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Preface

This volume contains papers presented at the 8th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2011), held in Changsha,
China, July 28-30. This conference followed MDAI 2004 (Barcelona, Catalonia,
Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona,Catalonia, Spain),
MDAI 2007 (Kitakyushu, Japan), MDAI 2008 (Sabadell, Catalonia, Spain), MDAI
2009 (Awaji Island, Japan), and MDAI 2011 (Perpinyà, Catalonia, Spain, France)
with proceedings also published in the LNAI series (Vols. 3131, 3558, 3885, 4617,
5285, 5861, and 6408).

The aim of this conference was to provide a forum for researchers to discuss
theory and tools for modeling decision, as well as applications that encompass
decision-making processes and information fusion-techniques.

The organizers received 51 papers from 10 different countries, from Europe,
Asia, Australia and New Zealand, 19 of which are published in this volume. Each
submission received at least two reviews from the Program Committee and a few
external reviewers. We would like to express our gratitude to them for their work.
The plenary talks presented at the conference are also included in this volume.

The conference was supported by the National University of Defense Tech-
nology, the China Computer Federation, the Catalan Association for Artificial
Intelligence (ACIA), the European Society for Fuzzy Logic and Technology
(EUSFLAT), the Japan Society for Fuzzy Theory and Intelligent Informatics
(SOFT), the UNESCO Chair in Data Privacy, and the Spanish MEC (ARES -
CONSOLIDER INGENIO 2010 CSD2007-00004).

May 2011
Vicenç Torra

Yasuo Narukawa
Jianping Yin

Jun Long
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Regular Papers

Aggregation Operators and Decision Making

A Parallel Fusion Method for Heterogeneous Multi-sensor
Transportation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Yingjie Xia, Chengkun Wu, Qingjie Kong, Zhenyu Shan, and
Li Kuang

A Dynamic Value-at-Risk Portfolio Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Yuji Yoshida

Modelling Heterogeneity among Experts in Multi-criteria Group
Decision Making Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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Computational Intelligence and Data Mining

A Novel and Effective Approach to Shape Analysis: Nonparametric
Representation, De-noising and Change-Point Detection, Based on
Singular-Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Vasile Georgescu

A SSA-Based New Framework Allowing for Smoothing and Automatic
Change-Points Detection in the Fuzzy Closed Contours of 2D Fuzzy
Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Vasile Georgescu

Possibilistic Linear Programming Using General Necessity Measures
Preserves the Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Masahiro Inuiguchi

An Efficient Hybrid Approach to Correcting Errors in Short Reads . . . . . 198
Zhiheng Zhao, Jianping Yin, Yong Li, Wei Xiong, and Yubin Zhan

Data Privacy

Rule Protection for Indirect Discrimination Prevention in Data
Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Sara Hajian, Josep Domingo-Ferrer, and Antoni Mart́ınez-Ballesté
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Online Social Honeynets:

Trapping Web Crawlers in OSN

Jordi Herrera-Joancomart́ı and Cristina Pérez-Solà

Dept. d’Enginyeria de la Informació i les Comunicacions
Escola d’Enginyeria

Universitat Autònoma de Barcelona
08193 Bellaterra, Catalonia, Spain
{jherrera,cperez}deic.uab.cat

Abstract. Web crawlers are complex applications that explore the Web
with different purposes. Web crawlers can be configured to crawl online
social networks (OSN) to obtain relevant data about its global structure.
Before a web crawler can be launched to explore the web, a large amount
of settings have to be configured. This settings define the behavior of the
crawler and have a big impact on the collected data. The amount of
collected data and the quality of the information that it contains are
affected by the crawler settings and, therefore, by properly configuring
this web crawler settings we can target specific goals to achieve with
our crawl. In this paper, we analyze how different scheduler algorithms
affect to the collected data in terms of users’ privacy. Furthermore, we
introduce the concept of online social honeynet (OShN) to protect OSN
from web crawlers and we provide an OShN proof-of-concept that achieve
good results for protecting OSN from a specific web crawler.

Keywords: privacy, social networks, web crawling, graph mining,
social honeynets.

1 Introduction

The increasingly popularity of online social networks (OSN) has lead them to
become an important part of people’s everyday communication. With millions of
individuals who use OSN to share all kinds of contents, privacy concerns of how
all this content is managed have arisen. Content shared in an OSN varies from
trivial text messages to compromising photographies but, in either of those cases,
users expect to control their shared data with their profile’s visibility configura-
tion. In addition to this personal data, users in OSN create relationships which
can also be considered sensitive data from themselves. Moreover, the discovering
of these relationships can also produce other data revelation, what makes link
privacy an important issue to preserve in social networks.

OSN information can be obtained by crawling the profiles of users in the net-
work. Web crawlers are complex applications that explore the Web with different
purposes and they can be configured to crawl OSN to obtain both user and link

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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information. When crawling online social networks, many choices have to be
made in order to set up the crawler that is going to be used to obtain all the
information from a social networking site. This configuration choices conform
the crawler settings and, as we are going to see, they are the key to accomplish
the desired crawling goal. Specifically, the choice of the next-node-to-crawl (de-
termined by the scheduler algorithm) is a critical point, since it will determine
largely which part of the network is going to be obtained and, therefore, which
level of exposure will suffer the online social network users.

The contribution of this paper is twofold. On one hand, we detail the privacy
implications that imply the election of different scheduler algorithms for web
crawlers. On the other hand, we introduce the concept of Online Social Honeynet
(OShN) to provide some level of protection against attacks performed by web
crawlers. We provide a proof-of-concept of the feasibility to design appropriated
OShN that can prevent specific web crawler configurations.

The rest of the paper is organized as follows. First, we present the state of
the art and we describe the basic architecture of a web crawler with special
emphasis in the scheduler module, detailing some of the scheduler algorithms
that a crawler may implement. Later on, we discus the privacy threats that each
of these scheduler algorithms suppose for the online social network users. After
that, the concept of Online Social Honeynet is introduced in order to mitigate
these privacy risks originated from the usage of web crawlers. Finally, we present
the conclusions and provide some guidelines for further research.

2 State of the Art

The Web crawling problem has been widely studied in the scientific literature
and in the practical arena. Architectures for web crawlers are proposed in [1] and
[2]. These studies are centered on obtaining a fully scalable web crawler which
can be used to crawl the entire Web. Detailed analysis on the bottlenecks of the
crawling architectures can also be found in previous articles. Architectures for
distributed web crawlers have been proposed too ([3] and [4]).

Web crawling scheduler algorithms have also been studied in depth, mostly
for its use on Internet search engines. However, less attention has been paid,
until now, to the specific scenario of crawling online social networks. At present
time, studies in OSN web crawling deal with different related problems from
algorithm performance to quality of collected data.

In [5], authors evaluate how different parameters of the crawler algorithms
affect crawling efficiency (defined previously in [6]) as well as the quality of
collected data. Biases produced by certain schedulers can be avoided by selecting
the proper scheduler algorithm as is shown in [7], where a random sample of
Facebook users is collected using a Metropolis-Hasting Random Walk (MHRW).
They also demonstrate that metrics obtained with MHRW largely differ from
those obtained with BFS, which remarks the importance of properly selecting
the crawler scheduler algorithm based on the crawling purpose. Graphs retrieved
by different collection techniques are also compared for Twitter network in [8].
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Large-scale measurement of online social networks has been done in [9], where
four of the most popular social networks were crawled in depth. Analyzing the
obtained data the authors are able to confirm that online social networks satisfy
the power-law, small-world and scale-free properties.

Although some of this crawling literature refers to users’ privacy, comparisons
made by different crawling algorithms are centered in their effect on classic graph
metrics or on crawling efficiency, but, at our best knowledge, no work about how
crawling algorithms affect user’s privacy can be found in this crawling literature.
On the other hand, a similar problem appears in privacy literature, where user’s
privacy is analyzed in detail but no references to crawler algorithms can be found.

Privacy implications of social networks have been a popular topic in recent
years. Link privacy has been studied in [10] and [6]. In [10], Backstrom et al
present several attacks on edge privacy. These attacks allow an adversary to
reidentify a set of targeted users from a single anonymized copy of the network. In
[6], edge privacy is studied from the point of view of the number of compromised
accounts needed to expose as much nodes as possible depending on the lookahead
of the network. Lookahead is defined as the distance from which a user can see
his friends links.

Theoretical work centered on maintaining privacy when releasing network
data sets has also been done. In [11], the authors quantify the privacy risks
associated with different network release scenarios and propose an anonymiza-
tion technique that leads to substantial reduction of the privacy threat. In
[12], authors propose several strategies for preventing link re-identification in
anonymized graphs. In [13], authors assume that an adversary knows the neigh-
borhood of some target individuals and present an anonymization algorithm.
In [14], other anonymization techniques are proposed, now considering that the
adversary knows the degree of certain nodes a priori. Much effort has also been
done in reidentification algorithms for anonymized social graphs in [15], where
the authors present a deanonymization algorithm based on the usage of publicly
available auxiliary information.

3 Web Crawling Architecture

Web crawlers are programs that automatically explore web pages in a methodical
manner. Web crawlers start the search in one or more URLs, which are called
seeds, and explore them in order to find new URLs to search for, until they reach
a predefined termination condition. When used to crawl OSN, web crawlers start
from an initial user, or list of users, and discover other users of the network by
following their social relationships.

Although the architecture of a web crawler is not a fixed one and different
solutions have been proposed to optimize the crawling process, the basic archi-
tecture of a web crawler can be explained by defining its five essential modules:

1. The downloader is the interface between the Web (or, in our case, the OSN
that is being explored) and our crawler. Its job is to download a web page
and pass it to the parser.
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2. The parser is in charge of analyzing the page that has been downloaded
and extract useful information and links to other pages.

3. The storage device keeps record of the crawled information, information
about a user that can be found in his profile (e.g. name, location or birth
date) together with links to other pages that are, in fact, links to other users’
profiles which define user relationships inside the OSN.

4. The queue contains all the links to other users’ profiles found when crawling
every user that are awaiting to be explored.

5. The scheduler is responsible for selecting which user, from the ones in
the queue, is going to be explored and communicating its decision to the
downloader, completing the crawling cycle.

Based on the described crawling process of the OSN, users can be classified in
three different categories: crawled, discovered or hidden. A crawled user is the
one that all his profile’s information and all his friends are known to the crawler
(we denote by Vcrawl the subset of crawled users). A discovered user is the
one that his presence and at least one relationship is noticed by the crawler but
is not a crawled user (Vdisc denotes the subset of discovered users). Finally, a
hidden user is the one that the crawler is not even aware of his existence (Vhidd

denoting this subset). We also use n∗ = |V∗| to describe de cardinality of each
set.

3.1 Scheduler Algorithms

The scheduler algorithm is the most critical part of a web crawler since its def-
inition and configuration impacts in important aspects of a web crawler, like
performance, efficiency or collected data. In this section, we describe different
scheduler algorithms. The goal of this section is to provide a comprehensive de-
scription of the most frequently used scheduler algorithms in order to discuss,
in next section, their implications on the collected data that, in fact, determines
the users privacy. For that reason, no detailed measures on performance or ef-
ficiency are included. Interested readers can review [6] or [5] for an exhaustive
study on these characteristics for different scheduler algorithms.

– Breath-First Search (BFS) algorithm acts as a simple queue, where the
first nodes to be crawled are the first that have been discovered. Newly
discovered nodes are appended to the end of the queue, thus previously
discovered nodes are crawled sooner than the new ones.

– Depth-First Search (DFS) algorithm works as a traditional stack, where
the first nodes to be crawled are the last ones that have been discovered.
Newly discovered nodes are added at the top of the stack, thus they are
going to be explored sooner than previously crawled nodes.

– Greedy algorithm selects as the next node to be crawled the one with
the highest degree from all Vdisc nodes. Depending on how this degree is
computed, we can distinguish three different greedy algorithms:
• Real-degree greedy takes its decisions based on the real degree of the

nodes in the OSN. Notice that using the architecture described above,
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information on the real degree of a node is unknown for discovered nodes
so additional requests may have to be done to the OSN in order to
use this scheduler. This real-degree greedy definition corresponds to the
hypothetical greedy algorithm in [5] and would be called highest-degree-
crawler in the [6] terms.
• Explored-degree greedy uses the actual known degree of the node in

the explored subgraph Gcrawl as the measure to select the next node to
crawl. This definition of explored-degree greedy is the same that can be
found in [5] under the mere greedy name.
• Unseen-degree greedy uses the unseen degree of a node, that is the

real degree minus the explored one. Unseen degree corresponds to the
number of friends of a node that the crawler is not aware of. This defi-
nition of unseen-degree is exactly the same of the degree-greedy-crawler
used in [6].

– Lottery algorithm selects the next node to be crawled with a proportional
probability with its degree. This gives more chance to high degree nodes
to be selected while maintaining the possibility to select low degree ones.
Lottery algorithm can be configured to use any of the previous degrees (real,
explored or unseen) in order to make its decisions.

4 Privacy Threats Related to Crawling Activity

By crawling an OSN the corresponding social graph can be obtained. Such so-
cial graphs may provide very important information about the network and their
users, since using appropriated graph mining techniques allows to discover im-
portant user characteristics.

When dealing with social graphs, two kinds of user’s information can be ex-
tracted: node information and edge information. All data about a specific user is
considered as node information. Node information includes all details provided
in the user’s profile on a specific OSN. Such data generally contains informa-
tion like user name, age, nationality, current location, phone number, marital
status, personal web site url and a thumbnail. Moreover, specific content OSN
include other information in their users profile like photographies, music or books
preferences.

The other kind of user information that can be obtained from the social graph
is edge information. The mere existence of edges already offers information about
users that are linked through them but, in some networks, this edges can be
labeled, thus providing a more in depth information about the relations that
they represent. A part from providing information of the relationships between
different users, edges can also directly disclose node attributes. For instance, an
edge representing a sentimental relationship between two individuals of the same
sex would be revealing their sexual orientation.

Although both node attributes and edges may be considered sensitive informa-
tion that the user wants to control, in this paper we focus on edge privacy since
edges suppose an added risk to user’s privacy in many different ways. In contrast
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to node attributes, which disclosure can be configured by the user, protecting
edge information involve more than one user and, for that reason, it makes more
difficult for the participating users to maintain control on the visibility of this
relations [16]. On the other hand, relations between users can be used to detect
communities. Communities are groups of nodes which are highly tight together
within the network. Detecting and identifying these communities is a usual pro-
cedure in social network analysis, since communities facilitate the understanding
of network data. Knowing to which communities does a user belong is an ex-
cellent way to gain information about the user: family, friends, college or work
mates are subgroups that arise from a social network and can be detected from
the graph structure itself. Since they do not need the explicit intervention of the
user to be created, they entail a new risk for OSN users privacy. Moreover, it
has been shown that users belonging to the same clique share common interests,
believes or even food habits [17], which are in fact, node attributes. For this rea-
son, node attributes can be induced from information known about other users
in the same clique.

Furthermore, edge information has been proved to serve as auxiliary informa-
tion for many deanonymization attacks ([10], [15]), which makes edges and its
attributes an important information to care about. Relations that a user has with
others describe that user in a quasi-unique form. Even when all labels have been
removed from the graph, its structure is leaking information that can be used to
reidentify the nodes. For instance, if an adversary knows how many friends does
the victim have and which are the relations among them, the attacker may be
able to find this subgraph inside an anonymized release of the whole graph and
learn information about the victim and his friends.

4.1 Scheduler Implications on Privacy

It seems clear that the corresponding social graph of an OSN is a powerful tool
to derive private information of the users. However, due to the actual size of
OSN sites, crawling them entirely to obtain the corresponding social graph may
not be an affordable option. Having to conform with the obtainment of a partial
view, the concept of quality of the collected data of the crawler comes into play.
The scheduler algorithm, together with the initial seed of the crawler, is the
module of the crawler that determines the path to follow during the crawling
process and then the exact data that will be finally retrieved from the OSN.

The quality of collected data is a difficult term to deal with since such quality
depends on the objective of the crawling process.

In order to make a comprehensive analysis, we fixed three different and some-
how opposite objectives for the crawler (from the attacker’s point of view):

– Objective A: to determine all links and communities where a specific victim
belongs to.

– Objective B: to discover general characteristics of the OSN, focused on
identifying communities.

– Objective C: to discover the maximum number of nodes of the network.
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Notice that while objective A is centered on attacking a single user, objectives
B and C target the whole network but with different purposes in mind.

For each scheduler algorithm, we analyze the achievement of these objectives
in terms of cohesive subgroups identification (A and B) or crawling efficiency (C).
For cohesive subgroups identification, we focus on finding cliques and k-plexes
[17] since this structure relaxes the strong familiarity conditions expressed in
a clique but, at the same time, still provide the properties of reachability and
robustness in the resulting cohesive group. For crawling efficiency, we will use
the metric defined previously in [6], where efficiency is defined as the number of
discovered nodes divided by the number of crawled nodes.

Breath-First Search. Using a BFS algorithm with only one initial user as seed
allows the crawler to explore the k-neighborhood of the seed, that is, to crawl all
nodes at distance k (starting at k = 1) from the seed and, therefore, discover all
nodes at distance k+1. Then, the collected data obtained using a BFS scheduler
algorithm is of high quality regarding Objective A, since an accurate view of the
OSN centered on the victims will be obtained.

However, BFS performs poorly with respect to Objective B. The sequentiality
of the BFS with respect to the neighbor distance k does not allow to move the
crawler to specific nodes belonging to interesting communities, and then the
collected data cannot be taken as a representative of the OSN since it is focused
on a particular part.

In BFS algorithm, no special attention is paid to higher degree nodes thus
BFS does not offer advantages regarding Objective C.

Depth-First Search. As DFS scheduler algorithm tries to get as far as pos-
sible from the initial seed, neither the neighborhood of the seed nor subgroup
structures will not be formed easily when the value ncrawl is low with respect
nV . In fact, cliques that are actually found by this crawling method will be
small, usually with just 3 nodes. For that reason, collected data of a crawler
with DFS scheduler algorithm does not provide quality information regarding
neither Objective A nor Objective B.

DFS does not take into account node degrees neither, but crawling efficiency
is slightly better for DFS than for BFS. The reason is that, as the crawler tries to
get far away from the seed, crawled nodes tend to have a few friends in common,
thus for the same ncrawl more ndisc are obtained. Thus DFS performs better
than BFS with respect to Objective C.

Real-degree greedy. Real-degree greedy moves quickly through the largest
degree node, and once reached, the algorithm provides large numbers of cliques
and k-plexes since at each iteration a maximum number of edges are added to
the crawled graph. For this reason, this algorithm provides a good data qual-
ity regarding Objective B. However, real-degree greedy is not suitable to reach
Objective A, unless the victim is the highest degree node. In fact, higher degree
nodes are very vulnerable against this scheduler algorithm since they are reached
with few iterations independently of the used seed.



8 J. Herrera-Joancomart́ı and C. Pérez-Solà

As first nodes selected to be crawled are the ones with higher degrees, graphs
obtained with real-degree greedy always present a high mean degree, which is
much more bigger than the real mean degree of the complete OSN. Selecting this
high degree nodes leads to obtain high efficiency, thus this algorithm is adequate
to reach Objective C.

Explored-degree greedy. In the explored-degree greedy, first nodes to be
crawled are the ones that are more connected to already crawled ones. In contrast
to the real-degree greedy, explored greedy also move towards the highest degree
node but more slowly, finding the cliques and k-plexes that are in the path
between the initial seed and the highest degree node. With these properties,
explored-degree greedy algorithm is suitable to achieve Objective B although the
speed at which cliques and k-plexes are discovered is much more lower that with
real-degree greedy. Regarding Objective A, the explored-degree greedy does not
provide a good strategy since it does not guarantee that the crawl is centered on
the seed and then, the initial seed may not belong to the cohesive subgroups that
are retrieved. However, in comparison with real-degree greedy, explored-degree
greedy keeps the crawler closer to the seed and then, in terms of Objective A,
explored-greedy performs better than real-greedy.

Unseen-degree greedy. The first users to be crawled with unseen-degree are
the ones that have a high real degree and a small explored degree. In the first
iterations of the crawler, unseen-degree and real-degree perform similar, moving
quickly towards the highest degree node. At later stages of the crawler, the
unseen-degree greedy achieves better efficiency since it discovers more new nodes
than the real-degree. However, since the discovered nodes do not provide much
information into the crawled graph until they are crawled, the numbers of cliques
and k-plexes, and its sizes are equivalent to the ones obtained with real-degree.
For that reason, performance of unseen-greedy with respect to Objectives A and
B is equivalent to real-degree greedy.

Selecting the highest unseen degree node as the first node to crawl results in
selecting the node that would lead the crawler to discover the maximum amount
of new nodes when it is crawled. Then, unsee-degree greedy performs better than
the above algorithms regarding Objective C.

Lottery. The random effect introduced in the lottery schedulers gives a chance
to select low degree nodes as the next-node-to-crawl. As a consequence, for the
same number of Vcrawl nodes, lottery will discover more nodes than BFS, random
list or DFS but less than greedy schedulers. So we can affirm that lottery per-
forms better than BFS, random list and DFS regarding Objective C but worse
than greedy. The same happens with found cliques and k-plexes when using
the explored degree as a selection measure. In this case, lottery will find more
cliques than DFS or random list but less than greedy algorithms. Much like the
explored-degree greedy case, explored-degree lottery also presents the problem
that the initial seed may not belong to the found cliques, which can suppose a
problem when the pursued goal is Objective A.
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Like in the greedy case, lottery tends to select as next node to crawl the ones
with highest degrees (whatever the chosen degree is used), resulting on a higher
mean degree in Gcrawl than the actual graph G mean degree. However, this effect
is less pronounced in the lottery case because its random component that gives
a chance to low degree nodes to be selected. As a consequence, lottery performs
worse than greedy algorithms regarding Objective B.

5 Online Social Honeynets

As we have seen, web crawling supposes a big risk for users privacy. OSN contain
enormous amounts of personal data which is, in most cases, publicly available
to anyone who is interested in it. Web crawlers can be used as a tool to collect
all this data. For this reason, it is important to be able to defend an OSN from
automated web crawlers which try to obtain information about its users.

The first trivial approach to avoid these risks is to deny the access to the
network for web crawlers. In order to do so, it is needed to distinguish between
web crawlers and other kinds of accesses (usually web browser requests) to the
network. Although some web crawlers identify themselves as so via the User
Agent field in the HTML protocol, it is easy to forge the requests in order to
simulate that they are made by a common browser. Consequently, we can not
rely on the HTML User Agent to tell the difference between web crawlers and
non web crawlers.

It is also possible to try to forbid the access to web crawlers by banning the
public access to the network. However, this is a difficult task to perform without
affecting the usability of the network. It is possible to configure the network in
such manner that only registered users are allowed to obtain information about
other users. In addition, the information that a user can obtain of another user
can be constrained depending on the distance between this users. For instance,
a sample configuration may be to allow a user to obtain all the information that
the network has of a direct friend, only the degree of a user which is a friend of
a friend and none information at all about the rest of the users of the network.

However, even when the network is closed and the neighbors of a targeted
user can only be obtained by users in the network at a fixed distance l of this
targeted user, published studies [6] show different strategies to maximize the
portion of the network discovered depending on the value of the lookahead l.
All the presented attacks require that the attacker subverts some user accounts
to obtain information of its friends. The authors show that for lookahead values
higher than 2, the number of subverted accounts needed to discover the 80% of
the nodes of the network is less than 100.

Furthermore, there are some OSN whose own properties or objectives make
them impossible to be build under a closed paradigm network. This is the case,
for example, of Twitter, whose slogan describes it as “the best way to discover
what’s happening on your world”. How could be this accomplished by limiting
the disclosure of all comments to just the users friends?

Another different approach to try to forbid the access for web crawlers is to
try to limit the number of accesses to the network done by the same IP address.
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Although this may seem a good strategy, it can be easily circumvented by using
anonymizing techniques that mask the source IP address.

As we have seen, neither making the OSN a closed network nor limiting the
number of accesses that can be done by the same IP address per unit of time
are feasible solutions to our problem. For this reason, some other techniques
have to be designed to limit the information that crawler may obtain from OSN.
In traditional web crawling literature, web crawler traps are known to cause
troubles to web crawlers [1]. Crawler traps are URLs that cause the crawler to
crawl indefinitely. In the traditional Web, some crawler traps can be created
unintentionally. For example, symbolic links within a file system can create cy-
cles. Other crawler traps are produced intentionally. For instance, CGI programs
that dynamically generate an infinite Web of documents. We propose a similar
approach to protect OSN from web crawlers by introducing the idea of Online
Social Honeynets.

Online Social Honeynets (OShN) are, much like traditional honeynets, a set
of users in the network whose objective is to attract and defend the network
from attackers that want to retrieve information from the network. Also like
traditional honeynets, OShN consist of a set of users that appear to be part of the
network with information of value to the attackers but they are actually isolated
and monitored. OShN also extents the concept of Social Honeypot introduced in
[18] where fake users are created in OSN to detect spam profiles and distinguish
social spammers from legitimate users.

So given a social graph G = (V, E) that represents an entire OSN, an OShN
can be modeled as a social graph Gh, which consist on a fake set of users Vh, its
relationships Eh, and a set of honeynet bridges Eb that will link the real graph
G with our honeynet graph Gh (see Figure 1). Then, the disclosed network can
be modeled as a social graph Gd = (Vd, Ed) containing all nodes Vd = V ∪ Vh

from both graphs and all edges Ed = E ∪ Eh ∪ Eb from both graphs plus the
honeynet bridges. Notice that we keep the edges defining the honeynet bridges
outside G and Gh, since, as we describe later, such bridges play an important
role for the objective of the OShN. Nodes in Gh incident to some edge in Eb

are called exterior nodes while nodes in Gh without any connection to G will be
called interior nodes.

Although it is obvious that the idea of OShN can be used for different pur-
poses, our main goal is to design an OShN that may provide some protection
from web crawlers, minimizing the useful information that the web crawler may
obtain from the OSN.

In order to protect OSN from web crawlers, the OShN should be able, first of
all, to attract web crawlers and, later on, to keep the crawler in the boundaries
of the OShN, Gh. Notice that with this approach, OSN providers do not have
to be concerned anymore about blocking the access to web crawlers since they
will be attracted and trapped by the honeynet and, therefore, will not be able
to obtain information of the real users of the network.

Let ta be the time that our OShN needs to attract the crawler, that is the
time needed to reach one of the honeynet nodes in Vh. Let tt be the time our
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Fig. 1. Online Social Honeynet

OShN could trap the crawler. Then, ta and tt determine the amount of correct
information the crawler may obtain from the OSN and our OShN design should
focus on by minimizing ta and maximizing tt, since in this way we could achieve a
good level of protection. The design of such a OShN that achieve such objectives
is not an easy task an, obviously, it is not likely that a single OShN could provide
such protection for all different web crawler configurations. In fact, as we discuss
in the next subsection, the design of an effective OShN is related with the exact
scheduler algorithm that the web crawler uses to crawl the OSN.

5.1 An Online Social Honeynet to Protect OSN from Greedy
Schedulers

In this section, we present a proof-of-concept of an OShN in order to show the
feasibility of the idea. We focus our OShN to be resistant against attacks of
a web crawler configured using a real-degree greedy which represent a threat
for OSN since it achieves a high efficiency rate as it has been proven in [5].
Furthermore, this algorithm is suitable to obtain a general view of the OSN,
as it has been pointed out in the previous section 4 and provides an important
number of cliques and k-plexes.

In order to define our OShN, we make the following assumptions. Firstly, our
OShN is static in the sense that elements in Vh , Eh, and Eb remain unchanged
during the crawling. Secondly, we assume that the OSN that we want to pro-
tect can be represented as a directed graph. Notice that such assumptions are
very restrictive in the sense that a significant number of solutions can not be
implemented with these constrains. However, we argue that our proof-of-concept
become more reliable if the concept of OShN can be proven its effectiveness even
under such constrained conditions.
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Furthermore, a side objective of our OShN is to minimize the introduced noise.
We want to design Gh and Eb in such manner that it allows us to accomplish the
previously noted objectives while trying to minimize both the number of nodes
|Vh| and edges |Eh ∪ Eb| added to the network.

The first goal that an OShN has to accomplish is to be able to attract web
crawlers minimizing the time ta. The attraction of a web crawler to our OShN
consists of getting that at least one node of Gh is explored by the crawler. This
attraction is done by properly selecting the connections of our OShN to the rest
of the nodes of the network Eb and by defining the degrees of the exterior nodes
of Gh.

As we have seen, greedy algorithms select as the next node to crawl the one
with the highest degree. For this reason, the node that is being explored at any
time tends to have a bigger degree than the previously explored nodes.1 So when
a crawler is launched configured with a greedy algorithm, it will tend to explore
the highest degree nodes of the network. Consequently, we would create the set
of fake edges Eb between our OShN and the OSN so that they connect Gh with
a number k of the highest degree nodes in G, ensuring that the crawler will
discover those nodes when exploring the highest degree nodes of the network.
This accomplish implicitly another goal that is minimizing the annoyances that
the OShN cause to users. Since high degree users tend to have thousands of
connections with other users, the impact of establishing a connection with Gh is
minimum and, in fact, most of the users will not even be aware of this connec-
tion.2 However, the time ta to attract the crawler using this strategy, depends
on the exact greedy algorithm. Note that, when defending the OSN from these
particular scheduler algorithms, it is not needed to attach one node of G to more
than one node in Gh since all the nodes of Gh connected with the same node in
G would be discovered at the same time. However, it may be useful to connect
the same node of Gh to many other nodes in G since that would let the crawler
discover the node in Gh from different real nodes, reducing the time ta.

Once the attraction has been done, and an exterior node of Gh has been
discovered, we want to maximize the time tt by forcing the crawler to discover
more nodes from Gh and crawling all of them. While the crawler is inside Gh, no
real nodes are crawled thus no node attributes of real nodes are ever disclosed.
However, even when the crawler is inside Gh, some real nodes may be discovered,
depending on the size of |Eb|. Since our OShN is designed towards protecting the
OSN from real-degree and unseen-degree greedy algorithms, the best strategy
to maximize tt is to set the degrees of the exterior nodes of Gh to at least
max{mi + 1} where mi is the real degree of their neighbors in G. Using this
strategy, the time tt is exactly the time needed for the crawler to crawl all nodes
in Gh. Then, we can defend the OSN from a crawler by assigning an arbitrary
large number of nodes to Gh. Notice that trapping indefinitely the crawler in

1 Note that this is true for the vast majority of starting nodes in the network. Some
extreme cases, for instance, starting the crawl in the highest degree node, don’t have
this property.

2 Deciding how to deal with uncooperative users is outside the scope of this paper.



Online Social Honeynets: Trapping Web Crawlers in OSN 13

Gh imply to assign an infinite number of nodes in Gh which is not feasible in
our scenario since we have assumed that our OShN is not dynamic, in the sense
that Vh , Eh, and Eb remain unchanged during the execution of the crawler.

There are many possible configurations that meet the above requirements.
For instance, we can design Gh as a complete graph of d nodes where all nodes
have degree d − 1 except for v0

h ∈ Vh, which has degree d. The additional edge
incident to this node is going to be our bridge edge e0

b = (v0, v0
h) ∈ Eb, which

will link our honeynet Gh with the real graph G. As we want to ensure that the
crawler is not able to escape from the honeynet until it has crawled all the nodes
inside Gh, we will force that interior nodes of Gh have a higher degree than the
node that has served as an entry point to the honeynet v0. For this reason, we
will set d = max{mi + 2}, so the interior nodes of Gh will have one more link
than the most connected node of G. Notice that doing so, the entry node v0

h has
exactly the degree of v0 plus 2. Even though a 1 point degree increment will
be enough to force the crawler to crawl v0

h just after crawling v0, incrementing
it by 2 allows us to construct Gh in an easy manner, avoiding having to spend
computational resources in the design of Gh. Figure 1 shows an example with
mi = 3.

5.2 Experimental Results

We have simulated the correctness of our OShN over the Flickr OSN, taking as a
testbed the data collected by Mislove et al. in [9] which contains over 11 millions
of users. This dataset is one of the most complete OSN data available and can be
used as a testing set for OSN analysis. We have centered our experiments in the
Flickr network, for which this dataset contains almost the 27% of nodes existing
on the network at the time of the crawl (1, 846, 198 nodes) with its relations
(22, 613, 981 links). Our experiments are done considering that our OSN graph
G is exactly the Flickr graph that had been retrieved in [9]. The diameter of this
graph G is 27, the radius is 13 and its mean degree is 12.24. The highest degree
of a node in G is 26, 185.

Since real-degree greedy is the scheduler algorithm used as a base point for
the tests in [5], we have conducted our experiments with a crawler configured
with this algorithm as a scheduler. Two termination conditions have been set for
the crawler to stop his job: to reach 1,000 crawled nodes, ncrawl = 1, 000, or to
crawl the v0

h node, which would be the first node in Gh that has been crawled.
Furthermore, another end crawling condition has been added when there are no
Vdisc nodes left to crawl, in case the initial seed belongs to an isolated component
of the graph containing less than 1,000 nodes.

Assuming these settings, we have created our experimental OShN by gener-
ating a complete subgraph of d = 26, 187 nodes, such that every node in the Gh

has exactly degree 26,186 except for a node v0
h ∈ Vh, for which we set a degree

of 26,187.
We have conducted 18, 461 experiments (1% of the total number of nodes in

the data testbed) in order to evaluate the attraction and trapping capacity of
our OShN. For each experiment, we select a random node in the Flickr network
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and we launch a crawler using this node as initial seed and the configuration
detailed above. In 12, 283 of the conducted experiments, the 66.53%, the OShN
was able to attract the web crawler and the crawler crawled the gateway node
v0

h. For these experiments, the crawler only need 5.09 hops (in mean) to reach
v0

h from the initial seed. This value indicates that the time ta for this proof-of-
concept is really low. The leaked information obtained by the crawler is very low,
since, in mean, only 5 nodes are crawled by the crawler and the mean number
of discovered nodes is 12, 645.60 nodes, that is less than the 0.7% of the entire
network. Notice, however, that the implications of discovered nodes for link
privacy are less strong since link information of discovered nodes is incomplete
until they are not crawled.

A detailed analysis of the 6, 178 experiments where the OShN could not attract
the crawler shows that in all cases there is no path between the seed and v0

h.
The interesting point is that, for that seeds, the total number of nodes that the
crawler is able to crawl is, in mean, 4.40 which imply that the isolated parts of
the graph, where the crawler seed has been randomly chosen, are really small.

Obviously, regarding the design of the OShN, the trapping time tt was maxi-
mum, in the sense that the ending condition was met before the crawler left the
OShN.

6 Conclusions

In this paper, we have studied the effect that web crawlers may have on the
information that can be retrieved from an OSN. We review some of the most
relevant scheduler algorithms and describe their main properties. We discuss the
private information that can be inferred from a social graph, focusing on the
communities that can be identified in a graph by means of the connectivity of
their members. Then, we analyze the impact of different schedulers algorithms
regarding the information that the web crawler retrieve.

All this analysis shows the threat that web crawlers suppose for OSN infor-
mation. For that reason, and assuming the difficulty to ban web crawlers from
OSN, we introduce the concept of online social honeynet (OShN) as a mechanism
to achieve some degree of protection against web crawlers. We provide a proof-
of-concept of an OShN designed to protect the OSN from a web crawled with
a real-degree greedy as a scheduler algorithm. Experimental data shows that
the proposed protection is effective and that the amount of OSN data disclosed
to the web crawler can be keep at lower levels. Although the proposed OShN
only protects the OSN from a specific crawler configuration, it requires low |Eb|
values, which makes it easy to be implemented in real world environments.

We have provided some hints towards the construction of the honeynet graph
and some of the conditions that force the the crawler to enter the honeynet
once it has been discovered and that ensure that the crawler is not able to exit
the honeynet once it is inside. However, a detailed analysis on the construction
of the honeynet graph remains to be done. The exact construction of a graph
that meets the requirements needed for the honeynet while minimizing the over-
head introduced to the network is an interesting future work to proceed with.
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Moreover, an interesting feature to require to our OShN is that it is not distin-
guishable from the rest of the network. In doing so we assure that web crawlers
can not detect when they are inside the OShN.

On the other hand, in our discussions, we have assumed that our OShN is
static in the sense that elements in Vh, Eh, and Eb remain unchanged during the
execution of the crawler. However, a dynamic model can present some advantages
to both the effectiveness of the protection as well as the resources used to hold
the OShN. Designing such OShN is further work to be done.

Acknowledgements. This work was partially supported by the Spanish
MCYT and the FEDER funds under grants TSI2007-65406-C03- 03 ”E-AEGIS”,
TIN2010-15764 ”N-KHRONOUS”, andCONSOLIDERCSD2007-00004 ”ARES”.

References

1. Heydon, A., Najork, M.: Mercator: A scalable, extensible web crawler. World Wide
Web 2, 219–229 (1999)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30, 107–117 (1998)

3. Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance dis-
tributed web crawler. In: Proc. of the Int. Conf. on Data Engineering, pp. 357–368
(2002)

4. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: a scalable fully dis-
tributed web crawler. Softw. Pract. Exper. 34, 711–726 (2004)

5. Ye, S., Lang, J., Wu, F.: Crawling online social graphs. In: Proceedings of the 2010
12th International Asia-Pacific Web Conference, APWEB 2010, pp. 236–242. IEEE
Computer Society, Washington, DC, USA (2010)

6. Korolova, A., Motwani, R., Nabar, S.U., Xu, Y.: Link privacy in social networks. In:
CIKM 2008: Proceeding of the 17th ACM Conference on Information and Knowl-
edge Management, pp. 289–298. ACM, New York (2008)

7. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: A walk in facebook: Uniform
sampling of users in online social networks (2009)

8. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: WOSP 2008:
Proceedings of the First Workshop on Online Social Networks, pp. 19–24. ACM,
New York (2008)

9. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: IMC 2007: Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM, New
York (2007)

10. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: WWW 2007:
Proceedings of the 16th International Conference on World Wide Web, pp. 181–
190. ACM, New York (2007)

11. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social
networks. Technical report (2007)

12. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph
data. In: Bonchi, F., Ferrari, E., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS,
vol. 4890, pp. 153–171. Springer, Heidelberg (2008)



16 J. Herrera-Joancomart́ı and C. Pérez-Solà
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In conventional classification settings, the classifiers generally try to maximize
the accuracy or minimize the error rate, both are equivalent to minimizing the
number of mistakes in classifying new instances. Such a setting is valid when
the costs of different types of mistakes are equal. In real-world applications,
however, the costs of different types of mistakes are often unequal. For example,
in intrusion detection, the cost of mistakenly classifying an intrusion as a normal
access is usually far larger than that of mistakenly classifying a normal access
as an intrusion, because the former type of mistakes will result in much more
serious losses.

In cost-sensitive learning, rather than simply minimizing the number of mis-
takes, the goal is to minimize the total cost. Roughly speaking, there are two
types of misclassification costs, i.e., class-dependent or example-dependent costs.
The former assumes that the costs are associated with classes, that is, every class
has its own misclassification cost; the latter assumes that the costs are associ-
ated with examples, that is, every example has its own misclassification cost. In
most real tasks it is feasible to get the cost of misclassifying one class to another
class, e.g., by querying domain experts, while only in some special tasks it is
easy to get the cost for every training example. In this talk we will focus on the
class-dependent misclassification costs.

The most fundamental and popular approach to cost-sensitive learning is
Rescaling, or called Rebalance. This approach tries to rebalance the classes
such that the influences of different classes are in proportion to their costs.
For example, the Rescaling approach can be realized by resampling, where
the lower-cost class examples can be under-sampled such that the number of
examples of the lower-cost and higher cost classes are in proportion to their
misclassification costs, respectively. In addition to resampling, the Rescaling
approach can also be realized in other forms, such as reweighting the training
examples or threshold-moving of the decision boundaries. Notice that Rescaling
is an essential procedure for handling unequal costs; indeed, most cost-sensitive
learning approaches can be regarded as different realizations of Rescaling with
different base learners.

Though Rescaling works very well in two-class classification problems, it was
found that it often fails in multi-class problems. In this talk, we will analyze why
this phenomenon occurs, and introduce an updated Rescaling approach. Then,
we will discuss on how to handle inexact cost information; this is an important
and challenging problem since it is usually difficult to get exact cost information

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 17–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



18 Z.-H. Zhou

in real-world tasks, yet previous cost-sensitive learning studies assumed that
exact costs of different types of misclassifications are known. We will also briefly
introduce cost-sensitive face recognition, and a task involving other types of
unequal costs such as feature extraction cost.
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Abstract. Computer-Aided Drug Discovery (CADD) is concerned with the use 
of computational techniques to determine drug structures with certain desirable 
properties. Evolutionary algorithms (EAs) have been proposed to evolve drug 
molecules by mimicking chemical reactions that cause the exchange of 
chemical bonds and components between molecules. For these EAs to perform 
their tasks, known molecular components, which can serve as building blocks 
for the drugs to be designed, and known chemical rules, which govern chemical 
combination between different components, have to be introduced before an 
evolutionary process can take place. To automate drug molecular design 
without such prior knowledge and constraints, we need a special EA that can 
evolve molecular graphs with minimal background knowledge. In this talk, we 
present one such EA that can evolves graph structures used to represent drug 
molecules. We show how molecular fingerprints can be used to evaluate the 
“fitness” of an evolved drug structure obtained at each generation during the 
evolutionary process. We also show how the discovering of privileged 
structures in many drug molecules and the use of ligand docking and binding 
affinity can be used as alternatives for fitness evaluating in an EA for drug 
design. We show how the results obtained using the proposed EA may lead to a 
promising approach for CADD.  
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Abstract. Fuzzy measures on multisets are studied. We show that a class of mul-
tisets can be represented as a subset of positive integers. Comonotonicity for
multisets are defined. We show that a fuzzy measure on multisets with some
comonotonicity condition can be represented by generalized fuzzy integral.
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1 Introduction

Fuzzy measures [15] are set functions μ : ℘(X)→ [0,1] that permits us to represent
interactions between the elements of the set. Fuzzy measures are often used in conjunc-
tion with fuzzy integrals to aggregate information from several sources [17].

Several extensions and variations for fuzzy measures exist. E.g. [4,10] deal with
discrete fuzzy measures (i.e., μ :℘(X)→ L where L is an ordinal scale), [5] considered
set-valued measures.

In this paper we discuss another type of extension. Here, fuzzy measures are defined
for multisets. Multisets (or bags) [6,11,19] are a generalization of sets in which multiple
appearances of an element is permitted.

The structure of the paper is as follows. In Section 2 we review some previous results
needed in this paper. In Section 3 we discuss about the representation of fuzzy measures
on multisets. In Section 4 we introduce comonotonicity on multisets and give some
results. In Section 5 we have a proposition that a fuzzy measure on multisets can be
represented by a generalized fuzzy integral when some comonotonicity conditions hold.
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2 Preliminaries

In this section we review the concepts of fuzzy measures and two fuzzy integrals: the
Choquet and Sugeno integrals.

2.1 Choquet Integral and Sugeno Integral

We present here the definition of fuzzy measures and the ones of Choquet and Sugeno
integrals. In this paper we will use ∨ and ∧ to denote, respectively, the maximum and
the minimum.

Definition 1. Let X be a universal set and X be a subset of 2X with /0∈X and X ∈X .
Then, (X ,X ) is called a fuzzy measurable space. We say that a function f : X →R

+ is
X -measurable if {x| f (x) ≥ a} ∈X for all a.

Definition 2. [3] Let f and g be X -measurable functions on X; then, we say that f
and g are comonotonic if

f (x) < f (y)⇒ g(x)≤ g(y)

for x,y ∈ X.

Definition 3. [15] Let (X ,X ) be a fuzzy measurable space; then, a fuzzy measure μ
on (X ,X ) is a real valued set function, μ : X −→R

+ with the following properties.

(i) μ( /0) = 0, μ(X) = k where k ∈ (0,∞).
(ii) μ(A)≤ μ(B) whenever A⊆ B, A,B ∈X .

A triplet (X ,X ,μ) is said to be a fuzzy measure space.

Definition 4. Let μ be a fuzzy measure on (X ,X ), we say that:

(i) μ is a one to one fuzzy measure, if A �= B implies μ(A) �= μ(B);
(ii) μ is a distorted additive measure if there exist a strictly monotone function f and

an additive measure m such that μ = f ◦m.

Definition 5. [2,12] Let (X ,X ,μ) be a fuzzy measure space and let f be a X -
measurable function; then, the Choquet integral of f with respect to μ is defined by

(C)
∫

f dμ :=
∫ ∞

0
μ f (r)dr,

where μ f (r) = μ({x| f (x)≥ r}).
Definition 6. [1] For any r > 0 and A ∈X , the basic simple function b(r,A) is defined
by b(r,A)(x) = r if x ∈ A and b(r,A)(x) = 0 if x �∈ A.

Then, we say that a function f is a simple function if it can be expressed as

f :=
n

∑
i=1

b(ai,Ai) for ai > 0 (1)

where A1 � A2 � · · ·� An, Ai ∈X .
Expression 1 is called a comonotonic additive representation of f . f can also be

expressed as f := ∨n
i=1b(a′i,Ai) for a′1 > · · ·> a′n > 0, where A1 � A2 � · · · � An, Ai ∈

X . This expression is called a comonotonic maxitive representation of f .
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Then, when a X -measurable function f is a simple function with a comonotonic
additive representation, we have that the following equation holds:

(C)
∫

f dμ =
n

∑
i=1

aiμ(Ai).

Definition 7. [14,15] Let (X ,X ,μ) be a fuzzy measure space and let f : X→ [0,∞) be
a X -measurable function; then, the Sugeno integral of f with respect to μ is defined
by

(S)
∫

f dμ := sup
r∈[0,∞)

[r∧μ f (r)].

When f is a simple function with a comonotonic maxitive representation, the Sugeno
integral can be written as

(S)
∫

f dμ =
n∨

i=1

(a′i∧μ(Ai)).

2.2 Generalized Fuzzy Integral

In this section, we define a generalized fuzzy integral in terms of a pseudo-addition ⊕
and a pseudo-multiplication �. Formally,⊕ and � are binary operators that generalize
addition and multiplication, and also max and min. We want to recall that generalized
fuzzy integrals have been investigated by Benvenuti et al. in [1].

Note that we will use k ∈ (0,∞) in the rest of this paper.

Definition 8. A pseudo-addition⊕ is a binary operation on [0,k] or [0,∞) fulfilling the
following conditions:

(A1) x⊕0 = 0⊕ x = x.
(A2) x⊕ y≤ u⊕ v whenever x≤ u and y≤ v.
(A3) x⊕ y = y⊕ x.
(A4) (x⊕ y)⊕ z = x⊕ (y⊕ z).
(A5) xn→ x,yn→ y implies xn⊕ yn→ x⊕ y.

A pseudo-addition⊕ is said to be strict if and only if x⊕ y < x⊕ z whenever x > 0 and
y < z, for x,y,z ∈ (0,k); and it is said to be Archimedean if and only if x⊕ x > x for all
x ∈ (0,k).

Definition 9. A pseudo-multiplication � is a binary operation on [0,k] or [0,∞) fulfill-
ing the conditions:

(M1) There exists a unit element e ∈ (0,k] such that x � e = e � x = x.
(M2) x � y≤ u � v whenever x≤ u and y≤ v.
(M3) x � y = y � x.
(M4) (x � y)� z = x � (y � z).
(M5) xn→ x,yn→ y implies xn � yn→ x � y.
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Example 1

(i) The maximum operator x∨ y is a non Archimedean pseudo-addition on [0,k].
(ii) The sum x + y is an Archimedean pseudo-addition on [0,∞).

(iii) The Sugeno operator x+λ y := 1∧(x+y+λxy) (−1 < λ < ∞) is an Archimedean
pseudo-addition on [0,1].

Proposition 1. [9] If a pseudo-addition⊕ is Archimedean, then there exists a contin-
uous and strictly increasing function g : [0,k]→ [0,∞] such that x⊕ y = g(−1)(g(x)+
g(y)), where g(−1) is the pseudo-inverse of g defined by

g(−1)(u) :=
{

g(−1)(u) if u≤ g(k)
k if u > g(k).

The function g is called an additive generator of ⊕.

Definition 10. Let μ be a fuzzy measure on a fuzzy measurable space (X ,X ); then, we
say that μ is a ⊕-measure or a ⊕-decomposable fuzzy measure if μ(A∪B) = μ(A)⊕
μ(B) whenever A∩B = /0 for A,B ∈X .

A ⊕-measure μ is called normal when either ⊕= ∨, or ⊕ is Archimedean and g◦μ
is an additive measure. Here, g corresponds to an additive generator of ⊕.

Definition 11. Let k ∈ (0,∞), let ⊕ be a pseudo-addition on [0,k] or [0,∞) and let �
be a pseudo-multiplication on [0,k] or [0,∞); then, we say that � is ⊕-fitting if

(F1) a � x = 0 implies a = 0 or x = 0,
(F2) a � (x⊕ y) = (a � x)⊕ (a � y).

Under these conditions, we say that (⊕,�) is a pseudo-fitting system.

Let ⊕ be a pseudo-addition; then, we define its pseudo-inverse−⊕ as

a−⊕ b := inf{c|b⊕ c≥ a}

for all (a,b) ∈ [0,k]2.

Definition 12. [16] Let μ be a fuzzy measure on a fuzzy measurable space (X ,X ),
and let (⊕,�) be a pseudo-fitting system. Then, when μ is a normal ⊕-measure, we
define the pseudo-decomposable integral of a measurable simple function f on X such
that f =⊕1

n
i=1b(ri,Di) where Di∩D j �= /0 for i �= j, as follows:

(D)
∫

f dμ := ⊕n
i=1ri � μ(Di).

Since μ is an ⊕-measure, it is obvious that the integral is well defined.

Definition 13. Let μ be a fuzzy measure on a measurable space (X ,X ), and let (⊕,�)
be a pseudo-fitting system. Then, the generalized fuzzy integral (GF-integral) of a mea-
surable simple function f :=⊕n

i=1b(ai,Ai), with ai > 0 and A1 � A2 � . . .An, Ai ∈X ,
is defined as follows:

(GF)
∫

f dμ :=⊕n
i=1ai � μ(Ai).
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The GF-integral of a simple function is well defined [1].
The next proposition follows from the definition of the pseudo-inverse−⊕, the gen-

eralized t-conorm integral (Definition 13), and the t-conorm integral (Definition 12).

Proposition 2. Let μ be a fuzzy measure on a fuzzy measurable space (X ,X ), and let
(⊕,�) be a pseudo-fitting system. Then, if μ is a normal ⊕-measure, the generalized
fuzzy integral coincides with the pseudo-decomposable integral.

Example 2

(i) When ⊕= + and � = ·, the generalized fuzzy integral is a Choquet integral.
(ii) When ⊕= ∨ and � = ∧, the generalized fuzzy integral is a Sugeno integral.

Let f ,g be comonotonic measurable functions. Then, since for all a,b > 0 either
{x| f (x) ≥ a} ⊆ {x|g(x) ≥ b} or {x| f (x) ≥ a} ⊇ {x|g(x) ≥ b}, the following theorem
can be proved.

Theorem 1. [13] Let (X ,X ,μ) be a fuzzy measure space and let (⊕,�) be a pseudo-
fitting system. Then, for comonotonic measurable functions f , and g, we have

(GF)
∫

( f ⊕g)dμ = (GF)
∫

f dμ⊕ (GF)
∫

gdμ .

We call this property the comonotonic⊕-additivity of a generalized fuzzy integral.

2.3 Multisets

Let X be a universal set. Then, a multiset M over X is characterized by the count func-
tion CM : X → N := {0,1,2, . . .}, where CM corresponds to the number of occurrences
of the object x ∈ X .

We denote by M (X) the class of multisets of X .

Example 3. Let X := {a,b,c} and M := {a,a,a,b,b}. Then CM(a) = 3, CM(b) = 2,
CM(c) = 0.

The multiset M in Example 3 can also be represented as M = {3/a,2/b} or M =
{(a,3),(b,2)}.

Definition 14. Let M,N ∈M (X). Then, we define:

– the inclusion of multisets by

M ⊆ N⇔CM(x)≤CN(x)

for all x ∈ X;
– the equality of multisets M = N by

CM(x) = CN(x)

for all x ∈ X.
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Let M ∈M (X). Then P(M) denotes the class of subsets of the multiset M, that is,

P(M) := {N|N ⊆M,N ∈M (X)}.

Proposition 3. Let |X |= n and M ∈M (X). If M = {(ai,ki)|i = 1,2, . . .n}, then

|P(M)|=
n

∏
i=1

(ki + 1).

Example 4. Let M = {a,a,a,b,b}. Then

P(M) = { M1 = /0, M2 = {a,a}, M3 = {a,a,a}, M4 = {a,a,a,b},

M5 = {a}, M6 = {a,b}, M7 = {a,a,b}, M8 = {a,a,b,b},

M9 = {b}, M10 = {b,b}, M11 = {a,b,b}, M12 = {a,a,a,b,b}}.

Definition 15. Let A,B ∈M (X). We define some binary operations on M (X). Defini-
tions include union, intersection and addition of two multisets.

(i) CA∪B(x) = CA(x)∨CB(x)
(ii) CA∩B(x) = CA(x)∧CB(x)

(iii) CA+B(x) = CA(x)+CB(x)
(iv) CA⊕B(x) = CA(x)⊕CB(x)
(v) CA�B(x) = CA(x)�CB(x)

where x ∈ X and CA is a count function of A.

Proposition 4. Let A,B ∈M (X). We have

A∩B⊆ A∪B⊆ A + B

Example 5. Let X := {a,b,c} and A := {a,a,b}, B := {a,b,b,c}. Then we have

(i) A∪B = {a,a,b,b,c}
(ii) A∩B = {a,b}

(iii) A + B = {a,a,a,b,b,b,c}
(iv) A⊕B = {a,a,b,b,c} when ⊕= ∨
(v) A � B = {a,b} when ⊕= ∧

3 Representation of Fuzzy Measures for Finite Multisets

Let X be a finite universal set, |X | = n, and P be the set of prime numbers, that is,
P := {2,3,5,7, . . .}. Since X is a finite set, there exists a one to one mapping ϕX from
X to a subset of P. That is,

ϕX : X →{p1, p2, . . . , pn}.
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Let M ∈M (X), then, we have an induced one to one mapping ΦX from M (X) to a
subset S of natural numbers by

ΦX (M) :=
n

∏
i=1

ϕX(xi)CM (xi).

We say that ΦX (M) is a natural number representation of the multiset M.

Example 6. Let X := {a,b,c} and ϕX (a) = 2,ϕX(b) = 3,ϕX(c) = 5. Then,

ΦX (A) := 2CA(a)3CA(b)5CA(c)

for A ∈M (X). For example, if A := {a,a,b,c}, then

ΦX(A) = 22 ·3 ·5 = 60.

Let M ∈M (X). We have

ΦX (P(M)) :=

{
n

∏
i=1

ϕX(xi)CA(xi)| A ∈P(M)

}
.

Proposition 5. Let M ∈M (X); then, ΦX(P(M)) is the set of divisors of ΦX (M).

Example 7. Let X := {a,b,c}, let ϕX(a) = 2,ϕX(b) = 3,ϕX (c) = 5, and let the multiset
M be defined by M := {a,a,a,b,b,c}. Then, ΦX (M) := 233251 = 120, and

ΦX (P(M)) := {1,2,3,4,5,6,8,10,12,15,24,30,40,60,120}.

Definition 16. [18] Let X be a reference set, let M be a multiset on X such that M �= /0;
then, a function μ from (M,P(M)) to [0,1] is a fuzzy measure if the following holds:

– μ( /0) = 0 and μ(M) = k for k ∈ (0,∞),
– μ(A)≤ μ(B) when A⊆ B and B⊆M.

We have the next proposition.

Proposition 6. Let ΦX be a natural number representation of multisets. Then, for any
non-decreasing function such that ρ(1) = 0, and ρ(ΦX (M)) > 0, ρ ◦ΦX is a fuzzy
measure.

Example 8. Let ΦX be a natural number representation of multisets. Then we have that
μ := ρ ◦ΦX with ρ(x) = log(x) is a fuzzy measure.

Conversely, we can represent any fuzzy measure in terms of a natural number repre-
sentation ΦX and a distortion function.

Proposition 7. Let μ be a one to one fuzzy measure. There exists a function fμ : R
+→

R such that μ = fμ ◦ΦX .

In this case, we say that fμ is a representation function of a one to one fuzzy measure.

Proposition 8. Let μ be a one to one fuzzy measure. If a representation function fμ is
monotone, then μ is a distorted additive measure.

The representations of fuzzy measures in terms of mappings on the set of prime numbers
are further studied in [18].
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4 Comonotonicity of Multisets

We start this section with a definition of the concept of comonotonicity of multisets.

Definition 17. Let M,N be multisets on X. Then, we say that M and N are comonotonic
if CM(x1) < CM(x2) implies CN(x1)≤CN(x2) for all pairs x1,x2 ∈ X.

Let M,N be two universal sets. Then, since CM(x) = 0 or 1 and CN(x) = 0 or 1, M and
N are comonotonic if and only if M ⊆ N or M ⊇ N. However, in general there exist
comonotonic multisets M,N ∈M (X) such that M �⊆ N and M �⊇ N. Indeed, a multiset
M which satisfies CM(xi) = CM(x j) for all xi,x j ∈ X is comonotonic with any multiset
N ∈M (X). In particular, the emptyset is comonotonic with any set N ∈M (X). Finally,
M ⊆ N does not imply the comonotonicity of M and N.

Proposition 9. Comonotonicity of multisets is a reflexive and symmetric binary rela-
tion. However, it is not an equivalence relation, since it is not transitive.

Example 9. Let X := {a,b,c} and consider the natural number representation of mul-
tisets ΦX induced by ϕX(X) = {2,3,5}. Let

M1 := {a,a,a,b,b,c}, ΦX (M1) = 360;
M2 := {a,a,b,c}, ΦX (M2) = 60;
M3 := {a,b,c}, ΦX (M3) = 30;
M4 := {c,c,c}, ΦX (M4) = 125,
M5 := {b,b,b,b,c,c,c}, ΦX (M5) = 10125.

Then M1 and M2 are comonotonic. We have that M3 �⊆M4 and M3 �⊇M4, but M3 and M4

are comonotonic anyway. If comonotonicity had been an equivalence relation, then the
fact that M2 and M3 are comonotonic and the transitivity of the equivalence relation
would have implied the comonotonicity of M2 and M4. However M2 and M4 are not
comonotonic, hence illustrating the abscence of transitivity. Finally M4 ⊆ M5 but M4

and M5 are not comonotonic.

Let M be a multiset and P(M) be the class of submultisets of M. Because of the sym-
metry of the comonotonicity, we can decompose P(M) in blocks of pairwise comono-
tonic multisets, as will be described in the following.

Example 10. Let X := {a,b} and M := {a,a,b}. We can decompose P(M) in blocks
of pairwise comonotonic multisets as

P(M) = M1∪M2,

with

– M1 := { /0,{a},{a,a},{a,b},{a,a,b}} and
– M2 := { /0,{b},{a,b}}.
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Then the members of each Mi (i=1,2) are pairwise comonotonic. Observe that M1 ∩
M2 �= /0.

Consider the natural number representation of multisets ΦX induced by the function
ϕX(X) := {2,3}. Then ΦX(M) = 223 = 12 and we have

ΦX (P(M)) = ΦX (M1)∪ΦX(M2),

with

– M1 := {1,2,4,6,12} and
– M2 := {1,3,6}.

Lemma 1. Let F ⊆M (X) be a family of multisets over X. Then, there exist sets (which
we call blocks) Mi i = 1,2, . . . ,k of elements of F , such that F = ∪1≤i≤kMi and such
that the members of a block Mi are pairwise comonotonic. Also, these blocks can always
be chosen to be maximal with respect to inclusion.

We say that a decomposition of F in comonotonic blocks, which is maximal with
respect to inclusion, is a maximal comonotonic block decomposition of F and we call
each Mi a comonotonic block of F . If F = P(M) for some multiset M over X , then
we abuse notation and talk about the block decomposition of M and the comonotonic
blocks of M.

Let M1 and M2 be two comonotonic blocks of M (X). We say that M1 and M2 are
different if M1�M2 �= /0 where M1�M2 := (M1 ∩Mc

2)∪ (M2 ∩Mc
1) and where Mc is

the standard complement.

Definition 18. Let F ⊆M (X) be a family of multisets over X and let F = ∪1≤i≤lMi

be a maximal comonotonic block decomposition of F . The positive integer l is is said
to be the variety of F .

Suppose that X = {a1,a2, . . . ,an}. It is not hard to see that the variety of M (X) coin-
cides with the number of permutations of CM(a1),CM(a2), . . . ,CM(an), proving the next
proposition.

Proposition 10. Suppose that |X |= n. The variety of M (X) is n!.

Example 11. Let X := {a,b,c}. Proposition 10 says that the variety of M (X) is 6.
Indeed the maximal comonotonic block decomposition of M (X) is

M (X) =
6⋃

i=1

Mi

with
M1 := {M|CM(a)≤CM(b)≤CM(c)}
M2 := {M|CM(a)≤CM(c)≤CM(b)}
M3 := {M|CM(b)≤CM(a)≤CM(c)}
M4 := {M|CM(b)≤CM(c)≤CM(a)}
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M5 := {M|CM(c)≤CM(a)≤CM(b)}
M6 := {M|CM(c)≤CM(b)≤CM(a)}.

