

Lecture Notes in Computer Science 6826
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Nick Bassiliades Guido Governatori
Adrian Paschke (Eds.)

Rule-Based Reasoning,
Programming,
and Applications

5th International Symposium, RuleML 2011 – Europe
Barcelona, Spain, July 19-21, 2011
Proceedings

13

Volume Editors

Nick Bassiliades
Aristotle University of Thessaloniki, Department of Informatics
54124 Thessaloniki, Greece
E-mail: nbassili@csd.auth.gr

Guido Governatori
NICTA, Queensland Research Laboratory
PO Box 6020, St. Lucia, QLD 4067, Australia
E-mail: guido.governatori@nicta.com.au

Adrian Paschke
Freie Universität Berlin, Computer Science Department, Corporate Semantic Web
Königin-Luise-Str. 24/26, 14195 Berlin, Germany
E-mail: paschke@inf.fu-berlin.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22545-1 e-ISBN 978-3-642-22546-8
DOI 10.1007/978-3-642-22546-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931539

CR Subject Classification (1998): D.2, I.2, C.2.4, H.4, C.2, I.2.11

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 5th International Symposium on Rules: Research Based and Industry Fo-
cused (RuleML-2011@IJCAI), collocated in Barcelona, Spain, with the 22nd
International Joint Conference on Artificial Intelligence, was the premier place
to meet and to exchange ideas from all fields of rule technology. The aim of
RuleML-2011 was to build a bridge between academia and industry in the field
of rules and semantic technology, and so to stimulate the cooperation and in-
teroperability between business and research, by bringing together rule system
providers, participants in rule standardization efforts, open source communities,
practitioners, and researchers. This annual symposium is the flagship event of
the Rule Markup and Modeling Initiative (RuleML).

The RuleML Initiative (www.ruleml.org) is a non-profit umbrella organiza-
tion of several technical groups organized by representatives from academia, in-
dustry and government working on rule technology and its applications. Its aim
is to promote the study, research and application of rules in heterogeneous dis-
tributed environments such as the Web. RuleML maintains effective links with
other major international societies and acts as intermediary between various
‘specialized’ rule vendors, applications, industrial and academic research groups,
as well as standardization efforts from, for example, W3C, OMG, and OASIS.

The International Symposium on Rules, RuleML, has evolved from an an-
nual series of international workshops since 2002, international conferences in
2005 and 2006, and international symposia since 2007. In 2011 two instalments
of the RuleML Symposium took place. The first one was held in conjunction
with IJCAI 2011 (International Joint Conference on Artificial Intelligence) in
Barcelona in July, and the second was collocated with the Business Rule Forum
in November in Fort Lauderdale, Florida, USA. For RuleML-2011@IJCAI, a se-
lection of the best papers was presented during a joint session with IJCAI, called
“Large Track of Best Papers from Sister Conferences.” The authors of these pa-
pers also submitted a revised version of their papers for inclusion in the IJCAI
proceedings.

The technical program showed a carefully selected presentation of current
rule research and development in 18 full papers, 8 short papers, 3 invited track
papers, and 2 keynote talks (abstracts included) detailed in this book. Accepted
papers covered several aspects of rules, such as rule-based distributed/multi-
agent systems, rules, agents and norms, rule-based event processing and reaction
rules, fuzzy rules and uncertainty, rules and the Semantic Web, rule learning
and extraction, rules and reasoning, and finally, rule-based applications. The
papers were selected from 58 submissions received from 22 countries. Four of
the submissions were selected from some worthy papers on topics related to
RuleML originally submitted at IJCAI that marginally missed the acceptance
cut-off. In order to increase the quality of the papers, this year a two-round

VI Preface

reviewing scheme was adopted to assess the revised papers from IJCAI and
revised papers originally submitted to RuleML but not immediately accepted in
the first reviewing round.

Due to the above efforts, RuleML-2011, like its predecessors, offered a high-
quality technical and applications program, which was the result of the joint
effort of the members of the RuleML-2011 Program Committee.

As the future of rule technology lies in the hands of today’s students and
young researchers, this year RuleML-2011 initiated a doctoral consortium to at-
tract and promote PhD research in this field. The doctoral symposium offers
students a close contact with leading experts in the field, as well as the oppor-
tunity to present and discuss their ideas in a dynamic and friendly setting. The
accepted thesis descriptions span the full range of RuleML topics and were pre-
sented to an interested audience and subject to discussion with a panel of senior
researchers.

A special thanks is due to the excellent Program Committee for their hard
work in reviewing the submitted papers. Their criticism and very useful com-
ments and suggestions were instrumental in achieving a high-quality publication.
We also thank the symposium authors for submitting good papers, responding
to the reviewers’ comments, and abiding by our production schedule. We further
wish to thank the keynote speakers for contributing their interesting talks. We
are very grateful to the organizers of the 22nd International Joint Conference
on Artificial Intelligence for enabling this fruitful collocation with RuleML-2011.
Especially, we thank Toby Walsh for his support.

The RuleML-2011 Symposium was financially supported by industrial com-
panies, research institutes and universities and was technically supported by
several professional societies. We wish to thank our sponsors, whose financial
support helped us to offer this event, and whose technical support allowed us to
attract many high-quality submissions.

May 2011 Nick Bassiliades
Guido Governatori

Adrian Paschke

Conference Organization

General Chairs

Jürgen Dix TU Clausthal, Germany
Georg Gottlob University of Oxford, UK

Program Chair

Nick Bassiliades Aristotle University of Thessaloniki, Greece
Guido Governatori NICTA, Australia
Adrian Paschke Free University Berlin, Germany

Organization Chairs

Gines Moreno Universidad de Castilla La Mancha, Spain
Luis Polo CITIC, Spain

Steering Chairs

John Hall Model Systems, UK
Christian de Sainte Marie IBM ILOG, France

Doctoral Consortium Chairs

Carlos Damasio Universidade Nova de Lisboa, Portugal
Alun Preece Cardiff University, UK
Umberto Straccia ISTI – C.N.R., Italy

Publicity Chair

Patrick Hung University of Ontario Institute of Technology,
Canada

Metadata Chairs and Social Media Chairs

Jie Bao Rensselaer Polytechnic Institute, USA
Richard Cyganiak DERI Galway, Ireland
Lina Wolf HPI Potsdam, Germany

Rule Responder Symposium Planner Chair

Zhili Zhao Free University Berlin, Germany

VIII Conference Organization

Sponsorship Chair

Robert Golan DBMind, USA

Web Chairs

Gökhan Coskun Free University Berlin, Germany
Ho-Pun (Brian) Lam NICTA and University of Queensland,

