
Chapter 2
The MOTS Workbench

Manfred Stede and Heike Bieler

Abstract. Standardization of processing frameworks for text documents has been
an important issue for language technology for quite some time. This paper states
the motivation for one particular framework, the MOTS workbench, which has been
under development at Potsdam University since 2005 for purposes of research and
teaching. We describe the overall architecture, the analysis modules that have been
integrated into the workbench, and the user interface. Finally, after five years of
experiences with MOTS, we provide a critical evaluation of the design decisions
that were taken and draw conclusions for future development.

2.1 Introduction and Overview

The development of general frameworks for quickly configuring natural language
processing (NLP) applications started in the 1990s, with the release of GATE in
1996 being the most significant first milestone [6]. Nowadays, several of such
frameworks are in successful use; we will provide a brief overview in Section
2.2. Our aim in this paper is to provide a description and critical review of our
own framework, which has been implemented at Potsdam University since 2005.
The MOTS (MOdular Text processing System) Workbench was devised as a frame-
work1 for integrating diverse NLP modules by means of a specific standoff XML

Manfred Stede · Heike Bieler
Applied Computational Linguistics, EB Cognitive Science, University of Potsdam,
Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
e-mail: {stede,bieler}@uni-potsdam.de

1 We use the term ‘framework’ in the same sense as [5]: a software infrastructure that sup-
ports the effective re-use of services for a particular domain (here: language processing).
In Computer Science, a more specific term emphasizing the integration of heterogeneous
components is ‘middleware’. When graphical tools for configuring and testing systems
are being added, the framework turns into a ‘development system’; MOTS provides a first
step here but does not go all the way, as will become clear later.

A. Mehler et al. (Eds.): Modeling, Learning, and Proc. of Text-Tech. Data Struct., SCI 370, pp. 15–34.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{stede,bieler}@uni-potsdam.de

16 M. Stede and H. Bieler

format that serves as “interlingua” or “pivot” format to mediate between modules.
An important goal in designing this format (called PAULA for ‘Potsdamer Aus-
tauschformat für Linguistische Annotation’) was to serve both the worlds of manual
annotation and of automatic processing:

• Manual annotation, in our setting, primarily serves the needs of a large collabo-
rative research center on information structure (IS), where data of very different
kinds and in different languages was hand-annotated with different types of in-
formation that can support IS research. Heterogeneity thus is a key concept here.
The different annotation needs are best suited by different existing tools, which
can be used to label the same data from different viewpoints. The challenge
then is to merge the output formats of the annotation tools into a single linguistic
database, where the data can be queried across the layers in order to check for
correlations of features. This setting is described in detail in [4]

• Automatic processing, the focus of the present paper, was conceived in the same
way: analysis modules contribute separate layers of annotation to a text docu-
ment, and – in addition – a module in charge of a “complex” task should be able
to access the results of modules that have already solved a less complex task.
Thus layers of analysis are being stacked upon each other, and each layer can be
stored in the PAULA format.

The basic idea therefore was to realize a layer-based annotation of text data, where
layers might either be independent or in their annotations refer to other layers, and
where the origin of the layer (manual annotation or automatic analysis) would not
matter. Our emphasis on an XML-based pivot format results on the one hand from
the need to make the output of manual annotation tools (such as MMAX2, EX-
MARaLDA, RSTTool, ANNOTATE) inter-operable, and on the other hand from
the desire to integrate automatic analysis tools written in arbitrary programming
languages – at present, MOTS includes modules written in Java, C, C++, Lisp, Perl,
and Python.

A common problem for integrative approaches of the kind described here is to
ensure that all annotations refer correctly to the intended spans of text. Our ap-
proach is to submit each incoming document to a preprocessing phase where sen-
tence splitting and tokenisation is performed, and the basic layout of the document
represented in a light-weight XML “logical document structure” format (henceforth
called ‘LDOC’). The sentence and token boundaries are then enforced for all other
modules – which can be difficult to do when integrating external modules that per-
form their own tokenization, thus generating the need for synchronization. One ad-
vantage of the standardized LDOC base format is that different types of documents
(XML, HTML, plain text) can all be translated to LDOC during preprocessing, so
that all subsequent analysis modules are not being bothered by idiosyncratic data
formats.

The first task that MOTS was designed for was automatic text summarization.
Our user interface thus was given the job to not only show all the intermediate
analysis results (for debugging purposes) but also to allow for a flexible visual-
ization of summaries (extracts) of different lengths. From the outset, we targeted a

2 The MOTS Workbench 17

web-based UI, as development of the text summarizer involved external project part-
ners who had to have quick access to our results. This decision was also supported
(and proved very helpful) by the desire to use MOTS also for teaching purposes:
In classes on NLP and text analysis, results can be shown and compared, and new
modules implemented by students be integrated into the framework with relatively
little effort. In this sense, we see MOTS as a ‘workbench’: a flexible environment
for combining NLP modules and showing results. However, MOTS was not con-
ceived as a framework for building real-time or even industry-standard applications
– which is why we use the term ‘NLP workbench’ rather than ‘Language Engineer-
ing (LE) workbench’.

Having described the “starting position” of the MOTS development, we now
turn first to a brief review of related approaches along with a comparison to MOTS
(section 2.2). Afterwards, we provide a description of the PAULA XML format
(section 2.3) and give overviews of the overall architecture of the processing pipeline
(section 2.4), the analysis modules we have integrated so far (section 2.5), and the
user interface (section 2.6). Finally, we mention some ongoing work on MOTS, and
provide a critical evaluation of the design decisions in the light of several years of
experience with the system (section 2.7).

