⊆ L(i − 1)
to transmit data to their parents in L(i − 1) ∪ L(i − 2). Repeat these steps till
i = 1. Here, L(0) = {s}, it is just need to schedule the nodes in D1 to transmit
to sink s. For each level i(1 < i < L), we first schedule the nodes in Ci+1

to their parents which are in L(i) and L(i − 1) and Tag() is 0. So after the
scheduling and adjusting procedure, all nodes in Ci+1 transmit data to other
nodes in the level ith and (i− 1)th, which are not still been scheduled. After
NC and Ci+1 are scheduled, we schedule the nodes in Di to their patents in
L(i − 1). Therefore, all nodes in L(i) has been scheduled. After running these
procedures, the sink could receive the data from all nodes in the network since⋃L

i=1(Di ∪ Ci) ∪ NC = V . Consequently, the number of the elements in Asch is
the latency l of this algorithm.

The scheduling algorithm for the LMASD problem is presented as follows:

Minimum Latency Data Aggregation in WSN with Directional Antenna 217

Algorithm 3. Final-DATree-SCH(Go, s, θ, r)
Input: A connected sensor network Go = (V, E), a sink node s(s ∈ V), the beam-

weigh θ, and interference range r.
Output: A conflict-aware directional data aggregation scheduling Asch.
1: Let Td = (V, Ed) denote the finial directional data aggregation tree, and Tag(v)

denote whether node v is scheduled as a sender in Td.
2: for each node v ∈ S do
3: Tag(v) = 0
4: end for
5: Asch = {∅}
6: [TBF S , {L(0), L(1), · · · , L(L)}, D, {D0, D1, · · · , DL}] ← BFS-Tree(Go, s)
7: [Gd, {C1, C2, · · · , CL}, NC] ← Initial-DA-Tree(Go, TBF S, D, {D0, D1, · · · , DL})
8: Td ← Gd

9: Asch ← Asch ∪ Sub-DATree-SCH(NC,V, Go, θ, r, Td)
10: for i = L to 1 do
11: Asch ← Asch ∪ Sub-DATree-SCH(Di, L(i − 1), Go, θ, r, Td)
12: if i = 1 then
13: Break;
14: end if
15: Asch ← Asch ∪ Sub-DATree-SCH(Ci, L(i − 1) ∪ L(i − 2), Go, θ, r, Td)
16: end for
17: return Asch

5 Performance Analysis

In this section, we study the time complexity and the approximation ration of
Algorithm 4. We will compare the performance of our algorithm against the
trivial lower bound of L, where L is the depth of the BFS tree TBFS .

5.1 Time Complexity

Theorem 2. The time complexity of algorithm 3 is O(|V |3).
Proof: Suppose that |V | is the number of nodes of the omni-directional net-
work topology Go = (V,E), and Δ is the maximum degree of the nodes in
Go(v)(v ∈ V).

(1) It is easy to know that the constructions of BFS and MIS both have time
complexity O(|V |2). Therefore, Step 6 takes time O(|V |2).

(2) Step 7 in Algorithm 3 has time complexity O(|V |2). To construct an initial
directional data aggregation tree, each node needs to check at most Δ nodes
to find a connector or dominator. Therefore, Step 7 takes time O(|V | × Δ) ≤
O(|V |2).

(3) Step 9 to 16 in Algorithm 3 has time complexity O(|V |3). Suppose that
there are |W | directed edges from senders in sender set S(|S| = W) to their
parents in the initial directed data aggregation tree Gd. Firstly, we schedule
these directed edges to transmit simultaneously. Each directed edge needs to

218 H. Liu et al.

check at most |W | − 1 directed edges to confirm whether they can be scheduled
at the same time slot. This procedure takes time O(|W ||W − 1|) = O(|W |2).
Secondly, we adjust the initial directed data aggregation tree. Each node which
is not be scheduled in S needs to change its parent to one of its neighbors and
check whether this adjusting directed edge conflict with the current schedule.
This procedure takes time O(|W | × (Δ− 1)× |W − 1|) = O(|W |2 ×Δ). To sum
up the two procedures,there are time complexity O(|W |2×Δ). Therefore, steps 9
to 16 in algorithm 4 take time O(|W1|2×Δ+O(|W2 |2×Δ)+O(|W3|2×Δ)+· · ·) =
O(|Ed|2 ×Δ) ≤ O(|V |3), since |W1|+ |W2|+ · · · = |Ed| = |V | − 1, where |Ed| is
the number of directed edges in finial directional data aggregation tree Td.

To sum up these analysis above, Algorithm 3 has time complexity O(|V |3).

5.2 Algorithm Approximation Ratio

In this subsection, we study the approximation ratio of Algorithm 3. Before
analyzing the performance, we need to introduce a lemma which will be used
to analyze upper bound of our scheduling latency. In this Lemma, θ = 2π, and
the transmission range, the interference range and the carrier sensing range,
respectively is r, αr and βr.

Lemma 2. [15] In order for two parallel transmissions “t1 → r1” and “t2 → r2”
to be non-conflicting according to the network model, it is sufficient to have:
d(t1, t2) > max(α + 1, β)r ∨ d(r1, r2) > (max(α, β) + 2)r.

Our interference model is same as [15] when r = 1, α = rd and β = 1. If we
set the beam-width of directional antenna θ = 2π, we could get our sufficient
conditions.

Lemma 3. In order for two parallel transmissions “a → b” and “c → d” to be
non-conflicting according to the network model, it is sufficient to have: d(a, c) >
(rd + 1) ∨ (b, d) > (rd + 2).

We construct two conflict graphs GCt and GCr for the omni-directional con-
nected graph Go = (V,E) according to Lemma 3. The graphs GCt and GCr

both have the same vertices as the graph Go and graph GCt has an edge be-
tween two nodes v and u if and only if d(v, u) ≤ rd + 1, graph GCt has an edge
between two nodes v and u if and only if d(v, u) ≤ rd +2. For example, two par-
allel transmissions “a → b” and “c → d” are non-conflicting if they are sufficient
to have (a, c) /∈ E(GCt) or (b, d) /∈ E(GCr). If there is no edge between node
v and u (v, u ∈ V) in the two graph, then the two nodes can not conflict with
each other in the initial directional data aggregation tree Td.

Next, we introduce the following lemma and Definition 1.

Lemma 4. [17]The area of the convex hull of any n ≥ 2 non-overlapping unit-
radius circular disks is at least 2

√
3(n − 1) + (2 −√

3)�√12n− 3 − 3� + π.

Definition 2. [13] f(x) is the maximum integer n to make 2
√

3(n − 1) + (2 −√
3)�√12n− 3 − 3� + π ≤ x.

Minimum Latency Data Aggregation in WSN with Directional Antenna 219

Here, the value of f(x) is a constant integer obtained easily for a given x.
Using the similar method as [13] , we can get the following lemma.

Lemma 5. The inductivities of GCt[S] and GCr[S] have an upper-bound of
Ã = f(2πh2 + 2πh − 4h) and B̃ = f(2πk2 + 2πk − 4k) respectively, where
h = rd + 1 and k = rd + 2.

Theorem 3. The latency upper bound of algorithm 3 is at most (ã + 19b̃)L +
Δb̃− ã−19b̃+5, where ã = 1+f(2πh2+2πh−4h), b̃ = 1+f(2πk2+2πk−4k), Δ
and L are respective the maximum degrees of omni-directional connected graph
Go and the depth of the BFS tree TBFS, h = rd + 1 and k = rd + 2. Here Δ
contributes to an additive factor instead of a multiplicative one, thus Algorithm
3 has a nearly approximation ratio (ã + 19b̃).

Proof: In order to prove this theorem, we need to calculate an upper bound
on the number of time slots consumed by each subschedule. We consider the
following 3 parts:

Part 1: Sub-DATree-SCH (NC, V,Go, θ, r, Td). This part only is done once for
the whole schedule. In the first procedure of the schedule, we find all the conflict-
aware transmissions in initial directional data aggregation tree Gd. Suppose H
to represent the parent nodes set of NC. Here, we first consider the beam-width
of directional antenna θ = 2π and the conflicting graph GCr[H] constructed by
the undirected connect graph Go. Note that, for each node in NC, its parent
in H is the dominator node, which is the independent node included in the
independent set D constructed from BFS(Go, s). For each node in H , it has
at most Δ neighbors, and at most Δ − 1 neighbors need to transmit data to
it. Since the nodes in H are independent and scheduled to receive data, we can
acquire a proper node coloring of nodes in H which can be accomplished with
1+B̃ colors according to Lemma [13], with the upper bound B̃ of the inductivity
of the graph GCr[H]. This means that the nodes with the same color can be
scheduled to receive data in the same time slot. Therefore, the subschedule can
be finished within (Δ−1)(1+B̃) time slots. However, there are more conflict-free
transmissions for each schedule using directional antenna θ < 2π. Moreover, in
the second procedure of the schedule in Algorithm 3, we can find more sender
nodes to transmit data for each schedule as the example shown in Fig.3 and
also gain more conflict-free transmissions for each schedule by the adjusting the
parents of the senders which are not scheduled. Consequently, the Sub-DATree-
SCH (NC, V,Go, θ, rd, Td) is guaranteed to finished at most (Δ− 1)(1+ B̃) time
slots.

Part 2: Sub-DATree-SCH (Di, L(i−1), Go, θ, r, Td), ∀1 ≤ i ≤ L. For Di, ∀2 ≤ i ≤
L, all nodes in Di are independent and need to transmit data to their parents.
With the upper bound Ã of inductivity of GCt[Di], nodes in Di has a proper
node coloring using at most 1 + Ã colors according to Lemma [13]. Here, since
the nodes with same colors can be scheduled to transmit simultaneously, the
subschedule is guaranteed to finish within 1 + Ã time slots. For D1, note that
the parent set of all nodes in D1 is H = C1 = {s}, where s is the sink node.

220 H. Liu et al.

There are at most 5 independent nodes in unit disk graph, that is |D1| ≤ 5, so
this subschedule can be finished in 5 time slots. However, with the directional
antenna θ < 2π and the adjusting process in the second procedure previously
analyzed, the time slots of schedule maybe less than 1 + Ã, for 2 ≤ i ≤ L.
Consequently, the Sub-DATree-SCH (Di, L(i− 1), Go, θ, rd, Td) is guaranteed to
finish in 1 + Ã time slots for 2 ≤ i ≤ L and 5 time slots when i = 1.

Part 3: Sub-DATree-SCH (Ci, L(i− 1) ∪ L(i− 2), Go, θ, rd, Td), ∀2 ≤ i ≤ L. For
the conflict graph GCr[H] where H is the parent set of Ci, each node in Ci has
to transmit data to its parent in H , where H is a subset of independent set D.
By [3], each node in H has 19 neighbors in Ci(3 ≤ i ≤ L) and 20 neighbors
in C2. Since they are mutually independent and are scheduled to receive data,
nodes in H has a proper node coloring using at most 1 + B̃ colors according to
Lemma [13], with the upper bound B̃ of inductivity of GCr[H]. This means that
the nodes with the same color can be scheduled to receive data in the same time
slot. Therefore, the subschedule can be finished within 19(1 + B̃) time slots for
3 ≤ i ≤ L and 20(1 + B̃) time slots when i = 2. However, with the directional
antenna θ < 2π and the adjusting process in the second procedure, the time
slots of schedule must be less than the time slots of their respective situations
above. Therefore, the Sub-DATree-SCH (Ci, L(i − 1) ∪ L(i − 2), Go, θ, r, Td) is
guaranteed to finish in 19(1 + B̃) time slots for 3 ≤ i ≤ L and 20(1 + B̃) time
slots when i = 2.

To sum up above, Algorithm 3 takes at most (Δ−1)(1+B̃)+(L−1)(1+ Ã)+
5 + (L − 2) × 19(1 + B̃) + 20(1 + B̃) time slots. To make it clear, let ã = 1 + Ã
and b̃ = 1 + B̃. Algorithm 3 has a nearly constant (ã + 19b̃) ratio.

Acknowledgment. This research was jointly supported in part by the National
Natural Science Foundation of China under grant 61070191, the Fundamental
Research Funds for the Central Universities and the Research Funds of Renmin
University of China under Grant 10XNJ032.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey on Sensor
Networks. IEEE Communications Magazine 40(8), 102–114 (2002)

2. Chen, X., Hu, X., Zhu, J.: Minimum Data Aggregation Time Problem in Wireless
Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794,
pp. 133–142. Springer, Heidelberg (2005)

3. Huang, S.C.-H., Wan, P.-J., Vu, C.T., Li, Y.-S., Yao, F.: Nearly Constant Approx-
imation for Data Aggregation Scheduling in Wireless Sensor Networks. In: IEEE
INFOCOM 2007, pp. 366–372 (2007)

4. Shang, W., Wan, P.-J., Hu, X.: Approximation Algorithm for Minimal Converge-
cast Time Problem in Wireless Sensor Networks. Wireless Networks 16(5), 1345–
1353 (2010)

5. Wan, P.-J., Huang, S.C.-H., Wang, L.X., and Jia, X. H.: Minimum-latency Aggre-
gation Scheduling in Multihop Wireless Networks. In: ACM MOBIHOC 2009, pp.
185-194 (2009)

Minimum Latency Data Aggregation in WSN with Directional Antenna 221

6. Wan, P.-J., Wang, Z., Wan, Z.Y., Huang, S.C.-H., Liu, H.: Minimum-latency
schedulings for group communications in multi-channel multihop wireless networks.
In: Liu, B., Bestavros, A., Du, D.-Z., Wang, J. (eds.) WASA 2009. LNCS, vol. 5682,
pp. 469–478. Springer, Heidelberg (2009)

7. Guo, S., Yang, O., Leung, V.: Approximation algorithms for Longest-lived Direc-
tional Multicast Communications in WANETs. In: MobiHOC 2007, pp. 190–198
(2007)

8. Kathiravan, K., Selvi, S.T., Reshmi, R.: Efficient Broadcast in MANETS using
Directional Antennas. Ubiquitous Computing and Communication Journal 2(2),
1–7 (2007)

9. Li, D., Li, Z., Liu, L.: Energy efficient broadcast routing in ad hoc sensor networks
with directional antennas. In: Li, Y., Huynh, D.T., Das, S.K., Du, D.-Z. (eds.)
WASA 2008. LNCS, vol. 5258, pp. 29–39. Springer, Heidelberg (2008)

10. Yang, S., Wu, J.: Efficient Broadcasting using Network Coding and
Directional Nntennas in MANETs. IEEE Transaction on Papallel and Distrbuted
Systems 21(2), 148–161 (2010)

11. Wan, P.-J., Xu, X., Wang, L., Jia, X., Park, E.K.: Minimum-lantency Beaconing
Schedule in Multihop Wireless Networks. In: IEEE INFOCOM 2009, pp. 2340–2346
(2009)

12. Yu, B., Li, J., Li, Y.: Distributed Data Aggregation Scheduling in Wireless Sensor
Networks. In: IEEE INFOCOM 2009, pp. 2159–2167 (2009)

13. Zhu, Q., Li, D.: Approximation for a Scheduling Problem with Application in
Wireless Networks. SCIENCE CHINA Mathematics 53(6), 1643–1655 (2010)

14. Lee, S.-H., Lee, K.-W., Cho, Y.-Z.: Directional Flooding Scheme with Data Aggre-
gation for Energy-efficient Wireless Sensor Networks. In: WASA 2008, pp. 821–830
(2009)

15. Mahjourian, R., Chen, F., Taiwari, R.: An Approximation Algorithm for Comflict-
aware Broadcast Scheduling in Wireless Ad Hoc Networks. In: MOBIHOC 2008,
pp. 331–340 (2008)

16. Wegner, G. : ÜberEndliche Kreispackungen in Der Ebebe. Studia Sci. Math.
Hungar, pp. 1-28 (1986)

17. Matula, D.W., Beck, L.L.: Smallest-last Ordering and Clustering and Graph
Coloring Algorithms. In: ACM 1989, pp. 417–427 (1989)

A Near-Optimal Memoryless Online Algorithm

for FIFO Buffering Two Packet Classes

Fei Li�

Department of Computer Science, George Mason University
Fairfax, VA 22030, USA

http://www.cs.gmu.edu/~lifei

Abstract. We consider scheduling packets with values in a capacity-
bounded buffer in an online setting. In this model, there is a buffer with
limited capacity B. At any time, the buffer cannot accommodate more
than B packets. Packets arrive over time. Each packet is associated with
a non-negative value. Packets leave the buffer only because they are
either sent or dropped. Those packets that have left the buffer will not
be reconsidered for delivery any more. In each time step, at most one
packet in the buffer can be sent. The order in which the packets are sent
should comply with the order of their arrival time. The objective is to
maximize the total value of the packets sent in an online manner. In
this paper, we study a variant of this FIFO buffering model in which a
packet’s value is either 1 or α > 1. We present a deterministic memoryless
1.304-competitive algorithm. This algorithm has the same competitive
ratio as the one presented in (Lotker and Patt-Shamir. PODC 2002,
Computer Networks 2003). However, our algorithm is simpler and does
not employ any marking bits. The idea used in our algorithm is novel
and different from all previous approaches applied for the general model
and its variants. We do not proactively preempt one packet when a new
packet arrives. Instead, we may preempt more than one 1-value packet
when the buffer contains sufficiently many α-value packets.

1 Introduction

We consider online algorithms to schedule packets with values in a capacity-
bounded buffer. There is a buffer with a limited size B ∈ Z+. At any time,
the buffer can accommodate at most B packets. Packets arrive over time. The
buffer is preemptive: Packets already in the buffer are allowed to be dropped
at any time before they are delivered. We use rp ∈ R+ and vp ∈ R+ to denote
the release time (arriving time) and value of a packet p respectively. Packets
leave the buffer only because they are either sent or dropped. Those sent and
dropped packets will not be reconsidered for delivery any more. Time is discrete.
In each time step, at most one packet in the buffer can be sent. The order of the
packets being sent should comply with the order in which they are released. The
objective is to maximize the total value of the packets sent in an online manner.
� Research partially supported by NSF Grant CCF-0915681.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 222–233, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.gmu.edu/~lifei

A Near-Optimal Algorithm for FIFO Buffering Two Packet Classes 223

We call this model a FIFO buffering model; this model has attracted a lot of
attention in the past ten years and has been studied extensively [4][8][6][3]. In
this paper, we study a variant of this model in which packets have value either
1 or α > 1. This variant is called a two-valued model and has been investigated
in [5][8][3].

Without knowing the future input, an online algorithm has to make decision
over time based on the input information that it has seen so far. If an online
algorithm decides which packet to send only based on the contents of its cur-
rent buffer, and independent of the packets that have already been released and
processed, we call it memoryless. Consider a maximization problem as an ex-
ample. A deterministic online algorithm is called k-competitive if its objective
value on any instance is at least 1/k times of the objective of an optimal offline
algorithm applied on the same instance [1]. The upper bounds of competitive
ratio are achieved by some known online algorithms. A competitive ratio less
than the lower bound cannot be reached by any online algorithm [1]. For the
two-valued model, the previously best known result is a 1.544-competitive mem-
oryless algorithm [5], a 1.304-competitive algorithm [8] using marking bits to as-
sociate with all pending packets in the buffer [8], and a non-memoryless optimal
1.282-competitive algorithm [3]. In this paper, we present a 1.304-competitive
memoryless algorithm. Our algorithm is simpler than the one in [8] and it does
not use marking bits.

It is instructive to compare and contrast the algorithm in [8] with ours since
both have the same competitive ratio 1.304. Based on the definition of memo-
ryless algorithms [2][7] (the algorithm should make the decisions independent of
any packets that it has processed), we know that the marking bits used by [8]
reflect the packets that the algorithm has processed and affect the marking and
flush procedure for later arriving α-value packets. Hence the algorithm in [8] is
not memoryless.

In Section 2, we describe a deterministic memoryless online algorithm called
ON. In Section 3, we give the algorithm’s analysis, showing that it is 1.304-
competitive. Related work and conclusion remarks are presented in Section 4.

2 Algorithm

Without loss of generality, we assume all packets have distinct release time.
Consider m packets released in the same time step t. We let these m packets
have distinct release time of t, t + δ, t + 2δ, . . ., t + (m− 1)δ respectively, where
δ > 0 and m · δ ≤ 1, in the order of being released.

2.1 The Idea

The greedy approach might be the first intuitive method to design competitive
online algorithms for the FIFO buffering model. It works as follows. If packets
overflow, the minimum-value packet is dropped (with ties broken arbitrarily).
In each time step, the earliest released packet in the buffer is sent. The greedy

224 F. Li

algorithm is asymptotically no better than 2-competitive for the FIFO buffering
model, even for the two-valued variant. Based on the observation from the tight
instance for the greedy approach, Kesselman et al. in [6] came up with another
idea, which is to proactively preempt the 1-value packets in the buffer released
before the α-value packets. Consider a 1-value packet p and an α-value packet
q with rp < rq. On one hand, if q but not p is the packet sent by the optimal
offline algorithm, we would like to preempt p proactively at q’s arrival and expect
that q can be sent before packet overflow happens. On the other hand, if both
p and q are sent by the optimal offline algorithm, we would like to preempt p
only if p’s value is bounded by a fraction of q’s value. This idea leads to the
memoryless algorithm PG, which is 1.732-competitive for the general case [3]
and 1.544-competitive for the two-valued setting [5].

In algorithm PG, a packet p’s preemption is due to buffering another packet
q. A new arrival preempts at most one packet that is released earlier. Motivated
by the greedy algorithm and PG, we propose the following strategy:

Solution 1. We preempt a set of 1-value packets due to the existence of a set
of α-value packets in the buffer to make room for the potential α-value packets
that are released later.

Different from PG, we take into account the values of multiple packets to pre-
empt a packet. Based on this idea, a 1-value packet is preempted only when the
buffer has buffered sufficiently many of later-released α-value packets. In addi-
tion, multiple 1-value packets may be preempted at the arrival of one
α-value packet.

2.2 A Memoryless Online Algorithm for the Two-Valued Model

We name our algorithm ON. ON represents a family of deterministic memoryless
online algorithms parameterized by a real number β > 0. Denote QALG

t as the
buffer of an algorithm ALG at time t. Without confusion, we may omit the
subscript t in our notation.

Definition 1 (Ejectable Packet). Consider two packets p and q in the buffer
with rp < rq, vp = 1 and vq = α. Such a packet p may prevent us from sending
q before a future possible packet overflow, and we call p an ejectable packet.

Algorithm ON is outlined as follows. New packets are admitted in a greedy
manner. If the earliest-released packet in the buffer is an α-value packet, we
simply send this packet, same as the greedy policy. Otherwise, if the earliest-
released packet is a 1-value packet, we preempt all the ejectable packets, if the
total value of all the ejectable packets is bounded by 1/β times of the total value
of all the α-value packets in ON’s buffer. Then the earliest-released packet, which
is a 1-value packet if no preemption happens or an α-packet if preemption occurs,
is sent. In each time step t, ON is described in two stages: admitting packets (see
Algorithm 1) and (possibly) preempting 1-value packets and delivering a packet
(see Algorithm 2).

A Near-Optimal Algorithm for FIFO Buffering Two Packet Classes 225

Algorithm 1. Admitting Packets
1: for each new arriving packet do
2: if there is a buffer slot available then
3: append this packet at the end of the packet queue;
4: else
5: evict the minimum-value packet, with ties broken in favor of the earliest-

released packet.
6: end if
7: end for

Algorithm 2. Preempting Packets and Delivering a Packet
1: Let the earliest-released packet in the buffer be e.
2: if ve = α then
3: send e;
4: else
5: define D := {p | p ∈ QON, vp = 1, ∃q with vq = α and rp < rq};
6: if

∑
q∈QON;vq=α vq ≥ β

∑
p∈D vp then

7: preempt all the packets in D;
8: end if
9: send the earliest-released packet in the buffer.

10: end if

Example 1. Let B = 3 and β = α. We use (rp, vp) to denote a packet p with
release time rp and value vp. Remember that we use fractional release time to
differentiate those packets released at the same time step. An input instance is
given as follows.

step 1 : (1, 1), (1.1, 1), (1.2, α)
step 2 : (2, α), (2.1, α), (2.2, α), (2.3, 1)
step 3 : no released packets
step 4 : no released packets
step 5 : (5, 1), (5.1, α), (5.2, α)

The optimal offline policy OPT sends the following packets in order:

(1.2, α), (2, α), (2.1, α), (2.2, α), (5, 1), (5.1, α), (5.2, α).

ON sends packet (1, 1) in the first time step without preempting the ejectable
packets. ON admits all the α-value packets released in step 2 and sends them
in steps 2, 3, and 4. In step 5, ejectable packet (5, 1) is preempted. ON sends
packets (5.1, α) and (5.2, α) consecutively in steps 5 and 6. Finally, ON has the
following sequence of packets being sent.

(1, 1), (2, α), (2.1, α), (2.2, α), (5.1, α), (5.2, α).

For the above instance, OPT and ON gain the total values of 6α + 1 and
5α + 1, respectively.

226 F. Li

3 Analysis

Theorem 1. ON is max{ 1+β
β , α2+2α·β

α2+α·β+β}-competitive, where β > 0.

We will employ a charging scheme to prove Theorem 1. Let OPT denote an
optimal offline algorithm and O denote the set of packets sent by OPT.

Lemma 1. Any α-value packet that ON sends is an O-packet.

Proof. Assume there exists an α-value packet p /∈ O that is sent by ON. Using an
exchange argument, we will show that there must exist another optimal offline
algorithm that sends p.

Consider an algorithm MOPT (Modified OPT) which admits packets O∪{p}
and sends the earliest-released packet in the buffer in each time step. From step
1 to step rp, MOPT’s buffer content and the packet it sends in each time step
are the same as those of OPT. We claim that packet overflow must happen
in MOPT’s buffer at some time step at/after time rp. Otherwise, MOPT can
send all the packets in O ∪ {p} successfully and gains more than OPT, which
contradicts the fact that OPT is optimal. Assume t ≥ rp is the first time at
which packet overflow occurs in MOPT’s buffer. Since MOPT only accepts one
more packet p in addition to the packets O, there are (B +1) packets for MOPT
to buffer at time t. We simply drop one packet q �= p out of MOPT’s buffer at
time t. Because there is no packet overflow in the time interval [1, t] and the
number of packets buffered by MOPT (after we drop q) is the same as that of
OPT’s at any time after time t, MOPT is capable of sending all the packets
O ∪ {p} \ {q} in a FIFO order and gains a total value ≥∑j∈O vj . 	

The contrapositive of Lemma 1 leads to the following corollary.

Corollary 1. Any non-O-packet that ON sends is a 1-value packet.

Remark 1. From Algorithm 2, no α-value packets can be preempted. That is,
any unsent α-value packet must have been only evicted by ON.

Remark 2. Consider a time t in which an α-value packet is evicted by ON. This
must indicate that the current ON’s buffer is full of B packets with value α.
From Algorithm 2, these B packets with value α will be sent by ON in steps
t, t + 1, . . . , t + B − 1.

Remark 3. From Algorithm 2, if ON preempts some 1-value packets in a step
t, ON will send all the preempting α-packets in the following time steps. These
preempting packets have a total value of at least β times of those preempted
1-value packets.

In the following, we introduce our charging scheme. Because it is difficult to
compare ON with OPT directly, we compare ON with a relaxed algorithm called
ROPT. We will show that ROPT gains the same total value as OPT does. In our
charging scheme, we will charge values to ROPT and ON. Algorithm ROPT’s
operations at a time step t is outlined in Algorithm 3.

A Near-Optimal Algorithm for FIFO Buffering Two Packet Classes 227

Algorithm 3. Relaxed OPT (p, t)
1: Accept each O-packet arriving at step t.

{In Lemma 2, we prove that all the O-packets can be admitted by ROPT without
encountering overflow.}
{Let p be the packet that ON sends in t. If ON sends nothing in t, p is defined as
a non-O null packet with value 0.}

2: if p ∈ O and p is in ROPT’s buffer then
3: send p;
4: else
5: send the earliest-released packet in the buffer, if any.
6: end if

Lemma 2. All O-packets are accepted by ROPT.

Proof. To prove Lemma 2, we only need to show that at any time ROPT’s buffer
contains no more pending packets than OPT’s buffer, and thus packet overflow
does not happen to ROPT when admitting O-packets. We apply the induction
method. Initially, ROPT’s and OPT’s buffers are empty. Assume at time t, the
number of packets in ROPT’s buffer is no more than the number of packets in
OPT’s buffer. In step t, ROPT sends one packet, if any, and OPT sends one
packet, if any. Then after packet delivery, ROPT’s buffer still contains no more
packets than OPT’s buffer. 	

Corollary 2. ROPT sends all the O-packets.

Given Lemma 2 and the fact that OPT successfully sends all the O-packets,
Corollary 2 easily holds. Lemma 2 and Corollary 2 guarantee that

Remark 4. In our charging scheme design, we only need to compare ON to ROPT
instead of to OPT.

We describe an important observation of ROPT in Remark 5.

Remark 5. For any O-packet p that is sent by ON in step t, ROPT either has
sent p before t or sends p in the same step t.

Definition 2 (Chain of Steps). For a chain consisting of k time steps

c1 → c2 → · · · → ck,

where c1 < c2 < · · · < ck, ON sends a non-O-packet in step c1 and for all
i = 1, . . . , k − 1, the packet that ROPT sends in step ci is the packet that
ON sends in step ci+1. Note that these time steps do not need to be successive.
Chains do not share time steps.

Lemma 3. At any time, for any O-packet in ON’s buffer but not in ROPT’s
buffer, there is a unique corresponding chain of steps.

228 F. Li

Algorithm 4. Construction of a Chain of Steps (t)
1: From Remark 5, there exists a unique previous time step time(p) < t in which

ROPT sends p and ON sends another packet q �= p.
2: if q /∈ O then
3: create a chain of steps consisting of only one time step time(p).
4: else {that is, q ∈ O}
5: construct a chain of steps time(q) → time(p);

{From Remark 5, ROPT must send q in a unique time step time(q) < time(p).}
6: while the packet q′ that is sent by ON in time(q) is an O-packet do
7: expand the chain by inserting time(q′) to the front of the current chain;
8: q is replace by q′ (for ease of notation of while loop);
9: end while

10: expand the chain by inserting time(q′) to the front of the current chain and this
chain is completed.
{We have found a non-O-packet sent by ON and thus the chain is completed, as
the head of the chain has to be a non-O-packet.}

11: end if

Proof. In Algorithm 4, we introduce how to build up a chain of steps for each
O-packet p in ON’s buffer but not in ROPT’s buffer at time t. This construction
directly proves Lemma 3. We use time(p) to denote the time step in which ROPT
sends a packet p. 	

The basic idea is to start building the chain from the end to the head, in the
reverse order of time. The end step is a step that an O-packet is in ON’s buffer
but not in ROPT’s buffer. Starting from this step, we search backwards in time
to look for the step in which ROPT sends this O-packet. From Remark 5, we
know that such a step must proceed the end step. Then we look at the packet
sent by ON in this step, if it is a non-O-packet, we stop constructing the chain
because we have found the head step of the chain. If it is an O-packet, we expand
the chain and continue to search backwards until we find a non-O-packet sent
by ON.

A characteristics of a chain is that in each time step in the chain except for
the first step, ON sends an O-packet.

Figure 1 demonstrates the construction of the chain of steps. Three cases are
given. The packets selected by ON and ROPT to send in each step are shown.
Capital letter packet is a non-O-packet, and small letter packet is an O-packet.
The corresponding chains are plotted on the right.

In the following, we introduce our charging scheme for both ON and ROPT.
The charging scheme will use the procedure of constructing chains. For those
O-packets that are preempted or evicted by ON, we construct the chains at
the time steps when they are preempted or evicted. Then, we charge these O-
packets’ values to ROPT either at the first time steps of the chains or in the
time steps after they are preempted or evicted. Details of the charging scheme
are described as follows.

A Near-Optimal Algorithm for FIFO Buffering Two Packet Classes 229

Fig. 1. The construction of chains of steps

Definition 3. Open/closed chain. Given a time t ≥ ck, consider a chain of
k time steps c1 → c2 → · · · → ck. We call this chain closed if we have charged
the value of a packet in ROPT’s current buffer to ROPT in step c1. (Note that
in step c1, ON sends a non-O-packet; from Corollary 1, this packet is a 1-value
packet.) Otherwise, we say that this chain is open.

Case 1. For each packet sent by ON, we charge ON the value of this packet in
the time step that it is being sent.

Case 2. For those O-packets that are sent by both ROPT and ON, we charge
their values to ROPT in the time steps that ON sends them.

Case 3. For the O-packets that are not sent by ON, they are either evicted or
preempted.

Assume the unsent packet is an α-value packet. Those α-value O-packets that
are not delivered by ON can only be evicted (from Remark 1).

Let p denote an evicted α-value O-packet and dp denote the time in which
ON evicts p. From Remark 2, ON sends at least B packets with value α after
time dp. We define lp as the first time step after dp such that in step lp ON sends
either a 1-value packet or nothing. We charge the value vp = α to ROPT in the
time interval [dp, lp − 1].

Assume the unsent packet is a 1-value packet. Those 1-value O-packets that are
not delivered by ON can be evicted or preempted by ON.

1. Assume p is a preempted 1-value O-packet and dp is the time in which ON
preempts p.

230 F. Li

(a) Assume there is an open chain associated with a preempting packet at
time dp.
Let q be the earliest-released α-value preempting packet in ON’s buffer
whose corresponding chain is open. From Algorithm 4, q is an O-packet
that has been sent by ROPT in a previous time step < dp. In the first step
of this chain, say t′, ON sends a 1-value non-O-packet (see Corollary 1).
We charge the value vp = 1 to ROPT in step t′ and we close this chain.

(b) Assume there is no open chain associated with any preempting packet
at time dp.
Let h ≥ 1 be the number of preempting packets in ON’s buffer at time
dp. From Remark 3, ON sends these preempting α-packets consecutively
from dp to dp + h− 1.
We charge the value vp = 1 to ROPT in each of the time step in the
interval [dp, dp + h − 1].

2. Assume p is an evicted 1-value O-packet and dp is the time in which ON
evicts p.
(a) Assume p is an O-packet that has been sent by ROPT by time step dp.

From Lemma 3, p corresponds to a chain of steps such that p is the packet
sent by ROPT in the last time step of the chain and in the first time step
of the chain, say, t′, ON sends a 1-value non-O-packet (see Corollary 1).
Because vp = 1, p is not a preempting packet and no preempted 1-value
packet has been charged in the first step t′ of the chain for ROPT.
We charge the value vp = 1 to ROPT in step t′ and we close this chain.

(b) Assume p is rejected by ON at its arrival. ROPT accepts p and will send
p in a later time step ≥ dp.
From Algorithm 1, if this case happens, it must be true that ON’s buffer
is full of α-value packets at p’s arrival.
We first claim that all the packets in ON’s buffer at time dp are O-
packets. Because otherwise, ROPT can use an α-value non-O-packet
which is only in ON’s buffer to replace p (vp = 1) in ROPT’s buffer to
gain more value. We then claim that there must exist at least one open
chain at time dp since otherwise, each closed chain corresponds to one
packet in ROPT’s buffer which forbids ROPT to accept p.
Let q be the earliest-released α-value O-packet in ON’s buffer whose
corresponding chain is open. In the first step of this chain, say t′, ON
sends a 1-value non-O-packet (see Corollary 1).
We charge the value vp = 1 to ROPT in step t′ and we close this chain.

Remark 6. For any evicted 1-value O-packet, its value is charged to ROPT in a
time step t′ in which ON sends a 1-value non-O-packet and t′ is the first time
step of a closed chain of steps.

Remark 7. For each preempted 1-value O-packet, if its value is charged to ROPT
in a time step t′ in which ON sends a 1-value non-O-packet and t′ is the first
time step of a closed chain of steps, the gain ratio in this time step t′ is bounded
by 1.

A Near-Optimal Algorithm for FIFO Buffering Two Packet Classes 231

Remark 6 and Remark 7 indicate that in the time steps that we charge 1-value
evicted/preempted packets to ROPT, the gain ratio is bounded by 1. In the time
step when ON sends an O-packet, the value of the O-packet is charged to ROPT
in the same time step and the gain ratio is 1. Thus, in order to prove Theorem 1,
we only need to analyze the gain ratio for the evicted α-values O-packets and
the preempted 1-value O-packets. (Recall that Remark 1 shows that no α-value
packet is evicted by ON).

Remark 8. Each evicted (respectively, preempted) O-packet p is associated with
a time interval [dp, lp−1] (respectively [dp, dp +k−1]). In the time steps falling
in these intervals, ON sends α-value packets only.

To avoid double-charging the O-packets unsent by ON, we have the following
results.

Lemma 4. Consider an interval in which ON sends preempting α-value packets.
If there are preempted packets that are charged to ROPT in this interval, then
no evicted α-value packets are charged to ROPT in this interval.

Proof. Note that if a preempted 1-value O-packet p is charged to ROPT in this
interval, then at time dp by when ON preempts p, there are no open chains.
From time dp to the time when ON sends all the preempting packets, no new
chains are generated and no open chains exist. Also, for each closed chain, if its
last packet is in ON’s buffer, the first time step of this chain corresponds to a
unique packet in ROPT’s buffer. Hence, no α-value packet will be evicted by
ON during this interval. 	

Corollary 3. Consider an interval in which ON sends α-value packets. If there
are evicted α-value packets charged to ROPT in this interval, then no preempted
1-value packets are charged to ROPT in this interval.

Given Lemma 4 and Corollary 3, to prove Theorem 1, we will show that

1. in each interval ON sends preempting α-value packets, the total value of the
preempted 1-value packets assigned to ROPT is bounded by 1

β times of the
value gained by ON; and

2. in each interval ON sends α-value packets, if x evicted α-value O-packets
are charged to ROPT in this interval, then that there are x open chains
corresponding to these α-value packets. Also, there are x time steps in which
ON sends non-O-packets and no values are charged to ROPT in those time
steps. Also, x is always bounded by β

α+β .

In the following, we consider the gain ratio for an interval with evicted α-value
O-packets.

Lemma 5. At any time, the number of O-packets which are in ON’s buffer but
have been sent by ROPT is no more than B·β

α+β .

232 F. Li

Proof. In ON’s buffer, the cumulative number of α-value packets that have been
sent by ROPT is increased by 1 only when ON sends a 1-value O-packet. That
means no preemption happens in that time step; otherwise, that 1-value O-
packet will be preempted and an α-value preempting packet will be sent. For each
time step that ON sends a 1-value non-O-packet, we have the following inequality
(let x be the cumulative number of evicted α-value O-packets): α < (B − 1)β,
2α < (B−2)β, · · · , x·α < (B−x)β. From x·α < (B−x)β, we have x < B·β

α+β . 	

The above inequality limits the number x of cumulative evicted α-value O-
packets that we charge to ROPT in the time interval that ON sends at least B
packets with value α. From Lemma 5, x < B·β

α+β . For each evicted α-value packet,
it corresponds to a time step in which ON sends a 1-value non-O-packet and in
that time step, we do not charge ROPT any value. Thus, in those x time steps
and this time interval, ROPT gains a total value of (x + B′)α and ON gains a
total value of x+B′ ·α, where B′ ≥ B. Then we have the ratio of gains bounded
by (note B′ ≥ B and x < B·β

α+β)

(x + B′)α
x + B′ · α ≤ (x + B)α

x + B · α ≤
(

B·β
α+β + B

)
α

B·β
α+β + B · α =

(
β

α+β + 1
)
α

β
α+β + α

=
α2 + 2α · β

α2 + α · β + β
.

For the interval in which ROPT is charged with preempted 1-value packets,
we know that there are no evicted α-value packets are charged to ROPT in this
interval (see Lemma 4). Thus, the total value of the preempted 1-value O-packets
is bounded by 1

β times of the total value of the α-value preempting packets. Note
that these preempting α-value packets may be O-packets and we charge their
values to ROPT in these time steps, thus, the gain ratio is bounded by 1+β

β .
We want to minimize the gain ratio ρ for all the time intervals, where ρ =

max{ 1+β
β , α2+2α·β

α2+α·β+β}. In order to get ρ = 1+β
β for any α, we have that for any

α, 1+β
β ≥ α2+2α·β

α2+α·β+β . This requires

α2 − β(β − 1)α + β2 + β > 0. (1)

To satisfy the inequality in Equation 1 for any α, we need to guarantee β2(β−
1)2 − 4(β2 + β) = β

(
β3 − 2β2 − 3β − 4

)
< 0. By solving β3 − 2β2 − 3β − 4 < 0,

we have β ≤ 3.284. Hence, we get the gain ratio ρ minimized at 1.304 when
β = 3.284.

Corollary 4. ON is 1.304-competitive when β = 3.284.

4 Related Work and Open Problems

Mansour et al. [9] initiated the study of competitive online algorithms for the
FIFO buffering model. They designed a simple greedy deterministic algorithm
with a tight competitive ratio 2 [4]. The first algorithm with a competitive
ratio strictly less than 2 was presented by Kesselman et al. [6]. Englert and

A Near-Optimal Algorithm for FIFO Buffering Two Packet Classes 233

Westermann [3] showed that PG is 1.732-competitive but no better than 1.707-
competitive. The lower bound of competitive ratio for deterministic algorithms
is 1.409 [6]. For the two-valued variant in which packets have value either 1 or
α > 1, Kesselman and Mansour [5] proposed a 1.544-competitive memoryless
algorithm. Englert and Westermann [3] presented an optimal 1.282-competitive
algorithm which meets the lower bound [4]. However, this algorithm [3] is not
memoryless.

In this paper, we present a 1.304-competitive memoryless algorithm for the
two-valued variant. In [8], an algorithm using marking bits achieves the same
competitive ratio 1.304. The algorithm that we present in this paper is simpler
and it is not using marking bits. All previous work proactively preempt packets.
On the contrary, our algorithm drops packets in a ‘lazy’ manner. For this variant,
closing or shrinking the gaps of [1.282, 1.304] for memoryless algorithms remains
an open problem. We hope that the idea presented in this paper will motivate
an improved algorithm for the general FIFO model with arbitrary values.

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, Cambridge (1998)

2. Chrobak, M., Jawor, W., Sgall, J., Tichy, T.: Improved online algorithms for buffer
management in QoS switches. ACM Transactions on Algorithms 3(4), Article num-
ber 50 (2007)

3. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer management
in QoS switches. Algorithmica 53(4), 523–548 (2009)

4. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM Journal on Computing
(SICOMP) 33(3), 563–583 (2004)

5. Kesselman, A., Mansour, Y.: Loss-bounded analysis for differentiated services.
Journal of Algorithms 46(1), 79–95 (2003)

6. Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive guarantees for QoS
buffering. Algorithmica 43(1-2), 63–80 (2005)

7. Li, F., Sethuraman, J., Stein, C.: Better online buffer management. In: Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
199–208 (2007)

8. Lotker, Z., Patt-Shamir, B.: Nearly optimal FIFO buffer management for DiffServ.
Computer Networks 17(1), 77–89 (2002)

9. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-time
streams. Distributed Computing 17(1), 77–89 (2004)

On the Maximum Locally Clustered Subgraph

and Some Related Problems

Bang Ye Wu

National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.
bangye@cs.ccu.edu.tw

Abstract. Motivated by detecting false friend links in online social net-
works, we define two optimization problems based on the balance theory
for structural transitivity in social networks. We give a polynomial time
algorithm for one problem and show the NP-hardness of the other. For
the NP-hard problem, we show some polynomial time solvable cases and
give a 2-approximation algorithm for a restricted version. We also pro-
pose a heuristic algorithm for a more general version of the problem.

Keywords: algorithm, social network analysis, time complexity,
NP-hard, approximation algorithm.

1 Introduction

A social network is a social structure between actors. The nodes in the network
are the actors, while the links show some kind of social ties, such as friend-
ship, co-working or message flow. Social network analysis (SNA) focuses on the
analysis of patterns of relationships among actors. Due to the rapid growth of
Internet, many social networking platforms are provided and become more and
more popular. These platforms provide users to interact with friends and even
make friends with others. Nowadays hundreds of million people have registered
in many social networking websites, such as Facebook, Twitter, and Plurk [17].
However, due to several reasons, the number of friend-links in such online social
networks (OSN) are much more than that in real-life. Today, a user with hun-
dreds or even thousands of friend-links in Facebook is a common phenomenon.
One of the reasons is that building a friend-link is much easier than making a
friend in real life. Also many people like adding celeblogs as friends (hub-effect).
Another reason is that many social networking websites, for example Facebook,
provide online games and encourage users to invite others joining the games to-
gether. As a result, there are many false-friend links in an OSN, and therefore
how to identify real-friend links becomes an important issue in SNA.

In this paper, we study the following two graph optimization problems arising
in structural analysis of detecting false links. The formal definitions and their
reasons are delayed to the next section. An edge is non-triangular if its two end-
points have no common neighbor. The first problem is the Maximum Constrained
Non-triangular Edges (MCNE) problem, in which we want to find a maximum

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 234–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Maximum Locally Clustered Subgraph and Some Related Problems 235

cardinality edge subset such that, for every node, the number of non-triangular
edges incident to it is at most a specified fraction of its degree. The local clus-
tering coefficient, or CC in short, of a node in a graph is a basic measurement
which quantifies how close the neighborhood of the node is. The second problem
in this paper is the Maximum Locally Clustered Subgraph (MLCS) problem, in
which we want to find a maximum cardinality edge subset such that the CC of
every node exceeds a given threshold. Besides modeling the two problems, the
contribution of this paper includes the following.

– We show a polynomial time algorithm for the MCNE problem.
– The MLCS problem is NP-hard even for graphs in which all maximal cliques

are non-overlapped.
– The MLCS problem can be exactly solved in polynomial time if all non-trivial

maximal cliques are disjoint.
– The dual problem of MLCS, i.e., minimizing the number of removed edges,

can be 2-approximated in polynomial time if all maximal cliques are non-
overlapped and θ = 1.

– We extend the above 2-approximation algorithm to the case of general θ.

Some other related previous works are listed in the follows. The emergency
of blogs provides us a opportunity to analyze a huge social network involving
millions of people. For example, analyses of several blogs and micro-blogs on so-
cial networking websites were reported [1,13,14,7]. All their studies confirm some
important features of social networks such as power-law and fat-tail distribution,
small-world and local-clustering phenomenon. The correlation between friend-
ship and geographic location in social networks was also studied and found to be
strong [10,11], and it is also another reason that a real-life social network is more
locally clustered than an online social network. Structure analysis has been used
to detect cohesion groups [8,18]. Another approach to identify real-friend links
is by data/text mining, i.e., analyzing the contents. Some text mining methods
are used to find latent friends from blogosphere [2,9,15].

The rest of the paper is organized as follows. In Section 2, we introduce some
notations, as well as the reason why the two problems are defined. In Section 3,
we show a polynomial time algorithm for the MCNE problem. In Section 4, we
discuss the MLCS problem, including the NP-hardness, some polynomial time
solvable cases, an approximation algorithm and a heuristic algorithm. Finally a
conclusion is given in Section 5.

2 Preliminaries

2.1 Notations and Definitions

An online social network G = (V,E) is a simple undirected graph, in which V
and E are the node and edge sets, respectively. An edge (u, v) is a true link if
u and v are friends in real-life; or false link otherwise. In this section we define
two optimization problems for analyzing true/false links in a social network. We
shall use the following notations and terms in graph theory.

236 B.Y. Wu

For a graph G, V (G) and E(G) denote the node and edge sets, respectively.
Two nodes u and v are neighbors of each other if (u, v) ∈ E. The neighborhood
of a node Nv is the set of nodes adjacent to v, i.e., Nv = {u ∈ V |(u, v) ∈ E}. Let
Nuv = Nu ∩ Nv denote the co-neighbors of u and v. For a node subset U , the
subgraph of G induced by U is denoted by G[U]. Also the subgraph induced by
an edge set F is denoted by G[F]. The degree of a node v in a graph G, denoted
by d(G, v) is the number of its neighbors in G. When there is no confusion, we
shall simply use d(v). We shall also use d(F, v) to denote d(G[F], v) for short.

A clique is complete subgraph. A k-clique is a clique of k nodes. A k-clique
is a trivial clique if k < 3. A 3-clique is also called as a triangle. A clique is
maximal if it is not properly contained in another clique. Two cliques are dis-
joint if they have no common node, and non-overlapped if they do not share a
common edge. An edge (u, v) is a triangular edge if it belongs to some triangle;
or a non-triangular edge otherwise. The sets of all triangular, and non-triangular
respectively, edge sets of a graph G are denoted by T (G) and T̄ (G), respectively.
More formally, T̄ (G) = {(u, v) ∈ E(G)|Nuv = ∅}, and (T (G), T̄ (G)) is a bipar-
tition of E. When there is no confusion, we shall use T and T̄ instead of T (G)
and T̄ (G). By Tv we denote the set of all triangular edges incident to a node
v, and T̄v is defined similarly. In the remaining paragraphs, the input graph is
always G = (V,E) and we use n = |V | and m = |E|.

The local clustering coefficient, or CC in short, of a node v in a graph G is
a basic measurement which quantifies how close the neighborhood of node v is
[6,16]. The formal definition is given by

CC(G, v) =

{
2η(v)

d(v)·(d(v)−1) if d(v) ≥ 2
1 otherwise

(1)

in which η(v) = |E(G[Nv])| is the number of edges between the neighbors of v.
For our convenience we define CC(v) = 1 if d(v) < 2. In this paper we shall only
discuss local CC but not the CC of a group or a entire graph, so we only use “CC”
instead of “local CC” in the remaining paragraphs. We shall use CC(v) if we
need not specify the graph from the context, and use CC(F, v) = CC(G[F], v)
for an edge set F . Similarly we shall use η(F, v) if the neighbors are taken from
an edge set F , i.e., η(F, v) = |{(s, t) ∈ F |(s, v) ∈ F ∧ (t, v) ∈ F}|.

2.2 Problem Modeling

According to the balance theory for structural transitivity [3,6,16] in social net-
works, a real-friend link is usually an edge in some triangle — as in common
parlance, “the friend of my friend is also my friend”. So, to detect the false
links, the first thought is to find all non-triangular edges in the social network.
But regarding all non-triangular edges as false links may be overkilled. Since a
more active actor usually has more true and false links simultaneously, we define
the following optimization problem. The reason of using d(F, v) + 1 instead of
d(F, v) as the bound is to allow the existence of pending nodes which have no
any triangular edge.

On the Maximum Locally Clustered Subgraph and Some Related Problems 237

Maximum Constrained Non-triangular Edges (MCNE) problem
Instance: A graph G = (V,E) and a positive real γ < 1.
Goal: Find a maximum cardinality edge subset F ⊆ E such that, for
all nodes v ∈ V , |T̄v(G[F])| ≤ γ · d(F, v) + 1.

The MCNE problem is only motivated by detecting true links in non-triangular
edges. However, there are false links in triangular edges. So it seems too re-
stricted, and we define a more general problem in the following. Also based on
the balance theory for structural transitivity, triangles tend to appear frequently
in triad pattern connections. As a result, the CC value on the graph formed by
the true links should be larger than that on an online social network. Since
we aim at finding as many as possible real-friend links, we define the following
optimization problem.

Maximum Locally Clustered Subgraph (MLCS) problem
Instance: A graph G = (V,E) and a positive real θ ≤ 1.
Goal: Find a maximum cardinality edge subset F ⊆ E such that, for
all nodes v ∈ V , CC(F, v) ≥ θ.

The decision version of the problem is to determine if there exists such an edge
subset of cardinality larger than or equal to a given bound. The dual MLCS prob-
lem is defined similarly except the objective function is defined by the number
of removed edges and therefore it is a minimization problem.

3 The MCNE Problem

Recall that, in the MCNE problem, we look for a maximum cardinality edge
subset F such that the number of the non-triangular edges incident to v is at
most γd(F, v)+1 for every node v. Since the constraint is only on the number of
non-triangular edges, any triangle in G should be included in an optimal solution.
Furthermore adding non-triangular edges cannot form any triangle. Therefore
|Tv(G[F ∗])| = |Tv(G)| for any optimal solution F ∗. For any feasible solution F ,
we have

|T̄v(G[F])| ≤ γ · d(F, v) + 1 = γ(|T̄v(G[F])| + |Tv(G[F])|) + 1

|T̄v(G[F])| ≤ 1
1 − γ

(γ|Tv(G[F])| + 1) (2)

After finding T (G), we can easily determine the upper bound, named b(v),
of the number of non-triangular edges incident to every node v by Eq. (2). The
MCNE problem can be reduced to find a maximum subgraph of G[T̄] such that
the degree of any node v is upper bounded by b(v). This problem is known by
the name upper degree-constrained subgraph (UDCS) [4] or, more generalized, the
b-matching problem. The UDCS problem is a generalization of graph matching
problem (b(v) = 1 for all nodes v) and can be solved by reducing to the maximum
matching problem. The algorithm for solving the MCNE problem is as follows.

238 B.Y. Wu

Algorithm 1
Input: a graph G = (V, E) and a positive real γ < 1;
Output: an optimal solution F of the MCNE problem;

1: find T (G) and T̄ (G);
2: compute b(v) by Eq. (2) for each node v;
3: find an edge subset of F by solving a UDCS problem with input G[T̄] and b;
4: output T (G) ∪ F .

Lemma 1. T (G) and T̄ (G) can be computed in O(mn) time.

Proof. To find T (G) is equivalent to determining if Nuv = ∅ for all edges (u, v) ∈
E. If the graph is stored in an adjacency matrix, it can be easily done in O(n3)
time. For a sparse graph stored in an adjacency list, determining if Nuv = ∅
can be done in time linear to d(u) + d(v). Therefore the total time complexity
is
∑

(u,v)∈E(d(u) + d(v)) = 2
∑

(u,v)∈E d(v) = 2
∑

v∈V d(v)2 ∈ O(mn) since∑
d(v) = 2m and d(v) ≤ n − 1 for any v ∈ V . 	

By [4], the UDCS problem can be solved in O((
∑

v b(v))1/2m). In this application
b(v) < n, and therefore (

∑
v b(v))1/2 < n. Together with Lemma 1, we obtain

the next theorem.

Theorem 1. The MCNE problem can be solved in O(mn) time.

4 The MLCS Problem

We discuss the MLCS problem in this section. We show the NP-hardness in
Section 4.1. Then we give some polynomial time algorithms for some special
cases in Section 4.2. In Section 4.3, we first give a 2-approximation algorithm for
the non-overlapped case and θ = 1, and then extend it to a heuristic algorithm
for general θ.

4.1 The NP-Hardness

In this subsection we show the next theorem.

Theorem 2. The MLCS problem is NP-hard even when all maximal cliques are
non-overlapped.

We first show the NP-hardness of a restricted version of the partition into tri-
angles (PIT) problem, and then the theorem is shown by transforming from the
restricted PIT problem. The restricted PIT problem is as follows.

Restricted Partition Into Triangles (Restricted PIT) problem
Instance: A graph G = (V,E) with |V | = 3q for some integer q, in
which any two triangles in G are non-overlapped.
Question: Can the nodes of G be partitioned into q disjoint sets V1, V2, ..., Vk

such that the subgraph induced by each Vi is a triangle?

On the Maximum Locally Clustered Subgraph and Some Related Problems 239

xi ziyi

ai[1] ai[3]ai[2]bi[1] bi[3]bi[2]

Fig. 1. Local replacement for ci = (xi, yi, zi) for transforming X3C to restricted PIT

Note that “all triangles are non-overlapped” also implies there is no 4-clique.
The PIT problem was shown to be NP-complete by transforming from the Exact
3-cover (X3C) problem [5, p. 68]. In an X3C problem, we are given a collection
of 3-element subsets of a universal set, and we want to determine if there exists a
sub-collection such that every element occurs exactly once in the sub-collection.
The only difference of the restricted PIT defined above from the previous one is
that we require the triangles are non-overlapped. Unfortunately, the reduction
in [5] consists of overlapped triangles and cannot be used directly. Instead we
design another local replacement for a subset ci = (xi, yi, zi) in the X3C problem
as in Figure 1.

The local replacement consists of two internal triangles (ai[1], ai[2], ai[3]) and
(bi[1], bi[2], bi[3]), as well as 3 external triangles (xi, ai[1], bi[1]), (yi, ai[2], bi[2])
and (zi, ai[3], bi[3]). First we can see that the triangles are not overlapped and
there is no 4-clique. If the graph can be partitioned into triangles, the three
external triangles are either all or none in the partition. The remaining of the
proof is the same as the previous one, and we obtain the next lemma.

Lemma 2. The restricted PIT problem is NP-complete.

We prove Theorem 2 by transforming the restricted PIC to the MLCS with
threshold θ = 1. Supposed G = (V,E) is an instance of the restricted PIT
problem, in which all triangles are non-overlapped. The corresponding instance
of the MLCS problem is G and θ = 1. For any node v, CC(v) = 1 iff its
neighborhood forms a clique or d(v) < 2. It is trivial that the optimal solution
of the MLCS problem contains 3q edges if the graph can be partitioned into
triangles. Conversely suppose that there exists a subgraph with 3q edges and
CC(v) = 1 for each node v. Since there is no clique of 4 nodes, the total number
of edges in the subgraph is at most 3q and the equality holds when each maximal
clique contains 3 nodes. Therefore G can be partitioned into triangles.

4.2 Polynomial Time Solvable Cases

The following theorem shows a special case for which the MLCS problem can be
easily solved. Note that it does not matter what value θ is.

240 B.Y. Wu

Theorem 3. When G contains no 3-clique, the optimal solution of the MLCS
problem is a maximum cardinality matching of G and therefore can be solved in
O(

√
nm) time.

Proof. Since there is no 3-clique, for any node in any subgraph of G, its CC is
either 0 or 1. Therefore any feasible solution can only consist of disjoint edges
and isolated nodes, i.e., a matching of G. The result follows from that a maxi-
mum cardinality matching is the one with as many edges as possible. The time
complexity comes from [12]. 	

Next we aim at generalizing the above theorem to the case that all non-trivial
maximal cliques are disjoint. We first show some properties. Suppose that the
current degree of a node v is dv and ηv is the number of edges between these
neighbors. Consider fv(k, ηv) as the CC(v) when we attach an additional (k+1)-
clique to v for k ≥ 1. Note that fv is defined only for k ≥ 1.

fv(k, ηv) =
ηv +

(
k
2

)(
dv+k

2

) =
2q + k(k − 1)

(dv + k)(dv + k − 1)
(3)

Lemma 3. fv(k + 1, ηv) ≥ fv(k, ηv) when k ≥ 2ηv/dv.

Proof. By Eq. (3), fv(k + 1, ηv)/fv(k, ηv) ≥ 1 iff(
2ηv + k(k + 1)
2ηv + k(k − 1)

)(
dv + k − 1
dv + k + 1

)
≥ 1 ⇔ k ≥ 2ηv

dv

	

The next corollary immediately follows from the above lemma.

Corollary 1. fv(k, 0) is increasing as k increases.

Lemma 3 also implies that fv(k, ηv) is bitonic, i.e., it first decreases and then
increases. For a preexisting edge set F and a node v, the size of a clique which
can be attached to v without violating the requirement of CC can be determined
by its current degree and ηv, and importantly the range of feasible sizes has the
form as shown in the next corollary.

Corollary 2. The range of k such that a k-clique can be attached to a node
to satisfy the CC requirement has the form [0, l] ∪ [u,∞], in which l ≤ u are
determined by ηv and dv.

Next, the number b(v) of non-triangular edges incident to a node v, which can
be added without violating the requirement of CC, can be easily computed by

2ηv

(dv + b(v))(dv + b(v) − 1)
≥ θ (4)

Lemma 4. If all maximal non-trivial cliques are disjoint, there exists an optimal
solution of the MLCS problem containing all the non-trivial cliques.

On the Maximum Locally Clustered Subgraph and Some Related Problems 241

Proof. Suppose that F is an optimal edge set and C is a non-trivial maximal
clique such that E(C) − F �= ∅. We construct an edge set F ′ from F as follows.
First let F ′ = F∪E(C). We consider any node v ∈ V (C). Let p1 = d(F∩E(C), v)
and p2 = d(F −E(C), v). We only need to consider those nodes which have more
neighbors in F ′ than in F , i.e., p1 < |V (C)| − 1. Since all non-trivial cliques are
disjoint, the edges incident to v but not in C are all non-triangular edges. The
case p1 = 1 and p1 > 0 is impossible because CC(v) = 0 in such a case. If p1 > 1,
by Corollary 1, CC(F ′, v) ≥ CC(F, v). The remaining case is that p1 = 0. When
p1 = 0, p2 ≤ 1 or otherwise CC(F, v) = 0. If p2 = 0, we have CC(F ′, v) = 1 ≥ θ.
If p2 = 1, we remove the edge previously incident to v. The removal decreases the
total degree by two but d(F ′, v) ≥ d(F, v)+2, and therefore the total number of
edges is not decreased. Also, since all non-trivial cliques are disjoint, the removed
edge must be a non-triangular, and its removal does not decrease the CC of any
node. 	

Algorithm 2
Input: a graph G with disjoint non-trivial maximal cliques and a real 0 < θ ≤ 1;
Output: An optimal solution of the MLCS problem;

1: S ← ∅;
2: find all non-trivial maximal cliques and put them into S;
3: let F be the set of all non-triangular edges in G;
4: compute b(v) by Eq. (4) for each node v; � maximum number of non-triangular

edges which can be incident to v
5: find an edge subset of F by solving a UDCS problem with G[T̄] and b;
6: add F into S;
7: return S.

Theorem 4. If all non-trivial maximal cliques are disjoint, the MLCS problem
can be solved by Algorithm 2 in O(mn) time.

Proof. By Lemma 4, there exists an optimal solution containing all non-trivial
maximal cliques. The remaining edges are all non-triangular edges. Similar to
solving the MCNE problem, the maximum number of non-triangular edges in
such an optimal solution can be found by solving a UDCS problem.

Since all non-trivial maximal cliques are disjoint, similar to Lemma 1, they
can be found in O(mn) time. Computing b(v) for every v takes only linear
time. Finally, by [4], the UDCS problem can be solved in O(mn) time since∑

v b(v) < n2. 	

4.3 Algorithms for Graphs with Non-overlapped Maximal Cliques

We focus on approximation and heuristic algorithms for the MLCS problem
with non-overlapped maximal cliques. We name the restricted version as the
MLCSN problem, and the dual MLCSN problem is defined similarly except the

242 B.Y. Wu

measurement is the number of removed edges. When θ is fixed to 1, the problem
is called by MLCSN1. First we give a 2-approximation algorithm for the dual
MLCSN1 problem.

Algorithm 3. A 2-approximation algorithm for the dual MLCS problem with
non-overlapped maximal cliques and θ = 1
1: S ← ∅;
2: find all non-trivial maximal cliques and store them in a list L;
3: while cliques in L are not disjoint do
4: extract a clique C with maximum cardinality from L;
5: S ← S ∪ E(C);
6: for all clique Q in L do
7: V (Q) ← V (Q) − V (C);
8: if |V (Q)| < 3 then remove Q from L;
9: end for

10: end while
11: let V ′ be the set of nodes not in S;
12: find an optimal solution M of G[V ′] by Algorithm 2;
13: return S ∪ M .

To simplify the performance analysis, we analyze the simpler version of Algo-
rithm 3, in which we put all maximal cliques into L (including maximal 2-cliques)
initially and the while-loop is continued until all cliques in L are singleton (the
while-condition and the if-condition at Step 8 are modified). Algorithm 3 per-
forms better than the simpler version because their behaviors are the same before
exiting the while-loop, and after that, Algorithm 3 finds an optimal solution of
the remaining graph.

Let F ∗ be an optimal solution for the MLCSN1 problem. For any node v,
let Ĉv denote the maximum clique containing v and cv = |V (Ĉv)| − 1, i.e., the
number of neighbors of v in Ĉv.

Lemma 5. |E − F ∗| ≥ (1/2)
∑

v∈V (d(v) − cv).

Proof. When θ = 1, any feasible solution is a set of disjoint cliques. By the
definition of cv, for any node v ∈ V , d(F ∗, v) ≤ cv. That is, the minimum degree
decrement of v is at least (d(v) − cv) and therefore the total degree decrement
is at least

∑
v∈V (d(v) − cv). 	

Lemma 6. Algorithm 3 drops at most
∑

v∈V (d(v) − cv) edges.

Proof. The edges are dropped at Step 7 when we put a clique C to S and remove
V (C) from any other clique joint to C. Consider any node v ∈ V (C). Some
neighbors of v may have been removed before this step. Let d′(v) be the current
degree of v and c′v the number of neighbors of v in Ĉv which have not been put
into S yet. Since C is a largest remaining clique, we have |V (C)| − 1 ≥ c′v. The
number of edges incident to v and removed at this iteration is

d′(v) − (|V (C)| − 1) ≤ d′(v) − c′v ≤ d(v) − cv.

On the Maximum Locally Clustered Subgraph and Some Related Problems 243

Summing over all nodes in C and all iterations, the result follows. 	

Theorem 5. Algorithm 3 is a 2-approximation algorithm for the dual MLCSN1

problem and runs in O(mn) time.

Proof. The approximation ratio follows from Lemmas 5 and 6. Since all maximal
cliques are non-overlapped, the maximal cliques can be found by a simple incre-
mental method. Similar to Lemma 1, they can be found in O(mn) time. Also the
total number of edges of the maximal cliques is at most m. Each iteration of the
while-loop can be done in O(m) and the number of iterations is O(n) because at
least two nodes are removed in one iteration. Finally, by Theorem 4, Algorithm 2
runs in O(mn) time, and therefore the total time complexity is O(mn). 	

Next we extend Algorithm 3 to a heuristic algorithm for the MLCSN problem
with general θ. The algorithm is list below.

Algorithm 4. A heuristic algorithm for the MLCSN problem
1: S ← ∅;
2: find all non-trivial maximal cliques and store them in a list L;
3: loop
4: extract a clique C with maximum cardinality from L;
5: if |V (C)| < 3 then
6: exit the loop;
7: end if
8: find a maximum sub-clique C′ of C such that CC(S ∪ E(C′), v) ≥ θ for every

v ∈ V (C′);
9: if |E(C′)| ≥ 3 then

10: S ← S ∪ E(C′);
11: end if
12: insert C − C′ into L;
13: end loop
14: let F be the set of edges not in S;
15: compute b(v) as the maximum number of non-triangular edges which can be inci-

dent to v for each node v;
16: find an edge subset S′ by solving a UDCS problem with input G[F] and b;
17: S ← S ∪ S′;
18: return S.

Similar to the algorithm for θ = 1, we always keep S a feasible solution and
try to add a clique as large as possible into the solution. Different from the case
θ = 1, a node may be included in more than one cliques. Therefore we should
not remove a node from the clique list as in the previous algorithm. When the
currently largest clique is considered, the nodes of the clique may have been
attached to different preexisting cliques. So it is possible that only partial but
not entire clique can be added to the solution. It is still unknown if the algorithm
ensures a performance ratio. We shall aim at how to implement Step 8.

244 B.Y. Wu

The situation at Step 8 is that there is a preexisting edge subset S and a
clique C such that S ∩ E(C) = ∅ (by the assumption that non-trivial cliques
are non-overlapped). We want to find a largest sub-clique C′ of C such that, for
each v ∈ V (C′), attaching C′ to v does not violate the requirement of CC, i.e.,

η(S, v) +
(|V (C′)| − 1

2

)
≥ θ ·

(
d(S, v) + |V (C′)| − 1

2

)
By Corollary 2, there exist two integers b1(v) ≤ b2(v) for each node v such

that the size of a clique which can be attached to v without violating the CC
requirement is in the range [0, b1(v)]∪ [b2(v),∞]. It is possible that b1(v) = 0 or
b2(v) ≥ |V (C)|, and the range degenerates into one interval or even ∅. For the
latter case we can simply ignore the node. Anyway, the problem can be simplified
as follows:

Given two integers b1(i) and b2(i) satisfying 0 ≤ b1(i) ≤ b2(i) for i from
1 to k, find a maximum cardinality subset R of {1..k} such that, for each
i ∈ R, |R| ≥ b2(v) or |R| ≤ b1(v).

We shall call it the Maximum Subset with Range Constraint (MSRC) problem.
A naive algorithm for this problem works as follows. For i from k down to one,
check if there are i elements satisfying the range constraint. The time complexity
is obviously O(k2). The problem can also be thought of as follows. Given at most
2k intervals [li, ri] in which the endpoints are all integers between 0 and k, we
want to know, for each integer i between 1 and k − 1, the number of intervals
containing i. The following simple algorithm works in linear time. First we sort
the endpoints and then scan these endpoints from small to large. When a right
endpoint is encountered, the number of intervals is decreased by one; and when
a left endpoint is encountered, the number of intervals is increased by one. The
scan process can be done in linear time since there are at most 4k endpoints.
Besides, since all endpoints are integers in the range [0, k], the sorting process
also takes only linear time. We have the next lemma.

Lemma 7. The MSRC problem can be solved in linear time.

Lemma 8. The time complexity of Algorithm 4 is O(mn).

Proof. Similar to Theorem 5, the total edge number of all cliques are linear to
m, and all the maximal cliques can be found in O(mn) time. At each iteration
of the loop, we extract a maximum clique from L, solve an MSRC problem, then
delete some node from the clique, and put the remainder back into L. Using
a priority queue to implement L, the total time complexity for the extracting
step is O(m log m) since total edge number of all cliques in L is decreased by
at least three at each iteration. Suppose that initially the number of nodes of
the maximal cliques are ki, 1 ≤ i ≤ c. An initial ki-clique may consume up
to O(k2

i) time since in worst case its node number is decreased by three each
time chosen from L and solving the corresponding MSRC problem takes time
linear to its node number. Therefore The total time complexity of the loop is

On the Maximum Locally Clustered Subgraph and Some Related Problems 245

O(m log m + (
∑

i k
2
i)). Since the total edge number of all cliques are linear to

m, that is,
∑

i

(
ki

2

) ∈ O(m), we have that
∑

i k
2
i is also O(m). Finally, similar

to Theorem 4, the UDCS problem can be solved in O(mn) time, and the time
complexity of the whole algorithm is therefore O(mn). 	

5 Conclusion

In this paper, we define two optimization problems arising in detecting false
friend links in online social networks. The modeling is based on the balance
theory for structural transitivity in social networks. We study the two problems
in the algorithmic aspect. We design a polynomial time algorithm for the MCNE
problem but the MLCS problem is shown to be NP-hard. For the MLCS problem,
the polynomial time algorithm and the 2-approximation algorithm proposed in
this paper are only for some restricted cases which rarely happen in a real online
social network. However, they may lead to some heuristic algorithms for the
general case. We conclude this paper by listing several open problems.

First, there are several theoretically interesting questions about the MLCS prob-
lem: its approximabilities for the disjoint-cliques case, for the non-overlapped-
cliques case, and for the general case. The performance of the heuristic algorithm
proposed in this paper has not been tested, and heuristic algorithms for the general
case are expected. In the practical view, the effectiveness of the modeled problems
should be further investigated, by simulated data and real data.

Acknowledgment. This work was supported in part by NSC 97-2221-E-194-
064-MY3 and NSC 98-2221-E-194-027-MY3 from the National Science Council,
Taiwan.

References

1. Ahn, Y.Y., Han, S., Kwak, H., Jeong, S.H.: Analysis of topological characteristics of
huge online social networking services. In: Proc. of the 16th international conference
on World Wide Web, pp. 835–844 (2007)

2. Chin, A., Chignell, M.: Finding evidence of community from blogging co-citations: a
social network analytic approach. In: Proc. of 3rd IADIS International Conference
Web Based Communities 2006 (WBC 2006), San Sebastian, Spain, pp. 191–200
(2006)

3. Davis, J.A.: Structural balance, mechanical solidarity, and interpersonal relations.
American Journal of Sociology 68, 444–462; Electronics and Communications in
Japan (Part I: Communications) 89(12), 88 – 96 (1963)

4. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In: STOC, pp. 448–456 (1983)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to The Theory
of NP-Completeness. Freeman, NewYork (1979)

6. Hanneman, R.A., Riddle, M.: Introduction to Social Network Methods (2005),
http://www.faculty.ucr.edu/hanneman/nettext/

http://www.faculty.ucr.edu/hanneman/nettext/

246 B.Y. Wu

7. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: An analysis of a mi-
croblogging community. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L.,
McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS,
vol. 5439, pp. 118–138. Springer, Heidelberg (2009)

8. Kuan, S.T., Wu, B.Y., Lee, W.J.: Finding friend groups in Blogsphere. In: Proc.
of the 22nd International Conference on Advanced Information Networking and
Applications, pp. 1046–1050 (2008)

9. Li, Q., Xu, M., Hou, J., Liu, F.: Web classification based on latent semantic index-
ing. Journal of Communication and Computer 3(1), 24–27 (2006)

10. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.:
Geographic Routing in Social Networks. Proc. of the National Academy of Sci-
ences (PNAS) 102(33), 11623–11628 (2005)

11. Lin, J., Halavais, A., Zhang, B.: Blog network in America: blogs as indicators of
relationships among U.S. cities. Connections 27(2), 15–23 (2007)

12. Micali, S., Vazirani, V.V.: An O(
√|V ||E|) algorithm for finding maximum match-

ing in general graphs. In: FOCS, pp. 17–27 (1980)
13. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.:

Measurement and analysis of online social networks. In: Proc. of the 5th
ACM/USENIX Internet Measurement Conference (IMC 2007), San Diego, CA
(2007)

14. Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.:
Growth of the flickr social network. In: Proc. of WOSN, Seattle, WA (2008)

15. Shen, D., Sun, J.T., Yang, Q., Chen, Z.: Latent friend mining from blog data. In:
Sixth IEEE International Conference on Data Mining (ICDM 2006), pp. 552–561
(2006)

16. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press,
Cambridge (1994)

17. Wikipedia, http://en.wikipedia.org/wiki/.
18. Yang, C.-P., Liu, C.-Y., Wu, B.Y.: Influence clubs in social networks. In: Pan, J.-S.,

Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, LNAI vol. 6422, pp. 1–10.
Springer, Heidelberg (2010)

http://en.wikipedia.org/wiki/

Quickest Paths in Anisotropic Media

Radwa El Shawi1,2 and Joachim Gudmundsson1,2

1 School of Information Technology, University of Sydney
2 NICTA, Sydney, Australia

radwa.elshawi@nicta.com.au, joachim.gudmundsson@sydney.edu.au

Abstract. In this paper we study the quickest path problem where
speed is direction-dependent (anisotropic). The problem arises in sail-
ing, robotics, aircraft navigation, and routing of autonomous vehicles,
where the speed is affected by the direction of waves, winds or slope of
the terrain. We present an approximation algorithm to find a quickest
path for a point robot moving in planar subdivision, where each face is
assigned a translational flow that reflects the cost of travelling within
this face.

Our main contribution is a data structure that given a subdivision
with translational flows returns a (1 + ε)-approximate quickest path in
the subdivision between any two query points in the plane.

1 Introduction

Geometric shortest path problem is one of the fundamental problems studied
in computational geometry and other areas including graph algorithms, geo-
graphical information systems (GIS) and robotics. An important category of
this problem is to determine the quickest path between a source point s and a
destination point t in a geometric environment. In many cases the environment
is modelled as a triangular subdivision. Different metrics may be used in all cells
of the subdivision to represent some additional mechanical constraints such as
friction, flow or steepness. The mechanical constraint we consider in this paper
is the flow which can, for example, be an air flow or a water flow.

We assume that the problem (we will use the same notations and definitions
as in [14]) is given as a planar triangular subdivision where each face r defined
by the subdivision is assigned a translational flow defined by a vector

−→
fr . Each

region r is also assigned a non-negative real number br giving the maximum
Euclidean norm of the control velocity that the robot can apply within r. We
define ρr to be the ratio between br and |−→fr |.

Assume we are considering the movement of a robot. The robot is considered
to be a point with a given initial position and also a given final position. At time
τ = 0, the point robot is at the given initial position point. Within each region
r, the robot can apply, at each time τ = 0 and in any direction, a translational
control velocity vector

−−→
v(τ) of bounded Euclidean norm |−−→v(τ)| = br. However, the

actual velocity of the robot at time τ is given by the sum of its control velocity
vector

−−→
v(τ) and the translational flow velocity

−→
fr of region r, see Fig. 1.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 247–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

248 R. El Shawi and J. Gudmundsson

The flow path optimization problem is to find an optimal path of movement of
the robot from the initial to the final position of minimum time duration. This
problem has a wide range of applications (see also [14]), for example:

– Navigating a vessel on the ocean through regions with different currents.
In particular finding a path with minimum fuel consumption from a source
point to a destination point.

– Finding a quickest path on a terrain where going up or down affects the
maximum speed.

– Finding a cheapest path (in terms of fuel consumption) for an aircraft moving
through regions with different wind conditions.

The direction-dependent structure of the problem results in an asymmetric cost
function, where the cost of traversing a straight line segment ab, is not necessarily
equal to that of a reversed link ba. Thus, the cost function is not a metric,
consequently restricting the set of mathematical tools available to us.

1.1 Problem Formulation

In the following we review the algorithm by Reif and Sun [14] to compute an
optimal path, as our approach builds upon their work. For any two points p,
q ∈ R2, we denote by pq the closed, oriented line segment from p to q. We
denote by |pq| the Euclidean distance between p and q. We will show how to
compute an optimal path from a source point u to a destination point u′ inside
a region r. Reif and Sun [14] showed that an optimal path is simple, piecewise
linear and it only changes direction between regions.

−→
fr

u′

d′

β AB

C

u′′

θ

α

du

φ

τ |−→fr|

τbr

Fig. 1. Computing τ (u, u′)

Let r = �ABC be a region with flow
−→
fr and let β = ∠BAC, as shown in

Fig. 1. Let u be a point on AB with distance d to A and let u′ be a point
on AC with distance d′ to A. Let α be the angle between BA and

−→
fr and

let θ be the angle ∠u′uA. For a robot to travel from a source point u to a
destination point u′ with minimum time, it needs to apply a control velocity −→vr

with magnitude br. Referring to Fig. 1 we can draw a “virtual triangle” �uu′u′′

such that ∠u′′uu′ = α − θ, uu′′ = τ(u, u′) · −→|fr| and u′′u′ = τ(u, u′) · br. In the

Quickest Paths in Anisotropic Media 249

virtual triangle �uu′u′′, the vector uu′′ represents the transactional flow velocity,
u′′u′ represents the control velocity of a robot in region r and uu′ represents the
composite vector of the robot movement. The following lemma (refer to Fig. 1)
shows how an optimal path is computed.

Lemma 1 (Adapted from Lemma 1 in [14]). The face-wise optimal path
from u to u′ can be achieved by adopting a control velocity with maximum magni-
tude br and an angle of φ = arcsin(sin(α−θ)

ρr
) from uu′. Further, the cost τ(u, u′)

of this path is l
br(cos φ+cos(α−θ)/ρr) , where l = |uu′| =

√
d2 + d′2 − 2dd′ cosβ.

1.2 Previous Work

Optimal path planning problems have been studied for a very long time. In the
following we discuss the most related work and refer the interested reader to the
survey by Mitchell [10].

In the weighted subdivision problem [11], a point robot moves within a pla-
nar subdivision, each face f of the subdivision is assigned a weight w > 0. The
cost of a path within a face f is the length of this path multiplied by w. Let
n denote the number of vertices of the triangular subdivision. The first approx-
imation algorithm for the weighted subdivision problem was by Mitchell and
Papadimitriou [11]. Their algorithm used a continuous Dijkstra method to find
an optimal path between any source point and destination point. The complex-
ity of their algorithm is O(n8M), where M is a function in many parameters
including ε > 0, a parameter specifying the degree of the precision. Mata and
Mitchell [9] presented a (1+ε) approximation algorithm. The algorithm is based
on constructing a relatively sparse graph, a ”pathnet”, that links selected pairs
of subdivision vertices (and ”critical points of entry”) with locally optimal paths.
The running time of this algorithm is O(n3N2wmax

εwmin
), where N is the maximum

coordinate of the vertices and wmax(wmin) is the maximum (minimum) weight
of a triangular region.

Other algorithms for the weighted subdivision problem discretize the polyg-
onal subdivision by placing Steiner points along the edges of the subdivision
and then finding a quickest path in a graph whose nodes are Steiner points or
vertices of the subdivision and whose edges are line segments. Then an optimal
path is computed on the resulting graph. In particular, Lanthier et al. [8] pre-
sented a (1 + ε)-approximation algorithm based on uniform discretization for
the polygonal regions which adds m = O(n2) points on each edge and then they
constructed a spanner graph in which they computed the approximate path.
The time complexity of this algorithm is O(n3

ε logn), as the graph has O(n3)
vertices and O(n3/ε) edges. Aleksandrov et al. [1] proposed a logarithmic dis-
cretization scheme. The running time of their algorithm is O(kn log kn), where
k = O(logt(L/r′)) and L denotes the length of the longest edge in the subdivi-
sion. Here r′ is used to represent the minimum distance from any point to the
boundary of the regions adjacent to it and t = 1 + εwmax

wmin sin(θmin) , where θmin is
the minimum angle in the subdivision.

250 R. El Shawi and J. Gudmundsson

The main limitation of the weighted subdivision model is that it only models
situations where metrics are isotropic. It can not model the effect of current, wind
or any other types of forces. Only a handful of papers looked at the problem of
finding the quickest path in anisotropic media. Papadakis and Perakis [13] gave
heuristic algorithms for related problems such as minimal time vessel routing
among ocean currents. Rowe [15] discussed optimal path planning for a mobile
robot with direction dependent forces (friction and gravity).

Reif and Sun [14] gave an approximation algorithm for the motion planning
in the presence of uniform flows. The anisotropy was introduced as a uniform
flow assigned to each region. Then, the actual velocity of an object is defined
to be the sum of a flow vector and a control velocity. The complexity of their
algorithm is O(n·cskew

ε (cskew

ε log cskew

ε + logn) log cskew

ε), where Cskew is defined
as follows. Let λ = max{cf/cf ′ : adjacent faces f and f ′}, where cf and cf ′ are
the maximum control velocities applied in regions f and f ′ respectively. Then
Cskew = Θ(λ(wmin+1)

θmin(wmin−1)).
Cheng et al. [5] generalized the problem studied by Reif and Sun [14]. Nev-

ertheless, they limited their research to the case where the speed function has a
very specific structure. Each face of the subdivision is assigned a convex distance
function that has the following property: its unit disk contains a unit Euclidean
disk, and is contained in a Euclidean disk with radius ρ. The running time of
their algorithm is O((ρ2 log ρ/ε2)n3 log(ρn/ε)).

1.3 Our Contribution

In this paper we make a small modification to the algorithm by Reif and Sun [14]
that improves the running time of their algorithm by roughly a factor of cskew

ε .
However, the main contribution of the paper is a data structure for the query
version of the problem.

The proposed algorithm constructs a graph and then finds an approximate
quickest path in this graph whose nodes are Steiner points or vertices of the
subdivision and whose edges are line segments connecting the points. Reif and
Sun [14] construct this graph by connecting every pair of points in the same
region. In order to reduce the complexity of the graph, we use the well-separated
pair decomposition (WSPD) [1] which allows us to only use a subgraph of the
complete graph in each region. Then an approximate path can be obtained from
the graph. Such a path approximates an optimal path in the original continuous
space.

The query version of the problem uses the above graph together with ideas
from the construction of so-called θ-graphs to answer an approximate quickest
path query in logarithmic time.

This paper is organized as follows. Next we present a (1 + ε)-approximation
algorithm for the basic optimisation version of the problem. Then, in Section 3,
we consider the query version. That is, preprocess the input such that an ap-
proximate quickest path between two query points s and t can be answered
efficiently. We conclude with some remarks and open problems in Section 4.

Quickest Paths in Anisotropic Media 251

2 An Efficient (1 + ε) Approximation Algorithm

We consider a simple improvement of Reif and Sun’s [14] construction. In their
paper they transformed the geometric continuous problem into a discrete com-
binatorial problem (graph problem). This graph was built by placing Steiner
points on the boundary of the triangular regions. For every region a subgraph
is built by connecting all possible pairs of Steiner points and original vertices of
the region. This also includes the source and end points which are connected to
all points in their respective regions. Then all the subgraphs are combined into
one graph. On the resulting graph, a quickest path is computed using Dijkstra’s
algorithm. The path was proven, in [14], to be an approximate shortest path.

Instead of using a complete graph in each region, as in [14], we construct a
graph G′(V,E′) by only adding a linear number of edges in each region using the
WSPD which results in a reduction of the graph size and hence an improvement
of the running time. We show that there exists a path between s and t in G′

with cost (1 + γ) times the cost of an optimal path in graph G, where γ is a
positive constant given as part of the input. The running time of our algorithm
is the time for constructing the graph plus the time for running a shortest path
algorithm on the graph G′.

v1 v2

e

ue

u1,j

u1,j−1

u1,2

u1,1

Fig. 2. Adding Steiner points on a boundary edge

2.1 Placing Steiner Points

To compute a γ-good path i.e., a path whose cost is at most (1 + γ) times the
cost of an optimal path, we use the same logarithmic discretization schema used
by Reif and Sun [14]. Let τmin(u) denote the minimum time of travelling along a
straight line path between u on a boundary edge and any point on a boundary
edge not incident to u. For any boundary edge e, let ue denote the point on the
boundary edge e with maximum τmin(u).

This discretization scheme places a higher number of Steiner points in the
portions of e closer to the endpoints. At the same time the scheme places a

252 R. El Shawi and J. Gudmundsson

smaller number of Steiner points in portions closer to ue. The intuition is that,
roughly speaking, if an optimal segment (a segment of an optimal path) crosses
an edge e at a point close to ue, the segment will be relatively long. Therefore,
it is always possible to find an approximate segment (a segment connecting two
Steiner points) that neighbors the optimal segment. Further, the cost of this
approximate segment is not more than (1 + γ) times the cost of an optimal
segment.

In the following we will show how the Steiner points are placed on boundary
edges. Let be be the lesser of the maximum composite velocities of a robot
travelling in either direction on e. For any vertex v, we use Rv to give a lower-
bound on the cost of travelling (on any possible path) between v and any point
on a boundary edge not incident to v. For any boundary edge e = v1v2, ue divides
edge e into two segments v1ue and uev2, as shown in Fig. 2. The first Steiner point
ui,1 is placed on segment viue with distance beRviγ to vertex vi. The subsequent
Steiner point ui,j is placed between ui,j−1 and ue with a distance γbeτmin(ui,j−1)
to ui,j−1. We continue adding Steiner points until no more Steiner point can be
added on viue. That is, if ui,j is the last Steiner point added, no more Steiner
point is inserted on segment viue if |viui,j | + γbeτmin(ui,j) ≥ viue. Finally, we
add ue as a Steiner point on e.

Theorem 1 (Adapted from theorem 5 in [14]). For the discretization
scheme in [14], the total number of Steiner points added to the triangular subdi-
vision is O(cskew ·n

γ log cskew

γ).

2.2 Constructing the Graph

Given a source point s, a destination point t, a positive real value ε, and a
triangular subdivision, we will show how to build the graph G′. Let r be the
region where the source point s lies. If s is neither a boundary point nor a
subdivision vertex, then triangulate r into three triangles with apex at s. The
same can be done if point t is neither a Steiner point nor a subdivision vertex.
Then place Steiner points in geometric progression along the new edges (as
described in Section 2.1). Once the Steiner points are placed, we can construct
a weighted directed graph G′. Throughout this paper we will use G = (V,E) to
denote the graph constructed by Reif and Sun [14]. The main problem in [14]
is the quadratic complexity of G with respect to the number of Steiner points.
Our main target is to maintain a linear number of edges in each region. Since it
suffices to approximate the quickest paths, we will show how the WSPD [4] can
help us to achieve the goal.

Definition 1 ([4]). Let s > 0 be a real number, and let A and B be two finite
sets of points in Rd. We say that A and B are well-separated with respect to
s, if there are two disjoint d-dimensional balls CA and CB , having the same
radius, such that (i) CA contains the bounding box R(A) of A, (i) CB contains
the bounding box R(B) of B, and (ii) the minimum distance between CA and
CB is at least s times the radius of CA.

Quickest Paths in Anisotropic Media 253

The parameter s will be referred to as the separation constant. The next lemma
follows easily from Definition 1.

Lemma 2 ([4]). Let A and B be two finite sets of points that are well-separated
w.r.t. s, let x and p be points of A, and let y and q be points of B. Then (i)
|xy| ≤ (1 + 2/s) · |xq|, (i) |xy| ≤ (1 + 4/s) · |pq|, and (ii) |px| ≤ (2/s) · |pq|.
Definition 2 ([4]). Let S be a set of n points in Rd, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s
is a sequence of pairs of non-empty subsets of S, (A1, B1), . . . , (Am, Bm), such
that

1. Ai ∩ Bi = ∅, for all i = 1, . . . ,m,
2. for any two distinct points p and q of S, there is exactly one pair (Ai, Bi) in

the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,
3. Ai and Bi are well-separated w.r.t. s, for 1 ≤ i ≤ m.

The integer m is called the size of the WSPD.

Callahan and Kosaraju showed that a WSPD of size m = O(sdn) can be com-
puted in O(sdn + n logn) time.

Observation 1. Let r = �ABC be a triangular region such that AB is the
diagonal and AC > BC, then AC > 1

2AB.

αfr
θ

p

fr

p

φ

u′
u′′ φ

α

x

qq

Fig. 3. Illustrating the proof of Lemma 3

Lemma 3. Let A and B be two finite sets of Steiner points that are well-
separated w.r.t. s and let x and p be points of A, and let q be a point of B
(see figure 3). Then τ(x, p) ≤ 4

s · τ(p, q) and τ(p, x) ≤ 4
s · τ(p, q).

The proof is straight-forward and is omitted in this abstract.
Let Vj be the set of region vertices and Steiner points of region rj , 1 ≤ j ≤ m.

For each region rj , compute a WSPD {(Ai, Bi)}k
i=1 of Vj with respect to a sep-

aration constant s = 32
γ . Next, construct the graph G′ = (V,E′), where V is the

set of Steiner points and vertices of the triangular subdivision (see Section 2.2)
and E′ is constructed as follows. For each well-separated pair {(Ai, Bi)} in rj ,
pick two arbitrary points a ∈ Ai and b ∈ Bi as representative points. Add
the directed edges (aj , bj) and (bj, aj) to E with weights τ(aj , bj) and τ(bj , aj)
respectively.

254 R. El Shawi and J. Gudmundsson

Lemma 4. The graph G′ has O(cskew ·n
γ log cskew

γ) vertices and O(sd · cskew·n
γ

log cskew

γ) edges and can be built in O(sd ·(cskew·n
γ log cskew

γ) log(cskew·n
γ log cskew

γ))
time.

Proof. The graph G′ has O(cskew·n
γ log cskew

γ) vertices according to the discretiza-
tion scheme used in [14]. The number of edges is linear with respect to the
number of vertices, which follows from using the WSPD that requires O(sd ·
(cskew·n

γ log cskew

γ) log(cskew·n
γ log cskew

γ)) time to be computed. �

By simply running Dijkstra’s algorithm [6], implemented using Fibonacci heaps,
on G′ gives the following theorem.

Theorem 2. A quickest path between s and t in G′ can be computed in O(sd ·
(cskew·n

γ log cskew

γ) log(cskew·n
γ log cskew

γ)) time using O(cskew ·n
γ log cskew

γ) space.

Our algorithm improves Reif and Sun algorithm [14] in terms of time complexity
by roughly a factor of cskew

γ . The reason for the improvement is the use of the
WSPD as it reduces the complexity of the number of edges from quadratic to
linear within a region.

2.3 Bounding the Error of the Approximation

Let G and G′ be the two graphs as described above. Recall that V is the set
of Steiner points and vertices of the triangular subdivision and E is constructed
by connecting every pair of Steiner points and vertices in the same region of the
subdivision (including s and t). Also recall that E′ is constructed by connecting
every pair of representative points in the same region. Here we analyze how well
a shortest path in G′ approximates a shortest path in G from a given source
point s to a given destination point t.

Let P be an optimal path between s and t in the continuous space with cost of
D(P) and let P1 be a shortest path in G between the two vertices corresponding
to s and t. Denote the cost of P1 by D(P1) and let S = {b1, b2, ..., bm−1, bm}
be the points visited by P1 in order of occurrence. Let δG(p, q) be the cost of a
quickest path in G between two points p and q and let δG′(p, q) be the cost of
a quickest path between p and q in G′. The following theorem is adapted from
Theorem 6 in [14].

Theorem 3 (Adapted from Theorem 5 in[14]). For any piecewise linear
path P from a source point s ∈ V to a destination point t ∈ V , there exist a
discrete path P1 from s to t in G such that D(P1) ≤ (1 + γ) ·D(P).

Consider each segment bibi+1, 1 ≤ i < m, along P1. Recall that bi, bi+1 must
be points in V but they may not be connected by an edge in G′. However, for
every pair bi, bi+1 there exists a well-separated pair (A,B) such that ai, bi ∈ A,
ai+1, bi+1 ∈ B and, ai and ai+1) are connected by a directed edge. In the next
lemma we will show that for every segment along P1 there exists a path in G′

that is almost as quick as the segment.

Quickest Paths in Anisotropic Media 255

Lemma 5. Let p and q be any pair of points in V that lie in the same region
r, it holds that δG′(p, q) ≤ (1 + 32

s) · δG(p, q), where s > 16 is the separation
constant of the WSPD.

Proof. The proof is done by induction on the Euclidean distance between p and
q. We know that there exists a well-separated pair (A,B) such that p ∈ A and
q ∈ B, and that there exists an edge from p′ to q′ in G′ and in region r with
p′ ∈ A and q′ ∈ B. If the separation constant for the WSPD is s then we have
that |pp′| ≤ 2

s · |p′q′| and |q′q| ≤ 2
s · |p′q′|, which follows from Lemma 2.

Base case: Assume that (p, q) is the closest pair of V . In this case there exists
a well-separated pair {(A,B)} such that A = {p} and B = {q}, otherwise (p, q)
could not be the closest pair. Hence the claim holds since p = p′ and q = q′ there
must also be an edge in G′ from p to q.

Induction hypothesis: Assume that the lemma holds for all pairs in V closer
than |pq| to each other.

Induction step: According to Lemma 2, |pp′| < |p′q′| and |q′q| < |p′q′|. Ac-
cording to the induction hypothesis there is a path δG′(p, p′) with cost at most
(1+32/s) · δG(p, p′) and a path δG′(q′, q) with cost at most (1+32/s) · δG(q′, q).
Also, recall that the cost of the edge (p′, q′) in G′ is δG(p′, q′) = τ(p′, q′). We get:

δG′(p, q) ≤ δG′(p, p′) + δG′(p′, q′) + δG′(q′, q)
< (1 + 32/s) · δG(p, p′) + (δG(p, p′) + δG(p′, q′) + δG(q′, q))

+(1 + 32/s) · δG(q′, q)
≤ (2 + 32/s) · τ(p, p′) + τ(p, q) + (2 + 32/s) · τ(q′, q)
≤ 4/s · (2 + 32/s) · τ(p, q) + τ(p, q) + 4/s · (2 + 32/s) · τ(p, q)
≤ (1 + 16/s + 256/s2) · δG(p, q)
< (1 + 32/s) · δG(p, q)

�From Lemma 5, we can now to establish the following theorem:

Theorem 4. For any piecewise linear path P from a source point s ∈ V to a
destination point t ∈ V , we have δ′G(s, t) ≤ (1 + ε) ·D(P).

Proof.

δG′(s, t) ≤
m∑

j=1

(1 + 32/s) · δG(bj, bj+1)

= (1 + 32/s) · δG(s, t)
≤ (1 + 32/s)(1 + γ)D(P)

By setting s = ε/32 and γ = ε/4 the theorem follows since ε < 1. �

3 Shortest Path Queries

In this section we turn our attention to the query version. That is, preprocess
the subdivision T such that given any two points s and t in R2 find a quickest

256 R. El Shawi and J. Gudmundsson

path between s and t in T . We present a data structure that, given two query
points s and t, and a positive real value ε, returns a path between s and t whose
weight is at most (1 + ε) times the weight of an optimal path between s and t.

We will start with the simpler case, when t is already known in advance and
we are only given the source point s and ε > 0 as query. Then, in Section 3.3
we will show how to generalize it to the case when both s and t are given as a
query.

3.1 The Preprocessing and the Query

In this subsection we will present the data structure, describe the preprocessing
and show how a query is processed. Throughout this section, we assume that s
lies entirely inside a region. If s lies on the boundary then we can just perturb
it slightly.

Preprocessing. In the preprocessing step we need to build three data struc-
tures, denoted M , N and P .

M[·] : In Section 2.2 we showed how to build a graph G′ given a triangular
subdivision and two points. Build the same graph, again denoted G′(V,E′), but
without including the source point s. Then compute the quickest path in G′,
using Dijkstra’s shortest path algorithm, from every vertex in V to t. Note that
this can be done by a single call to Dijkstra’s algorithm from t to all other
vertices in V provided that the directions of all edges have been reversed. The
costs are stored in a vector M , such that for a vertex v ∈ V the entry M [v]
stores the cost of the quickest path in G′ from v to t.

According to Lemma 4 the complexity of G′ is linear with respect to the num-
ber of vertices, thus it takes O(sd(cskew·n

γ log cskew

γ) log(cskew·n
γ log cskew

γ)) time
and requires O(cskew ·n

γ log cskew

γ) space to build M [·] [6]. For reasons that will
become clear below we set s = max{16, ε/64} and γ = ε/4.

Nr[·, ·] : The second structure is an angle restricted nearest neighbor querying
structure for each face r in the subdivision. Let κ ≥ 9 (follows from the construc-
tion of θ-graphs) and let θ = 2π/κ. If we rotate the positive x-axis by angles iθ,
0 ≤ i < κ, then we get κ rays, denoted 〈r1, . . . , rκ〉. Each pair of successive rays
ri and ri+1, 1 ≤ i < κ, defines a cone Xi whose apex is at the origin. The cone
obtained by translating Xi such that its apex is at a point q is denoted Xi(q).

Given a set S of n points in the plane we build a data structure N [q, i] that
given a query point q ∈ R2 and an integer i, 0 ≤ i < κ, returns a point s of
S within the cone Xi(q) whose orthogonal projection sp onto the bisector of
Xi(q) is the smallest. It has been shown (see for example Section 4.1.2 in [12] or
Lemma 2 in [3]) that such a structure can be preprocessed in O(κn logn) time
into a data structure of size O(κn) such that queries can be answered in O(log n)
time. For our purposes we will set κ = 50/ε.

P[·] : Finally, the triangular subdivision is preprocessed for efficient point
location queries as described in Chapter 6.1 in [2], which can be performed in
time O((cskew ·n

γ log cskew

γ) log(cskew·n
γ log cskew

γ)). That is, given a query point q
the data structure P returns the triangle in the subdivision that contains q.

Quickest Paths in Anisotropic Media 257

s

θ

s′p

s

Xi(q)
q sp

s′

Fig. 4. (a) Partitioning the plane into κ cones. (b) Selecting the point whose orthogonal
projection onto the bisector of Xi(q).

b1

b2

b3

b4

a1

a2

r1

c1

c2

B

C
D

A

Xi

s

r

Fig. 5. Handling the case of the empty cone Xi

Theorem 5. Given a positive constant ε, the preprocessing requires O(sd ·
(cskew·n

ε log cskew

ε) log(cskew·n
ε log cskew

ε)) time and O(cskew ·n
ε log cskew

ε) space.

Query. As a query we are given a point s in the plane. Perform a point location
query P [q] to determine which region r contains s. Next, for each i, 1 ≤ i < κ
perform an angle constrained nearest neighbour query Nr[s, i], as shown in Fig. 4.
Consider a cone Xi(s). We have two cases: (1) Xi(s) contains a point of V , or
(2) Xi(s) is empty.

Recall that the data structure M stores all the quickest paths to t from any
point in V . Thus, our task is to find a “good” point v in V such that τ(s, v) +
M [v, t] approximates D(P).

258 R. El Shawi and J. Gudmundsson

Case 1: For each non empty cone Xi(s), 1 ≤ i < κ, let vi := Nr[q, i], see Fig. 4.
Next, compute the cost of the quickest path P ′

i in G′ between s and t via vi,
that is, τ(s, vi) + M [vi].

Case 2: For each empty cone Xi(s), 1 ≤ i < κ, let CB be a boundary edge of
region r that intersects with Xi(s), as shown in Fig. 5. If the cone intersects
several boundary edges just pick one of them. Let r1 be the region that
shares a boundary edge CB with region r. Let c1 and c2 be the points of
intersection between the two boundaries of Xi(s) and CB, such that c1 is
closer, or as close, to s as c2, as shown in Fig. 5. Note that c1 and c2 are not
points in V .

For each cone Xi(c1), 1 ≤ j < κ, let vj := Nr[q, j]. Compute the cost of the
quickest path in G′ between s and t via vj , that is, τ(s, c1)+τ(c1, vj)+M [vj].
The quickest among these paths is denoted P ′

i,j , that is P ′
i is the path that

minimizes τ(s, c1) + τ(c1, vj) + M [vj] among all vj .

To conclude the query report the path, denoted P ′, between s and t that has
the minimum travelling time among all computed paths, that is, P ′ is the path
quickest among all paths P ′

i, 1 ≤ i ≤ κ.
The approximation bound and the query time will be proven in the next

section.

3.2 Approximation Bound

We establish the following theorem that provides a bound on the error of using
a discrete path to approximate an optimal path. As mentioned earlier, we have
two cases for the query either (1) the cone where the first edge along P lies in
contains a Steiner point or subdivision vertex, or (2) the cone where the first
edge along P lies in is empty. In the following we show that D(P ′) is no more
than (1 + ε) · D(P) for the two cases by using several lemmas.

−→
fr

u′

C

θ2

θ1

s

α

x3

u′′

x2

x1

γ2

γ1

B

β
A

α
θ2θ1

φ1

φ2

Fig. 6. Illustrating the notations in the proof of Lemma 6

Lemma 6. Let Xi(s) be the cone where the first segment along P lies in. If
Xi(s) contains a vertex in V then the algorithm returns a path P ′ such that
D(P ′) ≤ (1 + ε) ·D(P).

Quickest Paths in Anisotropic Media 259

Proof. The proof is omitted in this abstract. �

It remains to consider Case 2, if the cone where the first segment along P lies in
is empty. Assume without loss of generality that b1 and b2 are the nearest Steiner
points to c1 and c2 respectively on the boundary edge CB as shown in Fig. 5.
Let a1, . . . , am be the points where P bends. The following lemma is adapted
from Lemma 14 in [14]. The construction of the set of Steiner points is described
in Section 2.1.

Lemma 7 (Adapted from Lemma 15 in [14]). Let r = �BCD be a region
containing a path segment aiai+1 of an optimal path P. Assume that ai lies
between two Steiner points b1 and b2 on the boundary edge CB and ai+1 lies
between two Steiner points b3 and b4 on the boundary edge DB, as shown in
Fig. 5. Recall that ue is the point on the boundary edge e with maximum τmin(u).
Given a positive constant φ and a destination point t in V then, if b1 lies between
C and ue then τ(b1, b3) < (1 + φ) · τ(a1, a2) and δG(b3, t) < (1 + φ) · τ(a2, t)
otherwise τ(b2, b4) < (1 + φ) · τ(a1, a2) and δG(b4, t) < (1 + φ) · τ(a2, t).

Lemma 8. Let Xi(s) be a cone that contains the first segment along P. If Xi(s)
is empty then there exists a path P ′ in G such that D(P ′) ≤ (1 + ε) · D(P).

Proof. According to the construction of P ′ we have D(P ′) = τ(s, c1)+τ(c1, vj)+
δG′(vj , t) while the optimal path can be described as D(P) = τ(s, a1)+τ(a1, a2)+
τ(a2, t).

The proof is divided into parts. In the first part we prove that τ(s, c1) ≤
(1+ε) · τ(s, a1) and in the second part we prove that τ(c1, vj)+ δG′(vj , t) ≤ (1+
ε) · (τ(a1, a2) + τ(a2, t)). The first part can be proved using the same arguments
used in Lemma 6 so we will omit it here. The second part can be proved as
follows. Without loss of generality we assume that b1 lies between C and ue, and
using Lemma 7 we have:

τ(b1, b3) < (1 + φ) · τ(a1, a2) and δG(b3, t) < (1 + φ) · τ(a2, t). (1)

Recall that to compute the second segment, denoted (c1, v
′′), along P ′ we parti-

tion the region r1 into κ cones with apex at c1. Then using the same arguments
as in Lemma 6 together with (1), we can prove the following:

τ(c1, v
′′) < (1 + φ) · τ(a1, a2). (2)

From Lemma 7 and Theorem 4 we get: δG′(b3, t) < (1+ε)·τ(a2, t). Using exactly
the same argument we can prove: δG′(b4, t) < (1+ε) · τ(a2, t). which also implies
that

δG′(v′′, t) < (1 + ε) · τ(a2, t). (3)

By setting φ = ε and then using (2) and (3) we get:

τ(c1, v
′′) + δG′(v′′, t) < (1 + ε) · (τ(a1, a2) + τ(a2, t)) (4)

Finally putting together the first and second part of the proof we obtain the
desired result D(P ′) ≤ (1 + ε) · D(P). �

260 R. El Shawi and J. Gudmundsson

Theorem 6. Given a planar triangular subdivision T with a translational flow
of complexity n, a point t ∈ R2 and a positive constant ε, one can preprocess T
in O((cskew ·n

ε) log cskew

ε) log(cskew·n
ε log cskew

ε)) time using O((cskew ·n
ε) log cskew

ε)
space such that given a query point s ∈ R2 a (1 + ε)-approximate quickest path
between s and t can be calculated in O(1/ε2 · log(cskew·n

ε log cskew

ε)) time.

3.3 General Case

In this section we turn our attention to the query version when we are given two
query points s and t in R2 and our goal is to find the quickest path between s
and t. The idea is the same as in the previous section. That is we perform the
exact same preprocessing steps as in the previous section (omitting the desti-
nation point t), but with the exception that M contains all-pair quickest costs.
Using Johnson’s algorithm [7] the all-pairs shortest paths can be computed in
O(sd(cskew ·n

ε)2 log cskew

ε) log(cskew·n
ε log cskew

ε))usingO((cskew ·n
ε)2 log cskew

ε) space.
The query is performed as in the previous section, however, for both s and t

one needs to find a “good” next point along the path. That is, instead of only
searching for a point in each cone Xi(s), we also need to search for a “good”
point in each Xi(t) and the try all combinations of the two. By putting together
the results, we obtain the following theorem:

Theorem 7. Given a planar triangular subdivision T of complexity n with
a translational flow and a positive constant ε, one can preprocess T in time
O((cskew ·n

ε)2 log cskew

ε) log(cskew·n
ε log cskew

ε)) using O((cskew ·n
ε)2 log cskew

ε) space
such that given two query points s and t a (1 + ε)-approximate quickest path
between s and t can be calculated in O(1/ε4 · log(cskew·n

ε log cskew

ε)) time.

4 Concluding Remarks

We considered the problem of computing a quickest path in a subdivision with
a translational flow. In the basic case we presented an algorithm that slightly
improves the running time of the algorithm by Reif and Sun [14]. Our main
contribution is an effective data structure for the query version of the problem.

There are many open problems remaining. For example, can one develop a
more efficient data structure that has a smaller dependency on the triangulation?
We believe our construction can be generalized to higher dimensions, but at what
cost?

References

1. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An epsilon-
Approximation for Weighted Shortest Paths on Polyhedral Surfaces. In: Proceedings
of the 6th Scandinavian Workshop on Algorithm Theory (1998)

2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

Quickest Paths in Anisotropic Media 261

3. Bose, P., Gudmundsson, J., Morin, P.: Ordered theta graphs. Computational ge-
ometry – Theory & Applications 28(1), 11–18 (2004)

4. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of
the ACM 42, 67–90 (1995)

5. Cheng, S.-W., Na, H.-S., Vigneron, A., Wang, Y.: Approximate Shortest Paths in
Anisotropic Regions. SIAM Journal on Computing 38(3), 802–824 (2008)

6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

7. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM 24(1), 1–13 (1977)

8. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating Weighted Shortest Paths
on Polyhedral Surfaces. In: Proceedings of the 13th Symposium on Computational
Geometry, pp. 274–283 (1997)

9. Mata, C., Mitchell, J.: A New Algorithm for Computing Shortest Paths in Weighted
Planar Subdivisions. In: Proceedings of the 13th Symposium on Computational
Geometry, pp. 264–273 (1997)

10. Mitchell, J.: Geometric shortest paths and network optimization. Handbook of
Computational Geometry, 633–701 (2000)

11. Mitchell, J., Papadimitriou, C.: The weighted region problem: Finding shortest
paths through a weighted planar subdivision. Journal of the ACM 38(1), 18–73
(1991)

12. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

13. Papadakis, N., Perakis, A.: Deterministic Minimal Time Vessel Routing. Journal
of Operations Research 38(3), 426–438 (1990)

14. Reif, J., Sun, Z.: Movement Planning in the Presence of Flows. Algorithmica 39(2),
127–153 (2004)

15. Rowe, N.: Obtaining Optimal Mobile-Robot Paths with Nonsmooth Anisotropic
Cost Functions Using Qualitative-State Reasoning. International Journal of
Robotics Research 16(3), 375–399 (1997)

Mechanisms for Obnoxious Facility Game

on a Path

Yukun Cheng1,2, Wei Yu1, and Guochuan Zhang1

1 College of Computer Science and Technology, Zhejiang University, Hangzhou,
310027, China

2 School of Mathematics and Statistics, Zhejiang University of Finance and
Economics, Hangzhou 310018, China

ykcheng@amss.ac.cn, {zyuwei2006831,zgc}@zju.edu.cn

Abstract. We consider a new facility game, namely, an obnoxious facil-
ity game where the facility is undesirable and all agents try to be as far
away from the facility as possible. The social cost is the total distance
between the agents and the facility. However, an obnoxious facility is
placed based on the reported locations of the selfish agents. We are in-
terested in a mechanism to decide the facility location so that the social
cost is maximized. In this paper, we give a first attempt for this game on
a path. Our main results include a 3-approximation group strategy-proof
deterministic mechanism, which is best possible if the facility can only
take one of the endpoints on the path, and two group strategy-proof ran-
domized mechanisms with approximation ratio of 5

3
and 3

2
, respectively.

