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to Kelvin Probe Force Microscopy on the
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Abstract The goal of this chapter is to gather and detail recent numerical
developments addressing the issue of atomic-scale measurements in Kelvin Probe
Force Microscopy (KPFM). It is argued why the problem requires the combination
between the atomistic description of the distance- and bias voltage-dependent force
field occurring between the tip and the surface, as well as an accurate numerical
implementation of the complex noncontact atomic force microscopy and KPFM
setup. When combining these tools, it is possible to draw conclusions regarding the
origin of the atomic-scale KPFM contrast and its connections with usual physical
observables such as the surface potential and the local work function. These aspects
are discussed with respect to the surface of a bulk ionic crystal.

5.1 Atomic-Scale Contrast in KPFM: Relevance
of the Numerical Approach

Over the past decade, the combination between non-contact Atomic Force
Microscopy (nc-AFM) and Kelvin Probe Force Microscopy (KPFM) [1, 2] has
attracted much interest owing to the unique capability of the latter method to map the
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spatial distribution of electrostatic forces down to the nanometer scale. Electrostatic
forces occur between the nanoscopic tip of the AFM and the sample, henceforth
referred to as the electrodes, as soon as they are electrically connected. They
stem from intrinsic work function differences between the electrodes when they
do not consist of similar materials and/or when they carry charges. They are usually
interpreted on the macroscopic level as capacitive forces and are known to influence
the nc-AFM operating mode [3–6]. The KPFM controller supplies the proper DC
voltage that aligns the Fermi levels of both electrodes, thereby compensating the
electrostatic force. Thus, the KPFM provides the Contact Potential Difference
(CPD) between the electrodes. Hence, beyond the regular nc-AFM channels, i.e.,
topography and dissipation, the combined nc-AFM/KPFM setup allows also for the
simultaneous acquisition of a CPD image.

In the early stages of its development, KPFM proved its ability to map the
spatial variations of the CPD on the nanometer scale with a resolution of few
millivolts [7–9]. With the goal in mind to understand better the connection between
the structural and the electrical properties of the investigated samples on the
atomic-scale, some research groups reported outstanding results with atomically
resolved CPD images [2, 10–19]. KPFM has also been used as a way to map
the chemical identity of surface atoms [13]. Surprisingly, the latter work is the
earliest experimental attempt dealing with atomic-scale chemical identification by
KPFM, though the topic has been intensively addressed by other experimental
strategies based on site-specific force vs. distance measurements [20–25]. So far,
atomic-scale KPFM contrast was reported on semiconducting surfaces: Si(111)7�7

[10, 12, 15], Si(111)5
p

3 � 5
p

3-Sb [13], GaAs(110) [11] and InSb(001) [16],
and on two bulk dielectric surfaces: TiO2(110) [17, 18] and KBr(001) [19]. In
Figs. 5.1a, b and 5.1c, d are shown two examples of experimental results showing
the simultaneous topographical-CPD atomic-scale contrast on the 7 � 7 Si(111)
reconstruction [12] and on the KBr(001) surface [19], respectively.

Among the former references however, despite the consistency between the lat-
eral periodicity of the CPD and topographical images, the CPD values neither fit the
values reported by macroscopic methods, notably UV photoemission spectroscopy,
nor the theoretical predictions [2, 10, 12]. Besides, it is now well stated that, when
measured in the range of few angstroms up to 1–2 nm above the surface, the CPD
varies with the tip-surface separation [14, 16, 26, 27]. These results are all the more
surprising in that, when not used on the atomic-scale, i.e., down to a regime where
the features at the surface have a size larger or similar to the size of the tip, KPFM
provides CPD values that are compliant with the expected work function of the
material [4, 8, 26, 28–34], the latter being not supposed to depend on the distance
between the electrodes.

The experimental aspects of atomically resolved CPD images are not the scope
of this chapter as these are presented in Chap. 13. However, it is interesting to point
out some of their main findings. For instance, on the complex Si(111)5

p
3 � 5

p
3-

Sb surface, Okamoto et al. concluded that the CPD images mainly reflect the
electrostatic force distribution rather than the work function distribution [13, 14].
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Fig. 5.1 Simultaneously acquired (a) topographical and (b) CPD nc-AFM images of a p-type
Si(111)7 � 7 surface with deposited Au clusters. The atomic-scale contrast is well visible in
both channels. The scan size is 20�20 nm2. The vertical contrast of the CPD image ranges
from �40 mV down to �180 mV and is brighter (larger CPD) on the Au clusters than on the
adatoms of the 7 � 7 structure. Courtesy from [12]. (c) Simultaneously acquired topographical
(top) and local CPD (LCPD, bottom) nc-AFM images of the KBr(001) surface. The insets show
the corresponding error signals of the distance and KPFM controllers. The LCPD vertical contrast
ranges from �3.95 to �3.85 V, corresponding to a contrast magnitude of 0.1 V. The magnitude
of the topographical contrast is 30 pm only. Courtesy from [19]. (d) LCPD and topographical
cross sections corresponding to the dotted lines shown in (c) showing the consistency between the
atomic-scale topography and Kelvin contrast

On the Au/Si(111)7 � 7 surface, Kitamura et al. came also to the conclusion that
the CPD does not reflect the work function of the observed atomic structures (see
Fig. 5.1a, b), but rather the local electron density [12].

The discrepancy between the CPD values on the atomic-scale and the expected
ones, as well as its unexpected distance dependence ultimately made KPFM
measurements controversial and evoked questions of the origin and the relevance of
the atomic-scale resolution in KPFM. What is the observable the technique provides
access to: local work function, local surface potential, local surface charge density?
Is the measurement quantitative? Why is the CPD distance dependent? Then, is it
influenced by the distance regulator of the nc-AFM setup? The above elements can
be rationalized as follows:
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• When measured close to the surface, the CPD acquires a local character. Hence,
the so-called local CPD (LCPD) must differ from its long-range value because
the work function, well defined on the macroscopic scale, differs from the local
work function on the atomic scale. The latter concept was introduced by Wandelt
[35] to account for the fluctuations of the surface potential of real surfaces
owing to fluctuations of the local density of states, presence of chemical and/or
structural defects, steps, trapped charges, etc. Therefore, the discrepancy between
CPD and LCPD was, to some extent, predictable.

• Since the KPFM technique is primarily sensitive to electrostatic forces, the
atomic-scale CPD contrast relies on Short-Range and bias dependent electro-
static forces (SRE forces).

Two groups have initiated studies on the contribution of SRE forces in KPFM
at this point [16, 19]. In a recent series of papers [19, 36], Bocquet et al. have
described a self-consistent analytical approach to the LCPD probed by KPFM
on the (001) facet of a bulk alkali halide single crystal. The approach, based on
classical electrodynamics, relies on the estimate of the SRE force between a biased
metallic tip and a semi-infinite dielectric slab. The analytic expression of the force
allowed them to derive an expression of the LCPD. Although useful to understand
the most important concepts of the problem, the analytical approach has two major
drawbacks: (1) the tip must be restricted to a simple geometry and (2) deriving an
expression of the LCPD requires an analytical description of the KPFM setup. This
is only feasible with strong approximations. Therefore, the predicted values of the
LCPD are hardly comparable to the experimental data, which ultimately restricts
the relevance, as well as the accuracy of the analysis.