Let M = {a,a,b,c}, then, following Section 3 we use the natural number represen-
tation of M induced by the function ϕX({a,b,c}) = {2,3,5}, and we get

M1∩P(M) := { /0,{c},{b,c},{a,b,c}} = {1,5,15,30}

M2∩P(M) := { /0,{b},{b,c},{a,b,c}} = {1,3,15,30}

M3∩P(M) := { /0,{c},{a,c},{a,b,c}} = {1,5,10,30}

M4∩P(M) := { /0,{a},{a,a},{a,c},{a,a,c},{a,b,c},{a,a,b,c}} = {1,2,4,10,20,30,60}

M5∩P(M) := { /0,{b},{a,b},{a,b,c}} = {1,3,6,30}

M6∩P(M) := { /0,{a},{a,a},{a,b},{a,a,b},{a,b,c},{a,a,b,c}} = {1,2,4,6,12,30,60}.

5 Extension of Fuzzy Measure to Multisets

Even if X is a finite set, M (X) is infinite. The problem is how to define a fuzzy measure
on M (X). We give a partial solution to this problem.

If X is a finite set, then 2X is also a finite set. We can define a fuzzy measure μ on 2X .

Definition 19. Let M be a multiset on X, then we can represent a count function CM by
CM :=⊕n

i=1b(ai,Ai), with ai > 0 and A1 � A2 � . . .An, Ai ∈X . Then we can define an
extension μ̄ of the fuzzy measure μ to a multiset M by

μ̄(M) :=⊕n
i=1ai � μ(Ai) = (GF)

∫
CMdμ

with ai > 0 and A1 � A2 � . . .An, Ai ∈X .
We say that μ̄ is a comonotonic (⊕,�)-extension of μ .

As a corollary of Theorem 1 we get the following proposition.

Proposition 11. Let M,N ∈M (X), and let μ be a fuzzy measure on 2X . If M and N
are comonotonic, then μ̄(M⊕N) = μ̄(M)⊕ μ̄(N).

Given a fuzzy measure ν on M (X) we have the next theorem, which can be seen as the
converse of Definition 19.

Theorem 2. If ν on M (X) is comonotonic ⊕-additive, then there exists a fuzzy mea-
sure μ on 2X such that

ν(M) = (GF)
∫

CMdμ

for M ∈M (X).
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6 Conclusion

In this paper we have extended fuzzy measures on multisets. We have also introduced
comonotonicity of multisets and given some examples.
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Abstract. Information fusion technology has been introduced for data analysis 
in intelligent transportation systems (ITS) in order to generate a more accurate 
evaluation of the traffic state. The data collected from multiple heterogeneous 
traffic sensors are converted into common traffic state features, such as mean 
speed and volume. Afterwards, we design a hierarchical evidential fusion model 
(HEFM) based on D-S Evidence Theory to implement the feature-level fusion. 
When the data quantity reaches a large amount, HEFM can be parallelized in 
data-centric mode, which mainly consists of region-based data decomposition 
by quadtree and fusion task scheduling. The experiments are conducted to 
testify the scalability of this parallel fusion model on accuracy and efficiency as 
the numbers of decomposed sub-regions and cyberinfrastructure computing 
nodes increase. The results show that significant speedups can be achieved 
without loss in accuracy. 

Keywords: Information Fusion, Intelligent Transportation Systems, Cyber-
infrastructure, Parallelization. 

1   Introduction 

The advanced traveler information system (ATIS) [1] is one of the most important 
traveling guide systems, which reaches the application of information technology in 
intelligent transportation systems (ITS). In ATIS, a large amount of transportation 
data is collected, processed and transmitted to agencies and travelers aiming at instant 
demonstration of the traffic state, automatic traffic control and guidance, etc. A 
primary goal of ATIS is to provide a real-time and accurate road network traffic state 
in large-scale urban regions. 

Recently, more and more transportation data come from different types of traffic 
sensors, e.g., loop detectors [2, 3], probe vehicles [4], cameras [5] and cell phones [6]. 
Among those sensors, loop detectors and probe vehicles are widely used in urban 
settings, however both of them still have inherent drawbacks [7]. Two principle 
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shortcomings for loop detector are high failure ratio and inaccurate conversion to 
traffic state features, and two primary disadvantages for probe vehicles are poor 
statistical representation and errors in the map-matching process. The heterogeneity of 
sensors and their respective drawbacks require a fusion on collected data to evaluate 
the traffic state more accurately. 

Information fusion technology, which stems from military applications, has been 
introduced into ITS recently [8]. Its aim is to obtain a more accurate and 
comprehensive traffic state evaluation through combining data from multiple types of 
traffic sensors. As utilizing different sorts of input data, the information fusion can 
work at pixel-level, feature-level or decision-level [9]. In this paper, we propose a 
hierarchical evidential fusion model (HEFM) based on D-S Evidence Theory [11]. 
This model takes into account overcoming the deficiencies of Evidence Theory in 
case of conflict evidences, and its implementation can also be readily parallelized. 
The HEFM is designed to be a kind of feature-level fusion, and our first step is a 
conversion from the collected raw data to traffic state features, such as mean speed 
and volume. 

Another grand challenge is brought up by the temporal complexity of fusing 
transportation data generated by a large number of sensors. Parallel computing 
technology is of great importance in order to reach the goal of accelerating computation 
which is required by our application context. The implementation is parallelized based 
on the division of region-aware transportation data. The whole computing task can be 
divided into a workload-balanced set of sub-tasks to feed the high performance 
computing infrastructure. The ultimate goal is to achieve a real-time fusion of data from 
heterogeneous multi-sensors in the traffic monitoring systems of urban road networks. 

This paper is organized as follows: some related work on information fusion and 
the utilization of parallel computing in ITS is reviewed in Section 2; Section 3 
proposes the hierarchical evidential fusion model and Section 4 presents its 
parallelized implementation; Experimental results on accuracy and efficiency are 
demonstrated in Section 5; Finally, a conclusion with remarks on future work is given 
in Section 6. 

2   Related Work 

Information fusion technology was firstly used in ITS in Sunmer’s work [12], which 
shows its great significance. Since then, various methods have been presented. Cheu 
et al. [13] implemented a neural-network-based model for fusion and achieved good 
performance in traffic simulation. However, this model requires a large training set of 
real values, which would be infeasible in practice. Choi and Chung [14] designed a 
fusion algorithm based on fuzzy regression for estimating link travel time. The 
algorithm is over specialized to fit all links of road network. Automatic incident 
detection (AID) [15] and advanced driver assistance systems (ADAS) [16] are two 
other applications using information fusion technology for traffic management. 

Parallel computing is a form of computation in which many calculations are carried 
out simultaneously. Different types of parallel computing, such as cluster computing, 
grid computing, and general purpose GPU computing, have been utilized in ITS. Most 
often related work includes parallel implementation of analysis and modeling of 
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traffic flows [17], parallelized information retrieval on transportation data [18], and 
parallel implementation of a transportation network model [19], etc. To the best of our 
knowledge, there is little research work on the parallel fusion of transportation data. 
Whereas, such an effort becomes critical when we need to process a massive amount 
of data collected from heterogeneous multi-source traffic sensors. Therefore, to 
achieve accurate and real-time evaluation of traffic state, we design a fusion model 
specific for transportation data and parallelizing its implementation. 

3   Hierarchical Evidential Fusion Model 

Since our hierarchical evidential fusion model is based on D-S Evidence Theory, this 
section mainly consists of three parts: a brief introduction of D-S Evidence Theory, 
the architecture of HEFM and its embodied algorithm. 

3.1   A Brief Introduction of D-S Evidence Theory 

D-S Evidence Theory is a mathematical theory that allows to combine evidence from 
different sources and to arrive at a degree of belief and plausibility represented by a 

belief function and a plausibility function respectively. Let { }1 2, ,..., Nω ω ωΩ =  be 

a set of discernment, in which all elements are assumed to be mutually exclusive and 
exhaustive. A Basic Probability Assignment (BPA) is a function m  that is defined on 

the power set of Ω , { }2 |A AΩ = ⊆ Ω , and maps to values in [0,1] , such that 

( ) 0m Φ =  where Φ  denotes the empty set and ( ) 1
A

m A
⊆Ω

=∑ . 

The belief function ( bel ) and the plausibility function ( pl ) are then defined as 

the following functions on 2Ω : 

( ) ( )

( ) ( )
B A

B A

bel A m B

pl A m B
⊆

∩ ≠Φ

⎧ =
⎪
⎨ =⎪⎩

∑
∑       ,A B∀ ⊆ Ω                               (1) 

in which ( )bel A  represents the sum of masses in all subsets of A , and ( )pl A  

corresponds to the sum of masses committed to those subsets, which do not discredit 
A . 

Multiple evidences can be fused by using Dempster’s combination rules as 
follows: 

, ,

0
1( ) ( ) ( )

1 i j
A B C A B

m C m A m B
K ∩ = ∀ ⊆Ω

⎧⎪= ⎨ ⋅
⎪ −⎩

∑      
A B

A B

∩ =Φ

∩ ≠ Φ
                (2) 

where 
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, ,

( ) ( )i j
A B A B

K m A m B
∩ =Φ ∀ ⊆Ω

= ⋅∑                                       (3) 

is the conflict factor between two evidences, i  and j . 

3.2   Architecture of HEFM 

The architecture of HEFM is displayed in Fig. 1. It mainly consists of four parts: data 
collection, feature conversion, hierarchical evidential fusion and output. The source 
data are collected from multiple heterogeneous sensors, and converted into two traffic 
state features, mean speed and volume. Then the features are fused in hierarchy by D-
S Evidence Theory for adapting to parallelization. The fusion part can be further 
divided into two levels, sub-fusion and main-fusion, which make use of the same 
algorithm on different input. Finally, the fusion results are used to evaluate the traffic 
states which are regarded as the output of HEFM. The architecture places its main 
difficulties on feature conversion and hierarchical evidential fusion, whose details will 
be specified in the following section. 

 

Fig. 1. Architecture of HEFM 

3.3   Algorithm of HEFM 

Feature Conversion Algorithm. The source transportation data are collected from 
two kinds of widely-used traffic sensors, loop detector and GPS. Their raw data can 
be converted into two main traffic state features, mean speed and volume. Therefore, 
the analysis of the feature conversion algorithm will be briefly presented on two 
features for two kinds of sensors. 

(a) Mean Speed Estimation by Loop Detector 
A method based on traffic wave theory [10] is used to estimate mean speed on loop 
detector data. The structure of the source data includes detector ID, phase, cycle, 
flow, saturation, and time occupancy. The length of the detector is 1.5 meters, and its 
collected data are uploaded once per cycle of red and green lights. The mean speed v  

along a link of its length L  and vehicle volume per cycle q  can be calculated as 

follows: 
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The time for the i th vehicle passing the whole link is 

1 2( ) / ( ) /i v v c rt L i l u i l l u t= − ⋅ + ⋅ + +                              (4) 

where vl  and cl  are the mean length of the vehicle and the loop detector respectively, 

1u  and 2u  represent the respective mean speed of the vehicle before entering the 

queue and driving away from the queue, rt  is the time length of a red light period. All 

the variables can be derived or calculated from source data. Therefore, the mean 
speed can be calculated by 

1

/
q

i
i

v q L t
=

= ⋅ ∑                                                 (5) 

(b) Volume Estimation by Loop Detector 
A single loop detector can estimate the volume m , the number of vehicles that pass 
the detector during a fixed sample period, as follows: 

( , )
( , )

n i j
m i j

T
=                                                 (6) 

where i  indexes lane, j  indexes the sample time period, ( , )n i j  represents the 

number of vehicles that pass over the detector in lane i  during time period j , and T  

is the sampling period. Therefore, a road with multiple lanes can calculate its volume 
by summing up volumes of all contained lanes. 

(c) Mean Speed Estimation by GPS 
The source data collected from GPS-equipped probe vehicles can also be used to 
estimate mean speed. The structure of the data includes vehicle ID, position 
coordinates, time, velocity, moving direction, etc. We take three processing steps on 
source data: coordinates transforming, map matching and curve approximating. The 

main algorithm lies in the step of curve approximating. The mean speed 0v  along the 

link of its length L  at time 0t  can be calculated by the following equation: 

00 0

0

( ) ( ( , ) | ) /
L

t tv t v l t dl L== ∫                                       (7) 

where ( , )v l t  represents the speed at space l  and time t  which can be derived from 

GPS. Therefore, the spatial-temporal mean speed along the whole link during a time 
period from ( 1)k T−  to kT  can be calculated by 

0

( 1)

( ( ) ) /
kT

k T

v v t dt L
−

= ∫                                            (8) 



36 Y. Xia et al. 

(d) Volume Estimation by GPS 
The traffic volume collected by GPS is just a sampling of real volume. Through 

classifying the links based on their attributes of region, width, etc. and assuming that 
links in the same class have similar scale between real volume and GPS-collected 

volume, we can estimate the real volume m  of link ci  as follows: 

( )
( ) ( )

( )
r c

c c
c

m j
m i g i

g j
= ⋅                                             (9) 

where ( )cg i  and ( )cg j  are sampling volumes from GPS along the links ci  and cj  

both of which belong to the same class c , and ( )r cm j  is the real volume of one 

selected link cj  which can be easily estimated by some other methods, such as 

camera or manual work. 

Hierarchical Evidential Fusion Algorithm. Since heterogeneous sensors can 
estimate the traffic state features with different accuracy and reliability, we use fusion 
to overcome the conflicts of evidences and compensate for the deficiencies of sensors 
mutually. Both hierarchies use the same algorithm of D-S Evidence Theory with 
different scales of input data. The algorithm is as follows: 

,
1

,
1

,
1

1 1, 2 2, ,

,
1

( )

( ) ( ) ( ) ( )

1 ( )

X

i t t
i

X

i t
i

X

i i tA C
i

t t t X X t X

i i tA
i

m A

m C m A m A m A

m A

=

=

=
=

=Φ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠= ⊕ ⋅⋅⋅⊕ =
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⎝ ⎠

∑ ∏

∑ ∏

h

h

(10) 

where ( )tm C  denotes the integrated result of the fusion system at time t , and 

,( )i i tm A , 1, 2,...,i X=  represents the BPA extracted from the data collected by ith 

sensor at time t . 
The sub-fusion system deals with the sensor data in region-based divisions, and 

main fusion system integrates the results from the sub-fuison systems, especially 
much care is taken about links in boundary regions. Finally, we can evaluate the 
traffic state following a certain decision rule, such as maximum belief or maximum 
plausibility. 

4   Parallelized Implementation 

The region-based division for hierarchical evidential fusion inherently enables an 
efficient parallelized implementation of HEFM. This is a data-centric parallelization 
problem, which can be efficiently solved by data decomposition. Specifically, a 
Morton ordered quadtree [20] is constructed to decompose regions full of links  
and produce adjustable, scalable fusion tasks that are sensitive to underlying data  
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distributions. The tasks are scheduled among cyberinfrastructure resources for 
workload balancing. The scheduling strategy takes into account comprehensive 
consideration of the computing capacity of each resource and the computation intensity 
of each task. Supposing that the resources can be viewed as with the same capacity, the 
region-based divisions should be decomposed following the rule of equal computation 
intensity. 

4.1   Quadtree 

A quadtree is a representation of a regular partition of space where regions are split 
recursively until achieving a tradeoff between computation intensity and the number 
of divisions. Each quadtree division, also referred to as block or cell, always covers a 
portion of space that forms a quad. Various quadtrees have been defined, differing in 
the rules that govern data decomposition, the type of data being indexed, and other 
details [21]. Quadtree algorithms have also been implemented in parallel [22] though 
not in the specific cyberinfrastructure. 

A basic quadtree in two-dimensional space is a 4-way branching tree that 
represents a recursive decomposition of space wherein at each level a square subspace 
is divided into four equal-size squares. By traversing all the leaf nodes of the 
quadtree, the decomposed divisions can be linked as an ordered linear list. Actually, 
only leaf nodes are stored in the list because they contain all the required information 
to support the flexible region-based decomposition of traffic feature data. 

4.2   Region-Based Decomposition of Traffic Feature Data 

The traffic feature data, mean speed and volume, are associated with geographical 
information which represents the coordinates of corresponding links. Therefore, a 
quadtree- and region-based decomposition can be applied to traffic feature data, and it 
can produce scalable geographical workloads which can be allocated to available 
computational resource, like a cluster. The algorithm, Quad_Decompose, addresses 
the decomposition challenges which focus on finding efficient data partitions that are 
assigned to each cluster node as the running task. In Quad_Decompose, the number of 
links at each quadtree node is used to determine the level of recursive division. When 
the algorithm executes, those decomposed regions with higher densities of traffic 
feature data are recursively decomposed until the density reaches a specified 
threshold. The threshold is determined by evaluating the specific computation 
intensity and computing capacity. Fig. 2 shows an example of decomposing a region 
by quadtree based on the intensity of fusing traffic feature data in that region. The 
threshold is set as 40 links, and each sub-region is tagged with A-B where A 
represents the level number of recursive division and B stands for the number of links 
in that sub-region. 

Although the region is easily decomposed, a link can not be broken off between 
two neighbored sub-regions when evaluating its traffic state. In our approach, we 
duplicate the data of that kind of links, and conduct their fusion redundantly. This is 
because we plan to continue our research on coordinative traffic state affection of 
neighboring links which can be used to filter the exceptional data. The duplication  
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Fig. 2. Fusion-Intensity-Based Region Decomposition by Quadtree 

makes the data in sub-regions more complete and well prepared for this future 
research work. 

4.3   Fusion Task Scheduling 

Dynamic fusion task scheduling is infeasible because of the unpredictable nature of 
network traffic and job queues on the cluster nodes. Consequently, a static strategy 
has been adopted to schedule fusion tasks according to region-based decomposition. 
In our research, the cluster has a homogeneous architecture which means that each 
cluster node holds the same computing capacity, so the scheduling can be easily done 
by allocating each node to fuse the traffic feature data in each sub-region. 

In HEFM, there are two levels of fusion, sub-fusion and main-fusion. Multiple sub-
fusion systems, which take charge of fusing data in sub-regions, are distributed to 
slave nodes of cluster. The sub-fusion results are fused by main-fusion system, which 
runs on master node of cluster. Since we duplicate boundary data when decomposing 
regions, the main-fusion system does not need to consider the inconsistency issue of 
boundary-thru links. The scheduling can be implemented by Globus Resource 
Allocation Management (GRAM) [23] package deployed on our cluster, and achieve 
workload-balance among all nodes. 
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5   Experimental Results and Analysis 

5.1   Experiments Setup 

The experiments are carried out on the cluster of Zhejiang University Campus Grid 
(ZJU-CG), which combines high performance computing resources in the university, 
and provides a platform for solving scientific computation problems. The fusion tasks 
on the data divisions are simultaneously executed on 24 computing nodes of Dawning 
TC4000L, each with Intel Xeon Dual Core 2.4GHz, 2G memory and Redhat Linux 
9.0 OS. As a test case, the region of Shanghai downtown with 393 roads is 
decomposed into three different granularities, 16, 64 and 256 sub-regions, which are 
implemented as different depths of the quadtree. The transportation data of GPS and 
Scats loop detectors on those roads are collected every 20 seconds from 8:00 to 17:00, 
and transformed into mean speed and volume. The tests are run on 1 node, 4 nodes, 
16 nodes and 24 nodes respectively. Both accuracy and efficiency for parallel fusion 
of mean speed and volume on heterogeneous multi-sensor transportation data are 
evaluated in the experiments. 

5.2   Results and Analysis 

Accuracy. The parallel fusion on a large amount of ITS data is implemented as the 
data-centric parallelization, which is arguably the easiest parallel strategy to adopt for 
migrating from serial to parallel programming. Since data-centric parallelization 
focuses on applying the algorithm to multiple divisions concurrently, the accuracy of 
the fusion results of both traffic state features will not be lost, especially supported by 
duplicating boundary data. 

Efficiency. The efficiency experiments are conducted under 16, 64 and 256 
decompositions of the region by different numbers of computing nodes. We set the 
measurement T  as the reciprocal of computing time t ,  

30 min/T t= ,                                              (11) 

and evaluate its speedups through fusion parallelization for mean speed and volume 
respectively. The experimental results are shown in Fig. 3. 

In (a), (b) and (c) of Figure 3, T  increases as the number of computing nodes 
increases, to represent their efficiency speedups, while by using 16 and 24 nodes for 
fusing traffic data of 16 sub-regions their efficiency is similar. This is because the 
amount of nodes greater than 16 is large enough allocated for all sub-regions whose 
scalability has reached its ceiling limit. 

According to the definition of T , the average slope of the curve stands for the 
speedup rate of computing efficiency. In experiments among 16, 64 and 256 sub-
regions, as the amount of sub-regions increases, the curve becomes flat which means 
that the speedup rate decreases. This is caused by the incremental overhead for 
boundary duplication of decompositions and their main fusion. 

Since all source data of volume are of the integer type while most source data of 
mean speed are of float type, and the computation complexity for a float variable is  
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Fig. 3. Efficiency Experiments under Multiple Setups 

slightly bigger than for an integer variable, therefore T  values of volume fusion are 
always a little bit greater than those of mean speed fusion in all (a), (b) and (c) of 
Figure 3. 

6   Conclusions and Future Work 

The general goal of the research reported in this paper was to investigate the 
performance of a parallelized hierarchical evidential fusion model based on D-S 
Evidence Theory for ITS data. The data collected by multiple heterogeneous sensors, 
such as Scats loop detectors and GPS probe vehicles, were converted to two common 
traffic state features: mean speed and volume. A large amount of traffic data were 
decomposed based on regions through the quadtree algorithm, and a static task 
scheduling strategy was developed and evaluated when used to implement data-
centric parallel fusion on cyberinfrastructure computing resources. A cluster with its 
scheduling package GRAM, was used to conduct the experiments on the region of 
Shanghai downtown with 393 roads. 

The results showed that for a dataset with region-based decomposition and data-
centric parallelization, the fusion accuracy can be maintained as the number of 
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decomposed sub-regions changes. Moreover, in terms of computing efficiency, its 
speedup scaled well when more computing nodes are available. As expected, the 
same amount of nodes allocated to more sub-regions reduced the speedup rate for 
more overhead of duplication and main fusion. Consequently, significant speedups 
were achieved for the implementation of our parallel fusion. 

Future research will investigate not only data-centric parallelization, but also 
algorithm-centric parallelization for ITS data fusion. We will also examine some 
other traffic state features, such as length of vehicle queue and pedestrian amount. 
Finally, further research and experiments will be conducted to evaluate a logical 
quad-tree using adjustable geographical bounder because it is anticipated to overcome 
the drawback of duplicated calculations on the roads across the boundaries of 
decomposed quads. 
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Abstract. A mathematical dynamic portfolio allocation model with un-
certainty is discussed. Introducing a value-at-risk under a condition, this
paper formulates value-at-risks in a dynamic stochastic environment. By
dynamic programming approach, an optimality condition of the optimal
portfolio for dynamic value-at-risks is derived. It is shown that the op-
timal time-average value-at-risk is a solution of the optimality equation
under a reasonable assumption, and an optimal trading strategy is ob-
tained from the equation. A numerical example is given to illustrate our
idea.

1 Introduction

From the financial crisis in October 2008, we have learned the importance of
the estimation regarding the drastic decline of asset prices in the market. The
criterion and stable portfolio technique for dynamical drastic declines are major
topics in financial application. In this paper, we present a risk optimal allocation
portfolio model, and then we need to discuss the aggregation of risk criteria over
time.

Portfolio is very useful for hedging the risk in asset management finance and
it is used to make asset management stable. As a classical portfolio theory,
Markowitz’s mean-variance model is studied by many researchers and fruitful
results have been achieved, and the variance-minimizing is also important to
minimize the risk in portfolio ([9,12,14,15]). Recently, value-at-risk (VaR) is
used widely in finance to estimate the risk of worst-scenarios. VaR is a risk-
sensitive criterion based on percentiles, and it is one of the standard criteria in
asset management ([11]). VaR is a kind of risk values of the asset prices at a
specified risk-level probability and it is for selecting portfolios to get rid of bad
scenarios in investment. VaR is also strongly related to the bankruptcy and the
falling in the asset prices ([7]). Many researchers and financial traders usually
use VaR by numerical approximations since it is not easy to analyze the VaR
portfolios mathematically ([11]). The difficulty of the analysis comes from the
properties of the criterion. Because Markowitz’s mean-variance criterion and
variance-minimizing criterion are represented by quadratic programming, but
VaR criterion in portfolio is neither linear nor quadratic. In this paper, a dy-
namic VaR portfolio selection problem model is proposed in order to optimize
both of VaR and the expected rates of return. In the proposed portfolio model,
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owing to VaR we can maximize the expected rate of return after due considera-
tion of the worst-scenarios. This paper derives analytical solutions for the VaR
portfolio problem under uncertainty. The risk criterion is composed by the sum
of unexpected short-term risks which occur suddenly in each period. Introducing
value-at-risk on a condition, we derive the optimality equation and the optimal
trading strategies for the dynamic model by dynamic programming.

In the next section, we introduce a dynamic portfolio model. In Section 3,
this paper formulates value-at-risks in a dynamic stochastic environment and
we introduce a value-at-risk under a condition for the optimization problem.
In Section 4, we discuss a portfolio optimization for dynamic value-at-risks and
its computation. Finally, in the last section, a numerical example is given to
illustrate our idea.

2 A Dynamic Portfolio Model

In this section, we explain a portfolio model with n stocks, where n is a positive
integer. Let T := {0, 1, 2, · · · , T } be the time space with an expiration date T ,
and R denotes the set of all real numbers. Let (Ω, P ) be a probability space,
where P is a non-atomic probability on a sample space Ω. For an asset i =
1, 2, · · · , n, a stock price process {Si

t}Tt=0 is given by rates of return Ri
t as follows.

Let
Si

t := Si
t−1(1 + Ri

t) (1)

for t = 1, 2, · · · , T , where {Ri
t}Tt=1 is assumed to be an integrable sequence

of independent real random variables. Hence wt = (w1
t , w2

t , · · · , wn
t ) is called a

portfolio weight vector if it satisfies w1
t +w2

t +· · ·+wn
t = 1, and further a portfolio

(w1
t , w2

t , · · · , wn
t ) is said to allow for short selling if wi

t ≥ 0 for all i = 1, 2, · · · , n.
Then the rate of return with a portfolio (w1

t , w2
t , · · · , wn

t ) is given by

Rt := w1
t R1

t + w2
t R2

t + · · ·+ wn
t Rn

t . (2)

Therefore, the reward at time t = 1, 2, · · · , T follows

St := St−1

n∑
i=1

wi
t(1 + Ri

t) = St−1(1 + Rt). (3)

In this paper, we present a dynamic portfolio model for stock price processes
{Si

t}Tt=1. The falling of asset prices is one of the most important risks in stock
markets. In this section, we discuss a portfolio model where the risk is estimated
by the rate of falling. Regarding the asset (3) with the portfolio wt, the theo-
retical bankruptcy at time t occurs on scenarios ω satisfying St(ω) ≤ 0, i.e. it
follows 1 + Rt(ω) ≤ 0 from (3). Similarly, for a constant δ satisfying 0 ≤ δ ≤ 1,
a set of sample paths

{ω ∈ Ω | 1 + Rt(ω) ≤ 1− δ} = {ω ∈ Ω | Rt(ω) ≤ −δ} (4)
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is the event of scenarios where the asset price St will fall from the current price
St−1 to a lower level than 100(1 − δ)% of the current price St−1, i.e. the rate
of falling is 100 δ %. The parameter δ is called the rate of falling. Then the
probability of falling is also given by

pδ := P (Rt ≤ −δ). (5)

For example, pδ denotes the probability of the falling below par value if ‘δ = 0’
and it indicates the probability of the bankruptcy if ‘δ = 1’. In this paper, we
discuss dynamic portfolios regarding the rate of falling δ.

For a positive probability p, a value-at-risk (VaR) regarding the rate of return
Rt at the probability p is given by a real number v satisfying

P (Rt ≤ v) = p (6)

since P is non-atomic. The value-at-risk v is the upper bound of the rate of return
Rt at the worst scenarios under a given risk probability p, and then the value-
at-risk v in (6) is denoted by VaRp(Rt). From (5) and (6), for a risk probability
p = pδ, the rate of falling is

δ = −VaRp(Rt). (7)

To minimize the rate of falling derived from (7) under a random environment,
in next section we discuss the fundamental properties of value-at-risks. In this
paper, we deal with a portfolio model where the value-at-risk v in (6) has the
following representation.

(VaR v) = (the mean) − (a positive constant κ) × (the standard deviation),
(8)

where the positive constant κ is given corresponding to the probability p (Fig.1).
One of the most popular sufficient condition for (8) is what the distribution of
the rate of return Rt is Gaussian ([3,11]).

Rt

value-at-risk

p
probability

(the mean) (the standard deviation)¡κ¡¡ +

the mean

Fig. 1. Value-at-risk v at a probability p
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3 Value-at-Risks in a Dynamic Stochastic Environment

First we introduce mathematical notations of value-at-risk for real random vari-
ables to apply it to the rates of return (2). Let X be the set of all integrable
real random variables X on Ω with a continuous distribution function x �→
FX(x) := P (X < x) for which there exists a non-empty open interval I such
that FX(·) : I �→ (0, 1) is a strictly increasing and onto. Then there exists a
strictly increasing and continuous inverse function F−1

X : (0, 1) �→ I. We note
that FX(·) : I �→ (0, 1) and F−1

X : (0, 1) �→ I are one-to-one and onto, and we put
FX(inf I) := limx↓inf I FX(x) = 0 and FX(sup I) := limx↑sup I FX(x) = 1. Then,
the value-at-risk (VaR) at a risk probability p is given by the 100p-percentile of
the distribution function FX .

VaRp(X) :=

⎧⎨
⎩

inf I if p = 0
sup{x ∈ I | FX(x) ≤ p} if 0 < p < 1
sup I if p = 1.

(9)

Then we have FX(VaRp(X)) = p and VaRp(X) = F−1
X (p) for 0 < p < 1. The

following preliminary results are important when we apply the value-at-risk to
the rates of return (2).

Lemma 1. ([20]). Let X, Y ∈ X and let p be a positive probability. Then the
value-at-risk VaRp defined by (9) has the following properties.

(i) If X ≤ Y , then VaRp(X) ≤ VaRp(Y ).
(ii) VaRp(ζX) = ζ VaRp(X) for ζ > 0.
(iii) VaRp(X + θ) = VaRp(X) + θ for θ ∈ R.

From Eq. (3), the value-at-risk for the reward St at time t is given by

VaRp(St) = VaRp

(
St−1

n∑
i=1

wi
t(1 + Ri

t)

)
= VaRp (St−1(1 + Rt)) . (10)

To discuss (10), we introduce a value-at-risk based on conditional expectations.
Let G be a sub-σ-field of M. Define a map x �→ FX(x | G) := P (X < x | G) =
E(1{X<x} | G). We define a value-at-risk of X(∈ X ) under a condition G at a
risk probability p by

VaRp(X | G) :=

⎧⎨
⎩

inf I if p = 0
sup{x ∈ I | FX(x | G) ≤ p} if 0 < p < 1
sup I if p = 1.

(11)

Then we note that VaRp(X | G) is a random variable adapted to the σ-field G
since {ω | VaRp(X | G)(ω) > y} =

⋃
x∈Q:x>y {ω | FX(x | G)(ω) ≤ p} ∈ G for all

y ∈ R from the continuity of the map x �→ FX(x | G). We also have FX(VaRp(X |
G) | G) ≤ p for 0 < p < 1. The value-at-risk under the condition G has the same
properties as Lemma 1, which are listed in the following lemma.
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Lemma 2. Let G be a sub-σ-field of M. Let p be a probability satisfying 0 <
p < 1 and let X, Y ∈ X . Then, VaRp(· | G) defined by (11) has the following
properties:

(i) If X ≤ Y , then VaRp(X | G) ≤ VaRp(Y | G).
(ii) VaRp(ζX | G) = ζ VaRp(X | G) for ζ ≥ 0.
(iii) VaRp(X + θ | G) = VaRp(X | G) + θ for θ ∈ R.

Next the following lemma shows particular properties for the value-at-risk
VaRp(· | G) under the condition G.

Lemma 3. Let X, Y, Z ∈ X be random variables such that Y and Z are in-
dependent. Let G be a sub-σ-field of M such that G := σ(Z), where σ(Z) is
the σ-field generated by the random variable Z. Let p be a probability satisfying
0 < p < 1. Then, VaRp(· | G) defined by (11) has the following properties:

(i) VaRp(Y | G) = VaRp(Y ).
(ii) VaRp(Z | G) = Z.
(iii) VaRp(ZX | G) = ZVaRp(X | G) if Z ≥ 0.
(iv) VaRp(X + Z | G) = VaRp(X | G) + Z.

In Eq. (2), portfolio weights wt = (w1
t , w2

t , · · · , wn
t ) are decided sequentially and

predictably. We note that the risk of St is related to the informationMt−1 up to
time t−1. Then, the value-at-risk of St under informationMt−1 at a probability
level p is

VaRp(St | Mt−1) = VaRp

(
St−1

n∑
i=1

wi
t(1 + Ri

t) | Mt−1

)

= VaRp (St−1(1 + Rt) | Mt−1) .

(12)

The term (12) means the risk of worst scenarios which occur on the transition
from time t − 1 to time t. Therefore, taking the sum of the risks which occur
at each time, this paper deals with the following dynamic portfolio problem
regarding the total of value-at-risks (12) under information {Mt−1}Tt=1. Let β
be a constant satisfy 0 < β ≤ 1.

Dynamic Portfolio Problem 1 (D1): Maximize the total value-at-risk

E

(
T∑

t=1

βt−1VaRp(St | Mt−1)

)
(13)

with portfolio weights wt = (w1
t , w2

t , · · · , wn
t ) satisfying w1

t +w2
t +· · ·+wn

t = 1
and wi

t ≥ 0 (i = 1, 2, · · · , n; t = 1, 2, · · · , T ).
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In financial systems, one of the most important topics is how to aggregate the
risks at each time. We note that the criterion (13) is different from

T∑
t=1

βt−1VaRp(St). (14)

The risk criterion (13) is composed by the sum of unexpected short-term risks
which occur suddenly in each period from time t − 1 to time t. On the other
hand, the risk criterion (14) is composed by the sum of the long-term risks in
the period from the beginning up to time t. Then, since VaRp(St) may contain
not only the risk at time t but also the potential risks up to time t − 1, the
sum

∑T
t=1 βt−1VaRp(St) in (14) estimates the potential risks multiple times.

Therefore in this paper we use the criterion (13). Now we represent the total
value-at-risk (13) by

A(X1, X2, · · · , XT ) := E

(
T∑

t=1

βt−1VaRp(Xt | Mt−1)

)
(15)

for (X1, X2, · · · , XT ) ∈ X T . The total value-at-risk (13) can be seen as an ag-
gregation of the value-at-risks VaRp(Xt | Mt−1) of Xt.

Proposition 1. The total value-at-risk A(X1, X2, · · · , XT ) is defined by (15)
has the following properties: For (X1, X2, · · · , XT ), (Y1, Y2, · · · , YT ) ∈ X T ,

(i) If Xt ≤ Yt for all t= 1, 2, · · · .T ,then A(X1, X2, · · · , XT )≤ A(Y1, Y2, · · · , YT ).
(ii) A(ζX1, ζX2, · · · , ζXT ) = ζ A(X1, X2, · · · , XT ) for ζ ≥ 0.
(iii) A(X1 + θ, X2 + θ, · · · , XT + θ) = A(X1, X2, · · · , XT ) + θ(1 − βT )/(1 − β)

for θ ∈ R.

For simplicity we take S0 = 1, and then, by Lemmas 2 and 3, Dynamic Portfolio
Problem 1 (D1) is reduced to the following problem.

Dynamic Portfolio Problem 2 (D2): Maximize the total value-at-risk

T∑
t=1

βt−1
t−1∏
s=1

(1 + E(Rs)) · (1 + VaRp(Rt))

=
T∑

t=1

βt−1
t−1∏
s=1

(
1 + E

(
n∑

i=1

wi
sR

i
s

))
·
(

1 + VaRp

(
n∑

i=1

wi
tR

i
t

)) (16)

with portfolios wt = (w1
t , w2

t , · · · , wn
t ) satisfying w1

t +w2
t + · · ·+ wn

t = 1 and
wi

t ≥ 0 (i = 1, 2, · · · , n; t = 1, 2, · · · , T ).

Define the set of portfolios by W := {wt = (w1, w2, · · · , wn) ∈ R
n | w1 + w2 +

· · ·+ wn = 1 and wi ≥ 0 (i = 1, 2, · · · , n)}.
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Theorem 1. The optimal VaR for (16) in Dynamic Portfolio Problem 2 (D2)
is given by v1 which is defined inductively by the sequence {vt} of sub-total-
sum value-at-risks after time t − 1 satisfying the following backward optimality
equations:

vt−1 = max
(w1,w2,··· ,wn)∈W

{
1 + VaRp

(
n∑

i=1

wiRi
t−1

)
+ β

(
1 +

n∑
i=1

wiE(Ri
t−1)

)
vt

}

(17)
for t = 2, 3, · · · , T , and

vT := max
(w1,w2,··· ,wn)∈W

{
1 + VaRp

(
n∑

i=1

wiRi
T

)}
. (18)

From Theorem 1, in the next section we focus on (17) and (18) regarding the
value-at-risk portfolio at each time.

4 A Portfolio Optimization for Value-at-Risks

First we estimate the rate of return for a portfolio ([20]). Let t = 1, 2, · · · , T .
Let the mean, the variance and the covariance of the rate of return Ri

t, which is
given in (2), respectively by

μi
t := E(Ri

t),
(σi

t)
2 := E((Ri

t − μi
t)

2),
σij

t := E((Ri
t − μi

t)(R
j
t − μj

t ))

for i, j = 1, 2, · · · , n. Hence we assume that the determinant of the variance-
covariance matrix Σt := [σij

t ] is not zero and there exists its inverse matrix
Σ−1

t . This assumption is natural and it can be realized easily by taking care
of the combinations of assets. For a portfolio w = (w1, w2, · · · , wn) satisfying
w1 +w2 + · · ·+wn = 1 and wi ≥ 0 (i = 1, 2, · · · , n), we calculate the expectation
and the variance regarding Rt = w1R1

t + w2R2
t + · · · + wnRn

t . The expectation
μt of the rate of return Rt with the portfolio w is

μt := E(Rt) =
n∑

i=1

wiE(Ri
t) =

n∑
i=1

wiμi
t. (19)

On the other hand, the variance (σt)2 of the rate of return Rt with the portfolio
w is

(σt)2 := E((Rt − μt)2) =
n∑

i=1

n∑
j=1

wiwjσij
t , (20)

where (σi
t)

2 = σii
t for i = 1, 2, · · · , n. Therefore, for a given positive probability

p, the value-at-risk VaRp(Rt) of the rate of return Rt is evaluated as

VaRp(Rt) =
n∑

i=1

wiμi
t − κ

√√√√ n∑
i=1

n∑
j=1

wiwjσij
t (21)
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with a positive constant κ in (8). Let

μt :=

⎡
⎢⎢⎢⎣

μ1
t

μ2
t
...

μn
t

⎤
⎥⎥⎥⎦ , Σt :=

⎡
⎢⎢⎢⎣

σ11
t σ12

t · · · σ1n
t

σ21
t σ22

t · · · σ2n
t

...
...

. . .
...

σn1
t σn2

t · · · σnn
t

⎤
⎥⎥⎥⎦ , 1 :=

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ,

At := 1TΣ−1
t 1, Bt := 1TΣ−1

t μt, Ct := μT
tΣ

−1
t μt, Δt := AtCt −B2

t ,

where T denotes the transpose of a vector. Now we discuss the following VaR
portfolio problem without allowance for short selling. The following form (22)
comes from the value-at-risk VaRp(Rt) given in (21).

VaR-portfolio problem (VP): Let t = 1, 2, · · · , T . Maximize the value-at-
risk

VaRp(Rt) =
n∑

i=1

wiμi
t − κ

√√√√ n∑
i=1

n∑
j=1

wiwjσij
t (22)

with respect to portfolios w = (w1, w2, · · · , wn) satisfying w1 + w2 + · · · +
wn = 1 and wi ≥ 0 for i = 1, 2, · · · , n.

We have the following analytical solutions regarding VaR-portfolio problem
(VP).

Lemma 4 ([20]). Let t = 1, 2, · · · , T . Let At and Δt be positive. Let the constant
κ satisfy κ2 > Ct. Then the following (i) and (ii) hold.

(i) The solution of VaR-portfolio problem (VP) is given by

w∗ := ξΣ−1
t 1 + ηΣ−1

t μt, (23)

and then the corresponding VaR is

VaRp

(
n∑

i=1

w∗iRi
t

)
=

Bt −
√

Atκ2 −Δt

At
, (24)

where w∗ = (w∗1, w∗2, · · · , w∗n), γ := Bt

At
+ Δt

At

√
Atκ2−Δt

, ξ := Ct−Btγ
Δt

and

η := Atγ−Bt

Δt
.

(ii) Further, if Σ−1
t 1 ≥ 0 and Σ−1

t μt ≥ 0, then the portfolio (23) satisfies
w∗ ≥ 0, i.e. w∗ is a portfolio without allowance for short selling. Here, 0
denotes the zero vector.

Assume that the rates of return Ri
t (i = 1, 2, · · · , n) have normal distributions.

Then, for a risk probability p, we put a constant κ in (8) by

κ := −Φ−1(p), (25)
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where Φ−1 is the inverse function of the cumulative normal distribution function

Φ(z) :=
1√
2π

∫ z

−∞
e−

t2
2 dt, z ∈ R. (26)

Condition (V). It holds that 1 + βvt > 0 for all t = 1, 2, · · · , T .

If Condition (V) is not satisfied at some time t, it means that the the portfolio is
bankrupt at the time t. Under Condition (V), Theorem 1 is written as following
theorem by (19)− (21).

Theorem 2. Suppose Condition (V) is satisfied. The optimal VaR v1 in The-
orem 1 is given by the sequence {vt} of sub-total-sum value-at-risks after time
t− 1 satisfying the following backward optimality equations:

vt−1 := max
(w1,w2,··· ,wn)∈W

(1+βvt)

⎛
⎝1 +

n∑
i=1

wiμi
t−1 −

κ

1 + βvt

√√√√ n∑
i=1

n∑
j=1

wiwjσij
t−1

⎞
⎠

(27)
for t = 2, 3, · · · , T , and

vT := max
(w1,w2,··· ,wn)∈W

⎛
⎝1 +

n∑
i=1

wiμi
T − κ

√√√√ n∑
i=1

n∑
j=1

wiwjσij
T

⎞
⎠ . (28)

Applying Lemma 4 to Theorem 2, we obtain the following results.

Theorem 3. Suppose Condition (V) is satisfied. Assume Ri
t (t = 1, 2, · · · , T ; i =

1, 2, · · · , n) have normal distributions, and let κ := −Φ−1(p) in (25). Then the
optimal VaR v1 in Theorem 1 is calculated by the sequence {vt} of sub-total-
sum value-at-risks after time t − 1 satisfying the following backward optimality
equations:

vt−1 =
(At−1 + Bt−1)(1 + βvt)−

√
At−1κ2 −Δt−1(1 + βvt)2

At−1
(29)

for t = 2, 3, · · · , T and

vT =
AT + BT −

√
AT κ2 −ΔT

AT
. (30)

Corollary 1. Suppose Condition (V) is satisfied. Let At and Δt be positive for
t = 1, 2, · · · , T . Put κt−1 := κ

1+βvt
(t = 2, 3, · · · , T ) and κT := κ = −Φ−1(p).

Assume κt−1 satisfies κ2
t−1 > Ct−1(t = 2, 3, · · · , T ). Then the following (i) and

(ii) hold.
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(i) The optimal portfolios of (17) and (18) in Theorem 1 are given by

wt := ξΣ−1
t 1 + ηΣ−1

t μt, t = 1, 2, · · · , T, (31)

where γt := Bt

At
+ Δt

At

√
Atκ2

t−Δt

, ξt := Ct−Btγt

Δt
and ηt := Atγt−Bt

Δt
for t =

1, 2, · · · , T .
(ii) Further, if Σ−1

t 1 ≥ 0 and Σ−1
t μt ≥ 0 for t = 1, 2, · · · , T , then the portfolio

(31) satisfies wt ≥ 0, i.e. wt is a portfolio without allowance for short selling.

5 A Numerical Example

In this session, a simple numerical example is shown to explain the significance
of the results obtained in previous sections. We consider a model with 4 assets,
i.e. we put n = 4. Give the vector of the expected rate of return μt = [μi

t] and the
variance-covariance matrix Σt = [σij

t ] in Table 1. Then we can easily calculate
the constants At, Bt, Ct and Δt as At = 1TΣ−1

t 1 = 14.7016, Bt = 1TΣ−1
t μt =

0.784825, Ct = μT
tΣ

−1
t μt = 0.0456314 and Δt = AtCt − B2

t = 0.054904. In
actual financial management, these data should be estimated from up-to-the
current asset prices in stock market. As for (8), we assume that the distribu-
tions of the rate of return Ri

t is Gaussian. First, we discuss a risk probability
1% in the lower part of the Gaussian distribution, and then the corresponding
constant is κ = 2.326, which is given in (25). Then, the conditions in Theorems
2 and 3 are satisfied. By Eq. (31) in Corollary 1, we easily obtain the optimal
portfolio w∗ = (0.229604, 0.215551, 0.25200, 0.302845), which is optimal for the
VaR-portfolio (VP).

Table 1. Expected rates of return and a variance-covariance matrix

Asset μi
t

i = 1 0.05
i = 2 0.07
i = 3 0.06
i = 4 0.04

σij
t j = 1 j = 2 j = 3 j = 4

i = 1 0.35 0.03 0.02 −0.08
i = 2 0.03 0.25 −0.06 0.08
i = 3 0.02 −0.06 0.33 −0.02
i = 4 −0.08 0.08 −0.02 0.24

Since vt is the total-sum of discounted value of falling from time t to the
terminal time T , we put the discounted time-average value of falling V T

t from
time t to the terminal time T as follows.

V T
t :=

vt∑T−t
s=1 βs

for t = 1, 2, · · · , T . Let an initial amount of investment S0 = 1, the terminal time
T = 20 and with a time-discount weight β = 0.95. Then we obtain the discounted
time-average value of falling for the portfolio process: V 20

1 = 0.711737.
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Fig. 2. The discounted time-average values of falling V T
t after time t (T = 20, β = 0.95)
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Abstract. Heterogeneity in group decision making problems has been recently
studied in the literature. Some instances of these studies include the use of het-
erogeneous preference representation structures, heterogeneous preference rep-
resentation domains and heterogeneous importance degrees. On this last hetero-
geneity level, the importance degrees are associated to the experts regardless of
what is being assessed by them, and these degrees are fixed through the problem.
However, there are some situations in which the experts’ importance degrees do
not depend only on the expert. Sometimes we can find sets of heterogeneously
specialized experts, that is, experts whose knowledge level is higher on some al-
ternatives and criteria than it is on any others. Consequently, their importance
degree should be established in accordance with what is being assessed. Thus,
there is still a gap on heterogeneous group decision making frameworks to be
studied. We propose a new fuzzy linguistic multi-criteria group decision making
model which considers different importance degrees for each expert depending
not only on the alternatives but also on the criterion which is taken into account
to evaluate them.

keywords: Group decision making, multi-criteria decision making, heteroge-
neous decision frameworks, linguistic approach.

1 Introduction

Decision making is as very common activity all over the world. Usually, it is performed
by people who have to consider some criteria in order to derive the best option from
a feasible set. But sometimes, alternatives and criteria are imprecise, contradictory or
belong to a wide range. In this case an expert can not make a decision on his own and
it is necessary that a group of experts, with a high collective knowledge level on these
particular criteria, take part in the decision process. Thus, we interpret the decision
process in the framework of group decision making (GDM).
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GDM models are used to obtain the best solution(s) for a problem according to the
information provided by some decision makers. Usually, each decision maker (expert)
may approach the decision process from a different angle, but they have a common
interest in reaching an agreement on taking the best decision. Concretely, in a GDM
problem we have a set of different alternatives to solve the problem and a set of experts
which are usually required to provide their preferences about the alternatives [1,2,3,4,5].

Furthermore, there are GDM problems in which, to evaluate the alternatives, the ex-
perts have to take into account the value of some criteria that define the features of each
alternative. Multi-criteria decision making (MCDM) refers to making a decision (e.g.,
evaluation, prioritization, and selection) over the available alternatives that are charac-
terized by multiple, usually conflicting, criteria [6]. In such decision situation the aim
is to find a set of alternatives that, considering all the criteria, solves the problem in the
best way. Multi-criteria group decision making (MCGDM), which combines MCDM
and GDM methods, has been proved to be a very effective technique to increase the
level of overall satisfaction for the final decision across the group and particularly in
evaluation decision-making such as evaluating products, developing policies, selecting
employees, and arranging various resources [7,8,9,10,11,12,13,14].

Due to the wide range of different problems that can be solved with GDM models,
in recent years, these models have been studied and improved in order to deal with
non-homogeneous frameworks. In particular, we can find in the literature some hetero-
geneous GDM models at three different levels: i) heterogeneity at the preference rep-
resentation structure level (orders, utility functions or preference relations) [15,16], ii)
heterogeneity at the preference representation domain level (numeric, linguistic, multi-
granular, interval numbers) [17,18,19,20] and iii) heterogeneity at the importance de-
gree of experts and criteria level [21,22].

On this third studied heterogeneity level, the importance degrees associated to the
experts are fixed through the problem. However, there are some situations in which
experts have an heterogeneous knowledge of the problem environment. Thus, their im-
portance degrees can not be associated regardless what is being evaluated and it should
be different for each criterion. Therefore, it is still necessary to study and improve the
existing heterogeneous GDM models.

Accordingly, we propose to tackle heterogeneous MCGDM problem based on non-
homogeneous frameworks with heterogeneously specialized experts’ preferences. To
do so, we assume that experts give their assessments about the alternatives in natural
language, using preference relations [15] as the preferences representation structure on
a fuzzy linguistic domain. For this reason, we use a fuzzy linguistic modelling [4] to rep-
resent the experts’ opinions. This kind of modelling is an approximate technique which
represents qualitative aspects as linguistic values by means of linguistic variables[23],
that is, variables whose values are not numbers but words or sentences in a natural or
artificial language. To compute the quality assessments we use computing with words
tools based on linguistic aggregation operators.

The aim of this paper is to present a new model of MCGDM selection process based
on heterogeneously specialized experts’ preferences, where the set of experts is estab-
lished depending on the different criteria of the problem. Moreover, an expert’s opinion
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will have different importance level according to the criterion which is taken into ac-
count and the assessed alternatives.

In order to do this, the paper is set out as follows. Preliminaries are presented in
Section 2. Section 3 defines the new fuzzy linguistic MCGDM selection process based
on heterogeneously specialized experts’ preferences and finally, Section 4 draws our
conclusions.

2 Preliminaries

In this section we present some considerations about MCGDM problems, heterogeneity
in group decision making and the basis of a fuzzy linguistic approach.

2.1 MCGDM Problems

In a GDM problem we have a finite set of feasible alternatives. X = {x1, x2, . . .
, xn}, (n ≥ 2) and the best alternatives from X have to be identified using the in-
formation given by a set of experts, E = {e1, e2, . . . , em}, (m ≥ 2), according to a set
of criteria C = {c1, c2, . . . , cp}, (p ≥ 2).

Resolution methods for GDM problems are usually composed by two different pro-
cesses [4] (see Figure 1):

1. Consensus process: Clearly, in any decision process, it is preferable that the experts
reach a high degree of consensus on the solution set of alternatives. Thus, this
process refers to how to obtain the maximum degree of consensus or agreement
among the experts on the solution alternatives.

2. Selection process: This process consists in how to obtain the solution set of alter-
natives from the opinions on the alternatives given by the experts. Furthermore, the
selection process is composed of two different phases:

(a) Aggregation phase: This phase uses an aggregation operator in order to trans-
form the individual preferences on the alternatives into a collective preference.

(b) Exploitation phase: This phase uses choice functions [24] in order to transform
the collective preference into a partial ranking of alternatives that helps to make
the final decision.

In this paper, we center our attention only in the selection process, where the experts
will provide their preferences about the set of alternatives on each criteria by using
words in natural language by means of the fuzzy linguistic approach and a ranking of
alternatives is obtained according to experts’ preferences.

2.2 Heterogeneity in Group Decision Making

Recently, several authors have studied and approached MCGDM problems from differ-
ent angles, showing that this kind of problems are not always homogeneous. We can
classify them into three different heterogeneity levels.
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Fig. 1. Resolution process of a GDM problem

1. The first heterogeneity level studied in the literature [15,16,25,26], is focused on
the preference representation structures. Usually, each expert eh provides his/her
preferences on the alternatives X = {x1, x2, ..., xn}, separately according to each
criteria C = {c1, c2, ..., cp} by means of different preference’s representation for-
mat, the most commonly used are:

– Preference orderings of alternatives: Ok = {ok(1), ..., ok(n)}, where ok(·) is
a permutation function over the index set, {1, ..., n}, for the expert, ek, defining
an ordered vector of alternatives, from best to worst.

– Utility functions: Uk = {uk
1 , ..., u

k
n}, uk

i ∈ [0, 1], where uk
i represents the

utility evaluation given by the expert ek to xi.
– Fuzzy preference relations: P k ⊂ XxX , with a membership function, μP k :

XxX → [0, 1], where μP k(xi, xj) = pk
ij denotes the preference degree of xi

over xj .
– Multiplicative preference relations: Ak ⊂ XxX , where the intensity of prefer-

ence, ak
ij , is measured using a ratio scale, particularly the 1/9 to 9 scale.

Fuzzy preference relations are widely used in this kind of problems because they
are more informative than preference orderings or utility functions [15], allowing
the comparison of the alternatives in a pair by pair basis. Thus, users have much
more freedom at giving their preferences and they can gain expressivity against
other preference representations. When cardinality of X is small, the preference
relation may be conveniently represented by an n× n matrix P hs = (phs

ij ).
2. The second heterogeneity level is focused on the preference representation domain

(numeric, linguistic, multi-granular, interval numbers) [17,18,19,20,26,27,28]. We
propose the use of a fuzzy linguistic approach that is presented in Section 2.3.

3. Finally, the third heterogeneity level [21,22], deals with some classical heteroge-
neous decision scenarios, where every expert has an associated weight value in or-
der to model their different importance levels or knowledge degrees. Furthermore,
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in some multi-criteria decision scenarios, we can find criteria with different weight
values [12]. In these situations, the experts’ or criteria’s weight values are always
established a priori, regardless what is being evaluated.
However, there are heterogeneous situations in which the knowledge degree of each
expert is different depending on the criterion. In such a way, the opinion of an expert
specialized on a certain criterion should be more important than one of another
expert not familiarized with this same criterion. So, an expert could have different
relevance according to what is being evaluated at every moment. Consequently, in
this paper, we propose a new approach to model an experts’ weights establishment
mechanism in accordance with the criterion which is taken into account and the
assessed alternatives.

2.3 Fuzzy Linguistic Approach

Several authors have provided interesting results on GDM with the help of fuzzy the-
ory [1,5,8,17,18], but there are situations in which the information cannot be assessed
precisely in a quantitative form but may be in a qualitative one. For example, when
attempting to qualify phenomena related to human perception, we are often led to use
words in natural language instead of numerical values. In other cases, precise quanti-
tative information cannot be stated because either it is unavailable or the cost for its
computation is too high and an “approximate value” can be applicable, eg. when evalu-
ating the speed of a car, linguistic terms like fast, very fast or slow can be used instead
of numeric values [17,29]. The use of Fuzzy Sets Theory has given very good results
for modelling qualitative information [23].

Fuzzy linguistic modelling is a tool based on the concept of linguistic variable [23] to
deal with qualitative assessments. It has proven its usefulness in many problems, e.g., in
quality evaluation, information retrieval models, decision making, and so on [30,31,32].
Ordinal fuzzy linguistic modelling [4] is a very useful kind of fuzzy linguistic approach
proposed as an alternative tool to the traditional fuzzy linguistic modelling which sim-
plifies the computing with words process as well as linguistic aspects of problems. It is
defined by considering a finite and totally ordered label set S = {si}, i ∈ {0, ..., g} in
the usual sense, i.e., si ≥ sj if i ≥ j, and with odd cardinality (usually 7 or 9 labels).
The mid term represents an assessment of “approximately 0.5”, and the rest of the terms
are placed symmetrically around it. The semantics of the label set is established from
the ordered structure of the label set by considering that each label for the pair (si, sg−i)
is equally informative [17]. For example, we can use the following set of seven labels
to represent the linguistic information:

S = { N=Null, VL=Very Low, L=Low, M=Medium, H=High, VH=Very High,
P=Perfect}.

In any linguistic model we also need some management operators to deal with lin-
guistic information. An advantage of the ordinal fuzzy linguistic modeling is the sim-
plicity and speed of its computational model. It is based on the symbolic computational
model [4] and acts by direct computation on labels by taking into account the order of
such linguistic assessments in the ordered structure of labels. Usually, the ordinal fuzzy
linguistic model for computing with words is defined by establishing i) a negation op-
erator, ii) comparison operators based on the ordered structure of linguistic terms, and



60 I.J. Pérez et al.

iii) adequate aggregation operators of ordinal fuzzy linguistic information. In most or-
dinal fuzzy linguistic approaches the negation operator is defined from the semantics
associated to the linguistic terms as

NEG(si) = sj | j = (g − i)

and there are defined two comparison operators of linguistic terms:

1. Maximization operator: MAX(si, sj) = si if si ≥ sj ; and
2. Minimization operator: MIN(si, sj) = si if si ≤ sj .

Using these operators it is possible to define automatic and symbolic aggregation oper-
ators of linguistic information, as for example the Linguistic Ordered Weighted Aver-
aging (LOWA) operator [33]. Sometimes, the different items that we need to aggregate
have as well an associated weight. It has to be taken into account on the aggregation
operator selection. So, in these situations, we can use the Linguistic Induced Ordered
Weighted Averaging (L-IOWA) operator that is a linguistic version of the IOWA oper-
ator [34,35,36].

Definition 1. L-IOWA operator is defined as follows [37]:

ΦW (〈u1, sα1〉, . . . , 〈un, sαn〉) = w1 · sγ1 ⊕ w2 · sγ2 ⊕ . . .⊕ wn · sγn = sround(γ̄)

where γ̄ =
∑n

j=1 wj · γj , w = (w1, w2, . . . , wn) is a weighting vector, such that wj ∈
[0, 1],

∑n
j=1 wj = 1, sγj is the sαi value of the pair 〈ui, sαi〉 having the jth largest ui,

and ui in 〈ui, sαi〉 is referred to as the order inducing variable and si as the linguistic
argument variable.

A natural question in the definition of this operator is how to obtain the associated
weighting vector. In [38], an expression to obtain W that allows to represent the concept
of fuzzy majority [39] by means of a fuzzy linguistic non-decreasing quantifier Q [40]
was defined:

wi = Q(i/n)−Q((i− 1)/n), i = 1, ..., n.

3 A New Fuzzy Linguistic MCGDM Model Based on
Heterogeneous Experts’ Opinions

In this section we present a new approach to deal with MCGDM problems in which
the main characteristic is the heterogeneous knowledge level of each expert among the
multiple criteria. Usually, experts become to reach an excessive specialization on some
specific aspects of their own field (heterogeneously specialized experts). So, each of
them has a different knowledge level that depends on the criterion that is being taken
into account to assess the alternatives. This characteristic is important for the problem
management and has to be taken into account not only on the choice of experts, but also
on the combination of their individual preferences in order to obtain a more realistic
and appropriate collective preference on each criterion.

Consequently, we propose a new computation model composed of two different
steps:
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1. To obtain an appropriate set of heterogeneously specialized experts and their
preferences.

2. To compute the ranking of alternatives through a fuzzy linguistic MCGDM selec-
tion process based on heterogeneously specialized experts’ preferences.

3.1 Obtaining the Appropriate Set of Heterogeneously Specialized Experts and
Their Preferences

When the field of the decision is large and non homogeneous, there are multiple criteria
and different kinds of experts together in the problem framework. Therefore, the choice
of experts becomes an important task. To do so in an appropriate way, we need to know
the experts’ typology or the kind of specialization of each expert before starting the
decision making process. This requirement is necessary in order to select experts to
cover every criterion with knowledge enough. For example, in library evaluation, to
fully evaluate the quality of an university library, it is necessary to collect not only
students’ opinions who just use study resources but also researchers’ preferences who
usually are focused on research resources or staff’s opinions who knows much better
the quality of the space resources.

In these situations, it is necessary an initial approach to the problem in order to get
the different alternatives and criteria. Once we know this information and the different
specialization of each expert we can start the choice of experts step. In this way, we pro-
pose to select a suitable set of experts with heterogeneous knowledge enough, covering
all the decision criteria, from any expert database. To do so, it is quite important the
figure of the moderator, who is a person that has a deep knowledge about the problem
(alternatives and criteria), and he is able to select a suitable and balanced set of experts.

For example, in order to select the best university library from a set of them for
a particular use (to study for an exam, to research on a new topic...) it is clear that
the alternatives are the different libraries of the university and the criteria to evaluate
them are the resources offered by each one (space resources, electronic resources, paper
resources or human resources).

At this point, is the moderator who select m experts of an experts’ database that
previously agree to take part in this kind of studies. To have a suitable group of experts,
the set has to be balanced, that is, it seems reasonable to have the same number of
experts of each kind. Thus, in our example, the set will be composed of z students, z
researchers and z staff members in order to have a thorough collective knowledge of
every criterion.