2.2 Background: Natural Language Processing Frameworks

The central task of an NLP framework is to support an effective re-use of processing
modules – usually called components when part of a framework – and possibly also
of linguistic (data) resources, and their flexible re-combination to systems made up
of a particular set of components. Thus, a component would be in charge of a partic-
ular subtask, and the composition of the subtasks to the overall application is being
designed with the help of the framework, which ensures the inter-operability of com-
ponents. One of the first major steps to the design of such frameworks for language
processing was the TIPSTER architecture [13], conceived at the time primarily for
the task of information extraction. In general, we can distinguish between frame-
works aiming primarily at document processing and handling rather diverse types
of information, and those focusing more specifically on linguistic analysis, empha-
sizing the role of unifying formalisms for representing information and performing
computations. A recent example for the latter is ‘Heart of Gold’ [19]; our focus in
this paper, however, is on the former group.

When devising GATE2, [5] characterized the basic design decision as one be-
tween the ‘embedded’ and the ‘referential’ type of annotation (p. 98), where the
former was represented by SGML “inline” markup in the document itself, and the
latter by a database model where columns in the table represent annotations refer-
ring to sequences of characters in the source document – i.e., the TIPSTER ap-
proach. GATE adopted the database solution, mainly because it seemed to provide

2 http://gate.ac.uk

http://gate.ac.uk

18 M. Stede and H. Bieler

more efficient access in comparison to the inherently sequential data storage using
SGML, and because of the possibility to represent graph structures in the annota-
tions. Nowadays, SGML inline markup has developed to XML standoff markup,
where each layer of annotation resides in a separate file, the source text document
remains unchanged, and annotations merely refer to it (borrowing from TIPSTER’s
idea of the database table). This allows for more flexibility in the annotations (e.g., it
is possible to represent overlapping spans) and it also allows for representing graph
structures; this has been suggested in the Linguistic Annotation Format (LAF, [15])
as well as in PAULA, and it is the approach pursued in MOTS, as will be explained
in the next section.

Apart from this difference in basic design, MOTS obviously is a much more
modest endeavour than GATE. For one thing, at the moment we provide only single-
document processing, so there is no corpus management facility. For the time be-
ing, MOTS offers neither a systematic description of component behaviour nor a
treatment of linguistic non-processing resources (e.g., lexicons), as it has been in-
troduced in version 2 of GATE. More importantly, as will become clear in Section
2.5, a unified access to the analysis results of the components is only now becoming
available in the form of a Java API; apart from that, components need to parse the
standoff representations and extract the required data themselves.

Another important issue for NLP frameworks is their providing for distributed
and/or parallel processing. Regarding distribution, the introduction of service ori-
ented architectures and in particular web services was a very influential development
in recent years, and it is beginning to play a more important role in language pro-
cessing as well. The possibility of flexibly coupling services that do not have to
be locally installed can speed up the prototyping of NLP applications significantly
(but, on the other hand, it of course may slow down execution speed); notable exam-
ples are the web services provided by the project Deutscher Wortschatz at Leipzig
University.3 The MOTS approach of exchanging analysis results via standoff XML
annotations makes the integration of external services quite straightforward – they
can be wrapped in much the same way as modules running on the local machine.

Non-linear execution, on the other hand, is as of today not a standard feature
in NLP frameworks. Various proposals had been made in the 1990s, among them
the PVM-based ICE manager [1] in the Verbmobil project. Today, however, the
well-known and widely-used frameworks LT-XML24 and GATE realize strictly se-
quential “pipe/filter” architectures. So does MOTS, and at the moment it gives the
user only limited means to influence the processing chain: In contrast to, for exam-
ple, the possibility of dynamically adding components and menu-based construction
of processes in GATE, we merely allow for selecting the modules that are to take
part in the process from a hard-wired list – the user can thus activate modules, while
MOTS ensures the well-formedness of the resulting chain (keeping track of depen-
dencies).

3 http://wortschatz.uni-leipzig.de/Webservices/
4 http://www.ltg.ed.ac.uk/software/ltxml2

http://wortschatz.uni-leipzig.de/Webservices/
http://www.ltg.ed.ac.uk/software/ltxml2

2 The MOTS Workbench 19

Parallel processing is enabled in implementations of the Unstructured Informa-
tion Management Architecture (UIMA)5. This is the most ambitious approach, in
principle targeting not only text documents but other kinds of unstructured informa-
tion as well (audio, video), with the basic mission to turn unstructured into struc-
tured information (e.g., database tables). Though sharing many similarities with
GATE, UIMA is more explicitly oriented to scalable processing of vast amounts of
data, hence to the professional construction of language engineering applications. In
contrast to GATE, the basic unit of processing in UIMA is a general feature struc-
ture rather than an annotated text (which would be just one special kind of feature
structure). Also, these structures are strongly typed, requiring very explicit descrip-
tions of components’ interfaces. This clearly facilitates sharing of components (a
number of repositories already exist) but at the same time is not trivial and requires
negotiation between parties interested in using the components, possibly for quite
different purposes.

With its much more modest goals, the idea of MOTS is to provide a lean,
easy-to-use framework for effective development and testing of modules for single-
document processing, in the spirit of rapid prototyping. It is aimed explicitly at
research and teaching and not at building applications, so there is more emphasis on
simplicity than on performance.

2.3 The PAULA XML Format

The rationale behind our representation format PAULA6 (a German acronym for
‘Potsdam interchange format for linguistic annotation’) is the integration of different
annotation structures, whether resulting from manual or from automatic annotation.
With respect to manual annotation, we provide conversion tools that map the out-
put of the following tools to PAULA: annotate for syntax annotation; Palinka7 and
MMAX28 for discourse-level annotations such as co-reference; EXMARaLDA9 for
dialogue transcription and various layer-based annotations. The conversion scripts
are publicly available via the PAULA webpage: Users can upload their data and
annotations, and the data is converted automatically to PAULA. The mappings from
the tool outputs to our format are defined such that they only transfer the annota-
tions from one format into another without interpreting them or adding any kinds of
information.