Following the experimental development of the nc-AFM technique, numerical
methods such as ab initio and classical atomistic calculations have been developed
by several groups to compute the distance dependence of short-range chemical
forces for a wide set of realistic tips and surfaces [20–22, 37–44]. These methods
brought a valuable gain to the nc-AFM technique as it is now possible to quantify
the experimental images in terms of force and thus identify the interaction pro-
cesses driving the atomic-scale topography contrast formation. Beyond the accurate
description of the tip–surface interaction, numerical approaches tend to open new
routes to the experimentalists such as chemical identification [20–22, 24, 25],
dissipation processes [45–48], electron transfer processes [49], atomic or molecular
manipulation [50–54], atomic or molecular diffusion barriers [51, 55, 56].

Following the works by Nony et al., atomistic calculations have been used to
address the issue of SRE forces in the particular case of a bulk ionic sample [57].
However, when dealing with the nc-AFM/KPFM technique, the force field between
the tip and the surface cannot be connected to the topography or LCPD contrast
directly. It is also required to understand how the dynamics of the cantilever is
changed when vibrating close to the surface under the dual influence of bias-
dependent and non- bias-dependent interaction forces, that is actually the whole
acquisition chain of the experimental setup. As said before, this is hardly feasible
on the analytical level. Therefore, owing to the overall complexity of the tip–surface
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interaction and the one of the nc-AFM/KPFM technique, a thorough analysis
requires a combined numerical approach of the force field between the tip and
the surface and of the experimental setup. This is the unique way to interpret the
experimental results with the best accuracy. Thus, issues such as the origin and the
quantitative character of the KPFM contrast on the atomic-scale can be addressed
in details, while preventing imaging artifacts from occurring.

This chapter deals with recent developments of the numerical implementation
of the two well-established KPFM setups, namely Frequency Modulation- and
Amplitude Modulation-KPFM (FM- and AM-KPFM, respectively), coupled to
atomistic simulations of the distance- and bias-dependent interaction force between
a realistic tip and the (001) facet of a bulk single crystal of NaCl. The elements
detailed hereafter are gathered in a set of three recent articles [19, 36, 57]. The
implementation of the KPFM setups is performed within the core of an accurate
numerical implementation of an existing nc-AFM setup, the so-called nc-AFM
simulator [58], briefly described in Sect. 5.2. The connection between the simulator
and FM- or AM-KPFM methods is described in Sect. 5.3. In Sect. 5.4, the atomistic
simulations of the interaction force field between the NaCl crystal and a metallic tip
including an ionic cluster in the topmost position will be presented. The use of the
numerical force field as an input parameter of the nc-AFM/KPFM simulator allows
for the simulation of spectroscopic measurements and topography and CPD images.
The results will be discussed in Sect. 5.5. In Sect. 5.6, we will conclude by stressing
the influence of the dynamic polarization of the ions at the tip–surface interface,
which will allow us to draw conclusions concerning the relevance of the local CPD
and its connection with physical observables such as the Madelung surface potential
of the ionic crystal.

5.2 Prerequisite: The nc-AFM Simulator

To date, five groups have reported the implementation and/or performance of
“virtual force microscopes” [58–63]. These simulation codes are almost analogous
to ours, but differ in detail. Historically, our virtual instrument has been referred
to as the nc-AFM simulator. It is a numerical implementation of an existing
nc-AFM setup based on a Phase-Locked-Loop- (PLL-) excitation scheme [64]. Its
original implementation is reported in Fig. 5.2. A simplified version is sketched in
Fig. 5.3a, b. The PLL-excitation scheme consists in using the PLL to generate the
time-dependent phase of the excitation signal of the cantilever. The PLL output
is driven by the AC deflection signal of the cantilever and phase-locked to it,
provided that the PLL settings are properly adjusted. Then the PLL continuously
tracks the interaction-shifted resonance frequency of the cantilever ef0 with high
precision, whatever the tip-surface separation. One of the primary goals of the
nc-AFM simulator was to address the issue of apparent dissipation (or apparent
damping), that is of spurious variations in the driving amplitude caused by the
nonlinear interaction occurring between the tip and the surface and by the finite
response times of the various controllers (cf. section IV in [58]).
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Fig. 5.2 Scheme of the numerical implementation of the nc-AFM simulator based on a real nc-
AFM setup

Fig. 5.3 (a) Simplified scheme of the nc-AFM simulator. The main features of the implementation
are drawn. The PLL-excitation scheme ensures the continuous on-resonance driving of the
cantilever while optimizing the quality of the driving signal. (b) Simplified scheme of the PLL-
excitation scheme that is used for the KPFM implementation as discussed in Sect. 5.3
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This section is built as follows: in Sects. 5.2.1 and 5.2.2, the numerical schemes
of the blocks describing the dynamics of the cantilever and the Lock-In Amplifier
(LIA) used to monitor the phase lag of the cantilever with respect to its excitation
are detailed. They are indeed useful to understand the implementation of the KPFM
setups. The numerical implementation of the PLL and the proportional/integral
controllers (PIC) is not described here, but the equations ruling out their behavior
are given in [58]. In Sect. 5.2.3, a brief summary of the main results obtained with
the nc-AFM simulator is given.

5.2.1 Overview of the Numerical Implementation

The electronics of the simulated nc-AFM setup consists of analog and digital
circuits described by six interconnected main blocks operating at various sampling
frequencies (fs), as sketched in Fig. 5.2. The highest sampling frequency among the
digital blocks is the PLL one, fs1 D 20 MHz. The PLL electronics has initially been
developed by Loppacher et al. [64]. Details regarding the operating mode of analog
and digital PLLs can be found in the book by Best [65] for instance.

Block 1 in Fig. 5.2 mimics the detection of the vibration of the tip when
interacting with the surface. In the simulation, the block is described by an
equivalent analog circuit. More generally, all the analog parts of the electronics
are described in the simulation using a larger sampling frequency compared to
fs1 , namely fs2 D 400 MHz. This is motivated by the ultrahigh vacuum environment
within which the microscope is placed, thus resulting in a high quality factor of the
cantilever, typically Q D 30;000 at room temperature. Besides, nc-AFM cantilevers
have typical fundamental eigenfrequencies f0 ' 150 kHz. The chosen sampling
frequency insures a proper integration of the differential equations minimizing the
error. The signal of the oscillating cantilever then goes into a bandpass filter which
cuts off its low and high frequency components. The bandwidth of the filter is
typically 60 kHz, centered on the resonance frequency of the cantilever. Despite
the implementation of a filter in the simulation, no noise has been introduced. The
signal is then sent to other blocks depicting the interconnected parts of two boards,
namely an analog/digital one, the “PLL board,” and a fully digital one integrating
a Digital Signal Processor (DSP), the “DSP board.” The boards share data via a
“communication bus” operating at fs3 D 10 kHz, the lowest frequency of the digital
electronics.