In addition, to be fair and correctly manage the heterogeneous collective knowledge,
we propose that the opinion of an expert specialized on a certain criterion is more im-
portant than one of another expert not familiarized with this same criterion. In such a
way, the weight values not only depend on the experts, but also on the criterion followed
by the expert to assess the alternatives. Particularly, in academic libraries, this situation
is frequently presented because students, researchers and staff members use the library
in a different way, according to their own purposes. For instance, a student knows the
main drawbacks and advantages of the space resources much better than a researcher
because he is using it everyday while researchers usually work in their own offices.
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On the other hand, a researcher has a more deep insight on the quality level of research
resources like international journals or database access than a standard student.

To model this situation it is necessary to properly define the above mentioned ex-
perts’ typologies and with them to define the importance of the experts’ opinions on the
alternatives over each criterion. The moderator is responsible for the weights refinement
in each particular case by assigning an expert’s weight value to each kind of experts for
each single criterion ecw.

Finally, the last moderator’s task is to assign the relevance of each criterion for the
particular problem by mean of some importance values. In this way, if the library selec-
tion is performed with the aim of studying for an exam, the space resources is the most
important criterion but if the use of the library will be to research on new technologies
the library side lose relevance being more important the electronic resources. These im-
portance values will be treated later as criteria’s weight values cw by the aggregation
operator.

The ordinal fuzzy linguistic modeling approach lets use a set of linguistic labels
as weight values instead of numbers. So, these weights ecw and cw can be expressed
using any set of linguistic labels. A feasible set of l labels could be the next: S = {s1 =
V eryLow, s2 = Low, s3 = Medium, s4 = High, s5 = V eryHigh}.

Once we have selected the most suitable sets of alternatives, criteria and experts, the
decision making process starts with the collection of every expert’s opinion. Thus, each
expert must give his own assessments on every alternative for each criterion.

We assume that each expert eh provides his/her preferences
{
P h1, P h2, ..., Php

}
by

means of p fuzzy linguistic preference relations (FLPR) characterized by a membership
function [4]:

μP : X ×X −→ S

where S is a set of linguistic labels and p is the number of criteria.
For instance, by using the set of seven labels introduced in Section 2, an expert

eh could provide the following FLPR on a set of four alternatives according to the
criterion cs.

P hs =

⎛
⎜⎜⎝
− N H M
P − L M
L H − V L
M M V H −

⎞
⎟⎟⎠

According to phs
24 = M and phs

21 = P , eh considers that on the criterion cs, alterna-
tives x2 and x4 are at the same level but x2 is better than x1 respectively.

3.2 Fuzzy Linguistic MCGDM Selection Process with Heterogeneously
Specialized Experts

In order to obtain a collective assessment from the whole group of experts, the individ-
ual opinions have to be computed using an aggregation operator.

When each expert has provided all his preferences (FLPRs) on the alternatives for
each criterion, we can obtain a ranking of them by applying a selection process [1,4].
The selection process consists of two different phases:
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1. Aggregation of individual heterogeneously specialized experts’ FLPRs on mul-
tiple criteria:
The aggregation phase defines a collective preference relation, P c =

(
pc

ij

)
, ob-

tained by means of the aggregation of all individual linguistic preference relations{
P 11, P 12, . . . , P 1p, P 21, P 22, . . . , P 2p, . . . , Pmp

}
. It indicates the global prefer-

ence among every pair of alternatives according to all the experts’ opinions taking
into account the whole set of criteria.
To To deal with this situations, we propose a fuzzy linguistic MCGDM aggrega-
tion process with two different phases:i) aggregation of individual FLPRs on each
criterion and ii) aggregation of collective FLPRs on each criterion.
(a) Aggregation of individual FLPRs on each criterion:

At this point, in order to aggregate the individual preferences taking into ac-
count every criteria and the heterogeneous knowledge degrees, the first step is
to obtain a collective preference relation over each criterion cs, P cs =

(
pcs

ij

)
,

obtained by means of the aggregation of all individual linguistic preference re-
lations

{
P 1s, P 2s, . . . , Pms

}
. It indicates the global preference among every

pair of alternatives according to the criterion cs.
Thus, to compute each collective fuzzy linguistic preference degree P cs ac-
cording to the knowledge level of each expert, we propose to use the L-IOWA
operator with the linguistic experts’ weight values ecw as the values of the
order inducing variable, i.e.,

pcs
ij = ΦW (〈ecw1s, p1s

ij 〉, . . . , 〈ecwms, pms
ij 〉)

(b) Aggregation of collective FPLRs on each criterion:
Once all the individual FLPRs P hs have been aggregated obtaining a collective
FLPR P cs for each criterion, this second aggregation step defines a collective
preference relation, P c =

(
pc

ij

)
, computed by means of the aggregation of all

collective FLPRs obtained in the previous step
{
P c1, P c2, . . . , P cp

}
. It indi-

cates the global preference among every pair of alternatives according to all of
different criteria.
The aggregation operator of this step depends on the importance of the criteria,
therefore, we propose to use again the L-IOWA operator with the linguistic
criteria’s weight values cw as the values of the order inducing variable, i.e.,

pc
ij = ΦW (〈cw1, pc1

ij 〉, . . . , 〈cwp, pcp
ij 〉)

2. Exploitation of the collective FLPR:
This phase transforms the global information about the alternatives, P c, into a
global ranking of them. In such a way, the set of solution alternatives is obtained.
The global ranking is obtained applying these two choice degrees of alternatives
on the collective preference relation QGDD and QGNDD. These degrees can be
studies in more detail in [24]:

4 Conclusions

In this paper, we have presented a new approach, to deal with MCGDM problems,
in which the main contribution is the possibility of join with more accuracy hetero-
geneously specialized experts’ opinions. It has sense when each expert has different
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knowledge level among the different aspects of the discussion field. To do so, we pro-
pose a balanced selection of experts, the use of FLPRs as format of preferences rep-
resentation and the use of a proper aggregation operator to model the heterogeneity
among experts. Using this model, the heterogeneous knowledge of the different kinds
of expert is managed with more accuracy over each particular situation instead of doing
it over the whole problem. In such a way, better results and decisions can be obtained.

In the future, we will use incomplete information models and mobile technologies in
order to present a dynamic decision making process in which the different elements of
the problem (alternatives, experts, weights and so on) can be changed through the time.
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Fast Mining of Non-derivable Episode Rules in

Complex Sequences
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Abstract. Researchers have been endeavoring to discover concise sets of
episode rules instead of complete sets in sequences. Existing approaches,
however, are not able to process complex sequences and can not guaran-
tee the accuracy of resulting sets due to the violation of anti-monotonicity
of the frequency metric. In some real applications, episode rules need to
be extracted from complex sequences in which multiple items may appear
in a time slot. This paper investigates the discovery of concise episode
rules in complex sequences. We define a concise representation called non-
derivable episode rules and formularize the mining problem. Adopting a
novel anti-monotonic frequency metric, we then develop a fast approach
to discover non-derivable episode rules in complex sequences. Experi-
mental results demonstrate that the utility of the proposed approach
substantially reduces the number of rules and achieves fast processing.

Keywords: Episode rules, complex sequences, sequence data mining.

1 Introduction

Episodes [9] were introduced to model the relative order of different types of
events within an event sequence. Episode rule mining is an important problem
since episode rules are able to capture associations between the occurrence orders
of events. Like traditional association rules [1], episode rules can be discovered
in two phases. The first phase is finding frequent episodes. The second phase is
generating episode rules from the set of frequent episodes.

Most existing approaches [6,7,8,9,10,11] to frequent episode mining aim to
finding all frequent episodes. This may generate a huge number of frequent
episodes and episode rules. Although closed frequent episodes [17] substantially
reduce the number of generated patterns, they are not sufficiently condensed.
Therefore, researchers have been endeavoring to discover concise sets of episode
rules instead of complete sets. Harms et al. proposed an algorithm, Gen-REAR
[5], which is capable of finding representative episode rules in a simple sequence
in which no more than one item appears in a time slot (see Fig. 1 (a)). However,
Gen-REAR suffers from two significant deficiencies. The first deficiency is that
it is not able to process complex sequences in which multiple items may appear
in one time slot (see Fig. 1 (b)). In some real applications, episode rules need to
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be considered in complex sequences. For example, 10 events need to be consid-
ered in each time slot in the analysis of stock prices [6]. We consider complex
sequences since episode rules in complex sequences have more extensive applica-
tions [6]. EMMA in [6] can find episode rules in complex sequences. However,
the found complete sets are not easy to put into real utility, as they may contain
a huge number of rules including a large portion of redundant rules which can
be derived. In order to achieve concise results and better utility, we consider
the derivation relationship between episode rules and only extract non-derivable
rules. The second deficiency is that the accuracy of the set found by Gen-REAR
can not be guaranteed since the adopted frequency metric does not satisfy anti-
monotonicity 1 [1]. The two deficiencies hinder the application of episode rule
discovery in complex sequences. Therefore, this paper investigates the mining
of concise episode rules in complex sequences. We define non-derivable episode
rules and formularize a problem called mining of non-derivable episode rules in
complex sequences. Adopting a novel anti-monotonic frequency metric T -freq
[7], we then develop an efficient algorithm for discovering non-derivable episodes
rules in complex sequences.

A A C B B

1 2 3 4 5
t

A
B A A

B A C C B A

1 2 3 4 5 6
t

(a) A simple sequence (b) A complex sequence

Fig. 1. Single sequences

The rest of this paper is organised as follows. Section 2 presents preliminaries
and problem definition. Section 3 addresses the frequency metric and its prop-
erties. The mining algorithm is proposed in Section 4 and experimental results
are presented in Section 5. Section 6 reviews related works and compares them
with our work and Section 7 concludes the paper.

2 Preliminaries and Problem Definition

2.1 Preliminaries

This section presents ordinarily concepts in the literature of episode discov-
ery [6,7,8,9,10,11].

Definition 1 (Complex Sequence). Let I be a finite set of items. A complex
sequence S over I is an ordered list of pairs of elements and timestamps,

S = 〈(E1, t1), (E2, t2), ..., (En, tn)〉 (1)
1 A frequency metric is anti-monotonic if under this metric, for any pattern, none of

its super-patterns has greater frequency.
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where, Ei ⊆ I is called a sequence element, and ti (t1 < t2 < ... < tn) is the
timestamp (occurrence time) of Ei in S (1 ≤ i ≤ n). When Ei ∈ I, S is called
a simple sequence.

Episodes can de divided into three classes: serial episodes, parallel episodes and
composite episodes [9]. In this paper we only consider serial episodes since the
other two classes can be constructed from serial episodes.

Definition 2 (Serial Episode). A serial episode α over I is an ordered list of
data elements, denoted as α = 〈a1a2...am〉, where ai ⊆ I (i = 1, 2, ..., m). The
length of α, denoted as α.L, is defined as m. The size of α, denoted as α.size,
is defined as the number of items contained in α.

In the rest of the paper, episodes are referred to as serial episodes.

Definition 3 (Sub-episode, Super-episode). An episode βsub = 〈a1a2...am〉
is a sub-episode of another episode β = 〈b1b2...bn〉, denoted as βsub � β, if there
exist 1 ≤ i1 < i2 < ... < im ≤ n such that aj ⊆ bij for all j = 1, 2, ..., m. Episode
β is a super-episode of βsub.

For instance, 〈A(BC)〉 � 〈(AD)B(BC)〉. Note that in this paper an episode is
written in the form that every element is included in a pair of brackets. The pair
of brackets is omitted only when one item is contained in the element. The items
in each element are ordered alphabetically.

Definition 4 (Window). Given S = 〈(E1, t1), (E2, t2), ..., (En, tn)〉, a sliding
window with width w over S from starting timestamp st, denoted as win(S, st, w),
is a sequence segment defined as

win(S, st, w) =
{

(Est)st(Est+1)st+1...(Est+w−1)st+w−1 if st + w − 1 ≤ ct
(Est)st(Est+1)st+1...(Ect)ct otherwise (2)

A window win(S, st, w) contains an episode α if α � win(S, st, w).

Definition 5 (Frequent Episode, Maximal Frequent Episode). Given S
and min sup, an episode α is frequent with respect to min sup if sup(α) ≥
min sup. Episode α is a maximal frequent episode with respect to min sup if for
any β � α, sup(β) < min sup.

Given S, F (min sup) is used to denote the set of frequent episodes with respect
to min sup, and MF (min sup) is used to denote the set of maximal frequent
episodes with respect to min sup.

Definition 6 (Episode Rule). An episode rule within an episode α is defined
as the implication αsub → α, where αsub � α (αsub �= α).

Definition 7 (Episode Rule Mining). Given S, min sup and a minimal
threshold of confidence, min conf , episode rule mining is to discover all episode
rules that satisfy both the thresholds of min sup and min conf , denoted as
ER(S, min sup, min conf). The confidence of an episode rule αsub → α is de-
fined as

conf(αsub → α) = sup(α)/sup(αsub) (3)
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2.2 Problem Definition

This section defines non-derivable episode rules and the mining problem.

Definition 8 (Derivation Relationship). For two episode rules, r : αsub → α
and r′ : α′

sub → α′, r can be derived from r′, denoted as r′ � r, if α′
sub � αsub

and α � α′ (α′
sub �= αsub or α �= α′).

Definition 9 ((Maximal) Sets of Non-Derivable Episode Rules). Given
S, min sup and min conf , we call R a set of non-derivable episode rules if (1)
R ⊆ ER(S, min sup, min conf) and (2) there exist no r, r′ ∈ R such that r′ � r.
Furthermore, R is a maximal set of non-derivable episode rules if there exists
no larger sets of non-derivable episode rules.

Definition 10 (The Mining Problem). Given S, min sup and min conf ,
the problem is discovering the maximal set of non-derivable episode rules, denoted
as MR.

3 Frequency Measurement

The first key issue in episode rule discovery is frequency measurement. This
means choosing a frequency metric to measure the frequencies of episodes. To
date, several frequency metrics for episodes [6,7,8,9,10,11] have been introduced.
Different frequency metrics are adopted in different approaches. Recently, we
analysed existing frequency metrics [3], and investigated the impact of these met-
rics on episode discovery [4]. The metric fixed-win-freq is used in Gen-REAR
[5], and mo-freq is adopted in WINEPI [11]. However, fixed-win-freq does
not satisfy anti-monotonicity. Thus, false rules may be included in the result
found by Gen-REAR. Although mo-freq is anti-monotonic, it is inconvenient
to compute. In this paper, we adopt a novel metric T -freq [7]. There are two
reasons why we choose this metric: (1) it is anti-monotonic and (2) its proper-
ties make it convenient to find non-derivable episode rules. This section reviews
T -freq and its basic properties.

Definition 11 (Head Frequency). Head frequency [7] of episode α in S =
〈(E1, t1), (E2, t2), ..., (En, tn)〉 with window width w, denoted as H-freq(S, α, w),
is defined as

H-freq(S, α, w) =
n∑

i=1

δ(win(S, i, w), α) (4)

where δ(win(S, i, w), α) = 1 if a1 ⊆ E1 and win(S, i, w) contains α, otherwise
δ(win(S, i, w), α) = 0.

Definition 12 (Total Frequency). Total frequency [7] of episode α in S with
window width w, denoted as T -freq(S, α, w), is defined as

T -freq(S, α, w) = min
αsub
α

H-freq(S, αsub, w) (5)

The T -freq has an incremental property as follows.
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Theorem 1 (Incremental Property). Given sequence S = 〈(E1, t1), (E2, t2),
..., (Ek−1, tk−1)〉 (S is empty when k − 1 = 0) and min sup, let α be a maximal
frequent episode in S (let α be an empty episode when S is empty). When a new
element is appended, S becomes S′ = S ◦ Ek = 〈(E1, t1), (E2, t2), ..., (Ek, tk)〉.
Suppose that u ⊆ Ek and u satisfies the following conditions: (1) u is frequent
in S′, and (2) ¬∃v ⊆ Ek, v ⊇ u (u �= v) and v is frequent in S′. Then, α ◦ u =
〈a1a2...amu〉 is a maximal frequent episode in S′. [7].

In this paper, we adopt T -freq to calculate the frequency of an episode, i.e.,
sup(α) = T -freq(α).

4 The Mining Algorithm

In order to find non-derivable episode rules efficiently, we defineMR by multiple
layered maximal frequent episodes. Based on the incremental property of T -freq,
we then develop an efficient algorithm for mining non-derivable episode rules.
The basic idea is to find non-derivable episode rules in two phases.

1. Discovering the set of multiple layered maximal frequent episodes;
2. Extracting non-derivable episode rules from the set of multiple layered max-

imal frequent episodes.

4.1 Multiple Layered Maximal Frequent Episodes

We divide maximal frequent episodes into different subsets at different layers.
Then, non-derivable episodes {αsub → α} are considered at different layers ac-
cording to which layer α belongs to. The formal definitions are as follows.

Given S, min sup and min conf , let min sup1 = min sup, min sup2 =
min sup1 + 1 = min sup + 1, ..., min supml = min supml−1 + 1 = min sup +
ml− 1, where ml is the maximal number of layer. According to the definition of
non-derivable episodes, we have the following lemma.

Lemma 1. Given S, min sup and min conf , for any αsub → α ∈ MR, if
sup(α) = min supr, then we have α ∈MFr = MF (min supr) and sup(αsub) ∈
[min supr, min supl], where, r = 1, 2, ..., ml, and min supl = �min supr

min conf �.

Proof. (1) We prove α ∈ MFr. If α �∈ MFr, then ∃α′ ∈ MFr, α � α′ since
sup(α) = min supr. Thus, αsub → α′ � αsub → α. This deduces that αsub →
α �∈ MR (a contradiction).

(2) We prove sup(αsub) ∈ [min supr, min supl]. We have sup(αsub)≥sup(α)
= min supr because T -freq is anti-monotonic. conf(αsub → α) =
sup(α)/sup(αsub) = min supr/sup(αsub) ≥ min conf . Therefore, sup(αsub) ≤
min supr/min conf . Since sup(αsub) is an integer, we have the maximal bound
min supl = �min supr

min conf �. ��

We useMRr to denote the set of non-derivable episode rules whose consequents
have support min supr.
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Theorem 2. Given S, min sup and min conf , the maximal set of non-derivable
episode rules is MR = ∪ml

r=1MRr.

Proof. The theorem can be proven according to Lemma 1 straightaway. ��

4.2 Algorithm Description

Non-derivable episode rules are discovered in two phases.

1. Phase 1 (MLMF-Finding) — finding multiple layered maximal frequent
episodes.

2. Phase 2 (NR-Extracting) — extracting non-derivable episode rules.

Figure 2 shows the algorithm for mining non-derivable episode rules, MNDER.

Algorithm 1: MNDER(S, min sup, min conf)
Input : S, min sup and min conf
Output : MR
// Phase 1 MLMF-Finding1

Initialize FR, MFi and Ui as null for all i = 1, 2, ..., S.L ;2

for k=1 to S.L do3

Read Ek and update FR;4

Obtain Ui with respect to min supi for all i = 1, 2, ..., S.L;5

MFi ← MFi × Ui for all i = 1, 2, ..., S.L;6

Obtain ml by reading FR;7

// Phase 2 NR-Extracting;8

for r=1 to ml do9

l ← �min supr/min conf� ;10

for k=1 to smax − 1 do11

Obtain SEk = {α|α.size = k ∧ α � β ∧ α �= β ∧ β ∈ MFr};12

for each α ∈ SEk do13

if sup(α) ∈ [min supl, min supr] then14

for each β ∈ MFr do15

if α � β (α �= β) and ¬∃r′ ∈ MR s.t. r′ 
 α → β then16

Insert α → β into MRr;17

Return (MR);18

Fig. 2. The MNDER algorithm

In Fig. 2, Phase 1 is extended from the algorithm in [7]. We use FR to record
the frequency of length-1 episodes. From Line 3 to Line 6, whenever an element
Ek is read, FR is updated (Line 4), Ui and MFi are obtained (Lines 5 and
6) according to Theorem 1. In Line 5, Ui refers to the set of length-1 episodes
{u ⊆ Ek} that satisfies the two conditions in Theorem 1 with respect to min supi

(min sup is replaced with min supi). In Line 7, maximal number of layer ml is
obtained.
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In Phase 2 (Lines 9-17),MRr is extracted from MF . In Line 10, we compute
the maximal bound of layer (support) for the left hand side with respect to the
right hand side from MFr. From Line 11 to Line 17, we consider episode rules
with the right hand side at the r-th layer. In line 11, smax refers to the maximal
size of episodes in MFr. In Line 12, sub-episodes with size k are extracted from
MFr. From Line 13 to Line 17, for each size-k episode α, consider β ∈ MFr,
and insert α→ β into MRr if it satisfies the conditions in Line 16.

It is important to note that (1) sup(α) is embedded in the layered maximal
frequent episodes; sup(α) = min supm if the super-episode of α with the max-
imal support is at Layer m; and (2) if α → β has been inserted into MR, any
rule α′ → β is not considered if α′ � α.

4.3 A Running Example

We use an example to illustrate how non-derivable episodes are discovered by
the algorithm.

Example 1. Given S as shown in Fig. 1 (b), min sup = 2, min conf = 0.5,
MNDER is used to discoverMR from S.

The process of finding MR is shown in Fig. 3. Figure 3 (a) shows FR, U and
MF when an element is read, and Fig. 3 (b) shows the final MF . The found
MR is shown in Fig. 3 (c), where the support and confidence are behind every
rule. Only eight rules are included inMR. In contrast, more than 100 rules are
included in the resulting set if all rules are found. Note that other rules outside
MR can be derived, and the confidence of each derived rule can be obtained
from the found MF . So,MR is a highly condensed and information lostless set.

5 Experimental Results

The proposed algorithm was performed on synthetic data. Comparisons of con-
densation and time efficiency were conducted between our method and three
previous approaches, WINEPI [11], Gen-REAR [5] and EMMA [6]. The algo-
rithms were implemented in Java. All experiments were performed on a computer
with 2.0Ghz CPU and 1GB memory, running on Windows XP.

The synthetic data was created by an IBM synthetic sequence generator [2].
Short sequences are created by the generator first, and the generated short se-
quences are connected to form long sequences. The generator involves 5 major
parameters [2]: C (average number of elements per sequence), T (average num-
ber of items per sequence element), N (number of different items), S (average
length of maximal potential large sequences) and I (average size of elements in
maximal potentially large sequences). We use L (in 000s) to represent the length
of a long sequence. Since WINEPI [11] and Gen-REAR [5] only process sim-
ple sequences, we generated two kinds of sequences; simple sequences and com-
plex sequences. Four experiments were conducted to evaluate the performance.
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t FR U MF 
1  

B 
1 

 

  

2 B A 
1 1 
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(a) MLMF-Finding                

(b) The found MF                                                      (c) The extracted  MR          

Fig. 3. The process of the example

Experiments 1 and 2 evaluate the performance on simple sequences. Experiments
3 and 4 evaluate the performance on complex sequences.

In Experiment 1, three algorithms (MNDER, WINEPI [11] and Gen-REAR
[5]) were performed on a simple sequence L10C10T1N50S6I4 and the number of
found rules was compared when min sup = 3% and min conf varies. As shown
in Table 1, MR found by MNDER substantially reduces the size of the com-
plete set found by WINEPI by 300-400 times, and is smaller than the set of
representative rules found by Gen-REAR. The value in the bracket behind every
number is the ratio of this number over the corresponding number in Column 2,
e.g., in Column 3, 2.96=548/185. In addition, the higher min conf is, the lower
the number of rules generated.
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Table 1. The number of rules found from simple sequences

min conf MNDER Gen-REAR WINEPI

0.25 185 548 (2.96) 64432 (348.28)
0.3 94 324 (3.45) 38926 (414.11)
0.35 53 195 (3.68) 20814 (392.72)
0.4 26 105 (4.04) 9843 (378.58)

Table 2. A comparison of run-time on simple sequences (in seconds)

min sup MNDER Gen-REAR WINEPI

2% 6.3 113.8 (18.06) 6735.4 (1069.11)
3% 5.1 78.3 (15.35) 5053.7 (990.92)
4% 3.2 52.6 (16.44) 2626.4 (820.75)
5% 2.6 28.5 (10.96) 693.8 (266.85)

In Experiment 2, we compared the run-time on L10C10T1N50S6I4 with vary-
ing min sup and min conf = 0.35. Column 2 in Table 2 shows that the proposed
algorithm can be finished in several seconds. The values in brackets demonstrate
that MNDER is one order of magnitude faster than Gen-REAR and 2-3 orders
of magnitude faster than WINEPI. The high efficiency benefits from one scan
of the sequence and the generation of fewer candidates.

In Experiment 3, we evaluated the number of rules generated by MNDER
from complex sequences when T and N vary, min sup = 3% and min conf =
0.35. Figure 4 (a) shows the number of rules found in L10C10T2-20N50S6I4
(T varies from 2 to 20). Figure 4 (b) shows the number of rules found in
L10C10T5N10-100S6I4 (N varies from 10 to 100). The results in Fig. 4 show
that sets of non-derivable episode rules compress complete sets by two orders of
magnitude, and more rules are generated when either T or N increases.

      

 

 

 

  

1

10

100

1000

10000

100000

2 5 10 15 20

N
um

be
r o

f r
ul

es

T

MNDER

EMMA

1

10

100

1000

10000

100000

10 40 60 80 100

N
um

be
r o

f r
ul

es

N

MNDER

EMMA

(a) Number of rules vs. T                                              (b) Number of rules vs. N 

Fig. 4. Number of rules found from complex sequences



76 M. Gan and H. Dai

Experiment 4 evaluates run-time of MNDER and EMMA on complex se-
quences L10C10T5N10-100S6I4 (N varies from 10 to 100) and L1-100C10T5N50S
6I4 (L varies from 1k to 100k) when min sup = 3% and min conf = 0.35. Fig-
ure 5 (a) shows that more time is needed when N increases. This is because more
items and episodes need to be considered when N increases. Figure 5 (b) shows
that MNDER spends more time on longer sequences. It can be seen from Fig. 5
that MNDER runs faster than EMMA.
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Fig. 5. Run-time on complex sequences

6 Related Work

Traditional association rule mining in transactional databases [1] has been well
developed. However, without considerations of relative order of occurrence, ap-
proaches to traditional association rule mining are not applicable to frequent
episode mining and episode rule discovery [9]. Consequently, episode rule dis-
covery has been treated and investigated as a separate topic.

The original framework for episode rule mining [9] was introduced by Mannila
et al.. Since then, Mannila further improved the framework by introducing a new
frequency metric mo-freq and more efficient search strategies [10,11]. Besides
Mannila’s work [9,10,11], there have been other studies. The studies in [7,8] focus
on episode discovery on data streams. Zhou et al. investigated the discovery of
closed frequent episodes [17]. Huang et al. [6] considered complex sequences
and proposed an efficient algorithm for mining frequent episodes in complex
sequences. All these studies [6,7,8,9,10,11] concentrate on finding complete sets
of episode rules other than concise sets. Less attention has been paid to the
discovery of concise episode rules. Harms et al. introduced representative episode
rules and developed an efficient mining algorithm Gen-REAR [5]. Nevertheless,
Gen-REAR can not process complex sequences.
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The existing approaches [5,6,7,8,9,10,11] can be classified according to four
major angles: input (simple sequences vs. complex sequences), frequency met-
rics (anti-monotonic or not), output (complete sets vs. concise sets) and effi-
ciency. In Table 3, a comparison from four angles shows the advantages of our
method against three previous approaches, WINEPI [11], Gen-REAR [5] and
EMMA [6].

Table 3. A comparison between our method and previous approaches

Input Frequency metric Output Efficiency Approach
(Anti-monotonic?) Rule set Size

A simple mo-freq (Y) complete large slow WINEPI
sequence fixed-win-freq (N) representative small fast Gen-REAR

A complex Distinct-bound-st (N) complete large fast EMMA
sequence T-freq (Y) non-derivable smaller faster MNDER

Multiple layered maximal frequent episodes used in our approach are essen-
tially closed frequent episodes. So, closed subsequence mining is related to the
problem considered in this paper. Closed subsequence mining has been devel-
oped in two streams. The first stream is closed sequential pattern mining (CSPM)
[12,13,14,15,16] and the other is closed frequent episode mining (CFEM) [17].
Mining techniques for CSPM is different from our approach because CSPM dis-
cover closed frequent subsequences from sequence databases, while our approach
extracts closed episodes from a single long sequence. The problem of mining non-
derivable episodes is defined based on CSPM [17]. However, Clo-episode in [17]
is not applicable to our problem as the adopted frequency metrics are different.

7 Conclusion

This paper proposed and investigated a new problem: the discovery of non-
derivable episode rules in complex sequences. We developed an efficient mining
algorithm MNDER for discovering non-derivable episode rules in complex se-
quences. The found sets are not only highly condensed but also information lost-
less. Experimental results on synthetic data showed that the proposed method
outperforms previous approaches with the advantages of processing complex
sequences, adopting an anti-monotonic frequency metric and achieving more
condensed results and faster processing.
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Abstract. Automated trading systems for financial markets can use
data mining techniques for future price movement prediction. However,
classifier accuracy is only one important component in such a system: the
other is a decision procedure utilizing the prediction in order to be long,
short or out of the market. In this paper, we investigate the use of tech-
nical indicators as a means of deciding when to trade in the direction of a
classifier’s prediction. We compare this “hybrid” technical/data stream
mining-based system with a naive system that always trades in the di-
rection of predicted price movement. We are able to show via evaluations
across five financial market datasets that our novel hybrid technique fre-
quently outperforms the naive system. To strengthen our conclusions, we
also include in our evaluation several “simple” trading strategies without
any data mining component that provide a much stronger baseline for
comparison than traditional buy-and-hold or sell-and-hold strategies.

1 Introduction

Analysing a financial market is a necessary precursor to the development of any
trading strategy for that market. The type of analysis can vary greatly. For
example, fundamental analysis is concerned with the broad economic factors
and sweeping long term trends of a market [1]; technical analysis is concerned
with finding clues to future price movements in historic market data and other
variables [2]; and sentiment analysis involves gauging the opinion of market
participants as to overall market direction [3]. Trading strategies may involve
one, two or all of these methods of analysis.

Our research falls squarely into the technical analysis camp. Over the past
hundred years or so, numerous technical indicators and technical charting meth-
ods (such as trend lines) have been developed for so-called “price chart reading”
(e.g. [4]). These indicators and methods are now so firmly entrenched in the
psychology of market participants that they often become self-fulfilling prophe-
cies rather than independent predictors. With the advent of computers, these
traditional indicators are now considerably easier to compute, and literally every
trader can have a hundred or so different indicators available at her fingertips.

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 79–90, 2011.
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In terms of research, academics routinely apply new computerised methods
such as data mining (e.g. [6], [8]), neural networks (e.g. [5], [7], and [10]), evo-
lutionary algorithms (e.g. [9]), and recently data stream mining ([11]) to the
markets in order to develop newer and better trading techniques, but also to
better understand how the markets work.

In this paper, we describe one such new technique which fuses the predictions
made by a data mining classifier with a decision procedure based on technical
analysis. The simple rule is that both types of analysis must agree before a trade
in the predicted direction is made; if they disagree, no action is taken regardless
of the classifier’s prediction.

Our results show that in most cases, performance using this rule increases
significantly compared to a trading system that only follows the classifier’s rec-
ommendations. Furthermore, the number of trades (and this applies even to the
situations where there is no significant improvement in trading performance) is
considerably reduced – to around 50% in many cases – leading therefore to much
reduced transaction costs.

Fig. 1. Daily closing prices for the EUR-
USD market, 23 May 2003 - 3 Dec 2010

We also provide a much more solid
baseline for our experimental evalu-
ations. Often in this field, it is con-
sidered “standard” to compare new
strategies to buy-and-hold (whereby a
long position is established at the be-
ginning of the evaluation period and
held to the end) or sell-and-hold (in
which a short position is established
and held to the end). The returns
of the buy-and-hold or sell-and-hold
strategies can then be compared to
that of the new method under consid-
eration. However, in modern markets, overly simplistic strategies such as buy-
and-hold frequently underperform as Figure 1 illustrates.

Fig. 2. Daily closing prices for the AUD-
JPY forex market, 1 Dec 2003 - 3 Dec 2010

This figure shows the daily closing
prices for the EURUSD or “Eurodol-
lar” market over the period from 23
May 2003 to 3 Dec 2010. The first
closing price at the start of the period
is $1.16 and the final closing price is
$1.32 – representing a paltry 13.7% re-
turn (not annualized!) for a buy-and-
hold strategy over a nearly 7 year pe-
riod. Despite this, an inspection of the
price series shows that price swung
greatly several times in amounts far
exceeding this net 13.7% movement.
In fact, the highest recorded price is



Hybridizing Data Stream Mining and Technical Indicators 81

around $1.60 and the lowest below $1.10. Clearly, any strategy just a little more
intelligent than buy-and-hold could capture vastly more profit. Yet many papers
compare their new “intelligent” strategy to buy-and-hold or sell-and-hold. A sim-
ilar argument can be made for Figure 2, which shows prices for the Australian
Dollar/Japanese Yen (AUDJPY) market.

We advocate significantly more challenging baseline strategies inspired by
(and including) the simple strategies first proposed by Tiňo [12], which are de-
signed specifically to be conducive for statistical significance testing.

In the next section, we outline our new method in more detail, discussing
the technical and classifier components of the system as well as the strategy
execution on a price series. In Section 3 we detail the experimental setup, in
particular focussing on the baseline simple strategies (superior to buy-and-hold)
that were used for comparison, as well as the evaluation measures usede. Section
4 describes the actual evaluation itself, with the datasets, and then the results.
Finally, Section 5 concludes the paper.

2 Proposed New Trading Strategy Framework

Our hybrid framework for trading strategy design consists of two main compo-
nents: a technical component based on standard technical indicators, and a data
stream mining component, which is an abstaining classifier trained on a stream
of historic price data. Besides price, the values of various indicators and other
indexes may also be included in the stream.

2.1 The Technical Trading Rule (or Filtering) Component

A technical trading rule generally involves the computation of one or more tech-
nical indicators from historic price data. Because technical indicators are often
designed to gauge a market’s price trend direction, a trading rule is essentially
a filter for trading actions, for example to rule out buy trades when the market
is trending down.

One of the simplest technical indicators is the Simple Moving Average (SMA)
[4]. Two instances of this indicator are depicted in Figure 3 where they are
overlaid on the closing price series for the USDJPY market from the period 15
May 2003 to 3 Dec 2010. The dark, slower-moving line is the 200-period SMA
while the medium-grey, faster-moving line is the 20-period SMA. Because the
200-period SMA lags behind the 20-period SMA, a good technical trading rule
(and the one adopted in this paper) is to go long (buy) only if the 20 SMA
is above the 200 SMA; and to go short (sell) only if the 20 SMA is below the
200 SMA.

We can see that using this rule would have resulted in mostly buying in the
approximate period May ’05 to May ’07 because the 20 SMA is mostly above
the 200 SMA during this period. Thereafter, the 20 SMA is mostly below the
200 SMA and therefore most trades would have been short (selling).
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Fig. 3. Daily closing prices for the USDJPY forex market, 15 May 2003 - 3 Dec 2010,
with the 20 and 200 period SMAs overlaid

Note that the direction of the technical trading rules does not force a trade
to be made; rather it is applied as a filter to eliminate potentially incorrect
predictions made by the abstaining classifier component described next.

2.2 The Abstaining-Classifier Component

The abstaining-classifier component is a machine learning classifier capable of
abstaining from a prediction if the uncertainty is too high. The simplest way to
achieve this is to have the classifier predict not a binary direction (e.g. up or
down) for the market over the next period, but a probability distribution over
market directions. If the probabilities are within a small deviation of 0.5 (which
in our case is 0.0001), then the classifier abstains from making a prediction and
there is no trade.

2.3 Strategy Execution

The basic rule is that in order for a trade to occur, the most likely market
direction (up or down) as predicted by the classifier must agree with the technical
trading trade. In other words, the 20-period SMA must exceed the 200-period
SMA and the classifier must predict an upwards price movement in order for a
long trade to happen; vice-versa for a short trade. If the classifier abstains or
the classifier’s prediction conflicts with the technical trading rule, then no trade
is made.

We also use a standard “sliding window” method for executing our strategy.
The basic idea is that (as opposed to performing a single train/test split for an
entire dataset), a new classifier is instead trained for every single prediction that
needs to be made. The training data for the classifier is obtained by sliding a
200-day fixed-size window along the price stream, so that only the most recent
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data (up to and excluding the test instance) is used for prediction. Using this
method, older data is gradually discarded. Each instance in our data stream
consists of 10 price points leading up to the day to be predicted.

Also, it should be noted that instead of raw prices, we use the log-return
values:

rn = sgn(cn − on)× log(K|cn − on|) (1)

where rn is the log return, on is the opening price of the nth day, cn is the same
day’s closing price, sgn(.) is the sign function, and K is an abitrary constant.
This feature proved far superior to raw price during initial testing.

The strategy assumes that trades are held only during market opening hours,
and that they can only be initiated at the market open (i.e.. a buy at price on),
and closed at the end of the day (at price cn). No positions are allowed to be
held overnight or over weekends, which eliminates the effects of gap ups and gap
downs. No stops are used, which means that we do not need to be concerned
with the order that prices were visited during the day – only on and cn are
significant.

Finally, the decision to trade and the direction of the trade for the next day
are made at the immediate close of the current day, as soon as the SMAs and
the classifier can be updated.

3 Methodology

In this section, we present four different experimental conditions that we were
concerned with, and briefly describe the trading strategy evaluation measures
used.

3.1 The Four Experimental Conditions

Simple, Non-Filtered. In the simple, non-filtered case, we adopt Tiňo’s [12]
four proposed baseline strategies. They are SimpleL, a strategy that goes long
every day; SimpleS , a strategy that goes short every day; SimpleTR, a trend
following strategy that buys if the previous day’s close was higher than its open,
and sells whenever yesterday’s close was below its open; and SimpleCT , a counter-
trend strategy that does the opposite of SimpleTR.

Note that while SimpleL and SimpleS are superficially similar to buy-and-hold
and sell-and-hold, they exit the market at the close of each day, and re-enter the
next day. Buy-and-hold and sell-and-hold on the other hand enter the market
once at the period beginning and exit once at the end.

Simple, Filtered. The simple, filtered strategies are four additional strategies
that are introduced in this paper. The basic idea is to take Tiňo’s four baseline
strategies described above and apply the technical trading rule described in
Section 2.1. This generates four new strategies which are filtered – that is, they
are only in the market if the trade direction agrees with the technical trading
rule, and they are out of the market (flat) otherwise.
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Machine Learning, Non-Filtered. In the Machine Learning (ML) non-filtered
set of strategies, we use an abstaining classifier to predict market direction and
trade whenever the classifier makes a prediction. The classifiers we use are Naive
Bayes (NB) [13], Support Vector Machines (SVMs) [15] and Random Forest (RF)
[16]. We also add a simple classifier, ZeroR (0R) which only ever predicts the ma-
jority class from the 200-day training dataset. This serves as an additional baseline
for the classifiers. The implementations of the classifiers are those found in Weka
3.6.6 [17] with all default parameters, bar the Random Forest classifier which con-
sists of 100 instead of 10 random trees.

Machine Learning, Filtered. Finally, the set of strategies in this group rep-
resent our target group: they are a full implementation of the system described
in Section 2 in which an abstaining classifier’s predictions are combined with a
technical trading rule. They vary only in the choice of classifier.

3.2 Evaluation Measures

In this section, we briefly outline the evaluation measures we used.

Accuracy. The accuracy measures we report give the percentage of times that
the strategy correctly predicts the market direction (up or down). We exclude
situations where there is no trade (for example, because the classifier disagrees
with the technical rule).

Net Profit Ratio. Most trading strategies are concerned with maximising net
profit whilst minimising risk. This corresponds to having winning trades that
return as much profit as possible, and losing trades that make minimal losses.
One way to measure this is the Net Profit Ratio (NPR), in which total Net Profit
(NP, i.e. sum of all wins from all winning trades less sum of losses from all losing
trades) divided by Maximum Drawdown (MDD):

NPR =
NP

MDD
(2)

In this ratio, the MDD is defined as the maximum drop in NP that a trading
strategy experiences over a particular period. For example, if a strategy starts
at $0 NP, then reaches $100 NP after some wins, then drops to $50 NP after
some losses, and finally ends the testing period (after further wins and losses)
with $120 net profit, then the MDD is $50 which corresponds to the largest drop
of profits from $100 to $50. The NPR therefore would be $120

$50 = 2.4.
Ideally, we want to find trading strategies with NPRs as high as possible. This

will tell us that the strategy has a high NP relative to its MDD. Strategies that
have a NPR of 1.0 or less are undesirable for actual live trading, because such
a low NPR implies that the MDD is greater than (or at least equal to) the NP,
which may make the strategy a riskier proposition.
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Statistical Significance. We also assess each trading strategy’s performance
statistically using Monte Carlo Permutation Testing (MCPT) [18] [19]. MCPT
takes the daily positions (long, short or flat) made by a strategy, and randomly
permutes them M times to produce M randomized trading strategies or “sam-
ples”. It then computes the total NP of each sample and compares these us-
ing a conservative right-tailed test to the total NP achieved by the strategy.

Fig. 4. Daily closing prices for the
GOOGLE stock market, 25 Oct 2004 - 3
Dec 2010

MCPT is useful for evaluating the
statistical significance of a trading
strategy because it makes no assump-
tions about the performances of other
possible trading strategies – i.e. NPs
achieved by the random strategies
need not have a normal distribution,
nor do they need to have a zero mean
(which is a highly unlikely assumption
in a strongly bullish or bearish mar-
ket).

Significance is reported for each
strategy as a p value, where a smaller
p value indicates greater significance.
Values less than 0.05 are significant at
95% confidence.

4 Evaluation

Fig. 5. Daily closing prices for the BOE-
ING stock market, 17 Mar 2003 - 3 Dec
2010

We now describe the evaluation and
our results in detail.

4.1 Datasets

We acquired five daily streaming
datasets from Dukascopy [20]. They
are the EURUSD, AUDJPY and
USDJPY datasets already discussed
and depicted in Figures 1-3, along
with two stock market datasets, one
for Google (Figure 4) and the other
for Boeing (Figure 5).

The data sets each comprise open,
close, minimum and maximum prices
for each trading day. We further
added the 20 and 200 SMAs to the streams. In all cases, there are 2000 days
worth of data, except for AUDJPY which has only 1832 days, and Google, which
has 1583 days. EURUSD and USDJPY were chosen because they are the most
commonly traded forex markets; AUDJPY was chosen because it is an inter-
esting market with a high volume of carry trades; and Google and Boeing were
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selected because they represent two different but popular companies in the stock
market.

In each dataset, predictions were not made for the first 210 days because
these days were the minimum needed to construct a full dataset for training the
classifiers given the window size of 200 and the instance size of 10.

4.2 Results

We executed each of the strategies in each of the four conditions (Filtered vs.
non-filtered, simple vs. ML-based) on each of the five datasets. This gave a total
of 16 × 5 = 80 experiments that were performed. To evaluate the effect of the
classifier abstentions and technical filtering, we first of all counted the number
of trades that were actually executed. They are given in Table 1. A key point
from this table is that the effect of filtering varies massively. In some cases, the
number of trades is reduced only somewhat, for example from 1790 to 1360 in
the case of filtered 0R applied to EURUSD. However, in other cases the trade
reduction is huge, such as the drop from 1790 trades to 476 trades in the case
of Boeing with filtered SimpleL. This corresponds to trading about once every
three or four days instead of every day.

Table 1. Number of trades by condition (row) and dataset (column)

Strategy EURUSD USDJPY AUDJPY GOOGLE BOEING
NON-SimpleL 1790 1790 1622 1373 1790
NON-SimpleS 1790 1790 1622 1373 1790
NON-SimpleTR 1790 1790 1622 1373 1790
NON-SimpleCT 1790 1790 1622 1373 1790
NON-0R 1716 1694 1597 1318 1689
NON-NB 1790 1790 1622 1373 1789
NON-SVM 1790 1790 1622 1373 1790
NON-RF 1750 1749 1597 1336 1736
FIL-SimpleL 1121 794 1097 910 1314
FIL-SimpleS 669 996 525 463 476
FIL-SimpleTR 924 896 850 742 904
FIL-SimpleCT 866 894 772 631 886
FIL-0R 1360 957 1152 896 1207
FIL-NB 1019 925 937 807 987
FIL-SVM 977 917 977 890 984
FIL-RF 971 918 909 794 934

Table 2 gives the overall accuracies. In most cases the accuracy is around 50%,
with the exception of AUDJPY in which filtered SimpleL achieves about 55%.
This can be most likely explained as long-bias due to the carry trade. The near-
random degree of accuracy concurs with previous results such as [21] and [8]
where only small gains in accuracy (about 1-2%) above random were achievable
when new methods were tested.

The NPRs for each strategy and each dataset are given in Table 3, which
shows considerable variation.

About half of the strategies fail to make any profit at all, ending the testing
period with a net loss (negative NPR). Of those remaining, many have a NPR
below 1.0, which suggests that these strategies tend to make large losses in
comparison to their final net profit.
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Table 2. Strategy directional accuracy by condition (row) and dataset (column)

Strategy EURUSD USDJPY AUDJPY GOOGLE BOEING
NON-SimpleL 49.4% 50.6% 55.1% 47.9% 49.5%
NON-SimpleS 48.9% 48.7% 43.8% 47.6% 48.6%
NON-SimpleTR 46.4% 46.8% 49.7% 48.0% 45.8%
NON-SimpleCT 51.9% 52.5% 49.2% 47.5% 52.3%
NON-0R 49.2% 51.1% 54.5% 47.4% 48.2%
NON-NB 49.7% 50.6% 52.0% 47.3% 48.6%
NON-SVM 50.6% 51.7% 51.7% 48.4% 49.1%
NON-RF 48.9% 49.8% 51.8% 47.2% 49.8%
FIL-SimpleL 50.6% 50.0% 55.2% 51.3% 50.0%
FIL-SimpleS 51.4% 48.3% 44.2% 49.2% 50.2%
FIL-SimpleTR 48.2% 46.2% 51.9% 49.3% 46.7%
FIL-SimpleCT 53.8% 51.9% 51.4% 52.1% 53.5%
FIL-0R 50.3% 50.1% 54.5% 49.3% 48.6%
FIL-NB 51.0% 49.9% 53.6% 49.3% 49.2%
FIL-SVM 51.7% 51.0% 53.2% 50.0% 50.0%
FIL-RF 50.3% 49.7% 53.7% 48.7% 50.9%

Fig. 6. Daily equity curve for the Fil-
tered SimpleCT strategy on EURUSD. The
axes are day (x) vs. profit (y, in points, 1
point=0.0001 dollars).

On the other hand, there are a
few strategies that are big winners
in NPR terms. For example, the fil-
tered SimpleCT strategy on EURUSD
achieves a NPR of 2.142 – implying
that more than $2 profit were made for
each $1 of loss. However, this strategy
does not include a classifier, and the
strategies that did tended to perform
not as well on the EURUSD dataset.

The opposite is true however for
the AUDJPY and BOEING datasets.
In these experiments, filtered classifier-
based strategies achieve NPRs of 1.444
and 3.909 respectively, with the classifiers being Naive Bayes in the first case and
Random Forest in the second case. These two cases represent markets on which
our new approach works exceedingly well.

Table 3. Strategy net profit ratio by condition (row) and dataset (column)

Strategy EURUSD USDJPY AUDJPY GOOGLE BOEING
NON-SimpleL -0.058 -0.595 0.004 0.522 0.184
NON-SimpleS 0.068 1.280 -0.008 -0.571 -0.228
NON-SimpleTR -0.706 -0.755 -0.235 0.394 -0.436
NON-SimpleCT 1.487 2.485 0.506 -0.218 0.746
NON-0R 0.397 -0.818 -0.390 -0.661 -0.401
NON-NB 0.918 0.041 1.186 -0.853 -0.372
NON-SVM 1.408 1.204 0.400 -0.697 -0.261
NON-RF -0.448 -0.128 -0.029 -0.853 1.889
FIL-SimpleL 0.670 -0.917 -0.052 1.243 2.043
FIL-SimpleS 0.794 -0.267 -0.067 0.305 1.084
FIL-SimpleTR -0.299 -0.887 -0.280 1.475 0.560
FIL-SimpleCT 2.142 0.382 0.344 0.830 1.961
FIL-0R 0.871 -0.864 -0.361 -0.008 0.668
FIL-NB 1.229 -0.769 1.444 -0.535 0.585
FIL-SVM 1.362 -0.269 0.238 -0.157 1.012
FIL-RF 0.144 -0.598 0.044 -0.409 3.909
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Table 4. Strategy statistical significance by condition (row) and dataset (column)

Strategy EURUSD USDJPY AUDJPY GOOGLE BOEING
NON-SimpleL 1.000 1.000 1.000 1.000 1.000
NON-SimpleS 1.000 1.000 1.000 1.000 1.000
NON-SimpleTR 0.868 0.976 0.701 0.378 0.781
NON-SimpleCT 0.132 0.025 0.300 0.622 0.220
NON-0R 0.369 0.903 0.808 0.864 0.666
NON-NB 0.238 0.480 0.102 0.978 0.739
NON-SVM 0.138 0.018 0.352 0.978 0.626
NON-RF 0.719 0.560 0.504 0.966 0.060
FIL-SimpleL 0.209 0.916 0.526 0.201 0.060
FIL-SimpleS 0.209 0.916 0.526 0.201 0.060
FIL-SimpleTR 0.593 0.991 0.665 0.229 0.326
FIL-SimpleCT 0.085 0.339 0.367 0.347 0.056
FIL-0R 0.249 0.974 0.680 0.530 0.328
FIL-NB 0.158 0.820 0.205 0.788 0.296
FIL-SVM 0.103 0.625 0.410 0.611 0.231
FIL-RF 0.455 0.779 0.511 0.703 0.017

Table 4 gives the statistical significance values. In this table, a lower value
indicates greater significance. Comparing the two tables, we see that in many
cases, a low p value correlates to a high NPR. Note that there are only a handful
of strategies that are significant at 95% level: they are non-filtered SimpleCT and
SVM strategies applied to the USDJPY market (the SVM strategy has greater
significance); and the Random Forest-based strategies applied to BOEING. Some
of the other high-NPR also have low p values, but they are not quite significant,
such as the non-filtered Naive Bayes strategy with a p value of 0.102 which is
nearly significant at a level of 90%.

Fig. 7. Daily equity curve for the Non-
filtered SimpleCT (black line, upper) and
SVM (grey line, lower) strategies on USD-
JPY. The axes are day (x) vs. profit (y, in
points, 1 point=0.01 Yen).

The equity curves of some of the
better-performing strategies are pre-
sented next. Figure 6 shows the rea-
sonably good performance of the fil-
tered simple countertrend strategy on
the EURUSD market. Note that the
strategy actually loses money for the
first year or so before profits start to
increase.

Figure 7 shows the equity curves
for the two highly-performing strate-
gies applied to the USDJPY mar-
ket, specifically the non-filtered coun-
tertrend strategy and the non-filtered
SVM strategy. Although the latter
strategy has a higher statistical significance according to permutation testing,
the former strategy actually produces a greater NPR over time. This empha-
sizes one of the key points of the permutation test for trading strategies, which
is that the test does not rank strategies according to profitability: instead, it
ranks them according to how unlikely it would be for a random strategy to
produce the same result.
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Figures 8 and 9 show further equity curves, this time for two filtered strate-
gies, specifically Naive Bayes on AUDJPY and Random Forest on BOEING.
Note than in all cases, the equity curves show the points or cents won. This
measurement is independent of position or account size. If the curves were de-
picted with account size on the y axis instead and compounding of position sizes
was employed, it would be expected that the curves would be much steeper.

5 Conclusion

Fig. 8. Daily equity curve for the Filtered
Naive Bayes strategy on AUDJPY. The
axes are day (x) vs. profit (y, in points, 1
point=0.01 Yen).

To conclude, we have demonstrated
that a novel hybridized data min-
ing/technical trading rule strategy
can perform effectively and signif-
icantly in some markets. However,
there is no single optimal or “holy
grail” strategy that fits all five of our
test datasets. Rather, each market ap-
pears to have its own dynamics and
character, and therefore requires its
own unique investigation. It is also
known that markets change gradually
over time (i.e. the distribution of price
changes is non-stationary), so the pro-
cess of optimizing the hybrid strategy is likely to be continuous rather than a
one-off event.

We have also compared our “intelligent” strategies to a set of very strong
simplistic strategies which can sometimes themselves yield high profits and near-
statistical significance. In this respect, our research here differs considerably from
that of prior literature where the baseline strategy, if one is proposed, is most
often an easily out-performed buy-and-hold strategy. We feel the more rigorous
evaluations performed here give a more realistic view of the performance of our
approach.

Fig. 9. Daily equity curve for the Filtered
Random Forests strategy on BOEING. The
axes are day (x) vs. profit (y, in cents).

There is also one caveat that should
be made concerning this research: we
have not included transaction and
slippage costs in our simulations. For
the forex markets, the transaction
costs are very low compared to the
stock market, but costs are changing
rapidly with time. Slippage and costs
are difficult to model because they are
dependent on the broker as well as
market conditions not available in the
price data stream. Individuals con-
structing a live implementation of an
automated trading system such as the
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one introduced here should make appropriate assumptions about their own costs
when they evaluate potential strategies.
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Abstract. Traditional unsupervised dimensionality reduction techniques
are widely used in many learning tasks, such as text classification and
face recognition. However, in many applications, a few labeled exam-
ples are readily available. Thus, semi-supervised dimensionality reduc-
tion(SSDR), which could incorporate the label information, has aroused
considerable research interests. In this paper, a novel SSDR approach,
which employs the harmonic function in a gaussian random field to
compute the states of all points, is proposed. It constructs a complete
weighted graph, whose edge weights are assigned by the computed states.
The linear projection matrix is then derived to maximize the separation
of points in different classes. For illustration, we provide some deep the-
oretical analyses and promising classification results on different kinds
of data sets. Compared with other dimensionality reduction approaches,
it is more beneficial for classification. Comparing with the transductive
harmonic function method, it is inductive and able to deal with new
coming data directly.

Keywords: semi-supervised dimensionality reduction, harmonic
function, soft label, weighted complete graph.

1 Introduction

Dimensionality reduction is a big challenge in many areas, such as pattern recog-
nition and machine learning. It is a frequently used preprocessing technique
for learning tasks. Reducing dimensions may improve the classifier performance
since it can suppress noise in the data and act as a form of regularization. More-
over, a meaningful low dimensional representations can help in visualizing the
data. It is an important tool in exploratory data analysis.

However, in many practical applications, we usually face the semi-supervised
learning problem. One often has a few prior information, since obtaining prior
knowledge, such as labeling points or constructing links often requires expensive
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human labor and much time. On the contrary, a large number of unlabeled points
can be much easier to obtain. For example, in text classification, one can easily
access to a plenty of documents by crawling the Web, but only a small percent
of them are classified by hand. Thus, how to design an effective semi-supervised
dimensionality reduction (SSDR) approach to reduce the dimensionality of this
kind of data is a challenging problem.

Traditional dimensionality reduction approaches are not suitable to solve this
problem since 1) Unsupervised methods, such as Principle component analy-
sis(PCA) [1], [2], Locally linear embedding (LLE) [3] and Maximum variance
unfolding (MVU) [4], often suffer from a low discriminant power due to its unsu-
pervised nature. 2) Supervised methods, e.g., Linear discriminant analysis (LDA)
[5], Generalized additive model [6], often require a large number of points.

There is little work concerning about SSDR. Considering the types of prior
knowledge, we can classify previous SSDR approaches into three categories. 1)
The first kind of approaches adopt pre-defined low dimensional representations
of several points. Typical method is proposed by Yang et al[7]. They modified
several typical nonlinear dimensionality reduction techniques by taking into ac-
count prior information on exact mapping of certain data points. 2) The second
type methods employ domain knowledge in the form of pairwise constraints.
Zhang et al first specified whether a pair of instances belong to the same class
(must-link constraints) or different classes (cannot-link constraints) and then
computed linear transformations[8]. These two kinds of links have been used in
previous for improving the performance of K-means firstly[9]. 3) The third type
of SSDR methods use label information directly. They commonly employ la-
beled and unlabeled data points to construct a weighted graph. Typical method
may include Semi-supervised Discriminant Analysis (SDA) [10], which uses la-
beled data points to maximize the separability between different classes and the
unlabeled data points to estimate the intrinsic geometric structure of the data.

Despite the success of applying semi-supervised dimensionality reduction ap-
proaches to many fields[11], there are still some problems that are not properly
addressed till now. The performance of different kinds of SSDR approaches can
also be improved. The first kind of approaches are not suitable for real applica-
tions, since the required prior information is too strict in practice. The second kind
of approaches require plenty of links to guarantee their validity. Moreover, label-
ing a few points is more realistic than constructing a large number of links. The
third type of methods do not perform well if the labeled points are not sufficient.

To address the above issues, we propose a novel method called Semi-supervised
dimensionality reduction via harmonic functions (SSDR via HF). The SSDR via
HF algorithm first computes the states of the whole data set using harmonic
functions in Gaussian fields[12], [13]. We show that the state of a point can also
be regarded as its soft label. Then, we construct a weighted complete graph. For
each pair of vertexes, the weight measures the similarity of two linked points.
After that, a linear transformation matrix can be derived by maximizing all dis-
similarities and simultaneously, minimizing all similarities. The transformation
matrix is constrained to be orthogonal or uncorrelated respectively. We prove
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theoretically that the state computation can be solved in a closed form and
SSDR approach [8] can be regarded as a special case of our method. Finally, the
experiments on image, digit and text are presented to show the effectiveness.

The remainder of this paper is organized as follows. Section 2 will review
the related work and Section 3 will show the SSDR via HF algorithm in detail.
The analysis of SSDR via HF will be proposed in Section 4. Section 5 presents
the experimental results on synthetic and real-world data sets, followed by the
conclusions and future works in Section 6.

2 Notations and Harmonic Function

In this section, we will briefly review the label propagation technique based on
the harmonic function[13]. First, let us introduce some notations. A set of n
data points in R

D1 is represented by X = {x1, x2, · · · , xl, xl+1, · · · , xn}, and
L = {1, 2, · · · , c} is the label set. There are c classes in total. The first l points
XL = {xi}li=1 are labeled as TL = {ti ∈ L}li=1 and the remaining points XU =
{xi}ni=l+1 are unlabeled. Commonly, for an inductive method, we may also have t

unseen points XT = {xi}n+t
i=n+1 for testing. These unseen points are not available

for training. Our goal is to find a suitable mapping matrix P , which is computed
base on X and projects the whole data to a low dimensional space, i.e., yi = Pxi

for i = 1, 2, · · · , n + t. Here yi ∈ R
D2 and D2  D1.

The harmonic function aims to predict states of unlabeled points and employ
values on several known points as the constraints. In essence, this method plays
the role to propagate labels from labeled points to unlabeled data.

For training with c classes, we need to compute a vector-based function f :
X → R

c, where the j th element of f(xi) (a row vector) corresponds to the
probability that xi belongs to the j th class (we will show this result in Section
4.). Therefore, for a labeled data xi, if it is in the j th class, the j th element of
f(xi) equals to one and other elements are zeros.

First, a weighted neighborhood graph is constructed on the whole data set.
An n×n symmetric weight matrix W on the edges of the graph can be computed
by gaussian function, i.e.,

wij = exp(− ‖ xi − xj ‖2 /(2σ2)). (1)

Here σ is the scale hyperparameter.
We constrain f(xi) = ti on the labeled data set XL and choose the quadratic

energy function:

E(f) =
1
2

∑
i,j

wij(f(xi)− f(xj))(f(xi)− f(xj))T . (2)

The minimum energy function f = argmin{f(xi)=ti,i=1,··· ,l}E(f) is harmonic,
namely, it satisfies Δf = 0 on unlabeled data XU and is equal to TL on the
labeled data points XL. Here Δ = D −W , D = diag(di) is the diagonal matrix
with entries di =

∑
j wij . ”0” is a matrix with all zeros. The harmonic property
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means that the value of f at each unlabeled data point is the average of f values
at its neighboring points.

f(xj) =
1
dj

∑
i∼j

wijf(xi), for j = l + 1, · · · , n. (3)

Denote

fl =

⎡
⎢⎢⎣
f(x1)
f(x2)
. . .

f(xl)

⎤
⎥⎥⎦ , fu =

⎡
⎢⎢⎣
f(xl+1)
f(xl+2)

. . .
f(xn)

⎤
⎥⎥⎦ , f =

[
fl

fu

]
. (4)

Q = D−1W , Eq. (3) can be expressed slightly differently: f = Qf . Let f(xi) �
[f (i)

1 , f
(i)
2 , · · · , f (i)

c ]. Since the harmonic functions have maximum principle, f is
unique and is either a constant or the jth element of f(xi) (row vector) satisfies
0 < f

(i)
j < 1 for i = l + 1, · · · , n, j = 1, · · · , c.

To compute the harmonic solution in a closed form, we split Δ as follows:

Δ =
[
Δll Δlu

Δul Δuu

]
.

Considering the harmonic properties, we can formulate the following equation
based on Δf = 0 on unlabeled data.

Δulfl + Δuufu = 0. (5)

Since D is a diagonal matrix, Δul = −Wul. We compute fu by the following
equation in a closed form.

fu = −Δ−1
uuΔulfl = (Duu −Wuu)−1Wulfl = (I −Quu)−1Qulfl. (6)

As shown in Eq. (6), the harmonic function can be automatically computed
in a closed form. More importantly, label information is propagated and thus it
is beneficial for the following dimensionality reduction.