5 http://incubator.apache.org/uima/
6 See [7] and
http://www.sfb632.uni-potsdam.de/projects/d1/paula/doc/

7 http://clg.wlv.ac.uk/projects/PALinkA/
8 http://mmax2.sourceforge.net
9 http://exmaralda.org

http://incubator.apache.org/uima/
http://www.sfb632.uni-potsdam.de/projects/d1/paula/doc/
http://clg.wlv.ac.uk/projects/PALinkA/
http://mmax2.sourceforge.net
http://exmaralda.org

20 M. Stede and H. Bieler

2.3.1 PAULA: Logical Structure

The conceptual structure of the PAULA format is represented by the PAULA Ob-
ject Model (POM). It operates on a labeled directed acyclic graph. Similar to the
NITE Object Model [12, NOM] and the GrAF data model [16], nodes correspond
to annotated structures, and edges define relationships between independent nodes.
Both nodes and edges are labeled, and generally, labels define the specifics of the
annotation. Nodes refer to other nodes, or point to a stream of primary data.

Besides labels that define concrete annotation values, a specialized set of labels
serves to indicate the type of an edge or a node. For a specific set of pre-defined edge
labels, POM defines the semantics of the relation expressed by the corresponding
edge. For instance, the dominance relation is characterized as a transitive, non-
reflexive, antisymmetric relation, which requires that the primary data covered by
the dominated node is covered by the dominating node as well. On the basis of these
dominance relations, tree structures can be represented, e.g. syntactic trees.

Another pre-defined edge type is reference, a non-reflexive, antisymmetric rela-
tion. Reference relations may occur with different annotation-specific labels. Ref-
erence relations with the same label, e.g. ‘anaphoric link’, or ‘dependency link’ are
also transitive. Reference relations serve to express, for instance, dependency trees,
coreference relations, or alignment of text spans in multilingual data.

The PAULA Object Model differs from related proposals, e.g. GrAF, in the def-
inition of explicit semantics for certain edge types. The specifications of the domi-
nance relation are comparable to the NITE Object Model, but while NOM focuses
on hierarchical annotation, POM also formulates the semantics of pointing relations.

On the basis of this general object model, annotation-specific data models are
then defined with reference to POM.

2.3.2 PAULA: Physical Structure

The elements of the PAULA representation format along with their corresponding
POM entities are given in Table 2.1. For illustration, Figure 2.1 shows a sample
annotation data set, as it is distributed across different layers (and files). The to-
ken layer, via xlink, identifies sequences of characters in the primary text files, and
thereby provides the ultimate reference objects (in POM, terminal nodes) for other
levels of annotation. We call such objects ‘markables’, and hence the token layer
is of type ‘mark list’. The POS (part of speech) layer, in contrast, does not define
new markables but merely provides labels to existing ones; its type therefore is ‘feat
list’. The sentence layer, not surprisingly, provides objects that are sequences of
tokens; these can then also be given attributes, such as the term relevance values in
our example (on the Term layer). Paragraphs are then represented as sequences of
sentences in the Div layer (see Section 2.4.1) and can in turn receive attributes, as
by the Zone layer in the example (see Section 2.5).

2 The MOTS Workbench 21

Table 2.1 Predefined structure elements in the PAULA Object Model.

PAULA element POM entity
tok(en) terminal node
mark(able) non-terminal node (containing references to nodes)
struct(ure) non-terminal node (containing dominance relations to nodes)
rel(ation) within struct: dominance, otherwise reference relation
feat(ure) annotation label
multiFeat(ure) bundles of annotation labels

Fig. 2.1 Illustration of PAULA standoff annotation.

Sein
sein

PPOSAT
Nom.Sg.Masc

Tod
Tod
NN

Nom.Sg.Masc

hatte
haben
VAFIN

3.Sg.Past.Ind

damals
damals
ADV

eine
ein
ART

Acc.Sg.Fem

große
groß
ADJA

Pos.Acc.Sg.Fem

Protestwelle
Protestwelle

NN
Acc.Sg.Fem

ausgelöst
auslösen
VVPP
Psp

.

$.

NK NK

NP

NK NK NK

NP

MO OA HD

VP

SB HD OC

S

VROOT

Fig. 2.2 Example of a TIGER tree.

For the encoding of hierarchical structures, including labeled edges, PAULA pro-
vides the specific elements struct and rel. Like markables, a struct element
represents a node in POM, but in this case a node which is the parent node of a dom-
inance relation. The dominance relation is expressed by the rel element. An an-
notation example with hierarchical syntax annotation in the TIGER format is shown
in Figure 2.2. A PAULA struct element with its daughters corresponds to a local
TIGER subtree, i.e. a mother node and its immediate children. For instance, the

22 M. Stede and H. Bieler

subtree dominated by the first NP in Figure 2.2, sein Tod, ‘his death’, is represented
by a struct element that, via rel elements, embeds the daughter tokens with IDs
tok 26/27 (these are stored in a separate file called “tiger.ex.tok.xml”). The NP
subtree itself is dominated by another struct element, with ID const 14. feat
elements encode the categorial status of these subtrees, “NP” and “S” respectively,
and their grammatical functions. For example, the rel element with ID rel 39,
which connects the subtree of S with the subtree of the NP, is marked as “SB” rela-
tion by the feat element pointing to #rel 39.