Keywords: Algorithmic mechanism design, facility location, social
choice.

1 Introduction

In this paper, we discuss a new facility game, called obnoxious facility game.
Consider the following scenario. The local government plans to build a garbage
dump in an area. All residents report their home addresses so that the govern-
ment can decide the most appropriate location. The cost of each resident is her
distance form the garbage dump, and the obnoxious social cost is defined to
be the total cost of all residents. Since the garbage dump is not popular, every
resident wants to be as far to the garbage dump as possible, and the government
aims to maximize the obnoxious social cost. Different from the traditional loca-
tion problems, in our setting the location of the residents is private information,
where the residents may report wrong locations to maximize their distance to
the facility. The core of this game is to design a mechanism (algorithm) which
decides the facility location based on the residents’ reports. We are interested in
mechanisms which are group strategy-proof, in the sense that no group of resi-
dents can misreport their locations such that each member can strictly benefit.

The previous work was concerned about the classical facility game, in which
each agent (resident) wants to stay as close to a facility as possible. Procaccia and
Tennenholtz [6] considered the facility game when all agents are located on a line.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 262–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Mechanisms for Obnoxious Facility Game on a Path 263

For the 1-facility game, it is trivial that there exists an optimal group strategy-
proof mechanism. For the 2-facility game on a line, they gave an upper bound
of n − 2 and a lower bound of 1.5 for deterministic strategy-proof mechanisms.
Later, Lu et al. [4] obtained an upper bound of n

2 and a lower bound of 1.045
for randomized strategy-proof mechanisms. Recently, Lu et al. [3] improved the
lower bound for deterministic strategy-proof mechanisms to n−1

2 and designed a
4-approximation randomized mechanism in general metric spaces. Alon et al. [1]
studied the facility game with one facility in more general networks rather than a
line. They gave an almost full picture of the feasible strategy-proof mechanisms.

Our work is the first try to study the strategy-proof approximation mecha-
nisms for obnoxious facility games. In our basic setting, the agents are located
on a path with left and right endpoints a and b, and the mechanism must se-
lect the location of an obnoxious facility. We first give a 3-approximation group
strategy-proof deterministic mechanism. We then show that if the facility is re-
stricted to the endpoints, then no mechanism can do better. But if the facility
can be located on the interior point of the interval, the approximation ratio of
any strategy-proof deterministic mechanism is at least 2. Finally, we design two
group strategy-proof randomized mechanisms with approximation ratios of 5

3
and 3

2 , respectively, which break the deterministic lower bound of 2.

2 Preliminaries

We use the same definitions and notions as in [3]. Let N = {1, 2, · · · , n} be the
set of agents. All of the agents are located on a path P . For the sake of simplicity,
without loss of generality, assume that the left endpoint of the path is zero and
the right endpoint of the path is two. We can regard the path as an interval
I = [0, 2]. The distance between any two points x, y ∈ I is d(x, y) = |x − y|.
Thus for all x ∈ I, d(x, x) = 0. The location reported by agent i is xi ∈ I. We
denote x = (x1, x2, · · · , xn) a location profile.

In the obnoxious facility game, a deterministic mechanism outputs a facility
location based on a given location profile x and thus is a function f : In → I.
Assuming the facility location to be y = f(x), the cost of agent i is her distance
to the facility, i.e.,

cost(f(x), xi) = |y − xi|.

A randomized mechanism is a function f : In → Δ(I), where Δ(I) is the set
of distributions over I. The cost of agent i is now her expected cost over such
distribution

cost(f(x), xi) = Ey∼f

[|y − xi|
]
.

Let x−i = (x1, · · · , xi−1, xi+1, · · · , xn) be the location profile without agent i.
For an agent set S ⊆ N , we denote xS and x−S to be the location profiles of
agents in and outside S, respectively. Thus we have three equivalent notations:
x = 〈xi,x−i〉 = 〈xS ,x−S〉. For simplicity, we write f(xi,x−i) = f(〈xi,x−i〉) and

264 Y. Cheng, W. Yu, and G. Zhang

f(xS ,x−S) = f(〈xS ,x−S〉). The obnoxious social cost of a mechanism f on a
location profile x is defined as the total cost of n agents

SC(f,x) =
n∑

i=1

cost(f(x), xi).

In the randomized case, this obnoxious social cost is an expected value.
For the obnoxious facility game, we are interested in strategy-proof mecha-

nisms that also do well with respect to maximizing the obnoxious social cost. For
a location profile x, let OPT(x) be the optimal social cost. We say a mechanism
f has an approximation ratio γ, if for all profile x ∈ In,

OPT(x) ≤ γSC(f,x).

In the following we formally define the strategy-proofness and the group
strategy-proofness.

Definition 1. A mechanism is strategy-proof if no agent can benefit from mis-
reporting her location. Formally, given agent i, profile x = 〈xi,x−i〉 ∈ In, and a
misreported location x′

i ∈ I, it holds that

cost(f(xi,x−i), xi) ≥ cost(f(x′
i,x−i), xi).

Definition 2. A mechanism is group strategy-proof if for any group of agents,
at least one of them cannot benefit if they misreport simultaneously. Formally,
given a non-empty set S ⊆ N , profile x = 〈xS ,x−S〉 ∈ In, and the misreported
location x′

S ∈ I |S|, there exists i ∈ S, satisfying

cost(f(xS ,x−S), xi) ≥ cost(f(x′
S ,x−S), xi).

3 Deterministic Mechanisms

Taking the algorithmic perspective, our work is related to the literature on ap-
proximation algorithms for 1-maxian problem [10,8,9,2]. Thus it is well-known
that, when n agents are located on an interval [0, 2], one of two endpoints must
be an optimal facility location. Hence, we have that OPT(x) = max{∑n

i=1 xi,∑n
i=1(2−xi)} for a location profile x. According to the optimal cost, a determin-

istic mechanism can be devised directly. That is, if
∑n

i=1 xi ≥
∑n

i=1(2−xi) then
return the facility location y = 0; otherwise y = 2. Unfortunately, this mecha-
nism is not strategy-proof. Indeed, if N = {1, 2}, x1 = 2

3 and x2 = 6
5 . Clearly, the

mechanism returns the facility location y = 2 since 2
3 + 6

5 < (2− 2
3)+(2− 6

5). But
agent 2 can move the facility location to the left endpoint by reporting x′

2 = 1.
In the following we present a group strategy-proof deterministic mechanism.

Mechanism 1. Given location profile x on interval [0, 2]. Let n1 be the number
of agents located on [0, 1] and n2 be the number of agents on (1, 2]. Obviously,
n1 + n2 = n. If n1 ≤ n2, then return the left endpoint 0; otherwise return the
right endpoint 2.

Mechanisms for Obnoxious Facility Game on a Path 265

Theorem 1. Mechanism 1 is a group strategy-proof 3-approximation mecha-
nism for the obnoxious facility game when the agents are located on a path.

Proof. Given a location profile x on interval [0,2]. First we shall prove the claim
about the approximation ratio. We only discuss the case that n1 ≤ n2. The proof
for the other case is similar. If n1 ≤ n2, Mechanism 1 returns the facility location
y = 0. Thus the obnoxious social cost is

SC(f,x) =
n∑

i=1

cost(f(x), xi) =
n∑

i=1

xi ≥
∑

xi∈(1,2]

xi ≥ n2 ≥ n

2
.

If OPT(x) =
∑n

i=1(2 − xi), then we have

OPT(x) =
n∑

i=1

(2 − xi) ≤ 2n1 + n2 = n + n1 ≤ 3
2
n ≤ 3SC(f,x).

Let us turn to show the group strategy-proofness of Mechanism 1. Let S ⊆ N
be a coalition. We must demonstrate that the agents in S cannot all gain by
deviating. Without loss of generality, we assume that n1 ≤ n2. Hence, Mech-
anism 1 outputs the facility location y = 0. Any agent in S misreports her
location xi to x′

i. Let n′
1 and n′

2 be the number of agents on [0, 1] and (1, 2]
after misreporting, respectively. The new profile is x′ and the new facility loca-
tion is denoted by y′. It is easy to know that if n′

1 ≤ n′
2, then y′ = y = 0 and

cost(f(x), xi) = cost(f(x′), xi) for any agent i ∈ N . If n′
1 > n′

2, then y′ = 2.
And at least one agent on (1, 2] misreports her location to x′

i ∈ [0, 1]. Thus we
have cost(f(x′), xi) = 2 − xi < 1 < cost(f(x), xi). 	

Since one of endpoints must be an optimal solution, we only consider the left
and right endpoint as the candidate facility locations in Mechanism 1. In the
following we show that any deterministic mechanism which only selects one of
endpoints as the facility location cannot do better.

Theorem 2. Let N = {1, 2, · · · , n}, n ≥ 2. Any deterministic strategy-proof
mechanism f which only selects one of the endpoints as the facility location has
an approximation ratio of at least 3.

Proof. Assume N = {1, 2} and agents are located on interval [0, 2]. Let f be a
deterministic mechanism which only locates the facility at endpoints. Consider
the profile x = (x1, x2) = (1−ε, 1+ε), 1 > ε > 0. We have the facility location y =
f(x) ∈ {0, 2}. Without loss of generality, suppose that y = 2. Thus cost(y, x2) =
1 − ε.

Now consider the profile x′ where x1 = 1 − ε and x′
2 = 2 with new facility

location y′ = f(x′). By strategy-proofness, the cost from agent 2 must satisfy
cost(y′, x2) ≤ 1 − ε. Otherwise agent 2 gains from deviating from x2 to x′

2.
Therefore y′ = 2. Hence, for the profile x′ = (1 − ε, 2), OPT(x′) = 3 − ε and
SC(f,x′) = 1 + ε. It follows that the approximation ratio of f is 3−ε

1+ε which
approaches to 3 when ε tends to 0. 	

266 Y. Cheng, W. Yu, and G. Zhang

If the candidate facility location is not restricted to the endpoints, the next
theorem establishes a lower bound of 2 for the strategy-proof deterministic
mechanism.

Theorem 3. Let N = {1, 2, · · · , n}, n ≥ 2. Any deterministic strategy-proof
mechanism f has an approximation ratio of at least 2.

Proof. Assume N = {1, 2} and agents are located on interval [0, 2]. Let f be a
deterministic mechanism. Consider the profile x = (x1, x2) = (2

3 ,
4
3). We denote

y = f(x) to be the facility location. Three cases should be discussed with respect
to the location of y.

Case 1. y ∈ [23 ,
4
3]. Thus the obnoxious social cost is SC(f,x) = 2

3 , whereas the
optimum has a cost of 2. It follows that the approximation ratio of f is 3.

Case 2. y ∈ (4
3 , 2]. Then the cost of agent 2 is cost(y, x2) = y− 4

3 . Now consider
the profile x′ where x1 = 2

3 and x′
2 = 2 with new facility location y′ = f(x′).

By the strategy-proofness, the cost from agent 2 must be at most y − 4
3 , i.e.

cost(y′, x2) ≤ y − 4
3 . Otherwise agent 2 can benefit by misreporting from x2 to

x′
2. It implies that 2x2 − y ≤ y′ ≤ y. Since y ∈ (4

3 , 2] and x2 = 4
3 , we have

y′ ∈ [23 , 2]. It is easy to get that SC(f,x′) = 4
3 and the optimum value of profile

x′ is 8
3 . Hence, the mechanism ratio is at least 2.

Case 3. y ∈ [0, 2
3). This case is similar to Case 2. 	

4 Randomized Mechanisms

In this section, we consider several randomized mechanisms for the obnoxious
facility game. Given a profile x = (x1, x2, · · · , xn) on interval [0, 2]. By the nice
property that one of endpoints must be an optimal solution, we can devise a
randomized mechanism directly, that is we return the facility location y = 0 and
y = 2 with probability 1

2 respectively. It is easy to prove that this mechanism is
group strategy-proof and its approximation ratio is at most 2. Furthermore, we
propose another two randomized mechanisms which improve the approximation
ratio.

Similarly, we denote the number of agents located on subinterval [0, 1] and
(1, 2] by n1 and n2, respectively. The location y of the facility is decided by the
following mechanisms.

Mechanism 2

1. If n1 < n2, then return y = 0 and y = 2 with probability 3
5 and 2

5 ,
respectively;

2. If n1 = n2, then return y = 0 and y = 2 with probability 1
2 , respectively;

3. n1 > n2, then return y = 0 and y = 2 with probability 2
5 and 3

5 , respectively.

Theorem 4. Mechanism 2 is a group strategyproof 5
3 -approximation mechanism

for the obnoxious facility game when the agents are located on a path.

Mechanisms for Obnoxious Facility Game on a Path 267

Proof. In order to prove the group strategy-proofness of Mechanism 2, we must
demonstrate that for any coalition S ⊆ N , all agents in S cannot gain simulta-
neously. Here we only show the correctness of the case that n1 < n2. The proofs
for other cases are similar. Suppose that agent i is on (1, 2]. Since n1 < n2, by
Mechanism 2 we have

cost(f(x), xi) =
3
5
xi +

2
5
(2 − xi) =

4
5

+
1
5
xi >

4
5

+
1
5

= 1. (1)

Consider profile x′, in which for every i �∈ S, x′
i = xi. Similarly, we denote

n′
1 and n′

2 to be the number of agents on corresponding subintervals after devi-
ating. Clearly, if n′

1 < n′
2, then the facility distribution does not change. Thus

cost(f(x), xi) = cost(f(x′), xi), for any agent i ∈ N . But if n′
1 = n′

2, then at least
one agent in S with xi ∈ (1, 2] misreports her location to x′

i ∈ [0, 1]. Therefore
by (1),

cost(f(x′), xi) =
1
2
xi +

1
2
(2 − xi) = 1 < cost(f(x), xi).

Similarly, if n′
1 > n′

2, then there must be at least one agent i ∈ S on (1, 2]
deviating her location to [0, 1]. Combining equation (1),

cost(f(x′), xi) =
2
5
xi +

3
5
(2 − xi) =

6
5
− 1

5
xi < 1 < cost(f(x), xi).

We now turn to showing the approximation ratio of 5
3 for Mechanism 2. If

n1 = n2, then the obnoxious social cost of the mechanism is

SC(f,x) =
n∑

i=1

cost(f(x), xi) =
1
2

n∑
i=1

xi +
1
2

n∑
i=1

(2 − xi) = n.

Since n1 = n2 and OPT(x) = max{∑n
i=1 xi,

∑n
i=1(2 − xi)}, we have

n∑
i=1

xi =
∑

xi∈[0,1]

xi +
∑

xi∈(1,2]

xi ≤ n1 + 2n2 =
3
2
n;

n∑
i=1

(2 − xi) =
∑

xi∈[0,1]

(2 − xi) +
∑

xi∈(1,2]

(2 − xi) ≤ n2 + 2n1 =
3
2
n.

Combining above two inequalities, the optimal cost satisfies OPT(x) ≤ 3
2n <

5
3SC(f,x).

For the case that n1 �= n2, we only discuss the approximation ratio when
n1 > n2. The case of n1 < n2 is similar. If OPT(x) =

∑n
i=1 xi, then

OPT(x) =
n∑

i=1

xi ≤ n1 + 2n2 = n + n2 <
3
2
n.

268 Y. Cheng, W. Yu, and G. Zhang

The last inequality is from the condition n1 > n2. And the obnoxious social cost
is

SC(f,x) =
2
5

n∑
i=1

xi +
3
5

n∑
i=1

(2 − xi)

=
6
5
n− 1

5

n∑
i=1

xi

>
6
5
× 2

3
OPT(x) − 1

5
OPT(x)

=
3
5
OPT(x).

For the other case that OPT(x) =
∑n

i=1(2 − xi),

OPT(x) =
n∑

i=1

(2 − xi) ≤ 2n1 + n2 ≤ 2n.

The obnoxious social cost is

SC(f,x) =
2
5

n∑
i=1

xi +
3
5

n∑
i=1

(2 − xi)

=
4
5
n +

1
5

n∑
i=1

(2 − xi)

≥ 4
5
× 1

2
OPT(x) +

1
5
OPT(x)

=
3
5
OPT(x).

	

It is worth noting that this approximation ratio of 3

5 is tight for Mechanism 2.
Consider the location profile x = (0, · · · , 0), where all the agents are located on
the left endpoint. Thus the optimal cost is OPT(x) =

∑n
i=1(2− xi) = 2n. Since

n1 = n > n2 = 0, by Mechanism 2 we have

SC(f,x) =
2
5

n∑
i=1

xi +
3
5

n∑
i=1

(2 − xi) =
6
5
n =

3
5
OPT(x).

In Mechanism 2 we only care which between n1 and n2 is larger, and thus
the distribution of facility location has nothing to do with the exact values of n1

and n2. To improve this mechanism we will take advantage of full information
about n1 and n2.

Mechanism 3. For a location profile x on interval [0, 2], return facility location
y = 0 with probability α and y = 2 with probability (1 − α), where α =

2n1n2+n2
2

n2
1+n2

2+4n1n2
.

Mechanisms for Obnoxious Facility Game on a Path 269

Theorem 5. Mechanism 3 is a group strategyproof 3
2 -approximation mechanism

for the obnoxious facility game when the agents are located on a path.

Proof. Given a location profile x on interval [0,2]. We first consider two special
cases that n1 = 0 or n2 = 0. Clearly, if n1 = 0 or n2 = 0, Mechanism 3 returns
the facility location y = 0 or y = 2 with probability 1. No agent would like
to misreport her location. Furthermore when n1 = 0, the obnoxious social cost
is equal to the optimal cost, that is SC(f,x) = OPT(x) =

∑n
i=1 xi. Similarly

when n2 = 0, SC(f,x) = OPT(x) =
∑n

i=1(2 − xi).
Next, we prove the strategy-proofness and the approximation ratio of Mech-

anism 3 if n1 �= 0 and n2 �= 0. Here we introduce a parameter β = n1
n2

,
(∞ > β > 0). So α can be rewritten as a function of β, i.e. α(β) = 2β+1

β2+4β+1 . It
is obvious that

α′(β) = − 2(β2 + β + 1)
(β2 + 4β + 1)2

< 0,

which implies that α(β) monotonously decreases on β.
In order to prove the group strategy-proofness, we denote S ⊆ N to be a

coalition. If new agent number n′
1 and n′

2 satisfies that n′
1

n′
2

= n1
n2

, i.e. β′ = β,

then cost(f(x′), xi) = cost(f(x), xi) for any i ∈ N . But if n′
1

n′
2

> n1
n2

, then there at
least one agent on (1, 2] misreports her location to [0, 1]. By the fact that α(β)
monotonously decreases on β, we have α(β) > α(β′). Furthermore,

cost(f(x), xi) − cost(f(x′), xi) =
[
α(β)xi + (1 − α(β))(2 − xi)

]−[
α(β′)xi + (1 − α(β′))(2 − xi)

]
= 2(xi − 1)

(
α(β) − α(β′)

)
> 0.

Similarly, if n′
1

n′
2

< n1
n2

, then α(β) < α(β′) and at least one agent on [0, 1] deviate
her location to x′

i ∈ (1, 2]. Hence,

cost(f(x), xi) − cost(f(x′), xi) = 2(xi − 1)
(
α(β) − α(β′)

) ≥ 0.

Let us now turn to prove the 3
2 -approximation ratio of Mechanism 3. We

consider two cases by distinguishing the optimal cost.
Case 1. OPT(x) =

∑n
i=1 xi. Hence, OPT(x) ≤ n1 + 2n2 = 2+β

1+β n. The obnox-
ious social cost is

SC(f,x) = α(β)
n∑

i=1

xi +
(
1 − α(β)

) n∑
i=1

(2 − xi)

≥ 2α(β) + β

2 + β
OPT(x)

=
β2 + 2β + 1
β2 + 4β + 1

OPT(x)

≥ 2
3
OPT(x). (2)

270 Y. Cheng, W. Yu, and G. Zhang

Case 2. OPT(x) =
∑n

i=1(2 − xi). Hence, OPT(x) ≤ n2 + 2n1 = 1+2β
1+β n. The

obnoxious social cost is

SC(f,x) = α(β)
n∑

i=1

xi +
(
1 − α(β)

) n∑
i=1

(2 − xi)

≥ 1 + 2β − 2α(β)β
1 + 2β

OPT(x)

=
β2 + 2β + 1
β2 + 4β + 1

OPT(x)

≥ 2
3
OPT(x). (3)

To prove the last inequality of (2) and (3), we denote function h(β) = β2+2β+1
β2+4β+1 .

Then h′(β) = 2 β2−1
(β2+4β+1)2 . It is easy to know that h(β) monotonously decreases

if 0 ≤ β < 1 and monotonously increases if β > 1. Hence, h(β) achieves its min-
imum when β = 1 and hmin(β) = 2

3 . Therefore, we get that the approximation
ratio of Mechanism 3 is 3

2 . 	

Similarly, we also can show that this approximation ratio of 3

2 is tight for Mecha-
nism 3. Consider a location profile x = (1, · · · , 1︸ ︷︷ ︸

n1

, 2 · · · , 2︸ ︷︷ ︸
n2

) and n1 = n2 = 1
2n. It is

obvious that OPT(x) =
∑n

i=1 xi = 3
2n. By Mechanism 3, we can get α = 1

2 . That
is we choose the left and right endpoint with probability 1

2 , respectively. Thus the
obnoxious social cost is SC(f,x) = 1

2

∑n
i=1 xi + 1

2

∑n
i=1(2−xi) = n = 2

3OPT(x).

5 Concluding Remarks

This paper studies the obnoxious facility game on a path. Our goal is to design
deterministic and randomized strategy-proof mechanisms with small approxima-
tion ratios. There remain quite a few open problems. One of them is to close the
gap between the lower and the upper bounds for the deterministic mechanism.
It is interesting to explore the strategy-proof mechanisms for more general net-
works. For the case that all agents are located on a tree T with vertex set V
and edge set E, we can devise a deterministic mechanism similar to Mechanism
1. Based on the location of agents, we construct a new tree graph T ′ = (V ′, E′),
V ′ is obtained by adding all the locations in

⋃n
i=1 xi which are not in V to V

and the edge lengths for the edges that are incident with these new vertices are
correspondingly updated. Let P [a, b] be a diameter of T ′ with two endpoints a
and b and point mab be the midpoint on P [a, b]. Suppose that mab is on edge
[r, s] where r is closer to a than to b. If mab happens to be a vertex, then we as-
sume that it coincides with r. By deleting edge [r, s], T ′ is decomposed into two
subtrees T ′

a and T ′
b. Note that T ′

a contains a and T ′
b contains b. Let n1 and n2 be

the number of agents on subtree T ′
a and T ′

b. Our mechanism is that if n1 ≤ n2,
then the facility location y = a; otherwise y = b. By using the similar method in
proof of Theorem 1, we can prove this mechanism is group strategy-proof and
its approximation ratio is at most 3.

Mechanisms for Obnoxious Facility Game on a Path 271

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation mechanisms for location on networks. CoRR, abs/0907.2049 (2009)

2. Church, R.L., Garfinkel, R.S.: Locating an obnoxious facility on a network. Transp.
Sci. 12, 107–118 (1978)

3. Lu, P., Sun, X., Wang, Y., Zhu, Z.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce, (ACM-EC) (2010)

4. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Leonardi, S.
(ed.) WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009)

5. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan,
N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.) Algorithmic Game Theory.
ch.9. Cambridge University Press, Cambridge

6. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce, (ACM-EC)
(2009)

7. Schummer, J., Vohra, R.V.: Mechanism design without money. In: Nisan, N.,
Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory. ch.10.
Cambridge University Press, Cambridge (2007)

8. Tamir, A.: Obnoxious facility location on graphs. SIAM Journal on Discrete Math-
ematics 4, 550–567 (1991)

9. Ting, S.S.: A linear-time algorithm for maxisum facility location on tree networks.
Transp. Sci. 18, 76–84 (1984)

10. Zelinka, B.: Medians and peripherians of trees. Arch. Math. 4, 87–95 (1968)

Algorithmic Aspects of Heterogeneous Biological

Networks Comparison�

Guillaume Blin1, Guillaume Fertin2, Hafedh Mohamed-Babou2, Irena Rusu2,
Florian Sikora1, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{Guillaume.Blin,Florian.Sikora,Stephane.Vialette}@univ-mlv.fr

2 Université de Nantes, LINA - UMR CNRS 6241, France
{Guillaume.Fertin,Hafedh.Mohamed-Babou,Irena.Rusu}@univ-nantes.fr

Abstract. Biological networks are commonly used to model molecular
activity within the cell. Recent experimental studies have shown that
the detection of conserved subnetworks across several networks, com-
ing from different organisms, may allow the discovery of disease path-
ways and prediction of protein functions. There already exist automatic
methods that allow to search for conserved subnetworks using networks
alignment; unfortunately, these methods are limited to networks of same
type, thus having the same graph representation. Towards overcoming
this limitation, a unified framework for pairwise comparison and analysis
of networks with different graph representations (in particular, a directed
acyclic graph D and an undirected graph G over the same set of vertices)
is presented in [4]. We consider here a related problem called k-DAGCC:
given a directed graph D and an undirected graph G on the same set V of
vertices, and an integer k, does there exist sets of vertices V1, V2, . . . Vk′ ,
k′ ≤ k such that, for each 1 ≤ i ≤ k′, (i) D[Vi] is a DAG and (ii)
G[Vi] is connected ? Two variants of k-DAGCC are of interest: (a) the
Vis must form a partition of V , or (b) the Vis must form a cover of V .
We study the computational complexity of both variants of k-DAGCC

and, depending on the constraints imposed on the input, provide several
polynomial-time algorithms, hardness and inapproximability results.

1 Introduction

Recent advances in the field of biological networks comparison, inspired by devel-
opments in sequence comparison, have provided a prominent tool for explaining
organization and interpreting function and evolution of biological networks [20].
In their most basic abstraction level, biological networks can be modeled by
graphs, where vertices represent cellular compounds, and edges (or arcs) repre-
sent their interactions. These graphs may be directed or undirected, depending
on the type of networks they represent: for instance, a Protein-Protein Interac-
tion network (PPI) is usually modeled by an undirected graph whose vertices
� This work was partially supported by GDR-IM and ANR project BIRDS JCJC

SIMI 2-2010.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 272–286, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 273

are proteins and edges represent the physical interactions between proteins; how-
ever, a metabolic network is modeled by a directed graph (also called reaction
graph), where (a) any vertex represents a reaction which needs both a set of
input compounds (substrates) and some enzymes (proteins) as catalysts, and
produces a set of compounds (products) and (b) there is an arc from reaction ri

to reaction rj if rj uses, as substrate, a product of ri.
Each biological network represents a partial view of the molecular activity

within the cell. Thus, comparing them provides a better understanding of the
behavior of a biologic system. We say that two biological networks are homoge-
neous if they are of the same type and have the same graph representation, but
come from different species. In contrast, networks are said to be heterogeneous
if they come from the same species, but are of different types and have different
graph representations (e.g., a directed graph and an undirected graph).

The main comparative approaches considered so far focus on homogeneous
networks using networks alignment (see, among others, [10,11,18,20,5,2,21,12]).
Such methods are powerful for detecting conserved modules across several net-
works of different species. Unlike homogeneous networks, only few research works
aim at comparing heterogeneous networks. Most of the existing methods used to
compare heterogeneous networks are usually manual, or use case-by-case meth-
ods. In [22,19,13,16,1], authors search for a chain of reactions in a metabolic net-
work, by investigating the relationships between genes involved in the reactions
and the proximity of genes along the genome. Interactions between proteins that
catalyze successive reactions in metabolic networks have been studied in [3,9].
In [14,8,6], authors search signaling pathways by confronting a signal transduc-
tion network, represented by a directed graph, to a PPI network, represented by
an undirected graph. They perform an orientation of the PPI graph as follows:
given a list of ordered source-target pairs, the PPI graph is oriented in such a
way that, for a maximum number of pairs (s, t), there is a directed path from
the source s to the target t. The advantage of this method is that it allows to
return to homogeneous networks with the same graph. However, in addition to
its computational difficulty, the good behavior of this method is closely related
to the choice of the list of the source-target pairs. In [8], such a list is manually
constructed.

Recently, a unified framework for comparison and analysis of heterogeneous
networks was proposed [4]. In particular, the central problem considered in [4]
is the following: given a directed acyclic graph (DAG) D′ and an undirected
graph G′ built on the same set of vertices, find the longest directed path in
D′ whose vertices induce a connected component in G′. In this setting, D′ and
G′ represent a metabolic network and a PPI network, respectively. However, in
general, metabolic networks are not DAGs, and hence contain directed cycles.

Therefore, we consider in thispaper the following problem, called k-DAGCC,
that can be seen as a way to pre-process the input graphs in [4]: given a directed
graph D and an undirected graph G on the same set V of vertices and an integer
k, does there exist sets of vertices V1 . . . Vk′ , k′ ≤ k, such that, for each 1 ≤ i ≤ k′,
(i) D[Vi] is a DAG and (ii) G[Vi] is connected ? Two variants of k-DAGCC are

274 G. Blin et al.

considered: (a) the partition version, where the Vis must form a partition of V ,
and (b) the cover version, where the Vis must form a cover of V .

The problem k-DAGCC (under both its variants) is also motivated by the re-
search of pathways in metabolic networks that correspond to functionally related
proteins in PPI networks. Indeed, pathways in metabolic networks correspond
to DAGs [18], while functionally related proteins in PPI networks correspond to
connected subgraphs [1,2,15,21,12]). Thus, it is of interest to be able to extract
biologically relevant information from two large networks by decomposing them
into smaller modules that each (i) carry a rich biological information and (ii) are
easier to interpret.

In this paper, we study the computational complexity of both variants of
k-DAGCC and, depending on the constraints imposed on the input, provide
several polynomial-time algorithms, along with hardness and inapproximability
results. Once the main notations and definitions will be stated (Section 2), we
will define formally and study in detail the complexity of the two variants of the
k-DAGCC problem, first in its partition version (Section 3), then in its cover
version (Section 4).

2 Preliminaries

This paper is concerned with both directed and undirected graphs. We briefly
recall the basic needed material.

A graph G = (V,E) consists of a set of vertices V and a set of edges (unordered
pairs of vertices) E. To shorten the exposition, we shall usually abbreviate |V |
and |E| to n and m, respectively. The degree of a vertex u ∈ V is the number
of edges incident to it. A graph is acyclic if it does not contain any cycle. An
independent set is a subset V ′ ⊆ V such that (x, y) /∈ E for any x, y ∈ V ′.
A graph is connected if there exists a path between any pair of vertices. For
any V ′ ⊆ V , we let G[V ′] = (V ′, E′) stand for the subgraph induced by V ′, i.e.
E′ = {{x, y} ∈ E : x, y ∈ V ′}. A graph is a tree if it is both connected and
acyclic. A star of order n ≥ 3 is a tree with exactly one vertex of degree strictly
greater than 1. A graph is complete if it contains all possible edges. A planar
graph is a graph that can be embedded onto the plane, in such a way that its
edges intersect only at their endpoints. Finally, a graph is said to be outerplanar
if it has a planar embedding such that the vertices lie on a circle and the edges
lie inside that circle, without crossing each other.

A directed graph D = (V,A) consists of a set of vertices V and a set of arcs
(ordered pairs of vertices) A. A directed acyclic graph (DAG) is a directed graph
that does not have any directed cycle. For any V ′ ⊆ V , we let D[V ′] = (V ′, A′)
stand for the subgraph induced by V ′, i.e. A′ = {(x, y) ∈ A : x, y ∈ V ′}.

We shall consider graphs and directed graphs defined on the same set of
vertices, i.e. we will write D = (V,A) for the directed graph and G = (V,E) for
the undirected graph. To avoid ambiguity, we let mD and mG stand for |A| and
|E|, respectively. Given two such graphs D = (V,A) and G = (V,E) built on the
same set V of vertices, we say that a partition (resp. a cover) {V1, V2 . . . Vk} of

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 275

V is valid if, for any 1 ≤ i ≤ k, D[Vi] is a DAG and G[Vi] is connected. The two
variants of k-DAGCC we are going to study in this paper are called respectively
k-DAGCC-Partition and k-DAGCC-Cover, and are defined as follows.

k-DAGCC-Partition

Instance: A directed graph D = (V,A), an undirected graph G = (V,E), and
an integer k.
Question: Does there exist a valid partition P = {V1, V2, . . . , Vk′} of V such
that k′ ≤ k ?

k-DAGCC-Cover

Instance: A directed graph D = (V,A), an undirected graph G = (V,E), and
an integer k.
Question: Does there exist a valid cover C = {V1, V2, . . . , Vk′} of V such that
k′ ≤ k ?

The natural minimization version of the above decision problems are denoted
Min-DAGCC-Partition and Min-DAGCC-Cover, respectively.

Table 1. Complexity results for k-DAGCC-Partition and Min-DAGCC-Partition

�
��k
G

Graph Outerplanar Tree Star Path

(n − k) = O(1) P [Prop. 2]

k = O(1) NPC [Prop. 4] P [Prop. 3]

k unbounded
Inapprox. within
n1−ε [Prop. 6]

APX-hard [Prop. 7] NPC [Prop. 5] P [Prop. 1]

Table 2. Complexity results for k-DAGCC-Cover and Min-DAGCC-Cover

�
��k
G

Graph Outerplanar Tree Star Path

k = O(1) NPC [Prop. 9] P [Prop. 8]

k unbounded Inapprox. within n1−ε [Prop. 10] P [Prop. 8]

The results presented in this paper are summarized in Table 1 (for problems k-
DAGCC-Partition and Min-DAGCC-Partition) and Table 2 (for problems
k-DAGCC-Cover and Min-DAGCC-Cover).

276 G. Blin et al.

3 Partition Version of k-DAGCC

In this section, we provide polynomial-time algorithms, hardness and inapprox-
imability results for different variants of Min-DAGCC-Partition and
k-DAGCC-Partition (see Table 1). We first provide polynomial-time algo-
rithms for three restricted cases: (a) G is a path, (b) n − k is a constant, and
(c) G is an outerplanar graph and k is a constant.

Recall that, given a directed graph D = (V,A) and an undirected graph
G = (V,E), testing whether D is a DAG (resp. whether G is connected) can be
done in O(n + mD) time (resp. O(n + mG) time) by depth-first search.

Proposition 1. Min-DAGCC-Partition is polynomial-time solvable when G
is a path.

Proof. The proof is by a simple greedy algorithm. Write (v1, v2, . . . , vn) for the
path G. We consider the vertices of G from v1 to vn. We start with S = ∅. For
vertex vi, if D[S ∪ {vi}] is a DAG, we add vi to S, otherwise we report S as an
element of the sought partition and set S = {vi}. When the algorithm stops, we
report the current S as the last element of the partition.

It is easily seen that this greedy algorithm produces a valid partition of V .
What is left is to prove that the valid partition obtained by the above algorithm
is of minimum cardinality. Let P = {V1, V2, . . . Vk} be the partition returned by
our algorithm, and suppose, aiming at a contradiction, that there exists a strictly
smaller valid partition P ′ = {V ′

1 , V
′
2 , . . . , V

′
� }, thus with � < k. We first observe

that, by construction, V1 cannot be a proper subset of V ′
1 . Since any connected

subgraph of G is built on consecutively indexed vertices {vp, vp+1, vp+2 . . . vq},
it follows that there must exist 2 ≤ i < k and 2 ≤ j ≤ � such that (1) Vi is a
proper subset of V ′

j , and (2) V ′
j contains the first vertex, say x, of Vi+1. This is

a contradiction since Vi ∪ {x} is not a DAG in D. 	

Proposition 2. k-DAGCC-Partition is polynomial-time solvable when n−k
is a constant.

Proof. Let us prove that this variant of k-DAGCC-Partition can be solved in
polynomial time by an exhaustive procedure. We consider all k-partitions of V .
We start from the unique n-partition of V and iteratively compute all (k − 1)-
partitions of V starting from its k-partitions. Recall that the Stirling number
of the second kind S(n, k) represents the number of ways to partition a set of
n elements into k nonempty subsets. We have S(n, k) = S(n, n)

∏n−k−1
i=0

(
n−i
2

)
.

But S(n, n) = 1, and hence S(n, k) =
∏n−k−1

i=0

(
n−i
2

)
= O(n2(n−k)). For each

of these O(n2(n−k)) partitions, we can check in polynomial-time whether it is a
valid solution for k-DAGCC-Partition. The proposition follows. 	

Proposition 3. k-DAGCC-Partition is polynomial-time solvable when G is
an outerplanar graph and k is a constant.

Proof. Recall that a graph is outerplanar just when its vertices can be placed
on a circle so that its edges become non-crossing chords of the circle. Fix any

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 277

such an outerplanar circular embedding. Let V1, V2, . . . , Vk be any valid partition
of V . Now, associate to any Vi, 1 ≤ i ≤ k, the smallest arc of the circle that
covers all vertices in Vi (according to the outerplanar circular embedding). Since
V1, V2, . . . , Vk is a valid partition of V , any vertex is covered by at least one arc
of the circle, and no two arcs of the circle share a common endpoint. Moreover,
since (v1, v2, . . . , vn) is an outerplanar embedding of G and G[Vi] is connected
for every 1 ≤ i ≤ k, it follows that no two arcs of the circle properly overlap.

The algorithm is by enumerating all sets of non-overlapping k arcs of the circle
with distinct endpoints that cover V . Let v1, v2, . . . , vn be the vertices of G in
the outerplanar circular embedding following, say, the trigonometric orientation.
For any 1 ≤ i ≤ n, consider all 2(k− 1)-subsets of V \ {vi, vi−1} (by convention,
v0 = vn). Let {vj1 , vj2 , . . . , vj2(k−1)} be such a subset, where the vertices are
read along the outerplanar circular embedding starting from vi and following the
trigonometric orientation. We now need to construct all possible arcs of the circle
with endpoints vi, vj1 , vj2 , . . . , vj2(k−1) , vi−1 such that no two arcs of the circle
are overlapping. Clearly, this reduces to considering all well-formed parenthesis
strings of length 2k. Our construction yields sets of k arcs a1, a2, . . . , ak of the
circle such that (1) any two arcs of the circle have distinct endpoints, (2) no
two arcs of the circle are overlapping, and (3) each vertex of V is covered by
at least one arc of the circle. For any such solution, we construct a partition
(V1, V2, . . . , Vk) as follows: Vi contains all vertices covered by arc ai of the circle,
except those vertices covered by at least one arc aj of the circle which is strictly
covered by ai. This algorithm is O(n2

(
n

2(k−1)

) (
2(k−1)

k−1

)
(n+m)) time, where m =

max{mD,mG}. Indeed, we have n possibilities for choosing the reference vertex
vi. Starting from each reference vertex vi, we consider

(
n

2(k−1)

)
1
k

(
2(k−1)

k−1

)
sets of

k arcs of the circle (1
k

(
2(k−1)

k−1

)
is the number of well-formed parenthesis strings of

length 2k). From these sets, one can construct a solution Vi, 1 ≤ i ≤ k, is O(n)
time, and check whether each subset Vi, 1 ≤ i ≤ k, induces both a DAG in D
and a connected component in G in O(n+m) time. The proposition follows. 	

We now prove that k-DAGCC-Partition becomes NP-complete when (a) G is
a complete graph or (b) G is a star.

Proposition 4. For any k ≥ 2, k-DAGCC-Partition is NP-complete even
when G is a complete graph.

Proof. k-DAGCC-Partition is certainly in NP. To prove hardness, we propose
a reduction from the NP-complete Not-All-Equal 3SAT (NAE 3Sat) prob-
lem [7]: Given a collection Cq = {c1, . . . cq} of q clauses, where each clause consists
of a set of three literals over a finite set of n boolean variables Vn = {x1, . . . xn},
is there a truth assignment of each variable of Vn such that at least one of the
literals is true and at least one is false in each clause ? For ease of exposition,
for any 1 ≤ j ≤ 3, we let cj

i stand for the j-th literal of clause ci.
Given any instance (Cq,Vn) of NAE 3Sat, we build D and G as follows:

• V = {vj
i : 1 ≤ i ≤ q, 1 ≤ j ≤ 3} ∪ {vi : 3 ≤ i ≤ k}

278 G. Blin et al.

• A = {(vj
i , v

j′
i′), (v

j′
i′ , v

j
i) : cj

i = cj′
i′ } ∪ {(v1

i , v
2
i), (v2

i , v
3
i), (v3

i , v
1
i) : 1 ≤ i ≤

q} ∪ {(vi, v), (v, vi) : 3 ≤ i ≤ k, v ∈ V \ {vi}}
• E = {(v, v′) : v, v′ ∈ V }
Roughly speaking, vertex vj

i corresponds to the j-th literal of clause ci, whereas
vertices vi, 3 ≤ i ≤ k, are gadgets to adapt the proof for any k ≥ 2. There is a
cycle of length two between any pair of vertices representing two complementary
literals (e.g. xi and xi) and between vi, 3 ≤ i ≤ k, and any other vertex of V .
Moreover, there is a cycle of length three between the triple of vertices (v1

i , v
2
i , v

3
i)

corresponding to the three literals of any clause ci. Finally, G is a complete graph
on V . An illustration of such a construction – omitting G – is given in Figure 1.

v1
1

v2
1

v3
1

v1
2

v2
2

v3
2

v1
3

v2
3

v3
3

v3 v4 . . . vk

Fig. 1. Illustration of the construction of D, given Cq = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨
x4), (x1 ∨ x2 ∨ x3)}. For readability, arcs {(vj

i , vl), (vl, v
j
i) : 1 ≤ i ≤ q, 1 ≤ j ≤ 3, 4 ≤

l ≤ k} are not drawn.

We claim that there is a solution for our NAE 3Sat instance iff there exists
a valid partition (V1, V2, . . . , Vk) of V .

(⇒) Given a truth assignment A of Vn such that each clause contains at least
one true and one false literals, we make a partition P = {V1, V2 . . . Vk} of V as
follows: V1 = {vj

i : cj
i = true in A}, V2 = {vj

i : 1 ≤ i ≤ q, 1 ≤ j ≤ 3} \ V1,
and, Vi = {vi} for 3 ≤ i ≤ k. By definition, there is one or two true literal(s) in
each clause. Thus, among the three vertices corresponding to the literals of ci, at
least one and at most two of them are in V1 (resp. V2). Moreover, considering A,
any variable cannot be simultaneously true and false. Therefore, two vertices
representing complementary literals cannot both belong to V1 (resp. V2). Then it
follows that each D[Vi], 1 ≤ i ≤ k, is a DAG since all cycles have been destroyed.
Since G is complete, we have a valid solution.

(⇐) Let P = {V1, V2 . . . Vk} be a valid partition of V . We build a truth as-
signment A as follows. By construction, there is no loss of generality in assuming
V3 = {v3}, . . . , Vk = {vk} (each of these vertices has to occur as a singleton in
the partition). Let us define a truth setting A such that literal cj

i , 1 ≤ i ≤ q and
1 ≤ j ≤ 3, evaluates to true iff vj

i ∈ V1. This requirement certainly defines a
truth setting assignment since opposite literals are part of a cycle of length two.
Let us now prove that A is a solution for our NAE 3Sat instance. Indeed, at

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 279

least one and at most two of the vertices representing the literals of each clause
ci belong to V1. Thus, any clause ci is indeed satisfied and by at most two of its
literals. 	

Proposition 5. k-DAGCC-Partition is NP-complete even when G is a star.

Proof. We propose a reduction from the NP-complete k′
-Independent Set (k′

-

IS) problem [7]: Given a graph GI = (VI , EI) and a positive integer k′, is there
an independent set V ′

I ⊆ VI of cardinality at least k′ ?
Given any instance GI of k′

-IS, we build D and G as follows:

• V = VI ∪ {vr}
• A = {(v, v′), (v′, v) : (v, v′) ∈ EI}
• E = {(vr, v) : v ∈ VI}

Moreover, we set k = |VI |−k′+1. Roughly speaking, graph D is obtained from
GI by replacing each edge by two arcs in opposite directions, and by adding an
isolated vertex vr. The graph G is a star whose center is vr; thus vr must be part
of any connected subgraph of G of order strictly greater than one. Construction
of both these graphs is illustrated in Figure 2.

1

2 3

4 5

GI

1

2 3

4 5

vr

D

1

2 3

4 5

vr

G

Fig. 2. Illustration of the construction of D and G, given GI . We highlighted a possible
2-IS {1, 4} and a corresponding valid 4-partition of V .

We will show that there is an independent set, in GI = (VI , EI), of cardinality
at least k′ iff there is a solution for k-DAGCC-Partition with k = |VI |−k′+1.

(⇒) Given an independent set of GI of cardinality greater or equal than k′,
choose any subset V ′

I of k′ vertices of it (which is itself an independent set). We
compute the partition P = {V1, V2 . . . Vk} of V , where k = |VI |−k′+1, as follows.
Let V1 = V ′

I ∪{vr}. Consider any ordering of the vertices in VI \V ′
I , and, for every

2 ≤ i ≤ k, let Vi = {v}, where v is the (i − 1)-th vertex in this ordering. First,
note that any D[Vi], 2 ≤ i ≤ k is indeed a DAG since it is composed of a single
vertex. Moreover, by definition, �{v, v′} ⊆ V ′

I , such that (v, v′) ∈ EI . Therefore,
D[V1] is composed of isolated vertices (and thus, is also a DAG). The induced

280 G. Blin et al.

subgraphs G[Vi], 2 ≤ i ≤ k, are trivially connected; moreover, connectivity of
G[V1] is ensured by the fact that vr ∈ V1.

(⇐) Given a solution P = {V1, V2 . . . Vk}, to k-DAGCC-Partition, we build
an independent set V ′

I ⊆ VI of GI , such that |V ′
I | = |VI | − k + 1, as follows. Let

V ′
I = Vj \ {vr} where Dj is the DAG containing vr. As previously mentioned,

in any solution, any connected subgraph of G of order strictly greater than one
must contain vr. Since we require that for every 1 ≤ i < j ≤ k, Vi ∩ Vj = ∅, at
most one of the Vis can be of order strictly greater than one, and it contains vr.
Thus, |V ′

I | = |Vj | − 1 = ((|VI | + 1) − (k − 1)) − 1, that is |V ′
I | = |VI | − k + 1.

Moreover, V ′
I is indeed an independent set since Dj is a DAG and thus does not

contain cycles. 	

Finally, let us prove the inapproximability of Min-DAGCC-Partition when
G is a graph or a tree.

Proposition 6. Min-DAGCC-Partition cannot be approximated within n1−ε,
for any ε > 0.

Proof. We give an L-reduction from the Minimum Chromatic Number (Min-

CN) problem defined as follows: Given a graph GC = (VC , EC), find a proper
vertex coloring of GC using the minimum number of colors, where a vertex
coloring is said to be proper iff two neighbors in GC carry different colors.

Given any instance GC of Min-CN, we build D and G as follows:

• V = VC

• A = {(v, v′), (v′, v) : (v, v′) ∈ EC}
• E = {(v, v′) : v, v′ ∈ VC} \ EC

In other words, we keep the same set of vertices as in GC , the graph D is
obtained from GC by replacing each edge with two arcs in opposite directions,
while G is the complement of GC . An example of such a construction is given
in Figure 3.

1

2 3

4 5

GC

1

2 3

4 5

D

1

2 3

4 5

G

Fig. 3. Illustration of the construction of D and G, given GC . We highlighted a 3-
coloring of D and a corresponding valid 3-partition of V .

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 281

Let us prove that this construction is indeed an L-reduction from Min-CN.
More precisely, we will prove the following property: there exists a proper col-
oring for GC using k colors iff there exists a valid cardinality k partition P =
{V1, V2 . . . Vk} of V .

(⇒) Given a coloring of GC with k colors, let Vi, 1 ≤ i ≤ k, be the set of
vertices assigned color i. Let us now show that the partition P = {Vi : 1 ≤ i ≤ k}
is valid (i.e., for every 1 ≤ i ≤ k, D[Vi] is a DAG and G[Vi] is connected). Indeed,
by definition of a proper coloring, each Vi, 1 ≤ i ≤ k, is an independent set.
Thus, any D[Vi], 1 ≤ i ≤ k, is composed of isolated vertices – and therefore is
a DAG. Moreover, the induced subgraphs in G are indeed connected since, by
construction, whenever two vertices are not adjacent in GC , they are in G.

(⇐) Given a valid k-partition P = {V1, V2 . . . Vk} of V , we assign to any vertex
v ∈ Vi the color i, for any 1 ≤ i ≤ k. This assignment is a proper coloring since,
by construction, no D[Vi], 1 ≤ i ≤ k, contains an arc, otherwise it would not be
a DAG.

The above reduction linearly preserves the approximation, and moreover the
sizes of the solutions in the two problems are equal. Hence, given an approxima-
tion algorithm for Min-DAGCC-Partition, one can derive an algorithm for
Min-CN with the same approximation ratio. Since Min-CN cannot be approx-
imated within n1−ε for any ε > 0 [23], so does Min-DAGCC-Partition. 	

Proposition 7. Min-DAGCC-Partition is APX-hard even when G is a tree.

Proof. We give an L-reduction from the APX-hard problem Set Cover-2 [17]
defined as follows: Given a ground set X = {x1, . . . xn} and a collection of
sets C = {S1, . . . Sq} in which each element of X appears at most twice, find
a minimum set cover C′, i.e. a set C′ ⊆ C such that X =

⋃
Si∈C′ Si and |C′| is

minimum. In the rest of the proof, for any 1 ≤ i ≤ q, we will denote by sj
i the

j-th element of Si.
Given any instance (X , C) of Set Cover-2, we build D and G as follows:

• V = {vr} ∪ {vi : Si ∈ C} ∪ {vk
i : xk = sj

i , Si ∈ C, 1 ≤ j ≤ |Si|}
• A = {(vk

i , v
k
j), (vk

j , v
k
i) : xk ∈ Si ∩ Sj} ∪ {(vr, v

k
i), (vk

i , vr) : �Sj s.t. xk ∈
Si ∩ Sj}

• E = {(vr, vi) : Si ∈ C} ∪ {(vi, v
k
i) : xk ∈ Si, Si ∈ C}.

Otherwise stated, G is a tree rooted at vr, whose children are the vertices
vi, 1 ≤ i ≤ q (where vi, 1 ≤ i ≤ q, represents Si). Each vi has one child per
element of Si (vk

i for xk ∈ Si). In D, the vertices vi, 1 ≤ i ≤ q, are isolated
whereas the two vertices (vk

i , v
k
j) representing an element xk appearing twice in

C form a cycle of length two. Each of the remaining vertices forms a cycle of
length two with vr. An illustration of such a construction is given in Figure 4.

Let us now prove that this construction is indeed an L-reduction; for this, we
show that there is a solution C′ of size k for Set Cover-2 iff there is a valid
partition of V in at most k + 1 sets V1, V2 . . . Vk+1.

(⇒) Given a set-cover C′ ⊆ C of cardinality k, we compute the partition
P = {V1, V2 . . . , Vk, Vk+1} of V as follows: for each Si ∈ C′, 1 ≤ i ≤ k, let

282 G. Blin et al.

D

vr

v1 v2 v3 v4

v1
1 v3

1 v4
1 v2

2 v3
2 v1

3 v4
3 v5

4

G

vr

v1 v2 v3 v4

v1
1 v3

1 v4
1 v2

2 v3
2 v1

3 v4
3 v5

4

Fig. 4. Illustration of the construction of D and G, given
C = {{x1, x3, x4}, {x2, x3}, {x1, x4}, {x5}}

Vi = {vi} ∪ {vk
i : xk ∈ Si}, and let Vk+1 = {vr} ∪ {vj , v

k
j : xk ∈ Sj , Sj ∈ C \ C′}.

In other words, there is a set Vi (inducing the subtree of G rooted at vi) for
each Si belonging to the set cover; whereas Vk+1 contains the remaining vertices
(including the root vr of G). Consequently, by construction, for any 1 ≤ i ≤ k+1,
G[Vi] is indeed connected. Moreover, each D[Vi], 1 ≤ i ≤ k, is a DAG since it does
not contain vr and each element of X occurs at most once in Si. Finally, D[Vk+1]
is also a DAG since, by definition of Set Cover-2, any element appears at most
twice in C and at least once in C′. Therefore, in C \ C′, any element appears at
most once, and thus no cycle occurs in D[Vk+1].

(⇐) Given a valid partition P = {V1, V2 . . . Vk} of V , we build a cover
C′ = {S1, . . . , Sk−1} as follows. Assume, wlog, vr ∈ V1; then C′ = {Si : ∃vj

i �∈ V1}.
In other words, we add in the cover all the sets having an element whose corre-
sponding vertex does not belong to V1. First, note that, by construction, there
is at most one vertex of {vi : 1 ≤ i ≤ q} in any G[Vj], 2 ≤ j ≤ k, since any path
linking two such vertices goes through vr, which is already contained in V1. It
follows that |C′| ≤ k − 1. It remains to show that C′ is indeed a set cover for
X . To do so, consider any element xi ∈ X . If xi occurs exactly once in C (wlog,
suppose xi ∈ Sj), then the corresponding vertex vi

j cannot belong to V1 since,
by construction, it would induce a cycle with vr in D[V1]. Therefore, Sj ∈ C′.
Otherwise, xi occurs exactly twice, and then at most one of the corresponding
vertices vi

j and vi
j′ belongs to V1, since otherwise it would induce a cycle in D[V1].

Thus, every xi ∈ X appears at least once in C′.
The above reduction is an L-reduction from Set Cover-2 to Min-DAGCC-

Partition. Hence, since Set Cover-2 is APX-hard, so is Min-DAGCC-

Partition, and the proposition is proved. 	

4 Cover Version of k-DAGCC

As we did in the previous section, we now show several complexity results con-
cerning the k-DAGCC-Cover and Min-DAGCC-Cover problems (see also
Table 2).

Let us first provide a polynomial-time algorithm when G is a path (Proposi-
tion 8). We first prove the following lemma.

Lemma 1. When G is a path, k-DAGCC-Cover admits a YES answer iff
k-DAGCC-Partition admits a YES answer.

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 283

Proof. Any partition being a cover, if k-DAGCC-Partition admits a YES an-
swer, then so does k-DAGCC-Cover. Conversely, consider any positive answer
to k-DAGCC-Cover. Hence, there exists a cover C = {V1, V2, . . . Vk} of D such
that for every 1 ≤ i ≤ k, G[Vi] is connected and D[Vi] is a DAG. Since G is a
path, so does any G[Vi]. Suppose now that a vertex v ∈ V belongs to at least
three pairwise distinct sets Vp, Vq , Vr from C. In that case, G being a path, one
of these three sets, say (wlog) Vp, satisfies Vp ⊆ Vq ∪ Vr, and we can remove Vp

from C and obtain a strictly smaller cover. Applying this rule until no such case
occurs, we end up with a cover C′ = {V ′

1 , . . . V
′
k′}, k′ ≤ k, in which every vertex

v ∈ V belongs to at most two different sets of C′. Therefore, assuming the V ′
i s are

ordered according to their leftmost vertex in G, we consider the following parti-
tion: P = {V ′′

i = V ′
i \ V ′

i+1 : 1 ≤ i < k′ s.t. V ′
i ∈ C′} ∪ {V ′

k′}. P is indeed a
partition of V , of cardinality k′ ≤ k ; besides, (a) since for any 1 ≤ i < k′, D[V ′

i]
is a DAG, so does any D[V ′′

i] ; (b) D[V ′
k′] is a DAG by hypothesis, and (c) G[V ′′

i],
1 ≤ i < k′, and G[V ′

k′] are all subpaths of G, and therefore connected. Thus k-
DAGCC-Partition admits a YES answer, and the lemma is proved. 	

Proposition 8. Min-DAGCC-Cover is polynomial-time solvable when G is
a path.

Proof. By Lemma 1, we know that when G is a path, the (YES/NO) solutions
of k-DAGCC-Partition and k-DAGCC-Cover are equivalent. Thus, in the
minimization versions of both problems (namely, Min-DAGCC-Partition and
Min-DAGCC-Cover), the same minimum value is reached, and in particular
if there exists a cardinality k solution to Min-DAGCC-Partition, then there
exists a cardinality k solution to Min-DAGCC-Cover. Besides, any partition
being a cover, we conclude that any solution to Min-DAGCC-Partition is also
a solution to Min-DAGCC-Cover Since Min-DAGCC-Partition is polyno-
mial time solvable (see Proposition 1), so does Min-DAGCC-Cover. 	

As opposed to k-DAGCC-Partition, k-DAGCC-Cover proves to be NP-
complete even when G is a star and k is a constant.

Proposition 9. For any k ≥ 3, k-DAGCC-Cover is NP-complete, even when
G is a star.

Proof. Clearly, k-DAGCC-Cover is in NP. In order to prove that the prob-
lem is NP-hard, we provide a reduction from the Minimum Chromatic Num-

ber (Min-CN) problem, in its natural decision version: Given a graph GC =
(VC , EC) and an integer k, does there exist a proper vertex coloring of GC using
at most k colors ? This problem has been shown to be NP-hard for any k ≥ 3 [7].

Given any instance GC of Min-CN, we build D and G as follows:

• V = VC ∪ {vr}
• A = {(v, v′), (v′, v) : (v, v′) ∈ EC} ∪ {(v, vr) : v ∈ VC}
• E = {(vr, v) : v ∈ VC}

284 G. Blin et al.

In other words, D is obtained from GC by replacing each edge by two arcs in
opposite directions, and by adding an arc from any vertex to vr, while G is a
star whose center is vr.

We now prove the following property: there exists a proper coloring for GC

using k colors iff there exists a valid cardinality k cover C = {V1, V2 . . . Vk} of V .
(⇒) Given a proper coloring of GC with k colors, let Si, 1 ≤ i ≤ k, be the set

of vertices assigned color k. We compute a cardinality k cover C = {V1, V2 . . . Vk}
of V as follows: for any 1 ≤ i ≤ k, Vi = Si ∪ {vr}. By definition of a proper
coloring, each Si is an independent set in GC (thus in D). Hence, since the out-
degree of vr is equal to zero, any D[Vi], 1 ≤ i ≤ k, is a DAG. Moreover, any
G[Vi] is indeed connected due to the fact that (i) G is star whose center is vr,
and (ii) every Vi, 1 ≤ i ≤ k, contains vr . Hence, C is valid.

(⇐) Given a valid cardinality k cover C = {V1, V2 . . . Vk} of V , we assign to
any vertex v ∈ Vi \ {vr} the color i, for any 1 ≤ i ≤ k. This assignment is a
proper coloring of GC since, by construction, no Vi can contain two neighbors
in GC , since otherwise, by construction of D, D[Vi] would not be a DAG. 	

We finally show that Min-DAGCC-Cover is hard to approximate. Note that
this inapproximability even holds when G is a star (instead of general graphs for
the problem Min-DAGCC-Partition).

Proposition 10. Min-DAGCC-Cover cannot be approximated within n1−ε,
for any ε > 0, even when G is a star.

Proof. The reduction provided in proof of Proposition 9 is actually an L-reduction,
since the sizes of the solutions in the two problems are equal (we have indeed
proved, following our reduction, that “there exists a proper coloring for GC

using k colors iff there exists a valid cardinality k cover C = {V1, V2 . . . Vk}
of V ”). Hence, given any approximation algorithm for Min-DAGCC-Cover,
one can derive an algorithm for Min-CN, with the same approximation ratio.
Since Min-CN cannot be approximated within n1−ε for any ε > 0 [23], so does
Min-DAGCC-Cover.

5 Conclusion

In this paper, we have studied the problem of decomposing (i.e., partitioning
or covering) a directed graph D into DAGs, such that each DAG induces a
connected subgraph in a given undirected graph G built on same vertex set
as D. We have provided, depending on the constraints imposed on the input,
several polynomial-time algorithms, as well as hardness and inapproximability
results.

There are still several open problems worthwhile to study. For example, one
may consider the parameterized complexity of k-DAGCC-Partition, where
the parameter is the number of partitions, in the specific case where G is a tree
(we indeed know that no FPT algorithm of complexity f(k)nO(1) is possible
when G is a graph, since the problem is NP-complete for k = 2). One may also
consider studying the approximability of Min-DAGCC-Partition.

Algorithmic Aspects of Heterogeneous Biological Networks Comparison 285

References

1. Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons, metabolons
and interactons: an exact graph-theoretical approach for exploring neighbourhood
between genomic and functional data. Bioinformatics 21(23), 4209–4215 (2005)

2. Deniélou, Y.-P., Boyer, F., Viari, A., Sagot, M.-F.: Multiple alignment of biological
networks: A flexible approach. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009.
LNCS, vol. 5577, pp. 263–273. Springer, Heidelberg (2009)

3. Durek, P., Walther, D.: The integrated analysis of metabolic and protein interaction
networks reveals novel molecular organizing principles. BMC Syst. Biol. 2(1) (2008)

4. Fertin, G., Babou, H.M., Rusu, I.: A pattern-guided approach to compare hetero-
geneous networks. Submitted (2011),
http://pagesperso.lina.univ-nantes.fr/~E09D478T/SGM-DB.pdf

5. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.:
Graemlin: General and robust alignment of multiple large interaction networks.
Genome Res. 16(9), 1169–1181 (2006)

6. Gamzu, I., Segev, D., Sharan, R.: Improved orientations of physical networks. In:
Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 215–225. Springer,
Heidelberg (2010)

7. Garey, M., Johnson, D.: Computers and Intractability: A guide to the theory of
NP-completeness. W.H. Freeman, San Francisco (1979)

8. Gitter, A., Klein-Seetharaman, J., Gupta, A., Bar-Joseph, Z.: Discovering pathways
by orienting edges in protein interaction networks. Nucleic Acids Research 39(4),
e22 (2011)

9. Huthmacher, C., Gille, C., Holzhütter, H.: A computational analysis of protein
interactions in metabolic networks reveals novel enzyme pairs potentially involved
in metabolic channeling. J. Theor. Biol. 252(3), 456–464 (2008)

10. Kelley, B.P., Sharan, R., Karp, R.M., et al.: Conserved pathways within bacteria
and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci.
USA 100(20), 11394–11399 (2003)

11. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.:
Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res,
32(Web Server issue) (2004)

12. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological
network alignment uncovers biological function and phylogeny. J. R. Soc. Inter-
face 7(50), 1341–1354 (2010)

13. Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network
of yeast genes. Science 306, 1555–1558 (2004)

14. Medvedovsky, A., Bafna, V., Zwick, U., Sharan, R.: An algorithm for orient-
ing graphs based on cause-effect pairs and its applications to orienting protein
networks. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI),
vol. 5251, pp. 222–232. Springer, Heidelberg (2008)

15. Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph
match-and-split algorithm. J of Comput. Biol. 14(7), 892–907 (2007)

16. Pal, C., Hurst, L.: Evidence against the selfish operon theory. Trends Genet. 20,
232–234 (2004)

17. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

18. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of
metabolic pathways. Bioinformatics 21(16), 3401–3408 (2005)

http://pagesperso.lina.univ-nantes.fr/~E09D478T/SGM-DB.pdf

286 G. Blin et al.

19. Rison, S., Teichmann, S., Thornton, J.: Homology, pathway distance and chromo-
somal localisation of the small molecule metabolism enzymes in Escherichia coli.
J. Mol. Biol. 318, 911–932 (2002)

20. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnol. 4(4), 427–433 (2006)

21. Tian, W., Samatova, N.F.: Pairwise alignment of interaction networks by fast iden-
tification of maximal conserved patterns. In: Proc. 14th Pacific Symposium on
Biocomputing (PSB), pp. 99–110 (2009)

22. Zheng, Y., Szustakowski, J., Fortnow, L., Roberts, R., Kasif, S.: Computational
identification of operons in microbial genomes. Genome Res. 12, 1221–1230 (2002)

23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(1), 103–128 (2007)

Minimum Interval Cover and Its Application to

Genome Sequencing

Liang Ding1, Bin Fu1, and Binhai Zhu2

1 Department of Computer Science University of Texas-Pan American,
Edinburg, TX 78541, USA

adamdingliang@gmail.com, binfu@cs.panam.edu
2 Department of Computer Science Montana State University,

Bozeman, MT 59717, USA
bhz@cs.montana.edu

Abstract. Pairwise end sequencing is a very useful method for whole
genome sequencing which determines the complete DNA sequence of
an organism’s genome with the help with laboratory processes. Paired-
end interval cover problem is derived from pairwise end sequencing. A
paired-end interval for a sequence S is constituted of at most two disjoint
intervals, and the paired-end interval cover problem can be described as
given a family F of paired-end intervals, find the least number of paired-
end intervals of F to cover S. We prove that the paired-end interval
cover problem is NP-complete. The c-interval cover problem is a gen-
eralization of paired-end interval cover that allows each member of the
family F to have at most c disjoint intervals. It extends the classical
set-cover problem reasonably. We show that the problem is APX-hard
when c ≥ 3. For solving these problems, we present a polynomial-time
6c-approximation algorithm for the c-interval cover problem and a fixed
parameter tractable algorithm for the k-bounded c-interval cover prob-
lem. Our implementation results show that the approximation ratio is
much smaller than the theoretical bound for most real examples.

1 Introduction

The set-cover problem is a classical and fundamental problem in computer sci-
ence with many applications. Given a finite set X of size n and a family F of
subsets of X such that every element of X belongs to at least one subset in F, the
problem is to find a minimum-size subset C ⊂ F whose members cover X . It is a
well-known NP-complete problem showed in Karp’s 21 NP-complete problems in
1972 and its solutions give rise to the development of the entire field of approxi-
mation algorithms [1]. The well known approximation algorithm for the set-cover
problem which has a ratio of 1 + lnn was given by Johnson [2] in 1974. Chvatal
[3] improved the upper bound on the approximation ratio to lnn− ln lnn+O(1)
in 1979. These ratios are tight because of a famous inapproximability result of
Feige [4] which states that there is no (1 − ε) lnn-approximation algorithm for
the set-cover problem unless there are subexponential O(npolylog(n)) time deter-
ministic algorithms for problems in NP. A lower bound of c lnn was established

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 287–298, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

288 L. Ding, B. Fu, and B. Zhu

by Raz and Safra [6] in 1997, where c is a constant, under the weaker assump-
tion that P �=NP. A similar result with a higher value of c was recently proved
by Alon, Moshkovitz and Safra [7] in 2006.

The general set-cover problem has two interesting variants: k-set cover and
k-bounded set cover. We derive some results from these variants of set cover.
Before presenting these results, we first give the formal definitions about the
c-interval cover problem and the paired-end interval cover problem. Let |A| be
the size of set A, we have:

Definition 1. Assume that S is a sequence that has no repetition with its ele-
ments, i.e. S is a permutation. Let c be an integer parameter.

– A c-interval I = {J1, J2, · · ·, Jt} of S is a series of disjoint intervals Ji(1 ≤
i ≤ t) of S which satisfies that |I| = t ≤ c.

– The c-interval cover problem is defined as given a family F of c-intervals,
find the least number of c-intervals of F to cover S.

The paired-end interval cover problem is a special case of the c-interval cover
problem for c = 2. For simplicity, we call the paired-end interval cover problem
as PE-interval cover.

k-set cover restricts that every subset of X has size at most k. When k = 2, the
2-set cover can be reduced to maximum matching problem using the following
two steps:

1. Find a maximum matching in a graph constructed according to the given
2-sets: create a vertex for each element, and there is an edge between two
vertices if there is a 2-set consisting of this pair of elements.

2. Return all the 2-sets corresponding to the edges of the maximum matching
and the 1-sets of the uncovered elements (by the collection of 2-sets which
we found).

It is known that the maximum matching problem is solvable in polynomial time.
So for PE-interval cover, if each interval is degenerated to a single point, it is
equivalent to the 2-set cover and can be solved in polynomial time. However,
we prove that the general PE-interval cover problem is NP-complete. Also, it
is known that the k-set cover problem is APX-hard for k ≥ 3 [22], the best
known inapproximability bound for large k is Ω(k

lnk) [26]. We prove that the
c-interval cover problem is APX-hard if c ≥ 3. Moreover, a polynomial time
6c-approximation algorithm is provided to solve the c-interval cover problem.

We define that one element of X occurs once if it appears in one of the subsets
of F. Then k-bounded set cover satisfies that the number of occurrences of any
element of X in F is bounded by a constant k ≥ 2 and there exists an element
which appears in F exactly k times. The best known approximation algorithm
which achieves the ratio k

k−(k−1) k
√

1−ε
+ o(1) was presented by Reuven B.Y.

and Zehavit K. [5] in 2004. In this paper, we show a fixed parameter tractable
algorithm for k-bounded set cover problem, and hence it can be used directly to
solve k-bounded c-interval cover.

Minimum Interval Cover and Its Application to Genome Sequencing 289

Originally, the PE-interval cover problem is derived from pairwise end se-
quencing method which was developed based on shotgun sequencing. Shotgun
sequencing is a method used for sequencing long DNA strands. Pairwise end
sequencing method comes after shotgun sequencing, it is also known as double-
barrel shotgun sequencing and was first described by Edwards and Caskey in
1991 [8]. In pairwise end sequencing, sequences are determined from both ends
of random subclones derived from a DNA target. The benefit of this method
toward shotgun sequencing is the information obtained by sequencing both ends
of a fragment of DNA could be more useful. After the work of Edwards and
Caskey, many variants of the strategy have been developed by several groups
[9][10][11][12][13][14][15]. Pairwise end sequencing has been used successfully to
sequence small genomic targets, such as microbial genomes and large-insert sub-
clones of large genomes [16][17][18]. In 1999, heuristic algorithms were provided
by Anson and Myers to handle whole genome shotgun sequencing [19]. In our pa-
per, we generalize the PE-interval cover problem to the c-interval cover problem
which extends the classical set-cover problem.

The rest of the paper are organized as follows: section 2 gives an approxima-
tion algorithm for the c-interval cover problem using the greedy method. The
complexities of the PE-interval cover problem and the c-interval cover problem
are presented in section 3. Then, some experimental results are presented in
section 4. Section 5 concludes the paper.

2 A Greedy Approximation Algorithm for the c-Interval
Cover Problem

We derive a 6c-approximation algorithm for the c-interval cover problem using
a greedy method. Theoretically, its approximation ratio is 6c, but it has a much
better approximation ratio in practice. We will show our experimental results in
section 4.

Definition 2. Let U be the set which includes all the uncovered elements of S,
and let I = {J1, J2, · · ·, Jt} be a c-interval of F.

– An improvement of interval Ji for S is defined as |Ji ∩ U |.
– A single improvement of c-interval I for S is defined as max1≤i≤t |Ji ∩ U |.
– A sum improvement of c-interval I for S is defined as

∑
1≤i≤t |Ji ∩ U |.

The kernel of our greedy algorithm is that for each step, selecting a c-interval
Ii in F such that Ii makes the biggest single improvement for S. The concrete
steps are showed as follows:

Single Improvement Greedy Algorithm
Input: a genome sequence S and a family F of c-intervals Ii(1 ≤ i ≤ |F|).
Output: 6c-approximation result
Steps:
1 Let U ← S, C ← ∅.

290 L. Ding, B. Fu, and B. Zhu

2 While U �= ∅,
3 Select a c-interval Ii from F such that a single interval Jm of Ii

4 covers the most uncovered elements in S, which means |Jm∩U |
5 is maximum, namely, the selection makes the biggest
6 single improvement for S.
7 U ← U − {∪Ji∈IiJi}
8 C ← C ∪ {Ii}
9 Return C.
End of Algorithm

Since the number of iterations of the loop on lines 2-8 is bounded from above
by |F |, and the loop body can be implemented to run in time O(

∑
Ii∈F

|Ii|),
there is an implementation that runs in time O(|F |∑Ii∈F

|Ii|). The following
theorem shows that it is a constant factor approximation algorithm.

Theorem 1. There is a polynomial time 6c-approximation algorithm for the
c-interval cover problem.

Proof. Let O = {IO1 , IO2 , · · ·, IOp} be an optimal solution for the c-interval
problem, then O is made up of p c-intervals. Similarly, let A = {IA1 , IA2 , · · ·, IAq}
be the approximation solution resulted from our greedy algorithm. Clearly, we
have q ≥ p. Consider a single interval JOi from a c-interval IOi in O, JOi has
two endpoints e1 and e2. For one of its endpoints e1, since it is covered by the
optimal solution O, it must be covered by our approximation solution A.

Let Ak be the partial approximation solution which is generated after k greedy
selections of the algorithm and Uk ⊂ S contains the elements which are not
covered by the partial solution Ak. Also let c-interval Ik+1 be the (k + 1)-th
greedy selection which is added to the previous partial approximation solution
Ak by our algorithm. Here we make k and Ik+1 satisfy that after k selections,
the next selection Ik+1 is the first c-interval which covers e1. We use Je1 ∈ Ik+1

to represent the interval which covers e1. There are two cases: the first case is
that Je1 is not the interval of Ik+1 that covers the most number of uncovered
elements of S, which means that |Je1 ∩ Uk| �= maxJi∈Ik+1 |Ji ∩ Uk|; the second
case is that Je1 is the interval of Ik+1 that covers the most number of uncovered
elements of S, which means that |Je1 ∩ Uk| = maxJi∈Ik+1 |Ji ∩ Uk|.

Let R ⊂ F contains all the remaining c-intervals which are still not selected by
our greedy algorithm after k + 1 selections, then we use R(e1) ⊂ R to represent
the subset of R such that each c-interval of subset R(e1) contains endpoints e1.
After the (k + 1)-th selection of our algorithm, we count the number of greedy
choices of c-intervals which contain the endpoint e1. We define c(e1) = {Ii : Ii

is the k0-th c-interval selected by the greedy algorithm, here (k + 1 ≤ k0 ≤ |F |),
and Ii contains an interval Jk0 with e1 ∈ Jk0 and |Jk0 ∩ Uk0−1| maximal}. Ac-
cording to the nature of greediness, we have:

Claim 1: |c(e1)| ≤ 3.

We explain the claim using two cases mentioned above:

Minimum Interval Cover and Its Application to Genome Sequencing 291

– For case one, since |Je1 ∩Uk| �= maxJi∈Ik+1 |Ji ∩Uk|, Ik+1 cannot be counted
into the number of greedy choices. Among all the c-intervals in set R(e1),
there is at most one greedy choice of c-interval Ia1 ∈ c(e1) such that Ia1

has non-zero improvements on both sides of interval Je1 . There is at most
one greedy choice of c-interval Ia2 ∈ c(e1) such that Ia2 has non-zero im-
provement on either side of interval Je1 . Otherwise, it violates the greedy
settings. Totally, our greedy approach has at most three choices which touch
the endpoint e1. So, |c(e1)| ≤ 3.

– For case two, since |Je1 ∩ Uk| = maxJi∈Ik+1 |Ji ∩ Uk|, we have Ik+1 ∈ c(e1),
which means that Ik+1 should be counted into the number of greedy choices.
Among all the c-intervals in set R(e1), since c-interval Ik+1 has already made
the biggest single improvement for S, there is no other greedy choice of
c-interval which belongs to c(e1) and has non-zero improvements on both
sides of interval Je1 . Similar to case one, there is at most one greedy choice
of c-interval Ia2 ∈ c(e1) such that Ia2 has non-zero improvement on either
side of interval Je1 . Otherwise, it violates the greedy settings. Totally, our
greedy approach has at most three choices which touch the endpoint e1. So,
|c(e1)| ≤ 3.

By summarizing the two cases, the claim 1 holds. Generally, for each endpoint ei

in some IOj ∈ O, there are at most three greedy selections touching ei. Namely,
for some JOr ∈ IOj , there are at most three selections that contain one of its
two endpoints. If we let |A| be the size of approximation solution, we have:

Claim 2: |A| ≤∑ei∈IOj
,IOj

∈O
|c(ei)| for 1 ≤ i ≤ 2 and 1 ≤ j ≤ p.

Claim 2 holds because any greedy selection of A must contain at least one end-
point of the optimal solution O. Otherwise, if there is a greedy selection Ii in
the approximation solution A which does not contain any endpoint of optimal
solution O, the greedy selection Ii must be a proper subset of an c-interval
IOj ∈ O. However, because Ii ⊂ IOj , this selection violates the greedy settings
and cannot be a correct greedy selection. Since for each endpoint ei of IOj ∈ O,
|c(ei)| counts the number of greedy selections which contain the endpoint ei.
Thus by summing the number of greedy selections for each endpoint of O, we
have |A| ≤∑ei∈IOj

,IOj
∈O

|c(ei)| for 1 ≤ i ≤ 2 and 1 ≤ j ≤ p.
Since each JOr ∈ IOj has two endpoints and each c-interval has at most c

intervals, by Claim 1 and Claim 2, we have |A| ≤ 2 × 3 × c × |O| = 6c|O|. �

For the single improvement greedy algorithm, if we make a slight change, instead
of selecting a c-interval that makes the biggest single improvement for S, we
select a c-interval that makes the biggest sum improvement for S. This slight
change makes the algorithm a special case of the greedy algorithm for the set-
cover problem which has 1 + lnn approximation ratio. If we call this algorithm
sum improvement greedy algorithm, the same as set-cover, this algorithm has
1 + ln |S| approximation ratio.

292 L. Ding, B. Fu, and B. Zhu

3 Complexity of the c-Interval Cover Problem

In this section, we explore the hardness of the c-interval cover problem. Theorem
3 shows that the problem is NP-complete when c = 2 and by Theorem 2, the
c-interval cover problem is APX-hard if c ≥ 3.

Definition 3. [23] The class APX is the set of optimization problems that allow
polynomial time approximation algorithms with approximation ratios bounded by
a constant.

– If there is a polynomial time algorithm to solve a problem within any fixed
percentage greater than zero, then the problem is said to have a polynomial
time approximation scheme (PTAS). Unless P=NP, there are problems that
are in APX but not in PTAS; that is, problems that can be approximated
within some constant factor, but not every constant factor.

– A problem is said to be APX-hard if there is a linear reduction from every
problem in APX to that problem, and to be APX-complete if the problem is
APX-hard and also in APX.

It is well known that k-set cover problem is APX-hard for k ≥ 3 [22], we have
the following result:

Theorem 2. The c-interval cover problem is APX-hard if c ≥ 3.

Proof. We have a simple polynomial time reduction from 3-set cover problem
to 3-interval problem by setting each interval to be a single element. The same
idea can be used to deduce solutions for c > 3. �

In the following part, we show the PE-interval cover problem is NP-complete.
The core idea is that (3, 3)-SAT problem can be polynomial-time reducible to
PE-Interval cover problem. We first give the definitions of 3SAT and (3, 3)-SAT.

Definition 4. A 3SAT instance is a conjunctive form C1 · C2 · · · Cm such that
each Ci is a disjunction of at most three literals. 3SAT is the language of those
3SAT instances that have satisfiable assignments.

Definition 5. A (3, 3)-SAT instance is an instance G for 3SAT such that for
each variable x, the total number of occurrences of x and x̄ in G is at most 3,
and the total number of occurrences of x̄ in G is at most 1. (3, 3)-SAT is the
language of those (3, 3)-SAT instances that have satisfiable assignments.

For examples, (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2) ∧ (x1 ∨ x̄3) is a 3SAT instance but not
a (3, 3)-SAT instance since x̄1 appears twice in the formula. On the other hand,
(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x2 ∨ x3) is both 3SAT and (3, 3)-SAT
instance, and hence belongs to both 3SAT and (3, 3)-SAT. It is well known that
3SAT is a NP-complete problem, the following lemma shows that (3, 3)-SAT is
polynomial-time reducible to 3SAT.

Lemma 1. [20][21] There is a polynomial time reduction f(.) from 3SAT to
(3, 3)-SAT.

Minimum Interval Cover and Its Application to Genome Sequencing 293

Definition 6. Given a (3, 3)-SAT instance φ = C1 ∧ C2 ∧ · · · ∧ Cm, a clause
Ci of φ is called 3-positive clause if it satisfies that Ci has three variables and
all the three variables are positive. If a (3, 3)-SAT instance φ has no 3-positive
clause, φ is called a n3p-(3, 3)-SAT instance.

Lemma 2. There is a polynomial time transformation from a (3, 3)-SAT in-
stance φ to a n3p-(3, 3)-SAT instance φ′ such that φ is satisfiable iff φ′ is satis-
fiable.

Proof. Let φ = C1∧C2∧···∧Cm be an instance of (3, 3)-SAT. The transformation
from φ to φ′ performs the same conversion for each clause Ci(1 ≤ i ≤ m). If
a clause Ci = (xi

1 ∨ xi
2 ∨ xi

3) of φ is a 3-positive clause, we convert Ci into
C′

i ∧ C′′
i = (xi

1 ∨ xi
2 ∨ x̄i

a) ∧ (xi
3 ∨ xi

a) by adding new variable xi
a and letting

xi
a = x̄i

3. Since neither C′ nor C′′ ia a 3-positive clause, after the conversion, for
each clause of φ, a (3, 3)-SAT instance can be transformed into a n3p-(3, 3)-SAT
instance. It is easy to verify that Ci is true iff C′

i ∧C′′
i is true, so φ is satisfiable

iff φ′ is satisfiable. The total transformation time is bounded by O(m). �

For example, φ1 = C1 ∧ C2 ∧ C3 is an instance of (3, 3)-SAT, where C1 =
(x1 ∨ x̄2 ∨ x3), C2 = (x̄1 ∨ x2 ∨ x̄3), C3 = (x1 ∨ x2 ∨ x3). We convert it into a
n3p-(3, 3)-SAT instance φ′

1 = C′
1∧C′

2∧C′
3∧C′

4 by adding variable x4 and letting
x4 = x̄3. Here C′

1 = (x1 ∨ x̄2 ∨ x3), C′
2 = (x̄1 ∨ x2 ∨ x̄3), C′

3 = (x1 ∨ x2 ∨ x̄4),
C′

4 = (x3 ∨ x4).
As a decision problem, for a given permutation S, a family F of paired-end

intervals and an integer number k, we ask simply whether there exists subset
C ⊆ F such that the permutation formed by subset C covers all the elements in
S and the number of paired-end intervals in C is k.

Theorem 3. The decision version of the PE-interval cover problem is NP-
complete.

Proof. To show that the PE-interval cover problem is in NP, for a given set F of
paired-end intervals, we use subset C ⊆ F as a certificate for F. Consider S′ as
the set which contains all the elements that C covers. Checking the certificate C
can be accomplished in polynomial time by checking whether, for each element
s ∈ S, s belong to S′.

We next prove that (3, 3)-SAT ≤p PE-interval cover, which shows that the
PE-interval cover problem is NP-hard. Given a (3, 3)-SAT instance φ = C1 ∧
C2 ∧ · · · ∧ Cm = s(x1, x2, · · ·, xk) in which m is the number of clauses in φ
and k is the number of variables in φ. Without loss of generality, we make three
simplified assumptions about the formula φ. First, no clause contains both a
variable and its negation, for such a clause, it is automatically satisfied by any
assignment of values to the variables. Second, each variable appears in at least
one clause, for otherwise it does not matter what value is assigned to the variable.
Third, no variable appears three times in φ as positive, otherwise we can simply
assign these variables true to remove them and the clauses which contains these
variables without affecting the satisfiability of φ.

294 L. Ding, B. Fu, and B. Zhu

First, we need to transform φ into a n3p-(3, 3)-SAT instance φ′ = C′
1 ∧ C′

2 ∧
· · · ∧ C′

m′ = s(x′
1, x

′
2, · · ·, x′

k′) using Lemma 2. Let m′ and k′ be the clause size
and variable size of φ′ respectively, we have m ≤ m′ ≤ 2m k ≤ k′ ≤ k + m.
We construct a set F which contains 2k′ paired-end intervals, φ is satisfiable iff
there exists subset C ⊆ F such that the sequence formed by subset C covers all
the elements of S and the number of paired-end intervals in C is k′.

Then set F can be constructed using the following 4 steps of procedures (see
an example showed in Figure 1):

Step1: Divide the sequence S into m′ + k′ intervals S1, S2, · · ·, Sm′+k′ of same
size n

m′+k′ , we have S1 = {1, 2, · · ·, n
m′+k′ } and Si = {n(i−1)

m′+k′ , · · ·, ni
m′+k′ } for

2 ≤ i ≤ m′ + k′.

Step2: Mark all the intervals and all the variables as unused, let i = 1.

Step3: For clause C′
i = (li1 ∨ li2 ∨ li3) of φ′, here i ≤ m′, we have three cases:

– Case 1 : If C′
i has exactly one unused positive variable, select the first unused

interval Su. Let variables li1, li2 and li3 represent the same interval Su, then
interval Su is marked as used. We call the intervals such as Su which are
marked by clauses as Clause Intervals. For that unused positive variable
lij(j ∈ {1, 2, 3}) in C′

i, which means lij = x′
t(1 ≤ t ≤ k′), select the first

unused interval Sv, let lij and l̄ij represent the same interval Sv. Then the
variable lij = x′

t and the interval Sv are marked as used. We call the intervals
such as Sv which are marked by variables as Variable Intervals.

– Case 2 : If C′
i has two unused positive variables, select the second unused

interval Su, let variables li1, li2 and li3 represent the same interval Su. Then
the interval Su is marked as used. For that two positive variables lij1(j1 ∈
{1, 2, 3}) and lij2(j2 ∈ {1, 2, 3}) in C′

i, select the first and the second unused
intervals Sv1 , Sv2 . Let lij1 and l̄ij1 represent the same interval Sv1 . Similarly,
let lij2 and l̄ij2 represent the same interval Sv2 . Then the variables lij1 , l

i
j2

and
the intervals Sv1 , Sv2 are marked as used.

– Case 3 : If there dose not exist unused positive variable in C′
i, select the first

unused interval Su, let variables li1, li2 and li3 represent the same interval Su.
Then the interval Su is marked as used.

Let i = i + 1, repeat step 3.

Step4: If all the variables are marked as used, the construction is done. Oth-
erwise there are unused variables, for each unused variable xu, select the first
unused interval Su. Let xu and x̄u represent the same interval Su.

It is easy to see that for each positive variable x′
t(1 ≤ t ≤ k′) in φ′, set F has

a paired-end interval, and for each negative variable x̄′
t(1 ≤ t ≤ k′) in φ′, set F

also has a paired-end interval. So the total number of paired-end intervals in F
is 2k′. In addition, the cost of the reduction is bounded by O(m′ + k′).

Finally, we must show that the transformation is a reduction. First, suppose
that φ has a satisfying assignment. By Lemma 2, φ′ also has a satisfying assign-
ment. Then for each variable x′

t(1 ≤ t ≤ k′), x′
t is assigned either 1 or 0, if it is

Minimum Interval Cover and Its Application to Genome Sequencing 295

� � � � � � � � �

S x1 C′
1 x3 C′

2 x2 C′
3 C′

4 x4

�
x1

x̄1
� �

��
x1

� �
x̄2

� �
x3

�
x3

�
x̄3

� �
x̄1

�
x2

� �
x̄3

�
x2

� �
x̄2

� �
x1

� �
x2

� �
x̄4

� �
x3

�
x4

� �
x4

� �
x̄4

Fig. 1. The reduction from n3p-(3, 3)-SAT instance φ′
1 = C′

1 ∧ C′
2 ∧ C′

3 ∧ C′
4 to an

instance of PE-interval cover problem, where C′
1 = (x1 ∨ x̄2 ∨ x3), C′

2 = (x̄1 ∨ x2 ∨ x̄3),
C′

3 = (x1 ∨ x2 ∨ x̄4), C′
4 = (x3 ∨ x4). Set S is divided into eight intervals. Clause

Intervals and Variable Intervals are marked as red and blue respectively. A satisfying
assignment of the formula has x1 = 1, x3 = 0, x4 = x̄3 = 1, and x2 may be either 0
or 1. This assignment satisfies C′

1 and C′
3 with x1, it satisfies C′

4 with x4 and satisfies
C2 with x̄3, corresponding to four paired-end intervals with four different colored bold
lines.

assigned 1, we select the paired-end interval represented by x′
t; otherwise if it is

assigned 0, we select the paired-end interval represented by x̄′
t. We put all the

selected intervals into the set C, it is obvious that C has k′ elements. We need
to show that the union of all the intervals in C covers the sequence S. Since φ′ is
satisfiable, each clause C′

i contains at least one literal lij which is assigned 1. So
for each clause interval, it is covered. For each variable interval, because either
x′

t or x̄′
t is selected, it is covered too. The sequence S is made up of the union of

all the clause intervals and variable intervals, therefore S is covered by C.
Conversely, suppose that F is constructed using above procedures, C ⊆ F is of

size k′ and it covers all the elements in S. We can assign 1 to all literals which are
used to represent the k′ paired-end intervals in C. Here we do not need to worry
about assigning 1 to both a literal and its complement. Since C is of size k′, if
the paired-end intervals represented by x′

t and x̄′
t are both included in C, there

must exist one variable x′′
t , neither paired-end interval represented by x′′

t or x̄′′
t

is included in C. According to the construction of F, the union of all intervals in
C cannot cover all the elements of S. After assignment, each clause is satisfied.
Then φ′ is satisfied, therefore φ is satisfied. �
We comment that this hardness result also holds if the reconstructed object is
a sequence instead of a permutation.

4 Experimental Results

We implement the greedy algorithms described in Section 2 for the PE-interval
cover problem. The experimental results of the single improvement greedy

296 L. Ding, B. Fu, and B. Zhu

algorithm show a much better approximation ratio than 6c = 12, which was
given in Theorem 1. The sum improvement greedy algorithm is also tested. The
experimental results show that it has a general better performance compared
with the first one.

4.1 Implementation Details

With the purpose of easily testing the approximation performance, we select two
short sequences of length 3, 000 and 6, 000. The selections are based on genome
sizes of first sequenced RNA-genome[24] and DNA-genome[25]. In order to per-
form the test carefully, we create two parameters. The first one is diSize which
represents the number of given 2-intervals, the second one is maxInterLength,
it restricts the maximum length of each interval. The testing range for diSize
is from 30 to 50, 000, while the testing range for maxInterLength is from 20
to sequence length. We first construct an optimal solution which uses the least
number of 2-intervals to cover the whole sequence and add it into 2-interval set,
and then the left 2-intervals are constructed randomly.

4.2 Results

For the single improvement greedy algorithm, the worst approximation ratio is
3.333. It is much better than the ratio 12 which was presented in Theorem 1.
For the sum improvement greedy algorithm, the worst approximation ratio is
3.000. Comparing two greedy algorithms, their worst approximation ratios are
almost the same. However, from their average approximation ratios, we discover
that the second algorithm has an overall better performance compared with the
first one. Though we cannot prove that the second algorithm is a constant factor
approximation, the testing results show that it works very effectively in practice.

5 Conclusion

We explore the hardness of the PE-interval cover problem and present some ap-
proximation algorithms to solve it. There are still some unsolved problems. The
sum improvement greedy algorithm has a better performance in our implemen-
tation; however, there is no approximation analysis of it. The approximation
ratio given in Section 2 seems possible to be improvable. And we still do not
know whether the PE-interval cover problem is APX-hard or not.

Acknowledgments. Bin Fu is supported in part by National Science Founda-
tion Early Career Award 0845376. Binhai Zhu is partially supported by NSF of
China under project 60928006.

Minimum Interval Cover and Its Application to Genome Sequencing 297

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for
k-restrictions. ACM Trans. Algorithms (ACM) 2(2), 153–177 (2006)

2. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9, 256–278 (1974)

3. Chvatal, V.: A greedy hueristic for the set-covering problem. Mathematics of
Operations Research 4, 233–235 (1979)

4. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

5. Bar-Yehuda, R., Kehat, Z.: Approximating the dense set-cover problem. Journal
of Computer and System Sciences 69, 547–561 (2004)

6. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: STOC 1997: Proceed-
ings of the twenty-ninth annual ACM symposium on Theory of computing, pp.
475–484. ACM, New York (1997)

7. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for
k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)

8. Edwards, A., Caskey, T.: Closure strategies for random DNA sequencing. Methods
Comp. Methods Enzymol 3(1), 41–47 (1991)

9. Chen, E.Y., Schlessinger, D., Kere, J.: Ordered shotgun sequencing, as strategy for
integrating mapping and sequencing of YAC clones. Genomics 17, 651–656

10. Richards, S., Muzny, D.M., Civitello, D.M., Lu, F., Gibbs, R.A.: Sequence map gaps
and directed reverse sequencing for the completion of large sequencing projects. In:
Automated DNA sequencing and Analysis, pp. 191–198. Academic Press, New York
(1994)

11. Smith, M.W., Holmsen, A., Wei, Y.H., Peterson, M., Evans, G.A.: Genomic
sequencing sampling: A strategy for high resolution sequence-based physical map-
ping of complex genomes. Nat. Genet. 7, 40–47 (1994)

12. Venter, J.C., Adams, M.D., Sutton, G.G., Kerlavage, A.R., Smith, H.O.,
Hunkapiller, M.: Shotgun sequencing for the human genome. Science 280, 1540–
1542 (1998)

13. Venter, J.C., Smith, H.O., Hood, L.: A new strategy for genome sequencing. Na-
ture 381, 364–366 (1996)

14. Weber, J.L., Myers, E.W.: Human whole-genome shotgun sequencing. Genome
Res. 7, 401–409 (1997)

15. Siegel, A.F., Engh, G., van den Hood, L., Trask, B., Roach, J.C.: Analysis of
sequence-tagged connector (STC) strategies for DNA sequencing. Genomics 68(3),
237–246 (2000)

16. Eward, A., Voss, H., Rice, P., Civitello, A., Stegemann, J., Schwager, C.,
Zimmerman, J., Erfle, H., Caskey, T., Ansorge, W.: Automated DNA sequecing
of the human HPRT locus. Genomics 6, 593–608 (1990)

17. Fleischmann, R.D., Adams, M.D., White, O., et al.: Whole-genome random se-
quencing and assembly of Haemophilus influenzae Rd. Science 269(5223), 496–498,
507-512 (1995)

18. Fraser, C.M., Gocayne, J.D., White, O., et al.: The minimal gene complement of
Mycoplasma genitalium. Science 270(5235), 397–404 (1995)

19. Anson, E., Myers, G.: Algorithms for whole genome shotgun sequencing. In:
Proceedings of the Third Annual International Conference on Computational
Molecular Biology (1999)

298 L. Ding, B. Fu, and B. Zhu

20. Tovery, C.A.: A simplified satisfiability problem. Discrete Applied Mathemat-
ics 8(85), 89 (1984)

21. Fu, B.: Multivariate Polynomial Integration and Derivative Are Polynomial Time
Inapproximable unless P=NP. Electronic Colloquium on Computational Complex-
ity (ECCC) 17, 202 (2010)

22. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters 37, 27–35 (1991)

23. Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity
classes. Journal of Computer and System Sciences 43, 425–440 (1991)

24. Fiers, W., et al.: Complete nucleotide-sequence of bacteriophage MS2-RNA - pri-
mary and secondary structure of replicase gene. Nature 260(5551), 500–507 (1976)

25. Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, C.A.,
Hutchison, C.A., Slocombe, P.M., Smith, M.: Nucleotide sequence of bacteriophage
phi X174 DNA. Nature 265(5596), 687–695 (1977)

26. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Computational Complexity 15(1), 20–39 (2006)

Exponential and Polynomial Time Algorithms

for the Minimum Common String Partition
Problem

Bin Fu1, Haitao Jiang2, Boting Yang3, and Binhai Zhu4

1 Department of Computer Science, University of Texas-Pan American
Edinburg, TX 78539, USA

binfu@cs.panam.edu
2 School of Computer Science and Technology, Shandong University,

Jinan Shandong, 250100, China
htjiang@mail.sdu.edu.cn

3 Department of Computer Science University of Regina Regina
Saskatchewan Canada, S4S 0A2, Canada

boting@cs.uregina.ca
4 Department of Computer Science, Montana State University

Bozeman, MT, 59717-3880, USA
bhz@cs.montana.edu

Abstract. Given two strings S and S′ of the same length, the Minimum
Common String Partition (MCSP) is to partition them into the minimum
number of strings S = S1 · S2 · · ·Sk and S′ = S′

1 · S′
2 · · ·S′

k such that the
substrings 〈S′

1, S
′
2, · · · , S′

k〉 is a permutation of 〈S1, S2, · · · , Sk〉. MCSP
is an NP-complete problem originating from computational genomics.
There exists constant-factor approximations for some special cases, but
the factors are impractical. On exact solutions, it is open whether there
exists an FPT algorithm for the general case and some inefficient FPT
algorithms for very special cases. In this paper, we present an O(2nnO(1))
time algorithm for the general case. We also show an O(n(log n)2) time al-
gorithm which solves the case for almost all strings S and S′ if the length
of each block in their minimum common partition is at least d0 log n

log t
for

some positive constant d0, where t is the size of the alphabet Σ.

1 Introduction

The minimum common string partition (MCSP) problem has attracted a lot
of attention, partly because of its applications in computational biology, text
processing and data compression. More specifically, MCSP has a close connection
with the genome rearrangement problems such as edit distance and sorting by
reversals, etc. In fact, MCSP was initially studied exactly as a problem on “edit
distance with moves” [3,15].

A partition P of a string X is a string P = 〈P1, P2, . . . , Pm〉 of strings whose
concatenation is equal to X , that is P1P2 . . . Pm = X . Each of the strings Pi is
called a block of P . Given a partition P of a string X and a partition Q of a

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 299–310, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

300 B. Fu et al.

string Y , we say that the pair π = (P,Q) is a common partition of X and Y
if Q is a permutation of P , that is, there exists a permutation σ on [m] such
that Pi = Qσi , 1 ≤ i ≤ m. The minimum common string partition problem is to
compute a common partition of X , Y with the minimum number of blocks.

Naturally, in the Minimum Common String Partition (MCSP) problem, we
are given two strings X and Y of length n over an alphabet Σ. Let each symbol
appear the same number of times in X and Y . Throughout this paper, we assume
that X and Y always satisfy this condition. This is certainly a sufficient and
necessary condition for us to compute a common string partition for X and Y .
For example, two strings X = beabcdb and Y = abdbebc have a common partition
(〈b, e, ab, c, db〉, 〈ab, db, e, b, c〉). There are several variants of MCSP. We call the
restricted version where each letter occurs at most d times in each input string
as d-MCSP. When the input strings are over an alphabet of size c, we call the
corresponding problem MCSP c.

The problem d-MCSP has been well studied. 2-MCSP (and therefore MCSP)
is NP-hard; moreover, APX-hard [9]. Several approximation algorithms have
been proposed for MCSP problem [9,12]. Chen et al. [1] studied the problem of
computing signed reversal distance with duplicates (SRDD). They introduced
the signed minimum common partition problem as a tool for dealing with SRDD
and observed that for any two related signed strings X and Y , the size of a
minimum common partition and the minimum number of reversal operations
needed to transform X and Y , are within a factor of 2. Kolman and Walen [14]
devised an O(d2)-approximation algorithm running in O(n) time for SRDD.

Chrobak et al. [2] analyzed the greedy algorithm for MCSP, they showed
that for 2-MCSP the approximation ratio is exactly 3, for 4-MCSP the ap-
proximation ratio is Ω(log n); for the general MCSP, the approximation ratio
is between Ω(n0.43) and O(n0.67). Kaplan and Shafrir [11] improved the lower
bound to Ω(n0.46) when the input strings are over an alphabet of size O(log n).
Kolman [13] described a simple modification of the greedy algorithm; the ap-
proximation ratio of the modified algorithm is O(p2) for p-MCSP. Most recently,
Goldstein and Lewenstein presented an greedy algorithm for MCSP [8].

In the framework of parameterized complexity, Damaschke first solved MCSP
by an FPT algorithm with respect to parameters k (size of the optimum so-
lution), r (the repetition number) and t (the distance ratio, depending on the
shortest block in the optimum solution) [4]. Jiang et al. showed that both d-
MCSP and MCSP c admit FPT algorithms when d and c are (constant) param-
eters [10]. However, it remains open whether MCSP admits any FPT algorithm
parameterized only on k.

In this paper, we show an O(2nnO(1)) time algorithm to give an exact solution
for the general problem. We also develop an O(n(log n)2) time algorithm for
almost all strings S and S′ if the length of each block in their minimum common
partition is at least d0 log n

log t for some positive constant d0, where t is the size of
the alphabet Σ.

The paper is organized as follows: In section 2, we show an O(2nnO(1)) time
algorithm to solve the minimum common string partition problem. In section 3,

Minimum Common String Partition Problem 301

we show a polynomial time algorithm to solve the minimum common string
partition problem for almost all strings.

2 An O(2nnO(1)) Time Algorithm for General Cases

In this section, we give an exact solution for the minimum common string parti-
tion problem. Our algorithm runs in O(2nnO(1)) time. Our method is to convert
it into a detection of a multilinear monomial in the sum of product expansion of
a multivariate polynomial.

Definition 1. Let S = a1a2 · · · an be a string of length n.

– For an integer i ∈ [1, n], define S[i] = ai.
– For an interval [i, j] ⊆ [1, n], define S[i, j] to be the substring aiai+1 · · · aj of

S.

Definition 2. Given a pair of strings S and S′, the common string partition
problem is to find partitions for S = S1 · · ·Sk and S′ = S′

1 · · ·S′
k such that

S′
1, · · · , S′

k is a rearrangement of S1, · · · , Sk, and k is the least.

We will use a multilinear monomial to encode a solution for the partition prob-
lem. We first define the monomial and multilinear monomial in a multivariate
polynomial as follows.

Definition 3. Assume that x1, · · · , xk are variables.

– A monomial has format xa1
1 xa2

2 · · ·xak

k , where ai are nonnegative integers.
– A multilinear monomial is a monomial such that each variable has degree at

most one. For examples, x3x5x6 is a multilinear monomial, but x3x
3
5x

2
6 is

not.
– For a polynomial p(x1, · · · , xk), its sum of product expansion is p(x1, · · · ,

xk) =
∑

j cjqj(x1, · · · , xk), where each qj(x1, · · · , xk) is a monomial with cj

as its coefficient.

Theorem 1. There is an O(2nnO(1)) time algorithm for the minimum common
string partition problem.

Proof. Let S and S′ be two input strings of length n. Let each position i of S′

have a unique variable xi to represent it. Define P [a, b] = xaxa+1 · · ·xb. For each
interval [s, t], define Gs,t =

∑
S′[s′,t′]=S[s,t] P [s′, t′].

For each i ≤ n, define a polynomial Fi,1 = G1,i. It represents all the substrings
of S′ that match S[1, i]. This is formally stated by Claim 1 below.

Claim 1. S′[u, v] is a substring of S′ with S′[u, v] = S[1, i] if and only if there
is a multilinear monomial P [u, v] in Fi,1.

Let F0,t = 1 for each t ≥ 1. For each i ≤ n, define

Fi,t+1 =
∑

1≤j≤i

Gj,i · Fj−1,t. (1)

302 B. Fu et al.

This polynomial has the property for encoding some partial common partition.
It is stated in Claim 2.

Claim 2. Let i be an arbitrary integer parameter in the range [1, n]. Then there
is a partition S[i1, j1], · · · , S[it, jt] for S[1, i] such that S[ir, jr] = S′[i′r, j

′
r] for

some disjoint intervals [i′1, j
′
1], · · · , [i′t, j′t] that are subset of [1, n] if and only if

there is a multilinear monomial Q in the sum of product expansion of Fi,t with
Q =

∏t
r=1 P [i′r, j

′
r].

Proof. We prove this claim by induction. For the case t = 1, it follows from
Claim 1. Assume that the claim is true for t.

We consider the case t+1. We have the following two cases for the induction.

– Assume that there is a partition S[i1, j1], · · · , S[it+1, jt+1] for S[1, i] such
that 1 = i1 ≤ j1 = i2 − 1 < j2 = · · · jt = it+1 − 1 < jt+1 = i,
and S[ir, jr] = S′[i′r, j

′
r] for r = 1, · · · , t + 1 with some disjoint intervals

[i′1, j
′
1], · · · , [i′t+1, j

′
t+1]. By our inductive hypothesis, there is a multilinear

monomial Q′ =
∏t

r=1 P [i′r, j
′
r] that is in the sum of product expansion of

Fjt,t. By the definition of Git+1,jt+1 , Git+1,jt+1 contains the multilinear mono-
mial P [i′t+1, j

′
t+1] in its sum of product expansion. By the definition of Fi,t+1

in equation (1), we have multilinear monomial Q = Q′ · P [i′t+1, j
′
t+1] in the

sum of expansion of Fi,t+1.
– Assume that there is multilinear monomial Q in Fi,t+1. By the definition of

Fi,t+1 in equation (1), there is an integer j and an interval [i′t+1, j
′
t+1] such

that S[j, i] = S′[i′t+1, j
′
t+1], and there is a multilinear monomial Q′ with

Q = P [i′t+1, j
′
t+1] · Q′.

By the inductive hypothesis, there is a partition S[i1, j1], · · · , S[it, jt] for
S[1, j− 1] such that for each 1 ≤ r ≤ t, S[ir, jr] = S′[i′r, j′r] for some disjoint
intervals [i′1, j

′
1], · · · , [i′t, j′t], and Q′ =

∏t
r=1 P [i′r, j

′
r]. Since Q is a multilinear

monomial, we know that there is no intersection between [i′t+1, j
′
t+1] and

∪t
r=1[i′r, j′r]. �

By Claim 2, it is easy to see that there is a partition of k segments if and only if
there is a multilinear monomial x1x2 · · ·xn in the sum of product expansion of
Fn,k.

We have an O(2nnO(1)) time algorithm to find the multilinear monomial by
evaluating Fn,k from bottom-up. During the evaluation, we only keep the multi-
linear monomials in Fi,t. Since the total number of variables is n, the total num-
ber of multilinear monomials is at most 2n. We note that Gj,i has at most O(n)
monomials. Therefore, each multiplication Gj,iFj−1,t takes O(2nnO(1)) time. The
arithmetic expression for Fn,k involves nO(1) + and · operations. Therefore, the
total time for generating all the multilinear monomials in the sum of product
expansion of Fn,k is O(2nnO(1)).

Testing the existence of multilinear monomial x1x2 · · ·xn in the sum of prod-
uct expansion over Fn,k gives the existence of a common partition of at most
k blocks. Tracing how the multilinear monomial x1x2 · · ·xn is formed with a

Minimum Common String Partition Problem 303

bottom-up approach to find all multilinear monomial in the sum of product ex-
pansion of Fn,k shows how a common partition of at most k blocks is computed.
This can be seen in the proof of Claim 2. �

3 Polynomial Time Algorithm for Almost All Cases

In this section, we present an O(n(log n)2) time algorithm which solves the case
for almost all strings S and S′ if the length of each block in their minimum
common partition is at least d0 logn for some positive constant d0.

Definition 4. Assume that strings S and S′ are two strings of the same length.
A k-common partition divides S into k blocks S1, · · · , Bk, and S′ into another k
blocks S′

1, · · · , S′
k such that S′

1, · · · , Sk is a permutation of S1, · · · , Sk. A (k,m)-
common partition S and S′ is a k-common partition that each block is of length
at least m.

Definition 5. Assume that strings S and S′ are two strings of the same length,
and there is a minimum common partition that divides S into S1, · · · , Sk, and
S′ into S′

1, · · · , S′
k such that Sj = S′

ij
for j = 1, · · · , k. Let Sj = S[aj , bj] for

j = 1, · · · , k, and S′
j = S′[a′j , b

′
j] for j = 1, · · · , k.

– A (k,m)-rough common partition is to approximate the k pairs of matched
right boundaries (bj , b

′
ij

) with (end[j], end′[ij]) such that end[j] ∈ (bj−m, bj+
m) and end′[ij] ∈ (b′ij

−m, b′ij
+ m) for j = 1, 2, · · · , k.

– A boundary determination for a (k,m)-rough common partition of S and S′

is that given a (k,m)- rough common partition of S and S′ (with (end[j],
end′[ij]) for j = 1, 2, · · · , k), derive a k-common partition S1, S2, . . . , Sk of
S and S′

1, S
′
2, . . . , S

′
k of S′ such that Si = S[xi, yi], S′

i = S[x′
i, y

′
i] with yi ∈

(end[i]−m, end[i]+m) and y′i ∈ (end′[i]−m, end′[i] +m)for i = 1, 2, . . . , k.

Definition 6. Let Σ be an alphabet with at least 2 characters. Let h and n be
integers with h ≤ n. Define Φn,h(Σ) be the set of all strings S in Σn such that
S[i, i+h−1] = S[j, j+h−1] for some two indices i �= j with 1 ≤ i < j ≤ n−h+1.
Define Ψn,h(Σ) = ∪n

u=hΦn,u(Σ).

Lemma 1. Let t = |Σ| ≥ 2. |Ψn,h(Σ)|
|Σn| ≤ n2t−(�h

2 �−1).

Proof. Assume that S is a random string of Σn. For two pairs (S[i+ r], S[j + r])
and (S[i+r′], S[j+r′]) of characters in S, they are independent if {i+r, j+r}∩
{i + r′, j + r′} = ∅. We can pick up

⌊
u
2

⌋
independent pairs (S[i + ri], S[j + ri]),

for i = 1, · · · , �u/2�. Let H be the set of those independent pairs. Set H contains
at least u

2 independent pairs.
Let u ≥ h. We consider S[i, i+u−1] and S[j, j+u−1]. The probability that the

k-th characters of these two substrings are the same is 1
|Σ| = 1

t . With probability

at most t−�u
2 �, (S[i+r] = S[j+r]) for all independent pairs (S[i+r], S[j+r]) in

H . With probability at most t−�u
2 �, (S[i, i+ u− 1] = S[j, j + u− 1]). Therefore,

304 B. Fu et al.

with probability at most n2t−
u
2 , there exist i and j with 1 ≤ i < j ≤ n − u + 1

such that S[i, i + u − 1] = S[j, j + u − 1]).
Therefore, with probability at most

∑n
u=h n2t−�u

2 � ≤ n2t−(�h
2 �−1), there are

integers i, j and u with 1 ≤ i < j ≤ n − u + 1 and h ≤ u ≤ n such that
S[i, i + u − 1] = S[j, j + u − 1]. �

For an intuitive understanding of Lemma 1, note that Ψn,h is a subset of Σn.
If y is constant, we can select a constant c0 such that n2t−(�h

2 �−1) < 1
2y with

h ≥ c0 log n
log t . Therefore, Ψn,h(Σ) is a small subset of strings in Σn which only

has 1
2y fraction of strings in Σn when constant y is selected large enough. The

algorithm and its performance is stated by Thereom 2. Its proof will be given
later in this section.