3 The Algorithm

In this section, we will formally present our SSDR via HF algorithm, which aims
to discover the low dimensional representations of original points.

3.1 Computing the State by Harmonic Function

We directly apply Harmonic Function[13], [14] to compute the states fu of un-
labeled points, i.e., the possibilities that one point belongs to the c classes.
Through this way, we can propagate the label information from labeled points
to unlabeled samples. More concretely, we integrate the geometry characters W
from all points to enlarge the label information fl. Thus, the label information
is effectively used.
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There are some aspects that should be highlighted for this step:
(1) Since the points, whose states are known as labels, are represented by

probability matrix fl, each row of fu also corresponds to the soft label of an
unlabeled point. The input label information fl is formulated as a l × c matrix,
therefore, the output fu is a (n− l)× c matrix. More accurately, they are proba-
bilities of the (n− l) points belonging to c different classes, we will give the proof
in Section 4. In other words, we can propagate label information from labeled
points to the whole data set by harmonic functions.

(2) Without iteration, we can directly compute fu by Eq. (6), the adding
computational requirement in this step is limited.

3.2 Constructing a Weighted Complete Graph

In this section, we will explain how to construct a weighted complete graph based
on the soft label matrix f .

For any two points, since we have known their soft labels, i.e., the probability
that they belong to the c classes, it is direct to construct a complete graph by
connecting every two points. The soft labels can be employed to measure the
similarity between every two points. We will show how to define these weights.

Take two points xi and xj as examples, their corresponding harmonic function
values are denoted by f(xi) and f(xj). Recall the intuition of classification, i.e.,
two points in the same class are much more similar than two points belonging to
different classes. Note that f(xi) = [f (i)

1 , f
(i)
2 , · · · , f (i)

c ] for i = 1, 2, · · · , n. Since
f

(i)
k is the probability of xi belonging to the kth class, it is directly to define the

similarity Sij between xi and xj by

Sij =
c∑

k=1

f
(i)
k f

(j)
k = f(xi)f(xj)T . (7)

It is the probability that xi and xj belonging to the same class. More con-
cretely, if xi and xj are in the same class k, f

(i)
k and f

(j)
k are much larger than

other elements of f(xi) and f(xj), therefore, Sij is relatively large. Comparing
with SSDR, Sij can also be regarded as the probability that xi and xj has a
must-link connecting them.

To compute the similarity matrix in terms of matrix operations, we can di-
rectly formulate similarity matrix S in the following form.

S = ffT . (8)

Here f is a n× c matrix that are defined by Eq. (4).
There is another simple strategy to use the soft label matrix to construct

similarity matrix. We can first change the soft label of a point to the hard label
by assigning the point to the class, which corresponds to the largest probability.
Take a particular point xi as an example, if f

(i)
k is the largest element of f(xi),

then

f (i)
m =

{
1 if m = k,

0 if m �= k.
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After the changing, we apply the same method to construct similarity matrix
based on the new f by Eq.(8). In essential, the two strategies have no significant
difference in deriving low dimensional embeddings since we will take a parameter
to balance the effects of two items (see Eq. (9)). In the following experiments,
we will simply employ the first strategy.

In summary, we have construct a complete graph with a weight measuring
the similarity for two connected points. The larger similarity is, the more likely
two linked points belong to the same class and vice versa.

3.3 Deriving Projection Matrix

The final step of SSDR via HF is to derive projection matrix P on the whole data
such that yi =Pxi, for i = 1, 2, · · · , n+t. Denote X � [x1, x2, · · · , xl, xl+1, · · · , xn],
XT � [xn+1, xn+2, · · · , xn+t], Y � [y1, y2, · · · , yl, yl+1, · · · , yn] and YT �
[yn+1, yn+2, · · · , yn+t].

In the second step, we have constructed a complete graph whose edge weights
can measure the similarity of two connected points. When we refer to the dimen-
sionality reduction, it is intuitive that if two points are in the same class, their
low dimensional representations are expected to be near. On the contrary, if two
points belong to two different classes, their expected representations should be
far away. Since Sij is the probability that xi and xj belong to the same class,
we expect to find the embedding that maximizes

E(Y ) =
n∑

i=1

n∑
j=1

(1− Sij)‖yi − yj‖2 − λ
n∑

i=1

n∑
j=1

Sij‖yi − yj‖2 (9)

Here 1−Sij is the probability of xi and xj belonging to two different class, the
first item measures the dissimilarities for all points belonging to different classes.
On the contrary, the second item measures the similarities. More concretely,
comparing with SSDR, the first item is the sum of weighted distances for can-
not link and the second item is for must-link. λ is a tradeoff parameter which
can balance the effects of two items.

Intuitively, if two points are in the same class, Sij is comparatively larger than
1− Sij , thus, the maximization of E(Y ) is mainly focus on minimizing the last
item, i.e., compressing distance of two points in the same class. On the contrary,
if two points belong to different classes, Sij is much smaller than 1 − Sij . The
maximization of E(Y ) is approximately equivalent to enlarging the first item,
which is the sum of weight distances between points of different classes.

If we replace yi by Pxi, E(Y ) is rewritten as

E(Y ) =
n∑

i=1

n∑
j=1

(1− Sij)‖Pxi − Pxj‖2 − λ

n∑
i=1

n∑
j=1

Sij‖Pxi − Pxj‖2. (10)

To compute the optimal solution in a closed form, we rewrite E(Y ) in the
form of matrix.

E(Y ) = tr(PX(Φ− Γ )XT PT ). (11)
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Here, Γ is a matrix whose element Γij = 1 − (1 + λ)Sij . Φ = diag(φi) is a
diagonal matrix with entries φi =

∑
j Γij .

Clearly, to guarantee that Eq.(11) has an optimal solution, we should add
some constraints on the projection matrix P . There are two commonly used
constraints: orthogonal and uncorrelated.

Orthogonal constraint. If we expect that the low dimensional representations
are just a rotation on original data, the orthogonal constraint, i.e. PPT = I is a
good choice. This constraint is commonly used in unsupervised dimensionality
reduction approaches, such as PCA. SSDR via HF with orthogonal constraint
can be regarded as solution to the following problem.

argmax tr(PX(Φ− Γ )XT PT ),

s.t. PPT = I.
(12)

This problem can be easily solved by eigen-decomposition of X(Φ − Γ )XT .
We call our method Orthogonal semi-supervised dimensionality reduction via
harmonic function (OSSDR via HF) in this situation.

Uncorrelated constraint. Since it has been pointed out that uncorrelated
constraint is more reasonable than orthogonal constraint in some cases[15], we
also directly employ uncorrelated constraint, i.e. PStP

T = I in our method.
Here St is the covariance matrix of all data points in the original space. Un-
correlated constraint has been successfully used in supervised dimensionality
reduction methods, such as LDA. SSDR via HF with uncorrelated constraint is
computed by

argmax tr(PX(Φ− Γ )XT PT ),

s.t. PStP
T = I.

(13)

This problem can also be simply solved[15] in the close form by generalized
eigen-decomposition of X(Φ− Γ )XT and St. We call our method Uncorrelated
Semi supervised dimensionality reduction via harmonic function (USSDR via
HF) with this kind of constraint.

For an unseen data, e.g, xi ∈ XT , we can directly reduce its dimensionality
by employing the projection matrix P , i.e., yi = Pxi for i = n + 1, · · · , n + t.

4 Analysis and Extensions

Performance analysis. First, we will show the reason why we can directly
employ Eq. (6) to compute the states of all points. More concretely, we will
prove that the minimum energy function f shown in Section 2 is harmonic.

Theorem 1. The optimal function f as defined by Eq. (3) that minimizes en-
ergy function shown in Eq. (2) with constraint f |XL= fl is harmonic.

Then, we will show why we can apply Eq. (8) to construct the similarity matrix.
The reason is that fu is a probability matrix in common cases, i.e., the sum of
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each row’s elements of fu is equal to one and all the items of fu is non-negative.
The following theorem shows this conclusion.

Theorem 2. Assume that ρ(Quu) < 1, then the optimal function fu computed
by Eq. (6) is a probability matrix, i.e., fu ≥ 0 and fu1c×1 = 1(n−l)×1. Here
ρ(Quu) represents the spectral radius of Quu, fu ≥ 0 means that all elements of
fu is non-negative. 1c×1 represents a c× 1 vector with all ones.

Finally, since we assume that ρ(Quu) < 1 in Theorem 2. We will explain what
this assumption actually means. In essential, ρ(Q) = 1 since Q is a probability
matrix. Quu is only a block of Q and commonly, ρ(Quu) < 1. If ρ(Quu) = 1, it
means that the original graph is disconnected and some connected components
have no labeled data. The harmonic function can not be used in this situation.
More concretely, we have the following theorem.

Theorem 3. Assume that C1, C2, · · · , Cm are m connected components formu-
lated by unlabeled data points of neighborhood graph. For each component, there
is at least one labeled point that connects with at least one point of this compo-
nent. Then, ρ(Quu) < 1.

For conciseness, we would like to omit the proofs. In real applications, it is
usually assumed that the points in the same class are in one component of
the neighborhood graph and simultaneously, there is at least one labeled point
related to this component. This guarantees that the connected component is not
isolated.

In summary, the above three theorems guarantee that we can employ S in
Eq.(8) to measure the similarities between every two points.

Relations to other approaches. SSDR via HF has close relationship to other
approaches, such as SSDR method[8]. More concretely, for every two labeled
points xi and xj , if they are of the same label, they have a must-link connecting
them and Sij = 1. On the contrary, they have a cannot-not link and Sij = 0.
Denote nM and nC are the numbers of cannot links and must links. As in SSDR,
if we introduce two parameters α, β and assume

λ =
(β/nM − 1/n2)
(1/n2 + α/nC)

, Sij =
1

λ + 1
− 1/n2

(1/n2 + α/nC)(λ + 1)
, (14)

then, Eq. (9) becomes

(
1
n2

+
α

nC
)E(Y ) =

∑
xi,xj∈X

1
n2
‖Pxi − Pxj‖2 +

∑
xi,xj∈C

α

nC
‖Pxi − Pxj‖2−

∑
xi,xj∈M

β

nM
‖Pxi − Pxj‖2

(15)

Here C and M contain points pairs who have cannot-link and must-link. The
right side of Eq. (15) is just the objective function of SSDR[8]. Thus, SSDR can
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be considered as a special case of our method. Moreover, the element Sij in our
approach is learned via label propagation and that in SSDR is predefined.

Moreover, SSDR via HF has some relationships with SDA[10]. SDA employs
XLXT as the regularizer, which is added to the total scatter matrix St. The
objective function of one-dimensional SDA is as follows

max
AT SbA

AT (St + αXLXT )A
. (16)

Here L is the Laplacian matrix. Sb is the between-class scatter matrix and St

is the total scatter matrix. Comparing the optimization problem shown in Eq.
(13) and Eq. (16), it is clear that our method has a similar formulation with
SDA, except that they have different numerators and denominators, i.e., they
use the prior information in different way. However, they can all be solved by
the general spectral decompositions[10].

5 Experiments and Discussions

In this section, several experiments are performed to test our algorithm. The
experiments mainly include image classification, digits recognition and text cat-
egorization.

In following numerical comparisons, since there is no common metric to mea-
sure the performance of dimensionality reduction approaches, the classification
accuracy is employed as our metric. Nearest Neighbor classifier (NN) is applied
on the embeddings of unlabeled points (transductive methods) or unseen sample
(inductive approaches) to compute the classification accuracies. The results are
all averaged over 50 independent trails. There are totally two different kinds of
experiments. The first is to compare the performances of different transductive
methods. The second type of experiments is inductive.

Image classification. In this case study, we will focus on the problem of clas-
sifying images of different rotated objects. The Umist [16] data set is adopted.
It consists of 575 face images of 20 people. Each covers a range of poses from
profile to frontal views. Subjects cover a range of race/sex/appearance. The pre-
cropped images are rescaled to 23 × 28 and hence D1 = 644. In each run of
the following experiments, we split the points in each class into three parts. We
randomly choose l/20 (l is the number of labeled points in total) label points, 2
unseen data. The rest are considered as unlabeled points. The number of nearest
neighbors, i.e., k, is set to ten manually. Meanwhile, dimensionality of embedding
space D2 is set to c− 1.

We employ our methods with two different kinds of constraints: orthogonal
(OSSDR via HF) and uncorrelated (USSDR via HF). With different numbers of
labeled points per class, the transductive and inductive classification accuracies
averaged over 50 independently trails are summarized in Table 1 and Table 2
respectively. The standard derivations are within the brackets. ”-” indicates that
the corresponding method can not be used in that situation.
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Table 1. Classification accuracy on the Umist data set for different Transductive
methods with different number of labeled points

l=20 l=40 l=60 l=80
PCA 0.4574(0.0367) 0.6219(0.0343) 0.7231(0.0270) 0.7991(0.0289)
LDA — 0.7175(0.0479) 0.8251(0.0331) 0.9049(0.0347)
SSDR 0.4857(0.0405) 0.7036(0.0479) 0.8114(0.0306) 0.8894(0.0345)
SDA 0.5505(0.0459) 0.7512(0.0524) 0.8505(0.0309) 0.9087(0.0261)
TSVM 0.6010(0.0465) 0.8124(0.0524) 0.8777(0.0321) 0.9132(0.0159)
OSSDR via HF 0.8048(0.0410) 0.8629(0.0393) 0.8949(0.0212) 0.9267(0.0214)
USSDR via HF 0.8046(0.0386) 0.8533(0.0331) 0.8870(0.0164) 0.9221(0.0200)
HF 0.8095(0.0387) 0.8568(0.0340) 0.8910(0.0164) 0.9241(0.0210)

Table 2. Classification accuracy on the Umist data set for different Inductive meth-
ods with different number of labeled points

l=20 l=40 l=60 l=80
NN 0.4400(0.0362) 0.6083(0.0473) 0.7033(0.0647) 0.7833(0.0304)
PCA 0.4467(0.0560) 0.6083(0.0568) 0.6967(0.0680) 0.7850(0.0288)
LDA — 0.7133(0.0618) 0.8183(0.0574) 0.9067(0.0410)
SSDR 0.4700(0.0362) 0.6983(0.0726) 0.7917(0.0486) 0.8933(0.0362)
SDA 0.5300(0.0571) 0.7450(0.0624) 0.8383(0.0599) 0.9083(0.0364)
TSVM 0.5900(0.0425) 0.8133(0.0745) 0.8633(0.0522) 0.9050(0.0317)
OSSDR via HF 0.7600(0.0479) 0.8400(0.0399) 0.8950(0.0497) 0.9211(0.0360)
USSDR via HF 0.7000(0.0609) 0.7983(0.0352) 0.8500(0.0383) 0.9083(0.0352)

As seen from Table 1 and Table 2, NN is not included in Table 2 for Transduc-
tive and HF is not included in Table 1 for inductive methods. In Table 1 we can
see that our methods (OSSDR via HP and USSDR via HP) achieve the same
accuracy as HF and perform better than other Transductive methods. Also, in
Table 2 we see that for the inductive approach, our methods perform the best.
This is because that our methods could integrate the geometry structure of the
data to propagate the label.

Text categorization. In this section, we validate our methods on test cate-
gorization based on a subset of the Newsgroup data, which is preprocessed by
Yu et al [17]. It contains 8014 dimensional TFIDF features. There are totally 4
different classes, covering autos, motorcycles, baseball and hockey. We bring the
first 200 points in each class. The labeled points varies from 5, 10, 15, 20 and the
test points are 50 per class. All of them are randomly selected in each run. The
number of nearest neighbors, i.e., k, is set to 12 and D2 is set to 100 manually.
Similarly, we also compare our algorithms with above-mentioned methods with
different number of labeled points in transductive and inductive situations. The
results averaged over 50 trails are listed in Table 3 and Table 4.

Comparing with the corresponding results in Table 1 and Table 2, we have
the same conclusions. Our methods, i.e., OSSDR via HF and USSDR via HF,
perform as well as HF and better than other transductive methods, especially

Table 3. Classification accuracy on a subset of the Newsgroup data for different
Transductive methods with different number of labeled points

l=20 l=40 l=60 l=80
PCA 0.4163(0.0610) 0.4722(0.0353) 0.5529(0.0321) 0.5613(0.0335)
LDA 0.6058(0.0324) 0.6981(0.0321) 0.7671(0.0284) 0.8000(0.0268)
SSDR 0.6132(0.0376) 0.7022(0.0327) 0.7709(0.0297) 0.8016(0.0223)
SDA 0.6068(0.0329) 0.7025(0.0332) 0.7676(0.0306) 0.8019(0.0271)
TSVM 0.5789(0.0521) 0.6894(0.0345) 0.7547(0.0246) 0.7975(0.0215)
OSSDR via HF 0.6300(0.0558) 0.7537(0.0215) 0.8203(0.0275) 0.8509(0.02315)
USSDR via HF 0.6210(0.0322) 0.7503(0.0325) 0.8101(0.0327) 0.8409(0.0124)
HF 0.6382(0.0381) 0.7557(0.0195) 0.8236(0.0315) 0.8533(0.0225)



Semi-supervised Dimensionality Reduction via Harmonic Functions 101

Table 4. Classification accuracy on a subset of the Newsgroup data for different
Inductive methods with different number of labeled points

l=20 l=40 l=60 l=80
NN 0.5845(0.0207) 0.6125(0.0300) 0.6685(0.0381) 0.6815(0.0248)
PCA 0.3460(0.0904) 0.3710(0.0719) 0.4050(0.0762) 0.4260(0.0884)
LDA 0.6135(0.0328) 0.6980(0.0458) 0.7575(0.0207) 0.7905(0.0278)
SSDR 0.6100(0.0330) 0.7055(0.0564) 0.7620(0.0268) 0.7985(0.0368)
SDA 0.6095(0.0300) 0.7020(0.0501) 0.7540(0.0248) 0.7930(0.0316)
TSVM 0.5690(0.0313) 0.6450(0.0424) 0.7115(0.0332) 0.7665(0.0302)
OSSDR via HF 0.6085(0.0567) 0.7385(0.0591) 0.8150(0.0303) 0.8470(0.0327)
USSDR via HF 0.5995(0.0610) 0.7245(0.0619) 0.8065(0.0313) 0.8395(0.0332)

Table 5. Classification accuracy on a subset of the USPS data for different Trans-
ductive methods with different number of labeled points

l=20 l=40 l=60 l=80
PCA 0.7384(0.0440) 0.8094(0.0334) 0.8263(0.0307) 0.8667(0.0210)
LDA 0.7703(0.0509) 0.8349(0.0372) 0.8722(0.0285) 0.8931(0.0170)
SSDR 0.7672(0.0468) 0.8346(0.0337) 0.8680(0.0310) 0.8880(0.0225)
SDA 0.7941(0.0487) 0.8505(0.0223) 0.8988(0.0290) 0.9274(0.0179)
TSVM 0.8599(0.0510) 0.9095(0.0272) 0.9151(0.0108) 0.9217(0.0095)
OSSDR via HF 0.8592(0.0306) 0.8683(0.0252) 0.8862(0.0109) 0.9109(0.0137)
USSDR via HF 0.9164(0.0357) 0.9459(0.0330) 0.9602(0.0196) 0.9706(0.0229)
HF 0.9316(0.0389) 0.9549(0.0210) 0.9633(0.0213) 0.9735(0.0060)

Table 6. Classification accuracy on a subset of the USPS data for different Inductive
methods with different number of labeled points

l=20 l=40 l=60 l=80
NN 0.7270(0.0512) 0.7880(0.0452) 0.8100(0.0535) 0.8430(0.0479)
PCA 0.7310(0.0506) 0.8040(0.0430) 0.8230(0.0591) 0.8600(0.0389)
LDA 0.7560(0.0693) 0.8290(0.0477) 0.8430(0.0362) 0.8660(0.0347)
SSDR 0.7670(0.0696) 0.8260(0.0513) 0.8460(0.0493) 0.8620(0.0394)
SDA 0.7930(0.0668) 0.8490(0.0412) 0.8750(0.0284) 0.9170(0.0279)
TSVM 0.8570(0.0427) 0.8750(0.0530) 0.9100(0.0292) 0.9300(0.0194)
OSSDR via HF 0.8510(0.0374) 0.8530(0.0365) 0.8860(0.0406) 0.8940(0.0263)
USSDR via HF 0.9120(0.0352) 0.9250(0.0321) 0.9440(0.0259) 0.9670(0.0263)

when the labeled points are rare. Moreover, OSSDR via HF performs the best
among all the inductive methods. Additionally, all the methods have higher
accuracies in transductive condition since we have integrated unlabeled point
for training.

Digit recognition. The final experiment has been performed on the handwrit-
ten digits. The data set that we adopt is the USPS handwritten 16 × 16 digit
data set[18]. We choose 100 images for each category in these experiments. Since
c = 10, there are totally n = 1000 points. In each run, we randomly split the
samples in each class into three parts: labeled, unlabeled and unseen. The labeled
points number varies from 2 to 6 and the number of unseen points is fixed to 10.
Other parameters are as follows: k = 12 and d = 15. With the same setting, the
results are shown in Table 6 and Table 7.

Based on these results, we have the same conclusions. Moreover, as seen from
these results, the uncorrelated constraint is more suitable for this kind of data
set.

6 Conclusions and Future Works

In this paper, a novel semi-supervised dimensionality reduction approach: SSDR
via HF is proposed. It aims to use the prior information in a more effective
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way. We use harmonic function in the Gaussian random field to predict states
of unlabeled points and then construct a weighted complete graph. Finally, the
linear transformation is computed according to these weights. We provide many
experiments to show the effectiveness of our method. In our future work, we will
focus on the kernel extensions and computational cost issues of our SSDR via
HF algorithm.
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Abstract. This paper presents a new semi-supervised agglomerative
hierarchical clustering algorithm with ward method using clusterwise
tolerance. Recently, semi-supervised clustering has been remarked and
studied in many research fields. In semi-supervised clustering, must-link
and cannot-link called pairwise constraints are frequently used in order to
improve clustering properties. First, a clusterwise tolerance based pair-
wise constraints is introduced in order to handle must-link and cannot-
link constraints. Next, a new semi-supervised agglomerative hierarchical
clustering algorithm with ward method is constructed based on above
discussions. Moreover, the effectiveness of proposed algorithms is veri-
fied through numerical examples.

Keywords: semi-supervised clustering, pairwise constraints, agglomer-
ative hierarchical clustering, ward method, clusterwise tolerance.

1 Introduction

The aim of data analysis is to discover important properties or structures from
massive and complex databases. Recently, semi-supervised learning has also been
remarked and studied in many research fields [1]. In the field of clustering [2],
pairwise constraints are frequently introduced in order to improve clustering
properties [3,4]. Also, pairwise constraints problems are formulated with proba-
bilistic model [5], fuzzy clustering model [6] and regularization terms [7]. These
semi-supervised clustering methods are divided into two groups. One is hard
constraints based methods, and the other is soft ones. In hard constraints based
methods, pairwise constraints are always satisfied, while they are not always sat-
isfied in soft constraints based ones. These hard and soft constraints are typical
way to handle prior knowledges in semi-supervised learning.

In recent years, semi-supervised clustering which are based on k-means and
fuzzy c-means clustering have been widely studied [3,6,7]. Semi-supervised clus-
tering methods which are based on agglomerative hierarchical clustering (AHC)
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are also discussed [8,9,10]. In these methods, pairwise constraints referred to
must-link and cannot-link are used as prior knowledge about which data should
be in the same or different cluster [3]. However, because of the squared L2-norm
which is used as dissimilarity, it is difficult to introduce pairwise constraints in
the L2-space. In Constrained Complete–Link (CCL) [9], cannot-link constraint is
handled as d(G, G′) = +∞. This means that a point is at the infinity, which gen-
erally breaks the L2-space. In order to avoid such situations, the methods with
kernel function have been proposed [6,7]. In these methods with kernel function,
pairwise constraints are considered not input space but high-dimensional feature
space.

By the way, we have proposed the concept of clusterwise tolerance in order
to handle different sizes or shapes of clusters [11,12]. This clusterwise tolerance
is based on the concept of tolerance [13]. In the proposed clustering methods
for data with clusterwise tolerance, the squared L2-norm is rewritten as the
dissimilarity between data with clusterwise tolerance vector and cluster center.
By using the concept of clusterwise tolerance, we can handle different sizes or
shapes of clusters in the L2-space. From that sense, we propose clusterwise tol-
erance based pairwise constraints in order to introduce pairwise constraints into
the L2-space in natural way. By introducing the concept of clusterwise toler-
ance based pairwise constraints into fuzzy c-means clustering, we have proposed
new semi-supervised fuzzy c-means clustering algorithms [14,15]. In addition
to those methods, we have proposed semi-supervised agglomerative hierarchical
clustering algorithm with centroid method by using clusterwise tolerance based
pairwise constraints (AHCCTPcm) [16]. In particular, centroid and ward meth-
ods are based on the L2-space. Therefore, we will consider the semi-supervised
agglomerative hierarchical clustering algorithm with ward method by using clus-
terwise tolerance based pairwise constraints.

In this paper, we will propose semi-supervised agglomerative hierarchical clus-
tering algorithm with ward method by using clusterwise tolerance based pair-
wise constraints. The contents of this paper are the followings. In the second
section, we introduce some symbols, agglomerative hierarchical clustering algo-
rithm (AHC) and pairwise constraints. In the third section, we propose clus-
terwise tolerance based pairwise constraints. In the forth section, we propose
semi-supervised agglomerative hierarchical clustering with ward method using
clusterwise tolerance based pairwise constraints (AHCCTPwm). In the fifth sec-
tion, we show the effectiveness of proposed methods through numerical examples.
In the last section, we conclude this paper.

2 Preparation

First, a set of data to be clustered is given. A data set is denoted by X =
{x1, . . . , xn} in which xk, (k = 1, . . . , n) is a data. In most cases, x1, . . . , xn are
vectors of real p-dimensional space #p, that is, a data xk ∈ #p. Generally, a hard
cluster is denoted by Gi is a subset of X . A set of clusters is denoted as follows:

G = {G1, G2, . . . , GC} ,
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where the clusters are disjoint and their union is a set of data as follows:

C⋃
i=1

Gi = X, Gi ∩Gj = ∅ (i �= j).

2.1 Agglomerative Hierarchical Clustering

In agglomerative hierarchical clustering (AHC), the dissimilarity denoted by
d(G, G′) (G, G′ ∈ G) is used for measuring nearness between two clusters.

First, we describe a general algorithm of AHC [17].

Algorithm 1. AHC
AHC 1 Assume that initial clusters are given by

G =
{

Ĝ1, Ĝ2, . . . , ĜN0

}
.

Set C := N0. (C is the number of clusters and N0 is the initial number of clusters)

Gi := Ĝi(i = 1, . . . , C).

Calculate d(G, G′) for all pairs G, G′ ∈ G.
AHC2 Search the pair of minimum dissimilarity:

(Gp, Gq) = arg min
G,G′∈G

d(G, G′).

Merge: Gr =: Gp ∪ Gq .
Add Gr to G and delete Gp, Gq from G.
C := C − 1.
If C = 1 then stop and output the dendrogram. Otherwise, go to AHC 3.

AHC 3 Update d(Gr, G
′′) for all G′′ ∈ G.

Go to AHC 2.
End AHC.

2.2 Centroid Method

In AHC procedure, there are five methods for updating dissimilarity, that is,
single linkage, complete linkage, average linkage, centroid method, and ward
method. In particular, centroid and ward methods are based on the L2-space.

First, we note two definitions of centroid method, that is, the centroid of
cluster and the dissimilarity between two clusters.

Let the centroid of a cluster G be

M(G) =
1
|G|

∑
xk∈G

xk, (1)

and let the squared L2-norm used as dissimilarity be

d(G, G′) = ‖M(G)−M(G′)‖2. (2)
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2.3 Ward Method

Assume M(G) is the centroid of cluster G is the same as (1), and let

E(G) =
∑

xi∈G

‖xi −M(G)‖2. (3)

Define d(G, G′) as follows:

d(G, G′) = E(G ∪G′)− E(G)− E(G′). (4)

2.4 Pairwise Constraints

Typical examples of pairwise constraints are must-link and cannot-link [3]. These
constraints are considered as prior knowledge about which data should be in the
same or different cluster. A set ML = {(xk, xl)} ⊂ X × X consists of must-
link pairs so that xk and xl should be in the same cluster, while another set
CL = {(xi, xj)} ⊂ X ×X consists of cannot-link pairs so that xi and xj should
be in different cluster. Obviously, ML and CL are assumed to be symmetric, that
is, if (xk, xl) ∈ ML then (xl, xk) ∈ ML, and if (xi, xj) ∈ CL then (xj , xi) ∈ CL.

In semi-supervised clustering, these pairwise constraints are considered as
hard or soft constraints. In case of hard constraints, pairwise constraints ML
and CL are always satisfied in clustering procedures and results, while they are
not always satisfied in case of soft constraints. Many semi-supervised clustering
methods have been proposed in order to improve clustering results by using prior
knowledge of data sets [3,4,6,7,9,10].

3 Clusterwise Tolerance Based Pairwise Constraints

3.1 Clusterwise Tolerance

Each data has the tolerance κk which means the upper bound of clusterwise toler-
ance vectors. A clusterwise tolerance vector is the vector within the range of toler-
ance. A set of clusterwise tolerance vector is defined as Δ = {δ11, . . . , δkl, . . . , δnn}
in which δkl is a clusterwise tolerance vector of p-dimensional real space #p.

If (xk, xl) ∈ ML, δkl and δlk are calculated to be near each other, while
(xi, xj) ∈ CL, δij and δji are calculated to be distant each other.

A constraint for clusterwise tolerance vector is as follows:

‖δkl‖2 ≤ (κk)2 (κk ≥ 0) , ∀k, l. (5)

Figure 1 shows a clusterwise tolerance in #2.
In this example, (x1, x2) ∈ ML and (x1, x3) ∈ CL. Also, each data has toler-

ance. Therefore, the dissimilarity between each data are calculated as follows:

d(x1, x2) = (‖x1 − x2‖ − κ1 − κ2)
2
,

d(x1, x3) = (‖x1 − x3‖+ κ1 + κ3)
2
,

d(x2, x3) =‖x2 − x3‖2.
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Fig. 1. An illustrative example of the concept of clusterwise tolerance

3.2 Clusterwise Tolerance Based Pairwise Constraints

First, a set of must or cannot-linked objects are defined. A set ML (x; G′) consists
of must-linked objects which in cluster G′ with a data x, while CL (x; G′) consists
of cannot-linked objects which in cluster G′ with a data x.

ML (x; G′) = {ξ | ξ ∈ G′, (x, ξ) ∈ ML} , (6)
CL (x; G′) = {ξ | ξ ∈ G′, (x, ξ) ∈ CL} . (7)

In addition, ML (G; G′) is defined as a union of sets ML (x; G′), while CL (G; G′)
is defined as a union of sets CL (x; G′) as follows:

ML (G; G′) =
⋃

x∈G

ML (x; G′) , (8)

CL (G; G′) =
⋃

x∈G

CL (x; G′) . (9)

A concept of clusterwise tolerance based pairwise constraints uses these sets
in order to calculate the clusterwise tolerance which is defined between clusters.

Here, we propose clusterwise tolerance based pairwise constraints. A value of
K (x; G′) and K (G; G′) are the sum of tolerance κk which in a set of must or
cannot-linked data.

K (x; G′) =
∑

xk∈ML(x;G′)

κk −
∑

xl∈CL(x;G′)

κl. (10)

If K (x; G′) > 0, x is considered must-linked data with G′, while K (x; G′) < 0,
x is considered cannot-linked data with G′. The upper bound of clusterwise
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tolerance is defined as |K (x; G′) |. Obviously, it is depended on the value of κk

whether x is must or cannot-linked with G′.

K (G; G′) =
∑

xk∈ML(G;G′)

κk −
∑

xl∈CL(G;G′)

κl. (11)

If K (G; G′) > 0, G is considered must-linked cluster with G′, while K (G; G′) <
0, G is considered cannot-linked cluster with G′. The upper bound of clusterwise
tolerance is defined as |K (G; G′) |. Obviously, it is depended on the value of κk

whether G is must or cannot-linked with G′. Therefore, K(G; G′) and K(G′; G)
are asymmetric.

Next, we show an illustrative example of clusterwise tolerance based pairwise
constraints. Figure 2 is a simple example of proposed method.

Fig. 2. An illustrative example of clusterwise tolerance based pairwise constraints

In this example, (x1, x4), (x3, x5) ∈ ML and (x2, x6) ∈ CL. Therefore,
ML (x; G′), CL (x; G′) ML (G; G′) and CL (G; G′) are as follows:

ML (x1; G′) = {x4} , ML (x2; G′) = ∅, ML (x3; G′) = {x5} ,

CL (x1; G′) = ∅, CL (x2; G′) = {x6} , CL (x3; G′) = ∅,
ML (G; G′) = {x4, x5} , CL (G; G′) = {x6} .

Also, ML (x; G), CL (x; G) ML (G′; G) and CL (G′; G) are as follows:

ML (x4; G) = {x1} , ML (x5; G) = {x3} , ML (x6; G) = ∅,
CL (x4; G) = ∅, CL (x5; G) = ∅, CL (x6; G) = {x2} ,

ML (G′; G) = {x1, x3} , CL (G′; G) = {x2} .
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If all κk are the same value, K(G; G′) and K(G′; G) are both positive. This
means that G and G′ are must-linked clusters each other.

4 Semi-supervised Agglomerative Hierarchical Clustering
Using Clusterwise Tolerance Based Pairwise
Constraints

In this section, we propose semi-supervised AHC using clusterwise tolerance
based pairwise constraints (AHCCTP). First, we introduce AHCCTP with cen-
troid method (AHCCTPcm) [16]. Next, we propose AHCCTP with ward method
(AHCCTPwm). In proposed methods, the centroid of each cluster is calculated
as the same procedure (1), while the dissimilarity between two clusters are dif-
ferent.

4.1 Centroid Method

First, we introduce AHCCTP with centroid method (AHCCTPcm) [16]. Assume
M(G) is the centroid of cluster G is the same as (1) and let the squared L2-norm
between clusters as follows:

d (G, G′) =

⎧⎨
⎩

(‖M (G)−M (G′) ‖ −K (G; G′)−K (G′; G))2

(‖M (G)−M (G′) ‖ > K (G; G′) + K (G′; G)) ,
0 (otherwise) .

(12)

4.2 Ward Method

Next, we propose AHCCTP with ward method (AHCCTPwm). In this method,
M(G) is also the same as (1), and let

E(G) =
∑

xi∈G

(max {‖xi −M (G) ‖ −K (xi; G) , 0})2 . (13)

Define d(G, G′) as follows:

d(G, G′) = E(G ∪G′)− E(G)− E(G′).

4.3 Algorithm

Next, we describe an algorithm of AHCCTP.

5 Numerical Examples

In this section, we show numerical examples with Iris data set published in UCI
machine learning repository (http://archive.ics.uci.edu/ml/index.html). This
data set consists of 150 data with four attributes and should be classified into
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Algorithm 2. AHCCTP
AHCCTP 1 Assume that initial clusters are given by

G =
{

Ĝ1, Ĝ2, . . . , ĜN0

}
.

Set C = N0. (C is the number of clusters and N0 is the initial number of clusters)

Gi = Ĝi(i = 1, . . . , C).

Set ML, CL, κk and M(G).
Calculate K(G; G′) and d(G, G′) for all pairs G, G′ ∈ G.

AHCCTP 2 Search the pair of minimum dissimilarity:

(Gp, Gq) = arg min
G,G′∈G

d(G, G′).

Merge: Gr = Gp ∪ Gq.
Add Gr to G and delete Gp, Gq from G.
C := C − 1.
If C = 1 then stop and output the dendrogram. Otherwise, go to AHCCTP 3.

AHCCTP 3 Update ML(Gr; G
′′), CL(Gr; G

′′), K(Gr; G
′′), M(Gr) and d(Gr, G

′′) for
all G′′ ∈ G.
Go to AHCCTP 2.

End AHCCTP.

Table 1. The average of misclassified
data out of 100 trials by AHCCTPcm with
ML

�����κk

|ML|
100 300 500

0.05 26.06 0.67 0.0
0.10 7.38 0.11 0.0
0.30 1.81 0.09 0.0

Table 2. The average of misclassified
data out of 100 trials by AHCCTPwm

with ML

�����κk

|ML|
100 300 500

0.05 6.56 2.20 0.17
0.10 5.50 0.23 12.25
0.30 8.39 39.87 76.56

three clusters. Each attribute is normalized between 0 and 1. We show the aver-
age of misclassified data and the number of violated constraints out of 100 trials
by AHCCTPcm and AHCCTPwm. The number of misclassified data is 6 by
conventional centroid method, while the one is 5 by conventional ward method.

Here, we consider three cases as follows. In each cases, the number of ML and
CL are denoted as |ML| and |CL|. First, we set |ML| = {100, 300, 500}. Second,
we set |CL| = {100, 300, 500} as well as ML. Third, we set ML and CL at the
same time |ML| = {100, 300, 500} and |CL| = {100, 300, 500}. Thus, the sum
of ML and CL are {200, 600, 1000} in all. Tables 1, 2, 5, 6, 9 and 10 show the
results of misclassified data. Also, Tables 3, 4, 7, 8, 11 and 12 show the results
of the number of violated constraints.

We can see that must-link constraints more affect than cannot-link constraints
from these tables. In particular, the difference of ML and CL are significant in
case of |ML|, |CL| or the value of κk is small. If the value of κk is small, large
|ML| and |CL| are required to take large K(G; G′) and K(x; G). For must-link
constraints, |ML| and κk are both required, while |CL| is required for cannot-link
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Table 3. The average of the number of
violated constraints out of 100 trials by
AHCCTPcm with ML

�����κk

|ML|
100 300 500

0.05 0.22 0.11 0.0
0.10 0.06 0.0 0.0
0.30 0.0 0.0 0.0

Table 4. The average of the number of
violated constraints out of 100 trials by
AHCCTPwm with ML

�����κk

|ML|
100 300 500

0.05 5.82 5.37 0.47
0.10 3.15 0.20 0.50
0.30 1.04 1.16 17.26

Table 5. The average of misclassified
data out of 100 trials by AHCCTPcm with
CL

�����κk

|CL|
100 300 500

0.05 6.02 5.43 5.35
0.10 6.10 5.62 5.42
0.30 6.21 5.59 5.49

Table 6. The average of misclassified
data out of 100 trials by AHCCTPwm

with CL

�����κk

|CL|
100 300 500

0.05 6.26 5.57 5.58
0.10 6.00 5.66 5.42
0.30 5.43 5.54 5.38

Table 7. The average of the number of
violated constraints out of 100 trials by
AHCCTPcm with CL

�����κk

|CL|
100 300 500

0.05 3.09 9.61 15.60
0.10 3.04 9.28 16.07
0.30 2.77 9.44 16.18

Table 8. The average of the number of
violated constraints out of 100 trials by
AHCCTPwm with CL

�����κk

|CL|
100 300 500

0.05 3.27 9.70 10.05
0.10 3.35 9.50 16.38
0.30 2.86 9.87 16.18

Table 9. The average of misclassified
data out of 100 trials by AHCCTPcm with
ML and CL

�������κk

|ML|, |CL|
100 300 500

0.05 2.85 0.11 0.0
0.10 1.96 0.01 0.0
0.30 1.63 0.02 0.0

Table 10. The average of misclassified
data out of 100 trials by AHCCTPwm

with ML and CL

�������κk

|ML|, |CL|
100 300 500

0.05 5.64 1.78 0.03
0.10 3.82 0.15 0.0
0.30 2.91 0.04 0.0

Table 11. The average of the number of
violated constraints out of 100 trials by
AHCCTPcm with ML and CL

�������κk

|ML|, |CL|
100 300 500

0.05 2.42 0.13 0.0
0.10 0.91 0.0 0.0
0.30 0.59 0.01 0.0

Table 12. The average of the number of
violated constraints out of 100 trials by
AHCCTPwm with ML and CL

�������κk

|ML|, |CL|
100 300 500

0.05 8.64 7.81 0.17
0.10 3.80 0.37 0.0
0.30 1.53 0.02 0.0
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constraints. In Table 2 and 4, the average of misclassified data is much larger
than other results. Thus, determining the adequate κk and |ML| in AHCCTPwm

is quite important problem. In our proposed methods, the pairwise constraints
are considered soft constraints in case of small κk, while they are considered
hard constraints in case of large κk.

6 Conclusions

In this paper, we introduced semi-supervised agglomerative hierarchical cluster-
ing using clusterwise tolerance based pairwise constraints (AHCCTPcm) and pro-
posed AHCCTPwm. The proposed method can handle the pairwise constraints
without breaking the L2-space by using the concept of clusterwise tolerance.
Moreover, we showed the effectiveness of proposed methods through numerical
examples.

In future works, we will show the effectiveness and difference of proposed
methods through numerical examples and dendrogram with various kinds of data
sets. Moreover, we will consider the mathematical discussions about updating
dissimilarity process and reversal in the dendrogram.
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Abstract. Algorithms of agglomerative hierarchical clustering using
asymmetric similarity measures are studied. Two different measures
between two clusters are proposed, one of which generalizes the average
linkage for symmetric similarity measures. Asymmetric dendrogram rep-
resentation is considered after foregoing studies. It is proved that the pro-
posed linkage methods for asymmetric measures have no reversals in the
dendrograms. Examples based on real data show how the methods work.

Keywords: agglomerative clustering, asymmetric similarity, asymmet-
ric dendrogram.

1 Introduction

Cluster analysis alias clustering has now become a standard tool in modern data
mining and data analysis. Clustering techniques are divided into two classes of
hierarchical and non-hierarchical methods. The major technique in the first class
is the well-known agglomerative hierarchical clustering [1,2] which is old but has
been found useful in a variety of applications.

Agglomerative hierarchical clustering uses a similarity or dissimilarity mea-
sure between a pair of objects to be clustered, and the similarity/dissimilarity is
assumed to have symmetric property. In some real applications, however, rela-
tion between objects are asymmetric, e.g., citation counts between journals and
import of goods between two countries. In such cases we have a motivation to
analyze asymmetric measures and obtain clusters having asymmetric features.

Not many but several studies have been done on clustering based on asym-
metric similarity measures. Hubert [3] defined clusters using the concept of the
connectivity of asymmetric weighted graphs. Okada and Teramoto [6] used the
mean of asymmetric measures with an asymmetric dendrogram. Yadohisa [10]
studied the generalized linkage method of asymmetric measures with a variation
of asymmetric dendrogram representing two levels on a branch.

We propose two new linkage methods for asymmetric similarity measures in
this paper. A method is a generalization of the average linkage for symmet-
ric similarity and another is a model-dependent method having the concept of

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 114–125, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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average citation probability from a cluster to another cluster. As the asymmetric
dendrogram herein, we use a variation of that by Yadohisa [10]. We also prove
that the proposed methods have no reversals in the dendrogram.

To see how the proposed methods work, we show three examples based on
real data.

2 Agglomerative Hierarchical Clustering

We first review the general procedure of agglomerative hierarchical clustering
and then introduce asymmetric similarity measures.

2.1 Preliminaries

Let the set of objects for clustering be X = {x1, . . . , xN}. Generally a cluster
denoted by Gi is a subset of X . The family of clusters is denoted by

G = {G1, G2, . . . , GK},

where the clusters form a crisp partition of X :

K⋃
i=1

Gi = X, Gi ∩Gj = ∅ (i �= j).

Moreover the number of objects in G is denoted by |G|.
Agglomerative hierarchical clustering uses a similarity or dissimilarity mea-

sure. We use similarity here: similarity between two objects x, y ∈ X is assumed
to be given and denoted by s(x, y). Similarity between two clusters is also used,
which is denoted by s(G, G′) (G, G′ ∈ G) which also is called an inter-cluster
similarity.

In the classical setting a similarity measure is assumed to be symmetric:

s(G, G′) = s(G′, G).

Let us first describe a general procedure of agglomerative hierarchical cluster-
ing [4,5].

AHC (Agglomerative Hierarchical Clustering) Algorithm:

AHC1: Assume that initial clusters are given by
G = {Ĝ1, Ĝ2, . . . , ĜN0}. where Ĝ1, Ĝ2, . . . , ĜN are given initial clusters.
Generally Ĝj = {xj} ⊂ X , hence N0 = N .
Set K = N0.
(K is the number of clusters and N0 is the initial number of clusters)
Gi = Ĝi (i = 1, . . . , K).
Calculate s(G, G′) for all pairs G, G′ ∈ G.

AHC2: Search the pair of maximum similarity:
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(Gp, Gq) = arg max
Gi,Gj∈G

s(Gi, Gj), (1)

and let
mK = s(Gp, Gq) = max

Gi,Gj∈G
s(Gi, Gj). (2)

Merge: Gr = Gp ∪Gq.
Add Gr to G and delete Gp, Gq from G.
K = K − 1.
if K = 1 then stop and output the dendrogram.

AHC3: Update similarity s(Gr , G
′′) and s(G′′, Gr) for all G′′ ∈ G.

Go to AHC2.

End AHC.

Note 1. The calculation of s(G′′, Gr) in AHC3 is unnecessary when the measure
is symmetric: s(Gr, G

′′) = s(G′′, Gr).
Well-known linkage methods such as the single link, complete link, and average

link all assume symmetric dissimilarity measures [1,2,4]. In particular, the single
link uses the following inter-cluster similarity definition:

s(G, G′) = max
x∈G,y∈G′

s(x, y), (3)

When Gp and Gq are merged into Gr, the updating formula in AHC3 by the
single link is:

s(Gr , G
′′) = s(Gp ∪Gq, G

′′) = max{s(Gp, G
′′), s(Gq , G

′′)}. (4)

The average link defines the next inter-cluster similarity:

s(G, G′) =
1

|G||G′|
∑

x∈G,y∈G′
s(x, y). (5)

and the updating formula in AHC3 by the average link is:

s(Gr, G
′′) = s(Gp ∪Gq, G

′′) =
|Gp|
|Gr|

s(Gp, G
′′) +

|Gq|
|Gr|

s(Gq , G
′′). (6)

There are two more linkage methods of the centroid link and the Ward method
that assume objects are points in the Euclidean space. They use dissimilarity
measures related to the Euclidean distance. For example, the centroid link uses
the square of the Euclidean distance between two centroids of the clusters. Any-
way, the above mentioned five linkage methods all assume the symmetric prop-
erty of similarity and dissimilarity measures.

For the single link, complete link, and average link, it is known that we have
the monotonicity of mK :

mN ≥ mK−1 ≥ · · · ≥ m2 ≥ m1. (7)

If the monotonicity does not hold, we have a reversal in a dendrogram: it means
that G and G′ are merged into Ĝ = G ∪ G′ at level m = s(G, G′) and af-
ter that Ĝ and G′′ are merged at the level m̂ = s(Ĝ, G′′), and m̂ > m occurs.
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Reversals in a dendrogram is observed for the centroid method. Consider the
next example [4,5]:

Example 1. If three points A, B, C in a plane are near equilateral triangle but
two points A, B are nearer, these two are made into a cluster, and then the
distance between the mid point (centroid) of AB and C will be smaller than the
distance between A and B. We thus have a reversal.

Apparently, if the monotonicity always holds for a linkage method, no reversals
in the dendrogram will occur. A simple example of a reversal is shown in Fig. 1.

c

b

a

Fig. 1. A simple example of reversal

By reviewing the above, the way how we calculate asymmetric similarity is
given in the next section.

3 Asymmetric Similarity Measures

We assume hereafter that similarity measures are asymmetric in general:

s(G, G′) �= s(G′, G).

We moreover use other symbols such as p(G, G′) and r(G, G′) instead of s(G, G′)
for the sake of convenience.

First, we use AHC algorithm in the previous section, which means that two
clusters (Gp, Gq) with

s(Gp, Gq) = max
Gi,Gj∈G

s(Gi, Gj) (8)

will be merged regardless of asymmetric property. The above equation can be
rewritten as

s(Gp, Gq) = max
i<j

max{s(Gi, Gj), s(Gj , Gi)}. (9)

Let us consider concrete linkage methods.

3.1 Asymmetric Average Link

In this section we use symbol p(x, y) and p(G, G′) instead of s(G, G′) to empha-
size the asymmetric property:
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p(x, y) �= p(y, x), p(G, G′) �= p(G′, G).

Before introducing asymmetric average link, let us review the variation of the
single link which has already been studied in Hubert [3]. That is, we define

p(G, G′) = max
x∈G,y∈G′

p(x, y), (10)

which is the same as (3) with the replacement of p(x, y) into s(x, y). As the
measure is asymmetric, we have p(G, G′) �= p(G′, G) but we still use AHC
algorithm. It is then straightforward to see that the resulting clusters imply weak
connectivity of the weighted graph [3]. This method is thus already known, but
the same idea leads to an average link.

It is now natural to introduce a method of average link using the same equation
as (5).

Definition 1. Assume that an asymmetric similarity measure p(x, y) is given
for every pair of objects x, y ∈ X. The inter-cluster similarity of an average link
is defined by

p(G, G′) =
1

|G||G′|
∑

x∈G,y∈G′
p(G, G′). (11)

Unlike the symmetric measure, we have p(G, G′) �= p(G′, G) in general.
We immediately have the following formula for updating similarities in AHC3.

Note again that the same AHC algorithm is used for asymmetric measures.

Proposition 1. When Gp and Gq are merged into Gr (Gr = Gp ∪ Gq), the
updating formula in AHC3 is:

p(Gr, G
′′) = p(Gp ∪Gq, G

′′) =
|Gp|
|Gr|

p(Gp, G
′′) +

|Gq|
|Gr |

p(Gq, G
′′), (12)

p(G′′, Gr) = p(G′′, Gp ∪Gq) =
|Gp|
|Gr|

p(G′′, Gp) +
|Gq|
|Gr |

p(G′′, Gq). (13)

The proof is straightforward and omitted. Note that we need to calculate both
p(Gr, G

′′) and p(G′′, Gr) for the updating.
This proposition shows that the method to use p(G, G′) is the same as the

group average method in [7,9], which means that this method itself is not new.

3.2 A Probabilistic Model

We assume a specific example of handling citations between journals in this
section. This example seems very specific, but the proposed model can easily be
extended to a wide class of applications. This specification for citation is thus
for the sake of simplicity.

We hence call objects in X journals. Assume that n(x, y) is the number of
citations from x to y: journal x cites y for n(x, y) times. Moreover n̄(x) is the
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total number of citations of x, i.e., the number of citations from x to all journals.
We have

n̄(x) ≥
∑
y∈X

n(x, y). (14)

Note that n̄(x) =
∑

y∈X n(x, y) does not hold in general, since X does not
generally exhaust all journals in the world.

We can define the estimate of citation probability from x to y:

π(x, y) =
n(x, y)
n̄(x)

(15)

which may be generalized to inter-cluster similarity:

π(G, G′) =

∑
x∈G,y∈G′ n(x, y)∑

x∈G n̄(x)
. (16)

This measure π(G, G′) is, however, inconvenient for clustering, as we discuss in
the next section. Hence we define asymmetric similarity as follows.

Definition 2. Assume that n(x, y) and n̄(x) are given as above, and G, G′ are
arbitrary two clusters of X. Then an average citation probability from G to G′

is defined by

r(G, G′) =
π(G, G′)
|G′| =

∑
x∈G,y∈G′ n(x, y)
|G′|

∑
x∈G n̄(x)

. (17)

We also define

n(G, G′) =
∑

x∈G,y∈G′
n(x, y), (18)

n̄(G) =
∑
x∈G

n̄(x). (19)

We then have

r(G, G′) =
n(G, G′)
|G′|n̄(G)

. (20)

Note that if G = {x} and G′ = {y}, we have

r(G, G′) = r({x}, {y}) = π(x, y).

Hence this measure is based on the citation probability from x to y.
We have the following formula for the updating in AHC3.

Proposition 2. When Gp and Gq are merged into Gr (Gr = Gp ∪ Gq), the
updating formula in AHC3 is:

r(Gr , G
′′) = r(Gp ∪Gq, G

′′) =
n(Gp, G

′′) + n(Gq , G
′′)

|G′′|(n̄(Gp) + n̄(Gq))
, (21)

r(G′′, Gr) = r(G′′, Gp ∪Gq) =
n(G′′, Gp) + n(G′′, Gq)

(|Gp|+ |Gq|)n̄(G′′)
. (22)

The proof is straightforward and omitted.
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4 Dendrogram without Reversals

As noted earlier, the average link for symmetric measures have no reversals in
the dendrograms [1,4,5]. We will show that this property of no reversals also
holds for the proposed methods.

First, we define

S(K) = {s(G, G′) : ∀(G, G′) ∈ G × G, G �= G′} (23)

where K is the index in AHC and G changes as K varies, e.g., |G| = K. Hence
S(K) is the set of all values of similarity for K. Note that s(G, G′) is rewritten
as p(G, G′) and r(G, G′) when asymmetric measures are discussed.

We also assume
maxS(K)

is the maximum value of S(K): it exactly is mK given by (2). We have the
following lemma.

Lemma 1. If maxS(K) is monotonically non-increasing with respect to K:

maxS(N) ≥ maxS(N − 1) ≥ · · · ≥ maxS(2) ≥ maxS(1), (24)

then there is no reversal in the dendrogram.

Proof. The proof is almost trivial, since maxS(K) = mK . Thus (24) is exactly
the same as (7), thus we have the conclusion. ��

We have the next two propositions regarding p(G, G′) and r(G, G′).

Proposition 3. Assume that p(G, G′) are used. For G, G′, G′′ ∈ G, we have

p(G ∪G′, G′′) ≤ max{p(G, G′′), p(G′, G′′)}, (25)
p(G′′, G ∪G′) ≤ max{p(G′′, G), p(G′′, G′)}. (26)

Proposition 4. Assume that r(G, G′) are used. For G, G′, G′′ ∈ G, we have

r(G ∪G′, G′′) ≤ max{r(G, G′′), r(G′, G′′)}, (27)
r(G′′, G ∪G′) ≤ max{r(G′′, G), r(G′′, G′)}. (28)

The proofs of these two propositions are omitted, as straightforward calculations
are sufficient for the proof.

We finally have the following propositions.

Proposition 5. Assume that X and p(x, y), x, y ∈ X, are arbitrarily given. We
use the definition p(G, G′) by (11) and perform AHC algorithm. Then we have
a dendrogram without any reversal.

Proposition 6. Assume that X, n(x, y), x, y ∈ X, n̄(x), are arbitrarily given
as a citation model. We use the definition r(G, G′) by (17) and perform AHC
algorithm. Then we have a dendrogram without any reversal.
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Proof. The proof of the last two propositions is now easy. Propositions 3 and 4
imply that maxS(K) is monotonically non-increasing. Hence Lemma 1 is applied
and we have the desired conclusions. ��

4.1 Asymmetric Dendrogram

Foregoing studies propose asymmetric dendrograms [6,10]. Note again that (8)
is equivalent to (9). When Gp and Gq are merged at the level s(Gp, Gq), we have
s(Gp, Gq) ≤ s(Gq , Gp). Yadohisa [10] proposed to show the value s(Gq , Gp) in
addition to the merged level s(Gp, Gq) in the dendrogram using another lines.
This idea is used here, which is shown as Fig. 2. The merged level s(Gp, Gq)
is shown with the solid lines with an arrow, while the red and thin line shows
the other level s(Gq, Gp). Note that Yadohisa did not use an arrow, whereas the
arrows are adopted here to show the direction Gp → Gq. Thus the difference
between s(Gp, Gq) and s(Gq, Gp) shows the degree of asymmetricity.

x

y

1 0

Fig. 2. Asymmetric dendrogram: a variation of Yadohisa’s [10]

5 Application to Real Data

Three data sets were used. They are as follows:

1. First data set is the numbers of citations among eight journals on statistics.
The original data are omitted here, which are given in [8]. We call this data
set citation data.

2. Second data set is the total amount of foreign trade among nine countries.
The original data are omitted here, which are given in [11]. We call this data
trade data.

3. Third data set is the input-output table among 13 sectors in economics in
Japan, 2005. The original data are omitted here, which are given in [12]. We
call this data set input-output data.

The details of the description of these data sets are omitted, since our purpose
here is to show the way how the methods work and not to discuss their semantics
in detail.
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We used the both methods: the method using p(G, G′) is called the asymmetric
average link; the method using r(G, G′) is called the probability model.

Note that the probability model can be applied to all the three models. For the
second data set r(G, G′) is interpreted as the ratio of the trade from the group
of countries G to G′, to the total trade of G. For the third data set r(G, G′) is
interpreted as the ratio of input from G to G′, to the total input of G.

The method of the asymmetric average link can also be applied to all these
three examples. The number or amount themselves, and not the ratio, is dealt
with in this method.

Hence we show two (asymmetric) dendrograms for each data set. The results
are briefly commented below.

Citation data: Figures 3 and 4 were respectively obtained from the asymmetric
average link and the probability model. In the both figures a cluster of three
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Fig. 3. Dendrogram of journal citation data using the asymmetric average link
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Fig. 4. Dendrogram of journal citation data using the probability model
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Fig. 5. Dendrogram of the trade data using the asymmetric average link
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Fig. 6. Dendrogram of the trade data using the probability model

journals ‘JASA’, ‘AnnSt’, and ‘ComSt’ are formed. They are frequently citing
one another. An example of asymmetry of citation is found between ‘AnnSt’
and ‘ComSt’; the citation from ‘ComSt’ to ‘AnnSt’ is stronger than the reverse
direction in both the asymmetric average link and the probability model.

Trade data: Figures 5 and 6 were respectively obtained from the asymmetric
average link and the probability model. We observe two clusters in the both
figures: one cluster consists of ‘America’, ‘Canada’, ‘China’, and ‘Japan’; another
consists of European countries. A strong asymmetry is observed, for example,
between ‘America’ and ‘Canada’: ‘Canada’ exports more to ‘America’ than the
reverse direction.

Input-output data: Figures 7 and 8 were respectively obtained from the asym-
metric average link and the probability model. The asymmetric average link
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Fig. 7. Dendrogram of the input-output table Japan 2005 using the asymmetric average
link
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Fig. 8. Dendrogram of the input-output table Japan 2005 using the probability model

model handled the monetary amount, while the probability model uses the ra-
tios and the quantities are normalized. We have different cluster structures, since
the similarity between objects are different. Which structures are useful for ade-
quate interpretation needs expert opinions and it is a subject for a future study.

6 Conclusion

We have developed two linkage methods for asymmetric measures of similarity.
One is an asymmetric version of the average link, and another is based on the
ratio or probability. The second method has been described in terms of citations,
but the method is not restricted to bibliographic citations, as we have seen in
the applications.

The both methods are useful: the first uses the amount of interaction directly,
and the second normalizes the amount using the concept of probability.



Agglomerative Clustering Using Asymmetric Similarities 125

The theory of reversals in dendrograms has also been described and it has been
proved that the two methods do not have reversals. They are useful properties,
as a method with reversals is inconvenient in applications.

We have shown applications of small scales. As a future study, larger scale ap-
plications should be studied. Moreover the theory of reversals should be studied
for other classes of linkage methods.

Acknowledgement. We thank Dr. Keiichi Okajima for giving us useful advices
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Abstract. Clustering is one of the unsupervised classification techniques
of the data analysis. Data are transformed from a real space into a
pattern space to apply clustering methods. However, the data cannot
be often represented by a point because of uncertainty of the data,
e.g., measurement error margin and missing values in data. In this pa-
per, we introduce quadratic penalty-vector regularization to handle such
uncertain data into hard c-means (HCM) which is one of the most
typical clustering algorithms. First, we propose a new clustering algo-
rithm called hard c-means using quadratic penalty-vector regularization
for uncertain data (HCMP). Second, we propose sequential extraction
hard c-means using quadratic penalty-vector regularization (SHCMP)
to handle datasets whose cluster number is unknown. Moreover, we ver-
ify the effectiveness of our propose algorithms through some numerical
examples.

1 Introduction

Clustering methods are known as very useful tools in many fields for data mining
and we can find the construction of datasets through the clustering methods.

As computers have become sophisticated, the more studies for uncertainty
are done. In the past, each datum handled by the computers was approximately
represented as one point or value because of poor ability of the computers.
However, the ability is now enough to handle the data with uncertainty called
uncertain data and a lot of researchers have tried to handle original data from the
viewpoint that the datum should be represented as not one point approximately
but certain distribution exactly in a data space.
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Whenever we construct the clustering methods for the uncertain data, we
have one problem, that is, how should we represent the uncertainty of data ?

To solve the above problems, we have proposed “tolerance” as a convenient
tool to handle uncertain data and applied some of clustering algorithms [3–8]. In
our proposed tolerance, tolerance vectors [3] and penalty ones [8, 2] play main
role. Each uncertain datum is allowed to allocate any position by those vectors
as far as the constraints for those vectors are satisfied and the position is derived
as an optimal solution of a given objective function. Hence, we can say that this
concept is in the framework of methodology of soft computing. Penalty vectors
are similar to tolerance ones and the methods using penalty vectors become more
flexible than tolerance vectors because no constraint for the vectors is needed.
Then, we consider the penalty vectors in this paper.

By the way, sequential extraction hard c-means is proposed in Ref [9] which
is based on noise clustering in Ref [11, 12]. The clustering does not need the
initial number of clusters. The whole dataset is classified into one cluster and
one noise dataset and data of the cluster are removed. The sequential extraction
HCM classifies the dataset by repeating the above procedure and it can thus
handle datasets whose cluster number is unknown.

The goal of this paper is to propose two new clustering algorithms for un-
certain data based on hard c-means (HCM) [10], that is, hard c-means using
quadratic penalty-vector regularization (HCMP), and sequential extraction hard
c-means using quadratic penalty-vector regularization (SHCMP). We believe the
proposed algorithms can classify the datasets which consists of uncertain data
and whose cluster number is unknown.