Block 2 stands for the mere analog part of the PLL board (fs D fs2). It is an
RMS-to-DC converter, the output of which is the root mean square (RMS) value of
the oscillation amplitude of the cantilever, ARMS.t/. ARMS.t/ is provided to block
3, one of the two PIC implemented on the DSP (fs D fs3). When operating in
the nc-AFM mode, the block output is the DC value of the driving amplitude that
maintains constant the reference value of the oscillation amplitude, Aset

0 . This is why
it is referred to as the amplitude controller, APIC.
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The dashed line in Fig. 5.2 depicts the border between analog and digital circuits
in the PLL board. The digital PLL, block 4 (fs D fs1), consists of three sub-blocks:
a Phase Detector (PD), a Numerical Controlled Oscillator (NCO) and a filtering
stage consisting of a decimation filter and a finite impulse response (FIR) low-pass
filter in series. The PLL receives the signal of the oscillation divided by ARMS.t/

plus an external parameter: the “center frequency,” fcent D !cent=2� . fcent specifies
the frequency to which the input signal has to be compared for the demodulation
frequency stage. The NCO generates the digital sin and cos waveforms of the
time-dependent phase, ideally identical to the one of the input signal. The latter
waveforms are then sent to a digital phase shifter (PS, block 5, fs D fs1) that shifts
the incoming phase by a constant amount, set by the user to maximize the oscillation
amplitude of the cantilever, i.e., actually to ensure its on-resonance excitation. The
block output is converted into an analog signal and then multiplied by the APIC
output, thus generating the full AC excitation applied to the piezoelectric actuator
to drive the cantilever on resonance.

Block 6 is the second PIC of the DSP (fs D fs3). It controls the tip-surface
separation to maintain constant either a given value of the frequency shift, or a
given value of the driving amplitude (switch 3 set to location “a” or “b” in Fig. 5.2),
respectively. The output is the so-called “topography” signal. The block is referred
to as the distance controller, DPIC. In this work, the topography images have been
calculated in the constant frequency shift mode (switch 3 set to location “a”).

Finally, a digital LIA detects the phase lag, ', between the excitation signal
provided to the oscillator and the oscillating cantilever motion.

All the processed signals are properly converted by means of Analog-to-
Digital or Digital-to-Analog Converters (ADC or DAC, respectively), the nominal
bandwidths of which are much larger than the communication bus one. Therefore,
although sketched in the figure, they are not implemented in the code of the
simulator.

5.2.2 Numerical Schemes

5.2.2.1 Block 1: Cantilever and Optical Detection

The block mimics the photosensitive detector (PSD) acquiring the signal of the
vibration of the cantilever. The equation describing its behavior is given by the
differential equation of the harmonic oscillator:

Rz0.t/ C !0

Q0

Pz0.t/ C !2
0 z0.t/ D !2

0 �exc.t/ C !2
0

k0

ŒFint.z/ C Fes.Vb; z/� (5.1)

!0 D 2�f0, Q, k0 stand for the angular resonance frequency, quality factor and
stiffness of the fundamental bending eigenmode of the free cantilever, respectively.
z0.t/ and �exc.t/ are the instantaneous location of the tip with respect to the
rest position of the cantilever (cf. Fig. 5.4a) and the excitation signal driving the
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Fig. 5.4 (a) Geometrical parameters used for the description of the instantaneous position of the
tip with respect to the surface. The tip is sketched for pedagogical purpose. (b) Actual geometry
of the tip used in the simulations. The body of the tip is a cone with an open half-angle ˛. Its apex
consists in a sphere with a radius R and a small cluster in topmost position protruding with a height
Ra from the sphere. The dielectric ionic crystal below the tip is several millimeters thick

cantilever, respectively. Fint.z/ and Fes.Vb; z/ are the non-bias- dependent and
bias-dependent (Vb) interaction forces acting between the tip and the surface,
respectively. They primarily depend on the instantaneous tip-surface separation z.t/,
connected to z0.t/ and to the separation between the surface and the cantilever at
rest, D (cf. Fig. 5.4a):

z.t/ D D � z0.t/: (5.2)

z.t/ is to be distinguished from the minimum tip-surface separation, referred to as
z� in the following. z� stands for the position of the lower turning point of the
oscillation of the cantilever with respect to the surface:

z� D D � A0; (5.3)

where A0 is the oscillation amplitude of the cantilever (cf. Fig. 5.4a).
Fint.z/ gathers long-range Van der Waals interactions and chemical short-range

ones, and Fes.Vb; z/ gathers long-range and short-range electrostatic interactions.
In the simulations, we have considered a long-range electrostatic force as a
phenomenological force that consists of capacitive effects between the cantilever
and the sample holder when mounted in the microscope. Van der Waals and long-
range electrostatic interactions are implemented via common analytical forms (cf.
equ. (2.4) in [66] and equ. (14) in [36], respectively):

F vdW
int .z/ D �H

6

�

R

.z C Ra/2
C tan.˛/2

z C Ra C R0 � R0

.z C Ra/2 C z C Ra C R0

�

(5.4)
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and:

F lr
es.Vb; z/ D � �0�

2
dSV 2

b

2.z C Ra C zM/2
(5.5)

R, Ra, ˛ and R0 D R.1 � sin ˛/ are the geometrical parameters for the tip, as
sketched in Fig. 5.4b. H , �0 and �d are the Hamaker constant of the tip-surface
interface, vacuum and sample dielectric permittivities, respectively. S and zM

are the effective area involved in the capacitive coupling between the cantilever
and the counter-electrode and the corresponding distance between the electrodes,
respectively. In the problem addressed here, the sample is a bulk dielectric that
is several millimeters high. A quick estimate for S D 1 mm2, zM D 5 mm and
Vb D 1 V yields F lr

es ' �3 pN.
When using the nc-AFM simulator with atomistic force fields, a lookup table of

the force values is built as a function of the tip-surface separation and the applied
bias voltage, the size of which depends on the sampling rates of the tip-surface
separation and of the bias voltage. By definition, it consists of the chemical and
electrostatic short-range interactions. The total interaction force used to perform the
simulations is then built for each value of the tip-surface separation and each value
of the bias voltage as the sum between the latter short-range contributions and both
long-range contributions derived from the former analytical expressions.

The differential equation is solved with a modified Verlet algorithm, so-called
leapfrog algorithm [67], using a time step �ts2 D 1=fs2 D 5 ns. The instantaneous
value of the driving amplitude �exc.t/ (units: m, cf. equ. (5.1)) can be written as:

�exc.t/ D K3Aexc.t/zps.t/ (5.6)

K3 (units: m V�1) stands for the linear transfer function of the piezoelectric actuator
driving the cantilever. Aexc.t/ (units: V) is the APIC output. zps.t/ is the AC part of
the excitation signal. It is provided by the phase shifter when the PLL is engaged.
When the steady state is reached, i.e. t � tsteady ' 2Q=f0, the block output has the
form:

K1z0.t/ D K1A0.t/ sin Œ!t C '0.t/� : (5.7)

K1 (V m�1) depicts the transfer function of the PSD, which is assumed to be linear
within the bandwidth (3 MHz in the real setup). If the damping is kept constant, the
amplitude and the phase, A0.t/ and '0.t/, respectively, remain constant as well. This
is no longer true once the controllers are engaged. This is why the time dependence
has been explicitly preserved in the above equation.