Australia

Track Chairs

Automated Reasoning

Grigoris Antoniou Information Systems Laboratory, FORTH,
Greece

Peter Baumgartner NICTA, Australia

Logic Programming and Non-monotonic Reasoning

Giovambattista Ianni Università della Calabria, Italy
Kewen Wang Griffith University, Australia

Rules, Agents and Norms

Antonino Rotolo CIRSFID, University of Bologna, Italy
Leon van der Torre University of Luxembourg, Luxembourg

Rule-Based Distributed/Multi-Agent Systems

Costin Badica University of Craiova, Romania
Lars Braubach University of Hamburg, Germany

Rule-Based Policies, Reputation and Trust

Piero Bonatti University of Naples “Federico II”, Italy
Daniel Olmedilla Universidad Autonoma de Madrid, Spain

Rule-Based Event Processing and Reaction Rules

Alexander Artikis NCRS “Demokritos”, Greece
Nenad Stojanovic FZI, Germany

Fuzzy Rules and Uncertainty

Davide Sottara University of Bologna, Italy
Giorgos Stamou National Technical University of Athens,

Greece

Conference Organization IX

Rule Transformation and Extraction
Mark Linehan IBM T.J. Watson Research Center, USA
Erik Putrycz Apption Software, Canada

Vocabularies, Ontologies, and Business Rules

Ebrahim Bagheri Athabasca University, Canada
Dragan Gasevic Athabasca University, Canada

Program Committee

Hassan Ait-Kaci
Patrick Albert
Darko Anicic
Colin Atkinson
Matteo Baldoni
Moritz Y. Becker
Mikael Berndtsson
Pedro Bizarro
Guido Boella
Luiz Olavo Bonino Da Silva Santos
Christoph Bussler
Federico Chesani
Horatiu Cirstea
Matteo Cristani
Célia Da Costa Pereira
Claudia D’Amato
Christian De Sainte Marie
Jens Dietrich
Weichang Du
Schahram Dustdar
Jenny Eriksson LundstrÃűm
Vadim Ermolayev
Opher Etzion
François Fages
Luis Ferreira Pires
Michael Fink
Paul Fodor
Nicoletta Fornara
Enrico Francesconi
Fred Freitas
Aldo Gangemi
Adrian Giurca
Giancarlo Guizzardi
Ioannis Hatzilygeroudis

Stijn Heymans
Rinke Hoekstra
Christopher Hogger
Yuh-Jong Hu
Joris Hulstijn
Minsu Jang
Mustafa Jarrar
Krzysztof Janowicz
Jérôme Lang
Paul Krause
Domenico Lembo
Wolfgang Laun
Francesca Alessandra Lisi
Emiliano Lorini
Jorge Lobo
Michael Maher
Thomas Lukasiewicz
Angelo Montanari
Jing Mei
Chieko Nakabasami
Leora Morgenstern
Georgios Paliouras
Grzegorz J. Nalepa
Jeffrey Parsons
José Ignacio Panach
Fabio Porto
Axel Polleres
Michael Rosemann
Dave Reynolds
Pierangela Samarati
Antonino Rotolo
Marco Seiriö
Giovanni Sartor
Yi-Dong Shen

X Conference Organization

Guy Sharon
Giorgos Stoilos
Kostas Stathis
Ljiljana Stojanovic
Terrance Swift
Umberto Straccia

Jan Vanthienen
Carlos Viegas Damásio
Wamberto Vasconcelos
George Vouros
Renata Wassermann
Ching-Long Yeh

External Reviewers

Stefano Bragaglia
Minh Dao-Tran
Maxim Davidovsky
Liang Du
Xuan Li

Alessandra Martello
Thierry Martinez
Ella Rabinovich
Insu Song

RuleML 2011 Sponsors

RuleML 2011 Partners

Table of Contents

Keynote Speakers (Abstracts)

Rule-Based Activity Recognition in Ambient Intelligence 1
Grigoris Antoniou

An Overview of the Ciao System . 2
Manuel V. Hermenegildo, F. Bueno, M. Carro, P. López-Garćıa,
R. Haemmerlé, E. Mera, J.F. Morales, and G. Puebla

Rule-Based Distributed/Multi-Agent Systems

Rule-Based Distributed and Agent Systems . 3
Costin Bǎdicǎ, Lars Braubach, and Adrian Paschke

Extending a Multi-agent Reasoning Interoperability Framework with
Services for the Semantic Web Logic and Proof Layers 29

Kalliopi Kravari, Konstantinos Papatheodorou,
Grigoris Antoniou, and Nick Bassiliades

Cross-Community Interoperation between the EMERALD and Rule
Responder Multi-Agent Systems . 44

Kalliopi Kravari, Taylor Osmun, Harold Boley, and Nick Bassiliades

Rules, Agents and Norms

Rules, Agents and Norms: Guidelines for Rule-Based Normative
Multi-Agent Systems . 52

Antonino Rotolo and Leendert van der Torre

Rule-Based Agents, Compliance, and Intention Reconsideration in
Defeasible Logic . 67

Antonino Rotolo

A Dynamic Metalogic Argumentation Framework Implementation 83
Jenny S.Z. Eriksson Lundström, Giacomo Aceto, and
Andreas Hamfelt

Integrating Written Policies in Business Rule Management Systems 99
Adeline Nazarenko, Abdoulaye Guissé, François Lévy,
Nouha Omrane, and Sylvie Szulman

XII Table of Contents

Rule-Based Event Processing and Reaction Rules

On Complex Event Processing for Real-Time Situational Awareness 114
Nenad Stojanovic and Alexander Artikis

Retractable Complex Event Processing and Stream Reasoning 122
Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic

A Declarative Framework for Matching Iterative and Aggregative
Patterns against Event Streams . 138

Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic

Entity-Based State Management for Complex Event Processing
Applications . 154

Hannes Obweger, Josef Schiefer, Martin Suntinger, and
Robert Thullner

Fuzzy Rules and Uncertainty

Declarative Traces into Fuzzy Computed Answers . 170
Pedro-Jose Morcillo, Ginés Moreno, Jaime Penabad, and
Carlos Vázquez

A Flexible XPath-Based Query Language Implemented with Fuzzy
Logic Programming . 186

Jesús M. Almendros-Jiménez, Alejandro Luna Tedesqui, and
Ginés Moreno

Rules and the Semantic Web

A RIF-Style Semantics for RuleML-Integrated Positional-Slotted,
Object-Applicative Rules . 194