2 Preliminaries

In this section, we explain the basic concept of tolerance and penalty, and hard
c-means (HCM) clustering. First of all, we define some symbols. Each data is
denoted xk = (xk1, . . . , xkp)T ∈ #p and the dataset X = {x1, . . . , xn} is given.
Each cluster Ci(i = 1, . . . , c) has a cluster center vi = (vi1, . . . , vip)T ∈ #p. V
means a set of cluster centers {v1, . . . , vc}. A membership grade for xk to Ci

which means belongingness of xk to Ci is denoted by uki. U means a partition
matrix (uki)1≤k≤n,1≤i≤c.

2.1 Tolerance and Penalty Vectors

In this paragraph, we explain two basic concepts, tolerance and penalty as the
tools to handle uncertain data in the framework of optimization.

First, we describe the basic concept of tolerance. In general, a datum x ∈ #p

with uncertainty is presented by some interval, i.e.,

[x, x] = [(x1, . . . , xp)
T , (x1, . . . , xp)T ] ⊂ #p.
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In our proposed tolerance, such a datum is represented by

x + ε =(x1, . . . , xp)T + (ε1, . . . , εp)T ∈ #p

=(x1 + ε1, . . . , xp + εp)T

and a constraint for εj like that

|εj | ≤ ξj .

A vector ε = (ε1, . . . , εp)T ∈ #p is called tolerance vector. If we assume that⎧⎪⎨
⎪⎩

xj =
xj + xj

2
,

ξj =
|xj − xj |

2
,

the formulation is equivalent to the above interval.
This concept of tolerance is very useful because we can handle uncertain data

in the framework of optimization to use the concept, without introducing some
particular measure between intervals, e.g., minimum, maximum, or Hausdorff
distance. If we use tolerance, we don’t need any particular distance, that is, a
distance d(X, Y ) between X = x + εx (‖εx‖ ≤ ξx) and Y = y + εy (‖εy‖ ≤ ξy)
can be calculated as ‖(x−y)+(εx−εy)‖. From the above, we know that this tool
is useful when we handle the data, especially data with missing values of their
attributes, in the framework of optimization like as fuzzy c-means clustering [6].

We can introduce the concept of penalty based on the tolerance. The concept
is similar to the concept of tolerance but it differs from the tolerance in that
there is no constraint for penalty vectors.

We define some symbols at the beginning. In addition to the symbols in the
above section, we define penalty vector δk = (δk1, . . . , δkp)T ∈ #p, and a set of
penalty vectors Δ = {δ1, . . . , δn}. The uncertain datum is represented as xk +δk.
In addition, we define weighting coefficient wklj (wklj ≥ 0) and weighting matrix
as follows:

Wk =

⎛
⎜⎝

wk11 · · · wk1p
...

. . .
...

wkp1 · · · wkpp

⎞
⎟⎠ .

One of the simplest form of the matrix is as follows:

Wk =

⎛
⎜⎝

wk1 0
.. .

0 wkp

⎞
⎟⎠ . (1)

This form is not only simple but useful.
Now, we introduce the following quadratic penalty-vector regularization term:

n∑
k=1

δk
T Wkδk =

p∑
j=1

p∑
l=1

wkljδklδkj.
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We assume that Wk is a symmetric matrix, i.e., wkj = wjk . In case that Wk is
a diagonal matrix, the regularization term is represented as follows:

n∑
k=1

δk
T Wkδk =

n∑
k=1

p∑
j=1

wkjj (δkj)
2
.

2.2 Hard c-Means

We describe here the conventional hard c-means (HCM) clustering.
The objective function of HCM JHCM and the constraints are defined as fol-

lows:

JHCM(U, V ) =
n∑

k=1

c∑
i=1

uki‖xk − vi‖2,

c∑
i=1

uki =1, ∀k.

The optimal solutions uki and vi which minimize JHCM are as follows:

uki =

{
1, (vi = arg minl ‖xk − vl‖2)
0, (otherwise)

vi =
∑n

k=1 ukixk∑n
k=1 uki

.

The algorithm of HCM is as follows:

Algorithm 1. HCM
Give X.
c ← a fixed value
V ← initial values
while The stop criterion does not satisfy do

for all k such that 1 ≤ k ≤ n do
for all i such that 1 ≤ i ≤ c do

uki ←
{

1 (vi = arg minl ‖xk − vl‖2)

0 (otherwise)

end for
end for
for all i such that 1 ≤ i ≤ c do

vi ←
∑n

k=1 ukixk∑n
k=1 uki

end for
end while
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3 Hard c-Means Using Quadratic Penalty-Vector
Regularization

In this section, we propose a new clustering algorithm, hard c-means using
quadratic penalty-vector regularization (HCMP) to handle uncertain data.
HCMP is constructed by introducing penalty vectors into HCM.

3.1 Optimal Solutions of HCMP

We define the objective function of HCMP JHCMP and the constraints with the
quadratic penalty-vector regularization term as follows:

JHCMP(U, V, Δ) =
n∑

k=1

c∑
i=1

uki‖xk + δk − vi‖2 +
n∑

k=1

δT
k Wkδk,

c∑
i=1

uki =1, ∀k. (2)

In a similar way to HCM, we can obtain the optimal solutions of uki and vi as
follows:

uki =

{
1, (vi = arg minl ‖xk + δk − vl‖2)
0, (otherwise)

vi =
∑n

k=1 uki(xk + δk)∑n
k=1 uki

.

The optimal solution of δk can be derived as follows:
From partially differentiating JHCMP by δk and the constraint (2), we get

1
2

∂JHCMP

∂δk
=

(
c∑

i=1

uki

)
δk + Wkδk +

c∑
i=1

uki(xk − vi)

= (E + Wk)δk +
c∑

i=1

uki(xk − vi).

From ∂JHCMP
∂δk

= 0, we can obtain

δk = −(E + Wk)−1 ·
c∑

i=1

uki(xk − vi).

3.2 Algorithm

In this paragraph, we construct the algorithm of HCMP using the above optimal
solutions.

This algorithm needs a fixed number of clusters, c. However, it is very diffi-
cult to determine the most suitable cluster number when we classify the dataset
whose cluster number is unknown like Polaris dataset in Section 6. Thus, we
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Algorithm 2. HCMP
Give X.
c ← a fixed value
V, Δ ← initial values
while The stop criterion does not satisfy do

for all k such that 1 ≤ k ≤ n do
for all i such that 1 ≤ i ≤ c do

uki ←
{

1 (vi = arg minl ‖xk − vl‖2)

0 (otherwise)

end for
end for
for all i such that 1 ≤ i ≤ c do

vi ←
∑n

k=1 ukixk∑n
k=1 uki

end for
for all k such that 1 ≤ k ≤ n do

δk ← −(E + Wk)−1 ·∑c
i=1 uki(xk − vi)

end for
end while

consider sequential extraction methods of clustering to automatically determine
the suitable cluster number in the next section.

4 Sequential Extraction Hard c-Means Using Quadratic
Penalty-Vector Regularization

In this section, we construct a sequential extraction method for uncertain data
clustering based on HCM. The reason to consider the sequential extraction is that
the method doesn’t need to determine the cluster number. As above mentioned,
it is very difficult to determine the most suitable cluster number in many cases.

Dave et al. proposed noise clustering in Refs. [11, 12]. In the method, the
given dataset is classified into some clusters and one noise cluster. Miyamoto
et. al proposed sequential extraction hard c-means in Ref [9] using the noise
clustering. The whole dataset are classified into one cluster and one noise dataset,
and data of the cluster are removed. The sequential extraction HCM classifies
the dataset by repeating the above procedure.

We propose sequential extraction hard c-means using quadratic penalty-vector
regularization (SHCMP) which is constructed by introducing the concept of
penalty vectors into sequential extraction hard c-means (SHCM). SHCM has
not proposed by anyone but I believe the reason is that the procedure of SHCM
is very simple and trivial.

4.1 Sequential Extraction Hard c-Means

The objective function of HCM JSHCM and the constraints are defined as follows:
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JSHCM(U, V ) =
n∑

k=1

uk1‖xk − v‖2 +
n∑

k=1

uk0D
2,

1∑
i=0

uki =1,

here D is a noise parameter. The optimal solutions uki and v which minimize
JSHCM are as follows:

uki =

{
i, (‖xk − v‖2 ≤ D2)
1− i, (otherwise)

(i = 0, 1)

v =
uk1(xk + δk)

uk1
.

The algorithm of SHCM is as follows:

Algorithm 3. SHCM
Give X.
v ← an initial value
while X �= φ do

while The stop criterion does not satisfy do
for all k such that 1 ≤ k ≤ |X| do

for all i such that 0 ≤ i ≤ 1 do

uki ←
{

i, (‖xk − v‖2 ≤ D2)

1 − i. (otherwise)

end for
end for
v ← uk1(xk+δk)

uk1
end while
X ← X \ {xk | uk1 = 1}
Renumber each datum in X.

end while

5 Sequential Extraction Hard c-Means Using Quadratic
Penalty-Vector Regularization

In this paragraph, we propose sequential extraction hard c-means using quadratic
penalty-vector regularization (SHCMP) by introducing the concept of penalty
vectors into sequential extraction hard c-means (SHCM).

The objective function of HCM JSHCMP and the constraints are defined as
follows:
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JSHCMP(U, V, Δ) =
n∑

k=1

uk1‖xk + δk − v‖2 +
n∑

k=1

δT
k Wkδk +

n∑
k=1

uk0D
2,

1∑
i=0

uki =1,

here D is a noise parameter. The optimal solutions uki and v which minimize
JSHCMP are as follows:

uki =

{
i, (‖xk + δk − v‖2 ≤ D2)
1− i, (otherwise)

(i = 0, 1)

v =
uk1(xk + δk)

uk1
.

The optimal solution of δk can be derived as follows:
From partially differentiating JSHCMP by δk, we get

1
2

∂J

∂δk
= uk1(xk + δk − v) + Wkδk

= (uk1E + Wk)δk + uk1(xk − v).

From ∂JSHCMP
∂δk

= 0, we can obtain

δk = −(uk1E + Wk)−1 · uk1(xk − vi).

We construct the algorithm of SHCMP using the above optimal solutions as
follows:

6 Numerical Examples

In this section, we verify our proposed algorithms through some numerical ex-
amples. We consider the following three datasets. Fig. 1, Fig. 2 and Fig. 3 show
an artificial dataset, another one and Polaris dataset consisting of five data, 99
data and 51 data, respectively.

6.1 Results

Results of HCM. First, we show the results of HCM for Fig. 1, Fig. 2, and
Fig. 3 in Fig. 4 with c = 2, in Fig. 5 with c = 5, and Fig. 6 with c = 3.

Results of HCMP. Second, we show the results of HCMP for Artificial dataset
1 (Fig. 1) and Polaris dataset (Fig. 3). We consider three cases of Wk = 0.1E,
Wk = 1.0E, and Wk = 10E in the form of (1). Similarly to the above paragraph,
we set c = 2 and c = 3 for Fig. 1 and Fig. 3. The stop criterion is that ‖v(L+1)−
v(L)‖2 < 0.0012 where L means the iteration time.
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Algorithm 4. SHCMP
Give X.
v, Δ ← initial values
while X �= φ do

while The stop criterion does not satisfy do
for all k such that 1 ≤ k ≤ |X| do

for all i such that 0 ≤ i ≤ 1 do

uki ←
{

i, (‖xk + δk − v‖2 ≤ D2)

1 − i, (otherwise)

end for
end for
v ← uk1(xk+δk)

uk1

for all k such that 1 ≤ k ≤ |X| do
δk ← −(uk1E + Wk)−1 · uk1(xk − vi)

end for
end while
X ← X \ {xk | uk1 = 1}
Renumber each datum in X.

end while
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Fig. 1. Artificial dataset 1
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Fig. 2. Artificial dataset 2
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Fig. 3. Polaris dataset
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Fig. 4. Result of HCM for
artificial dataset 1 (c = 2)
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Fig. 5. Result of HCM for
artificial dataset 2 (c = 5)
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Fig. 6. Result of HCM for
Polaris dataset (c = 3)
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Fig. 7. Result of HCMP
for Artificial dataset 1
(c = 2, Wk = 0.1E)
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Fig. 8. Result of HCMP
for Artificial dataset 1
(c = 2, Wk = 1.0E)
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Fig. 9. Result of HCMP
for Artificial dataset 1
(c = 2, Wk = 10E)
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Fig. 10. Result of HCMP
for Polaris dataset (c = 3,
Wk = 0.1E)
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Fig. 11. Result of HCMP
for Polaris dataset (c = 3,
Wk = 1.0E)
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Fig. 12. Result of HCMP
for Polaris dataset (c = 3,
Wk = 10E)

Results of SHCM. For Artificial dataset 2 in Fig. 2, we show the process that
clusters are sequentially extracted from Fig. 13 to Fig. 17, where D = 0.1. First,
it puts the cluster extracted in Fig. 13 to be the 1st cluster and remove those
from the dataset. Next, it puts the cluster extracted in Fig. 14 to be the 2st
cluster and remove those from the dataset. The procedure is repeated until the
dataset is empty. In case of Artificial dataset 2 in Fig. 2, the dataset becomes
empty in five iteration times and we finally obtain the result in Fig. 18. The
symbols of white box, times, asterisk, plus and black box mean from the 1st to
the 5th clusters, respectively.

In a similar way to the above, we obtain the results of SHCM for Polaris
dataset in Fig. 19 and Fig. 20, where D = 10 and D = 20. The symbols of plus,
times, asterisk, white box, black box, white circle, black circle, white up triangle,
black up triangle, white down triangle, and black down triangle mean from the
1st to the 11th clusters, respectively.

Results of SHCMP. We show the result of SHCMP for Polaris dataset in
Fig. 3. Similar to SHCM in the above paragraph, we omit to show the process.
We show four results in Fig. 21 with D = 10 and Wk = 1.0E, Fig. 22 with
D = 10 and Wk = 10E, Fig. 23 with D = 20 and Wk = 1.0E, and Fig. 24 with
D = 20 and Wk = 10E. The symbols of plus, times, asterisk, white box, black
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Fig. 13. The 1st cluster
for Artificial dataset 2
(D = 0.1)
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Fig. 14. The 2nd clus-
ter for Artificial dataset 2
(D = 0.1)
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Fig. 15. The 3rd clus-
ter for Artificial dataset 2
(D = 0.1)
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Fig. 16. The 4th clus-
ter for Artificial dataset 2
(D = 0.1)
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Fig. 17. The 5th clus-
ter for Artificial dataset 2
(D = 0.1)
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Fig. 18. Final result
of SHCM for Artificial
dataset 2 (D = 0.1)

box, white circle, black circle, white up triangle, black up triangle, and white
down triangle mean from the 1st to the 10th clusters, respectively.

6.2 Consideration

First, we consider HCMP. We know that the norm of δk is small as the value
of Wk is large. The reason is that, δk has great effect on the objective function
as the value of Wk is large so that it makes δk small in order to minimize the
function in this case. We expected that the values of Wk affect the belongingness
of data to clusters, but we didn’t show the effects in these examples.

Next, we consider SHCMP. In comparison with SHCM on the same D, the
cluster number is smaller and each cluster is more massive in any examples.
These points seem advantages of SHCMP over SHCM.

On the other side, the values of D and Wk have great effect on the results. For
example, the range in which deltak is allowed to be given becomes too large when
the value of Wk is small, and finally, clusters can not be determined frequently.
Therefore, we need to estimate suitable Wk and D in advance.

Moreover, there is sometimes a datum such that the value of dissimilarity
between the datum and the cluster center to which the datum belongs are larger
than between the datum and other centers.
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Fig. 19. Result of SHCM for Polaris
dataset (D = 10)
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Fig. 20. Result of SHCM for Polaris
dataset (D = 20)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

Fig. 21. Final result of SHCMP for Po-
laris dataset (D = 10, Wk = 1.0E)
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Fig. 22. Final result of SHCMP for Po-
laris dataset (D = 10, Wk = 10E)
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Fig. 23. Final result of SHCMP for Po-
laris dataset (D = 20, Wk = 1.0E)
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Fig. 24. Final result of SHCMP for Po-
laris dataset (D = 20, Wk = 10E)

For example, six data in the lower part of the center belongs to different
clusters in comparison with Fig. 6 and Fig. 20. The reason is that the extracted
data are removed from the dataset and they aren’t considered in the process
since that. Only the low-left datum in Fig. 23 belongs to the other cluster from
the same reason.

7 Conclusion

In this paper, we proposed two new clustering algorithms for uncertain data,
one is constructed by introducing the concept of penalty-vector regularization



138 Y. Endo et al.

into hard c-means, and the other into sequential hard c-means. The latter can
handle datasets whose cluster number is unknown and doesn’t need the cluster
number in advance.

As mentioned above, the algorithms needs the suitable Wk and D. Moreover,
there is sometimes a datum such that the value of dissimilarity between the datum
and the cluster center to which the datum belongs are larger than between the
datum and other centers. We’ll discuss the problems in the forthcoming paper.
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Abstract. Effectiveness evaluation of DoS attack is a complex problem, in 
which the information is incomplete and vague. The grey theory, which deals 
with the "less data uncertainty" matter, is a powerful tool to solve the problem. 
We propose a grey synthetic clustering method for DoS attack effectiveness 
evaluation in this paper. Firstly, we calculate grey clustering coefficient with 
general grey clustering method. Secondly, if there is no significant difference 
about grey clustering coefficient, we calculate the synthetic clustering coeffi-
cient. Finally, clustering objects can be clustered accurately with the synthetic 
clustering coefficient. The experimental results show that the approach is  
feasible and correct. 

Keywords: DoS attack effectiveness, grey synthetic clustering, effectiveness 
evaluation. 

1   Introduction 

Denial of Service attack (DoS) is a widespread means of attack on the network. This 
attack is easy to carry out and difficult to prevent, which poses a great threat to the 
normal operation of Internet network system. The aim of DoS attack is to affect the 
normal service of attacked target system or make the functions of system be lost par-
tially or completely. Such attack usually aims at some weakness of TCP/IP protocol 
or holes in computer systems. Using improper connection method, it will make the 
attacked target system be flooded with a lot of useless information in a short time so 
as to consume network bandwidth or system resources. The result is that the attacked 
target system is overwhelmed and could not provide normal services to legitimate 
users[1]. The evaluation of DoS attack effectiveness is one of the important parts of 
integrated assessment and safety evaluation for network attack, and it is an important 
and urgent task of the computer attack and defense research. There are a variety of 
methods for DoS attack effectiveness evaluation, such as index-based analysis[2], BP 
(Back-Propagation) neural network based analysis[3], and network performance 
based analysis[4]. 

Grey theory is raised for the uncertain problem lack of experience and data, in  
other words, the "less data uncertainty" issues[5]. The evaluation of DoS attack effec-
tiveness is a complex problem, in which the information is incomplete and uncertain. 
The grey theory, which deals with the "less data uncertainty" matter, is a powerful 
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tool to solve the problem. Evaluation methods such as the variable weight clustering 
method pioneered by Professor Deng Julong, fixed weight grey clustering evaluation 
analysis and grey clustering evaluation based on triangle whitening weight function 
proposed by Professor Liu Sifeng, have been widely used in part of the project areas, 
such as knowledge management capability evaluation[6], military information net-
work evaluation[7]. Wang Huimei has proposed the application of grey theory in 
network attack effectiveness evaluation, as well as the grey fixed weight clustering 
effectiveness evaluation model and evaluation algorithms of computer network attack 
effectiveness[8]. However, the method of grey clustering evaluation proposed in pa-
per [8] determines which grey class the clustering object belongs to with the method 
that compares the size of the grey clustering coefficient vector, but in practice, it is 
common that there is no significant difference about grey clustering coefficient. In 
such case, the evaluation objects can’t be determined accurately with this method. 
After study on grey theory, we have found that grey synthetic clustering method can 
solve the problem. Therefore, this paper proposes a grey synthetic clustering method 
for DoS attack effectiveness evaluation. 

The structure of this paper is as follows: Section 1 is the introduction. Section 2 de-
scribes the index system of DoS attack effectiveness evaluation. Section 3 gives the 
details of the grey synthetic clustering method for DoS attack effectiveness evalua-
tion. Section 4 presents an experiment and analysis of the result. Finally, Section 5 
gives the conclusion. 

2   Index System of Effectiveness Evaluation of DoS Attack 

The DoS attack effectiveness evaluation mainly focuses on the impact of attack on the 
attacked target system[9]. The purpose of DoS attack is mainly to destroy the availa-
bility and reliability of attacked target, consume up its resources, and thus make the 
target unable to provide normal service to legitimate users. Therefore, we can choose 
the following evaluation indexes. 

Network bandwidth utilization rate. When DoS attack occurs, the attacker intends 
to make a lot of useless information to occupy the limited network resources, which 
results in block of network bandwidth and realization of the attacker’s intent, so the 
network bandwidth utilization rate will change significantly. 

Server's CPU and memory usage. In other words, it is the server's CPU utilization 
and memory utilization before and after attack. When DoS attack occurs, the attacked 
target will receive a large number of packets requesting for service, which will con-
sume a large amount of CPU and memory, so the usage of CPU and memory will 
change greatly. 

Service response delay. It is the time that the attacked target requires from receiv-
ing service request signal to providing the service. It is an important index of DoS 
attack effectiveness evaluation. The difference of service response delay before and 
after attack can reflect DoS attack effectiveness directly. 

Packet loss rate. After DoS attack, the service ability of attacked target will be re-
duced, and it will not be able to provide normal network service to the legitimate 
users. At the same time, the network bandwidth will be occupied by a large number of 
attack packets that created by attackers deliberately, resulting in serious packet loss. 



 Grey Synthetic Clustering Method for DoS Attack Effectiveness Evaluation 141 

 

Recovery time. After DoS attack, the attacked target needs some time to recover in 
order to provide normal service to legitimate users. The length of recovery time can 
reflect the strength of DoS attack effect. 

Attack mechanism. It means the way that an attack influences the attacked target. 
DoS attack mechanism can be divided into three types: resource consuming, service 
crashing and system crashing. Resource consuming means that the attacker tries to 
consume the legitimate resources of target, such as network bandwidth, memory, disk 
space, CPU, and so on. Service crashing means that the attacker makes the service of 
target crashed or suspended by using some weakness of service. System crashing 
means that the attacker makes the system crashed by using some defects of the sys-
tem. It can be concluded that the attack effectiveness of these three types of attack 
mechanism increases step by step. In other words, system crashing attack is the most 
devastating, which can make the target system unaccessible; service crashing attack 
only makes a particular service of target unaccessible; resource consuming only con-
sumes resources of target in order to make the target system respond more slowly, and 
the attacker must send packets to target system continuously to keep the attacking 
going on, since the system will become normal if the attacker stops sending packets. 

3   Grey Synthetic Clustering Evaluation Model 

This paper presents the grey synthetic clustering algorithm of DoS attack effective-
ness evaluation. Based on the effectiveness evaluation index of DoS attack and in 
accordance of the whitening weight function of grey number, it summarizes the attack 
effectiveness that need to be evaluated according to grey classes, in order to deter-
mine the grey class that the effectiveness of each attack belongs to.  
 
Definition 1[10, 11]. Assume there are n clustering objects, m clustering indexes, s 
grey classes, the quantitative evaluation value of clustering object i on clustering 
index j is ( 1,2,..., ; 1, 2,..., )ijd i n j m= = , then, (*)( 1,2,..., ; 1,2,..., )k

jf j m k s= =  is 

called the whitening weight function of clustering index j on grey class k. If the clus-
tering weight of clustering index j on grey class k is independent of k, that 

( 1,2,..., )jw j m=  is the clustering weight of cluster index j, and 
1

1
m

j
j

w
=

=∑ , then call 

 
1

( )
m

k k
i j ij j

j

f d wσ
=

=∑  (1) 

the clustering coefficient of clustering object i on grey class k. Call 
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1 1 1
1 2
2 2 2

1 2

s

s

s
n n n

σ σ σ
σ σ σσ

σ σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
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 (2) 

the fixed weight clustering coefficient matrix.  
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Definition 2[10, 11]. Set 

 

1

k
k i
i s

k
i

k

σδ
σ

=

=
∑

 , (3) 

call k
iδ  the normalized clustering coefficient of clustering object i on grey class k. 

Call 1 2( , ,..., )( 1,2,..., )s
i i i i i nδ δ δ δ= =  the normalized clustering coefficient vector 

of clustering object i. Call 
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1 1 1
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s

s
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s
n n n

δ δ δ
δ δ δδ

δ δ δ

⎛ ⎞
⎜ ⎟
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⎜ ⎟⎜ ⎟
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the normalized clustering coefficient matrix. 
 
Definition 3[12]. Assume there are n clustering objects, s grey classes, let 

(1,2,..., 1, )Ts sη = − , then call 

 
1

( 1,2,..., )
s

k
i i i

k

k i nω δ η δ
=

= ⋅ = ⋅ =∑  (5) 

synthetic clustering coefficient of clustering object i. Where call (1,2,..., 1, )Ts sη = −  

synthetic clustering coefficient weight vector. It can be proved that 
1 , 1, 2,...,i s i nω≤ ≤ = . 

 
Definition 4[12, 13]. When there is no significant difference about grey clustering 
coefficient of clustering object i, if synthetic clustering coefficient of object i 

[ ]1 ( 1)( 1) / ,1 ( 1) /i k s s k s sω ∈ + − − + − , we call that object i belongs to grey class k. 

The grey synthetic clustering evaluation algorithm of DoS attack effectiveness is as 
follows. 

Step 1: Determine the evaluation index system. According to the index system of 
DoS attack effectiveness evaluation as discussed in section 2, we can identify the grey 
synthetic clustering evaluation index set 1 2{ , ,..., }mI I I I= . 

Step 2: Determine the weight of each index. There are many means to determine 
the index weight, such as AHP (Analytic Hierarchy Process) method and Rough Set 
method. Through Rough Set method, the weight of each index can be identified: 

1 2{ , ,..., }mW w w w= . The method is described in detail as follows. 

We use the knowledge representation system ( , )S U A=  in rough set theory to 

represent the attack samples, where U is a finite nonempty set of objects, called  
domain of discourse; A is a finite nonempty set of indexes including the condition 
indexes set I and the decision indexes set J, and I J A=∪ , I J = Φ∩ . 

The dependence degree of the decision indexes set J on the condition indexes set I 
is defined as: 
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 ( ) ( ( )) / ( )I IJ card pos J card Uγ =  . (6) 

The dependence degree of the decision indexes set J on the condition indexes set 
{ }I a−  ( a I∈ ) is defined as: 

 { } { }( ) ( ( )) / ( )I a I aJ card pos J card Uγ − −=  (7) 

where ( )card i  is the radix of set, ( )Ipos J  is the I positive domain of J, that is,  

 
/

( )I
X U J

pos J I X
−

∈

= ∪  . (8) 

The I positive domain of J is the object set which can be precisely partitioned to the 
equivalence class of J according to the information of /U I .  

The importance degree of condition index a  is defined as:  

 { } ( )
( ) 1

( )
I a

J
I

J
a

J

γ
σ

γ
−= −  . (9) 

We can calculate the importance degree of each condition index according to the 
method described above. Let 

 ( ) ( )i J J
a I

w i aσ σ
∈

= ∑  , (10) 

and we can get the weight vector of evaluation indexes as 1 2{ , ,..., }mW w w w= . 

Using the definition of attribute importance in rough set theory, it needn’t any prior 
information beyond the research data set in data processing to get the weight of each 
index, so the subjectivity brought by experts in subjective weighting methods such as 
AHP method can be effectively overcame, and the weights obtained can be more 
objective. 

Step 3: Determine the sample matrix. Assuming the value of attack i on index j is 
( 1,2,..., ; 1, 2,..., )ijd i n j m= = , then construct the sample matrix D according to the 

data sample of DoS attacks as follows: 

 

11 12 1

21 22 2

1 2

m

m

n n nm

d d d

d d d
D

d d d

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 . (11) 

Step 4: Determine the evaluation grey class and the whitening functions. Deter-
mine the grade of grey types and grey number in accordance with the evaluation  
requirement. Assuming there are s grey classes, we can give the whitening function of 
index j on grey class k (*)( 1,2,..., ; 1,2,..., )k

jf j m k s= = . 

(1)Upper bound level, grey number [0, ]⊗∈ ∞ , the corresponding whitening func-

tion is as follows: 
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(2) Middle level, grey number [0, , 2 ]k k
j jc c⊗∈ , the corresponding whitening func-

tion is: 

 

, [0, ]

2
( ) , ( , 2 ]

0, [0, 2 ]

ij k
ij jk

j

k
ij jk k k

j ij ij j jk
j

k
ij j

d
d c

c

d c
f d d c c

c

d c

⎧
∈⎪

⎪
⎪ −⎪= ∈⎨ −⎪
⎪ ∉⎪
⎪⎩

 . (13) 

(3) Low bound level, grey number [0, , 2 ]k k
j jc c⊗∈ , the corresponding whitening 

function is: 
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⎪ ∉⎩

 . (14) 

Step 5: Calculate clustering coefficient. According to the whitening func-
tion (*)( 1,2,..., ; 1, 2,..., )k

jf j m k s= = , the index weight ( 1,2,..., )jw j m=  and the 

sample value of attack i on index j ( 1,2,..., ; 1, 2,..., )ijd i n j m= = , we can calculate the 

clustering coefficient of attack i on grey class k k
iσ  using Eq. (1). 

Step 6: Calculate the normalized clustering coefficient. Calculate the normalized 
clustering coefficient of attack i on grey class k k

iδ  using Eq. (3). 

Step 7: Construct the normalized clustering coefficient vector. Construct the nor-
malized clustering coefficient vector of attack i as follows: 

1 2( , ... ); ( 1,2,..., )s
i i i i i nδ δ δ δ= = . 

Step 8: Calculate the synthetic clustering coefficient. According to the normalized 
clustering coefficient vector iδ  and weight vector of clustering coefficient 

(1,2,..., 1, )Ts sη = − , we can calculate the synthetic clustering coefficient of attack i 

iω  using Eq. (5). 
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Step 9: Determine the grey class, and give out the evaluation results. The range of 
synthetic clustering coefficient is divided into s disjoint intervals of equal length, 

which is 
1 1 2( 1) 1

1,1 , 1 ,1 ,..., ,
s s s s

s s
s s s s

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. When synthetic cluster-

ing coefficient [ ]1 ( 1)( 1) / ,1 ( 1) /i k s s k s sω ∈ + − − + − , we can determine that the 

attack i belongs to grey class k. 

4   Example and Verification 

DoS attack effectiveness evaluation is conducted using the grey synthetic clustering 
evaluation model and algorithm of DoS attack effectiveness in order to validate the 
availability of the algorithm. There is no open data source found in the area of DoS 
attack effectiveness evaluation. Even if there is, the evaluation indexes could not be 
exactly as same as ours. Therefore, we need to generate the data source by ourselves. 
The method is to set some corresponding attack scenarios and generate sample data of 
various DoS attack effectiveness evaluation indexes. Table 1 are the experimental 
data of dozens of DoS attacks generated using simulated DoS attack scenarios, where: 
a1, said the network bandwidth utilization, a2, said the change in CPU utilization, a3, 
said the change in memory utilization, a4, said the response delay, a5, said packet loss 
rate, a6, said the recovery time, a7 that the mechanism of attack, the sample space is 
{wr, srvc, sysc}, where wr that resources consuming, srvc said the service crashing, 
sysc that system crashing. Results of the evaluation is represented with K = {1,2,3,4} 
4 grey types, where k=1 means "very good", k=2 means "good", k=3 means "general" 
and k=4 said "poor". We can use the rough set method described in paper [8] to de-
termine the index weight, and we get the weights of DoS attack effectiveness evalua-
tion index: 

 {0.122,0.213,0.162,0.113,0.089,0.136,0.165}w =  . (15) 

Table 1. Data of DoS attacks experiment 

attack a1 a2 a3 a4 a5 a6 a7 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

81% 
30% 
30% 
94% 
22% 
68% 
58% 
20% 
48% 
20% 

92% 
10% 
28% 
71% 
20% 
94% 
74% 
13% 
80% 
20% 

78% 
61% 
40% 
81% 
10% 
79% 
71% 
10% 
40% 
17% 

9.5s 
1.1s 
4.5s 
6.5s 
0.1s 
3.2s 
1.8s 
7.0s 
3.1s 
4.4s 

34% 
14% 
16% 
35% 
1% 

40% 
10% 
20% 
11% 
11% 

2.5m 
7.5m 
0.9m 
9m 

0.15m 
2.7m 

3.25m 
5.35m 
4.25m 

7m 

srvc 
wr 
wr 

sysc 
wr 

sysc 
srvc 
wr 
wr 
wr 

 
According to the data of Table 1, we can get the sample matrix after quantifying a7:  
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0.81 0.92 0.78 9.5 0.34 2.5 2

0.30 0.10 0.61 1.1 0.14 7.5 1

0.30 0.28 0.40 4.5 0.16 0.9 1

0.94 0.71 0.81 6.5 0.35 9 3

0.22 0.20 0.10 0.1 0.01 0.15 1

0.68 0.94 0.79 3.2 0.4 2.7 3

0.58 0.74 0.71 1.8 0.1 3.25 2

0.20 0.13 0.10 7.0 0.2 5.35 1

0.48 0.80 0.40 3.1 0

D =

.11 4.25 1

0.20 0.20 0.17 4.4 0.11 7 1

 . (16) 

According to the steps of grey synthetic clustering evaluation algorithm, we firstly 
give out the whitening weight functions of each index on each grey class according to 
sample set, and then summarize the attack effectiveness that need to be evaluated 
according to whitening weight functions, and at last determine the grey class that 
effectiveness of each attack belongs to. According to the training sample set, whiten-
ing weight function is given in Table 2. 

Table 2. Whitening weight function of each index on each grey class 

Grey class 1 Grey class 2 Grey class 3 Grey class 4 
1 1 1

1 1 1( , ) (0.8, )f c f∞ = ∞
1 1 1

2 2 2( , ) (0.9, )f c f∞ = ∞
1 1 1

3 3 3( , ) (0.8, )f c f∞ = ∞
1 1 1

4 4 4( , ) (8, )f c f∞ = ∞
1 1 1

5 5 5( , ) (0.4, )f c f∞ = ∞
1 1 1

6 6 6( , ) (8, )f c f∞ = ∞
1 1 1

7 7 7( , ) (3, )f c f∞ = ∞  

2 2 2
1 1 1( , , ) ( ,0.6, )f c f− + = − +
2 2 2

2 2 2( , , ) ( ,0.7, )f c f− + = − +
2 2 2

3 3 3( , , ) ( ,0.65, )f c f− + = − +
2 2 2

4 4 4( , , ) ( ,6, )f c f− + = − +
2 2 2

5 5 5( , , ) ( ,0.2, )f c f− + = − +
2 2 2

6 6 6( , , ) ( ,6, )f c f− + = − +
2 2 2

7 7 7( , , ) ( ,2, )f c f− + = − +

3 3 3
1 1 1( , , ) ( ,0.4, )f c f− + = − +
3 3 3

2 2 2( , , ) ( ,0.5, )f c f− + = − +
3 3 3

3 3 3( , , ) ( ,0.4, )f c f− + = − +
3 3 3

4 4 4( , , ) ( ,1, )f c f− + = − +
3 3 3

5 5 5( , , ) ( ,0.1, )f c f− + = − +
3 3 3

6 6 6( , , ) ( ,2, )f c f− + = − +
3 3 3

7 7 7( , , ) ( ,2, )f c f− + = − +  

4 4 4
1 1 1(0, ) (0,0.2)f c f=
4 4 4

2 2 2(0, ) (0,0.3)f c f=
4 4 4

3 3 3(0, ) (0,0.1)f c f=
4 4 4

4 4 4(0, ) (0,0.1)f c f=
4 4 4

5 5 5(0, ) (0,0.01)f c f=
4 4 4

6 6 6(0, ) (0,0.25)f c f=
4 4 4

7 7 7(0, ) (0,1)f c f=  

The mathematical expressions of four whitening functions of index 1 are 

 1
1

1
, [0,0.8]

0.8
( ) 1, [0.8, ]

0,

ij ij

ij ij

d d

f d d

other

⎧ ∈⎪
⎪

= ∈ ∞⎨
⎪
⎪
⎩

 , (17) 

 2
1

1
, [0,0.6]

0.6
1

( ) 2, [0.6,1.2]
0.6

0,

ij ij

ij ij ij

d d

f d d d

other

⎧ ∈⎪
⎪
⎪= − + ∈⎨
⎪
⎪
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 , (18) 
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, [0,0.4]

0.4
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( ) 2, [0.4,0.8]
0.4

0,

ij ij

ij ij ij

d d

f d d d

other

⎧ ∈⎪
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⎪
⎪
⎪⎩

 , (19) 

 4
1

1, [0,0.2]

1
( ) 2, [0.2,0.4]

0.2
0,

ij

ij ij ij

d

f d d d

other

∈⎧
⎪⎪= − + ∈⎨
⎪
⎪⎩

 . (20) 

Similarly, we can get the mathematical expression of whitening functions of index 
2, 3, 4, 5, 6, 7. 

According to the evaluation index weights and the formula in step-five of grey syn-
thetic clustering evaluation algorithm, we can get the fixed weight clustering coeffi-
cient matrix: 

 

0.83 0.65 0.31 0

0.42 0.51 0.45 0.44

0.36 0.50 0.55 0.44

0.92 0.66 0.21 0

0.16 0.22 0.31 0.99
( )

0.82 0.58 0.24 0

0.62 0.78 0.54 0

0.37 0.49 0.24 0.66

0.54 0.67 0.51 0.16

0.37 0.47 0.38 0.55

k
iσ σ= =  . (21) 

With further calculation, we can get the normalized clustering coefficient matrix: 

 

0.47 0.36 0.17 0

0.23 0.28 0.25 0.24

0.19 0.27 0.30 0.24

0.51 0.37 0.12 0

0.10 0.13 0.18 0.59
( )

0.50 0.35 0.15 0

0.32 0.40 0.28 0

0.21 0.28 0.14 0.37

0.29 0.35 0.27 0.09

0.21 0.27 0.21 0.31

k
iδ∏ = =  . (22) 
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And the synthetic clustering coefficients of the ten attacks are: 

1 1.7074ω = , 2 2.4968ω = , 3 2.5745ω = , 4 1.5996ω = , 5 3.2624ω = , 6 1.6425ω = ,

7 1.9597ω = , 8 2.6759ω = , 9 2.1589ω = , 10 2.6223ω = . 

By analyzing in accordance with step-nine in the grey synthetic clustering evalua-
tion algorithm, we can obtain the evaluation of attack effect: 

[ ]1 4 6, , 1,1 3 / 4ω ω ω ∈ +  

shows that the effect of attack 1, 4 and 6 is "very good"; 

[ ]2 7 9, , 1 3 / 4,1 6 / 4ω ω ω ∈ + +  

shows that the effect of attack 2, 7 and 9 is "good"; 

[ ]3 8 10, , 1 6 / 4,1 9 / 4ω ω ω ∈ + +  

shows that the effect of attack 3, 8 and 10 against "general"; 

[ ]5 1 9 / 4,4ω ∈ +  

shows that the effect of attack 5 is "poor". 
Using the general fixed weight clustering evaluation algorithm proposed by paper 

[8], analyzing the fixed weight clustering coefficient matrix, we get the results as 
following: the effect of attack 1,4,6 is "very good"; attack 2,7,9 is "good"; attack 3 is 
"general"; attack 5,8,10 is "poor. "  

By analyzing and comparing the results of the general fixed weight clustering 
evaluation algorithm and the synthetic clustering evaluation algorithm, we can con-
clude that there are some differences between results of the two methods, but it is in 
accordance with the conclusion in paper [12], that is, when the significant difference 
of clustering coefficient of clustering objects satisfies 1 2 / sθ ≥ − , the evaluation 
results of the two methods is of the same. 

This evaluation method, which uses the definition of attribute importance in rough 
set theory, determines the weight of each index according to the samples of discourse 
domain. Compared with other evaluation methods such as AHP-based method and 
index-based analysis method, it needs no experts’ marking and thus decreases subjec-
tive influence and increases the objectivity of the evaluation results. Different with the 
traditional evaluation methods such as fuzzy comprehensive evaluation method and 
regression analysis method, this evaluation method not only needs very little informa-
tion and does not require the sample subject to any distribution, but also greatly  
simplifies the complex horizontal comparison of indexes which makes calculating 
simple and convenient. With this method we can not only evaluate the effectiveness 
of a single attack, but also do some sorting work on effectiveness of different attacks 
of the same attack type. By analyzing the experimental results, we can conclude that 
the evaluation results accord with reality. 

5   Conclusion 

DoS attacks are widespread network attacks, they are diverse in means and very de-
structive. How to evaluate the effectiveness of DoS attack is an important and urgent 
task of the computer attack and defense research. This paper presents a grey synthetic 
clustering method for DoS attack effectiveness evaluation. It solves the problem that 
the evaluation model of network attack effectiveness, which is based on general grey 
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clustering, can not accurately evaluate the object when there is no significant differ-
ence between the clustering coefficients. Finally, we compare the results of the two 
methods through an experiment, and it is proved that the grey synthetic clustering 
evaluation model is correct and feasible. 
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Abstract. One of the main challenges in the field of c-means cluster-
ing models is creating an algorithm that is both accurate and robust.
In the absence of outlier data, the conventional probabilistic fuzzy c-
means (FCM) algorithm, or the latest possibilistic-fuzzy mixture model
(PFCM), provide highly accurate partitions. However, during the 30-
year history of FCM, the researcher community of the field failed to
produce an algorithm that is accurate and insensitive to outliers at the
same time. This paper introduces a novel mixture clustering model built
upon probabilistic and possibilistic fuzzy partitions, where the two com-
ponents are connected to each other in a qualitatively different way than
they were in earlier mixtures. The fuzzy-possibilistic product partition
c-means (FP3CM) clustering algorithm seems to fulfil the initial require-
ments, namely it successfully suppresses the effect of outliers situated at
any finite distance and provides partitions of high quality.

Keywords: fuzzy c-means algorithm, probabilistic partition, possibilis-
tic partition, robust clustering.

1 Introduction

Robustness in c-means clustering refers to the stability or reproducibility of the
achieved partition, and insensitivity to several kinds of noise including severely
outlier data. The fuzzy c-means (FCM) clustering introduced by Bezdek [3] is
a very popular clustering model due to the fine partitions it makes and its easy
comprehensible alternating optimization (AO) scheme. However, the probabilis-
tic constraints involved in FCM makes it sensitive to outlier data. To combat
this problem, several solution have been proposed that produce a relaxation of
this probabilistic constraint.

An early solution was given by Davé [4], who introduced an extra, specially
treated noisy class to attract feature vectors situated far from all normal cluster
prototypes. This theory was later improved by Menard et al [7]. Alternately,
Krishnapuram and Keller came up with the possibilistic c-means algorithm
(PCM) [6], which distributes the partition matrix elements based on statisti-
cal rules. This approach seemed to have solved the sensitivity to outliers, but it
cannot be called a robust algorithm due to the coincident clusters it frequently

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 150–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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produces [2]. Timm et al [10] set up a repulsive force between all couples of
cluster prototypes of PCM, the strength of which decreased with distance. Their
method succeeded in avoiding coincident clusters, but failed to correctly treat
cases when two clusters are really close to each other. Two versions of fuzzy-
possibilistic partition mixtures were proposed by Pal et al [8,9], out of which
the second one appears to be a reliable clustering model. Recently, Xie et al in-
troduced a novel possibilistic c-means clustering [12] algorithm that produces a
gap between fuzzy memberships with respect to winner and non-winner clusters,
similarly to the symmetrical margin between classes provided by support vector
machines [11] in supervised classification problems.

All the endeavors during the last three decades failed to create a clustering
model that would suppress the effect of outliers similarly to gravity systems. If we
add a distant object to any working gravity system, the strength of its effect will
be in reversed proportion with distance. A very distant object would hardly be
observable, it would hardly influence anything within the system. On the other
hand, in all existing clustering models, if we increase the distance between an
outlier input vector and normal input vectors, at a certain threshold distance the
partitioning will fail. It would be an excellent achievement to create a clustering
model that behaves similarly to gravity systems, and would totally suppress the
effect of distant outliers, while keeping or even improving the accuracy in the
absence of outliers. The total suppression of the outliers‘ effect would mean that
the further the outlier stands, the less effect it has on the normal clusters.

In this paper we introduce the novel fuzzy-possibilitistic product partition c-
means clustering model (FP3CM), in which the degrees of membership are given
as the product of a probabilistic and a possibilistic term. This new approach can
eliminate all adverse effects of distant outliers, while producing high quality
partitions. The algorithm uses a reduced number of parameters, making it easily
adjustable to various scenarios.

The rest of this paper is structured as follows. Section 2 summarizes the
background works and counter candidates of our approach. Section 3 introduces
the novel FP3CM clustering model. Section 4 produces a numerical analysis of
the proposed and earlier methods. Conclusions are given in the last section.

2 Preliminaries

2.1 Fuzzy c-Means Clustering

The conventional FCM partitions a set of object data into a number of c clusters
based on the minimization of a quadratic objective function, formulated as:

JFCM =
c∑

i=1

n∑
k=1

um
ik||xk − vi||2 =

c∑
i=1

n∑
k=1

um
ikd2

ik , (1)

constrained by the probabilistic condition
∑c

i=1 uik = 1 ∀k = 1 . . . n where xk

represents the input data (k = 1 . . . n), vi represents the prototype or centroid
value or representative element of cluster i (i = 1 . . . c), uik ∈ [0, 1] is the fuzzy
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membership function showing the degree to which input vector xk belongs to
cluster i, m > 1 is the fuzzyfication parameter, and dik = ||xk − vi||.

The minimization of the objective function is reached by alternately applying
the optimization of JFCM over {uik} with vi fixed, and the optimization of JFCM

over {vi} with uik fixed, [3]. During each cycle, the optimal values are computed
from the zero gradient conditions, and obtained as follows:

u�
ik =

d
−2/(m−1)
ik∑c

j=1 d
−2/(m−1)
jk

∀ i = 1 . . . c, ∀ k = 1 . . . n , (2)

v�
i =

∑n
k=1 um

ikxk∑n
k=1 um

ik

∀ i = 1 . . . c . (3)

According to the alternating optimization scheme, Eqs. (2) and (3) are alter-
nately applied, until cluster prototypes stabilize.

2.2 Possibilistic c-Means Clustering

In order to avoid the sensibility of the probabilistic partition to outlier data,
Krishnapuram and Keller [6] introduced the possibilistic c-means algorithm. The
elements of the possibilistic partition are denoted by tik, i = 1 . . . c, k = 1 . . . n.
The value of tik characterizes the compatibility of data vector xk with the cluster
represented by prototype vi.

The objective function of the PCM algorithm is

JPCM =
c∑

i=1

n∑
k=1

[
tpikd2

ik + (1− tik)pηi

]
. (4)

constrained by 0 ≤ tik ≤ 1 ∀i = 1 . . . c, ∀k = 1 . . . n, and 0 <
∑c

i=1 tik < c
∀k = 1 . . . n, where p > 1 represents the possibilistic exponent, and parameters
ηi are the penalty terms that control the variance of the clusters.

The iterative AO algorithm, that results from zero gradient conditions of the
objective function, repeatedly applies the following formulas until convergence
is reached:

t�ik =

[
1 +

(
d2

ik

ηi

)1/(p−1)
]−1

∀ i = 1 . . . c, ∀ k = 1 . . . n , (5)

v�
i =

∑n
k=1 tpikxk∑n

k=1 tpik
∀ i = 1 . . . c . (6)

In the probabilistic fuzzy partition, the degrees of membership assigned to
an input vector xk with respect to cluster i depends on the distances of the
given vector to all cluster prototypes: d1k, d2k, ..., dck. On the other hand, in
the possibilistic partition, the typicality value assigned to input vector xk with
respect to any cluster i depends on only one distance: dik.

PCM efficiently suppresses the effects of outlier data, at the price of frequently
producing coincident cluster prototypes. This latter is the result of the highly
independent clusters [2].
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2.3 Existing Fuzzy-Possibilistic Mixture Partitions

In order to avoid the pitfalls of independently computed possibilistic parti-
tions, several solutions have been proposed. The most remarkable ones are the
possibilistic-fuzzy mixture clustering models proposed by Pal et al in [8] and [9].

The so-called fuzzy-possibilistic c-means (FPCM) algorithm, introduced by
Pal et al [8], minimizes the following objective function

JFPCM =
c∑

i=1

n∑
k=1

[um
ik + tpik]d2

ik , (7)

constrained by two probabilistic conditions
c∑

i=1

uik = 1 ∀k = 1 . . . n and
n∑

k=1

tik = 1 ∀i = 1 . . . c . (8)

Using the zero gradient conditions of the above cost function, we obtain the
following optimization formulas for the iterative AO scheme of the algorithm:

u�
ik =

d
−2/(m−1)
ik∑c

j=1 d
−2/(m−1)
jk

∀ i = 1 . . . c, ∀ k = 1 . . . n , (9)

t�ik =
d
−2/(p−1)
ik∑n

l=1 d
−2/(p−1)
il

∀ i = 1 . . . c, ∀ k = 1 . . . n , (10)

v�
i =

∑n
k=1[u

m
ik + tpik]xk∑n

k=1[u
m
ik + tpik]

∀ i = 1 . . . c . (11)

FPCM has the main advantage of not using the penalty terms ηi, thus making
the parameter adjustment easier. However, Eq. (10) suggests that the possibilis-
tic effect of the algorithm loses its strength as the number of input vectors grows.
In case of thousands of vectors, FPCM practically reduces to FCM, regardless
of the value of the exponent p.

Later, Pal et al [9] proposed another mixture clustering model, called possibi-
listic-fuzzy c-means (PFCM) clustering, which minimizes the objective function

JPFCM =
c∑

i=1

n∑
k=1

[aum
ik + btpik]d2

ik +
c∑

i=1

ηi

n∑
k=1

(1 − tik)p , (12)

constrained by the conventional probabilistic and possibilistic conditions of FCM
and PCM, respectively.

Here a and b are two tradeoff parameters that control the strength of the
possibilistic and probabilistic term in the mixed partition. All other parameters
are the same as in FCM and PCM.

The minimization formulas include Eq. (2) for updating the probabilistic fuzzy
partition, further on

t�ik =

[
1 +

(
bd2

ik

ηi

)1/(p−1)
]−1

∀ i = 1 . . . c, ∀ k = 1 . . . n , (13)
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is the update formula for typicality values, while cluster prototypes are computed
as:

v�
i =

∑n
k=1[aum

ik + btpik]xk∑n
k=1[aum

ik + btpik]
∀ i = 1 . . . c . (14)

This latter algorithm was found accurate and robust, but as we will see in
later sections, it is still sensitive to outlier data.

3 Methods

3.1 Intuition

In a probabilistic fuzzy partition, any outlier input vector xout receives high
membership values with respect to all clusters, that is, ui,out ≈ 1/c, which
strongly influence all cluster prototypes.

On the other hand, in a possibilistic approach, outlier input vectors receive
very low typicality values with respect to all clusters.

In our opinion, it would be a robust solution to have an objective function
whose zero gradient conditions give the following cluster prototype update for-
mula:

v�
i =

∑n
k=1 μm

ikτp
ikxk∑n

k=1 μm
ikτp

ik

∀ i = 1 . . . c . (15)

where μik, i = 1 . . . c, k = 1 . . . n describe a probabilistic fuzzy partition that is
not necessarily equivalent with the FCM’s one, and τik, i = 1 . . . c, k = 1 . . . n
stand for the elements of a possibilistic partition matrix. We will attempt to
propose such an objective function in the next subsection.

3.2 The Proposed Clustering Model

Now let us introduce the fuzzy-possibilistic product partition c-means clustering
model, which minimizes

JFP3CM =
c∑

i=1

n∑
k=1

μm
ik

[
τp
ikd2

ik + (1− τik)pηi

]
, (16)

constrained by the conventional probabilistic condition written as
∑c

i=1 μik = 1
∀k = 1 . . . n, and the conventional possibilistic conditions 0 ≤ τik ≤ 1 ∀i =
1 . . . c, ∀k = 1 . . . n, and 0 <

∑c
i=1 τik < c ∀k = 1 . . . n. The only parameters

of FP3CM are the fuzzy exponent m > 1, the possibilistic exponent p > 1,
and the conventional penalty terms of the possibilistic partition denoted by ηi,
i = 1 . . . n.

The minimization formulas are obtained using zero gradient conditions, aided
by Lagrange multipliers in case of the probabilistic term. We will compute the
partial derivatives of the functional:

L = JFP3CM +
n∑

k=1

λk

(
1−

c∑
i=1

μik

)
, (17)
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where λk stands for the Lagrange multipliers. The zero crossing of the partial
derivatives with respect to τik, ∀i = 1 . . . c, ∀k = 1 . . . n, leads to:

∂L
∂τik

= 0 ⇒ μm
ik

[
pτp−1

ik d2
ik − ηip(1− τik)p−1

]
= 0.

If μik = 0, the value of τik does not make a difference. Otherwise we get(
1− τik

τik

)p−1

=
d2

ik

ηi
⇒ 1

τik
− 1 =

(
d2

ik

ηi

)1/(p−1)

,

which finally leads to a formula that is identical with Eq. (5):

τ�
ik =

[
1 +

(
d2

ik

ηi

)1/(p−1)
]−1

∀ i = 1 . . . c, ∀ k = 1 . . . n . (18)

Further on, let us examine the zero crossing of partial derivatives with respect
to μik. For any i = 1 . . . c and any k = 1 . . . n we get

∂L
∂μik

= 0 ⇒ mμm−1
ik

[
τp
ikd2

ik + ηi(1− τik)p
]

= λk,

which implies

μik =
(

λk

m

)1/(m−1)

×
[
τp
ikd2

ik + ηi(1− τik)p
]−1/(m−1)

. (19)

The probabilistic condition says
∑c

j=1 μjk = 1, which by the means of Eq. (19)
becomes

1 =
(

λk

m

)1/(m−1)

×
c∑

j=1

[
τp
jkd2

jk + ηj(1 − τjk)p
]−1/(m−1)

. (20)

Dividing Eq. (19) by Eq. (20) term by term, leads to

μ�
ik =

[τp
ikd2

ik + ηi(1− τik)p]−1/(m−1)∑c
j=1[τ

p
jkd2

jk + ηj(1 − τjk)p]−1/(m−1)
, (21)

which holds for any i = 1 . . . c, and any k = 1 . . . n. Finally, let us investigate the
zero crossings of the partial derivatives with respect to vi, i = 1 . . . n:

∂L
∂vi

= 0 ⇒ −2
n∑

k=1

μm
ikτp

ik(xk − vi) = 0 ,

which implies

vi

n∑
k=1

μm
ikτp

ik =
n∑

k=1

μm
ikτp

ikxk ⇒ v�
i =

∑n
k=1 μm

ikτp
ikxk∑n

k=1 μm
ikτp

ik

, (22)

valid for any i = 1 . . . c, exactly as we wished in Eq. (15). Let us remark the
followings:
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1. The possibilistic memberships τik are established exactly the same way, as
in the PCM algorithm. This is why the penalty terms ηi can be set as
recommended by Krishnapuram and Keller [6].

2. The probabilistic partition is somewhat similar to FCM’s partition, but dis-
tances are distorted, and the partition is influenced by the possibilitic penalty
terms ηi.

3. Outlier input vectors xk are indicated by the algorithm with a low value of
max{ m+p

√
μm

ikτp
ik, i = 1 . . . c}.

4. The defuzzyfication of the final partition should be performed according to
the following rule: xk is assigned to cluster with index wk, where

wk = arg max
j

(
μm

jkτp
jk|j = 1 . . . c

)
. (23)

In case of equal ηi values, for any i = 1 . . . c, the rule becomes more simple:
wk = arg max

j
(μjk|j = 1 . . . c).

3.3 The Alternative Optimization Algorithm of FP3CM

Let us summarize the optimization algorithm of the proposed clustering model:

1. Set fuzzy exponent m and possibilistic exponent p, both greater than 1.
2. Set possibilistic penalty terms ηi, i = 1 . . . c, as recommended by Krishna-

puram and Keller in [6].
3. Update possibilistic membership values using Eq. (18).
4. Update probabilistic membership values using Eq. (21).
5. Update cluster prototypes using Eq. (22).
6. Repeat steps 3-5 until cluster prototypes converge.
7. If it is necessary for the application, perform defuzzyfication of the obtained

product partition as indicated in Eq. (23).

Fig. 1. Two scenarios for the numerical test of robustness: (left) two clusters and
an outlier, (right) nine clusters and an outlier. We investigate the positions of cluster
prototypes and the resulting partition accuracy, versus the outlier’s position.
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4 Results and Discussion

In the followings, we will perform some numerical tests to evaluate the robustness
and accuracy of the proposed algorithm. We will compare its performances with
counter candidates like FCM, FPCM, and PFCM. The pure possibilistic PCM
algorithm is excluded from these tests due to its frequently coincident cluster
prototypes.

4.1 Two Clusters and One Outlier Input Vector

Let us consider two sets of ν data points each, uniformly distributed along unit-
radius circles: xk = (cos 2kπ

ν , 2 + sin 2kπ
ν )T and xν+k = (cos 2kπ

ν ,−2 + sin 2kπ
ν )T ,

∀k = 1 . . . ν .
The input data set also includes an outlier, situated at x2ν+1 = (δ, 0)T . We

will attempt to classify these n = 2ν + 1 vectors into c = 2 clusters, setting
the initial cluster prototypes in the middle of the two circles: v1 = (0, 2)T and
v2 = (0,−2)T .

During the iterative optimization of all tested algorithms, the cluster proto-
types will be attracted by the outlier vector. As long as the outlier cannot tear
off any of the two prototypes, v1 and v2 will behave symmetrically, having their
coordinates v1 = (α, β)T and v2 = (α,−β)T . A graphical representation of the
problem is shown in Fig. 1(left).

The question is, how α and β will depend on the outlier’s position δ in case
of all tested algorithms, and how far the outlier vector can go without tearing
off one of the cluster prototypes.

Figure 2 presents the outcome of numerical simulations performed on all men-
tioned algorithms in various circumstances. The α coordinate of the symmetrical
cluster prototypes is shown in two different plots in Fig. 2(b) and (c). In case of all
existing algorithms, the further the outlier goes, the stronger it attracts the cen-
troids, and at a certain boundary, one of the prototypes is torn out by the outlier.

On the other hand, FP3CM behaves like a gravity system: the further the
outlier is situated, the weaker its effect is upon the cluster centroids. No matter
how far the outlier is, the obtained partition is correct. The outlier receives such
a low membership value to both clusters that it can be easily assigned to the
noisy class at defuzzyfication. Figure 2(d) shows the behavior of FP3CM in case
of various values of possibilistic exponent p, at a constant value of fuzzy exponent
m = 2. The plots reveal that stronger possibilistic component or lower values of
p lead to more efficient rejection of the outlier effect. However, when the outlier
is not too far, lower exponent values also cause stronger deviation of the cluster
centroids.

4.2 Accuracy Test with Nine Regular Clusters and an Outlier

As it is shown in Fig. 1(right), the input data in this second test consists of 9 sets
of vectors uniformly distributed along unit radius circles, situated in the neigh-
borhood of the origin. Initially, the cluster prototypes are placed in the middle
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Fig. 2. (a)-(c) Position of the two symmetrical cluster prototypes at m = 2 and
p = 6: (a) the β coordinate plotted against the position of the outlier δ, (b) the
α coordinate plotted against the position of the outlier δ, (c) logarithmic plot of α
coordinate against the distance of the outlier. Some of these graphs end at the threshold
value of δ where the algorithms fail. In case of FP3CM, the further the outlier wanders,
the less influence it has upon cluster prototypes; (d) The α coordinate produced by the
proposed algorithm FP3CM, at m = 2 and various values of p. The algorithm manages
to suppress the effect of departed outliers.

Table 1. The limit distance δ, in case of various algorithms and circumstances, where
the tested algorithm fails to produce nine accurate clusters

Algo- Circumstances Limit Algo- Circumstances Limit
rithm m p

√
ηi a b distance rithm m p

√
ηi a b distance

FCM 2 361 PFCM 2 3 1.0 1 5 437
FPCM 2 5 361 PFCM 2 3 1.5 1 5 521
FPCM 2 2 367 PFCM 2 3 2.0 1 5 593
FPCM 2 1.2 401 PFCM 2 3 2.5 1 5 546

PFCM 2 2 1.0 2 3 410 PFCM 2 2 1.0 1 5 459
PFCM 2 2 1.5 2 3 479 PFCM 2 2 1.5 1 5 602
PFCM 2 2 2.0 2 3 563 PFCM 2 2 2.0 1 5 789
PFCM 2 2 2.5 2 3 649 PFCM 2 2 2.5 1 5 1001
PFCM 2 5 1.0 1 5 394 PFCM 2 2 3.0 1 5 1220
PFCM 2 5 1.5 1 5 421 PFCM 2 2 4.0 1 5 1354
PFCM 2 5 2.0 1 5 428 PFCM 2 2 5.0 1 5 1089
PFCM 2 5 2.5 1 5 370 FP3CM wide range +∞
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of the nine circles. The single outlier vector moves along the big circle of radius
δ, with its center in the origin. The aim of this study is to establish, which is the
boundary value for δ where tested algorithms crash in various circumstances.