5.2.2.2 Lock-In Amplifier

The simulated LIA does not mimic the detailed operational mode of the real dual
phase lock-in that is used to monitor the phase shift of the oscillator (Perkin Elmer
7280). Its purpose is rather to provide a simple way to estimate the phase shift
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between the excitation and the oscillation. In particular, the built-in low-pass filter
has been simulated as a simple averaging analog circuit, but the bandwidth of
the LIA remains adjustable. For monitoring the cantilever phase lag, it has been
set equal to 2:5 kHz. The reference signal of the LIA is the driving signal of the
cantilever with a time-dependent phase of the form !t . The input signal of the LIA
is the output of the bandpass filter zbpf, i.e., a signal that is almost similar to the
input of the filter owing to its wide band. The numerical code used to describe in-
and off-phase components,1 XLIA and YLIA, respectively, is:

XLIA.t/ D
Pi

kDi�nLIA
zbpf.tk/ � sin.!t/

nLIA

YLIA.t/ D
Pi

kDi�nLIA
zbpf.tk/ � cos.!t/

nLIA
: (5.8)

Hence, the phase of the oscillator with respect to the driving excitation is
given by:

tan.'.t// D XLIA

YLIA
; (5.9)

while the vibration amplitude of the cantilever can also be derived as:

ALIA D 2

q

X2
LIA C Y 2

LIA: (5.10)

The LIA that is used in the KPFM setup is implemented with the same code, but
with proper input, bandwidth, and reference signals.

5.2.2.3 Code Implementation

The numerical implementation has been performed in ANSI C. The integro-
differential equations (5.1) and (5.6) are integrated at their respective sampling
frequencies. The monitored signals are the oscillation amplitude A0 given by the
RMS-to-DC converter, the frequency shift �f given by the PLL, the phase ' given
by the LIA (5.9) and the relative damping QK3Aexc=A0 �1, deduced from the APIC
output.

1In- and off-phase components of the LIA are essentially defined upon the structure of its input
signal, i.e., here the driving signal of the cantilever which is arbitrarily generated out of a sinus
waveform.
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Fig. 5.5 (a) Locking time of the simulated (filled squares) and real (empty circles) PLL vs. loop
gains. The arrow indicates the value of the loop gain used experimentally, which corresponds to an
optimum behavior of the PLL and a related locking time of about 0.35 ms. The curve is given as
a guide to the eye. (b) Response time of the APIC vs. Kac

p of the simulated setup and the rescaled
Kp gain of the real controller. The two curves match with a reasonable agreement and exhibit two
domains: first the response time decreases when increasing Kac

p and then a saturation is reached
corresponding to tresp ' 2 ms. The dotted line is given as a guide to the eye. The saturation is due
to the contribution of the RMS-to-DC converter (cf. [58] for details)

5.2.3 Main Results

The dynamic performances of each virtual controller have been investigated care-
fully and compared to those of the real setup. In Fig. 5.5a, b, the locking time of the
simulated and real PLL, and the response time of the simulated and real APIC are
reported, respectively. Good agreement is obtained between the locking behavior of
both PLLs. The optimum locking time of the PLL is found to be about 0.35 ms. The
behavior of the amplitude controller is also found to correctly describe the real setup
with an optimum response restricted to 2 ms owing to the intrinsic time constant of
the RMS-to-DC converter.

5.3 Numerical Implementation of the KPFM Methods:
The nc-AFM/KPFM Simulator

Both KPFM operating modes, i.e., Amplitude-Modulation and Frequency-
Modulation, AM- and FM-, respectively, have been implemented within the nc-
AFM simulator and can be engaged independently. They are implemented as a set
of additional building blocks to those of the simulator. The scheme of the numerical
implementation of AM- and FM-KPFM methods is reported in Figs. 5.6 and 5.7,
respectively.
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Fig. 5.6 Scheme of the numerical implementation of the AM-KPFM operating mode combined
with the nc-AFM simulator

Fig. 5.7 Scheme of the numerical implementation of the FM-KPFM operating mode combined
with the nc-AFM simulator

5.3.1 Amplitude-Modulation KPFM (AM-KPFM)

In AM-KPFM, the bias-modulated component is usually the second bending
eigenmode of the cantilever, which has been depicted in Fig. 5.6. In this case,
the modulation frequency fmod of the applied bias voltage must accurately match
the resonance frequency of the mode, f1 (resonance amplitude A1). However,
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if experiments are to be carried out off-resonance on purpose, i.e., with fmod ¤ f1,
the numerical implementation will run as well. When using beam-shaped can-
tilevers, it is known that f1 D 6:24f0, which makes f1 ranging in the MHz regime:
f1 D 6:24 � 150 kHz ' 940 kHz. The instantaneous position of the cantilever
connected to that mode, z1.t/, is ruled out by a similar differential equation as
the one of the first eigenmode, except that the actuation force (first term on the
right-hand side of (5.1)) is now the electrostatic force Fes.Vb; z/, triggered by the
modulation of the applied bias voltage Vb D Vdc C Vmod sin.2�fmodt/:

Rz1.t/ C !1

Q1

Pz1.t/ C !2
1z1.t/ D !2

1

k1

ŒFext C Fint.z/ C Fes.Vb; z/� ; (5.11)

where Q1, !1 D 2�f1 and k1 are the quality factor, resonance angular frequency and
effective stiffness of the mode, respectively. Fext stands for the actuation force of the
fundamental bending mode of the cantilever. Owing to the large difference between
f0 and f1, Fext does not influence z1.t/; however, we have kept it in the equation.
As already stated, Fint stands for all the non-bias-dependent interaction forces. In
the above equation, it is important to notice that Fes is not only bias dependent,
but also z dependent. Hence, the dynamics of the second eigenmode is complex
and non-linear, notably in the short-range regime. However, its usually large
Q-value in UHV (Q1 ' 10;000) combined to the long-range electrostatic interac-
tion allows for the development of the steady state of the eigenmode. Furthermore,
although the resonance frequencies of both eigenmodes are far apart, their dynamics
are actually coupled by means of the tip-surface separation dependence of the
former forces. The instantaneous tip-surface separation z.t/ now becomes (cf.
Fig. 5.8):

z.t/ D D � z0.t/ � z1.t/; (5.12)

and consequently z� D D � A0 � A1.
On the numerical level, although f1 � f0, we have kept the sampling frequency

standing for the analog parts of the electronics constant, namely fs2 D 400 MHz.
This is still sufficient to integrate the differential equation with an error kept low
enough. The splitting between the first and the second eigenmode is performed using
a high-pass filter.2 A simple first-order high-pass filter has been implemented with
the differential equation:

Pzo.t/ C !czo.t/ D Pzi .t/; (5.13)

where !c , zo, and zi are the cut-off angular frequency, output and input of the filter,
respectively. In the code, we have set !c D 2� � 200 kHz, while f0 is always
150 kHz and hence, f1 D 940 kHz.

2On the experimental level, the AM-KPFM setup requires that the bandwidths of the PSD and
of the preamplifier are large enough to allow for the detection of the 2nd eigenmode without
attenuation.
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Fig. 5.8 Definition of the geometrical parameters used for the description of the combined
vibrations of the fundamental and second eigenmodes of the cantilever in AM-KPFM. The time-
dependent vibration is shown on the right-hand side of the figure

The Kelvin LIA detects the vibration amplitude of the second bending eigenmode

of the cantilever with a 10 kHz bandwidth. The LIA provides AK D 2

q

X2
K C Y 2

K ,
which in the case of the AM-KPFM matches A1. The Kelvin controller has a 2.5 kHz
bandwidth. It is a standard proportional and integral controller, the numerical
implementation of which is similar to the distance and amplitude controllers of
the PLL-excitation scheme. It provides the DC part of the bias that minimizes,
or ideally nullifies, the vibration amplitude of the second eigenmode and hereby
compensates the CPD. When the tip is biased (sample grounded), Vdc D �VCPD,
otherwise Vdc D CVCPD. It is important to notice that the input of the controller
is not the signal detected by the Kelvin LIA, AK , but the in-phase component XK .
The in-phase component is supposed to be used instead of AK because it can become
negative and thus handle negative error signals, while AK cannot.