Harold Boley

COROR: A COmposable Rule-Entailment Owl Reasoner for
Resource-Constrained Devices . 212

Wei Tai, John Keeney, and Declan O’Sullivan

Rule-Based Trust Assessment on the Semantic Web 227
Ian Jacobi, Lalana Kagal, and Ankesh Khandelwal

SOWL: A Framework for Handling Spatio-temporal Information in
OWL 2.0 . 242

Sotiris Batsakis and Euripides G.M. Petrakis

Table of Contents XIII

Rule Learning and Extraction

Conditional Learning of Rules and Plans by Knowledge Exchange in
Logical Agents . 250

Stefania Costantini, Pierangelo Dell’Acqua, and Lúıs Moniz Pereira

A Framework for the Automatic Extraction of Rules from Online
Text . 266

Saeed Hassanpour, Martin J. O’Connor, and Amar K. Das

Classification Rule Mining for a Stream of Perennial Objects 281
Zaigham Faraz Siddiqui and Myra Spiliopoulou

A Case for Learning Simpler Rule Sets with Multiobjective Evolutionary
Algorithms . 297

Adam Ghandar, Zbigniew Michalewicz, and Ralf Zurbruegg

Rules and Reasoning

Algorithms for Rule Inference in Modularized Rule Bases 305
Grzegorz J. Nalepa, Szymon Bobek, Antoni Lig ↪eza, and
Krzysztof Kaczor

Modularity in the Rule Interchange Format . 313
Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou

Overview of Knowledge Formalization with XTT2 Rules 329
Grzegorz J. Nalepa, Antoni Lig ↪eza, and Krzysztof Kaczor

HalVA - Rule Analysis Framework for XTT2 Rules 337
Grzegorz J. Nalepa, Szymon Bobek, Antoni Lig ↪eza, and
Krzysztof Kaczor

Rule-Based Applications

Rewriting Queries for Web Searches That Use Local Expressions 345
Rolf Grütter, Iris Helming, Simon Speich, and Abraham Bernstein

Implementing General Purpose Applications with the Rule-Based
Approach . 360

Igor Wojnicki

OWL Web Ontology Language as a Scripting Language for Smart
Space Applications . 368

Espen Suenson, Johan Lilius, and Iván Porres

Rule-Based Complex Event Processing for Food Safety and Public
Health . 376

Monica L. Nogueira and Noel P. Greis

Author Index . 385

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Rule-Based Activity Recognition in Ambient Intelligence

Grigoris Antoniou

Institute of Computer Science, FORTH-ICS, and
Department of Computer Science, University of Crete, Crete, Greece

antoniou@ics.forth.gr

Abstract

Activity recognition is an important, multi-faceted problem with a broad application
scope. In this talk we will present a rule-based activity recognition system with the
option of using confidence values in our rules and facts. Each activity definition rule
has some primary and some optional events and the absence of any of the optional
events, only decreases the confidence value of the recognized complex event. We
recognize all possible complex events (activities) based on predefined rules, which
express temporal and spatial combinations of atomic and complex events. Then we
detect all conflicted events (recognized events that overlap but use common re-
sources). The optimal solution is found with an optimization function that takes into
account complex event’s confidence, temporal duration and number of used atomic
events. Adjusting this function, results in higher or lower abstraction levels in our
results (more generic events with bigger duration / more specific events with lower
duration).

As application domain we use ambient assisted living (e.g. for elderly persons).
The approach has been implemented, and tested in a real ambient intelligence envi-
ronment hosted by the FORTH Institute of Computer Science.

An Overview of the Ciao System

Manuel V. Hermenegildo1,2, F. Bueno2, M. Carro1,2, P. López-Garćıa1,4,
R. Haemmerlé2, E. Mera3, J.F. Morales1, and G. Puebla2

1 Madrid Institute of Advanced Studies,
in SW Development Technology (IMDEA Software Institute)

{manuel.hermenegildo,manuel.carro,pedro.lopez,jose.morales}@imdea.org
2 Universidad Politécnica de Madrid (UPM)
{bueno,mcarro,german,herme}@fi.upm.es

3 Universidad Complutense de Madrid (UCM)
edison@fdi.ucm.es

4 Scientific Research Council (CSIC)

Abstract

Ciao is a logic-based, multi-paradigm programming system. One of its most dis-
tinguishing features is that it supports a large number of semantic and syntactic
language features which can be selectively activated or deactivated for each pro-
gram module. As a result, a module can be written in, for example, ISO-Prolog
plus constraints and higher order, while another can be a pure logic module
with a different control rule such as iterative deepening and/or tabling, and per-
haps using constructive negation. A powerful and modular extension mechanism
allows user-level design and implementation of such features and sub-languages.

Another distinguishing feature of Ciao is its powerful assertion language,
which allows expressing many kinds of program properties (ranging from, e.g.,
moded types to resource consumption), as well as tests and documentation. The
compiler is capable of statically finding violations of these properties or verifying
that programs comply with them, and issuing certificates of this compliance. The
compiler also performs many types of optimizations, including automatic paral-
lelization. It offers very competitive performance, while retaining the flexibility
and interactive development of a dynamic language.

We will present a hands-on overview of the system, through small examples
which emphasize the novel aspects and the motivations which lie behind Ciao’s
design and implementation.

Reference

1. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.F.,
Puebla, G.: An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming (2011), http://arxiv.org/abs/1102.5497

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://arxiv.org/abs/1102.5497

Rule-Based Distributed and Agent Systems

Costin Bădică1, Lars Braubach2, and Adrian Paschke3

1 Software Engineering Department,
Faculty of Automatics, Computers and Electronics, University of Craiova

costin.badica@software.ucv.ro
2 Distributed Systems and Information Systems,

Computer Science Department, University of Hamburg
braubach@informatik.uni-hamburg.de

3 Corporate Semantic Web,
Computer Science Department, FU Berlin

paschke@inf.fu-berlin.de

Abstract. The paper contains an overview of the roles played by rules
and rule-based systems in distributed and multi-agent systems. These
roles include an overview of traditional and newly emerging application
areas as well as internal agent architectures and frameworks implement-
ing these architectures.

1 Introduction

This paper strives to shed light on the connections of rule based systems and
multi-agent systems. In order to give an overview about the different areas rules
play an important role in, it is coarsely distinguished between application areas
of agents with rules and multi-agent system construction aspects. Interesting
application areas of rules and agents that will be discussed include rather tra-
ditional fields like parallel and distributed rule-based systems, service oriented
architecture, grid and peer-to-peer computing as well as upcoming new trends
such as cloud computing, rule based wireless networks and complex event pro-
cessing scenarios. From a construction perspective it will be shown which role
rules play in the context of individual agent architectures and also with respect to
multi-agents systems as a whole. The former will delve into various rule inspired
agent architectures, distinguishing between reactive, deliberative and hybrid ap-
proaches while the latter will primarily deal with rules as part of communication,
negotiations and also teamwork approaches.