File tiger.TIG49796.const.xml:
...
<struct id="const_11">

<rel id="rel_30" type="edge" xlink:href="tiger.ex.tok.xml#tok_26"/>
<!-- Sein -->

<rel id="rel_31" type="edge" xlink:href="tiger.ex.tok.xml#tok_27"/>
<!-- Tod -->

</struct>
<struct id="const_14">

<rel id="rel_38" type="edge" xlink:href="tiger.TIG49796.tok.xml#tok_28"/>
<!-- hatte-->

<rel id="rel_39" type="edge" xlink:href="#const_11"/>
<rel id="rel_40" type="edge" xlink:href="#const_13"/>

</struct>
...

File tiger.TIG49796.const˙cat.xml:
...
<feat xlink:href="#const_11" value="NP"/>
<feat xlink:href="#const_14" value="S"/>
...
File tiger.TIG49796.const˙func.xml:
...
<feat xlink:href="#rel_30" value="NK"/><!-- Sein -->
<feat xlink:href="#rel_31" value="NK"/><!-- Tod -->
<feat xlink:href="#rel_39" value="SB"/>
...

A consequence of the decision to have annotations point – possibly by transi-
tivity – to tokens is that the information cannot be directly read off in the opposite
directions, i.e., for a particular token we do not represent explicit links to all its an-
notations. If needed, this has to be computed by traversing the various annotation
layers, which is a functionality provided by our Java API (see Section 2.7).

2.4 Processing Pipeline

We now turn to the description of the MOTS workbench itself, which is realized as
a pipeline architecture.

When a text document is submitted, a preprocessing stage first transforms it
into the PAULA standoff format, which will be explained below. Then, during the
“proper” processing stage it is enriched with further layers by the analysis compo-
nents (see Section 2.5). Finally, all resulting PAULA layers are being merged into
a standard inline XML representation, which is used for visualization purposes (see
Section 2.6.1).

2 The MOTS Workbench 23

The pipeline is implemented as a shell script. It manages the flow of processing,
starting from the input document and leading to an output representation that can
be shown to the user, while the analysis steps can be flexibly switched on and off.
Each component in the processing pipeline constitutes a distinct application and
thus can also be executed outside of MOTS. The components (to be described in
the next section) were developed in various programming languages; some of them
are external off-the-shelf solutions, others were developed in-house by our research
group and students.

MOTS offers a set of parameters for configuring the analysis pipeline. One class
of parameters, as mentioned above, serves to de-/activate analysis components; vi-
olations of dependencies are detected automatically. An important parameter is the
genre of the text, as several of our components provide genre-specific information
tailored to, for example, news articles, film reviews, or court decisions. Other pa-
rameters reflect document properties such as the language (German or English) and
the technical format of the input (see below). A parameter specific to the summa-
rization task is the desired definition of ‘term’ (wordform, lemma, Porter stems,
character based n-grams), which is then used for calculating sentence relevance.
Certain other, more technical, parameters defining the use of meta information and
output directories can be used on the command line, but are hidden in the regular
user interface (the GUI page for setting these parameters is shown in Figure 2.6,
Section 2.6).

A common problem for integrative NLP platforms is character encoding. All
our intermediate representations are encoded in UTF-8, but because some of the
modules work only with ISO 8859-1, we use only characters compatible to this
encoding. In a first step, the input document is converted to ISO 8859-1. This
conversion uses some intelligent features, such as mapping Cyrillic letters to their
ISO 8859-1 transcriptions. Afterwards we convert the ISO 8859-1 file back to UTF-
8. For the modules using ISO 8859-1, we use gnu iconv for converting the input
from UTF-8 to ISO 8859-1 and the output back from ISO 8859-1 to UTF-8.

The preprocessing, i.e., the first phase of the pipeline, is performed obligatorily
for each input document. It consists of three steps: conversion to a normalized
format, tokenization, and conversion to PAULA standoff. The result is a PAULA
representation of the input document with layout information, tokens and sentence
boundaries. Next, we discuss the three steps in turn, and afterwards describe the
integration of “real” analysis modules.

2.4.1 Normalized Input Format: LDOC

The system accepts input in various forms: plain text, some XML formats, and
HTML. In the first preprocessing step, the input document is converted into our
“normalized” XML format LDOC [21], which provides markup for layout features.
The conversion identifies headers, paragraphs and highlighted text, and it extracts
metadata from XML or HTML headers.

24 M. Stede and H. Bieler

<?xml version="1.0" encoding="utf-8"?>
<ldoc id="text.utf8.in">
<body>
<div id="div_1" type="heading" typeConf="high" >

29. Dezember 2005
</div>
<div id="div_2" type="heading" typeConf="high">

Bube, Damenopfer, König, As und Sieg
</div>
<div id="div_3" type="heading" typeConf="high">

Match Point
</div>
<div id="div_4" type="paragraph" typeConf="medium">

Ein junger Mann gerät unversehens in die High Society.
Aufgrund seines gestiegenen Selbstbewusstseins verkalkuliert er sich
im Privaten und schreckt schließlich vor einem Doppelmord nicht zurück,
um seine Stellung zu verteidigen.

</div>
...
<div id="div_22" type="paragraph" typeConf="medium">

c© filmrezension.de
</div>
</body>
</ldoc>

Fig. 2.3 LDOC representation of a film review.

<html>, <meta>, <head>, <body>
<h1>, <h2>, <h3>, <h4>, <h5>, <h6>
<p>, <div>,
<a>, , <q>, <abbr>
<table>, <menu>, , , <dl>
<th>, <td>, <tr>, , <dt>, <dd>
<i>, , <u>, <strike>, <big>, <small>, <sub>, <sup>, ,

Fig. 2.4 HTML tags considered for LDOC.