The code integrates (5.11) in parallel to the equation of motion for the fundamen-
tal flexural eigenmode. The PLL-excitation scheme ensures that the latter mode is
continuously actuated at its resonance frequency that shifts as the tip is approached
to the surface. Meantime, the second mode undergoes a frequency shift as well. Nev-
ertheless, it is mandatory to maintain the on-resonance excitation for this eigenmode
too; otherwise, the vibration amplitude AK does not match the resonance value, A1.
Experimentally, this requires one to tune precisely the modulation frequency of the
bias fmod to recover the on-resonance excitation as soon as the tip is approached
to the surface and prior to engaging the Kelvin controller and scanning. Performing
this step numerically is time consuming as the frequency sweep has to be performed
slowly owing to the large value of Q1. In order to avoid that, an additional PLL, the
Kelvin PLL, has been implemented with the goal to continuously track the shift of f1

while approaching the surface, i.e., as a function of the tip-surface separation. Thus,
the AC part of the bias modulation always matches the interaction-shifted resonance
frequency of the second eigenmode ef mod: Vmod sin.2�ef modt C 'K/, 'K being the
phase shift introduced by the Kelvin PLL while processing the input signal. The
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numerical implementation of the Kelvin PLL is strictly similar to the one used in
the PLL-excitation scheme for the fundamental eigenmode. Then, after a proper
phase shifting process, which is insured by the Kelvin phase shifter, the modulation
signal Vmod sin.2�ef modt/ is supplied to the cantilever and hence, the on-resonance
condition is maintained. Furthermore, the frequency of the reference signal for
the Kelvin LIA, fmod, is continuously updated, which makes the detection of A1

continuously self-consistent. As said before, this step merely concerns the approach
of the tip to the surface. As soon as the required �f is reached, i.e., prior to
engaging the Kelvin controller and scanning or recording a spectroscopic curve, the
Kelvin PLL is disengaged and the modulation then continuously performed at the
last computed value of ef mod.

5.3.1.1 Maximization of the In-Phase Component of the Kelvin LIA

On the experimental level, in addition to the above comment on the adjustment of
ef mod, the phase of the Kelvin LIA is to be adjusted to get always a maximal in-
phase signal and hence optimize the measurement of the bias-modulated vibration
amplitude. This is an irrelevant issue for the simulator as there is no additional
“numerical” phase delay between the LIA and the bias modulation. The phase of
the LIA is always exactly the same as the one of the in-phase component. Hence,
the in-phase signal is always maximum.

5.3.2 Frequency Modulation KPFM (FM-KPFM)

Unlike in AM-KPFM, the FM-KPFM method does not rely on the detection
of a mechanical resonance of the cantilever, but on the detection of the bias-
induced modulation of the frequency shift of the fundamental eigenmode of the
cantilever. However in this case, the numerical implementation is made easier
as no Kelvin PLL is required. The numerical scheme is reported in Fig. 5.7. In
FM-KPFM, the modulation frequency of the bias is performed at low frequency,
typically fmod D 1 kHz. In order to understand how the bias modulation induces
the modulation of the �f , let us consider the following elements. To first order,
it is known that the interaction-shifted resonance frequency ef0 of the fundamental
bending eigenmode of the cantilever under the influence of an interacting force with
the general form Fint.z/ may be written as:

ef0 D 1

2�

s

k0 � @Fint=@z

m0

D f0

�

1 � 1

2k0

@Fint

@z

�

” �f D ef0�f0 D � 1

2k0

@Fint

@z
:

(5.14)
If one assumes that the interaction force includes an electrostatic component with
the usual capacitive form: Fint.z/ / Fes.Vb; z/ D 1=2@C=@zV 2

b with Vb D
Vdc � Vcpd C Vmod sin.2�fmodt/, then it can readily be seen that a modulation at
fmod and 2fmod will occur in the force and hence, in the frequency shift (5.14). The
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DC bias voltage nullifying the modulated component of the �f at fmod gives the
CPD. In other words, in FM-KPFM, the amplitude of the bias-induced modulation
of the �f has the same role as the bias-induced resonance of the second eigenmode
of the cantilever (resonance amplitude A1) in AM-KPFM. The underlying idea of
the FM-KPFM method is that it is not sensitive to the electrostatic force like in
AM-KPFM (A1 being proportional to the strength of Fes), but rather to its gradient
(readily visible in (5.14)). Owing to the lower modulation frequency, the Kelvin LIA
has a lower, 500 Hz, bandwidth.

5.3.3 Methodology with the nc-AFM/KPFM Simulator

The sequence of simulation of a spectroscopic curve or an image in FM- or AM-
KPFM is detailed in Fig. 5.9. It follows accurately the experimental protocols and is
cast into three main steps:

1. The steady state of the cantilever is calculated for a tip-surface separation
corresponding to twice the vibration amplitude of the first bending mode of the
cantilever (typically 8 nm peak-to-peak). Then (1) the PLL is engaged, (2) the
phase lag of the phase shifter is adjusted to maximize the oscillation amplitude
(on-resonance condition), (3) the APIC is engaged, and (4) the bias modulation
is engaged (i.e., fmod ¤ 0 and Vmod ¤ 0) to trigger the long-range electrostatic
force (see (5.5)). Note that if the AM-KPFM is engaged, the Kelvin PLL must
be engaged as well. At this point, the cantilever is operated in nc-AFM and
the surface may be approached. At this distance, this should yield an almost
zero long-range interaction if the tip would carry no charge. However, in the
atomistic description of the tip as described in the next section (Sect. 5.4), the
tip carries an intrinsic charge of C1 that induces a long-range electrostatic
background force. Thus, a DC voltage, V ref

dc D �0:91 V, is applied to the
tip to compensate for it and nullify the LCPD at large tip–sample separation
(>2 nm). V ref

dc can be interpreted as the opposite of the macroscopic CPD of
the electrodes-bulk NaCl system. Thus, the bias voltage applied to the tip is
Vb D Vdc C V ref

dc C Vmod sin.2�fmodt/. Then the approach is engaged down to
an arbitrary value of tip-surface separation.

2. The Kelvin controller and the distance controller are engaged sequentially.
Impulse response tests are then performed with the amplitude controller and the
distance controller to assess their time constant and make sure that they are in a
critically damped regime. It is important to perform these tests when the tip is
close to the surface. Then, imaging artifacts that would be due to an inadequate
choice of the gains of the controllers are unlikely to occur.