The rest of the paper is structured as follows. In the next Section 2.1 ap-
plication areas of rules and agents are presented. Thereafter, in Section 3 the
construction-related issues of rules in agents and multi-agent systems are dis-
cussed. A conclusion is given in Section 4.

2 Rule-Based Distributed Systems

The early relative success of rule-based expert systems employing more efficient
rule-based inference engines, pushed forward the application of rule technologies

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 3–28, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 C. Bădică, L. Braubach, and A. Paschke

to distributed computing and multi-agent systems. This research direction fol-
lowed the generalization of rule inference to parallel, as well as to distributed
computational models. At least two trends can be observed here: (i) improvement
of inference algorithms for rule systems using parallel and distributed systems’
technology; (ii) exploiting the more declarative nature of rule-based languages
as compared to the procedural languages, for the development of more complex
systems composed of autonomous components known as software agents.

2.1 Parallel Rule-Based Systems

Parallel Forward Chaining Production Systems. Advances of computa-
tional models for rule-based production systems, mainly related to the devel-
opment of the RETE algorithm [39] and its extensions for efficient matching of
rule patterns and working memory elements [2], but also addressing concurrent
processing and activation of rules in production systems, opened a vivid research
path, starting in the second half of the ’80s and lasting also during the ’90s. The
main outcome of these researches was the development of powerful implementa-
tion technologies for rule-based systems. Note that most of these works use the
terms production and production system as synonymous to rule and rule-based
system, so these terms will be interchangeably used in this paper.

Authors of [46] proposed a new parallel architecture for exploiting fine-grained
parallelism of forward chaining inference algorithms for rule-based production
systems on multiprocessor systems. The main outcome of this work was the
significant improvement of the execution speed of a rule-based production system
expressed as number of rule firings/second, as well as working memory element
changes/second. Their approach targeted all the phases of the forward chaining
inference cycle: matching, conflict resolution and right hand side rule evaluation.

Authors of [53], [54] propose an in-depth analysis of concurrent computa-
tional approaches for improving the performance of single and multiple rule
systems. The authors start with some considerations regarding the performance
of rule-based systems. The book covers: (i) parallel production systems includ-
ing algorithms for parallel rule firings, (ii) distributed production systems under
distributed control, and multiagent production systems as well as their related
control issues.

Authors of [5] proposed a parallel and distributed version of the RETE al-
gorithm that uses the master-slave paradigm. The pattern matching system is
decomposed into master and slave modules, working in parallel. Each component
holds a copy of the RETE network. Rules are activated in parallel by master
components. When a rule is activated, it sends all the activating facts to an
available slave component that performs the activation and returns the results.
Therefore rules can be activated in parallel, while computation of the activations
is distributed among the slave components.

Note that parallel firing of multiple rules for improving the execution perfor-
mance of forward chaining production systems can compromise the consistency
or the working memory by possible interference of rules’ actions and conditions.
Solutions to this problem are outlined in [53] and later in [75].

Rule-Based Distributed and Agent Systems 5

Authors of [3] introduced an architecture that allows parallel production firing
by allowing the concurrent execution of the activities of matching, selecting
and acting of productions. The architecture is proved correct with respect to
the principle of serialization that relaxes the commutativity principle that was
proposed by [53].

Parallel Backward Chaining Rule-Based Systems. Efficient processing in
rule-based systems was also addressed for top down inference engines. An early
work is [48] that introduced Backpac, a backward-chained inferencing system
designed to run on parallel processor machines. More significant achievements in
this area are however related to the development of parallelized versions of the
well-known logic programming language Prolog that traditionally uses backward
chaining as implementation technology. See [47] for an overview of techniques
for parallelizing Prolog programs.

Parallel Deductive Databases. Rules played an important role in the devel-
opment of new databases models, including deductive and active databases [93].
Deductive databases are a suitable model for building large knowledge bases by
exploiting both database and knowledge technologies. For example, chapter 6 of
[93] contains an overview of parallel processing of rules in production systems,
deductive and active databases, while chapter 7 introduces the authors’ parallel
object-oriented knowledge-based system called PRACTICKB.

Techniques for data and rule partitioning for parallelizing deductive databases
are also reported in [94] and [98]. More important, these results were later on
exploited for implementing large scale rule reasoning on computer clusters (see
Subsection 2.3).

Distributed Jess. Our literature review also revealed efforts for distributing
classical state-of-the-art rule based systems shells, including Jess1 [43].

In paper [27] the authors introduce a model for distributing rule-based infer-
ence systems called Web of Inference Systems (WoIS). Each member of WoIS
is composed of an inference system (IS) and a rule base, while all ISs operate
on a single Shared Working Memory (SWM). WoIS is controlled by a dedicated
component called manager (M). Each IS holds a copy of a part of the SWM in
its local working memory, while all ISs run independently in parallel. This model
was utilized to implement a distributed version of Jess called DJess. Synchro-
nization between interfering rules is achieved by means of shadow facts and ghost
facts. A shadow fact is a Jess fact linked to a Java bean object. Each shared
fact is implemented as a shadow fact, and thus an associated Java bean object
is created. All the proxies corresponding to the same shared fact are linked to-
gether by means of a Java remote object called ghost fact. Access of the ISs to
the ghost facts are synchronized by acquiring locks during the transition from
the conflict resolution stage to the act stage of an inference cycle.

A different approach for distributing Jess called Octopus was reported in
the paper [76]. With the Octopus approach several independent Jess engines
1 http://www.jessrules.com/

http://www.jessrules.com/

6 C. Bădică, L. Braubach, and A. Paschke

are interconnected in a star topology as clients of a central server. The server
allows them to asynchronously exchange messages using Jess functions for socket
communications. The Octopus approach was experimented on a computer cluster
running Condor workload management system [90].

2.2 Rule-Based Systems as Agent Reasoning Models

Early works proposed the use of rule-based systems as the basic reasoning model
of agents that are part of a multi-agent system. Using this approach, each agent
of the system incorporates a rule engine and therefore, its behavior is reduced to
performing rule based inference. Agent coordination can be achieved either via
a shared working memory or by asynchronous message passing.