Lemma 2. If there is a (k, h)-common partition for S and S′, then S is in Ψn,h

implies S′ is in Ψn,h/4.

Proof. Assume that there is a (k, h)-common partition S = S1 · · ·Sk and S′ =
S′

1 · · ·S′
k such that S′

1, · · · , S′
k is a rearrangement of S1, · · · , Sk. Assume that

there are two identical substrings V1 = S[i, j] and V2 = S[u, v] of length h in S.
There is a block St that contains at least half of the substring V ′

1 of V1. Let V ′
2

be the substring of V2 equal to V ′
1 . There is a block Sx that contains at least

half substring V ′′
2 of V ′

2 . Let V ′′
1 be the substring of V ′

1 equal to V ′′
2 . The length

of V ′′
1 and V ′′

2 is at least h
4 . Both V ′′

1 and V ′′
2 appear as substrings in S′ since

they are substrings of some blocks in S. �

Theorem 2. There is an O(nh2) time algorithm such that given two input
strings in Σn−Ψn,h that a minimum common partition between them is a (k, 3h)-
common partition, then it outputs the (k, 3h)-common partition between them.

Before we present the formal description of our algorithm, we give a brief idea
of the algorithm. Let S = S1 · · ·Sk and S′ = S′

1 · · ·S′
k be the (k, 3h)-common

partition, which is also a minimum common string partition. Assume Sj matches
S′

ij
for j = 1, 2, · · · , k. Use the first substring S1[1, h] in a block of S1 to match

S′
i1

[1, h] in block S′
i1

. The two matched regions S1[1, h] and S′
i1

[1, h] are extended
to S1[1,m1] and Si1 [1,m1] until the rough end of the two matched blocks S1 and
S′

i1
(m1 ∈ (|S1|−h, |S1|]). With m1 ∈ (|S1|−h, |S1|], we have that S[m1+h,m1+

h+h−1] = S2[x, x+h−1] for some x ∈ [1, h]. Substring S2[x, x+h−1] is at the
rough starting area of S2 and is used to match the rough start area S′

i2 [x, x+h−1]
of the block in S′

i2
. After S′

i2
[x, x+h−1] is found in S′, extend them to S2[x,m2]

and S′
2[x,m2] with m2 close to the length of S2 (m2 ∈ (|S2|−h, |S2|]). Repeat the

above process until we obtain a rough match for the minimum common string
partition. In the next phase, we detect the exact boundaries from the rough
boundaries.

Lemma 3. There is an O(nh) time algorithm to determine if a string S is in
Φn,h(Σ).

Minimum Common String Partition Problem 305

Proof. Let S be a string of length n. Derive all substrings of length h of S:
S[1, h], S[2, h + 1], · · · , S[n − h + 1, n]. Sort them by the alphabetic order, and
check if any two of them are the same. Two substrings are equal if and only if S
a Φn,h(Σ). We just use the standard radix sorting which needs O(nh) time. �

LocalMatch(i, j)
Input: i is a position in S and j is a position in S′.
Steps:

(1) Let p = i;
(2) Let q = j;
(3) Repeat
(4) if S[p, p + h − 1] = S′[q, q + h − 1]

then let p = p + h and q = q + h;
(5) Until S[p, p + h − 1] �= S′[q, q + h − 1];
(6) Return (p − h, q − h);

End of LocalMatch

We have a module that gives a rough common partition between two strings.
The boundaries among those blocks will be determined by another module
Boundary(.).

RoughBoundaries(S, S′)
Input: two strings S and S′.
Steps:

(1) Derive s1 = S[1, h], · · · , sr = S[r, r+h−1] fromS withn = r+h−1;
(2) Derive s′1 = S′[1, h], · · · , s′r = S′[r, r + h − 1] from S′ with n =

r + h− 1;
(3) Sort s1, · · · , sr, s

′
1, · · · , s′r

Find the string s′j = S′[x, y] with s1 = s′j via the sorted list;
(4) Let start[1] = 1; (the starting point of the first block in S)
(5) Let i = 1;
(6) Let z = 1;
(7) Let w = x;
(8) Repeat
(9) Let (u, v) = LocalMatch(z, w);

(10) Let end[i] = u; (the rough ending point of block i in S)
(11) Let end′[i] = v; (the rough ending point of block in S′ match-

ing i-th block)
(12) Let start[i + 1] = end[i] + h; (the rough starting point of

block i + 1 in S)
(13) Let i = i + 1;
(14) Let z = u + h;
(15) Find the string s′j = S′[x, y] with s′j = sz = S[z, z + h − 1]

from the sorted list;

306 B. Fu et al.

(16) Let w = x;
(17) Until a (k, h) rough common partition is reached between S and

S′ for some integer k;
return the rough common partition .

End of RoughBoundaries

Lemma 4. Assume that S and S′ are in Σn − Ψn,h. The algorithm
RoughBoundaries(S, S′) gives a (k, h)-rough common partition in O(nh2) time
if k is the least number of blocks for the minimum common string partition
problem.

Proof. Assume that the optimal solution has the partition S = So
1 · · ·So

k and
S′ = S

′o
1 · · ·S′o

k . We assume that Sj = S′
ij

for j = 1, · · · , k. Let So
i = S[ai, bi]

and S
′o
i = S[a′i, b

′
i] for i = 1, · · · , k.

We will show that the rough common partition derived by the algorithm is
close to the boundaries in the optimal solution. We prove the following claim by
induction.

Claim. For j ≤ k, bj − h < end[j] < bj + h and b′ij
− h < end′[ij] < b′ij

+ h.

For j = 1, We start from the S[1, h], which is equal to So
1 [1, h], and can match

S′
i1

[1, h]. By calling LocalMatch(.), it returns (p, q) for two positions in S and S′,
respectively. We have that p is at least bj − h+1. Otherwise, p can be increased
in the LocalMatch(.). On the other hand, we also have p < a2+h−1. Otherwise,
we have a substring Sa of length h in S2 matching another substring S′

a of length
h in S′. Thus, Sa must be in S′

i2 (otherwise, S′ contains two Sas at two different
locations, which contradicts that S′ is in Σn − Ψn,h). Thus, the S1 and S2 can
be merged into a single block, and bring a common partition with k − 1 blocks.
This contradicts that k is the least number of blocks for the common partition.
Thus, p ∈ (b1 − h, b1 + h), and q ∈ (b′i1 − h, b′i1 + h). Therefore, end[1] is in
(b1 − h, b1 + h), and end′[i1] is in (b′i1 − h, b′i1 + h). Thus, we have start[2] is in
[a2, a2 + 2h) since a2 = b1 + 1.

Assume that bj − h ≤ end[j] ≤ bj and start[j + 1] is in [aj+1, aj+1 + 2h). By
calling LocalMatch(.), it returns (p, q) for two positions in S and S′, respectively.
By a similar argument as the case at j = 1, we also have end[j + 1] is in
(bj+1 − h, bj+1 + h) and end′[ij+1] is in (b′ij+1

− h, b′ij+1
+ h). If j + 1 < k, we

have start[j + 2] is in [aj+2, aj+2 + 2h) since aj+2 = bj+1 + 1. �

After determining the rough common partition , we need one more module to
determine the boundaries.

Definition 7. Assume that strings S and S′ have minimum common partition
S = S1S2 . . . Sk, and S′ = S′

1S
′
2 . . . S′

k. Each Sj in S matches S′
ij

in S′. For each
block Sj, let L(j) be the left boundary point of Si in S, and R(j) be the right
boundary point for Sj in S. L′(j) and R′(j) are defined similarly for S′.

Minimum Common String Partition Problem 307

– For each boundary point p in one of the blocks in S and S′, define A(p)
recursively:

• p ∈ A(p).
• If L(j) ∈ A(p), then L′(ij) ∈ A(p);
• If L′(ij) ∈ A(p), then L(j) ∈ A(p);
• If R(j) ∈ A(p), then R′(ij) ∈ A(p);
• If R′(ij) ∈ A(p), then R(j) ∈ A(p);
• If L(j) ∈ A(p) and j > 1, then R(j − 1) ∈ A(p);
• If R(j) ∈ A(p) and j < k, then L(j + 1) ∈ A(p);
• If L′(j) ∈ A(p) and j > 1, then R′(j − 1) ∈ A(p); and
• If R′(j) ∈ A(p) and j < k, then L′(j + 1) ∈ A(p).

– For a position i, and a boundary point p in S or S′, let A(p)[i] is to assign
i to p, and derive the consequent positions for the points in A(p).

– For a position i, and a boundary point p in S or S′, let A(p)[i] is m-consistent
if the following conditions hold:

• For each left boundary q ∈ A(p) in some block in S, S[q, q + m − 1] =
S′[q′, q′ + m − 1], where q′ is corresponding left boundary for a block in
S′;

• For each left boundary q′ ∈ A(p) in some block in S′, S[q, q + m − 1] =
S′[q′, q′ + m − 1], where q is corresponding left boundary for a block in
S;

• For each right boundary q ∈ A(p) in some block in S, S[q − m + 1, q] =
S′[q′ −m+1, q′], where q′ is corresponding right boundary for a block in
S′; and

• For each right boundary q′ ∈ A(p) in some block in S′, S[q − m + 1, q] =
S′[q′ −m+ 1, q′], where q is corresponding right boundary for a block in S.

Boundary(k, h,RB)
Input: RB is a (k, h)-rough common partition for S = S1, · · · , Sk and S′ =

S′
1, · · · , S′

k with Sj = S′
ij

for j = 1, · · · , k. Let start[j] (end[j]) be the rough left
(right) boundary point of Sj in S. Let start′[j] (end′[j]) be the rough left (right)
boundary point of S′

j in S′.
Steps:

Select A(R(j1)), · · · , A(R(jt)) that are disjoint each other and
∪t

r=1A(R(jr)) includes all right boundaries of those k blocks S1, · · · , Sk;
For r = 1 to t

Find j in (end[jr] − h, end[jr] + h) such that A(R(jr))[j] is 2h-
consistent;

If j is found
then fix the boundary points of A(R(i)) according to the values in

A(R(i))[j]
Else return “No solution”;

Return the common partition that are determined by the right bound-
aries;

End of Boundary

308 B. Fu et al.

Lemma 5. There is an O(kh) time algorithm such that given a (k, h)-rough
common partition for S and S′ in Σn − Ψn,h(Σ), it gives a boundary deter-
mination for the (k, h)-rough common partition if the boundary determination
exists.

Proof. Assume that string S has rough blocks S1, S2, . . . , Sk, and S′ has rough
blocks S′

1, S
′
2, . . . , S

′
k. Each Sj corresponds to S′

ij
in S′. Assume that Si =

S[ai, bi] and S′
i = S′[a′i, b

′
i] for i = 1, 2, · · · , k. According to the Boundary(.),

A(R(j1)), · · · , A(R(jt)) are disjoint each other and ∪t
r=1A(R(jr)) includes all

right boundaries of those k blocks S1, · · · , Sk. This can be found in O(k) time
given the rough common partition which contains the correspondence between
the blocks in S and those in S′.

A(R(i1))[bi1] is a feasible to solution for determining the boundaries in
A(R(i1)). It is also possible that we another j �= bi1 with A(Rj1)[j] to be 2h-
consistent. If this happens, we can still extend the partial determination of the
boundaries to a determination of all boundaries. Since we have a (k, h)-rough
common partition, for each i, we have end[i] ∈ (bi − h, bi + h). Thus the right
boundary bi is in the range (end[i] − h, end[i] + h). After determining R(i1),
all of the boundary points in A(R(i1)) will be fixed. When the boundary point
R(i1) is shifted at most h from its original position b1, each boundary point
in A(R(i1)) is shifted at most h from its original position. The condition that
A(R(ir))[j] is 2h-consistent in Boundary(.) makes it possible to be extended into
the boundaries for k-common partition. After the position of boundary points
in A(R(i1)) are fixed, we can keep this process until all boundary points in
A(R(i1)), · · · , A(R(it)) are determined. �
Combining the existing modules, we have the following full algorithm for the
partition problem.

Algorithm
Partition(S, S′)
Input: two strings S and S′.
Steps:

(1) Check if S and S′ are Φm,h(Σ) string;
(2) If one of them is in Φm,h(Σ)

then return “No solution”;
(3) (k,m,RB)=RoughBoundaries(S, S′);
(4) return Boundary(k,m,RB);

End of Algorithm

Now we give the proof of Theorem 2.

Proof (for Theorem 2). By Lemma 3, it takes O(nh) time to check if a string is in
Φn,h(Σ). By Lemma 4 a rough common partition can be derived in O(nh2) time.
Each position in S is in a local match of length at least d0 logn. By Lemma 5,
the boundaries can be fixed in O(kh) = O(nh) time. Therefore, it takes O(nh2)
time for the entire algorithm. �

Minimum Common String Partition Problem 309

Corollary 1. Let y be an arbitrary positive constant. Assume that the size of
alphabet is t = |Σ| ≥ 2. Then there is an O(n(log n)2

log t) time algorithm such that
the input strings are in Σn−Ψn,h and each substring in the partition is of length
at least d0 log n

log t , it gives a least number k for a common partition solution, where

d0 = 3c0, where c0 is a constant with h = c0 logn that makes |Ψn,h|
|Σn| ≤ 1

2y .

Proof. It follows from Theorem 2 and Lemma 1. �

Corollary 2. Let y be an arbitrary positive constant. Assume that the size of
alphabet is t = |Σ| ≥ 2. Then there is an O(n(log n)2

log t) time algorithm such that
one of the input strings in Σn − Ψn,h/4 and each substring in the partition is of
length at least d0 log n

log t , it gives a least number common partition solution, where

d0 = 3c0, where c0 is a constant with h = c0 logn that makes |Ψn,h|
|Σn| ≤ 1

2y .

Proof. If one of the input strings is in Σn − Ψn,h/4, then the other string is also
in Σn − Ψn,h. Thus, both strings are in Σn − Ψn,h. It follows from Theorem 2
and Lemma 1. �

4 Algorithms for the Lower Bound of MCSP

We develop two algorithms that give lower bounds on the number of blocks in
the minimum common partition solution. One algorithm is based on a greedy
approach and the other one is based on the maximum flow over graph. The two
algorithms will be presented in the journal version of this paper.

5 Concluding Remarks

In this paper, we present two different algorithms which show the trade off be-
tween the computational time and the generality. The polynomial time algorithm
can handle most of the cases, but with a requirement of block length. The first
algorithm can handle the general case, but takes an exponential time. An inter-
esting problem is to find a fixed parameter tractable (FPT) algorithm for the
minimum common string partition problem that runs in time f(k)nO(1), where
k is the number of blocks in the partition, and n in the length of two strings,
which are of the same length.

Acknowledgments. Bin Fu is supported in part by National Science Founda-
tion Early Career Award 0845376. Binhai Zhu is partially supported by NSF of
China under grant 60928006.

310 B. Fu et al.

References

1. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing
the assignment of orthologous genes via genome rearrangement. In: Proc. of the
3rd Asia-Pacific Bioinformatics Conf (APBC 2005), pp. 363–378 (2005)

2. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum com-
mon string partition problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 84–95. Springer,
Heidelberg (2004)

3. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. In: Proc. of the 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), pp. 667–676 (2002)

4. Damaschke, P.: Minimum common string partition parameterized. In: Crandall,
K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87–98.
Springer, Heidelberg (2008)

5. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman, New York (1979)
8. Goldstein, I., Lewenstein, M.: Quick greedy computation for minimum common

string partitions. In: Proc. of the 22nd Annual. Symposium on Combinatorial Pat-
tern Matching (CPM 2011) (to appear 2011)

9. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem:
Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004.
LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004)

10. Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited.
J. of Combinatorial Optimization (2010), doi:10.1007/s10878-010-9370-2

11. Kaplan, H., Shafrir, N.: The greedy algorithm for edit distance with moves. Inf.
Process. Lett. 97(1), 23–27 (2006)

12. Kolman, P., Walen, T.: Reversal distance for strings with duplicates: Linear time
approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA
2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)

13. Kolman, P.: Approximating reversal distance for strings with bounded number
of duplicates. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 580–590. Springer, Heidelberg (2005)

14. Kolman, P., Walen, T.: Approximating reversal distance for strings with bounded
number of duplicates. Discrete Applied Mathematics 155(3), 327–336 (2007)

15. Shapira, D., Storer, J.: Edit distance with move operations. In: Apostolico, A.,
Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 85–98. Springer, Heidelberg
(2002)

Complexity of the Stamp Folding Problem

Takuya Umesato1, Toshiki Saitoh2, Ryuhei Uehara1, and Hiro Ito3

1 School of Information Science, Japan Advanced Institute of Science and Technology,
Ishikawa 923-1292, Japan

����������	
���	������
������
2 ERATO, MINATO Discrete Structure Manipulation System Project,

Japan Science and Technology Agency, Hokkaido 060-0814, Japan
��
�����	�����
�������������

3 Department of Communications and Computer Engineering, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan

�����������
�������������

Abstract. For a given mountain-valley pattern of equidistant creases on a long
paper strip, there are many folded states consistent with the pattern. Among these
folded states, we like to fold a paper so that the number of the paper layers be-
tween each pair of hinged paper segments, which is called the crease width at
the crease point, is minimized. This problem is called the stamp folding problem
and there are two variants of this problem; minimization of the maximum crease
width, and minimization of the total crease width. This optimization problem is
recently introduced and investigated from the viewpoint of the counting prob-
lem. However, its computational complexity is not known. In this paper, we first
show that the minimization problem of the maximum crease width is strongly NP-
complete. Hence we cannot solve the problem in polynomial time unless P�NP.
We next propose an algorithm that solves the minimization problem. The algo-
rithm itself is a straightforward one, but its analysis is not trivial. We show that
this algorithm runs in O

�
n2

�
n�k

k

��
time where n is the number of creases and k is

the total crease width. That is, the algorithm runs in O(nk�2) time for a constant
k. Hence we can solve the problem eÆciently for a small constant k.

Keywords: linkage, NP-complete, optimization problem, pleat folding, rigid
origami.

1 Introduction

Origamists around the world struggle with the problem for folding an origami model in
the best way. Even if you have a good origami model with its crease pattern, this is not
the end. That is, they face several problems to search for clever, more accurate, or faster
folding sequences and techniques to fold the model. Recently, computer science gives
considerable contribution to these problems (see [2]). However, there are still many
unsolved problems in this area from the viewpoint of theoretical computer science. We
focus here on a simple kind of one-dimensional creasing, where the piece of paper is
a long rectangular strip, which can be abstracted into a line segment, and the creases
uniformly subdivide the strip. For a given mountain-valley pattern, we aim at folding
the long strip into a unit length consistent with the pattern.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 311–321, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

312 T. Umesato et al.

Fig. 1. A simple pleat folding and a curved crease structure folded by Martin Demaine

A mountain-valley pattern is then simply a binary string over the alphabet �M� V�
(M for mountain, V for valley), which we call a mountain-valley string. Of particu-
lar interest in origami is the pleat, which alternates MVMVMV � � � ; see Fig. 1. The
pleat folding is unique in the sense that the folded state is unique. That is, there is
only one unique folded state consistent with the string, and only the pleat folding has
this property (see [10,9]). In general, this is not the case. For example, for a string
MMVMMVMVVVV , surprisingly, there are 100 distinct folded states consistent with
this string. Among them, what is the best folded state? From the practical point of view,
we like to decrease the number of paper layers between a pair of paper segments hinged
at a crease. If we have many paper layers between a hinged pair, it is diÆcult to fold
with accuracy, and if we have too many, we cannot fold any more. This is a typical
problem we meet when we fold recent complex origami models.

For a folded state, we define the crease width at a crease by the number of the paper
layers between the paper hinged at the crease. For example, if the folded state is the
pleat, at each crease, the crease width is 0 since we have no paper layers between the
paper hinged at the crease. Briefly, we can state the following problem called stamp
folding problem:

Input: A paper of length n � 1 with a mountain-valley string s in �M� V�n.
Output: A folded state consistent with s of a small crease width.

From the viewpoint of the optimization, we have two variants of the stamp folding
problem:

Problem MINMAX: To minimize the maximum crease width at a crease in the folded
state.

Problem MINTOTAL: To minimize the total crease width for all creases in the folded
state.

We note that it is possible to consider minimization problem for the average crease
width, but this is equivalent to MINTOTAL by dividing n. Interestingly, these two prob-
lems have di�erent solutions in general. For example, among the 100 folded states

Complexity of the Stamp Folding Problem 313

for the string MMVMMVMVVVV , the minimum maximum crease width is 3, which
is achieved by the folded state [4�3�2�5�6�0�1�7�9�11�10�8] (the details of this notation
is described later), and the minimum total crease width is 11 by the other state
[4�3�2�0�1�5�6�7�9�11�10�8] (see Fig. 2). Moreover, these solutions are unique for this
string. (All folded states are checked by an exhaustive search program developed by
the third author.)

[4|3|2|5|6|0|1|7|9|11|10|8] [4|3|2|0|1|5|6|7|9|11|10|8]

M M V M M V M V VV V

Max=3
Total=0+3+0+0+2+0+2+3+2+1+0=13

Max=4
Total=0+1+0+0+4+0+0+3+2+1+0=11

Fig. 2. Two of 100 folded states for the string MMV MMV MVVVV . The left folded state achieves
the minimum maximum crease width 3, but it has the total crease width 13. The right folded state
achieves the minimum total crease width 11, but it has the maximum crease width 4.

The stamp folding problem is introduced by Uehara [10,9] (in the papers, the notion
of the crease width was called “stretch”). Uehara introduced the stamp folding problem,
showed that it is well-defined even in a simple folding model, and investigated as a
counting problem. (The simple folding model is one of basic origami models introduced
by Arkin et al. [1].) He proved that the number of the folded states consistent with a
random mountain-valley string of length n is exponential on average, but he left its
computational complexity open.

In this paper, we first show that the problem MINMAX is NP-complete in the strong
sense. This solves the open problem in [10,9], and we have no hope to solve the problem
eÆciently unless P�NP. Hence we aim at solving the problem MINTOTAL for a bounded
k. We then propose a straightforward algorithm; that is, the algorithm tries all possible
folded states consistent with a given string s of length n. It is not diÆcult to see that
the algorithm runs in O(n2M(n)) time where M(n) is the number of possible folded
states. In [10,9], Uehara showed that M(n) � �(1�53n) on average. We show that this
algorithm runs in O

�
n2
�
n�k

k

��
time. Hence it runs in O(nk�2) time for a small constant k,

and we can solve the problem MINTOTAL in polynomial time.

2 Preliminaries

A paper strip is a one-dimensional line segment with creases at every integer position.
The paper strip is rigid except the creases; that is, we are allowed to fold only at these

314 T. Umesato et al.

1
3
2
0

1

3
2

0 1
3

2
0

(a) (b) (c)

Fig. 3. Three foldings for the mountain-valley string VVV

creases on integer positions. We are given a paper strip of length n�1 with a mountain-
valley string s in �M�V�n. At first, the paper strip of length n� 1 is placed at the interval
[0��n � 1]. (We will refer to this state as an initial state.) We aim at obtaining a folded
state of unit length such that the direction at each crease follows the mountain-valley
string s. That is, the ith letter of s indicates the final folded state at the crease i on the
integer point i in [1��n]. We ignore the thickness of paper, and hence for any mountain-
valley string, there exists at least one folded state of unit length.

We call each paper segment between i and i � 1 at the initial state the ith segment.
Then each (final) folded state of unit length can be represented by an ordering of the
segments; for example, a pleat folding MVMV is described by [0�1�2�3�4] or [4�3�2�1�0],
and a mountain-valley string VVV produces [1�3�2�0], [1�0�3�2], [3�1�0�2], or their re-
verses (Fig. 3). We distinguish between the left and right ends of the paper strip, but we
sometimes identify one folded state and its reverse since they are essentially the same.
In fact, the side of a folded state is sometimes changed when we fold all paper layers at
a crease from right to left or from left to right.

For a mountain-valley string s, we call a folded state legal for s if it follows the
string. That is, for example, the mountain-valley string VVV has three di�erent legal
folded states [1�3�2�0], [1�0�3�2] and [3�1�0�2]. A mountain-valley string MVMVMV � � �

is called a pleat. It is known that the legal folded state is unique (up to reversal of the
paper) if and only if s is a pleat [10,9].

In a folded state, a crease or a segment is visible if it is not covered by the other paper.
We note that in a folded state of unit length, there exist exactly two visible segments (if
n � 1), while there can be many visible creases on both sides. For example, the folded
state Fig. 3(a) has two visible creases 1 and 2, while the folded state Fig. 3(b) has three
visible creases 1, 2, and 3.

3 NP-Completeness

In this section, we show NP-completeness of the problem MINMAX. Thus, in this section,
the crease width of a folded state is defined by the maximum crease width at each crease.
We remind that the pleat folding is unique in the sense that the folded state is unique
[10,9], and it has the crease width 0. We give other characteristic and useful patterns at
first:

Observation 1. Let s be a mountain-valley string Vn (or Mn) for a positive integer n.
Then the number of legal folded states for s is n, and the crease width of each state is
n � 1 (see Fig. 3).

Complexity of the Stamp Folding Problem 315

0

1

2

3

4
5

6

7

8

9

10

0

1

2

3

4
5

6

7

8

9
10

(a) Spiral folding (b) Non-spiral folding

Fig. 4. Spiral folding and non-spiral folding

Observation 2. Let s be a mountain-valley string MnVn for a positive integer n. Then
the number of legal folded states for s is n2. Among them, if the 0th segment and 2nth
segment are visible, the legal folded state is [0�2n�1�2�2n�3� � � � �2i�2(n� i)�1� � � � �1�2n]
or its reversal.

Two legal folded states of M5V5 can be found in Fig. 4. In Fig. 4(a), the 0th and 10th
segments are visible as stated in Observation 2. We call this folded state spiral folding
of length 2n. In the other legal folded states like Fig. 4(b), either the 0th and the 1st
segments are visible, or the (2n � 1)st and the 2nth segments are visible.

Now we are ready to show the complexity of the following problem:

MINMAX

INSTANCE: A mountain-valley string s � �M�V�n and a natural number k.
QUESTION: Is there a legal folded state for s of crease width at most k?

Theorem 3. MINMAX is NP-complete.

Proof. It is easy to see that the problem is in NP. We in the following show the hardness
by reducing from 3-PARTITION, defined as follows.

3-PARTITION (cf. [5])
INSTANCE: A finite set A � �a1� a2� � � � � a3m� of 3m elements in �� and a bound B � ��

such that each a j satisfies B�4 � a j � B�2 and
�3m

j�1 a j � mB.
QUESTION: Can A be partitioned into m disjoint sets A(1)� A(2)� � � � � A(m) such that�

aj�A(i) a j � B for 1 � i � m?

It is well-known that 3-PARTITION is strongly NP-complete, meaning that it is NP-
hard even if the input is written in unary notation [5]. To begin with, we describe a
construction of an instance s and k of MINMAX for a given instance a1� � � � � a3m and B of
3-PARTITION.

Construction of a mountain-valley string s and an integer k. For each individual ele-
ment a j � A, we first construct the following string x j.

x j �

�������
Vajm3

Majm3
if j is odd,

Majm3
Vajm3

otherwise.
(1)

316 T. Umesato et al.

Let pi be the string (MV)i, and p�

i be the string (VM)i. We next define the following
substring s j of s for each j � 1� 2� � � � � 3m.

s j �

�������
p�

mx j p�

m if j is odd,

pmx j pm otherwise.
(2)

We also define two strings t1 � M2Bm3
�16m2

, t2 � VBm3
�8m2

�1MBm3
�8m2

and another
string f � pm�1. We call t1 and t2 terminators. Then, we concatenate all of them and
obtain the mountain-valley string s � t1 f t2 s1s2 � � � s3m. We also let k � 2Bm3

� 16m2.
Clearly, this instance can be constructed in polynomial time from the 3-PARTITION
instance.

Roughly speaking, the ith valley of f corresponds to the set A(i) and it will catch the
paper layers in three x j’s that make crease width (at most) k in total. We call the ith
valley of f the ith folder.

We here state two lemmas that completes the proof of Theorem 3.

Lemma 1. If the instance �a1� a2� � � � � a3m� and B of 3-PARTITION has a solution, the
paper strip with the mountain-valley string s has a legal folded state of crease width at
most k.

Proof. Suppose a partition A(1)� � � � � A(m) of A is a solution of 3-PARTITION. Then we
have A(i) 	 A,

���A(i)
��� � 3,

�
aj�A(i) a j � B for each i in �1� � � � �m�, and A �

	̇m
i�1A(i). From

the partition, we construct a legal folded state of the paper strip of crease width k.
We first consider the legal folding of the substring s� � t1 f t2. By Observation 1, the

number of legal folded states of t1 is k� 1. Among them, only one folded state can have
an “edge” of t1 outside that is connected to the part of f . If we fold the edge of t1 inside,
the all paper layers for f t2 are wrapped by the paper layers for t1 and the maximum
crease width cannot be bounded above by k. Therefore, to achieve the maximum crease
width at most k, we have to fold t1 as [k�k� 2� � � � �k� 2i� � � � �2�0�1�3� � � � �2i� 1� � � � �k� 1].
The legal folded state of the pleat f is unique, and hence the pleat f is folded into
[k � 1�k � 2� � � � �k �m � 2]. Next, we turn to the terminator t2. The legal folded state for
t2 up to crease width k can be only achieved by the spiral folding [k � m � 3�2k � m �

3�k � m � 5�2k � m � 1� � � � �2k �m � 2�k �m � 2], and it is put into the (m � 1)st folder.
So far, we fold the substring s� as follows (see Fig. 5).

[k�k � 2� � � � �k � 2i� � � � �2�0�1�3� � � � �2i � 1� � � � �k � 1
�k � 1�k � 2� � � � �k � m

�k � m � 1�2k � m � 3�k � m � 3�2k � m � 1� � � � �2k � m � 2�k � m � 2].

For each A(i)
� �a j� a j� � a j���, we fold x j, x j� , and x j�� and put them together into the

ith folder, intuitively. First suppose j is odd. We fold the paper of the substring x j into
the ith folder. This folding consists of three steps (Fig. 6). First, we fold the paper of the
first substring p�

m in s j as follows. For each mountain M in p�

m, we put it into each folder
from the mth folder in descending order. When it reaches the ith folder, the remaining
segments of the p�

m are put into the ith folder.
Then the substring x j is folded into spiral in the ith folder. More precisely, we fold

the paper of x j in spiral folding to the folded state [t�t � 2a jm3 � 1�t � 2�t � 2a jm3 �

Complexity of the Stamp Folding Problem 317

crease
width=k

crease
width=k

to the folding of s1

m valleys

Fig. 5. Folding of a pleat f between two terminators t1 and t2

to t2to t1

ith folder

to sj-1to sj+1

xj
p’m p’m

Fig. 6. Folding of s j � p�

m xj p�

m

3� � � � �t � 2l�t � 2(a jm3 � l) � 1� � � � �t � 1�t � 2a jm3], where a paper of x j corresponds to
an interval [t��t � 2a jm3

� 1]. The folded state of x j is put into the ith folder.
For each mountain M of the second p�

m, we put it in the folder from the ith folder in
descending order. When it reaches to the 1st folder, all remaining pleats are put into the
1st folder.

For even j, the substring s j can be folded in the reverse way.
We show that the maximum crease width of this legal folded state is at most k. The

maximum crease width in the t1 is k between the segments k and k � 1. The maximum
crease width in the t2 is also k between the segments k � m � 3 and k � m � 2. At each
ith folder, we have put the paper of strings x j, x j� , and x j�� , and some segments of pm or
p�

m for each h � �1� � � � � 3m�. Therefore, the maximum crease width at the ith folder is at
most 2(a jm3

� a j�m3
� a j��m3) � 2 � 2 � m � 3m � 2Bm3

� 12m2 � k.
� (of Lemma 1)

Lemma 2. If the paper strip with the mountain-valley string s has a legal folded state
of crease width at most k, the instance �a1� a2� � � � � a3m� and B of 3-PARTITION has a
solution.

318 T. Umesato et al.

Proof. We can observe that the folded state has to satisfy the following conditions to
achieve the crease width (at most) k: (1) s� � t1 f t2 has the unique folding state in
Fig. 5, (2) x j should be put into some folder, and (3) each folder binds paper layers
corresponding to exactly three x js.

The condition (1) is easy to see by Observations 1 and 2. (We then have the maximum
crease width exactly k.) Then the condition (2) follows (1); otherwise, some paper layers
of s j has to stride over one of terminators, and then we have the crease width greater
than k at the crease. Now we turn to the condition (3). To derive a contradiction, we
suppose some folder contains paper layers corresponding to at most 2 x js. Then, by the
pigeon hole principle with the condition (2), we have some other folder that contains
paper layers corresponding to at least 4 x js, say x j1 � x j2 � x j3 � x j4 of crease width at most k
at the folder. Then, we have a j1 �a j2 �a j3 �a j4 � B. However, by the assumption of the
instance of 3-PARTITION, a j1 � a j2 � a j3 � a j4 � 4(B�4) � B, which is a contradiction.
Therefore we have the condition (3).

By the conditions, we can certainly reconstruct a solution of the instance of 3-
PARTITION from the legal folded state for the string s with the maximum crease width
k.
� (of Lemma 2)

Now we turn to the proof of Theorem 3. By Lemmas 1 and 2, the resultant paper strip
has a legal folded state of maximum crease width k if and only if the instance of 3-
PARTITION has a solution. Hence we have the theorem.
� (of Theorem 3)

4 Tractability for Bounded k

In this section, we show that the problem MINTOTAL is tractable for a small constant k.
That is, in this section, the crease width of a folded state is defined by the total crease
width of the crease width at each crease. We are given a mountain-valley string s and a
upper bound k of the total crease width, and we design an algorithm that determines if
there exists a legal folded state for s of total crease width at most k. The algorithm is a
simple and straightforward one that tries all possible folding ways (see Algorithm 1).

Input : s � �M� v�n with n � 1, an integer k
Output: All possible folded states P consistent with s of crease width at most k

P is initialized by the 0th segment laid on the interval [0� 1];1

����(P� 1� k);2

�� ���� ��	 �
�
	��	�� �� ��	 ����	�� P ���� ���
����� ��	
	

����� � k�

Algorithm 1. Enumeration Algorithm

The algorithm indeed outputs all possible legal folded states for s. That is, if a given
input has a solution, we will have at least one feasible folded state. The procedure
����(P� i� k) is crucial (see Procedure ����(P� i� k)).

Complexity of the Stamp Folding Problem 319

if i � n then output P else1

pick up the ith segment;2

foreach layer of the current P do3

if ith segment can be inserted to the layer then4

update P by inserting the ith segment into the layer on the interval [0� 1];5

let k� be the crease width at the crease i;6

let j be the number of creases whose crease widths are increased by the7

insertion of the ith segment;
�� �	
����� ��	 k � (k�

� j) � 0
���	 ���
 �
 ��

���	

��	��

����(P� i � 1� k � (k�
� j));8

Procedure �����P� i� k�

0

1

2

3

4
7

8
9

10
11

12

13

15

[0|3|6|5|4|7|8|9|10|11|16|15|14|13|12|2|1]

[0|3|17|6|5|4|7|8|9|10|11|16|15|14|13|12|2|1]

[0|3|6|5|4|7|17|8|9|10|11|16|15|14|13|12|2|1]

[0|3|6|5|4|7|8|9|17|10|11|16|15|14|13|12|2|1]

[0|3|6|5|4|7|8|9|10|11|17|16|15|14|13|12|2|1]

Fig. 7. Possible choices in ����(P� 17� k)

Example 1. The current folded state is [0�3�6�5�4�7�8�9�10�11�16�15�14�13�12�2�1] in
Fig. 7. Dotted lines indicate all possible layers in ����(P� 17� k) (for some large k).
In any case, the crease widths at the crease 1 and 3 are increased. On the other hand,
the crease width at one of the 4, 8, 10 and 12 is increased according to the chosen layer.
The crease width at 17 will be 8, 4, 2, or 0, respectively.

The correctness of the algorithm is clear. Let M(s� k) be the number of feasible folded
states consistent to s of total crease width exactly k. Then the running time of the al-
gorithm is O(n2 �k

i�0 M(s� i)), where n � �s�. (Note that we can improve this bound to
O(n

�k
i�0 M(s� i)) with sophisticated data structure. But we omit the details in this paper

since it is not essential from the theoretical point of view.) Thus we estimate M(s� k) as
follows:

Lemma 3. Let s be a mountain-valley string of length n, and k be an integer. Then
M(s� k) �

�
n�k�1

k

�
.

Proof. Let P be a legal folded state for s of crease width exactly k. Let ci be the crease
width at ith crease with 1 � i � n. Then, an upper bound of M(s� k) is all combinations
of cis with

�n
i�1 ci � k and ci � 0. This is one of the classic ball-bin problems of placing

320 T. Umesato et al.

k balls into n bins. This observation gives us an upper bound
�
n�k�1

k

�
of M(s� k) (see,

e.g., [3, Chapter II. 5]).
�

By Lemma 3, we have the following theorem:

Theorem 4. Algorithm 1 solves MINTOTAL in O
�
n2
�

n�k
k

��
time. That is, it solves MINTOTAL

in O(n2�k) when k is a positive constant.

Proof. M(s� i) is an increasing function for i. Here using the combinatorial identity (see,
e.g., [8, Eq. (7) in page 217])

n
0

�
�

n � 1

1

�
� � � � �

n � r

r

�
�

n � r � 1

r

�

we have
�k

i�0 M(s� i) �
�k

i�0

�
n�i�1

i

�
�

�
n�k

k

�
. Since

�
n
k

�
� (en�k)k (see, e.g., [6]), the

theorem follows.
�

5 Concluding Remarks

In this paper, we show that the minimization problem of the maximum crease width is
strongly NP-complete. We furthermore show that a brute force algorithm that solves the
minimization problem of the total crease width in O

�
n2
�
n�k

k

��
time, where k is the total

crease width. That is, we can solve the minimization problem of the total crease width
in O(nk�2) time if k is a constant. We left the problem to determine if the minimization
problems are fixed parameter tractable (FPT) or not [4,7]. Especially, is there any algo-
rithm that solves the minimization problem of the total crease width in time O(f (k) � nc)
for some constant c, making it FPT?

Acknowledgement

The authors are grateful to Yoshio Okamoto and Shuji Kijima for their helpful com-
ments. The third author also thanks Martin Demaine, who folded the curved crease
structure in Fig. 1.

References

1. Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell, J.S.B., Sethia, S.,
Skiena, S.S.: When can you fold a map? Comput. Geom.Theory Appl. 29(1), 23–46 (2004)

2. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, Cambridge (2007)

3. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn., vol. 1. John
Wiley & Sons, Inc., Chichester (1968)

4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
5. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory of NP-

Completeness. Freeman, New York (1979)
6. Motwani, R., Raghavan, P.: Randomized Algorithms, Cambridge (1995)

Complexity of the Stamp Folding Problem 321

7. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Oxford (2006)
8. Tucker, A.: Applied Combinatorics, 3rd edn. John Wiley & Sons, Inc., Chichester (1995)
9. Uehara, R.: On Stretch Minimization Problem on Unit Strip Paper. In: 22nd Canadian Con-

ference on Computational Geometry (CCCG), pp. 223–226 (2010)
10. Uehara, R.: Stretch Minimization Problem of a Strip Paper. In 5th International Conference

on Origami in Science, Mathematics and Education (5OSME) (2010)

On the Number of Solutions of the Discretizable

Molecular Distance Geometry Problem

Leo Liberti1, Benôıt Masson2, Jon Lee 3,
Carlile Lavor 4, and Antonio Mucherino5

1 LIX, École Polytechnique, 91128 Palaiseau, France
liberti@lix.polytechnique.fr

2 IRISA, INRIA, Campus de Beaulieu, 35042 Rennes, France
benoit.masson@inria.fr

3 Dept. of Mathematical Sciences, IBM T.J. Watson Research Center, PO Box 218,
Yorktown Heights, NY 10598, USA

jonlee@us.ibm.com
4 Department of Applied Mathematics (IMECC-UNICAMP),

State University of Campinas, 13081-970, Campinas - SP, Brazil
clavor@ime.unicamp.br

5 CERFACS, Toulouse, France
mucherino@cerfacs.fr

Abstract. The Discretizable Molecular Distance Geometry Problem is
a subset of instances of the distance geometry problem that can be
solved by a combinatorial algorithm called “Branch-and-Prune”. It was
observed empirically that the number of solutions of YES instances is al-
ways a power of two. We perform an extensive theoretical analysis of the
number of solutions for these instances and we prove that this number
is a power of two with probability one.

Keywords: distance geometry, symmetry, Branch-and-Prune, power of
two.

1 Introduction

We consider the following problem arising in the analysis of Nuclear Magnetic
Resonance (NMR) data for general molecules.

Molecular Distance Geometry Problem (MDGP).
Given a simple undirected graph G = (V,E) and a function d : E → R,
decide whether there is an embedding x : V → R3 such that

∀{u, v} ∈ E (||xu − xv|| = duv) (1)

The MDGP is a mixed-combinatorial optimization problem; it can be cast as
the global optimization problem min

∑
{u,v}∈E(||xu−xv||2−d2

uv)2 in continuous
variables, which is generally solved using continuous search techniques [1,2]. The
generalization of the MDGP to arbitrary dimensions asks for an embedding

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 322–342, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

benoit.masson@inria.fr

On the Number of Solutions of the DMDGP 323

of G in RK satisfying (1) and is called the Distance Geometry Problem

(DGP). The DGP is strongly NP-hard [3]; it is related to the Euclidean Distance
Matrix Completion Problem (EDMCP) [4] (whose complexity status is currently
unknown), the difference being that in the EDMCP the dimension K of the
embedding space is part of the output rather than part of the input.

Finding a Euclidean embedding of a weighted graph has two main applica-
tions: to molecular conformation [5] and to sensor networks [6,7]. The results of
this paper were inspired by the application to the conformation of proteins: in
particular, chemical analysis and NMR experiments can help identify a subset of
inter-atomic distances [8]. The motivation is that the function of a protein is de-
termined by its 3D structure [9]. Since proteins are a strict subset of molecules, it
makes sense to ask whether there the restriction of the MDGP to proteins might
yield more efficient methods than those developed for the MDGP applied to
general molecules. In 2005 two of the authors of this paper (CL and LL) started
working on a discrete algorithm which exploits two observations: (i) proteins are
organized in a backbone and some side chains, which can be embedded sepa-
rately, once the backbone embedding is known [10]; (ii) the distances between
any atom v of the backbones, seen as as a total order on the set of atoms, to its
three immediate predecessors (i.e., v − 1, v − 2, v − 3) are generally known (and
by applying certain technical devices to the order can be assumed to be precise
[11]). This algorithm, called Branch-and-Prune (BP), is based on the Sphere In-
tersection Property (SIP): the intersection of K spheres in RK generally consists
of either 0 or 2 points. Here the term generally has a definite significance: it
means that the set K-tuples of spheres for which the SIP does not hold has
Lebesgue measure 0 in the set of all possible K-tuples of spheres.

In the following, we identify atoms with the set V of vertices of a given graph
G, whose edge set E includes the pairs of atom for which a distance is known.
The weight of each edge {u, v} ∈ E is the value of the distance duv, and an
order on the vertices (the backbone order in the case of proteins) is given. BP
exploits the SIP by performing a binary search in the space of embeddings: under
the hypothesis that for each vertex of rank > K in the order, the distances to
its K immediate predecessors are known, the BP places a vertex v in both of
the positions guaranteed by the SIP, verifies whether these are compatible with
the distances to all adjacent predecessors of v, and then accordingly recurses
the search to the successor of v. This yields a worst-case exponential behaviour,
occurring when the set of adjacent predecessors of each vertex v is equal to the
set of its K immediate predecessors. In practice, however, the BP outperforms
its continuous search competitors in both efficiency and reliability [12]. One
particularly useful feature of BP is that, because the search is complete, it finds
the set X of all incongruent embeddings for a given graph. In a sequence of
papers (the main ones being [13,12,14,15,16,17,18]) we developed this idea in a
number of directions. In particular, we defined a new optimization problem, the
Discretizable MDGP (DMDGP) [12] as the class of all DGP instances that
satisfy the conditions required by the BP: the existence of a vertex order such

324 L. Liberti et al.

that the K immediate predecessors of each vertex v of rank > K are adjacent
to v in G, and the fact that d satisfies strict simplex inequalities [19,15].

In all our computational tests on DMDGP instances, we observed that the
number of incongruent embeddings is a power of two: this comes to no surprise
in the exponential worst case mentioned above, but there is no apparent reason
why this should be the case when adjacent predecessors also include other ver-
tices than the K immediate predecessors (and, indeed, in Sect. 6 we exhibit a set
of counterexamples to the conjecture that for all YES instances of the DMDGP
∃h ∈ N (|X | = 2h)). Yet, the computational trend remained unexplained. The
contribution of this paper is a proof that the set of YES instances of the DMDGP
such that |X | is a power of two has Lebesgue measure 1 in the set of all YES
instances of the DMDGP. The statement is based on the assumption that we
consider solutions (i.e. graph embeddings) whose components range in the un-
countable set RK . Our result is nontrivial, and accordingly the proof, which
consists of several lemmata, propositions and theorems, is long, technical and
difficult: because of the page limit, all proofs are in the appendix. The result is
nonetheless very important insofar as it explains the behaviour of a practically
useful solution method.

The rest of this paper is organized as follows. We give a formal description of
the DMDGP in arbitrary dimensions (Sect. 2) and of the BP algorithm and some
of its theoretical properties (Sect. 3); we then study some geometrical aspects of
the BP tree (Sect. 4), and prove that the number of solutions of YES instances
of the DMDGP is a power of two with probability one (Sect. 5). We exhibit a
(zero measure) family of counterexamples to the “power of two” conjecture in
Sect. 6.

2 The Formal Definition of the Discretizable Molecular
Distance Geometry Problem

For a set U = {xi ∈ RK | i ≤ K + 1} of points in RK , let D be the symmetric
matrix whose (i, j)-th component is ‖xi − xj‖2 for all i, j ≤ K + 1 and let
D′ be D bordered by a left (0, 1, . . . , 1)
 column and a top (0, 1, . . . , 1) row
(both of size K + 2). Then the Cayley-Menger formula states that the volume

ΔK(U) of the K-simplex on U is given by ΔK(U) =
√

(−1)K+1

2K(K!)2 |D′|. The strict
simplex inequalities are given by ΔK(U) > 0. For K = 3, these reduce to strict
triangle inequalities. We remark that only the distances of the simplex edges are
necessary to compute ΔK(U), rather than the actual points in U ; the needed
information can be encoded as a complete graph KK+1 on K + 1 vertices with
edge weights as the distances.

Let n = |V | and m = |E|. For all v ∈ V , let N(v) = {u ∈ V | {u, v} ∈ E}
be the star of vertices around v (also called the adjacencies of v); for a directed
graphs (V,A), where A ⊆ V ×V , we denote the outgoing star by N+(v) = {u ∈
V | (v, u) ∈ A}. For an order < on V , let γ(v) = {u ∈ V | u < v} be the set of
predecessors of v, and let ρ(v) = |γ(v)| + 1 be the rank of v in <. For V ′ ⊆ V ,

On the Number of Solutions of the DMDGP 325

we denote by G[V ′] the subgraph of G induced by V ′. For a finite set M , let
P(M) be its power set. We call an embedding x of G valid if (1) holds for G.
For a sequence x = (x1, . . . , xn) and a subset U ⊆ {1, . . . , n} we let x[U] be the
subsequence of x indexed by U . If x is an initial subsequence of y, then y is an
extension of x. For each v ∈ V with ρ(v) > K we let Uv be the set of the K
immediate predecessors of v, and remark that Uv ⊆ N(v) ∩ γ(v).

The Generalized DMDGP. Given an undirected graph G = (V,E),
an edge weight function d : E → R+, an integer K > 0, a subset V0 ⊆ V
with |V0| = K, a partial embedding x̄ : V0 → RK valid for G[V0], and a
total order < on V such that:

{v ∈ V | ρ(v) ≤ K} = V0; (2)
∀v ∈ V (ρ(v) > K → |N(v) ∩ γ(v)| ≥ K); (3)

∀v ∈ V � V0 (G[Uv] = KK ∧ ΔK−1(Uv) > 0), (4)

decide whether there is a valid extension x : V → RK of x̄.

Conditions (2-4) allow the search for the Euclidean position of vertex v to only
depend on the K vertices of rank preceding ρ(v), as xv is the intersection of at
least K spheres centered at xu and with radius duv for all u ∈ N(v)∩γ(v). This,
in particular, implies that the predecessors of v are placed before v, so that all
of the distances between all predecessors are known when placing v. Thus, we
can also solve instances for which G[Uv] is not the full K-clique, although they
are not formally in the generalized DMDGP.

We remark that the SIP is independent of Uv, so that we could simply replace
Uv with any subset of N(v)∩γ(v) with cardinality K. This actually yields a larger
instance set called Discretizable Distance Geometry Problem (DDGP),
or DDGPK if K is fixed and not part of the input, discussed in [14]. We shall see,
however, that the assumption that Uv contains the K immediate predecessors of v
will be crucial in the following (this, by the way, also explains why the generalized
DMDGP is not called “DDGP” in analogy with MDGP→DGP). In the rest
of the paper we use the acronym DMDGP to actually mean the generalized
DMDGP, and we use the name DMDGP3 to name the original DMDGP in R3.
Complexity-wise, a polynomial reduction from Subset-Sum to the DMDGP3

[12] shows that the DMDGP is NP-hard.

3 Sphere Intersections and Reflections

The BP algorithm for the DMDGP3, presented in [13], can easily be extended to
the DMDGP. As mentioned above, once the vertices of Uv have been embedded
in RK , the known distances from vertices in Uv to a given v will enforce the
position of v as the intersection of K spheres. Under strict simplex inequalities,
this intersection consists of at most two distinct points. The BP exploits this
fact to recursively generate a binary search tree of height at most n where a

326 L. Liberti et al.

node at level i represents a possible placement in RK of the vertex of G with
rank i in <. Paths of length n correspond to valid embeddings.

Let G be a DMDGP instance. Consider v ∈ V with rank ρ(v) = i > K, let
Gv = G[γ(v) ∪ {v}] and x be a valid embedding of G[γ(v)]. We characterize the
number of extensions of x valid for Gv in the following lemmata (which also hold
for the DDGP). Lemmata 3.1 and 3.2 essentially state that G[{v}∪(N(v)∩γ(v))]
are rigid and, respectively, uniquely rigid graphs.

In the following, we assume that the probability of any point of RK belonging
to any given subset of RK having Lebesgue measure zero is equal to zero. Based
on this assumption, when we state “(∀p ∈ P F (p)) with probability 1” for a
certain well-formed formula F with a free variable ranging over an uncountable
set P , we really mean that there exists a Lebesgue measurable subset Q ⊆ P with
Lebesgue measure 1 in P such that ∀q ∈ Q F (p). For example, the statement of
Lemma 3.1 should be read as follows: the set of DMDGP instances and partial
embeddings x for which the result does not hold has Lebesgue measure 0 in the
set of all DMDGP instances and partial embeddings. We remark that this is
different from the usual genericity notion employed in rigidity theory [20], which
requires distances to be algebraically independent over Z. Since our instances
come from experimental measurements over existing structures, the distances
may not be independent. One consequence is the validity of Lemma 3.2, which
would not hold with the stronger genericity requirement (the intersection of K+1
“generic spheres” in RK is empty).

Lemma 3.1. If |N(v)∩γ(v)| = K then there are at most two distinct extensions
of x that are valid for Gv. If one valid extension exists, then with probability 1
there are exactly two distinct valid extensions.

Lemma 3.2. If |N(v)∩γ(v)| > K then, with probability 1, there is at most one
extension of x.

Lemma 3.3. With the notation of Lemma 3.1, if x̄ is a valid embedding for
G[Uv], then z′′ is a reflection of z′ with respect to the hyperplane through the K
points of x̄.

Reflections with respect to hyperplanes are isometries, and can therefore be
represented by linear operators. If a ∈ RK is the unit normal vector to a hyper-
plane H containing the origin, then the reflection operator R0 w.r.t. H can be
expressed in function of the standard basis by the matrix I − 2aa
, where I is
the K ×K identity matrix [21]. Let H be a hyperplane with equation a
x = a0

(with a0 �= 0) and ai, for some 1 ≤ i ≤ K, be the nonzero coefficient of smallest
index in a. Then, the reflection operator R acting on a point p ∈ RK w.r.t. H
is given by R(p) = R0(p− a0

ai
ei) + a0

ai
ei, where ei ∈ RK is the unit vector with 1

at index i and 0 elsewhere: we first we translate p so that we can reflect it using
R0 w.r.t. the translation of H containing the origin, then we perform the inverse
translation of the reflection.

On the Number of Solutions of the DMDGP 327

3.1 Branch-and-Prune

A formal description of the BP algorithm for the DMDGP is given in Alg. 1.
It builds a binary search tree T = (V ,A), directed from the root to the leaves,
whose nodes are triplets α = (x(α), λ(α), μ(α)). For α ∈ T we denote by p(α)
the unique path from the root node r of T to α; x(α) is an extension of the
embedding x− found on p(α−), where α− is the unique parent node of α. The
symbol λ(α) ∈ {0, 1} distinguishes whether α is a “left” or a “right” subnode of
α−. More precisely, let α be a node at level i in T , v = ρ−1(i), x̄ be a partial
embedding of G[Uv], and a
v x = av0 be the equation of the ((K−1)-dimensional
by (4)) hyperplane through the points of x̄. Assuming u = ρ−1(i − 1), av ∈ RK

is oriented so that av · au ≥ 0; then:

λ(α) =
{

0 if a
v x(α)i ≤ av0

1 if a
v x(α)i > av0.
(5)

Lastly, μ(α) = � if x is a valid extension of x−, in which case the node is said to
be feasible, and μ = � otherwise. This allows us to retrieve the set X of all valid
embeddings of G by simply traversing T backwards from the leaf nodes marked
� up to r.

We remark that Alg. 1 differs from the original BP formulation [13] because it
applies to K dimensions and explicitly stores several details of the binary search
tree.

Lemma 3.4. At termination of Alg. 1, X contains all valid embeddings of G
extending x̄.

We now partition V in pairwise disjoint subsets V1, . . . ,Vn where for all i ≤ n
the set Vi contains all the nodes of V at level i of the tree T .

Proposition 3.5. With probability 1, there is no level i ≤ n having two distinct
feasible nodes β, θ ∈ Vi such that |{α ∈ N+(β) | μ(α) = �}| = 1 and |{α ∈
N+(θ) | μ(α) = �}| = 2.

We remark that Prop. 3.5 also holds for the DDGP provided Uv is chosen in
Alg. 1 as any subset of N(v) ∩ γ(v) satisfying the constraints of Eq. (4).

4 Geometry in BP Trees

The most important result of this section is that, for any valid embedding y ∈ X ,
if the BP tree branches at level i = ρ(v) on the path to y and both branches
continue to the last level, then the embedding obtained by reflecting all the
points of y past the (i − 1)-th vertex through the hyperplane defined by y[Uv]
is also valid with probability 1. We remark that the results in this section only
apply to the DMDGP (not to the DDGP, as shown in the counterexample of
Fig. 3).

We need to emphasize those BP branchings which carry on to feasible leaf
nodes along both branches. For y ∈ X and a vertex v ∈ V � V0 we denote
Υ (y, v) the following property:

328 L. Liberti et al.

Algorithm 1. The Branch and Prune algorithm
Require: Partial embedding x̄ of first K vertices of G
Ensure: Set X of valid embeddings of G
1: Let α = (x̄1, 0, �) and α′ = (x̄1, 1, �)
2: Initialize V = {α, α′} and A = {(r, α), (r, α′)}
3: for 1 < i ≤ K do
4: Let α = (x̄i, 0, �), α′ = (x̄i, 1, �), β = (x̄i−1, 0, �)
5: Let V ← V ∪ {α, α′} and A ← A ∪ {(β, α), (β, α′)}
6: end for
7: BranchAndPrune(K + 1, (x̄K , 0, �))
8: Let X = {x(θ) | θ ∈ V ∧ |N+(θ)| = 0 ∧ μ(θ) = �}
9: stop

10:
11: function BranchAndPrune(i, β):
12: if i > n ∨ μ = � then
13: return
14: end if
15: Let v = ρ−1(i)
16: Compute the equation a�

v x = av0 of the hyperplane through x[Uv]
17: Let Z = {z′, z′′} be extensions of x(β) to v, and Z′ = Z
18: for z ∈ Z do
19: if ∃{u, v} ∈ E ‖x(β)u − z‖ �= duv then
20: Let Z = Z � {z}
21: end if
22: end for
23: if Z = {z′, z′′} then
24: if a�

v z′ ≤ av0 then
25: Let α = (z′, 0, �), α′ = (z′′, 1, �)
26: else
27: Let α = (z′′, 0, �), α′ = (z′, 1, �)
28: end if
29: else if Z = {z} then
30: if a�

v z ≤ av0 then
31: Let α = (z, 0, �), α′ = (Z′ � {z}, 1, �)
32: else
33: Let α = (z, 1, �), α′ = (Z′ � {z}, 0, �)
34: end if
35: else
36: return
37: end if
38: Let V ← V ∪ {α, α′} and A ← A ∪ {(β, α), (β, α′)}
39: for θ ∈ N+(β) such that μ(θ) = � do
40: BranchAndPrune(i + 1, θ)
41: end for
42: return

On the Number of Solutions of the DMDGP 329

Υ (y, v): there are feasible leaf nodes β, β′ ∈ Vn such that x(β) = y,
p(β) ∩ Vρ(v)−1 = p(β′) ∩ Vρ(v)−1 and p(β) ∩ Vρ(v) �= p(β′) ∩ Vρ(v).

If Υ (y, v) holds, it is easy to show that p(β)∩Vρ(v)−1 contains a single feasible node
with two feasible subnodes. With Υ (y, v) true, we let Rv be the Euclidean reflec-
tion operatorwith respect to the hyperplane through y[Uv] (as discussed in p. 326).
Define R̃v = Iρ(v)−1× (Rv)n−ρ(v), i.e. R̃vy = (y1, . . . , yi−1, R

vyi, . . . , R
vyn). This

is a partial reflection of y which only acts on vertices past rank i− 1.
We emphasize that for all � ∈ {i, . . . , n} and for all α ∈ V� the set p(α) ∩ Vi

has a unique element, as it contains the unique node at level i on the path from
α to the BP tree root node.

The following is a corollary to Lemma 3.3.

Corollary 4.1. Let α ∈ Vi−1 for some i > 1, v = ρ−1(i) and N+(α) = {η, β}
with μ(η) = μ(β) = �. Then x(η)v = Rvx(β)v .

Remark 4.2. If Υ (y, v) holds for some y ∈ X and v ∈ V � V0, then by definition
there are feasible leaf nodes in the BP tree, which implies that the considered
DMDGP instance is YES.

An important consequence of Remark 4.2 is that all statements assuming Υ (y, v)
and claiming a result with probability 1 implicitly also assume that the proba-
bility is conditional to the event of the DMDGP instance being a YES one. In
particular, since the instance is YES, certain points must be placed at certain
distances with probability 1, for otherwise the instance would be NO. This is
evident in Prop. 4.4, Cor. 4.6, Cor. 4.7, and Thm. 4.9, where we state that cer-
tain real scalars and vectors must belong to certain finite sets with probability
1: the sense of these assertions, in this context, is that the Lebesgue measure of
the set of YES instances not satisfying the result is zero in the set of all YES
instances.

Lemma 4.3. Let α ∈ Vi−1 for some i > 1 such that N+(α) = {η′, β′}, u =
ρ−1(i); v > u with ρ(v) = �, and consider two feasible nodes η, β ∈ V� such
that η′ = p(η) ∩ Vi and β′ = p(β) ∩ Vi. Then, with probability 1, the following
statements are equivalent:

(i) ∀ i ≤ j ≤ �, x(β′′)w = Rux(η′′)w, where η′′ = p(η) ∩ Vj, β′′ = p(β) ∩ Vj,
and w = ρ−1(j);

(ii) ∀ i ≤ j ≤ �, λ(η′′) = 1 − λ(β′′), with η′′ = p(η) ∩ Vj and β′′ = p(β) ∩ Vj.

Proposition 4.4. Consider a subtree T ′ of T consisting of K + 2 consecutive
levels i − K − 1, . . . , i (where i ≥ 2K + 1), rooted at a single node η and such
that all nodes at all levels are marked �. Let p = 2K+1 and consider the set
Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes {αj | j ≤ p} of T ′.
Let u = ρ−1(i − K − 1) and v = ρ−1(i). Then with probability 1 there are two
distinct positive reals r, r′ such that ‖yj(αj)u − yj(αj)v‖ ∈ {r, r′} for all j ≤ p.

Fig. 1 shows a graphical proof sketch of Prop. 4.4 for K = 2. Prop. 4.4 is useful
in order to show that certain configurations of nodes within T can only occur
with probability 0.

330 L. Liberti et al.

����

���� �
�
�
�

��
��
��
��

��
��
��
��

����

��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
� ��

��
��
��

����

�
�
�
�

����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

η

β1 β2

θ1

θ2

θ3

θ4

α1

α2

α3

α4

α5

α6

α7

α8

Rt

Rt
Rw

Rv

RvRv

Rv

u

w
w

t

t
v v

r

r′

Fig. 1. Proof of Prop. 4.4 in R2. The arrangement of three segments gives rise, in
general, to two distances r, r′ between root and leaves.

Example 4.5. Consider a subtree T ′ of T like the one in Fig. 1 embedded in R2,
and suppose that all nodes at level u,w, t are marked �, and further that only
one node within α1, α2 is feasible, only one node within α3, α4 is feasible, only one
node within α7, α8 is feasible, and α5, α6 are both infeasible. This must be due
to a distance du′v with u′ ≤ u. Consider now a circle C completely determined
by its center at y1(α1)u′ and its radius du′v; if C also contains the points at the
nodes α1, α4, α8 or the points at the nodes α2, α3, α7 then we must have u′ = u,
in which case also one of α5, α6 will be feasible (against the hypothesis). And the
probability that C should contain the points at the nodes α1, α3, α8 or α2, α4, α7

is zero. Hence T ′ can only occur with probability 0. 	

We now exploit a generalization of Prop. 4.4 to build up towards the main
result of this section, i.e. that partial reflections map valid embeddings to valid
embeddings (Thm. 4.9).

Corollary 4.6. Consider a subtree T ′ of T consisting of K + q + 1 consecutive
levels i−K−q, . . . , i (where i ≥ 2K+q and q ≥ 1), rooted at a single node η and
such that all nodes at all levels are marked �. Let p = 2K+q and consider the
set Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes {αj | j ≤ p} of
T ′. Let u = ρ−1(i−K− q) and v = ρ−1(i). Then with probability 1 there is a set
Huv = {rj | j ≤ 2q} of 2q distinct positive reals such that ‖yi(αi)u − yi(αi)v‖ ∈
Huv for all i ≤ p.

The next corollary shows that distances spanning more than K vertices must all
belong to certain finite sets of values for YES instances.

On the Number of Solutions of the DMDGP 331

Corollary 4.7. Let y ∈ X and v ∈ V �V0 such that Υ (y, v) holds. If {u,w} ∈ E
with u < v < w and ρ(w) − ρ(u) > K then duw ∈ Huw with probability 1.

Corollary 4.8. Let y ∈ X and v ∈ V � V0 such that Υ (y, v) holds. If u ∈ V
with u > v then Rvyu belongs to a valid extension of y[Uv].

Finally, we state the main result of the section: if a DMDGP instance has a
valid embedding y and v is a vertex where a “valid branching” (in the sense
of the Υ (y, v) assumption) takes place in the BP algorithm, then the partial
reflection of y with respect to v is also a valid embedding. We remark that the
Υ (y, v) assumption only says that at v there is a BP search tree branching one of
whose branch eventually leads to y, whilst the other ends up at any other valid
embedding. Thm. 4.9 states that in this case the partial reflection of y w.r.t. v
is also valid.

Theorem 4.9. Let y ∈ X and v ∈ V �V0 such that Υ (y, v) holds. Then R̃vy ∈ X
with probability 1.

5 Symmetry and Number of Solutions

Our strategy for proving that YES instances of the DMDGP have power of two
solutions with probability 1 is as follows. We map embeddings y ∈ X to binary
sequences χ ∈ {0, 1}n describing the “branching path” in the tree T . We define
a symmetry operation on χ by flipping its tail from a given component i (this
operation is akin to branching at level i). We show that the cardinality of the
group of all such symmetries is a power of two by bijection with a set of binary
sequences. Finally we prove that the cardinality of the symmetry group is the
same as |X |.

For all leaf nodes α ∈ V with μ(α) = � let χ(α) = (λ(β) | β ∈ p(α)); since
embeddings in X are also in correspondence with leaf �-nodes of T by Alg. 1,
Step 8, χ defines a relation on X × {0, 1}n.

Lemma 5.1. With probability 1, the relation χ is a function.

Let Ξ = {χ(y) | y ∈ X}. For y ∈ X let yi be its subsequence (x1, . . . , xi).
We extend χ to be defined on all such subsequences by simply setting χi =
(χ(y)1, . . . , χ(y)i); χ(y) is valid if y is a valid embedding.

Let N = {1, . . . , n} and g be the n × n binary matrix such that gij = 1
if i ≤ j and 0 otherwise (the upper triangular n × n all-1 matrix); let gi be
its i-th row vector and Γ = {gi | i ∈ N}. Consider the elementwise modulo-
2 addition in the set Fn

2 (denoted ⊕): this endows Fn
2 with an additive group

structure with identity e = (0, . . . , 0) where each element is idempotent. Thus,
G = (Fn

2 ,⊕) ∼= Cn
2 . This group naturally acts on itself (and subsets thereof)

using the same ⊕ operation. It is not difficult to prove that Γ is a set of group
generators for G and a linearly independent set of the vector space V given by
G with scalar multiplication over F2. For all S ⊆ N , let

332 L. Liberti et al.

gS =
⊕
i∈S

gi,

and define a mapping φ : P(N) → G given by φ(S) = gS .

Lemma 5.2. φ is injective.

The following result shows essentially that groups of partial reflections have
power of two cardinality.

Lemma 5.3. For all H ⊆ Γ , |〈H〉| = 2|H|.

Let I be the set of levels of T for which from all nodes with two valid children
there is a path going to a feasible leaf through both children. Let L = {gi ∈
Γ | i ∈ I} and Λ = 〈L〉 be the subgroup of G of “allowed partial reflections”
generated by L. In the following (the main result of this section) we relate partial
reflections to χ representations of valid embeddings. We show that any valid
embedding, in its χ representation, generates the whole set of valid embeddings
by means of the action of the group of allowed partial reflections.

Theorem 5.4. If Ξ �= ∅, for all ξ ∈ Ξ we have ξ ⊕ Λ = Ξ with probability 1.

The main result of the paper is now simply a corollary of Thm. 5.4.

Corollary 5.5. If a DMDGP instance is YES, |X | is a power of two with
probability 1.

6 Counterexamples

6.1 Disproving the “Power of Two” Conjecture

We first discuss a class of counterexamples to the conjecture that all DMDGP
instances have a number of solutions which is a power of two (also see Lemma
5.1 in [22]). All these counterexamples are hand-crafted and have the property
that two distinct embeddings x, x′ have at least a level i where xi = x′

i, which
is an event which happens with probability 0. For any K ≥ 1, let n = K + 3,
V = {1, . . . , n}, E = {{i, j} | 0 < i − j ≤ K} ∪ {{1, n}} and dij = 1 for all
{i, j} ∈ E. The first n− 2 = K + 1 points can be embedded in the vertices of a
regular simplex in dimension K; then either xn−1 = x1 or xn−1 is the symmetric
position from x1 with respect to the hyperplane through {x2, . . . , xn−2}. In the
first case, the two positions for xn are valid, in the second only xn = x2 is
possible (see Fig. 2 for the 2-dimensional case), yielding a YES instance where
|X | = 6.

6.2 Necessity of Immediate Predecessors

Lastly, Fig. 3 shows an example where the (ii) ⇒ (i) implication of Lemma 4.3
fails for instances in DDGP � DMDGP. This shows that any generalization of

On the Number of Solutions of the DMDGP 333

x1 = x
(0)
4 x2 = x

(01)
5 = x

(11)
5

x3 x
(1)
4x

(00)
5

x
(10)
5

(a) Positions of the points on the plane

x1

x2

x3

x
(0)
4 x

(1)
4

x
(00)
5 x

(01)
5 x

(10)
5 x

(11)
5

symmetric

(b) BP tree

Fig. 2. The counterexample in the case K = 2. Embeddings x
(00)
5 , x

(01)
5 , and x

(11)
5 are

valid, while x
(10)
5 is not.

1

2

3

4

5

5′

6

6′

Rv

U5

U6

Fig. 3. A counterexample to Lemma 4.3 applied to DDGP � DMDGP

our result to the DDGP is nontrivial. Let V = {1, . . . , 6} (the graph drawing
is the same as the embedding in R2). The nodes 5′, 6′ linked with dashed lines
show alternative node placements. Let U5 = {3, 4} and U6 = {1, 2}. The line
through the points 3, 4 does not provide a valid reflection mapping 6 to 6′. This
happens because U6 does not consist of the two immediate predecessors of 6.

7 Conclusion

In this paper we showed that YES instances of the DDGP have a number of
solutions which is a power of two with probability 1. This settles a question which
arose from an empirical observation in [22]. One of the partial results (Thm. 5.4)

334 L. Liberti et al.

leading to the proof of this fact will also have practical implications, since all
solutions can be expressed in function of one solution by means of a set of flip
operations on binary sequences; we are going to test this idea computationally
in future work.

Acknowledgments. The authors would like to thank the Brazilian research
agencies FAPESP and CNPq, the French research agency CNRS and École Poly-
technique, for financial support.

References

1. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular
distance geometry problem. In: Pintér, J. (ed.) Global Optimization: Scientific and
Engineering Case Studies, pp. 213–225. Springer, Berlin (2006)

2. Liberti, L., Lavor, C., Maculan, N., Marinelli, F.: Double variable neighbourhood
search with smoothing for the molecular distance geometry problem. Journal of
Global Optimization 43, 207–218 (2009)

3. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In:
Proceedings of 17th Allerton Conference in Communications, Control and Com-
puting, pp. 480–489 (1979)

4. Huang, H.X., Liang, Z.A., Pardalos, P.: Some properties for the Euclidean distance
matrix and positive semidefinite matrix completion problems. Journal of Global
Optimization 25, 3–21 (2003)

5. Hendrickson, B.: The molecule problem: exploiting structure in global optimization.
SIAM Journal on Optimization 5, 835–857 (1995)

6. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B.,
Belhumeur, P.: Rigidity, computation, and randomization in network localization.
IEEE Infocom Proceedings, 2673–2684 (2004)

7. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite
representations and facial reductions. SIAM Journal on Optimization 20, 2679–
2708 (2010)

8. Gunther, H.: NMR Spectroscopy: Basic Principles, Concepts, and Applications in
Chemistry. Wiley, New York (1995)

9. Schlick, T.: Molecular modelling and simulation: an interdisciplinary guide.
Springer, New York (2002)

10. Santana, R., Larrañaga, P., Lozano, J.: Combining variable neighbourhood search
and estimation of distribution algorithms in the protein side chain placement prob-
lem. Journal of Heuristics 14, 519–547 (2008)

11. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Discrete approaches for solving
molecular distance geometry problems using NMR data. International Journal of
Computational Biosciences 1(1), 88–94 (2010)

12. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular
distance geometry problem. Computational Optimization and Applications doi:
10.1007/s10589-011-9402-6

13. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molec-
ular distance geometry problem. International Transactions in Operational Re-
search 15, 1–17 (2008)

14. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem.
To appear in Optimization Letters

On the Number of Solutions of the DMDGP 335

15. Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.:
Discretization orders for distance geometry problems. Optimization Letters doi:
10.1007/s11590-011-0302-6

16. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein
backbones by using artificial backbones of hydrogens. Journal of Global Optimiza-
tion 50, 329–344 (2011)

17. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry
methods: from continuous to discrete. International Transactions in Operational
Research 18, 33–51 (2010)

18. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the dis-
cretizable molecular distance geometry problem. European Journal of Operational
Research (accepted / invited survey)

19. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University
Press, Oxford (1953)

20. Connelly, R.: Generic global rigidity. Discrete Computational Geometry 33, 549–
563 (2005)

21. Brady, T., Watt, C.: On products of Euclidean reflections. American Mathematical
Monthly 113, 826–829 (2006)

22. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry
problem. Technical Report q-bio/0608012, arXiv (2006)

23. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular dis-
tance geometry problem with sparse distance data. Journal of Global Optimiza-
tion 26, 321–333 (2003)

24. Coope, I.: Reliable computation of the points of intersection of n spheres in Rn.
Australian and New Zealand Industrial and Applied Mathematics Journal 42,
C461–C477 (2000)

336 L. Liberti et al.

A Appendix: Proofs

Lemma A.1 (3.1). If |N(v) ∩ γ(v)| = K then there are at most two distinct
extensions of x that are valid for Gv. If one valid extension exists, then with
probability 1 there are exactly two distinct valid extensions.

Proof. Since |N(v)∩γ(v)| = K, Uv = N(v)∩γ(v) and v is at the intersection of
exactly K spheres in RK (each centered at xu with radius duv, where u ∈ Uv).
The position z ∈ RK of v must then satisfy:

∀u ∈ Uv ‖z − xu‖ = duv ⇒ ‖z‖2 − 2xu · z + ‖xu‖2 = d2
uv. (6)

As in [23], we choose an arbitrary w ∈ Uv, say w = max< Uv, and subtract from
the Eq. (6) indexed by w the other equations of (6), obtaining the system:

∀u ∈ Uv � {w} 2(xu − xw) · z = (‖xu‖2 − d2
uv) − (‖xw‖2 − d2

wv)
‖z‖2 − 2xw · z + ‖xw‖2 = d2

wv.

}
(7)

The system (7) consists of a set of K − 1 linear equations and a single quadratic
equation in the K-vector z. We write the linear equations as the system Az = b,
where the (u, j)-th component of A is 2(xuj − xwj), the u-th component of b is
‖xu‖2 − ‖xw‖2 − d2

uv + d2
wv, A is (K − 1) ×K and b ∈ RK−1. By strict simplex

inequality, A has full rank (for otherwise
∑

u�=w λu(xu−xw) = 0 implies that xw

is in the span of {xu | u ∈ Uv}, and hence that ΔK−1(Uv) = 0); so without loss
of generality assume that the square matrix B formed by the first K−1 columns
of A is invertible. Let zB be the vector consisting of the first K−1 components of
z; then the linear part (first K − 1 equations) of (7) yields zB = B−1(b−NzK),
where N = 2(xuK − xwK | u ∈ Uv � {w}) ∈ RK−1. After replacement of zB in
(7) with zB(zK), we obtain the following quadratic equation in zK :

(‖N̄‖2 + 1)z2
K − 2((b̄ + xwB)N̄ + xwK)zk + (‖xwB − b̄‖2 + x2

wK − d2
wv) = 0, (8)

where b̄ = B−1b and N̄ = B−1N . If the discriminant of (8) is negative then
no extension of x̄ to v is possible and the result follows. If the discriminant
is nonnegative, (8) has solutions z′K , z′′K yielding points z′ = (zB(z′K), z′K) and
z′′ = (zB(z′′K), z′′K) ∈ RK , which are distinct with probability 1 because the
discriminant is zero with probability 0. The extended embeddings, distinct with
probability 1, are given by (x, z′) and (x, z′′). 	

Lemma A.2 (3.2). If |N(v) ∩ γ(v)| > K then, with probability 1, there is at
most one extension of x.

Proof. Consider a subset S ⊆ N(v) ∩ γ(v) such that |S| = K + 1 and S ⊇
Uv. Either there is at least one point xv such that (x, xv) is an embedding of
G[S ∪ {v}] that is valid w.r.t. the system:

∀u ∈ S
∑
k≤K

(x2
vk − 2xukxvk + x2

uk) = d2
uv, (9)

On the Number of Solutions of the DMDGP 337

or the system has no solution. In the latter case, the result follows, so we assume
now that there is a point xv satisfying (9). Since the points xu are known for all
u ∈ S, (9) is a quadratic system with K variables and K + 1 equations. As in
the proof of Lemma 3.1, we derive an equivalent linear system from (9). Since d
satisfies the strict simplex inequalities on Uv with probability 1 and S ⊇ Uv, by
[24] {xu | u ∈ S} are not co-planar and the system has exactly one solution. 	

Lemma A.3 (3.3). With the notation of Lemma 3.1, if x̄ is a valid embedding
for G[Uv], then z′′ is a reflection of z′ with respect to the hyperplane through the
K points of x̄.

Proof. Any sphere in RK is symmetric with respect to any hyperplane through
its center; so the intersection of up to K spheres in RK is symmetric with respect
to the hyperplane containing all the centers. 	

Lemma A.4 (3.4). At termination of Alg. 1, X contains all valid embeddings
of G extending x̄.

Proof. Z exists with probability 1 by Lemma 3.1. Every embedding in X is valid
because of Steps 17 and 19-20. No other valid extension of x̄ exists because of
Lemmata 3.1-3.2. 	

Proposition A.5 (3.5). With probability 1, there is no level i ≤ n having two
distinct feasible nodes β, θ ∈ Vi such that |{α ∈ N+(β) | μ(α) = �}| = 1 and
|{α ∈ N+(θ) | μ(α) = �}| = 2.

Proof. We show that for all i ≤ n the event of having two distinct nodes β, θ ∈
Vi, with ρ−1(i) = v, such that β has one feasible subnode and θ has two has
probability 0. Consider Tv = N(v) ∩ γ(v): if |Tv| = K then by Lemma 3.1 β
should have exactly two feasible subnodes with probability 1; since it only has
one, the event |Tv| = K occurs with probability 0. Since |Tv| ≥ K by (4), the
event |Tv| > K occurs with probability 1. Thus by Lemma 3.2 there is at most
one valid embedding extending the partial embedding at v, which means that the
two feasible subnodes of θ represent the same embedding, an event that occurs
with probability 0. 	

Lemma A.6 (4.3). Let α ∈ Vi−1 for some i > 1 such that N+(α) = {η′, β′},
u = ρ−1(i); v > u with ρ(v) = �, and consider two feasible nodes η, β ∈ V� such
that η′ = p(η) ∩ Vi and β′ = p(β) ∩ Vi. Then, with probability 1, the following
statements are equivalent:

(i) ∀ i ≤ j ≤ �, x(β′′)w = Rux(η′′)w, where η′′ = p(η) ∩ Vj, β′′ = p(β) ∩ Vj,
and w = ρ−1(j);

(ii) ∀ i ≤ j ≤ �, λ(η′′) = 1 − λ(β′′), with η′′ = p(η) ∩ Vj and β′′ = p(β) ∩ Vj.

Proof. Let a0
v

x = a0

v0, a1
v

x = a1

v0 be the equations of the hyperplanes Hη, Hβ

defined respectively by x(η)[Uv] and x(β)[Uv], with the normals oriented as ex-
plained on page 326. We prove by induction on �−i that the following assumption
is equivalent to (i) and (ii):

338 L. Liberti et al.

(iii) for all i ≤ j ≤ �, x(β′′)w = Rux(η′′)w and au · a0
w = au · a1

w, where
η′′ = p(η)∩Vj , β′′ = p(β)∩Vj , w = ρ−1(j), and a0

w and a1
w are the normal

vectors of the hyperplanes Hη′′ and Hβ′′ oriented as usual.

If � = i, then (i), (ii), and (iii) hold simultaneously. Indeed, η = η′ and β = β′,
hence x(β)v = Rux(η)v (Lemma 3.3) and λ(η) = 1 − λ(β) (Alg. 1, Steps 25
and 27). In addition, we have Hη = RuHβ , therefore |au ·a0

v| = |au ·a1
v|. Because

the orientation of a0
v, a

1
v is such that au ·a0

v, au ·a1
v ≥ 0, the result holds. Assume

that the equivalence stated above holds for level � − 1, we show that it is still
the case at level �. In the sequel, denote t = ρ−1(�− 1).
(i) ⇔ (ii). Suppose for all i ≤ j < �, x(β′′)w = Rux(η′′)w and λ(η′′) = 1−λ(β′′)
(by the induction hypothesis, both statements are equivalent). Hence, Hη′′ =
RuHβ′′ holds for all j, because the K points generating the hyperplanes either
belong to Hα, or are reflections of each other. This is true in particular if we
choose η′′, β′′ ∈ V�−1. In addition, if we use the induction hypothesis (i) ⇒
(iii)), we have au · a0

t = au · a1
t , so a0

t , a
1
t are directed similarly w.r.t au, and

λ(η) = 1 − λ(β) if and only if x(β)v = Rux(η)v (see Fig. 4).

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���
���
���

���
���
���

��������

���
���
���

���
���
���

η
λ=0

β
λ=0

x(β)v

x(η)v

¬ reflection

Hα

Hη′′Hβ′′

η′′
β′′

au a1
v

a0
v

(a) a0
v
�

x(η)v > a0
v0 and a1

v
�

x(β)v > a1
v0

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���
���
���

���
���
���

��������

���
���
���

���
���
���

η
λ=0

β
λ=1

x(β)vx(η)v

reflection

Hα

Hη′′Hβ′′

η′′
β′′

au a1
v

a0
v

(b) a0
v
�

x(η)v > a0
v0 and a1

v
�

x(β)v < a1
v0

Fig. 4. Proof of Lemma 4.3: Case (4a) shows the contradiction deriving from λ(η) =
λ(β) = 0 (or x(β)v �= Rux(η)v), and case (4b) the situation that actually occurs

(ii) ⇒ (iii). Suppose for all i ≤ j ≤ �, λ(η′′) = 1 − λ(β′′). By the previous
result, we also know that i ≤ j ≤ �, x(β′′)w = Rux(η′′)w. It remains to prove
that au ·a0

v = au ·a1
v, i.e. that the angles θ0

v and θ1
v formed by these vectors have

the same cosine. Notice once again that Hη = RuHβ . By induction, we know
that the angles θ0

t , θ1
t formed by au and respectively a0

t , a1
t , have same cosine.

With probability 1, the hyperplanes Hη, Hβ are not parallel, hence their normal
vectors cannot be identical, therefore, θ0

t = −θ1
t (see the illustration on Fig. 5).

Denote θ0, θ1 the angles formed respectively by a0
t and a0

v, and by a1
t and a1

v.
We also have, Hη′′ = RuHβ′′ , where η′′, β′′ ∈ V�−1, hence the normal vectors of

On the Number of Solutions of the DMDGP 339

Hα

au

a0
t

θ0
t

a0
v

θ0

θ0
v

a1
t

θ1
t

a1
v

θ1

θ1
v

Fig. 5. Proof of Lemma 4.3: illustration of the fact that au · a0
v = au · a1

v

these 4 hyperplanes are also symmetric, which implies θ0 = −θ1 or θ0 = π − θ1.
By the definition of a0

v and a1
v (page 326), since the scalar products are positive,

−π/2 ≤ θ0, θ1 ≤ π/2, thus θ0 = −θ1. Therefore, θ0
v = θ0

t + θ0 = −θ1
t − θ1 = −θ1

v,
which concludes this part of the proof. (iii) ⇒ (i). Obvious. 	

Proposition A.7 (4.4). Consider a subtree T ′ of T consisting of K + 2 con-
secutive levels i−K − 1, . . . , i (where i ≥ 2K + 1), rooted at a single node η and
such that all nodes at all levels are marked �. Let p = 2K+1 and consider the
set Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes {αj | j ≤ p} of
T ′. Let u = ρ−1(i−K−1) and v = ρ−1(i). Then with probability 1 there are two
distinct positive reals r, r′ such that ‖yj(αj)u − yj(αj)v‖ ∈ {r, r′} for all j ≤ p.

Proof. Fig. 1 shows a graphical proof sketch for K = 2. With a slight abuse of
notation, for a vertex w ∈ V in this proof we denote by Rw the set of all reflec-
tions at level w. We order the αj nodes so that the action of Rv on (α1, . . . , αp)
is the permutation

∏
j mod 2=1(j, j + 1). Let t = ρ−1(i − 1). Since all nodes

are feasible, ‖yj(αj)v − yj(αj)t‖ = dtv and ‖yj(αj)u − yj(αj)t‖ = dut for all
j ≤ p (we remark that {t, v} and {u, t} must be in E by the definition of the
DMDGP). With probability 1, the segments through yj(αj)u and yj(αj)t (where
j ≤ p) do not respectively lie within the hyperplanes defining the reflections Rv;
and the same holds for the segments through yj(αj)t and yj(αj)v. Thus, there
is a set Q of positive reals r1, . . . , rp s.t. for all j ≤ p with j mod 2 = 1 we
have ‖yj(αj)u − yi(αj)v‖ = rj and ‖yj+1(αj+1)u − yj+1(αj+1)v‖ = rj+1, which
shows |Q| ≤ p = 2K+1. By Lemma 4.3 the action of Rt on (α1, . . . , αp) is the
permutation

∏
j mod 4=1(j, j + 3)(j + 1, j + 2): this implies that rj = rj+3 and

rj+1 = rj+2 for all j mod 4 = 1, which shows |Q| ≤ p/2 = 2K . Inductively, for
a vertex w s.t. i −K ≤ ρ(w) ≤ i− 1 the action of Rw is

∏
j mod 2j−ρ(w)+1 (j, j +

2i−ρ(w)+1 − 1)(j + 1, j + 2i−ρ(w)+1 − 2) · · · (j + 2i−ρ(w) − 1, j + 2i−ρ(w)), which
implies that |Q| ≤ 2K+1−i+ρ(w). Therefore ρ(w) = i − K proves that |Q| ≤ 2.
The case |Q| = 1 can only occur if yj(αj)u, yj(αj)t and yj(αj)v are collinear for
all j ≤ p, an event that occurs with probability 0. 	

340 L. Liberti et al.

Corollary A.8 (4.6). Consider a subtree T ′ of T consisting of K + q + 1 con-
secutive levels i−K − q, . . . , i (where i ≥ 2K + q and q ≥ 1), rooted at a single
node η and such that all nodes at all levels are marked �. Let p = 2K+q and
consider the set Y ′ = {yj | j ≤ p} of partial embeddings of G at the leaf nodes
{αj | j ≤ p} of T ′. Let u = ρ−1(i − K − q) and v = ρ−1(i). Then with proba-
bility 1 there is a set Huv = {rj | j ≤ 2q} of 2q distinct positive reals such that
‖yi(αi)u − yi(αi)v‖ ∈ Huv for all i ≤ p.

Proof. The proof of Prop. 4.4 can be generalized to span an arbitrary number
of levels by induction on q. Two distances rj1 , rj2 ∈ Huv can only be equal by
collinearity of some subsets of points, an event occurring with probability 0. 	

Corollary A.9 (4.7). Let y ∈ X and v ∈ V � V0 such that Υ (y, v) holds. If
{u,w} ∈ E with u < v < w and ρ(w) − ρ(u) > K then duw ∈ Huw with
probability 1.

Proof. Since Υ (y, v) holds, then the DMDGP instance is YES and there must
exist at least two feasible nodes at level ρ(w) in T . If duw �∈ Huw the probability
that a completely determined sphere contains two arbitrary points in RK is zero.
Since the instance is a YES one, however, the BP algorithm does not prune all
feasible nodes due to duw. By Cor. 4.6 the only remaining possibility (which
therefore occurs with probability 1) is that duw ∈ Huw. 	

Corollary A.10 (4.8). Let y ∈ X and v ∈ V � V0 such that Υ (y, v) holds. If
u ∈ V with u > v then Rvyu belongs to a valid extension of y[Uv].

Proof. If there is no edge {w, u} ∈ E with ρ(u)−ρ(w) > K the result follows by
Cor. 4.1. Otherwise, by Cor. 4.7, dwu ∈ Hwu. As in the proof of Prop. 4.4, all
pairs of points that are feasible w.r.t. dwu are reflections of each other w.r.t. Rv.

	

Theorem A.11 (4.9). Let y ∈ X and v ∈ V �V0 such that Υ (y, v) holds. Then
R̃vy ∈ X with probability 1.

Proof. We have to show that R̃vy is a valid embedding for G = (V,E). Partition
E into three subsets E1, E2, E3, where E1 = {{t, u} ∈ E | t, u < v}, E2 =
{{t, u} ∈ E | t, u ≥ v} and E3 = {{t, u} ∈ E | t < v ∧ u ≥ v}. For E1, by
definition ‖(R̃vy)t−(R̃vy)u)‖ = ‖Iyt−Iyu‖ = ‖yt−yu‖ = dtu as claimed. For E2,
‖(R̃vy)t−(R̃vy)u)‖ = ‖Rvyt−Rvyu‖ = ‖yt−yu‖ = dtu because Rv is an isometry.
For E3, we aim to show that ‖Iyt − Rvyu‖ = dtu. Since y ∈ X , by Lemma 3.4
there is a feasible leaf node α with x(α) = y. Because Υ (y, v), ∃η ∈ Vρ(v)−1

such that x(η) = y[γ(v)] and N+(η) = {β, β′} with μ(β) = μ(β′) = �; we can
assume without loss of generality that p(α) ∩ Vρ(v) = {β}; furthermore, again
by Υ (y, v), there is at least one feasible leaf node α′ such that p(α′) ∩ Vρ(v) =
{β′}. Let {ω} = p(α) ∩ Vρ(u) and {ω′} = p(α′) ∩ Vρ(u). Because ω′ is feasible,
‖x(ω′)t−x(ω′)u‖ = dtu; because η is an ancestor of both α and α′ at level ρ(v)−1
and t < v, p(α′) ∩ Vρ(t) = p(α) ∩ Vρ(t), which implies that x(ω′)t = x(ω)t = yt.
Thus, ‖yt − yu‖ = dtu = ‖yt − x(ω′)u‖. Furthermore, because β′ ∈ p(ω′)∩Vρ(v),

On the Number of Solutions of the DMDGP 341

x(ω′) extends x(β′). By Alg. 1, Steps 25 and 27, λ(β) = 1− λ(β′). Because α is
feasible, at every level ρ(u′) ∈ V such that v ≤ u′ < u the node θ ∈ p(α)∩Vρ(u′)
has f ∈ {1, 2} feasible subnodes; by Prop. 3.5, the node θ′ ∈ p(α′) ∩ Vρ(u′) also
has f feasible subnodes. If f = 2, by Cor. 4.8 it is possible to choose α′ so that
λ(θ′) = 1 − λ(θ) with probability 1; if f = 1 then by Alg. 1, Steps 31 and 33,
all feasible nodes inherit the same λ value as their parents, so λ(θ′) = 1 − λ(θ).
By Lemma 4.3, x(ω′)u = Rvyu with probability 1. Hence ‖yt −Rvyu‖ = dtu as
claimed. 	

Lemma A.12 (5.1). With probability 1, the relation χ is a function.

Proof. For χ to fail to be well-defined, there must exist an embedding x which is
in relation with two distinct binary sequences χ′, χ′′, which corresponds to the
discriminant of the quadratic equation in the proof of Lemma 3.1 taking value
zero at some rank > K, which happens with probability 0. 	

Lemma A.13 (5.2). φ is injective.

Proof. We show that for all S, T ⊆ N , if gS = gT then S = T .

gS = gT

⇒ ⊕
i∈S

gi =
⊕
i∈T

gi

⇒ ⊕
i∈S

gi ⊕
⊕
i∈T

g−1
i = e

idempotency ⇒ ⊕
i∈S

gi ⊕
⊕
i∈T

gi = e

gi ⊕ gi = g2
i ⇒ ⊕

i∈S�T

gi ⊕
⊕

i∈S∩T

g2
i = e

idempotency ⇒ ⊕
i∈S�T

gi = e

linear independence ⇒ S�T = ∅
⇒ S = T.

This concludes the proof. 	

Lemma A.14 (5.3). For all H ⊆ Γ , |〈H〉| = 2|H|.

Proof. The restriction of function φ to P(H) is injective by Lemma 5.2. Further-
more, each element g of 〈H〉 can be written as

⊕
i∈S

gi for some S ⊆ H because H

is a spanning set for the vector space H over Fn
2 , which is setwise equal to the

group 〈H〉. Thus φ is surjective too. Hence φ is a bijection between P(H) and
〈H〉, which yields the result. 	

Theorem A.15 (5.4). If Ξ �= ∅, for all ξ ∈ Ξ we have ξ ⊕ Λ = Ξ with
probability 1.

Proof. (⇒) We show that ξ ⊕ Λ ⊆ Ξ with probability 1; because 〈L〉 = Λ it
suffices to show that ξ ⊕ gi ∈ Ξ for an arbitrary gi ∈ L, i.e. that there exists a

342 L. Liberti et al.

valid embedding w ∈ X such that χ(w) = ξ⊕ gi. Let y ∈ χ−1(ξ) and v = ρ−1(i)
such that Υ (y, v), and define w = R̃vy (where R̃v is defined in Thm. 4.9 above);
by Thm. 4.9, w ∈ X . Let α′ be the leaf node of T such that x(α′) = y; by
Lemma 3.4, there is a leaf node β′ such that x(β′) = w. We have to show that
for all � ≥ i the node β ∈ p(β′) ∩ V� is such that λ(β) = 1 − λ(α), where α is
the node in p(α′) ∩ V�. We proceed by induction on �. For � = i this holds by
Lemma 3.3. For � > i, the induction hypothesis allows us to apply Lemma 4.3
and conclude that the event λ(α) = 1 − λ(β) occurs with probability 1.

(⇐) Now we show that Ξ ⊆ ξ ⊕ Λ with probability 1, i.e. for any η ∈ Ξ
there is g ∈ Λ with ξ ⊕ g = η. We proceed by induction on n, which starts when
n = K +1: if K +1 �∈ I then |Ξ| = 1, L = ∅ and the theorem holds; if K +1 ∈ I
then |Ξ| = 2, L = {gK+1} and the theorem holds. Now let n > K + 1; for all
j ∈ {K+1, . . . , n−1} define Ξj = {ξj | ξ ∈ Ξ} and Lj = {g� ∈ Γ | � ∈ I∧� ≤ j}.
By the induction hypothesis, for all ξ′ ∈ Ξj (ξ′ ⊕ 〈Lj〉 = Ξj). Now, either n �∈ I
or n ∈ I; by Prop. 3.5, with probability 1 if n �∈ I then nodes in Vn−1 can
only have zero or one feasible subnode (let Bn

1 be the set of all such feasible
subnodes), and if n ∈ I then nodes in Vn−1 can only have zero or two feasible
subnodes β (let Bn

2 be the set of all such feasible subnodes). In the former
case we let Ξn = {ξ(x(β)) | β ∈ Bn

1 } and Ln = Ln−1; in the latter we let
Ξn = {ξ(x(β)) | β ∈ Bn

2 } and Ln = Ln−1∪{gn}. In both cases it is easy to verify
that the theorem holds for Ξn, Ln: in the former case it follows by the induction
hypothesis, and in the latter case it follows because gn = (0, . . . , 0, 1), namely,
if η ∈ Ξ and n ∈ I then take ξ = η ⊕ gn (the result follows by idempotency of
gn). 	

Corollary A.16 (5.5). If a DMDGP instance is feasible, |X | is a power of two
with probability 1.

Proof. By Lemma 5.1 χ is a function with probability 1. Let x, x′ ∈ X be distinct;
then by Alg. 1, Steps 25, 27, 31, and 33, the map χ : X → Ξ is injective. By
definition of Ξ it is also surjective, hence |X | = |Ξ|. By Thm. 5.4 |Ξ| = |χ⊕ Λ|
for all χ ∈ Ξ with probability 1. It is easy to show that |χ ⊕ Λ| = |Λ|, so by
Lemma 5.3 |X | is a power of two with probability 1. 	

Integration of an LP Solver
into Interval Constraint Propagation�

Ernst Althaus1,2, Bernd Becker3, Daniel Dumitriu1, and Stefan Kupferschmid3

1 Johannes Gutenberg University, Mainz, Germany
{ernst.althaus,dumitriu}@uni-mainz.de

2 Max Planck Institute for Computer Science, Saarbrücken, Germany
3 Albert Ludwig University, Freiburg, Germany

{becker,skupfers}@informatik.uni-freiburg.de

Abstract. This paper describes the integration of an LP solver into
iSAT, a Satisfiability Modulo Theories solver that can solve Boolean com-
binations of linear and nonlinear constraints. iSAT is a tight integration
of the well-known DPLL algorithm and interval constraint propagation
allowing it to reason about linear and nonlinear constraints. As interval
arithmetic is known to be less efficient on solving linear programs, we
will demonstrate how the integration of an LP solver can improve the
overall solving performance of iSAT.

1 Introduction

We are considering the sat modulo theory (SMT) problem, which reads as fol-
lows. We are given a set of variables {x1, . . . xm} and a set C = {c1, . . . , cn}
of constraints of some class of constraints over these variables, e.g. linear in-
equalities. Furthermore, we are given a Boolean structure over C, i.e. a Boolean
formula φ, whose variables are the elements of C. The task is to decide the fea-
sibility of φ, i.e. a Boolean assignment b : C $→ {true, false} to the constraints,
such that φ is satisfied for b and such that there is x ∈ Rm satisfying the con-
straints {ci | b(ci) = true} and {¬ci | b(ci) = false}. Hence we assume that the
class of constraints is closed under negation.

SMT is an extension of the classical satisfiability problem. Such formulae arise
in many applications dealing with the verification of Hybrid Systems [12].

The problem can be decided, if the feasibility problem of a conjunction of
constraints of the class of constraints can be solved. The most prominent algo-
rithm is the DPLL algorithm [6] in which the Boolean values for the constraints
are determined via a search with backtracking, like in ordinary SAT algorithms.
Furthermore, for each partial assignment of Boolean values, the corresponding
set of constraints is checked for feasibility. There are many tricks to improve
� This work was partly supported by the German Research Council (DFG) as part of

the Transregional Collaborative Research Center “Automatic Verification and Anal-
ysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org) and as part of its
priority program “SPP 1307: Algorithm Engineering”, grant AL 1139/1-2.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 343–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

344 E. Althaus et al.

the running time, like the so-called unit propagation – if all but one literal of a
clause are assigned to false, the remaining literal has to be true. In particular
for the class of linear inequalities, there are many implementations to tackle the
problem; we mention here only Yices [8], MathSAT [4], and OpenSMT [5].

We are interested in more complicated classes of constraints, i.e. we allow for
arbitrary equalities and inequalities (strict and non-strict) composed from ad-
dition, multiplication, exponentiation, and (co-)sine. Hence, the problem under
consideration becomes undecidable in general1.

This large class of constraints allows us to model Hybrid Systems in a more
precise way as lots of physical systems contain a quadratic, or exponential be-
havior that we want to analyze.

As we are dealing with transcendental functions the problem is in general
undecidable, therefore we do not aim to solve it, but we either report the in-
feasibility or report a point x ∈ Rm such that all equalities and inequalities are
satisfied up to some predifined accuracy in the arithmetic. In particular, strict
inequalities are sometimes only satisfied non-strict. In order to do so, we have to
assume that all variables xi and all subformulae2 have a bounded domain. We
do so by an extension of the DPLL procedure in which we additionally allow the
splitting of the domain of a variable. To become efficient, we use interval con-
straint propagation (ICP), i.e. given a constraint ci with fixed assignment b(ci)
and the current domains of the variables, we try to narrow the domains without
removing any point satisfying the constraint. For example, if x + y ≤ 0 is a
constraint and x ∈ [0, 1], y ∈ [−2, 2] are the current domains, we can narrow the
domain of y to [−2, 0] as there is no point in the original domain that satisfies
x + y ≤ 0 with y > 0. We refer to [2] for details.

This algorithm does not require a specialized solver for a particular class of
constraints as long as the narrowing of the domains can be done efficiently.
Nevertheless, the work of Gao et al. [10] indicates that an additional check for
feasibility for all linear constraints can improve upon the running time. They
employ an LP solver to characterize the feasible region described by the linear
constraints and try to hand over this information to an ICP solver (they use the
predecessor of our solver). Our work differs in that the overall search process
is guided by the ICP solver and not by an LP solver as implemented in [10].
As ICP is known to be less efficient when solving linear systems we perform
additional LP solver calls to detect unsatisfiable search parts earlier, and thus
prevent the solver from making unnecessary ICP calls. Furthermore, our results
demonstrate that the combination of an ICP solver and an LP solver increases
the number of problems that we can solve, especially on unsatisfiable problem
instances.

We call a specialized LP solver once the domain propagation reached a fixed
point. The solver first tries to decide the feasibility or infeasibility using a so-
lution/Farkas proof of a previous LP; if this is not successful, there are some

1 It is well known that nonlinear arithmetic over the real numbers involving transcen-
dental functions like sin is undecidable [19].

2 We do not give a formal definition here and refer to [9] for details.

Integration of an LP Solver into Interval Constraint Propagation 345

heuristics to decide whether the LP is solved or not. Once an LP has been
shown to be infeasible, a small subset of the constraints causing the infeasibility
based on the Farkas proof is given to the solver to speed up the search. This
technique is called conflict learning.

The typical application of our algorithm is for model checking, in which the
infeasibility of the formula means that the system is safe. If we report infeasible,
this has to be safe and not corrupted due to rounding errors. Hence the domain
narrowing is done in a conservative way, i.e. we always adopt the rounding mode
such that the domain overapproximates the real domain. Using an LP solver,
we have to make sure that we do not declare a feasible LP to be infeasible or
report an infeasible subsystem that is feasible. In previous approaches, this was
guaranteed using an LP solver based on rational arithmetic. In this paper, we
show how a state-of-the-art floating point based LP solver can be used. We com-
pare an approach that goes along the lines proposed by Dhiflaoui et al. [7] to an
approaches that goes along the lines proposed by Neumaier and Shcherbina [15].
The later extension of this approach by Althaus and Dumitriu [1] is not required
as all linear systems are bounded.

Notice that in this context, some linear systems are infeasible due to the
strictness of some bounds; as a result, an arbitrary small change of the bounds
can make an infeasible system feasible, hence rounding errors are very critical.

The paper is organized as follows. We first review the interval constraint pro-
gramming approach of our underlying solver and then describe how we integrate
an LP solver in Section 2. In Section 3, we show how a floating point based
LP solver can be used to solve the linear programs including strict inequalities,
thereby certifying the correctness of its result. Before giving a conclusion, we
report on some experiments in Section 4.

2 Integration of an LP Solver into iSAT

In this section we present our approach that combines iSAT, a DPLL based
interval constraint solver, and an LP solver. In order to do this we first provide
a short introduction to iSAT (for a more detailed account please refer to [9]).

2.1 Introducing iSAT

In the following let ϕ be a Boolean combination of linear and nonlinear con-
straint formula. The front-end of iSAT computes normalized constraints and the
Conjunctive Normal Form (CNF). After that we end up with a formula having
the following syntax:

formula ::= {clause ∧}∗clause
clause ::= ({atom ∨}∗atom)
atom ::= simple_bound | arithmetic_predicate

simple_bound ::= variable ∼ rational_const
arithmetic_predicate ::= variable ∼ uop variable |

variable ∼ variable bop variable
variable ∼ variable bop rational_const

346 E. Althaus et al.

In the above syntax, uop and bop are unary and binary operation symbols re-
spectively, including +, −, ×, sin(·), etc., rational_const ranges over the rational
constants, and ∼∈ {<,≤,=,≥, >}. To illustrate this phase, consider the follow-
ing formula:

(x ≥ 0) ∧ (x ≤ 10) ∧ ((sin(1/3x) +
√

x ≥ y) =⇒ (y ≥ 1/4x + 3)) (1)

First we eliminate the Boolean operator ⇒ by applying a Tseitin transforma-
tion [20]. To do so, the implication will be replaced by a new auxiliary Boolean
variable (b). The remaining formula is then normalized by introducing additional
real variables r1, r2 and r3 and the following constraints r1 = 1/3x, r2 = sin(r1)
and r3 =

√
x. Sometimes we call the additional introduced variables (r1, r2, r3)

auxiliary variables. Finally, the normalized CNF problem looks as follows:

(x ≥ 0) ∧ (x ≤ 10) ∧ (b ∨ r2 + r3 < y ∨ y ≥ 3 + r4)∧
(r2 + r3 ≥ y ∨ b) ∧ (y ≥ 3 + r4 ∨ b)∧
(r1 = 1/3x) ∧ (r2 = sin(r1)) ∧ (r3 =

√
x) ∧ (r4 = 1/4x)

(2)

All clauses now have the syntax described above and can be transferred to the
solver. Before describing the solving process in detail, we informally define the
underlying semantics. A constraint formula ϕ is satisfied by a valuation of its
variables if all its clauses are satisfied, that is, if at least one atom is satisfied in
any clause. An atom is satisfied wrt. the standard interpretation of the arithmetic
operators and the ordering relations over the reals. A constraint formula ϕ is
satisfiable if there exists a satisfying valuation, referred to as a solution of ϕ.
Otherwise, ϕ is unsatisfiable. We remark that by definition of satisfiability, a
formula ϕ including or implying the empty clause, denoted by ⊥, cannot be
satisfied at all, i.e. if ⊥∈ ϕ or ϕ is unsatisfiable.

Instead of real-valued variable valuations, iSAT manipulates interval ranges.
By using the function ρ : Var → IR, where Var is a set of variables and IR

is the set of interval ranges of R, we define a range for each variable. Note,
that we also support discrete variable domains (integer and Boolean). To this
end, it suffices to clip the interval of integer variables accordingly, such that
[−3.4, 6.0) becomes [−3, 5], for example. The Boolean domain is represented by
B = [0, 1] ⊂ Z. If both ρ′ and ρ are interval valuations, then ρ′ is called a
refinement of ρ if ρ′(v) ⊆ ρ(v) for each variable v ∈ Var. The lower and upper
interval borders of an interval ρ(x) for a variable x can be encoded as simple
bounds. We denote the lower and upper interval border of the interval ρ(x) by
lower(ρ(x)) and upper(ρ(x)), respectively. E.g., for the interval ρ(x) = (−4, 9]
we have lower(ρ(x)) = (x > −4) and upper(ρ(x)) = (x ≤ 9).

Let x and y be variables, ρ be an interval valuation, and ◦ be a binary op-
eration. Then ρ(x ◦ y) denotes the interval hull of ρ(x)◦̂ρ(y) (i.e. the smallest
enclosing interval which is representable by machine arithmetic), where the oper-
ator ◦̂ corresponds to ◦ but is canonically lifted to sets. This is done analogously
for unary operators. In order to compute the interval hull ρ(x ◦ y) we are using
ICP. This allows us to narrow intervals of the variables, i.e. given a formula

Integration of an LP Solver into Interval Constraint Propagation 347

x ◦ y ∼ z and interval ranges for x, y and z, we look for intervals ρ(x), ρ(y)
and ρ(z) that are as small as possible without deleting any possible solution. By
doing so iSAT can prune away definitive non-solutions and thus reducing the
search space. Suppose the constraint y = x2 and the interval ranges x ∈ [3, 7]
and y ∈ [−2, 25]. Using ICP we can compute a new lower bound for variable y.
As the quadratic function (y = x2) is strictly monotonic increasing for x ∈ [3, 7]
we know that the current lower bound of y is computed using the lower bound
of x. We derive lower(ρ(y)) = 32 = 9 (the interval of y is updated to [9, 25]).

We say that an atom a is inconsistent under an interval valuation ρ, referred
to as ρ a, if no values in the intervals ρ(x) of the variables x in a satisfy the
atom a, i.e.

¬∃v ∈ ρ(x) : v ∼ c if a = (x ∼ c),
¬∃v ∈ ρ(x),¬∃v′ ∈ ρ(◦y) : v ∼ v′ if a = (x ∼ ◦y),
¬∃v ∈ ρ(x),¬∃v′ ∈ ρ(y ◦ z) : v ∼ v′ if a = (x ∼ y ◦ z)

where ∼∈ {<,≤,=,≥, >}. Otherwise a is consistent under ρ. For our purpose
we do not need the definition of interval satisfaction. It is sufficient to talk about
atoms which are still consistent. We remark that proving the satisfiability of
an iSAT formula is not trivial. For more details we refer to [9, Subsection 4.5].
In Algorithm 1, the pseudocode of iSAT is given by ignoring the code between
line 7 and line 11. Before the main iSAT routine starts, it is assumed that all
the unit clause information contained in the original formula has already been
propagated, which can sometimes allow us to derive tighter bounds. Once this
is ensured, Algorithm 1 begins by making a decision, and splitting the interval
range of a variable, e.g. splits a variable’s range in half (line 3). This decision will
be propagated in line 4. If a conflict is detected (e.g. a clause evaluates to false
during propagation) it will be analyzed in line 5. The conflict analysis routine
uses the implication graph of the solver to compute the reasons for the conflict.
By doing so a conflict clause is learned, allowing iSAT to prune off unsatisfiable
parts of the search space. iSAT terminates in either line 5 or 13 with either
unsat, sat, or unknown. If iSAT has managed it to split every problem variable
up to a so called minimum splitting width (msw) and no conflict is detected the
main DPLL loop is terminated and a satisfiability check for every problem clause
is fueled in line 13.