3. The spectroscopic curve (i.e., �f vs. Vdc in FM-KPFM, or A1 vs. Vdc in AM-
KPFM) or the scan is engaged. Note that if operating in AM-KPFM, the Kelvin
PLL is disengaged first and ef mod kept constant and equal to the latest value
computed during the approach, as stated before. If a spectroscopic curve is to be
performed, then the Kelvin controller and the distance controller are disengaged
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Fig. 5.9 Sequence of simulation of a spectroscopic curve or an image with the nc-AFM/KPFM
simulator. When the tip is approached to the surface, the time constant of the controllers is carefully
adjusted to make sure that they do not influence the subsequent measurements

(AM- or FM-KPFM). The AC modulation may remain engaged or not. The
spectroscopic curve is acquired by continuously sweeping the DC part of the
bias, first from 0 down to negative values and then upward. For that purpose,
we use a sweep speed of about 200 mV s�1, which is slow enough to prevent
nonadiabatic effects from occurring.
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5.4 Atomistic Simulations of Bias Voltage-Dependent
Force Fields

The two following sections report the results obtained when combining the nc-
AFM/KPFM simulator and atomistic calculations of the bias voltage and distance-
dependent interaction force field computed between a metallic tip carrying an ionic
cluster and the (001) facet of a NaCl crystal, as sketched in Fig. 5.10a. For that work,
the nc-AFM/KPFM has been used in the FM-KPFM mode. Most of the elements
detailed below are reported in [36]. We first give the expression of the Madelung
surface potential for the ionic crystal and then describe the atomistic simulations of
the tip-surface interaction. Finally, the results of the calculations performed with the
nc-AFM/KPFM simulator are given.

5.4.1 Madelung Surface Potential of an Alkali Halide

In order to assess how quantitative the KPFM measurements on the atomic-scale can
be, it is important to estimate the physical observable to which the LCPD might be
connected to, namely the Madelung surface potential Vs of the alkali halide crystal.
Vs can be estimated on the base of the work by Watson et al. [68] and may be written
in the form [19]:

Vs.x; y; z�/ D � q

��0a0 cosh

�

2�

a0 ı?.Vb/

�

e�.x; y/e� 2�
a0

z� (5.15)

Fig. 5.10 (a) Sketch of the numerical tip-surface setup. We have set zm D 5 mm compared to z
which scales in the sub-nm range. (b) Sketch of the NaCl unit cell showing the 17 � 17 mesh used
to calculate the (x; y; z; V ) four-dimensional tip-surface force field. Four particular sites have been
investigated: anionic (A), cationic (C ), and hollow (H1, H2) sites
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Fig. 5.11 (a) Madelung surface potential calculated from (5.15) for z� D 4 Å. The vertical
contrast ranges from �100 (blue spots) to C100 mV (red spots). The dotted square stands
for the unit cell shown in Fig. 5.10b, i.e., centered on top of a cation. (b) Distance dependence
of the potential on top of an anion (dotted curve) and on top of a cation (solid curve) showing
the exponential decay of the potential. At z� D 0:4 nm, the total magnitude of the potential is
'220 mV and becomes '140 mV for z� D 0:45 nm. (c) Cross section along the dotted diagonal
line shown in (a)

with: e�.x; y/ D cos
�

2�
a0 .x � x0/

� C cos
�

2�
a0 .y � y0/

�

, a spatial modulation term.
x0 and y0 are the x and y coordinates of the center of the asperity projected
onto the unit cell. Setting x0 D y0 D 0 locates the asperity and there-
fore the tip on top of an anion. a0 is a geometrical parameter connected to
the lattice constant of the crystal, a, according to: a0 D a

p

.2/=2. ı?.Vb/

depicts the vertical displacement (i.e., in the perpendicular direction compared
to the plane of the crystal) of the ion owing to its ionic polarizability.
z� depicts the distance from the plane of the crystal above which the surface
potential is estimated. z� will state for the distance between the lowest turning point
of the tip oscillation cycle and the surface, as stated before. The above expression
exhibits the expected exponential decaying behavior as a function of z�. The
potential is reported in Fig. 5.11 for a D 0:66 nm, ı? D 11 pm and z� D 4 Å [19].

5.4.2 Atomistic Simulations of the Bias Voltage-Dependent
Force Field

The calculations of the force field were performed using atomistic simulations as
implemented in the code SCIFI [38]. The interatomic forces are computed from
a sum of pairwise Buckingham potentials acting between ions. These are treated
atomistically in a shell model with coupled oppositely charged cores and shells in
order to describe their polarizabilities. The SCIFI code also allows for the inclusion
of metallic electrodes at the tip and below the surface. The interaction of these
with ions in the surface and tip are treated by the method of images [38]. Using
this approach, we can simulate the polarization of conductors and resultant atomic
geometries in the system as a function of tip position and applied bias voltage.
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Parameters for the species considered were taken from [69]. All cores and shells
were allowed to relax completely with respect to interatomic and image forces
with a convergence criterion of 1 meV/Å per ion, the magnitude of the force
difference with voltage and distance being of the order of several tenths of an
eV/Å. Hence, in the present simulations we take into account ionic relaxation,
and electronic and ionic polarization as a function of both atomic interactions and
applied bias.

The properties of the NaCl(001) surface are well understood and can be well
represented by a slab of four atomic layers containing 10�10 ions, with those in the
bottom layer and edges kept fixed (cf. Fig. 5.10a). The NaCl slab is embedded within
a semi-infinite, 5 mm thick, slab merely treated by means of its dielectric constant.
For the tip, a 64-atom cubic cluster of NaCl is embedded into a metallic sphere of
radius R D 5 nm and oriented such that the [111] direction is perpendicular to the
surface with a Na atom at the apex. The main condition for finding a suitable tip
beyond comparing to experimental contrast is the stability of the tip-surface system.
Here, we refer to the onset of tip and surface atom instabilities, i.e., large irreversible
displacements that would either cause a tip crash in experiments or directly
introduce numerical instabilities due to the difficulty in finding the equilibrium
geometry. We considered many tip models, and the most stable configuration of
the tip is found when the cluster protrudes from the end of the sphere with a
height Ra D 0:3 nm (cf. Fig. 5.10a). This tip carries an intrinsic charge of C1 due
to its stoichiometry, inducing an opposite charge in the vicinity of the metallic part
of the tip. The NaCl atoms within the sphere are frozen and play no role in the
calculation of image forces. They act as ghost metal atoms stabilizing the tip apex.
The metallic part of the tip is biased with respect to the counter-electrode holding
the crystal.

In order to compute images with the simulator, the NaCl unit cell was meshed
with a 17 � 17 grid (cf. Fig. 5.10b). For each pixel of the mesh, the distance
dependence (z-dependence) of the atomistic force field is computed by 10 pm steps
from 0.3 to 2.0 nm (171 samples) and the bias dependence (V -dependence) by
100 mV steps from �3.4 to C2.3 V (57 samples). It must be noticed that each (z; V )
couple of coordinates provides not only the value of the force, but also the position
of the core and of the shell of each ion of the setup (464 in total). This results in
a very large amount of data to store and handle, about 600 GB uncompressed. The
simulation runs are farmed onto a cluster of several hundred workstations, with each
grid point and voltage combination run on a single core for every tip height. On Intel
2.5 GHz processors or equivalent, this takes about an hour and calculating the full
map takes about 16,000 h of CPU time. Post-processing of the data takes a similar
amount of time.