The LDOC format is defined and validated with a RELAX NG specification.
Figure 2.3 shows an excerpt from a sample LDOC file. The general structure is
as follows. A <header> tag encloses meta information, and the <body> tag en-
closes the document content. The layout is marked by <div> and . <div>
stands for division and marks the document structure, i.e., headings and paragraphs.
 is used to mark smaller highlighted units within a <div>. Both tags have
attributes. The type attribute, for instance, determines whether a <div> is a head-
ing or a paragraph. Other attributes can encode the confidence value assigned by
the converter. For instance, if a line in the text contains only one or two words, it is
very likely that this line is a heading, while the confidence value for a longer line to
be a header is lower.10

Our prototypical converter from HTML to LDOC resulted from a students
project, where rules for all those HTML tags that are relevant for LDOC were

10 These confidence values play a role predominantly for converting plain text documents,
where quite a bit of guesswork can be involved.

2 The MOTS Workbench 25

developed; these tags are listed in Figure 2.4. All other tags are ignored. The
converter works on XHTML, which is first produced from the HTML input.

2.4.2 Tokenization

The second preprocessing step is tokenization. Our tokenizer accepts an LDOC doc-
ument as input, determines the character positions of individual tokens, and assigns
a label to each token, which gives its type. Some of the types we use are XMLTAG,
WORD, PUNCT, DATE, SBOUND, ABBREV, QUOTE, BRACE-OPEN, FLOAT,
MIXEDSTRING.

Another task of the tokenizer is sentence boundary detection. Using lists of ab-
breviations, full stops are identified, disambiguated, and labeled accordingly. For
German texts, the presence of upper-case letters at the beginning of sentences is
taken into consideration: A determiner starting with an upper-case letter after an ab-
breviation or ordinal number marks the beginning of a sentence, while other tokens
do not.

The tokenizer follows a decidedly “surface-level” approach and does not recog-
nize any multi-word expressions such as proper names. This step is left to a dedi-
cated named-entity recognition component that can be adapted to specific domains,
while tokenization is a domain-independent task.

2.4.3 Conversion to PAULA

Tokenized LDOC is the input for the last preprocessing step: the conversion to
PAULA standoff. The output is a set of PAULA layers: markables for text, token,
sentence, div, span; features for div and span. The conversion distinguishes between
XML and text tokens: XML tokens mark the layout, text tokens contain the original
text. As indicated above, the PAULA ‘text’ layer is a sequence of all text tokens,
while the ‘token’ layer records the character positions of each token. Each token is
attached to a sentence in the corresponding layer, where headings are also regarded
as sentences. Sentence boundaries are determined by full stops as well as closing
division boundaries (</div>). Other markable layers are ‘span’ (referring to to-
kens) and ‘div’ (referring to sentences). For each attribute of <div> and ,
a separate feature layer is produced.

Now the preprocessing is completed and the basic PAULA layers are available
for the “real” analysis components in the pipeline, whose job it is to add further
layers to the PAULA set.

2.4.4 Integrating Analysis Components

The flexible part of the pipeline can be configured for each execution by selecting the
active processing modules. The pipeline script then manages the order of processing
and resolves all module dependencies. Input and output of the modules in general

26 M. Stede and H. Bieler

are one or more layers of the PAULA standoff set. On the output side, in addition to
PAULA layers, most modules also provide a human-readable format, which can be
used for debugging purposes.

Any external, off-the-shelf tools that are to be integrated into MOTS need to be
wrapped by converters that generate input for the tool from PAULA, and create
PAULA layers from the output. The effort needed for building a converter depends
on the type of the annotation. Writing a converter for a tool just annotating to-
kens with features is easily done. For annotations with complex structures, the task
becomes more difficult. The efficiency of a converter at runtime depends on the
complexity of annotations as well. For example, when running the Tree Tagger11

and chunker [20], the time needed to convert from and to PAULA is 1/3 of the over-
all runtime of the component. For this reason, we skip the conversion steps when
components depend directly on another’s output.

Another well-known issue with integrating a variety of off-the-shelf components
is their tokenization behavior. Many “black box” components read their input as text
and tokenize it by their own rules. In such cases, the converter has to align the tokens
produced by the component with the “standard” MOTS tokenization performed in
preprocessing. Usually, the differences are restricted to the interpretation of spaces,
punctuation and sentence boundaries, but some tools also identify multiword tokens
(such as Golden Gate Bridge) and portmanteau words (such as German im, which is
evaluated as i+m = in dem). In such cases, the features of the additional or reduced
tokens are determined by heuristic rules.

The central advantage of using PAULA standoff in MOTS is the flexibility in the
architecture and pipeline configuration. Components such as taggers or parsers can
be easily replaced, or both run on the same text for evaluation purposes. The results,
always in the shape of different annotation layers on the same text, can be visualized
quite straightforwardly (see Section 2.6). On the other hand, the substantial XML
“packing and unpacking” at runtime comes with a cost that may be prohibitive for
“real-time” applications; we will return to this issue at the end of the paper.

2.5 Analysis Components

In this section, we provide an overview of the analysis components that we have
integrated into MOTS so far, sorted (roughly) by the level of analysis to which they
apply: token, clause/sentence, and discourse.

Token Level

To provide a basic level of analysis for other components to build on, we integrated
the Tree Tagger with the off-the-shelf models for English and German, along with
its chunking mode. Thus two separate levels of analysis are created, one for part-of-
speech tags and one for NP- and PP-chunks. Also operating on the level of tokens,

11 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

2 The MOTS Workbench 27

a named entity recognizer combines gazetteer-based lookup of person’s first names,
location and company names with a set of rules that hypothesize the presence of a
last name after a first name or a title, and the like [11]. Similarly, a component in
charge of temporal information [17] identifies German time and date expressions
(including their manifold linguistic variants such as: 11.25, fünfundzwanzig nach
elf, fünf vor halb zwölf, . . .) and assigns corresponding formal representations in
the Temporal Expression Language [10], which is similar in spirit to TimeML12.