Multi-Agent Production Systems. In paper [37] it is described a multi-agent
system called MAGSY where each agent is a rule-based system. Agents are able
to communicate asynchronously, as well as they are able to provide services to
other agents. MAGSY is in fact a general-purpose multi-agent framework. It has
been applied in practice for distributing solving of transportation and logistics
problems. Each MAGSY agent is a triple comprising facts, rules, and services.
The agent can receive messages from other agents that trigger the update of their
facts. An agent can also invoke services provided by other agents. As a side-effect,
service execution can change the agent’s sets of facts and rules. Each MAGSY
agent performs rule-based inference using a forward-chaining rule-interpreter
based on the well-known RETE algorithm [39].

Author of [53] and [54] consider multi-agent production systems, that are
conceptually different from parallel and distributed production systems. While
parallel production systems emphasize parallel rule matching and firing and
distributed production systems emphasize dynamic distribution of productions
among the agents of an organization with the goal of execution performance
improvement (the response time), multi-agent production systems concern the
integration of multiple independent production systems acting on a shared work-
ing memory that is useful for their coordination.

Multi-Agent Jess. Integration of Jess engine into JADE agents [9] is dis-
cussed in [29]. This paper is in fact a tutorial showing how a JADE agent can
incorporate a Jess engine with the following functionalities: (i) allowing Jess to
capture messages received by the agent as Jess facts; (ii) allowing the agent to
send messages to other agents directly from Jess; (iii) implementing the agent
behavior as Jess inference. Using this approach it is possible to implement rule-
based agents in Jess that interact by exchanging FIPA ACL messages using the
JADE middleware (see also rule interaction agents, an example of reactive agent
architectures discussed in subsection 3.1).

2.3 Rule-Based Grid/Cloud/High-Performance Computing Systems

A recent research trend can be observed in investigating synergies between high-
performance computing and rule-based systems and reasoning. On one hand,

Rule-Based Distributed and Agent Systems 7

the higher expressivity of rule-based languages determines an increase of the
computational complexity of the inference algorithms, thus limiting the potential
of rule-based systems in applications that require large scale reasoning, as it is
for example the Semantic Web [10]. On the other hand, the higher expressivity
of rule-based languages can help to improve resource and job management in
high-performance computing systems, and thus have the potential for improving
the overall performance of these systems. Both trends are briefly reviewed in this
section of the paper.

Scalable Rule Reasoning. Availability of high-performance computing opened
new possibilities for scalable rule reasoning in distributed systems. High-
performance computing systems include supercomputers, computer clusters, as
well as Grid and more recently Cloud computing infrastructures.

Paper [88] is probably the first reporting the exploitation of the results earlier
obtained in parallelizing of deductive databases [94,98] as well as the availability
of clusters for parallel computing to investigate the improvement of the reasoning
performance for the Semantic Web. The authors of [88] proposed a data parti-
tioning scheme, a parallel algorithm, as well as several optimizations for scalable
parallel inference with materialized OWL knowledge bases. The implementation
of the algorithm was based on the Jena2 open source rule-based reasoner and it
was experimented on a 16 node computer cluster.

Paper [70] describes MARVIN – a parallel and distributed platform for pro-
cessing large amounts of RDF data, on a network of loosely coupled peers using
a new strategy called divide-conquer-swap. The idea of this approach is to con-
tinuously partition the set of RDF triples, compute the closure of each partition
in parallel and then swap partitions by exchanges between peers. This technique
is shown to eventually reach completeness of reasoning and an efficient strategy
called SpeedDate for exchanging data between peers is proposed.

Map-Reduce is a technique for programming large data processing tasks on
large computer clusters [33]. Hadoop3 is an Apache project that “develops open-
source software for reliable, scalable, distributed computing” and that also pro-
vides a Map-Reduce programming framework. [92] shows how to apply MapRe-
duce on Hadoop for large-scale RDFS reasoning. This work is closely related
to: (i) the Large Knowledge Collider (LarKC) project4 [49] for reasoning with
billions of facts and rules that are distributed across different locations, as well
as to (ii) WebPIE5 [91] – a parallel reasoner based on Map-Reduce which aims
at reasoning on the scale of the Web.

Rule-based Workflow and Resource Management for Grid and Cloud
Computing. Grid and Cloud are modern forms of distributed computing that
put a high emphasis on virtualization and software services technologies. Grid is a
“coordinated resource sharing and problem solving in dynamic, multi-institutional
2 http://jena.sourceforge.net/
3 http://hadoop.apache.org/
4 http://www.larkc.eu/
5 http://www.few.vu.nl/~jui200/webpie.html

http://jena.sourceforge.net/
http://hadoop.apache.org/
http://www.larkc.eu/
http://www.few.vu.nl/~jui200/webpie.html

8 C. Bădică, L. Braubach, and A. Paschke

virtual organizations” [40]. Cloud allows provisioning and utilization of comput-
ing power with minimal management effort and minimal knowledge of the infras-
tructure supporting it. This section briefly presents the role that rules and rule
reasoning can play to improve resource and workflow management in the Grid.
Most of these results apply also to Cloud computing environments.

Paper [85] introduces a new mechanism for on-demand synthesis of available
activities in the Grid by applying ontology rules. Rule-based synthesis combines
multiple primitive activities to form new compound activities.

Paper [50] introduces WS-CAM – a rule-based application for collaborative
awareness management in grid environments. The idea of this work is to repre-
sent complex requirements imposed on Grid environments, either behavioral or
functional, as business rules implemented using Drools6.

Paper [66] presents the Active Grid Information Server providing versatile
resource management in grid environments, including resource discovery and
selection. The server is using an Event-Condition-Action rule-based system that
supports dynamically adjustable schedulers.

A recent trend is the representation of grid scheduling algorithms using rule-
based formalisms ([71]). Paper [44] proposes a new rule-based languages called
SiLK (Simple Language for worKflows) that provides a rule-chaining represen-
tation of scientific workflows. SiLK rule-based workflows can be executed and
monitored using OSyRIS (Orchestration System using a Rule based Inference
Solution) inference engine, as well as with its distributed version D-OSyRIS.
The implementation of OSyRIS is based on Drools. SiLK allowed the rule-based
representation of several well-known grid scheduling heuristics.

Flexibility of grid resource management can be enhanced by endowing the
Grid with semantic descriptions of resources covering the various software and
hardware characteristics, as well as their utilization policies. Grid schedulers can
thus benefit of these representations by enhancing monitoring and discovery sys-
tems with semantic matchmaking capabilities. Performance of resource discovery
can be further improved by exploitation of rule-based systems. For an overview
of ontology-based semantic approaches for grid resource management the reader
is invited to consult reference [4].