To make the simulations with the nc-AFM/KPFM simulator more accurate and
reduce the numerical noise further, the atomistic force field is post-processed as
follows. For each pixel of the mesh, the (z; V ) force matrix that is built from the
raw data is z- and V - interpolated with a Cubic Spline function by 5 pm and 10 mV
steps, respectively. In addition to the short-range atomistic force field, the long-range
interaction including Van der Waals and electrostatic contributions as described in
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Sect. 5.2 is added and the cut-off distance setting the size of the lookup table is
set arbitrarily to 8 nm. Above 8 nm, the van der Waals and electrostatic long-range
contributions are not set to 0, but estimated out of their analytical expressions, (5.4)
and (5.5), respectively. Therefore, the total 4-dimensional lookup table of the force
field to be used with the simulator consists of x � y � z � V D 17 � 17�(8 nm-
0.3 nm)=0:005 nm � (2.3 V�(�3.4 V))=0:01 V ' 255 � 106 samples, which requires
8 GB of RAM on the host computer (Intel Core2Duo, 2.5GHz/proc.). With the
parameters detailed above, approaching the tip to the surface typically takes 5 min.
Computing a spectroscopic curve takes about 30 min and computing an image about
2 h. The spectroscopic curves shown below have been computed on top of four
particular sites of the mesh: an anionic site A, a cationic site C , and the two hollow
sites H1 and H2, which are made inequivalent owing to the orientation of the cluster
with respect to the surface symmetry.

Force vs. distance curves computed above the four sites with Vdc D 0 V are
shown in Fig. 5.12a. Below 0.45 nm, tip/surface instabilities on top of anionic and
hollow sites occur. Above 0.45 nm, the curves differ significantly, although exhibit-
ing similar features to those reported with almost equivalent setups [20, 22, 70].
Force vs. Vdc curves measured at z� D 0:45 nm are shown in Fig. 5.12b for the four
sites. The maxima of the curves differ between sites (cf. dotted lines): �304 pN at
1.22 V (site C ) and �506 pN at 1.06 V (site A). The curves systematically deviate
from the capacitive, parabolic-like, behavior which stems from the polarization of
the ions at the tip–surface interface. To assess this, the displacements of the cores
of the foremost NaC ion of the tip (ıT

Na) when placed above a NaC (ıS
Na) and above

a Cl� (ıS
Cl) of the slab as a function of Vdc are shown in Fig. 5.12c, d, respectively.

They are measured at z� D 0:45 nm. A positive displacement means that the ion
is displaced upward (e.g., toward the tip when considering an ion of the slab). We
only have focused on the displacements of the cores of the ions that were judged
as the most significant, although the polarization process involves all the ions of the
interface and their shells. For the sake of clarity, we have also sketched the ionic
displacements in Fig. 5.12e, f.

The calculations show that on top of NaC at zero bias, the foremost cation of
the tip is attracted toward the surface: ıT

Na D �8.5 pm. Simultaneously, the NaC
of the slab undergoes a moderate displacement toward the tip: ıS

Na D C2 pm.
This behavior stems from the balance between the short-range chemical interaction
and the local electrostatic interaction due to the intrinsic charge of the tip, merely
compensated by V ref

dc at large distance. With Vdc > 0, the foremost cation of the
tip remains attracted to the surface, while the NaC is repelled within the slab. The
short-range electrostatic force is then strengthened between the tip cation and the
four Cl� closest neighbors of the NaC of the slab, while the latter is repelled from
the tip because of the overall less favorable chemical and electrostatic interaction.
With Vdc < 0, the electrostatic force becomes dominant and mostly repulsive for the
same reason as before. Then the set of Cl� and NaC ions are repelled within the slab.

On top of Cl� at zero bias, the favorable combination between the chemical
interaction and the local electrostatic interaction due to the intrinsic charge of the
tip partly compensated by V ref

dc produces significant displacements of the ions at
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Fig. 5.12 (a) Force vs. distance curves measured above the four sites of the unit cell at Vdc D
0 V. Below 0.45 nm, the tip becomes unstable. (b) Force vs. Vdc curves at z� D 0:45 nm. The
dependence is not parabolic. (c) Vdc dependence of the displacement of the foremost NaC ion of
the tip, ıT

Na, at z� D 0:45 nm on top of NaC of the slab and corresponding ıS
Na displacement.

The AC bias modulation (gray) triggers the dynamic displacement of the ions at the interface
(ıT;S;mod

Na ). (d) Same as c- except that the tip is now placed on top of Cl�. (e) Scheme of the ionic
displacements induced by the tip on top of NaC as a function of the sign of the bias voltage.
(f) Same as (e) except that the tip is now on top of Cl�

the interface (ıT
Na D �6 pm; ıS

Cl D C7 pm). With Vdc > 0, the local electrostatic
interaction increases the mutual attraction between ions. With Vdc < 0, the Cl� of
the slab is less attracted by the tip due to the repulsive electrostatic interaction,
but the tip cation remains attracted by the surface, likely because the chemical
interaction is still large enough.

These conclusions stress that, when the KPFM controller is engaged, the AC
modulation of the bias triggers complex dynamic displacements of the clus-
ter/surface ions. As predicted in [19], these displacements support the LCPD signal
and explain the deviation from the usual capacitive parabolic law of the force vs. bias
voltage curve. Indeed, when performing the following simulations while freezing
the ionic polarization, no KPFM contrast occurs (data not shown).
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5.5 Results with the nc-AFM/KPFM Simulator

The main parameters for the simulations shown in this section are: oscillation
amplitude: 8 nm peak-to-peak, cantilever resonance frequency: 150 kHz, cantilever
stiffness: 30 N m�1, Q-factor: 30,000, scan size: 1:03 � 1:03 nm2, scan speed:
1.5 s/line. The FM-KPFM mode was implemented with a 500 Hz bandwidth lock-
in amplifier and a 50 Hz bandwidth controller. The AC bias modulation is Vmod D
0:5 V and fmod D 1 kHz.

5.5.1 Spectroscopic Curves

The distance dependence of the LCPD has first been investigated by means of
spectroscopic curves. When the tip is biased, the maximum of the �f vs. Vdc curve
gives a DC voltage opposite to that of the LCPD: Vdc D �VLCPD. In Fig. 5.13a,
spectroscopic curves measured on top of each site for a tip-surface separation z� D
0:45 nm are shown. As expected from the force vs. Vdc curves, the spectroscopic
curves deviate from the parabolic-like behavior (shown for site A, dotted gray
curve) and the positions of the maxima differ upon sites. Furthermore, the latter
positions do not match those of the force vs. Vdc curves. However, such an effect is
expected to occur as soon as the z and V dependencies of the interaction force cannot
be separated, i.e., F.z; Vdc/ ¤ h.z/g.Vdc/.3 A shift of +0.87 V is measured from
site A to site C , consistently with the larger repulsive electrostatic force observed
above cations. These measurements have been reproduced for various tip-surface
separations and gathered in Fig. 5.13b. When increasing the separation, the LCPD
first decreases and then increases to converge toward 0 at large distance, as stated
before. Below 0.6 nm, the curves unbundle and differ significantly upon sites (gray
area). These curves are equivalent to �f vs. distance curves that are driving the
magnitude of the topography contrast. Hence, a site-dependent KPFM contrast is
indeed expected while scanning for tip-surface separations smaller than 0.6 nm.