On the level of (sub-)tokens, we compute weights based on TF/IDF with respect
to a genre-specific reference corpus. This is one of the points where the user’s
choice of genre for the input text plays a role. (If no genre is selected, a “generic”
corpus is used.) These weights are later used for computing sentence weights (for
summarization/extraction) as well as for isolating ‘topic’ identifiers in text tiles (see
below). As for the unit of analysis, MOTS allows for selecting regular tokens as
well as character n-grams. As shown by [2], different definitions are better-suited
for different purposes.

Clause and Sentence Level

As a preparatory step for discourse-level analysis of coherence relations, we pro-
vide the Brill tagger with a model that we incrementally trained in order to per-
form disambiguation of certain connectives as to their sentential versus discourse
reading. Based on the part-of-speech context, this tagger tries to distinguish the
readings of, for example, German darum (causal connective versus verbal particle)
– as we had reported in [8], off-the-shelf taggers for German often do not provide
this information correctly, sometimes because of errors and sometimes because the
part-of-speech tag is the same for both the discourse and the sentential reading.

Using the sentence boundaries and the part-of-speech tags, a first version of a
subjectivity analysis component employs a rule-based approach to recognizing opin-
ions in text. It was designed for the genre of student’s evaluations of their classes
and uses lists of subjective vocabulary tailored to this task. After identifying posi-
tive/negative lexemes from the lists, it checks for the presence of negations (using a
simple fixed-size word window) and if appropriate, applies rules to reverse the po-
larity of the opinion. On the basis of these results, sentences are labelled as positive,
negative, or neutral.

To enable deeper linguistic analyses, we integrated the Connexor syntax parser13

for German. It delivers dependency structures that are required by the Rosana
anaphora resolution (see below), and we also use them as the basis for other
discourse-level tasks. In addition, we built a wrapper for the BitPar parser14, which
delivers constituent structures of sentences in the TIGER format.

12 http://www.timeml.org
13 http://www.connexor.com
14 http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

http://www.timeml.org
http://www.connexor.com
http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html

28 M. Stede and H. Bieler

Discourse Level

The anaphora resolution component Rosana was originally developed by [22] for
English, and later (in collaboration with our group) also for German. Based on the
Connexor dependency structures, Rosana tries to resolve pronouns, proper names
and definite descriptions. A significant gap for the coreference analysis (especially
for the genre of newspaper texts) is the handling of named entities. We are currently
designing an approach to fusing the algorithms employed by Rosana with the results
of our named-entity recognizer, working towards an integrated approach that would
cover the whole variety of (direct) nominal anaphora.

For statistical text tiling and topic detection, we implemented algorithms by [14]
and [24], which determine topic boundaries in the text (either in correspondence
with or in ignorance of the paragraphs encoded in our LDOC layer) and also com-
pute keywords that are representative for the particular “tile”. For this purpose, we
also make use of the aforementioned genre-specific reference corpora.

As an investigation into the ‘rhetorical structure’ of paragraphs, we developed
a component for local coherence relations, which specifically identifies causal re-
lations in German text. On the basis of a declarative lexicon, the presence of a
relation is established by analyzing connectives and, if necessary, performing dis-
ambiguation (using rules operating on the part-of-speech context). Then, the spans
related by the connective are hypothesized on the grounds of the syntactic depen-
dency trees. This works quite well for conjunctions and prepositions; whereas for
adverbial connectives, we can only guess that the two neighbouring sentences are in
fact the related spans.

Finally, operating on the level of the complete text, our IDOC component per-
forms an analysis of the functional role of the individual LDOC portions of the text
(i.e., lines and paragraphs), similar to the “argumentative zoning” approach by [23].
The target of this approach are semi-structured documents, which display regulari-
ties as to the inventory of labels needed to describe the role of paragraphs and the
linear order of the elements. Also, some of the zones need to be recognizable on the
basis of surface features (words, length of paragraph, etc.). Our approach performs
two steps: In the first phase, regular surface patterns are matched using LAPIS [18],
thus identifying a certain number of zones reliably. In the second phase, the zones
already found are used to hypothesize the presence of other zones in the remaining
material, using likelihoods derived from surface features and from the neighbour-
hood of zones already found. So far, we implemented the approach for two genres:
film reviews [3] and court decisions.

2.6 User Interface

When the execution of the pipeline script is complete, and all analyses are accom-
plished, the PAULA standoff set contains a lot of XML files that the average user
would not want to inspect. Hence, the MOTS user interface is a convenient way to
evaluate and compare all the results of the analysis pipeline.

2 The MOTS Workbench 29

<div _id="id_1893" _org_id="div_2" type="heading" typeConf="high"
zone="tagline|title">
<sent _id="id_1101" _org_id="s_2" W5g="0.028237089618056307" Wxdoc="0.64">
<tok _org_id="tok_4" _id="id_4" pos="NN" lemma="Bube">Bube</tok>
<tok _org_id="tok_5" _id="id_5" pos="$," lemma=",">,</tok>
<tok _org_id="tok_6" _id="id_6" pos="NN"
lemma="Damenopfer">Damenopfer</tok>
<tok _org_id="tok_7" _id="id_7" pos="$," lemma=",">,</tok>
<tok _org_id="tok_8" _id="id_8" pos="NN" lemma="Koenig">Koenig</tok>
<tok _org_id="tok_9" _id="id_9" pos="$," lemma=",">,</tok>
<tok _org_id="tok_10" _id="id_10" pos="NN" lemma="As">As</tok>
<tok _org_id="tok_11" _id="id_11" pos="KON" lemma="und">und</tok>
<tok _org_id="tok_12" _id="id_12" pos="NN" lemma="Sieg">Sieg</tok>

</sent>
</div>

Fig. 2.5 Inline representation.