2.2 Integration of an LP Solver

The integration of an LP solver affects the normalization and the solving part
of iSAT. In the normalization part iSAT detects every linear constraint that is
contained in the input formula. To get a better picture we will give an example.
In equation 1 of the previous subsection there are three linear constraints (x ≥ 0,
x ≤ 10, and y ≥ 1/4x+3). Every linear constraint that does not have the syntax
of a simple_bound will be given to the LP solver. In this case the only linear
constraint that is not a simple bound is y ≥ 1/4x + 3. Here the normalization
routine would transform the linear constraint into −1/4x + y − s = 0. In other

348 E. Althaus et al.

Data: CNF F1
Result: sat, unsat or unknown2

/* Main DPLL loop. DecideVar returns 0 once the msw for */
/* all variables is reached, and no further decisions */
/* are possible. */
while decideVar() do3

/* Propagates current decision and unit constraints. */
if propagateICP() = Conflict then4

/* Function tries to resolve the conflict by backtracking. */
/* If conflict is unresolvable, problem is unsatisfiable. */
if analyseBacktrack() = Unresolvable then return unsat;5

end6
/* ICP did not find a conflict. Try to find a conflict */
/* among the linear constraints using an LP solver */
else if checkLPFeasibility() = Infeasible then7

insertCert() if analyseBacktrack() = Unresolvable then8
return unsat;9

end10

end11

end12

/* Final test: Are all constraints satisfied? */
if allClausesSat() then return sat; else return unknown;13

Algorithm 1. DPLL + ICP + LP

words we introduce for every linear constraint a so-called slack variable s. This
way we produce an initially feasible LP tableau that can be transmitted to the
LP solver; hence the normalization part produces the input for the iSAT solver
and for the LP solver. The input for iSAT looks like:

(x ≥ 0) ∧ (x ≤ 10) ∧ (b ∨ r2 + r3 < y ∨ y ≥ r4 + 3)∧
(r2 + r3 ≥ y ∨ b) ∧ (s ≥ 3 ∨ b)∧
(r1 = 1/3x) ∧ (r2 = sin(r1)) ∧ (r3 =

√
x)∧

(r4 = 1/4x) ∧ (s = y − r4)

(3)

And the input for the LP solver is:

−1/4x + y − s = 0 (4)

Of course, iSAT is able to solve the formula given in equation 3 without the help
of the LP solver. But as interval arithmetic is known to be less efficient when
solving linear programs our aim is to improve the effectiveness of the solver by
integrating an LP solver.

To do this we modify the iSAT procedure by adding additional feasibility
checks for the linear constraints under the current interval valuation (line 7).
These checks are performed after no conflict has been detected by the propaga-
tion phase (line 4). If the LP solver reports infeasible, a clause containing the

Integration of an LP Solver into Interval Constraint Propagation 349

negations of those column bounds that are responsible for the infeasibility is
inserted into iSAT’s learned clause database (line 8) thus preventing iSAT of en-
tering this certain part of the search space again. To keep the number of literals
small we compute these bounds from the Farkas’ Lemma that is explained in
the next section.

We further implemented the option of either adding the linear constraints
only to the LP solver and just the nonlinear constraints are added to iSAT or
the linear constraints are added to both solvers.

3 Solving the Linear Programs and Computation of
Small Infeasible Subsets

We start our description assuming real arithmetic of the computer and describe
necessary changes due to the floating point arithmetic afterwards. Besson [3]
proposes a similar approach to ours, in that he computes infeasible subsystems
with floating point arithmetic and certifies a correct result by solving a system
of linear equations with rational arithmetic. His approach to compute infeasible
subsystems for a system of linear inequalities including strict ones seems to be
more complicated than ours.

Given a system of linear inequalities with some strict bounds as outlined in the
previous section, deciding the feasibility can be achieved simply by maximizing
the minimal distance to one of the strict inequalities, i.e. by solving the following
linear program:

max δ
s.t. Ax = 0

x + usδ ≤ u
x − �sδ ≥ �

δ ≥ 0,

where we define �s
i = 1 if the lower bound �i on xi is strict and �s

i = 0 otherwise,
us

i = 1 if the upper bound ui on xi is strict and us
i = 0 otherwise.

If the LP is infeasible or has an objective function value of 0, the system of
linear inequalities is infeasible, otherwise the system is feasible. A small but in-
feasible set of inequalities can be obtained then either from the Farkas certificate
or from the dual solution. As the linear equations are globally valid, we do not
include them in the certificate, but only a set of bounds.

More precisely, if the LP is infeasible, it has no solution with δ = 0. Basically this
means that the system has no solution, even if all strict bounds would be non-strict.
Hence, we can drop δ and we know that the simplified linear system Ax = 0, � ≤
x ≤ u is infeasible. Hence its Farkas system (a linear system which is feasible if and
only if the given system is infeasible) is feasible and reads as follows:

pTA + qT − rT = 0
qTu − rT � = −1

q, r ≥ 0

⎫⎬⎭ (I)

350 E. Althaus et al.

Notice that if we drop all variables with value 0, the linear system (I) is still
feasible and hence the original LP without the corresponding constraints is still
infeasible. Hence, the certificate consists of all lower bounds �i for which the
corresponding Farkas system variable ri > 0 and all upper bounds ui for which
the corresponding qi > 0. The Farkas certificate for the (non-simplified) LP can
be obtained from all LP solvers after the original LP has been solved and can
be directly used for the simplified LP.

If the LP is feasible with objective function value 0, its dual has a solution
with objective function value 0, i.e. the following system of linear equations is
feasible:

qTu − rT � = 0
pTA + qT − rT = 0

qTus + rT �s = 1
q, r ≥ 0

⎫⎪⎪⎬⎪⎪⎭ (II)

Furthermore, if the system is feasible, the LP has objective function value 0 or
is infeasible. Again the certificate consists of all lower bounds �i for which ri > 0
and all upper bounds ui for which qi > 0 and can be obtained from the LP
solution.

Assume now that the LP is solved with a state-of-the-art floating point solver.
We discuss three alternative methods to certify the infeasibility and the com-
puted Farkas certificate; we implemented the latter two of them. In case any of
these methods fails, it returns that the feasibility status of the LP is unknown.

The first method was proposed by Dhiflaoui et al. [7]. They take the LP basis
and try to verify its correctness using rational arithmetic. Basically, the basis
gives a subset of the variables such that the system (I), respectively (II), has a
solution with all non-basic variables having value 0, and the system of equations
reduced to the basic variables has a unique solution which is non-negative. Given
the basis, we can solve a system of linear equations and check that the solution
is non-negative, in order to certify that the system (I), respectively (II), has a
solution. This is done using rational arithmetic. The experiments of Dhiflaoui
et al. show that for some instances, the time to solve these systems of linear
equations is much higher than the time to solve the LP. This observation has
been confirmed by a more efficient implementation by Koch [14].

In the second method, we solve a smaller system of equations in order to
become more efficient. More precisely, we select the variables with floating point
value larger than some ε > 0 and solve the corresponding subsystem of equations.
Notice that these variables are a subset of the basic variables; this subset is strict
if the basis is degenerate, which is often the case in practical applications. In this
case, we get a linear system which is overdetermined. In Section 4, we show that
these systems are often significantly smaller and can be solved very efficiently.

The third method was proposed by Neumaier and Shcherbina [15] and can
be applied as all variables have finite bounds. We discuss that case of the

Integration of an LP Solver into Interval Constraint Propagation 351

infeasible LP first. Given the floating point solution (p, q, r), they compute pA
using interval arithmetic. From this, they compute intervals for q and r such
that the system pT A + qT − rT = 0 definitely has a solution by setting qi =
[max(0,−upper((pA)i),max(0,−lower((pA)i)] and ri = [max(0, lower ((pA)i),
max(0, upper((pA)i)]. Then we certify, again using interval arithmetic, that qT u−
rT � < 0. Notice that it suffices that the value is strictly negative, as a solution
of the linear system can then be obtained by scaling. The certificate consists of
all upper bounds ui such that the interval qi contains a non-zero and all lower
bounds �i such that the interval ri contains a non-zero. Notice that in contrast
to the two methods above, it is possible that the certificate contains both the
lower and upper bound of a variable.

If the LP has objective function value 0, we have to certify this with interval
arithmetic. This is only possible if p can be represented exactly by floating point
numbers and if during computation of pA the intervals remain point intervals.
Still, the certificates are often trivial enough such that this is achieved. Notice
that we cannot expect to obtain a method that can handle non-point intervals,
since a slight change of the bounds can change the objective function value and
hence the feasibility status.

4 Experiments

We have implemented our approach into iSAT. To become efficient, we further
try to detect implications among the linear constraints as presented in [16] be-
fore starting the search. By doing so the number of LP solver calls is decreased.
Other methods, like the elimination of variables by exploiting equalities appear-
ing as top-level conjuncts of the formula or the simplification of the Boolean
part of the input formula, both suggested in [5], have not yet been implemented;
they would probably speed up our algorithm considerably. As LP solver, we use
SoPlex [18,21]; we do not use Gurobi [11] or CPLEX [13], as we plan to certify
the feasibility of LPs using the approach of Althaus and Dumitriu [1] in a future
version, where we will need access to the LU decomposition of the matrix.

We tested the performance of our implementation on the QF-LRA bench-
marks (quantifier-free linear real arithmetic) from SMT-LIB [17], which contains
SMT problems having only linear constraints. In order to be able to use them
within our ICP solver, we artificially make all variables bounded between −105

and 105. These instances can be solved by specialized solvers, which have much
better running times. Nevertheless, we have chosen these benchmarks because
they come from a standard benchmark library.

The iSAT solver is tuned to prove the unsatisfiability of a formula and returns
unknown whenever it finds a candidate solution. Hence, for feasible solutions it
often returns unknown and thus we cannot compare running times for those
instances. Therefore, we restrict to unsatisfiable instances.

All experiments are performed on a 2.3 GHz Quad-Core AMD Opteron ma-
chine with 4 GB of physical memory running Ubuntu Linux with kernel version
2.6.32. We compiled our program with g++ 4.4.3 with the optimization flag -O2.

352 E. Althaus et al.

4.1 Comparison of Different LP Solving Techniques

We compared four different methods to solve the linear systems, all of them
giving certified correct results, i.e. results that are not corrupted by possible
errors in the floating point arithmetic. In addition to the three methods described
in Section 3, we use an LP solver based on rational arithmetic. For this purpose,
we use the LP solver Yices [8], one of the fastest SMT solvers available, which
is specialized to handle strict inequalities.

Table 1. Benchmarks: the first line indicates the solver for the LP, where ICP w/o LPS
means that no LP solver is used, i.e. all linear constraints are only handled with the ICP-
approach, Neumaier/S that we use the approach proposed by Neumaier and Shcherbina
to certify the infeasibility of the linear program and ICP is not used, ICP+our that we
use our approach and the ICP-approach of iSAT, rational LPS that we use the rational
LP solver Yices and ICP is not used, and our that we use only our approach and ICP is
not used. For each version, we provide the size of the search tree (nodes), the running
time in seconds (time) and the result (rs), where U means that the solver correctly
returned unsatisfiable and ? that it returned unknown. The running time of the fastest
approach was additionally marked with boldface.

ICP w/o LPS Neumaier/S ICP+our rational LPS our approach
Benchmark nodes rs time nodes rs time nodes rs time nodes rs time nodes rs time
10cl.m-i.b 80 ? 0.69 27197 ? 249.29 1198 ? 146.61 timeout timeout
10cl.w-c-s.b 0 U 0.03 0 U 0.03 0 U 0.04 0 U 0.04 0 U 0.03
10cl.w-c-s.in timeout timeout timeout timeout timeout
2cl.m-i.b 110 ? 0.14 1120 ? 1.55 179 ? 4.54 1429 U 2.21 873 U 1.17
2cl.m-i.in memout 562 ? 3.81 timeout 2810 U 141.69 3889 U 51.4
2cl.w-c-s.b 0 U 0.01 0 U 0.01 0 U 0.02 0 U 0.02 0 U 0
2cl.w-c-s.in timeout 25 U 0.13 20 U 16.22 27 U 0.66 25 U 0.56
3cl.m-i.b 119 ? 0.19 2952 ? 5.23 260 ? 8.65 2166 U 7.08 2153 U 3.52
3cl.m-i.in memout 1963 ? 28.92 memout timeout 4962 ? 93.46
3cl.w-c-s.b 0 U 0.01 0 U 0.01 0 U 0.02 0 U 0.03 0 U 0.02
3cl.w-c-s.in timeout 150 ? 0.69 131 U 62.46 159 U 5.17 150 U 3.57
4cl.m-i.b 133 ? 0.24 2808 ? 7.65 272 ? 19.61 3369 U 15.79 4045 U 10.01
4cl.m-i.in memout 4265 ? 89.62 memout timeout timeout
4cl.w-c-s.b 0 U 0.01 0 U 0.01 0 U 0.03 0 U 0.02 0 U 0.02
4cl.w-c-s.in timeout 351 ? 2.48 486 U 157.94 394 U 20.51 379 U 10.00
5cl.m-i.b 142 ? 0.29 5411 ? 18.33 387 ? 31.41 5724 U 34.9 7391 U 21.27
5cl.m-i.in memout 10126 ? 299 memout timeout timeout
5cl.w-c-s.b 0 U 0.02 0 ? 0 0 U 0.02 0 U 0.02 0 ? 0.01
5cl.w-c-s.in timeout 954 ? 10.68 timeout 1469 U 63.3 964 U 25.61
6cl.m-i.b 156 ? 0.37 16776 ? 70.72 269 ? 8.44 7358 U 70.69 11952 U 38.84
6cl.m-i.in memout 5704 ? 244.22 timeout timeout timeout
6cl.w-c-s.b 0 U 0.03 0 U 0.01 0 U 0.02 0 U 0.03 0 U 0.02
6cl.w-c-s.in timeout 1189 ? 15.54 timeout 2227 U 216.17 2172 U 58.50
7cl.m-i.b 170 ? 0.52 10231 ? 65.95 594 ? 51.88 11767 U 151.75 15465 U 78.39
7cl.m-i.in memout timeout timeout timeout timeout
7cl.w-c-s.b 0 U 0.03 0 U 0.03 0 U 0.02 0 U 0.03 0 U 0.03
7cl.w-c-s.in timeout 2132 ? 42.59 timeout timeout 8866 U 277.91
8cl.m-i.b 179 ? 0.58 11877 ? 84.4 679 ? 100.35 15778 U 207.85 21113 U 115.45
8cl.m-i.in memout timeout timeout timeout timeout
8cl.w-c-s.b 0 U 0.02 0 U 0.02 0 U 0.01 0 U 0.03 0 U 0.03
8cl.w-c-s.in timeout 2560 ? 68.28 timeout timeout timeout
9cl.m-i.b 193 ? 0.69 18838 ? 162.94 1193 ? 119.28 30200 U 286.39 28586 U 164.25
9cl.w-c-s.b 0 U 0.01 0 U 0.02 0 U 0.02 0 U 0.02 0 U 0.00
9cl.w-c-s.in timeout 7791 ? 281.53 timeout timeout timeout

Integration of an LP Solver into Interval Constraint Propagation 353

Due to internals of iSAT, it terminates sometimes with unknown before the
time limit. These instances cannot be considered as correctly solved.

In Table 1, we show for each method the number of nodes in the search tree and
the total running time for a typical subset of the instances, i.e. the clock_synchro
instances. With our approach for certifying the correctness of the floating point
LP solver, 197 out of the 300 infeasible instances are solved, whereas only 193
are solved with the second best approach, i.e. using a rational LP solver. The
small difference in the number of solved problem instances is explained by the
fact that both approaches are very similar. However, the main advantage of our
approach is that it needs approximately half of the solving time especially when
focusing on instances with larger running times. Using the approach of Neumaier

Table 2. For our approach, we give some additional details for the instances that are
solved. Beside the size of the search tree (nodes) and the running time (time) which can
already be found in Table 1, we give the average size of the basis of the LPs (basis), the
average size of the infeasible subsystem (ifs), the time needed by the LP solver (tLPS),
and the time needed for the Gaussian elimination (tGauss). Furthermore, we give the
total number of linear systems that are declared to be infeasible by the floating point
LP solver (#inf) and the number of times our method to certify infeasibility is not
successful (#?).

Benchmark nodes time basis ifs tLPS tGaus #inf #?
10cl.w-case-s.b 0 0.03 31 6 0 0 1 0
2cl.m-i.b 873 1.17 131 7 0.52 0.19 65 0
2cl.m-i.in 3889 51.4 249 10.91 24.6 20.49 367 65
2cl.w-case-s.b 0 0 15 6 0 0 1 0
2cl.w-case-s.in 25 0.56 87 15.76 0.03 0.45 17 0
3cl.m-i.b 2153 3.52 195 7.34 2 0.27 99 0
3cl.m-i.in 4962 93.46 388 11.79 58.8 21.45 461 230
3cl.w-case-s.b 0 0.02 17 6 0 0 1 0
3cl.w-case-s.in 150 3.57 128 17.88 0.51 2.72 71 7
4cl.m-i.b 4045 10.01 267 6.81 5.03 0.21 135 0
4cl.w-case-s.b 0 0.02 19 6 0 0 1 0
4cl.w-case-s.in 379 10 173 19.49 2.72 6.36 141 13
5cl.m-i.b 7391 21.27 347 6.97 11.57 0.44 173 0
5cl.w-case-s.b 0 0.01 21 0 0 0 1 1
5cl.w-case-s.in 964 25.61 222 19.79 9.77 12.4 233 14
6cl.m-i.b 11952 38.84 435 6.86 21.9 0.37 217 0
6cl.w-case-s.b 0 0.02 23 6 0 0 1 0
6cl.w-case-s.in 2172 58.5 275 20.35 27.61 22.74 403 61
7cl.m-i.b 15465 78.39 531 7.04 42.77 0.7 264 0
7cl.w-case-s.b 0 0.03 25 6 0 0 1 0
7cl.w-case-s.in 8866 277.91 332 20.91 171.34 70.51 1048 276
8cl.m-i.b 21113 115.45 635 6.8 59.07 0.69 279 0
8cl.w-case-s.b 0 0.03 27 6 0 0 1 0
9cl.m-i.b 28586 164.25 747 7.26 86.45 0.86 327 0
9cl.w-case-s.b 0 0 29 6 0 0 1 0

354 E. Althaus et al.

and Shcherbina to certify the infeasibility of the LPs, we can solve 174 of the
instances.

We implemented the option to additionally handle linear constraints with
the ICP approach and show for this setting the same numbers. This option
turns out to produce worse results, e.g. it solves only 146 instead of 193 of
the instances. It is not surprising that the combination of ICP and LP solving
is less efficient: in this case ICP is redundant and less accurate compared to
an LP solver. Furthermore, deriving that two linear constraints cannot hold at
the same time by applying ICP steps can lead to a huge amount of arithmetic
computations, causing the slowdown of the overall search process.

4.2 Detailed Evaluation of Our Certifying Approach

In Table 2 we show the details of our approach for certifying the correctness of
the floating point based LP solver. For a subclass of the infeasible instances, we
show the average size of the basis, the average size of the infeasible subsystem,
the running time to solve the linear program, the running time to certify its
correctness, the number of times our certifying is not successful, the number of
nodes in the search tree and the total running time.

If our approach is successful, it returns exactly the same infeasible subsystem
as the approach of Dhiflaoui et al., but solves a much smaller system of equa-
tions with rational arithmetic. More precisely, we solve a system with as many
variables as the size of the infeasible subsystem, whereas they solve a system in
the size of the basis. We show the differences in the size of the solved systems in
Table 2 and do not report on the approach of Dhiflaoui et al. in our comparison
on different LP certifying methods.

4.3 Summary

The integration of a floating point based LP solver into ICP can greatly reduce
the running time needed to solve the benchmark instances.

Furthermore, the size of the infeasible subsets and hence the size of the system
of linear equations we have to solve with rational arithmetic is very small on
average, as one can see in column ifs (compare to column basis). This is helpful
in two aspects: it gives small conflict clauses that can reduce the search space,
and the running time for the Gaussian elimination is not the bottleneck – as
opposed to solving the equation system given by the LP basis as in the work of
Dhiflaoui et al. [7].

We believe that we become even more efficient, if we implement some further
tricks to speed up the solution process, like storing LP solutions, carefully deciding
which LPs should be solved or implementing further preprocessing techniques.

5 Conclusion

We have presented a tight integration of an LP solver into interval constraint
propagation and experimented with our preliminary implementation. Already in

Integration of an LP Solver into Interval Constraint Propagation 355

this preliminary scenario which offers multiple possibilities for further optimiza-
tion, the benefit of this integration is obvious.

As future work, we want to improve our approach, for instance by finding
new methods to propagate bounds based on the linear constraints, as well as
appropriate linear relaxations of nonlinear constraints.

References

1. Althaus, E., Dumitriu, D.: Fast and accurate bounds on linear programs. In: Proc.
8th International Symposium on Experimental Algorithms (SEA 2009). LNCS,
vol. 5526, pp. 40–50. Springer, Heidelberg (2009)

2. Benhamou, F., Granvilliers, L.: Continuous and Interval Constraints. In: Handbook
of Constraint Programming. Foundations of Artificial Intelligence, ch.16, pp. 571–
603 (2006)

3. Besson, F.: On using an inexact floating-point LP solver for deciding linear arith-
metic in an SMT solver. In: 8th International Workshop on Satisfiability Modulo
Theories (2010)

4. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT Solver. In: Gupta, A., Malik, S. (eds.) Computer Aided Verification,
Springer, Heidelberg (2008)

5. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The openSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

7. Dhiflaoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Schömer, E.,
Schulte, R., Weber, D.: Certifying and repairing solutions to large LPs. How good
are LP-solvers? In: Symposium of Discrete Algorithms (SODA), pp. 255–256 (2003)

8. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

9. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT Special Issue on Constraint Programming and SAT 1, 209–236 (2007)

10. Gao, S., Ganai, M., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.: Inte-
grating ICP and LRA solvers for deciding nonlinear real arithmetic. In: FMCAD
(2010)

11. Gurobi Optimization: Gurobi Optimizer, http://www.gurobi.com/
12. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata? In: Proc. of the 27th Annual Symposium on Theory of Computing, ACM
Press, New York (1995)

13. IBM: ILOG CPLEX Optimizer, http://www01.ibm.com/software/
integration/optimization/cplex-optimizer/

14. Koch, T.: The final NETLIB-LP results. Oper. Res. Lett. 32(2), 138–142 (2004)
15. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear pro-

gramming. Math. Program. 99(2), 283–296 (2004)
16. Pigorsch, F., Scholl, C.: Using implications for optimizing state set representations

of linear hybrid systems. In: GI/ITG/GMM Workshop MBMV (2009)

http://www.gurobi.com/
http://www01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www01.ibm.com/software/integration/optimization/cplex-optimizer/

356 E. Althaus et al.

17. SMT-LIB: The Satisfiability Modulo Theories Library,
http://goedel.cs.uiowa.edu/smtlib/

18. SoPlex: The Sequential object-oriented simplex, http://soplex.zib.de/
19. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. of

California Press, Berkeley (1951)
20. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in

Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1970)
21. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. the-

sis, Technische Universität Berlin (1996),
http://www.zib.de/Publications/abstracts/TR-96-09/

http://goedel.cs.uiowa.edu/smtlib/
http://soplex.zib.de/
http://www.zib.de/Publications/abstracts/TR-96-09/

A Saturation Algorithm for Homogeneous

Binomial Ideals

Deepanjan Kesh and Shashank K. Mehta

Indian Institute of Technology, Kanpur - 208016, India
{deepkesh,skmehta}@cse.iitk.ac.in

Abstract. Let k[x1, . . . , xn] be a polynomial ring in n variables, and let
I ⊂ k[x1, . . . , xn] be a homogeneous binomial ideal. We describe a fast
algorithm to compute the saturation, I : (x1 · · ·xn)∞. In the special case
when I is a toric ideal, we present some preliminary results comparing
our algorithm with Project and Lift by Hemmecke and Malkin.

1 Introduction

1.1 Problem Description

Let k[x1, . . . , xn] be a polynomial ring in n variables over the field k, and let
I ⊂ k[x1, . . . , xn] be an ideal. Ideals are said to be homogeneous, if they have a
basis consisting of homogeneous polynomials. Binomials in this ring are defined
as polynomials with at most two terms [5]. Thus, a binomial is a polynomial of
the form cxα+dxβ , where c, d are arbitrary coefficients. Pure difference binomials
are special cases of binomials of the form xα − xβ . Ideals with a binomial basis
are called binomial ideals. Toric ideals, the kernel of a specific kind of polynomial
ring homomorphisms, are examples of pure difference binomial ideals.

Saturation of an ideal, I, by a polynomial f , denoted by I : f , is defined as
the ideal

I : f = 〈{ g ∈ k[x1, . . . , xn] : f · g ∈ I }〉.
Similarly, I : f∞ is defined as

I : f∞ = 〈{ g ∈ k[x1, . . . , xn] : ∃a ∈ N, fa · g ∈ I }〉.

We describe a fast algorithm to compute the saturation, I : (x1 · · ·xn)∞, of a
homogeneous binomial ideal I.

This problem finds applications in computing the radicals, minimal primes,
cellular decompositions, etc., of a homogeneous binomial ideal, see [5]. This is
also the key step in the computation of a toric ideal.

1.2 Related Work in Literature

The authors are not aware of any published work addressing this problem but
there are several related works in the literature.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 357–371, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

358 D. Kesh and S.K. Mehta

There are algorithms to compute the saturation of any ideal in k[x1, . . . , xn]
(not just binomial ideals). One such algorithm is described in exercise 4.4.7 in [4].
It involves a Gröbner basis computation in n + 1 variables. Another solution is
due to Sturmfels’ [8] which involves n Gröbner basis computations in n variables.

There are also several efficient algorithms for saturating a pure difference
binomial ideal in k[x1, . . . , xn]. These were developed in the context of the com-
putation of toric ideals. Computation of a toric ideal has some useful applications
including solving integer programs [3,11,10], computing primitive partition iden-
tities [8] (chapters 6 and 7), and solving scheduling problems [9].

Urbanke [1] proposed an algorithm which involves of O(n) Gröbner basis
computations, all in an n-variable ring, which is similar to Sturmfels’ algorithm.
Bigatti et.al. [2] proposed an algorithm to compute toric ideal but it is not based
on saturation computation.

One important fact about Buchberger’s algorithm for computing Gröbner ba-
sis is that it is very sensitive to the number of variables of the ring. In all of the
algorithms cited so far, all of the Gröbner basis computations have been done
in the original ring having n variables. Recently there have been attempts that
saturate any pure difference binomial ideal in which computation occurs in rings
with fewer indeterminates than in the original ring. Hemmecke and Malkin [6]
have proposed a new approach, called Project and Lift, which involves the com-
putation of one Gröbner basis in a ring of j variables for j = 1, 2, . . . , n. Their
algorithm shows significant improvement over the prevailing best algorithms.
Another approach which also attempts at computation in smaller rings is by
Kesh and Mehta [7] which also requires the computation of one Gröbner basis
in k[x1, · · · , xj] for each j.

1.3 Our Approach

Before proceeding, we will need a few notations. Ui will denote the multiplica-
tively closed set {xa1

1 · · ·xai−1
i−1 : aj ≥ 0, 1 ≤ j < i}. ≺i will denote a graded

reverse lexicographic term order with xi being the least. ϕi : k[x1, . . . , xn] →
k[x1, . . . , xn][U−1

i−1] is the natural localization map r $→ r/1.
Algorithm 1 describes the saturation algorithm due to Sturmfels [8]. Algo-

rithm 2 describes the proposed algorithm. The primary motivation for the new
approach is that the time complexity of Gröbner basis is a strong function of the
number of variables. In the proposed algorithm, a Gröbner basis is computed
in the i-th iteration in i variables. The algorithm requires the computation of a
Gröbner basis over the ring k[x1, . . . , xn][U−1

i]. The Gröbner basis over such a
ring is not known in the literature. Thus, we propose a generalization of Gröbner
basis, called Pseudo Gröbner basis, and appropriately modify the Buchberger’s
algorithm to compute it.

A Saturation Algorithm for Homogeneous Binomial Ideals 359

Data: A homogeneous binomial
ideal, I ⊂ k[x].

Result: I : (x1, . . . , xn)∞

for i ← 1 to n do1

G ← Gröbner basis of I2

w.r.t. ≺i ;
I ← 〈{f : x∞

i : f ∈ G}〉 ;3

end4

return I ;5

Algorithm 1. Sturmfels’ Algorithm

Data: A homogeneous binomial
ideal, I ⊂ k[x].

Result: I : (x1, . . . , xn)∞

for i ← 1 to n do1

G ← Pseudo Gröbner basis2

of ϕi(I) w.r.t. ≺i ;
I ← 〈{ϕ−1

i (f : x∞
i) : f ∈3

G}〉 ;
end4

return I ;5

Algorithm 2. Proposed Algorithm

1.4 Refined Problem Statement

Let R be a commutative Noetherian ring with unity, and U ⊂ R be a multi-
plicatively closed set with unity but without zero. Let the set U+ be defined
as

U+ = { u : u ∈ U, or − u ∈ U, or u = 0 } .

Let S denote the localization of R w.r.t U , i.e., S = R[U−1]. Define a class of
binomials, called U -binomials, in the ring S[x1, . . . , xn] (also denoted by S[x])
as follows

u1

u′
1

xα1 +
u2

u′
2

xα2

where ui ∈ U+, u′
i ∈ U and xαi denotes the monomial xai1

1 · · ·xain
n for i = 1, 2.

We will address the problem of efficiently saturating a homogeneous U -
binomial ideal w.r.t. all the variables in the ring, namely x1, . . . , xn.

For different choices of R and U , this problem reduces to many standard
problems found in the literature. If R is a field, then this problem reduces to
saturating a binomial ideal in the standard polynomial ring. Restricting R to a
field and U to { +1,−1 } considering only pure difference binomials, it reduces
to the problem of saturating a pure difference binomial ideal.

The rest of the paper is arranged as follows. Sections 2 and 3 deals with
“chain binomials” and “chain sums” for general binomial ideals. Section 4 deals
with reductions of a U -binomial by a set of U -binomials. In section 5, we will
present the notion of Pseudo Gröbner Basis for S[x], and a modified Buchberger’s
algorithm to compute it. In section 6, we present a result similar to Sturmfels’
lemma (Lemma 12.1 [8]). The final saturation algorithm is presented in section 7.
Finally, in section 8, we present some preliminary experimental results comparing
our algorithm applied to toric ideals, to that of Sturmfels’ algorithm and Project
and Lift.

2 Chain and Chain-Binomial

In this section we shall describe the terminology we will need to work with
general binomials.

360 D. Kesh and S.K. Mehta

Symbols u, v, w, . . . will denote elements of U+ and u′, v′, w′, . . . will denote
the elements of U . A term in the polynomial ring S[x] is the product of an
S element with a monomial, for example, (r/u′)xa1

1 . . . xan
n where r ∈ R and

u′ ∈ U . For simplicity in the notations, we may also write it as (r/u′)xα, where
α represents the vector (a1, . . . , an). If r ∈ U+, then we will call it a U -term. A
binomial is a polynomial with at most two terms, i.e., b = (r1/u

′
1)x

α+(r2/u
′
2)x

β .
A binomial of the form xα − xβ is called a pure difference binomial. If both the
terms of a binomial are U -terms, then we will call it a U -binomial. A U -binomial
of the form (u1/u

′
1)x

α + (u2/u
′
2)x

α will be called balanced. Since U need not be
closed under addition, a balanced U -binomial ((u1/u

′
1) + (u2/u

′
2))x

α need not
be a U -term in general. A binomial b is said to be oriented if one of its terms is
identified as first (and the other second). If b is oriented, then brev denotes the
same binomial with the opposite orientation.

In the above notations, one of the coefficients of a binomial or U -binomial
may be zero. Hence the definition of binomials (rep. U -binomials) includes single
terms (resp. U -terms). To be able to handle all binomials in a uniform manner,
we shall denote a single term (r/u′)xα as (r/u′)xα + (0/1)x�, where x� is a
symbolic monomial. This will help in avoiding to consider a separate case for
single terms in some proofs. We shall refer to such binomials as mono-binomials.
In a term-ordering, x� will be defined to be the least element. Coefficient of x�

in every occurrence will be zero.

Definition 1. A sequence of oriented binomials ((r1/u
′
1)x

β1b1, . . . , (rq/u
′
q)x

βqbq)
(repetition allowed) will be called a chain if the second term of (ri/u

′
i)x

βibi cancels
the first term of (ri+1/u

′
i+1)x

βi+1bi+1, for each 1 ≤ i < q. Let B be a set of U -
binomials. If each bi in the chain belongs to B, then we will call it a B-chain. The
sum of the binomials of the chain (respectively, B-chain) b̃ =

∑q
i=1(ri/u

′
i)x

βibi,
which is itself a binomial, will be called the corresponding chain binomial (re-
spectively, B-chain binomial). It is the first term of (r1/u

′
1)x

β1b1 plus the
second term of (rq/u

′
q)x

βqbq, since all the intermediate terms get canceled. We
will call any two chains equivalent if their corresponding chain-binomials are
the same.

In the later sections we will be interested in the “shape” of a chain. Given a
term ordering we will call a chain ascending if the first monomial is (strictly)
less than the second monomial in each binomial of the chain with respect to
the given term-order. Similarly descending chains are defined. Another shape
of significant interest is the one in which there are three sections in the chain:
first is descending, second is horizontal (all binomials in it are balanced), and
the final section is ascending. Any of these sections can be of length zero. Such
chains will be called bitonic.

Suppose we have a sequence of oriented U -binomials such that the monomial
of the second term of the i-th binomial in the sequence is equal to the monomial
of first term of the (i + 1)-st binomial in the sequence. Then we can multiply
suitable coefficients to these U -binomials to turn this sequence into a chain
such that its chain-binomial is also a U -binomial. Let (xβ1b1, . . . ,xβqbq) be a

A Saturation Algorithm for Homogeneous Binomial Ideals 361

sequence of oriented U -binomials such that the first q − 1 binomials are not
mono-binomials. Let xβibi = xβi((ui/u

′
i)x

αi,1 + (vi/v
′
i)x

αi,2) where (ui/u
′
i)x

αi1

is the first term, for each i. Let βi + αi,2 = βi+1 + α(i+1),1 for all 1 ≤ i < q.
Consider the sequence (. . . , (di/d

′
i)x

βibi, . . .), 1 ≤ i ≤ q where d1/d
′
1 = 1/1 and

di/d
′
i = (−1)i−1(v1u

′
2v2u

′
3v3 · · · vi−1u

′
i/v

′
1u2v

′
2u3v

′
3 · · · v′i−1ui),

for i > 1. It is easy to see that it is a chain of U -binomials and its chain-binomial
is the U -binomial (u1/u

′
1)x

α1,1 + (dq/d
′
q)(vq/v

′
q)x

αq,2 which will be denoted by
B(xβ1b1, . . . ,xβqbq). Note that if bq is a mono-binomial, then the second term
will be (0/1)x�.

Observation 1. Let (xβ1b1, . . . ,xβkbk) be a sequence of oriented U -binomials
where bi ∈ B and none of which are mono-binomials. Furthermore, the second
monomial of xβibi and the first monomial of xβi+1bi+1 are same for all 1 ≤ i < k.
Then B(xβ1b1, . . . ,xβkbk,xβkbrev

k , . . . ,xβ1brev
1) = 0.

3 Decomposition into Chains

If B is a finite set of pure difference binomials, then every binomial in 〈B〉 is a
B-chain binomial. This property is used in the computation of a toric ideal. In
case B has general binomials this property does not hold. But in the following
theorem we will show that in ideals generated by U -binomials every polynomial
can be expressed as the sum of some B-chain binomials. This result is used in
the proof of theorems 2 and 3. For any polynomial f , Mon(f) will denote the
set of monomials in f .

Theorem 1. Let B be a finite set of U -binomials in S[x]. For every polynomial
f in I = 〈B〉, there exists a set of B-chain binomials b̃i such that f =

∑
i b̃i

where both monomials of every b̃i belongs to Mon(f) ∪ {x�}.
Proof. Let B = {b1, . . . , bn}. Consider an arbitrary polynomial f ∈ 〈B〉. So
f =

∑
i(ri/w

′
i)x

βibji where (ri/w
′
i)x

βi ∈ S[x], for all i. Define an edge-weighted
graph G (multi-edges and loops allowed) representing this expression in the
following manner. The vertex set of this graph is the set of distinct monomials
in (ri/w

′
i)x

βibi, for all i. Vertices corresponding to Mon(f)∪{x�} will be called
terminal vertices.

There is one edge for each addend binomial in the sum-expression for f . The
i-th edge is incident upon the two monomials associated with xβibi, if they are
distinct. Otherwise it forms a loop on that monomial. Weights are assigned to
two halves of each edge separately. Suppose bi = (ui/u

′
i)x

αi,1 +(vi/v
′
i)x

αi,2 . Then
we associate weight (ri/w

′
i)(ui/u

′
i) to the end incident on xβixαi,1 and weight

(ri/w
′
i)(vi/v

′
i) to the end incident on xβixαi,2 .

It should be clear from the construction that the sum of end-weights incident
upon a non-terminal vertex must be zero. Hence the degree of non-terminal
vertices can never be one. Each end-weight incident on x� is zero, so their sum
is also zero. See example in figure 1.

362 D. Kesh and S.K. Mehta

Fig. 1. An example of chain decomposition

Consider any connected component, C, of G. The polynomial corresponding
to C is the sum of its monomials, weighted with the sum of end-weights incident
on it. This is also the sum of addend binomials corresponding to the edges in C.
So the polynomial associated with G is the sum of polynomials of all components
of G, which is f .

If a component does not contain any Mon(f) vertex, then the corresponding
polynomial will be zero. So we can delete it from the graph without affecting
the total polynomial. Similarly any isolated Mon(f) vertex with no loop-edge
also contributes zero and can be deleted from the graph. So we can assume that
every connected component of G has at least one Mon(f) vertex and degree of all
terminal vertices is at least 1 and as observed earlier, the degree of non-terminal
vertices is at least 2.

We will establish the claim of the theorem by induction on the number of
edges in the graph. If the graph has one edge, then the corresponding expression
is a trivial B-chain binomial with both monomials from Mon(f) ∪ {x�}. Next
we will consider the graphs with more than one edge.

If there is a component with at least two terminal vertices, then select a short-
est path w between two different vertices of Mon(f) ∪ {x�} in the component.
In case all components have only one Mon(f) node, then from lemma 1 given
below, we conclude that a closed walk w exists passing through the terminal
vertex and has at least one edge on it which is traversed only once.

In either case, the walk w has at least one edge on it which is not traversed
more than once and both its end-vertices (the two end-vertices may be same if
w is a closed walk) are terminals. Furthermore, if one of the end-vertices is x�,
then w must be a path, not a closed walk. Hence, all edges on it are traversed
only once. In particular, the edge incident on x� is traversed only once.

Let (rj1/w
′
j1

)xβj1 bj1 , (rj2/w
′
j2

)xβj2 bj2 , . . . , (rjk
/w′

jk
)xβjk bjk

be the sequence
of the binomials associated with the successive the edges of the walk. Orient
these binomials such that walk proceeds from the first to the second term of
each binomial. Then the second monomial of i-th binomial is same as the first
monomial of (i + 1)-st binomial of the walk/sequence.

Suppose the t-th edge in the walk is traversed only once. In case the walk
ends in x�, take t to be the edge incident on x�. Let jt = l. Consider the
chain binomial b̃ = B((rld

′
t/w

′
ldt)xβj1 bj1 , . . . , (rld

′
t/w

′
ldt)xβjk bjk

), where dt/d
′
t is

as defined in the end of section 2. Observe that in the chain expression of b̃
the t-th addend is (rl/w

′
l)x

βlbl and all the remaining addends correspond to

A Saturation Algorithm for Homogeneous Binomial Ideals 363

other than l-th edge of the graph. From the definition of binomial b̃, both its
monomials are from the set {Mon(f) ∪ {x�}.

Let f ′ = f − b̃. Express f ′ as a sum expression by combining the sum ex-
pressions of f and b̃. The coefficients of a given binomial in the sum expression
of f and of b̃ combine to a single coefficient of the form r/u′. Hence, we get a
sum-expression for f ′ where the binomials are the same as in the expression of f
but their coefficients may change. The coefficient of xβlbl in f ′ sum-expression
is zero. So the number of addend binomials in f ′ expression is at least one less
that that in f expression. Therefore the graph corresponding to f ′ will have at
least one fewer edge then in the graph of f . This establishes the induction-step
and hence the proof is complete. �

Following is a graph theoretic result which was used in the above theorem.

Lemma 1. Let H be an undirected connected graph (possibly with loops and
multi-edges) with n vertices. Let s be a specified vertex. Also let the degree of
every vertex other than s be greater than one and deg(s) ≥ 1 (so if n = 1 then s
has a loop). Then, there exists a closed walk passing through s which has at least
one edge that occurs only once in it.

Proof. The number of edges in H is half of the sum of degrees of its vertices, so
it is at least �(1+2(n−1))/2� = n. A tree on n vertices has n−1 edges. So there
must exist a cycle in H . Since the graph allows loops and parallel edges, the
cycles in the graph include 1-cycles (loop) and 2-cycles (due to parallel edges).

Suppose this cycle is v0
e′
0→ v1

e′
1→ . . . vm−1

e′
m−1→ v0,m ≥ 1. Furthermore,

suppose vi is one of the nearest vertices of the cycle from s and let e1, e2, . . . , et

be a shortest paths from s to vi. So this path only touches the cycle at vi and
the sets of the edges of the path and the cycle are disjoint. Then the desired
walk is e1, e2, . . . , et, e

′
i, e

′
i+1, . . . , e

′
0, e

′
1 . . . , e′i−1, et, et−1, . . . , e1. �

4 Reduction of U -Binomials

Let B be a finite set of non-balanced U -binomials (which may include mono-
binomials) and a term order ≺. In this section we will formally describe the
reduction of any U -binomial by B with respect to the given term order. We will
assume that each binomial of B is oriented by setting the leading term as the
first term. We will denote the leading term of a binomial b by in≺(b).

Given an arbitrary U -term (u/u′)xα, algorithm 1 computes a descending
B-chain (v1/v

′
1)xβ1bj1 , . . . , (vp/v

′
p)xβpbjp with corresponding B-chain binomial∑p

i=1(vi/v
′
i)x

βibji = (u/u′)xα − (w/w′)xγ where xγ is not divisible by the lead-

ing term of any member of B. The term (w/w′)xγ will be denoted by (u/u′)xα
B

.
Any initial sub-chain (v1/v

′
1)x

β1bj1 , . . . , (vp/v
′
p)x

βpbjl
is called a reduction of

(u/u′)xα and if the corresponding chain-binomial is (u/u′)xα−(w1/w
′
1)xγ1 , then

(u/u′)xα is said to have B-reduced to (w1/w
′
1)xγ1 . In particular, (u/u′)xα

B
is

the irreducible B-reduction of (u/u′)xα. If p =
∑

i(ui/u
′
i)x

αi and (wi/w
′
i)x

γi be

364 D. Kesh and S.K. Mehta

Data: A finite set, B, of non-balanced U -binomials; a U -term (u/u′)xα

Result: A U -term (w/w′)xγ which is irreducible by B and a B-chain
corresponding to binomial (u/u′)xα − (w/w′)xγ .

(w/w′)xγ := (u/u′)xα ;1

i := 0 ;2

while some leading monomial in B divides xγ do3

select b = (μ1/μ′
1)x

δ1 + (μ2/μ′
2)x

δ2 from B s.t. the leading monomial xδ14

divides xγ ;
i := i + 1 ;5

xβji := xγ/xδ1 ;6

vi/v′
i := (−w/w′)(μ′

1/μ1) ;7

w/w′ := (vi/v′
i)(μ2/μ′

2);8

xγ := xβji · xδ2 ;9

end10

return (w/w′)xγ , ((v1/v′
1)x

βbj1 , . . . , (vi/v′
i)x

βibji) ;11

Algorithm 3. Division algorithm for a U -monomial by a set of non-balanced
U -binomials

some B-reduction of (ui/u
′
i)x

αi for each i, then
∑

i(wi/w
′
i)x

γi is a B-reduction
of p.The reduction of binomials is of special interest here. Suppose we have a
non-balanced U -binomial b = (u1/u

′
1)x

α1 + (u2/u
′
2)x

α2 and a finite set B of
non-balanced U -binomials in which the first term is greater than the second
term. Let (w1/w

′
1)x

γ1 and (w2/w
′
2)x

γ2 be the reductions of (u1/u
′
1)x

α1 and
(u2/u

′
2)x

α2 respectively. So b′ = (w1/w
′
1)x

γ1 + (w2/w
′
2)x

γ2 is a reduction of b.
Adjoining the reduction chain of (u1/u

′
1)x

α1 with b′ (if it is non-zero) followed
by the reverse of the reduction chain of (u2/u

′
2)x

α2 results into a bitonic chain
called a reduction chain of b with respect to B. Obviously, its chain-binomial
is b.

In case b is a balanced U -binomial (u1/u
′
1)x

α +(u2/u
′
2)x

α, we only need to re-
duce xα. Let a reduction chain and the reduction monomial be C1 and (w1/w

′
1)xγ

respectively. Then b′ = (u1/u
′
1)(w1/w

′
1)x

γ +(u2/u
′
2)(w1/w

′
1)x

γ is a B-reduction
of b and the corresponding reduction chain is (u1/u

′
1)C1, b

′, (u2/u
′
2)C

rev
1 .

For any binomial b, any B-reduction chain which reduces it to b′, is a B∪{b′}-
chain and it is bitonic. In particular, if b′ is zero then the reduction chain will
be a B-chain.

Lemma 2. Let C be a B-chain and b ∈ B. Let B′ = B \ {b} and b′ be some
B′-reduction of b. Then there is a B′ ∪ {b′}-chain which is equivalent to C.

Proof. If b does not occur in C, then C is also a B′ ∪ {b′}-chain.
The reduction chain of b by B′ is a B′∪{b′}-chain. In case b occurs in C, plug

this reduction chain in places of b in C. So the resulting chain is equivalent to
C and itself a B′ ∪ {b′}-chain. �

A Saturation Algorithm for Homogeneous Binomial Ideals 365

5 Pseudo-Gröbner Basis

In the first section we saw that the saturation of an ideal in k[x] can be computed
by first computing a suitable Gröbner basis for it, as described in Sturmfels’
lemma (Lemma 12.1 [8]). Unfortunately, Gröbner basis is only defined for ideals
in k[x], where k is a field, not for S[x] as is the case here. In this section, we will
describe a type of basis for U -binomial ideals in S[x] which closely resembles a
Gröbner basis. In section 6 , we will also prove a theorem similar to the Sturmfels’
lemma which will allow us to compute the saturation of such ideals.

Definition 2. For every finite U -binomial set G, G1 and G2 will denote its
partition, where the former will represent the set of non-balanced binomials and
the latter will represent the set of balanced binomials of G.

Definition 3. Let b1 = (u1/u
′
1)x

α1 + (v1/v
′
1)x

β1 and b2 = (u2/u
′
2)x

α2 +
(v2/v

′
2)x

β2 be non-balanced U -binomials belonging to S[x]. Let ≺ be a term order
and xβi ≺ xαi for i = 1, 2. Further, let b3 = (w1/w

′
1 +w2/w

′
2)x

α. We define two
types of S-binomials as follows: First one for a pair of two non-balanced bino-
mials, s(b1, b2), is given by (u1v2/u

′
1v

′
2)xβ2+γ−α2 − (v1u2/v

′
1u

′
2)xβ1+γ−α1 , where

xγ is the LCM of xα1 and xα2 . The second type is for a balanced and non-
balanced binomial. In this case s(b3, b1) is given by (w1/w

′
1 + w2/w

′
2)x

β1+γ−α1 ,
where xγ is the LCM of xα and xα1 .

Assume a fixed term-order. In a chain (. . . , (vi/v
′
i)x

βibi, . . .), two consecutive
binomials will be said to form a peak if at least one is non-balanced and the
monomial at their junction is greater than or equal to the other two monomials.
Further suppose xβi−1bi−1 and xβi+jbi+j are non-balanced binomials and all the
intermediate binomials are balanced, then the binomials xβkbk, i ≤ k ≤ i+ j−1
are called plateau if at least one of (i−1)-st and i-th binomials or (i+ j−1)-th
and (i + j)-th binomials form a peak. See figure 2.

Fig. 2. Types of peaks

Suppose C = (. . . , (ui−1/u
′
i−1)x

βi−1bi−1, (ui/u
′
i)x

βibi, . . .) is a chain where
(i − 1)-st and i-th binomials form a peak. In case bi−1 and bi both are non-
balanced, then there exists a term (w/w′)xγ such that following chain is equiv-
alent to C: . . . , (ui−2/u

′
i−2)x

βi−2bi−2, (w/w′)xγs(bi−1, bi), (ui+1/u
′
i+1)x

βi+1bi+1,
. . .. In the second case, when bi−1 is balanced and bi is non-balanced, then there
exists a constant w1/w

′
1 and a term (w2/w

′
2)x

γ such that the following chain is
equivalent to C: . . . , (ui−2/u

′
i−2)x

βi−2bi−2, (w1/w
′
1)x

βibi, (w2/w
′
2)x

γ

s(bi−1, bi), (ui+1/u
′
i+1)x

βi+1bi+1, The third case where bi−1 is non-balanced
and bi is balanced, need not be separately considered because it is same as the
second case with initial chain reversed. Observe that in these cases the original
peak is removed, see figure 3.

366 D. Kesh and S.K. Mehta

Fig. 3. S-polynomial reductions

Lemma 3. Let G be a finite set of U -binomials and assume a fixed term-
ordering. If for every S-polynomial s(b1, b2), b1, b2 ∈ G, has a G-chain in which
each monomial is less than or equal to at least one monomial of s(b1, b2), then
every G-chain has an equivalent bitonic G-chain.

Proof. Consider any arbitrary G-chain. If it has no peak, then it must be bitonic.
Otherwise locate one of the highest (in terms of the ordering) peaks. Replace
the two binomials forming the peak by the S-polynomial or the combination of
the S-polynomial and the non-balanced binomial as described in the previous
paragraph. Now replace the S-binomial by the corresponding G-reduction chain.
The reduction chain cannot have any monomial higher than both the monomials
of the S-binomial so no new peaks can form which is above both the monomials of
S-binomial. Substitution again turns the chain into a G-chain and it is equivalent
to the original chain. But it has one less peak or plateau at the level of the
selected peak. Iterate over this step till there is no peak left. Since term-ordering
is well-ordering, these iterations will have to terminate. �

A functional definition of Gröbner basis for any ideal in the ring k[x] is that
it is a basis of the ideal which reduces every member of the ideal to zero. We
will define pseudo Gröbner basis in a similar fashion. In the previous section we
described the reduction of a U -binomial by a set of non-balanced U -binomials.
Hence the reduction of a U -binomial by set G1 is well defined.

Definition 4. A U -binomial basis G of the ideal I = 〈G〉 will be called pseudo
Gröbner basis with respect to a given term-order if every binomial of I reduces
to 0(mod 〈G2〉).
Algorithm 4 is modified Buchberger’s algorithm which computes a pseudo
Gröbner basis for the ideal generated by an initial basis B, containing U bi-
nomials. The first loop of the algorithm terminates since the initial ideal of 〈G1〉
strictly increases in each iteration and the underlying ring is Noetherian. In the
second part the S-polynomial computed in line 5 and the reduction with respect
to G1 do not change the coefficient of the monomial in the balanced binomial.

A Saturation Algorithm for Homogeneous Binomial Ideals 367

Hence all members of H have the same coefficient. In line 5 r′ reduces to zero
if any monomial in H divides it else it remains unchanged. Therefore each ad-
dition to H strictly increases the ideal generated by H . Once again ring being
Noetherian, this expansion of H must stop. Hence the algorithm terminates.

Data: B = { b1, . . . , bs } ⊆ S[x1, . . . , xn] be a set of U -binomials ; a term
order ≺

Result: A pseudo Gröbner basis (G1, G2) for 〈B〉 with respect to ≺.
G2 ← balanced members of B ;1

G1 ← B \ G2 ;2

repeat3

G1,old ← G1 ;4

for each pair b1, b2 ∈ G1,old s.t. b1 �= b2 do5

r ← s(b1, b2)
G1 ;6

if r is non-balanced then7

G1 ← G1 ∪ {r} ;8

else9

if r �= 0 then10

G2 ← G2 ∪ {r}11

end12

end13

end14

until G1,old = G1;15

H2 ← ∅;16

for each b in G2 do17

H ← {b};18

repeat19

Hold ← H ;20

for each b ∈ Hold and b1 ∈ G1 do21

r′ ← s(b, b1)
G1

;22

r ← r′
H

;23

if r �= 0 then24

H ← H ∪ {r};25

end26

end27

until Hold = H ;28

H2 ← H2 ∪ H ;29

end30

G2 ← H2;31

/* For reduced pGB, reduce G1 elements by other G1 elements
and G2 elements by G1. */

return (G1, G2);32

Algorithm 4. A1: Modified Buchberger’s algorithm

368 D. Kesh and S.K. Mehta

Theorem 2. Algorithm 4 computes a pseudo Gröbner basis of 〈B〉 with respect
to the given term ordering.

Proof. Let (G1, G2) be the output of algorithm 4. Let G = G1 ∪ G2. The S-
polynomials of a pair of binomials in the ideal also belong to the ideal. Similarly
the G1 reduction of a binomial of the ideal also belongs to the ideal. Hence the
ideal remains fixed during the computation, i.e., 〈B〉 = 〈G〉.

In order to show that (G1, G2) is a pseudo-Gröbner basis of 〈G〉 we need to
show that G1 reduces every polynomial of 〈G〉 to polynomial in 〈G2〉. Due to
theorem 1 it is sufficient to show that G1 reduces every G-chain binomial to a
polynomial in 〈G2〉.

Let s(b1, b2) be the S-polynomial of some b1, b2 ∈ G. Then it is itself a G ∪
{s(b1, b2)}-chain (i.e., a chain of only one binomial). The reduction chain of

s(b1, b2) is a G-chain since s(b1, b2)
G1

belongs to G. From Lemma 3 every G-
chain has an equivalent bitonic G-chain.

Consider an arbitraryG-chain binomial b = (u1/u
′
1)x

α1+(u2/u
′
2)x

α2 . From the
previous paragraph we know that there is a bitonic G-chain with b as its chain bi-
nomial. Let C1, C2 andC3 be its descending, horizontal, and ascending sections. So
the C1 and Cr

3 (reverse of C3) are reduction chains of (u1/u
′
1)x

α1 and (u2/u
′
2)x

α2

respectively. Let their reduced terms be (v1/v
′
1)x

β1 and (v2/v
′
2)x

β2 respectively.
Then the chain-binomial of C2 is b′ = (−v1/v

′
1)x

β1 + (−v2/v
′
2)x

β2 . Since all bal-
anced binomials of G belong to G2, C2 is a G2-chain and b′ ∈ 〈G2〉. �

6 Saturation with Respect to xi

In this section we we will prove a result similar to lemma 12.1 of [8] which will
result into an algorithm to compute 〈B〉 : x∞

i efficiently.

Theorem 3. Let (G1, G2) be the pseudo Gröbner basis of a homogeneous U -
binomial ideal I in S[x] with respect to graded reverse lexicographic term order
with xi least. Then (G′

1 = G1 ÷ x∞
i , G′

2 = G2 ÷ x∞
i) is a pseudo Gröbner basis

of I : x∞
i .

Proof. From theorem 1 we know that every polynomial f in I can be expressed
as a sum of G-chain binomials and their monomials are monomials of f . So it
is sufficient to show that for each G-chain binomial b, b′ = b÷ x∞

i is a G′-chain
binomial.

Let b = (u1/u
′
1)x

α1 + (u2/u
′
2)x

α2 be a G-chain binomial. From lemma 3
there is a bitonic G-chain for b, say, (v1/v

′
1)xβ1b1, . . . , (vk/v

′
k)xβkbk. Hence every

monomial in the chain is less than either xα1 or xα2 . Let a be the largest integer
such that xa

i divides b, i.e., xa
i divides xα1 and xα2 . Since the term ordering is

graded reverse lexicographic with xi least, xa
i must divide every monomial of the

chain. Hence there exists β′
j such that (xβjbj)÷xa

i = xβ′
j (bj÷x∞

i). So b÷x∞
i = b÷

xa
i =

∑
j(vj/v

′
j)x

β′
j (bj ÷x∞

i) and (v1/v
′
1)x

β′
1(b1÷x∞

i), . . . , (vk/v
′
k)xβ′

k(bk ÷x∞
i)

is a chain with chain-binomial equal to b ÷ x∞
i . Thus b ÷ x∞

i is a G′-chain
binomial. �

A Saturation Algorithm for Homogeneous Binomial Ideals 369

7 Final Algorithm

Let R0 be a commutative Noetherian ring with unity, and U0 ⊂ R0 be a mul-
tiplicatively closed set with unity but without zero. Let the set U+

0 be defined
as

U+
0 = { u : u ∈ U0, or − u ∈ U0, or u = 0 } .

Let S0 denote the localization of R0 w.r.t U0, i.e., S0 = R0[U−1
0]. Here we define

a few notations to simplify the description of the algorithm. Let Ui be the set of
all monomials in x1, . . . , xi and Si = S0[x1, . . . , xi][U−1

i].
Let f(x) be a polynomial in Si[xi+1, . . . , xn]. Let k be the largest integer such

that xk
i occurs in the denominators of one or more terms of f . Then x∞

i ∗ f(x)
denotes xk

i ∗ f(x). If B is a set of polynomials of Si[xi+1, . . . , xn], then x∞
i ∗ B

denotes { x∞
i ∗ f(x) : f(x) ∈ B }.

We will be dealing with several polynomial rings simultaneously. In case of
ambiguity about the underlying ring we will denote the ideal generated by a set
of polynomials B in a ring S[x] by 〈B〉S[x].

Our algorithm is based on the following identities where B is a finite set
of polynomials in S0[x1, . . . , xn] and for each i, Bi denotes a basis of 〈B〉Sn ∩
Si[xi+1, . . . , xn].

Lemma 4. (i) 〈B〉S0[x1,...,xn] : (x1 . . . xn)∞ = 〈B〉Sn ∩ S0[x1, . . . , xn]
(ii) 〈B〉Sn ∩ Si−1[xi, . . . , xn] = 〈x∞

i ∗ Bi〉Si−1[xi,...,xn] : (xi)∞

Proof. (i) Let f ∈ 〈B〉Sn ∩ S0[x1, . . . , xn] so f =∑
j(rj/u

′
j)(x

αj /xβj)bj where bj ∈ B. The terms in the denominator in expression
get canceled since f has no terms in the denominator. So

xβ1+β2+....f =
∑

j

xαj+β1...+βj−1+βj+1+....bj ∈ 〈B〉S0[x1,...,xn].

Therefore f ∈ 〈B〉S0[x1,...,xn] : (x1 . . . xn)∞.
Conversely, Let f ∈ 〈B〉S0[x1,...,xn] : (x1 . . . xn)∞. So for some xβ , xβf =∑
i(ri/u

′
i)x

αibi where bi ∈ B. So f =
∑

i(x
αi/xβ)bi ∈ 〈B〉Sn . Since f has no

terms in the denominators of its terms, f ∈ 〈B〉Sn ∩ S0[x1, . . . , xn].
(ii) Let f ∈ 〈B〉Sn ∩ Si−1[xi, . . . , xn]. So f ∈ 〈Bi〉. Let f =

∑
(xαj /xβj)bj

where bj ∈ Bi and xβj are monomials on xi, xi+1, Let m be the largest expo-
nent of xi in the denominators in the sum-expression. So there are integers ti such
that xm

i f =
∑

(xti

i xαj /xβj)(x∞
i ∗bj). This sum belongs to 〈x∞

i ∗Bi〉Si−1[xi,...,xn].
So f ∈ 〈x∞

i ∗ Bi〉Si−1[xi,...,xn] : (xi)∞.
Nowthe converse.x∞

i ∗Bi ⊂ 〈B〉Sn∩Si−1[xi, . . . , xn]. So 〈x∞
i ∗Bi〉Si−1[xi,...,xn] ⊂

〈B〉Sn∩Si−1[xi, . . . , xn]. Now we will show that the ideal on the right hand side is
saturated with respect to xi. Let xk

i f ∈ 〈B〉Sn ∩Si−1[xi, . . . , xn] where xi, . . . , xn

are not in the denominators in f . So (1/xk
i)(xk

i f) ∈ 〈B〉Sn or f ∈ 〈B〉Sn . Since
f does not have xi, . . . , xn in the denominators, f ∈ 〈B〉Sn ∩ Si−1[xi, . . . , xn]. �

Using Theorem 3 we compute the saturation 〈x∞
i ∗Bi〉Si−1[xi,...,xn] : (xi)∞. Hence

the final algorithm is as follows.

370 D. Kesh and S.K. Mehta

Data: Finite set B of homogeneous U0-binomials in S0[x1, . . . , xn].
Result: A pseudo-Gröbner basis of 〈B〉S0[x1,...,xn] : (x1 · · ·xn)∞

G1 := {b ∈ B|b is non-balanced };1

G2 := {b ∈ B|b is balanced };2

for i ← n to 1 do3

if i > 1 then4

Homogenize G1 using a new variable z;5

end6

(G′
1, G

′
2) := (x∞

i ∗ G1, x
∞
i ∗ G2);7

(G1, G2) := A2(G1, G2, rev. lex order with i least);8

(G1, G2) := (G1 ÷ x∞
i , G2) ÷ x∞

i);9

(G1, G2) := (G1|z=1, G2|z=1);10

end11

return (G1, G2).12

Algorithm 5. A3:Computation of 〈B〉S0[x1,...,xn] : (x1 · · ·xn)∞

The graded reverse lexicographic term order requires a homogeneous ideal,
hence we require homogenization for n ≥ i > 1 cases. In case of i = 1, the ideal
is given to be homogeneous.

Theorems 2, 3 and lemma 4 establish the correctness of this algorithm.

Theorem 4. Let R0 be Noetherian commutative ring with unity. Let U0 ⊂ R0

be a multiplicatively closed set. Let B be a finite set of homogeneous U0-binomials
in S0[x1, . . . , xn]. Then algorithm A3 computes a pseudo-Gröbner basis of 〈B〉 :
(x1 · · ·xn)∞.

8 Preliminary Experimental Results

In the table given below, we present some preliminary experimental results of
the application of the proposed algorithm in computing toric ideals. To apply
our general algorithm to this specific case, we choose R0 to be a field k, and U0

to be {1}. Thus, S0 = k and the polynomial ring S0[x] is simply k[x].
We compare our algorithm with Sturmfels’ [8] and the Project and Lift algo-

rithm [6], the best algorithm known to date to compute toric ideals. As expected,
the table shows that our algorithm performs much better than the Sturmfels’
original algorithm, as our algorithm is specifically designed for binomial ideals.

To compare with Project and Lift algorithm, we implemented it as reported
on page 19 of [6], without optimizations reported subsequently. 4ti2[6] is the
optimal implementation of their algorithm. Similar optimizations are applicable
in our algorithm and it too is implemented without the same. The typical results
are presented in the table given below.

Our intuition as to why our algorithm is doing better compared to Project
and Lift is that, though Project and Lift does a large part of its calculations
in rings of variables less than n, it still uses Sturmfels’ saturation algorithm

A Saturation Algorithm for Homogeneous Binomial Ideals 371

Table 1. Preliminary experimental results comparing Project-and-Lift and our pro-
posed algorithm

Number of Size of basis Time taken (in sec.)
variables Initial Final Sturmfels’ Project and Lift Proposed

8 4 186 .30 0.12 0.10
6 597 2.61 .6 0.64

10 6 729 3.2 1.1 0.50
8 357 2.4 .40 0.29

12 6 423 1.7 .90 0.27
8 2695 305 60 27.2

14 10 1035 10.5 4.2 2.5

as a subroutine, though the extent it uses the algorithm depends on the input
ideal. On the other hand, our algorithm computes all saturations by the same
approach.

References

1. Biase, F.D., Urbanke, R.: An algorithm to calculate the kernel of certain polynomial
ring homomorphisms. Experimental Mathematics 4, 227–234 (1995)

2. Bigatti, A.M., Scala, R., Robbiano, L.: Computing toric ideals. J. Symb. Com-
put. 27(4), 351–365 (1999)

3. Conti, P., Traverso, C.: Büchberger algorithm and integer programming. In:
AAECC, pp. 130–139 (1991)

4. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergrad-
uate Texts in Mathematics). Springer-Verlag New York, Inc., Secaucus (2007)

5. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Mathematical Journal 84(1),
1–45 (1996)

6. Hemmecke, R., Malkin, P.N.: Computing generating sets of lattice ideals and
markov bases of lattices. Journal of Symbolic Computation 44(10), 1463–1476
(2009)

7. Kesh, D., Mehta, S.K.: Generalized reduction to compute toric ideals. In: Dong, Y.,
Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 483–492. Springer,
Heidelberg (2009)

8. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series,
vol. 8. American Mathematical Society, Providence (December 1995)

9. Tayur, S.R., Thomas, R.R., Natraj, N.R.: An algebraic geometry algorithm for
scheduling in the presence of setups and correlated demands. Mathematical Pro-
gramming 69(3), 369–401 (1995)

10. Thomas, R.R., Weismantel, R.: Truncated Gröbner bases for integer programming.
In: Engineering, Communication and Computing, pp. 241–257. Kluwer Academic
Publishers, Dordrecht (1995)

11. Urbaniak, R., Weismantel, R., Ziegler, G.M.: A variant of the Büchberger algorithm
for integer programming. SIAM J. Discret. Math. 10(1), 96–108 (1997)

Improved Algorithms for Farthest Colored

Voronoi Diagram of Segments�

Yongding Zhu and Jinhui Xu

Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, NY 14260, USA
{yzhu3,jinhui}@buffalo.edu

Abstract. Given n line segments in the plane with each colored by
one of k colors, the Farthest Colored Voronoi Diagram (FCVD) is a
subdivision of the plane such that the region of a c-colored site (segment
or subsegment) s contains all points of the plane for which c is the farthest
color and s is the nearest c-colored site. FCVD is a generalization of
the Farthest Voronoi Diagram (i.e., k = n) and the regular Voronoi
Diagram (i.e., k = 1). In this paper, we first present a simple algorithm
to solve the general FCVD problem in an output-sensitive fashion in
O((kn + I)α(H) log n) time, where I is the number of intersections of
the input and H is the complexity of the FCVD. We then focus on a
special case, called Farthest-polygon Voronoi Diagram (FPVD), in which
all colored segments form k disjoint polygonal structures (i.e., simple
polygonal curves or polygons) with each consisting of segments with the
same color. For FPVD, we present an improved algorithm with a running
time of O(n log2 n). Our algorithm has better performance and is simpler
than the best previously known O(n log3 n)-time algorithm.

1 Introduction

In this paper, we consider the following Farthest Colored Voronoi Diagram
(FCVD) problem: Given k sets of line segments S1, S2, . . . , Sk in the plane with
each Si associated with a different color ci, compute a subdivision of the plane
such that the region (called Voronoi region) of a site sij ∈ Si contains all points
of the plane for which Si is the farthest set and sij is the nearest site in Si,
where Si = {si1, si2, . . . , sini} for i = 1, 2, . . . , k and

∑k
i=1 ni = n. For simplic-

ity, we assume that all segments in each set do not intersect with each other in
their interiors (i.e., they could share endpoints but not interior points), and thus
can be viewed as a collection of open segments and endpoints. This assumption
is valid since we can otherwise partition each segment into subsegments at its
intersection points with others in the same set. (Note that segments in different
sets could still intersect in their interiors.) When k = 1, FCVD is known as the

� This research was partially supported by NSF through CAREER Award CCF-
0546509 and grant IIS-0713489.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 372–386, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 373

(Closest) Voronoi Diagram of Segments, and can be computed in O(n log n) time
[4]. When k = n, it is the Farthest Line Segment Voronoi Diagram and can be
computed in O(n log n) time as well [2].

For arbitrary k, Huttenlocher et al. have extensively studied the FCVD prob-
lem from a different perspective [6]. Their approach considers the upper envelope
of the Voronoi surfaces in 3-space under Lp metrics. For each set Si, consider the
surface represented by the graph of the function di(x) = mins∈Si ρ(x, s), where
ρ is the Euclidean distance and s is an open segment or an endpoint. The surface
is called the Voronoi Surface of Si with di as the third dimension (see Figure 1).
It is well-known that the orthogonal projection of the Voronoi surface renders
the Voronoi diagram of Si. The upper envelope of these surfaces is the graph
of the function f(x) = max1≤i≤k di(x), i.e., f(x) is the largest distance from x
to its k nearest sites (open segments or endpoints), one for each set. Then the
FCVD can be obtained by projecting the upper envelope to the plane such that
each Voronoi region corresponds to a facet of the upper envelope surface. Each
such Voronoi region is called a (Voronoi) cell and there is a 1−1 correspondence
between Voronoi cells and facets of the Voronoi surface. The upper envelope of
k Voronoi surfaces of S1, S2, . . . , Sk under Euclidean distance has a complex-
ity of O(n22α(n)) in the worst case and can be computed in O(n2α(n) log n)
time, where α(n) is the reverse Ackermann function [6]. It is straightforward
to see that our problem can be solved in O(n2α(n) log n) time. In this paper,
we present a simple but more efficient algorithm to solve the FCVD problem in
O((kn + I)α(H) log n) time, where I is the number of intersection points of the
input and H is the size of the resulting Voronoi diagram.

sij

di

45∘

Fig. 1. The Voronoi surface of a (closed) segment consists of a wedge and two half cones;
di(x) is the lower envelope of such shapes for every site sij in Si, where j = 1, 2, . . . , ni

The main focus of this paper is on a special case of the FCVD problem, called
the Farthest-Polygon Voronoi Diagram (FPVD) in which each Si forms a sim-
ple polygon disjoint from all other k − 1 polygons. For this special case, one
way to solve it is to apply Huttenlocher’s idea [6]. However, the running time of
such an approach would be rather costly for large k (i.e., O(knα(n) log n)). Re-
cently, Cheong et al. designed a more efficient algorithm to solve the problem in
O(n log3 n) time using a divide-and-conquer paradigm and parametric searching

374 Y. Zhu and J. Xu

technique. Although parametric searching is a rather powerful technique, it also
has some undesirable weakness [1]. For example, parametric searching requires
to design an efficient parallel algorithm for the generic version of the decision
procedure and exact computation of the polynomials which could be quite com-
plicated and time-consuming. In this paper, we present an alternative approach
to solve the problem. We use divide-and-conquer and arc-tracing techniques to
generate the farthest-polygon Voronoi diagram in O(n log2 n) time. Our algo-
rithm is faster and simpler.

The rest of the paper is organized as follows. In Section 2, we present our
algorithm for generating the FCVD for segments. In Section 3, we first modify
the algorithm in Section 2 to solve the farthest-polygon Voronoi diagram problem
in O(kn log n) time for small k and then give a new O(n log2 n)-time algorithm for
any k with its running time independent of k. In Section 4, we draw conclusions.

2 Farthest Colored Voronoi Diagram of Segments

Let S1, S2, . . . , Sk be the k sets of segments in the FCVD problem. We consider
the regular Voronoi diagram (denoted as V D(Si)) for each set Si, i = 1, 2, . . . , k.
V D(Si) is constructed using Yap’s model [8], where Si consists of open segments
and endpoints. Thus, a site can be either open segment or point in this paper.
Two neighboring Voronoi regions, say V R(s) and V R(s′), can be separated by
a parabolic curve if one of the two sites s and s′ is an open segment, the other is
a point, and the point site is not an endpoint of the segment site. Without loss
of generality, we assume that all sites are in general positions, i.e., there exist at
most three sites co-circular.

Definition 1. A region R in the plane has star-shape property if there exists a
point p ∈ R such that for any point q ∈ R the segment pq lies entirely inside R;
R has weak star-shape property if there exists a segment s in R such that for any
point q of R, let p be the closest point of s to q, then pq lies entirely within R.

The Voronoi regions have either star-shape or weak star-shape property depend-
ing on whether the site is a point or an open segment.

Lemma 1. Let V D(Si) be the Voronoi diagram of Si and s ∈ Si be a site.
Then the Voronoi region V R(s) has star-shape property if s is a point and weak
star-shape property if s is an open segment.

Proof. As shown in Figure 2, pq lies entirely within the Voronoi region if q is in
the region, because for any point q′ on the segment pq the circle centered at q′

and touches p is contained in the circle centered at q. ��
To generate the FCVD, we need to compute the farthest colored Voronoi region
FCV R(s) of each site s ∈ Si(i = 1, 2, . . . , k), which can be computed by using
the following lemma.

Lemma 2. Let V Ri(s) be the Voronoi region of s ∈ Si in V D(Si) and V Rij(s)
be the Voronoi region of s in V D(Si ∪ Sj) for some j �= i. Then FCV R(s) =
V Ri(s)\ ∪j �=i V Rij(s).

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 375

p

q

q′

V R(p)

p

q

q′

V R(s)

s

Fig. 2. Star-shaped and weakly star-shaped Voronoi regions; the dashed arcs are
Voronoi arcs(i.e., the arcs of the Voronoi diagram separating neighboring Voronoi re-
gions); the left figure demonstrates the case where the site is a point and the Voronoi
region is star-shaped; the right figure demonstrates the case where the site is a segment
and the Voronoi region is weakly star-shaped

Proof. First we observe that FCV R(s) ⊂ V Ri(s) and V Rij(s) ⊂ V Ri(s), where
i, j = 1, 2, . . . , k and j �= i. For any point q ∈ V Rij(s), q is not in FCV R(s)
because q is farther away from Sj than Si (see Figure 3). ��

s

V Ri(s)

V Rij1 (s)
V Rij2 (s)

s

V Ri(s)

V Rij1 (s)

V Rij2(s)

Fig. 3. FCVR of a site s where s can be either point(left) or open segment(right); the
boundary of Voronoi regions consists of line segments and parabolic curves; the black
dots are vertices

Since by Lemma 1 all Voronoi regions have (weak) star-shape property, we can
compute the union of Voronoi regions using the upper envelope algorithms on the
boundaries [6]. In particular, for Voronoi regions of a point site, we need to con-
sider the polar coordinate system where the point site is the origin. The upper en-
velope of line segments and parabolic curves can be computed in O(nα(h) log h)
time in an output-sensitive fashion by the same technique in [7], where h is the
complexity of the upper envelope. We are now ready to present the algorithm
for computing FCVD.

FCVD Algorithm:
Input: k sets of line segments S1, S2, . . . , Sk, each set is painted in unique color;
Output: The Farthest Color Voronoi Diagram of S1, S2, . . . , Sk;

– Step 1: Construct Voronoi diagram for each set V D(Si) where i = 1, 2, . . . , k;
– Step 2: Construct Voronoi diagrams V D(Si∪Sj) where i, j = 1, 2, . . . , k and

j �= i;

376 Y. Zhu and J. Xu

– Step 3: For each endpoint or subsegment s ∈ Si, compute ∪j �=iV Rij(s);
– Step 4: Compute V Ri(s)\ ∪j �=i V Rij(s);

Theorem 1. The FCVD algorithm correctly generates the FCVD of S1, S2, . . . ,
Sk in O((kn + I)α(H) log n) time, where n is the total complexity of the input,
I is the number of intersection points, and H is the complexity of the FCVD.

Proof. The correctness follows from Lemma 2. To analyze the running time, let
ni be the complexity of Si. Then, we have n =

∑k
i=1 ni. It takes O(ni log ni) time

to construct V D(Si) [4]. Thus, step 1 takes O(
∑k

i=1 ni log ni) = O(n log n) time.
Similarly, we can compute V D(Si ∪ Sj) in O((ni + nj + Iij) log (ni + nj + Iij))
time, where Iij is the total number of intersection points between Si and Sj .
Hence, the total running time for step 2 is at most

∑k
i=1(

∑k
j=1(ni + nj +

Iij) log n) =
∑k

i=1(kni + n +
∑k

j=1 Iij) log n = (2kn + I) log n. Thus the second
step takes O((kn + I) log n) time. Similarly, step 3 takes O((n + I)α(H) log H)
in total, where H denotes the output complexity [7]. The last step can be done
in O(H) time by traversing all arcs of V Ri(s) and ∪j �=iV Rij(s) because both
of them have (weak) star-shape property. Thus the total running time of the
algorithm is O((kn + I)α(H) log n). ��

3 Farthest-Polygon Voronoi Diagram

Given k sets of line segments S1, S2, . . . , Sk in the plane, the FCVD of the k sets
is called a Farthest-polygon Voronoi Diagram (FPVD), if each input set forms a
simple polygonal structure (i.e., a polygonal curve or polygon). In this paper, we
consider the case that the k polygonal structures are pairwise disjoint. Clearly, by
applying the FCVD algorithm, we can construct the FPVD in O(knα(H) log n)
time as I = 0 in this case. If k is a constant, the algorithm is asymptotically
near optimal (i.e., differ from the optimal by a factor of O(α(H))). However, for
large k (e.g., k = Ω(n)), this simple algorithm turns out to be very inefficient.
To obtain more efficient solution, we improve the divide-and-conquer approach
in [3] and present an algorithm with a running time of O(n log2 n). We first
introduce some basic concepts and lemmas.

For simplicity, we first assume that there is a large enough bounding box con-
taining all vertices of FPVD in its interior. Thus any unbounded arc of FPV D
intersects the bounding box. We call such an intersection point a bounding-box
vertex.

For a given polygonal structure P , let CH(P) be the region bounded by the
convex hull of P (also called the convex hull of P). A pocket of P is a connected
component of CH(P)\P . A pocket can be bounded or unbounded. Let V D(P)
be the Voronoi diagram of P . Then it is easy to see that the intersection of
V D(P) and a pocket of P is a tree. V D(P) is also called the medial axis of P .
For unbounded pocket, the tree is rooted at a bounding-box vertex.

A vertex p of FPVD is a point in the plane such that there exists a minimal
disk D(p, r) (centered at p and with radius r) that touches at most 3 polygons

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 377

and intersects all others. By “touch”, we mean that the interior of the disk and
the polygon are disjoint but there exists at least one point of the polygon lies on
the boundary of the disk. Since all sites are in general position, this disk can only
touch at most 3 sites. If all the 3 sites belong to the same polygon, the vertex is
called a medial axis vertex. If each of the 3 sites belongs to a different polygon,
the vertex is called a pure vertex. Otherwise, the vertex is called a mixed vertex
[3]. The disk D(p, r) is called the spanning disk at p. Minimal spanning disk is
unique at any point in the plane.

The arcs of FPVD can also be classified into 3 types. Given two neighboring
Voronoi regions of FPVD V R(s) and V R(s′) and the arc separating them, the
3 types of arcs are defined as follows:

1. The arc is a medial axis arc, if s and s′ are in the same set and one is not
the endpoint of the other;

2. It is a pure arc, if s and s′ are in different sets;
3. It is a spoke, if s is the endpoint of s′ or vice versa.

Lemma 3. Let T be a tree of V D(P) and V R(P) be the Voronoi region of P .
Then T ∩ V R(P) is a connected subtree.

Proof. Suppose T ∩ V R(P) is two connected subtrees, say, T1 and T2 as shown
in Figure 4. Let p and q be two arbitrary points of T1 and T2 respectively. Then
there exists a unique path pq connecting p and q. Since T1 and T2 are separated,
pq must intersect the boundary of V R(P) at two mixed vertices, denoted by
p′ and q′ respectively. Consider the spanning disks Dp′ and Dq′ at p′ and q′

respectively, then portions of Dp′ , Dq′ , and P enclose a closed region R. In
particular, as shown in Figure 4, a and c are the two touching points of P and
Dp′ ; b and d are the two touching points of P and Dq′ . Then there must exist
two input polygons Q and Q′ (note that it is possible Q = Q′) such that Q
touches R at arc ac and Q′ touches R at arc bd. Therefore ab and cd must be
disconnected because otherwise Q or Q′ intersects P . This contradicts the fact
that any pair of input polygons are disjoint. Since P is an input polygon and
therefore its boundary is connected, we conclude that T ∩ V R(P) must be a
connected subtree of T . ��
Note that the above lemma was proved in [3]. We give a much simpler proof here
for the design of our algorithm.

Given a set A of k disjoint polygons S1, S2, . . . , Sk with a total complexity of
n, it was shown in [3] that one can divide A into two subsets A1 and A2 such
that the sizes of A1 and A2, denoted by n1 and n2 respectively, have the follow-
ing relation: n

4 ≤ n1, n2 ≤ 3n
4 or there exists a polygon Si whose complexity is

larger than or equal to n
2 . In the latter case, we let A1 = {Si} and A2 = A\{Si}.

We call such a division of A a proper division. Intuitively, if an input set is prop-
erly divided, we can apply the divide-and-conquer paradigm in [3] to solve our
problem efficiently because the depth of the recursion tree is O(log n). We can
use the following recursive procedure to solve our problem.

378 Y. Zhu and J. Xu

𝒯

𝒯1

𝒯2

V R(P)

p

q

P

P

a

b

c

d

R

p′

q′

Fig. 4. A tree T of V D(P) intersects V R(P) at two connected subtrees T1 and T2

respectively; p ∈ T1 and q ∈ T2, and p′ and q′ are two mixed vertices on the path pq;
polygonal paths ab and cd are parts of P ; circular arcs ac and bd are on the boundary
of the spanning disks at p′ and q′ respectively; ab,ac,cd, bd form the boundary of a
closed region R

RECURSIVE-FPVD
Input: A set of disjoint polygons A
Output: FPVD of A
1. If A is a singleton, i.e., k = 1, then the output is the (regular) Voronoi

diagram of A
2. Properly divide A into two sets A1 and A2

3. Recursively solve the two subproblems for A1 and A2

4. Merge the two FPVD’s for A1 and A2 respectively

The Voronoi diagram of disjoint segments in step 1 can be constructed in
O(n log n) time. The proper division operation in step 2 can be done in O(k log k)
time by sorting polygons by their sizes. Thus the remaining problem is how to
merge the solutions of the two subproblems in the last step. It is shown in paper
[3] that merging can be done in O(n log2 n) time by using parametric searching
technique. Below we present a more efficient algorithm that merges the two
subproblems in O(n log n) time.

To merge the two FPVD’s, we first determine those vertices in FPVD(A1) and
FPVD(A2) which are vertices of the FPVD after the merge. It is known that the
complexity of FPVD is O(n) [3]. Thus an efficient point location algorithm is
required. We use the point location algorithm in [5], which constructs the point
location data structure of FPVD(A) in O(n log n) time and answers a query
in O(log n) time. Thus, we first pre-compute the point location data structures
for FPVD(A1) and FPVD(A2) respectively. The total running time for this
pre-computation is O(n log n). Then for each vertex p of FPVD(A1), find the
Voronoi region of FPVD(A2) that contains the vertex in O(log n) time by a query
operation. Then calculate the distance from p to the farthest polygon in A1 and
A2 respectively (this can be done in O(1) time). Let d1 and d2 be the distances. If
d1 ≥ d2, then p is a vertex of FPVD(A). Similarly, if p is a vertex of FPVD(A2),
query p on the point location data structure of FPVD(A1) and calculate the
largest distance d1 and d2 from p to polygons in A1 and A2 respectively. If

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 379

d1 ≤ d2, then p is a vertex of FPVD(A). Since we have at most O(n) vertices
in total, the total time for query is O(n log n). Thus, it takes O(n log n) time
to determine if the existing vertices in the two subproblems are vertices in the
merged problem, and we have the following lemma.

Lemma 4. The point location data structures for FPVD(A1) and FPVD(A2)
can be pre-computed in O(n log n) time. For any point p in the plane, one can
determine the farthest polygon P in A and the closest site s (open segment or
endpoint) of that polygon in O(log n) time, i.e., one can find P ∈ A and s ∈ P
such that p ∈ V R(s) in O(log n) time.

By Lemma 3, we know that each tree in V D(P) for any input polygon P ∈ A1(or
A2) intersects A1 (or A2) at one single subtree or an empty tree. Let T be the
subtree. Then, after the merge, T ∩FPV D(A) is also a connected subtree of T .
Let T ′ = T ∩FPV D(A), and I(T) = {v ∈ T |v is a node of T and v ∈ T ′}.
By Lemma 4, the set I of all trees of both FPVD(A1) and FPVD(A2) can be
determined in O(n log n) time as the total number of vertices to query is O(n).
There are three cases of I(T) to consider.

1. All vertices of T are in I(T);
2. Some vertices of T are in I(T);
3. I(T) is empty

For case 1, T is intact after the merge, but the Voronoi region containing
T can be shrunk after the merge due to the appearance of new pure vertices.
For case 2 and 3, both the Voronoi region containing T and T itself are shrunk
after the merge. Therefore the pure arcs that separate the shrunk Voronoi region
and a Voronoi region of A2 have to be computed in order to correctly construct
the FPVD. Thus we need to find the pure arcs that separate a Voronoi region
of FPVD(A1) and that of FPVD(A2). It is essential to find the mixed vertices
whose spanning disks touch sites in both A1 and A2. In fact, as we will show
in Lemma 9, once such mixed vertices are all found, the merging problem of
FPVD(A) can be trivially solved. In particular, for case 3, T ′ is not necessarily
empty after the merge. T ′ can consist of a single arc which is partial arc of T .

First, we present an algorithm to solve the following sub-problem called pure
arc tracing problem: Given Voronoi cells C1 of FPVD(A1) and C2 of FPVD(A2)
with C1 being the Voronoi region of a site s1 and C2 being the Voronoi region of
s2 in their respective FPVD, and a vertex p on the pure arc separating V R(s1)
and V R(s2) after the merge, find the next vertex q on the boundary of V R(s1)
in a counter-clockwise order (see Figure 5).

In order to efficiently trace the arc, we need to further divide each Voronoi cell
into smaller regions. Let C be a Voronoi cell and let s be the site of C. Then we
have two cases to consider: s is an open line segment, and s is an endpoint. By
Lemmas 1 and 2, C = V Ri(s)\ ∪j �=i V Rij(s), where V Ri(s) and V Rij(s) have
star or weakly star shape property. Therefore, we have the following lemma.

Lemma 5. Let p be a point in C and q be the closest point of s. Then for any
point p′ on the segment pq such that p′ ∈ C, segment pp′ lies in C.

380 Y. Zhu and J. Xu

C1 C2

p

q

C′
1

Fig. 5. The pure arc tracing problem. C′
1 is the new Voronoi region of s1 after merging.

We first subdivide a Voronoi cell C of either FPVD(A1) or FPVD(A2) as in
Figure 6. We have two cases to consider. Case 1: if s is a line segment, we draw
orthogonal lines from each vertex on the boundary to s. By Lemma 5, we know
that each line intersects C at a connected line segment. Case 2: if s is a point,
we draw lines connecting each vertex on the boundary and s. Similarly, the in-
tersection is also a connected line segment. We call the intersection segments
doors. The doors can be ordered along s (if s is a line segment) or circularly (if
s is a point) around s. The main idea of our pure arc tracing algorithm is to do
a binary search on the sorted list of doors of the cell and determine if the door
and the arc intersect. Below are the main steps of the algorithm.

ARC-TRACING ALGORITHM
Input: A vertex p of the merged FPVD, two cells C1 and C2 containing p, and
the corresponding sites s1 and s2, where s1 ∈ A1 and s2 ∈ A2;
Output: The next vertex q of the merged FPVD;

1. Subdivide C1 and generate the sorted list of doors D1
1, D

1
2, . . . , D

1
j1

2. Subdivide C2 and generate the sorted list of doors D2
1, D

2
2, . . . , D

2
j2

3. Compute the bisector pp′ of s1 and s2; W.L.G., assume p > p′ under the
predicates for doors of both C1 and C2

4. If p′ is in C1, go to step 12
5. Let λ = 0, μ = j1 + 1 // binary search on the doors of C1 until μ − λ ≤ 1
6. ζ is the median of λ, λ + 1, . . . , μ
7. Compute the intersection point p′′ between pp′ and the line extension of D1

ζ

8. If p′′ does not exist, let λ = ζ or μ = ζ so that pp′ and D1
λ lie on the same

side of D1
μ

9. If p′′ exists and lies in C1, then μ = ζ
10. If p′′ exists and lies outside of C1, then λ = ζ
11. Repeat step 6 − 10 until μ − λ ≤ 1, then compute the intersection point q

between D1
λ and D1

μ

12. If q is in C2, return q; otherwise, apply the same binary search procedure(step
5 − 11) to C2

13. Return q

Lemma 6. The bisector pp′ intersects the boundary of C1 at most one point.

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 381

s s

p p

q q

p′
p′

C C

Fig. 6. Subdivision of a cell. The left figure is for the case that the site s is a line
segment and the right one is for the case that s is a point.

Proof. Suppose pp′ intersects the boundary of C1 at two points. Then there are
two disconnected Voronoi cells for s, which indicates that the tree associated with
s intersects FPVD at two separate subtrees. This contradicts Lemma 3. ��
Lemma 7. The doors of all cells in FPVD(A1) and FPVD(A2) can be com-
puted in O(n) time. If the doors are pre-computed and sorted, then algorithm
ARC-TRACING can correctly find the next vertex in the merged FPVD in
O(log (n1 + n2)) time, where n1 and n2 are the complexity of C1 and C2

respectively.

Proof. The doors can be computed by traversing all vertices of the two FPVD’s.
For each vertex, draw an orthogonal line to s if s is a line segment or a line
connecting the vertex and s if s is a point. Since the total complexity of the
two FPVD’s is O(n), the running time for computing the doors is O(n). The
correctness of the algorithm follows from Lemma 3. For the running time, we
only consider step 3−13 because the first 2 steps are pre-computed. Step 3 takes
O(1) time. Step 4 takes O(log n) time by a point location query. Computing p′′

in step 7 and the intersection points in line 12 take O(1) time. Step 11 takes
O(1) time as well because we already know p′′ is on D1

ζ . So the loop from step
5 to 12 takes O(log n). Thus, the overall running time is O(log n) time if steps 1
and 2 have been pre-computed. ��
In fact, the ARC-TRACING algorithm is also applicable to the case that p is
a point on a pure arc. Furthermore, the pure arc does not need to be a new
one, i.e., the one that separates a cell of A1 and another cell of A2. In this case,
we can make a trivial modification at line 3 of the algorithm by replacing the
bisector pp′ with the pure arc itself (in this case, the next vertex that it finds
may be a new pure vertex). Thus, we know that the ARC-TRACING algorithm
also handles this case.

Lemma 8. The set of new bounding-box vertices, denoted by B, can be computed
in O(n log n) time.

Proof. We first construct the convex hull of A in O(n log n) time [4]. Let CH(A)
be the convex hull. It is known that the complexity of CH(A) is O(n). We walk
along the boundary of the convex hull in a counter-clockwise order. For each
edge, if the two endpoints belong to different subsets, then there is an infinite

382 Y. Zhu and J. Xu

arc of FPVD(A1) which bisects the two corresponding sites. The intersection
point between the bisection curve and the bounding-box can be computed in
O(1) time. Thus the total running time for computing all new bounding-box
vertices is O(n log n). ��
Lemma 9. Let M be the set of new mixed vertices (i.e., the vertices whose min-
imal spanning disks touch sites in both A1 and A2). FPVD(A) can be computed
in O(n log n) time.

Proof. By Lemma 3, we know that each tree in V D(P) for any input polygon
P ∈ A1 (or A2) intersects A1 (or A2) at one single subtree or an empty tree. Let
T be the subtree. Then T ∩FPV D(A) is a connected subtree of T . Since there
exist at least two vertices that are either mixed or bounding-box vertices for each
Voronoi cell, we can apply the ARC-TRACING algorithm to compute all Voronoi
cells of FPVD(A) (see Figure 7), starting from a mixed or bounding-box vertex
of each cell. Since the existing vertices can be computed in O(n log n) time by
querying every vertex on both point location data structures, by Lemmas 7 and
8, we know that the total running time for computing FPVD(A) is O(n log n)
time. ��

𝒯

p

q

V R(P)

P

Fig. 7. The construction of FPVD(A) by arc-tracing from a known vertex p to a new
vertex q

In fact, we need only to compute one mixed vertex(or a bounding-box vertex
if there exists one) for each tree in FPVD(A1) and FPVD(A2). Then we can
use the ARC-TRACING algorithm to compute each Voronoi cell of the merged
FPVD, starting from the mixed or bounding-box vertex. We say that the tree
is trimmed if some portion of the tree is discarded. A tree is totally trimmed if
there is no new mixed vertex left. However, this observation does not improve
the asymptotic running time in the worst case.

Now the remaining problem is how to efficiently compute the set of new mixed
vertices M. Our idea is to compute M, trim the trees, and construct Voronoi cells
of the merged FPVD simultaneously. We first introduce an important lemma.

Lemma 10. Let T be a tree of FPVD(A1) not totally trimmed, and T ′ be its
totally trimmed tree. Let pq be an arc of T with p contained in a Voronoi cell C1

of FPVD(A2), s1 and s2 be two sites bisected by pq, and s3 be the closest site of
the farthest polygon P (P ∈ A2) of any point in C1. Then there exists a mixed
vertex p′ of pq located in C1 if and only if p′ is the center of the disk touching
s1, s2 and s3 (see Figure 8).

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 383

Proof. Let S1 and S2 be the corresponding Voronoi facets of C1 and C2 respec-
tively in the Voronoi surface as shown in Figure 9. If ab intersects Voronoi surface
S1 at c, then di1(p′) = di2 (p′) = di3(p′), where sj ∈ Pij for j = 1, 2, 3. By the
definition of di for Voronoi surfaces, we know ρ(p′, s1) = ρ(p′, s2) = ρ(p′, s3),
where ρ is the Euclidean distance. Thus p′ is the center of the disk touching s1,
s2 and s3. Furthermore, p′ is a mixed vertex because the angle between a facet
and the plane is always 45o. ��

p

q

C1

C2

FPVD(𝒜2)

𝒯

p′

s1

s2

s3

Fig. 8. Trimming tree T of FPVD(A1). C1 and C2 are two Voronoi cells of FPVD(A2);
pq is an edge of T ; p ∈ C1.

S1

S2

p

q

p′

C1

C2

a

b

c

Fig. 9. Voronoi facets S1 and S2; C1 and C2 are the orthogonal projections of S1 and
S2 respectively; p, q, p′ are the orthogonal projections of a, b, c respectively

By symmetry, we can replace A1 with A2 in Lemma 10 and obtain a similar
result for A2. To compute M, for each tree T , we totally trim T and generate
all the mixed vertices by ARC-TRACING algorithm (note that this algorithm
implicitly constructs the merged FPVD). We first roughly trim each tree T as
follows. If I(T) is not empty, discard all edges whose both endpoints are not in
I(T). If I(T) is empty, by Lemma 3, we know that T ′ is empty or consists of
a single partial arc of T . Furthermore, we can efficiently find the arc of T that
contains T ′. In fact, for each tree T , we can find a candidate arc that contains T ′

in O(m log n) time, where m is the complexity of T [3]. With this, we can trim

384 Y. Zhu and J. Xu

𝒯

𝒯 ′

Fig. 10. Tree trimming and arc-tracing. The Voronoi region shrinks after the merge.
T is the original tree in FPVD(A1) and T ′ is the tree after the trimming. The dots
are mixed vertices, the squares are pure vertices, and the triangle is the starting point
of the ARC-TRACING algorithm.

the tree to a single candidate arc. The rough trimming process takes O(n log n)
time. Now, we consider 4 cases to complete the trimming process for each tree
and compute M (see Figure 10).

– Case 1: For each bounding-box vertex in B, apply ARC-TRACING to totally
trim the two trees contained by the two adjacent Voronoi regions. The new
leaf nodes are added to M;

– Case 2: For each tree T that is not trimmed in case 1, if there exists a mixed
vertex in I(T), then use ARC-TRACING to totally trim T . The resulting
tree is denoted by T ′. The new leaf nodes are added to M;

– Case 3: For each tree T that is not trimmed in case 1, if there is no mixed
vertex in I(T). We first find one edge pq such that p is a medial axis vertex
in I(T) and q is not in I(T). Then, as in Lemma 9, we find the center p′ of
the disk touching s1, s2, and s3 in O(1) time. Then determine if the center
is on pq and in C1. If it is, then starting from p′, we completely trim T
and add the newly-discovered mixed vertices into M. Otherwise, we find the
next neighboring Voronoi cell of C1 along the trace of pq. Repeat the above
procedure until finding the mixed vertex on pq.

– Case 4: For each tree T that is not trimmed in case 1, if I(T) = ∅, then T
consists of one arc. Similar to case 3, but we may not have a mixed vertex
on pq. To guarantee there is a mixed vertex on pq, let s be the site whose
Voronoi cell contains p, then we can find the corresponding tree of s which
also consists of one arc, say, αβ. Then there must exist a mixed vertex on
αβ. Since we can find αβ in O(log n) time, i.e., the time for point location
query, we can assume there exists a mixed vertex on pq.

Once finding a point of some pure arc of the merged FPVD by one of the above 4
cases, we can compute M and construct the merged FPVD by ARC-TRACING
algorithm. This is because all pure arcs are connected. Below are the main steps
of the merging algorithm.

Improved Algorithms for Farthest Colored Voronoi Diagram of Segments 385

MERGE ALGORITHM
Input: FPVD of A1 and FPVD of A2, where A1 ∪A2 = A
Output: FPVD of A
1. Compute bounding-box vertices B;
2. If B is not empty, for each bounding-box vertex v of B, compute M and con-

struct the Voronoi cells of the merged FPVD that have v on their boundary
by ARC-TRACING algorithm; //Case 1;

3. For each vertex v of FPVD(A1) or FPVD(A2), determine if v is also a vertex
of the merged FPVD; If yes, add v to I;

4. If I is not empty and there exists a mixed vertex v, then compute M and
construct the rest of the merged FPVD by ARC-TRACING algorithm start-
ing from v; // Case 2

5. If I is not empty but all vertices in I are medial axis vertices, then pick one
vertex v from I and find a tree T such that I(T) contains v; //Case 3

6. Traverse the vertices of T and find an arc pq such that p ∈ I(T) but q not
in I(T);

7. Without loss of generality, T is a tree of FPVD(A1); Let s1 and s2 be the
two sites of A1 that pq bisects;

8. Find the cell C of FPVD(A2) that contains p; Let s3 be the site of A2

associated with C;
9. Compute the center p′ of the disk touching s1, s2, s3;

10. If p′ is in C and on pq, then p′ is a mixed vertex; Compute M and construct
the rest of the merged FPVD by ARC-TRACING algorithm starting from
p′;

11. Otherwise, p is updated to be the intersection point between pq and C, then
repeat step 8 − 11 until a mixed vertex is found in step 10;

12. If I is empty, roughly trim all trees of both FPVD’s; //Case 4
13. Pick a trimmed tree that contains a mixed vertex; Since the tree consists of

one arc, we can denote it by pq;
14. Find a mixed vertex by applying step 7−11 and construct the merged FPVD;

Lemma 11. The above algorithm takes O(n log n) time, where n is the com-
plexity of the input.

Proof. First, step 1 takes O(n log n) time by Lemma 8, and step 3 takes O(n log n)
time by point location queries for at most O(n) vertices. For steps 1, 10, 14, each
takes O(n log n) time by Lemma 7. This is because every ARC-TRACING dis-
covers a new vertex and there are at most O(n) vertices. Steps 8 − 11 and 14
take O(n log n) time using the data structure in Figure 6. This is due to the
fact that the total complexity of FPVD(A1) and FPVD(A2) is O(n) and the
intersection point can be computed in O(log n) time. It is easy to see that the
rest of the algorithm is dominated by O(n log n). Thus the total running time is
O(n log n). ��
Theorem 2. Given a set of disjoint polygons A, the farthest-polygon Voronoi
diagram can be computed in O(n log2 n) time, where n is the total complexity
of A.

386 Y. Zhu and J. Xu

Proof. Since we always have proper division of A and merging the solutions
to the two subproblems FPVD(A1) and FPVD(A2) takes O(n log n) time by
Lemma 11. Thus we have T (n) ≤ T (n

4) + T (3n
4) + O(n log n), where T (n) is the

total time for computing FPVD(A). This solves to T (n) = O(n log2 n), since the
height of the recursive tree is at most O(log n). ��

4 Conclusion

In this paper, we studied two Voronoi diagram problems, Farthest Colored
Voronoi Diagram (FCVD) and Farthest-polygon Voronoi Diagram (FPVD). For
the former, we present a simple output-sensitive algorithm with running time
O((kn + I)α(H) log n), where n is the complexity of the input, k is the num-
ber of colors, I is the number of intersection points, and H is the complexity
of the FCVD. For the latter, we present an O(n log2 n)-time algorithm using
divide-and-conquer paradigm and arc-tracing technique. Comparing to the best
known algorithm, our algorithm does not rely on parametric search, is simpler,
and improves the time complexity by a factor of O(log n). As an open problem,
it would be interesting to design an O(n log n)-time algorithm for FPVD.

References

1. Agarwal, K.P., Sharir, M.: Algorithmic techniques for geometric optimization (1995)
2. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment voronoi di-

agrams. Inf. Process. Lett. 100(6), 220–225 (2006)
3. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee,

M., Na, H.-S.: Farthest-polygon voronoi diagrams. In: Arge, L., Hoffmann, M., Welzl,
E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 407–418. Springer, Heidelberg (2007)

4. de Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational ge-
ometry: algorithms and applications, 2nd edn. (2000)

5. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM J. Comput. 15, 317–340 (1986)

6. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of voronoi surfaces
and its applications. In: SCG 1991: Proceedings of the seventh annual symposium
on Computational geometry, pp. 194–203. ACM, New York (1991)

7. Nielsen, F., Yvinec, M.: An output sensitive convex hull algorithm for planar objects.
International Journal of Computational Geometry and Applications 8, 39–65 (1995)

8. Yap, C.K.: An o(n logn) algorithm for the voronoi diagram of a set of simple curve
segments. In: Discrete and computational geometry, vol. 2, pp. 365–393 (1987)

One-and-a-Half-Side Boundary Labeling

Chun-Cheng Lin1,�, Sheung-Hung Poon2,��, Shigeo Takahashi3,
Hsiang-Yun Wu3, and Hsu-Chun Yen4,� � �

1 Dept. of Industrial Engineering and Management, National Chiao Tung University,
Hsinchu 300, Taiwan

2 Dept. of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan
3 Dept. of Complexity Science and Engineering, The University of Tokyo,

Kashiwa-city, Chiba 277-8561, Japan
4 Dept. of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

Abstract. In boundary labeling, each point site in a rectangular map
is connected to a label outside the map by a leader, which may be a
rectilinear or a straight-line segment. Among various types of leaders, the
so-called type-opo leader consists of three segments (from the site to its
associated label) that are orthogonal, then parallel, and then orthogonal
to the side to which the label is attached. In this paper, we investigate
the so-called 1.5-side boundary labeling, in which, in addition to being
connected to the right side of the map directly, type-opo leaders can be
routed to the left side temporarily and then finally to the right side. It
turns out that allowing type-opo leaders to utilize the left side of a map
is beneficial in the sense that it produces a better labeling result in some
cases. To understand this new version of boundary labeling better, we
investigate from a computational complexity viewpoint the total leader
length minimization problem as well as the bend minimization problem
for variants of 1.5-side boundary labeling, which are parameterized by the
underlying label size (uniform vs. nonuniform) and port type (fixed-ratio,
fixed-position, vs. sliding). For the case of nonuniform labels, the above
two problems are intractable in general. We are able to devise pseudo-
polynomial time solutions for such intractable problems, and also identify
the role played by the number of distinct labels in the overall complexity.
On the other hand, if labels are identical in size, both problems become
solvable in polynomial time. We also characterize the cases for which
utilizing the left side for routing type-opo leaders does not help.

Keywords: Map labeling, boundary labeling, complexity.

1 Introduction

In map labeling [5,10,11], the basic requirement for placing labels in a map is that
all the labels should be pairwise disjoint. It is clear that such a requirement is

� Corresponding author (E-mail: cclin321@nctu.edu.tw). Research supported in
part by NSC 98-2218-E-151-004-MY3.

�� Research supported in part by NSC 97-2221-E-007-054-MY3.
� � � Research supported in part by NSC 97-2221-E-002-094-MY3.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 387–398, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

388 C.-C. Lin et al.

#1
#2
#3
#4

#5

#6

(a)

indirect
leader

#1

#2
#3
#4

#5

#6

(b) (c)

Fig. 1. (a) One-side boundary labeling with type-opo leaders. (b) 1.5-side boundary
labeling with type-opo leaders. (c) Application to a word processing annotation system.

difficult to be achieved in the case where large labels are placed on dense points.
To address this problem, Bekos et al. [3] proposed the so-called boundary labeling,
in which all labels are attached to the boundary (four sides) of a rectangle R
enclosing all sites, and each site is connected to a unique label by a leader, which
may be a rectilinear or a straight-line segment. In such a setting, they assumed
no two sites with the same x- or y- coordinates, and investigated how to place the
labels and leaders in a drawing such that there are no crossings among leaders
and either the total leader length or the total number of bends of leaders is
minimized under a variety of constraints. Bekos et al. [2] investigated a similar
problem for labeling polygonal sites under the framework of boundary labeling.
Subsequently, Lin [7] used hyperleaders and multiple copies of the same label
to propose algorithms for crossing-free multi-site-to-one-label boundary labeling
[8], in which more than one site is allowed to be connected to a common label.

Boundary labeling [3,4,1] is characterized as k-side labeling with type-t leaders
(where k ∈ {1, 2, 4} and t ∈ {opo, po, s, do}) if the labels are allowed to attach to
the k sides of the enclosing rectangle R by only type-t leaders. The parameter
t specifies the way in which a leader is drawn to connect a site to a label. The
opo, po, s, and do stand for orthogonal-parallel-orthogonal, parallel-orthogonal,
straight-line and diagonal-orthogonal leader types, respectively. It is assumed
that the parallel (i.e., ‘p’) segment associated with a type-opo leader lies in a
track routing area sandwiched between R and the label stack. See Figure 1(a).
In a recent article [9], the idea of the so-called indirect leaders was proposed for
possibly shortening the total leader length in one-side boundary labeling. Indirect
leaders utilize the left side of the map to route the parallel segments of type-opo
leaders (while the original ones that do not utilize the left side are called direct
leaders). See Figure 1(b) for an example. Such a new type of boundary labeling
is called 1.5-side boundary labeling with type-opo leaders, which is likely to find
applications in, for example, text annotation for word processing softwares as
[9] suggests (see Figure 1(c) for an illustrating example). In general, the track
routing area is not wide, so too many direct leaders in this area would make it
difficult to tell them apart (see Figure 1(a)). The introduction of indirect leaders
may lead to fewer direct leaders in this area, where the routing of those direct
leaders can be distinguished more easily (see Figure 1(b)).

One-and-a-Half-Side Boundary Labeling 389

In this paper, we consider, from a computational complexity viewpoint, the to-
tal leader length minimization (TLLM) problem and the total bend minimization
(TBM) problem for variants of 1.5-side boundary labeling with type-opo leaders,
which are parameterized by their label and port types. A label can be of uniform
or nonuniform size, and the port (i.e., the position where a leader touches a label)
associated with a label is of type fixed-ratio, fixed-position, or sliding. It turns
out that for nonuniform labels, both TLLM and TBM are intractable in general
regardless of the port type. We are able to design a pseudo-polynomial time
algorithm and a fixed-parameter algorithm for such intractable problems. Both
TLLM and TBM become solvable in polynomial time if labels are of uniform
size. Interestingly, we also show that for labels of uniform size and under either
sliding or fixed-ratio port type, indirect leaders do not help as far as minimizing
the total leader length is concerned.

2 Preliminaries

2.1 The Models for 1.5-Side Boundary Labeling

In 1.5-side boundary labeling, we assume that sites are points of zero size located
on the plane, and only type-opo leaders are used, no matter whether they are
direct or indirect. Following Bekos et al.’s convention [2], various models for
1.5-side boundary labeling can be differentiated according to a triple (LabelSize ,
LabelPort , Objective), where:

LabelSize: Each label li is associated with a height hi and a width wi. As
each leader is connected to the left side of a label box, w.l.o.g., we assume
that ∀1 ≤ i, j ≤ n, wi = wj , where n is the number of labels. Labels are of
uniform size if ∀1 ≤ i, j ≤ n, hi = hj ; otherwise, of nonuniform size.

LabelPort: Depending on the location where a leader touches a label, consider
the following three types:

- Fixed-ratio port (FR for short): there exists a constant 0 ≤ α ≤ 1, such
that the i-th leader touches the point of height αhi, from the bottom of
the i-th label. In [8], α is assumed to be 1

2 , i.e., each leader touches the
middle of the corresponding label.

- Fixed-position port (FP for short): The i-th label is associated with a
predefined constant 0 ≤ αi ≤ 1 such that the i-th leader touches the
point of height αihi, from the bottom of the i-th label.

- Sliding port: As the name suggests, the contact point of a leader can
slide along the corresponding label edge.

Objective: Find a legal label placement such that the total leader length is
minimum (TLLM), or the total number of bends is minimum (TBM).

Before proceeding further, we first show three examples as depicted in
Figure 2, which suggests that indirect leaders really help.

Our main results are given in Table 1, where the uniform-label cases can be
solved in polynomial time, while the nonuniform-label cases are NP-complete.

390 C.-C. Lin et al.

#1
#2

#3

#3

#1
#2

(a)

#1

#2

#2

#1

(b)

#1
#2
#3
#4

#4
#1
#2
#3

(c)

Fig. 2. (a) TLLM with nonuniform labels; (b) TLLM with uniform labels and FP
ports; (c) TBM with uniform labels

Table 1. Time complexity for a variety of 1.5-side boundary labeling models. FR
denotes fixed-ratio port, and FP denotes fixed-position port.

(LabelSize, LabelPort, Objective) time reference

(uniform, FR/sliding, TLLM) O(n log n) Thm 1
(uniform, FP , TLLM) O(n5) Thm 2
(uniform, FR/FP/sliding, TBM) O(n5) Thm 2

(nonuniform, FR/FP/sliding, TLLM) NP-complete∗ Thm 3
(nonuniform, FR/FP/sliding, TBM) NP-complete∗ Thm 4

∗ An O(n4h) pseudo-polynomial time algorithm is developed in Theorem 5, where h
is the height of the map. Furthermore, if labels are of k different heights, an O(nk+4)
time algorithm is available as Theorem 6 shows.