Finally, rule-based approaches were shown to be useful for implementing flexi-
ble control strategies and decisions that allow the Grid to achieve Quality of Ser-
vice commitments required by various applications using a Service Level Agree-
ment (SLA) management system. For example, the authors of the paper [72]
propose predictive decision rules for adaptive SLA management on the Grid. In
[74] a declarative Rule Based Service Level Agreement (RBSLA) framework is
described.

2.4 Rule-Based P2P Systems

Peer-to-peer (P2P) is a model of distributed systems in which distributed, equally
weighted and directly connected peers collaborate by providing resources and
6 http://www.jboss.org/drools

http://www.jboss.org/drools

Rule-Based Distributed and Agent Systems 9

services to each other. P2P systems have important applications in distributed
processing, distributed content management, and ubiquitous computing. The
combination of the decentralization of P2P approach with the declarativeness
and flexibility of rules enables the development of new types of intelligent dis-
tributed systems. Applications are presented in the domains of heterogenous
schema mapping and ubiquitous computing.

Heterogenous Schema Mapping. Paper [34] introduces a method for using in-
ference engines to express and process semantics of digital library resources in
heterogenous environments. The approach is applied to define metadata map-
pings between heterogenous schemas in P2P-based digital libraries. The map-
pings are defined by extracting facts from the XML metadata of resources and
then by applying rule-based inference to automatically derive relations between
local schemas and other retrieved schemas.

Paper [63] introduces LogicPeer, a P2P extension of Prolog. LogicPeer is a
straightforward extension of Prolog with operators that enable goal evaluation
over peers in a P2P system. LogicPeer defines two network models: (i) opaque
peer network model in which each peer does not know the identifiers of its neigh-
bors and a certain query propagation protocol is assumed, and (ii) transparent
peer network model in which is possible for each peer to obtain the identifiers of
its neighbors and thus it allows implementation of customized query propagation
protocols. Paper [22] discusses an application of LogicPeer for specifying schema
mappings and agents’ actions in XML-based data integration tasks.

Ubiquitous Computing. Paper [45] presents the use of Mandarax7 and Sens-ation
sensor platform for creating the new SensBution infrastructure for ubiquitous
computing. SensBution abstracts the access to sensor data using rule-base infer-
ence, while the underlying P2P network propagates queries between peers. Each
peer incorporates a rule base and uses it and rule inference to answer the queries
received from the other peer via JXTA8 network programming environment.

Papers [12] and [11] propose a distributed reasoning solution that could be
used in ambient environments modeled as P2P networks of agent. Each agent has
a partial view of the environment and it holds a locally consistent theory. Local
theories are connected via bridging rules, which may result in inconsistency of the
global knowledge base. Dealing with the inconsistency is achieved by representing
bridging rules with defeasible logics.

Paper [14] introduces the concept of Intelligent Domotic Environment (IDE)
that is capable of providing Ambient Intelligence (AmI) to home environments
through rule-based reasoning. Firstly, IDE proposes a formalization of the home
environment as DogOnt ontology [13]. Secondly, IDE proposes a new middleware
called Domotic OSGi Gateway (DOG) based on OSGi9 that supports interop-
erability of hardware and software components of the home automation system.
Thirdly, IDE properties are defined from the perspectives of what information

7 http://mandarax.sourceforge.net/
8 http://jxta.kenai.com/
9 http://www.osgi.org

http://mandarax.sourceforge.net/
http://jxta.kenai.com/
http://www.osgi.org

10 C. Bădică, L. Braubach, and A. Paschke

is necessary (state and structural), as well as of the type of inference required
(direct, recursive and multi-stage) for their derivation.

2.5 Rule-Based Event Processing Agent Systems

(Complex) Event processing (CEP) is a set of techniques and technologies that
helps to understand and control event-driven systems. CEP has emerged as a
substantial new field of software engineering and computer science over the last
ten years from various research fields addressing event processing. In general,
CEP aims at achieving actionable, situational knowledge from distributed sys-
tems in real-time or quasi-real-time. CEP tools detect complex event patterns
(a.k.a. complex event types) and situations (complex events + conditional con-
texts), i.e. detecting transitions in the universe of interest that requires action
either “reactive” or “proactive” in realtime. It is now one of the fastest grow-
ing segments in enterprize middleware software. The decoupled event process-
ing model in distributed event processing systems and in particular intelligent
complex event processing systems which exploit rules for processing event mes-
sages and making decisions on detected relevant situations can be implemented
as event processing networks (EPNs) with distributed event processing agents
(EPAs). The Event Processing Technical Society (EPTS) defines an Event pro-
cessing agent (EPA) (event processing component, event mediator) as a software
module that processes events.

Various agent-oriented event processing systems have been developed such as
Starview10, Amit [1], AgentLogic RulePoint 11, Spade [65] and Prova 12.
Amit. The core the Amit (Active Middleware Technology) framework is the IBM
Situation Manager Rule Language (SMRL) [1] which is a markup language for
describing situations, which are semantic concepts in the customers’ domain of
discourse and syntactically equivalent to (complex) event patterns. Events in
SMRL have a flat structure, and have a unique name and attributes that can be
standard or user defined. The conceptual model defines an event type general-
ization hierarchy. Amit rule engines are deployed as event processing agents in
the active middleware.
RulePoint. RulePoint is a server based Event Processing platform based on a
reactive agent model. It supports detecting events and is able to responde in re-
active manner using event action rule definitions. The agents act as (distributed)
realtime alerting systems.
Prova. see 3.2
System-S Spade. System-S Stream Processing Application Declarative Engine
(SPADE) [65]. System S is a large-scale, distributed data stream processing
middleware developed at the IBM T. J. Watson Research Center. Its runtime can
execute a large number of long-running jobs (queries) that take the form of Data-
Flow Graphs. A data-flow graph consists of a set of Processing Elements (PEs)
10 http://www.starviewtechnology.com
11 http://www.agentlogic.com/
12 http://prova.ws/

http://www.starviewtechnology.com
http://www.agentlogic.com/
http://prova.ws/

Rule-Based Distributed and Agent Systems 11

connected by streams, where each stream carries a series of Stream Data Objects
(SDOs). The PEs implement data stream analytics and are basic execution units
that are distributed over the compute event processing agent nodes. The PEs
communicate with each other via their input and output ports, connected by
streams.
Starview Remote Agents. Starview Remote Agents are based on built-in CEP
engines for real-time event processing. The agents can collaborate and cooperate
across multiple streams of data by exchanging event messages. The agent follow
the “actors” approach where event-processing agents listen for incoming events,
and can take action according to predetermined rules.