The obtained boundary distances are summarized in Table 1. These values
emphasize the fact that currently existing algorithms may have enhanced the
robustness of FCM, they may have enabled the outlier to fall somewhat further
(no more than by one order of magnitude) without making the clustering crash.
The novel clustering model FP3CM seems to efficiently suppress the influence
of the outlier vector, leading to accurate partitions for any limited value of δ.

4.3 Numerical Tests Using IRIS Data

In the followings, we will analyze the accuracy and robustness of the investigated
clustering models using the IRIS data set [1], which consist of 150 labeled feature
vectors of four dimensions (sepal length and width, petal length and width),
organized in three clusters (“setosa”,“versicolor”, and “virginica”) of fifty vectors
each. It is a reported facts, that conventional clustering models like FCM produce
133-134 correct decisions when classifying IRIS data. PFCM produced the best
reported accuracy with 140 correct decisions using a = b = 1, m = p = 3,
and initializing vi with terminal FCM prototypes [9]. Under less advantageous
circumstances, PFCM reportedly produced 136-137 correct decisions.

Fig. 3. Number of correct decisions (out of 150) obtained by FP3CM, plotted against
fuzzy exponent m and possibilistic exponent p, using

√
ηi = 0.7
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Table 2. Detailed values of the final IRIS cluster prototypes: a high quality partition

Correct Centroid Sepal Petal
decisions vector length width length width

v1 5.0443 3.4307 1.4641 0.2337
141 v2 6.0729 2.9104 4.5693 1.4485

v3 6.4794 2.9876 5.2934 1.9687

Table 3. Partition accuracies and confusion matrices in various scenarios

Circum- IRIS FCM PFCM FP3CM Correct
stances type v1 v2 v3 v1 v2 v3 v1 v2 v3 decisions

no Setosa 50 0 0 50 0 0 50 0 0 FCM → 136
outlier Versicolor 0 47 3 0 47 3 0 48 2 PFCM → 136
added Virginica 0 11 39 0 11 39 0 7 43 FP3CM → 141

outlier Setosa 50 0 0 50 0 0 50 0 0 FCM → 134
added Versicolor 0 50 0 0 50 0 0 47 3 PFCM → 135
at 20 Virginica 0 16 34 0 15 35 0 7 43 FP3CM → 140

outlier Setosa 50 0 0 50 0 0 50 0 0 FCM → 128
added Versicolor 1 49 0 1 49 0 0 47 3 PFCM → 131
at 30 Virginica 0 21 29 0 18 32 0 7 43 FP3CM → 140

outlier Setosa 50 0 0 50 0 0 50 0 0 FCM crashes
added at Versicolor 3 47 0 3 47 0 0 47 3 PFCM crashes
50 or 106 Virginica 0 50 0 0 50 0 0 7 43 FP3CM → 140

We have tested the proposed FP3CM clustering model in a wide range of
both the fuzzy and the possibilistic exponents. The resulting partition quality
is summarized in Fig. 3. The best partition achieved by FP3CM had 141 cor-
rect decisions, which is above any reported result. Details upon the final cluster
prototypes are given in Table 2. We also need to remark, that almost any pa-
rameter setting leads to good partition quality. To make sure FP3CM clusters
accurately, the possibilistic term should not be too strong, it is recommendable
to keep parameter p ≥ 2.

A series of numerical tests using the IRIS data targeted the clustering ro-
bustness. We artificially inserted an outlier vector into the input data set, with
coordinates x151 = (δ, δ, δ, δ)T , and proceeded all vectors to clustering into c = 3
groups. Table 3 gives us an overview upon accuracy, confusion matrices, and
sensibility to the outlier’s position. As we can see it in the table, most existing
clustering models failed somewhere between δ = 30 and δ = 50, while the pro-
posed algorithm led to high quality partition even at δ = 106, being less affected
by distant outliers. All these tests were performed at m = 2.0, p = 3.5,

√
ηi = 0.7

∀i = 1 . . . c, a = 1, and b = 5.
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5 Conclusions

In this paper we proposed a novel fuzzy-possibilistic mixture clustering model,
in order to combat the sensitivity of existing c-means clustering models to
outlier data. We performed several numerical tests on artificially created test
data and the very popular IRIS data set, to evaluate the behavior of the pro-
posed FP3CM clustering model. In the presence of distant outliers, the proposed
clustering model outperforms all existing c-means approaches. Further on, even
in the absence of outliers, FP3CM is slightly more accurate than PFCM, and
outperforms conventional approaches in partition quality.

The adaptation of the proposed methodology to detect clusters of certain
predefined shapes is going to be straightforward task, along the guidelines es-
tablished by Davé and Bhaswan [5].
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Abstract. This paper proposes new very effective methods for building 
nonparametric, multi-resolution models of 2D closed contours, based on 
Singular Spectrum Analysis (SSA). Representation, de-noising and change-
point detection to automate the landmark selection are simultaneously 
addressed in three different settings. The basic one is to apply SSA to a shape 
signature encoded by sampling a real-valued time series from a radius-vector 
contour function. However, this is only suited for star-shaped contours. A 
second setting is to generalize SSA so as to apply to a complex-valued 
trajectory matrix in order to directly represent the contour as a time series path 
in the complex plan, along with detecting change-points in a complex-valued 
time series. A third setting is to consider the pairs (x, y) of coordinates as a co-
movement of two real-valued time series and to apply SSA to a trajectory 
matrix defined in such a way to span both of them.  

Keywords: Statistical shape analysis, Transforming planar closed contours into 
time series, Singular-spectrum analysis, Real- and complex-valued trajectory 
matrices, SSA-based change-point detection. 

1   The Classical Computational Geometry Approach to Sampling 
Time Series from Planar Closed Contours 

Statistical Shape Analysis involves methods for the geometrical study of random 
objects where location, rotation and scale information can be removed. By contrast, 
time series analysis is a widely spread technique that takes into consideration the 
temporal nature of data. However, despite their differences in nature, statistical shape 
analysis may benefit from methods commonly used in time series analysis. Indeed, 
there are certain ways of transforming a closed planar contour into a shape signature, 
represented by a contour function, and subsequently it may be possible to sample a 
time series from the contour function. Such functions are defined with respect to 
either simple or complex geometrical considerations: from metrics induced by 
symmetry relationships or periodicity, to the formal study of shapes based on 
computational differential geometry, where the quantification of differences between 
shapes can be achieved via a Riemannian metric on a shape manifold (namely, a 
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finite-dimensional Riemannian manifold), and the interest naturally focuses on 
computing  geodesic distances and geodesic paths between shapes. 

Assuming that the contour has some desirable properties such as convexity or star-
shapedness (i.e., given a figure A , for each point Ayx ∈),( ,  the line segment 

connecting ),( yx  with the centroid is contained in A ), relatively simple contour 

functions, such as the radius-vector or support functions, can be introduced. 
Otherwise more complex contour functions should be considered, by representing the 
curves in a parameterized form. Their geometric properties and various quantities 
associated with them, such as the arc-length and the curvature, can then be expressed 
via derivatives and integrals using vector calculus. 

The radius-vector function )(θr  is the distance from the reference point O (usually 

the center of gravity) to the contour in the direction of the θ -ray where πθ 20 ≤≤ . 
An example of a star-shaped figure and its radius-vector function is given in Figure 1. 
If the shape is inferred from noisy data, as it is the case with the figure below, the 
availability of a de-noising method becomes important. Furthermore, a change-point 
detection algorithm to automate the selection of salient landmarks may be of great 
interest.  
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Fig. 1. A noisy star-shaped closed contour (left) and the radius-vector function )(θr  (right). 

The centroid has been used as the origin to generate the radius-vector function. 

One can now choose a discrete sequence of (equally-spaced) values in [ ]π2,0 , i.e., 

πθθθ 20 21 =<<<= N… .  The ordered sequence of radius-vector function values 

{ } Nttr ,,1 …= , with )( tt rr θ= ,  can be regarded as a “time series” sampled from the 

contour function. The radius-vector function )(θr  is called a continuous shape 

signature, whereas  { } Nttr ,,1 …=  is called a discrete shape signature. 

In the general case, however, description of a shape signature by the radius-vector 
function is not suitable for non-star-shaped contours (Figure 2). 

Alternatively, there are at least two ways of representing planar curves in a 
parameterized form: one is using the angle (direction) function and another is using  
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Fig. 2. Problems with the radius-vector function occur if the contour is not star-shaped 

the curvature function. These involve using differential geometry, which provides a 
set of powerful tools for shape analysis. However, from a practical viewpoint, it is 
difficult to infer planar contour representations in a parameterized form. 

The next section introduces a new approach to representation and de-noising of 
closed planar contours, along with a change-point detection algorithm to automate the 
selection of salient landmarks. It consists of a nonparametric, multi-resolution 
method, based on Singular-Spectrum Analysis. 

2   A Novel and Effective Approach to Shape Analysis: 
Nonparametric Representation, De-noising and Change-Point 
Detection, Based on Singular-Spectrum Analysis 

2.1   An overview of Singular-Spectrum Analysis 

Singular-Spectrum Analysis (SSA) is a nonparametric method for time series 
structure recognition and identification. It tries to overcome the problems of finite 
sample length and noisiness of sampled time series not by fitting an assumed model to 
the available series, but by using a data-adaptive basis set. 

The SSA algorithm has two basic stages: decomposition and reconstruction.  
The decomposition stage is carried out in two steps: 
(D1) The Embedding step maps the original one-dimensional time series 

{ }Nxxx ,,, 21 …  to a sequence of 1+−= MNK  lagged vectors of dimension M  

(where M  is called window length): 

( ) .1,,,1,,, 1 NMKixxX Miii <<=′= −+ ……  (1) 

This lagged vectors form the columns of the trajectory matrix X , which is 
actually a Hankel matrix (i.e., it has equal elements on the diagonals 1−+ ji =const.): 

[ ]KXXXX ::: 21 …= . 

(D2) The SVD step is the singular value decomposition of the trajectory matrix. 

Let XX
N

R ′⋅= 1
 be an MM ×  matrix, called lag-covariance matrix. Denote by 

Mλλ ,,1 …  the eigenvalues of R  taken in the decreasing order of magnitude  

 

)(θr

θ
O
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( )01 ≥≥≥ Mλλ …  and by MUU ,,1 …  the orthonormal system of the eigenvectors of 

the matrix R  corresponding to these eigenvalues. Let =d max{ i , such that 0>iλ }. 

If we denote iii UXV λ/′=  ( di ,,1 …= ), then the SVD of the trajectory matrix X 

can be written as dXXX ++= …1 , where iiii VUX ′⊗= λ  and ⊗  is the outer 

product. The matrices iX  are elementary matrices (have rank one).  

The reconstruction stage is also carried out in two steps: 
(R1) The grouping step consists of partitioning the set of indices },,1{ d…  into m  

disjoint subsets 1I , …, mI . The case of practical interest for our application is that of 

a dichotomic partitioning: split the set of indices into two groups, },,1{ d… = II + , 

where },,{ 1 … iiI =  and =I Id \},,1{ … , and sum the matrices iX  within each 

group: 

II XXX +=  (2) 

where ∑
∈

=
Ii

iI XX  and ∑
∈

=
Ii

iI XX . 

The choice of the  most contributing eigenvalues 
i

λ , Ii∈ , and thus of the 

corresponding  eigenvectors is an appropriate way to control and reduce the distance 

between the M-dimensional vectors that form the columns of trajectory matrix and the 

-dimensional hyperplane determined by the  eigenvectors. For example, we can 

choose the index set I  such that 95.0
11

>∑∑
==

d

j
j

j
i j

λλ  corresponding to the set of 

eigenvalues whose cumulated contribution exceeds 95%.  
(R2) The last step transforms each matrix of the grouped decomposition (2) into a 

new series of length N , by diagonal averaging. It consists of averaging over the 
diagonals 1−+ ji =const. ( Mi ,,1 …= , Kj ,,1 …= ) of the matrices IX  and IX . 

Applying then twice the one-to-one correspondence between the series of length N  
and the Henkel matrices of size KM ×  (with 1+−= MNK ), we obtain the SSA 
decomposition of the original series }{ tx  into a sum of two series: ttt zx ε+= , 

Nt ,,1 …= . In this context, the series tz  (obtained from the diagonal averaging of 

IX ) can often be associated with signal and the residual series tε  with noise. 

2.2   The First Setting: Applying SSA to a Shape Signature Encoded by Sampling 
a Real-Valued Time Series from a Radius-Vector Contour Function 

This setting is well suited for star-shaped planar closed contours and starts with 
sampling a “time series” { } Nttr ,,1 …=  from the radius-vector contour function, i.e., 

)( tt rr θ= , πθθθ 20 21 =<<<= N… . The trajectory matrix X  is then constructed 
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by mapping the time series { } Nttr ,,1 …=  to a sequence of 1+−= MNK  lagged 

vectors of dimension M : 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

+

+

NMM

K

K

rrr

rrr

rrr

X

…

…
…

1

132

21

 (3) 

Noise reduction is attained by reducing the rank of the trajectory matrix. In the 
absence of noise one should be able to recover the data trajectory matrix with the first 
L singular vectors. Thus, the SVD reconstruction of the trajectory matrix X  can be 
truncated to obtain an estimate of the noise-reduced trajectory matrix, i.e., a reduced-
rank form: 

MLVUXXX iiii

L

i
i <′⊗==∑

=

,,ˆ

1

λ  (4) 

where ⊗  is the outer product and the matrices iX  are rank one matrices.  

It is important to stress that in the absence of noise, XX =ˆ . Thus, in the presence 
of noise the L strongest singular values and their associated singular vectors span the 
noise-free signal. It is clear that we are not interested in recovering the trajectory 
matrix but the signal itself. For this purpose we average the elements of the filtered 

trajectory matrix along the anti-diagonals of X̂  to obtain an estimate of the enhanced 
signal, denoted by { } Nttr ,,1

ˆ …= . 

Let us consider the time series { } Nttr ,,1 …=  corresponding to the noisy star-shaped 

closed contour depicted in Fig.1, where 1441=N , 54=M , 13881=+−= MNK . 
Figure 3 shows the contribution of each of the 54 singular values.  
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Fig. 3. The contribution of each of the 54 singular values 

One can easily see that only the first two singular values have a significant 
contribution in recovering the smooth part of the signal (noise reduction). However, 
Figures 4 and 5 show that the signal can not be consistently recovered using only the 
first largest singular value. The second largest singular value is also needed. 
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Fig. 4. SSA-based reconstruction of time series { } Nttr ,,1
ˆ …=  using only the first largest 

singular value (left) and the corresponding residuals (right) 
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Fig. 5. SSA-based reconstruction of the contour ( ) Nttt yx ,,1
ˆ,ˆ …=  using only the first largest 

singular value (left) and the corresponding residuals, at a scale magnified 3 times (right) 

Figures 6 and 7 show that the best choice for de-noising both the time series 
{ } Nttr ,,1
ˆ …=  and the planar contour ( ) Nttt yx ,,1

ˆ,ˆ …=  is to recover the data trajectory 

matrix with the first 2  singular vectors. This results in a smooth reconstruction. 
The exact reconstruction of the initial noisy closed contour can be also performed 

if all the singular vectors corresponding to non-zero singular values are used when 
recovering the trajectory matrix.  

In the final part of this section, a SSA-based change-point detection algorithm is 
presented, with the aim of automating the landmark selection. 
 
SSA-Based Change-Point Detection. A frequentist, non-parametric algorithm for 
multiple change-point detection in time series based on sequential application of the 
Singular Spectrum Analysis was developed in [5]. The idea behind the algorithm is to 
apply SSA to a windowed portion of the signal in order to pick up its structure through 
an -dimensional subspace spanned by the eigenvectors of the lag-covariance matrix, 
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computed in a sequence of moving time intervals [n+1; n+m] of a given length m, 
where n = 0, 1, ... is the iteration number. If at a certain time moment τ  the mechanism 
generating the time series tx  has changed then an increase in the distance between the 

-dimensional hyperplane and the M-lagged vectors ( 1+τx ,… , Mx +τ ) of trajectory 

matrix is to be expected. This increase will indicate the change. However, if the 
generating mechanism does not change further along the signal, then the corresponding 
lagged vectors will stay close to this hyperplane. 
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Fig. 6. SSA-based reconstruction of time series { } Nttr ,,1
ˆ …=  using the first two largest singular 

values (left) and the corresponding residuals (right) 
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Fig. 7. SSA-based reconstruction of the contour ( ) Nttt yx ,,1
ˆ,ˆ …=  using the first two largest 

singular values (left) and the corresponding residuals (right) 

Let { }Nxxx ,,, 21 …  be a time series, where N is large enough. Two parameters 

have to be chosen: the window width m (m < N), and the lag parameter M (M ≤  m/2). 
Define also K =  m − M + 1. 

For each n = 0, 1, ..., mN − , a three-stage procedure is executed: 
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Stage 1. Perform the SSA algorithm for the time interval [n + 1, n + m]. 

1. Construct the trajectory matrix )(nX  (here called base matrix), whose columns 

are the vectors )(n
jX : 

( )
⎟⎟
⎟
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:1;:11
)(  

( ) 1,,2,1,,, 1
)( +−−+−+−=′= −+++ MnNnnjxxX jMnjn

n
j ……  

(5) 

2. Perform the SDV of the lag-covariance matrix ( )′⋅= )()(1 nn
n XXKR . This 

gives us a collection of M eigenvectors. 
3. Select a particular group I  of M<  of these eigenvectors; this determines an 

-dimensional subspace ,nS  in the M-dimensional space of vectors )(n
jX . Denote the 

 eigenvectors that determine the subspace ,nS  by 
1i

U , ..., iU . 

Stage 2. Construction of the test matrix.  
Denote pqQ −=  (thus Qpq += ) and construct the following QM ×  trajectory 

matrix (called test matrix): 

( )
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(6) 

The part of sample 1+nx , ..., mnx +  that is used to construct the (base) trajectory 

matrix )(nX  will be called 'base sample', and another part, 1++ pnx , ..., 1−++ Mqnx , 

which is used to construct the vectors )(n
jX  ( )qpj ,,1 …+=  and thus to compute the 

sum of squared distances qpIn ,,,D  will be called “test sample”. 

Stage 3. Computation of the detection statistics 
The detection statistics are: 

qpIn ,,,D , the sum of squares of the (Euclidean) distances between the vectors 

)(n
jX  ( )qpj ,,1 …+=  and the -dimensional subspace ,nS . Since the eigenvectors 

are orthogonal, the square of the Euclidean distance between an M−vector ZY = )(n
jX  

and the subspace ,nS  spanned by the  eigenvectors P1, ..., P  , is just 

ZPPZZZZPZ ′′−′=′− 22
, where ⋅  is the Euclidean norm and P is the M× -

matrix with columns P1, ..., P . Therefore 
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( ) ( )∑
+=

′′
−

′
=

q

pj

n
j

n
j

n
j

n
jqpIn XPPXXX

1

)()()()(
,,,D  (7) 

The normalized sum of squared distances 

hqpnqpn ≥,,,,,, μD  (8) 

nqpInn vS ,,,D= . Here jv is an estimate of the sum of squared distances qpIn ,,,D  

at the time intervals [ 1+j , rj + ] where the hypothesis of no change can be 

accepted. Actually, ∑
−−

=−
=

12/

0
,,,2/

1 mn

i
qpInn mn

v D  or KIrnv ,0,,D=   can be two 

alternative choices for nv , where r  is the largest value of nr ≤  so that the 

hypothesis of no change is accepted. 
The decision rule in the algorithm, denoted by ( )hqpmMA ,,,,, , is to announce 

that a change in the mechanism generating tx  occurs at a certain point τ , if for a 

certain n 

hvnqpIn ≥,,,D  (9) 

where h is a fixed threshold. Then we would expect than the vectors )(n
njj XX −=  with 

τ>j  lie further away from the -dimensional subspace lnS ,  than the vectors jX  

with τ≤j . This means that the sequence qpInnD ,,,)( D= , considered as a function 

of n , is  expected to start growing somewhere around n̂ , such that τ=−++ 1ˆ Mqn . 

The value  1ˆ +−−= Mqn τ  is the first value of n  such that the test sample 

11 ,, −++++ Mqnpn xx …  contain the change point. 

In other words, 1−+ Mq  should be interpreted as a latency of test statistic in 

detecting change-points. Therefore, a corresponding backshift of the starting point on 
the contour with respect to the first position should be considered. Since closed 
contours are periodic in nature, such a task is easy to be done. For the time series 
{ } Nttr ,,1
ˆ …=  encoding the shape signature of our star-shaped contour, a backshift of 

1611=−+ Mq  positions is required. The test statistic is depicted in Figure 8. 

Actually, the location of change-points is in the local minima of test statistic 
function.  

Figure 9 shows the landmark positions, automatically selected through change-
point detection. Here, the detection statistics have been computed as normalized  

sum of squares of the distances between the vectors )(n
jX  and the -dimensional 

subspace ,nS , assuming 1= . Increasing  results in an increasing number of 

change-points.  
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Fig. 8. Detecting change points from Distance detection statistic. The location of change points 
is in the local minima of test statistic function.  
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Fig. 9. Automatic selection of landmark positions through change-point detection 

2.3   The Second Setting: Applying SSA to a Shape Signature Encoded by 
Sampling a Complex-Valued Time Series from the Contour Itself, 
Represented in the Complex Plane 

For closed contours that are not star-shaped, a shape signature encoded by means of 
radius-vector function is inappropriate. In the general case, a complex-valued time 
series can be sampled from the contour itself, whose trace can be encoded as a 
sequence of complex numbers: { } Nttz ,,1 …= , where Cyixz ttt ∈+= . Now, the 

trajectory matrix has complex elements, too: 

Cz

zzz

zzz

zzz

X t
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⎝

⎛
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1

132

21

…
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 (10) 

The generalization of SSA for this setting is founded on the ACM Algorithm 358 
for Singular Value Decomposition of a complex matrix. The decomposition theorem 
(Businger and Golub, [1]) can be stated as follows: each and every KM ×  complex-
valued matrix X  can be reduced to diagonal form by unitary transformations U  and 

V , H
K VdiagUX ],,[ 1 σσ …= , where 01 ≥≥≥ Kσσ …  are real-valued scalars, 
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called the singular values of X . Here U  is an KM ×  column orthogonal matrix, V  

an KK ×  unitary matrix and HV  is a Hermitian transpose of V . The columns of U  
and V  are called the left and right singular vectors of X , respectively. 

As concerning the SSA-based change point detection algorithm, the sum of 
squared distances in equation (7) changes accordingly: 

( ) ( )∑
+=
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−
′

=
q
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n
j

n
j

n
j

n
jqpIn XPPXXXabs

1

)()()()(
,,,D  (11) 

Figures 10 and 11 show that the SSA-based algorithm I proposed for complex-
valued trajectory matrices can be successfully applied to non star-shaped contours. 
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Fig. 10. Detecting change points from Distance detection statistic. The location of change 
points is in the local minima of test statistic function.  
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Fig. 11. Automatic selection of landmark positions through change-point detection  

2.4   The Third Setting: Applying SSA to a Shape Signature Encoded by 
Sampling Two Real-Valued Time Series from the x and y Coordinates 

Given the coordinate pairs ( ) Nttt yx ,,1, …= , the trajectory matrix can now be written as 

follows: 
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 (12) 

The generalization is straightforward; however, in my experiments, this version of 
the SSA-based change-point detection algorithm underperforms when comparing with 
that presented in section 2.3. A possible explanation is provided next. 

3   Conclusion 

For star-shaped contours the first and the second settings to my approach give 
identical and very accurate results, whereas the third setting produces comparable 
results when using for de-noising, but less accurate results when using for change-
point detection. 

Both the second and third settings are suitable for general-purpose applications. 
However, the second setting proved to be more reliable in practical cases, presumably 
because the number of rows in the trajectory matrix is twice as less as in the third 
case, when its reconstruction have to collect contributions from higher dimensional 
subspaces.  
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Abstract. The aim of this paper is to propose a new framework, based on 
Singular-Spectrum Analysis, allowing for smoothing and automatic change-point 
detection in the fuzzy closed contours of 2D fuzzy objects. The representation of 
fuzzy objects is first addressed, by distinguishing between fuzzy regions and 
fuzzy closed curves. Fuzzy shape signatures are derived in special cases, from 
which fuzzy time series can be subsequently sampled. Geodesic and Euclidean 
fuzzy paths and distances between two points in a fuzzy region are next 
contrasted. Finally, a novel approach to decomposing and reconstructing a fuzzy 
shape and to automatic change-point detection is proposed, based on a 
generalization of Singular-Spectrum Analysis so as to deal with complex-valued 
trajectory matrices. The coordinates themselves, represented as complex 
numbers are used as a shape signature. This approach is suitable for non-convex 
and non-star-shaped fuzzy contours. 

Keywords: 2D fuzzy regions and fuzzy closed curves, Fuzzy geodesic paths 
and distances, Singular-spectrum analysis, Complex-valued trajectory matrices 
encoding fuzzy closed contours, SSA-based change-point detection. 

1   Representations of Fuzzy Objects: Fuzzy Regions vs. Fuzzy 
Closed Curves 

Shapes and textures are extremely important features in human as well as machine 
vision systems. Shape analysis is concerned with two main classes of methods: 
boundary-based (when only the shape boundary points are used for the description) 
and region-based (when the whole interior of a shape is considered for description).  

In fuzzy shape analysis, however, boundary points are neither strictly delimited, 
nor independent from texture information, but have assigned to them a fuzzy 
membership value according to the extent of their belongingness to the object; there is 
a progressive transition of the membership values from the support outline to the core 
outline. 

Continuous fuzzy shapes can be described as fuzzy geometric objects. A continuous 

fuzzy geometric object S  in nℜ  is defined as a set of pairs ( ){ }n
S xxx ℜ∈|)(, μ  where 
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[ ]1,0: →ℜn
Sμ  is the membership function of S  in nℜ . An alternative representation 

of fuzzy geometric objects is given by a set of −α cuts (also called −α supports). For 
any value ]1,0[∈α , the −α support of S, denoted by )(SSuppS αα = , is the hard 

subset {x | nx ℜ∈  and αμ ≥)(xS } of nℜ . The 0-support will often be referred to as 

support and be denoted by )(SSupp , while the 1-support will be referred to as core. A 

fuzzy subset with a bounded support is called bounded. S is said to be convex if, for 

every three collinear points x, y, and z in nℜ  such that y lies between x and z, μS(y) ≥ 
min[μS(x), μS(z)]. A fuzzy subset is called smooth if its membership function is 

differentiable at every location nx ℜ∈ . 
We have to take into account two distinct classes of fuzzy geometric objects: fuzzy 

regions and fuzzy closed curves. The major difference between them is the shape of 
the fuzzy boundary.  

The membership function of a fuzzy region is non-increasing away from the 
interior of the object. This means that the −α supports of a fuzzy region are nested, 
i.e., for membership values 01 11 =>>= +nαα … , one has  

11 +
⊆⊆

n
SS αα … . 

By contrary, the membership function of a fuzzy closed curve has values greater 
than zero only on the fuzzy boundary and is typically LR-shaped (i.e., it is first 
increasing from the interior to the modal point of the frontier and then is decreasing to 
the exterior). 

Let’s start with the first case. Figure 1 shows a star-shaped fuzzy region. The 
centroid of the fuzzy shape will be denoted by ( )ccS yxC ,= , where 

∫∫
∫∫ ⋅

=
dxdyyx

dxdyyxx
xc

),(

),(

μ

μ
;        

∫∫
∫∫ ⋅

=
dxdyyx

dxdyyxy
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),(

),(

μ

μ
 (1)

The straight path from the centroid along a radial direction defined with respect to 
a given angle θ  can be parameterized with respect to a parameter ]1,0[∈t  as follows: 

{ }θρθρπ θθθθθθθ sin)()(,cos)()(|))(),(()( ⋅+=⋅+== tytytxtxtytxt cc  (2)

where  
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1

ttt
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ytyxtxt cc θθ

θ
θθθ

ρρ
ρρ  (3)

Given that a fuzzy region is non-increasing away from the interior of the object, its 

fuzzy boundary along the path θπ  is delimited by two points: 

( )θρθρ θθ sin,cos 11 ++ cc yx  from the interior and ( )θρθρ θθ sin,cos 00 ++ cc yx  

from the exterior, where: 

( )1),(,),(|,max1 =∈−−== θθθθθθθθθ μπρρ yxyxyyxx cc  

( )0),(,),(|,min0 =∈−−== θθθθθθθθθ μπρρ yxyxyyxx cc  
(4)
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Fig. 1. A star-shaped fuzzy region; the straight path from the centroid along a radial direction 

The simplest case is when the membership function along the path θπ  is piece-
wise linear: 
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Fig. 2. 3D representation of the membership function of a star-shaped fuzzy region (left); the 
fuzzy signature of a star-shaped fuzzy region, based on the fuzzy radial distance (right) 

Since θ
αρα →  is an inverse of the membership function along the path )(tθπ , 

]1,21[∈t , we can use α  to parameterize the Euclidean distance across the 

−α support boundary points: 
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],[],1,0[,)1( 0101
θθθ

α
θθθ

α ρρραρααρρ ∈∈⋅−+⋅=  (6)

Thus, θρ  is defined as a fuzzy distance, with the membership function given by: 
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Fig. 3. The membership function of a star-shaped fuzzy region along a radial direction from the 
centroid 

Alternatively, the linear membership function )( θρμ  can be replaced by a 

nonlinear function along with an appropriate parameterization of the path θπ .  
A fuzzy shape signature of a continuous star-shaped fuzzy region can be defined by 
θ
αρ  as a fuzzy function of the radial angle θ , with θtg  being the slope of the straight 

path between the centroid and the fuzzy boundary (Figure 2, right)  
In contrast with a fuzzy region, the membership function of a fuzzy closed curve is 

typically LR -shaped.  
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A star-shaped fuzzy closed curve is depicted in Figure 5. 
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Fig. 5. A star-shaped fuzzy closed curve 
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Fig. 6. 3D representation of the membership function of a star-shaped fuzzy closed curve (left); 
3D representation of the membership function of the fuzzy signature (right) 

The fuzzy shape signature of a star-shaped fuzzy closed curve has the membership 
function depicted in Figure 6 (right) and can be defined only in terms of the Euclidean 
notions of path and distance from the centroid to the fuzzy boundary (rather then in a 
geodesic sense), since the region containing the centroid does not belong to the fuzzy 
object itself, but to its complement (see the next section). 
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For a sequence of indices { }n,,1,0 …=τ  and the corresponding discrete sequence 

of angles πθθθ τ 200 =<<<<= n…… , a fuzzy-valued time series { } { })( ττ θρρ = , 

n,,1,0 …=τ , can be sampled from the continuous fuzzy signature (Figure 7). 

Moreover, for each iα  in a discrete sequence 10 110 <<<<= −pααα … , a pair 

of real-valued time series ( ) ( ))(),()(),( 11
iiii RL αααραρ ττττ

−−=  can be sampled, as 

well as a real-valued time series from the modal values in the core ( 1=pα ). 
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Fig. 7. Fuzzy-valued time series sampled from the continuous fuzzy signature (fuzzy radius- 
vector function) 
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Fig. 8. Five real-valued time series sampled from the fuzzy time series, for 1,5.0,0=α  

2   Geodesic vs. Euclidian Fuzzy Paths and Distances 

The notion of a geodesic path between two points in a fuzzy subset has been introduced 
with respect to different purposes and formal settings, in both the continuous and digital 
fuzzy geometry. For instance, this notion is the main ingredient in the definition of the 
fuzzy distance transform (FDT), proposed in [8] by Saha et al. (2002).  
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A path π in nℜ  from a point nx ℜ∈  to another point (not necessarily distinct) 
ny ℜ∈  is a continuous function π : [0, 1]→ nℜ  such that π(0)=x and π(1)= y. The 

length of a path π in S, denoted by )(πSΠ , is the value of the following integration 

( )∫=Π
1

0

)(
)()( dt

dt

td
tSS

ππμπ  (8)

i.e., )(πSΠ  is the integral of Euclidian distances weighted by the membership values 

(in S) along π. 
For the path defined by the equations (2), (3) and (5), we have 
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1
)( −+=ΠS  (10)

which means that the length of the path across the fuzzy boundary is contracted by a 
factor of 1/2 with respect to the length of the equivalent Euclidean path. 

When a path passes through a low density (low membership) region, its length 
increases slowly and the portion of the path in the complement of the support of S 
contributes no length. This approach is useful to measure regional object depth, object 
thickness distribution, etc. 

Let ζS(x, y) denote a subset of positive real numbers defined as   

),( yxSζ ={ }),(|)( yxPS ∈Π ππ  (11)
 

i.e., ),( yxSζ  is the set of all possible path lengths in S between x and y. The fuzzy 

distance from nx ℜ∈  to ny ℜ∈  in S, denoted as ),( yxSω , is the infimum of 

),( yxSζ ; i.e., 

),(inf),( yxyx SS ζω =  (12)

Actually, the fuzzy distance Sω  is a geodesic distance, which means that the 

shortest paths (when they exist) in a fuzzy subset S between two points nyx ℜ∈,  are 

not necessarily a straight line segment even when S is convex. 
Concepts such as connectivity and geodesic distance between pixels or voxels in a 

2D or 3D digital image have been proved to play a key role in the fuzzy digital 
geometry, since it has been introduced in [6] by Rosenfeld (1984). 

There are two main approaches in measuring distances when considering fuzzy 
spatial objects: the first one basically compares only the membership functions 
representing the concerned fuzzy object, while the other one combines spatial 
distance between objects and membership functions, thus taking into account both 
spatial information and information related to the imprecision attached to the image 
object. 
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Distances between two points in a fuzzy set are typically addressed in order to find 
the best path in the geodesic sense in a spatial fuzzy set.  

Distances from a point to a set are used when computing distance from a point to a 
complement of a fuzzy set, i.e., performing distance transform.  

The distances between sets are used in shape matching. 
A geodesic distance between points in a fuzzy set was introduced in [1] by Bloch 

(2000), being defined conditionally to a reference set X. It naturally incorporates some 
concepts involved in its crisp equivalent, such as Euclidian distance, path lengths and 
connectivity. Thus, a geodesic distance ),( yxd X  from x to y is the length of a 

shortest path from x to y, completely included in X. Let μ  be a fuzzy set on the space 

S . The definition of the geodesic distance relies on the degree of connectivity in μ  

between two points x and y of S, as defined by Rosenfeld (1984), 

⎥⎦
⎤

⎢⎣
⎡=

∈
)(minmax),(

),(),(
tyxc

yxLtyxL
μμ  (13)

where nttyxL ,,),( 1 …=  denotes a path from 1tx =  to nty = , consisting of a 

sequence of points in S according to the discrete connectivity defined on S. Let 

),(* yxL  denote the shortest path between x and y on which μc  is reached; this path 

is not necessarily unique and can be interpreted as a geodesic path descending as little 

as possible in terms of membership degrees. Let l( ),(* yxL ) denote its length (the 

number of points along the path). Then the geodesic distance in μ  between x and y is 

defined as 

( )
),(

),(
),(

*

yxc

yxLl
yxd

μ
μ =  (14) 
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If ),( yxcμ = 0, then ∞=),( yxdμ , which corresponds to the result obtained for 

the classical geodesic distance in the case where x and y belong to different connected 
components. 

Figure 9 contrasts the Euclidean and geodesic paths between points in a non-
convex, non-star-shaped fuzzy region. 

3   A Novel Approach to Decomposing and Reconstructing a Fuzzy 
Shape and to Automatic Change Point-Detection, Based on SSA 

In case of fuzzy shapes that are not star-shaped, abstracting a fuzzy signature based on 
a radial fuzzy distance is inappropriate. A fuzzy region may has the centroid 
belonging to its interior (or not!), while a fuzzy closed contour typically has the 
centroid belonging to its complement. For a connected fuzzy region with the centroid 
belonging to its interior, a fuzzy geodesic path (not necessarily unique) usually exists. 
However, geodesic paths cannot be used for the decomposition and the reconstruction 
of a fuzzy shape because they use weighted distances and thus may severely distort 
the reconstructed shape, when comparing to the original coordinates. On the other 
hand, a geodesic path is meaningless in case of fuzzy closed curves, when the 
centroid typically belongs to the complement of the fuzzy object. A Euclidean radial 
path is also inappropriate in case of non-star-shaped fuzzy shapes since the path may 
intersect the fuzzy boundary many times (see Figure 9). 

The proposed novel strategy is to use the coordinates themselves as a shape 
signature, but represented as complex-valued numbers in the complex plane. A 
complex-valued fuzzy time series can then be sampled from such a continuous 
complex-valued fuzzy signature, allowing the machinery of time series analysis to be 
subsequently used. The method is general, that is, not constrained to convex, or star-
shaped fuzzy regions. 

Both denoising and change-point detection can be carried out by a powerful 
method called Singular-Spectrum Analysis (SSA). SSA is a nonparametric method for 
time series structure recognition and identification ([4]). The SSA algorithm has two 
basic stages: decomposition and reconstruction. Basically, it first builds the trajectory 
matrix associated to a time series, whose columns are formed by a sequence o lagged 
vectors extracted from the time series with a sliding window. Afterward, the singular 
value decomposition is applied to the trajectory matrix. For the reconstruction of the 
de-noised part of the time series the most dominant singular values (and the 
corresponding singular vectors) are considered, whereas the remaining singular values 
are used to compute the residuals (associated with noise).  

Let start by assuming that the fuzzy object is represented in terms of −α supports. 
There are two distinct cases:  

1. the case of a fuzzy region, where the membership function is non-increasing 
away from the interior of the object: assuming a counterclockwise rotation 
along the fuzzy boundary, one complex-valued −α level time series can be 
sampled from the continuous complex-valued −α support contour, which can 

be written as Cyixz ttt ∈+= ααα , for Nt ,,1 …= . Here α  is chosen from a 

finite non-increasing sequence 01 21 =<<<= nααα … . 



 A SSA-Based New Framework 183 

2. the case of a fuzzy closed curve, where the membership function is typically 
LR-shaped: assuming a counterclockwise rotation along the fuzzy boundary, 
two complex-valued −α level time series can be sampled from the continuous 
complex-valued −α support contour, a left-side one and a right-side one, i.e., 

Cyixz L
t

L
t

L
t ∈+= )()()( ααα , Cyixz R

t
R

t
R

t ∈+= )()()( ααα , for Nt ,,1 …= . 

Eventually, if the core reduces to a singleton, then R
t

L
t zz )()( 11 = . 

Now, a complex-valued trajectory matrix can be defined for each complex-valued 
time series in turn: 

Cz

zzz

zzz

zzz

X t

NMM
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K

∈
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 (15) 

The proposed generalization of SSA is founded on the ACM Algorithm 358 for 
Singular Value Decomposition of a complex matrix. The decomposition theorem 
(Businger and Golub, [2]) can be stated as follows: each and every KM ×  complex-
valued matrix X  can be reduced to diagonal form by unitary transformations U  and 

V , H
K VdiagUX ],,[ 1 σσ …= , where 01 ≥≥≥ Kσσ …  are real-valued scalars, 

called the singular values of X . Here U  is an KM ×  column orthogonal matrix, V  

an KK ×  unitary matrix and HV  is a Hermitian transpose of V . The columns of U  
and V  are called the left and right singular vectors of X , respectively. 

As it is shown in Figures 10 and 11, the proposed generalization of SSA-based 
algorithm for complex-valued trajectory matrices can be successfully applied to 
decomposing and reconstructing (de-noising) non star-shaped fuzzy contours. 
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Fig. 10. The membership function of a noisy, non-star-shaped fuzzy closed curve (left); several 
α-cuts (right)  
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Fig. 11. The SSA-based smooth reconstruction of a non-star-shaped fuzzy closed curve (left); 
several α-cuts (right)  

SSA is also at the core of a powerful change-point detection algorithm ([5]). The 
detection statistic is defined with respect to the squared distance to the subspace 
spanned by the eigenvectors of the lag-covariance matrix, computed in a sequence of 
moving time intervals. The novelty is that all calculations are adapted to be made in 
complex spaces (for instance, the distance between complex numbers is considered).  

The detected change-points and the distance-based test statistics are shown in 
Figure 12. The location of change points is in the local minima of test statistic 
function. 
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Fig. 12. Automatic selection of landmark positions through change-point detection (left); 
detecting change points from Distance detection statistic (right) 
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4   Conclusion 

This paper extends my approach in [3] to a fuzzy context. SSA is generalized to deal 
with complex-valued trajectory matrices, encoding the coordinates themselves as 
complex numbers, in order to carry out the decomposition and reconstruction of a 
fuzzy closed contour, as well as change-point detection. This approach is suitable for 
any kind of fuzzy contours, including non-convex and non-star-shaped ones. 
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Abstract. In this paper, a robust optimization approach to possibilistic
linear programming problems is studied. After necessity measures and
generation processes of logical connectives are reviewed, the necessity
fractile optimization model of possibilistic linear programming problem
is introduced as a robust optimization model. This problem is reduced
to a linear semi-infinite programming problem. Assuming the convexity
of the right parts of membership functions of fuzzy coefficients and the
concavity of membership functions of fuzzy constraints, we investigate
conditions on logical connectives for the problems to be reduced to lin-
ear programming problems. Several examples are given to demonstrate
that necessity fractile optimization models are often reduced to linear
programming problems.

Keywords: possibilistic linear programming, necessity measure, impli-
cation function, conjunction function.

1 Introduction

Fuzzy and possibilistic programming approaches are proposed to mathematical
programming problems with ambiguity and vagueness [1,2]. By those approaches,
we obtain reasonable solutions under conflicting soft constraints and goals, ro-
bust solutions under hard and soft constraints, optimistic solutions of attaining
high-level goals, and so on. In possibilistic programming approaches, possibility
and necessity measures are used to reduce the problems to conventional program-
ming problems. Many results demonstrate that possibilistic linear programming
problems preserve the linearity in the reduced problems when possibility and
necessity measures are defined by minimum operation and Dienes implication,
respectively. However, cases with the other conjunction and implication func-
tions have not yet considerably investigated. have been proposed in calculation
of linear functions with fuzzy coefficients. Inuiguchi [3] showed that the necessity
fractile optimization models of possibilistic linear programming problems with
soft constraints can be reduced to linear semi-infinite programming problems
even when necessity measures are not defined by Dienes implication.

In this paper, we further develop the results by Inuiguchi [3]. We investigate
the cases when the necessity fractile optimization models are reduced to linear

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 186–197, 2011.
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programming problems. Assuming the convexity of the right parts of member-
ship functions of fuzzy coefficients and the concavity of membership functions of
fuzzy constraints, we show that the problems are reduced to linear programming
problems when functions induced from implication functions defining necessity
measures are convex. The results imply that the necessity fractile optimization
models with many famous implication functions are reduced to linear program-
ming problems when membership functions of fuzzy constraints are concave.

In next section, we briefly review the necessity measures and generation pro-
cesses of logical connectives. Possibilistic linear programming problems with soft
constraints are given and formulated as conventional programming problems
through necessity fractile optimization models in Section 3. We show that the
problems are reduced to linear semi-infinite programming problems. In Section
4, assuming the convexity of the right parts of membership functions of fuzzy
coefficients and the concavity of membership functions of fuzzy constraints, we
investigate the conditions that the problems are further reduced to linear pro-
gramming problems. The results are applied to cases when implications defining
necessity measures are generated from conjunction and negation functions. In
Section 5, several examples are given to demonstrate that necessity fractile opti-
mization models are often reduced to linear programming problems. In Section
6, concluding remarks are given.

2 Necessity Measures and Logical Connectives

A necessity measure [4] of a fuzzy set S under a fuzzy set V is defined by

NV (S) = inf
u∈U

I(μV (u), μS(u)), (1)

where μV and μS are membership functions of V and S. I : [0, 1]× [0, 1]→ [0, 1]
is an implication function satisfying the following properties:
(I0) I is upper semi-continuous, (semi-continuity)
(I1) I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0, (boundary condition)
(I2) I(a, b) ≤ I(c, d) if 0 ≤ c ≤ a ≤ 1 and 0 ≤ b ≤ d ≤ 1. (monotonicity)

NV (S) evaluates to what extent an uncertain variable u whose possible range
is V surely takes a value in S. Moreover, it can also be understood as the degree
of inclusion V ⊆ S.

As is shown in (1), a necessity measure is defined by an implication function.
In the literature [5,6], implication functions are known to be generated from a
conjunction function T and a strong negation n. In this paper, a conjunction
function is defined as a two-place function T : [0, 1]× [0, 1]→ [0, 1] satisfying
(T0) T is lower semi-continuous, (semi-continuity)
(T1) T (0, 0) = T (0, 1) = T (1, 0) = 0 and T (1, 1) = 1, (boundary condition)
(T2) T (a, b) ≤ T (c, d) if 0 ≤ a ≤ c ≤ 1 and 0 ≤ b ≤ d ≤ 1. (monotonicity)
A conjunction function T satisfies the following properties (t1) T (a, 1)= T (1, a)=
a for any a ∈ [0, 1], (T3) T (a, b) = T (b, a) for any a, b ∈ [0, 1] (commutativity)
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and (T4) T (a, T (b, c)) = T (T (a, b), c) for any a, b, c ∈ [0, 1] (associativity) is
known as a triangular norm. A strong negation is a continuous strictly decreas-
ing function n : [0, 1]→ [0, 1] such that (n1) n(0) = 1 (boundary condition) and
(n2) n(n(a)) = a for any a ∈ [0, 1] (involution).

Given a conjunction function T and a strong negation n, the following three
kinds of implication functions can be generated:

IR[T ](a, b) = sup{s ∈ [0, 1] | T (a, s) ≤ b}, (2)
IS[T ](a, b) = n(T (a, n(b))), (3)

Ir−R[T ](a, b) = sup{s ∈ [0, 1] | T (n(b), s) ≤ n(a)}. (4)

The first one, IR, is encountered in the maximum solution of a fuzzy relation
equation and understood in view of modus ponens. The second one, IS, is intro-
duced in analogy to Boolean logic. The last one, Ir−R is reciprocal to the first
one which is obtained by taking a contraposition of the first one. When T is a
t-norm, IR[T ], IS[T ] and Ir−R[T ] are called R-implication (residual implication),
S-implication and reciprocal R-implication, respectively. Whereas IS produces
an implication function from an arbitrary conjunction function T , IR and Ir−R

produce an implication function from a conjunction function which satisfies

T (1, a) > 0 for any a > 0. (5)

On the other hand, a conjunction function can be generated from an implication
function through a transformation,

T I[I](a, b) = n(I(a, n(b))). (6)

This transformation is symmetrical to IS. From an implication function, a con-
junction function is produced through T I. A conjunction function in this paper
is not commutative. Thus, a new conjunction function may be generated from a
conjunction function through

T T[T ](a, b) = T (b, a). (7)

For the transformations (1) to (3), (5) and (6), we have

T I ◦ IS = id., IS ◦ T I = id., TT ◦ T T = id., IS ◦ T T ◦ T I ◦ IR = Ir−R, (8)

where ‘◦’ denotes a composition, for example, T I ◦ IR is a composite transfor-
mation of IR and T I, i.e., T I ◦ IR[T ](a, b) = T I[IR[T ]](a, b). The notation ‘id.’
stands for the identical transformation.

From (T0), we have the following equalities [6]:{
IR ◦ T I ◦ IR[T ] = IS[T ], Ir−R ◦ T I ◦ IR ◦ T T[T ] = IS[T ],
IR ◦ T I ◦ Ir−R ◦ T T[T ] = Ir−R[T ], Ir−R ◦ T I ◦ Ir−R ◦ T T[T ] = IR[T ]. (9)

Equations (8)–(9) are summed up by Figure 1. As shown in Figure 1, the
generation process from a lower semi-continuous conjunction function as well
as from an upper semi-continuous implication function is closed. Note that the
semi-continuity is preserved through the generation process [6].
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Fig. 1. Conjunction and implication generations are closed

3 Possibilistic Linear Programming Problems

We consider the following possibilistic linear programming problem,

maximize cTx,
subject to aT

i x <∼ i bi, i = 1, 2, . . . , m,
x ≥ 0,

(10)

where x = (x1, x2, . . . , xn)T is a decision vector. bi, i = 1, 2, . . . , m are constants.
cj and aij of c and ai are not known exactly but the possible ranges of those
values are given by fuzzy numbers Cj and Aij , respectively. A fuzzy number
is a normal, convex and bounded fuzzy set on the real line whose membership
function is upper semi-continuous. The notation <∼ i is a fuzzified inequality so
that <∼ i bi corresponds to a fuzzy set Bi with verbal expression ‘a set of real
numbers roughly smaller than bi’. We assume that the membership function μBi

of Bi is non-increasing and upper semi-continuous and satisfies μBi(bi) = 1.
By the extension principle, the possible ranges of cTx and aT

i x are obtained
as fuzzy sets CTx and AT

i x, respectively, defined by membership functions [7]:

μCTx(y) = sup
r1,...,rn

rTx=y

min (μC1(r1), . . . , μCn(rn)) , (11)

μAT
i x(y) = sup

r1,...,rn

rTx=y

min (μAi1(r1), . . . , μAin(rn)) , (12)

where r = (r1, r2, . . . , rn)T.
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Using a necessity measure N i defined by an upper semi-continuous implication
function Ii, in this paper, we formulate Problem (10) as a necessity fractile
optimization model (see Inuiguchi and Ramı́k [2]):

maximize q,

subject to N0
CTx

([q, +∞)) ≥ α0,

N i
AT

i x
(Bi) ≥ αi, i = 1, 2, . . . , m,

x ≥ 0,

(13)

where q is an auxiliary variable. α0 ∈ (0, 1] and αi ∈ (0, 1], i = 1, 2, . . . , m
are certainty levels of goal achievement and constraint satisfactions specified by
the decision maker. Similar to the percentile of a probability distribution, under
a given x, the largest value q satisfying N0

CTx
([q, +∞)) ≥ α0 is called the α0-

necessity fractile [2]. Problem (13) is a maximization problem of the α0-necessity
fractile under constraints that the necessity measure of the event that aT

i x is
roughly smaller than bi is not less than αi for i = 1, 2, . . . , m. We note

N0
CTx([q, +∞)) = inf

r<q
I0(μCTx(r), 0), N i

AT
i x(Bi) = inf

r
Ii(μAT

i x(r), μBi(r)).

(14)
The selections of necessity measures and certainty levels depend on the required
robustness of goal achievement/constraint satisfactions, the meanings of total
goal achievement/constraint satisfactions, the estimation of fuzzy coefficients
and so on. The method proposed by Inuiguchi et al. [8] would be useful for
selecting suitable necessity measures.

We note also that in most of previous studies on possibilistic linear program-
ming, a necessity measure defined by Dienes implication (I(a, b) = max(1−a, b))
is used and there is almost no study on possibilistic linear programming using
general necessity measures except for Inuiguchi [3].

Let [S]α be an α-level set of a fuzzy set S, i.e., [S]α = {u ∈ U | μS(u) ≥ α}.
Then, because fuzzy numbers Ci and Aij are bounded and have upper semi-
continuous membership functions, we have (see Dubois and Prade [7])

[CTx]α =
n∑

j=1

[Cj ]αxj , [AT
i x]α =

n∑
j=1

[Aij ]αxj . (15)

Let cL
j (α) = inf[Cj ]α, cR

j (α) = sup[Cj ]α, aL
ij(α) = inf[Aij ]α and aR

ij(α) =
sup[Aij ]α. Then, considering the non-negativity of x, we have

[CTx]α =

⎡
⎣ n∑

j=1

cL
j (α)xj ,

n∑
j=1

cR
j (α)xj

⎤
⎦ , [AT

i x]α =

⎡
⎣ n∑

j=1

aL
ij(α)xj ,

n∑
j=1

aR
ij(α)xj

⎤
⎦ .

(16)
Inuiguchi [3] proved the following theorem.

Theorem 1. Let N i be a necessity measure defined by an implication function
Ii. Then for any fuzzy sets V and S of a universal set U , we have

N i
V (S) ≥ α⇔ ∀β ∈ [0, 1]; [V ]β ⊆ [S]fi(β,α), (17)



Possibilistic Linear Programming Using General Necessity Measures 191

where f i(β, α) = T I[IR[T I[Ii]]](β, α) = inf{s ∈ [0, 1] | I(β, s) ≥ α}.

From the assumptions of Bi, we have [Bi]β = (−∞, b̄i(β)], where b̄i : [0, 1]→
[0, +∞) is defined by b̄i(β) = sup{r | μBi(r) ≥ β}. From (16) and Theorem 1,
Problem (13) is reduced to a linear semi-infinite programming problem,

maximize q,

subject to
n∑

j=1

cL
j (β)xj ≥ q̄(f0(β, α0)), ∀β ∈ [0, 1],

n∑
j=1

aR
ij(β)xj ≤ b̄i(f i(β, αi)), ∀β ∈ [0, 1], i = 1, 2, . . . , m,

x ≥ 0,

(18)

where we assume −∞ ≥ −∞ and ∞ ≤∞. q̄ : [0, 1]→ {−∞, q} is defined by

q̄(β) =
{

q if β > 0,
−∞ if β = 0.

(19)

4 Reduction to a Linear Programming Problem

In this section, we show that Problem (13) is further reduced to a linear pro-
gramming problem under certain conditions. We note that the membership
function μAij of Aij can be decomposed to a non-decreasing function μL

Aij
:

R → [0, 1] and a non-increasing function μR
Aij

: R → [0, 1] such that μAij (r) =
min(μL

Aij
(r), μR

Aij
(r)), for all r ∈ R. Indeed, they are obtained by

μL
Aij

(r) =
{

μAij (r) if r < aL
ij(1),

1 if r ≥ aL
ij(1), μR

Aij
(r) =

{
1 if r ≤ aR

ij(1),
μAij (r) if r > aR

ij(1). (20)

We define the following notations:

ĉL
j (α) = inf

β∈[0,1]
{cL

j (β) | f0(β, α) > 0}, j = 1, 2, . . . , n, (21)

âR
ij(α) = sup

β∈[0,1]

{aR
ij(β) | f i(β, α) > 0}, i = 1, 2, . . . , m, j = 1, 2, . . . , n (22)

b̂i(α) = sup
β∈[0,1]

{b̄i(f i(β, α)) | f i(β, α) > 0}, i = 1, 2, . . . , m (23)

β̂i(α) = inf{β ∈ [0, 1] | f i(β, α) = f i(1, α)}, i = 0, 1, . . . , m. (24)

The following theorem can be obtained straightforwardly.

Theorem 2. Assume images of μR
Aij

’s and μBi ’s include (0, 1], i.e., (0, 1] ⊆
μR

Aij
(R), i = 1, 2, . . . , m, j = 1, 2, . . . , n. and (0, 1] ⊆ μBi(R), i = 1, 2, . . . , m.

If aR
ij(β) (i = 1, 2, . . . , m, j = 1, 2, . . . , n) and b̄i(f i(β, αi)) (i = 1, 2, . . . , n) are
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convex and concave with respect to β in the range (0, β̂i(αi)), respectively, then
Problem (18) is reduced to the following linear programming problem:

maximize
n∑

j=1

ĉL
j (α0)xj ,

subject to
n∑

j=1

âR
ij(α

i)xj ≤ b̂i(αi), i = 1, 2, . . . , m,

n∑
j=1

aR
ij(β̂

i(αi))xj ≤ b̄i(f i(β̂i(αi), αi)), i = 1, 2, . . . , m,

x ≥ 0.

(25)

(Proof) The first constraints of Problem (18), i.e.,
∑n

j=1 cL
j (β)xj ≥ q̄(f0(β, α0)),

∀β ∈ [0, 1] can be reduced to
∑n

j=1 cL
j (β)xj ≥ q,∀β ∈ [0, 1] such that f0(β, α0) >

0. Then from (19), this constraints are equivalent to

n∑
j=1

ĉL
j (α0)xj =

n∑
j=1

⎛
⎜⎝ inf

β∈[0,1]
f0(β,α0)>0

cL
j (β)

⎞
⎟⎠ xj = inf

β∈[0,1]
f0(β,α0)>0

⎛
⎝ n∑

j=1

cL
j (β)xj

⎞
⎠ ≥ q.

Similarly, by the assumption of the images of μR
Aij

’s and μBi ’s, the convexity
of aR

ij(β) (i = 1, 2, . . . , m, j = 1, 2, . . . , n) and the concavity of b̄i(f i(β, αi))
(i = 1, 2, . . . , m), the second constraints of Problem (18),

∑n
j=1 aR

ij(β)xj ≤
b̄i(f i(β, αi)), ∀β ∈ [0, 1] are reduced to the following two constraints:

n∑
j=1

âR
ij(α

i)xj =
n∑

j=1

⎛
⎜⎝ sup

β∈[0,1]
fi(β,αi)>0

aR
ij(β)

⎞
⎟⎠ xj = sup

β∈[0,1]
fi(β,αi)>0

⎛
⎝ n∑

j=1

aR
ij(β)xj

⎞
⎠

≤ sup
β∈[0,1]

fi(β,αi)>0

b̄i(f i(β, αi)) = b̂i(αi),

n∑
j=1

aR
ij(β̂

i(αi))xj ≤ b̄i(f i(β̂i(αi), αi)).

Then Problem (18) is reduced to Problem (25). (Q.E.D.)
By Theorem 2, we know that there are cases when Problem (13) is reduced to

a linear programming problem. However, the sufficient condition shown in The-
orem 2 is rather complex. Then we break down the condition into a combination
of simple conditions sacrificing its generality to a small extent.
A1. (0, 1] ⊆ μR

Aij
(R) and μR

Aij
of Aij (i = 1, 2, . . . , m, j = 1, 2, . . . , n) is convex,

i.e., μR
Aij

(λy1 + (1 − λ)y2) ≤ λμR
Aij

(y1) + (1 − λ)μR
Aij

(y2) for all λ ∈ [0, 1]
and for any y1, y2 ∈ R.

A2. (0, 1] ⊆ μBi(R) and μBi of Bi (i = 1, 2, . . . , m) is concave, i.e., μBi(λy1 +
(1 − λ)y2) ≥ λμBi(y1) + (1 − λ)μBi (y2) for all λ ∈ [0, 1] and for any y1,
y2 ∈ R.
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Note that those assumptions are satisfied when Aij and Bi have linear mem-
bership functions. Under these assumption, we have the following lemma.

Lemma 1. Under assumptions A1 and A2, aR
ij : [0, 1]→ R defined by aR

ij(α) =
sup[Aij ]α is convex in the domain (0, 1] and b̄i : [0, 1] → R defined by b̄i(β) =
sup{r | μBi(r) ≥ β} is concave in the domain (0, 1].

(Proof). Both can be proved in the same way. We prove only the latter assertion.
Let β1, β2 ∈ (0, 1] and λ ∈ [0, 1] be fixed arbitrarily. By the concavity and the
upper semi-continuity of μBi , we have

b̄i(λβ1 + (1− λ)β2) = sup{r | μBi(r) ≥ λβ1 + (1 − λ)β2}
= sup{λr1 + (1− λ)r2 | μBi(λr1 + (1− λ)r2) ≥ λβ1 + (1− λ)β2}
≥ sup{λr1 + (1− λ)r2 | λμBi (y1) + (1− λ)μBi(y2) ≥ λβ1 + (1 − λ)β2}
≥ λ sup{r1 | μBi(r1) ≥ β1}+ (1− λ) sup{r2 | μBi(r2) ≥ β2}
= λb̄i(β1) + (1 − λ)b̄i(β2).

Then b̄i is concave in the domain (0, 1]. (Q.E.D.)

We obtain the following theorem.

Theorem 3. In addition to assumptions A1 and A2, we assume that function
f i(·, α) : [0, 1] → [0, 1] is convex in the range (0, β̂i(αi)) for a fixed parameter
α ∈ (0, 1], i.e., f i(λβ1 + (1 − λ)β2, α) ≤ λf i(β1, α) + (1 − λ)f i(β2, α) for all
λ ∈ [0, 1] and for any β1, β2 ∈ (0, β̂i(αi)) such that f i(β1, α), f i(β2, α) ∈ (0, 1].
The composite function b̄i(f i(·, α)) : [0, 1]→ R is concave.

(Proof). Let β1, β2 ∈ (0, β̂i(αi)) such that f i(β1, α), f i(β2, α) ∈ (0, 1] be fixed
arbitrarily. Let λ ∈ [0, 1] be fixed arbitrarily. Obviously, b̄i is decreasing. Then
by the convexity of f i(·, α) and the concavity of b̄i, we have

b̄i(f i(λβ1 + (1− λ)β2, α)) ≥ b̄i(λf i(β1, α) + (1− λ)f i(β2, α))
≥ λb̄i(f i(β1, α)) + (1− λ)b̄i(f i(β2, α)).

Therefore, b̄i(f i(·, α)) is concave. (Q.E.D.)

From Lemma 1 and Theorem 3, we know that the assumption of Theorem 2
is satisfied when f i(·, α) : [0, 1] → [0, 1] is convex in the range (0, β̂i(αi)) for a
fixed parameter α ∈ (0, 1] under assumptions A1 and A2.

Now we investigate cases when the implication functions defining necessity
measures are defined by a conjunction function T i and a strong negation ni.
Under the assumption of the concavity of μBi in the range (0, 1], we investigate
the condition that f i(·, α) is convex in the range (0, β̂i(αi)).

When the implication function Ii is IR[T i] of (2), we have

f i(β, α) = T I[IR[T I[IR[T i]]]](β, α) = T i(β, α) (26)
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because T I ◦ IS = id and IR ◦ T I ◦ IR[T ] = IS[T ] as shown in (8) and (9). Then
the condition, the convexity of f i(·, α) in the range (0, β̂i(αi)) is equivalent to
the convexity of T i(·, α) in the range (0, β̂i(αi)).