2.2 Problem Setting

We consider the following labeling problem. Given a rectangular area R of height
h and width w whose left lower corner resides at the origin of the x-y plane (i.e.,
R = [0, w] × [0, h]), and a set of n points (called sites) pi = (xi, yi), 1 ≤ i ≤ n,
located inside R (i.e., 0 ≤ xi ≤ w, 0 ≤ yi ≤ h, 1 ≤ i ≤ n), each of which is
associated with a rectangular label li of width wi and height hi, the one-and-
a-half-side (1.5-side, for short) boundary labeling problem is to place the labels
along one side of the boundary of R, and connect pi to li, 1 ≤ i ≤ n using
rectilinear leaders that are either direct or indirect (or leaders, for short) so that
a certain criterion is met. As illustrated in Figure 1, a rectilinear leader consists
of horizontal and/or vertical line segments connecting a site to its corresponding
label. We assume that h, w, xi, yi, hi, wi, 1 ≤ i ≤ n, are all positive integers.
We further require that a leader has at most two bends, which occur only in
one of the two track routing areas denoted as Aleft and Aright (see Figure 3). A
leader bending in the area Aright (resp., Aleft) is called a direct (resp., indirect)
leader. Throughout the rest of this paper, we assume that there are no two sites
with the same x- or y- coordinate, and sites are labeled as p1, p2, · · · , pn in the
increasing order of their y-coordinates.

We assume that
∑n

i=1 hi = h, i.e., the label heights sum up to the height
of R. In this case, the y-coordinate of the top of the j-th label is

∑j
i=1 h′

i,
where h′

i is the height of the i-th label from the bottom of the label stack. Note

One-and-a-Half-Side Boundary Labeling 391

(a)

pj

pi

map label

(b)

Aleft

Aright

pj

pi

map label

Aleft

Aright

Fig. 3. Illustration of two cases for G(i, j)

that since we allow indirect leaders, label lj need not be the j-th label. For
the criteria considered in this paper, we may further assume that labels are of
uniform width (i.e., wi = wj , ∀1 ≤ i, j ≤ n) with no loss of generality. Consider
a region G(i, j) induced by a subset of sites pi, · · · , pj and their corresponding
labels li, · · · , lj, 1 ≤ i < j ≤ n as shown in Figure 3. Note that the left track
routing area is of height less than (yj+1 − yi−1), and the height of the right
track routing area depends on the relative positions of the sites pi, · · · , pj and
their labels. A leader connecting a site pk to its corresponding label lk (where
1 ≤ k ≤ j) is legal with respect to G(i, j) if it resides entirely in G(i, j).

3 Uniform-Label Cases

Consider the uniform-label case, i.e., hi = h
n , ∀1 ≤ i ≤ n. As Example 2(b) indi-

cates, using indirect leaders may result in a shorter total leader length in some
cases, provided that leaders are connected to fixed-position ports. In contrast, if
the ports are fixed-ratio (with respect to all labels) or can slide along boundaries
of labels, the following result shows indirect leaders to be unnecessary:

Lemma 1. In the case of uniform labels, direct leaders are sufficient to achieve
optimal solutions with respect to TLLM under either the fixed-ratio port or the
sliding port model.

Proof (Sketch). In the following, we only show the fixed-ratio port model, be-
cause the proof for the sliding port model is similar. It suffices to prove that the
total leader length of any labeling Li with i indirect leaders is no shorter than
that of the labeling δ with only direct leaders. Let φ(L) denote the total leader
length of labeling L. The basic idea of our proof is to find labelings Li−1, Li−2,
. . . , L1 such that φ(Li) ≥ φ(Li−1) ≥ · · · ≥ φ(L1) ≥ φ(δ), where Lj denotes a
labeling with j indirect leaders for 1 ≤ j < i.

Consider the inner-most indirect leader (i.e., the indirect type-opo leader has
the rightmost parallel segment) in labeling Li, which is denoted by �, and the site
connected with � is denoted by p (see Figure 4(a)). Hence, all the sites wrapped
by � are connected only by direct leaders, and they are divided into two groups
according to the orientation of their associated direct leaders. Consider each
of those wrapped sites from the bottom to the top, say site q. From site q to
its corresponding label, if the vertical segment of the associated leader goes

392 C.-C. Lin et al.

p

U

B

h

n|U|

leader l

(a) Labeling Li.

p
B

U

(b) Labeling Li−1.

p
B

lh
B

lv
B

(c)

p
B

(d)

Fig. 4. The inner-most indirect leader in labeling (a) is replaced by a direct leader in
labeling (b). (c) and (d) are respectively the labeling (a) and (b) where the total leader
length of (b) for those sites in U are removed. Note that the leader segments that occur
in (d) but not in (c) are represented by dotted-line segments in (c).

downward and all the sites located below q belong to group B, then q ∈ B;
otherwise, q ∈ U (see Figure 4(a)). That is, there exist sites with leaders going
downward but not belonging to group B. Let Δ = {p} ∪ U ∪ B.

If Δ = {p} only, then indirect leader � can be changed to a direct one im-
mediately, and the modified labeling is our required labeling Li−1. Otherwise,
we establish a labeling Li−1 with (i − 1) indirect leaders which is almost the
same as labeling Li except all the sites in Δ are connected by direct leaders (see
Figure 4(b)). Let d(pj) (resp., d′(pj)) denote the length of the leader connected
to site pj in Li (resp., Li−1), for any j ∈ {1, · · · , n}. For any set of sites, let
d(A) =

∑
pj∈A d(pj), and define d′(A) similarly. From Figures 4(a) and 4(b),

it is observable that d(U) + |U |hn ≥ d′(U). Since d(p) > |U |hn in labeling Li

(see Figure 4(a)), the lengths d(U) + |U |hn and d′(U) can be removed in Li and
Li−1, respectively. Figure 4(c) (resp., Figure 4(d)) is the labeling Li in (a) (resp.,
Li−1 in (b)) removing the length d(U)+ |U |hn (resp., d′(U)), i.e., the total leader
length of Li is decreased no less than that of Li−1. Note that in Figure 4, the
leader segments that occur in (d) but not in (c) are represented by dotted-line
segments in (c). It is easy to see that the remaining length of the indirect leader
� in (c) can be used to compensate those dotted-line segments in (c), in which
lengths �B

h and �B
v compensate dotted horizontal and vertical segments, respec-

tively. Even so, there still exists a nonnegative remaining length of the indirect
leader � in (c). Hence, φ(Li) ≥ φ(Li−1), as required.

Like the above, we can construct Lj−2 according to Lj−1 such that φ(Lj−1) ≥
φ(Lj−2), and so forth. Finally, we have φ(Li) ≥ φ(Li−1) ≥ · · · ≥ φ(L1) ≥ φ(δ),
as required. ��
According to Lemma 1 above and [3] (the boundary labeling with direct leaders
can be found in O(n log n) time), we have the following theorem.

Theorem 1. The 1.5-side boundary labeling of the model (uniform , FR/sliding ,
TLLM) can be found in O(n log n) time.

One-and-a-Half-Side Boundary Labeling 393

Next, we use a dynamic programming strategy to solve both TLLM 1 and TBM
for 1.5-side boundary labeling with type-opo leaders in O(n5) time, regardless
of the underlying port model. Note that according to Theorem 1, TLLM can be
solved in O(n log n) time under the FR/sliding port model.

Theorem 2. With respect to opo-type 1.5-side boundary labeling, both TLLM
and TBM can be solved in O(n5) time when labels are of uniform height, regard-
less of the underlying port model.

Proof. (Sketch) In what follows, we only consider TLLM ; the TBM case is
similar.

The proof is based on the strategy of dynamic programming. Without loss of
generality, we assign indices j (1 ≤ j ≤ n) to labels in the label stack in the
increasing order of their y-coordinates. Note that due to the nature of 1.5-side
boundary labeling, label li (i.e., the one associated with site pi) need not be the
i-th label in the label stack. It is easy to see that the y-coordinates of the top and
bottom edges of the i-th label from the bottom of the label stack are i × h

n and
(i− 1)× h

n , respectively. In the case of using fixed-ratio ports, we define γ(pi, j)
(resp., �(pi, j)) to be the length of a direct (resp., indirect) type-opo leader from
site pi to the fixed-position port of the j-th label in the label stack. In the case of
using sliding ports, γ(pi, j) and �(pi, j) are defined similarly except that a leader
connects pi to the closest point (as opposed to the fixed-position point) on the
boundary of the j-th label.

Let S(a, b, c) (where 1 ≤ a ≤ b ≤ n, 1 ≤ c ≤ n) denote the minimal total
leader length where sites pa, · · · , pb (1 ≤ a ≤ b ≤ n) are connected to the labels
of the label stack that are consecutive in the bottom to top order starting from
the c-th one up to the (c − (b − a))-th one using only legal leaders. We define
Ra,b to be the rectangle [0, w]× [ya−1, yb+1]. Note that Ra,b defines the left track
routing area through which any indirect leader from site pi, a ≤ i ≤ b can be
routed. In other words, it is illegal for pi to use an indirect leader to connect to
a label whose y-coordinate is above yb+1 or below ya−1.

Our dynamic programming formula for S(a, b, c) is as follows (see Figure 5):

min{
b−a∑
i=0

γ(pa+i, c + i),

min
i,j∈{0,···,b−a},j<i

{�(pa+i, c + j) + S(a, a + j − 1, c)

+S(a + j, a + i − 1, c + j + 1) + S(a + i + 1, b, c + i + 1)},
min

i,j∈{0,···,b−a},j>i
{�(pa+i, c + j) + S(a, a + i − 1, c)

+S(a + i + 1, a + j, c + i) + S(a + j + 1, b, c + j + 1)}}

In view of the above, it is reasonably easy to see that the minimum total
leader length equals S(1, n, 1).
1 A dynamic programming formulation was originally given for a simpler version of

TLLM in [9].

394 C.-C. Lin et al.

pb

(a) S(a, b, c) when j < i.

pa+i+1

pa+i-1

pa+j

pa+j-1

pa

pa+i

(c+b-a)-th

(c+i)-th

(c+j-1)-th

c-th

(c+j+1)-th

(c+i+1)-th

map label

S(a+i+1, b, c+i+1)

S(a+j, a+i-1, c+j+1)

S(a, a+j-1, c)

(c+j)-th

pb

pa+j+1

pa+j

pa+i+1

pa+i-1

pa

pa+i

(c+b-a)-th

(c+i)-th

(c+j-1)-th

c-th

(c+i-1)-th

(c+j+1)-th

map label

S(a+j+1, b, c+j+1)

S(a, a+i-1, c)

(c+j)-th

(b) S(a, b, c) when j > i.

S(a+i+1, a+j, c+i)

Fig. 5. Illustration of a subproblem

As for the complexity of the algorithm, we construct n tables T1, · · · , Tn where
table Ti has (n− i + 1)× (n− i + 1) entries for i ∈ {1, · · · , n}; the entry (j, k) in
table Ti records the minimal total leader length when sites pj, pj+1, · · · , pj+i−1

are connected to the k-th, the (k + 1)-th, · · ·, and the (k + i − 1)-th labels in
the label stack by direct and indirect type-opo leaders. By doing so, the solution
of our problem can be found in the entry Tn(1, 1). In view of the dynamic
programming formula, each entry of Table Ti, 1 ≤ i ≤ n, can be computed in
O(i2) time. Hence, using a bottom up approach, Tn(1, 1) can be obtained in time
O(
∑n

i=1(n − i + 1)2i2) = O(n5). ��

4 Nonuniform-Label Cases

4.1 NP-Hardness

In this subsection, we show that the 1.5-side boundary labeling for non-uniform
labels is NP-complete for both TLLM and TBM .

Theorem 3. It is NP-complete to find a 1.5-side boundary labeling of model
(non- uniform , FR/FP/sliding , TLLM).

Proof (Sketch). We only consider the FR/FP-port model here. The NP-complete
proof for the sliding-port model can be shown along a similar line, and there-
fore, is omitted here. To see that the problem is in NP, since we assume that
h, w, xi, yi, hi, wi, 1 ≤ i ≤ n, are all positive integers. In order to show the NP-
hardness of our problem, we obtain a linear-time reduction from a single-machine
scheduling problem, called total discrepancy problem [6], to our problem. On one
machine, we plan to arrange the schedule for the non-preemptive execution of
a set J of 2n + 1 jobs J0, J1, . . . , J2n. Each job Ji has an execution time length
li ∈ Z+ such that l0 < l1 < . . . < l2n. For a planned schedule σ, the actual
execution midtime for job Ji is denoted by mi(σ). Each job has a preferred mid-
time, which corresponds to the time at which we would like the first half of
the job to be completed. We assume that all the jobs share a single preferred

One-and-a-Half-Side Boundary Labeling 395

(, M)

...

...

...

...

L0

L2

L3

L4

L1

n labels

n labels

(0,0)

p0
…

l0

l2

l3

l4

l1

(0,2M)

Fig. 6. Reduction in Theorem 3

pn+1

pn+2

hmin

h/2

k
k

Fig. 7. Reduction in Theorem 4

midtime M =
∑2n

i=0 li/2. The penalty of job Ji for a schedule σ is defined as
the absolute difference of its midtime to its preferred midtime, i.e., |mi(σ)−M |
for 0 ≤ i ≤ 2n. The cost incurred in a schedule σ is then defined to be the
total penalties incurred by all jobs. The objective of the total discrepancy prob-
lem is to determine a schedule σ such that the total cost of the schedule, i.e.,∑2n

i=0 |mi(σ)− M |, is minimized. Garey, Tarjan and Wilfong [6] showed the fol-
lowing properties for an optimal schedule σopt of the 2n+ 1 jobs J0, J1, · · · , J2n,
but the decision problem whether such a schedule exists is NP-complete.

1. σopt does not have any gaps between the jobs.
2. The midtime of the shortest job J0 is M , i.e., m0(σopt) = M .
3. Jobs J1, J2, . . . , J2n are divided into two groups, A(σopt) = {Ji : mi(σopt) <

M} and B(σopt) = {Ji : mi(σopt) > M}, such that |A(σopt)| = |B(σopt)| =
n.

4. Suppose the sequence of the jobs in schedule σopt is An, An−1, . . . , A1, J0, B1,
B2, . . . , Bn. Then {Ai, Bi} = {J2i−1, J2i}.

5. The optimal cost is equal to
∑n

i=1(l2i + l2i−1)(n − i + 1/2) + nl0.

From this version of the scheduling problem, we show how it can be reduced to
our problem in the following. We set ε to be a very small constant value less
than, say for example min{l0, min2n−1

i=0 (li+1 − li)/(100n3)}. We set the map area
to be [0, 2ε] × [0, 2M] (see Figure 6).

We put all point sites in the map area along the vertical line x = ε. For
job Ji, i = 0, 1, · · · , 2n, we introduce its corresponding point site pi placing at
location (ε, M − iε) such that the leader for pi connects to the middle position of
label Li with height li (see Figure 6). Moreover, we set k =

∑n
i=1(l2i + l2i−1)(n−

i + 1/2)+ nl0. Since ε is very small compared to any label height, we nearly can
treat the locations of point sites pi to be exactly lying at (ε, M). Under such a
scenario, it can be shown that there is a scheduling with cost at most k if and
only if there is a legal labeling with total leader length at most k + l0/n. ��
Theorem 4. It is NP-complete to find a 1.5-side boundary labeling of the model
(non- uniform , FR/FP/sliding , TBM).

396 C.-C. Lin et al.

Proof (Sketch). We only discuss the sliding port case, because the fixed-ratio
port case is similar. It is obvious to see that the problem is in NP. Hence, it
suffices to show that the problem is NP-hard. The proof of the NP-completeness
is based on the reduction from the following subset sum problem: Given A =
{a1, a2, · · · , an} and a number B, the objective of the problem is to find a subset
A′ ⊂ A such that the sum of the elements in A′ is exactly B.

Given a set A = {a1, · · · , an} and a number B, we construct a map instance
as follows. There are n + 2 sites p1, p2, . . . , pn+2 in the map instance. The
height of the label connected with site pi is denoted by hi, in which hmin <
min{h1, · · · , hn} and hmin > n. Let {h1, · · · , hn} = {a1, · · · , an}, hn+1 = hn+2 =
k ≤ hmin, and a1 + · · · + an = 2B. Note that the y-coordinate of the bottom
side of the map is zero. For each i ∈ {1, · · · , n}, y(pi) ≤ hmin, y(pn+1) = h/2− ε,
and y(pn+2) = h/2 + ε, where h is the height of the map and ε < hmin.

See also Figure 7. It is easy to see that the sum of the elements in A′ is exactly
B = (a1 + · · · + an)/2 if and only if the number of bends is 2n − 2. ��

4.2 Pseudo-polynomial Time Algorithm

An idea which parallels the one used in Theorem 2 is used to show the following:

Theorem 5. With respect to 1.5-side boundary labeling, both TLLM and TBM
can be solved in O(n4h) time when labels are of nonuniform height and ports are
either fixed-ratio, fixed-position, or sliding.

Proof. We only show how to solve the TLLM problem, since the TBM problem
can be solved similarly. Like in the proof of Theorem 2, our pseudo-polynomial
time algorithm is again based on the strategy of dynamic programming.

In the case of using fixed-ratio or fixed-position ports, we define γ(pi, t) (resp.,
�(pi, t)), 1 ≤ i ≤ n, 0 ≤ t < t′ ≤ h, to be the length of a direct (resp., indirect)
type-opo leader from site pi to the fixed port of li when the y-coordinate of the
bottom (resp., top) of the label is t (resp., t′) in the label stack, provided that
t′ − t = hi; if t′ − t
= hi, then γ(pi, t) (resp., �(pi, t)) = ∞. Note that t′ is
calculated in the dynamic programming procedure. In the case of using sliding
ports, γ(pi, t) and �(pi, t) are defined similarly except that a leader connects pi

to the closest point (as opposed to the fixed point) on the boundary of li. We
let S(a, b, t) (where 1 ≤ a ≤ b ≤ n, 0 ≤ t ≤ h) denote the minimal total leader
length where sites pa, · · · , pb (1 ≤ a ≤ b ≤ n) are connected to their labels
la, · · · , lb which are placed in the label stack with t as the y-coordinate of the
bottom of the lowest label. In other words, labels la, · · · , lb occupy the area whose
y-coordinate ranges from t to t +

∑b
i=a hi. We define Ra,b to be the rectangle

[0, w] × [ya−1, yb+1].
Our dynamic programming formula for S(a, b, t) is as follows:

min{
b−a∑
i=0

γ(pa+i, t +
i−1∑
j=0

ha+j),

One-and-a-Half-Side Boundary Labeling 397

min
i,j∈{0,···,b−a},j<i

{�(pa+i, t +

j−1∑
l=0

ha+l) + S(a, a + j − 1, t)

+S(a + j, a + i − 1, t + (

j−1∑
l=0

ha+l) + ha+i) + S(a + i + 1, b, t +

i∑
l=0

ha+l)},

min
i,j∈{0,···,b−a},j>i

{�(pa+i, t +

j−1∑
l=0

ha+l) + S(a, a + i − 1, t)

+S(a + i + 1, a + j, t +
i−1∑
l=0

ha+l) + S(a + j + 1, b, t +

j∑
l=0

ha+l)}}

The reason why the above dynamic programming formula correctly charac-
terizes S(a, b, t) is similar to that in the proof of Theorem 2. ��

4.3 Fixed-Parameter Algorithm

We present a polynomial time algorithm when the number of different heights
of labels, k, is a constant. First, we have the observation that the number of
possible label positions is O(nk).

Lemma 2. The number of possible label positions of each label is bounded by
O(nk), if the given labels are of k different heights.

Proof. We prove this lemma by induction on k. When k = 1, it is trivially true.
Suppose that it is true for k − 1, i.e., each label has O(nk−1) possible label
positions for n labels with k − 1 different heights. Then it suffices to show that
the lemma is true for k.

Since labels are placed without overlaps, we consider the location of the bot-
tom side of a label as a label position. Consider each label Li, which is the i-th
label from the bottom. Let ηk denote the k-th kind of label height. Suppose that
there are m labels of height ηk below label Li, and hence, there are (i − 1 − m)
labels of the other k − 1 kinds of heights below label Li. Since the modification
of the ordering of the labels below label Lk does change the position of Li, we
push all these m labels of height ηk down to the bottom and move other labels
upwards accordingly. That is, we consider the label stack below label Li: from
the bottom there are m labels of height ηk and then (i − 1 − m) labels of the
other k − 1 kinds of heights.

Note that m < i ≤ n. For each possible m = 1, 2, · · · , i − 1, by inductive
hypothesis, there are O(nk−1) possible label positions for the (i − 1 − m) labels
of other kinds of heights. As a result, there are O((i−1)×nk−1) = O(nk) possible
label positions for each label Li. ��

Since the O(n4h) time algorithm in Theorem 5 considers h positions for the
placement of labels, with Lemma 2, we see that the concerned problem can be
solved in O(n4 · nk) = O(nk+4) time. The result is stated as follows.

398 C.-C. Lin et al.

Theorem 6. With respect to 1.5-side boundary labeling, both TLLM and TBM
can be solved in O(nk+4) time when the labels are of constant k different heights
and ports are either fixed-ratio, fixed-position, or sliding.

5 Conclusion

We have investigated the total leader length minimization problem and the bend
number minimization problem for one-and-a-half-side boundary labeling under
a variety of settings parameterized by the underlying label size (uniform vs.
nonuniform) and port type (fixed-ratio, fixed-position, vs. sliding). It turns out
the two problems under the uniform-label case are solvable in polynomial time,
whereas the problems become NP-complete under the nonuniform-label case. A
pseudo-polynomial time algorithm and a fixed-parameter algorithm have been
proposed for those intractable problems. In addition, the case where indirected
leaders are not beneficial was also identified.

References

1. Bekos, M., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary labeling with
octilinear leaders. Algorithmica 57(3), 436–461 (2010)

2. Bekos, M., Kaufmann, M., Potina, K., Symvonis, A.: Area-feature boundary label-
ing. The Computer Journal 53(6), 827–841 (2009)

3. Bekos, M., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: models and
efficient algorithms for rectangular maps. Computational Geometry: Theory and
Applications 36(3), 215–236 (2006)

4. Benkert, M., Haverkort, H., Kroll, M., Nöllenburg, M.: Algorithms for multi-criteria
one-sided boundary labeling. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD
2007. LNCS, vol. 4875, pp. 243–254. Springer, Heidelberg (2008)

5. Formann, M., Wagner, F.: A packing problem with applications to lettering of
maps. In: Proc. of the 7th Annual ACM Symposium on Computational Geometry
(SoCG 1991), pp. 281–288. ACM Press, New York (1991)

6. Garey, M., Tarjan, R., Wilfong, G.: One-processor scheduling with symmetric ear-
liness and tardiness penalties. Math. Oper. Res. 13, 330–348 (1988)

7. Lin, C.C.: Crossing-free many-to-one boundary labeling with hyperleaders. In:
Proc. of 3rd IEEE Pacific Visualization Symposium (PacificVis 2010), pp. 185–
192. IEEE Press, Los Alamitos (2010)

8. Lin, C.C., Kao, H.J., Yen, H.C.: Many-to-one boundary labeling. Journal of Graph
Algorithms and Applications 12(3), 319–356 (2008)

9. Lin, C.C., Wu, H.Y., Yen, H.C.: Boundary labeling in text annotation. In: Proc. of
13th International Conference on Information Visualisation (IV 2009), pp. 110–115.
IEEE CS Press, Los Alamitos (2009)

10. Wagner, F.: Approximate map labeling is in Ω(n log n). Information Processing
Letters 52(3), 161–165 (1994)

11. Wagner, F., Wolff, A.: Map labeling heuristics: Provably good and practically use-
ful. In: Proc. of the 11th Annual ACM Symposium on Computational Geometry
(SoCG 1995), pp. 109–118. ACM Press, New York (1995)

Approximation Algorithms for a Bi-level

Knapsack Problem

Lin Chen and Guochuan Zhang

College of Computer Science, Zhejiang University, Hangzhou, 310027, China
zgc@zju.edu.cn

Abstract. In this paper, we consider a variant of knapsack problem.
There are two knapsacks with probably different capacities, owned by
two agents respectively. Given a set of items, each with a fixed size and
a profit, the two agents select items and pack them into their own knap-
sacks under the capacity constraint. Same items can be packed simulta-
neously to different knapsacks. However, in this case the profit of such
items can vary. One agent packs items into his knapsack to maximize the
total profit, while another agent can only pack items into his knapsack
as well but he cares the total profits of items packed into two knapsacks.
The latter agent is a leader while the former is a follower. We aim at
designing an approximation algorithm for the leader assuming that the
follower is selfish. For different settings we provide approximation results.

Keywords: Bilevel knapsack problem, Approximation algorithms.

1 Introduction

Knapsack Problem (KP) is one of the classical NP-hard problems in combinato-
rial optimization and computer science. There exists a pseudo-polynomial time
exact algorithm based on dynamic programming (DP) and a fully polynomial
time approximation scheme (FPTAS) [4]. There has been a lot of generaliza-
tion of the classical knapsack problem, one of which is the bi-level knapsack
problem(BKP) introduced by Dempe and Richter [3]. In the bi-level knapsack
problem, however, there are two decision makers, and they are in 2 different
levels. For simplicity we can view the 2 decision makers as the leader and the
follower. The leader controls the capacity of the follower’s knapsack, and the fol-
lower then chooses items so that his own total profits are maximized (under the
knapsack constraint). The goal, however, is to maximize the objective function
of the leader, which is a linear combination of the total profits of items (items
might have different values for the leader and the follower) and the capacity of
the knapsack he gives his follower. It can be easily seen that here the maximum
is not well-defined since there might be 2 solutions such that the follower’s ob-
jective value is the same and yet the leader’s objective value is different, and
thus gives rise to two variants of this model [6], the optimistic case where once
the follower encounters multiple optimum solutions, he chooses the one that

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 399–410, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

400 L. Chen and G. Zhang

maximizes the objective of the leader, and the pessimistic case where he chooses
just the opposite. For both cases of this BKP model, Brotcorne et al. [1] pro-
posed a dynamic programming algorithm. And for some comprehensive surveys
on bi-level programming, we refer readers to [2].

In this paper, however, we deal with a different model. Again there are 2
decision makers (agents), a leader and a follower, and each of them has his own
knapsack (might be of different capacity). Unlike the BKP models mentioned
above, one can not control the other’s knapsack, however, he can influence the
profit of the items. As an example consider the following scenario. Regard each
item as a project, and the two agents as investors. To put project i into investor
j’s portfolio it would cost him wi, and reward him with a profit of pi + ai. Here
ai = 0 if he is the sole investor, and could be either positive or negative if project
i is taken by both investors. It is clear the profit of a project depends on the
decision of both investors. The follower is interested in his own profit while the
leader aims at maximizing the total profits of two agents. In other words, the
leader’s objective is the social income. We aim to find a best solution for the
leader. A simple interpretation of this model could be that, the leader is the
government, and the follower is a company. The government wants to improve
the social income by playing as a role in this game, although it owns a profit as
a player in the game, however, its goal is the social income, and thus it plays as
a ’selfless’ player.

Our model is related to Wang et al. [8], whose focus is on the existence of
a pure Nash equilibrium and the price of anarchy [5]. The generalization from
2 players to 2 groups is covered in [7]. Our model is different in the way that,
the 2 investors in Wang et al. [8] are of the same level as they stands for 2
selfish players in a game, and yet in our model, one is a leader and the other is
a follower.

In Section 2, we give some preliminaries and formulate our problem as a bi-
level programming. We further define two different versions based on the item
profits, namely a competitive version in which the profit of an item decreases if it
is packed into both knapsacks, and a beneficial version otherwise. In Section 3, we
consider the competitive version by giving a 2 + ε-approximation algorithm and
a lower bound of 1.5. In Sections 4 and 5, we investigate the beneficial version
with 2 different cases with respect to the capacities of the 2 knapsacks, and
give a (1 +

√
2) + ε-approximation algorithm and a 2-approximation algorithm,

respectively. Concluding remarks are given in Section 6.

2 Preliminary and Problem Formulation

Let U = {1, 2, · · · , n} denote the set of items(projects) to be chosen from, with
item i consuming a capital of wi. Now there are two investors, just as we have
mentioned, one is the leader (government) who wants to maximize the revenue
of both (the total income), and the other is the follower (company) who only
cares about its own profit. Note that item i will bring a revenue of pi if it is
chosen by either one, and if it is chosen by both, then each one gains pi + ai (ai

could be positive or negative).

Approximation Algorithms for a Bi-level Knapsack Problem 401

Let xi, yi ∈ {0, 1}, i = 1, 2, · · · , n denote the choices of the leader and the
follower for item i respectively, and W1 and W2 denote the total capitals of them
respectively. This Stackelberg problem can be modeled as a bi-level programming
as follows.

max
x,y∈M(x)

f1(x, y) =
n∑

i=1

pi(xi + yi) + 2
n∑

i=1

aixiyi

s.t.

n∑
i=1

wixi ≤ W1, xi ∈ {0, 1}

where M(x) is the set of optimum solutions of the following 0 − 1 integer pro-
gramming for any fixed x.

max f2(x, y) =
n∑

i=1

piyi +
n∑

i=1

aixiyi

s.t.

n∑
i=1

wiyi ≤ W2, yi ∈ {0, 1}

Remarks.

1. In our problem, we assume that the leader makes its choice first, and then
the follower will solve the corresponding knapsack problem with respect to
its objective function f2(x, y), and we further assume that the follower can
always find an optimum solution for this knapsack problem.

2. There is one problem with the above programming. It is actually not well-
defined in the sense that for some x, M(x) might contain more than one
elements, and the objective value of the leader thus depends on the choice of
the follower. A weak Stackelberg problem assumes that when facing multiple
choices, the follower will always return a solution that minimizes the leader’s
objective value while a strong Stackelberg problem assumes just the opposite.
However, in reality the reaction pattern of a follower is often his private
information and is unknown to the leader. Thus in our problem, we assume
that when multiple choices are available to the follower, he will choose one
arbitrarily.

Since we focus on approximation algorithms whose analysis is based on
worst case performance, we assume that when analyzing any given algorithm,
the follower always returns a solution that minimizes the leader’s objective
value. Yet the optimum solution (x∗

i , y
∗
i) is the one that achieves the largest

possible value of f1(x, y), which is the optimum objective value of the strong
Stackelberg problem, and we call it the cooperative optimum solution.

In the following sections, we will focus on two special cases, the competitive
version (i.e. ai ≤ 0, ∀i) and the beneficial version (i.e. ai ≥ 0, ∀i), and for the

402 L. Chen and G. Zhang

beneficial version we give two different algorithms under conditions W1 ≤ W2

and W1 > W2, respectively.
For simplicity, in the following part, we may replace

∑n
i=1 by

∑
, and omit

the constraint xi, yi ∈ {0, 1}.

3 The Competitive Version

Clearly ai ≤ 0 (∀i) implies that items chosen by the leader become less attractive
to both sides. For simplicity, we replace ai by −ai.Then we have

max
x,y∈M(x)

f1(x, y) =
n∑

i=1

pi(xi + yi) − 2
n∑

i=1

aixiyi

s.t.

n∑
i=1

wixi ≤ W1, xi ∈ {0, 1}

M(x) : max f2(x, y) =
n∑

i=1

piyi −
n∑

i=1

aixiyi

s.t.

n∑
i=1

wiyi ≤ W2, yi ∈ {0, 1}

(pi, wi, W1, W2 > 0, 0 ≤ ai ≤ pi, ∀i)

In this section we will give a pseudo-polynomial time 2-approximation al-
gorithm as well as a polynomial time (2 + ε)-approximation algorithm for our
problem, and also show that there is a lower bound of 1.5.

3.1 Algorithm Algc

Algorithm Algc is as follows.
Step 1. Solve knapsack problem (1)

max
∑

piyi

s.t.
∑

wiyi ≤ W2 (1)

Let yi1 be an optimum or an approximation solution.
Step 2. Solve knapsack problem (2)

max
∑

pixi − 2
∑

aixiyi1

s.t.
∑

wixi ≤ W1 (2)

Let xi1 be an optimum or an approximation solution.
Step 3.Output xi1.

Approximation Algorithms for a Bi-level Knapsack Problem 403

We will show that, if we use a pseudo-polynomial algorithm to solve knapsack
problems (1) and (2) exactly, then the above algorithm is a pseudo-polynomial
time 2-approximation algorithm, and if we use instead an FPTAS to achieve a
(1 + ε)-approximation solution for (1) and (2), then the above algorithm is
a polynomial time 2(1 + ε)/(1 − ε)-approximation algorithm. For simplicity we
only consider the use of FPTAS in the following subsection, and the analysis for
the use of a pseudo-polynomial time algorithm is just similar.

3.2 Analysis of the Algorithm

Let xi1 be the choice of the leader, and y′
i1 be any corresponding choice of the

follower, we will prove that OPT =
∑

pi(x∗
i + y∗

i) − 2
∑

aix
∗
i y

∗
i is bounded by

2(1 + ε)/(1 − ε) times of
∑

pi(xi1 + y′
i1) − 2

∑
aixi1y

′
i1

Lemma 1. If xi1, yi1 are (1+ε)- approximation solutions of (1) and (2), then

OPT ≤ 2(1 + ε)(
∑

pixi1 +
∑

piyi1 − 2
∑

aixi1yi1)

Proof. Obviously we have (1 + ε)
∑

piyi1 ≥∑ piy
∗
i ,
∑

pixi1 − 2
∑

aixi1yi1 ≥ 0.
Thus (1 + ε)(

∑
piyi1 +

∑
pixi1 − 2

∑
aixi1yi1) ≥

∑
piy

∗
i .

Let I be the set of subscripts of those yi1 that are equal to 1, i.e. I = {i|yi1 =
1}, then (1 + ε)(

∑
pixi1 − 2

∑
aixi1yi1) ≥ max∑

wixi≤W1

∑
i�∈I pixi.

(1 + ε)(
∑

pixi1 +
∑

piyi1 − 2
∑

aixi1yi1) ≥
∑
i∈I

pi + max∑
wixi≤W1

∑
i�∈I

pixi

≥ max∑
wixi≤W1

∑
pixi

≥
∑

pix
∗
i

thus

2(1 + ε)(
∑

pixi1 +
∑

piyi1 − 2
∑

aixi1yi1) ≥
∑

piy
∗
i +

∑
pix

∗
i ≥ OPT.

Theorem 1. Let y′
i1 be any corresponding choice of the follower when the leader

chooses according to xi1, then

OPT ≤ 2(1 + ε)/(1 − ε)(
∑

pi(xi1 + y′
i1) − 2

∑
aixi1y

′
i1).

The proof is omitted.

404 L. Chen and G. Zhang

3.3 A Lower Bound

Consider the following program:

max
x,y∈M(x)

f1(x, y) = (x1 + y1) + 2(x2 + y2) − 2x2y2

s.t. 2x1 + x2 ≤ 1
M(x) : max f2(x, y) = y1 + 2y2 − x2y2

s.t. 2y1 + y2 ≤ 2

Any algorithm for this problem will return one of the following 2 solutions (in the
collum of (x1, x2)), and suppose the follower chooses the corresponding solution
in the collum for (y1, y2) (it’s easy to verify that they are optimum solutions for
the corresponding knapsack problems).

(x1, x2) (y1, y2) x1 + y1 + 2(x2 + y2) − 2x2y2

(0,1) (0,1) 2
(0,0) (0,1) 2

The cooperative optimum solution of this problem, however, is (x1, x2) =
(0, 1), (y1, y2) = (1, 0), then x1 + y1 + 2(x2 + y2) − 2x2y2 = 3. Thus a lower
bound of this problem is 1.5.

4 The Beneficial Version with W1 > W2

Bilevel integer programming for this problem is as follows.

max
x,y∈M(x)

f1(x, y) =
n∑

i=1

pi(xi + yi) + 2
n∑

i=1

aixiyi

s.t.

n∑
i=1

wixi ≤ W1, xi ∈ {0, 1}

M(x) : max f2(x, y) =
n∑

i=1

piyi +
n∑

i=1

aixiyi

s.t.

n∑
i=1

wiyi ≤ W2, yi ∈ {0, 1}

(pi, wi, W1, W2, ai ≥ 0, pi + ai > 0, ∀i, W1 > W2)

In this section we will give a pseudo-polynomial time (1+
√

2)-approximation
algorithm as well as a polynomial time (1 +

√
2 + ε)-approximation algorithm

for this problem, and also show that there is a lower bound of 1.5.

Approximation Algorithms for a Bi-level Knapsack Problem 405

4.1 Algorithm Algm1

Algorithm Algm1 is as follows.
Step 1. Solve knapsack problem (3)

max
∑

pixi

s.t.
∑

wixi ≤ W1 (3)

Let xi1 be an optimum or an approximation solution. then solve knapsack
problem (4)

max
∑

piyi +
∑

aixi1yi

s.t.
∑

wiyi ≤ W2 (4)

Let yi1 be an optimum or an approximation solution.
Step 2. Solve knapsack problem (5)

max
∑

(pi + ai)xi

s.t.
∑

wixi ≤ W2 (5)

Let xi2 be an optimum or an approximation solution, then solve knapsack
problem (6)

max
∑

piyi +
∑

aixi2yi

s.t.
∑

wiyi ≤ W2 (6)

Let yi2 be an optimum or an approximation solution.
Step 3. If

√
2(
∑

pixi1 +
∑

piyi1 +
∑

aixi1yi1) ≥
∑

piyi2+2
∑

aixi2yi2 output
xi1, otherwise output xi2.

Again if we use a pseudo-polynomial time algorithm to solve knapsack problem
(3), (4), (5) and (6) exactly, then the above algorithm is a pseudo-polynomial
time (1 +

√
2)-approximation algorithm, and if we use an FPTAS to achieve

a (1 + ε)-approximation solution for those knapsack problems, then the above
algorithm is a polynomial time (1+

√
2)(1+ε)3-approximation algorithm. In the

subsection follows again we only focus on the use of the FPTAS.

4.2 Analysis of the Algorithm

When the leader chooses xi1 or xi2, let y′
i1 or y′

i2 be any corresponding choice of
the follower, we’ll prove that OPT =

∑
pi(x∗

i + y∗
i)+ 2

∑
aix

∗
i y

∗
i is bounded by

(1+
√

2)(1+ε)3 times of either
∑

pi(xi1 + y′
i1)+2

∑
aixi1y

′
i1 or

∑
pi(xi2 + y′

i2)+
2
∑

aixi2y
′
i2.

Lemma 2. If xi1, yi1, xi2, yi2 are (1 + ε)-approximation solutions for knapsack
problems (3), (4), (5) and (6), then

OPT ≤ (1 + ε)3(
∑

pixi1 +
∑

piyi1 +
∑

aixi1yi1 +
∑

piyi2 + 2
∑

aixi2yi2)

406 L. Chen and G. Zhang

Proof. Note that

(a). (1 + ε)
∑

pixi1 ≥∑ pix
∗
i

(b). (1 + ε)2(
∑

piyi2 +
∑

aixi2yi2) ≥ (1 + ε)(
∑

pixi2 +
∑

aixi2)

≥
∑

piy
∗
i +

∑
aiy

∗
i

≥
∑

piy
∗
i +

∑
aix

∗
i y

∗
i

(c). (1 + ε)2
∑

aixi2yi2 ≥
∑

aix
∗
i y

∗
i − (1 + ε)2

∑
piyi2

(d). (1 + ε)(
∑

piyi1 +
∑

aixi1yi1) ≥
∑

piyi2 +
∑

aixi1yi2

≥
∑

piyi2

Let (a) + (b) + (c) + (d) ∗ (1 + ε)2, and we get what we expect.

Theorem 2. If xi1, yi1, xi2, yi2 are 1 + ε-approximation solutions for knapsack
problems (3), (4), (5) and (6), and let y′

i1 or y′
i2 be any choice of the follower

when the leader chooses xi1 or xi2, α > 0, we have
Claim 1. If α(

∑
pixi1 +

∑
piyi1 +

∑
aixi1yi1) ≥

∑
piyi2 + 2

∑
aixi2yi2 then

OPT ≤ (1 + α)(1 + ε)3(
∑

pixi1 +
∑

piy
′
i1 + 2

∑
aixi1y

′
i1).

Claim 2. If α(
∑

pixi1 +
∑

piyi1 +
∑

aixi1yi1) ≤
∑

piyi2 + 2
∑

aixi2yi2 then

OPT ≤ (1 +
2
α

)(1 + ε)3(
∑

pixi2 +
∑

piy
′
i2 + 2

∑
aixi2y

′
i2).

The proof is omitted.

4.3 A Lower Bound

Consider the following case:

max
x,y∈M(x)

f1(x, y) = (x1 + y1) + (x3 + y3) + 2x2y2

s.t. 2x1 + 3x2 + 4x3 ≤ 5
M(x) : max f2(x, y) = y1 + y3 + x2y2

s.t. 2y1 + 3y2 + 4y3 ≤ 4

Any algorithm for this problem will return one of the following 5 solutions (in the
collum of (x1, x2, x3)), suppose the follower chooses the corresponding solution
in the collum for (y1, y2, y3) (it’s easy to verify that they are optimum solutions
for the corresponding knapsack problems).

(x1, x2, x3) (y1, y2, y3) x1 + y1 + x3 + y3 + 2x2y2

(0,0,0) (0,0,1) 1
(1,0,0) (0,0,1) 2
(0,1,0) (0,0,1) 1
(0,0,1) (0,0,1) 2
(1,1,0) (0,0,1) 2

Approximation Algorithms for a Bi-level Knapsack Problem 407

And the cooperative optimum solution is (x1, x2, x3) = (1, 1, 0), (y1, y2, y3) =
(0, 1, 0) with the object value 3, thus one lower bound for this problem is 1.5.

5 The Beneficial Version with W1 ≤ W2

The bi-level integer programming for this problem is as follows.

max f1(x, y) =
∑

pi(xi + yi) + 2
∑

aixiyi

s.t.
∑

wixi ≤ W1

M(x) : max f2(x, y) =
∑

piyi +
n∑

i=1

aixiyi

s.t.
∑

wiyi ≤ W2

(pi, wi, W1, W2, ai ≥ 0, pi + ai > 0, ∀i, W1 ≤ W2)

In this section we will give a pseudo-polynomial time 2-approximation algorithm
as well as a polynomial time 2 + ε-approximation algorithm for this problem,
and also show that there is a lower bound of 2.

Before the main algorithm Algm2 is given for this problem, we first give algo-
rithms for the following subproblem which will be used in the main algorithm.

5.1 A Subproblem and the Corresponding Algorithm

Integer programming for this subproblem is as follows:

max

n∑
i=1

piyi +
∑

aixiyi

s.t.

n∑
i=1

wixi ≤ W1

n∑
i=1

wiyi ≤ W2

Again, constraints xi, yi ∈ {0, 1}, i = 1, 2, · · ·n is omitted.
We will give a pseudo-polynomial time exact algorithm Algsub as well as a

polynomial time approximation scheme Alg
′
sub(ε) which will return a solution

xi, yi that satisfy:

OPT
′ ≤ (1 + ε)(

∑
pixi +

∑
piyi +

∑
aixiyi),

where OPT
′
is the optimum object value of this subproblem.

Note that Alg
′
sub(ε) is not a PTAS for this subproblem, but this result is

enough as we set out to design an (2 + ε)-approximation algorithm for the main
problem.

408 L. Chen and G. Zhang

As the algorithm Alg
′
sub(ε) involves a lot of enumerations, we omit the proof.

Dynamic programming Algsub:
Define Zk(a, b) recursively as follows.

Zk+1(a, b) = max{Zk(a, b), Zk(a−wk+1, b−wk+1)+pk+1+ak+1, Zk(a, b−wk+1)+pk+1}

(a, b, k ∈ Z, a ≤ W1, b ≤ W2, 1 ≤ k ≤ n − 1)
The initial condition is

Z1(a, b) =

⎧⎨⎩
0, b < w1

p1, b ≥ w1, a < w1

p1 + a1, b ≥ w1, a ≥ w1

∀k, Zk(a, b) = −∞, if a < 0 or b < 0

The algorithm stops as we compute Zn(W1, W2), and it’s easy to verify that the
computational complexity is O(nW1W2).

The analysis of this algorithm is omitted.

5.2 Algorithm Algm2

We describe Algorithm Algm2 as follows.
Step 1. Solve knapsack problem (7)

max
∑

(pi + ai)xi

s.t.
∑

wixi ≤ W1 (7)

Let xi1 be an optimum or an approximation solution.
Step 2. Solve the following subproblem (8) using Algsub or Alg

′
sub(ε)

max
∑

piyi +
∑

aixiyi

s.t.
∑

wixi ≤ W1∑
wiyi ≤ W2 (8)

Let xi2, yi2 be an optimum or an approximation solution.
Step 3. If

∑
(pi + ai)xi1 ≥∑ pixi2 +

∑
piyi2 +

∑
aixi2yi2, outputxi1, other-

wise output xi2.
Similarly, If we use a pseudo-polynomial algorithm to solve knapsack prob-

lem (7) exactly, and Algsub to solve problem (8), then the above algorithm
is a pseudo-polynomial time 2-approximation algorithm, and if we use an FP-
TAS to achieve a (1 + ε)-approximation solution for knapsack problem (7)
and Alg

′
sub(ε) for problem (8), then the above algorithm is a polynomial time

(2 + 2ε)-approximation algorithm. In the subsection follows we again only focus
on the polynomial time algorithm.

Approximation Algorithms for a Bi-level Knapsack Problem 409

5.3 Analysis of the Algorithm

When the leader chooses xi1 or xi2, let y′
i1 or y′

i2 be any choice of the follower,
we’ll prove that OPT =

∑
pi(x∗

i + y∗
i)+2

∑
aix

∗
i y

∗
i is bounded by 2(1+ε) times

of either
∑

pi(xi1 + y′
i1) + 2

∑
aixi1y

′
i1 or

∑
pi(xi2 + y′

i2) + 2
∑

aixi2y
′
i2.

Lemma 3. If xi1, yi1, xi2, yi2 are (1 + ε)-approximation solutions for problems
(7) and (8), then

OPT ≤ (1 + ε)(
∑

pixi1 +
∑

aixi1 +
∑

pixi2 +
∑

piyi2 +
∑

aixi2yi2).

Proof. Note that

(1 + ε)(
∑

pixi1 +
∑

aixi1) ≥∑ pix
∗
i +

∑
aix

∗
i

≥∑ pix
∗
i +

∑
aix

∗
i y

∗
i

and

(1 + ε)(
∑

pixi2 +
∑

piyi2 +
∑

aixi2yi2) ≥
∑

piy
∗
i +

∑
aix

∗
i y

∗
i .

Summing them up we arrive at what we want.

Theorem 3. If xi1, yi1, xi2, yi2 are (1+ε)-approximation solutions for problems
(7) and (8), and let y′

i1 or y′
i2 be any corresponding choice of the follower

respectively, then
Claim 1. If

∑
(pi + ai)xi1 ≥ ∑

pixi2 +
∑

piyi2 +
∑

aixi2yi2, then OPT ≤
2(1 + ε)

∑
(pi + ai)xi1.

Claim 2. If
∑

(pi + ai)xi1 <
∑

pixi2 +
∑

piyi2 +
∑

aixi2yi2, then OPT ≤
2(1 + ε)(

∑
pixi2 +

∑
piy

′
i2 +

∑
aixi2y

′
i2)

We omit the proof.

5.4 A Lower Bound

Consider the following case:

max
x,y∈M(x)

f1(x, y) = x2 + y2 + 2x1y1

s.t. x1 + 2x2 ≤ 1
M(x) : max f2(x, y) = y2 + x1y1

s.t. y1 + 2y2 ≤ 2

Any algorithm for this problem will return one of the following 2 solutions (in
the collum of (x1, x2)), suppose the follower chooses the corresponding solution
in the collum for (y1, y2) (it’s easy to verify that they are optimum solutions for
the corresponding knapsack problems).

(x1, x2) (y1, y2) x2 + y2 + 2x1y1

(1,0) (0,1) 1
(0,0) (0,1) 1

And the cooperative optimum solution is (x1, x2) = (1, 0), (y1, y2) = (1, 0) with
the object value 2, thus one lower bound for this problem is 2.

410 L. Chen and G. Zhang

6 Conclusions

In this paper, we consider the portfolio problem in the real world that involves
two decision makers with one focuses on the total profits. We formulate this
problem as a bi-level knapsack problem, and provide approximation algorithms
under different settings. The corresponding lower bounds are also analyzed. It
is interesting to extend our work to incorporate a general situation with more
players.

References

1. Brotcorne, L., Hanafi, S., Mansi, R.: A dynamic programming algorithm for the
bi-level knapsack problem. Operations Research Letters 37, 215–218 (2009)

2. Colson, B., Marcotte, P., Savard, G.: Bilevel programming, A survey. 4OR: A Quar-
terly Journal of Operations Research 3(2), 87–107 (2005)

3. Dempe, S., Richter, K.: Bilevel programming with Knapsack constraint. Central
European Journal of Operations Research 8, 93–107 (2000)

4. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM 22, 363–468 (1975)

5. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Proceedings of the
16th Symposium on Theoretical Aspects of Computer Science, pp. 404–413 (1999)

6. Loridan, P., Morgan, J.: Weak via strong Stackelberg problem: Newresults. Journal
of Global Optimization 8, 263–287 (1996)

7. Wang, Z., Xing, W., Fang, S.C.: Two-group knapsack game. Theoretical Computer
Science 411, 1094–1103 (2010)

8. Wang, Z., Xing, W.: Two-person knapsack game. Journal of Industrial and Man-
agement Optimization 6(4), 847–860 (2010)

On the Surface Area

of the Asymmetric Twisted Cube

Eddie Cheng1, Qiu Ke2, and Zhizhang Shen3

1 Mathematics and Statistics, Oakland University, USA
echeng@oakland.edu

2 Dept of Computer Science, Brock University, Canada
kqiu@brocku.ca

3 Dept. of Computer Science and Technology, Plymouth State University, USA
zshen@plymouth.edu

Abstract. We derive a surface area result for the asymmetric twisted
cube, provide closed-form expressions for such results in terms of some
exemplary centers, and start to make an accurate analysis of its associ-
ated average distance measurement.

Keywords: Interconnection networks, broadcasting, twisted cube,
surface area, average distance.

1 Introduction

Given a vertex u in a graph G, a question one may ask is how many vertices are
at distance i from u for i ∈ [0, D(G)], where D(G) stands for the diameter of G.
This quantity is referred to, in the literature, as the “Whitney numbers of the
second kind of the poset” [13], the “surface area of a vertex with radius i” [12],
and “distance distribution of nodes”[17]. In this paper, we refer to this quantity
as the surface area with radius i, centered at u, denoted as BG,u(i).

The surface area of a network can find several applications in evaluating net-
work performance. In particular, it can be used to derive the average distance of
a network structure. The average distance from u to all the vertices in G is often

defined as
∑

v∈V (G) dG(u,v)

|V (G)| , namely,
∑D(G)

i=0 i∗BG,u(i)

|V (G)| , measuring the broadcasting
behavior of G in terms of u, while the surface area result itself can be used to
characterize the k-neighborhood broadcasting behavior of G from u [8]. Other
applications of surface area results include identification of spanning trees and
resource placement in network structures. As a result, this surface area prob-
lem has been studied for a variety of network structures, including the rotator
graph, the star graph, the k-ary n-cube, the (n, k)-star graph, and the arrange-
ment graph. (For the solutions to this problem for the aforementioned and other
graphs, readers are referred to [12,15] and the references cited within.)

It is generally difficult to derive surface area results for non vertex-symmetric
structures, where the surface area varies from center to center. For one such
example, readers are referred to [4] for general surface area results for the sym-
metric torus structure and the asymmetric mesh structure.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 411–423, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

412 E. Cheng, Q. Ke, and Z. Shen

Several hypercube variants have been suggested, including augmented cubes,
cross cubes, Möbius cubes, and twisted cubes. The chief attraction of the twisted
cubes is that, while having the same number of edges, its diameter is only half
of that of the hypercube of the same dimension, thus cutting down the routing
cost. Abraham et al considered this “strong point” in [1] by discussing the static
asymmetry in the twisted cube topology and its impact on inter-vertex distances,
i.e., surface area, and average distance. Various topological properties of the
twisted cube structure, including connectivity, wide diameter, fault diameter
and pancyclicity properties, are studied in [3], and more recent research results
have appeared in [11,18,7,2]. But, to the best of our knowledge, no analysis has
ever been made to obtain a general result on the surface area of this vertex
asymmetric class of twisted cubes. Lack of such a result makes an accurate
analysis of the average distance measurement difficult, if not impossible, for the
twisted cubes.

In this paper, we derive the surface area result for the twisted cube. Besides
solving a specific surface area problem, we believe this result also sheds new light
on solving similar problems in terms of other asymmetric structures. To make
this paper self contained, we provide a brief overview of the necessary terms and
basic results related to the twisted cube in the next section, derive a general
surface result in Section 3, and provide closed-form expressions relative to some
specific centers in Section 4. We then present surface areas, as well as the average
distances, of twisted cubes of varying sizes, relative to some of the exemplary
centers, in Section 5, and finally end this paper with some concluding remarks
in Section 6.

2 Twisted Cube and Its Routing

The vertex set of the twisted-cube TQd, as coined in [10], is the set of all the
binary strings of length d, d ≥ 1, d odd, although the case of d being even has
also been defined [10,7]. Let d = 2m + 1, m ≥ 0.

Let u ∈ TQd, u = u2mu2m−1 · · ·u2ju2j−1 · · ·u0, for all j ∈ [1, m], Pj(u), the
parity function associated with the double bit u2ju2j−1, is defined as u2j−2 ⊕
· · · ⊕ u0, where ‘⊕’ stands for the exclusive-or operation.

Besides u2mu2m−1 · · ·u0, u is always connected to u2mu2m−1 · · ·
u2ju2j−1 · · ·u0, for j ∈ [1, m]. Moreover, u is also connected to either
u2mu2m−1 · · ·u2ju2j−1 · · ·u0, when Pj(u) = 0; or u2mu2m−1 · · ·u2ju2j−1 · · ·u0,
when Pj(u) = 1. It is thus clear that TQd contains d2d−1 edges, the same as
its hypercube counterpart of the same dimension. It is also known that the
diameter of TQd is d+1

2 [10]. Figure 1 shows TQ1 and TQ3.
For example, in TQ3, u = 01 0, besides being connected to 01 1 and 11 0, is

also connected to 10 0, since P1(u) = 0; while v = 01 1, besides 01 0 and 11 1, is
connected to 00 1, since P1(v) = 1.

The following routing algorithm is given in [3,7], equivalent to the original
one as given in [10], for routing a message from a vertex c to another vertex u in
TQd, at an intermediate vertex z, where for j ∈ [1, m], u2j is referred to as the

On the Surface Area of the Asymmetric Twisted Cube 413

Fig. 1. Twisted cube of small dimensions

left part of the jth double bit of u, namely, u2ju2j−1. Note that u0, containing
only one bit, is also referred to as a double bit for convenience.

R1. If z = u, we are done.
R2. Otherwise, repeatedly correct the leftmost differing jth double bit between

z and u that may be corrected by a single link traversal from vertex z
and route the message via this link.

R3. If the previous steps fail, find the rightmost differing jth double bit between
z and u and route the message to link 2j which will correct the left part of
that double bit (but not completely correct the double bit itself.)

For example, when routing a message from u = 01 11 00 11 1 to v =
00 00 00 00 1, since P4(u) = 1, we can correct the right part of u4 to reach
w = 00 11 00 11 1. We then get stuck since neither w3 nor w1 can be corrected
to their corresponding double bits in v, because the respective parity function
“blocks” such corrections. We thus have to apply R3 to w1, the rightmost dif-
fering double bit, when we only change its left part, to reach x = 00 11 00 01 1,
which changes the values of all the parity functions associated with the preced-
ing double bits, particularly those blocking parity functions, in this case, P3(u),
the parity function associated with x3. We can thus correct x3 to 00 to reach
y = 00 00 00 01 1, and finally correct y1, the partially corrected rightmost double
bit, to reach v = 00 00 00 00 1. In other words,

u = 01 11 00 11 1 → 00 11 00 11 1
R3→ 00 11 00 01 1 → 00 00 00 01 1 → 00 00 00 00 1 = v.

It is proved in [10] that the above routing algorithm is correct and always leads
to a minimum routing path between c and u. It is clear that, when no R3 rule
is applied, the number of differing double bits equals the number of corrections,
thus the distance by the minimality of the routing algorithm. On the other hand,
if, at some point, R2 cannot be applied to any of the differing double bits, thus R3

has to be applied to the left part of the rightmost differing double bit. Once this
is done, the parity functions associated with all the remaining differing double
bits will be changed to their opposite, respectively, thus all of them can now

414 E. Cheng, Q. Ke, and Z. Shen

be corrected with R2. Hence, R3 needs to be applied exactly once in this latter
case, when it takes one more move to correct the partially corrected rightmost
double bit to its corresponding bit in c to complete the process, a total of two
moves for the rightmost differing double bit, and one move for the other differing
double bits. It is then clear that, for this latter case, the number of moves, i.e.,
the distance between the two vertices, equals the number of differing double bits
plus one. Thus, we have the following result.

Proposition 1. Let hd(u, v) stand for the number of the different double bits
between two vertices u, v ∈ TQd, then

dTQd
(u, v) =

{
hd(u, v) if R3 is not applied;
hd(u, v) + 1 otherwise.

For example, in the above example of routing from u = 01 11 00 11 1 to v =
00 00 00 00 1, although hd(u, v) = 3, since R3 is needed, their distance is 4.

We note that the above proposition implies the following “coarser” result [3,
Theorem2]:

Proposition 2. Let hd(u, v) stand for the number of the different double bits
between two vertices u, v ∈ TQd, then

hd(u, v) ≤ dTQd
(u, v) ≤ hd(u, v) + 1.

It turns out that Proposition 1 opens the door for the derivation of the general
surface area result for the twisted cube, which we will explore in the next section.

3 A General Surface Area Result for the Twisted Cube

Let BTQd,c(i) refer to the surface area of TQd, d = 2m+1, m ≥ 0, with radius i ∈[
0, d+1

2

]
, centered at c ∈ TQd. It is clear that BTQd,c(0) = 1, and BTQd,c(1) = d,

for any center vertex c. In this section, we derive BTQd,c(i), i ∈ [2, m+1], centered
at any vertex c in TQd.

Let u = u2mu2m−1 · · ·u2ju2j−1 · · ·u0, for convenience, we also write u =
um · · ·uj · · ·u1u0, where uj, j ∈ [1, m], refers to the jth double bit of u, and
similarly denote Pj(u), j ∈ [1, m], as the parity function associated with uj .

Let c ∈ TQd, c = cm · · · cj · · · c1c0 ∈ TQd, be a center vertex in TQd, when
we say in the following that uj cannot be corrected to cj because of its associated
parity function, we mean that, when Pj(u) = 0, uj = c2jc2j−1, and when Pj(u) =
1, uj = c2jc2j−1, and we will call such a parity function a blocking one. When
we say that uj can be corrected to cj because of its associated parity function, we
mean that, when Pj(u) = 0, either uj = c2jc2j−1, or uj = c2jc2j−1; and when
Pj(u) = 1, either uj = c2jc2j−1, or uj = c2jc2j−1.

Incidentally, we note that when uj can not be corrected because of its asso-
ciated parity function, if the left part of uj is changed to its opposite, this half
corrected double bit can then be corrected with its associated, but unchanged,
parity function. This fact justifies the last transition of the rightmost differing

On the Surface Area of the Asymmetric Twisted Cube 415

double bit, where its associated parity function will not be changed by definition,
in a routing when R3 is needed.

Given a center vertex c, to enumerate those vertices u such that dTQ(c, u) =
i, i ∈ [2, m + 1], by Proposition 1, we need to enumerate two groups of such
vertices: those vertices containing i double bits which are different from those in
c, where R3 is not applied during the routing process; and those vertices that
contain i−1 double bits different from those in c, but R3 is applied exactly once
to one of those differing double bits.

For those vertices u, where there exist i different double bits, it is convenient
for us to discuss two sub-cases:

– If u0 = c0, then in any of the
(

m
i−1

)
different ways of placing the remaining

i−1 different double bits, denoted as ud
k, k ∈ [1, i−1], among m such double

bits, if any of them cannot be corrected via R2 because of its associated
parity function, it will be able to, once u0, the rightmost differing double
bit, is corrected to c0, which changes the values of all the blocking parity
functions to their opposite, respectively. Since for each such a bit, any of the
three differing bits can be placed, the number of vertices that are i distance
apart, falling into this case, is simply 3i−1

(
m

i−1

)
.

– Otherwise, u0 = c0. We use f(l, k, m, c) to denote the total number of ver-
tices, u, which contains l double bits in the range [k, m], different from their
corresponding double bits in c, and no R3 is ever applied to any of them. It
is clear that the number of vertices that we try to enumerate that fall into
this category is simply f(i, 1, m, c).

Since we could only put in at least 0, and at most m + 1, such double
bits in segment [k, m], it is clear that l ∈ [0, m + 1]. Moreover, for any k,
f(0, k, m, c) = 1, since there is exactly one way not to place any differing
double bit(s) in a range: simply don’t do it.

For l ≥ 1, we further categorize this quantity f(l, k, m, c) of all such
vertices u, by the position of its rightmost differing double bit, uj = ud

l .
Clearly, j ≥ k, and since m − j + 1 ≥ l, we have j ≤ m − l + 1. Apparently,
this latter quantity depends on cj , the double bit in c that ud

l differs, which
determines the possible values for ud

l , as well as the parity function associated
with ud

l , Pj(u), which determines the number of neighbors adjacent to u in
terms of any of such possible replacement values. On the other hand, since
ud

l = uj is the rightmost differing double bit, all the double bits to the right
of uj, including u0, are equal to their corresponding double bits in c, hence,
Pj(u) = Pj(c).

If we use f1(l, j, m, cj , Pj(c)) to denote the total number of vertices that
contain l differing double bits in the range [j, m], with no R3 ever being
applied, and the rightmost differing double bit sits in position j, we have
that, for l ≥ 1,

f(l, k, m, c) =
m−l+1∑

j=k

f1(l, j, m, cj, Pj(c)), (1)

We now derive f1(l, j, m, cj, Pj(c)) in cases. Let cj = c2jc2j−1.

416 E. Cheng, Q. Ke, and Z. Shen

• If Pj(c) = 0, out of three possible values for ud
l = uj, c2jc2j−1, c2jc2j−1

and c2jc2j−1, by definition, both c2jc2j−1 and c2jc2j−1 can be directly
corrected to cj by applying R2, but c2jc2j−1 needs an application of R3,
thus not allowed in this case.

If ud
l = c2jc2j−1, if any of the preceding double bits cannot be cor-

rected because of its associated parity function, when ud
l corrects to

c2jc2j−1, the values of all such blocking parity functions will be changed
to their respective opposites, thus allowing their associated differing dou-
ble bits to be corrected by applying R2. As a result, this value of c2jc2j−1

will allow any of the three values to be placed in the remaining l− 1 dif-
fering double bits, which can be arranged in any of the

(
m−j
l−1

)
ways. In

other words, this case leads to 3l−1
(
m−j
l−1

)
vertices.

On the other hand, if ud
l = c2jc2j−1, its correction to c2jc2j−1 does

not change the value of any of the blocking parity functions, thus, we
still need to place the remaining l − 1 differing double bits in the range
[j + 1, m], when no R3 is to be applied, which, by definition, leads to
f(l − 1, j + 1, m, c) vertices. We have to point out here that, although
uj is to contain a different value of c2jc2j−1 in this latter case, its parity
stays the same as that of cj , thus having no impact on the parity function
values associated to the preceding double bits. As a result, the validity
of Eq. 1 still holds when applied to f(l − 1, j + 1, m, c).

• Otherwise, Pj(c) = 1. Then, out of the three possible values for ud
l = uj ,

both c2jc2j−1 and c2jc2j−1 can be corrected to cj without applying R3,
while c2jc2j−1 can not be. It is also easy to see that, when ud

l = c2jc2j−1

or c2jc2j−1, if any of the preceding differing double bits cannot be cor-
rected because of its associated parity function, once ud

l is corrected, all
the blocked correction of all such bits can proceed. Hence, in this case,
we would end up with 2 · 3l−1

(
m−j
l−1

)
vertices.

Since the above result is independent of the actual values of cj , we rewrite
the function f1 as, for l ≥ 1,

f1(l, j, m, Pj(c)) =

{
3l−1

(
m−j
l−1

)
+ f(l − 1, j + 1, m, c), Pj(c) = 0;

2 · 3l−1
(
m−j
l−1

)
, Pj(c) = 1.

(2)

We now consider the case that a vertex u contains i − 1 differing double bits
from the center c, in the range [k, m], and the rule R3 is applied exactly once. We
refer to the number of such vertices as g(i, 1, m, c). In general, g(l, k, m, c), k ∈
[1, m − l + 2], stands for the total number of vertices, u, which contains l − 1
double bits in the range [k, m], different from their corresponding double bits in
c, and R3 is applied exactly once to one of these differing double bits during the
routing of a message from u to c. Since we can put in at least 0, and at most
m such differing double bits by Proposition 1, it is clear that g is defined in the
range of l ∈ [1, m], and g(1, k, m, c) = 0, since the application of R3 needs at
least one differing double bit(s).

On the Surface Area of the Asymmetric Twisted Cube 417

For l ≥ 2, the same argument as we applied for the previous case leads to the
following equation:

g(l, k, m, c) =
m−l+2∑

j=k

g1(l, j, m, cj, Pj(c)),

where

g1(l, j, m, Pj(c)) =

{
3l−2

(
m−j
l−2

)
+ g(l − 1, j + 1, m, c), Pj(c) = 0

3l−2
(
m−j
l−2

)
, Pj(c) = 1.

(3)

Therefore, we have derived the following general result for the surface area in
a twisted cube, TQd, d ≥ 1, and odd, for any given center c.

Theorem 1. Let c ∈ TQd, d ≥ 1 and odd, and let m = d−1
2 . For all i ∈

[2, m + 1] ,

BTQd,c(i) = 3i−1

(
m

i − 1

)
+ f(i, 1, m, c) + g(i, 1, m, c).

In the above, for k ∈ [1, m − l + 1],

f(l, k, m, c) =
{

1 l = 0∑m−l+1
j=k f1(l, j, m, Pj(c)) l ∈ [1, m + 1];

and, for k ∈ [2, m − l + 2],

g(l, k, m, c) =
{

0 l = 1∑m−i+2
j=k g1(l, j, m, Pj(c)) l ∈ [2, m];

where f1 and g1 are given in Eqs. 2, and 3.

It is straightforward to convert the above general result into a computer program,
either of a recursive or a dynamic programming nature, which leads to the fol-
lowing sample data for BTQ17,c(i), i ∈ [0, 9], where c = 01 01 01 01 11 10 01 10 1 :
(1, 17, 186, 1273, 5614, 16403, 31726, 39159, 27945, 8748). It agrees with the se-
quence obtained through a direct BFS search. We also note that this sequence,
and all the other sample data that we have generated for BTQd,c(i), i ∈ [0, m+1],
are not included in the On-line Encyclopedia of Integer Sequences [16].

Although a twisted cube structure is not vertex symmetric, it does demon-
strate some symmetry as Abraham et al observed in [1], which we now discuss.
Let ckm···k1 = {c|∀j ∈ [1, m], Pj(c) = kj}. For example, for d = 5, i.e., m = 2,
c0 = c00 = {∗∗000, ∗∗110}, c1 = c01 = {∗∗011, ∗∗101}, c2 = c10 = {∗∗010, ∗∗100}
and c3 = c11 = {∗ ∗ 001, ∗ ∗ 111}, where ‘*’ refers to either 0 or 1. It is clear that,
for TQd, there are 2m such classes, and each of which contains 2d−m = 2m+1

vertices.
Since the above general result, for a given center c = cmcm−1 · · · c0, as pre-

sented in Theorem 1, does not depend on the values of the double bits cj , but its
associated parity functions, Pj(c), j ∈ [1, m], we immediately have the following
symmetry result.

418 E. Cheng, Q. Ke, and Z. Shen

Corollary 1. Let c, e ∈ ck, k ∈ [0, 2m − 1], for all i ∈ [0, m + 1], BTQd,c(i) =
BTQd,e(i).

Thus, for each of the 2m symmetric families, ck, k ∈ [0, 2m−1], all of its members,
as defined above, share the same surface area, as Abraham et al suggested in [1].

Moreover, from Eq. 2, the following is the only case of f1 when Pm(c), the
parity function associated with um, plays a role:

f1(l, m, m, Pm(c)) =
{

3l−1
(

0
l−1

)
+ f(l − 1, m + 1, m, c), Pm(c) = 0;

2 · 3l−1
(

0
l−1

)
, Pm(c) = 1.

But, the term f(l − 1, m + 1, m, c), by definition, is to place l − 1 differing
double bits into an empty segment [m + 1, m], which is impossible to do, except
when l = 1, which then leads to exactly two choices in both cases: In fact, when
Pm(c) = 0, ud

1 will take either c2mc2m−1 or c2mc2m−1; and when Pm(c) = 1, it
takes either c2mc2m−1 or c2mc2m−1.

Similarly, from Eq. 3, the following is the only case of g1 when Pm(c) appears:

g1(l, m, m, Pm(c)) =
{

3l−2
(

0
l−2

)
+ g(l − 1, m + 1, m, c), Pm(c) = 0

3l−2
(

0
l−2

)
, Pm(c) = 1.

Again, the term g(l − 1, m + 1, m, c), by definition, is to place l − 2 remaining
differing double bits into an empty segment [m + 1, m], which again cannot be
done except when l−2 = 0, i.e., l = 2, when this term equals 1. When Pm(c) = 0,
ud

1 = c2mc2m−1, and ud
1 = c2mc2m−1, when Pm(c) = 1. Thus, there exists exactly

one arrangement for both cases.
Hence, the value of Pm(c) is actually irrelevant in evaluating both f(i, 1, m, c)

and g(i, 1, m, c). This observation leads to the following result, which Abraham
et al also suggested in [1].

Corollary 2. Let c ∈ ck, k ∈ [0, 2m−1 − 1], e ∈ c2m−1+k, for all i ∈ [0, m + 1],
BTQd,c(i) = BTQd,e(i).

Corollaries 1 and 2, combined together, tell us that there are exactly 2m−1

symmetric families in TQd, such that the 2m+2 vertices belonging to each family
share the same surface area.

4 Surface Areas at Specific Centers for the Twisted Cube

The result that we have derived in Theorem 1 is expressed as a recurrence
expression, which is sometimes not practically desirable. As a contrast, a closed-
form solution, with its length independent of the involved parameters, can be
calculated in constant time, and the derivation process itself is also often math-
ematically challenging and rewarding.

We now present closed-from expressions of the surface areas for some specific
centers in TQd, where d = 2m + 1, m ≥ 0.

On the Surface Area of the Asymmetric Twisted Cube 419

Corollary 3. For all i ∈ [2, d+1
2

]
, let c0 = 0d,

BTQd,c0(i) =
3i − 1

2

(
m

i − 1

)
+

3i + 1
2

(
m

i

)
.

Proof: By Theorem 1, for all i ≥ 2,

BTQd,c0(i) = 3i−1

(
m

i − 1

)
+ f(i, 1, m, c0) + g(i, 1, m, c0).

Since for all j ∈ [1, m], Pj(c0) = 0, successive unfolding of f(i, 1, m, c0) leads to
the following: for k ∈ [0, i− 1], as the first argument of the f term is defined for
non-negative values only,

f(i, 1, m, c0) = 3i−1
m−i+1∑

j=1

(
m − j

i − 1

)
+ 3i−2

m−i+1∑
j=1

m−i+2∑
j1=1

(
m − j1
i − 2

)
+ · · ·

+3i−k−1
m−i+1∑

j=1

m−i+2∑
j1=1

· · ·
m−i+(k+1))∑
jk=jk−1+1

(
m − jk

i − (k + 1)

)

+
m−i+1∑

j=1

m−i+2∑
j1=1

· · ·
m−i+(k+1))∑
jk=jk−1+1

f(i − (k + 1), jk + 1, m).

Although the above is pretty intimidating, it turns out that, for all k ∈ [0, i−1],
we have, taking j0 = j,

m−i+1∑
j=1

m−i+2∑
j1=1

· · ·
m−i+(k+1))∑
jk=jk−1+1

(
m − jk

i − (k + 1)

)
=
(

m

i

)
.

This result can be proved by induction, with its base case, when k = 0, being
the following well-known binomial identity [9, Eq. 5.10]:

m−i+1∑
j=1

(
m − j

i − 1

)
=
(

m

i

)
.

On the other hand, it also has a clear combinatorial interpretation: to place i
symbols in m boxes, m ≥ i ≥ 0, we label those boxes with 1 through m, and,
after fixing the first k boxes within their respective range, we now use label jk

to choose one more box to place the next symbol. Clearly, jk ≥ jk−1 + 1, and
once jk is fixed, we still need to place i− (k+1) symbols in the remaining m− jk

boxes, which leads to jk ≤ m − i + (i + 1), and the total arrangements of such
placements is simply

(
m−jk

i−(k+1)

)
. This process may continue until k = i−1, where

there is nothing left for us to place in a box.
Note that the above holds particularly for k = i− 1, when the lower index of

the binomial coefficient becomes 0, i.e., the coefficient itself turns to 1, and the

420 E. Cheng, Q. Ke, and Z. Shen

fact that f(l, k, m, c) = 1 when l = 0, we have

f(i, 1, m, c0) =

⎡⎣i−1∑
j=0

3j + 1

⎤⎦(m

i

)
=

3i + 1
2

(
m

i

)
.

In a similar process, since g(1, k, m, c) = 0, for all k, we have

g(i, 1, m, c0) =

⎡⎣i−2∑
j=0

3j

⎤⎦(m

i − 1

)
=

3i−1 − 1
2

(
m

i − 1

)
.

The result then follows. ��
At the other end of the spectrum, when no unfolding is needed, we have the
easiest case.

Corollary 4. For all i ∈ [2, d+1
2

]
, let c1 = 0d1.

BTQd,c1(i) = 4 · 3i−2

(
m

i − 1

)
+ 2 · 3i−1

(
m

i

)
.

We end this section by presenting another surface area result for TQd, with
radius i ∈ [2, m + 1], centered at 0d−3010.

Corollary 5. For all i ∈ [2, d+1
2

]
, let c2 = 0d−3010.

BTQd,c2(i) = 3i−1

(
m

i − 1

)
+ 2 · 3i−1

(
m − 1

i

)
+ 6 · 3i−2

(
m − 1
i − 1

)
+
[
3i−2 + [i > 2] 3i−3

] (m − 1
i − 2

)
,

where [i > 2] = 1 if i > 2, and 0 otherwise.

Proof: For the given center C2 = 0d−3010, it is clear that P1(C2) = 0, and for
all j ∈ [2, m], Pj(C2) = 1. Thus, we have

f(i, 1, m, C2) =
m−i+1∑

j=1

f1(i, j, m, Pj(C2)) = f1(i, 1, m, 0) +
m−i+1∑

j=2

f1(i, j, m, 1)

= f1(i, 1, m, 0) + 2 · 3i−1
m−i+1∑

j=2

(
m − j

i − 1

)
.

Since
m−i+1∑

j=2

(
m − j

i − 1

)
=

m−1∑
j=i−1

(
j

i − 1

)
=
(

m − 1
i

)
,

and

On the Surface Area of the Asymmetric Twisted Cube 421

f1(i, 1,m, 0) = 3i−1

(
m− 1

i− 1

)
+ f(i− 1, 2,m) = 3i−1

(
m− 1

i− 1

)
+

m−i+2∑
j=2

f1(i− 1, j,m, 1)

= 3i−1

(
m− 1

i − 1

)
+ 2 · 3i−2

m−i+2∑
j=2

(
m− j

i− 2

)
= 3i−1

(
m− 1

i− 1

)
+ 2 · 3i−2

(
m− 1

i− 1

)
.

We have

f(i, 1, m, C2) = 2 · 3i−1

(
m − 1

i

)
+ 5 · 3i−2

(
m − 1
i − 1

)
.

Similarly,

g(i, 1, m, C2) = 3i−2

(
m − 1
i − 1

)
+
(
3i−2 + [i > 2]3i−3

)(m − 1
i − 2

)
.

The result then follows. ��
It is clear that, for any given center, c, we can follow the approach as demon-
strated in this section to derive an explicit form of the surface area result for the
twisted cube relative to c.

5 Comparison of the Twisted Cube and Other Variants

We now apply some of the results that we have derived in the previous sections
to present a refined analysis of the average distance of TQd in terms of some
exemplary centers.

We first present, in Table 1, the surface areas for TQ19, centered at four
different centers: c0, c1, c2, as defined in the previous section, and cABCD =
00 01 01 01 01 11 10 01 10 1, with its hexadecimal equivalent being ABCD.

Table 1. Surface area of TQ19 for different centers

0 1 2 3 4 5 6 7 8 9 10

c0 1 19 216 1644 8,526 30,618 76,524 131,196 147,609 98,411 29,524

c1 1 19 252 1,944 9,828 34,020 81,648 134,136 144,342 91,854 26,244

c2 1 19 244 1,868 9,408 32,634 79,002 131,868 145,314 95,499 28,431

cABCD 1 19 234 1,829 9,435 33,248 80,936 134,337 145,422 92,583 26,244

Although the above four cases represent only four out of 256 symmetric fam-
ilies of TQ19, it is clear that the differences in the distance distribution of the
nodes are not small across the various cases, as suggested in [1].

We now address the average distance issue. The following result is given in [9,
Eq. 5.18], for any real r, and integer m,∑

k≤m

(
r

k

)(r

2
− k
)

=
m + 1

2

(
r

m + 1

)
.

422 E. Cheng, Q. Ke, and Z. Shen

We then immediately obtain that the average distance of the vertex symmetric
hypercube with d dimensions, denoted as HQd, is d

2 , d ≥ 1.
We have also obtained the following surface area result [5] for another variant

of the hypercube, the vertex symmetric augmented cube [6], denoted as AQd :
BAQd

(0) = 1, and for i ∈ [1, D(AQd)],

BAQd
(i) = 2i−1

[(
d − i + 1

i

)
+
(

d − i

i

)]
,

which we use to derive an average distance expression for this structure, as
discussed in Section 1.

We now apply Theorem 1 to calculate the average distances of TQd, d ∈ [1, 19],
relative to different centers, which is then compared, in Table 2, with HQd and
AQd, where the data for TQd(cABCD) are not available for d ∈ [1, 15] since
the index for this center contains 17 bits, hence its average distance can not be
calculated for anything less.

Table 2. Average distance comparison among TQd, AQd and HQd

d TQd (c0) TQd (c1) TQd (c2) TQd(cABCD) AQd HQd

1 0.5 0.5 0.5 N/A 0.5 0.5

3 1.38 1.38 1.38 N/A 0.88 1.5

5 2.19 2.16 2.19 N/A 1.66 2.5

7 2.97 2.91 2.95 N/A 2.40 3.5

9 3.73 3.67 3.71 N/A 3.10 4.5

11 4.49 4.42 4.46 N/A 3.77 5.5

13 5.27 5.17 5.21 N/A 4.44 6.5

15 6.00 5.92 5.96 N/A 5.11 7.5

17 6.74 6.67 6.71 6.68 5.77 8.5

19 7.50 7.42 7.46 7.43 6.44 9.5

This set of data shows that the average distances of the twisted cube, relative
to various centers, are fairly close to each other, in all sizes, despite having quite
different surface areas among themselves.

6 Concluding Remarks

In this paper, we derived a general surface area result for the asymmetric twisted
cube structure for arbitrary but fixed centers, which enables us to accurately
characterize the average distance behavior of this asymmetric structure, relative
to any given center(s).

On the Surface Area of the Asymmetric Twisted Cube 423

References

1. Abraham, S., Padmanabhan, K.: The twisted cube topology for multiprocessor: A
study in network asymmetry. J. Parallel Distrib. Comput. 13, 104–110 (1991)

2. Bhaskar, R., Cheng, E., Liang, M., Pandey, S., Wang, K.: Matching preclusion and
conditional matching preclusion problems for twisted cubes. Congressus Numeran-
tium 205, 175–185 (2010)

3. Chang, C.P., Wang, J.N., Hsu, L.H.: Topological properties of twisted cubes.
Inform. Sci. 113, 147–167 (1999)

4. Cheng, E., Qiu, K., Shen, Z.: On the surface areas and average distances of meshes
and tori. Parallel Processing Letters 21(1), 61–75 (2011)

5. Cheng, E., Qiu, K., Shen, Z.: On the surface area of the augmented cubes (2010)
(manuscript)

6. Choudum, A., Sunitha, V.: Augmented cubes. Networks 40, 71–84 (2002)
7. Fan, J., Zhang, S., Jia, X., Zhang, G.: A fault-free unicast algorithm in twisted

cubes with the restricted faulty node set. In: Proc. 2009 15th International Con-
ference on Parallel and Distributed Systems (ICPADS 2009), December 8-11, pp.
316–323. IEEE Computer Society, Shenzhen (2009)

8. Fertin, G., Raspaud, A.: k-Neighbourhood broadcasting. In: 8th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO
2001), pp. 133–146 (2001)

9. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics. Addison-Wesley,
Reading (1989)

10. Hilbers, P., Koopman, M., van de Snepscheut, J.: The twisted cube. In: Treleaven,
P.C., Nijman, A.J., de Bakker, J.W. (eds.) PARLE 1987. LNCS, vol. 258, pp.
152–159. Springer, Heidelberg (1987)

11. Huang, W., Tan, J., Hung, C., Hsu, L.: Fault-tolerant Hamiltonicity of twisted
cubes. J. Parallel Distrib. Comput. 62, 591–604 (2002)

12. Imani, N., Sarbazi-Azad, H., Akl, S.G.: Some topological properties of star graphs:
The surface area and volume. Discrete Mathematics 309(3), 560–569 (2009)

13. Portier, F., Vaughan, T.: Whitney numbers of the second kind for the star poset.
Europ. J. Combinatorics 11, 277–288 (1990)

14. Sarbazi-Azad, H., Khonsari, A., Ould-Khaoua, M.: On the topological properties
of grid-based interconnection networks: surface area and volume of radial spheres.
Computer Journal doi:10.1093/comjnl/bxq011

15. Shen, Z., Qiu, K., Cheng, E.: On the surface area of the (n, k)-star graph.
Theoretical Computer Science 410(52), 5481–5490 (2009)

16. Sloane, N.: The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
17. Wang, L., Subrammanian, S., Latifi, S., Srimani, P.K.: Distance distribution of

nodes in star graphs. Applied mathematics Letters 19(8), 780–784 (2006)
18. Yang, M., Li, T., Tan, J., Hsu, L.: On embedding cycles into faulty twisted cubes.

Inform. Sci. 176(6), 676–690 (2006)

http://oeis.org/

Tractable Feedback Vertex Sets in Restricted

Bipartite Graphs�

Wei Jiang1, Tian Liu1, and Ke Xu2

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
lt@pku.edu.cn

2 National Laboratory of Software Development Environment,
Beihang University, Beijing 100191, China

kexu@nlsde.buaa.edu.cn

Abstract. A feedback vertex set (FVS) is a subset of vertices whose
removal renders the remaining graph a forest. We show that finding the
minimum FVS is tractable in the so-called triad convex bipartite graphs.

1 Introduction

A feedback vertex set (FVS), sometimes also called loop cutset, in a graph is
a subset of vertices whose removal renders the remaining graph a forest. In
weighted graphs, the weight of a FVS is the summation of the weight of each
vertex in the FVS, and the weight of each vertex is a positive integer. For non-
weighted graphs, we just assume that each vertex has a weight one. Finding
the minimum FVS (MFVS) even in non-weighted graphs is a classical NP-
complete problem. In fact, it was among the twenty-one NP-complete problems
in Karp’s list [19]. MFVS has applications in deadlock prevention and recovery in
operating systems [28], information security [15], VLSI chip design [10], artificial
intelligence [1,30], etc.. Many algorithms have been developed for MFVS, which
are approximate [3,1,4,5,27,33], randomized [2], parameterized [8,9,6], exact [12],
polynomial in restricted graphs [22,24,21,29,14,20], to enumerate and count the
number of MFVS [11], and to estimate the size of MFVS [26]. In this paper,
we show a tractable result about MFVS in some restricted bipartite graphs.
Namely, we show that MFVS is polynomial in restricted bipartite graphs which
are called triad convex.

A Bipartite graph G = (A, B, E) is called tree convex, if there is a tree T =
(A, F), such that for all vertex b in B, the subset N(b) = {a ∈ A|(a, b) ∈ E}
(i.e. the neighborhood of b in A) is a connected subtree in T . When T is a star
(i.e. a bipartite complete graph K1,|A|−1), G is called star convex. When T is
a path, G is called path convex or just convex. When T is a triad (i.e. three
paths with a common end), G is called triad convex. It was known that finding
� To whom the correspondence should be addressed: Tian Liu (lt@pku.edu.cn) and

Ke Xu (kexu@nlsde.buaa.edu.cn).

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 424–434, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Feedback Vertex Sets in Bipartite Graphs 425

MFVS in non-weighted bipartite graphs is also NP-hard [31], but tractable in
weighted convex bipartite graphs and cocomparable graphs [22], interval graphs
[24], circle graphs [14], mesh and butterfly [7,25], hypercube [13], star graph [29],
rotator graph [16,20], and shuffle-based interconnection networks [21], etc..

Recently, we generalized the notion of convex bipartite graphs to the notion
of tree convex bipartite graphs, and showed that finding MFVS in non-weighted
star convex bipartite graphs is also NP-hard [17]. Thus the tractability result of
MFVS in convex bipartite graphs in [22] is unlikely extensible to all tree convex
bipartite graphs. Here in contrast to [17], we show that finding MFVS in weighted
triad convex bipartite graphs is tractable. Therefore, the tractability result in
[22] on convex bipartite graphs is at least extensible to triad convex bipartite
graphs. In summary, the results in [17] and here have refined the complexity
classification of MFVS in [31,22] on various restricted bipartite graphs.

This paper is organized as follows. In Section 2, we recall some necessary
definitions and notations along with some known results on FVS and tree convex
bipartite graphs. In Section 3, we describe the details of an algorithm for finding
MFVS in weighted triad convex bipartite graphs, and also show its correctness.
In Section 4, we give an explicit polynomial time bound for the algorithm and
remark some possible extension and limit of the algorithm. Finally, we discuss
some open problems.

2 Definitions

In this section, we recall some definitions and notations along with some known
results to be used in subsequent sections about FVS and convex bipartite graphs
as in [22] and about tree convex bipartite graphs as in [17].

A Bipartite graph G = (A, B, E) is called tree convex, if there is a tree T =
(A, F), such that for all vertex b in B, the subset N(b) = {a ∈ A|(a, b) ∈ E}
(i.e. the neighborhood of b in A) is a connected subtree in T [17]. When T is a
triad (i.e. three paths with a common end), G is called triad convex [17]. When
T is a path, G is called path convex or just convex [23]. For convex bipartite
graphs, we can equivalently assume that there is a linear ordering < on A, such
that each neighborhood of some b is an interval of A under <, see e.g. [22].

Although the notion of tree convex bipartite graphs was recently introduced
by us in [17], from the results in [32] we can know that both convex bipartite
graphs and tree convex bipartite graphs are recognizable in linear time, and the
associated linear ordering < on A in convex bipartite graphs and the associated
tree T on A in tree convex bipartite graphs are both constructible in linear time.
Thus we can safely assume that they are parts of the inputs.

Assume a convex bipartite graph G = (A, B, E), A = {a1, . . . , an}, B =
{b1, . . . , bm}, with a linear ordering ai < aj for i < j on A. For convenience, we
add two more vertices a0 and an+1 to A [22]. The following notations are also
from [22]:

426 W. Jiang, T. Liu, and K. Xu

– For a vertex v in a graph, N(v) denotes the set of all vertices adjacent to v.
– For every b ∈ B in G, let L[b] and R[b] denote the smallest and largest

vertices, respectively, of A connected to b. Let B = {b1, . . . , bm} with R[bi] <
R[bj] for 1 ≤ i < j ≤ m.

– For ai ∈ A where 0 ≤ i ≤ n + 1, let Ai = {ah : ah ∈ A and 0 ≤ h ≤ i} and
Bi = {b : b ∈ B and R[b] < ai}.

– For ai, aj , ak ∈ A where 0 ≤ i < j < k ≤ n + 1, define Bi,j = {b : b ∈
B and ai < L[b] ≤ R[b] < aj}, and Bi,j,k = {b : ai < L[b] and aj ≤ R[b] <
ak}.

– For ai, aj ∈ A where i < j, M(i, j) denotes a MCFS in Aj + Bj containing
{ai, aj}(i.e. ai, aj ∈ M(i, j)), where ai and aj are the largest two vertices
in A ∩ M(i, j).

– For ai, aj , ak ∈ A where 0 ≤ i < j < k ≤ n+1, M(i, j, k) denotes a MCFS in
Ak +Bk containing {ai, aj , ak}, where ai, aj , ak are the largest three vertices
in A ∩ M(i, j, k).

– For ai, aj ∈ A and bk ∈ B where 0 < i < j < n + 1 and bk ∈ N(ai) ∩N(aj),
Mb(i, j, k) denotes a MCFS in Aj + Bj + {bk} containing {ai, aj , bk}, where
ai and aj are the largest two vertices in A ∩ Mb(i, j, k).

In [22], it was shown that all the M(i, j), M(i, j, k) and Mb(i, j, k) can be com-
puted in O(|A|3+|A|2|E|) time. A convex bipartite graph with the added vertices
a0 and an+1 is shown in figure 1.

Fig. 1. A convex bipartite graph

Assume a triad convex bipartite graph G = (A, B, E) with a triad T = (A, F)
defined on A, such that every N(b) is a subtree of T for b ∈ B [17]. To be specific,
let A = {a0} ∪ A1 ∪ A2 ∪ A3, such that for 1 ≤ i ≤ 3, Ai = {ai,1, . . . , ai,ni} and
a0 → ai,1 → . . . → ai,ni are three paths with a common end a0. The vertices of
a triad convex bipartite graph (without edges) are shown in figure 2.

We can assume that the graphs are weighted with positive integers on their
vertices. For non-weighted graphs, these weights are assumed to be one. Recall
that removing a FVS renders the remaining graph a forest, and the weight of a
FVS is the sum of weights of vertices in the FVS. Thus finding a minimum FVS

Feedback Vertex Sets in Bipartite Graphs 427

Fig. 2. A triad convex bipartite graph (without edges)

(MFVS) in a graph is equivalent to finding a maximum cycle-free set (MCFS)
in the same graph [22]. Below we will give an algorithm to find a MCFS instead
of a MFVS in weighted triad convex bipartite graphs as in [22].

3 The Algorithm

In this section, we will describe an algorithm for MFVS in weighted triad convex
bipartite graphs. This algorithm is a natural extension of the known algorithm
in [22]. Along with the description, we will also show the correctness of the
algorithm.

Let U be the MCFS of G, we will consider the following two cases: a0 /∈ U
and a0 ∈ U .

Case 1: a0 /∈ U .
Let a1,i, a2,j, a3,k be the nearest vertices to a0 in U on each path A1, A2, A3

respectively. Some of them may not exist at all, that is, the corresponding whole
path may not intersect with U . we can divide A into four parts S0, S1, S2, S3 as
follows:

S0 = {a0, a1,1, . . . , a1,i−1, a2,1, . . . , a2,j−1, a3,1, . . . , a3,k−1},
S1 = {a1,i, . . . , a1,n1},
S2 = {a2,j, . . . , a2,n2},
S3 = {a3,k, . . . , a3,n3}.

An example is shown in figure 3. Note that if some vertices in {a1,i, a2,j , a3,k}
do not exist, then the corresponding sets in {S1, S2, S3} will be empty, however
this will cause no harms to our algorithm but only helps.

We can put each v ∈ B into one of the following six sets B1, . . . , B6 according
to the situation of v’s neighborhood:

B1 = {v | a1,i, a2,j ∈ N(v), a3,k /∈ N(v)}.
B2 = {v | a1,i, a3,k ∈ N(v), a2,j /∈ N(v)}.
B3 = {v | a2,j, a3,k ∈ N(v), a1,i /∈ N(v)}.

428 W. Jiang, T. Liu, and K. Xu

Fig. 3. Divide A into four parts

B4 = {v | a1,i, a2,j , a3,k ∈ N(v)}.
B5 = {v | a1,i, a2,j , a3,k /∈ N(v), N(v) ⊆ S0}.
B6 = {v | |{a1,i, a2,j, a3,k} ∩ N(v)| ≤ 1, and N(v) ∩ (S1 ∪ S2 ∪ S3) �= ∅}.
The following observations are easily seen.
(1) At most one vertex from B1 is selected into U (similarly for B2,B3,B4).

Otherwise, if both bp, bq ∈ U are from B1, then U will contain a cycle bp →
a1,i → bq → a2,j → bp. Let b1, b2, b3, b4 be the vertices possibly selected into U
from B1, B2, B3, B4 respectively. Some of them may not exist, since they are not
selected into U at all, see below.

(2) At most two vertices in {b1, b2, b3} or at most one vertex in {b4} are
available in any MCFS, since {b1, b2, b3} will form a cycle b1 → a1,i → b2 →
a3,k → b3 → a2,j → b1, and for example {b1, b4} will form a cycle b1 → a1,i →
b4 → a2,j → b1.

(3) All the vertices from B5 should be in U , since obviously they are not
contained in any cycle.

(4) All the edges between B6 and S0 are removable, since they do not change
the result of MCFS.

Obviously, the selection of a1,i,a2,j ,a3,k is done in at most O(|A|3) time. Ac-
cording to the above observations (1) and (2), we can enumerate the vertices
b1, b2, b3, b4 in O(|B|2) time.

After selecting a1,i,a2,j ,a3,k and b1, b2, b3, b4 as above, by the above observa-
tion (1), we can remove all vertices in Bi \ {bi} from G. After the removing, we
define four induced subgraphs G0,G1,G2,G3 of G and find MCFS in G1,G2,G3

as follows (also see figure 4). For any bipartite graph G = (A, B, E) and any
subsets C ⊆ A and D ⊆ B, denote by G[C, D] the subgraph of G induced by C
and D, which is the bipartite graph (C, D, E∩(C&D)). Here C&D = {(c, d)|c ∈
C and d ∈ D} is the set of all unordered pairs of vertices in C and D. Let N(C) =
{b|b ∈ B and b has a neighbor c ∈ C}. Then the graphs G0, G1, G2, G3 are de-
fined as G[S0, N(S0)], G[S1, N(S1)], G[S2, N(S2)], G[S3, N(S3)] respectively. An
example of the vertex sets of subgraphs G0,G1,G2,G3 is shown in figure 4.

Feedback Vertex Sets in Bipartite Graphs 429

Fig. 4. The vertex sets (without edges) of subgraphs G0, G1, G2, G3

Let U1,U2,U3 be MCFS of G1,G2,G3 respectively. It is obvious that U =
U1∪U2∪U3∪B5. Let X1 = {v|v ∈ {b1, b2, b4}, v is actually selected into U}. By
above observation (2), we know that |X1| ≤ 2. Below we will show how to find
the MCFS U1 in G1 conditioned on X1 (we can find U2, U3 in G2, G3 similarly).

Assume that |S1| = n′
1. For convenience, we add two isolated vertices a′

0, a
′
n′

1+1

into S1 and make an ordering on N(S1) as in [22]. For the purposes to deal
with U2, U3 in a similar way to U1 and to use the algorithm in [22], we rename
the vertices in S1 as a′

0, a
′
1, · · · , a′

n′
1+1 and rename S1, N(S1), G1, U1, X1, n

′
1 as

A, B, H, U, X, n respectively. Also for convenience, we will omit the primes in a′
i’s

and b′j ’s, and use ai’s and bj ’s instead in the following lemma. This renaming
procedure is partially depicted in figure 5.

Fig. 5. Renaming vertices and finding U1 in G1

430 W. Jiang, T. Liu, and K. Xu

Lemma 1. The MCFS U of H is computed in the following three cases
accordingly:

1. If X = ∅, U = M(n, n + 1) \ {a0, an+1}.
2. If X = {x1}, U is one of the following candidates, whichever has maximum

weight:
(a) Mb(i, n, x1) ∪ Bi,n,n+1 \ {a0}, for some i, ai ∈ N(x1).
(b) M(i, n, n + 1) \ {a0}, for some i, ai ∈ A \ N(x1) .

3. If X = {x1, x2} and |N(x2) ∩ A| ≥ |N(x1) ∩ A|, U is one of the following
candidates, whichever has maximum weight:
(a) Mb(i, n, x2) ∪ Bi,n,n+1 \ {a0}, for some i, ai ∈ (N(x2) \ N(x1)).
(b) M(i, n, n + 1) \ {a0}, for some i, ai ∈ A \ N(x2).

Proof. Consider the following three cases.

1. X = ∅.
U1 is obviously M(n, n+1)\{a0, an+1} according to the definition of M(i, j).

2. X = {x1}.
If the largest three vertices is ai, an, an+1, both Mb(i, n, x1) ∪ Bi,n,n+1\{a0}
(when ai ∈ N(x1)) and M(i, n, n + 1) \ {a0} (when ai ∈ A \ N(x1)) are
cycle-free, and one of them is the MCFS of U according to the definitions of
M(i, j, k), Mb(i, j, k) and Bi,j,k.

3. X = {x1, x2} and |N(x2) ∩ A| ≥ |N(x1) ∩ A|.
If the largest three vertices is ai, an, an+1, ai /∈ |N(x1) ∩ A|, otherwise U
contains a cycle x1 → ai → x2 → an → x1. Both Mb(i, n, x2)∪Bi,n,n+1\{a0}
(when ai ∈ N(x2) \N(x1)) and M(i, n, n +1)−{a0} (when ai ∈ A \N(x2))
are cycle-free, and one of them is the MCFS of U1 according to the definitions
of M(i, j, k), Mb(i, j, k) and Bi,j,k.

This finishes the proof. ��

Fig. 6. Set S of Case 2

Feedback Vertex Sets in Bipartite Graphs 431

Case 2: a0 ∈ U .
Similar to Case 1, let a1,i = a0 and a2,j, a3,k be the nearest vertices to a0 in U
on each path A2, A3 respectively. Some of a2,j, a3,k may not exist at all, that is,
the corresponding whole path may not intersect with U . We can also divide A
into four parts S0, S1, S2, S3 as follows:

S0 = {a2,1, . . . , a2,j−1, a3,1, . . . , a3,k−1},
S1 = {a0, a1,1, . . . , a1,n1},
S2 = {a2,j, . . . , a2,n2},
S3 = {a3,k, . . . , a3,n3}.

An example is shown in figure 6. Also note that some of Si’s maybe empty.
We can put each v ∈ B into one of the following five sets B1, . . . , B5 according

to the situation of v’s neighborhood:
B1 = {v | a0, a2,j ∈ N(v), a3,k /∈ N(v)}.
B2 = {v | a0, a3,k ∈ N(v), a2,j /∈ N(v)}.
B3 = {v | a0, a1,i, a2,j ∈ N(v)}.
B4 = {v | a1,i, a2,j , a3,k /∈ N(v), N(v) ⊆ S0}.
B5 = {v | |{a0, a2,j , a3,k} ∩ N(v)| ≤ 1, and N(v) ∩ (S1 ∪ S2 ∪ S3) �= ∅}
Then we will immediately get the similar observations and lemmas as in Case

1, so we omit the details here.
The main steps of the above algorithm are summarized as follows.

Input: A triad convex bipartite graph G = (A,B,E) with triad A = {a0}∪A1∪A2∪A3

Output: A MCFS U of G

1: U = ∅.
2: Enumerate a1,i ∈ A1 ∪ {a0}, a2,j ∈ A2 and a3,k ∈ A3.
3: Assume that a1,i, a2,j and a3,k are the nearest vertices to a0 in U on paths {a0} ∪

A1, A2, A3 respectively. Divide A into S0, S1, S2, S3, divide B into B1, . . . , B6 (when
a1,i �= a0) or B1, . . . , B5 (when a1,i = a0) accordingly.

4: Enumerate b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, b4 ∈ B4 (when a1,i �= a0) or b1 ∈ B1, b2 ∈
B2, b3 ∈ B3 (when a1,i = a0).

5: Select at most two from {b1, b2, b3} or at most one from {b4} into U , and remove
all other vertices in B1, . . . , B4 (when a1,i �= a0) or
select at most two from {b1, b2} or at most one from {b3} into U , and remove all
other vertices in B1, . . . , B3 (when a1,i = a0).

6: Put B5 into U and remove all edges between S0 and B6 (when a1,i �= a0) or
put B4 into U and remove all edges between S0 and B5 (when a1,i = a0).

7: Define subgraphs G0, G1, G2, G3 accordingly and find the MCFS U1, U2, U3 in
G1, G2, G3 respectively. Update U by U1 ∪ U2 ∪ U3 ∪B5 (when a1,i �= a0) or
by U1 ∪ U2 ∪ U3 ∪B4 (when a1,i = a0).

8: If the enumeration in step 4 is unfinished then goto step 4, else if the enumeration
in step 2 is unfinished then goto step 2.

Algorithm 1. Finding MFVS in triad convex bipartite graphs

432 W. Jiang, T. Liu, and K. Xu

4 The Analysis

In this section, we give an explicit polynomial time bound for the above algo-
rithm, and remark some possible extension and limit of the algorithm here.

Theorem 1. A MCFS in a triad convex bipartite graphs is found in O(|A|3|B|2
(|A|3 + |A|2|E|)) time.

Proof. Enumerate a1,i, a2,j , a3,k is done in O(|A|3) and enumerate b1, b2, b3, b4

is done in O(|B|2). So the total enumeration time is O(|A|3|B|2). According to
[22], all M(i, j), M(i, j, k) and Mb(i, j, k) are computed in O(|A|3+|A|2|E|) time.
Therefore, a MCFS in a triad convex bipartite graphs is found in O(|A|3|B|2
(|A|3 + |A|2|E|)) time. ��
Remark 1. A triad is a tree which is three paths with a common end. We can
also consider any k paths with a common end, where k is a constant. Although
we do not have a name for this kind of trees, it is not hard to see that, using
a similar algorithm as above, we can find MCFS in these tree convex bipartite
graphs in O(|A|k|B|k−1(|A|3+|A|2|E|)) time, when the associated tree is k paths
with a common end for constant k.

Remark 2. Recently we show that the sum of degrees larger than two in the asso-
ciated tree T of tree convex bipartite graphs is an important quantity. Denote this
quantity as d. When d is bounded, using a similar algorithm as here, the MFVS
in these tree convex bipartite graphs is solvable in O(|A|d|B|d−1(|A|3 + |A|2|E|))
time. When the number of vertices of degrees larger than two is unbounded but
each degrees are bounded (thus d is also unbounded), the MFVS in these tree
convex bipartite graphs is still NP-hard [18].

5 Open Problem

It is unknown whether there are better algorithms than the algorithm presented
here for MFVS on restricted bipartite graphs. Also, a complete classification of
the complexity of finding MFVS on every kind of tree convex bipartite graphs
is unknown. What we can say is that even for bounded degrees tree T , MFVS
is still NP-hard in these tree convex bipartite graphs [18].

Acknowledgments. We thank Professor Kaile Su for his encouragement and
support. We also thank the unknown reviewers whose comments are very helpful
to improve our presentations. This research was partially supported by the Na-
tional 973 Program of China (Grant No. 2010CB328103), the National Natural
Science Foundation of China (Grant Nos. 60725207 and 60973033), the Project of
Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences (Grant
No. KJCX2.YW.W10), and was partially done while Tian Liu and Ke Xu were
visiting KITPC at the Chinese Academy of Science.

Feedback Vertex Sets in Bipartite Graphs 433

References

1. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference. SIAM J. Comput. 27, 942–959 (1998)

2. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized Algorithms for the Loop
Cutset Problem. J. Artif. Intell. Res. 12, 219–234 (2000)

3. Becker, A., Geiger, D.: Optimization of Pearls method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial In-
telligence 83, 167–188 (1996)

4. Cai, M., Deng, X., Zang, W.: An approximation algorithm for feedback vertex
sets in tournaments. SIAM J. Comput. 30, 1993–2007 (2001)

5. Cai, M., Deng, X., Zang, W.: A min-max theorem on feedback vertex sets. Math.
Oper. Res. 27(2), 361–371 (2002)

6. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set: New Measure and New Struc-
tures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer,
Heidelberg (2010)

7. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: New bounds on the size of
the feedback vertex set on meshes and butterflies. Inform. Process. Lett. 83(5),
275–280 (2002)

8. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, T.: Improved algorithms for feed-
back vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

9. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5) (2008)

10. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In:
Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization. Hand-
book of Combinatorial Optimization, Supplement vol. A, pp. 209–259. Kluwer
Academic Publishers, Dordrecht (2000)

11. Fomin, F.V., Gaspers, S., Pyatkin, A., Razgon, I.: On the Minimum Feedback
Vertex Set Problem: Exact and Enumeration Algorithms. Algorithmica 52(2),
293–307 (2008)

12. Fomin, F.V., Villanger, Y.: Finding Induced Subgraphs via Minimal Triangula-
tions. In: Proc. of STACS, pp. 383–394 (2010)

13. Focardi, R., Luccio, F.L., Peleg, D.: Feedback vertex set in hypercubes. Inform.
Process. Lett. 76(1-2), 1–5 (2000)

14. Gavril, F.: Minimum weight feedback vertex sets in circle graphs. Information
Processing Letters 107, 1–6 (2008)

15. Gusfield, D.: A graph theoretic approach to statistical data security. SIAM J.
Comput. 17(3), 552–571 (1998)

16. Hsu, C.C., Lin, H.R., Chang, H.C., Lin, K.K.: Feedback Vertex Sets in Rotator
Graphs. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D.,
Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 158–
164. Springer, Heidelberg (2006)

17. Jiang, W., Liu, T., Ren, T., Xu, K.: Two Hardness Results on Feedback Vertex
Sets. In: Zhu, B. (ed.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 233–243. Springer,
Heidelberg (2011)

18. Jiang, W., Liu, T., Xu, K.: Feedback Vertex Sets in Restricted Bipartite Graphs,
paper in preparation

19. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

434 W. Jiang, T. Liu, and K. Xu

20. Kuo, C., Hsu, C., Lin, H., Lin, K.: An efficient algorithm for minimum feedback
vertex sets in rotator graphs. Information Processing Letters 109, 450–453 (2009)

21. Kralovic, R., Ruzicka, P.: Minimum feedback vertex sets in shufflebased intercon-
nection networks. Inform. Process. Lett. 86(4), 191–196 (2003)

22. Liang, Y.D., Chang, M.S.: Minimum feedback vertex sets in cocomparability
graphs and convex bipartite graphs. Acta Informatica 34, 337–346 (1997)

23. Lipski Jr., W., Preparata, F.P.: Efficient algorithms for finding maximum match-
ings in convex bipartite graphs and related problems. Acta Informatica 15(4),
329–346 (1981)

24. Lu, C., Tang, C.: A linear-time algorithm for the weighted feedback vertex prob-
lem on interval graphs. Information Processing Letters 61, 107–111 (1997)

25. Luccio, F.L.: Exact minimum feedback vertex set in meshes and butterflies.
Inform. Process. Lett. 66(2), 59–64 (1998)

26. Madelaine, F.R., Stewart, I.A.: Improved upper and lower bounds on the feedback
vertex numbers of grids and butterflies. Discrete Math. 308, 4144–4164 (2008)

27. Sasatte, P.: Improved approximation algorithm for the feedback set problem in a
bipartite tournament. Operations Research Letters 36, 602–604 (2008)

28. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating Systems Concepts, 6th edn.
John Wiley and Sons, Inc., New York (2003)

29. Wang, F.H., Wang, Y.L., Chang, J.M.: Feedback vertex sets in star graphs.
Inform. Process. Lett. 89(4), 203–208 (2004)

30. Williams, R., Gomes, C.P., Selman, B.: Backdoors To Typical Case Complexity.
In: Proc. of IJCAI, pp. 1173–1178 (2003)

31. Yannakakis, M.: Node-deletion problem on bipartite graphs. SIAM J. Comput. 10,
310–327 (1981)

32. Zhang, Y., Bao, F.S.: A Survey of Tree Convex Sets Test. CoRR abs/0906.0205
(2009)

33. van Zuylen, A.: Linear programming based approximation algorithms for feedback
set problems in bipartite tournaments. Theor. Comput. Sci. (in press)

On the Partition of 3-Colorable Graphs

Yang Liu and Qing Wang

University of Texas-Pan American
{yliu,qwang}@cs.panam.edu

Abstract. Exact algorithms have made a little progress for the 3-coloring
problem since 1976: improved from O(1.4422nnO(1)) to O(1.3289nnO(1)).
The best exact algorithm for the 3-coloring problem is by Beigel and
Eppstein, and its analysis is very complicated. In this paper, we study
the parameterized 3-coloring problem: partitioning a 3-colorable graph
into a bipartite subgraph and an independent set. Taking the size of the
bipartite subgraph as the parameter k, we develop the first parameter
algorithm of complexity O∗(1.713k). We use measures other than the
given parameter k to achieve better analysis on running time. Such a
technique of using novel measures may bring new insight into designing
faster algorithms for other NP-hard problems.

1 Introduction

Given a undirected graph G, the chromatic number of G is the smallest in-
teger k such that the vertices of G can be colored with k colors and no two
adjacent vertices are colored with the same color. The chromatic number

problem is to decide the chromatic number of graphs, and has been inten-
sively studied[11,9,5,3]. The best algorithm for the problem is of time complexity
O(2nnO(1)), and requires exponential space O(2nn)[3]. When polynomial space
complexity is desired, the best algorithm for this problem has time complexity
O(2.2461n)[3]. A well known application of the chromatic number problem is
register allocation[6]. Not only exact solutions but also approximation solutions
with good ratios are difficult to find for the chromatic number problem. In-
deed, it is NP-hard to approximate the chromatic number of graphs with ratio
nε for some constant ε > 0 unless P=NP[12].