2.6.1 XML Inline Representation

The input to the visualization component is a standard inline-XML file whose format
is called ‘PAULA-inline’. It results from merging all the PAULA layers into a single
file – a step needed solely to facilitate the graphical presentation of the output. The
inline-XML document contains an XML element for each markable (token or span).
All features referring to this markable are annotated as attributes of this element.
Smaller spans of markables are added as children of wider spans.

Figure 2.5 gives an extract of the inline representation of the beginning of a text
we had shown earlier (Figure 2.3). The example shows a headline, which is also
annotated as sentence. The tokens contained therein are represented as children of
the sentence element. Tokens are annotated with pos and lemma. PAULA markables
do not have any dominance relation between each other; they just mark spans in the
text. If two markables cover exactly the same span of text, in the inline document
one is arbitrarily chosen to embed the other. Thus in the example, the division
element could also be included into the sentence element.

To mark “real” embedding in structures such as trees (PAULA <struct> ele-
ments), we use the special element < rel>, which explicitly encodes the dominance
relation in PAULA-inline. This allows us to annotate edges between nodes.

XML embedding cannot be used for the representation of overlapping segments.
For such data, we use the strategy of fragmentation: One of the overlapping ele-
ments is broken into smaller units and an attribute gid (‘group id’) is added to the
fragmented elements to explicitly mark elements that belong together. For further
details on creating the PAULA-inline representation, see [9].

30 M. Stede and H. Bieler

Fig. 2.6 Graphical user interface: parameter selection.

2.6.2 Visualization

The user interface is a PHP script accessible with a web browser – see Figure 2.6.
It is to be used in two steps: First, the user defines the input and the processing pa-
rameters. The input can be directly entered as text, uploaded as a file, or defined by
a URL. Then, the pipeline script is started with the ‘send’ button. When processing
is complete, the resulting PAULA-inline document is converted by an XSLT script
to HTML and thus available for viewing with PHP and Javascript.

In the second step, the user can browse the results and compare various analyses
(Figure 2.7). All annotations on a specific token are shown on a mouse-over. Other
annotations on larger spans are highlighted upon request. Some component-specific

2 The MOTS Workbench 31

Fig. 2.7 Graphical user interface: browsing results.

visualization is being realized. Sentence and paragraph boundaries and headings
are marked by a tag at the beginning of the text range. Tile boundaries are marked
more prominently and are completed by keywords describing the topic. Most an-
notations assign labels to ranges of text (mostly tokens). The labels appear at the
right frame of the page ordered by the kind of annotation and can be selected for
colored highlighting. In addition to the merged graphical presentation, the output of
each component is accessible in its original form by following hyperlinks; likewise
we provide debugging and runtime information on separate pages. Also, there is a
button for downloading the PAULA files that have been produced, so that they can
be used as input for other software.

2.7 Current Developments and Conclusion

The file-centric approach of MOTS, managing interfaces through a fairly generic
standoff annotation format, resulted on the one hand from the dual needs of (i)
bridging between manual annotation tools and (ii) automatic processing. At the
same time, it provides a simple way of allowing for interoperability of components
that enables rapid prototyping, which has been utilized in a number of students’
projects and diploma theses. One advantage here is the independence on program-
ming languages: Existing modules in script languages or more traditional languages

32 M. Stede and H. Bieler

(e.g., Lisp) can be added quite easily. In this way, MOTS enables quick experiments
with combining modules for new tasks, without right away taking the step to work
with a more complex system such as GATE or UIMA.

In this spirit of a lean, “low-cost” framework, we are currently making several
additions to MOTS, whose primary goal is to somewhat reduce the effort of XML
processing in a pipeline of components. A Java API is being developed that will be
in charge of parsing PAULA files and providing convenient access to the data via
the PAULA Object Model (cf. Section 2.3.1). One perspective then is to replace
the shell script managing the processing pipeline with a Java application, so that
PAULA processing can be restricted to the interfaces of non-Java components.

For the time being, we will hold on to the menu-based de-/activation of com-
ponents when the pipeline is started. For most purposes of text processing, it has
proven sufficient, and moving to a fully-flexible component management system
would amount a leap toward GATE-style frameworks, which we are not intending.
However, a slightly more generic way of describing component behavior (using
simple configuration files) could be added, so that integrating new modules can be
done more systematically than by changing the shell script. Likewise, it should be
possible to integrate annotations that have been produced manually with a suitable
tool. This can be interesting when a higher-level component builds on the output
of a lower-level one and for testing purposes, “perfect results” can be provided in
place of the lower-level component’s output.

Our approach to visualising results currently creates problems with long texts
holding many annotations, as Javascript execution becomes prohibitively expensive.
While this can be attended to with limited effort, a more substantial problem is the
conversion from (possibly many) standoff files to inline-XML, which our GUI is
currently based on. This merging step is an inherently complex task, and rather than
trying to improve our current merging solution, it is probably more effective to try to
circumvent it altogether and base the visualisation on the standoff files. This would
amount to a general overhaul of the output side of the GUI, offering the opportunity
to establish a more generic solution that maps types of annotations to their visual
counterparts (both menu items for clicking annotations on/off and the annotation
visualization itself).

Our PAULA tools are being made available via the webpage mentioned in Sec-
tion 2.3, and in conjunction with our ANNIS linguistic database (focusing on the
scenario of manual annotation) [4]. Likewise, the MOTS software is available to
interested parties for research or teaching.