When the implication function Ii is IS[T i] of (3), we have

f i(β, α) = T I[IR[T I[IS[T i]]]](β, α) = T I[IR[T i]](β, α)
= ni(sup{s ∈ [0, 1] | T i(β, s) ≤ ni(α)}). (27)

We define a set BS(α) ⊆ [0, 1]× [0, 1] by

BS(α) = {(β, s) ∈ [0, 1]× [0, 1] | T i(β, s) ≤ α}. (28)

and a function ψBS(α) : [0, 1]→ [0, 1] by

ψBS(α)(β) = sup{s ∈ [0, 1] | T i(β, s) ≤ α}. (29)

Then the following lemma is straightforwardly derived.

Lemma 2. If BS(α) is a convex set, we know that a function ψBS(α) is a
concave function. Moreover, if [0, 1]× [0, 1]− BS(α) is a convex set, ψBS(α) is
a convex function.

As the result, we obtain the following theorem.

Theorem 4. If T i is quasi-concave and ni is convex, f i(·, α) is also a convex
function for any α ∈ [0, 1].
(Proof). Let α ∈ [0, 1]. From the quasi-convexity of T i, BS(ni(α)) becomes a
convex set. Then ψBS(ni(α)) becomes a concave function. Let β1, β2 ∈ [0, 1] and
λ ∈ [0, 1] be fixed arbitrary. From the convexity of ni, the convexity of f i(·, α)
is proved by

f i(λβ1 + (1− λ)β2, α) = ni(ψBS(ni(α))(λβ1 + (1− λ)β2))

≤ ni(λψBS(ni(α))(β1) + (1 − λ)ψBS(ni(α))(β2))

≤ λni(ψBS(ni(α))(β1)) + (1− λ)ni(ψBS(ni(α))(β2)).
(Q.E.D.)

When the implication function Ii is Ir−R[T i] of (4), we have

f i(β, α) = T I[IR[T I[Ir−R[T i]]]](β, α) = T I[Ir−R[T T[T i]]](β, α)
= ni(sup{s ∈ [0, 1] | T i(s, α) ≤ ni(β)}). (30)

For convenience, we define

ϕα(β) = sup{s ∈ [0, 1] | T i(s, α) ≤ ni(β)}. (31)

Then we have the following theorem.
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Lemma 3. If T i(·, α) is convex and ni is concave, ϕα is a concave function.
(Proof). Let β1, β2 ∈ [0, 1] and λ ∈ [0, 1] be fixed arbitrary. From the concavity
of ni and the convexity of T i(·, α) the concavity of ϕα is proved by

ϕα(λβ1 + (1− λ)β2)) = sup{s ∈ [0, 1] | T i(s, α) ≤ ni(λβ1 + (1− λ)β2)}
≥ sup{λs1 + (1− λ)s2 ∈ [0, 1] |

T i(λs1 + (1 − λ)s2, α) ≤ λni(β1) + (1 − λ)ni(β2)}
≥ sup{λs1 + (1− λ)s2 ∈ [0, 1] |

λT i(s1, α) + (1− λ)T i(s2, α) ≤ λni(β1) + (1− λ)ni(β2)}
≥ λϕα(β1) + (1− λ)ϕα(β2).

(Q.E.D.)

Theorem 5. If T i(·, α) is convex and ni is linear, f i(·, α) is also a convex
function.
(Proof). Let β1, β2 ∈ [0, 1] and λ ∈ [0, 1] be fixed arbitrary. From the linearity
of ni and the convexity of T i(·, α) the convexity of f i(·, α) is proved by the
following inequality:

f i(λβ1 + (1− λ)β2, α) = ni(ϕα(λβ1 + (1− λ)β2))
≤ ni(λϕα(β1) + (1 − λ)ϕα(β1)) = λni(ϕα(β1)) + (1− λ)ni(ϕα(β2)).

(Q.E.D.)

5 Examples of Implication Functions

In this section, we demonstrate that, for necessity measures using many famous
implication functions, Problem (13) is reduced to a linear programming problem
under assumptions A1 and A2.

The famous implication functions Ii’s and their corresponding functions f i’s
are shown in Table 1. As shown in Table 1, for each of implication functions Ii

except for Reichenbach implication function has the associated function f i to
which f i(·, α) is convex in the range (0, β̂i(αi)) for any α ∈ (0, 1).

We demonstrate the reduction of Problem (13) to a linear programming prob-
lem when m = 3 and assumptions A1 and A2 are satisfied. Reichenbach im-
plication function, IS[T 1], IR[T 2] and Ir−R[T 2] with the following conjunction
functions T 1, T 2 and a strong negation n1(a) = n3(a) = 1 − a are selected for
I0, I1, I2 and I3, respectively:

T 1(a, b) =

{
0 if a + b ≤ 1,

a + b

2
if a + b > 1,

T 2(a, b) =
{

0 if a + b ≤ 1,
ab if a + b > 1,

(32)

I1 = IS[T 1], I2 = IR[T 2] and I3 = Ir−R[T 2] are obtained as follows:

I1(a, b) =

{
1 if a ≤ b,

1− a + b

2
if a > b,

I2(a, b) =

{
1− a if b < a(1− a) or a = 0,

b

a
if b ≥ a(1− a) and a > 0,
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Table 1. Famous implication functions Ii and associated functions f i

Name Ii(a, b) f i(β, α)

Dienes max(1 − a, b)

{
0 if α + β ≤ 1
α if α + β > 1

Reichenbach 1 − a + ab

{
0 if α + β ≤ 1
(α + β − 1)/β if α + β > 1

�Lukasiewicz min(1, 1 − a + b) max(0, α + β − 1)

Gödel

{
1 if a ≤ b
b if a > b

min(α, β)

reciprocal
Gödel

{
1 if a ≤ b
1 − a if a > b

{
0 if α + β ≤ 1
β if α + β > 1

Goguen

{
1 if a ≤ b
b/a if a > b

αβ

reciprocal
Goguen

{
1 if a ≤ b
(1 − a)/(1 − b) if a > b

{
0 if α + β ≤ 1
(α + β − 1)/α if α + β > 1

Gains-
Rescher

{
1 if a ≤ b
0 if a > b

{
0 if α = 0
β if α > 0

Inuiguchi

{
1 if a = 0 or b = 1
(1 − a + b)/2 otherwise

{
0 if β = 0
min(1, max(0, 2α + β − 1)) if β > 0

Fodor

{
1 if a ≤ b
min(1 − a, b) if a > b

{
0 if α + β ≤ 1
min(α, β) if α + β > 1

I3(a, b) =

{
b if 1− a < b(1− b) or b = 1,

1− a

1− b
if 1− a ≥ b(1− b) and b < 1.

(33)

Because both of T 1 and n1 are convex, from Theorem 4, f1(·, α) is convex for
any α ∈ (0, 1]. T 2(·, α) = f2(·, α) is convex for any α ∈ (0, 1] and n3 is linear,
from Theorem 5, f3(·, α) is convex for any α ∈ (0, 1]. Indeed, we obtain

f1(β, α) =
{

β if 2α > 1,
max(0, 2α + β − 1) if 2α ≤ 1,

(34)

f3(β, α) =

⎧⎨
⎩

α if α2 < α + β − 1 or α = 0,

max
(

0,
α + β − 1

α

)
if α2 ≥ α + β − 1 and α > 0.

(35)

Then we can confirm the convexity of f1(·, α) and f3(·, α).
Let β̌i(α) = inf{β ∈ [0, 1] | f i(β, α) > 0}, i = 0, 1, . . . , m. We obtain{

β̌0(α) = 1− α, β̌1(α) = max(0, 1− 2α), β̂1(α) = 1,

β̌2(α) = 1− α, β̂2(α) = 1, β̌3(α) = 1− α, β̂3(α) = 1− α(1 − α).
(36)

By those values, the meaningful ranges of β for the second constraints of Problem
(18) can be obtained under assumptions A1 and A2. Namely, ∀β ∈ [0, 1] is
replaced with ∀β ∈ [β̌i(αi), β̂i(αi)]. By the convexity of f i(·, αi), we only consider
two values near the upper and lower bounds of [β̌i(αi), β̂i(αi)].
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Finally, the problem with m = 3 is reduced to a linear programming problem
in the form of (25).

6 Concluding Remarks

We have shown that the necessity fractile optimization models are reduced to
linear programming problems under certain conditions. The conditions on mem-
bership functions of fuzzy parameters included in the problem are satisfied by
linear membership functions which are often used in the literature. On the other
hand, the condition on implication functions defining necessity measures is satis-
fied by many of famous implication functions. Then the results of this paper are
applicable to many real world problems. Moreover, the results can be applied
to combinatorial programming problems with fuzzy parameters because their
continuous relaxation problems are often linear.

Under other conditions, we can show that the necessity fractile optimization
models can be solved rather easily by iterative applications of linear program-
ming techniques. For the specification of suitable necessity measures, we may
apply Inuiguchi’s approach [8]. Those are future topics of this study.
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Abstract. High-throughput sequencing technologies produce a large
number of short reads that may contain errors. These sequencing errors
constitute one of the major problems in analyzing such data. Many algo-
rithms and software tools have been proposed to correct errors in short
reads. However, the computational complexity limits their performance.
In this paper, we propose a novel and efficient hybrid approach which is
based on an alignment-free method combined with multiple alignments.
We construct suffix arrays on all short reads to search the correct over-
lapping regions. For each correct overlapping region, we form multiple
alignments for the substrings following the correct overlapping region
to identify and correct the erroneous bases. Our approach can correct
all types of errors in short reads produced by different sequencing plat-
forms. Experiments show that our approach provides significantly higher
accuracy and is comparable or even faster than previous approaches.

Keywords: High-throughput sequencing, Error correction, Suffix array,
Multiple Alignments.

1 Introduction

High-throughput sequencing technologies such as Illumina’s Genome Analyzer,
ABI’s SOLiD, and Roche’s 454, e.g. [1] open up a range of new opportunities
for genome research. Unlike the Sanger method, high-throughput sequencing
technologies can produce a large amount of short reads in a single run. For
example, the Illumina Genome Analyzer IIx can currently generate an output of
up to 640 million paired-end reads in a single run with a read length between 35
and 150. This leads to many novel applications such as genome re-sequencing, de
novo genome assembly and metagenomics. However, high-throughput sequencing
data is more error-prone than the Sanger sequencing method. With a significant
impact on the accuracy of applications such as re-sequencing and de novo genome
assembly, sequencing errors have become one of the major problems in analyzing
high-throughput sequencing data.

It is a difficult task to correct errors in high-throughput sequencing data, for
the computational demands for large-scale short reads limit the performance
of error correction algorithms and tools. The intuitive error correction method

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 198–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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is multiple read alignments, such as MisEd [2] for Sanger reads. If the reads
could be aligned correctly, we could correct the erroneous bases which are in
the minority in each column. However, multiple read alignments are extremely
compute-intensive for large-scale reads and do not adapt well to short reads.
Hence, some algorithms were proposed based on heuristics and alignment-free
methods to determine which reads align to the same genomic position. Pevzner
et al. [3] formulated the error correction problem as a spectral alignment problem
(SAP), in which k -mers are divided into solid (correct) and insolid (erroneous)
according to their multiplicity and the insolid k -mers are corrected using a min-
imum number of edit operations to solid k -mers until all reads only contain
solid k -mers. Most of previous error correction methods are based on the SAP
and use heuristics to approximate the SAP. Pevzner et al. [3] used a simple
greedy heuristics to solve the SAP. Subsequently, Chaisson et al. [4] proposed
a dynamic programming algorithm for the SAP and implemented a heuristic
algorithm based on an approximation to dynamic programming algorithm [5]
in assembly tool Euler-SR similarly with Butler et al. [6]. Recently, some tools
which optimize the k -mers classification [7, 8] or accelerate error correction using
GPU [9] are also based on the SAP.

However, because all k -mers in the SAP are independent, we cannot utilize
the local context of a k -mer in the sequencing reads to identify errors. The
more repetitive the genome is, the greater the chance is that a sequencing error
will merely change one solid k -mer to another solid k -mer, hiding the error [8].
Shrec [10] proposes a different idea for error correction which expands the local
context of erroneous bases. It first searches the common correct substrings in all
reads and then identifies the erroneous bases following these substrings. Shrec
is based on a generalized suffix trie data structure that holds all short reads
and corrects errors with a majority voting scheme. However, it requires huge
memory and therefore it is difficult to be used for large-scale read data. Shrec
was extended by Salmela [11] to a mixed set of reads from various sequencing
technologies, with different read lengths and error characteristics. HiTEC [12]
adopts the similar idea, while using the suffix array data structure instead of
suffix trie. The suffix array is more memory efficient than suffix trie and HiTEC
is based on a thorough statistical analysis. This makes HiTEC more accurate
and efficient. However, HiTEC can only correct substitutions in short reads with
identical read lengths.

In this paper, we propose an efficient hybrid approach which is based on an
alignment-free method combined with multiple alignments. Our approach in-
cludes two stages. In the first stage, we construct suffix arrays on all short reads
to search the correct overlapping regions as HiTEC. Each overlapping region
contains a common substring shared by some reads. If the number of the reads
and the length of the substring are large enough, we can consider that the com-
mon substring is from a unique genomic position and has no errors.For the reads
contained in each correct overlapping region, we can consider the common sub-
string is an anchor in the multiple aligments. Therefore, in the second stage, we
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only form multiple alignments for the substrings following the common substring
to identify and correct the erroneous bases.

This strategy makes our approach differentiate the alignment-based meth-
ods which require O(m3 + m2*l2ave) time (m is the number of reads and lave

is the average length of reads), for our approach does not form multiple align-
ments of all the entire reads. The worst case time complexity of our approach
is O(mlave*log(mlave)+ mlave*(lave - γ)2) in which γ is the parameter to deter-
mine the correct overlapping region. For short reads our approach is comparable
or even faster than all published approaches. Additionally, our approach is also
different from Shrec and HiTEC, while they only correct errors directly following
the common substring. Furthermore, the multiple alignments can be adjusted
by the user-defined gap penalty and mismatch penalty. Hence, our approach
can correct all types of errors in short reads produced by different sequencing
platforms. Experiments show that our approach provides significantly higher
accuracy than previous methods.

The rest of this paper is organized as follows. In section 2, we introduce the
ideas and the methods used in our approach. We present the algorithm of our
approach in section 3. In Section 4 we evaluate the performance of our approach.
Finally, Section 5 concludes the paper.

2 Methods

2.1 Problem

We first give the error correction problem for our approach formally. Supposed
that the reads are produced from a genome G and the length of G is N. If the
sequence of G is unknown, we can use a reference genome instead of G. The
genome G and the reads can be considered as strings over the alphabet {A, C,
G, T, N}. Supposed the sequencing platforms produce m reads, and the length
of i read is l i, let r=c0,c1,. . . ,cn−1 be a read of length n. r [i,j ] is the substring
ci, ci+1,. . . , cj , in which 0≤i≤j≤n. The reverse complement r of r, is obtained
by first reversing s and then applying the transformation A ↔ T; C ↔ G. For
example, if r = ACTG, then r = CAGT. if r is produced from the substring g
of G that g = G[j, k ], we say that r maps to g. We can obtain the combined
total length of the reads denoted by M, M =

∑m
i=0 li. We use coverage denoting

the expected number of times that a position in the genome is sequenced, so
coverage = M /N. All error correction methods rely on the coverage of the reads
being moderately high so that every position of the genome is sequenced several
times with high probability. Reads from low coverage regions cannot be corrected
because there is insufficient data to infer the correct sequence. We use p denoting
the per-base error rate, so for a read with the length l, the expected error bases
in the read is l*p.

For a reads set r0,r1,. . . ,rm−1, supposed these reads map to the substrings of
G which are g0,g1,. . . ,gm−1, the task of an error correction algorithm is to covert
the reads r0,r1,. . . ,rm−1 to r∗

0,r
∗
1,. . . ,r

∗
m−1 using the edit operations, making D
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=
∑m

i=0 | gi − r∗i | as small as possible. There are three types of errors: substi-
tutions, insertions and deletions. The distribution of error types varies from one
sequencing platform to another. For instance, the Roche/454 sequencing plat-
form produces reads with insertions and deletions, due mainly to homopolymers,
whereas the SOLiD and Illumina platforms are prone to substitution errors.
Hence, | gi − r∗i | can denote the Hamming distance allowing only substitu-
tions or edit distance allowing also insertions and deletions between gi and r∗i
according to the error characteristics of the sequencing platforms.

2.2 Solution

If the reads have been aligned correctly to the genome, we can identify and
correct the errors by checking each column of the alignments. However, as the
analysis in the first section, most of time we cannot obtain the correct alignments
for the computational complexity and the accuracy of multiple alignments of
large-scale reads. We suppose that the reads can map to a genome or a reference
genome. Then, there are many substrings of the reads map to a identical segment
of the genome for the high coverage of reads. We define these substrings as an
overlapping region if they are identical. For a common substring S contained in
an overlapping region, let L(S) denote the length of the common substring and
H(S) denote the number of the reads across the overlapping region. Actually,
a common substring is corresponding to a k -mer in the SAP and is similar to
the witness in HiTEC and the path from the root to a node in the suffix trie in
Shrec. Figure 1 shows an example of an overlapping region.

Fig. 1. An example of an overlapping region. The common substring contained in the
overlapping region is S = ACCGGTTAC. L(S) = 9, H(S) = 5.

If the common substring of an overlapping region is unique , we can obtain
the alignment between the reads across the overlapping region. However, the
random occurrences and repeats in the genome will make a common substring
identical to another one. The larger the length of the common substring is, the
smaller the probability that the common substring has random occurrences or
repeats. On the other hand, for a common substring S, the lager L(S) is, the
smaller H(S). If the H(S) is small enough, we have insufficient data to infer
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whether the common substring is correct. Hence, we use two parameters γ and
δ. If L(S) = γ and H(S) > δ, we define the common substring S as a correct
common substring and the overlapping region as a correct overlapping region.

For the reads across a correct overlapping region, we then form multiple align-
ments and correct errors for the strings following the common substring. We
retrieve the consensus of the multiple alignments and then check each column to
correct the bases which are not identical the consensus. From the figure 2, we can
see that our approach can correct mixed errors in short reads. We adjust the gap
penalty and the mismatch penalty of multiple alignments so that our approach
can adapt to the short reads produced from different sequencing platforms or
mixed short reads.

Fig. 2. Forming multiple alignments and correcting errors for the strings following the
common substring in the reads across a correct overlapping region. From the multiple
alignments, we can see that the third read has a deletion error and the fifth read has
a substitution error.

3 Algorithm

Our approach has two stages: searching the correct overlapping regions, forming
multiple alignments and correcting errors. We will present each stage detailedly
as well as the full algorithm and the computational complexity.

3.1 Searching the Correct Overlapping Regions

We use the suffix array data structure to search the correct overlapping regions.
We first give the definition of the suffix array. For a alphabet Σ, | Σ | is the size
of alphabet. A string is any finite sequence over Σ. Let T=c0,c1,. . . ,cn−1 be a
string of length n. T [i,j ] is the substring ci, ci+1,. . . , cj , in which 0≤i≤j≤n. We
add a special character ”$” at the tail of the string T and denote the suffix of
T at the position of i by Si=T [i,n]=ci ,ci+1,. . . ,cn−1,$. $ is smaller than any
character in Σ. The suffix array of T on the alphabet Σ, which we denote as SA,
is an array of length n containing the positions of string T such that SSA[i] gives
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the increasing lexicographical order, i.e., SSA[0]<SSA[1]< . . . <SSA[n−1]. Besides
suffix array, the longest common prefix (LCP) array is often used to compute
the length of the longest common prefix between suffixes. LCP[i ] is the length of
the longest common prefix of SSA[i] and SSA[i−1]. The suffix array data structure
has been proposed by Manber and Myers [13], and the suffix array construction
algorithm can be seen from [14] for a survey.Figure 3 shows the suffix array and
LCP array of string ACCTATACCGTA.

i SA[i ] SSA[i] LCP [i ]
0 12 $ 0
1 11 A$ 0
2 6 ACCGTA$ 1
3 0 ACCTATACCGTA$ 3
4 4 ATACCGTA$ 1
5 7 CCGTA$ 0
6 1 CCTATACCGTA$ 2
7 8 CGTA$ 1
8 2 CTATACCGTA$ 1
9 9 GTA$ 0
10 10 TA$ 0
11 5 TACCGTA$ 2
12 3 TATACCGTA$ 2

Fig. 3. The suffix array and LCP array of string ACCTATACCGTA

We also use the libdivsufsort library of Yuta Mori [15] which is a fast and
lightweight suffix array construction algorithm to compute the full suffix array of
R as HiTEC. R = r1$r1$r2$r2$ . . . $rm$ rm$. The algorithm requires O(nlogn)
time in which n is the length of R. n = 2*(M + m). If n< 232, it requires
5n+O(1) bytes space for suffix array.

With the suffix array of R, we can get all the correct overlapping regions. We
first computing the LCP array of R. Because each read in R has been separated
by $, we use an variation of LCP array called LCP $ array instead of LCP array,
for we only need to compute the longest common prefix before any $ of SSA[i]

and SSA[i−1] for LCP $[i ]. The LCP $ array also be computed by the algorithm
of Kasai et al. [16] in O(n) time and space. Then, we scan the LCP $ array. If
LCP $[i + j ] ≥ γ for j = 1,2,. . . ,k and k ≥ δ, 0 ≤ i < n, the γ-long prefix of
SSA[i],SSA[i+1],. . . ,SSA[i+k] is a correct overlapping region.

Constructing the suffix array needs O(nlogn) in time. Computing the LCP $[i ]
array and searching the correct overlapping regions both need O(n) in time. So
this stage requires O(nlogn) in time and 6n+O(1) bytes space.

3.2 Forming Multiple Alignments and Correcting Errors

We form the multiple alignments for each correct overlapping region in the sec-
ond stage. Supposed that there are k reads across the correct overlapping region
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which are ri1 , ri1 ,. . . ,rik
, and for the read rij

( 0≤j≤k),the common sub-

string ends at pj. Hence, we need to form multiple alignments for the string
set S = {ri1 [p1,l i1 ],ri2 [p2,l i2 ], . . . , rik

[pk,l ik
]}, in which l ij

is the length of the

read rij
.

Next we compute the consensus r consensus of S using the majority voting
scheme. For the i-th column of S, let occurrences(x )( x ∈ {A,C,G,T}) represents
the occurrences of x. If ∃x i occurrences(x i) > h/2 and occurrences(x i) ≥ 2
(h is the number of non-null elements in the i-th column of S ), r consensus[i ]
= x i; otherwise, r consensus[i ] = N. If r consensus[j ] ∈ {A,C,G,T} and the later
characters of r consensus[j ] are all N, we truncate the end of r consensus from the
j -th character and set the length of r consensus to j+1;

Then we align each string in S to the consensus using the Needleman-Wunsch
algorithm[17]. We allow free gaps both for the string and the consensus if the
users choose gapped alignment for substitution errors and indel errors. Otherwise
we disallow free gaps only for the substitution errors. For the gapped alignment,
we do not count the gap penalty at the end of the string and the consensus
for they need to be aligned from the left. If the score of the alignment exceeds
the threshold, we correct the string according to the consensus. Otherwise, we
consider the string is the substring of a read which is a random occurrence or a
repeat of the genome and skip the string.

It seems that we only correct errors in the ”right” region of each correct over-
lapping region. Actually, because we search the correct overlapping regions from
the suffix array which is constructed from all the reads and their reverse com-
plement. For each correct overlapping region Γ , we will find the corresponding
correct overlapping region Γ of its reverse complement and correct errors in the
”right” region of Γ . The ”right” region of Γ is corresponding to the ”left” region
of Γ , hence our approach forms multiple read alignments in fact.

There may exist inconsistency when a read traverses across two or more cor-
rect overlapping regions. To address this problem, we use left i and righti to keep
the correct segment of read ri. We set left i = 0 and righti = 0 initially. In the
second stage, when we find ri across correct overlapping region for the first time,
we first set righti to the right end position of the common substring of ri. Then,
if the string ri[righti, l i] has p-long prefix aligned to the consensus in the mul-
tiple alignments, we set righti = righti + p. Similarly, when we find the reverse
complement ri of read ri across correct overlapping region for the first time, we
first set left i to the length of the right segment beyond the common substring
of ri. Then, if the string ri[left i, l i] has q-long prefix aligned to the consensus in
the multiple alignments, we set left i = left i - q. We consider that the substring
ri[left i, righti] is the corrected segment of read ri. Therefore, when we correct
read ri in another multiple alignment, if the suspicious bases are in the substring
ri[left i, righti], we ignore them simply. Otherwise, we correct them and update
left i and righti.

We give the detailed algorithm of the second satge in Algorithm 1.
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Algorithm 1. align correct()
given: a correct overlapping region Γ , reads r1,r1,. . . ,rm, the length of ri is l i for
1≤i≤m, left [m] and right [m]
output: the corrected bases, left [m] and right [m]

1: obtain the reads ri1 , ri2 ,. . . ,rik
across Γ

2: compute the end position pj of the common substring of rij
, for 1≤j≤k

3: obtain the string sets S = {ri1 [p1,l i1 ],ri2 [p2,l i2 ], . . . , rik
[pk,l ik

]}
4: for each column i in S do
5: rconsensus[i ] = N
6: compute occurrences(A),occurrences(C),occurrences(G),occurrences(T)respectively
7: h ← the number of non-null characters in the column
8: if ∃x (occurrences(x ) > h/2 and occurrences(x )≥ 2) (x ∈ {A,C,G,T}) then
9: rconsensus[i ] = x
10: end if
11: end for
12: truncate rconsensus

13: for each string ri in S do
14: score = align(ri,rconsensus)
15: if score < ε(min(li, lconsensus))(ε is an user-defined threshold) then
16: continue
17: else
18: Get all the suspicious bases of ri
19: for each suspicious base p do
20: if p is included in ri[lefti, righti] then
21: continue
22: else
23: correct(p)
24: update lefti and righti
25: end if
26: end for
27: end if
28: end for

3.3 Choosing Parameters

Now we present how to choose the parameters γ and δ. The larger γ and δ,
the smaller the probability that the correct overlapping region has random oc-
currences or repeats. However, we cannot set γ and δ too large because it will
miss many errors. We use the same method as Quake [8] to determine γ. For a
γ-long string, the expected occurrences in the genome G which length is N are
2N /4γ,hence, we use the following formula to determine γ.

2N

4γ
≈ 0.01

γ ≈ log4 200N (1)

If there are no errors, the expected occurrences of a γ-long string in the reads
is coverage. For the p per-base error rate, the expected occurrences of a γ-long
string without error is
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occurrences(γ) = coverage− coverage(1− (1− p)γ)

To increase the discriminative power for identifying the location of errors in the
reads with low coverage, we set δ as equation 2.

δ =
occurrences(γ)

2
=

coverage− coverage(1− (1 − p)γ)
2

(2)

For the reads produced from an approximately 5 Mbp genome such as E. coli,
if the coverage is 70, the per-base error rate is 1%, we will set γ to 15 and δ
to 31.

3.4 The Full Algorithm and Complexity

Now we can give the full algorithm and the computational complexity of our
approach. The full algorithm is presented in Algorithm 2.

Algorithm 2. The full algorithm of our approach
given: reads r1,r1,. . . ,rm, the length of ri is l i for 1≤i≤m, N, p and coverage
output: the corrected reads

1: compute γ and δ
2: initialize the arrays left [m] and right [m]
3: constructed R and compute SA and LCP $ array
4: scan LCP $ array to search the correct overlapping regions
5: for each correct overlapping regions Γ do
6: align correct()
7: end for

Let lave be the average length of the reads. Constructing the suffix array
needs O(MlogM ) time and computing LCP $ array needs O(M ) time. There
are M /δ correct overlapping regions. For each correct overlapping regions, com-
puting the consensus needs O(δ*(lave - γ)) and using the Needleman-Wunsch
algorithm to align each string to the consensus needs O(δ*(lave - γ)2), so the
time complexity of align correct function is O(δ*(lave - γ)2). Hence, the worst
case time complexity of our approach is O(MlogM + M *(lave - γ)2) which
is also O(mlave*log(mlave)+ mlave*(lave - γ)2). Our approach is more efficient
than the alignment-based methods for large-scale short reads and is compara-
ble or even faster than the alignment-free methods. Our approach requires only
6M+O(1) bytes space which makes it memory-efficient.

4 Evaluation

In this section, we evaluate the performance of our approach. We use the sim-
ulation data sets which are created from several bacterial genomes as previous
programs. These genomes can be downloaded from GenBank under the accession
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numbers. We create two read data sets: S1 and S2. S1 is a read data set for eval-
uating our approach compared to alternative approaches (SHREC [10], HITEC
[12], and Quake [8]) with only substitution errors, for SHREC and HITEC can
only correct substitutions. S2 is a read data set for evaluating our approach
compared to Ext-SHREC [11] and Quake with all types of errors (Ext-SHREC
does the same work as SHREC when the reads have the same length and only
have substitution errors). The datasets used for our performance evaluation are
summarized in Table 1.

Table 1. Datasets used for performance evaluation.The reads in S1 only contain sub-
stitution errors. The reads in S2 contain all types of errors with the same probability
for each type of errors and the length of reads varies from 60 bps to 120 bps.

Dataset ID Reference
genome(GenBank)

Genome
length(MB)

Error
rate(%)

coverage length of
reads (bp)

S1

A1
NC 001139 1.1

1

70

70A2 2
A3 3
B1

NC 007146 1.9
1

70B2 2
B3 3
C1

NC 003923 2.8
1

70C2 2
C3 3
D1

NC 000913 4.7
1

70D2 2
D3 3

S2

E1
NC 003923 2.8

1

70

60∼120E2 2
E3 3
F1

NC 000913 4.7
1

60∼120F2 2
F3 3

We also use the accuracy to evaluate the performance of the algorithm we
measured as HITEC [12]. The accuracy is defined as the ratio between the num-
ber of corrected reads and the number of initially erroneous reads. We use errbef

denoting the number of erroneous reads before correction and erraft denoting
the number of erroneous after correction. Then,

accuracy =
errbef − erraft

errbef

If we denote the number of erroneous reads that are corrected, correct reads
that are left unchanged, correct reads that are wrongly changed, and erroneous
reads that are left unchanged by TP, TN, FP, FN (true/false positive/negative)
respectively, we have errbef = TP + FN, erraft = FP + FN and therefore
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accuracy =
TP− FP
TP + FN

We called our approach MyHybrid for short. The tests shown in Table 2
and Table 3 were performed on a desktop computer with Intel Xeon E5420
4-core processor at 2.50GHz, 8GB RAM, running RHEL 5 x86 64 server. All
algorithms to be compared use the default parameters. We also evaluate the
time and memory required by the algorithm we measured in Table 4. Note that
the test runs on a 64bit Linux, the memory used by the measured programs is
almost two times as many as that running on 32bit operating systems.

From the tests, we can see that the accuracy of our approach is comparable to
HiTEC and Quake for the data set S1 which only contains substitution errors.
With various error rates, our approach performs more steadily than the other
three programs. For the data set S2 which contains mixed errors, our approach
is more efficient than Ext-SHREC and Quake. This makes our approach more
available for the real read data which has complex error characters. Furthermore,
in addition to obtaining very high accuracy, our approach has also very good
time and space complexities. Our approach outperforms HiTEC and SHREC
and is approximate to Quake on computational performance.

Table 2. Accuracy comparison for the data set S1

dataset Accuracy(%)

ID SHREC Quake HiTEC MyHybrid

A1 95.12 97.45 98.79 97.62
A2 87.04 96.38 97.60 97.04
A3 79.75 92.67 94.39 96.56
B1 92.64 98.49 99.03 98.25
B2 83.77 94.00 98.54 98.30
B3 64.30 91.78 96.27 97.16
C1 90.42 96.41 99.24 98.48
C2 73.08 95.33 97.73 98.06
C3 58.33 91.92 94.55 96.57
D1 88.05 97.17 98.62 98.40
D2 72.64 94.43 95.95 97.03
D3 57.95 92.80 92.16 94.33

Table 3. Accuracy comparison for the data set S2

dataset Accuracy(%)

ID Ext-SHREC Quake MyHybrid

E1 85.02 94.69 93.97
E2 74.80 89.06 92.14
E3 60.75 85.33 89.36
F1 80.64 95.64 92.02
F2 68.31 90.47 90.35
F3 55.42 87.66 89.98
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Table 4. Time and space comparison between SHREC, Quake, HiTEC and our ap-
proach for the data set S1

dataset Time(s) Memory(MB)

ID SHREC Quake HiTEC MyHybrid SHREC Quake HiTEC MyHybrid

A1 1651 244.7 257.6 138.7 3002 448 1408 1462
A2 2540 265.9 386.4 142.2 3014 456 1408 1462
A3 3789 307.5 579.6 149.0 3528 440 1408 1462
B1 2517 278.6 478.9 205.7 3206 510 2476 2520
B2 3861 380.4 714.3 238.4 3890 518 2476 2520
B3 4960 421.9 1075.0 244.5 5742 526 2476 2520
C1 4033 346.1 785.5 294.8 3970 1048 3652 3738
C2 5580 381.0 1174.8 321.9 4864 1082 3652 3738
C3 7842 474.2 1767.3 345.6 6004 1124 3652 3738
D1 5947 429.3 1529.4 976.0 6190 1060 6014 6184
D2 8612 468.0 1911.7 1065.4 7100 1176 6014 6184
D3 14960 502.4 3441.1 1092.8 7452 1248 6014 6184

5 Conclusion

In this paper, we propose a novel and efficient hybrid approach for correct-
ing errors in short reads. Our approach can correct all types of errors in short
reads produced by different sequencing platforms. Experiments show that our
approach provides significantly higher accuracy and is comparable or even faster
than previous approaches.
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Abstract. Services in the information society allow automatically and
routinely collecting large amounts of data. Those data are often used
to train classification rules in view of making automated decisions, like
loan granting/denial, insurance premium computation, etc. If the train-
ing datasets are biased in what regards sensitive attributes like gender,
race, religion, etc., discriminatory decisions may ensue. Direct discrim-
ination occurs when decisions are made based on biased sensitive at-
tributes. Indirect discrimination occurs when decisions are made based
on non-sensitive attributes which are strongly correlated with biased sen-
sitive attributes. This paper discusses how to clean training datasets and
outsourced datasets in such a way that legitimate classification rules can
still be extracted but indirectly discriminating rules cannot.

Keywords: Anti-discrimination, Indirect discrimination, Discrimination
prevention, Data mining, Privacy.

1 Introduction

Automated data collection in the information society facilitates automating de-
cision making as well. Superficially, automating decisions may give a sense of
fairness: classification rules do not guide themselves by personal preferences.
However, at a closer look, one realizes that classification rules are actually trained
on the collected data. If those training data are biased, the learned model will
be biased. For example, if the data are used to train classification rules for loan
granting and most of the Brazilians in the training dataset were denied their
loans, the leaned rules will also show biased behavior toward Brazilian and it
is a discriminatory reason for loan denial. Unfairly treating people on the basis
of their belonging to a specific group (race, ideology, gender, etc.) is known as
discrimination and is legally punished in many democratic countries.

1.1 Discrimination-Aware Data Mining

The literature in law and social sciences distinguishes direct and indirect dis-
crimination (the latter is also called systematic). Direct discrimination consists

V. Torra et al. (Eds.): MDAI 2011, LNAI 6820, pp. 211–222, 2011.
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of rules or procedures that explicitly impose “disproportionate burdens” on mi-
nority or disadvantaged groups (i.e. discriminatory rules) based on sensitive
attributes related to group membership (i.e. discriminatory attributes). Indirect
discrimination consists of rules or procedures that, while not explicitly mention-
ing discriminatory attributes, impose the same disproportionate burdens, inten-
tionally or unintentionally. This effect and its exploitation is often referred to
as redlining and indirectly discriminating rules can be called redlining rules [1].
The term “redlining” was invented in the late 1960s by community activists in
Chicago [2]. The authors of [1] also support this claim: even after removing the
discriminatory attributes from the dataset, discrimination persists because there
may be other attributes that are highly correlated with the sensitive (discrimina-
tory) ones or there may be background knowledge from publicly available data
(e.g. census data) allowing inference of the discriminatory knowledge (rules).

The existing literature on anti-discrimination in computer science mainly elab-
orates on data mining models and related techniques. Some proposals are ori-
ented to the discovery and measure of discrimination [1,3,4,7]. Others deal with
the prevention of discrimination. Although some methods have been proposed,
discrimination prevention stays a largely unexplored research avenue. Clearly,
a straightforward way to handle discrimination prevention would consist of re-
moving discriminatory attributes from the dataset. However in terms of indirect
discrimination, as stated in [1,2] there may be other attributes that are highly
correlated with the sensitive ones or there may be background knowledge from
publicly available data that allow for the inference of discrimination rules. Hence,
one might decide to remove also those highly correlated attributes as well. Al-
though this would solve the discrimination problem, in this process much useful
information would be lost. Hence, one challenge regarding discrimination preven-
tion is considering indirect discrimination other than direct discrimination and
another challenge is to find an optimal trade-off between anti-discrimination and
usefulness of the training data.

1.2 Contribution and Paper Organization

The main contributions of this paper are as follows: (1) a new preprocessing
method for indirect discrimination prevention based on data transformation that
can consider several discriminatory attributes and their combinations; (2) some
measures for evaluating the proposed method in terms of its success in dis-
crimination prevention and its impact on data quality. Although some methods
have recently been proposed for discrimination prevention [2,5,6,10], such works
only consider direct discrimination. Their approaches cannot guarantee that the
transformed dataset is really discrimination-free, because it is known that dis-
criminatory behaviors can be hidden behind non-discriminatory items. To the
best of our knowledge this is the first work that proposes a discrimination pre-
vention method for indirect discrimination.

In this paper, Section 2 elaborates on the discovery of indirect discrimination.
Section 3 presents our proposed method. Evaluation measures and experimental
evaluation are presented in Section 4. Conclusions are drawn in Section 5.
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2 Discovering Discrimination

In this section, we present some background concepts that are used throughout
the paper. Moreover, we formalize the finding of indirect discrimination.

2.1 Background

A dataset is a collection of records and their attributes. Let DB be the original
dataset. An item is an attribute along with its value, e.g. Race=black. An itemset
is a collection of one or more items. A classification rule is an expression X → C,
where X is an itemset, containing no class items, and C is a class item, e.g.
Class=bad.

The support of an itemset, supp(X), is the fraction of records that contain the
itemset X . We say that a rule X → C is completely supported if both X and C
appear in the record. The confidence of a classification rule, conf(X → C), mea-
sures how often the class item C appears in records that contain X . A frequent
classification rule is a classification rule with a support or confidence greater
than a specified lower bound. Let FR be the database of frequent classification
rules extracted from DB.

With the assumption that discriminatory items in DB are predetermined (e.g.
Race=black), rules fall into one of the following two classes with respect to dis-
criminatory and non-discriminatory items in DB: (i) a classification rule is poten-
tially discriminatory (PD) when X = A, B with A a non-empty discriminatory
itemset and B a non-discriminatory itemset (e.g. {Race=black, City=NYC}→
Class=bad); (ii) a classification rule is potentially non-discriminatory (PND) when
X = D, B is a non-discriminatory itemset (e.g. {Zip=10451, City=NYC} →
Class=bad). Let assume that the notation X(D, B) means X = D, B. Let PR
a database of frequent classification rules with PD and PND classification rules.
The word “potentially” means that a PD rule could probably lead to discrimina-
tory decisions, so some measures are needed to quantify the discrimination po-
tential (direct discrimination). Also, a PND rule could lead to discriminatory de-
cisions if combined with some background knowledge (indirect discrimination);
e.g., if the premise of the PND rule contains the Zip=10451 itemset, relying on
additional background knowledge one knows that zip 10451 is mostly inhabited
by black people.

Pedreschi et al.[1,4] introduced a family of measures of the degree of discrim-
ination of a PD rule. One of these measures is extended lift measure (elift):

elift(A, B → C) =
conf(A, B → C)
conf(B → C)

Whether the rule is to be considered discriminatory can be assessed by using a
threshold: Let α ∈ R be a fixed threshold1 and let A be a discriminatory itemset.
A PD classification rule c : A, B → C is α-protective w.r.t. elift if elift(c) < α.
Otherwise, c is α-discriminatory.
1 Note that α is a fixed threshold stating an acceptable level of discrimination accord-

ing to laws and regulations.
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2.2 Indirect Discrimination Formalization

In terms of indirect discrimination, the purpose of discrimination discovery is
identifying PND rules that are to a certain extent equivalent to α-discriminatory
rules or, in other words, identifying redlining rules. To determine the redlin-
ing rules, Pedreschi et al. in [1] stated the theorem below which gives a lower
bound for α-discrimination of PD classification rules given information available
in PND rules (γ, δ) and information available from background rules (β1, β2).
They assume that background knowledge takes the form of classification rules
relating a non-discriminatory itemset D to a discriminatory itemset A within
the context B.

Theorem 1 ([1]). Let r : X(D, B) → C be a PND classification rule, and let

γ = conf(D, B → C) δ = conf(B → C) > 0.

Let A be a discriminatory itemset, and let β1, β2 such that

conf(rb1 : A, B → D) ≥ β1

conf(rb2 : D, B → A) ≥ β2 > 0.

Call
f(x) =

β1

β2
(β2 + x − 1)

elb(x, y) =
{

f(x)/y if f(x) >0
0 otherwise

It holds that, for α ≥ 0, if elb(γ, δ) ≥ α, the PD classification rule r′ : A, B →
C is α-discriminatory.

Based on the above theorem, we propose the following formal definitions of
redlining and non-redlining rules.

Definition 1. A PND classification rule r : X(D, B) → C is a redlining rule
if it could yield an α-discriminatory rule r′ : A, B → C in combination with
currently available background knowledge rules of the form rb1 : A, B → D and
rb2 : D, B → A, where A is a discriminatory itemset.

Definition 2. A PND classification rule r : X(D, B) → C is a non-redlining
rule if it cannot yield any α-discriminatory rule r′ : A, B → C in combination
with currently available background knowledge rules of the form rb1 : A, B → D
and rb2 : D, B → A, where A is a discriminatory itemset.

Note that the correlation between the discriminatory itemset A and the non-
discriminatory itemset D with context B indicated by the background rules rb1

and rb2 holds with confidences at least β1 and β2, respectively; however, it is
not a completely certain correlation. Let RR be the database of redlining rules
extracted from database DB.
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3 A Proposal for Indirect Discrimination Prevention

In this section we present a new indirect discrimination prevention method. The
method transforms the source data by removing indirect discriminatory biases
so that no unfair decision rule can be indirectly mined from the transformed
data. The proposed solution is based on the fact that the dataset of decision
rules would be free of indirect discrimination if it contained no redlining rule.

For discrimination prevention using preprocessing, we should transform data
by removing all evidence of discrimination in the form of α-discriminatory rules
and redlining rules. In [10] and [11] we concentrated on direct discrimination and
considered α-discriminatory rules. In this paper, we focus on indirect discrimina-
tion and consider redlining rules. For these rules, a suitable data transformation
with minimum information loss should be applied in such a way that those
redlining rules are converted to non-redlining rules.

As mentioned above, based on the definition of the indirect discriminatory
measure (i.e. elb), to convert redlining rules into non-redlining rules, we should
enforce the following inequality for each redlining rule r : D, B → C in RR:

elb(γ, δ) < α (1)

By using the definitions in the statement of Theorem 1, Inequality (1) can be
rewritten as

conf(rb1)
conf(rb2)

(conf(rb2) + conf(r : D, B → C) − 1)

conf(B → C)
< α (2)

To enforce the above inequality, there can be two situations:

– Case 1: Assume that discriminatory items (i.e. A) are removed from the
original database (DB), and the rb1 and rb2 rules are obtained from pub-
licly available data so that their confidences are constant. Let us rewrite
Inequality (2) in the following way

conf(r : D, B → C) <
α · conf(B → C) · conf(rb2)

conf(rb1)
− (conf(rb2) + 1) (3)

It is clear that Inequality (2) can be satisfied by decreasing the confidence
of redlining rule (r : D, B → C) to values less than the right-hand side of
Inequality (3).

– Case 2: Assume that discriminatory items (i.e. A) are not removed from the
original database (DB), and the rules rb1 and rb2 might be obtained from
DB so that their confidences might change by data transformation. This
could be more useful to detect the non-discriminatory items that are highly
correlated with the discriminatory ones and thereby discover the possibly
discriminatory rules that could inferred from them. Let us rewrite Inequality
(2) as Inequality (4), where the confidences of rb1 and rb2 rules are not
constant.
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conf(B → C) >

conf(rb1)
conf(rb2)

(conf(rb2) + conf(r : D, B → C) − 1)

α
(4)

Clearly, in this case Inequality (2) can be satisfied by increasing the con-
fidence of the base rule (B → C) of the redlining rule (r : D, B → C) to
values greater than the right-hand side of Inequality (4) without affecting
either the confidence of the redlining rule or the confidence of the rb1 and
rb2 rules.

The detailed process of our preprocessing discrimination prevention method for
indirect discrimination is described by means of the following phases:

– Phase 1. Use Pedreschi’s measure on each PND rule to discover the pat-
terns of indirect discrimination emerged from the available data and also
the background knowledge. It consists of the following steps: (i) extract fre-
quent classification rules from DB using Apriori [9]; (ii) divide the rules into
PD and PND, with respect to the predetermined discriminatory items in the
dataset; (iii) for each PND rule, compute elb to determine the collection of
redlining rules. Let RR be a database of redlining rules and their respective
α-discriminatory rules ensuing from those rules through combination with
background knowledge rules.

– Phase 2. Transform the original data to convert each redlining rule to a
non-redlining rule without seriously affecting the data or other rules. Algo-
rithms 1 and 2 show the steps of this phase.

– Phase 3. Evaluate the transformed dataset with the discrimination preven-
tion and information loss measures of Section 4.1 below, to check whether
they are free of discrimination and useful enough.

The second phase will be explained in detail in the following subsection.

3.1 Data Transformation Method

The data transformation method should increase or decrease some rule confi-
dences as proposed in the previous section with minimum impact on data quality.
In terms of the measures defined in Section 4.1 below, we should maximize the
discrimination prevention measures and minimize the information loss measures.
It is worth mentioning that data transformation methods were previously used
for knowledge hiding [8] in privacy-preserving data mining (PPDM). Here we
propose a data transformation method for hiding discriminatory and redlining
rules.

Algorithms 1 and 2 detail our proposed data transformation method for each
of the aforementioned cases. Without loss of generality, we assume that the class
attribute C is binary (any non-binary class attribute can be expressed as the
Cartesian product of binary class attributes).

1. No discriminatory attributes in the dataset. For each redlining rule in
this case, Inequality (3) should be enforced. Note that conf(rb2 : D, B → A)
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and conf(rb1 : A, B → D) are constant. The values of both sides of Inequality
(3) are not independent; hence, a transformation is required that decreases
the left-hand side of the inequality without any impact on the right-hand
side. A possible solution for decreasing

conf(r : D, B → C) =
supp(D, B, C)
supp(D, B)

(5)

In inequality (3) to the target value is to perturb item D from ¬D to D
in the subset DBc of all records of the original dataset which completely
support the rule ¬D, B → ¬C and have minimum impact on other rules to
increase the denominator of Expression (5) while keeping the numerator and
conf(B → C) fixed.

2. Discriminatory attributes in the dataset. For each redlining rule in
this case, Inequality (4) should be enforced. Note that in this case conf(rb2 :
D, B → A) and conf(rb1 : A, B → D) might not be constant. So it is clear
that the values of both inequality sides are dependent; hence, a transforma-
tion is required that increases the left-hand side of the inequality without
any impact on the right-hand side. A possible solution for increasing

conf(B → C) =
supp(B, C)
supp(B)

(6)

in Inequality (4) to the target value is to perturb item C from ¬C to C in the
subset DBc of all records of the original dataset which completely support
the rule ¬A, B,¬D → ¬C and have minimum impact on other rules; this
increases the numerator of Expression (6) while keeping the denominator
and conf(rb1 : A, B → D), conf(rb2 : D, B → A), and conf(r : D, B → C)
fixed.

In Algorithms 1 and 2, records in DBc should be changed until the transfor-
mation requirement is met for each redlining rule. Among the records of DBc,
one should change those with lowest impact on the other (non-redlining) rules.
Hence, for each record dbc ∈ DBc, the number of rules whose premise is sup-
ported by dbc is taken as the impact of dbc, that is impact(dbc); the rationale
is that changing dbc impacts on the confidence of those rules. Then the records
dbc with minimum impact(dbc) are selected for change, with the aim of scoring
well in terms of the four utility measures proposed in the next section.

Background Information. In order to implement the proposed data trans-
formation method for indirect discrimination prevention, we simulate the avail-
ability of a large set of background rules under the assumption that the dataset
contains the discriminatory items. Let BKs be a database of background rules
be defined as

BK = {rb2 : X(D, B) → A|A discriminatory itemset and supp(X → A) ≥ ms}

In fact, BK is the set of classification rules X → A with a given minimum
support ms and A a discriminatory itemset. Although rules of the form rb1 :
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Algorithm 1.
Inputs: DB, FR, RR, α, DIs

Output: DB′: the transformed dataset
for each r : X(D, B) → C ∈ RR do

γ = conf(r)
for each r′ : (A ⊆ DIs), (B ⊆ X) → C do

β2 = conf(rb2 : X → A)
Δ1 = supp(rb2 : X → A)
δ = conf(B → C)
Δ2 = Supp(B → A)
β1 = Δ1

Δ2
//conf(rb1 : A, B → D)

Find DBc: all records in DB that completely support ¬D, B → ¬C
for each dbc ∈ DBc do

Compute impact(dbc) = |{ra ∈ FR|dbc supports the premise of ra}|
end for
Sort DBc by ascending impact
while γ ≥ α·δ·β2

β1
− (β2 + 1) do

Select first record dbc in DBc

Modify D item of dbc from ¬D to D in DB
Recompute γ = conf(r : X → C)

end while
end for

end for
Output: DB′ = DB

A, B → D are not included in BK, conf(rb1 : A, B → D) could be obtained as
supp(rb2 : D, B → A)/supp(B → A).

From each redlining rule (r : X(D, B) → C) in combination with background
knowledge, more than one α-discriminatory rule r′ : A, B → C might be gener-
ated because of two reasons: 1) existence of different sub-itemsets D, B ⊆ X such
that X can be written as D, B and 2) existence of more than one item in the set
of predetermined discriminatory items (DIs). Hence, given a redlining rule (r),
proper data transformation should be conducted for all α-discriminatory rules
r′ : (A ⊆ DIs), (B ⊆ X) → C ensuing from r.

4 Experimental Evaluation

This section presents an experimental evaluation of our solution for indirect
discrimination prevention. First, we present the utility measures that we propose
to evaluate our solution. Finally, we report the experimental results.

4.1 Utility Measures

Two aspects are relevant to evaluate the performance of our indirect discrim-
ination prevention method, namely the success of the method in removing all
evidence of indirect discrimination from the original dataset (degree of discrim-
ination prevention) and the impact of the method on data quality (degree of
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Algorithm 2.
Inputs: DB, FR, RR, α, DIs

Output: DB′: the transformed dataset
for each r : X(D, B) → C ∈ RR do

γ = conf(r)
for each r′ : (A ⊆ DIs), (B ⊆ X) → C do

β2 = conf(rb2 : X → A)
Δ1 = supp(rb2 : X → A)
δ = conf(B → C)
Δ2 = Supp(B → A)
β1 = Δ1

Δ2
//conf(rb1 : A, B → D)

Find DBc: all records in DB that completely support ¬A, B,¬D → ¬C
for each dbc ∈ DBc do

Compute impact(dbc) = |{ra ∈ FR|dbc supports the premise of ra}|
end for
Sort DBc by ascending impact
while δ ≤ β1(β2+γ−1)

β2·α do
Select first record dbc in DBc

Modify C item of dbc from ¬C to C in DB
Recompute δ = conf(B → C)

end while
end for

end for
Output: DB′ = DB

information loss). A discrimination prevention method should provide a good
trade-off between both aspects above. We propose the following measures for
evaluating our solution:

– Discrimination Prevention Degree (DPD). This measure quantifies the per-
centage of redlining rules that are no longer redlining in the transformed
dataset. It is defined as

DPD =
|RR| − |RR′|

|RR|
where RR is the database of redlining rules extracted from DB, RR′ is the
database of redlining rules extracted from the transformed dataset DB′, and
| · | is the cardinality operator.

– Discrimination Protection Preservation (DPP). This measure quantifies the
percentage of the non-redlining rules in the original dataset that remain
non-redlining in the transformed dataset. It is defined as

DPP =
|NR

⋂
NR′|

|NR|
where NR is the database of non-redlining rules extracted from the original
dataset DB, and NR′ is the database of non-redlining rules extracted from
the transformed dataset DB′.
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– Misses Cost (MC). This measure quantifies the percentage of rules among
those extractable from the original dataset that cannot be extracted from the
transformed dataset (side-effect of the transformation process). It is defined
as

MC =
|FR| − |FR

⋂
FR′|

|FR|

where FR′ is the database of frequent classification rules extracted from the
transformed dataset DB′.

– Ghost Cost (GC). This measure quantifies the percentage of the rules among
those extractable from the transformed dataset that could not be extracted
from the original dataset (side-effect of the transformation process). It is
defined as

GC =
|FR′| − |FR

⋂
FR′|

|FR′|

where FR′ is the database of frequent classification rules extracted from the
transformed dataset DB′.

The DPD and DPP measures are used to evaluate the success of the proposed
method in indirect discrimination prevention; ideally they should be 100%. The
MC and GC measures are used for evaluating the degree of information loss (im-
pact on data quality); ideally they should be 0% (MC and GC may not be 0% as a
side-effect of the transformation process). MC and GC were previously proposed
and used as information loss measures for knowledge hiding in PPDM [8].

4.2 Results

We use the German Credit Dataset [12] in our experiments, since it is a well-
known and frequently used dataset in the context of anti-discrimination. In this
dataset, we consider the following set of predetermined discriminatory items
(DIs): female and not single as personal status, unemployed or unskilled non
resident as job, the attributes marking the individual as foreign worker and
old-aged.

In this section, we present the experimental evaluation of the proposed method.
For the first phase we have used Apriori [9]. The algorithms and the utility mea-
sures corresponding to the second and third phases of the proposed solution, re-
spectively, were implemented using Microsoft Visual Studio 2008 with C# pro-
gramming language. The tests were performed on an 2.27 GHz Intel R© CoreTMi3
machine, equipped with 4 GB of RAM, and running under Windows 7 Profes-
sional.

In order to evaluate our proposed solution we need to simulate the background
knowledge rules. Hence, we assume that the original dataset DB contains dis-
criminatory attributes and implement Algorithm 2. The values of utility mea-
sures for minimum support 0.5% and minimum confidence 10% are presented in
Table 1. In this experiment, the number of frequent classification rules extracted
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Table 1. Utility measures for minimum support 0.5% and minimum confidence 10%

N. Redlining N. α-Disc. MC GC DPD DPP Execution
Rules Rules time (sec)

α= 0.6 1 2 0 0.21 100 100 11

α= 0.5 2 5 0.34 0.49 100 100 27

α= 0.4 3 7 0.52 0.47 100 99.95 49

α= 0.3 11 28 1.62 1.97 90.90 99.81 125

from DB is 7690 and the number of background knowledge rules is 7416. As
shown, the results are reported for different values of α ∈ [0.3, 0.6]. We selected
the upper bound (0.6) because, with respect to our predetermined discrimina-
tory items, redlining rules could be extracted from DB. We restrict the lower
bound to limit the number of redlining rules extracted form DB. Other than util-
ity measures, the number of redlining rules and the number of α-discriminatory
rules that could be generated from those redlining rules are also reported for
different values of α.

As shown in Table 1, the values of DDP and DPD demonstrate that the
proposed solution achieves a high degree of indirect discrimination prevention in
different cases (i.e. different values of α). In addition, the values of MC and GC
demonstrate that the proposed solution incurs little information loss, especially
when α is not too small. By decreasing the value of α, the number of redlining
rules is increased, which causes more data transformation to be done, thereby
increasing MC and GC. As presented in Table 1, the execution time of the algo-
rithm increases linearly with the number of redlining rules and α-discriminatory
rules.

5 Conclusions

To the best of our knowledge, we have presented the first method for preventing
indirect discrimination in data mining due to biased training datasets. Our con-
tribution in this paper concentrates on producing training data which are free or
nearly free from indirect discrimination while preserving their usefulness to data
mining algorithms. In order to prevent indirect discrimination in a dataset, a first
step consists in discovering whether there exists indirect discrimination. If any
discrimination is found, the dataset is modified until discrimination is brought
below a certain threshold or is entirely eliminated. In the future, we want to
present a unified discrimination prevention approach based on the discrimina-
tion hiding idea that encompasses both direct and indirect discrimination.
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Abstract. We consider two distinct types of online social network, the first made 
up of a log of writes to wall by users in Facebook, and the second consisting of a 
corpus of emails sent and received in a corporate environment (Enron). We 
calculate the statistics which describe the topologies of each network represented 
as a graph. Then we calculate the information loss and risk of disclosure for 
different percentages of perturbation for each dataset, where perturbation is 
achieved by randomly adding links to the nodes. We find that the general 
tendency of information loss is similar, although Facebook is affected to a 
greater extent. For risk of disclosure, both datasets also follow a similar trend, 
except for the average path length statistic. We find that the differences are due 
to the different distributions of the derived factors, and also the type of 
perturbation used and its parameterization. These results can be useful for 
choosing and tuning anonymization methods for different graph datasets. 

Keywords: Social network, data privacy, descriptive statistics, risk of disclosure, 
information loss. 

1   Introduction 

Data Privacy in Social Network logs is now an important issue, given that millions of 
users worldwide are generating high volume data logs of their online social network 
activity and relations. This data offers a great analysis opportunity to data miners, but 
on the other hand, it may represent a threat to an individual's data privacy if it  
falls into the wrong hands. However, if we can sufficiently protect the data by 
anonymization techniques, then we can publish the social network log data for 
commercial and academic use. 

In the current work we statistically compare and anonymize two real datasets 
represented as a graph, from a data privacy perspective: the Enron emails dataset [1] 
and the Facebook New Orleans dataset [2]. We calculate descriptive statistics for the 
graphs: degree, clustering coefficient and average path length. Then we anonymize/ 
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perturb the datasets by randomly adding links to the nodes and calculate the 
information loss and risk of disclosure for different degrees of perturbation. 

The structure of the paper is as follows: in Section 2 we present the state of the art 
and related work; in Section 3 we define the basic data and derived factors used to 
describe the graphs; in Section 4 we present the statistics calculated for both graphs 
and make comments and comparisons; in Section 5 we calculate the information loss 
and risk of disclosure for both datasets, for different degrees of perturbation; finally, 
in Section 6 we summarize the present work. 

2   State of the Art and Related Work 

Privacy in on-line social networks is a relatively new area of research which however 
has a solid base in classic graph theory and data privacy concepts.  

We will consider the state of the art from two main perspectives: the statistical 
analysis of online social networks, and data privacy analysis of online social 
networks. In terms of data privacy in general, we can cite Sweeney's paper on  
k-anonymity[3], and more recently [4], in which key definitions are given for 
information loss and risk of disclosure.  

In the field of the statistical analysis of online social networks, some key authors 
are: Kumar[5], Ahn[6], Klienberg[7,8], Mislove[9], Shetty[1] and Viswanath[2]. In 
[1], Shetty et al. present some concepts related to 'graph entropy' and the identification 
of 'important' or 'interesting nodes. The study is specifically applied to the Enron 
email dataset. The basic idea is to measure the effect of removing a node from a 
graph, as the difference between the 'entropy' of the graph before and after removing 
the given node. In [9], Mislove defines some of the key metrics which characterize a 
social network. Viswanath in [2] performs a statistical analysis of the New Orleans 
Facebook dataset (the dataset we use in the present work), using the degree, clustering 
coefficient and average path length statistics to evaluate social network evolution over 
time. Klienberg[7,8] considers data mining of online social networks, defining 
different possible topologies within OSNs and making considerations about the 
computational cost of data processing. 

In the field of data privacy analysis applied to online social networks, we can cite 
Hay[10], Zhou[11], Wondracek[12] and Liu[13]. Hay[10] presents a simple graph 
anonymization based on random addition and deletion of edges. The attack method 
attempts re-identification using two types of queries, vertex refinement and sub-graph 
knowledge. The risk measure is considered as the percentage of nodes whose 
equivalent candidate set falls into one of a given set of buckets (1 node, 2-4 nodes, 5-
10 nodes, ...). The information loss measure calculates some common graph metrics 
(clustering coefficient, path length distribution, degree distribution, ...) in the graph 
before and after anonymization. The information loss is considered from the point of 
view of an analyst who consults these statistical properties. Zhou[11] presents a more 
sophisticated anonymization algorithm which firstly generalizes vertex labels and 
secondly adds edges. One of the precepts of the approach is to create local topologies 
which are isomorphic with other local topologies, achieved by adding edges to them. 
Wondracek[12] presents a different approach, in that the attacker uses a malicious 
website to obtain information about users of an on-line social network. Finally, Liu, in 
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[13], presents a defense method which is k-anonymous, that is, it produces k-degree 
anonymized degree sequences.  

3   Definition of Basic Data and Derived Factors 

In this Section we present the datasets used and their data format. We also define the 
derived statistical factors which we later use to calculate the information loss and risk 
of disclosure for the graphs. 