3 Roles of Rules in Multi-Agent Systems

In this section different roles of rules in agent systems will be presented. This
will be done on the micro as well as on the macro layer. The first refers to the
meaning of roles for internal agent behavior control, whereas the latter considers
rules with multiple agents especially in the context of rule-based interactions.

3.1 Rules on the Micro Layer

The role of rules within agents depends crucially on the internal agent architec-
ture employed. According to Wooldridge and Jennings [96, p. 23-24] an agent
architecture is defined as follows: “[. . .] It specifies how [. . .] the agent can be
decomposed into the construction of a set of component modules and how these
modules should be made to interact. The total set of modules and their interac-
tions has to provide an answer to the question of how the sensor data and the
current internal state of the agent determine the actions [. . .] and future internal
state of the agent. [. . .]” . The definition highlights the architecture’s responsibil-
ity of deducing agent actions and future state on basis of environmental percepts
and its current knowledge. One main difficulty of agent architectures is that reac-
tive and deliberative behavior have to be balanced so that an agent is capable of

Fig. 1. Agent architecture classification (based on [96])

12 C. Bădică, L. Braubach, and A. Paschke

realtime responses to environmental changes as well as planned actions leading
to achievement of its goals. Reactive capabilities require fast decisions whereas
deliberative behavior typically needs time to be thoroughly prepared taking into
account possible alternatives and occurring difficulties. The question of how re-
active and deliberative behavior should be intertwined is further complicated
by the fact that an agent is a resource bounded entity meaning that it has to
intentionally devote capabilities to the reactive or deliberative decision making
processes. Hence, these limitations led to the development of architectures that
disregard one in favor of the other.

These considerations also led to a classification scheme of agent architectures
according to the nature of their decision making processes [96]. The class of reac-
tive agent architectures emphasizes fast decision making based on sensory input,
whereas deliberative architectures put the focus on planned actions. Hybrid archi-
tectures are those that try to combine reactive and deliberative aspects. Figure
1 shows these categorization classes alongside with several agent architectures.
The classification scheme is considered here as a spectrum with reactive and
deliberative architectures as boundaries and hybrid in the middle. At the left
hand side of this spectrum so called purely reactive architectures are located,
which represent the event action architectures without a model of the world. On
the right hand side the spectrum is bordered by purely deliberative approaches
that act purely based on cognitive action often based on planning. The spectrum
helps understanding the applicability of different architectures. The idea is not
considering one architecture as generally superior to another but understanding
the application requirements and matching them to the architecture, i.e. if fast
responses are indispensable for an application to function an agent architecture
should be located in the reactive or hybrid zone. It has further to be noted that
the boundaries between the three categories are rather fuzzy and not all archi-
tectures can be clearly assigned to one of the categories. In the following rules
are discussed with respect to their role in each of the aforementioned internal
agent architecture categories.

Reactive Agent Architectures. In a purely reactive rule based agent archi-
tecture an agent possesses only reaction rules allowing it to deduce actions from
incoming messages or environmental percepts. In the simplest form it can be
imagined that the agent behavior completely consists of if-then-else statements
containing guards and actions. Its processing would be triggered whenever it
receives new input from other agents or the environment. As for nearly all kinds
of non-trivial scenarios internal state of an agent is required - otherwise it will
repeat wrong behavior over and over again because it cannot remember older
outcomes - practical architectures have included mechanisms for autonomous
behavior control based on internal state. Though, in contrast to deliberative ar-
chitectures internal agent state might be kept simple and may not represent a
thorough model of the environment. The inclusion of state led to many archi-
tectures existing on the boundary between the reactive and hybrid zone and the
differences between those and some weakly hybrid architectures are small.

Rule-Based Distributed and Agent Systems 13

Examples of rather reactive agent architectures include Brook’s subsumption
architecture [21], task model based architectures [19], as well as several rule based
agent architectures (cf. Fig. 1). The subsumption architecture is the prototypi-
cal representative for reactive agent architecture and Brooks always insisted on
avoiding an internal representation of the world. Despite this fact, even in the
subsumption architecture an internal state is preserved in the state machines so
that variable values can be saved. Another rather simple but intuitive architec-
ture is the task model, which assumes an agent can be supplied with different
behavior snippets called tasks. It has gained some practical attention due to its
simplicity and popular agent frameworks such as JADE [8] offering this kind of
agent programming abstractions. Both do not rely on rules and thus will not be
covered here in more details.

With respect to approaches having relationships to rules teleo-reactive systems
[69], situated automata [56] and the rule interaction agent architecture [56] and
the rule interaction agent architecture [30] will be discussed.

Teleo-Reactive Agents. Nilsson has conceived a reactive agent architecture and
programming language with reactive characteristics called teleo-reactive [69]. In
order to achieve instantaneous reactions to environmental changes circuit seman-
tics is introduced, i.e. agent actions are not assumed to be executed atomically
but need constant conditional support. The architecture assumes that a teleo-
reactive agent is constructed from teleo-reactive behaviors, which consist of a
set of conditionally guarded atomic actions or subbehaviors. In case the behav-
ior is active all branches of actions are evaluated in parallel. The first branch
with a fulfilled condition is then executed until the condition becomes invalid.
As subbehaviors can be used as actions, hierarchical execution structures named
teleo-reactive trees can emerge at runtime. The architecture shares interesting
similarities with production rule systems with some important differences. The
guarded actions of a teleo-reactive program could be interpreted as a set of pro-
duction rules that are evaluated in order to determine the current execution
path. The first difference is that production rule systems are typically flat in
the sense that all rules are on the same level. In contrast, teleo-reactive pro-
grams are hierarchical having earlier layers fulfilling conditions for the execution
of deeper layers. Furthermore, production rule systems assume atomic action
execution, whereas teleo-reactive actions are executed continuously as long as
its guarding condition holds. Agent platforms supporting teleo-reactive agents
are AgentMT(TR) [58] and AgentFactory13 [31].