The 3-coloring problem is a special case of the chromatic number prob-
lem. In the 3-coloring problem, we are asked to determine whether the chro-
matic number of graphs is 3 or not. Table 1 shows the history of exact algorithms
for the 3-coloring problem. The table shows that it is faster to find exact so-
lutions for the 3-coloring problem. Meanwhile, approximation solutions with
O(n3/14) colors can be found in polynomial time for graphs of chromatic number
3[4]. However, it is NP-hard to color graphs of chromatic number 3 with only 4
colors [10].

The 3-coloring problem can be viewed from another perspective: partition-
ing the vertices of a graph into three disjoint independent sets, if such a partition
exists. This perspective leads to our study of parameterized complexity of the

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 435–447, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

436 Y. Liu and Q. Wang

Table 1. History of Exact Algorithms for 3-coloring

Authors Complexity Year

Lawler 1.4422n 1976 [11]

Schiemeyer 1.415n 1994 [14]

Beigel and Eppstein 1.3446n 1995 [1]

Beigel and Eppstein 1.3289n 2005 [2]

3-coloring problem when we take the total number of vertices in two indepen-
dent sets as a parameter. In this paper, we study the following parameterized

3-coloring problem.

parameterized 3-coloring. Given a graph G, can the vertices of G be par-
titioned into a bipartite subgraph of at most k vertices and an independent set?
Find such a partition if it exists, or report ‘NO’ otherwise.

Algorithms of complexity O(f(k)nO(1)) are fixed-parameter tractable from the
perspective of parameterized complexity. Fixed-parameter tractable(fpt-) algo-
rithms are often practical and fast for applications with small parameter k,
by taking advantage of the small k, while exact algorithms do not take such
an advantage. In the paper we develop an fpt-algorithm of time complexity
O∗(1.713k)1 for the parameterized 3-coloring problem.

Compared with the parameterized 3-coloring problem, the (H, C, K)-
coloring problem is a more general problem, which is to map vertices of an
input graph G to vertices of another graph H such that (1) if there is an edge
uv in G then there is a image edge f(u)f(v) in H , and (2) the number of pre-
images of a vertex x ∈ C ⊆ V (H) is equal to its weight w(x) specified by K. This
problem has been studied, and an fpt-algorithm O∗(2k|C|k) has been developed
for a special case when V (H)−C is an independent set [7]. A first look at these
two problems shows that the parameterized 3-coloring problem is just a
simple special case of the (H, C, K)-coloring problem when we take H as a
triangle, C as an two vertices of H , and

∑
w(x)∈K w(x) = k. However, the two

problems are slightly different: the parameterized 3-coloring problem is
concerned only about the total vertices in the bipartite subgraph without caring
about how the vertices distributed in the bipartite subgraph, while the (H, C, K)-
coloring problem requires exact number of pre-images for each vertex in C.

We use a technique similar to the fpt-algorithm for a special case (when H−C
is an independent set) of (H, C, K)-coloring problem: taking an edge xy where
both x and y are not determined yet (neither in C nor in H − C), then either
x or y should be in C since H − C is an independent set. This technique easily
results in an O∗(2k) algorithm for the parameterized 3-coloring problem.
Our algorithm do better than that, by first applying this technique to any ver-
tex with at least three undetermined neighbours, then when no such vertices

1 O∗(f(k)) refers to O(f(k)nαkβ) where α and β are constants independent of both
n and k.

On the Partition of 3-Colorable Graphs 437

exist, determining the possible partitions of remaining undetermined vertices
by enumeration. Our careful analysis gives an O∗(1.713k) upperbound for our
fpt-algorithm, which can be also used to solve the special case of the (H, C, K)-
coloring problem.

2 Preliminaries

Let G = (V, E) be a simple graph, i.e., there are neither multiple edges between
any two vertices nor self-loops in G. A p-coloring (C1, · · · , Cp) of a vertex subset
S in graph G is a partition of vertices of S into p disjoint subset such that∑p

i=1 Ci ⊆ S2 where Ci is an independent set for all i. A p-coloring (C1, · · · , Cp)
of S is a complete p-coloring of S if

∑p
i=1 Ci = S. A graph G is p-colorable if

there is a complete p-coloring of V . Let V1 and V2 be vertex subsets in graph G
such that V1 ⊆ V2, (C1, C2) be a 2-coloring of V1, and (C′

1, C
′
2) be a 2-coloring

of V2. Then (C′
1, C

′
2) is compatible to (C1, C2) if C1 ⊆ C′

1 and C2 ⊆ C′
2.

Let SB and SI be two disjoint vertex subsets in graph G. A partition [SB, SI]
is a bipartite-independent partition if the subgraph induced by SB is 2-colorable
and SI is an independent set. If V = SB + SI , then a bipartite-independent
partition [SB, SI = V − SB] is a complete bipartite-independent partition. A
bipartite-independent partition [S′

B, S′
I] k-extends another bipartite-independent

partition [SB, SI] if SB ⊆ S′
B, SI ⊆ S′

I , and |S′
B| ≤ |SB| + k.

Let P = x1 · · ·xp be a simple path induced by vertices x1, · · · , xp, i.e., xi �= xj

for 1 ≤ i < j ≤ p. The candidate set of P is {x2, x4, · · · , xp} if p is even, or
{x2, x4, · · · , xp−1} if p is odd. Let C = x1 · · ·xpx1 be a simple cycle induced by
vertices x1, · · · , xp, i.e., xi �= xj for 1 ≤ i < j ≤ p. The candidate set of cycle C
is {x2, x4, · · · , xp} if p is even, or {x2, x4, · · · , xp−1} ∪ {xp} if p is odd.

3 Parameterized Algorithm

Let [SB, SI] be a bipartite-independent partition of graph G. First we show two
properties for the case when the subgraph induced by V −SB −SI is a union of
disjoint paths and cycles. We assume that any vertex x ∈ V − SB − SI has no
neighbours in SI . This assumption will be justified later by our fpt-algorithm.

3.1 Two Properties When G[V − SB − SI] Is a Union of Disjoint
Paths/Cycles

Let CS1, · · · , CSq be the candidate sets of those paths/cycles in G[V −SB −SI].
When G[V − SB − SI] is a union of paths/cycles, the first property is that at
least

∑q
i=1 |CSi| vertices from the disjoint paths/cycles should be put into any

complete bipartite-independent partition which k-extends [SB, SI].

Lemma 1. Let [S′
B, V − S′

B] be a complete bipartite-independent partition. If
[S′

B, V − S′
B] k-extends [SB, SI], then V − S′

B contains at least |CSi| vertices
from the path/cycle corresponding to candidate set CSi, i.e., k ≥∑q

i=1 |CSi|.
2 In this paper, +/− are used on sets to denote ∪/\ for simplicity.

438 Y. Liu and Q. Wang

Proof. We number the paths/cycle corresponding to the candidate set CSi by
the index i of the candidate set. We first prove that for each path/cycle i, S′

B

must contain at least |CSi| vertices from path/cycle i. There are two cases: CSi

is from either a path or a cycle.
If CSi is from a path i, let path i be x1x2 · · ·xp which is induced by ver-

tices x1, x2, · · · , xp. By definition of candidate sets, |CSi| = |{x2, x4, · · · , xp}| =
�p

2	 if p is even, or |CSi| = |{x2, x4, · · · , xp−1}| = �p
2	 if p is odd. For both

cases, |CSi| = �p
2	. Moreover, there are at least �p

2	 disjoint edges in path i:
x1x2, x3x4, · · ·. Then each of those disjoint edges can have at most one vertex
in V −S′

B, since [S′
B, V −S′

B] is a complete bipartite-independent partition and
V − S′

B must be an independent set by the definition of bipartite-independent
partition. Therefore, S′

B contains at least one vertex from each of those �p
2	

disjoint edges. It follows that S′
B contains at least �p

2	 = |CSi| vertices from
path i.

If CSi is a from a cycle i, let cycle i be x1x2 · · ·xpx1 which induced by vertices
x1, x2, · · · , xp. When p is even, we have that |CSi| = |{x2, x4, · · · , xp}| = p

2 .
In the cycle i, there are p

2 disjoint edges: x1x2, x3x4, · · · , xp−1xp. By the same
arguments above for path i, S′

B contains at least one vertex from each of those
disjoint edges, and thus contains at least p

2 = |CSi| vertices from cycle i. Next
we show that when p is odd, S′

B also contain at least |CSi| vertices from cycle i.
When p is odd, by definition we have that |CSi| = |{x2, x4, · · · , xp−1}∪{xp}| =

p+1
2 for cycle i. In this cycle of p vertices (p is odd), there are p−1

2 disjoint edges:
x1x2, · · · , xp−2xp−1. By the same arguments for path i, S′

B contains at least one
vertex from each of those p−1

2 disjoint edges. If S′
B contains both vertices of

one of those p−1
2 disjoint edges, S′

B contains at least p−1
2 + 1 = |CSi| vertices

from cycle i. Otherwise, S′
B contains exactly one vertex from each of those p−1

2
disjoint edges, and then V − S′

B contains exactly one vertex from each of those
disjoint edges. We have two cases:

Case 1: S′
B contains x1. Since both S′

B and V − S′
B contains exactly one

vertex from each of those p−1
2 disjoint edges, V −S′

B must contain x2. It follows
that S′

B must contain x3 since V − S′
B is an independent set, and then V − S′

B

must contain x4. Repeat this, we will have that S′
B contains x1, x3, · · · , xp−2 and

V − S′
B contains x2, x4, · · · , xp−1. Since (1) xp−1 is in V − S′

B, (2) V − S′
B is an

independent set, and (3) there is an edge xp−1xp in the cycle, S′
B must contain xp.

Therefore, S′
B contains p−1

2 +1 = p+1
2 = |CSi| vertices: {x1, x3, · · · , xp−2}∪{xp}.

Case 2: S′
B does not contain x1. Then V −S′

B contains x1. Since V −S′
B is an

independent set and there is an edge x1xp in cycle i, S′
B must contain xp. Besides

xp, S′
B contains p−1

2 vertices from those p−1
2 disjoint edges (x1x2, · · · , xp−2xp−1),

by our assumption that S′
B contains exactly one vertex from each of those disjoint

edge. Therefore, S′
B contains at p−1

2 + 1 = p+1
2 = |CSi| vertices from cycle i.

We have shown that S′
B contains at least |CSi| vertices from path/cycle i.

It follows that S′
B contains at least

∑q
i=1 |CSi| vertices from V − SB − SI ,

since G[V − SB − SI] is a union of disjoint paths/cycles. Note that SB and
V − SB − SI are disjoint and CSi are from V − SB − SI . It follows that |S′

B| ≥
|SB|+∑q

i=1 |CSi|. Moreover, because [S′
B , V − S′

B] k-extends [SB , SI], we have

On the Partition of 3-Colorable Graphs 439

that |S′
B| ≤ |SB | + k. Therefore, |SB| + k ≥ |S′

B| ≥ |SB| +
∑q

i=1 |CSi|, i.e.,
k ≥∑q

i=1 |CSi|. This completes our proof.
�
The second property is that when a complete 2-coloring (C1, C2) of SB is given,
we can determine in polynomial time whether there is a complete bipartite-
independent partition [S′

B, V −S′
B] which k-extends [SB, SI] and S′

B has a com-
plete 2-coloring compatible to (C1, C2). If such a complete bipartite-independent
partition exists, we construct a complete 2-coloring (C′

1, C
′
2)of S′

B compatible to
(C1, C2).

Lemma 2. Let (C1, C2) be a complete 2-coloring of SB. We can find a complete
bipartite-independent partition [S′

B, V − S′
B] k-extending [SB, SI] such that S′

B

has a complete 2-coloring compatible to C if there exists such one, or report ‘NO’
otherwise. This can be done in polynomial time.

Proof. Figure 1 gives the algorithm to find the desired bipartite-independent
partition if such one exists, or return ’NO’ otherwise. It is obvious that the
algorithm can terminate in polynomial time, since each step takes polynomial
time.

Algorithm-1(G, k, [SB, SI], (C1, C2))
input: a graph G, a parameter k, a bipartite-independent partition [SB , SI], and a complete
2-coloring (C1, C2) of SB .
output: either a complete bipartite-independent partition [S′

B , V − S′
B] which k-extends

[SB, SI] such that S′
B has a complete 2-coloring compatible to (C1, C2), or ‘NO’ otherwise.

1. if there is an edge xy where x, y ∈ V − SB − SI such that both x and y have a
neighbour in C1 and another neighbour in C2

return ‘NO’;
2. foreach x ∈ V −SB −SI which has neighbours in both C1 and C2, let Y ⊆ V −SB −SI

be neighbours of x, Y1 ⊆ Y be vertices which have neighbours in C1, Y2 ⊆ Y be vertices
which have neighbours in C2

put x into SI and Y into SB , Y1 into C2, Y2 into C1, and k = k − |Y |;
3. if k <

∑
path/cycle i |CSi|

return ‘NO’;
4. if there is a cycle i of odd number vertices such that for each edge xy in the cycle, both
x and y have neighbours in C1 (C2)

returns ‘NO’;
5. foreach path/cycle i

for a cycle of p vertices where p is odd, W.L.O.G, assume that xp−1xp is an edge
where xp−1 and xp have no neighbours in the same color set (either C1 or C2);

put the candidate set CSi for the path/cycle i into SB and other vertices Wi of
path/cycle i into SI ;
return [SB, SI];

Fig. 1. Algorithm 1

When a vertex w has a neighbour in C1 and neighbour in C2, then w must
be in V − S′

B, since SB + w has no 2-colorings compatible to (C1, C2). Then for
Step 1, both x and y must be in V − S′

B, which is also impossible since V − S′
B

should be an independent set. Therefore, ‘NO’ is returned correctly at Step 1.

440 Y. Liu and Q. Wang

In Step 2, vertex x should be in V − S′
B since x has neighbours in both C1

and C2. Then neighbours Y of x should be in S′
B for any complete bipartite-

independent partition [S′
B , V − S′

B] which k-extends [SB, SI]. Thus it is safe to
put x into SI and Y into SB . Moreover, in any complete 2-coloring (C′

1, C
′
2) of

S′
B compatible to (C1, C2), Y1 ⊆ C′

2 since vertices of Y1 have neighbours in C1.
Similarly, Y2 ⊆ C′

1. Finally, we need to reduce k to k − |Y |, since now we need
to find a complete bipartite-independent partitions (k − |Y |)-extending [SB, SI]
after Step 2. This concludes that Step 2 is correct.

By our assumption that G[V − SB − SI] is a union of paths/cycles. When
k <

∑
path/cycle i |CSi|, there are no complete bipartite-independent partitions

k-extending [SB, SI] by lemma 1. Therefore, Step 3 returns ‘NO’ correctly.
For a cycle i of p vertices where p is odd, |CSi| = p+1

2 . Let W be those vertices
of cycle i which are also in S′

B where [S′
B, V − S′

B] is a complete bipartite-
independent partition k-extending [SB, SI]. Then by lemma 1, |W | ≥ |CSi| =
p+1
2 . This implies that at least two vertices x and y of W should be an edge

xy of cycle i. However, when the condition of Step 4 is true, both x and y
have neighbours in the same color set: either in C1 or C2. It contradicts that
W +SB ⊆ S′

B is 2-colorable. Therefore, when the condition of Step 4 is true, no
complete bipartite-independent partitions k-extending [SB, SI] exist, and thus
‘NO’ is returned correctly.

To simplify discussions on the correctness of Step 5, let [S′
B, S′

I] denote the
[SB, SI] returned at Step 5, and [SB, SI] refers to the partition after Step 4..
Then S′

B = SB +
∑

path/cycle i CSi and S′
I = SI +

∑
path/cycle i Wi = V − S′

B.
By definition of CSi, Wi in Step 5 is an independent set. Recall our assumption

on V −SB −SI as input: any vertex in V −SB −SI has no neighbours in SI (the
assumption is made right before this subsection). Note that this assumption is
still valid before Step 5. So S′

I = SI +
∑

path/cycle i Wi is still an independent
set, since Wi ⊆ V − SB − SI . Moreover, k >=

∑
path/cycle i |CSi| after Step 3.

It follows that |S′
B | = |SB| + |∑path/cycl i |CSi| ≤ |SB| + k. Therefore, we can

conclude that [S′
B, S′

I = V −S′
B] is a complete bipartite-independent partition k-

extending [SB, SI] such that S′
B has a complete 2-coloring compatible to (C1, C2)

and thus Step 5 is correct, once we show that S′
B has a complete 2-coloring

(C′
1, C

′
2) compatible to (C1, C2).

To prove that, we first prove the following claim.
Claim: any vertex y ∈ SB such that y is not in C1 + C2, y has at most one

neighbour in V − SI .
Note that before Step 2 all vertices of SB are in C1 + C2, since (C1, C2) is a

complete 2-coloring of SB before Step 2. So y must be put into SB during Step
2, which implies that a neighbour x ∈ V − SB − SI of y is put into SI during
Step 2. Recall that G[V − SB − SI] is a union of disjoint paths/cycles before
Step 2. It follows that y can have at most two neighbours in V −SB −SI before
Step 2. Moreover, y has no neighbours in SB before Step 2. Otherwise, y should
be in either C1 or C2 after Step 2. Since (1) y has no neighbours in SB before
Step 2, (2) y have at most two neighbours in V −SB −SI before Step 2, and (3)
one neighbour x ∈ V −SB −SI of y is put into SI during Step 2, it follows that

On the Partition of 3-Colorable Graphs 441

y has at most one neighbour in V − SI after Step 2, which conclude the proof
of the Claim.
�
Now we continue our proof of that S′

B has a complete 2-coloring (C′
1, C

′
2) com-

patible to (C1, C2). Note that S′
B = SB +

∑
path/cycle i CSi according to Step

5. Moreover, SB may contains vertices other than those in (C1 + C2) after
Step 2. Let Yi be those vertices in SB − (C1 + C2) which have neighbours
in CSi, and Z be those vertices in SB − (C1 + C2) −

∑
path/cycle i Yi in Step

5. It is obvious that any vertex x ∈ ∑
path/cycle i Yi + Z has no neighbours

in C1 + C2. Otherwise, x can be put into C1 + C2. By our definitions, it is
also obvious that SB = (C1 + C2) +

∑
path/cycle i Yi + Z, and thus S′

B =
(C1 + C2) +

∑
path/cycle i Yi +

∑
path/cycle i CSi + Z.

To show that S′
B = (C1 + C2) +

∑
path/cycle i Yi +

∑
path/cycle i CSi + Z has

a complete 2-coloring compatible to (C1, C2), we first show that (C1 + C2) +∑
path/cycle i CSi has a 2-coloring (C1

1 , C1
2) compatible to (C1, C2). Initially C1

1 =
C1 and C1

2 = C2. Note that after Step 2, any vertex x ∈ V − SB − SI has
neighbours in at most one of C1 and C2. Otherwise, it should be processed in
Step 2. Let x be a vertex of CSi, then x has neighbours in at most one of
C1

1 = C1 or C1
2 = C2, since CSi is a subset of V − SB − SI . We put x into C1

1

if it has a neighbour in C2, or into C1
2 otherwise. Note that

∑
path/cycle i CSi

is an independent set, and then it is safe to put
∑

path/cycle i CSi into C1
2 + C1

2

as described above. Therefore, these operations find a 2-coloring (C1
1 , C1

2) of
(C1 + C2) +

∑
path/cycle i CSi which is compatible to (C1, C2).

Next We show that (C1 + C2) +
∑

path/cycle i CSi +
∑

path/cycle i Yi has a
complete 2-coloring (C2

1 , C2
2) compatible to (C1

1 , C1
2) of vertices C1

1 +C1
2 = (C1 +

C2)+
∑

path/cycle i CSi. Initially C2
1 = C1

1 and C2
2 = C1

2 . Recall that alll vertices
in Yi ⊆ SB have no neighbours in C1 + C2. Then by our Claim, each vertex
y ∈ Yi has exactly one neighbour in CSi, and then no neighbours in C1 + C2

before Step 5. Since each vertex of CSi is in C1
1 or C1

2 by our processing above,
vertex y ∈ Yi can be put into C2

1 (C2
2) if its unique neighbour in CSi is in C1

2 (C1
1).

Therefore, all vertices in (C1 + C2) +
∑

path/cycle i CSi +
∑

path/cycle i Yi has a
complete 2-coloring which is compatible to the (C1

1 , C1
2).

Finally, we show that S′
B = (C1 +C2)+

∑
path/cycle i Yi +

∑
path/cycle i CSi +

Z has a complete 2-coloring (C3
1 , C3

2) compatible to (C2
1 , C2

2) of those vertices
in (C1 + C2) +

∑
path/cycle i CSi +

∑
path/cycle i Yi = S′

B − Z. Initially C3
1 =

C2
1 and C3

1 = C2
2 . Recall that vertices of Z have no neighbours in C1 + C2 +∑

path/cycle i CSi by definition, and have no neighbours in
∑

path/cycle i Yi since
by definition Yi has only neighbours in CSi. It follows that Z has no neighbours
in S′

B − Z. That is, any vertex z ∈ Z can have neighbours only in Z or V −
S′

B = S′
I , i.e. have neighbours only in Z + S′

I . Recall again that Z is not in
C1 + C2 by definition. Then by our Claim, any vertex z ∈ Z has at most one
neighbour in V −SI , thus has at most one neighbour in Z and no neighbours in
(C1 +C2)+

∑
path/cycle i Yi +

∑
path/cycle i CSi, since z can have neighbours only

in Z+S′
I . This implies that the graph induced by Z is a set of disconnected edges

442 Y. Liu and Q. Wang

and isolated vertices, thus Z is 2-colorable. Let (C′
1, C

′
2) be a complete 2-coloring

of Z. Then (C3
1 = C2

1 + C′
1, C

3
2 = C2

1 + C′
2) is a complete 2-coloring (C′

1, C
′
2) of

S′
B which is compatible to (C2

1 , C2
2). By transitivity, (C3

1 , C3
2) is compatible to

(C1, C2). This completes our proof that Step 5 is correct, and then concludes
our proof of this lemma.
�

3.2 Main Algorithm

The main algorithm is presented in Figure 2. Next we prove that the main
algorithm is correct.

Algorithm Param-3-Coloring(G,k, [SB , SI])
input: a graph G, a parameter k, and a bipartite-independent partition [SB , SI].
output: either a complete bipartite-independent partition [S′

B, V − S′
B] which k-extends

[SB , SI], or ‘NO’ otherwise.

1. if k < 0 return ‘NO’;
if [SB , V − SB] is a bipartite-independent partition

return [SB, V − SB];
if k = 0 return ‘NO’;

2. if x ∈ V − SB − SI has a neighbour in SI

if SB + x is 2-colorable return Param-3-coloring(G, k − 1, SB + x, SI);
return ‘NO’;

3. if x ∈ V − SB − SI in SB has two neighbours y, z in SB where yz is an edge in G, or
has no neigbhours in V − SB − SI

return Param-3-coloring(G, k, SB , SI + x);
4. if there is a vertex x ∈ V − SB − SI which has three neighbours in V − SB − SI

Let N(x) be the neighbours of x in V − SB − SI ;
4.1 if SB + x is 2-colorable

[S′
B, V − S′

B] =Param-3-coloring(G, k − 1, SB + x, SI);
if [S′

B , V − S′
B]! =‘NO’

return [S′
B , V − S′

B];
4.2 if SB + N(x) is 2-colorable

return Param-3-coloring(G, k − |N(x)|, SB + N(x), SI + x);
4.3 return ‘NO’;

Let CS1, · · · , CSp be the candidate sets of paths/cycles induced by vertices in V −SB −
SI ;
5. if

∑p
i=1 |CSi| > k
return ‘NO’;

6. if k ≤ |SB |
6.1 foreach enumeration of W1 ⊆ CS1, · · · , Wp ⊆ CSp such that [SB +

∑p
i=1 Wi, SI +∑p

i=1(CSi − Wi)] is a bipartite-independent partition
Let T ⊆ (V − SB − SI − ∑p

i=1 CSi) be vertices having neighbours in SI +∑p
i=1(CSi − Wi)

if [S′
B = SB+

∑p
i=1 Wi+T, V −S′

B] is a complete bipartite-independent partition

and |S′
B| ≤ |SB | + k

return [S′
B , V − S′

B];
6.2 return ‘NO’;
7. foreach 2-coloring (C1, C2) of SB

if there is a complete bipartite-independent partition [S′
B , V −S′

B] which k-extends
[SB , SI] such that there is a 2-coloring of S′

B compatible to (C1, C2)
return [S′

B, V − S′
B];

8. return ‘NO’;

Fig. 2. The main algorithm

Lemma 3. Algorithm Param-3-Coloring(G, k, [SB , SI]) either finds a complete
bipartite-independent partition [S′

B, G − S′
B]) which k-extends [SB, SI] if such a

bipartite-independent partition exists, or reports ‘NO’ otherwise.

On the Partition of 3-Colorable Graphs 443

Proof. Without loss of generality, we can assume that the subgraph induced by
SB is a union of edges and isolated vertices.

Step 1 deals with the cases when the solution can be easily determined. First,
if k < 0, there are no bipartite-independent partitions which k-extend [SI , SI].
Thus ‘NO’ is returned correctly. After this, we have that k ≥ 0. If [SB , V − SB]
is a bipartite-independent partition, then [SB, V − SB] is a complete bipartite-
independent partition k-extending [SB , SI] since k ≥ 0, and thus [SB, V −SB] is
returned correctly. After this, [SB, V −SB] is not a bipartite-independent parti-
tion. Therefore, any complete bipartite-independent partition extending [SB, SI]
must i-extend [SB, SI] for some i > 0. It follows that ‘NO’ is returned correctly
when k = 0 and [SB, V − SB] is not a bipartite-independent partition. In con-
clusion, step 1 is correct.

After step 1, k > 0, V − SB − SI is not empty, and S′
B must contain at least

a vertex from V − SB − SI for any complete bipartite-independent partition
k-extending [SB, SI]. If a vertex x ∈ V −SB −SI has a neighbour in SI , then for
any complete bipartite-independent partition [S′

B, V −S′
B] k-extending [SB, SI],

x must be in S′
B and not in V −S′

B, since V −S′
B should be an independent set

and SI ⊆ V −S′
B. If SB +x is 2-colorable, [SB +x, SI] is a bipartite-independent

partition, and then we only need to look for a complete bipartite-independent
set (k − 1)-extending [SB + x, SI]. Otherwise, ‘NO’ should be returned. Hence
step 2 is correct.

Now we show that the first case of Step 3 is correct. In this case, vertex
x ∈ V −SB −SI has two neighbours y, z in SB such that yz is an edge, then for
any complete bipartite-independent partition [S′

B, V −S′
B] k-extending [SB, SI],

x must be in V − S′
B, since S′

B should be 2-colorable. Thus we only need to
search for a complete bipartite-independent set k-extending [SB, SI +x]. So this
case is correct. Next we show that the second case of Step 3 is correct by proving
that there is a complete bipartite-independent partition k-extending [SB, SI] if
and only if there is one k-extending [SB, SI + x].

Let [S′
B, V − S′

B] be a complete bipartite-independent partition k-extending
[SB, SI] where x ∈ S′

B. By definition, V − S′
B is SI plus an independent set

W ⊆ V − SB − SI . Since vertex x has no neighbours in V − SB − SI in this
case, and after Step 2 x also has no neighbours in SI , SI + W + x, i.e., V −
S′

B + x is still an independent set. Therefore, [S′
B − x, V −S′

B +x] is a complete
bipartite-independent partition which k-extends [SB, SI], since [S′

B, V − S′
B] is

a complete bipartite-independent partition k-extending [SB, SI] and x /∈ SB.
On the other hand, it is easy to see that any complete bipartite-independent
partition k-extending [SB, SI + x] also k-extends [SB, SI] (note that SI + x is
still an independent set). This conclude that the second of case of Step 3 is
correct.

For any complete bipartite-independent partition [S′
B, V − S′

B] k-extending
[SB, SI], vertex x in Step 4 is in either S′

B or V − S′
B. If x is in S′

B for a
partition [S′

B, V − S′
B], then SB + x ⊆ S′

B is 2-colorable, and step 4.1 should
correctly find one which (k− 1)-extends [SB +x, SI]. If Step 4.1 does not return

444 Y. Liu and Q. Wang

any complete bipartite-independent partition, then for any complete bipartite-
independent partition [S′

B, V −S′
B], x should be in V −S′

B, and thus neighbours
N(x) of x should be in S′

B. This is possible only when SI + x is an independent
set and SB + N(x) is 2-colorable. So when SB + N(x) is not 2-colorable, ‘NO’
is returned correctly at Step 4.3. Note that SI + x is indeed an independent set,
since x has no neighbours in SI after Step 2. Therefore, when SB + N(x) is 2-
colorable, Step 4.2 correctly returns a complete bipartite-independent partition
[S′

B, V −S′
B] which (k− |N(x)|)-extends [SB + N(x), SI + x] and also k-extends

[SB, SI] if there exists one. If Step 4.2 returns ‘NO’ when it does not find any
target partition, it is still correct, since by our arguments above, there are no
complete bipartite-independent partitions k-extending [SB , SI] when both 4.1
and 4.2 can not find one.

After Step 4, any vertex x ∈ V − SB − SI has at most two neighbours in
V − SB − SI because of Step 4, no neighbours in SI because of Step 2, and
no two neighbours in SB which are neighbours of each other because of Step 3.
Moreover, G[V − SB − SI] now is a union of disjoint paths/cycles. According
to lemma 1, for any complete bipartite-independent partition [S′

B, V − S′
B] k-

extending [SB, SI], we have that k ≥∑p
i=1 |CSi|. Step 5 returns ‘NO’ correctly

when k < |∑p
i=1 |CSi|.

Step 6.1 returns a correct complete bipartite-independent partition [S′
B , V −

S′
B] k-extending [SB , SI] if it returns one, since it is a complete bipartite-

independent partition. Next we show Step 6.2 returns ‘NO’ correctly by show-
ing that if there is a complete bipartite-independent partition [S′

B, V − S′
B] k-

extending [SB, SI], Step 6.1 can find a complete bipartite-independent partition
[S′

B, V − S′
B] for some Wi ⊆ CSi where 1 ≤ i ≤ p.

Let Wi = S′
B ∩ CSi for 1 ≤ i ≤ p. Then CSi − Wi is in V − S′

B. By our
notation, T are those vertices having neighbours in SI +

∑p
i=1(CSi − Wi). So

T must be in S′
B. Let Z = S′

B − SB −∑p
i=1 Wi − T . We complete our proof

that Step 6.1 can find a complete bipartite-independent partition k-extending
[SB, SI], once we show that [S′

B−Z, V −S′
B +Z] is a complete bipartite-partition

k-extending [SB, SI]. To show that, we first prove 2 claims.

Claim 1. Z is an independent set
Let Ri be the remaining vertices of path/cycle i which are not in CSi + T ,
i.e.,

∑p
i=1 Ri = V − SB − SI −∑p

i=1 CSi − T . By definition of CSi, Ri is an
independent set. Moreover, vertices in Ri have no neighbours in Rj(i �= j) since
Ri and Rj are in two disconnected paths/cycles. So

∑p
i=1 Ri is an independent

set. Note that Z ⊆ V − SB − SI −∑p
i=1 CSi − T =

∑p
i=1 Ri. It follows that Z

is an independent set.
�
Claim 2. V − S′

B + Z is an independent set
Note that V − S′

B consists of three disjoint parts: (1) SI , (2)
∑p

i=1(CSi − Wi),
and (3) vertices from

∑p
i=1 Ri − Z. First, SI + Z is an independent set, since

both SI and Z are independent sets and Z is subset of V − SB − SI whose
vertices have no neighbours in SI after Step 2. Second, by definition of CSi,
Wi, T and Ri,

∑p
i=1(CSi −Wi +

∑p
i=1 Ri) is also an independent set, and thus

On the Partition of 3-Colorable Graphs 445

∑p
i=1(CSi − Wi) + Z is an independent set since Z, as shown in the proof of

Claim 1, is a subset of
∑p

i=1 Ri. Finally,
∑p

i=1 Ri −Z + Z is an independent set
by our argument above that

∑p
i=1 Ri is an independent set. We conclude that

V − S′
B + Z is an independent set.
�

Since [S′
B, V − S′

B] is a complete bipartite-independent partition k-extending
[SB, SI], it is easy to see that |S′

B − Z| ≤ |S′
B| ≤ |SB| + k and S′

B − Z is 2-
colorable. Moreover, V −S′

B+Z is an independent set by Claim 2. This concludes
that [S′

B −Z, V −S′
B +Z] is a complete bipartite-partition k-extending [SB, SI],

thus completing the proof of correctness of Step 6.
The partition [S′

B, G−S′
B] returned at step 7 is correct, since it is a complete

bipartite-independent partition k-extending [SB, SI]. Next we show that Step 8
returns ‘NO’ correctly.

If there is a complete bipartite-independent partition [S′
B, G−S′

B] k-extending
[SB, SI], there is a 2-coloring (C′

1, C
′
2) of S′

B. Let C1 = C′
1∩SB and C2 = C′

2∩SB.
By lemma 2, Step 7 should be able to find a complete bipartite-independent par-
tition [S′′

B, G−S′′
B] k-extending [SB, SI] such that S′′

B has a 2-coloring compatible
to (C1, C2). Therefore, if Step 7 does not return a complete bipartite-independent
partition [S′′

B, G−S′′
B] k-extending [SB, SI], there must be no complete bipartite-

independent partitions k-extending [SB, SI]. This concludes that Step 8 returns
‘NO’ correctly.
�
Next we analyze the complexity of algorithm Param-3-Coloring(G, k, [SB, SI]).

Lemma 4. Assume k ≥ 0. Algorithm Param-3-Coloring(G, k, [SB , SI]) termi-
nates in time O∗(1.466k1.365

k+|SB|
2).

Proof. We use bounded-search tree analysis. Note that each step may directly
return, or decrease the number of vertices in G − SB − SI , or decrease k. So
the depth of the search tree is at most n + k. Moreover, the search along a
particular root-leaf path can be done in polynomial time: Step 6 and 7 and be
treated as inner nodes in the search tree, each enumeration in Step 6 can be
done in polynomial time, and by lemma 2, each enumeration of Step 7 can be
done in polynomial time. So the running time is dominated by the number of
branches(leaves) in the search tree.

Next we prove that 3 × 1.466k1.365
k+|SB|

2 is an upper bound on the number
of branches. Only Step 4, 6 and 7 have branches. For Step 4, we have recursive
equation:

f(k, |SB|) = f(k − 1, |SB| + 1) + f(k − |N(x)|, |SB | + |N(x)|) where |N(x)| ≥ 3

For Step 6, we have recursive equation:

f(k ≤ |SB|, |SB|) = 2
∑p

i=1 |CSi| ≤ 2k (because of Step 5)

For Step 7, we have recursive equation:

f(k > |SB |, |SB|) = 2|SB|

446 Y. Liu and Q. Wang

When k ≤ 0, the algorithm returns directly at step 1. So we have f(k ≤
0, |SB|) = 1. We only need to show that the upper bound is correct for k ≥ 1.
The upper bound is correct for Step 4, since

f(1 ≤ k < |N(x)|, |SB |) ≤ 3 × 1.466k−11.365
k+|SB|

2 + 1 ≤ 3 × 1.466k1.365
k+|SB|

2 .

f(k ≥ |N(x)|, |SB |) ≤ 3 × 1.466k−11.365
k+|SB|

2 + 3 × 1.466k−|N(x)|1.365
k+|SB|

2

≤ 3 × 1.466k1.365
k+|SB|

2 (note that |N(x)| ≥ 3).

The upper bound is correct for Step 6 and 7, since

f(k ≤ |SB|, |SB|) = 2
∑p

i=1 |CSi| ≤ 2k ≤ 3 × 1.466k1.365
k+|SB|

2 (k ≤ |SB|), and

f(k > |SB|, |SB|) = 2|SB| ≤ 3 × 1.466k1.365
k+|SB|

2 (k > |SB|)
Since there are at most 3× 1.466k1.365

k+|SB|
2 branches, each of which can be

done in O(nc) time where c is a constant independent of k, algorithm Param-3-
Coloring(G, k, [SB, SI]) terminates in time O∗(1.466k1.365

k+|SB|
2).

Now we are ready to apply our algorithm to solve the parameterized

3-coloring problem.

Theorem 1. Param-3-Coloring(G, k, [φ, φ]) solves the parameterized

3-coloring problem correctly in time O(1.713knO(1)).

Proof. By lemma 3, Param-3-Coloring(G, k, [φ, φ]) either finds a complete
bipartite-independent partition [S′

B, G − S′
B] which k-extends [φ, φ] if such a

bipartite-independent partition exists, or reports ‘NO’ otherwise. If the algo-
rithm finds one [S′

B, G − S′
B], we have that S′

B contains at most k vertices
and is 2-colorable, and that G − S′

B contains the remaining vertices and is an
independent set. So Param-3-Coloring(G, k, [φ, φ]) solves the parameterized

3-coloring problem correctly.
By lemma 4, Param-3-Coloring(G, k, [φ, φ]) terminates in time

O∗(1.466k1.365
k
2) = O∗(1.713k). This concludes our proof.

4 Future Work

Given a graph G, if there exists a 3-coloring of G such that k ≤ 0.527n, our
algorithm is faster than the best algorithm to solve the 3-coloring problem.
It is interesting to improve our algorithm to beat the best algorithm for the
3-coloring problem. There are some challenging questions. Can we solve the
cases in Step 6 and 7 is polynomial time or better than 2k and 2|SB|? What
kind graphs have a large independent set such that the remaining graph is 2-
colorable? We have studied the parameterized 3-coloring problem on vertex
coloring. How about edge coloring?

On the Partition of 3-Colorable Graphs 447

Another direction is to consider different parameters. One possible candidate
is the size of an independent size. Can we find an independent set of size k such
that the remaining graph is 2-colorable? If we do not require the k vertices to
be an independent set, there is an FPT algorithm of time O∗(3k) [13]. When
we require the k vertices to be an independent set, is the problem still fixed-
parameter tractable?

References

1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In:
Proc. 36th Symp. Foundations of Computer Science, pp. 444–453 (1995)

2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algo-
rithms 54(2), 168–204 (2005)

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. on Computing 39(2), 546–563 (2009)

4. Blum, A., Karger, D.: An O(n3/14)-coloring algorithm for 3-colorable graphs. In-
formation Processing Letter 61(1), 49–53 (1997)

5. Byskov, J.M.: Enumerating maximal independent sets with applications to graph
colouring. Operations Research Letters 32, 547–556 (2004)

6. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proc. of the
1982 SIGPLAN Symposium on Compiler Construction, pp. 98–105 (1982)

7. Dı́az, J., Serna, M., Thilikos, D.M.: (H,C, K)-coloring: fast, easy, and hard cases.
In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 304–
315. Springer, Heidelberg (2001)

8. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In: Proc. 12th Symp. on Discrete Algorithms, pp. 329–337 (2001)

9. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J.
Graph Algorithms and Applications 7(2), 131–140 (2003)

10. Khanna, S., Linal, N., Safra, S.: On the hardness of approximating the chromatic
number. In: Proc. 2nd Isral Symp. on Theory and Computing Systems, pp. 256–260
(1993)

11. Lawer: A note on the complexity of the chromatic number problem. Information
Processing Letter 5(3), 66–67 (1976)

12. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. In: Proc. 25th Symp. of Theory of Computing, pp. 286–293 (1993)

13. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Operation Re-
search Letters 32(4), 299–301 (2004)

14. Schiemeyer, I.: Deciding 3-colourability in less than O(1.415n) steps. In: Proc. 19th
Int. Workshop Graph-Theoretic Concepts in Computer Science, pp. 177–182 (1994)

Kinetic Red-Blue Minimum Separating Circle

Yam Ki Cheung, Ovidiu Daescu�, and Marko Zivanic

Department of Computer Science
The University of Texas at Dallas

Richardson, TX USA
{ykcheung,daescu,mxz052000}@utdallas.edu

Abstract. In this paper, we study a kinetic version of the red-blue mini-
mum separating circle problem, in which some points move with constant
speed along straight line trajectories. We want to find the locus of the
minimum separating circle over a period of time. We first consider two
degenerate cases of this problem. In the first one (P1), we study the min-
imum separating circle problem with only one mobile blue point, and in
the second one (P2), we study the minimum separating circle problem
with only one mobile red point. Then, we give a solution for the general
case (P3), in which multiple points are mobile.

1 Introduction

Let R and B be two finite sets of points in R2, of size |R| = n and |B| = m,
respectively. We refer to R as the set of red points and to B as the set of blue
points. Given a family F of curves in Rd space, R and B are F separable if
there exists a curve f ∈ F such that each connected component of the Rd space
partitioned by f contains only red points or only blue points, but not both. The
curve f is called a separator for sets R and B. Different decision and optimization
separability problems have been studied for a variety of separators such as lines,
circles, convex polygons, strips, etc.

In [6] the authors define a constrained version of the circular separability
problem, called the minimum separating circle problem, as follows. Let S denote
the set of circles such that each circle in S encloses all points in R while having
the smallest number of points of B in its interior. The goal is to find the smallest
circle in S, called the minimum separating circle and denoted by CB(R). See
Figure 1 for an illustration.

The problem addresses an issue that arises in military planning. It can be used
to determine the best location to deploy an explosive and the amount needed
such that all enemy forces, represented by red points, will be impacted while
making sure that the number of civilian objects in the blast radius is minimized.
It is also applicable in determining the best set-up of communication devices
such that all red devices stay connected and as few blue devices as possible
can intercept their communication. Two algorithms for the static version of this
problem have been proposed in [6].
� This research was partially sponsored by NSF award CNS-1035460.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 448–463, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Kinetic Red-Blue Minimum Separating Circle 449

Fig. 1. Minimum red enclosing circle (dashed) and red-blue separating circle (solid)

In this paper, we study a kinetic version of the red-blue minimum separating
circle problem, in which some points move with constant speed along straight
line trajectories. We want to find the locus of the minimum separating circle over
a period of time. We first consider two degenerate cases of this problem. In the
first one (P1), we study the minimum separating circle problem with only one
mobile blue point, and in the second one (P2), we study the minimum separating
circle problem with only one mobile red point. Then, we give a solution for the
general case (P3), in which multiple points are mobile.

For the case when two (static) point sets can be separated by a circle, Fisk [11]
gave a quadratic time and space algorithm to compute the minimum separating
circle. The result was later improved to optimal linear time and space by O’Rourke
et. al. [16]. The linear separability problem, in which the separator is a hyper-
plane, reduces to linear programming, which in turn can be solved in linear time
for any fixed dimension using Megiddo’s algorithm [15]. Aronov et. al. [2] consid-
ered the linear separability problem for point sets that may be inseparable. When
the points are linearly partitioned into two parts, each part may contain some mis-
classified points. The authors defined four different metrics for measuring the error
of classification based on the misclassified points and gave solutions for finding the
best separator which minimizes the error under each metric.

Other types of separators besides lines and circles have been considers recently.
For example, it was shown that separability problems in R2 using a double
wedge [13], a wedge, or a strip [14] can be solved in O(n log n) time. Arkin
et al. [8] proved an Ω(n log n) lower bound for many of these two-dimensional
separability problems. Fekete [10] showed that the problem of separating two
planar point sets by a convex polygon with minimum number of edges is NP -
complete. In [9], Hurtado et al. studied and gave cubic or slightly super cubic
algorithms for various separability problems of two disjoint sets in R3.

450 Y.K. Cheung, O. Daescu, and M. Zivanic

To the best of our knowledge the kinetic version of the minimum separating
circle problem, as defined in this paper, has not been studied yet. However, there
is a significant number of publications on related topics. Atallah [3] introduced
the concept of kinetic computational geometry in a seminal paper on this topic.
Basch et al. [5] introduced a set of kinetic data structures that can be used
to maintain the convex hull of a moving set of points. Ross [18] gives an algo-
rithm for maintaining the nearest-point Voronoi diagram of a kinetic data set.
He presents an update algorithm for the topological structure of the Voronoi
diagram of moving points, using O(log n) time for each change. Demain et al. [7]
presented a kinetic data structure that finds the minimum spanning circle for a
moving set of points. The efficiency of their data structure is O(n1+ε), which is
the best that can be achieved for a data structure based on Delaunay triangula-
tion. Rahmati et al. [17] presented a kinetic data structure for the maintenance
of the minimum spanning tree on a set of moving points in 2-dimensional space.

Our result: We show that (1) the locus of the center of CB(R) with one moving
blue point (P1) has a complexity of O(mn) and can be found in O(mn log(mn))
time, (2) the locus of the center of CB(R) with one moving red point (P2) has
a complexity of O(m2n) and can be found in O(m2n log m) time, and (3) the
locus of the center of CB(R) with multiple moving blue points and red points has
a complexity of O(m2n2+ε) and can be found in O(m2n2+ε log(mn) + mn3+ε)
time.

2 Preliminaries

If not mentioned otherwise, we assume every point is either stationary or moving
along a linear trajectory with constant speed and all stationary points are in
general position.

Let P = {p1, p2, . . . , pn} be a set of n points in R2. Let B(pi, pj) = {x ∈
R2 | |xpi| = |xpj |} be the perpendicular bisector of pi and pj , where |xpi| is the
distance between x and pi. For the farthest point Voronoi diagram, the Voronoi
cell V(pi) for a point pi is the set of points q ∈ R2 that are farther to pi than to
any other points in P :

V(pi) = {q | |piq| > |pjq|, ∀j �= i}.
It is known that only points which are vertices of the convex hull of P can have
Voronoi cells. The vertices of the Voronoi cells are called Voronoi vertices and
edges of the Voronoi cells, which are portions of bisectors of points in P , are
called Voronoi edges. We denote by FV D(P) = {V(pi) | pi ∈ P} the farthest
point Voronoi diagram of P . We treat FV D(P) as a tree, with the center of the
minimum enclosing circle of P as its root.

The farthest point Delaunay triangulation DT (P) is a dual graph of the far-
thest point Voronoi diagram. Every vertex in DT (P) corresponds to a cell in
FV D(P). Two vertices of DT (P) are connected if the two corresponding Voronoi
cells have a common edge. We summarize the properties of the farthest point
Delaunay triangulation:

Kinetic Red-Blue Minimum Separating Circle 451

Property 1. Given a set P of points in general position, let c(pi, pj , pk) be the
center of the circumcircle C(pi, pj, pk) of three points pi, pj , pk in P . Then trian-
gle �(pi, pj , pk) ∈ DT (P) ⇔ c(pi, pj, pk) is a vertex of FV D(P) ⇔ C(pi, pj , pk)
encloses all points in P .

Given a system of multiple moving objects, kinetic data structures are a class
of algorithmic techniques that efficiently maintain geometric structures such as
the Voronoi diagram, minimum enclosing circle, convex hull, etc. Each geometric
structure maintained has a combinatorial description that changes only at dis-
crete times, when certain events occur. Hence, the combinatorial description of
the geometric structure can be maintained by an event queue driven simulation
of the motion of objects. The key idea on developing kinetic data structures is
called animating proofs through time [12], which maintains a set of elementary
conditions on the moving data called certificates to prove that the geometric
structure is correctly constructed over time. Events which change the combina-
torial description are referred to as external events. Events that are not external
are referred to as internal events.

Next, we briefly discuss two algorithms proposed in [6] to solve the static
version of the minimum separating circle problem. The first algorithm is based
on a sweep procedure on edges of FV D(R), while the second algorithm is based
on circular range counting queries.

Given a set of static red points R and a set of static blue points B, in [6],
the authors showed that the minimum separating circle is either the minimum
enclosing circle MEC(R) of R or the circumcircle of two red points and one blue.
It follows that the center of the minimum separating circle is either a Vertex of
FV D(R) or lies on an edge of FV D(R).

Consider a Voronoi edge eij , defined by two red points ri and rj . The first
algorithm in [6] starts on eij by constructing an enclosing circle C of R which
passes through ri and rj and has the smallest possible radius. The center c of C
is one endpoint of eij . Then, C is grown by sweeping c along eij and keeping ri

and rj on the circumference of C.
A point E ∈ eij is an event point if, when c sweeps through E, the circle C

sweeps through a blue point (see Figure 2 for an illustration). The number of
blue points enclosed by C is updated at each event point. The sweep procedure
on eij terminates when the other endpoint of eij is reached.

Given that the sweep algorithm starts with the smallest possible enclosing
circle for a given edge of FV D(R) and strictly increases the radius of that circle
looking for events where there are fewer points from B in the interior of the
circle, it is only necessary to check when a blue point exits the circle. Thus, only
the exit event points, where a blue point exits the enclosing circle need to be
analyzed. It is shown in [6] that a blue point in B defines at most one exit event
point on FV D(R), and such exit event point can be computed in O(log n) time.

The second algorithm in [6] finds the minimum separating circle by examining
exit event points only. That is, for each point b ∈ B, the algorithm computes
the exit event point associated with b. Then, a circular range counting query
is performed for the candidate separating circle, which centers at the exit event

452 Y.K. Cheung, O. Daescu, and M. Zivanic

ri

rj

A

eij

c

B
an event point

bk

Fig. 2. Finding an event point on edge eij

point and passes through the corresponding blue point, to compute the number
of blue points enclosed.

3 General Approach

In this section, we give an overview of our approach that applies for the kinetic
minimum separating circle problem. At any time instant t, the minimum sepa-
rating circle is either the minimum enclosing circle of the red points or one of
the candidate separating circles, i.e. circles that center at an exit event point
and pass through the corresponding blue point. Hence, given any time instant
t, we can find the minimum separating circle by computing the FV D(R) as
well as O(m) exit event points. Then, we count the number of blue points en-
closed by each candidate separating circle. To find the locus of the minimum
separating circle over a period of time, we need to keep track of the (location
and size) of each candidate circle as well as the number of blue points enclosed
by each candidate circle. These can be achieved by maintaining several kinetic
data structures, such as the kinetic farthest point Voronoi diagram of R (and the
kinetic farthest point Delaunay triangulation), the trajectory of each exit event
point, and the number of blue points enclosed by each candidate circle. We first
illustrate this approach for P1 and P2, then apply it for the general case, P3.

4 The Minimum Separating Circle with One Mobile Blue
Point

In this section, we consider the case when only one blue point is moving with
constant speed along a straight line. We formally define the problem as follows:

Kinetic Red-Blue Minimum Separating Circle 453

Let R be a set of n fixed red points, let S be a set of m− 1 blue points, and let
p be a mobile blue point moving with constant speed along a straight line. Let
B = S ∪ p. We want to find the locus of the center of the minimum separating
circle CR(B) over a period of time.

We first study a structure called exit region, which was introduced in [6]
and plays a key role in solving the kinetic version of the minimum separating
problem. In the sweep algorithm introduced in [6], the center c of a separating
circle C is swept along a Voronoi edge, while keeping the red points which define
the Voronoi edge on it boundary. Certain region of the circle C at its initial
state is excluded during the sweep. We define the exit region associated with
a Voronoi edge of FV D(R) as the union of points excluded from C during the
execution of the sweep algorithm on this edge. See Fig. 3 for an illustration. More
specifically, let a and b be the two end points of the Voronoi edge. Let Ca (resp.
Cb) be the circle passing through the three red points, which define a (resp.
b) with Ca smaller than Cb. Then the exit region associated with this Voronoi
edge is Ca \ Cb. Only points within MEC(R) \ CH(R) can be excluded by a
sweep, where CH(R) is the convex hull of R. All exit regions must lie within
MEC(R) \ CH(R). It is known that all exit regions are piecewise disjoint [6].

ki

j

i

C

e

k

e c

e

ik

jk

ij

ike

r
r

arc(r r)

r

FVD(R)

exit region of

Fig. 3. The exit region associated with a Voronoi edge

Lemma 1. Exit regions give a partition of MEC(R)/CH(R), which is a dual
of FV D(R).

Proof. Since all exit regions are piecewise disjoint, exit regions give us a partition
of MEC(R)/CH(R). Notice that there is a one-to-one correspondence between
Voronoi edges and exit regions. Each exit region of a given edge is bounded by
two circles. Each circle is the circumcircle of a Delauney triangle, whose center

454 Y.K. Cheung, O. Daescu, and M. Zivanic

defines one end point of the Voronoi edge. Two Voronoi edges are incident to
the same vertex if and only if their exit regions share a common arc. �

Corollary 1. Given the farthest point Voronoi diagram of R, we can compute
all exit regions in linear time.

Given a blue point b ∈ B, if b is enclosed by an exit region associated with a
Voronoi edge eij , which is a part of the perpendicular bisector between two red
points ri and rj , b generates an exit event point on eij and the exit event point is
the center of the circumcircle C(b, ri, rj) of b, ri, and rj . If b moves with constant
speed along a straight line, the exit event point moves along eij .

Let b(t) = −→mt + q be the trajectory of b, where −→m is a constant vector and q
is a point. The perpendicular bisector of b and ri is

Bb,ri(t, u) =
b(t) + ri

2
+
−−−→
m′(t)u,

where m′(t) = (yb(t) − yri , xri − xb(t))T is a vector which defines the slope of
the bisector, and u ∈ R. The center of the circumcircle C(b, ri, rj) lies on the
bisector between b(t) and ri at

u(t) =
(rj − ri) · (rj − b(t))
−−−−→
2m′(t) · (rj − ri)

,

where ” ·” denotes the inner product between two vectors. Hence, the trajectory
of the exit event point of b, i.e. the center of C(b, ri, rj), is

b(t) + ri

2
+
−−−→
m′(t)

(rj − ri) · (rj − b(t))
−−−−→
2m′(t) · (rj − ri)

(∗)

Lemma 2. If the trajectory of the mobile blue point is a straight line, the tra-
jectory of the corresponding mobile exit event point is a cyclic path on FV D(R).

Proof. Obviously, the trajectory of an exit event point is a continuous curve.
We prove this lemma by considering two cases. Case one: the trajectory of the
mobile blue point p is a line intersecting both CH(R) and MEC(R). When p
enters MEC(R), it creates an exit event point at the root of FV D(R), which
moves along the edge defining the first exit region it visits. When p enters a
new exit region by crossing a circumcircle of three red points, the exit event
point crosses a vertex of FV D(R) which is the center of the circumcircle that
separates these two exit regions and, moves to a new Voronoi edge. Eventually,
the exit event point visits an unbounded Voronoi edge, when it enters an exit
region bounded by an edge of CH(R) and one circumcircle, and moves to ∞ as
it approaches the boundary of CH(R). Note that p does not have an exit event
point when p ∈ CH(R). Similarly, when p exits from CH(R), its exit event
point re-appears at ∞, and travels along a path on FV D(R), and eventually
reaches the root of FV D(R) when p crosses MEC(R) the second time to form
a closed path.

Kinetic Red-Blue Minimum Separating Circle 455

Case two: the trajectory of p is a line intersecting MEC(R) but not CH(R).
Let ri and rj be two red points which define a Voronoi edge eij in FV D(R). The
exit region associated with eij is bounded by two circular arcs, which are both
incident to ri and rj . It follows that if the trajectory of p intersects one arc of
the exit region, it must intersect the arc exactly twice. Otherwise the trajectory
intersects the line segment connecting ri and rj , which is enclosed by CH(R).
Note that ri and rj must be vertices of CH(R). This implies that the trajectory
of the corresponding exit event point starts at the root of FV D(R) and traverses
a path along edges of FV D(R) and returns back to the root following the same
path. �

Next, we give details of the solution for this problem. Observe that each fixed
blue point defines at most one static exit event point, which in turn defines a
fixed candidate separating circle. The number of blue points enclosed by such
candidate separating circle changes only when the mobile blue point p enters or
leaves the circle. The mobile blue point p defines a mobile exit event point. Not
only the center and radius of the corresponding candidate circle changes con-
tinuously, the number of blue points enclosed by the corresponding candidate
separating circle changes over time, as well. We need to dynamically maintain
two classes of structures: (1) the trajectory of exit event points, and (2) the num-
ber of blue points enclosed by each candidate separating circle over time. We
need to analyze the following events and update the corresponding structures
accordingly.

case 1) the mobile blue point enters or leave a static candidate circle,
case 2) the exit event point associated with the mobile blue point moves to a
new edge of the farthest neighbor Voronoi diagram FV D(R) of R, and
case 3) the candidate circle associated with the mobile blue point encloses or
excludes a new blue point.

To avoid ambiguity, we refer to these events as instant events, distinguishing
from the event points introduced in Section 2.

Note that case 1 instant events maintain the count of blue points enclosed by
each fixed candidate circle. Case 2 instant events allow us to track the trajectory
of the exit event point associated to the mobile blue point. Case 3 instant events
define the moment when the number of blue points enclosed by the candidate
separating circle associated with the mobile blue point changes.

Case 1 instant events: These are the instant events when the mobile blue
point enters or leave a fixed candidate circle.

Lemma 3. There are O(m) case 1 instant events, and can be found in constant
time each, given that all fixed exit event points are known.

Proof. Trivial. Given a fixed candidate circle, the time at which a mobile point
with know trajectory enters or leaves the circle can be determined in constant
time. Also since the mobile blue point follows a linear trajectory, it may en-
ter/leave a circle at most once. �

456 Y.K. Cheung, O. Daescu, and M. Zivanic

Case 2 instant events: These are the instant events when the exit event point
associated to the mobile blue point moves to a new edge of the farthest neighbor
Voronoi diagram FV D(R) of R.

Lemma 4. We have O(n) case 2 instant event, which can be computed in O(n)
time.

Proof. Obviously, if the mobile blue point enters an exit region, it creates an
exit event point on the corresponding Voronoi edge. As a result, a case 2 instant
event is created when the mobile blue point crosses the boundary between two
exit regions. Since the mobile blue point follows a linear path, it can traverse
at most O(n) exit regions and enter the same exit region no more than twice.
Hence, we have at most O(n) case 2 instant events. The time instant when the
mobile blue point enters or leaves an exit region can be determined in constant
time given that the exit regions are pre-computed and all stationary red points
are in general position. �

The trajectory of the mobile exit event point on a Voronoi edge can be computed
in constant time using equation (*) once the corresponding case 2 instants events
are computed.

Case 3 instant events: These are the instant events when the candidate
circle associated to the mobile blue point encloses or excludes a blue point.

Lemma 5. There are O(mn) case 3 instant events.

Proof. The candidate separating circle of the mobile blue point will enclose/
enclude a fixed blue point when its center, i.e the mobile exit event point, sweeps
across an event point of a fixed blue point along its path. Each Voronoi edge can
have at most O(m) event points [6], and the result follows. �

Thus the trajectory of each exit event point and the count of blue points enclosed
by each candidate circle are maintained over time. We will give a procedure to
compute the trajectory of the minimum separating circle in the next section.

Theorem 1. The locus of the minimum separating circle of R and B has a
complexity of O(mn) can be computed in O(mn log(mn)) time.

5 The Minimum Separating Circle with One Mobile Red
Point

In this section, we study the minimum separating circle problem for two point
sets R and B, such that all points are stationary except one red point p, which
is moving along a linear trajectory with constant speed. We show how to find
the locus of the center of the minimum separating circle CR(B).

Let b ∈ B, and assume b is enclosed by an exit region associated to a Voronoi
edge e, which is defined by a fixed red point r and the mobile red point p, then the

Kinetic Red-Blue Minimum Separating Circle 457

exit event point of b moves along the perpendicular bisector between b and r and
its trajectory has a formula similar to (*). The difficulty to track the trajectory
of each exit event point lies on the fact that the exit regions change dynamically,
i.e. some exit regions will disappear and some new exit regions will be formed,
and boundaries of some exit regions change continuously due to the mobile red
point. Fortunately, we do not have to compute all exit regions formed over time.
Since FV D(R) is a dual graph of the union of the exit regions, we can maintain
the topology of the farthest point Voronoi diagram FV D(R) of R instead. Note
that only points on the convex hull CH(R) of R contribute to FV D(R), and
it is necessary to maintain the convex hull of R. Knowing FV D(R) allows us
to compute the moments when some blue point is enclosed by a different exit
region, which is a crucial step to maintain the trajectory of each event point.
We also need to maintain the number of blue points enclosed by each candidate
separating circle. In summary, we need to maintain the following four classes of
kinetic data structures: the (topology of the) convex hull of R, the (topology of
the) farthest point Voronoi diagram of R, the trajectory of each exit event point
and the number of blue points enclosed by each candidate circle. To achieve this,
we define the following four classes of instant events:

case 1) the appearance/disappearance of a vertex on the boundary of the convex
hull CH(R) of R,
case 2) the appearance/disappearanceof a vertex on the farthest neighborVoronoi
diagram FV D(R) of R,
case 3) the exit event point associated with a blue point moves to another Voronoi
edge, and
case 4) the candidate separating circle associated with an exit event point en-
closes/excludes a blue point.

Case 1 instant events: These are time instants when a vertex of CH(R)
appears or disappears.

Lemma 6. There are O(n) instant events in case 2, and each event can be
identified in constant time given the convex hull of fixed red points CH(R\ p) is
known.

Proof. Case 1 instant events occur when p passes through the intersection be-
tween a line supporting some edge of CH(R\ p) and the trajectory of p. Hence,
each instant event can be identified in constant time. See Fig. 4 for an
illustration. �

When a case 1 instant event is triggered, not only the convex hull of R but the
topology of the farthest point Voronoi diagram of R changes as well.

Lemma 7. The topology of the farthest point Voronoi diagram FV D(R) of R
can be updated in constant time for each case 1 instant event.

Proof. Instead of working on FV D(R) directly, we turn our attention to the
dual graph of FV D(R), the Delaunay triangulation DT (R). When a vertex

458 Y.K. Cheung, O. Daescu, and M. Zivanic

p

i-1

i

r

r

Fig. 4. A vertex of CH(R) appears

ri of CH(R) just appears, ri and the two adjacent vertices ri−1, ri+1 define
the largest circumcircle passing through three consecutive vertices of CH(R).
Note that in Fig. 4, ri+1 is the mobile red point p. As a result, ri+1, ri and
ri−1 define a Delaunay triangle, and ri will not contribute to the rest of the
triangulation [19]. That is, the remaining triangulation remains the same and
the Delaunay triangulation can be updated by adding the Delaunay triangle
defined by ri+1, ri and ri−1 to the current triangulation. Similarly, when a vertex
ri on CH(R) disappears as p moves, we update the Delaunay triangulation by
deleting ri from CH(R) and remove the Delaunay triangle defined by ri, ri−1

and ri+1 from the current Delaunay triangulation. �

Case 2 instant events: These are time instants when a Voronoi edge appears
or disappears from FV D(R).

Lemma 8. There are at most O(n) case 2) instant events, which can be found
in O(n log n) time.

Proof. We turn our attention to the dual graph of FV D(R), the Delaunay tri-
angulation DT (R). The topology of DT (R) could change when four red points,
including the mobile red point p are cocircular and the circumcircle defined by
these four points encloses all red points. More specifically, a case 2 instant event
is formed when p enters/leaves a circumcircle, which passes through three fixed
red points and encloses all fixed red points (see Fig. 5). Observe that the center
of each such enclosing circle defines a vertex of the farthest point Voronoi dia-
gram of fixed red points FV D(R \ p), so there are O(n) such enclosing circles.
It takes O(n log n) time to compute FV D(R \ p). The result follows. �

Lemma 9. For each case 2 instant event, the topology of FV D(R) can be up-
dated in constant time.

Kinetic Red-Blue Minimum Separating Circle 459

Fig. 5. Update of Delaunay triangulation of four points by edge swapping

Proof. We turn our attention to the Delaunay triangulation DT (R) of R. Let
�(p, ri, rj) and �(rk, ri, rj) be two adjacent triangles, which share a common
edge rirj in DT (R). The circumcircle C(rk, ri, rj) of �(rk, ri, rj) must enclose
all red points. If p leaves C(rk, ri, rj), �(rk, ri, rj) is no longer a valid triangle in
DT (R). DT (R) can be updated by edge swapping, i.e. removing edge rirj and
adding edge prk. �

Case 3 instant events: These are the time instants when an exit event point
moves to another edge of V D(R) or appears/disappares.

Lemma 10. Each Case 3 instant event can be identified in constant time.

Proof. Let e be a Voronoi edge defined by p and ri. Without loss of generality,
assume e is unbounded. Let the finite end point of e be a, defined by red points
points p, ri, rj . The exit region of e is bounded by the line segment pri and
circumcircle C(p, ri, rj). The exit event point of a blue point b ∈ B lies on e if
b lies in the interior of the exit region of e. The exit event point will move to
another edge if and only if C(p, ri, rj) excludes b, i.e. when p, ri, rj and b are
curricular. This event can be determined in constant time. �

Lemma 11. The upper bound on the number of case 3 instant events is O(nm).

Proof. Following the previous lemma, an exit event point will move to another
Voronoi edge only if its corresponding blue point is cocircular with three red
points which define a Voronoi vertex. Given the fact that there are O(n) case
1) and case 2) instant events, there are at most O(n) new Delauney triangles
formed over time. Since the center of the circumcircle of each Delauney triangle
defines a vertex of FV D(R), each exit event point cannot cross more than a
linear number of vertices. �

Case 4 instant events: These are the time when the candidate separating
circle encloses/excludes a blue point.

460 Y.K. Cheung, O. Daescu, and M. Zivanic

Lemma 12. Each exit event point can generate at most O(mn) case 4 instant
events and there are a total of O(m2n) case 4 instant events.

Proof. Let e be a Voronoi edge defined by a fixed red point ri and the mobile
red point p, and assume the exit event point of a blue point b ∈ B lies on
e. The candidate separating circle centering at the exit event point of b is the
circumcircle of ri, p, and b. A case 4 instant event is triggered if ri, p, and b
are cocircular with another blue point. Hence, when an exit event point travels
along a Voronoi edge, it can trigger at most O(m) case 4 instant events.

As shown in Lemma 11, each exit event point can traverse O(n) Voronoi edges.
Thus, there are at most O(m2n) case 4 instant events. �

Once the trajectory of the exit event point is known, we compute the function
fb(t) of the square radius of the corresponding candidate separating circle.

Following Lemma 11, each exit event point cannot cross more than O(n)
Voronoi edges. For a time interval [tinit, tend], fb(t) consists of O(n) pieces of
curves or horizontal line segments if the exit event point is stationary.

Plotting all functions fb(t) for t ∈ [tinit, tend] and b ∈ B on the same coordinate
system gives us an arrangement H of curves of complexity O(nm2), since all
functions are x-monotone and two such functions intersect no more than O(n)
times. H gives us the relative size between all candidate circles over time.

However, we also need to consider the blue points enclosed by the candidate
circles. We further decompose H by dividing each function fb(t) at every case
4 instant event to generated by b by introducing a vertex at (to, fb(to)). As a
result, each portion of fb(t) on the new arrangement H ′ represents the square
radius of the candidate circle for a time interval during which the blue points
enclosed by the circle remain the same. The new arrangement H ′ has complexity
O(nm2). We call each portion of fb(t) on H ′ a simple curve.

Let the blue point count of a simple curve on H ′ be the number of blue points
enclosed by the corresponding candidate circle. The last step to compute the
locus of the minimum separating circle is to extract the lower envelope of curves
with the lowest blue point count. Each curve on the lower envelope gives us
the minimum separating circle for the interval spanned by the curve, hence, the
locus of the center of the minimum separating circle.

We use a plane sweep to extract such lower envelope. We sweep H ′ by a
vertical line. At any moment, the sweep line intersects with at most m functions
fb(t), for b ∈ B. Each function is indexed by its blue point count at the current
moment. We build a hash table for functions intersected by the sweep line. For
each entry of the hash table, all functions are maintained in a balanced tree by
the order intersected by the sweep line. Note that we only have to update the
hash table at vertices of H ′. If two functions with the same blue point count
intersect, we need to exchange their position in the corresponding tree. If the
sweep line crosses a vertex introduced by a case 4 instant event, the blue point
count of a function changes. The corresponding function will be moved to the
appropriate entry of the hash table. It takes O(log m) time to update the hash
table for each instance.

Kinetic Red-Blue Minimum Separating Circle 461

Theorem 2. The locus of the center of the minimum separating circle has com-
plexity O(nm2) and can be computed in O(nm2 log m) time.

6 The Minimum Separating Circle with Multiple Moving
Points

In this section, we discuss the general version of the kinetic red-blue separating
circle problem. That is, given a set R of n red points and a set B of m blue
points, where each red or blue point is either stationary or moves with constant
speed along a straight line, we want to find the trajectory of the center of the
minimum separating circle.

We need to maintain the following kinetic data structures: kinetic convex hull
of R, kinetic farthest point Voronoi diagram of R, trajectories of exit event
points, and blue point counts for candidate circles.

We apply data structure proposed in [4] to maintain the kinetic convex hull
of R. In [4], the problem of maintaining the convex hull of moving points is
dualized by mapping each point to a line in the dual plane using the standard
point-line duality transform and computing the upper and lower envelopes of
the family of dual lines. The data structure uses O(n) certificates that involves
comparisons between line slopes, and a balanced binary tree to store the combi-
natorial description of the convex hull. At most O(log n) certificates are updated
when an event is triggered. Hence, it takes O(log n) time to process each event.
The data structure generates at most O(n2+ε) events.

Similar to P2, in order to maintain FV D(R), we define two classes of instant
events:

case 1) the appearance/disappearance of a vertex on the boundary of the convex
hull CH(R) of R,
case 2) the appearance/disappearanceof a vertex on the farthest neighbor Voronoi
diagram FV D(R) of R.

Lemma 13. We can update FV D(R) in constant time when a case 1 or a case
3 event occurs and in the worst case there are O(n3+ε) events.

Proof. We turn our attention to the dual graph of FV D(R), the Delaunay tri-
angulation DT (R), and show how to maintain DT (R) instead, since it is more
nature and easier to describe the update procedure in the dual setting. For each
case 1 instant event, DT (R) can be updated in constant time by introducing a
new triangle to the original triangulation as described in Lemma. 7. There are
O(n2+ε) such events. For each case 2 instant event, DT (R) can also be updated
in constant time by edge swapping as described in Lemma. 9. A case 2 event will
occur when four red points are cocircular and the circumcircle formed by these
four points encloses all other red points. By the fact that four points moving
with constant speed along straight lines can be cocircular at most four times, we
have a O(n4) trivial upper bound on the number of case 2 event points. However,
by a Davenport-Schinzel sequence sequence argument, Albers et. al. [1] shows
that there are at most O(n3+ε) such events [1]. �

462 Y.K. Cheung, O. Daescu, and M. Zivanic

To update the trajectory of each event point, we need to identify the following
class of instant events:
case 3) some exit event point associated with a blue point moves to another
Voronoi edge.

Lemma 14. There are at most O(mn2+ε) case (3) instant events.

Proof. A case 3 instant event will occur when some exit event passes through
a Voronoi vertex, i.e. when some blue point and three red points are cocircular
and the circumcircle of the three red points encloses R. For a blue point b and
one red point r, it is shown in [1] that number of enclosing circles of R which
pass through b, r and two red other points is O(n1+ε). Considering all pairs of
one red point and one blue point, we obtain the upper bound on the number of
case 3 instant events. �

Lemma 15. For each case 3 instant event, it takes O(n) time to update the
trajectory of the corresponding exit event point.

Proof. Since we cannot assume all point are in general position at each instant
event, the Voronoi vertex was just passed by the exit event point could have
degree O(n). Thus, we need to check O(n) exit regions associated with Voronoi
edges incident to this vertex. �

To track the count of blue points enclosed by each candidate circle, we define
another class of instant events:
case 4) the candidate separating circle associated with an exit event point en-
closes/excludes a blue point.

Lemma 16. There are at most O(m2n1+ε) case 4) instant events.

Proof. Recall that a candidate separating circle is a circle that passes through
two red points and one blue point and encloses R. Hence, a case 4 event will be
triggered when two blue points and two red points are cocircular and their cir-
cumcircle encloses all red points. Following the same argument as in Lemma. 14,
we can show that each pair of blue points generates O(n1+ε) case 4 instant
events. �

We apply the approach proposed in Section 5 to compute the locus of the center
of the minimum separation circle. As shown in the proof of Lemma 14, one blue
point can generate at most O(n2+ε) case 3 event points. The function fb(t) of
the square radius of the candidate separating circle of a blue point b ∈ B consists
of O(n2+ε) curves. Hence, the arrange H of all such functions has a complexity
of O(m2n2+ε). After introducing O(m2n1+ε) additional vertices due to case 4
instant events, the final arrangement H ′ has a complexity of m2n2+ε. It takes a
total of O(mn3+ε) time to maintain trajectories of all exit event points.

Theorem 3. The locus of the center of the minimum separating circle has com-
plexity O(m2n2+ε) and can be found in O(m2n2+ε log(mn) + mn3+ε) time.

Kinetic Red-Blue Minimum Separating Circle 463

References

1. Albers, G., Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving
points. Int. J. Comput. Geometry Appl. 8(3), 365–380 (1998)

2. Aronov, B., Rappaport, D., Seara, C., Garijo, D., Núñez, Y., Urrutia, J.: Measuring
the error of linear separators on linearly inseparable data. In: XIII Encuentros de
Geometria Computacional, Zaragoza, España (2009)

3. Atallah, M.J.: Dynamic computational geometry (preliminary version). In: FOCS,
pp. 92–99 (1983)

4. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algo-
rithms 31(1), 1–28 (1999)

5. Basch, J., Guibas, L.J., Silverstein, C., Zhang, L.: A practical evaluation of kinetic
data structures. In: Symposium on Computational Geometry, pp. 388–390 (1997)

6. Bitner, S., Cheung, Y.K., Daescu, O.: Minimum separating circle for bichromatic
points in the plane. In: ISVD, pp. 50–55 (2010)

7. Demain, E., Einsenstat, S., Guibas, L., Schulz, A.: Kinetic minimum spanning
circle. In: Proceedings of the Fall Workshop on Computational Geometry, New
York, USA (2010)

8. Mitchell, J.S.B., Seara, C., Arkin, E.M., Hurtado, F., Skiena, S.: Some lower bounds
on geometric separability problems. Int. J. Comput. Geometry Appl. 16(1), 1–26
(2006)

9. Seara, C., Hurtado, F., Sethia, S.: Red-blue separability problems in 3d. Interna-
tional Journal of Computational Geometry 15(2), 167–192 (2005)

10. Fekete, S.: On the complexity of min-link red-blue separation (1992) (manuscript)
11. Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 554–556 (July 1986)
12. Guibas, L.J.: Kinetic data structures: a state of the art report. In: WAFR 1998

(1998)
13. Hurtado, F., Mora, M., Ramos, P.A., Seara, C.: Separability by two lines and by

nearly straight polygonal chains. Discrete Applied Mathematics 144(1-2), 110–122
(2004)

14. Hurtado, F., Noy, M., Ramos, P.A., Seara, C.: Separating objects in the plane by
wedges and strips. Discrete Applied Mathematics 109(1-2), 109–138 (2001)

15. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related
problems. SIAM Journal on Computing 12(4), 759–776 (1983)

16. O’Rourke, J., Kosaraju, S., Megiddo, N.: Computing circular separability. Discrete
Computational Geometry 1, 105–113 (1986)

17. Rahmati, Z., Zarei, A.: Combinatorial changes of euclidean minimum spanning tree
of moving points in the plane. In: CCCG, pp. 43–45 (2010)

18. Roos, T.: Voronoi diagrams over dynamic scenes. Discrete Applied Mathemat-
ics 43(3), 243–259 (1993)

19. Skyum, S.: A simple algorithm for computing the smallest enclosing circle. Infor-
mation Processing Letters 37(3) (1991)

A Semantic Model for Many-Core Parallel Computing�

Nan Zhang and Zhenhua Duan��

Institute of Computing Theory and Technology, and ISN Laboratory
Xidian University, Xi’an 710071, P.R. China

nanzhang@stu.xidian.edu.cn,zhhduan@mail.xidian.edu.cn

Abstract. Many-core parallel computing and programming is a new challenge
for formal specification and verification. This paper presents a semantic model
for many-core parallel computing systems so that the systems can be modeled
and verified in a manageable way. The model is called Cylinder Computation
Model (CCM) which is based on projection constructs in Projection Temporal
Logic (PTL) and Modeling, Simulation and Verification Language (MSVL). To
this end, the syntax and semantics of CCM are presented in details. Further, some
logic laws regarding CCM are given and the normal form of CCM programs is
formalized and proved. Moreover, the operational semantics of CCM and an algo-
rithm for implementing CCM programs with MSVL are also formalized. Finally,
an example, simple word processor, is given to show how CCM works under
MSVL paradigm.

Keywords: Many-core, Parallel Computing, Temporal Logic, Projection, Model.

1 Introduction

A parallel program consists of more processes and each process is a sequential program
with its own local variables and statements. Parallel programs are more difficult to deal
with than sequential ones. Creating a correct parallel program is not a straightforward
process even for a considerable small problem because programmers are forced to con-
sider that the program will always yield to a correct result no matter what order the
instructions are executed in. Thus for a parallel program, testing is not able to convince
us the correctness of the program. So, to ensure the correctness of parallel programs,
formal verification is an important viable solution [16,18].

Temporal logic has gained recognition as a competent and versatile formalism for
rigorously specifying and verifying concurrent or parallel systems such as hardware
circuits, safety critical systems and communication protocols. In particular, Projection
Temporal Logic (PTL) [6], an extension of Interval Temporal Logic (ITL)[17], and its
executable subset called Modeling, Simulation and Verification Language (MSVL)[23]
are useful formalisms for modeling and verifying parallel or concurrent systems.

� This research is supported by the NSFC Grant No.60910004, 60873018, 91018010, 61003078,
and 61003079, 973 Program Grant No.2010CB328102, SRFDP Grant No.200807010012 and
ISN Lab Grant No.ISN1102001.

�� Corresponding author.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 464–479, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Semantic Model for Many-Core Parallel Computing 465

The contribution of this paper is to give a more flexible parallel model in tempo-
ral logic programming so that it can be used to handle many-core parallel comput-
ing. As a result, we present a semantic model based on MSVL for many-core parallel
computing, namely Cylinder Computation Model (CCM). CCM has a typical form of
φ1 ov (l1)‖ . . . ‖φm ov (lm) where φi(i = 1..m) are MSVL programs. With this par-
allelism, a main time interval is the sequence of fine-grained unit subintervals with
length one while several coarse-grained projected intervals over which processes are
interpreted are in parallel with the main time interval. This computation model can be
viewed as m processes that share one chip and each occupies a processor respectively
cooperating to solve a problem in a parallel way. Each process progresses in its own
speed and communicates with each other at some global states. Sequence expression li
is used to control and determine the execution of φi. As you can see, parallel construct
(‖) is the main operator in CCM. Thus φ1 ov (l1)‖ . . . ‖φm ov (lm) is endowed with a
meaning of many-core. As we mentioned earlier, programs are interpreted over a state
sequence. In each new state, processes deployed on different cores do their own job,
read data from memory, compute or update memory. As an example, a simple word
processor is given to illustrate how CCM can be used to specify many-core parallel
programs. To implement CCM programs in MSVL, we investigate the operational se-
mantics of CCM. Further, an interpreter has been developed based on the operational
semantics.

The paper is organized as follows: the syntax and semantics of PTL are described
in next section; MSVL is also introduced in section 2, including framing technology,
expressions and statements, normal form of MSVL. CCM programs with MSVL are
defined in section 3 and 4, including syntax and semantics as well as operational se-
mantics. In section 5, the implementation of CCM is illustrated within the interpreter
of MSVL. Further, an example is given to show the practicability of CCM in parallel
programming. In addition, some work related to models of parallel computation has
been discussed. Finally, conclusions are drawn in section 8.

2 Preliminaries

2.1 Projection Temporal Logic

Our underlying logic is Projection Temporal Logic. In the following, we briefly intro-
duce its syntax and semantics. The detail can be found in [6].

Syntax. Let Prop be a countable set of propositions, and V a countable set of typed
variables consisting of static and dynamic variables. B represents the boolean domain,
D denotes all data needed including integers, lists, sets etc. N0 stands for non-negative
integers and N+

0 = N0 − {0}. Terms e and formulas φ are defined as follows:

e ::= v | © e | -©e | beg(e) | end(e) | f(e1, . . . , en)
φ ::= p | e1 = e2 | P (e1, . . . , en) | ¬φ | φ1 ∧ φ2 | ∃x : φ | © φ

| (φ1, . . . , φm) prj φ | (φ1, . . . , (φi, . . . , φl)⊕, . . . , φm) prj φ

where v ∈ V and p ∈ Prop. A formula (term) is called a state formula (term) if it
contains no temporal operators, otherwise it is a temporal formula (term).

466 N. Zhang and Z. Duan

Semantics. A state s over V ∪ Prop is defined to be a pair (Iv , Ip) of state interpre-
tations Iv and Ip. Iv assigns each variable v ∈ V a value in D or nil (undefined) and
the total domain is denoted by D′ = D ∪ {nil}, whereas Ip assigns each proposition
p ∈ Prop a truth value in B. s[v] denotes the value of v at state s.

An interval σ is a non-empty sequence of states, which can be finite or infinite. The
length, |σ|, of σ is ω if σ is infinite, and the number of states minus 1 if σ is finite. We
extend the set N0 of non-negative integers to include ω, denoted by Nω = N0 ∪ {ω}
and extend the comparison operators, =, <, ≤, to Nω by considering ω = ω, and
for all i ∈ N0, i < ω. Furthermore, we define � as ≤ −{(ω, ω)}. For concise
of presentation, 〈s0, . . . , s|σ|〉 is denoted by σ, where s|σ| is undefined if σ is in-

finite. The concatenation of a finite σ with another interval (or empty string) σ
′

is
denoted by σ • σ

′
(not sharing any states). Let σ = 〈s0, s1, . . . , s|σ|〉 be an inter-

val and r1, . . . , rh be integers (h ≥ 1) such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh �
|σ|. The projection of σ onto r1, . . . , rh is the interval (called projected interval) σ ↓
(r1, . . . , rh) = 〈st1 , st2 , . . . , stl

〉 where t1, . . . , tl are obtained from r1, . . . , rh by
deleting all duplicates. That is, t1, . . . , tl is the longest strictly increasing subsequence
of r1, . . . , rh. For instance, 〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉. We also
need to generalize the notation of σ ↓ (r1, . . . , rh) to allow ri to be ω. For an inter-
val σ = 〈s0, s1, . . . , s|σ|〉 and 0 ≤ r1 ≤ . . . ≤ rh ≤ |σ| (ri ∈ Nω), we define
σ ↓ (r1, . . . , rh, ω) = σ ↓ (r1, . . . , rh). It is assumed that a static variable remains the
same over an interval whereas a dynamic variable can have different values at different
states. To evaluate the existential quantification, an equivalence relation is required [6]
and given below. We use Ik

v and Ik
p to denote the state interpretations at state sk.

Definition 1 (x-equivalence). Two intervals, σ and σ′, are x-equivalent, denoted by
σ′ x= σ, if |σ| = |σ′|, Ih

v [y] = I
′h
v [y] for all y ∈ V − {x}, and Ih

p [p] = I
′h
p [p] for all

p ∈ Prop (0 ≤ h � |σ|).
An interpretation is a quadruple I = (σ, i, k, j), where σ is an interval, i, k ∈ N0, and
j ∈ Nω such that 0 ≤ i ≤ k � j ≤ |σ|. We use the notation (σ, i, k, j) to indicate
that some formula φ or term e is interpreted over the subinterval 〈si, . . . , sj〉 of σ with
the current state being sk. For every term e, the evaluation of e relative to interpretation
I = (σ, i, k, j), denoted by I[e], is defined by induction on terms as follows:

1. I[v] =

{
sk[v] = Ik

v [v] = Ii
v[v] if v is a static variable.

sk[v] = Ik
v [v] if v is a dynamic variable.

2. I[©e] =

{
(σ, i, k + 1, j)[e] if k < j
nil otherwise

3. I[-©e] =

{
(σ, i, k − 1, j)[e] if i < k
nil otherwise

4. I[beg(e)] = (σ, i, i, j)[e]

5. I[end(e)] =

{
(σ, i, j, j)[e] if j < ω
nil otherwise

6. I[f(e1, . . . , en)] =

{
nil iff I[eh] = nil, for some h ∈ {1..n}
I[f](I[e1], . . . , I[en]) otherwise

The meaning of formulas is given by the satisfaction relation, |=, which is inductively
defined as follows:

A Semantic Model for Many-Core Parallel Computing 467

1. I |= p iff Ik
p [p] = true, for any given proposition p.

2. I |= P (e1, . . . , en) iff P is a primitive predicate other than = and, for all h,
0 ≤ h ≤ n, I[eh] �= nil and I[P](I[e1], . . . , I[en]) = true.

3. I |= e1 = e2 iff e1 and e2 are terms and I[e1] = I[e2].
4. I |= ¬φ iff I � φ.
5. I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2.
6. I |= ©φ iff k < j and (σ, i, k + 1, j) |= φ.
7. I |= ∃x : φ iff there exists an interval σ′ such that σ′

(i..j)
x
= σ(i..j) and (σ′, i, k, j) |= φ.

8. I |= (φ1, . . . , φm) prj φ iff there exist integers k = r0 ≤ · · · ≤ rm−1 	 rm ≤ j; for all
1 ≤ l ≤ m, (σ, i, rl−1, rl) |= φl; σ

′ |= φ for one of the following σ
′
:

(a) rm < j and σ′ = σ ↓ (i, r0, . . . , rm) • σ(rm+1..j), or
(b) rm = j and σ′ = σ ↓ (i, r0, . . . , rh) for some 0 ≤ h ≤ m.

9. I |= (φ1, . . . , (φi, . . . , φl)
⊕, . . . , φm) prj φ iff one of following cases holds:

(a) 1 ≤ i ≤ l ≤ m and there exists an integer n ≥ 1 and I |=
(φ1, . . . , (φi, . . . , φl)

(n), . . . , φm) prj φ, or
(b) 1 ≤ i ≤ l = m, j = ω and there exist infinitely many integers k = r0 ≤ r1 ≤
· · · ≤ rn 	 ω and lim

n→∞
rn = ω such that for all 1 ≤ x ≤ i−1, (σ, i, rx−1, rx) |= φx,

and (σ, i, ri+t(l−i+1)+n−1, ri+t(l−i+1)+n) |= φi+n, for all t ≥ 0 and 0 ≤ n ≤ l − i,
and σ ↓ (i, r0, r1, . . . , rh, ω) |= φ for some h ∈ Nω .

The abbreviations true, false, ∨, → and ↔ are defined as usual. In particular, true
def=

φ∨¬φ and false
def= φ∧¬φ for any formula φ. We also use the following abbreviations:

A1 ε
def
= ¬© true A2 more

def
= ¬ε

A3 ©0φ
def
= φ A4 ©nφ

def
= ©(©n−1φ) (n > 0)

A5
⊙

φ
def
= ε ∨©φ A6 φ1; φ2

def
= (φ1, φ2) prj ε

A7 ♦φ
def
= true; φ A8 �φ

def
= ¬♦¬φ

A9 len(n)
def
= ©nε A10 skip

def
= len(1)

A11 ∀x : φ
def
= ¬∃x : ¬φ A12 φ1‖φ2

def
= φ1 ∧ (φ2; true) ∨ (φ1; true) ∧ φ2

2.2 Modeling, Simulation and Verification Language

MSVL extends Tempura [17] to include infinite models, a new projection construct, a
previous operator, framing constructs, a synchronization construct await(c), and non-
deterministic statements [5,6,7,23].

Framing. Framing is concerned with how the value of a variable can be carried from
one state to the next. To give the frame operator, we define assignment operators firstly.

x ⇐ e
def= x = e ∧ px

x =o †e def= ∃a : (a = e ∧©(x ⇐ a))
x :=† e

def= x =o †e ∧ skip
where a is a static variable, e an expression, px an atomic proposition associated with
dynamic variable x and cannot be used for other purpose. To identify an occurrence of
an assignment to a variable x, we make use of a flag called the assignment flag, denoted

by a predicate af(x) which can be defined as af(x) def= px under the minimal model

468 N. Zhang and Z. Duan

semantics [6,7]. Whenever an assignment to x is encountered, af(x) should be true.
Then frame operators are defined as follows: Let b be a static variable, and x1, . . . , xk

dynamic variables.

lbf(x) def= ¬af(x) → ∃b : (-©x = b ∧ x = b)
frame(x) def= �(more → ©lbf(x))
frame(x1, . . . , xk) def= frame(x1) ∧ . . . ∧ frame(xk)

MSVL Programs. With MSVL, expressions can be treated as terms and statements can
be treated as formulas in PTL. The arithmetic and boolean expressions of MSVL can
be inductively defined as follows [6,7]:

e ::= n | x | © x | -©x | e0 op e1 (op ::= +| − | × |mod)
b ::= true | false | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

where n is an integer and x is a static or dynamic variable. One may refer to the value
of a variable at the previous state or the next state. The statements of MSVL programs
can be inductively defined by the following grammar [6,7]:
1.Termination: ε 9.Next: next φ
2.Assignment: x = e 10.Always: always φ
3.Positive Immediate Assignment: x ⇐ e 11.Conditional: if b then φ0 else φ1

4.State Frame: lbf(x) 12.Existential Quantification: ∃x : φ(x)
5.Interval Frame: frame(x) 13.Sequential: φ0 ; φ1

6.Conjunction: φ0 and φ1 14.While: while b do φ
7.Selection: φ0 or φ1 15.Parallel: φ0‖φ1

8.Projection: (φ1, . . . , φm) prj φ 16.Synchronous Communication: await(c)
To synchronize communication of parallel processes in a parallel program, a synchro-

nization construct, await(c) is required and await(c) def= frame(x1, . . . , xn) ∧ halt(c).
The await(c) does not change any variable, but waits until the condition c becomes true,
at which point it terminates. x1, . . . , xn are dynamic variables appeared in c.

Normal form. Since temporal logic formulas are interpreted over intervals and tem-
poral logic programming language is a subset of one corresponding temporal logic,
programs should be executed over a sequence of states which is a marked feature of
temporal logic programming. So execution of programs is implemented by reduction
since a program can be reduced to two parts: present and remain. That fact can be illus-
trated by the normal form of programs given in [23].

Definition 2 (normal form of MSVL). An MSVL program φ is in normal form if

φ
def= (

∨k
i=1 φei ∧ ε) ∨ (

∨h
j=1 φcj ∧©φfj)

where k + h ≥ 1 and the following hold:
• φfj is an internal program in which variables may refer to the previous states but not

beyond the first state of the current interval over which the program is executed.
• each φei and φcj is either true or a state formula of the form p1 ∧ . . . ∧ pm (m ≥ 1)

and each pl (1 ≤ l ≤ m) is either (x = e) with e ∈ D, x ∈ V , or px, or ¬px.

Theorem 1. For each MSVL program φ there is a program φ′ in normal form satisfying
φ ≡ φ′.

Theorem 1 tells us that for each MSVL program there is an equivalent program in
normal form. The proof of the theorem can be found in [7].

A Semantic Model for Many-Core Parallel Computing 469

3 Cylinder Computation Model

A semantic model for parallel computations called Cylinder Computation Model is pro-
posed based on MSVL in this paper. The model has the following typical form:

φ1 ov (n1, . . . , nm1) ‖ φ2 ov (n′
1, . . . , n

′
m2

)
In the context φ1 and φ2 are MSVL programs, ni(i = 1..m1) and n′

j(j = 1..m2) are
positive integers, and ‖ is the parallel operator in MSVL. As a matter of fact, the above
statement is an abbreviation of the MSVL statement:

(len(n1), len(n2), . . . , len(nm1)) prj φ1‖(len(n′
1), len(n′

2), . . . , len(n′
m2

)) prj φ2

in which φ1 and φ2 are executed in parallel and share some specified states for com-
munication. These states are specified by ni and n′

j . With this semantics, we can use
the sequence of len(x)’s to control a specific execution of program φ. We can make
use of the statement to model the execution of several processes deployed over a va-
riety of cores on one chip. As you can see, processes φ1, ..., and φi are executed
over different time granularity. For example, the interval satisfying a parallel program
φ1 ov (2, 3, 3, 4) ‖ φ2 ov (3, 5, 3, 6) ‖ φ3 ov (2, 1, 2, 3, 3, 1, 5) is given in Figure 1.
Here φ1, φ2 and φ3 are executed over three cores on one chip. They are autonomous
and communicate only at some specified time points. If two projected intervals share
a projected state, the two processes communicate at the state. It is possible that at a
moment one process updates the value of a variable, while the other process accesses
the variable. Thus the latter process obtains the new value of the variable, and the com-
munication between processes is done.

φ1

φ2

φ3

Fig. 1. Interpretation of φ1 ov (2, 3, 3, 4) ‖ φ2 ov (3, 5, 3, 6) ‖ φ3 ov (2, 1, 2, 3, 3, 1, 5)

Syntax of sequence expressions. l ::= n | l1 + l2 | l1, l2 | l r© (n ∈ N+
0)

A sequence expression is a sequence of positive integers. We use L to denote the set
of all sequence expressions. The semantics of sequence expressions is also defined by
a satisfaction relation, 	, by means of interpretation I.

Semantics of sequence expressions
1. I 	 n iff j − k = n.
2. I 	 l1 + l2 iff I 	 l1 or I 	 l2.
3. I 	 l1, l2 iff (a) there exists r, k ≤ r 	 j, such that I1 = (σ, i, k, r) 	 l1 and I2 =

(σ, r, r, j) 	 l2, or
(b) j = ω and (σ, i, k, j) 	 l1 and l2 is satisfiable.

4. I 	 l r© iff (a) there exist finitely many integers k = r0 ≤ r1 ≤ . . . 	 rn = j such
that for all h, 1 ≤ h ≤ n, (σ, rh−1, rh−1, rh) 	 l, or
(b) there exist infinitely many integers k = r0 ≤ r1 ≤ . . ., lim

n→∞
rn = ω

such that for all h ≥ 1, (σ, rh−1, rh−1, rh) 	 l.

470 N. Zhang and Z. Duan

With CCM programs, the execution of φ is controlled by the sequence expressions l.
The beginning and ending points of the execution of each n in l make up of the coarse-
grain interval of φ. Therefore, to give the semantics of CCM programs, it is necessary
to define the set of ending point lists denoted by SI

l .

Definition 3 (set of ending point lists SI
l). Let I be an arbitrary interpretation (σ, i, k,

j). SI
l is inductively defined as follows:

1. If I �	 l, then SI
l = ∅.

2. If I 	 n, then SI
n = {〈k, j〉}.

3. If I 	 l1, l2, then SI
l1,l2

=

⎧⎨⎩t1 • t2

∣∣∣∣∣∣
there exists r, k ≤ r 	 j, such that I1 =
(σ, i, k, r) 	 l1 and I2 = (σ, r, r, j) 	 l2 and
t1 ∈ SI1

l1
and t2 ∈ SI2

l2

⎫⎬⎭⋃{
t1
∣∣j = ω and l2 is satisfiable and I 	 l1 and t1 ∈ SI

l1

}
4. If I 	 l1 + l2, then SI

l1+l2
= SI

l1

⋃
SI

l2
.

5. If I 	 l r©, then SI
l =

⎧⎨⎩ n•
h=1

th

∣∣∣∣∣∣
there exist finitely many integers k = r0 ≤ r1 . . . 	
rn = j such that for all 1 ≤ h ≤ n, Ih =
(σ, rh−1, rh−1, rh) 	 l and th ∈ S

Ih
l

⎫⎬⎭
⋃⎧⎨⎩ ∞•

h=1
th

∣∣∣∣∣∣
there exist infinitely many integers k = r0 ≤ r1 ≤
. . . , lim

n→∞
rn = ω such that for all h ≥ 1, Ih =

(σ, rh−1, rh−1, rh) 	 l and th ∈ SIh
l

⎫⎬⎭
The precedence rules are given from high to low: (1) r©(iteration); (2) ,(concatenation);
(3) +(selection). In addition, we extend L to include two extra sequence expressions:
⊥ and 0, standing for empty set and empty string respectively. As a result, the extended
sequence expressions are now in fact ω regular expressions. Let L′ = L ∪ {⊥, 0} and
l, l1, l2, l3 ∈ L, we have the following properties.

R1. l1, (l2 + l3) = l1, l2 + l1, l3 R2. ⊥, l = l,⊥ = ⊥ R3. l1 + l2 = l2 + l1
R4. (l1 + l2), l3 = l1, l3 + l2, l3 R5. 0, l = l, 0 = l R6. l + l = l
R7. l1, (l2, l3) = (l1, l2), l3 R8. l, l r© = l r©, l R9. l r© = l + l, l r©

R10. l1, (l2, l1)
r© = (l1, l2)

r©, l1 R11. l r©, l r© = l, l r© R12. (l r©) r© = l r©

R13. l1 + (l2 + l3) = (l1 + l2) + l3

Based on sequence expressions, the syntax and semantics of CCM can be defined.

Syntax of CCM CCM ::= φ ov (⊥) | φ ov (0) | φ ov (l) | CCM1‖CCM2

Semantics of CCM
1. I �|= φ ov (⊥) for any interpretation I.
2. I |= φ ov (0) iff I |= φ.
3. I |= φ ov (l) iff one of the following cases holds:

(a) I 	 l and there exists 〈r0, r1, . . . , rn〉 ∈ SI
l , n ∈ Nω such that

σ ↓ 〈r0, r1, . . . , rh〉 |= φ for some 0 ≤ h ≤ n, or
(b) there exists r, k ≤ r 	 j such that I1 = (σ, i, k, r) 	 l
and there exists 〈r0, r1, . . . , rn〉 ∈ SI1

l , n ∈ N0 and σ ↓
〈r0, r1, . . . , rn〉 •σ(rn+1..|σ|) |= φ.

4. I |= CCM1‖CCM2 iff I |= (CCM1; true) ∧ CCM2 ∨ CCM1 ∧ (CCM2; true).

A Semantic Model for Many-Core Parallel Computing 471

According to the semantics given above, it is readily to prove the following laws
which are useful to prove the normal form of CCM and can also be used as reduction
rules in the execution of programs.

L1. φ ov (⊥) ≡ false L6. ©φ ov (n, l) ≡ ©nε; (φ ov (l))
L2. φ ov (0) ≡ φ L7. (w ∧ φ) ov (l) ≡ w ∧ (φ ov (l))
L3. ε ov (n) ≡ ©(ε ov (n − 1)) L8. φ ov (l1 + l2) ≡ (φ ov (l1)) ∨ (φ ov (l2))
L4. ε ov (n, l) ≡ ©(ε ov (n − 1, l)) L9. (φ1 ∨ φ2) ov (l) ≡ (φ1 ov (l)) ∨ (φ2 ov (l))
L5. ©φ ov (n) ≡ ©nε; φ

4 Operational Semantics of CCM

Formal semantics of programming language is a prerequisite to reasoning properties
of programs. Operational semantics defines the semantics of program in an operational
manner with which we can understand how to execute a program and implement an
interpreter for the programming language. In [23], the operational semantics of MSVL
is discussed in detail. For ease of understanding of the operational semantics of CCM,
we present briefly the basic idea of the work presented in [23].

To execute an MSVL program is to find a model for it. The execution of MSVL
programs proceeds along with reduction. The reduction process of an interval tempo-
ral logic program can be divided into two phases: one for state reduction and the other
for interval reduction. The state reduction is concerned with how to transform a pro-
gram into its normal form. It consists of evaluation rules of arithmetic and boolean
expressions, semantic equivalence rules and transition rules within a state. The interval
reduction is concerned with a program executed over an interval. It includes a group of
interval transition rules to transfer a program from one state to another. Therefore, eval-
uation rules of expressions, semantic equivalence rules, transition rules within a state
and interval transition rules constitute the operational semantics of MSVL.

There are two types of configurations, one for expressions and the other for pro-
grams. A configuration for a program φ is a tuple (φ, σi−1, si, i), where φ is a framed
program, σi−1 = 〈s0, . . . , si−1〉(i > 0) a model which records information of all
states, si the current state at which φ is being executed and i a counter for counting the
number of states in σi−1. Further, for i = 0, let σ−1 = ε be an empty sequence. Thus,
the initial configuration is (φ, ε, s0, 0). When a program is terminating, it is reduced to
true and the state is written as ∅. So the final configuration is (true, σ, ∅, |σ|+1). For an
arithmetic or boolean expression exp, the configuration is (exp, σi−1, si, i). Evaluation
rules map the configuration (e, σi−1, si, i) to an element n in D which means the value
of e under the current state si is calculated as n. Similarly, for an boolean expression b,
configuration (b, σi−1, si, i) is mapped to a truth value in B.

The normal form plays an essential role in the reduction of temporal logic programs.
In the process of reducing a program into its normal form, we need a number of logical
laws to allow convenient reasoning and transferring of programs. These logical laws are
given as semantic equivalent rules.

Since adding framing operators to a program leads to the feature of non-monotonicity,
we cannot capture the semantics of φ1∧φ2 by means of composing the semantics of φ1

and φ2. Further, in temporal logic programming, assignment statements are executed

472 N. Zhang and Z. Duan

concurrently and may depend on one another such as the statement (x = y + z)∧ (z =
y+x+2)∧(y = z+x). Transition rules within a state are used to deal with concurrent
assignments within a state. With these rules, values of variables in an assignment state-
ment like equations are evaluated in some order within a state and the minimal model
is also captured.

In general, the reduction at each state may be done by several steps. Notation

is a binary relation over the set of configurations with a state. If the program φ in a
configuration is of the form of ©φ′ or empty which means that the reduction of the
program needs to be moved to the next state or stopped, then interval transition rules are
required to help the reduction progress. The transition relation between two configura-
tions with different state is denoted by binary relation→. Rule TR1 (©φ, σi−1, si, i) →
(φ, σi, si+1, i + 1) means that current state si is appended to model σi−1, φ requests to
be executed at the next state si+1, and the number of states increases by one. Rule TR2
means si is appended to σi−1 and the final configuration (true, σi, ∅, i + 1) is reached.
For more details, refer to [23].

In this section, we extend the operational semantics of MSVL to include the opera-
tional semantics of CCM. To this end, we only need to give the semantic equivalence
rules about sequence expressions and CCM which are used to transform CCM construct
into its normal form. Firstly, we need to present Lemma 1 and Theorem 2.

Lemma 1. For any sequence expression l ∈ L, there exists a sequence expression
m
+

i=1
(ni, li) where m, ni ∈ N+

0 and li ∈ L ∪ {0} such that l =
m
+

i=1
(ni, li).

Lemma 1 tells us that for any sequence expression l, there exists a sum l′ of sequence
expressions which are headed by integers such that l = l′. This, in fact, is a prerequisite
of transforming CCM construct into its normal form.

Theorem 2. Any CCM program can be transformed into normal form.

Theorem 2 means that any CCM program can be transformed into its normal form.
Based on properties of sequence expressions and logical laws of CCM, the process of
transformation of CCM into its normal form is also feasible. Based on these properties
and logical laws, the operational semantics of CCM can be defined in the two boxes
given below where R1 − R14 are semantic equivalence rules for sequence expressions
and L1 − L11 semantic equivalence rules for CCM programs.

Example: Reduce the program x = 1∧�(©x = x + 1) ov (2 r©) by operational rules.
(x = 1 ∧ �(©x = x + 1) ov (2 r©), ε, s0, 0)

 (x = 1 ∧©x = x + 1 ∧©�(©x = x + 1) ov (2 r©), ε, s0, 0) {ALW, L11}

 (x = 1 ∧©x = 2 ∧©�(©x = x + 1) ov (2 r©), ε, s0, 0) {SUB-TERM}

 (x = 1 ∧©(x = 2 ∧ �(©x = x + 1)) ov (2 + (2, 2 r©)), ε, s0, 0) {R13, L10}

 (x = 1 ∧©(x = 2 ∧ �(©x = x + 1)) ov (2), ε, s0, 0)

or (x = 1 ∧ (x = 2 ∧ �(©x = x + 1)) ov (2, 2 r©), ε, s0, 0) {L8}
As we can see, the program is non-deterministic since the reduction generates two

different configurations. The first one is deterministic and the second one is non-
deterministic. This result is determined by the non-deterministic semantics of r©. We
take the first one as an example.

A Semantic Model for Many-Core Parallel Computing 473

R1. ⊥, l = l,⊥ = ⊥
R2. l1 + l2 = l2 + l1
R3. 0, l = l, 0 = l
R4. l1, (l2 + l3) = l1, l2 + l1, l3
R5. l + l = l
R6. (l1 + l2), l3 = l1, l3 + l2, l3
R7. l, l r© = l r©, l
R8. l1, (l2, l1)

r© = (l1, l2)
r©, l1

R9. l r©, l r© = l, l r©

R10. l1, (l2, l3) = (l1, l2), l3
R11. (l r©) r© = l r©

R12. l1 + (l2 + l3) = (l1 + l2) + l3
R13. l r© = l + l, l r©

R14.
l1 = l2

l = l[l2/l1]

L1. φ ov (⊥) ≡ false
L2. φ ov (0) ≡ φ
L3. ε ov (n) ≡ ©(ε ov (n − 1))
L4. ε ov (n, l) ≡ ©(ε ov (n − 1, l))
L5. ©φ ov (n) ≡ ©nε; φ
L6. ©φ ov (n, l) ≡ ©nε; (φ ov (l))
L7. (w ∧ φ) ov (l) ≡ w ∧ (φ ov (l))
L8. φ ov (l1 + l2) ≡ (φ ov (l1)) ∨ (φ ov (l2))
L9. (φ1 ∨ φ2) ov (l) ≡ (φ1 ov (l)) ∨ (φ2 ov (l))

L10.
l1 = l2

prog ≡ prog[l2/l1]

L11.
q ≡ q′

prog ≡ prog[q′/q]

(x = 1 ∧©(x = 2 ∧ �(©x = x + 1)) ov (2), ε, s0, 0)

 (x = 1∧©2ε; (x = 2 ∧ �(©x = x + 1)), ε, s0, 0) {L5}

 (©2ε; (x = 2∧�(©x = x + 1)), ε, s0[(1,¬px)/x], 0) {MIN2}
→ (©ε; (x = 2 ∧�(©x = x + 1)), 〈s0[(1,¬px)/x]〉, s1, 1) {TR1}

 (©(x = 2∧�(©x = x + 1)), 〈s0[(1,¬px)/x]〉, s1, 1) {CHOP}
→ (x = 2∧ �(©x = x + 1), 〈s0[(1,¬px)/x], s1〉, s2, 2) {TR1}

 (x = 2∧©x = x + 1 ∧©�(©x = x + 1), 〈s0[(1,¬px)/x], s1〉, s2, 2) {ALW, L11}

 (x = 2∧©(x = 3 ∧�(©x = x + 1)), 〈s0[(1,¬px)/x], s1〉, s2, 2) {SUB-TERM}

 (©(x = 3∧�(©x = x + 1)), 〈s0[(1,¬px)/x], s1〉, s2[(2,¬px)/x], 2) {MIN2}
→ (x = 3∧�(©x = x + 1), 〈s0[(1,¬px)/x], s1, s2[(2,¬px)/x]〉, s3, 3) {TR1}

The reduction process given above generates a prefix model which contains only
three states. Since the program is a non-terminable program, the reduction process will
never terminate. The reduction rules ALW, CHOP, SUB-TERM, MIN2 and TR1 can be
found in the operational semantics of MSVL [23].

5 Implementation of CCM in MSVL Interpreter

The implementation of CCM is similar to that of MSVL statements which has been
given in [6]. Basically, the implementation strategy for MSVL is based on the normal
form. That is, to execute a program is to reduce it into a logically equivalent conjunction:
Present ∧ Remains where Present consists of assignments (by = or ⇐) to program
variables, output of program variables, true and more or empty. more and empty are
used to indicate whether or not the interval is terminated. Formally,

Present =
∧m

i=1 presenti presenti ::= x = e | x ⇐ e | true | more | empty

The Remains is what is executed in the subsequent state, if any. It is in a reduced form if
either it is true or it consists of conjuncts leading with only the next operator. Formally,

Remains =
∧n

i=1 ©wi

474 N. Zhang and Z. Duan

where wi is a MSVL program. When preparing the execution of the next state, a func-
tion next w is used to remove these next operators from the conjuncts contained in
Remains and what is really executed at the next state is the formula Next

Next =
∧n

i=1 wi wi = next w(©wi)

To manage the reductions, we need to define an important flag, done, which indicates
whether or not the interval is terminated. At the beginning of the reduction in each state,
done is set to nil, and at the ending of each state, the interpreter sets its value to either
true or false, depending on if the empty or more conjunct has been encountered. If the
program fails to specify the status of the interval, the interpreter cannot set the done
which will remain equal to nil. Then an error will be detected and indicated.

The execution of an MSVL program proceeds through a number of states. The ex-
ecution at a state is composed of several passes of reductions. After the last pass, the
program is reduced to the form of Present ∧ Remains. Present is dissolved during the
reduction. Its effect is reflected in updating and displaying the values of variables, set-
ting the done flag, etc. What remains after the last pass of reduction is Remains which
will be executed at the next state if the interval over which the formula is executed does
not end. For more details of the interpreter of MSVL, refer to Chapter 9 in [6].

There are two main operators in CCM, one is parallel (‖), the other is over (ov).
Since parallel has been implemented in [6], here we introduce it briefly for the sake of
being self-contained and then we give the implementation of over.

Reduction of parallel. The interpreter handles a statement of the form φ1‖φ2 by trans-
forming the statement to the internal construct parallel(φ1, φ2, done(nil)) which is
immediately re-reduced. Here done(nil) is a flag initialized to nil. It serves as a local
done flag for the interval over which the statement φ1 is executed.

parallel(φ1, φ2, done(D1)) construct is executed by first saving the value of the old
done flag to OLD and setting it to D1. The statement φ1 is then reduced in the context
to a new statement φ′

1. Afterwards the current done flag is saved to D2, and the old done
flag value, OLD, is restored. The statement φ2 is then reduced in the context to a new
statement φ′

2. If φ′
1 or φ′

2 is not fully reduced, then the parallel statement can be written
as parallel(φ′

1, φ
′
2, done(D2)). This is returned as the result of the reduction. On the

other hand, if φ′
1 and φ′

2 are both fully reduced, then the overall parallel is transformed
to the following conditional statement and then immediately re-reduced:
if (done(OLD) = done(true)) then (φ1, done(D2))

else if (done(D2) = done(true)) then φ2
else © parallel(φ1, φ2, done(nil))

Here φ1 = next w(φ′
1) and φ2 = next w(φ′

2), and (φ1, done(D2)) means to set done
flag to D2 and then to reduce φ1 in the context. For more details, refer to [6].