The Enron email dataset[1] consists of a collection of 150 folders corresponding to 
the emails to and from senior management and others at Enron, collected over a 
period between 1998 to 2002. The total number of emails sent/received between users 
is approx. 1.5 million. We filtered the records so as to only include users with mutual 
links for which at least one email was sent and received along the link. This gave us a 
subset of 10630 users, which we used for all the analysis in the current work. Each 
email sender/recipient represents a node in the graph and the activity is represented by 
the number of emails sent-received along the edges which connect the users. We 
consider the email corpus as an extension of the idea of an "online social network", 
useful for comparison purposes with the Facebook data. 

The Facebook New Orleans dataset was generated by Viswanath et al[2] by 
crawling the Facebook New Orleans regional network, and consists of approx. 63,000 
users, 1.5 million links between users, and 800,000 logged interactions over a two 
year period. We filtered the records so as to only include users with mutual links for 
which at least one write to wall was sent in each direction. This gave us a subset of 
31720 users, which we used for all the analysis in the current work. In contrast to the 
Enron dataset, for which a link between users is established when an email is 
sent/received between them, in the case of the Facebook users, a link is established by 
the explicit solicitation and acceptance of friendship. Also, in the Facebook dataset, 
'writes to wall' is the activity indicator. 

Basic Data - Facebook: the available data consists of one file which contains writes 
to wall between users and their corresponding timestamps. The format of the write to 
wall data is {user-id 1, user-id 2, timestamp}, where the user ids are anonymous 
numbers between 1 and 63000. For example, {1, 2, 3-4-2010} would signify that user 
1 wrote on user 2's wall on the 3rd of April, 2010. All links are reciprocal, therefore, in 
the dataset there will be a corresponding record: {2, 1, …..}. This is assured by only 
including users who reciprocally wrote on each others' walls, at least once. 

Basic Data - Enron:  the available data consists of separate sender and recipient files 
which we merged into one file and used as input to create the graph. We anonymized 
the emails to sequential integers. In the original files, the 'to' and 'cc' type recipients 
are not distinguished, following Shetty's [15] approach. This gives us a unique file 
with two columns of anonymized id's, the first id is that of the sender and the second 
is that of the recipient. In order to construct the graph and the edges, we select unique 
id's between sender and recipient.   

Note that we consider both graphs (Facebook and Enron) as undirected in the 
current study, that is the degree (total number of links to a node) is considered as the 
in-degree (number of incoming links) + the out-degree (number of outgoing links). 
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Derived Factors: in order to calculate the statistics, we have implemented the 
algorithms which process the graphs in Java. In the case of the 'apl' (average path 
length) statistic, we have used Dijkstra's algorithm[14]. The following basic statistics 
have been calculated to describe the graph: 

(i) Degree: number of immediate neighbors which a node has.  
(ii) Clustering Coefficient: is an indicator of how many of the “friends” of a user, 

are friends of each other.  
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iuseroffriendsmutualofNumber
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______

______=        (1) 

 
Example: if user 1 has 30 friends, and of those 30 friends, 7 have links between 

them, independently of the link with user 1, then the CC for this “group” will be 7 / 30 
= 0.233. For the New Orleans Facebook dataset an average CC value of 0.0257 was 
reported., and for Enron, 0.15. 

(iii) Average path length: For each node x this is the average of the sum of the 
shortest number of hops required to reach every other node y in the graph: 

 

        

n

ynodetoxnodefromlengthpathshortestxAPL
n

i

i∑
=

=
1

)________()(
     (2) 

4   Descriptive Statistics for Derived Factors 

In this Section we present the descriptive statistics for the Facebook and Enron 
datasets, and compare the two.  

Firstly we will comment the Enron and Facebook correlation statistics for 'degree', 
'cc' (clustering coefficient) and 'apl' (average path length). For Enron, the highest 
correlation was between "degree" and "apl" (-0.49), some correlation between 
"degree" and "cc" (-0.12), and a negligible correlation between "cc" and "apl"  
(-0.001). With reference to the Facebook correlation statistics, the highest correlation 
was between "degree" and "apl" (-0.14), followed by the correlation between "degree" 
and "cc" (0.12), and a negligible correlation between "cc" and "apl" (-0.037). 

In Table 1 (Enron) we observe a high standard deviation of degree with respect to 
the average value (2 times more than its average value), whereas "cc" shows a lesser 
deviation and "apl" shows a significantly smaller relative deviation (7.3 times less 
than its average value).  In Table 1 (Facebook) we observe a high standard deviation 
of "cc" with respect to its average value (more than twice), whereas "degree" shows a 
deviation slightly greater than its average value and "apl" shows a significantly 
smaller relative deviation (3.37 times less than its average value). 

In terms of the distributions, the degree displays a typical "power law" distribution 
for both datasets, with just a few nodes having a very high degree. The distribution of 
the clustering coefficient for Facebook and Enron have different characteristics: for 
Facebook, In the first two quartiles and half the third quartile, all the nodes have a 
"cc" equal to zero, which means that none of the neighbors are interconnected 
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between each other. The distribution of the average path length for both datasets 
shows a characteristic 'S' pattern, but in the case of Facebook the left hand ascent is 
displaced to the right, which implies there are more nodes with a small average path 
length. 

Table 1. Averages and standard deviations of statistical factors for Enron and Facebook 
datasets 

  degree cc apl 

Enron average 31.035 0.1556 3.1516 

standard dev. 63.384 0.1121 0.4275 

Facebook average 5.0815 0.0257 6.001 

standard dev. 6.4705 0.0528 1.7782 

5   Data Privacy: Information Loss and Risk of Disclosure -  
Enron vs. Facebook 

In this Section we present the results of Information Loss and Risk of Disclosure for 
the Enron and Facebook datasets, and compare the two. 

5.1   Information Loss 

The objective of this test is to introduce a given percentage of random perturbation 
into the graph data and observe the change in the graph statistics. We interpret 
information loss as the deviation from the original data which a data analyst (end user 
of the data) would perceive. We measure the information loss by calculating the 
correlations between the three key descriptive variables for the original graph (degree, 
clustering coefficient and average path length) and then for the perturbed graph. The 
difference will then be the information loss. That is, if Cdo, Cdp, Ccco, Cccp, Caplo 
and Caplp are the correlations of the degree, clustering coefficient and average path 
length, for the original graph and the perturbed graph, respectively, then: 

 

        
3

||)pC| - |oC(|| + ||)pC| - |oC(|| + ||)pC| - |oC(|| . aplaplccccdd=LossInf
     (3) 

 

The correlation values are already normalized between -1 and 1, and we take  
the absolute value to obtain a number between 0 and 1. The difference between the 
correlation values is a typical statistic used in the data privacy literature. The 
perturbation method we have used, that of adding links to nodes, selected randomly in 
the graph, is also a common graph perturbation method used in the literature of graph 
privacy[10,11]. We add one link to each randomly selected node. Thus a perturbation 
of 25% means that we added one link between 25% of the nodes in the graph.  
Each node can only be selected once in any trial. We note that each trial (for each % 
perturbation) was repeated randomly three times as an experimental procedure to 
validate the results, and the average was taken. 
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Primary and Secondary (collateral) perturbation. Given the interrelated nature of 
graph data, if we modify a given (primary) node, other (secondary) nodes may also 
be affected. Our perturbation measure refers only to the number of primary nodes 
modified. However it is worthwhile to comment the aspect of secondary node 
modification, how it may affect the results, and how we could measure it. In this 
context, we propose that the way in which the results are affected depends on the 
way we define "risk of disclosure", which in our case is in terms of statistical 
properties such as degree, clustering coefficient and average path length, with a "hit" 
margin of 1%. 

Given that, in our current work, the perturbation operator is "add link", then the 
only statistical value which will be directly modified (and which cannot be modified 
indirectly), is the degree. On the other hand, the clustering coefficient, in some cases, 
could change as a secondary effect (of joining two neighbors together, for example). 
Finally, the average path length is the statistic which would be most likely to change, 
if we add links to the graph. However, in general, from empirical observation of the 
data values before and after perturbation for the same nodes, the values only register 
relatively small alterations.   

In conclusion, we propose that it would be reasonable to consider that the risk of 
disclosure (the percentage of hits), within the defined attacker "hit" margin of 1%, is 
equivalent to one minus the percentage of nodes affected both primarily and 
secondarily with a margin greater than 1%. That is: 

 
    DR = 1 - APS         (4) 
 
For example, in Table 2 we show the relation between Risk of Disclosure and the 

total percentage of nodes affected, for the Enron dataset with 50% perturbation. 

Table 2. Relation between Risk of Disclosure and Nodes affected for the Enron dataset and 
50% perturbation 

Attacker query %Hits        
(Risk of Disc.) 

%Nodes whose values are affected more 
than 1% (primary and secondary) 

Degree 0.54 0.46* 

Degree, cc 0.49 0.51 

Degree, cc, apl 0.48 0.52 

 
We observe that the percentage of affected nodes is only 46% (with margin > 1%) 

for 50% perturbation. This is possible because there exist a percentage of nodes with 
more than 100 links, thus if we add just one link to one of these nodes, the change will 
be less than (or equal to) 1%, and thus with this criteria will not count as having being 
perturbed. 

Enron. In Fig. 1a we see the information loss for different percentages of perturbation 
on the Enron graph. On the y-axis a value of 0.01 represents an information loss  
of 1%, and on the x-axis a value of 0.1 represents a grade of perturbation of 10%.  
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We observe a fairly linear relation between the two, with a slightly steeper gradient 
between 25% and 100% perturbation. We note that the maximum information loss is 
only 7.7% at 100% perturbation. This is correct given our definition of information 
loss and perturbation: adding just one link to a node in a graph when the average 
degree is 31.03 (see Table 1) will not have a great influence on the graph overall. This 
allows a comparison with the results of Facebook for which the average degree is 
much lower at 5.08 (Table 1) and therefore we would expect that adding one link to a 
node will have a significantly greater effect on the graph statistics. 

In Table 3 (Enron) we see the results of the tests of perturbation versus information 
loss on the Enron graph dataset, which are also plotted in Fig. 1a. A clear increasing 
and linear trend for information loss is evident in relation with increasing perturbation 
values. 

Facebook. In Fig. 1b we see the information loss for different percentages of 
perturbation on the Facebook graph. On the y-axis a value of 0,01 represents an 
information loss of 1%, and on the x-axis a value of 0.1 represents a grade of 
perturbation of 10%. Similarly to the Enron dataset (Fig. 1a), we observe a fairly 
linear relation between the two, with a slightly steeper gradient between 25% and 
100% perturbation. However, in contrast to the Enron results, the information loss is 
significantly greater, ranking from 2.5%, for 10% perturbation, to 27.4% for 100% 
 

Table 3. Results of tests of perturbation versus information loss on the Enron and Facebook 
graph datasets 

     
Perturbation 

 10% 25% 50% 75% 100% 

Enron 0.00702 0.02056 0.04009 0.06010 0.07742 

Facebook 0.02519 0.06387 0.14156 0.21435 0.27491 

 
 

 
 
 
 
 
 
 
 
 
         (a)              (b) 

 

Fig. 1. Information Loss versus Grade of Perturbation: (a) Enron, (b) Facebook. The marker 
labels indicate the grade of perturbation. 
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perturbation. This is primarily due to the greater impact of adding one link to each 
node, given the different statistical characteristics of Enron with respect to Facebook, 
especially the smaller average degree of the nodes in Facebook (ratio of degree in 
Facebook Vs degree in Enron is 6.1 to 1). 

In Table 3 (Facebook) we see the results of the tests of perturbation versus 
information loss on the Facebook graph dataset, which are also plotted in Fig. 1b. 
Again, a clear increasing and linear trend for information loss (2%, 6%, 14%, 21%, 
27%) is evident in relation with increasing perturbation values (10%, 25%, 50%, 75% 
and 100%). 

5.2   Risk of Disclosure 

The risk of disclosure is calculated by launching a query on the graph to find a given 
sub-graph topology (node and its immediate neighborhood) in the complete graph, 
with a % margin. A check is made to determine if the target node is in the subset S 
returned, and how many nodes are in S (value equivalent to that given by k 
anonymity). We perceive the attacker as statistically knowledgeable and whose 
objective is to identify specific nodes and their immediate neighbors, in a simply 
anonymized graph. 

Consider that if we do not consider the 'apl' statistic, then there are many low risk 
users, whose 'cc' is equal to zero and/or whose 'degree' is equal to one. The 'apl' 
statistic is much more expensive and difficult to obtain, because it needs access to the 
whole graph dataset, thus we have considered the risk with and without the 'apl' 
statistic. Thus, we have three different measures for the risk of disclosure, defined by 
three queries:  

•   Q1 which searches for a given node based on 'degree'  
•   Q2 which searches for a given node based on 'degree' and 'cc' 
•   Q3 which searches for a given node based on 'degree', 'cc' and 'apl'.  

 
For Q1 we only consider users with degree > 1, and for Q2 and Q3 we only consider 
users with degree > 1 and cc > 0.0. All queries are allowed a 1% margin of error. 

The risk of disclosure for a given node Ng in the original graph is calculated by 
multiplying the % of correct hits on the perturbed dataset for node Ng, by the % of 
nodes which are returned by the query within a given margin with respect to node Ng. 
We apply a margin of 1% in all cases. That is, if the degree of node Np in the 
perturbed dataset is within 1% of the degree of node Ng in the original dataset, then it 
is returned by the query. The same margin of 1% applies to the 'cc' and 'apl' values. 
Finally, a 'hit' is considered when the unique id of a node Np returned by the query 
has the same unique id as the node Ng in the original graph. 

Facebook. With reference to Table 4, we see the results of the three query types and 
grades of perturbation, on the risk of disclosure. In Table 4 we see that for the degree 
query, the risk of disclosure reduces from 90.11% risk for 10% perturbation, to 
0.009% risk for 100% perturbation, a significant reduction, for a simple query based 
only on degree. For progressively more complex queries, we observe a faster 
reduction in risk. In the case of 'degree, cc' the risk reduces from 84% to 0.007%, for 
10% to 100% perturbation. In the case of the 'degree, cc, apl' query the reduction of 
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risk occurs earlier: from 71% to 0.00026% for 10% to 50% perturbation. This is 
because the 'apl' (average path length) statistic of a node is very sensitive to change 
when one link is added to the node. The 'apl' value is also much more statistically 
diverse than the 'degree' and 'cc' values. 

In Fig. 2a (Facebook) we see a sharp drop for the risk of the 'degree,cc, apl' query, 
for increasing percentages of perturbation, whereas the other two queries, 'degree' and 
'degree, cc' show a more gradual drop, from 90% and 85% risk respectively, for 10% 
perturbation, to 50% and 35% risk respectively, for 50% perturbation. 

Enron. The results shown in Table 5 have the same format and calculation method as 
we have described previously for the Facebook data of Table 4. We see the results of 
the three query types and grades of perturbation, for the risk of disclosure. 

In Table 5 (Enron) we see that for the degree query, the risk of disclosure reduces 
from 94.34% risk for 10% perturbation, to 11.74% risk for 100% perturbation, with a 
similar decreasing tendency as for the Facebook data (Table 4), but leaving a greater 
residual risk. For the query 'degree, cc' the risk reduces from 83% to 1.6%, for 10% to 
100% perturbation, again with a similar decreasing tendency as for the Facebook data, 
but leaving a greater residual risk. However, the risk reduction of the query 'degree, 
cc, apl' behaves in a different way to the Facebook query. The reduction of risk is 
much less pronounced: from 81% to 28% for 10% to 50% perturbation. This is due to 
two factors: (i) the sensitivity of the 'apl' value and (ii) the difference in the 'apl' 
values for Facebook and Enron (see Table 1): the average 'apl' for the Enron dataset is 
much smaller than that of Facebook (3.1516 and 6.001, respectively), and the other 
statistics related to 'apl' are also different if we compare the datasets.  

In Fig. 2b (Enron) we see a sharper drop for the risk of the 'degree, cc' and 
'degree,cc, apl' queries (relative to the 'degree' query), for increasing percentages of 
perturbation, from 82% and 81% risk for 10% perturbation, to 1.6% and 0.7% risk, 
respectively, for 100% perturbation. Both queries follow a very similar line. On the 
other hand, the 'degree' query shows a more gradual drop for increasing perturbation. 
These tendencies are similar to the results for the Facebook dataset, as seen in Figure 
2a, with the exception of the query including 'apl', which shows a much more gradual 
descent, as we have already discussed with reference to Table 4. 

Information Loss vs Risk of Disclosure. With reference to Fig. 3, we see a plot of 
the results of Sections 5.1 and 5.2, for Information Loss and Risk of Disclosure for  
the Facebook (Fig. 3a) and Enron (Fig. 3b) datasets, respectively. Note that for 
information loss we have just one value for each degree of perturbation (see Sec. 5.1), 
 

Table 4. Results of tests of perturbation versus risk of disclosure on the Facebook graph dataset 

 Perturbation 

  10% 25% 50% 75% 100% 

Risk of 
Dis-
closure 

degree 0.9011 0.7495 0.5014 0.2495 0.00009 

degree, cc 0.84834 0.6076 0.3415 0.1407 0.00007 

degree, cc, apl 0.71068 0.07333 0.00026 0.0000 0.00000 
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Table 5. Results of tests of perturbation versus risk of disclosure on the Enron graph dataset 

 Perturbation 

  10% 25% 50% 75% 100% 

Risk of 
Dis-
closure 

degree 0.9434 0.8570 0.6454 0.3943 0.11747 

degree, cc 0.82960 0.60519 0.31081 0.11363 0.01613 

degree, cc, apl 0.81819 0.58871 0.28832 0.09804 0.00798 

 
 
 
 
 
 
 
 
 
 
 

 
                           (a)                                                                   (b)   

 

Fig. 2. Risk of disclosure versus Grade of Perturbation: (a) Facebook, (b) Enron 

 

 

 

 

 

 

 
                                   (a)                                                                        (b)   

Fig. 3. Information Loss versus Risk of Disclosure: (a) Facebook, (b) Enron 

whereas for risk of disclosure we have three values (one for each query, see Sec. 5.2). 
We observe that the information loss of the Facebook dataset (Fig. 3a) ranges from 
2.5% to 27.4% for a risk of disclosure which drops from 71% to 0.0%, in the case of 
the query 'degree, cc, apl'. On the other hand, the Enron dataset (Fig. 3b) has an 
information loss which rises from 0.7% to 7.7%, for a risk of disclosure which drops 
from 81.8% to 0.7%, in the case of the query 'degree, cc, apl'. Thus, we see that 
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Facebook has a greater reduction in risk of disclosure than Enron, especially for Q3 
(degree, cc, apl). However, Facebook achieves this at a cost of four times the 
information loss, with respect to Enron. In summary, we can say that the information 
loss is relatively low for Enron (max. of 7.7%), whereas the Facebook result, with a 
maximum information loss of 27.4%, leaves room for improvement. 

6   Conclusions 

In this paper we have represented the Facebook and Enron user data and activity as a 
graph, which has allowed us to derive descriptive factors based on graph theory. We 
have introduced different percentages of perturbation into the data, by randomly 
adding links to the nodes. Then we have analyzed the information loss and risk of 
disclosure of the graphs from a data privacy point of view. 

Lessons learnt: firstly, the perturbation method should be calibrated for each dataset. 
In our case, the perturbation method was 'add one link to node', and we could calibrate 
by varying the number of links added, based on the average degree value, for 
example; second, the risk of disclosure has to take into account the number of hits 
achieved within the subset of nodes returned by a query, rather than just the number 
of nodes returned (we note that this is distinct from k-anonymity); thirdly, it is 
important to filter the data, due to the presence of many nodes with just one link or 
with cc=0.0, in the graph. We filter these nodes because they are not interesting for a 
potential attacker because of their lack of interrelations (poor topology) and because 
they cannot be distinguished without the 'apl' (average path length) value, which is 
much more expensive and difficult to obtain. Also many values of 'degree' equal to 
one and 'cc' equal to zero would distort the graph statistics. 

Future work: It would be interesting to try different perturbation methods on the 
graph, such as 'node aggregation' and compare this with 'add link'. For 'node 
aggregation' we could then consider 'k-anonymity' as a risk disclosure measure. Also 
it would useful to contrast the results for more online social network datasets, such as 
Twitter and a synthetic small-world graph. 
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Abstract. We introduce the anonymization of unstructured documents to settle
the base of automatic declassification of confidential documents. Departing from
known ideas and methods of data privacy, we introduce the main issues of un-
structured document anonymization and propose the use of named entity recog-
nition techniques from natural language processing and information extraction to
identify the entities of the document that need to be protected.

Keywords: Privacy, Declassification, Anonymization, Named Entity
Recognition.

1 Introduction

Declassification of text documents is a key issue for governments and organizations.
Documents in plain text with sensitive information are kept by companies and official
organizations. However, on the one hand, some documents might be required by third
parties for a particular use, and, on the other, digital information can be copied easily.
Therefore, it is foreseeable to expect unauthorized copies. In fact, the international non-
profit organization, WikiLeaks, has been publishing thousands of classified information
(about military and diplomatic issues) of many countries of the world.

The importance of this problem has attracted the attention of some international
agencies. For example, the DARPA, the Defense Advanced Research Projects Agency
of the United States Department of Defense, solicited for new technologies to support
declassification of confidential documents [6].

The maturity of these technologies would permit partial or complete declassification
of documents. In this way, documents could be transferred to third parties without any
confidentiality problem, or with the only information really required by the third party.
Aiming to make the possibility of sensitive information leakage minimal.

These technologies will also help the capability of departments to identify still-
sensitive information and to make declassified information available to the public.

We introduce the anonymization of unstructured documents departing from more tra-
ditional data privacy approaches in statistical disclosure control and privacy preserving
data mining. Moreover we propose and analyze the use of named entity recognition,
used mainly in natural language processing and information extraction, to identify the
parts of the document, which need to be protected.
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In Section 2 we introduce our motivations describing basic concepts of data privacy
and named entity recognition. In Section 3 and 4 we introduce and discuss our proposal.
Section 5 describes our experiments, and finally, Section 6 concludes the paper.

2 Motivations and Preliminary Notions

The work presented in this paper serves as a starting point which aims to provide tools
for the anonymization of unstructured documents. This is a field that to our knowl-
edge has not been investigated yet and will surely provide interesting research result. In
this section we introduce some concepts of data privacy and named entity recognition,
which are the base of our proposal.

We introduce the anonymization of unstructured documents departing from the well
known foundations of the statistical disclosure control (SDC) [26] and privacy preserv-
ing data mining (PPDM) [2]. Currently, there are a great number of protection methods
used in data privacy, both from SDC and PPDM. See [22] for a classification of such
methods.

In practice there are some differences between SDC and PPDM. The former, was
originated from statistical offices to be able to publish statistical data from census and
questionnaires for researchers or policy makers. On the other hand, PPDM, was in-
troduced by the data mining community, where the ability to mine anonymous data is
very valuable to companies and researchers. Nevertheless both disciplines share a lot of
similarities and most methods are actually used i both cases.

SDC is mainly concerned with the protection of microdata files. Files with several
attributes (columns) for a set of individuals (rows). PPDM also uses similar microdata
files, although sometimes the attributes come from other structured data sources such
as computer logs [18].

In data privacy, attributes are commonly classified regarding their sensitiveness from
a privacy point of view. Identifiers are those attributes which can unequivocally identify
an individual such as a social security number. On the other hand quasi-identifiers [5]
are attributes (or sets of attributes) that, in combination with external information can
be used to re-identify individuals. Some authors also refer to confidential or private at-
tributes, which are those that provide the sensitive information about the correspondent.

Most protection methods are concerned with quasi-identifier attributes. Identifiers
are normally deleted or encrypted, and the main objective of protection methods is to
introduce enough perturbation in quasi-identifiers to make it unfeasible to re-identify
the correspondent from them, while preserving confidential attributes.

2.1 Overview of Popular Protection Methods

We overview here three common protection methods used in SDC and PPDM. This
is not an exhaustive list, but an example of some popular methods. We assume to be
working with a set of records, with Vi attributes (or variables) for each one.

Microaggregation. Microaggregation provides privacy by means of clustering the data
into small clusters and then replacing the original data by the centroids of the corre-
sponding clusters.
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Privacy is achieved because all clusters have at least a predefined number of ele-
ments, and therefore, there are at least k records with the same value. Note that all
the records in the cluster replace a value by the value in the centroid of the cluster.
The constant k is a parameter of the method that controls the level of privacy. The
larger the k, the more privacy we have in the protected data.

Microaggregation was originally [7] defined for numerical attributes, but later ex-
tended to other domains. E.g., to categorical data in [23] (see also [8]), and in con-
strained domains in [24].

Rank Swapping. In Rank Swapping, the values of a variable Vi are ranked in ascending
order; then each ranked value of Vi is swapped with another ranked value randomly
chosen within a restricted range (e.g., the rank of two swapped values cannot differ by
more than p percent of the total number of records). The method was first described for
numerical variables in [16].

Additive Noise. Additive Noise adds Gaussian noise to the original data to get the
masked data [3]. For example, if the standard deviation of the original variable is σ,
noise can be generated using a N(0, pσ) distribution, where p is the parameter of the
method determining the protection degree.

2.2 Named Entity Recognition

The term named entity (NE) is normally used to refer to an entity for which one or many
rigid designators stand for the referent [17]. In an unstructured text typical named entity
are proper names, locations, or organizations. The task of identifying named entities is
called Named Entity Recognition and Classification, NERC, or simply NER. NERC
is an important task of information extraction and was initiated in the MUC (Message
Understanding Conference) conferences [9].

The original classification of NE called enamex considers three specializations of
NE: “persons”, “locations”, and “organizations”. Later works have extended this classes
either by fine-grained types, e.i locations can be divided in subtypes such as city, state,
and country, or by introducing new types. Currently, there are NE type hierarchies
with about 200 categories. Nevertheless most current generic NERC systems focus the
recognition to the initial enamex types.

In order to identify NEs, NERC systems rely on different features associated to
the text at different levels, normally: word, list, and document. Common word-level
features are: case, punctuation, digit, character, morphology, part-of-speech, . . . . List
features, also called gazetteer, lexicon, and dictionary features, take into account in-
formation beyond the single word, for example entities from a general dictionary, lists
of stop words, lists of common abbreviations, list of known organizations, celebrities,
politicians, etc., or lists of entity cues such as person title, or typical words in organ-
itzation names (Associates, inc., corp., . . . ). Finally, document features are defined over
document content and structure, and normally are based in large collections of doc-
uments (corpora). Example document features are: multiple occurrences (presence of
the same entity in the context, disambiguation of uppercase and lowercase occurrences,
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anaphora, etc.), corpus frequency, or meta information obtained in semi-structured doc-
uments (HTML, or XML tags and hierarchies).

NERC systems are normally classified into supervised, semi-supervised, and un-
supervised learning. These systems aim to generate classification rules for distinctive
features to recognize entities. Supervised learning NERC systems use techniques such
a Hidden Markov Models, Decision Trees, Support Vector Machines, or Conditional
Random Fields. More recent semi-supervised systems, an unsupervised systems (nor-
mally based on clustering) have also been designed. A detailed survey can be found
in [17]. More generic information extraction systems that include NERC as a sub-task
are also interesting [4].

[PER Prof. Smith] asked [ORG Imagine Inc.] to start the project in [LOC
New York], where the [ORG NY University] could provide a laboratory
near the [LOC Washington Square Park].

Fig. 1. Example of NERC output

An example of the output of a NERC system recognizing person (PER), organization
(ORG), and location (LOC) NEs is shown in Figure 1.

3 Anonymization of Unstructured Documents

In order to settle the base for the anonymization of unstructured documents, we intro-
duce some definitions and concepts. We will focus on completely unstructured docu-
ments, assuming that the documents do not provide any kind of meta-information on
both their content or their structure.

First of all, we consider the anonymization of an unstructured document as the mod-
ification or perturbation of the document in order to preserve the privacy of the corre-
spondents associated with documents. Correspondents can be organizations or individ-
uals, which are directly or indirectly mentioned or referenced in the document.

We consider the process of unstructured documents anonymization as composed of
two main stages:

1. Private entity recognition: is the process that identifies the entities in the document,
which can be protected in order to anonymize the document.

2. Private entity protection: concrete protection method applied to the previously de-
tected entities.

In an analogy to data privacy methods, the first stage will be equivalent to determine
the attributes of the data to be protected, something that in SDC and PPDM is normally
not considered since one departs directly from the given attributes. The second stage is
the application of a concrete protection method as the ones described in Section 2.1.
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3.1 Private Entity Recognition

We introduce the concept of private entity (PE) as:

Definition 1. A private entity in an unstructured document is an entity which reveals in-
formation about the correspondents directly or indirectly associated with the
document.

We have identified PEs to be very coincident with NEs (see Section 2.2). This makes
the PE recognition stage potentially solvable by using a NERC system. Although not
all named entities in a document can be considered private, and not all private enti-
ties will correspond to a normally recognized named entity, we assume so in favor of
generalization, that is, PE ≈ NE (see experiments in Section 5).

Given the private entities of a document, we distinguish between two different types
of entities from a privacy perspective: identifier entities, and quasi-identifier entities.

Definition 2. An identifier private entity within an unstructured document is a PE,
which by itself can unequivocally designate a correspondent.

Definition 3. A quasi-identifier private entity within an unstructured document is a PE,
which in combination with contextual information and external knowledge can be used
to re-identify a correspondent.

It is important to note that just as the entity recognition process requires some semantic
interpretation of the words or noun phrases appearing in the document, so does the
distinction between identifier and quasi-identifier PEs.

Similarly to traditional data privacy, the distinction between identifier and quasi-
identifier entities will determine how are they treated in the protection stage. Identi-
fier PEs will simply be encrypted, deleted, substituted by their named entity type such
as “person” or “organization” or by a meaningless string. On the other hand quasi-
identifier PEs will be subjected to a concrete protection method as will be detailed in
Section 3.3.

3.2 Some Consideration on Entity Recognition

As an example of quasi-identifier PEs, consider the proper name Michael as appearing
in Figure 2. The name by itself does not reveal the identity of the correspondent. On
the other hand by considering the contextual information provided in whole sentence
(or document) and some prior knowledge one can conclude that the first Michael refers
to Michael Vick the quarterback of the Philadelphia Eagles football team, while the
second one refers to Michael Jackson the pop celebrity. In both cases the PE Michael
will be considered a quasi-identifier.

Also, the named entities Fredrik Reinfeldt, and Mr. Assange in Figure 3, can be easily
linked to the prime minister of Sweden, and the spokesperson and editor-in-chief of
Wikileaks, but this identification requires contextual or prior knowledge, which will not
necessarily be assumed.

In general, the distinction between identifier and quasi-identifier PEs will be very de-
pendent on the concrete application and context where the documents are semantically
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Philadelphia Eagles quarterback [PER Michael] will sign his franchise
tender Wednesday, [. . . ]

The doctor charged in [PER Michael’s] death is due in court as a judge
considers delaying the physician’s upcoming trial. [. . . ]

Fig. 2. Example of quasi-identifier PEs

[PER Fredrik Reinfeldt] rejected claims that [LOC Sweden]s attempt
to extradite [PER Mr Assange] from the [LOC UK] was politically moti-
vated and hit back against attacks on the [ORG Swedish justice] sys-
tem made during an extradition hearing in [LOC London] this week.

Fig. 3. Example of easily identifiable quasi-identifiers NEs

interpreted. In some cases a 9 digit number will be interpreted as a social security num-
ber and thus considered an identifier, and in some other contexts it will be just a number
without identifying properties. Note that this is somehow equivalent to the same distinc-
tion made in SDC. There, an attribute “social security number” will be considered as an
identifier, but not all attributes with 9 digit values will be interpreted the same way (for
instance consider an attribute describing consumed liters of water per year, expressed
with a 9 digit number).

3.3 Entity Protection

Once the PEs of the document are identified, they have to be protected. As mentioned
earlier, the PEs considered identifiers are directly deleted or encrypted and the protec-
tion method is focused towards the quasi-identifier PEs.

One can see quasi-identifier PEs in the document as values for named entity types
attributes. That is, we can consider that we have an attribute “person” with a set of values
in a given document and so on. This view is obviously very simplistic since contextual
information will surely influence the protection degree of a given named entity, but we
consider it to be a good starting point. Moreover, it provides the ability to conduct a
protection focused in a concrete type or category of named entities.

Definition 4. We define NE-type protection as the protection mechanism which pro-
vides some degree of anonymization or protection to named entities of a given entity
type.

For example, we can describe methods for PER-protection which will operate on PEs
of type “person”, or LOC-protection operating on “location” PEs.

Following the ideas of the protection methods broadly described in Section 2.1, we
introduce some proposals for PE protection.

Named entity generalization. PEs can be generalized to achieve some degree of pri-
vacy while preserving some of their semantic meaning in the document. A clear exam-
ple can be found if we consider LOC-protection methods, where the location can be
generalized to a broader named entity.
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The suspect approached the van in [LOC Old Nichol St.], and police,
who were in [LOC Arnold Circus], intervened. The suspect ran away
and was later identified in an police control near [LOC Gipsy Lane in
Luton] and chased by police until he was captured in [LOC Castle St.,
Luton].

The suspect approached the van in [LOC London], and police, who
were in [LOC London], intervened. The suspect ran away and was
later identified in an police control near [LOC Luton] and chased by
police until he was captured in [LOC Luton].

Fig. 4. Example of LOC-protection by generalization

Figure 4 shows a simplistic example of LOC-protection where all locations have
been generalized to city level, removing fine-grained information of the concrete streets.

Other examples are the generalization of proper names to names (removing the sur-
name), or the generalization of organizations based on some given hierarchy. In the later
case, for example, entities “IBM” and “Google” could be generalized to “Computer-
based company”, while “Médecins Sans Frontières” could be generalized to “NGO”.

Similar techniques are widely described for SDC and PPM. They normally depart
from Value Generalization Hierarchies (VGH), which are used to generalize textual
attributes [19,11,13], or even set valued data [10,12]. This approaches normally de-
part from already established generalization hierarchies, but even if we do not have
the hierarchy defined it can be determined based on generic semantic properties and
ontologies [15,1].

Entity swapping. Another possible protection is to follow an strategy inspired by Rank
Swapping (see Section 2.1). In this case we propose to swap PEs between documents
of the same set, or within the same document depending on the concrete case.

In order for two PEs to be swappable they need to be relatively similar. First of all
PEs are swapped only with other PEs of the same type, and secondly we can use a
distance metric to rank them in order to perform the swapping.

For example given the set of PEs of type α, {α1, . . . , αn}, where α is one of the
identified types of PEs, in this case {PER, ORG, LOC}. First, we rank all values of
PEs of type α so PEα = (ασ(0), ασ(0), . . . , ασ(n)). The ordering can be predefined if
the PEs form, for example, a complete or partial order [25], or it can be computed from
a distance function.

In the later case, given a distance function dα on the PEs of type α, we chose a
initial PE ασ(0), and use it as the starting point, then the other PEs of type α are ranked
given their relative distance to ασ(0). That is, given the initial vector ασ(0) the ordering
ασ(0), ασ(1), ασ(2), . . . will be determined so:

dα(ασ(0), ασ(1)) ≤ dα(ασ(0), ασ(2)) ≤ dα(ασ(0), ασ(3)) ≤ . . .

Once the vectors are ordered, we swap them. Given a term ασ(i), it is randomly and
uniformly swapped with another unswapped ασ(l), given that i < l ≤ i + p, where p is
the parameter of the swapping method.
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Entity noise addition. In analogy to the Additive Noise technique (see Section 2.1)
we can actually introduce some semantic noise in the PEs to provide some degree of
anonymity. That is, instead of swapping similar PEs as described in Section 3.3, we can
substitute a PE by another similar PE, which is not present in the document.

The suspect approached the van in [LOC Old Nichol St.], and police,
who were in [LOC Arnold Circus], intervened. The suspect ran away
and was later identified in an police control near [LOC Gipsy Lane in
Luton] and chased by police until he was captured in [LOC Castle St.,
Luton].

The suspect approached the van in [LOC Elmore St.], and police,
who were in [LOC De Beauvoir Square], intervened. The suspect ran
away and was later identified in an police control near [LOC Marsh
Rd., Luton] and chased by police until he was captured in [LOC Alma
St., Luton].

Fig. 5. Example of LOC-protection by noise addition

For example, in Figure 5 both the street Old Nichol and Arnold Circus from London
are respectively randomly substituted by another street and square from London. And
similarly, for the streets from Luton. If higher protection is required we could perform
the random substitution at higher levels, for example with streets from other cities of
the UK, Europe, and so on.

4 Some Desired Properties of Anonymized Documents

When anonymizing unstructured documents it is important to previously determine
what exactly we want to anonymize. As previously stated the main purpose is to
anonymize to some extend the information contained in unstructured documents about
concrete persons, organizations, or locations, but maintaining the main semantics and
information of the document. In other words, by reading a protected document the
reader should no be able to identify entities for which he/she did not have previous
knowledge.

For instance, in the protected example of Figures 4 the reader gets to know that the
police has set off in pursuit of a suspect in London, who was later captured in Luton.
The concrete locations at street level are anonymized. A reader previously knowing
about a pursuit in Old Nichol St. in London will easily link the document with Old
Nichol St. but he/she will not gain new knowledge about street-level locations.

Another possible controversial anonymization is shown in Figure 6, where entities
have been anonymized by generalizing persons to their known occupation, organiza-
tions to their business market, and locations to continent level. The utility of the pro-
tected document, that is, the information intended to be revealed is that “a fashion
clothing company has dismissed a chief designer due to an anti-Semitic incident that
happened in a bar in Europe”. But the concrete company, name of the designer, and
location of the incident are anonymized.
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The company [ORG Fashion Clothing] said Tuesday that it would
dismiss [PER chief designer], for his anti-Semitic outbursts at a [LOC
Europe] bar[. . . ]

Type of PE Original PE Anonymized PE
ORG Christian Dior S.A. fashion clothing company
PER John Galliano chief designer
LOC Paris Europe

Fig. 6. Example of protected document

Some people will argue that this text can easily be linked to the Christian Dior S.A.
company, his chief designer John Galliano, and the incident was located in bar La Perle,
in the Marais district of Paris. But it is important to note that this linkage requires pre-
vious knowledge about the concrete anonymized entities (and the incident). We argue
that: no new knowledge should be gained from the protected sentence beyond the in-
tended information (utility).

For example if the reader knows that Christian Dior has fired his designer John Gal-
liano, he/she will gain knowledge that the cause was due to an anti-Semitic incident
in a bar. But this information is actually part of the utility of the document, thus infor-
mation deliberately intended to be revealed. On the contrary if the reader only knows
that recently Dior has fired his chief designer, he/she will not gain knowledge about the
name of the designer or the city of the incident from the sentence itself. Note that this
is a very simplistic example and external knowledge that can undo the anonymization
process is easily accessible by the reader, which will normally not be the case.

It is also important to note that in some cases it will be very difficult to estimate
the actual full utility of the document, and that contextual information together with
external knowledge could potentially leak non intended information. Special care has
to be taken into account.

5 Experiments

In this section we describe some preliminary experiments about our work. These are
focused to determine if named entity recognition and classification (see Section 2.2) is
actually a good approach to determine the PEs of a document.

We have used the CoNLL02 dataset [21], which includes a set of documents from a
news agency in Spain. The documents are annotated with 4 named entity types: PER,
ORG, LOC, and MISC. For our first experiments we have used the first 10 documents.
Due to the difficulty of determining the private entities of a document we have relied in
human detection. That is, humans were asked to manually annotate the document with
PEs, without previous knowledge of the named entities described in the dataset. Results
are the average of two different human recognitions.

Table 1 shows the words from the document that where detected by a human to be
PEs as compared to what the CoNLL02 dataset annotates as NEs (and thus the words
to be identified as NEs by NERC systems). We can see that they are mostly coincident
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Table 1. Words in PEs vs. NEs. The original dataset has 3092 words

No. of words Percentage of words from the total

Named entities 492 15.91%

Private entities 501 16.20%

with just 9 words identified as PEs, which were not annotated as NEs, which is a 0.29%
from the total.

We have also evaluated the potential classification of NEs as a classification for PE.
Table 2 shows the comparison of the correspondence of PEs and NEs per type. That
is, the PEs recognized as revealing private information from persons by the human
inspection as compared to the NEs annotated as PER, and so on. For each case we have
depicted the precision, recall, accuracy, and the balanced F-measure (F1) [14].

Table 2. Comparison of the classification of NEs types and PEs types

Precision Recall Accuracy F1

PER 0.982 1.00 0.999 0.991

ORG 0.802 0.983 0.985 0.883

LOG 0.795 0.941 0.987 0.862

As we can see, preliminary results point to NERC systems as a good base to private
entity recognition and classification. This is specially inspiring given the broad range of
NERC systems available, making it possible to take advantage of the research already
done in NERC systems.

6 Conclusions

In this paper we have introduced the anonymization of unstructured documents. We
have departed from traditional data privacy approaches and proposed the use of named
entity recognition and classification systems (NERC) to identify private entities in the
documents. Once identified, these entities can then be protected. We also provide some
empirical evaluation about the convenience on using NERC to identify such private
entities.

We plan to further develop the anonymization of unstructured documents to settle
the bases for production systems with the ability to assist in the declassification of
confidential documents, and if possible to do it automatically.
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Abstract. Community is tightly-connected group of agents in social
networks and the discovery of such subgraphs has aroused considerable
research interest in the past few years. Typically, a quantity function
called modularity is used to guide the division of the network. By repre-
senting the network as a bipartite graph between its vertices and cliques,
we show that community structure can be uncovered by the correlation
coefficients derived from the bipartite graph through a suitable optimiza-
tion procedure. We also show that the modularity can be seen as a special
case of the quantity function built from the covariance of the vertices.
Due the the heteroscedaticity, the modularity suffers a resolution limit
problem. And the quantity function based on correlation proposed here
exhibits higher resolution power. Experiments show that the proposed
method can achieve promising results on synthesized and real world net-
works. It outperforms several state-of-the-art algorithms.

Keywords: social network, community structure, resolution limit,
correlation analysis.

1 Introduction

Social networks are a paradigm of the complexity of human interactions [1,2],
which can be represented in terms of a set of social agents related in pairs
between them by a set of peer-to-peer relationships. This structure can thus be
abstracted as a complex network [3,4] G = (V, E), where V = {V1, V2, · · · , Vn}
is the set of vertices and E = {(Vi, Vj)|Vi, Vj ∈ V } is the set of edges. The
vertices represent social agents and the edges stand for their mutual relations or
interactions. The advantage of this abstraction is that any social organization
can be represented as a mathematical object, on which we can implement various
mathematical tools.

One of the most manifest feature of social networks is community struc-
ture [5,6,7], the gathering of vertices into groups such that there is a higher
� Corresponding author.
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density of edges within groups than between them [8]. The density refers to
the ratio of actual edges between the nodes of the community to the maximum
possibility. It is common that people can be divide into groups along lines of
interests, occupation, age, and so on. Besides, the phenomenon of assortativ-
ity [11,4] certainly suggests that this is the case.

This paper proposes a novel approach to uncovering community structure in
social networks, which takes a new view that vertices in the same group tend
to have strong correlation with each other. By building a bipartite graph from
network nodes and the corresponding cliques, we introduce a measurement of
correlation between pairs of nodes. The more the cliques shared by two nodes, the
higher the correlation between them. Thereby, the community structure can be
uncovered by maximizing the total correlation inside a community. Experiment
on synthesized network and real social network shows the effectiveness of our
method. Besides, our method is free from resolution-limit effect.

2 Uncovering Community Structures Based on
Modularity

There are many definitions of communities [1,2] and many other definitions have
been introduced by computer scientists and physicists [10,9]. The community dis-
covery task can be viewed as a unsupervised learning and the partition can be
measured by modularity introduced by Newman and Girvan [12]. The commu-
nity structure is revealed by the comparison between the actual density of edges
in a subgraph and the density of a random graph with the same degree sequence.
Suppose we split the vertices set in to c disjoint clusters set C = {C1, · · · , Cc}
which satisfies Ci ∩ Cj = φ, ∀i �= j, 1 ≤ i ≤ c, 1 ≤ j ≤ c and

⋃c
k=1 Ck = V . The

modularity of C is [12]

Q(C) =
1

2m

c∑
k=1

∑
i,j∈Ck

(
Aij −

kikj

2m

)
(1)

Modularity has been employed as quality function in many algorithms: the
CNM algorithm [8], the method based on edge betweenness centrality [12], the
label propagating method [13], the method by leading eigenvector of the com-
munity matrix [14] and the spin glass method [15], to name a few. For a com-
prehensive review please see [7] and references therein.

Unfortunately all the modularity optimization approach has a resolution limit
[16] that may prevent it from detecting clusters which are comparatively small
with respect to the graph as a whole. Even when they are well defined commu-
nities like cliques [7,17]. Clique is a fully connected subgraph,thus has the most
high density of edges.

By building a bipartite graph from network, nodes and the cliques that be-
long the community structure can be uncovered by the correlation based on
this bipartite graph. A merit of this approach is that it dose not suffer from the
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Fig. 1. Example of building vertex-clique bipartite graph. (a)The original network.
(b)The resulting bipartite graph(the 2-clique set is omitted for demonstration purpose).
(c)The covariance matrix of the vertex-clique bipartite graph. See text for more details.

resolution limit problem. Here we focus on the detection of community structure
of undirected and unweighted networks without overlapping.

The method proposed here can be also improved to cope with both directed
and weight networks. By combining with fuzzy clustering algorithm such as c-
means it is also capable of overlapping community detection. Since the main
focus of this paper is the identification of non-disjoint community structure of
simple networks,we leave these generalizations to future works.

3 Measuring the Correlation

The agents in the same community share many common features such as hobby,
occupation,etc, which lead to a strong coherence between thema tendency known
as homophily[18]. The dense connections between nodes in the same commu-
nity reflect the strength of coherence and can be deduced from the topological
structure of the social network. This approach is possible and there are many
successful cases [19,20]. Here we propose a measurement based on cliques cor-
relations to identify the community structure in social networks by focusing on
the network cliques.

3.1 Building the Vertex-Clique Bipartite Graph

Unlike the clique expanding algorithm [6,21], which derives the overlapping com-
munity structure from cliques adjacency or inclusion relationship directly, here
we adopt an indirect approach by building a bipartite graph from the original
network then detecting community structure based on the numerical analysis of
this new graph.

There is a common consensus that vertices within the same community bear-
ing denser connecting than vertices between communities. The clique is the most
densely connected subgraphs of given number of vertices thus should be parti-
tioned in the same group. Thus we gather cliques in networks together and build
a bipartite graph from it. The vertex set of the bipartite graph is made up of
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two nodes set,i.e. partition A and partition B, with partition consists of nodes
in the original network and partition B consists of cliques. Denote these two sets
as VA and VB , then we have VA = V . Next step is to build set VB.

A formal definition of a k-clique Clk = (V1, · · · , Vk) of graph G is a subset of
vertices with edges connecting each pair of them, and the set of all the k-clique
is defined as CLk = {(V1, · · · , Vk) | Aij = 1, ∀1 < i, j < k, i �= j}. All the cliques
of the network are collected together and denoted as CL = {CLk | k = 1, 2, · · ·}.
For a large and dense network CL may grows too huge if there is no upper
bound for the size of cliques,costing tremendous computation to accomplish the
gathering task [21]. The community uncovering algorithm always focus on certain
subset of CL,avoiding unnecessary computations. Typically we should vary k
from 2 to 4 then we have VB = CL2

⋃
CL3

⋃
CL4.

The edges connecting VA and VB is nature to define as belonging relationships.
For node a ∈ VA and clique b ∈ VB if a is covered by b then add edge between a
and b. Later we will allocate weights to these edges.

Summaries these up the vertices set of the vertex-clique graph is VA ∪ VB .
Assume that there are n vertices in partition A and m cliques in partition
B,i.e.|VA| = n, |VB| = m. The adjacency matrix of the vertex-clique bipartite
graph is Y(m+n)×(m+n). Obviously we have

A =
(

0 X
XT 0

)
(2)

since there is no edges within the same partition. Thus the m × n dimension
matrix X is sufficient enough to depict the topological structure of the vertex-
clique graph.

Fig.1. is simple example of the above progress. Fig.1(a) is a 9-vertex network
with three cliques in CL3

⋃
CL4 and Fig.1(b) is the resulting bipartite graph

with VB = CL3

⋃
CL4. We omit the clique set CL2 for demonstration purpose.

3.2 Weighting the Edges

As in the vertex-clique bipartite graph nodes in the same clique connect to the
same clique node in partition B. Compared with small cliques, nodes connecting
to big cliques should have higher possibility to belong to the same community.
Therefore, edges in the vertex-clique bipartite graph should be weighted accord-
ing to the size of the clique they connect. Let

Aij =
{

f(|Cj |) if Vi ∈ Cj ,
0 otherwise. (3)

where Cj ∈ VB is a clique with size |Cj | and f is a weighting function assigning
weights for different cliques.

As a prior common sense nodes in a common bigger clique are more akin to be
members of the same community than nodes in a common smaller clique. So the
function f should be designed to allocate a bit more weight on cliques with larger
size, but a too drastic slop will destroy the relative importance of smaller cliques,
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since the number of latter is much more than the bigger one typically. In the
experiment section we adopt a gently monotone increasing function f(k) = αk

with α = 1.1.

3.3 Covariance and Correlation Coefficients

Nodes connecting to the same clique tend to have bigger correlation since they
carry the weight on the same location. Numerical analysis on matrix X can be
carried out to reveal the correlation between the nodes of G.

Denote xi as the i-th column of matrix X and cov(xi, xj) as the covariance
between xi and xj ,i.e.

cov(xi, xj) =
1
m

m∑
e=1

(xei − x̄i)(xej − x̄j) (4)

where x̄i = 1
m

∑m
e=1 xei is the average of the i-th column. When i = j, we get

the variance of xi: var(xi) = cov(xi, xi)
Fig.1(c) is the covariance matrix for the bipartite graph of Fig.1(b). Dark(Red

on line) color shows the most positive covariance and white shows the most
negative covariance. From the image we can see that vertices in the same clique
show much bigger covariances than vertices in different cliques.

Another measure of similarity of vertices is the correlation coefficients between
xi and xj , i.e.

cor(xi, xj) =
cov(xi, xj)√

var(xi)var(xj)
(5)

Unlike the covariance the correlation coefficients is re-scaled by the variance of
each vector thus have a lower bound −1 and upper bound +1 which makes it
more desirable for community uncovering. We will compare it with covariance
in experiment section in more details.

Therefore we define a quantity function for the partition C = {C1, · · · , Ck} as
follows:

V (C) =
c∑

k=1

∑
i,j∈Ck,i�=k

cov(xi, xj) (6)

Similarly define R(C) as

R(C) =
c∑

k=1

∑
i,j∈Ck,i�=k

cor(xi, xj) (7)

The community structure can be uncovered by maximizing V (C) or R(C)
through any handy optimizing procedure such as k-means clustering. However,
later we will show that R(C) gives a better performance than to V (C) in com-
munity uncovering.
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(a) karate network

Fig. 2. The karate network. (a)The karate network is split into two communities by
the proposed method. (b)The variance of vertices according the vertex-clique bipartite
graph. (c) The covariance matrix. (d)The correlation matrix. The result shows that the
covariances(c) are short of discriminative ability due to the fluctuations in variances(b),
and the correlation coefficients(d) is more powerful. See text for more details.

3.4 Special Case: Modularity

Here we will show that the modularity defined by Eq.1 equal to a special case
of covariance introduced in the previous subsection. If we put more strick re-
strictions on the partition B of the vertex-clique graph, i.e. just 2-clique are
allowed and take the orientation into consideration i.e. each edge is split into
two opposite orientated edges therefor there are 2m edges in total, then build
the vertex-clique bipartite graph from them. Equivalently define matrix Y and
Z as follows:

yie =
{

1 if ∃Vk ∈ V s.t.
−−→
VkVi = Ee,

0 otherwise.
(8)

zie =
{

1 if ∃Vk ∈ V s.t.
−−→
ViVk = Ee,

0 otherwise.
(9)

It is easy to check that cov(yi, zj) = 1
2m

(
Aij − kikj

2m

)
. Define q = −

∑n
k=1

k2
i

4m2

then we can rewrite the modularity as follows:

Q(C) = q +
c∑

k=1

∑
i,j∈Ck,i�=j

cov(yi, zj) (10)

Since the value of q only depend on G, thus any optimizing procedure actually
optimize

∑c
k=1

∑
i,j∈Ck,i�=j cov(yi, zj). We conclude that the modularity can be

reformulated as a special case of vertex-clique covariance.
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Fig. 3. The NMI of different algorithms on benchmark networks. The more similar
the clusters uncovered and the original ones are, the larger the NMI is. The proposed
method cor-cliques out performs most of the comparison algorithms with a narrow
gap after the best performed. The embeding graphs are the benchmark network with
zo = 1 and zo = 12 respectively.See text for details.

4 Uncovering Communities Structure by Eigenvectors

The existing state-of-the-art community detecting method based on matrix is
proposed by Newman [14] which use the leading eigenvector of the so called
modularity matrix to split the nodes into different groups.

The modularity matrix is defined as B = A − ddT

2m ,where the column vector
d = (k1, · · · , kn)T and ki is degree of node Vi. The community uncovering ap-
proach is equal to maximizing the modularity Q(C).Here we will give an analogy
eigenvector clustering framework based on covariance and correlation coefficients
defined by Eq.4 and Eq.5 respectively.

Denote the covariance matrix as Σ = (cov(i, j))n×n and correlation coeffi-
cients matrix as R = (cor(xi, xj))n×n. Both of them are real and symmetric
matrix, thus can be decomposed as product of orthogonality and diagonal ma-
trices. Let W be a real and symmetric matrix,which stand for matrix Σ or
R,then we haveW = UΛUT , where Λ = diag{λ1, · · · , λn} and λ1 ≥ · · · ≥
λn,U = (u1| · · · |Un) and uT

i ui = 1, uT
i uj = 0, ∀i �= j. The matrix W can be ap-

proximated by a few leading column vectors of U ,i.e. W ≈
∑c

k=1 λkukuT
k . The

parameter c is picked to maximize the eigengap

c = arg max
i

(λi−1 − λi) (11)

Thus the major variation of the covariances of vertices are encoded in Uc =
(u1| · · · |uc). The optimal number of communities is set to c, and then we us
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Fig. 4. (a)Clique-circle network.The network consist of 10 cliques with two different
size:ks and kb. (b)Eigenvalues of the clique-circle network obtained from different ma-
trices. The largest eigengap indicates the optimal number of communities obtained by
corresponding method and the idea location lies between the 9-th and the 10-th eigen-
values which recovery the number of communities correctly. When kb = ks = 10 all
methods get the right number of communities successfully,but when kb = 20, ks = 10
only the cor-cliques method proposed here works well and both the other method fails.
See text for details.

k-means clustering on the rows of Uc to identification the community structure
of the underlying social network.

The problem of generating all the cliques,or maximal independent sets, of
a given network is fundamental in graph theory.The complexity of finding all
the cliques is O(nmk)[22],here n,m and k are the numbers of nodes, edges and
the maximal size of cliques we want to find. In the experiment section we set
k = 4,resulting in a complexity of O(4nm) for cliques finding.The correlation
analysis can be done within O(n2) time.Thus the total complexity is O(n2).

5 Experiment

In this section we will carry out experiment to examine the merit of the method
proposed in the previous section. Both synthesis and real social networks are
tested upon proposed method and a series of famous state-of-the-art methods.
These methods are(short names are bracketed):

1. Divisive algorithm based on edge betweenness [12](betweenness)
2. Greedy algorithm based on modularity with advanced data structure [8](also

known as CNM algorithm,fastgreedy)
3. Label propagation algorithm which runs in linear time [13](label)
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Fig. 5. Community structure of the jazz network(a) and the polbooks network(b) un-
covered by cor-cliques method.See text for details

4. Spectral clustering method based on modularity matrix [14](eigenvector)
5. Approach minimizing the energy of spinglass attached on the network [15]

(spinglass)

5.1 Covariance vs. Correlation Coefficients

Here we will show the merit of correlation coefficients upon covariance with
example on the well known karate club network [23] with 34 nodes and 78 edges,
which has been extensively used as a benchmark for different algorithms aiming
at discovering communities in social networks.

Result of the variances,covariances and correlation coefficients of karate net-
work are displayed in Fig.2. From Fig.2(b) we can see that the variances of the
vertices shows heteroscedasticity. V1, V2, V3, V4, V26, V34 have noticeable bigger
variance than the rest vertices which lead to poor discriminative power of the
covariances as plotted in Fig.2(c). The correlation coefficients show more discrim-
inative power, benefiting from the rescaling operation described by Eq.5,which
can be seen in Fig.2(d).

This observation is further verified by the modularity result: modularity ob-
tained by covariance is Qcov = 0.2475345 and the modularity obtained by cor-
relation is Qcor = 0.3714661. The community structure uncovered by clique
correlation is displayed in Fig.2(a), distinguishing by different colors.

Due to the shortcomings of clique covariances, in the follow-up experiments
we only report the result on clique correlation and denote it as cor-cliques.

5.2 Experiment on Computer Generate Networks

Here we generate two kinds of networks. The first benchmark network is a 4-
group network proposed by Newman [5]. There are 128 nodes splitting in four
equal groups and edges are generated randomly. Every node has an average of
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zo links with nodes outside its group and 16 − zo links with the other nodes
inside. When zo = 8 the community structure is quite obscure since each node
has equal number of links inside and outside its group.

We use normalized mutual information(NMI) [24] to evaluate the differences
between uncovered community structure Ce and the original community struc-
ture Co.

NMI(Co, Ce) =
H(Co) + H(Ce) − H(Co, Ce)√

H(Co)H(Ce)
(12)

Here H(C) is the entropy of the set C. When Co and Ce are identical NMI = 1,
and when Co and Ce are totally different NMI(Co, Ce) = 0.

The experiment results are showed in Fig.3,from which we can see that the
performances of all the method declined as zo increased. When zo ≤ 6 except
for the label algorithms behavior quite desirable. When zo = 7 the label al-
gorithm and eigenvector algorithm show a quick drop in performance. When
zo = 8 the betweenness falls even more sharply than eigenvector and the cor-
cliques,spinglass and fastgredy are still quite good. When zo = 9 only cor-cliques
and spinglass are stay above 0.6,despite the situation that there are more edges
between groups than within them. cor-cliques falls behind spinglass but the gap
is quite tight. When zo = 12 there is no community structure at all which can
be seen from the embeding graph. The betweenness still keep a sound result due
to the global nature of edge betweenness. The proposed method is slightly fall
behind spinglass but the spinglass algorithm is very time consuming [7].

The second benchmark network is the clique-circle network [25] shows in
Fig.4(a), which consists two kinds of cliques with size kb and ks. This exper-
iment tests performance the following algorithms, i.e.eigenvector,cor-cliques and
the cov-cliques, as the other algorithms do not use eigenvectors. Each one of
the three algorithm uses the largest eigengap (see Eq.11) to determine optimal
number of communities.

We generate two version of the networks with kb = ks = 10 and kb = 20, ks =
10.The results are depicted in Fig.4(b). When kb = ks = 10 all three method
detect corrected number of communities. However when kb = 20, ks = 10 there
is two difference size of cliques and the eigenvector and cor-cliques algorithm
detection 5 communities,showing a resolution limit. However the algorithm pro-
posed here get the right number of communities.

5.3 Real Social Networks

Now we apply the method based on clique correlation on real world networks.
despite the karate network we have also analyzed the community structure of
two more real networks. The first is the jazz musicians network [26],where two
musicians are connected if they have played in the same band. The second is the
politic book co-purchasing network,where two books are connected if they are
bought by a same customer[27].

Fig.5 shows the result by cor-clique algorithm. The optimal number of com-
munities of jazz network is 4 with Qcor = 0.44 and the optimal number of
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Table 1. Modularity and number of communities uncovered by different algorithms.
Numbers within brackets shows the number of communities uncovered by different
methods.

cor-cliques fastgreedy betweenness label eigenvector spinglass

karate 0.37(2) 0.38(3) 0.40(5) 0.37(3) 0.38(5) 0.42(4)
jazz 0.44(4) 0.44(4) 0.41(39) 0.28(3) 0.35(8) 0.44(5)

polbooks 0.45(2) 0.50(4) 0.52(5) 0.50(4) 0.40(9) 0.53(6)

communities of polbooks network is 4 with Qcor = 0.45. All results are dis-
played in Table.1, from which we can see that cor-cliques achieves promising
performance compared to other methods. For the karate network, several meth-
ods tend to find more communities and return a higher modularity value. But
the fact is that the network can be split into only two groups in real world. They
correspond to a modularity value 0.37, the same as our method[7,26]. The main
philosophy behind this is that our method tend to not split nodes in the same
clique. The results on the other two networks tell the same story. Thanks to the
weighting allocation method in Eq.3, our method keeps nodes in the same clique
in the same group. This feature can be seen from Fig. 5(b) clearly.

6 Conclusion

We have discussed the problem community uncovering in social networks. By
building a vertex-clique bipartite graph out from the original network and car-
rying out correlation analysis on the adjacency matrix of this bipartite graph,
the community structure of the original networks can be recovered effectively.
Unlike other modularity optimizing procedure tend to split cliques into difference
communities[17] the method proposed here shows the ability of keeping them in
the same group.

The method can be further modified to deal with directed and weighted net-
works to. Also the clustering method we used can be replaced with a fuzzy
clustering algorithm making the method proposed here capable of uncovering
overlapping communities. The cliques finding is the most time consuming oper-
ation in our algorithm and to our best knowledge the most efficiency strategy
cost O(nmk) time[22]. Better clique enumeration algorithm will be one of our
possible future work.
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Sáez-Trumper, Diego 223
Shan, Zhenyu 31
Stokes, Klara 20
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