3The expressions of the DC value of the bias voltage that maximizes �f .z; Vb/ and the force
F.z; Vb/ with Vmod D 0, i.e., within the framework of spectroscopic curves in FM- and AM-KPFM,
respectively are given by: .@�f .z; Vb/=@Vdc/jVmodD0 D 0(1) and .@F.z; Vb/=@Vdc/jVmodD0 D 0(2),
respectively. The expression of �f is derived from the approach by Giessibl [71]: �f .z; Vb/ /
R T0

0 F.z; Vb/ sin.!0t/dt with: Vb D Vdc � VCPD C Vmod sin.!modt /. If the force has the usual
quadratic-like form: F.z; Vb/ D h.z/ � V 2

b (e.g., F D 1
2
@C=@zV 2

b ), then conditions (1) and (2)
yield equivalently to Vdc D VCPD. However, if the force has a less usual fully polynomial form, as
this is the case when dealing with SRE forces [19,36]: F.z; Vb/ D h.z/�ŒA.z/V 2

b CB.z/VbCC.z/�,

then conditions (1) and (2) give: Vdc D VCPD � I 0=.2J 0/ (with I 0 D R T0

0 B.z/h.z/ sin.!0t/dt

and J 0 D R T0

0 A.z/h.z/ sin.!0t/dt ) and Vdc D VCPD � B.z/=.2A.z//, respectively. Therefore the
maxima of both spectroscopic methods differ. The main reason is that the force is dynamically
z-dependent (which makes the compensated CPD z-dependent as well, as seen with the above
equation), while �f is averaged over the oscillation cycle, hereby averaging the force as well.
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Fig. 5.13 (a) Spectroscopic curves computed above the four sites at z D 0:45 nm. A shift of
0.87 V is noticed between anionic (A) and cationic (C ) sites. (b) Distance dependence of the LCPD
above the four sites derived from the spectroscopic curves. In the short-range regime, the LCPD
exhibits a resonance-like and site-dependent behavior

The magnitude of the LCPD contrast can be derived as well. At z D 0:45 nm
(dotted line), a maximum of 0.87 V is expected. At equivalent height, the Madelung
surface potential is 0.14 V (cf. Fig. 5.11b). This resonance-like effect has been
predicted theoretically [36] and reported experimentally [27]. It relies on a subtle
balance between short-range and long-range electrostatic forces, both weighting in
the manner the LCPD is compensated.

5.5.2 Topography and LCPD Images

Finally, topography and LCPD images have been computed (cf. Fig. 5.14a–c,
respectively). Images shown in Figs. 5.14a (38 pm full scale) and 5.14b (0.56 V full
scale) have been simultaneously computed with the distance controller engaged.
The scan has been engaged on top of a cation at z� D 0:45 nm, corresponding
to �fset D �47:22 Hz. The dotted area depicts the unit cell shown in Fig. 5.10b.
Topography and LCPD images show cations as depressions, consistently with
spectroscopic curves. The magnitude of the contrasts as well as the distance
range are in good agreement with our former experimental observations (30 pm,
0.1 V) [19]. Figure 5.14c (0.86 V full scale) is an LCPD image computed with
similar conditions as (b), but at constant height z D 0:45 nm, i.e., with the distance
controller disengaged. The magnitude of the contrast matches the predicted behavior
(cf. Fig. 5.13b, dotted line). In Fig. 5.14d is reported the magnitude of the LCPD
contrast as a function of the tip-surface separation (left-hand side). The curve is
deduced from scans for which the distance regulator was engaged. The average
value of the LCPD (mean contrast) has been reported as well (right-hand side).
It follows accurately the evolution of the average LCPD derived from the spec-
troscopic curves (cf. Fig. 5.13b). The contrast expands around the average value
while keeping confined within the gray area, the size of which is controlled by the
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Fig. 5.14 (a) Topography image computed with the nc-AFM/KPFM simulator. The vertical
contrast is 38 pm. (b) Simultaneously computed LCPD image. The contrast ranges from �2.24
to �1.69 V (0.56 V full scale). In both channels, cations are imaged as depressions and anions as
protrusions. (c) LCPD image computed at constant height, z� D 0:45 nm. The contrast ranges
from �2.24 to �1.38 V (0.86 V full scale), consistently with the expected range deduced from
Fig. 5.13b. (d) Evolution of the magnitude of the LCPD contrast (dots) and of the mean LCPD
(squares) as a function of the distance

combination between short-range electrostatic and chemical forces. We infer from
the above elements that relevant information about the LCPD is not only carried by
the magnitude of the KPFM contrast, but also by its average value.

5.6 Conclusions and Outlook

The focus of this chapter was to present recent numerical developments targeted at
helping the interpretation of the atomic-scale contrast in KPFM, which inherently
requires (1) an accurate atomistic description of the force field occurring between
the tip and the surface, and (2) a proper numerical implementation of the control
electronics of the nc-AFM/KPFM setup. In the case of the bulk ionic crystal
discussed here, it has been shown that short-range electrostatic forces occur in the
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range of 4–6 Å above the surface and differ between cationic and anionic sites.
When combined with the chemical short-range forces, these are responsible for the
simultaneous topographical and CPD atomic-scale contrast. However, SRE forces
are self-consistently correlated with the chemical forces as the modulated bias volt-
age triggers ionic displacements at the tip–surface interface. Therefore, because the
occurrence of the atomic-scale KPFM contrast relies on the latter displacements, the
magnitude of the LCPD differs from the Madelung surface potential at equivalent
height, although the spatial periodicity of both observables remains the same, i.e.,
the one of the ionic lattice. Thus, the quantitative interpretation of the atomic-scale
CPD contrast must be done within the context of SRE forces and not in terms
of physical observables such as the Madelung surface potential or the local work
function. This is all the more true in that the effects are strongly dependent of the
tip shape and size, which has also been reported experimentally (cf. footnote ]29
in [72]).

An important part of the problem that was not addressed here is the contribution
of long-range electrostatic interactions to the observed LCPD. The influence of these
on the magnitude of the KPFM contrast has not yet been investigated in detail on
the numerical level, despite that the effects are theoretically predicted [36]. Another
issue deals with the use of KPFM on the atomic scale to map the chemical identity
of atoms. The underlying idea is to assess how sensitive the atomic-scale CPD
contrast is to the tip termination and intrinsic charge. If the CPD contrast remains
qualitatively unchanged from one tip to the other (e.g., cationsDdark contrast,
anionsDbright contrast, as shown here), then the KPFM channel could unravel in
a straightforward and univocal manner the delicate issue of chemical identification,
which usually requires a thorough analysis. The two latter issues are currently being
addressed. “There’s plenty of room at the bottom”, R. Feynman, meeting at Caltech
on December 29, 1959.
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29. J. Colchero, A. Gil, A. Beró, Phys. Rev. B 64, 245403 (2001)
30. H. McMurray, G. Williams, J. Appl. Phys. 91(3), 1673 (2002)
31. T. Takahashi, S. Ono, Ultramicroscopy 100, 287 (2004)
32. E. Palacios-Lidón, J. Abellán, J. Colchero, C. Munuera, C. Ocal, Appl. Phys. Lett. 87, 154106

(2005)
33. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L. Eng, Phys. Rev. B 71, 125424 (2005)
34. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L. Eng, Nanotechnology 18, 084006 (2007)
35. K. Wandelt, Appl. Surf. Sci. 111, 1 (1997)
36. L. Nony, F. Bocquet, C. Loppacher, T. Glatzel, Nanotechnology 20, 264014 (2009)
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