Reduction of over. The interpreter handles φ ov (l′) (l′ ∈ L′) by first separating an
integer from sequence expression l′. By Lemma 1, any sequence expression l ∈ L can
be reduced to an union of several sequence expressions each headed by an integer. This
process is described in algorithm IntSep(φ, Se) where φ is an MSVL program and Se

is a sequence expression.

A Semantic Model for Many-Core Parallel Computing 475

IntSep(φ, Se)
begin

switch Se on :
case (⊥) : false;
case (0) : φ;
case (n) : over(φ, n, 0);
case (n, l) : over(φ, n, l);
case ((l1 + l2), l) : or (IntSep(φ, (l1, l)), IntSep(φ, (l2, l)));
case (l r©

1 , l) : or (IntSep(φ, (l1, l)), IntSep(φ, (l1, l
r©

1 , l)));
case (l r©) : or (IntSep(φ, (l)), IntSep(φ, (l, l r©)));
case (l1 + l2) : or (IntSep(φ, (l1)), IntSep(φ, (l2))).

end

The interpreter processes the construct over(φ, n, R) by first allocating for φ a done
flag initiated to nil and transforming it into the internal construct ov(R, φ, n, done).
The statement φ is then reduced to φ′. If it is not fully reduced, ov(R, φ′, n, done) is
returned as the result which will be continued to reduce until φ is in its reduced form.
Otherwise, φ is transformed into the form of ©φ1, then the overall ov statement is
transformed into the following statement:
if (done = true) then © (©n−1ε; (ε ov (R))) else © (©n−1ε; (φ1 ov (R)))

The execution of “ or (program1, program2)” is easy to understand. It is the task of
the interpreter to decide which program to execute.

6 Case Study: A Word Processor

A word processor generally does the following tasks: (1) Read characters and collect
them as words; (2) Collect words to fill a line; (3) Hyphenate, if necessary; (4) Collect
enough lines to make a page and print the page. To give a parallel algorithm of the word
processor, the first thing we need to do is to analyze the parallelism among the tasks.
From the above, (2) and (3) tasks must be sequential since when the collection of a line
is over, we can determine whether or not hyphenation is needed and the last word will
be split. Further, (1), (2,3) and (4) tasks can be processed in parallel. So the function
of a word processor can be divided into three sub-functions and each function can be
implemented by a process. Three processes are hosted over three cores respectively
and executed in parallel. With MSVL, these three processes can be specified as Word,
Line and Page. As a result, the word processor can be specified briefly as the following
CCM program:
WP

def
= frame(i, B, n, W,WL, over, flag, t, q, L, lp) and (Input; (Word‖Line‖Page))

Line
def
= Lflag‖Lctr

Word processor first receives the characters input by users and ended with symbol
‘#′, preserves them in an array B, then analyzes the characters and collects them into
words, collects words to fill a line, and prints a page if the page is full. Constants and
variables and procedures needed in the program are given as follows:
l : an integer constant, the width of line;
w : an integer constant, the average width of characters;
m : an integer constant, specifies the number of lines in a page;
i : an integer variable, records the total number of characters;

476 N. Zhang and Z. Duan

n : an integer variable, records the total number of collected words;
t : an integer variable, controls the subscript of L;
q : an integer variable, controls the subscript of W and WL when updating L.
over : a boolean variable, indicates whether Lflag terminates;
flag : a boolean variable, flag = 1 indicates the starting of Lctr;
lp : an integer variable, controls the begin and end line of Print;
B : a char array, preserves the input characters;
L : an integer array, the i-th line is composed of word from W [L[i−1]+1] to W [L[i]];
W : a string array, preserves the collected words;
WL : a float-point array, records the length of the words in W ;
String(A :array, x :int, y :int) : a procedure transforms an array into a string;
Length(s :string) : a procedure returning the length of a string;
Need(s:string): a procedure decides whether a word s can be separated or not.
Hyphen(s:string): a procedure returns the position of the separation of s.
Cut(s:string,h:int): a procedure divides s at the h-th character, the first part is placed
in the “first” composition of structured variable and the second part in the “second”
composition.
Print(j:int): print a page contains from the j ∗m-th line to the (j + 1) ∗m− 1-th line.

We use the procedures to assign some variables that have not been assigned values.
The definitions of components of the word processor are given as follows.

Input
def
= i ⇐ 0 and input(B[i]);

while(not (B[i] =′ #′)){i :=† i + 1 and input(B[i + 1])}

Word
def
= n ⇐ 0 and j = 0 and

while(j < i)
{ x = 0 and

while(not (B[j] =′ ′ or ′,′ or ′.′ or ′;′ or ′′′ or ′”′ or ′/′))
{A[x] = B[j] and x := x + 1 and j := j + 1};
A[x] = B[j] and W [n] ⇐ String(A, 0, x)
and WL[n] ⇐ Length(W [n])

and n :=† n + 1 and j := j + 1}
Lflag

def
= (over ⇐ 0 and next always(flag ⇐ 1); over ⇐ 1) ov ((
 l

w �) r©)

Lctr
def
= t ⇐ 0 and q ⇐ 0 and

while(not (over = 1 and flag = 0))
{ await(flag = 1);

flag =o †0 and S = 0 and

while(S < l){S := S + WL[q] and q :=† q + 1};
L[t] ⇐ q − 1 and t :=† t + 1;
if (S > l)
then if (Need(W [L[t − 1]]))

then (h = Hyphen(W [L[t − 1]]) and

W [L[t − 1]] :=† Cut(W [L[t − 1]], h).first • “ − ” and

WL[L[t − 1]] :=† h + 1 and

W [L[t − 1] + 1] :=† Cut(W [L[t − 1]], h).second • W [L[t − 1] + 1] and

WL[L[t − 1] + 1] :=† WL[L[t − 1] + 1] + WL[L[t − 1]] − h)}
Page

def
= (lp ⇐ 0 and

next always (if (t ≥ (lp + 1) ∗ m) then Print(lp) and lp =o †lp + 1)) ov ((
 lm
w �) r©)

7 Related Work

Since 1970’s, a number of parallel or concurrent programming languages with one
single processor based on interleaving or true concurrency model have been formal-

A Semantic Model for Many-Core Parallel Computing 477

ized [1,2,3,4,8,9,10,11,12,13,14,15,17,19,20,21,22]. For instance, with process algebra
community, CSP [2] and CCS [3,4] are the typical concurrent languages which can be
used to specify and verify concurrent systems. Nevertheless, they are not executable.
Temporal logics is a useful formalism for specifying and verifying correctness of con-
current programs. Many programming languages based on temporal logics have been
proposed so as to specify and reason about programs in the same logic framework. Cac-
tus [19] is based on branching-time temporal logic. XYZ/E [20], THLP [21], Chronolog
[22], Templog [1] and Temporal Prolog [15] are based on linear-time temporal logic.
Tempura [17] and Tokio [14] are based on interval temporal logic. TLA is also a spec-
ification language based on temporal logic of actions [8]. Moreover, many other con-
current languages based on Petri nets were also proposed in the past 40 years such
as Colored-PN and Timed-PN [9,10,11,12,13]. Petri nets offer a graphical notation for
stepwise processes that include choice, iteration, and concurrent execution. Petri nets
also have an exact mathematical definition of their execution semantics, with a well-
developed mathematical theory for process analysis. However, the purpose of these
languages is for specifying and verifying rather than for programming of concurrent
systems. Furthermore, most of languages given above are concerned with one single
processor and used for dealing with concurrent processes under interleaving or true
concurrency model. It is possible to work out various kinds of multiprocessor program-
ming languages based on the above mentioned ones but there is no a straightforward
way to do the job.

Multiprocessor (or multi core or many core) programming has been popular since
the turn of the century. As clock speed cannot be increased without overheating, man-
ufactures have to turn to multi-core architectures, in which multiple processors (cores)
cooperate and communicate directly through shared hardware caches. The idealized
computation model is based on concurrent threads operating a set of shared objects.
The sequence of the thread operations on the objects is called the concurrent program.
Programming languages such as Java, C#, or C++ threads are using this model. Sur-
prisingly, the shared objects are easy to specify but not easy to implement by any con-
current algorithm. The correctness of multiprocessor programs is more complex than
that of their sequential counterparts. As a result, multiprocessors or multi-core (many
core) programming is a challenge for programmers to develop correct programs. Thus,
fundamental multiprocessors programming technologies need to be explored and a dif-
ferent set of supporting tools such as model checkers and theorem provers need to be
developed.

In contrast with the above formalisms, MSVL is of distinct advantages because it is
a temporal logic programming language with three modes: modeling, simulation and
verification. In particular, CCM construct φ1 ov (l1)‖ . . . ‖φm ov (lm) is better suited
to multi-core programming. It enables us not only to specify the shared objects but also
to program and to verify the system in a convenient way. In fact, it provides us both
a semantic abstract model based on shared variables and a programming language for
multi-core programming.

478 N. Zhang and Z. Duan

8 Conclusions

We presented a semantic model CCM for many-core or many-task computation sys-
tems. To realize the model with MSVL paradigm, CCM programs are defined and
implemented in MSVL. The implementation strategy and the reduction rules are also
presented. As an example of many-core systems, a word processor is formalized and
implemented in MSVL using CCM programs. This enables us to handle many-core (or
many-task) systems in a formal and flexible way.

As you can see, CCM programs can be used to manage many-core computation
naturally. However, we need to do some further case studies for more complex many-
core computation on a many-core platform. This is a challenge to us in the near future.
Further, we need to apply CCM programs to specify and verify many-core systems. To
do so, we also need to develop a new interpreter on a many-core platform to manage
the specification and verification of many-core systems.

References

1. Abadi, M., Manna, Z.: Temporal Logic Programming. Journal of Symbolic Computation 8,
277–295 (1989)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, London (1985)
3. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg

(1980)
4. Milner, R.: Communication and Concurrency. Prentice Hall, London (1989)
5. Duan, Z., Koutny, M., Holt, C.: Projection in Temporal Logic Programming. In: Pfenning, F.

(ed.) LPAR 1994. LNCS (LNAI), vol. 822, pp. 333–334. Springer, Heidelberg (1994)
6. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2005)
7. Duan, Z., Yang, X., Koutny, M.: Frammed Temporal Logic Programming. Science of Com-

puter Programming 70, 31–61 (2008)
8. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16, 872–923

(1994)
9. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling

and Validation of Concurrent Systems. International Journal on Software Tools for Technol-
ogy Transfer 9, 213–254 (2007)

10. Jensen, K.: Coloured Petri Nets: A High Level Language for System Design and Analysis. In:
Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 342–416. Springer, Heidelberg (1991)

11. Koutney, M., Pietkiewicz-Koutney, M.: Synthesis of Petri Nets with Localities. Sci. Ann.
Comp. Sci. 19, 1–23 (2009)

12. Koutny, M.: A compositional model of time petri nets. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 303–322. Springer, Heidelberg (2000)

13. Billington, J., Christensen, S., Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The petri net markup language: Concepts, technology, and tools.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505.
Springer, Heidelberg (2003)

14. Fujita, M., Kono, S., Tanaka, H., Moto-oka, T.: Tokio: Logic Programming Language Based
on Temporal Logic and its Compilation to PROLOG. In: Shapiro, E. (ed.) ICLP 1986. LNCS,
vol. 225, pp. 695–709. Springer, Heidelberg (1986)

15. Gabbay, D.M.: Modal and Temporal Logic Programming. Temporal Logics and their Appli-
cations, pp. 197–237. Academic Press, London (1987)

A Semantic Model for Many-Core Parallel Computing 479

16. Keller, R.M.: Formal Verification of Parallel Programs. Communications of the ACM 19(7),
371–384 (1976)

17. Moszkowski, B.C.: Executing Temporal Logic Programs. Cambridge University Press, Cam-
bridge (1986)

18. Owicki, S., Gries, D.: Verifying Properties of Parallel Programs: An Axiomatic Approach.
Communications of the ACM 19(5), 279–285 (1976)

19. Rondogiannis, R., Gergatsoulis, M., Panayiotopoulos, T.: Cactus: A Branching Time Logic
Programming Languages. In: Nonnengart, A., Kruse, R., Ohlbach, H.J., Gabbay, D.M. (eds.)
FAPR 1997 and ECSQARU 1997. LNCS (LNAI), vol. 1244, pp. 511–524. Springer, Heidel-
berg (1997)

20. Tang, C.S.: Toward a Unified Logical Basis for Programming Languages. In: Proceedings of
IFIP Congress, pp. 425–429 (1983)

21. Wadge, W.W.: Tense Logic Programming: A Respectable Alternative. In: Proceedings of the
1988 International Symposium on Lucid and Intensional Programming, pp. 26–32 (1988)

22. Orgun, M.A., Wadge, W.W.: A Theory and Practice of Temporal Logic Programming. Inten-
sional Logics for Programming, pp. 23–50. Oxford University Press, Oxford (1992)

23. Yang, X., Duan, Z.: Operational Semantics of Framed Tempura. Journal of Logic and Alge-
braic Programming 78, 22–51 (2008)

On Unique Games with Negative Weights

Peng Cui1, Tian Liu2, and Ke Xu3��

1 Key Laboratory of Data Engineering and Knowledge Engineering, MOE,
School of Information Resource Management, Renmin University of China,

Beijing 100872, P.R. China
��������	��
���
��

2 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, P.R. China
�����
���
��

3 National Lab of Software Development Environment,
Beihang University, Beijing 100083, P.R. China

����������
����
���
��

Abstract. In this paper, the authors define Generalized Unique Game Problem
(GUGP), where weights of the edges are allowed to be negative. Focuses are
made on two special types of GUGP, GUGP-NWA, where the weights of all edges
are negative, and GUGP-PWT(�), where the total weight of all edges are positive
and the negative�positive ratio is at most �. The authors investigate the counterpart
of the Unique Game Conjecture on GUGP-PWT(�). The authors prove Unique
Game Conjecture holds true on GUGP-PWT(1) by reducing the parallel repe-
tition of Max 3-Cut Problem to GUGP-PWT(1), and Unique Game Conjecture
holds true on GUGP-PWT(1�2) if the 2-to-1 Conjecture holds true. The authors
pose an open problem whether Unique Game Conjecture holds true on GUGP-
PWT(�) with 0 � � � 1.

1 Introduction

The Unique Game Conjecture is put forward by Khot on STOC 2002 as a powerful tool
to prove lower bound of inapproximabilty for combinatorial optimization problems[1].
It has been shown by researchers a positive resolution of this conjecture would imply
improved even best possible hardness results for many famous problems, to name a few,
Max Cut, Vertex Cover, Multicut, Min 2CNF Deletion, making an important challenge
to prove or refute the conjecture.

Some variations of the Unique Game Conjecture have been mentioned. Rao proves
a strong parallel repetition theorem which shows Weak Unique Game Conjecture is
equivalent to the Unique Game Conjecture[2]. Khot et al. show that Unique Game Con-
jecture on Max 2LIN(q) is equivalent to the Unique Game Conjecture[3]. Khot pose

� This research was partially supported by the National 973 Program of China (Grant No.
2010CB328103) and the National Natural Science Foundation of China (Grant Nos. 60725207
and 60973033), and by the Research Project of Renmin University of China (Grant No.
2009060064).

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 480–490, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

On Unique Games 481

the d-to-1 Conjectures in his original paper for d � 2[1]. O’Donell et al. show a tight
hardness for approximating satisfiable constraint satisfaction problem on 3 Boolean
variables assuming the d-to-1 Conjecture for any fixed d[4]. Dinur et al. use the 2-
to-2 Conjecture and the � conjecture to derive the hardness results of Approximate
Coloring Problem, and prove that the (exact) 2-to-1 Conjecture implies their 2-to-2
Conjecture[5]. Guruswami et al. use the (exact) 2-to-1 Conjecture to derive the hard-
ness result of Maximum k-Colorable Subgraph Problem[6]. It is unknown whether the
Unique Game Conjecture implies any of the d-to-1 Conjectures, or vice versa.

Almost concurrently to [1], Khot defines the smooothness property of 2-Prover 1-
Round Game (2P1R), a weaker analogue of the property of Unique Game Problem[7].
He constructs instances of 2P1R that are �-smooth for arbitrarily small � to prove hard-
ness of Coloring 3-Uniform Hypergraphs. 2P1R with certain smooothness properties
have been used to prove some other hardness results[8,9,10].

In this paper, the authors relax Unique Game Problem (UGP) by defining Gener-
alized Unique Game Problem (GUGP), where weights of the edges are allowed to be
negative. Focuses are made on two special types of GUGP, GUGP-NWA, where the
weights of all edges are negative, and GUGP-PWT(�), where the total weight of all
edges are positive and the negative�positive ratio is at most �. Max GUGP-NWA can be
restated as 2P1R where each relation is a complement of a permutation. GUGP-PWT(�)
over 1 � � � 0 makes a possible phase transition from a hard (1 � �� Æ)-gap problem of
2P1R to UGP.

The authors investigate the counterpart of the Unique Game Conjecture on GUGP-
PWT(�). The authors prove Unique Game Conjecture holds true on GUGP-PWT(1) by
reducing the parallel repetition of Max 3-Cut Problem to GUGP-PWT(1), and Unique
Game Conjecture holds true on GUGP-PWT(1�2) if the 2-to-1 Conjecture holds true.
It is shown the (1 � �� Æ)-gap hardness of problems in GUGP-PWT(�) possesses the
compactness property when � � 0. The authors pose an open problem whether Unique
Game Conjecture holds true on GUGP-PWT(�) with 0 � � � 1.

Section 2 demonstrates some definitions and conjectures. The authors show the main
results for GUGP-NWA in Section 3 and for GUGP-PWT(�) in Section 4. Section 5 is
some discussions.

2 Preliminaries

In 2-Prover 1-Round Game Problem (2P1R), we are given a bipartite graph G �

(V�W; E), with each edge e having a weight we � ��. We are also given two sets of
labels, k1 and k2, which we identify with [k1] � �1� � � � � k1� and [k2] � �1� � � � � k2�. Each
edge e � (u� v) in the graph is equipped with a relation Re � [k1] 	 [k2]. The solu-
tion of the problem is a labeling f1 : V � [k1] and f2 : W � [k2] which assigns a
label to each vertex of G. An edge e � (u� v) is said to be satisfied under f1 and f2 if
(f1(u)� f2(v)) � Re, else is said to be unsatisfied. The object of the problem is to find a
labeling maximizing the total weight of the satisfied edges. The value of the instance,
Val(G), is defined as the maximum total weight of the satisfied edges divided by the
total weight of all edges.

An instance of 2P1R has the projection property if all relations which the edges are
equipped with are projections. We say an instance of 2P1R with the projection property

482 P. Cui, T. Liu, and K. Xu

is �-smooth (or has �-smoothness property) if for every u � V and two distinct labels
i� j � [k1], we have Prv[�(u�v)(i) � �(u�v)(j)]
 �, where v is a randomly chosen neighbor
of u, and �(u�v) is the projection which the edge (u� v) is equipped with.

The following proposition describes the hardness of 2P1R with the smoothness
property:

Proposition 1. ([10] Theorem 3.5) For every �� Æ � 0, there are k1 � k1(�� Æ) and
k2 � k2(�� Æ) such that given an �-smooth instance G of 2P1R with the label sets [k1]
and [k2] it is NP-hard to distinguish whether Val(G) � 1 or Val(G) � Æ.

Unique Game Problem (UGP) can be viewed as 2P1R with 0-smoothness property. In
UGP, we are given an graph G � (V� E), a weight function we � �� for e � E, and a
set of labels, [k]. Each edge e � (u� v) in the graph is equipped with a permutation 	e :
[k] � [k]. The solution of the problem is a labeling f : V � [k] which assigns a label
to each vertex of G. An edge e � (u� v) is said to be satisfied under f if 	e(f (u)) � f (v),
else is said to be unsatisfied. Note that we allow G is a graph with parallel edges, i.e.,
there exist more than one edge between two vertices.

It is possible to define two optimization problems in this situation. In Max UGP,
the value of the instance is defined as the maximum total weight of the satisfied edges
divided by the total weight of all edges. In Min UGP, the value of the instance is defined
as the minimum total weight of the unsatisfied edges divided by the total weight of all
edges.

Khot initiates much of the interest in the following conjecture by showing that many
hardness results stem from it. It basically states that it is NP-hard to distinguish whether
many or only few edges are satisfied.

Conjecture 1. ([1] Unique Game Conjecture in Max UGP Form) For every �� Æ � 0,
there is a k � k(�� Æ) such that given an instance G of Max UGP with k labels it is
NP-hard to distinguish whether Val(G) � 1 � � or Val(G) � Æ.

The conjecture can be restated in Min UGP form, and the two conjectures are
equivalent.

Conjecture 2. (Unique Game Conjecture in Min UGP Form) For every �� Æ � 0,
there is a k � k(�� Æ) such that given an instance G of Min UGP with k labels it is
NP-hard to distinguish whether Val(G) � � or Val(G) � 1 � Æ.

2-to-1 Game and 2-to-2 Game are two special types of 2P1R. In 2-to-1 Game, we are
given a bipartite graph G � (V�W; E), with each edge e having a weight we � ��.
We are also given two sets of labels, [2k] for V and [k] for W. Each edge e � (u� v)
in the graph is equipped with a 2-to-1 projection. A projection � : [2k] � [k] is said
to be a 2-to-1 projection if for each element j � [k] we have ���1(j)� � 2. The value
of the instance of 2-to-1 Game, Val(G), is defined as the minimum total weight of the
unsatisfied edges divided by the total weight of all edges.

On Unique Games 483

In 2-to-2 Game, we are given an graph G � (V� E), a weight function we � �� for
e � E, and a set of labels, [k]. Each edge e � (u� v) in the graph is equipped with a
2-to-2 relation. A relation R � [2k] 	 [2k] is said to be a 2-to-2 relation if there are two
permutations 	u� 	v : [2k] � [2k] such that (i� j) � R i� (u(i)� 	v(j)) � T where

T :�
k�

l�1

�(2l � 1� 2l � 1)� (2l � 1� 2l)� (2l� 2l� 1)� (2l� 2l)�

The value of the instance of 2-to-2 Game, Val(G), is defined as the minimum total
weight of the unsatisfied edges divided by the total weight of all edges.

The authors list the (exact) 2-to-1 Conjecture and the 2-to-2 Conjecture in their min-
imization forms. The latter is somewhat di�erent from that in [5]. It can be proved that
the 2-to-1 Conjecture implies our 2-to-2 Conjecture along the line of [5].

Conjecture 3. (2-to-1 Conjecture) For every Æ � 0, there is a k � k(Æ) such that given
an instance G of 2-to-1 Game with the label sets [2k] and [k] it is NP-hard to distinguish
whether Val(G) � 0 or Val(G) � 1 � Æ.

Conjecture 4. (2-to-2 Conjecture) For every Æ � 0, there is a k � k(Æ) such that given
an instance of 2-to-2 Game with the label set [2k] it is NP-hard to distinguish whether
Val(G) � 0 or Val(G) � 1 � Æ.

In this paper, the authors define Generalized Unique Game Problem (GUGP), where
weights of the edges are allowed to be negative. In GUGP, we are given an graph G �

(V� E) possibly having parallel edges, weight function we � � for e � E, and the set of
labels, [k]. Each edge e � (u� v) in the graph is equipped with a permutation 	e : [k] �
[k].

Note that we could be positive or negative. We assume there is no edge with zero
weight for sake of clearance. Let W�

G be the total of the positive weights of all edges,
W�

G be the total of the negative weights of all edges, and �G � W�

G � W�

G be the total
weight of all edges. We call rG � �W�

G ��W�

G the negative�positive ratio of the instance.
The solution of GUGP is a labeling f : V � [k] which assigns a label to each vertex

of G. It is also possible to define two optimization problems. In Max GUGP, the goal
of is to maximize the total weight of the satisfied edges. In Min GUGP, the goal is to
minimize the total weight of the unsatisfied edges. GUGP-NWA and GUGP-PWT are
two special types of GUGP. In GUGP-NWA, the weight of all edges are negative. In
GUGP-PWT, the total weight of all edges is positive.

In Max GUGP-NWA, we seek to minimize the total weight of the unsatisfied edges,
i.e. to maximize the absolute value of the total weight of the unsatisfied edges. The value
of Max GUGP-NWA is defined as the maximum absolute value of the total weight of
the unsatisfied edges divided by �W�

G �.
In Min GUGP-NWA, we seek to maximize the total weight of the satisfied edges,

i.e. to minimize the absolute value of the total weight of the satisfied edges. The value
of Min GUGP-NWA is defined as the minimum absolute value of the total weight of
the satisfied edges divided by �W�

G �.

484 P. Cui, T. Liu, and K. Xu

In Max GUGP-PWT, we seek to maximize the total weight of the satisfied edges.
The value of Max GUGP-PWT is defined as the maximum total weight of the satisfied
edges divided by �G. In an instance G of Max GUGP-PWT, let WG(f) be the total
weight of the satisfied edges under labeling f , let the optimal labeling be f �. The value
of the instance is Val(G) � WG(f �)��G.

In Min GUGP-PWT, we seek to minimize the total weight of the unsatisfied edges.
The value of Min GUGP-PWT is defined as the minimum total weight of the unsatisfied
edges divided by �G. In an instance G of Min GUGP-PWT, let WG(f) be the total weight
of the unsatisfied edges under labeling f , let the optimal labeling be f �. The value of
the instance is Val(G) � WG(f �)��G.

We remaind the reader that the value of Max GUGP-PWT and Min GUGP-PWT
could be negative or more than 1, although we still use the customary words ”Com-
pleteness” and ”Soundness” in our proofs of Theorem 3 and Theorem 4.

We define Max�Min GUGP-PWT(�) as the subproblem of Max�Min GUGP-PWT
where the negative�positive ratio of the instances is upper bounded by �, where � is a
constant independent from k. Since the negative�positive ratio is always less than 1, we
set the range of � to be 0
 �
 1. Note that Max�Min GUGP-PWT(0) is just Max�Min
UGP.

We give the two equivalent counterparts of the Unique Game Conjecture on Max
GUGP-PWT(�) and Min GUGP-PWT(�)) as follows:

Conjecture 5. (Unique Game Conjecture on Max GUGP-PWT(�)) For every �� Æ �

0, there is a k � k(�� Æ) such that given an instance of Max GUGP-PWT(�) with k labels
it is NP-hard to distinguish whether Val(G) � 1 � � or Val(G) � Æ.

Conjecture 6. (Unique Game Conjecture on Min GUGP-PWT(�)) For every �� Æ �

0, there is a k � k(�� Æ) such that given an instance of Min GUGP-PWT(�) with k labels
it is NP-hard to distinguish whether Val(G) � � or Val(G) � 1 � Æ.

The conjectures states it is NP-hard to distinguish the following two cases: there is
a labeling under which the absolute value of the total of the negative weight of the
unsatisfied edges is almost no less than the total of the positive weight of the unsatisfied
edges; under any labeling the absolute value of the total of the negative weight of the
satisfied edges is almost no less than the total of the positive weight of the satisfied
edges.

3 GUGP-NWA

In this section, we prove it is NP-hard to approximate Min GUGP-NWA within any
factor of poly(n), and we prove Max GUGP-NWA can be approximated with factor 2.

Theorem 1. It is NP-hard to approximate Min GUGP-NWA within any factor of poly(n).

Proof. Min GUGP-NWA can be restated as: In the situation of UGP, the goal is to find
minimum fraction of the total weight of the satisfied edges. We construct an approxi-
mation ratio preservation reduction from TSP to the above problem.

On Unique Games 485

Given an instance of TSP problem G � (V� E), where each edge of E has a weight
we � ��. Denote n :� �V �. The instance of the restated form of Min GUGP-NWA
is a graph G� � G�(V� E�), with each edge e� � E� having a weight w�(e�), and with
the labeling set [n]. For each edge e � (u� v) � E, there are three parallel edges
e�, e� and e� between u and v in E�. e� has weight M and equipped with permu-
tation 	� � �(1� 1)� (2� 2)� � � � � (n� n)�. Let M � n � Max(w), where Max(w) is the
maximum weight of all edges in G. e� has weight w(e) and equipped with permuta-
tion 	� � �(1� 2)� (2� 3)� � � � � (n� 1)�. e� has weight w(e) and equipped with permutation
	� � �(1� n)� (2� 1)� � � � � (n� n � 1)�.

Given a solution of TSP problem, a Hamiltonian cycle C, we can assign label 1 to n
to vertices of C along C in G�, and the total weight of satisfied edges in G� is exactly
the total weight of edges on C in G.

In the other direction, given a labeling f of G�, if there are two vertices assigned
with the same label, the total weight of the satisfied edges is at least M. Otherwise all
vertices are assigned with label from 1 to n respectively, let ui be the vertices assigned
label i for 1
 i
 n, and e�i � E� be the edge between ui and ui�1 mod n equipped with
permutation 	�. The total weight of the satisfied edges is equal to

�
1�i�n w�(e�i). Let C

be the Hamiltonian cycle of G which consists of vertices from u1 to un, then the total
weight of C in G is exactly the total weight of satisfied edges under f in G�. �

Theorem 2. Max GUGP-NWA can be approximated within factor 2.

Proof. Max GUGP-NWA can be restated as the following 2P1R. We are given an graph
G � (V� E), a weight function we � �

�, and the set of labels, [k]. Each edge e � (u� v)
in the graph is equipped with a relation 	̄e � [k] 	 [k] � 	e, where 	e : [k] � [k] is a
permutation. The solution of the problem is a labeling f : V � [k] which assigns a label
to each vertex of G. An edge e � (u� v) is said to be satisfied under f if (f (u)� f (v)) � 	̄e.
The value of the instance is defined as the maximum fraction of the total weight of the
satisfied edges.

We describe an approximation algorithm that finds a solution under which the frac-
tion of the total weight of the satisfied edges is at least 1�2, which is at least half of the
value of the instance.

In the beginning of the algorithm, assign arbitrary labels to all vertices. Let Ass(v� e)
be the predicate whether v � V is associated with e � E, and S at(e) be the predi-
cate whether e is satisfied by current labeling. In each iteration of the algorithm, let
U� � �v � V �

�
Ass(v�e)�S at(e) we � 1

2

�
Ass(v�e) we�, and U� � �v � V �

�
Ass(v�e)�S at(e) we �

1
2

�
Ass(v�e) we�. If U� � �, the algorithm stops. Otherwise, choose a vertex u from U�,

suppose the label assigned to u is f1, assign another label f2 to the vertex. If an edge
e � (u� v) is unsatisfied under the old labeling, it must be the case (f1� f (v)) � 	̄e, and
	e(f1) � f (v). So 	e(f2) � f (v), and (f2� f (v)) � 	̄e. Therefore, in the new labeling
vertex u satisfies the condition of U�, and we move it from U� to U�. Since after each
iteration, the number of vertices in U� is increased by 1, the algorithm stops in �V �
iterations. �

486 P. Cui, T. Liu, and K. Xu

4 GUGP-PWT(�)

4.1 Parallel Repetition of Max 3-Cut

In Max 3-Cut Problem, the instance is a graph G � (V� E), the value of the instance is
the maximum fraction of properly colored edges of G under a 3-coloring. 3-coloring
of a graph in a color set [3] is a function � : V � [3]. We say an edge is properly
colored under a 3-coloring if its endpoints receive distinct colors. A graph is 3-colorable
if there is a coloring under which all edges are proper colored. Max 3-Cut Problem
can be viewed as a 2P1R with k � 3, where each edge is equipped with a relation
	e � �(1� 2)� (2� 3)� (3� 1)� (2� 1)� (3� 2)� (1� 3)�.

Given an instance of Max 3-Cut Problem, G, we define the l-fold parallel repetition
of the instance , Gl � Gl(Vl� El), as follows. Gl � �� u1� � � � � ul � �ui � V� 1
 i
 l�, and
El � �(� u1� � � � � ul �� � v1� � � � � vl �)�(ui� vi) � E� 1
 i
 l�. The value of the instance
is the maximum fraction of properly colored edges under a l-fold 3-coloring. Define a
l-fold 3-coloring of Gl in the color set [3]l be the function �l : V � [3]l, and let m(�l)
be the number of properly colored edges under �l. We say an edge e � (� u1� � � � � ul �

� � v1� � � � � vl �) in El is properly colored under a l-fold 3-coloring if �(ui) � �(vi) for
any 1
 i
 l. The graph Gl is 3-colorable if there is a l-fold 3-coloring under which all
edges are properly colored.

Petrank [11] shows that Max 3-Cut Problem possesses a hard gap at location 1, i.e.
it is NP-hard to distinguish whether the instance is 3-colorable or whether has value
at most 1 � for some constant . The constant is presumably very small and not
determined in his paper. V. Guruswami et al. [6] make the constant clear to be 1�33� �

for any � � 0.

Lemma 1. ([11] Theorem 3.3) It is NP-hard to distinguish whether the instance of
Max 3-Cut Problem is whether 3-colorable or has value at most 1� for some constant
 � 0.

Raz’s Parallel Repetition Theorem is used to enlarge the gap of 2P1R with perfect
completeness. We introduce Lemma 2 when applying Parallel Repetition Theorem to
l-fold parallel repetition of Max 3-Cut Problem, and get Lemma 3 by a gap-reduction.

Lemma 2. ([12] Theorem 1.1) If an instance of Max 3-Cut Problem has value 1 � ,
the value of the l-fold parallel repetition of the instance is at most (1 � c1)c2l, where c1

and c2 are two positive constants.

Lemma 3. For any constant Æ � 0, there is a constant l � l(Æ) such that it is NP-hard
to distinguish whether the instance of l-fold parallel repetition of Max 3-Cut Problem
is l-fold 3-colorable or has value at most Æ.

Proof. Given an instance of Max 3-Cut Problem, G � (V� E), let l be the integer no less
than ln Æ

c2 ln(1��c1) . Let Gl be the l-fold parallel repetition of G. The proof can be achieved
by the following two steps and Lemma 2.

Completeness. Suppose G is 3-colorable. Define a l-fold 3-coloring of Gl as �l(�
v1� � � � � vl �) �� ��(v1)� � � � � ��(vl) �, where �� is the optimal 3-coloring of G. Since
all edges in G are properly colored under ��, all edges in Gl are properly colored under
�l. Therefore, Gl is l-fold 3-colorable.

On Unique Games 487

Soundness. Suppose G has value at most 1� . By Lemma 2, the value of Gl is at most
(1 � c1)c2l, which is at most Æ by the definition of l. �

4.2 Unique Game Conjecture on GUGP-PWT(�)

Let us show Conjecture 6 holds true at the boundary of the range of �.

Theorem 3. Conjecture 6 holds true for � � 1.

Proof. Given �� Æ � 0, let Gl � (Vl� El) be an instance of the parallel repetition of the
Max 3-Cut Problem. The instance of Min GUGP-PWT(1) is a graph G� � (Vl� E�), with
labeling set [3l].

To accomplish the reduction, we design a gadget as replacing each edge e � (u� v) in
El with 3l parallel edges ei1 � � � � � eil for 1
 i j
 3, 1
 j
 l between u and v in E�. Let
E� be the set of edges such that at least one index is 1, and E� be the set of edges such
that all indexes are 2 or 3. Note that �E�� � 3l � 2l and E� � 2l. Edges in E� has weight
wx, and edges in E� has weight wy. ei1���� �il for 1
 i j
 3, 1
 j
 l is equipped with
permutation 	i1���� �il � �(� f1� � � � � fl �� � f1 � i1 � 1 mod 3� � � � � fl � il � 1 mod 3 �)� f j �

[3]� 1
 j
 l�.
Note that there is always exactly one satisfied edge in E� between u and v under any

labeling of G�. Suppose two vertices u and v are assigned labels � fu�1� � � � � fu�l � and
� fv�1� � � � � fv�l � respectively. We require: (i)when fu� j � fv� j for at least one 1
 j
 l,
the total weight of the unsatisfied edges between u and v in E� is 1; (ii)when fu� j � fv� j
for any 1
 j
 l, the total weight of the unsatisfied edges between u and v in E� is 0.

Let us determine the value of wx and wy. By the linear equations,

�������
(3l � 2l � 1)wx � 2lwy � 1

(3l � 2l)wx � (2l � 1)wy � 0
�

we have

���������������

wx � �
2l � 1
3l � 1

wy �
3l � 2l

3l � 1

Note that wx � 0 and wy � 0. W�

G�
�

2l(3l
�2l)

3l�1 �El�, W�

G�
� �

(2l
�1)(3l

�2l)
3l�1 �El�, �G� �

3l
�2l

3l�1 �E
l�, and rG� � �W�

G� ��W�

G� � 1 � 1
2l � 1 � O(Æc), where c is a positive constant.

rG� � 1 when Æ � 0.
The proof is completed by the following two steps and Lemma 3.

Completeness. Suppose Gl is l-fold 3-colorable. Let �l be the optimal l-fold 3-coloring,
then m(�l) � �El�. Let f � �l. For any edge e � (u� v) in El, fu� j � fv� j for any 1
 j
 l,
since �l is a l-fold 3-coloring. So the total weight of the unsatisfied edges between u and
v is 0. Therefore, the total weight of the unsatisfied edges in E� is 0, i.e. Val(G�) � 0 � �.

488 P. Cui, T. Liu, and K. Xu

Soundness. Suppose the value of Gl is at most Æ. For any labeling f of G�, �l � f is
a l-fold 3-coloring of Gl, and m(�l) � Æ. So at least 1 � Æ fraction of edges in El are
not properly l-fold 3-colored. The two vertices of these edges share the same color in at
least one element, in another word, the labels of the two vertices under f share the same
value in at least one element. Since the total weight of the unsatisfied edges between
such two vertices in E� is 1, the total weight of the unsatisfied edges in E� under f is at
least (1 � Æ)�El�. Therefore, Val(G�) � (1 � Æ)�El���G� � 1 � Æ. �

We prove that Conjecture 6 holds true for � � 1�2 if Conjecture 4 holds true. Since
Conjecture 3 implies Conjecture 4, Conjecture 6 holds true for � � 1�2 if Conjecture 3
holds true.

For any two positive integers m and n, let r be the reminder when dividing m by n,
then 0
 r
 n � 1. Let m mod� n � r� i f r � 0; n� i f r � 0.

Theorem 4. Conjecture 6 holds true for � � 1�2 if Conjecture 4 holds true.

Proof. Given �� Æ � 0, let G � (V� E) be an instance of 2-to-2 Game Problem, with
labeling set [2k]. We construct an instance of Min GUGP-PWT(1�2) as a graph G� �

(V� E�), with labeling set [2k]. For each edge e � (u� v) in E with the 2-to-2 relation R,
let the two permutations w.r.t. R are 	u� 	v, we design a gadget as replacing e with 2k
parallel edges e1� � � � � e2k between u and v in E�.

The edge e1 has weight wx and is equipped with the permutation

	1� �(�1
u (1)� 	�1

v (1))� (�1
u (2)� 	�1

v (2))� � � � � (�1
u (2k�1)� 	�1

v (2k�1))� (�1
u (2k)� 	�1

v (2k))�

The edge e2 has weight wx and is equipped with the permutation

	2� �(
�1
u (1)� 	�1

v (2))� (�1
u (2)� 	�1

v (1))� � � � � (�1
u (2k�1)� 	�1

v (2k))� (�1
u (2k)� 	�1

v (2k�1))�

The edge e2 j�1 for 2
 j
 k has weight wy and is equipped with the permutation

�2 j�1 �

k�

i�1

�(��1
u (2i � 1)� ��1

v (2i � 1 � 2 j � 2 mod� 2k))� (��1
u (2i)� ��1

v (2i � 2 j � 2 mod� 2k))��

The edge e2 j for 2
 j
 k has weight wy and is equipped with the permutation

�2 j �

k�

i�1

�(��1
u (2i � 1)� ��1

v (2i � 1 � 2 j � 1 mod� 2k))� (��1
u (2i)� ��1

v (2i � 2 j � 3 mod� 2k))��

Note that there is always exactly one satisfied edge in E� between u and v under any
labeling of G�. Suppose two vertices u and v are assigned labels fu and fv respectively.
We require: (i)when the edge e � (u� v) is satisfied under f in G, i.e. one of the two
edges e1 and e2 is is satisfied, the total weight of the unsatisfied edges between u and v
in E� is 1; (ii)when when the edge e � (u� v) is unsatisfied under f in G, i.e. one of the
edges e2 j�1 and e2 j for 2
 j
 k is satisfied, the total weight of the unsatisfied edges
between u and v in E� is 0.

On Unique Games 489

Let us determine the value of wx and wy. By the linear equations

�����
wx � (2k � 2)wy � 0

2wx � (2k � 3)wy � 1
�

we have

�������������

wx �
2k � 2
2k � 1

wy � �
1

2k � 1

Note that wx � 0, wy � 0. W�

G�
�

4(k�1)
2k�1 , W�

G�
�

�2(k�1)
2k�1 , �G� � 2k�2

2k�1 �E� and rG� � 1�2.
The proof is completed by the following two steps.

Completeness. Suppose Val(G) � 0. Let f be the optimal labeling of G, then f is also
a labeling of G�. Since any edge e � (u� v) in E is satisfied under f , the total weight
of the unsatisfied edges between u and v in E� is 0. Therefore, the total weight of the
unsatisfied edges in E� is 0, i.e. Val(G�) � 0 � �.

Soundness. Suppose Val(G) � 1�Æ. Then for any labeling f of G�, f is a labeling of G,
at least 1 � Æ fraction of the edges in E are unsatisfied. By the definition of E�, the total
weight of the unsatisfied edges in E� between the two endpoints of such edges is 1. So
the total weight of the unsatisfied edges in E� under f is at least (1 � Æ)�E�. Therefore,
Val(G�) � (1 � Æ)�E���G� � 1 � Æ. �

In the end of this section, we establish a connection from Conjecture 6 to the Unique
Game Conjecture by the following theorem.

Theorem 5. If Conjecture 6 holds true for any � � 0, Conjecture 2 holds true.

Proof. Suppose Conjecture 2 holds false, then for some �� Æ � 0, for any label size k,
we can decide in polynomial time whether an instance of Min UGP with k labels has a
value more than 1 � Æ or less than �. We claim Conjecture 6 for � � min(�� Æ)�2 holds
false.

Given an instance G � (V� E) of Min GUGP-PWT(�), we construct an instance
G� � (V� E�) of Min UGP as follows. Let E� be the set of the edges in E with posi-
tive weights. Let f � be the optimal labeling of G, and f � be the optimal labeling of G�.
Then Val(G�) � WG� (f �)�W�

G and Val(G) � WG(f �)��G.
Since WG� (f �) � WG(f �) � WG(f �) and �G�W�

G � 1 � �, Val(G�) � (1 � �)Val(G).
By the definition of E�, WG(f �) � WG� (f �) � �W�

G. We have Val(G)�G � WG(f �) �
WG� (f �)��W�

G � WG� (f �)��W�

G � (Val(G�)��)W�

G. Therefore, Val(G�)
 Val(G)��.
If Val(G) � ��2, then Val(G�) � �. If Val(G) � 1 � Æ�2, then Val(G�) � 1 � Æ. Thus

we can decide in polynomial time whether the instance of Min GUGP-PWT(�) has a
value more than 1 � Æ�2 or less than ��2. �

5 Discussions

The topic in this paper is similar to Khot’s smoothness property in that both discuss on
an analogue of UGP with proven (1 � �� Æ)-gap hardness. It leaves as an open problem

490 P. Cui, T. Liu, and K. Xu

whether Unique Game Conjecture holds true on GUGP-PWT(�) for 0 � � � 1. We
make a reasonable and rather bold conjecture: if Conjecture 6 holds true for some 0 �

� � 1, it holds true for any 0 � � � 1, which would lead to the corollary that the
d-to-1 Conjecture implies the Unique Game Conjecture, by Theorem 4 and Theorem 5.
To confirm our conjecture, it would be very interesting to seek techniques to derive the
(1 � �� Æ)-gap hardness result on smaller � by the hardness result on larger �.

References

1. Khot, S.: On the power of unique 2-prover 1-round games. In: 34th Annual ACM Symposium
on Theory of Computing, pp. 767–775 (2002)

2. Rao, A.: Parallel repitition in projection games and a concentration bound. In: 38th Annual
ACM Symposium on Theory of Computing, pp. 1–10 (2008)

3. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for Max-
Cut and other 2-variable CSPs? In: 45th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 146–154 (2004)

4. O’Donnell, R., Wu, Y.: Conditional Hardness for satisfiabl CSPs. In: 39th Annual ACM
Symposium on Theory of Computing, pp. 493–502 (2009)

5. Dinur, I., Mossel, E., Regev, O.: Conditional hardness for approximate coloring. In: 38th
Annual ACM Symposium on Theory of Computing, pp. 344–353 (2006)

6. Guruswami, V., Sinop, A.K.: Improved Inapproximability Results for Maximum k-Colorable
Subgraph. In: 12th International Workshop and 13th International Workshop on Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp.
163–176 (2009)

7. Khot, S.: Hardness results for coloring 3-colorable 3-uniform hypergraphs. In: 43th Annual
IEEE Symposium on Foundations of Computer Science, pp. 23–32 (2002)

8. Holmerin, J., Khot, S.: A new PCP outer verifier with applications to homogeneous linear
equations and max-bisction. In: 38th Annual ACM Symposium on Theory of Computing,
pp. 11–20 (2006)

9. Khot, S., Saket, R.: On hardness of learning intersections of two halfspaces. In: 40th Annual
ACM Symposium on Theory of Computing, pp. 345–354 (2008)

10. Guruswami, V., Raghavendra, P., Saket, R., Wu, Y.: Bypassing UGC from some optimal
geometric inapproximability results. Electronic Colloquium on Computational Complexity,
TR10-177 (2010)

11. Petrank, E.: The hardness of approximation: gap location. Computational Complexity 4,
133–157 (1994)

12. Raz, R.: A parallel repitition theorem. SIAM Journal on Computing 27, 763–803 (1998)

A Note on Treewidth in Random Graphs�

Chaoyi Wang1, Tian Liu1, Peng Cui2, and Ke Xu3

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
{wchaoyi,lt}@pku.edu.cn

2 Key Laboratory of Data Engineering and Knowledge Engineering, MOE,
School of Information Resource Management,

Renmin University of China, Beijing 100872, China
cuipeng@ruc.edu.cn

3 National Laboratory of Software Development Environment,
Beihang University, Beijing 100191, China

kexu@nlsde.buaa.edu.cn

Abstract. We show that in Erdős-Rényi random graph G(n, p) with
high probability, when p = c/n and c is a constant, the treewidth is
upper bounded by tn for some constant t < 1 which may depend on c,
but when p � 1/n, the treewidth is lower bounded by n − o(n). The
upper bound refutes a conjecture that treewidth in G(n, p = c/n) is
as large as n − o(n), and the lower bound provides further theoretical
evidence on hardness of some random constraint satisfaction problems
called Model RB and Model RD.

1 Introduction

Treewidth is an important notion with many applications in both combinatoric
researches and algorithmic researches, see e.g. [2,16]. It measures how different a
graph is from a tree. The smaller the treewidth is, the more similar the graph is to
a tree. Many NP-hard problems become tractable when restricted to trees or to
graphs with a bounded treewidth. For example, constraint satisfaction problems
(CSPs) are solvable in O(||I||tw) time, where ||I|| is the input size and tw is the
treewidth of the constraint graph [5]. To investigate the tractability of random
CSPs and Bayesian networks, Gao initiated the study of treewidth in various
kinds of random (hyper)graphs from the considerations of random CSPs [8,9,10].
The most classical random graphs G(n, p) are defined on n vertices by selecting
each pair of vertices independently at random with probability p as an edge [12].
They are also called the Erdős-Rényi random graphs and have been extensively
investigated, see e.g. [1,14,19]. In this paper, we show upper and lower bounds
on treewidth in G(n, p) for p = O(1/n) and p ! 1/n respectively, also from a
consideration of providing theoretical evidence on hardness of random CSPs.
� To whom the correspondence should be addressed: Tian Liu (lt@pku.edu.cn) and

Ke Xu (kexu@nlsde.buaa.edu.cn).

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 491–499, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

492 C. Wang et al.

Much earlier than Gao’s works and even earlier than Robertson and Seymour
introduced the notion of treewidth in 1984 [20], in the very beginning days of ran-
dom graphs in 1959-1960, Erdős and Rényi had showed that each connected com-
ponent in G(n, p) has at most one cycle when p = c/n and c < 1 [6,7], thus the
treewidth is no more than two with high probability in that case. In a monograph
on treewidth published in 1994, Kloks showed that treewidth is Θ(n) in G(n, p)
with high probability, when p = c/n and c > 2.36 [16]. To close the gap between
the case of bounded treewidth when c < 1 and the case of linear treewidth when
c > 2.36 in G(n, p), in a serie of works during the years 2003-2009, by the same
method based on the notion of balanced partition as Kloks used, Gao reduced the
linear treewidth threshold from c > 2.36 [16,8] down to c > 2.162 [9] and c > 2.146
[10], and conjectured that it is less than 2. Finally at 2010, the gap was closed com-
pletely when Lee et al. showed that the linear treewidth threshold is indeed c > 1,
by a different method based on rankwidth [17].

Thanks to the above works, now it is clear that in G(n, p = c/n) with high
probability, treewidth is no more than two when c < 1 and is about tn when
c > 1. However, an exact relationship between the constants t and c is unknown.
In particular, it is not known when the treewidth is as large as n − o(n). Since
t is increasing with c and arbitrarily close to 1 for large enough c, one might
conjecture that for some large constant c, the treewidth is as large as n − o(n).
In this short note, we show that this conjecture is false. Specifically, we show that
in G(n, p) with high probability, treewidth is less than tn for some constant t < 1
which may depend on c, when p = c/n and c is a positive constant. The upper
bound is obtained by an explicit construction of a specific tree decomposition.
We also show that with high probability treewidth in G(n, p) is larger than
n − o(n) when p ! 1/n, along with some upper and lower bounds of t in terms
of c. The lower bound is obtained by the same method as Kloks and Gao used
in their works.

We can apply the above lower bound to provide further theoretical evidence
on hardness of some random CSPs, called Model RB and Model RD. Since
the discovering of satisfiability phase transition in random CSPs and the com-
plexity peak of random instances around the satisfiability threshold [4], random
instances are used as benchmarks in algorithm competitions and researches, see
e.g. [13]. A whole family of benchmarks have been constructed [22,24] based
on two random CSP models called Model RB and Model RD which have exact
satisfiability thresholds [21]. These benchmarks cover many NP-hard optimiza-
tion problems, such as Maximum Clique, Maximum Independent Set, Minimum
Vertex Cover, Vertex Coloring, Set Covering, Set Packing, 0-1 Integer Program-
ming, MAX-SAT, etc.. In many international algorithm competitions, such as
the annual CSP solver competitions and the annual Pseudo-Boolean (0-1 Integer
Programming) solver competitions since the year 2005, the annual MAX-SAT
solver competitions since the year 2008, and the annual SAT solver competitions
at the years 2004 and 2009, etc., and in many research papers on algorithms,
e.g. [3] and references in [22], these benchmarks have been successfully applied.

A Note on Treewidth in Random Graphs 493

However, a rigorous link between phase transition and the hardness of ran-
dom instance around the satisfiability threshold is still unknown. In the past,
the main theoretical evidence on hardness of Model RB and Model RD was
based on high resolution complexity [23]. Recently, some results on large struc-
tural width provided further theoretical evidences on hardness of Model RB and
Model RD, such as large loop cueset [15] and large hinge width [18]. In most
structural decomposition methods such as the tree decomposition based CSP
algorithm, the first step is finding a decomposition of the given CSP instance,
the second step is performing a join operation on constraint relations contained
in each node of the decomposition, to formulate a new solution-equivalent tree-
like CSP instance, then the third step is solving this tree-like instance [5]. Each
decomposition of a CSP instance of large (i.e. unbounded) width contains a
node with a large number of variables. Performing a join on all the variables in
such a node is typically of high computational cost. Therefore, a large structural
width around the satisfiability threshold can provide some theoretical evidences
for these random instances to be hard for that kind of structural decomposition
based algorithm. In this paper, we show that Model RB and Model RD have
the largest possible treewidth n− o(n) around their satisfiability threshold, thus
provide further theoretical evidence on hardness of Model RB and Model RD
with respect to the tree decomposition based algorithm.

This paper is organized as follows. In Section 2, we give one of the many
equivalent definitions of treewidth, a definition of Model RB and Model RD and
their random constraint graphs, and necessary notations and known results in
probability theory. In Section 3, we show an upper bound tn with constant t < 1
on treewidth in G(n, p) when p = c/n and c > 1 is a constant. In Section 4, we
show a lower bound n− o(n) on treewidth in G(n, p) when p ! 1/n. In Section
5, we apply the lower bound result to show theoretical evidence on hardness of
Model RB and Model RD. Finally, we discuss some open problems.

2 Preliminaries

Definition 1. [16,8] A tree decomposition of a graph G = (V, E) is a pair
(T, χ), where T = (N, F) is a tree, and χ is a labeling function associating to
each vertex p ∈ N a set of vertices χ(p) ⊆ V , such that the following conditions
are satisfied:

1.
⋃

p∈N χ(p) = V ;
2. for all edges (u, v) ∈ E, there exists a node p ∈ N such that both u and v

are in χ(p);
3. for each vertex v ∈ V , the set of nodes {p ∈ N |v ∈ χ(p)} induces a subtree

of T .

The width of the tree decomposition is maxp∈N |χ(p)| − 1. The treewidth of
G is the minimum width over all its tree decompositions. We will denote the
treewidth of a graph G as tw(G).

494 C. Wang et al.

Definition 2. [16,8]. Let G be a graph with |V (G)| = n vertices. A partition
(S, A, B) of V (G) is called a balanced w-partition if the following three condi-
tions are satisfied:

1. |S| = w + 1;
2. (n − w − 1)/3 ≤ |A|, |B| ≤ 2(n − w − 1)/3 ;
3. there are no edges connecting vertices of A and vertices of B.

It is well-known that if a graph has a tree width no greater than w, then it must
has a balanced w-partition.

Definition 3. [21] Model RB and Model RD are defined as follows.

– Given n variables each with domain {1, 2, ..., d}, where d = nα and α > 0 is
a constant;

– Select with repetition m = rn ln n random constraints, for each constraint
select without repetition k of n variables, where k ≥ 2 is an integer constant;

– Select uniformly at random without repetition (1 − p)dk compatible assign-
ments for each constraint (for Model RB), or select each assignment for the
k variables as compatible with probability 1−p independently (for Model RD),
where 0 < p < 1 is a constant.

Let GRB(n, r) denote the probability space of the random constraint graphs of
Model RB and Model RD for k = 2, where on n vertices we select with repetition
rn ln n edges from all pairs of vertices independently at random.

It was known that in Model RB and Model RD there exist satisfiability thresh-
olds rcr = − α

ln(1−p) [21].

Definition 4. For events Qn which may depend on n, we say that Qn holds
with high probability, if limn→∞ Pr(Qn) = 1, often written as Pr(Qn) = o(1).
Here, f(n) = o(g(n)) and f(n) " g(n) both mean that limn→∞

f(n)
g(n) = 0.

Let E(X) be the expectation of a random variable X . We will use the following
Chernoff Bound [14,19].

Lemma 1. (Chernoff Bound) Let X =
∑n

i=1 Xi, where Xi are independent 0-1

variables. Let μ = E(X). Then for any δ > 0, Pr (X ≥ (1 + δ)μH) ≤ e−
δ2
3 μ.

3 The Upper Bound

In this section, we show that when p = c/n and c > 1 is a constant, the treewidth
in G(n, p) is less than tn with high probability for some constant t < 1 which
depends on c.

Theorem 1. Let G ∈ G(n, p = c/n), where c > 1 is a constant. Then for any
δ > 0 and a = (1 + δ)c, with high probability tw(G) ≤ a+1

a+2n.

A Note on Treewidth in Random Graphs 495

Proof. We will show that, with high probability we can construct a tree decom-
position with the deserved property.

Consider a partition (A, B) of V (G), with |A| = x = tn and |B| = n − tn,
where the constant t ≤ 1

2 will be specified later.
Let random variable X be the number of edges connecting vertices of A and

vertices of B. The expectation of X is

E(X) = x(n − x)p = t(1 − t)cn.

By the Chernoff bound, for any δ > 0,

Pr (X ≥ (1 + δ)E(X)) ≤ e−
δ2
3 E(X) = e−

δ2t(1−t)c
3 n = o(1).

Thus with high probability,

X < (1 + δ)E(X) = (1 + δ)t(1 − t)cn.

Let S be the set of vertices in B which are connected with vertices in A. Then
(S, A, B \ S) is a partition of V (G) and with high probability

|S| ≤ X < (1 + δ)t(1 − t)cn.

Without loss of generality, we may assume that

|S| = (1 + δ)t(1 − t)cn,

since if |S| < (1 + δ)t(1 − t)cn, then we can always move some vertices from A
or B to S, such that the resulting (S, A, B \ S) is still a partition of V (G) and
no edge connects the vertices in A and the vertices in B \ S.

Let |A| = |B \ S|, that is

tn = (n − tn) − (1 + δ)t(1 − t)cn.

Let a = (1 + δ)c, then

t =
a + 2 −√

a2 + 4
2a

=
2

a + 2 +
√

a2 + 4
>

1
a + 2

.

Now A ∪ S and B is a tree decomposition of G with two nodes. Thus

tw(G) ≤ max{|A ∪ S|, |B|} − 1 = (1 − t)n − 1 <

(
1 − 1

a + 2

)
n =

a + 1
a + 2

n.

�

4 The Lower Bound

In this section, we show that in G(n, p) with high probability, the treewidth is
larger than n−o(n) when p ! 1/n. Along the way, we get some relation between
t and c.

496 C. Wang et al.

Theorem 2. Let G ∈ G(n, p = c/n), where 1 < c " n, c is either constant or
depends on n. For any 0 < t < 1, t may change with n, for any δ > 0, if

c >
9(ln 2 + 1 − ln t + δ)

2t
,

then tw(G) ≥ (1 − t)n with high probability.

Proof. By a similar method as in [16,8].
Let P be the set of all partitions of V (G) that satisfied the first two conditions

in Definition 2. The value of w will be specified later. For any single partition
P = (S, A, B) ∈ P , define a random variable IP as follows.

Ip =
{

1, P is a balanced w-partition,
0, otherwise.

Then IP = 1 if and only if there are no edges between A and B.
Let

|S| = w + 1 = (1 − t)n,

|A| = x,

|B| = tn − x.

Since there are |A| · |B| = x(tn − x) possible edges between A and B, the
expectation of IP is

E(IP) = Pr(IP = 1) = (1 − p)x(tn−x).

Since 1 − p < e−p = e−
c
n and that for tn

3 ≤ x ≤ 2tn
3 , x(tn − x) is minimized at

x = tn
3 or x = 2tn

3 , we have

E(IP) ≤ e−px(tn−x) ≤ e−
2ct2n

9 .

Let I =
∑

P∈P IP . Then I = 0 if and only if there is no balanced w-partition
in G, and only if G has tree width greater than w. By the linearity of expectation
and the union bound, the expectation of I is

E(I) =
∑

P∈P E(IP) ≤ (n
tn

)∑
tn
3 ≤x≤ 2tn

3

(
tn
x

)
e−

2ct2n
9

≤ (
en
tn

)tn 2tne−
2ct2n

9 = etn(− 2ct
9 +ln 2+1−ln t).

For any δ > 0, if c > 9(ln 2+1−ln t+δ)
2t , then

Pr(I > 0) ≤ E(I) ≤ e−δtn = o(1).

That is, with high probability I = 0, or there is no balanced (1 − t)n-partition
in G. Thus with high probability tw(G) ≥ (1 − t)n.
�

A Note on Treewidth in Random Graphs 497

Corollary 1. Let G ∈ G(n, p = c(n)/n). If c(n) is unbounded, then tw(G) =
n − o(n) with high probability.

Proof. Let f(n) be unbounded, f(n) = o(n) and 5f(n) ≤ c(n). If c(n) is un-
bounded, then such an f(n) do exist. Let t(n) = ln f(n)

f(n) . Then for any δ > 0, for
large n,

9(ln 2 + 1 + ln f(n) − ln ln f(n) + δ)f(n)
2 ln f(n)

≤ 5f(n) ≤ c.

By Theorem 2, with high probability

tw(G) ≥
(

1 − ln f(n)
f(n)

)
n = n − o(n).

The proof is finished.
�

5 Application

In this section, we apply the lower bound in last section to provide further
theoretical evidence on hardness of some random CSPs called Model RB and
Model RD. Recall that Model RB and Model RD are defined as follows [21].

– Given n variables each with domain {1, 2, ..., d}, where d = nα and α > 0 is
a constant;

– Select with repetition m = rn ln n random constraints, for each constraint
select without repetition k of n variables, where k ≥ 2 is an integer constant;

– Select uniformly at random without repetition (1 − p)dk compatible assign-
ments for each constraint (for Model RB), or select each assignment for the
k variables as compatible with probability 1 − p independently (for Model
RD), where 0 < p < 1 is a constant.

For simplicity, we only consider Model RB and Model RD for k = 2. Clearly,
they have the same kinds of random constraint graphs. Let GRB(n, r) denote
the probability space of these random graphs, where on n vertices we select with
repetition rn ln n edges from all pairs of vertices independently at random.

As in many other random graph models, GRB(n, r) and G(n, p) are in fact
asymptotically equivalent [15,18].

Lemma 2. ([15,18]) Let Qn be an arbitrary graph property, r > 0 and p =
(rn ln n− r2 ln2 n)/

(
n
2

)
. Then PrGRB(n,r) (Qn) ≤ e

√
rn ln n PrG(n,p) (Qn). More-

over, if Qn is monotone, then PrGRB(n,r) (Qn) ≤ 2 PrG(n,p) (Qn).

Note that in above lemma, we can also set p = (rn ln n)/
(
n
2

)
, which will make

no difference asymptotically.

Corollary 2. The treewidth in GRB(n, r) is n − o(n) for any constant r > 0
with high probability.

498 C. Wang et al.

Proof. Treewidth is a monotone increasing graph property. Thus by lemma 2
and Corollary 1, the corollary is proved.
�
By Corollary 2, the random instances of Model RB and Model RD around the
satisfiability thresholds rcr = − α

ln(1−p) [21] have asymptotically the largest pos-
sible treewidth n−o(n). In the standard tree decomposition decomposition based
CSP solvers, after finding a tree decomposition of the given CSP instance, the
join operation is performed on constraint relations contained in each node of the
decomposition, to formulate a new solution-equivalent tree-like CSP instance [5].
Performing a join on n− o(n) variables in the largest node of the decomposition
is typically of high computational cost. Therefore, a large treewidth around the
satisfiability threshold can provide some theoretical evidence for these random
instances to be hard for that kind of tree decomposition based algorithm. Thus
the above results provide further theoretical evidence on the hardness of Model
RB and Model RD, besides the known theoretical hardness evidences based on
their exponential resolution complexity [23], large loop cueset [15] and large
hinge width [18].

6 Open Problems

In G(n, p) when p = c/n and c > 1 is a constant, we know that the treewidth is
between t1n and t2n for some constants 0 < t1 < t2 < 1 which may depend on
c. The exact relationships between t1, t2 and c are unknown. Especially, tighter
lower bound on t1(c) and tighter upper bound on t2(c) are unknown.

Acknowledgments. We thank Professor Kaile Su for his encouragement and
support. We also thank the unknown reviewers whose comments are very helpful
to improve our presentations. This research was partially supported by the Na-
tional 973 Program of China (Grant No. 2010CB328103), the National Natural
Science Foundation of China (Grant Nos. 60725207 and 60973033), the Project of
Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences (Grant
No. KJCX2.YW.W10), and was partially done while Tian Liu and Ke Xu were
visiting KITPC at the Chinese Academy of Science.

References

1. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge
(2001)

2. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
Technical Report UU-CS-2006-041, Institute of Information and Computing Sci-
ences, Utrecht University (2006)

3. Cai, S., Su, K., Chen, Q.: Ewls: A new local search for minimum vertex cover. In:
Proc of AAAI, pp. 45–50 (2010)

4. Cheeseman, P., Kanefsky, R., Taylor, W.: Where the really hard problems are. In:
Proc. IJCAI, pp. 163–169 (1991)

A Note on Treewidth in Random Graphs 499

5. Dechter, R.: Tractable structures for constraint satisfaction problems. Handbook
of constraint programming, 209–244 (2006)

6. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959)

7. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci. 5, 17–61 (1960)

8. Gao, Y.: Phase transition of tractability in constraint satisfaction and Bayesian
network inference. In: Proc. UAI, pp. 265–271 (2003)

9. Gao, Y.: On the threshold of having a linear treewidth in random graphs. In: Chen,
D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 226–234. Springer,
Heidelberg (2006)

10. Gao, Y.: Treewidth of Erdös-Rényi random graphs, random intersection graphs,
and scale-free random graphs. CoRR abs/0907.5481 (2009)

11. Gao, Y., Culberson, J.: Consistency and random constraint satisfaction problems.
J. Artif. Intell. Res. 28, 517–557 (2007)

12. Gilbert, E.N.: Random graphs. Annals of Mathematical Statistics 30, 1141–1144
(1959)

13. Gomes, C., Walsh, T.: Randomness and structures. Handbook of constraint pro-
gramming, pp. 639–664 (2006)

14. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. John Wiley and Sons, Chich-
ester (2000)

15. Jiang, W., Liu, T., Ren, T., Xu, K.: Two hardness results on feedback vertex
sets. In: Zhu, B. (ed.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 233–243. Springer,
Heidelberg (2011)

16. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
17. Lee, C., Lee, J., Oum, S.: Rank-width of random graphs. CoRR abs/1001.0461

(2010)
18. Liu, T., Lin, X., Wang, C., Su, K., Xu, K.: Large Hinge Width on Sparse Random

Hypergraphs. In: Proc. of IJCAI (2011)
19. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)
20. Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. J. Combin.

Theory Ser. B 36(1), 49–64 (1984)
21. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.

J. Artif. Intell. Res. 12, 93–103 (2000)
22. Xu, K.: BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph

Problems,
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

23. Xu, K., Li, W.: Many hard examples in exact phase transitions. Theor. Comput.
Sci. 355, 291–302 (2006)

24. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random Constraint Satisfaction:
Easy Generation of Hard (Satisfiable) Instances. Artif. Intell. 171, 514–534 (2007)

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

On the Two-Stage Stochastic Graph Partitioning
Problem

Neng Fan1, Qipeng P. Zheng2, and Panos M. Pardalos1

1 Center for Applied Optimization, Department of Industrial and Systems Engineering,
University of Florida, Gainesville, FL, USA

{andynfan,pardalos}@ufl.edu
2 Department of Industrial and Management Systems Engineering,

West Virginia University, Morgantown, WV, USA
qipeng.zheng@mail.wvu.edu

Abstract. In this paper we introduce the two-stage stochastic graph partitioning
problem and present the stochastic mixed integer programming formulation for
this problem with finite explicit scenarios. For solving this problem, we present an
equivalent integer linear programming formulation where some binary variables
are relaxed to continuous ones. Additionally, for some specific graphs, we present
a more simplified linear programming formulation. All formulations are tested
on randomly generated graphs with different densities and different numbers of
scenarios.

Keywords: Graph Partitioning, Stochastic Optimization, Integer Programming.

1 Introduction

The graph partitioning problem consists of partitioning the vertex set of a graph into
several disjoint subsets so that the sum of weights of the edges between the disjoint
subsets is minimized and it is an NP-complete combinatorial optimization problem.

Let G = (V,E) be an undirected graph with a set of vertices V = {v1,v2, · · · ,vN} and
a set of edges E = {(vi,v j) : edge between vertices vi and v j,1 ≤ i, j ≤ N}, where N is
the number of vertices. The weights of the edges are given by a matrix W = (wi j)N×N ,
where wi j(> 0) denotes the weight of edge (vi,v j) and wi j = 0 if no edge (vi,v j) exists
between vertices vi and v j. This matrix is symmetric for undirected graphs G. Thus, the
edge set can be expressed by E = {(vi,v j) : wi j > 0,1 ≤ i < j ≤ N}. In the following
we also use (i, j) ∈ E to denote that (vi,v j) ∈ E .

Let K be the number of disjoint subsets that we want to partition V into, and let
n1, · · · ,nK be the cardinalities of subsets of V and these numbers are assumed to be
given before partitioning. Usually, K is chosen from {2, · · · ,N −1}. As shown in [3,4],
the size nk for subset k can be loosely chosen in a range. For equal partitioning, nk is
chosen as N/K. In this paper, we assume K is given and set nk around the value N/K.

Let xik be the indicator that vertex vi belongs to the kth subset if xik = 1 or not if
xik = 0, and yi j be the indicator that the edge (vi,v j) with vertices vi,v j are in different
subsets if yi j = 1 and vi,v j in the same subset if yi j = 0. Thus, the objective function
of graph partitioning to minimize the sum of weights of the edges between the disjoint

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 500–509, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Two-Stage Stochastic Graph Partitioning Problem 501

subsets can be expressed as min∑(i, j)∈E wi jyi j. The relation between xik and yi j can
be expressed as yi j = 1−∑K

k=1 xikx jk. Therefore, the graph partitioning under weight
matrix W and given sizes n1, · · · ,nK of subsets can be expressed as

min ∑
(i, j)∈E

wi jyi j, (1)

s.t.
K

∑
k=1

xik = 1,
N

∑
i=1

xik = nk,

yi j = 1−
K

∑
k=1

xikx jk,

xik ∈ {0,1},yi j ∈ {0,1},
i ∈V,(i, j) ∈ E,k = 1, · · · ,K.

Since no uncertainty is considered in this model, we usually call this nominal graph
partitioning problem. As stated in [3,5], many mathematical programming methods, in-
cluding linear programming, quadratic programming, and semidefinite programming,
are used for this problem. As discussed in [5], the weights of edges in graph G = (V,E)
are always uncertain. In mathematical programming, two methods are always used
to deal with such uncertainty. The robust optimization models for graph partitioning,
as studied in [5], is to find out a best partitioning of vertex set V among all uncer-
tain weights of edges in the worst case. In this paper, we will introduce the two-stage
stochastic graph partitioning problem with finite explicit scenarios to deal with the un-
certainty.

The set of cut edges or the cut set includes all edges with ends in different subsets
after partitioning. The two-stage stochastic graph partitioning problem (TSGP) consists
of finding a best partitioning of vertex set in two stages: taking some edges into the set
of cut edges in the first stage with certain weights for edges in matrix W ; assuming
that there are totally S scenarios with weight matrix Cs = (cs

i j)N×N in scenario s of
probability ps, and the second stage in scenario s is to choose some edges into the set of
cut edges for satisfying the requirements of partitioning. The objective is to minimize
the total expected weight of edges in the set of cut over all scenarios. Under these
requirements and descriptions, we formulate the two-stage stochastic graph partitioning
problem as a stochastic mixed integer program (SMIP) [2].

Similarly, many combinatorial optimization problems have been extended to two-
stage stochastic forms recently. The two-stage maximum matching problem is studied
in [7] by an approximation algorithm, the minimum spanning tree problem is extended
to two-stage forms in [6], and etc.

In this paper, we assume the distribution of weights has finite explicit scenarios. The
rest of this paper is organized as follows: Section 2 presents the model for the two-stage
stochastic graph partitioning problem; In Section 3, we present equivalent integer linear
formulations; In Section 4, we present numerical experiments on randomly generated
graphs with different numbers of scenarios; Section 5 concludes the paper.

502 N. Fan, Q.P. Zheng, and P.M. Pardalos

2 The Model of the Two-Stage Stochastic Graph Partitioning
Problem

The two-stage stochastic graph partitioning problem can be formally stated as follows:
Given a graph G = (V,E) with the first-stage edge weight matrix W and second-stage
edge weight matrix Cs = (cs

i j)N×N for s = 1, · · · ,S, and the probability ps for scenario
s, where S is the number of scenarios. The edge set E now is defined as E = {(vi,v j) :
wi j > 0 or cs

i j > 0 for some s, j > i}, which means if wi j > 0 or one of cs
i j > 0, the edge

(vi,v j) exists. That is, for edge (i, j) ∈ E , the first-stage weight is wi j and the second
stage weight is cs

i j in scenario s with probability ps. In addition, we are also given the
number K of subsets that we want to partition V into and the cardinalities n1, · · · ,nK of
all subsets.

Remark 1. The weight matrix Cs for scenario s has the same prefigurements as W :
no loops in the graph, i.e., cs

ii = 0 for i = 1, · · · ,N; symmetrically, i.e., cs
i j = cs

ji for
i, j = 1, · · · ,N; nonnegativity, i.e., cs

i j ≥ 0 for i, j = 1, · · · ,N.

Remark 2. The probability ps for s = 1, · · · ,S and weight matrices Cs’s are defined
on a probability space (Ω ,C ,P), where Ω is the sample space and can be chosen as
nonnegative real space RN×N

+ , C is the set of subsets in Ω , and P is the probability
measure. In this problem, we assume finite explicit scenarios.

The two-stage stochastic graph partitioning problem (TSGP) is to find a set of cut
edges EC with the minimum sum of weights so that the subsets satisfy the requirements
at each scenario. Assume that E0 is the set of cut edges chosen in the first-stage, and
Es is the chosen set of cut edges in the second-stage with respect to scenario s for
s = 1, · · · ,S, the sets have the relations E0 ∪Es is the set that can completely separate
the vertices into K subsets with the requirement of cardinalities, and E0 ∩Es = /0. In
addition, the cuts E0,E1, · · · ,ES should have the minimum expected sum of weights

∑
(vi,v j)∈E0

wi j +
S

∑
s=1

ps ∑
(vi ,v j)∈Es

cs
i j.

For example, in Fig. 1, the weights for edge (vi,v j) ∈ E at fist stage (wi j) and
second stage (cs

i j) for two scenarios (p1 = 0.6, p2 = 0.4) are shown. The problem is
to find 3 subsets with cardinalities as n1 = 3,n2 = 4,n3 = 5. By the STGP model,
two edges (2,4),(7,12) are selected into the cut set at the first stage, while at the
second stage, edges (3,7),(3,11),(6,8) are selected in the first scenario s = 1 and
edges (4,7),(5,7),(6,7),(8,9),(8,11),(8,12),(10,11),(11,12) are selected in the sec-
ond scenario s = 2. Three subsets obtained for scenario s = 1 are {1,2,3},{4,5,6,7},
{8,9,10,11,12}, while three subsets for scenario s = 2 are {9,10,12},{4,5,6,8},
{1,2,3,7,11}.

Assume that yi j = 1 denotes that (i, j) is chosen to E0 and otherwise yi j = 0, and
zs

i j = 1 denotes edge (i, j) is chosen to Es in scenario s and otherwise zs
i j = 0. Let

xs
ik = 1 denote that the ith vertex belongs to the kth subset and otherwise xs

ik = 0. By
these decision variables, the two-stage stochastic graph partitioning problem can be
formulated as the following two-stage program:

On the Two-Stage Stochastic Graph Partitioning Problem 503

12

11

10

9 8
7

6
5

4

3 2

1
(4,3,3)

(0.5,0.5,1.5) (14,1,12)

(3,2,3)
(13,0.5,16)

(13,0.5,14)

(3,3,4)

(1,1.5,0.8)

(, ,)

(4,3,3)

(4,3,3)

(3,3,4)

(3,3,4)

(3,3,4)
(3,3,4) (3,3,4)

(3,2,3)
(3,2,3)

(3,2,3)

(3,2,3)
(3,2,3)

(3,2,3)
(3,2,3)

Fig. 1. A graph with uncertain edges

[TSGP] : min ∑
(i, j)∈E

wi jyi j +
S

∑
s=1

ps f (y,s) (2)

s.t. yi j ∈ {0,1}, (3)

i ∈V,(i, j) ∈ E.

where for s = 1, · · · ,S,

f (y,s) = min
x,z ∑

(i, j)∈E

cs
i jz

s
i j (4)

s.t.
K

∑
k=1

xs
ik = 1,

N

∑
i=1

xs
ik = nk (5)

yi j + zs
i j = 1−

K

∑
k=1

xs
ikxs

jk, (6)

xs
ik,z

s
i j ∈ {0,1}, (7)

i ∈V,(i, j) ∈ E,k = 1, · · · ,K.

Next, we first prove this formulation is the correct formulation for two-stage stochas-
tic graph partitioning problem, and then discuss the relaxations of the variables yi j’s and
zs

i j’s.

Theorem 1. The formulation (2)-(7) is the correct model for the two-stage stochastic
graph partitioning problem.

Proof. From the objective function in (2), the decision variables yi j and zs
i j decide

whether the edge (vi,v j) is included in the set of cut edges for scenario s with respect
to the first stage weight wi j and second stage weight cs

i j, respectively. The constraints
xs

ik ∈ {0,1} and the constraints (5) can guarantee that each vertex belongs to exact one
subset and the kth subset has the cardinality nk in the second stage of scenario s.

504 N. Fan, Q.P. Zheng, and P.M. Pardalos

Thus, the set of cut edges in the first stage is E0 = {(vi,v j) ∈ E : yi j = 1} and the set
of cut edges in the second stage of scenario s is Es = {(vi,v j) ∈ E : zs

i j = 1}. We have

to prove that E0 ∪Es is the set of cut edges and E0 ∩Es = /0 for any s = 1, · · · ,S.
If both vertex vi and v j belong to subset k in scenario s, i.e., xs

ik = xs
jk = 1 and xs

ik′ =
xs

jk′ = 0 for k′ �= k, from the constraint (6), we have yi j + zs
i j = 0. Thus, yi j = zs

i j = 0
since both of them are binary. The edge (vi,v j) is not in the set of cut edges.

If the vertex vi belongs to subset k1 and v j belongs to subset k2 of scenario s, i.e.,
xs

i,k1
= 1,xs

ik = 0 for all k �= k1 and xs
j,k2

= 1,xs
j,k′ = 0 for all k′ �= k2 where k1 �= k2, thus we

have yi j +zs
i j = 1 from the constraint (6). Thus, since both yi j,zs

i j ∈ {0,1}, either yi j = 1,
which means edge (vi,v j) is chosen in cut edges in the first stage, or zs

i j = 1, which
means (vi,v j) is chosen in the cut edges in the second stage of scenario s. Considering
all edges, we have proved that E0 ∪Es is the set of cut edges and E0 ∩Es = /0 for any
s = 1, · · · ,S.

The objective function is to minimize fist stage weight and the expected sum weight
of all scenarios s = 1, · · · ,S for edges within the cut. Therefore, we have checked the
objective and all constraints, and the program (2)-(7) correctly formulates the two-stage
stochastic graph partitioning problem.
�
Corollary 1. For edge (vi,v j) ∈ E, if wi j > ∑S

s=1 pscs
i j, we have yi j = 0.

Proof. By contradiction, if yi j = 1, which means that edge (vi,v j) is chosen into the
cut set in the first stage, and the objective with respect to this edge is wi j . However, by
choosing cs

i j = 1 for all s, the corresponding objective is ∑S
s=1 pscs

i j, which is less than
wi j, a contradiction to minimizing the objective.
�
However, for the case wi j = ∑S

s=1 pscs
i j for edge (vi,v j) ∈ E , if this edge is chosen into

the cut set, either yi j = 0,cs
i j = 1(∀s) or yi j = 1,cs

i j = 0(∀s) are optimal solutions; if
this edge is not chosen into the cut set, yi j = 0. In order to reduce computation time, we
make the following assumption without loss of any optimality:

Assumption A. For edge (vi,v j) ∈ E , if wi j = ∑S
s=1 pscs

i j, assume yi j = 0.

3 Equivalent Integer Linear Programming Formulations

In the constraint (6), there is a nonlinear term xs
ikxs

jk, which always leads to high com-
putational complexity. In this section, we present an approach to linearize this term.
Additionally, we prove that some binary variables in the formulation for TSGP can be
relaxed to continuous ones.

Lemma 1. By Corollary 1 and under Assumption A, the decision variables yi j,zs
i j in

the two-stage stochastic graph partitioning problem (2)-(7) can be relaxed to be con-
tinuous ones such that 0 ≤ yi j ≤ 1,zs

i j ≥ 0.

Proof. In the part E0,Es of the proof for Theorem 1, in the case of vertices vi,v j in the
same subset in scenario s, i.e., yi j + zs

i j = 0, we have yi j = zi j = 0 if yi j,zs
i j ≥ 0.

In the case of vertices vi,v j in different subsets in scenario s, i.e., yi j + zs
i j = 1, we

discuss in the following three cases:

On the Two-Stage Stochastic Graph Partitioning Problem 505

(a) wi j > ∑S
s=1 pscs

i j. By Corollary 1, yi j = 0 and then zs
i j = 1.

(b) wi j = ∑S
s=1 pscs

i j. By Assumption A, yi j = 0 and then zs
i j = 1.

(c) wi j < ∑S
s=1 pscs

i j. We have zs
i j = 1− yi j. The part in the objective function (2) with

respect to edge (vi,v j) is

min(wi jyi j +
S

∑
s=1

psc
s
i jz

s
i j) = min(wi jyi j +

S

∑
s=1

psc
s
i j(1− yi j))

= min(wi j −
S

∑
s=1

psc
s
i j)yi j +

S

∑
s=1

psc
s
i j.

If yi j ∈ {0,1}, the minimum for this problem is obtained when yi j = 1 and zs
i j = 0

since wi j −∑S
s=1 pscs

i j < 0. If yi j is relaxed to yi j ≤ 1, the above problem is also
optimized at yi j = 1 and zs

i j = 0.

Summarizing all cases above, we can obtain that under Assumption A, the decision
variables yi j,zs

i j ∈ {0,1} in TSGP can be relaxed by 0 ≤ yi j ≤ 1,zs
i j ≥ 0.
�

For the nonlinear term xs
ikxs

jk, by introducing us
i jk = xs

ikxs
jk, we can have following lin-

earization methods.

Lemma 2. The constraint (6) for edge (vi,v j) ∈ E in scenario s is equivalent to follow-
ing linear constraints: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yi j + zs
i j = 1−∑K

k=1 us
i jk

us
i jk ≤ xs

ik

us
i jk ≤ xs

jk

us
i jk ≥ xs

ik + xs
jk −1

us
i jk ≥ 0

(8)

By Lemma 1 and Lemma 2, we have the following theorem, which presents the equiv-
alent integer linear programming formulation for TSGP.

Theorem 2. The formulation in (2)-(7) for TSGP under Assumption A is equivalent to
the following integer linear program in extensive form:

min ∑
(i, j)∈E

wi jyi j +
S

∑
s=1

ps ∑
(i, j)∈E

cs
i jz

s
i j

s.t. (5), (8)

xs
ik ∈ {0,1},0 ≤ yi j ≤ 1,zs

i j ≥ 0

i ∈V,(i, j) ∈ E,k = 1, · · · ,K,s = 1, · · · ,S

For some specific case, we can have a more simplified formulation for TSGP as shown
in the following corollary.

506 N. Fan, Q.P. Zheng, and P.M. Pardalos

Corollary 2. If wi j > 0 and cs
i j > 0 hold for all edge (vi,v j) ∈ E for all scenarios, the

formulation in (2)-(7) for TSGP is equivalent to:

min ∑
(i, j)∈E

wi jyi j +
S

∑
s=1

ps ∑
(i, j)∈E

cs
i jz

s
i j (9)

s.t.
K

∑
k=1

xs
ik = 1,

N

∑
i=1

xs
ik = nk (10)

− (yi j + zs
i j)− xs

ik + xs
jk ≤ 0 (11)

− (yi j + zs
i j)+ xs

ik − xs
jk ≤ 0 (12)

xs
ik ∈ {0,1},0 ≤ yi j ≤ 1,zs

i j ≥ 0 (13)

i ∈V,(i, j) ∈ E,k = 1, · · · ,K,s = 1, · · · ,S

Proof. For edge (vi,v j) ∈ E such that wi j > 0 and cs
i j > 0 in scenario s, different from

Lemma 1, if vertices vi,v j are in the same subset, i.e., xs
ik′ = xs

jk′ = 1 and xs
ik = xs

jk = 0
for all k �= k′, we have yi j + zs

i j ≥ 0 with considering all k’s in (11) and (12); Simi-
larly, if vertices vi,v j are different subsets, we have yi j + zs

i j ≥ 1 from (11) and (12).
As mentioned in Lemma 1, the objective function (9) with respect to edge (vi,v j) is
min(wi jyi j + ∑S

s=1 pscs
i jz

s
i j).

For the case yi j +zs
i j ≥ 0, we want to prove that yi j = 0 and zi j = 0 by the formulation

(9)-(13). we have three subcases:

(a) wi j > ∑S
s=1 pscs

i j. By Corollary 1, yi j = 0 and then zs
i j ≥ 0. Now, min(wi jyi j +

∑S
s=1 pscs

i jz
s
i j) = min∑S

s=1 pscs
i jz

s
i j should obtain the optimal value at zs

i j = 0 since
all cs

i j > 0.

(b) wi j = ∑S
s=1 pscs

i j. By Assumption A, yi j = 0 and then zs
i j ≥ 0. This can be proved

similarly to above case.
(c) wi j < ∑S

s=1 pscs
i j. We have yi j + zs

i j ≥ 0. min(wi jyi j + ∑S
s=1 pscs

i jz
s
i j) should obtain

the optimal value at yi j = 0,zs
i j = 0 since wi j > 0 and cs

i j > 0 for all s.

For all subcases, we have yi j = 0,zs
i j = 0 when yi j + zs

i j = 0, which is the same as the
case yi j + zs

i j = 0 in Lemma 1.
For the case yi j + zs

i j ≥ 1, we also discuss three subcases:

(d) wi j > ∑S
s=1 pscs

i j. By Corollary 1, yi j = 0 and then zs
i j ≥ 1. Now, min(wi jyi j +

∑S
s=1 pscs

i jz
s
i j) = min∑S

s=1 pscs
i jz

s
i j should obtain the optimal value at zs

i j = 1 since
all cs

i j > 0.

(e) wi j = ∑S
s=1 pscs

i j. By Assumption A, yi j = 0 and then zs
i j ≥ 1. This can be proved

similarly to above case.
(f) wi j < ∑S

s=1 pscs
i j. We have yi j +zs

i j ≥ 1. If yi j = 0, min(wi jyi j +∑S
s=1 pscs

i jz
s
i j) should

obtain the optimal value ∑s
s=1 pscs

i j at zs
i j = 1 for all s since zs

i j ≥ 1 and cs
i j > 0 for

all s; If yi j = 1, the objective for edge (vi,v j) obtain the optimal value wi j at zs
i j = 0

for all s since zs
i j ≥ 0 and cs

i j > 0 for all s; If 0 < yi j < 1, assume the optima for

min(wi jyi j + ∑S
s=1 pscs

i jz
s
i j) is obtained at yi j = a (0 < a < 1), and thus zs

i j ≥ 1−a.

On the Two-Stage Stochastic Graph Partitioning Problem 507

Then

min(wi jyi j +
S

∑
s=1

psc
s
i jz

s
i j) = awi j + min

S

∑
s=1

psc
s
i jz

s
i j

with constraints zs
i j ≥ 1− a obtains its optimal value awi j + (1− a)pscs

i j at zs
i j =

1− a for all s. Comparing the objective values ∑s
s=1 pscs

i j,awi j +(1− a)pscs
i j,wi j

at yi j = 0,a,1, respectively, we have

s

∑
s=1

psc
s
i j > awi j +(1−a)psc

s
i j > wi j

for any 0 < a < 1, by considering wi j < ∑S
s=1 pscs

i j. Therefore, under this subcase,
the optimal value is obtained at yi j = 1 and zs

i j = 0 for all s.

The solutions for the case yi j + zs
i j ≥ 1 under certain situations are the same as those in

Lemma 1 when yi j + zs
i j = 1.
�

In Corollary 2, we require that for any edge (vi,v j) ∈ E . wi j > 0 and cs
i j > 0 for all

s. For example, in case (d), if cs
i j = 0, the term mincs

i jz
s
i j with zi j ≥ 1 can obtain the

minimum value 0 at any value of nonnegative zs
i j; in case (c), wi j = 0 will influence any

nonnegative choice of yi j.
Comparing formulations in Theorem 2 and Corollary 2, we can see that the formula-

tion in Corollary 2 reduces a lot of constraints and variables, and it can be solved more
efficiently. Our method for solving TSGP is using CPLEX to solve the binary linear
programs in extensive form in Theorem 2 and Corollary 2.

4 Experimental Results

In this section, we implement all binary linear programs in Theorem 2 and Corollary 2
using CPLEX 11.0 via ILOG Concert Technology 2.5. All computations are performed
on a SUN UltraSpace-III with a 900 MHz processor and 2.0 GB RAM. Computational
times are reported in CPU seconds.

To test our algorithms, we generate random graphs with different number of nodes,
edges and scenarios. The number of edges is determined by the density r of a graph,
which is the ratio of the number of edges and the number of possible edges. All gener-
ated weights satisfy wi j,cs

i j ∈ [2,3] for (vi,v j) ∈ E . The number N(N − 1)r/2 of deci-
sion variables yi js is related to the number of edges, which is related to N,r; the number
N(N − 1)rS/2 of zs

i js is determined by N,r,s; and the number N ·K · S of xs
iks is deter-

mined N,S,K. In Theorem 2, the variables us
i jks are introduced, and the number of us

i jks
is N(N −1)rKS/2.

In Table 1, the objective values obtained by solving formulations in Theorem 2 and
Corollary 2 are the same while the gap in CPLEX is setting to 1%.

From Table 1, we can see all computational seconds by the formulation in Corollary
2 are less than or equal to seconds by the formulation in Theorem 2 under the same test
cases. As discussed in Section 3, the formulation in Theorem 2 introduces the variables
us

i jks and this influences the computational complexity. For the graph with N = 10 ver-
tices and S = 2 scenarios, when the density r is increasing, the computational seconds

508 N. Fan, Q.P. Zheng, and P.M. Pardalos

Table 1. Computational results

Graphs Probability Dist. Cardinalities Objective Value CPU Seconds
N r S p1 + · · ·+ pS n1 + · · ·+nK Thm 2/Cor 2 Thm 2 Cor 2
10 0.1 2 0.6+0.4 5+5 0.00 0.01 0.01

0.4 13.49 0.10 0.06
0.7 31.61 0.50 0.33
1 57.91 17.30 15.84

0.1 2 0.6+0.4 3+3+4 2.11 0.04 0.03
0.4 19.72 3.20 2.11
0.7 43.94 23.04 17.78
1 76.77 2295.31 1828.23

0.1 2 0.6+0.4 3+2+3+2 2.11 0.05 0.04
0.4 22.18 4.95 4.04
0.7 52.08 170.38 120.70
1 86.14 5088.86 3583.21

10 0.1 4 0.1+0.2+0.3+0.4 4+3+3 0.00 0.03 0.03
0.4 20.80 90.62 64.15
0.1 6 0.05+0.10+0.15+0.20+0.25+0.25 3+3+4 2.21 1.33 0.86
0.4 19.47 1938.17 774.08

15 0.1 2 0.6+0.4 5+5+5 4.58 0.09 0.08
0.4 43.42 42.33 23.41

20 0.1 2 0.6+0.4 7+7+6 6.52 0.85 0.42
0.4 85.22 4354.52 2519.88

25 0.1 2 0.6+0.4 8+8+9 13.95 7.00 1.23
30 0.1 2 0.6+0.4 10+10+10 22.33 11.23 1.44

are increasing as well; for the graph N = 10,S = 2 and the same density r, when the
number K of subsets increases, the computational seconds increase as well for both for-
mulations. Similarly, when the number S of scenarios and the number N of vertices are
increasing, computational seconds increase as well.

5 Conclusions

In this paper, we present the two-stage stochastic graph partitioning problem by the
stochastic programming approach. This problem is formulated as a nonlinear stochastic
mixed integer program, and we also present a linear programming (SMIP) approach for
solving this problem by CPLEX. For some cases with specific requirements, we present
a more simplified linearization method, which can solve the problem more efficiently.
The SMIP problem is very hard to solve, and for further research, more efficient algo-
rithms, such as methods based on Benders decomposition [1], should be designed for
solving large-scale two-stage stochastic graph partitioning problems.

On the Two-Stage Stochastic Graph Partitioning Problem 509

References

1. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik 4, 238–252 (1962)

2. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer, Heidelberg
(1997)

3. Fan, N., Pardalos, P.M.: Linear and quadratic programming approaches for the general graph
partitioning problem. Journal of Global Optimization 48(1), 57–71 (2010)

4. Fan, N., Pardalos, P.M.: Multi-way clustering and biclustering by the Ratio cut and Normalized
cut in graphs. Journal of Combinatorial Optimization (2010), doi:10.1007/s10878-010-9351-5

5. Fan, N., Pardalos, P.M.: Robust optimization of graph partitioning and critical node detection
in analyzing networks. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508,
pp. 170–183. Springer, Heidelberg (2010)

6. Frieze, A., Flaxman, A., Krivelevich, M.: On the random 2-stage minimum spanning tree.
Random Structures and Algorithms 28, 24–36 (2006)

7. Kong, N., Schaefer, A.J.: A factor 1/2 approximation algorithm for two-stage stochastic
matching problems. European Journal of Operational Research 172, 740–746 (2006)

A Spatio-Temporal Approach to the Discovery

of Online Social Trends

Harshavardhan Achrekar, Zheng Fang, You Li, Cindy Chen,
Benyuan Liu, and Jie Wang

Department of Computer Science
University of Massachusetts, Lowell, MA 01854, USA

Abstract. Online social networks (OSNs) have become popular plat-
forms for people to interact with each other in the cyber space. Users
use OSNs to talk about their daily activities, mood, health status, sports
events, travel experiences, political campaigns, entertainment events, and
commercial products, among other things. Conversations between users
on an OSN site could reflect the current social trends that are of great in-
terest and importance for individuals, businesses, and government agen-
cies alike. In this paper we design and develop a comprehensive system
to collect, store, query, and analyze OSN data for effective discovery of
online social trends. Our system consists of three parts: (1) an OSN data
collection engine; (2) a spatio-temporal database for storing, indexing,
and querying data; and (3) a set of analytical tools for online social trend
discovery. We demonstrate the effectiveness of our system using a recent
result of predicting seasonal flu trends using Twitter data.

1 Introduction

Online social networking (OSN) web sites, such as Facebook, MySpace, and
Twitter, have become popular platforms for people to interact with each other
and form cyber communities. The OSN sites provide functionalities for users
to build online profiles, establish and maintain friendships, send messages, post
photos, advertise events, comment on profiles of friends, and create and join
online communities of common interests.

The rapid growing of the number of OSN users and services has made online
social networking a vital part of the Internet ecosystem. Major OSN sites today
have more than half a billion users worldwide. At any given time, tens of millions
of users are logged in various OSN sites, where each user on average would spend
tens of minutes daily on the sites. Each week billions of blog articles, web links,
and photos are posted and shared between friends.

For a large number of users, going to OSNs has become their daily activities.
They use OSNs to talk about their daily activities, mood, health status, sports
events, travel experiences, political campaigns, entertainment events, commercial
products, to name just a few. We note that conversations between users on the
OSN sites could reflect the current social trends that are of interests to certain
groups of individuals, businesses, and government agencies. For example, fashion

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 510–524, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Spatio-Temporal Approach to the Discovery of Online Social Trends 511

industry may follow the OSN discussions among targeted customers to keep
track of the fashion trends for designing and marketing their fashion products.
Politicians may use OSNs to gauge public opinions on various issues to better
understand and serve the needs of their constituencies, or direct their election
campaigns. Technology companies may use OSNs to obtain user feedbacks when
rolling out new products. Moreover, OSNs may also be used to monitor public
health trends, including the outbreak of seasonal influenza or the H1N1 Swine
flu [1].

Online social trends may change with time, geographical locations, and de-
mographics of the users such as age ranges and gender. We would like to develop
methodology and tools to automatically discover online social trends. Such tools
are expected to have significant impacts on societal, economic, and political is-
sues. Realizing the importance of identifying social trends, certain OSN sites,
e.g., Twitter Trending Topics, have started to provide rudimentary reports of
online social trends. These reports, unfortunately, often just provide limited rel-
evant information and functions, or without sufficient details to help discover
social trends. We tackle this problem in this paper. In particular, we design and
develop a comprehensive framework to collect, store, query, and analyze OSN
data for effective discovery of online social trends. The architecture of our sys-
tem is depicted in Figure 1. The functions and inter-relationships of the main
components are briefly described below.

Spatio-Temporal
Database

(storage / query)

User Profiles

Keyword and Location
Based Search

XML
Data Collection

Engine
Trend Discovery/
Analysis Engine

query

Feedbacks to adjust search strategy

Fig. 1. System architecture for online social trends discovery

1. Online Social Network Data Collection. The data collection engine is used
to search and retrieve data from OSN sites. Given a set of keywords such as
“flu”, “health care reform”, and “Windows 7”, the engine continuously crawls
the OSN sites and collects relevant blogs (content and time stamp) and
user profile information when available including age, gender, and location,
among other things. The collected information flow, i.e., a stream of high-
dimensional spatio-temporal data, is aggregated and fed to a spatio-temporal
database for storing, indexing, and querying.

2. Data Storing, Indexing, and Querying. The data collection engine would pro-
duce a large volume of streaming data with spatio-temporal aspects. Efficient
data storage and indexing mechanisms and effective querying platforms are
thus needed. We design and develop a database system called OSNDB to store

512 H. Achrekar et al.

the collected data. A novel “partitioning and labeling” based analytical in-
dexing method is devised to speed up the query process for high-dimensional
data. Furthermore, we create a flexible and efficient query platform to support
complex spatio-temporal stream queries for these data.

3. Online Social Trends Discovery. The data storage and indexing scheme al-
lows for efficient queries on combinations of fields including age range, gen-
der, and location. We further provide proper analytical tools to help discover
online social trends. As a case study, we collect and analyze the seasonal flu
trends from major OSN sites and compare our results with the CDC flu data
[1]. The analysis will also provide important feedbacks to the data collection
engine to adjust its collection strategy.

The rest of the paper is structured as follows. In Section 2 we describe our OSN
data collection method. In Section 3 we present our spatio-temporal database
system designed for online social trend discovery. As a case study, we describe our
recent result on predicting seasonal flu trends using Twitter data in Section 4.
Finally, we summary our work in Section 5.

2 Online Social Networks Data Collection

We present a methodology to collect relevant information from Facebook, MyS-
pace, and Twitter, as well as other major OSN sites. These three OSN sites
constitute a large fraction of the total number of OSN users. Each of these three
sites has its own focus and appeals to different groups of users. In particular,
MySpace is especially popular among teenagers, musicians, artists, and other
entertainment related entities. Facebook, started as a social networking site for
college students, has since percolated to other users groups including high school
students, graduate students, and professionals. Twitter is mainly used as a real-
time micro-blogging system for people and media to distribute and share topics
of their interests.

2.1 Design of OSN Data Collection Engines

Facebook, MySpace, and Twitter each provides a search interface (API) that
allows a user to enter any keywords to search for blogs that contain these key-
words. The APIs typically return a list of blog entries across the entire site that
contains the keywords in the reverse-time order. Each entry contains publisher
profile ID, time stamp of the blog, and the corresponding blog content. The in-
dividual fields can be obtained using an HTML content scraper. Given a profile
ID, we can retrieve the publisher profile information from the OSN sites, which
typically includes the name, age, gender, geographic location, friends/followers,
and other information of the user.

We devise and implement an OSN crawler for each of the three OSN sites
based on the search APIs provided by these OSN sites. In what follows we will
describe the design of Facebook crawler in details. The architecture and the main
components of the crawlers for MySpace and Twitter are similar, albeit different

Spatio-Temporal Approach to the Discovery of Online Social Trends 513

Facebook
Search API

Facebook Profile
Scan Engine

Database

Result Set
(Posts)

containing
keyword

HTML
Content

Scrapper

Individual Users

Organizations

Community

(time stamp, content)

Profile id

(profile info, location)

Fig. 2. Design of the Facebook data collection engine

search APIs, returned result formats, privacy settings, and the underlying web
technologies.

The structure of the Facebook crawler is depicted in Figure 2. The function
of each component is described below.

1. Facebook Search Engine: After signing in Facebook with a valid account, we
can enter keywords and search for updates and posts that contain the key-
words. The “Post by everyone” option allows us to search for given keywords
in the updates and posts of all users on Facebook.

2. Results Set containing keyword: Users are given a few options to post updates
on Facebook. The common options are “friends”, “group”, and “everyone”.
The “everyone” option is the default setting, which makes the corresponding
updates available to the public and the Facebook search engine. Results
returned by the search engine are available to the public for a limited period
of time.

3. HTML Content Scrapper: The HTML content scrapper is a screen scrapper
for web pages. We are interested in getting useful information out of posts
returned from the keyword search. The HTML content is send as input onto
a regular expression matcher. Techniques of pattern matching are applied
to extract relevant content. We are interested in the following three fields:
profile ID, time stamp of the post, and the post content.

4. Facebook Profile Scan Engine: Given a profile ID, we will retrieve the detailed
information of the profile, which typically includes, among other things,
name, gender, age, affiliations (school, work, region), birthday, location, ed-
ucation history, and friends. Note that a profile may belong to an individual
user, an organization, or a community.

The information collected in this process will be aggregated and fed to the
database for storing, indexing, and querying. The most important fields of each

514 H. Achrekar et al.

record include the profile information (name, gender, age, etc), location, time
stamp, and the blog content.

3 The Spatio-Temporal Database System

We design and develop a database system called OSNDB to facilitate efficient data
storage and effective information extraction specific to online social networks.
Data from online social networks differs from conventional data in the following
two aspects:

1. OSN data is streamlined [17] and thus needs to be stored in real time where
moving-window queries [21] are necessary.

2. The spatio-temporal aspect of the data [8,7] is crucial, i.e., people will want
to see when and where most messages related to a certain topic have been
posted.

To address these two issues, we design and develop the Online Social Networks
DataBase system (OSNDB). In the following sections, we will describe the database
design, access methods, and query platform. The design of the database system
is depicted in Figure 3.

New Owner ?

Message ID TimeStamp Owner ID Message

Record

Owner ID Age Gender Location …...

Owner

Keyword
Text

Count Time Interval

Keyword

flu 30 2009-12-12 04:02:00

... ... ….

Country State City Longitude Latitude

Geo

MIND Analyzer

Category Message ID Term 1 Term 2 …...

Term

Term n

... …... ….

Yes

Location

Fig. 3. Design of the Online Social Networks Database System (OSNDB)

Spatio-Temporal Approach to the Discovery of Online Social Trends 515

3.1 Database Design

Once the data is collected, each entry will be stored into the Record table in-
stantaneously. The Record table contains five fields: Message ID, Timestamp,
Location, Owner, Message. Message ID is automatically generated by the
database system. Timestamp records the time when the entry is posted. Owner
is the identifier of the person who has posted the message. If the owner has
indicated his/her location, the Location field will remember this information.

The OSNDB database system also maintains a Keyword table, which contains
three fields: Keyword Text, Count, and Time Interval. In this table, terms
that appear most frequently in the past hour will be recorded. While the de-
fault granularity is one hour, other granularity can be generated by aggregate
operations.

Posted messages will then be processed. We will use a natural language ana-
lyzing system (e.g., the MIND framework [6]) to interpret the messages. MIND
is designed to handle abbreviated or imprecise user inputs in human-computer
conversations. It uses a variety of contexts, such as domain context and con-
versation context to reach a full understanding of user inputs, including those
abbreviated or imprecise ones.

The result of MIND analyzer will be stored in the Term table. The Term
table contains the message ID, category of the message, the meanings associated
with the message. For example, let us consider the following message posted on
Facebook: “I still don’t want the shot. I have had swine flu since Oct. I was
at home for two weeks. I have been working pretty much full time since, cut
keep feeling tired, getting a cough, sore throat. If I take grapefruit seed extract
I am okay = when I stop the symptoms come back. I want it to END! This is
ridiculous.”. This message will be processed by MIND, and the important terms
in this message – “swine flu”, “shot”, “tired”, “cough”, “sore throat”, “grapefruit
seed extract” will be extracted and stored in the Term table and the message
will be categorized as “swine flu”.

OSNDB also contains an Owner table and a Friend table. The Owner table record
the information about the owners of the messages, such as Owner ID, age,
gender, location. The Friend table will record friendship relation between
owners.

In addition, OSNDB has a Geo table to record geographical information, includ-
ing Country, State, City, Longitude, and Latitude.

3.2 Access Methods

To speed up the querying process, we create the following standard indices on
these tables:

1. A B+-tree [2] index on the Timestamp field of the Record table.
2. A R*-tree [3] index on the Location field of the Record table.
3. A B+-tree index on the Time Interval field of the Keyword table.

The Term table contains more than 10 fields, which is high-dimensional. To
index data records in the Term table, we have explored existing high-dimensional

516 H. Achrekar et al.

indexing methods. Some of them do not scale well with dimensionality, for ex-
ample, the R-tree family [15,23,3]; some are too complicated to implement, for
example, the Pyramid technique [4] and the iMinMax method [25]. The X-
tree [5] is currently the dominating high-dimensional indexing method, which
organizes the directory using a splitting algorithm to minimize overlaps with the
mechanism of super-nodes. The basic idea of overlap-minimizing split and super-
nodes is to keep the directory in a hierarchy as much as possible, which helps to
prevent splits and avoid high overlaps. However, it is difficult to determine the
maximum overlap, for an excessive number of super-nodes would decrease the
selectivity. X-trees are more suited for medium-dimensional data space.

In a previous study, we have developed a new indexing technique called PL-
tree, a short-hand for “partitioning and labeling” [24]. Different from existing
high-dimensional algorithms which are all geometry based, the PL-tree is an
analytical indexing method. The PL-tree uses a pairing function to generate a
unique label for a group of data that are geographically close to each other. The
main idea of PL-tree is as follows:

1. Partition the original space into hypercubes, where each hypercube is called
a sub-home.

2. Map objects in a sub-home to a fixed point that is unique to the sub-home.
3. Label each object in a sub-home using a pairing function on the fixed point

so that all objects in the same sub-home have the same label and objects in
different sub-homes have different labels.

4. If the number of objects contained in a sub-home is greater than a pre-
determined bound (e.g. the page size of the underlying operating system),
continue this process recursively on each sub-home.

The structure of a PL-tree is a tree of labels with an unbounded number
of children at each node, where each label uniquely identifies the set of objects
contained in the corresponding sub-home of the label. The PL-tree indexing cuts
down search redundancy in range queries, and is especially suitable for indexing
large volumes of high-dimensional data. The uniqueness property of labeling
plays an important role in making range queries efficient.

Figure 4 shows our preliminary performance results. It can be seen that the
PL-tree indexing maintains a rather smooth performance regardless the increase
of dimensionality in terms of percentage of page access. Also, for the total elapsed
time, the PL-tree indexing significantly outperforms the X-tree [5], the currently
dominating high-dimensional indexing method.

3.3 Query Platform

We use user-defined aggregates and user-defined functions to implement special
operators needed in the OSNDB system. User-defined aggregates can be created
in advanced database management software, e.g., Oracle 11g. The aggregates
are applied to the data stored at the physical level. Our query language has the
following two properties:

Spatio-Temporal Approach to the Discovery of Online Social Trends 517

(a) (b)

Fig. 4. (a) Page access percentage over data set dimensions (b) Performance over real
multidimensional data sets

1. Ease of Use: Queries in the OSNDB system conform to the SQL:2003 stan-
dard [9]. No new constructs needs to be introduced.

2. Extensibility: In addition to pre-defined special operators, users can define
their operators as user-defined aggregates.

To illustrate the ease of use and extensibility of the query platform of the
OSNDB system, we provide the following sample queries using OSN flu trend as
an example.

Query 1: Find when the term “swine flu” was most frequently recorded.

SELECT time_interval

FROM keyword

WHERE keyword_term = ‘‘Swine Flu’’

HAVING (SELECT count(keyword_term) FROM keyword

WHERE keyword_term = ‘‘Swine Flu’’

>= ALL (SELECT count(keyword_term) FROM keyword))

Query 2: Find when the term “swine flu” appears together with the term “flu
shot” .

SELECT intersect(k1.time_interval, k2.time_interval)

FROM keyword AS k1, keyword AS k2

WHERE k1.keyword_term = ‘‘Swine Flu’’ AND k2. keyword_term= ‘‘flu shot’’

In Query 2, intersect is an user-defined temporal aggregate which calculates
the time period when the time intervals associated with swine flu and the time
intervals associated with flu shot intersects.

Query 3: Find the average frequency of the term “swine flu” for every 100 new
values inserted into the Keyword table.

518 H. Achrekar et al.

SELECT moving_average (count, 100)

FROM keyword

WHERE keyword_term = ‘‘Swine Flu’’

Query 4: Find where people are talking about “swine flu” most frequently.

SELECT city, state

FROM record, term, geo

WHERE terms LIKE ‘‘swine flu’’ AND terms.id = record.id

GROUP BY city, state

HAVING count(*) >= ALL (SELECT count(*)

FROM record, term, geo

WHERE terms LIKE ‘‘swine flu’’

AND terms.id = record.id

GROUP BY city, state)

In OSNDB, we use user-defined aggregates and user-defined functions to extend
the query capability of the standard SQL without introducing new constructs.
For example, the user-defined aggregate MOVING AVERAGE in Query 3 is imple-
mented as follows in a previous publication [7].

4 Predicting Flu Trends Using Twitter Data: A Case
Study

In this section, as a case study we describe our recent result of predicting flu
trends using Twitter data [1].

Seasonal influenza epidemics result in about three to five million cases of
severe illness, which cause about 250,000 to 500,000 deaths worldwide each year
[16]. Reducing the impact of seasonal epidemics and pandemics such as the H1N1
influenza is of paramount importance for public health authorities. Studies have
shown that preventive measures can be taken to contain epidemics, if an early
detection is made during the germination of an epidemic [11,20]. Therefore, it is
important to track and predict the emergence and spread of flu in the population.