Acknowledgements

Part of the work reported in this paper was funded by Bundesministerium für Bildung und
Forschung (BMBF), grant 03WKH22.

The following researchers (listed in alphabetical order) have contributed to the devel-
opment of the MOTS workbench and the PAULA format and tools: Christian Chiarcos,

2 The MOTS Workbench 33

Stefanie Dipper, Michael Götze, Peter Kolb, Uwe Küssner, Julia Ritz, Johannes Schröder,
Arthit Suryiawongkul. Also, many of our Computational Linguistics students helped building
conversion tools or analysis components.

We are grateful to two anonymous reviewers for their helpful comments on an earlier
version of this paper.

References

[1] Amtrup, J.: Ice - intarc communication environment user guide and reference manual
version 1.4. Tech. rep. Universität Hamburg (1995)

[2] Bieler, H., Dipper, S.: Measures for term and sentence relevances: an evaluation for
german. In: Proceedings of the 6th LREC Conference, Marrakech (2008)

[3] Bieler, H., Dipper, S., Stede, M.: Identifying formal and functional zones in film re-
views. In: Proceedings of the Eighth SIGDIAL Workshop, Antwerp (2007)

[4] Chiarcos, C., Dipper, S., Götze, M., Ritz, J., Stede, M.: A flexible framework for inte-
grating annotations from different tools and tagsets. In: Proc. of the First International
Conference on Global Interoperability for Language Resources, Hongkong (2008)

[5] Cunningham, H.: Software architecture for language engineering. PhD thesis, Univer-
sity of Sheffield (2000)

[6] Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework and
graphical development environment for robust NLP tools and applications. In: Proceed-
ings of the 40th Anniversary Meeting of the Association for Computational Linguistics
(2002)

[7] Dipper, S.: XML-based stand-off representation and exploitation of multi-level linguis-
tic annotation. In: Eckstein, R., Tolksdorf, R. (eds.) Proceedings of Berliner XML Tage,
pp. 39–50 (2005)

[8] Dipper, S., Stede, M.: Disambiguating potential connectives. In: Butt, M. (ed.) Pro-
ceedings of KONVENS 2006, Konstanz, pp. 167–173 (2006)

[9] Dipper, S., Götze, M., Küssner, U., Stede, M.: Representing and querying standoff
XML. In: Proceedings of the Biennial GLDV Conference 2007. Data Structures for
Linguistic Resources and Applications, Narr, Tübingen (2007)

[10] Endriss, U., Küssner, U., Stede, M.: Repräsentation zeitlicher Ausdrücke: Die Tempo-
ral Expression Language. Verbmobil Memo 133, Technical University Berlin, Depart-
ment of Computer Science (1998)

[11] Ernst, C.: Auffinden von Named Entities in Nachrichtentexten. Diplomarbeit, Institut
für Linguistik, Universität Potsdam (2008)

[12] Evert, S., Carletta, J., O’Donnell, T., Kilgour, J., Vögele, A., Voormann, H.: The nite
object model. version 2.1. Tech. rep., University of Edinburgh, Language Technology
Group (2003)

[13] Grishman, R.: Tipster architecture design document version 2.3. Tech. rep., DARPA
(1997),
http://www.itl.nist.gov/div894/894.02/
related projects/tipster/

[14] Hearst, M.A.: Multi-paragraph segmentation of expository text. In: Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics, Association
for Computational Linguistics, Las Cruces/NM, pp. 9–16 (1994)

[15] Ide, N., Romary, L.: International standard for a linguistic annotation framework. Nat-
ural Language Engineering 10(3-4), 211–225 (2004)

http://www.itl.nist.gov/div894/894.02/related_projects/tipster/
http://www.itl.nist.gov/div894/894.02/related_projects/tipster/

34 M. Stede and H. Bieler

[16] Ide, N., Suderman, K.: Graf: A graph-based format for linguistic annotation. In: Pro-
ceedings of The Linguistic Annotation Workshop (LAW), Prague (2007)

[17] Luft, A.: Automatisches Tagging von zeitlichen Ausdrücken. Diplomarbeit, Institut für
Informatik, FH Mittweida (2006)

[18] Miller, R.C.: Lightweight structure in text. PhD thesis, Carnegie Mellon University
(2002)

[19] Schäfer, U.: Integrating deep and shallow natural language processing components -
representations and hybrid architectures. PhD thesis, Universität des Saarlandes (2007)

[20] Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings
of International Conference on New Methods in Language Processing, Manchester, pp.
44–49 (1994)

[21] Stede, M., Suriyawongkul, A.: Identifying logical structure and content structure in
loosely-structured documents. In: Witt, A., Metzing, D. (eds.) Linguistic Modeling of
Information and Markup Languages - Contributions to Language Technology, pp. 81–
96. Springer, Dordrecht (2010)

[22] Stuckardt, R.: Design and enhanced evaluation of a robust anaphor resolution algorithm.
Computational Linguistics 27(4), 479–506 (2001)

[23] Teufel, S., Moens, M.: Summarizing scientific articles – experiments with relevance
and rhetorical status. Computational Linguistics 28(4), 409–445 (2002)

[24] Utiyama, M., Isahara, H.: A statistical model for domain-independent text segmenta-
tion. In: Proceedings of the ACL/EACL Conference, Toulouse (2001)

	The MOTS Workbench
	Introduction and Overview
	Background: Natural Language Processing Frameworks
	The PAULA XML Format
	PAULA: Logical Structure
	PAULA: Physical Structure

	Processing Pipeline
	Normalized Input Format: LDOC
	Tokenization
	Conversion to PAULA
	Integrating Analysis Components

	Analysis Components
	User Interface
	XML Inline Representation
	Visualization

	Current Developments and Conclusion
	References