The Center for Disease Control and Prevention (CDC) monitors influenza-like
illness (ILI) cases, by collecting data from sentinel medical practices, collating
the reports and publishing them on a weekly basis. As diagnoses are made and
reported by doctors, the system is almost entirely manual, resulting in a 1-2
weeks delay between the time a patient is diagnosed and the moment that data
point becomes available in aggregate ILI reports. Public health authorities need
to be forewarned at the earliest time to ensure effective preventive interven-
tion, and this leads to the critical need of more efficient and timely methods of
estimating influenza incidences.

Several innovative surveillance systems have been proposed to capture the
health seeking behavior and transform them into influenza activity indicators.
These include monitoring call volumes to telephone triage advice lines [10], over
the counter drug sales [22], patients visit logs to Physicians for flu shots, and
Google Flu Trends which utilizes aggregated web search queries pertaining to

Spatio-Temporal Approach to the Discovery of Online Social Trends 519

influenza to build a comprehensive model that can estimate nationwide as well
as state-level ILI activity [13].

In this work we investigate the use of a novel data source, namely, messages
posted on Twitter, to track and predict the level of ILI activity in a population.
Data collected from twitter represents a previously untapped data source for
detecting the onset of a flu epidemic and predicting its spread. Our approach
assumes twitter users as “sensors” and the collective message exchanges with a
mention of flu such as “I got Flu” and “down with swine flu” as early indicators
and robust predictors of influenza. Although many of these data are noisy indi-
vidually, in aggregate they reveal the underlying epidemic pattern in time and
space.

4.1 Data Sets

We searched and collected tweets and profile details of Twitter users who men-
tioned about flu descriptors in their tweets starting from October 18th, 2009 and
lasting until October 31st, 2010. There are 4.7 million tweets from 1.5 million
unique users. Location details can be set to public or private from the profile
page or mobile client. In our Twitter dataset, 30.6% users were from USA, 41.3%
users were from outside USA, and 28.1% users did published their location de-
tails. Within USA, we have seen users who tweeted about flu in all 50 states and
the District of Columbia.

Figure 5(a) shows the percentage of unique Twitter users who mentioned
about flu in tweets at different hours of the day. Status posting times (tweet
timestamp in GMT) are converted to the local timezone of the individual profile.
Day light saving time is also applied within the required time frame. The hourly
activity patterns observed at different hours of the day are what we expected,
with high traffic volumes from late morning to early afternoon and less tweet
posted from midnight to early morning, reflecting people’s work and rest hours
within a day. The average daily usage pattern within a week shown in Figure
5(b) suggests a trend on OSN sites with more people discussing about flu on
weekdays than on weekends. Note that our observed usage patterns in Twitter
are consistent with previous observations for other OSNs [12].

For analysis, Twitter dataset needs to be processed to discount retweets and
successive posts from the same users within a certain syndrome elapsed time.
These two issues are explained below.

1. Retweets: A retweet is a post originally made by one user that is forwarded
by another user. For flu tracking, a retweet does not indicate a new ILI case,
and thus should not be counted in the analysis. Out of 4.7 million tweets
we collected, there are 450,000 retweets, accounting for 9.5% of the total
number of tweets.

2. Syndrome elapsed time: An individual patient may have multiple encounters
associated with a single episode of illness (e.g., initial consultation, consul-
tation 1-2 days later for laboratory results, and followup consultation a few
weeks later). To avoid duplication from this common pattern of ambulatory

520 H. Achrekar et al.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1%

2%

3%

4%

5%

6%

7%

Hour of the Day

N
um

be
r

of
 T

w
ee

ts
 (

in
 %

)

SUNDAY MONDAY TUESDAY WEDNESDAYTHURSDAY FRIDAY SATURDAY
0

2%

4%

6%

8%

10%

12%

14%

16%

18%

N
um

be
r

of
 T

w
ee

ts
 (

in
 %

)

(a) (b)

Fig. 5. (a) Hourly Twitter usage pattern in USA (b) Average daily Twitter usage
within a week

care, the first encounter for each patient within any single syndrome group
is reported to CDC, but subsequent encounters with the same syndrome
are not reported as new episodes until six weeks has elapsed since the most
recent encounter in the same syndrome [18]. We call it syndrome elapsed
time. In our dataset, we remove tweets from the same user within a certain
syndrome elapsed time, since they do not indicate new ILI cases.

We created different datasets consisting of the original Twitter dataset, Twit-
ter dataset without retweets, Twitter dataset without retweets and having no
tweets from the same user within a syndrome elapsed time of 1 week, 2 weeks,
and 6 weeks, respectively. Comparing these different dataset with CDC data we
found that the dataset without retweets and having no tweets from the same
user within syndrome elapsed time of one week yields the highest correlation
coefficient (0.9846) with the CDC data. This dataset will be used for all suc-
cessive experiments. The relationship between the dataset and the CDC data is
illustrated in Figure 6, which shows a very close to linear relationship between
the two datasets.

4.2 Twitter Improves Prediction of Influenza Data

We use statistical models to predict the number of Influenza Like Illness (ILI)
incidents in the following week. The models use the data collected and published
by the CDC, as the percentage of visits to “sentinel” physicians attributable to
ILI in successive weeks. We test our models using the CDC data collected in the
previous period, with and without measures of Twitter activities. We show that
Twitter data improves accuracy substantially.

Model Structure. We use the following form of auto-regression with exogenous
inputs (ARX) [19,14] in our experiments:

y(t) =
m∑

i=1

aiy(t − i) +
n−1∑
j=0

bju(t − j) + c + e(t) (1)

Spatio-Temporal Approach to the Discovery of Online Social Trends 521

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 1 2 3 4 5 6 7 8

N
um

be
r

of
 T

w
itt

er
 u

se
rs

 p
os

tin
g

pe
r

w
ee

k

% ILI visit

% ILI visit v/s Twitter users
Fitted line

Fig. 6. Number of Twitter users per week versus percentage of weighted ILI visit by
CDC

where t indexes weeks, y(t) denotes the percentage of physician visits for ILI
in week t, u(t) represents the number of unique Twitter users with flu related
tweets in week t, e(t) is a sequence of independent random variables, and c is a
constant to account for offset.

We note that Twitter data provides some independent real-time assessment
of influenza as events in Twitter text, and Eq. 1 takes this into consideration.
Unfortunately, data is carried by a chaotic, noisy data stream and may be dis-
turbed from time to time by events not directly related to cases of ILI. The
CDC aims to provide, with delays, a valid physician confirmed ILI diagnosis to
measure “true” population ILI activities.

In our experiments, we vary m from 0 to 2 and n from 0 to 3 in Eq. 1. Within
these ranges, m = 0 or n = 0 represent the models where there are no CDC data
y or Twitter data u terms present respectively. Also, if m = 0 and n = 1, we have
a linear regression between the Twitter data and the CDC data. If n = 0, we
have standard auto-regressive (AR) models. The AR models utilize past CDC
data, and serve as baselines to validate whether Twitter data provides predictive
power beyond historical CDC data.

The objective of the model is to provide timely updates of the percentage of
physician visits. To predict such percentage in week t, we assume that only the
CDC data with at least 2 weeks of lag is available for the prediction if past CDC
data is present in a model. For the Twitter data, we assume that the most recent
data is always available if a model includes the Twitter data terms.

To predict the flu cases in week t using the ARX model in Eq. 1 based on the
CDC data with 2 weeks of delay and/or the up-to-date Twitter data, we apply
the following relationships:

ŷ(t) = aiŷ(t − 1) +
m∑

i=2

aiy(t − i) +
n−1∑
j=0

bju(t − j) (2)

522 H. Achrekar et al.

ŷ(t − 1) =
m∑

i=1

aiy(t − i − 1) +
n−1∑
j=0

bju(t − j − 1) (3)

where ŷ(t) represents the predicted CDC data in week t. It can be verified from
the above equations that to predict the CDC data in week t, the most recent
CDC data is from week t−2. If the CDC data lag is more or less than two weeks,
the above equations can be easily adjusted accordingly.

Cross Validation Results. According to the 5-fold cross validation results,
the model corresponding to m = 0 and n = 3 has the lowest root mean square
error (RMSE). The corresponding model has the following form:

y(t) = b0u(t) + b1u(t − 1) + b2u(t − 2) + c. (4)

In general, the addition of Twitter data improves the prediction with past
CDC data alone. We plot the Twitter dataset (the number of tweets normal-
ized to the same scale as CDC data) and predicted values of the percentage of
weighted ILI visits against CDC data in Figure 7 to illustrate the effectiveness
of the prediction model.

 0

 1

 2

 3

 4

 5

 6

 7

 8

w42
w43

w44
w45

w46
w47

w48
w49

w50
w51

w52
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

w11
w12

w13
w14

w15
w16

w17
w18

w19
w20

pe
rc

en
ta

ge
 o

f I
LI

 v
is

its

% physician visits (CDC)
Twitter Data

Predicted Flu Trend

Fig. 7. Twitter dataset normalized to the same scale as CDC data along with its
predicted values for percentage of weighted ILI visits(5-fold cross validation)

We tested our regression models with historic CDC data and verified that
Twitter data does substantially improve the model accuracy in predicting ILI
cases. In view of the lag inherent in CDC’s ILI reports, Twitter data provides
near realtime assessment of influenza activity and can be used to effectively
predict current ILI activity levels.

Spatio-Temporal Approach to the Discovery of Online Social Trends 523

5 Summary

We design and develop a comprehensive system to collect, store, query, and
analyze OSN data for effective discovery of online social trends. Our system
consists of an OSN data collection engine, a spatio-temporal database for storing,
indexing, and querying data, and analytical tools for discovering online social
trends. As a case study, we collect and analyze seasonal flu trends on major OSN
sites and compare our results with the CDC flu data. The results show that our
system can be used for effective online social trend discovery.

References

1. Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.H., Liu, B.: Predicting flu trends using
twitter data. In: International Workshop on Cyber-Physical Networking Systems
(CPNS) in conjunction with IEEE Infocom (2011)

2. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Inf. 1, 173–189 (1972)

3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An effi-
cient and robust access method for points and rectangles. In: Garcia-Molina, H.,
Jagadish, H.V. (eds.) Proceedings of the 1990 ACM SIGMOD International Con-
ference on Management of Data, Atlantic City, NJ, May 23-25, pp. 322–331. ACM
Press, New York (1990)

4. Berchtold, S., Böhm, C., Kriegel, H.P.: The pyramid-technique: Towards breaking
the curse of dimensionality. In: SIGMOD Conference. pp. 142–153 (1998)

5. Berchtold, S., Keim, D.A., Kriegel, H.P.: The x-tree: An index structure for high-
dimensional data. In: VLDB. pp. 28–39 (1996)

6. Chai, J., Pan, S., Zho, M.: MIND: A Context-based Multimodal Interpretation
Framework, Conversational Systems, Natural, Intelligent and Effective Interaction
in Multimodal Dialogue Systems. Kluwer Academic Publishers, Dordrecht (2005)

7. Chen, C.X., Wang, H., Zaniolo, C.: Toward extensible spatio-temporal databases:
an approach based on user-defined aggregates. In: de Caluwe, R., de Tré, G.,
Bordogna, G. (eds.) Spatio-Temporal Databases, Flexible Querying and Reasoning,
pp. 55–74. Springer, Heidelberg (2004)

8. Chen, C.X., Zaniolo, C.: SQLT : A spatio-temporal data model and query language.
In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920,
pp. 96–111. Springer, Heidelberg (2000)

9. Eisenberg, A., Melton, J., Kulkarni, K.G., Michels, J.E., Zemke, F.: SQL:2003 has
been published. SIGMOD Record 33(1), 119–126 (2004)

10. Espino, J., Hogan, W., Wagner, M.: Telephone triage: A timely data source for
surveillance of influenza-like diseases. In: AMIA: Annual Symposium Proceedings
(2003)

11. Ferguson, N.M., Cummings, D.A., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A.,
Iamsirithaworn, S., Burke, D.S.: Strategies for containing an emerging influenza
pandemic in southeast asia. Nature 437 (2005)

12. Gauvin, W., Ribeiro, B., Towsley, D., Liu, B., Wang, J.: Measurement and gender-
specific analysis of user publishing characteristics on myspace. IEEE Networks
(September 2010)

13. Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant,
L.: Detecting influenza epidemics using search engine query data. Nature 457 (2009)

524 H. Achrekar et al.

14. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice-
Hall, Inc., Englewood Cliffs (1984)

15. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In:
SIGMOD Conference, pp. 47–57 (1984)

16. Jordans, F.: WHO working on formulas to model swine flu spread (2009)
17. Koudas, N.: Stream data management: Research directions and opportunities. In:

IDEAS (2002)
18. Lazarus, R., Kleinman, K., Dashevsky, I., Adams, C., Kludt, P., DeMaria, Jr., A.

R.: Platt: Use of automated ambulatory-care encounter records for detection of
acute illness clusters, including potential bioterrorism events (2002)

19. Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Inc., Upper
Saddle River (1999)

20. Longini, I., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings,
D., Halloran, M.: Containing pandemic influenza at the source. Science 309(5737)
(2005)

21. Qiao, L., Agrawal, D., Abbadi, A.E.: Supporting sliding window queries for con-
tinuous data streams. In: SSDBM (2003)

22. Magruder. S.: Evaluation of over-the-counter pharmaceutical sales as a possible
early warning indicator of human disease. Johns Hopkins University APL Technical
Digest (2003)

23. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for
multi-dimensional objects. In: Stocker, P.M., Kent, W., Hammersley, P. (eds.) Pro-
ceedings of 13th International Conference on Very Large Data Bases, VLDB 1987,
Brighton, England, September 1-4, pp. 507–518. Morgan Kaufmann, San Francisco
(1987)

24. Wang, J., Fang, Z., Chen, C.X.: The pl-tree: A fast high-dimensional access method
for range queries. Technical Report, Department of Computer Science, University
of Massachusetts Lowell (2009)

25. Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V.: Indexing the distance: An efficient
method to knn processing. In: VLDB. pp. 421–430 (2001)

A New Approximation Algorithm for the

Selective Single-Sink Buy-at-Bulk Problem in
Network Design

Peng Zhang�

School of Computer Science and Technology, Shandong University,
Jinan 250101, China
algzhang@sdu.edu.cn

Abstract. The Selective Single-Sink Buy-at-Bulk problem was
proposed by Awerbuch and Azar (FOCS 1997). For a long time, the
only known non-trivial approach to approximate this problem is the tree-
embedding method initiated by Bartal (FOCS 1996). In this paper, we
give a thoroughly different approximation approach for the problem with
approximation ratio O(

√
q), where q is the number of source terminals in

the problem instance. Our approach is based on a mixed strategy of LP-
rounding and the greedy method. When the number q (which is always
at most n) is relatively small (say, q = o(log2 n)), our approximation ra-
tio O(

√
q) is better than the currently known best ratio O(log n), where

n is the number of vertices in the input graph.

1 Introduction

The Single-Sink Buy-at-Bulk Network Design problem arises in the following
scenario in practice. We are asked to design a capacitated network to route flows
from a given set of source terminals to a specified sink terminal. For example,
the sources may be oil wells managed by an oil company and the sink may be
a major refinery, as shown in [17]. We can design the capacitated network by
installing on edges links from an available set of link types, with each type of
link having a capacity and a price per unit of length. The prices and capacities of
link types have economy of scale so that the price-capacity ratio is smaller for link
types with higher capacity. The installed links must satisfy the demand routing
requirements of all source terminals. The goal of the problem is to minimize the
total cost of the installed links.

The Buy-at-Bulk problem was first introduced by Salman et al. [17] in 1997. In
the same year, Awerbuch and Azar [1] proposed the Selective Single-Sink Buy-at-
Bulk problem, in which we only need to meet the demand routing requirements
for at least k source terminals from the given set of sources, where k is an input
parameter. This problem is thus called the k-SBaB problem for short in this
� Supported by NSFC 60970003, China Postdoctoral Science Foundation 20080441144

and 200902562, and the Special Foundation of Shandong Province Postdoctoral In-
novation Projects with No. 200901010.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 525–536, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

526 P. Zhang

paper. Besides its practical meaning, the k-SBaB problem has its own interest
since it is a generalization of both the classic k-MST problem [16,10] and the
k-Steiner Tree problem [7].

Awerbuch and Azar [1] provided a randomized O(log2 n)-approximation al-
gorithm for the k-SBaB problem, where n is the number of vertices in the input
graph. Their approach to approximate k-SBaB is based on the tree-embedding
method due to Bartal [2], which has wide applications in the design of approx-
imation algorithms. The approximation ratio for the k-SBaB problem was nat-
urally improved to O(log n log log n) and finally to O(log n) according to the
improvements of tree-embedding by [3,4] and [8].

In this paper, we give a new deterministic approximation algorithm for the
k-SBaB problem with approximation ratio O(

√
q), where q is the total num-

ber of source terminals. Our main contribution is a new method to approxi-
mate k-SBaB. Our approach is based on a mixed strategy of LP-rounding and
the greedy method, and thus is thoroughly different from the tree-embedding
approach used in [1]. To the best of our knowledge, we have not known any
other non-trivial approach of approximating k-SBaB except the tree-embedding
method. Although in general our approximation ratio is incomparable with the
ratio O(log n) [1,8], our algorithm is obviously better than that in [1] when q
is relatively small, say, q = o(log2 n). Notice that q is always at most n. For
example, when q = Θ(log2−ε n) where ε > 0 is an arbitrarily small constant, our
approximation ratio is better. Note that even if k = q = 1 (i.e., there is only
one source terminal), the problem (in the capacity-price cost model, see Section
2) is already NP-hard, since in this case it reduces to the Integer Min-Knapsack
problem known to be NP-hard [9, MP10] [1, Section 3].

In fact, we can prove the integrality gap of a natural LP relaxation for k-SBaB
is at least 4

9 (q+1) (see Theorem 1). Our algorithm thus cannot merely rely on LP-
rounding and we get around this gap by a mixed strategy of LP-rounding and
greedy method. First we use the LP-rounding approach to obtain a bicriteria
approximate solution to the problem. This solution is further improved to an
O(

√
q)-approximation by a simple greedy algorithm. Our LP-rounding algorithm

uses the algorithm of Talwar [18] for the Buy-at-Bulk problem as a subroutine.
We briefly state some closely related works here. In general, the Buy-at-Bulk

problem contains as its two subproblems the Single-Sink Buy-at-Bulk (SBaB)
problem described as above, and the Multicommodity Buy-at-Bulk (MBaB)
problem, with the latter having a set of source-sink pairs, instead of a set of
source terminals and a sink terminal. The first constant approximation for SBaB
is due to [14]. The approximation ratio was improved to 216 [18], to 76.8 [15],
to 24.92 [12], and finally to 20.42 [13], which is currently the best. On the other
hand, the best approximation ratio for the MBaB problem is O(log n) [1,3,8].

We should point out that all the Buy-at-Bulk problems mentioned so far,
are called uniform in the sense that the cost function (giving the cost per unit
length to route f units of flow) is the same for every edge. A more general
problem is the non-uniform Buy-at-Bulk problem in which the cost function can
vary depending on the edge. The non-uniform Buy-at-Bulk problem is beyond

A New Approximation Algorithm 527

the scope of this paper and the readers are advised to refer to [5,6] and the
references given therein for more details.

2 Preliminaries

In the following we give the formal definition of the Selective Single-Sink Buy-
at-Bulk problem (i.e., the k-SBaB problem).

Instance. In the k-SBaB problem, we are given an undirected graph G = (V, E)
with nonnegative edge costs (i.e., lengths) {ce}, d types of links, denoted by L =
{0, 1, 2, · · · , d−1}, a set of source terminals D = {s1, s2, · · · , sq}, a sink terminal
t ∈ V , and an integer k > 0. Each link type l ∈ L has a capacity ul > 0 and a
price per unit length σl > 0. The capacities and prices per unit length of all link
types satisfy u0 ≤ u1 ≤ · · · ≤ ud−1 and σ0 ≤ σ1 ≤ · · · ≤ σd−1. The cost per unit
length of routing f ≥ 0 units of flow using the link of type l is % f

ul
&σl. Let us call

the cost model of link types given in such a way the capacity-price cost model.
For each source s ∈ D, there is a demand dems > 0. Note that every source is
also a vertex in V . An instance of k-SBaB is thus denoted by I = (G, L, D, t, k).

Query. We are asked to install sufficient links on edges such that at least k
source terminals in D can send their demands to t in the resulting capacitated
network and the total cost of the capacitated network is minimized. Let us call a
solution to the k-SBaB problem a routing scheme, denoted by S. For every link
type l, suppose that a routing scheme S installs αl

e copies of that link on edge
e. To route fe units of flow on an edge e, the total capacities

∑
l∈L αl

eul of the
links installed on edge e by S must be at least fe. The cost on edge e paid by
S is hence

∑
l∈L αl

eσlce. The total cost of routing scheme S is the sum of costs
paid by S on all edges, namely,

∑
e∈E(

∑
l∈L αl

eσl)ce.
In the capacity-price cost model, we may assume (Additional assumptions

are required here. The readers are advised to refer to, e.g., [17], [18] and [15]
for detailed argument) that the capacities and prices per unit length of all link
types satisfy σ0

u0
≥ σ1

u1
≥ · · · ≥ σd−1

ud−1
, which reflects the economy of scale. That

is, the higher the link type, the smaller the cost per unit of length per unit of
capacity. While this property is not directly used in our algorithm, it is used in
the algorithm of [18], which acts as a subroutine called by our algorithm.

The cost model of link types can be given in a way different from the capacity-
price cost model. In the new model every link type l ∈ L has a building cost bl

and a routing cost rl. The building costs and the routing costs of all link types
satisfy b0 ≤ b1 ≤ · · · ≤ bd−1 and r0 ≥ r1 ≥ · · · ≥ rd−1. The cost per unit length
of routing f > 0 units of flow using link type l is bl + rlf . Let us call the new
cost model of link types the building-routing cost model. Therefore, if routing
scheme S routes f l

e > 0 units of flow on an edge e using link type l, the cost paid
by S should be (bl + rlf

l
e)ce. The total cost of routing scheme S can be written

as
∑

e∈E(
∑

l∈L : f l
e>0 bl + rlf

l
e)ce.

Fix any link type l ∈ L. If we set bl = σl and rl = σl

ul
, then it is easy

to see that the routing cost per unit length function h(f) = bl + rlf in the

528 P. Zhang

building-routing cost model is always within a factor 2 of the routing cost per
unit length function g(f) = % f

ul
&σl in the capacity-price cost model, i.e., we

always have g(f) ≤ h(f) ≤ 2g(f) for all f > 0 [11]. This means that the above
reduction preserves costs up to a factor of 2. Therefore, we assume from now on
that we are dealing with the k-SBaB problem in the building-routing cost model
of link types.

The following Lemma 1 states a well-known property about the routing scheme
to the Buy-at-Bulk problem.

Lemma 1. Suppose that a routing scheme S uses more than 1 link types on
some edge e. Then there exists a routing scheme S′ which routes the same amount
of flow for every source terminal as what does S, such that cost(S′) is at most
cost(S) and S′ uses only 1 link type on edge e.

Proof. Suppose the routing scheme S uses h link types {l1, l2, · · · , lh} on edge e
with flow values f1, f2, · · · , fh on each link type, respectively. The cost ofS paid on
e is
∑h

i=1 bli +rlifi. Define function g(f) = mini{bli +rlif}. Then g(f) ≤ bli +rlif
for all f and i. Moreover, since each function bli + rlif is linear, g(f) is concave. So
we have g(

∑
i fi) ≤

∑h
i=1 bli + rlifi and the lemma follows.
�

3 LP Formulation

We get our LP relaxation for the k-SBaB problem by modifying the one used in
[11,18] for the SBaB problem. The LP relaxation for k-SBaB is given as (LPk).

As what was done in [11], we replace each undirected edge in G by a pair
of anti-parallel directed edges, each having the same length as the original one.
The LP relaxation (LPk) is based on the so modified instance. For a vertex
v ∈ V , we use in(v) to denote the set of directed edges pointing to v, i.e.,
in(v) = {(u, v) | (u, v) ∈ E}. Similarly, out(v) = {(v, w) | (v, w) ∈ E} is the set
of directed edges leaving v.

In constraint (6), if we let xl
e;s, ys, z

l
e be 0-1 integers, then we get the LP for-

mulation (namely, the integer linear program) for the k-SBaB problem, denoted
by (IPk). Let us consider (IPk) now. ys = 1 means that we may leave source s
as an outlier. Constraint (2) states that the number of outliers cannot exceed
q − k, that is, we must connect at least k source terminals to sink t. xl

e;s = 1
means we should deploy link type l on edge e for source s. Let xe;s =

∑d−1
l=0 xl

e;s.
Constraint (1) and constraint (3) mean that in the optimal solution, for every
source terminal s, the edges with xe;s ≥ 1 must constitute exactly an s-t path.
Constraint (4) means that along any s-t path, the installed link types are non-
decreasing, which is a property possessed by the optimal solution to the k-SBaB
problem under the building-routing cost model [11, Theorem 1]. zl

e = 1 means
that we should install link type l on edge e (and thus we must pay the building
cost blce). Then constraint (5) indicates when we need to pay the building cost.
The object function of (IPk) is to minimize the sum of the total building cost
and the total routing cost.

A New Approximation Algorithm 529

min
∑
e∈E

d−1∑
l=0

blz
l
ece +

∑
s∈D

∑
e∈E

d−1∑
l=0

demsx
l
e;srlce (LPk)

s.t.
∑

e∈out(s)

d−1∑
l=0

xl
e;s + ys ≥ 1 ∀s ∈ D (1)

∑
s∈D

ys ≤ q − k (2)

∑
e∈in(v)

d−1∑
l=0

xl
e;s =

∑
e∈out(v)

d−1∑
l=0

xl
e;s ∀s ∈ D, ∀v ∈ V \ {s, t} (3)

∑
e∈in(v)

d−1∑
l=d′

xl
e;s ≤

∑
e∈out(v)

d−1∑
l=d′

xl
e;s ∀s ∈ D, ∀v ∈ V \ {s, t}, (4)

∀0 ≤ d′ ≤ d − 1
xl

e;s ≤ zl
e ∀l ∈ L, ∀e ∈ E, ∀s ∈ D (5)

xl
e;s, ys, z

l
e ≥ 0 ∀l ∈ L, ∀e ∈ E, ∀s ∈ D (6)

For the LP relaxation (LPk), it is convenient to think of xl
e;s as the flow

value deployed by source terminal s on edge e using link type l (although the
real flow value should be demsx

l
e;s). Then constraint (3) is essentially the flow

conservation constraint.
For LP relaxation (LPk) we have Theorem 1.

Theorem 1. The integrality gap of the natural linear program (LPk) for k-
SBaB is at least 4

9 (q + 1).

Proof. Consider the instance I in Figure 1. In this instance, we have two link
types, namely, L = {0, 1}, with{

b0 = 1, r0 = 1 link type 0
b1 = 2, r1 = 1

2q link type 1

For every source terminal s ∈ D, dems = 1. In addition, k is set to be 1, that is,
we need only connect one source terminal to t. Let Et be the set of all edges at
the top, and Eb be the set of all edges at the bottom.

Since all the source terminals are essentially identical, the optimal solution
to this instance can connect any source terminal, say s1, to t. The best way to
route the unit demand of s1 to t is to deploy link type 0 on the path from s1

to t. Thus the cost OPTk(I) of the optimal solution to instance I is (b0 + r0 ·
dem1)(ce1 + ce2) = (1 + 1 · 1)(1 + 1

q) = 2 + 2
q .

Then consider an (optimal) fractional solution to (LPk) on instance I. For all
s ∈ D, we set ys = 1 − 1

q . To satisfy constraint (1), each source terminal s ∈ D

need only to send 1
q unit of flow to t; this can be done by sending 1

pq unit of flow
on each of the p paths from s to t consisting of only 2 edges.

530 P. Zhang

t

1s 2s qs

1v 2v pv

q

1

1

Fig. 1. An instance of k-SBaB showing that the integrality gap of (LPk) is at least
4
9
(q + 1)

For the bottom edges, we deploy link type 0 to carry the 1
q unit of flow for

every source terminal, that is, for each edge e ∈ Eb and each source s ∈ D, we
set x

(0)
e;s = 1

pq and z
(0)
e = 1

pq . The building cost on the bottom edges is

∑
e∈Eb

b0 · z(0)
e · ce = (pq)(1 · 1

pq
· 1
q
) =

1
q
.

The routing cost on the bottom edges is∑
e∈Eb

∑
s∈D

dems · x(0)
e;s · r0 · ce = (pq)(1 · 1

pq
· 1 · 1

q
) =

1
q
.

Thus the total cost paid on the bottom edges is 2
q . This is the best way to send

the 1
q unit of flow for every source terminal to the top edges. (One can verify that

if we deploy link type 1 on the bottom edges to carry the flow for all sources,
the total cost would be 2

q + 1
2q2 .)

For the top edges, we deploy link type 1 to carry the 1
q unit of flow for every

source terminal. For each edge e ∈ Et and each source s ∈ D, we set x
(1)
e;s = 1

pq

and z
(1)
e = 1

pq . The building cost on the top edges is

∑
e∈Et

b1 · z(1)
e · ce = p(2 · 1

pq
· 1) =

2
q
.

The routing cost on the top edges is∑
e∈Et

∑
s∈D

dems · x(1)
e;s · r1 · ce = (p · q)(1

pq
· 1
2q

· 1) =
1
2q

.

Thus the total cost paid on the top edges is 1
2q + 2

q . Furthermore, this is the best
way to send the 1

q unit of flow for every source terminal from the middle vertices

A New Approximation Algorithm 531

to t. (One can verify that if we deploy link type 0 on the top edges to carry the
flow for all sources, the total cost would be 1 + 1

q .)
Therefore, the cost OPTf (LPk(I)) of the optimal fractional solution to (LPk)

on instance I is 2
q + 1

2q + 2
q = 4

q + 1
2q . This shows that the integrality gap of

(LPk) is at least OPTk(I)
OPTf (LPk(I)) = 2+2/q

4/q+1/2q = 4
9 (q + 1).
�

In our algorithm given in Section 4, we shall use the LP relaxation for the Buy-
at-Bulk problem, as shown in the following linear program (LPs).

min
∑
e∈E

d−1∑
l=0

blz
l
ece +

∑
s∈D

∑
e∈E

d−1∑
l=0

demsx
l
e;srlce (LPs)

s.t.
∑

e∈out(s)

d−1∑
l=0

xl
e;s ≥ 1 ∀s ∈ D (7)

∑
e∈in(v)

d−1∑
l=0

xl
e;s =

∑
e∈out(v)

d−1∑
l=0

xl
e;s ∀s ∈ D, ∀v ∈ V \ {s, t} (8)

∑
e∈in(v)

d−1∑
l=d′

xl
e;s ≤

∑
e∈out(v)

d−1∑
l=d′

xl
e;s ∀s ∈ D, ∀v ∈ V \ {s, t}, (9)

∀0 ≤ d′ ≤ d − 1
xl

e;s ≤ zl
e ∀l ∈ L, ∀e ∈ E, ∀s ∈ D (10)

xl
e;s, z

l
e ≥ 0 ∀l ∈ L, ∀e ∈ E, ∀s ∈ D

4 Algorithm

4.1 A Simple Greedy Algorithm

Our first algorithm for k-SBaB is a simple greedy algorithm, shown as algorithm
A.

Algorithm A for k-SBaB
Input: an instance (G, L, D, t, k) of k-SBaB.
Output: a routing scheme connecting to sink t at least k source terminals
in D.

1 for each source terminal s ∈ D do
2 Compute a shortest path p from s to t.
3 Choose link type l ∈ L such that bl + rldems is minimized.
4 Deploy link type l on path p with flow value dems. This is our routing

scheme Ss for source terminal s.
5 endfor
6 return the union of the first k cheapest routing schemes as the final solution

S.

532 P. Zhang

A routing scheme S can be viewed as a set of tuples {(e, l, f l
e), · · · }, where

(e, l, f l
e) means that the scheme S deploys link type l on edge e with flow value

f l
e. In step 6 of algorithm A, the union of the routing schemes is done in the

natural way similar to set union. Notice that by Lemma 1, we can assume that
the final routing scheme found by algorithm A uses only 1 link type on each
used edge.

For algorithm A we have Lemma 2.

Lemma 2. Algorithm A is a k-approximation algorithm for the k-SBaB
problem.

Proof. Obviously algorithm A runs in polynomial time.
Notice that steps 2, 3 and 4 of algorithm A actually computes an optimal

solution Ss to instance (G, L, {s}, t) of the Buy-at-Bulk problem, in which there
is only one source terminal and the link types are given under the building-
routing cost model. Let S∗ be an optimal solution to the k-SBaB problem and
OPTk be its solution value. For each source terminal s routed by S∗, we have
cost(Ss) ≤ OPTk. Since the routing scheme S is the union of the first k cheapest
routing schemes in {Ss | s ∈ D}, we have cost(S) ≤ k · OPTk. This concludes
the lemma.
�

4.2 A Bicriteria LP-Rounding Algorithm

Our second algorithm, shown as algorithmB, is a LP-rounding algorithm that out-
puts a bicriteria solution to the k-SBaB problem. The input parameter ε > 0 of
algorithm B is a small number and will be set by algorithm C in Subsection 4.3.

Algorithm B for k-SBaB
Input: an instance (G, L, D, t, k) of k-SBaB, and a parameter ε > 0.
Output: a routing scheme that connects to t at least (1−ε)k source terminals

in D.
1 Find an optimal solution (x, y, z) to (LPk).
2 α ← q−k

q−(1−ε)k .
3 for each source terminal s ∈ D do
4 if ys ≥ α then ȳs ← 1 else ȳs ← 0.
5 endfor
6 C ← {s : ȳs = 0}.
7 Find an integral feasible solution (x̄, z̄) to (LPs) on C by [18].
8 return (x̄, ȳ, z̄).

In step 7 of algorithm B, (LPs) on C means the linear program (LPs) with
source terminal set D replaced by C.

Lemma 3. Given any small number ε ∈ (0, 1) (not necessarily fixed) such that
the rounding threshold α can be computed in polynomial time, algorithm B out-
puts in polynomial time a solution to the instance of k-SBaB which connects to t
at least (1− ε)k source terminals in D at the cost of at most c0

ε · q−k+εk
k ·OPTk,

where c0 is some constant, and OPTk is the optimum of the instance.

A New Approximation Algorithm 533

Proof. If for some source terminal s we have ys > 1 in the optimal solution
(x, y, z), we can decrease ys to 1, not violating constraints (1) and (2). Therefore,
without loss of generality, we can assume that ys ≤ 1 for all s ∈ D. Similarly,
due to the minimization of the objection function of (LPk), we conclude that
xl

e;s ≤ 1 for all s ∈ D, e ∈ E and l ∈ L, and that constraint (1) holds with
equality for the optimal solution (x, y, z).

Since 0 < ε < 1, the rounding threshold α is in (0, 1). Algorithm B connects
all source terminals in C by leaving the source terminals such that ys ≥ α alone.

Let s be any but fixed terminal in C. Define βs = 1
1−ys

and x̂l
e;s = βsx

l
e;s

for all e ∈ E and l ∈ L. Since
∑

e∈out(s)

∑d−1
l=0 xl

e;s = 1 − ys, we have
∑

e∈out(s)∑d−1
l=0 x̂l

e;s = 1 and hence constraint (7) of (LPs) holds. Since all x̂l
e;s’s (note

that s is fixed) are amplified by the same factor βs, we know that x̂l
e;s’s satisfy

constraints (8) and (9). Moreover, every x̂l
e;s is at most 1, since the total amount

of xl
e;s’s emerging from s is 1− ys, and the amount of xl

e;s’s flowing into a vertex
v �= s, t and the amount of that flowing out of v are equal by the flow conservation
constraint (3).

We define βs and x̂l
e;s for every source s ∈ C as above. Finally, Let β =

maxs{βs} and define ẑl
e = βzl

e. Then constraint (10) is satisfied by (x̂, ẑ). This
shows that (x̂, ẑ) is a feasible solution to (LPs) on C.

By [18], an integral c0-approximate solution (x̄, z̄) to (LPs) on C can be found
in polynomial time, where c0 is a constant given in [18] (c0 ≤ 108). By definition,
we have βs = 1

1−ys
≤ 1

1−α for every s ∈ C and β ≤ 1
1−α . So we get an integral

solution (x̄, ȳ, z̄) to (LPk) satisfying

∑
e∈E

∑
l∈L

blz̄
l
ece +

∑
s∈C

∑
e∈E

∑
l∈L

demsx̄
l
e;srlce

≤ c0OPTf (LPs)

≤ c0

(∑
e∈E

∑
l∈L

blẑ
l
ece +

∑
s∈C

∑
e∈E

∑
l∈L

demsx̂
l
e;srlce

)
≤ c0

1 − α

(∑
e∈E

∑
l∈L

blz
l
ece +

∑
s∈C

∑
e∈E

∑
l∈L

demsx
l
e;srlce

)
≤ c0

1 − α
OPTk.

Denote by Y the number of source terminals which are not connected to t
by the solution (x̄, ȳ, z̄), i.e., Y =

∑
s∈D ȳs. We claim that Y ≤ q − (1 − ε)k.

Otherwise it would be the case that
∑

s∈D ys > (q − (1 − ε)k) · α = q − k and
hence the constraint (2) of (LPk) is violated. So the solution (x̄, z̄) connects to
t at least q − Y ≥ (1 − ε)k source terminals in D.

Given that the rounding threshold α can be computed in polynomial time, we
know that algorithm B runs in polynomial time. This concludes the lemma.
�

534 P. Zhang

4.3 An O(
√

q)-Approximation Algorithm

We have already known that for any 1 > ε > 0, algorithm B will give a bicriteria
solution which connects to t at least (1 − ε)k source terminals. If it actually
connects at least k source terminal, then we are done. Otherwise we have to
connect additional εk source terminals to t to obtain a feasible solution to the
k-SBaB problem. But we just have the greedy algorithm A to complete this
task, since the task is in fact a new k-SBaB instance. This idea gives us the final
algorithm C.

Algorithm C for k-SBaB
Input: an instance I = (G, L, D, t, k) of k-SBaB.
Output: a routing scheme that connects to t at least k source terminals in
D.

1 if k ≤ √
q then

2 call algorithm A, obtaining a routing scheme S.
3 return S as the final solution to I and stop.
4 endif
5 call algorithm B with ε =

√
q

k , obtaining a routing scheme S′. Let D′ be
the set of source terminals connected by S′.

6 k′ ← |D′|.
7 if k′ ≥ k then
8 return S′ as the final solution to I and stop.
9 endif

10 D0 ← D−D′, k0 ← k−k′. This defines a new instance J = (G, L, D0, t, k0)
of k-SBaB.

11 call algorithm A on instance J , obtaining a solution S0.
12 Let routing scheme S′′ be the union of S′ and S0. return S′′ as the final

solution to I.

Theorem 2. Algorithm C is an O(
√

q)-approximation algorithm for the k-SBaB
problem.

Proof. If k ≤ √
q, algorithm C will return routing scheme S as the final solution,

which is found by the greedy algorithm A. By Lemma 2, S is a k-approximate
solution to instance I. The theorem is proved under this case. So in the following
we assume that k >

√
q.

Since k >
√

q and ε =
√

q

k , we know that 1 > ε > 0. Recall that k′ is the
number of source terminals connected by S′. Denote by OPTk(I) the optimum
of instance I. By Lemma 3, for the routing scheme S′ and the number k′ we
have

cost(S′) ≤ c0(q − (1 − ε)k)
εk

· OPTk(I) ≤ c0
√

q · OPTk(I)

and
k′ ≥ (1 − ε)k.

If it happens that k′ ≥ k, algorithm C will return S′ and the theorem follows.

A New Approximation Algorithm 535

Then let us consider the case k′ < k. In this case, algorithm C calls the greedy
approximation algorithm A to obtain a routing scheme S0 to the new instance
J = (G, L, D0, t, k0). Since S0 connects to t at least k0 = k−k′ source terminals
in D0 = D −D′, it is obvious that the routing scheme S′′, which is the union of
S′ and S0, is a feasible solution to instance I.

Suppose that D∗ ⊆ D is the set of source terminals connected by an optimal
solution S∗ to instance I. Since |D′| = k′ < k and |D∗| ≥ k, there are at least
k0 = k − k′ source terminals in D∗ − D′ ⊆ D0. Since S∗ obviously connects all
source terminals in D∗−D′ to t, S∗ is a feasible solution to instance J . It turns
out that OPT(J) ≤ cost(S∗) = OPTk(I), where OPT(J) is the optimum of
instance J . By Lemma 2, S0 is a k0-approximate solution to instance J . So we
get that cost(S0) ≤ k0 · OPT(J) ≤ k0 · OPTk(I). Thus for the routing scheme
S′′ we have

cost(S′′) ≤ cost(S′) + cost(S0)
≤ (c0

√
q + k0) · OPTk(I)

≤ (c0
√

q + εk) · OPTk(I)
= (c0 + 1)

√
q · OPTk(I).

Algorithm A runs in polynomial time. When ε is set to
√

q

k , the rounding
threshold α used in algorithm B obviously can be computed in polynomial time.
So algorithm B runs in polynomial time. It follows that algorithm C is in poly-
nomial time. The theorem follows.
�

References

1. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: Proceedings of the 38th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 542–
547 (1997)

2. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic appli-
cations. In: Proceedings of the 37th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 184–193 (1996)

3. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: Proceedings of
the 30th Annual ACM Symposium on Theory of Computing (STOC), pp. 161–168
(1998)

4. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.A.: Approximating a
finite metric by a small number of tree metrics. In: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 379–388 (1998)

5. Charikar, M., Karagiozova, A.: On non-uniform multicommodity buy-at-bulk net-
work design. In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC), pp. 176–182 (2005)

6. Chekuri, C., Hajiaghayi, M., Kortsarz, G., Salavatipour, M.: Approximation al-
gorithms for nonuniform buy-at-bulk network design. SIAM Journal on Comput-
ing 39(5), 1772–1798 (2010)

7. Chudak, F.A., Roughgarden, T., Williamson, D.P.: Approximate k-MSTs and
k-Steiner trees via the primal-dual method and Lagrangean relaxation. Math. Pro-
gram. 100(2), 411–421 (2004)

536 P. Zhang

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences 69(3), 485–497
(2004)

9. Garey, M., Johnson, D.: Computers and Intractability. W.H.Freeman and Com-
pany, New York (1979)

10. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pp. 396–402 (2005)

11. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On
the integrality gap of a natural formulation of the single-sink buy-at-bulk network
design problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081,
pp. 170–184. Springer, Heidelberg (2001)

12. Grandoni, F., Italiano, G.: Improved approximation for single-sink buy-at-bulk. In:
Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidelberg
(2006)

13. Grandoni, F., Rothvoß, T.: Network design via core detouring for problems without
a core. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spi-
rakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 490–502. Springer, Heidelberg
(2010)

14. Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the
single sink edge installation problems. In: Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing (STOC), pp. 383–388 (2001)

15. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing:
simpler and better approximation algorithms for network design. Journal of the
ACM 54(3), Article 11 (2007)

16. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning
trees short or small. In: Proceedings of the 5th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 546–555 (1994)

17. Salman, F., Cheriyan, J., Ravi, R., Subramanian, S.: Buy-at-bulk network design:
approximating the single-sink edge installation problem. In: Proceedings of the 8th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 619–628 (1997)

18. Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook,
W., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–480. Springer,
Heidelberg (2002)

Greedy Algorithm for Least Privilege in RBAC Model�

Jinling Liu, Hejiao Huang, and Hongwei Du

Harbin Institute of Technology Shenzhen Graduate School, China
���������		
�������� ������	�������������� �������������������

Abstract. Least privilege means only the necessary privileges are needed to
complete a task for users. This is one of the most important principles in RBAC
model. Currently, how to assign roles to users to achieve this principle is still not
solved. In this paper, the least privilege problem is proved to be NP-hard, and an
approximation algorithm is given. The simulation result shows that with the algo-
rithm, each user can acquire its privilege to perform its job with the least privilege
principle.

Keywords: Least privilege, NP-hard, greedy algorithm, performance ratio.

1 Introduction

Role-Based Access Control (RBAC) is an approach for improving computer system
security. Based on RBAC technology standard, a set of specific privileges can perform a
specific operation, and the system user should be assigned to particular roles which have
certain privileges in order to perform system operations [4]. In other words, the user
can not get any privileges directly, instead, can acquire them through roles. In RBAC,
a user can perform certain operations only if the user has all the necessary privileges to
perform certain operations through roles. For example, in Fig. 1, suppose user u2 should
have the privilege p1, p2 and p4 (Fig. 1(a)) in order to complete a particular operation.
Based on the standard, u2 cannot get these privileges directly, instead, it can be assigned
to role r1 which has these privileges (Fig. 1).

Based on RBAC technology standard, each role is given privileges in advance. Users
can obtain their privileges through roles in RBAC, but it is unsafe to give users more
privileges than they really need. For example, in Fig. 1(b), user u2 is assigned to role r1,
so u2 has all the privileges that r1 has, including the redundant privilege p5. As a result,
u2 has a chance to execute some operations related to p5 which leads to some system
security problems, e.g., leaking important information. In order to decrease or avoid
such kind of security risk, least privilege principle should be considered for user-role
assignment.

Least privilege principle means a user should not have too much more privileges
than necessity to operate in his task. In other words, a user should complete his task
with redundant privileges as little as possible. For example, in Fig. 1, suppose the user

� This work was financially supported by National Natural Science Foundation of China under
Grant No.11071271, the Fundamental Research Funds for the Central Universities under Grant
No. HIT. NSRIF. 2009 and Shenzhen Special Funds under grant No. CXB201005250026A.

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 537–545, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

538 J. Liu, H. Huang, and H. Du

(a) (b)

Fig. 1. Users get privileges through roles

u1 should have privilege p1 and p3 (Fig. 1(a)) in order to do a special task. Based on
this principle, assigning role r2 to u1 is better than assigning both r1 and r2 to u1 for
reducing redundant privileges.

The least privilege principle is one of the most important security policies for sys-
tems in RBAC, but it is still a problem to be solved. Previous research has done much
related work. For example,core RBAC and Hierarchical RBAC has been introduced [4],
and in each RBAC model, there are sessions between roles and users. If a user wants to
obtain privileges, the session between the user and the assigned roles who contain all
of those privileges must be activated. Though the session part can control which roles
can be used by the user, it cannot make sure the user-role assignment follows the least
privilege principle. Later, Chen and Crampton uses sessions to implement the principle
of least privilege in RBAC96 [3], but it is used to solve inter-domain role mapping and
it is hard to return an optimal solution except in special cases. Barka and Sandhu [1,2]
have proposed role-to-role delegation mechanism, and considered delegation and revo-
cations with multi-step. Then Wainer and Kumar [10] have put forward user-to-user
delegation model, and set delegation conditions to control multi-step delegations and
revocations. A new delegation model to implement the principle of least privilege has
been proposed in [5]. In this model, dynamic delegation mechanism and credit mech-
anism are used. Although these delegation-based approaches considered least privilege
problem, which still cannot ensure user-role assignment follows the principle of least
privilege. In addition, the delegation constrains are complex to manage.

In order to protect sensitive privileges, and then control redundant privileges, Mu
Xiaojun [12] has proposed a boundary-based access control model, but the mechanism
is hard to carry out in RBAC model owing to its complexity. There is also much work
about role mining in previous research, e.g., Vaidya et al. [9] and Schlegelmilch et al.
[8] consider role mining using subset enumeration and cluster, respectively. However,
these methods just involve how to solve assignment between roles and privileges, not
assignment between roles and users. Hence, the principle of least privilege is not really
implemented. Later, Lai gives a quantitative analysis and measurement for the principle

Greedy Algorithm for Least Privilege in RBAC Model 539

of least privilege [6]. However, these previous works neither solve the problem of least
privilege nor measure the hardness of it.

This paper firstly proves that least privilege problem in user-role assignment is NP-
hard and an approximation algorithm is presented. Through the approximation algo-
rithm, roles can be assigned to di�erent users. At the same time, some redundant roles
can be removed.

The remaining part of this paper is arranged as follows: Section 2 introduces the least
privilege problem of user-role assignment and it is proved to be NP-hard. In Section 3,
the approximation algorithm is given. In addition, the performance analysis is shown.
The simulation result helps to analyze whether users can get their own roles with the
principle of least privilege in a short time. Section 4 concludes this paper.

2 Least Privilege User-Role Assignment Problem

The principle of least privileges requires that the user is assigned with no more privi-
leges than necessity to complete a task or job. This principle makes sure that a system
is safe in some degree. So assigning roles to the user needs to follow this principle.
According to user’s task or job, the privileges that assigned to user are divided into
two parts: target privilege and non-target privilege [9]. Target privilege is necessary
to complete a task or job, and non-target privilege is not. However, the user just needs
target privileges, so roles assigned to the user must cover all the target privileges, with
non-target privileges as little as possible.

How to assign roles to the user with least privilege principle is the major problem. In
fact, it is NP-hard and will be proved later.

2.1 Problem Formulation

Let R � �r1� r2� � � � � rm� denote the set of roles, P � �p1� p2� � � � � pn� denote the set
of privileges, and T denote the set of target privileges for a user. Construct a bipartite
graph G � (R � P� E): R and P are node sets representing the roles and the privileges
respectively as defined above, if ri � R contains privilege p j � P, there is an edge
(ri� p j) � E (Fig. 2).

Fig. 2. Relations between roles and privileges

540 J. Liu, H. Huang, and H. Du

In Fig. 2, R � �r1� r2� r3�, P � �p1� p2� p3� p4� p5� p6� p7�, there are 9 edges between
R and P. Let B denotes a subset of R. N(B) is the neighbor nodes of B. For example, if
B � �r1� r2� , then N(B) � �p1� p2� p3� p4� p5� in Fig. 2.

Now the concept of weight [6] should be introduced. Each privilege can be given
a weight value, which implies the important index for the system security. The larger
the weight value is, the more important for the system security. For example,“Changing
the students’ information” is more important than “reading the students’ information”.
In other words, the weight value is larger, the privilege is more dangerous to leak the
system information. Hence, “Changing the students’ information” has larger weight
than “reading the students’ information”.

Each privilege has its own weight value, and let � denote the weight value. Suppose
privilege pi has weight �i.

Let function c denote the sum of non-target privileges’ weights, that is r � R, c(r) ��
pi�(N(r)�T) �i. For example, in Fig. 2, T � �p2� p4� p5�, N(r1) � �p1� p2� p3� but the only

target privilege is p2 , so c(r1) � �1 � �3.
Similarly, define the function for the subset B as follows: c(B) �

�
pi�(N(B)�T) �i. The

function c(B) is called cost function.
Now define another important function f (B) � �N(B) � T � which means the number

of target privileges that N(B) has.
The least privilege problem is to find: min c(B) : f (B) � f (R)� B � R on 2R, which

means non-target privileges obtained are as little as possible and all the target privileges
are covered.

2.2 Minimum Submodular Cover with Submodular Cost

Suppose that f is a polymatroid functions on 2E . A polymatroid function f has three
factors [11]:

1. f is increasing;
2. f is submodular, that is for any two subsets B1 and B2 of R,

f (B1) � f (B2) 	 f (B1 � B2) � f (B1 � B2);
3. f (
) � 0.

Then, a set X � E is said to be a submodular cover of (E� f) if f (X) � f (E). Sup-
pose that both f and c are polymatroid functions on 2E . The minimization problem
min c(X) : f (X) � f (E)� X � E is known as a Minimum Submodular Cover with Sub-
modular Cost [11].

In the following, how to achieve least privilege is proved to be NP-hard. It will be
completed with the help of Minimum Submodular Cover with Submodular Cost prob-
lem, which is NP-hard [11].

Lemma 1. f (B) and c(B) are polymatroid function.

Proof. When a new role r is added to the set B, N(B � �r�) contains all the elements of
N(B), so f (B) is increasing. For f (B) � �N(B)�T � , because N(B)�T is a set, f (B) can
be seen as the number of elements in the set.

Greedy Algorithm for Least Privilege in RBAC Model 541

For any two set X and Y, �X� � �Y � 	 �X � Y � � �X � Y �. So f (B) is submodular. When
B �
 , N(B) � T �
 , then f (
) � 0 . Hence, f (B) is a polymatroid function.

Similarly, c(B) �
�

pi�(N(B)�T) �i is the sum of elements’ weight values in set N(B)�
T , which is increasing and meets c(
) � 0 . It is also submodular. Hence, f and c are
polymatroid functions.

The least privilege problem is to find min c(B) : f (B) � f (R)� B � R on 2R, which is a
minimum submodular cover with submodular cost, and the following result is true.

Theorem 1. The least privilege problem is NP-hard.

In user-role assignment, there are three sets: U denotes the set of users, R denotes the set
of roles, and P denotes the set of privileges. Construct a graph URA � (U�R�P� E1�E2)
: if ui � U contains role r j � R , there is an edge (ui� r j) � E1 ; if r j � R contains privilege
pl � P ,there is an edge (r j� pl) � E2 (Fig. 3). Suppose �U � � k, �R� � m , �P� � n . Each
user has di�erent target privileges, so what need to do is to make sure that each user can
get its target privilege with non-target privileges as little as possible.

Fig. 3. The relations of users, roles and privileges

3 Greedy Algorithm

In this section, a greedy algorithm is introduced for presenting an approximation of the
least privilege user-role assignment problem.

3.1 Parameter Definition

Let ui denote the user with 1 � i � k , and �i denote the weight for privilege pi with
1 � i � n . In this model, let Ti denote the set of target privileges for the user ui . Let Bi

denote the set of roles that are assigned to user ui , and Ball is the total set of assigned
roles, that is Ball �

�
i Bi .

r � R��r f (B) � f (B��r�)� f (B),which means the number of new target privileges
brought via adding role r. When �r f (B) � 0 , it implies adding role r is not necessary,

542 J. Liu, H. Huang, and H. Du

because the new role cannot bring any new target privilege. The reason for this, may be
the target privileges that role r contains are existing in the set of B, or there is no target
privilege in role r at all.

Define the function for the subset B as follows: e(B) �
�

pi�N(B)�T �i, which means
the sum of elements’ weight values of target privileges in B, and r � R��re(B) �
e(B � �r�) � e(B).

In the case all the weights equal to 1, e(B) � f (B) and �re(B) � �r f (B).

3.2 Algorithm

The greedy algorithm for user-role assignment is described in Algorithm 1. For each
single user, the algorithm will be run once in order to complete its user-role assignment.
In step 4, if some roles contain some target privileges which are not included in Bi, then
the one which contains the largest ratio of marginal target privilege over redundant cost
will be selected out (step 5) and added to Bi (step 6). The “while loop” will not stop
until the specific user gets all its target privileges.

Algorithm 1. Greedy Algorithm for User-Role Assignment with Weight (GA-UAW)
1: B � �;
2: Bi � �, 1 � i � k;
3: for �Ti��0, 1 � i � k do
4: while �r � R, �r f (Bi)�0 do

5: select r � R with maximum
�re(Bi)

c(Bi � 	r
)
;

6: Bi � Bi � 	r
;
7: end while
8: end for
9: output Bi, 1 � i � k;

10: output B;

3.3 Results

In the above algorithm, the privileges can be assigned to roles automatically. Similarly,
the target privileges of users are generated automatically. Hence, this algorithm can
adapt to all the systems. To measure the eÆciency of the greedy algorithm, this paper
uses an enumeration method to make comparison in both “time of running” and “the
number of redundant privileges”. To see the comparative result clearly, this paper gives
simulation results of single-user case.

When �U � � 1 and �P� � 50 , the running time by using the enumeration method
is higher than one by using the greedy algorithm apparently as the number of roles
increases (Table 1). � � 1 denotes that in the case all the weights equal to 1, and
random � denote the general case where the weights are assigned randomly. It is clear
that the larger the number of roles is, the longer time that the enumeration method cost.
However, the running time cost by the greedy algorithm almost unchanged.

Greedy Algorithm for Least Privilege in RBAC Model 543

Table 1. The running time comparison in case 1

The No. of roles Time of running(s)

�U � � 1 Enumeration Greedy

�P� � 50 � � 1 random �

5 0.203 0.172 0.219

10 3.797 0.562 0.422

15 21.187 0.531 0.532

20 398.282 0.875 0.781

25 1582.47 1.375 0.985

30 4206.56 1.172 0.953

35 10381.9 1.516 1.156

40 20978.6 2.016 2

Table 2 shows the number of redundant privileges that are assigned to the user by
both the enumeration method and the greedy algorithm in the case all the weights equal
to 1. The enumeration method has listed all the user-role assignments including the
optimal one. Compare with the optimal solution, the greedy algorithm can give a close
solution in a shorter time. For a large company, the number of both users and roles are
large, so the user-role assignment will cost a lot of time to get the best solution by using
enumeration algorithm.

Table 2. The number of redundant privileges comparison in case 1

The No. of roles The No. of redundant privileges

�U � � 1 Enumeration Greedy
�P� � 50 (optimal solution)

5 26 26

10 24 25

15 27 27

20 19 20

25 14 16

30 20 21

35 17 18

40 20 20

544 J. Liu, H. Huang, and H. Du

3.4 Performance Analysis

Define the curvature of the submodular cost c to be � � minB:min�costcover

�
r�B c(r)
c(B)

[11],

and H(k) � 1�
1
2
� ����

1
k

is the k-th Harmonic number [7]. According to the previous

work, if f is integer-valued, then the greedy solution of GSC is a �H(�) -approximation
where � � max

r�R
f (r) [11]. Hence, this algorithm is a �H(�)-approximation. In this

algorithm, the goal is to assign roles to users with least privilege principle. Since the
user-role assignment process is the same for each user, the whole performance ratio can
be shown by analyzing performance ratio of Algorithm 1. Let T denote the set of target
privileges, and B is the set of roles that are assigned to the user by greedy algorithm.

Then H(�) � 1�
1
2
� ����

1
�
� 1�

1
2
� ����

1
maxr�R f (r)

� 1� ln max
r�R

f (r) � 1� ln �T �.

In the case all the weights equal to 1, c(B) �
�

r�B

c(r). So 1 � � � minB:min�costcover

�
r�B c(r)
c(B)

�
�T �(�P� � �T �)
�P� � �T �

� �T �. That is 1 � � � �T �. Hence, H(�) � �H(�) � �T �(1 �

ln �T �).
In general case where the weights are assigned randomly, c(B) �

�

r�B

c(r). Sup-

pose B � �r1� r2� � � � � rs� through the algorithm, and the target privilege set is T �

�p1� p2� � � � � p�T ��. So 1 � � � minB:min�costcover

�
r�B c(r)
c(B)

�
�T �(
�

pi�(N(R)�T) �i)�
pi�(N(R)�T) �i

� �T �.

That is 1 � � � �T �. Therefore, H(�) � �H(�) � �T �(1 � ln �T �).
Hence, the best performance ratio is H(�), and the worst one is �T �(1 � ln �T �).

4 Conclusion

In this paper, the least privilege principle is proved to be NP-hard, and an approximation
algorithm is given. Based on this algorithm, the user-role assignment can be eÆciently
done satisfying least privilege principle.

References

1. Barka, E., Sandhu, R.: Framework for role-based delegation models. In: Proceedings 16th
Annual Computer Security Applications Conference (ACSAC 2000), pp. 168–176. IEEE
Comput. Soc., Los Alamitos (2000)

2. Barka, E., Sandhu, R.: A role-based delegation model and some extensions. In: 23rd National
Information Systems Security Conference (2000)

3. Chen, L., Crampton, J.: Inter-domain role mapping and least privilege. In: SACMAT 2007:
Proceedings of the 12th ACM symposium on Access control models and technologies, pp.
157–162. ACM Press, New York (2007)

4. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, R.: Proposed nist standard for role-based access
control. ACM Trans. Inf. Syst. Secur. 4(3), 224–274 (2001)

5. Ke Xue, S.T., Ge, L.: Least-privilege-based access control model for job execution in grid.
In: ISDPE, pp. 301–303. IEEE Computer Society, Los Alamitos (2007)

Greedy Algorithm for Least Privilege in RBAC Model 545

6. Lai, C.: Quantitative enforcement of the principle of least privilege in rbac and an eÆcient
fault tolerant cryptosystem. PhD thesis (2007)

7. Nemhauser, G., Wolsy, L.: Interger and Combinatorial Optimization. Wiley, Chichester
(1999)

8. Schlegelmilch, J., Ste�ens, U.: Role mining with orca. In: Proceedings of the 10th ACM
Symposium on Access Control Models and Technologies, pp. 168–176. ACM Press, New
York (2005)

9. Vaidya, J., Atluri, V., Warner, J.: Roleminer: Mining roles using subset enumeration. In: CCS
2006: Proceedings of the 13th ACM Conference on Computer and Communications Security,
New York, United States. Association for Computing Machinery, pp. 144–153 (2006)

10. Wainer, J., Kumar, A.: A fine-grained, controllable, user-to-user delegation method in rbac.
In: Proceedings of the 10th ACM Symposium on Access Control Models and Technologies,
pp. 59–66. ACM Press, New York (2005)

11. Wan, P.-J., Du, D.-Z., Pardalos, P., Wu, W.: Greedy approximations for minimum submodular
cover with submodular cost. Computational Optimization and Applications 45(2), 463–474
(2010)

12. Xiaojun, M.: A boundary-based access control model for sensitive information. In: IFITA,
pp. 685–689. IEEE Computer Society, Los Alamitos (2009)

Towards Minimum Delay Broadcasting and

Multicasting in Multihop Wireless Networks

Maggie X. Cheng and Quanmin Ye

Department of Computer Science,
Missouri University of Science and Technology, Rolla, MO 65401

{chengm,qy4y4}@mst.edu

Abstract. End-to-end delay is defined as the total time it takes for a
single packet to reach the destination. End-to-end delay, along with end-
to-end throughput, is a determinant factor of the user-experienced data
transmission time. It is an important QoS metric for both unicast and
multicast applications. In this paper, we focus on the delay performance
of multicast and broadcast applications.

In multihop wireless networks, end-to-end delay is a result of many
factors including the length of a route (in hops) and the interference
level of the links along the route. In fact, the sum of interference of
links along a route is a good indicator of end-to-end delay. We propose
a linear programming based routing scheme to achieve the minimum
overall path interference. Through simulation, we show that the proposed
routing scheme is better than the well-known shortest path tree based
multicasting such as MOSPF.

1 Introduction

In multihop wireless networks with omnidirectional antennas, the signal from
one transmitter could reach many unintended receivers and interfere with the
reception of these neighbors. As a result, transmissions that are interfering with
each other cannot be scheduled to happen at the same time. Throughput and de-
lay both are affected by the interference in the environment, and they collectively
decide the user-experienced data transmission time for file transferring.

End-to-end delay is the time it takes for a single packet to reach its destination.
It is related to the number of hops on the routing path, and the interference level
on each link along the path. We assume a TDMA based scheduling scheme is
used at the MAC layer (The routing scheme proposed in this paper can work
with any MAC layer protocol). Without interference from other flows, it is easy
to see that a path of six hops introduces more delay than a path of four hops. As
shown in Fig. 1(a) and (b), if the path S-a-b-c-d-e-D is taken, it takes 6 time slots
to reach the destination; but if the path S-k-l-m-D is taken, it takes only 4 time
slots to reach the destination. To see how interference adversely affects delay,
we compare the end-to-end delay in Fig. 1(c) and (d). We assume there are 5
distinct slot numbers to use. If the FCFS (First-Come-First-Service) scheduling
policy is used, and a packet is scheduled to use the next available slot as soon

W. Wang, X. Zhu, and D.-Z. Du (Eds.): COCOA 2011, LNCS 6831, pp. 546–560, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Minimum Delay Broadcasting and Multicasting 547

as it arrives, then it takes only 5 time slots to reach the destination in Fig. 1(c),
but it takes 10 time slots to reach the destination in Fig. 1(d) because of the
interference from the other flow. The numbers on links are slot numbers.

S D

a b c d e

k l m
(a)

S D
k l m

a b c d e

(b)

S1 D1
1 2 3 4 5

(c)

S1 D1

S2 D2

1 3 5 2 4

52 4 1 3

(d)

Fig. 1. Delay changes with path length and the interference level on the path

To reduce the end-to-end delay, optimization techniques can be applied at
the network layer to achieve minimum-delay routing, or at the MAC layer to
achieve minimum-delay transmission scheduling. Our previous work [1] has ad-
dressed the scheduling problem for unicast traffic in multihop wireless networks.
In this paper, we address minimum-delay routing problem in multicasting and
broadcasting applications. The scope of this paper is on network layer only.

Since both the number of hops and the interference level of links on the path
can adversely affect end-to-end delay, the accumulated interference on a routing
path is a good indicator of end-to-end delay. The actual delay won’t be de-
termined until a MAC layer scheduling scheme is given. So instead of directly
minimizing delay, we aim to select the routing path that has the minimum ac-
cumulated interference. Our current work [2] showed that the path with smaller
accumulated interference leads to smaller delay for unicast traffic, and we con-
tinue to use it for multicasting/broadcasting.

To accurately account for the effect of interference on end-to-end delay, one
must consider how interference affects the underlying scheduling at the MAC
layer. Transmissions that are conflicting with each other cannot happen simul-
taneously, therefore they must be scheduled one after another, and this is the
main cause of delay. The number of time slots needed to schedule a group of
links is equal to the maximum number of mutual conflicting links in the group.
This is equivalent to find the maximum clique on a conflict graph [3]. However,
to find the maximum clique is an NP-hard problem [4]. In this paper, we used
an approximate linear constraint to replace the clique constraint and formulated
the multicasting/broadcasting problems as integer linear programs. The linear
constraint in this paper is tighter (more accurate) than the previously known
linear constraint in the literature and yet sufficiently captures the conflicting
relation among the links in a multihop wireless network.

The rest of the paper is organized as follows. In Section 2, we briefly survey
the most related work in minimum delay multicast and broadcast in wireless

548 M.X. Cheng and Q. Ye

networks; in Section 3 and Section 4, we present the mathematical optimization
models and algorithms for a series of multicast/broadcast routing problems.
We first address the single-source multicast problem, and then we extend it to
multiple sources. For the multi-source multicasting problem, we first present the
offline version, in which all sources and their destinations are given before the
routing decision is made and then the online version, in which a routing decision
has to be made before the next request arrives; in Section 5 we compare our
algorithms with the well known MOSPF (Multicast Open Shortest Path First)
multicast routing algorithm; in Section 6, we conclude the paper with discussion
and future works.

2 Related Work

Delay optimization is often considered at the MAC layer through transmission
scheduling or at the network layer through routing. Chatterjee et al. [5] presented
when the routing tree is given for a sensor network how to determine the time
slot of each node such that the maximum latency to send a packet from a node
to the sink is minimized. Chaporkar et al. [6] addressed the MAC layer multicast
problem as an instance of the stochastic shortest path problem and developed
an optimal transmission strategy for minimum delay multicasting. Sarkar et al.
[7] addressed the energy-delay tradeoff problem and formulated the problem as
a constrained optimization problem that achieves the minimum energy while
satisfying the constraint on average packet delay. Pereira et al. [8] addressed
delay optimization problem for a random access MAC protocol. They presented
an accurate analytical model to derive the optimal transmission probability of
each mobile node to minimize delay.

At the network layer, Sivrikaya et al. [9] presented an algorithm to compute
the minimum-delay path for networks with STDMA. Wan et al. [10] presented
approximation algorithms for minimum latency aggregation in sensor networks,
which is to compute an aggregation tree for sensor nodes so that the make-
span of the aggregation schedule is the minimum. Li et al. [11] studied how to
select the routing path with the minimum end-to-end delay in multi-radio wire-
less mesh networks and developed routing protocols for both single-channel and
multi-channel wireless mesh networks. Alzahrani and Woodward [12] proposed
a localized QoS routing algorithm and addressed delay optimization problem.

In addition to the stand-alone network layer and MAC layer solutions, cross-
layer joint design and optimization has become a solution to achieve the overall
optimal network performance. Cui et al. [13] crossed the network layer, the
MAC layer and the physical layer to optimize routing, TDMA slot assignment,
MQAM modulation rate and power on each link in order to minimize the worst-
case packet delay. The cross-layer optimization problems are approximated by
convex optimization problems and efficiently solved. Xia et al. [14] used a fuzzy
logic system to consider the joint design of the physical layer, the data link layer
and the application layer, and is proved to be effective in improving QoS and
energy efficiency. Pakdehi et al. [15] introduced cross layer design between the

Towards Minimum Delay Broadcasting and Multicasting 549

MAC layer and the physical layer to optimize the overall system throughput
while preserving packet average delay time. Xiao [16] investigated joint design of
network-coding and channel-coding and optimized delay performance through
the tradeoff design between the network layer and the physical layer. Wang
and Shroff [17] addressed the design of network codes and associated flow in
network coding in a cross-layer design paradigm, and implemented a distributed
algorithm for joint scheduling and rate-control. Ukil [18] proposed a cross-layer
framework for WiMAX networks to optimize the system performance as well as
maintaining the end-to-end QoS of individual users, and presented the cross-layer
resource allocation and scheduling scheme in the WiMAX system.

While the aforementioned work addressed multi-user cross-layer optimization,
Fu et al. [19] investigated solving the cross-layer optimization across time from a
single users perspective. To consider the dynamic nature of user traffic, efficient
online algorithm was proposed to solve it.

The proposed work largely depends on the understanding of the impact of
interference on end-to-end delay. Most previous work on interference modeling
has been used to address throughput optimization (e.g. [3, 20–24]). Jain et al.
[3] first used conflict graphs to model the effect of wireless interference under
a simplified protocol model; Qiu et al. [21] continued to use conflict graphs to
model interference under IEEE 802.11 interference model; Further in [22], Qiu et
al. proposed a physical interference model, which is based on measured interfer-
ence rather than distance between nodes. In addition to interference modeling,
Padhye et al. [25] focused on the estimation of interference and studied the effect
of interference on aggregated network throughput based on IEEE 802.11 model.
In our previous work [24], we proposed an interference model for directed graphs
based on a different MAC layer transmission scheme.

3 Broadcasting and Multicasting with Single Source

The paper is about broadcasting/multicasting among a group of wireless nodes.
Since each node has limited transmission range, multihop paths can be used
to connect two nodes. We first deal with broadcasting. The requirement for
broadcasting is that the source-to-destination delay is as small as possible, and
meanwhile, the receivers receive the information at roughly the same time. Since
we cannot guarantee that they receive at the same time, we want to minimize
the variation in receiving time.

3.1 Network-Wide Broadcasting

For a network of |V | nodes, one node is the source node, and all others are
destinations. The task is to compute a broadcasting tree rooted at the source
node. Since it is a network-wide broadcasting, all nodes are included in the tree.
The internal nodes of the tree are both forwarding nodes and destination nodes.

Let lij be the decision variable. lij = 1 indicates link (i, j) (from i to j) is on
the tree; lij = 0 otherwise. lij,v is a decision variable specific to each destination.

550 M.X. Cheng and Q. Ye

lij,v = 1 indicates link (i, j) is on the path to reach destination node v. lij = 1
as long as link (i, j) is on the routing path to one of the destinations. So the
broadcast tree is a collection of links {(i, j) : lij = 1}.

Let Iv denote the accumulated interference along the routing path from the
source to destination v. Since the actual delay won’t be determined until the
MAC layer scheduling algorithm is given, we use the accumulated interference
on the path as an indicator of delay. We wish to minimize the sum of the ac-
cumulated interference on the routing paths to all destinations, therefore the
objective function is: to minimize

∑
v∈V −{s}

Iv.

For some applications, in addition to reduce overall delay, it also requires that
the earliest receiving time and the latest receiving time be as close as possible.
This requirement is important when an action is expected upon receiving the
message. We wish that all receiving nodes take action at roughly the same time.
To this end, we introduce a weight factor α, a constant between 0 and 1, and
then the objective function is revised to:

Minimize
α

∑
v∈V −{s}

Iv + (1 − α)(maxI − minI) (1)

The first term is to minimize total delay, the second term is to minimize the
difference between the maximum delay and minimum delay, hence to minimize
delay variation.

The given wireless network is represented as G = (V, E). In the following,
node s is the source node, and s ∈ V . In order to facilitate the use of flow
conservation property, we create a node t as the virtual sink node. t is not a
real node in the wireless network, so t /∈ V . We add an edge from each node
v ∈ V − {s} to node t; but when we consider interference, we exclude the edges
{(v, t)}. Let Ni denote the neighbors of node i. Ni could possibly include the
virtual sink t.

The constraints for the optimization problem are:
Subject to∑
j∈Ns

lsj,v = 1, ∀v ∈ V − {s} (2a)

∑
j∈V

ltj = 0 (2b)

∑
i∈Nj

lij = 1, ∀j ∈ V − {s} (2c)

∑
j∈Ni

lij,v − lji,v = 0, ∀i ∈ V − {s}, ∀v ∈ V − {s} (2d)

Iv =
∑

(i,j)∈E

Iij · lij,v, ∀v ∈ V − {s} (2e)

Iij = lij +
∑

l∈Ni,l �=j,t

lil +
∑

k∈Nj ,k �=i,t

ljk +
∑

(k,l)∈N2ij ,k,l �=t

lkl, ∀(i, j), i, j �= t (2f)

Towards Minimum Delay Broadcasting and Multicasting 551

Iv ≤ maxI, ∀v ∈ V − {s} (2g)
Iv ≥ minI, ∀v ∈ V − {s} (2h)

lij ≥
∑

v∈V −{s}
lij,v/C, ∀link(i, j) (2i)

lij = {0, 1} ∀link(i, j) (2j)
lij,v = {0, 1} ∀link(i, j), ∀v ∈ V − {s} (2k)

(2a) and (2d) specify the flow conservation property for each flow from the
source to each destination v; (2b) specifies the property of the virtual sink node t,
i.e., no flow comes out from t; (2c) specifies the tree property so that each node
except the source has exactly one parent node; (2e) defines the accumulated
interference on the path to destination v; (2g) and (2h) define the maximum
and minimum interference among all paths; (2i) is to make sure that link (i, j)
is selected into the tree as long as one of the routing path chooses link (i, j).

(2f) is the key to model the interfering relationship in wireless networks. We
assume at the link layer, each data packet is acknowledged by the receiving
node, so all links within two hops of each other interfere with each other. This
is the IEEE 802.11 interference model and has been widely used in the research
community. In order to map the amount of interference to the MAC layer delay
resulting from a TDMA scheduling algorithm, we need to consider the maximum
number of mutually conflicting links of each link, because links mutually con-
flicting with each other cannot be scheduled to use the same slot, therefore the
total number of mutually conflicting links represent the number of slots needed
to schedule the group of links. However, this requires to find the maximum clique
on the conflict graph. To avoid solving the NP-hard clique problem, we replace
the constraint on a clique with (2f). It can be proven that (2f) sufficiently cap-
tures the mutual conflict relationship among links. If each link needs one slot,
then the RHS of (2e) indicates the sufficient number of slots needed to schedule
the links on the routing path.

Since both Iij and lij,v are variables, (2e) is not linear, so the above program is
not an integer linear program yet. We can use an iterative procedure to convert it
to an integer linear program. Let k be the index of iterations. In the beginning,
we initialize k = 1, and initial interference I0

ij = 1 for all links. At the kth

iteration, we do the following:

Step 1: In (2e), we use the value of Ik−1
ij from the k − 1th iteration to replace

variable Iij . The above nonlinear program becomes an integer linear program
(ILP);

Step 2: Solve the ILP using the LP-rounding based scheme to get routing in-
formation lij,v and lij . Let Iij denote the value of variable Iij . Update Iij

based on the new routing information;
Step 3: Set Ik

ij = Iij ;
Step 4: Update Iv using the new routing information lij,v and new interference

value Ik
ij , and calculate the objective value;

Step 5: k = k + 1.

552 M.X. Cheng and Q. Ye

Repeat steps 1-5 until the objective value converges or oscillates within a
threshold value.

Remarks:

1. In the beginning, we set I0
ij = 1 for all links, so the result is a shortest path

tree using interference as link weights.
2. It oscillates sometimes because we are using interference, a dynamic traffic

load indicator, as link weight. Oscillation is unavoidable just like in the Link
State algorithm. Recall that when we use traffic load as the metric, the Link
State routing algorithm oscillates ([26]).

3. To avoid or reduce oscillation, we can desynchronize routing as follows:
– At each iteration, only allow half (or other percentage of preference) of

the routing paths to update, and the other half use the current routes.
Let Iv,1/2 denote the median of all Iv’s. Select half of the destinations
V0.5 ⊂ V −{s} such that ∀v ∈ V0.5, Iv ≤ Iv,1/2. Before we enter the next
iteration, we plug in the the current values for lij,v for all v ∈ V0.5 and
use them as constants. It is shown by experiments that the algorithm
converges faster this way.

3.2 Multicasting

For multicasting, we use Ds to denote the group of destinations for source s.
From broadcasting to multicasting, a difficulty rises because some nodes may
not be included in the tree at all. The traditional methods that directly build
a spanning tree then prune for the multicast group will not lead to the optimal
solution. Instead, a mathematical model that directly minimizes the objective
function and guarantees a connected path from the source to each destination
will work much better.

The following is the optimization model for multicasting. At this point, we
can view broadcasting as a special case of multicasting, where the destination
group includes all nodes in V − {s}. A notable difference from the broadcasting
model to the multicasting model is from (2c) to (4c) and (4d). In (2c), each
node except the source has exactly one parent node; in (4c), each destination
node has exactly one parent node and all other nodes have at most one parent
node. The flow conservation property guarantees that there is a connected path
to reach each destination node v ∈ Ds.

Minimize
α
∑

v∈Ds

Iv + (1 − α)(maxI − minI) (3)

Subject to

Towards Minimum Delay Broadcasting and Multicasting 553

∑
j∈Ns

lsj,v = 1, ∀v ∈ Ds (4a)

∑
j∈V

ltj = 0 (4b)

∑
i∈Nj

lij = 1, ∀j ∈ Ds (4c)

∑
i∈Nj

lij ≤ 1, ∀j ∈ V − {s} − Ds (4d)

∑
j∈Ni

lij,v − lji,v = 0, ∀i ∈ V − {s}, ∀v ∈ Ds (4e)

Iv =
∑

(i,j)∈E

Iij · lij,v, ∀v ∈ Ds (4f)

Iij = lij +
∑

l∈Ni,l �=j,t

lil +
∑

k∈Nj ,k �=i,t

ljk +
∑

(k,l)∈N2ij ,k,l �=t

lkl, ∀(i, j), i, j �= t (4g)

Iv ≤ maxI, ∀v ∈ Ds (4h)
Iv ≥ minI, ∀v ∈ Ds (4i)

lij ≥
∑

v∈Ds

lij,v/C, ∀link(i, j) (4j)

lij = {0, 1} ∀link(i, j) (4k)
lij,v = {0, 1} ∀link(i, j), ∀v ∈ Ds (4l)

4 Multicasting with Multiple Sources

In the previous section, we addressed the multicast routing problem with a single
source node. A multicast session can be described as a tuple (s, Ds). In this
section, we address the optimal routing for multiple sessions. The optimization
obejective is the overall delay, or the difference between the latest receiving time
and the earliest receiving time, or any tradeoff between the two objectives. We
first present the offline version algorithm, and then we present the online version
algorithm.

4.1 Offline Algorithm

In the offline version, all multicast sessions are given before the routing decision
is made. We know the set of sources S, and the destination nodes Ds for each
source s ∈ S. To compute the optimal solution for multiple sessions, the routing

554 M.X. Cheng and Q. Ye

decision variables are defined with one more dimension— the first dimension
s indicates it is for source s. The interference variable Iij denotes the total
interference on link (i, j) including interference from all sources. Is,v denotes the
accumulated interference from source s to destination v.

Minimize ∑
s∈S

(
α
∑

v∈Ds

Is,v + (1 − α)(maxIs − minIs)

)
(5)

to ∑
j∈Ns

ls,sj,v = 1, ∀s ∈ S, ∀v ∈ Ds (6a)

∑
j∈V

ls,tj = 0, ∀s ∈ S (6b)

∑
i∈Nj

ls,ij = 1, ∀s ∈ S, ∀j ∈ Ds (6c)

∑
i∈Nj

ls,ij ≤ 1, ∀s ∈ S, ∀j ∈ V − {s} − Ds (6d)

∑
j∈Ni

(ls,ij,v − ls,ji,v) = 0, ∀s ∈ S, ∀i ∈ V − {s}, ∀v ∈ Ds (6e)

Is,v =
∑

(i,j)∈E

Iij · ls,ij,v, ∀s ∈ S, ∀v ∈ Ds (6f)

Iij =
∑
s∈S

(
ls,ij +

∑
l∈Ni,l �=j,t

ls,il +
∑

k∈Nj ,k �=i,t

ls,jk +
∑

(k,l)∈N2ij ,k,l �=t

ls,kl

)
,

∀(i, j), i, j �= t

(6g)

Is,v ≤ maxIs, ∀s ∈ S, ∀v ∈ Ds (6h)
Is,v ≥ minIs, ∀s ∈ S, ∀v ∈ Ds (6i)

ls,ij ≥
∑

v∈Ds

ls,ij,v/C, ∀s ∈ S, ∀link(i, j) (6j)

ls,ij = {0, 1} ∀s ∈ S, ∀link(i, j) (6k)
ls,ij,v = {0, 1} ∀s ∈ S, ∀link(i, j), ∀v ∈ Ds (6l)

In this formulation, (6a)–(6e) indicate that flow conservation is preserved in
each session from the source to each destination; and (6g) defines the total inter-
ference on link (i, j) from all flows. The above nonlinear program can be solved
by first converting to an ILP using the iterative method described in section
3 and LP-rounding based method to solve the ILP. As the number of concur-
rent sessions increases, the computation time increases. However, the number of
concurrent sessions in reality is a small number.

Towards Minimum Delay Broadcasting and Multicasting 555

4.2 Online Algorithm

In the online version, routing decision for a multicast session must be made
before the next request is received. Once the routing decision is made, it cannot
be changed later. But since the joining of new flows, interference on links may
be changed later, and therefore what is considered as optimal before may not be
optimal after the new session starts. We wish to find the online routing solution
that is as close to the offline optimal solution as possible.

Let s′ denote the source node for the current session, and Ds′ denote the des-
tination group for s′. The following mathematical optimization program solves
the routing problem for the current request with the objective of optimizing
the overall delay of all sessions. (8a)-(8e) specify that flow conservation must be
satisfied from s′ to each destination node v ∈ Ds′ . (8f)-(8i) update interference
for all sessions, not just for the current source s′. Note that in (8f) and (8g),
the routing information for the current source s′ is unknown, but for all other
sources s ∈ S − {s′} the routing information is known.

Minimize ∑
s∈S

(
α
∑

v∈Ds

Is,v + (1 − α)(maxIs − minIs)

)
(7)

Subject to

∑
j∈Ns′

ls′,s′j,v = 1, ∀v ∈ Ds′ (8a)

∑
j∈V

ls′,tj = 0 (8b)

∑
i∈Nj

ls′,ij = 1, ∀j ∈ Ds′ (8c)

∑
i∈Nj

ls′,ij ≤ 1, ∀j ∈ V − {s′} − Ds′ (8d)

∑
j∈Ni

(ls′,ij,v − ls′,ji,v) = 0, ∀i ∈ V − {s′}, ∀v ∈ Ds′ (8e)

Is,v =
∑

(i,j)∈E

Iij · ls,ij,v, ∀s ∈ S, ∀v ∈ Ds (8f)

Iij =
∑
s∈S

(
ls,ij +

∑
l∈Ni,l �=j,t

ls,il +
∑

k∈Nj ,k �=i,t

ls,jk +
∑

(k,l)∈N2ij ,k,l �=t

ls,kl

)
,

∀(i, j), i, j �= t

(8g)

Is,v ≤ maxIs, ∀s ∈ S, ∀v ∈ Ds (8h)
Is,v ≥ minIs, ∀s ∈ S, ∀v ∈ Ds (8i)

ls′,ij ≥
∑

v∈Ds′

ls′,ij,v/C, ∀link(i, j) (8j)

556 M.X. Cheng and Q. Ye

ls′,ij = {0, 1} ∀link(i, j) (8k)
ls′,ij,v = {0, 1} ∀link(i, j), ∀v ∈ Ds′ (8l)

The program defined by (7)-(8l) is still nonlinear due to the nonlinear con-
straint in (8f). For the first request, we solve it in the same way as in the single
source multicasting in section 3. For subsequent requests, the interference caused
by previous requests is used as input and added to the total interference, so the
problem remains to solve becomes the same problem as a single source multi-
casting problem, and the iterative algorithm presented in section 3 is applied
again.

5 Simulation

In the following simulations, we choose a wireless network of 30 nodes, randomly
deployed in a region of 1500× 1500. Transmission range is properly set to make
sure the network is connected. The source node is randomly chosen. For broad-
cast, all other nodes are destinations; for multicast, 5 nodes are randomly chosen
to be the destination nodes.

5.1 Broadcasting and Multicasting with a Single Source

We first compare the proposed method with the MOSPF method for single
source broadcasting and multicasting. MOSPF uses the shortest path (in hops)
from the source to each destination, so the multicast tree is the superposition of
shortest paths originated from a single source.

We compare our method with MOSPF on the total interference and the differ-
ence between the most interfered path and the least interfered path. The results
in Fig. 2 show that the proposed method achieves smaller total interference with
smaller difference between the largest value and the smallest value, which implies
the overall delay is smaller, and the gap between the first receiving time and the
last receiving time is also smaller than in MOSPF.

5.2 Multicasting with Multiple Sources

In the second simulation, we extend to multicasting with multiple sources. We
first test the offline version algorithm based on the model in Section 4.1, then
we test the online version based on the model in Section 4.2. Both are compared
with MOSPF.

Offline Algorithm. In the offline version, MOSPF uses hop counts as routing
metric. The proposed LP-offline algorithm uses the model in Section 4.1 to com-
pute the routing solution. Fig. 3 shows the total interference and interference
difference as α changes from 0 to 1.

Towards Minimum Delay Broadcasting and Multicasting 557

Online Algorithm. The online version MOSPF would choose the shortest path
for each destination in the current session. The proposed online algorithm would
choose the best routes based on the optimization model in Section 4.2. There are
5 multicast sessions. In each multicast session, 5 destination nodes are randomly
chosen from the network. Fig. 4 shows the total interference and interference
difference in the order of arrival.

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.2 0.4 0.6 0.8 1

T
ot

al
 In

te
rf

er
en

ce

Alpha

LP
MOSPF

(a) Total Interference

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 in

 In
te

rf
er

en
ce

Alpha

LP
MOSPF

(b) MaxI-MinI

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

T
ot

al
 In

te
rf

er
en

ce

Alpha

LP
MOSPF

(c) Total Interference

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 in

 In
te

rf
er

en
ce

Alpha

LP
MOSPF

(d) MaxI-MinI

Fig. 2. With one source node, (a) and (b)Network-wide broadcasting, (c) and (d)
Multicasting

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 0.2 0.4 0.6 0.8 1

T
ot

al
 In

te
rf

er
en

ce

Alpha

LP
MOSPF

(a)

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 in

 In
te

rf
er

en
ce

Alpha

LP
MOSPF

(b)

Fig. 3. Offline algorithms for multiple sessions, (a) Total Interference, (b) Interference
Difference (Max-Min)

558 M.X. Cheng and Q. Ye

 0

 500

 1000

 1500

 2000

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 In

te
rf

er
en

ce

Number of Multicast Sessions

LP
MOSPF

(a)

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5

D
iff

er
en

ce
 in

 In
te

rf
er

en
ce

Number of Multicast Sessions

LP
MOSPF

(b)

Fig. 4. Online algorithms for multiple sessions, (a) Total Interference, (b) Interference
Difference (Max-Min)

6 Conclusion

End-to-end delay, along with end-to-end throughput, is a determinant factor of
the user-experienced data transmission time. It is an important QoS metric for
both unicast and multicast applications. In this paper, we focus on the delay
performance of multicast and broadcast applications. We address the question
of how to minimize overall delay and variation of delay among multicast re-
ceivers in multihop wireless networks. We first relate the end-to-end delay to
the interference on the routing path, and then use mathematical optimization to
compute the routing solution for multicast. To effectively estimate the impact of
wireless interference on delay, we propose to use a sufficient condition in place
of the NP-hard clique condition in the integer linear program, developed offline
and online algorithms to address multisession multicast communication problem.
Through simulation, we show that the proposed routing scheme is better than
the well-known shortest path tree based multicasting algorithm such as MOSPF.

Acknowledgement. Maggie Cheng and Quanmin Ye are supported in part by
National Science Foundation under grant CNS-0841388.

References

1. Cheng, M.X., et al.: Link activity scheduling for minimum end-to-end latency in
multihop wireless sensor networks (2011) manuscript

2. Cheng, M.X., et al.: Minimum delay routing in multihop wireless networks (2011)
manuscript

3. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-
hop wireless network performance. In: MobiCom 2003: Proceedings of the 9th
annual international conference on Mobile computing and networking, pp. 66–80.
ACM, New York (2003)

4. Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of
NP-Completeness. FREEMAN, New York (1974)

Towards Minimum Delay Broadcasting and Multicasting 559

5. Chatterjee, P., Das, N.: A cross-layer distributed tdma scheduling for data gather-
ing with minimum latency in wireless sensor networks. In: Wireless VITAE 2009,
pp. 813–817 (May 2009)

6. Chaporkar, P., Sarkar, S.: Minimizing delay in loss-tolerant mac layer multicast.
In: Third International Symposium on Modeling and Optimization in Mobile, Ad
Hoc, and Wireless Networks. WIOPT 2005, pp. 358–367 (April 2005)

7. Sarkar, M., Cruz, R.L.: A mac layer power management scheme for efficient energy
delay tradeoff in a wlan. The International Journal of Computer and Telecommu-
nications Networking 51, 1–6 (2007)

8. Pereira, M., Bernardo, L., Dinis, R., Oliveira, R., Carvalho, P., Pinto, P.: Delay
optimization on a p-persistent mac protocol for a multi-packet detection in sc-fde
system. In: Wireless Communications and Networking Conference (WCNC), pp.
1–6. IEEE, Los Alamitos (April 2010)

9. Sivrikaya, F., Yener, B.: Minimum delay routing for wireless networks with stdma.
Wireless Networks 15(6), 755–772 (2007)

10. Wan, P.J., Huang, S.C.H., Wang, L., Wan, Z., Jia, X.: Minimum-latency aggre-
gation scheduling in multihop wireless networks. In: MobiHoc 2009, pp. 185–194
(2009)

11. Li, H., Cheng, Y., Zhou, C., Zhuang, W.: Minimizing end-to-end delay: A novel
routing metric for multi-radio wireless mesh networks. In: INFOCOM 2009, pp.
46–54. IEEE, Los Alamitos (2009)

12. Alzahrani, A., Woodward, M.: End-to-end delay in localized qos routing. In:11th
IEEE Singapore International Conference on Communication Systems, ICCS 2008,
pp. 1700–1706 (November 2008)

13. Cui, S., Madan, R., Goldsmith, A., Lall, S.: Cross-layer energy and delay optimiza-
tion in small-scale sensor networks. IEEE Transactions on Wireless Communica-
tions 6(10), 3688–3699 (2007)

14. Xia, X., Ren, Q., Liang, Q.: Cross-layer design for mobile ad hoc networks: energy,
throughput and delay-aware approach. In: Wireless Communications and Network-
ing Conference, WCNC 2006, vol. 2, pp. 770–775. IEEE, Los Alamitos (2006)

15. Pakdehi, A., Ashtiani, F.: Cross-layer optimization of adaptive modulation and
coding preserving packet average delay time. In: IEEE GLOBECOM 2008, De-
cember 4, pp. 1–5 (2008)

16. Xiao, M.: Cross-layer design of rateless random network codes for delay optimiza-
tion. In: IEEE International Conference on Communications ICC 2010, pp. 1–6
(May 2010)

17. Wang, C.C., Shroff, N.: On wireless network scheduling with intersession network
coding. In: 42nd Annual Conference on Information Sciences and Systems, CISS
2008, pp. 30–35 (March 2008)

18. Ukil, A.: Cross-layer optimization in qos aware next generation wireless networks.
In: 7th International Conference on Information, Communications and Signal Pro-
cessing, ICICS 2009, pp. 1–5 (December 2009)

19. Fu, F., van der Schaar, M.: Cross-layer optimization with complete and incomplete
knowledge for delay-sensitive applications. In: 17th International Packet Video
Workshop, PV 2009, pp. 1–10 (May 2009)

20. Rangwala, S., Gummadi, R., Govindan, R., Psounis, K.: Interference-aware fair
rate control in wireless sensor networks. In: SIGCOMM 2006: Proceedings of the
2006 conference on Applications, technologies, architectures, and protocols for com-
puter communications, pp. 63–74. ACM, New York (2006)

560 M.X. Cheng and Q. Ye

21. Li, Y., Qiu, L., Zhang, Y., Mahajan, R., Zhong, Z., Deshpande, G., Rozner, E.:
Effects of interference on wireless mesh networks: Pathologies and a preliminary
solution. In: HotNets 2007 (November 2007)

22. Qiu, L., Zhang, Y., Wang, F., Han, M.K., Mahajan, R.: A general model of wireless
interference. In: MobiCom 2007: Proceedings of the 13th annual ACM international
conference on Mobile computing and networking, pp. 171–182. ACM, New York
(2007)

23. Li, Y., Qiu, L., Zhang, Y., Mahajan, R., Rozner, E.: Predictable performance
optimization for wireless networks. In: SIGCOMM 2008: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication, pp. 413–426. ACM, New
York (2008)

24. Cheng, M., Gong, X., Cai, L.: Link rate allocation under bandwidth and energy
constraints in sensor networks. In: Global Telecommunications Conference, IEEE
GLOBECOM 2008, December 4-30, pp. 1–5. IEEE, Los Alamitos (2008)

25. Padhye, J., Agarwal, S., Padmanabhan, V.N., Qiu, L., Rao, A., Zill, B.: Estimation
of link interference in static multi-hop wireless networks. In: IMC 2005: Proceed-
ings of the 5th ACM SIGCOMM conference on Internet Measurement, pp. 28–28.
USENIX Association, Berkeley (2005)

26. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach. Addison-
Wesley, Reading (2010)

Author Index

Abdullah, Salwani 31
Achrekar, Harshavardhan 510
Althaus, Ernst 343
Alzaqebah, Malek 31

Bazgan, Cristina 126
Becker, Bernd 343
Blin, Guillaume 272

Chen, Cindy 510
Chen, Lin 399
Chen, Wenping 179
Chen, Zhixiang 1, 16
Cheng, Eddie 411
Cheng, Maggie X. 546
Cheng, Yukun 262
Cheung, Yam Ki 448
Cui, Peng 480, 491

Daescu, Ovidiu 448
Ding, Liang 287
Ding, Wei 98
Du, Hongwei 207, 537
Duan, Zhenhua 192, 464
Dumitriu, Daniel 343

El Shawi, Radwa 247

Fan, Neng 500
Fang, Zheng 510
Fertin, Guillaume 272
Fu, Bin 1, 16, 74, 287, 299

Gao, Xiaofeng 74
Gudmundsson, Joachim 247

He, Jia 192
Hong, Yi 179
Huang, Hejiao 537
Huang, Xiaohui 113

Ito, Hiro 311

Jiang, Haitao 299
Jiang, Wei 424

Ke, Qiu 411
Kesh, Deepanjan 357
Kim, Seog-Jin 156
Kupferschmid, Stefan 343

Lavor, Carlile 322
Lee, Jon 322
Li, Deying 179, 207
Li, Fei 52, 222
Li, You 510
Liberti, Leo 322
Lin, Chun-Cheng 387
Liu, Benyuan 510
Liu, Hui 207
Liu, Jinling 537
Liu, Ming 46, 64
Liu, Qinghai 113
Liu, Tian 424, 480, 491
Liu, Yang 16, 435
Liu, Zewen 179, 207
Lu, Xianling 207
Lu, Zaixin 74

Masson, Benôıt 322
Mehta, Shashank K. 357
Mohamed-Babou, Hafedh 272
Mucherino, Antonio 322

Nagamochi, Hiroshi 163

Pardalos, Panos M. 500
Park, Won-Jin 156
Poon, Sheung-Hung 387

Rusu, Irena 272

Saitoh, Toshiki 311
Schweller, Robert 16
Shen, Zhizhang 411
Sikora, Florian 272
Stewart, Iain A. 82

Takahashi, Shigeo 387
Toubaline, Sonia 126

Uehara, Ryuhei 311
Umesato, Takuya 311

562 Author Index

Vanderpooten, Daniel 126
Vialette, Stéphane 272

Wang, Chaoyi 491
Wang, Jie 510
Wang, Lu 46
Wang, Qing 435
Wu, Bang Ye 234
Wu, Hsiang-Yun 387
Wu, Weili 74

Xiao, Mingyu 163
Xu, Jinhui 372
Xu, Ke 424, 480, 491
Xu, Yinfeng 46, 64
Xue, Guoliang 98

Yang, Boting 141, 299

Ye, Quanmin 546
Yen, Hsu-Chun 387
Yu, Sheng 64

Yu, Wei 262

Zhang, Guochuan 262, 399
Zhang, Nan 464
Zhang, Peng 525
Zhang, Zhao 113

Zheng, Feifeng 46, 64
Zheng, Qipeng P. 500
Zhu, Binhai 287, 299

Zhu, Yongding 372
Zivanic, Marko 448

	Title
	Preface
	Organization
	Table of Contents
	The Complexity of Testing Monomials in Multivariate Polynomials
	Introduction
	Notations and Definitions
	 Polynomials
	 Polynomials
	2 Polynomials
	2 Polynomials vs. 2 and Polynomials
	Testing c-Monomials
	Parameterized Algorithms
	References

	Algorithms for Testing Monomials in Multivariate Polynomials
	Introduction
	Overview
	Contributions and Methods

	Preliminaries
	Notations and Definitions
	The Group Algebra F[Zpk]

	Randomized Testing of p-Monomials
	Derandomization
	m2t k3 Polynomials
	W[1]-Hardness
	References

	Hybrid Artificial Bee Colony Search Algorithm Based on Disruptive Selection for Examination Timetabling Problems
	Introduction
	Problem Description and Formulation
	Problem I
	Problem II

	Artificial Bee Colony Algorithm (ABC)
	Basic Artificial Bee Colony (ABC) Algorithm
	Onlooker Bees Selection Process
	Disruptive Selection Strategy

	The Proposed Algorithm
	Neighborhood Search Operations
	Self-adaptive Method for Neighbouring Search
	A Local Search Algorithm (Simulated Annealing)
	Constructive Heuristic
	Improvement Algorithm

	Simulation Results
	Problem I
	Problem II

	Conclusion and Future Work
	References

	Heuristics for Parallel Machine Scheduling with Deterioration Effect
	Introduction
	Problem Statement and Notations
	Heuristic LIST
	Heuristic LDR
	References

	A Comprehensive Study of an Online Packet Scheduling Algorithm
	Model Description
	Algorithm MG
	Analysis
	The General Setting
	The Agreeable Deadline Setting
	The Anti-agreeable Deadline Setting
	The Agreeable Value Setting
	The Anti-agreeable Value Setting
	The Agreeable Deadline/Value Setting
	The Anti-Agreeable Deadline/Value Setting
	The Agreeable Slack-Time/Value Setting
	The Anti-Agreeable Slack-Time/Value Setting

	References

	Optimal Policy for Single-Machine Scheduling with Deterioration Effects, Learning Effects, Setup Times, and Availability Constraints
	Introduction
	Problem Definition and Notations
	Optimality of SPT
	Conclusion
	References

	Algebraic Algorithm for Scheduling Data Retrieval in Multi-channel Wireless Data Broadcast Environments
	Introduction
	Previous Works
	Methodology
	Problem Description
	Algorithm

	Conclusions
	References

	Hamiltonian Cycles through Prescribed Edges in k-Ary n-Cubes
	Introduction
	Basic Definitions and Results
	The Main Result
	Conclusions
	References

	A Fast Parallel Algorithm for Finding a Most Reliable Source on a General Ring-Tree Graph with Unreliable Edges
	Introduction
	Definitions and Notations
	Fundamental Preliminaries
	The Parallel Algorithm
	An MRS on a Ring
	Dynamic Programming Algorithm
	Parallel Algorithm

	Concluding Remarks
	References

	Restricted Edge Connectivity of Harary Graphs
	Introduction
	Preliminaries
	Harary Graph of the First Type
	Harary Graphs of the Second or the Third Type
	Concluding Remark
	References

	Efficient Algorithms for Finding the k Most Vital Edges for the Minimum Spanning Tree Problem
	Introduction
	Basic Concepts and Preliminary Results
	An Explicit Enumeration Algorithm for Finding the k Most Vital Edges
	An Implicit Enumeration Algorithm for Finding the k Most Vital Edges
	Lower Bounds
	Upper Bound
	Branching Strategy

	A Mixed Integer Programming Formulation for Finding the k Most Vital Edges
	Computational Results
	-Approximate Algorithm
	Conclusions
	References

	Euclidean Chains and Their Shortcuts
	Introduction
	Preliminaries
	Properties
	Simple Shortcuts
	Node-0 Shortcuts
	Node-1 Shortcuts
	Shortcut Ratio
	Algorithms
	Concluding Remarks
	References

	List Dynamic Coloring of Sparse Graphs
	Introduction
	List Dynamic Coloring of Sparse Graphs
	List Dynamic Chromatic Number of Planar Graphs
	References

	Further Improvement on Maximum Independent Set in Degree-4 Graphs
	Introduction
	NotationSystem
	Reduction Rules
	Branching Rules
	The Algorithm for MIS4
	TheAnalysis
	Preliminaries
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Putting All Together

	Concluding Remarks
	References

	Approximation Algorithms for Minimum Energy Multicast Routing with Reception Cost in Wireless Sensor Networks
	Introduction
	Related Work
	Network Model and Problem Specification
	 Algorithms for the MEM-R Problem
	Fixed Power Level
	l(v) Power Levels

	Conclusion
	References

	Public Communication Based on Russian Cards Protocol: A Case Study
	Introduction
	An Improved Russian Cards Protocol
	Correction of the Algorithm
	Improvement of the Algorithm

	A Case Study
	Related Works
	Conclusion
	References

	Minimum Latency Data Aggregation in Wireless Sensor Network with Directional Antenna
	Introduction
	Related Work
	Network Model and Directional Antenna Model
	Directional Antenna Model
	Network Model
	Problem Definition

	Algorithm
	Constructing Initial Data Aggregation Tree
	Scheduling for the Directional Data Aggregation

	Performance Analysis
	Time Complexity
	Algorithm Approximation Ratio

	References

	A Near-Optimal Memoryless Online Algorithm for FIFO Buffering Two Packet Classes
	Introduction
	Algorithm
	The Idea
	A Memoryless Online Algorithm for the Two-Valued Model

	Analysis
	Related Work and Open Problems
	References

	On the Maximum Locally Clustered Subgraph and Some Related Problems
	Introduction
	Preliminaries
	Notations and Definitions
	Problem Modeling

	The MCNE Problem
	The MLCS Problem
	The NP-Hardness
	Polynomial Time Solvable Cases
	Algorithms for Graphs with Non-overlapped Maximal Cliques

	Conclusion
	References

	Quickest Paths in Anisotropic Media
	Introduction
	Problem Formulation
	Previous Work
	Our Contribution

	An Efficient (1+) Approximation Algorithm
	Placing Steiner Points
	Constructing the Graph
	Bounding the Error of the Approximation

	Shortest Path Queries
	The Preprocessing and the Query
	Approximation Bound
	General Case

	Concluding Remarks
	References

	Mechanisms for Obnoxious Facility Game on a Path
	Introduction
	Preliminaries
	Deterministic Mechanisms
	Randomized Mechanisms
	Concluding Remarks
	References

	Algorithmic Aspects of Heterogeneous Biological Networks Comparison
	Introduction
	Preliminaries
	Partition Version of k-DAGCC
	Cover Version of k-DAGCC
	Conclusion
	References

	Minimum Interval Cover and Its Application to Genome Sequencing
	Introduction
	A Greedy Approximation Algorithm for the c-Interval Cover Problem
	Complexity of the c-Interval Cover Problem
	Experimental Results
	Implementation Details
	Results

	Conclusion
	References

	Exponential and Polynomial Time Algorithms for the Minimum Common String Partition Problem
	Introduction
	An O(2nnO(1)) Time Algorithm for General Cases
	Polynomial Time Algorithm for Almost All Cases
	Algorithms for the Lower Bound of MCSP
	Concluding Remarks
	References

	Complexity of the Stamp Folding Problem
	Introduction
	Preliminaries
	NP-Completeness
	Tractability for Bounded k
	Concluding Remarks
	References

	On the Number of Solutions of the Discretizable Molecular Distance Geometry Problem
	Introduction
	The Formal Definition of the Discretizable Molecular Distance Geometry Problem
	Sphere Intersections and Reflections
	Branch-and-Prune

	Geometry in BP Trees
	Symmetry and Number of Solutions
	Counterexamples
	Disproving the ``Power of Two'' Conjecture
	Necessity of Immediate Predecessors

	Conclusion
	References

	Integration of an LP Solver into Interval Constraint Propagation
	Introduction
	Integration of an LP Solver into iSAT
	Introducing iSAT
	Integration of an LP Solver

	Solving the Linear Programs and Computation of Small Infeasible Subsets
	Experiments
	Comparison of Different LP Solving Techniques
	Detailed Evaluation of Our Certifying Approach
	Summary

	Conclusion
	References

	A Saturation Algorithm for Homogeneous Binomial Ideals
	Introduction
	Problem Description
	Related Work in Literature
	Our Approach
	Refined Problem Statement

	Chain and Chain-Binomial
	Decomposition into Chains
	Reduction of U-Binomials
	Pseudo-Gröbner Basis
	Saturation with Respect to xi
	Final Algorithm
	Preliminary Experimental Results
	References

	Improved Algorithms for Farthest Colored Voronoi Diagram of Segments
	Introduction
	Farthest Colored Voronoi Diagram of Segments
	Farthest-Polygon Voronoi Diagram
	Conclusion
	References

	One-and-a-Half-Side Boundary Labeling
	Introduction
	Preliminaries
	The Models for 1.5-Side Boundary Labeling
	Problem Setting

	Uniform-Label Cases
	Nonuniform-Label Cases
	NP-Hardness
	Pseudo-polynomial Time Algorithm
	Fixed-Parameter Algorithm

	Conclusion
	References

	Approximation Algorithms for a Bi-level Knapsack Problem
	Introduction
	Preliminary and Problem Formulation
	The Competitive Version
	Algorithm Algc
	Analysis of the Algorithm
	A Lower Bound

	The Beneficial Version with W1>W2
	Algorithm Algm1
	Analysis of the Algorithm
	A Lower Bound

	The Beneficial Version with W1W2
	A Subproblem and the Corresponding Algorithm
	Algorithm Algm2
	Analysis of the Algorithm
	A Lower Bound

	Conclusions
	References

	On the Surface Area of the Asymmetric Twisted Cube
	Introduction
	Twisted Cube and Its Routing
	A General Surface Area Result for the Twisted Cube
	Surface Areas at Specific Centers for the Twisted Cube
	Comparison of the Twisted Cube and Other Variants
	Concluding Remarks
	References

	Tractable Feedback Vertex Sets in Restricted Bipartite Graphs
	Introduction
	Definitions
	The Algorithm
	The Analysis
	Open Problem
	References

	On the Partition of 3-Colorable Graphs
	Introduction
	Preliminaries
	Parameterized Algorithm
	Two Properties When G[V-SB-SI] Is a Union of Disjoint Paths/Cycles
	Main Algorithm

	Future Work
	References

	Kinetic Red-Blue Minimum Separating Circle
	Introduction
	Preliminaries
	General Approach
	The Minimum Separating Circle with One Mobile Blue Point
	The Minimum Separating Circle with One Mobile Red Point
	The Minimum Separating Circle with Multiple Moving Points
	References

	A Semantic Model for Many-Core Parallel Computing
	Introduction
	Preliminaries
	Projection Temporal Logic
	Modeling, Simulation and Verification Language

	Cylinder Computation Model
	Operational Semantics of CCM
	Implementation of CCM in MSVL Interpreter
	Case Study: A Word Processor
	Related Work
	Conclusions
	References

	On Unique Games with NegativeWeights
	Introduction
	Preliminaries
	GUGP-NWA
	GUGP-PWT()
	Parallel Repetition of Max 3-Cut
	Unique Game Conjecture on GUGP-PWT()

	Discussions
	References

	A Note on Treewidth in Random Graphs
	Introduction
	Preliminaries
	The Upper Bound
	The Lower Bound
	Application
	Open Problems
	References

	On the Two-Stage Stochastic Graph Partitioning Problem
	Introduction
	The Model of the Two-Stage Stochastic Graph Partitioning Problem
	Equivalent Integer Linear Programming Formulations
	Experimental Results
	Conclusions
	References

	A Spatio-Temporal Approach to the Discovery of Online Social Trends
	Introduction
	Online Social Networks Data Collection
	Design of OSN Data Collection Engines

	The Spatio-Temporal Database System
	Database Design
	Access Methods
	Query Platform

	Predicting Flu Trends Using Twitter Data: A Case Study
	Data Sets
	Twitter Improves Prediction of Influenza Data

	Summary
	References

	A New Approximation Algorithm for the Selective Single-Sink Buy-at-Bulk Problem in Network Design
	Introduction
	Preliminaries
	LP Formulation
	Algorithm
	A Simple Greedy Algorithm
	A Bicriteria LP-Rounding Algorithm
	An O(q)-Approximation Algorithm

	References

	Greedy Algorithm for Least Privilege in RBAC Model
	Introduction
	Least Privilege User-Role Assignment Problem
	Problem Formulation
	Minimum Submodular Cover with Submodular Cost

	Greedy Algorithm
	Parameter Definition
	Algorithm
	Results
	Performance Analysis

	Conclusion
	References

	Towards Minimum Delay Broadcasting and Multicasting in Multihop Wireless Networks
	Introduction
	Related Work
	Broadcasting and Multicasting with Single Source
	Network-Wide Broadcasting
	Multicasting

	Multicasting with Multiple Sources
	Offline Algorithm
	Online Algorithm

	Simulation
	Broadcasting and Multicasting with a Single Source
	Multicasting with Multiple Sources

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