Situated Automata. The situated automaton architecture [56] considers an agent
as a finite-state machine whose inputs are fed by environmental sensors and
whose outputs are directly connected to its actuators. Considering the agent as
finite-state machine expressed as a fixed sequential circuit allows for a efficient
execution and thus facilitates reactive responses in dynamic environments. The
behavior of a an agent is described using goal reduction rules, which help in
mapping higher-level goals into more concrete goals. A compiler is then used to
13 http://www.agentfactory.com/index.php/Main_Page

http://www.agentfactory.com/index.php/Main_Page

14 C. Bădică, L. Braubach, and A. Paschke

transform the goal rules and top-level goal specification into a simple circuit that
is able to map input vectors to output vectors according to the goal rules. This
means that symbol manipulation for solving a goal is used only at compile time
while at runtime the agent simply behaves according to the generated circuit
semantics. To the knowledge of the authors there are no cuurent platforms using
the situated automata agent architecture.
Rule Interaction Agents. The rule interaction architecture is based on the idea of
combining FIPA speech act communication semantics[41,42] with rule oriented
behavior descriptions. In general, the agent architecture consists of a rule engine
that contains domain behavior rules as well as specific predefined interaction
transformation rules. Whenever an agent receives a message with FIPA-SL con-
tent it will automatically execute rules that perform a knowledge representation
conversion from FIPA-SL to CLIPS assuming specific semantics of SL speech
acts, i.e. in case of an ’inform’ the receiver will store the new information in
its knowledge base, whereas a ’request’ performative act directly leads to action
execution. For outgoing message the architecture provides a conversion in the
opposite direction. The architecture has been realized based for the JESS and
Jamocha Rete rule engines [30].

Deliberative Agent Architectures. A deliberative agent architecture in its
purist sense only consists of a thinking process driving the decisions of the agent.
The underlying assumption of deliberative agents is the physical symbol system
hypothesis of Newell and Simon [86, p. 35] that states: “A physical symbol system
has the necessary and sufficient means for general intelligent action.” This strong
claim assumes that human thinking is effectively based on symbol manipulation
so that machines applying symbol manipulation can act intelligently. Hence, in
contrast to a reactive agents the internal representation of the world combined
with its processing capabilities enables deliberative agents anticipating incidents
and adapt itself accordingly [36]. Typically, an deliberative agent is equipped
with achievement goals that describe desired world states and applies problem
solving methods to find a sequence of actions that form a path from its current
state to the desired state. Deliberative architectures in many cases use planning,
search or rule techniques or a combination of those in order to realize this kind of
problem solving. The advanced cognitive capabilities of deliberative agents are
often also reflected in additional architecture skills like learning or knowledge
deduction.

IRMA (Intelligent Resource-bounded Machine Architecture) [18], MicroPSI
[6] PRODIGY [28] and ICARUS [59] represent internal agent architectures with
a focus on deliberative processing tasks. IRMA is an architecture, developed
by Pollack and Bratman, that tried to directly adopt Bratman’s BDI (belief-
desire-intention) model of practical reasoning for agent decision making. It uses
the aforementioned attitudes belief, desires and intentions and mainly relies
on planning techniques to refine partial plans and deduce agent actions. Mi-
croPSI is based on Dörner’s PSI (personality-systems-interactions) theory and
includes aspects like perception, thinking, emotions, motivation and memory. Mi-
croPSI realizes the PSI theory by relying on a neural network inspired approach.

Rule-Based Distributed and Agent Systems 15

In contrast to these architectures Prodigy and ICARUS, which have been imple-
mented as agent systems, employ some rule based ideas and will be presented in
more detail in the following.

PRODIGY. The PRODIGY architecture [28] is based on a general problem
solver and planner that searches for operator sequences bringing about a set of
achievement goals as described in an initial state definition. The search process
is guided by control rules that can be domain dependent or independent. Fur-
thermore, PRODIGY enables different kinds of learning mechanisms for control
rules. Problem solving in PRODIGY is a two-staged process operating on a tree
of nodes, each node representing a world state and the goal set that is to pur-
sue. In the decision phase four kinds of decisions can be controlled via rules: 1)
determination of the node to expand, 2) selection of the goal to satisfy, 3) selec-
tion of an operator to try, and 4) binding of parameter values of the operator.
Thereafter, in the expansion phase the operator is applied and a new node is
created for the derived state. In case the operator cannot be executed due to
unsatisfied preconditions, a new subgoals for establishing the preconditions are
created and also a new node for processing them is created. Control rules in
PRODIGY have a specific form. They consist of a left-hand side condition for
testing applicability and a right-hand side with an action that can be ’select’,
’reject’ or ’prefer’. In the first step selection rules are fired to determine the valid
set of candidates (node, goal, operator or bindings). If no selection rules trigger
all candidates are included. In the next step rejection rules are executed in order
to exclude unwanted candidates. Finally, in the last step preference rules are
used to order the remaining elements and find the most promising candidates.
In case backtracking has to be employed the next most preferred candidate is
selected.

ICARUS. ICARUS [59] has been conceived as cognitive architecture mainly for
controlling agents in complex physical environments. The ICARUS architecture
mainly consists of three components: a perceptual, a planning and an execution
system. They are meant to operate concurrently and interact using a specific
memory system. This memory system is based on a categorization of concepts in
tree form. Whenever new percepts are detected by the perceptual module, these
experiences are classified in memory using similarity functions of categories. The
organization of the memory in form of a lattice and its operation has similarities
with a Rete network used for production system matching [38]. At the heart of
the architecture the planner module uses means-end analysis to generate plans. It
tries to achieve a goal by comparing the goal state with the initial state and then
breaking down the problem into subproblems, which are recursively solved by the
planner. The planner uses the memory to retrieve suitable operators called skills
based on the problems pre- and postconditions or the reduction of differences
between the states it can bring about. In case the planner encounters problems
it may backtrack resulting in a heuristic depth-first search. The categorized
memory allows the planner learn from previous experiences by fetching entire
plans that can be used as starting point for the problem at hand and may
be subject to further adaptations or refinements. The architecture has been

16 C. Bădică, L. Braubach, and A. Paschke

extended with the possibility of specifying a degree of persistency in performing
its activities allowing to adjust its degree of reactivity.

3.2 Hybrid Agent Architectures

Hybrid agent architectures aim at providing a balanced mixture of reactive and
deliberative behavior specification means and execution. Due to resource bound-
edness agent architectures have to solve the question of how much effort to spend
for each type of behavior and how often to rethink courses of actions they have
committed to. Several experiments have shown the degree of commitment should
be dependent on the degree of dynamics exposed by the environment the agent is
situated in [78,57]. This has led to the development of architectures with differ-
ent commitment strategies ranging from bold agents strongly committed to their
intentions to cautious agents reconsidering frequently. In contrast to deliberative
agent architecture which are often based on planning approaches hybrid archi-
tectures rather employ reactive planning or purely rule-based behavior control.
Reactive planning, originally stemming from PRS, describes an iterative but
very fast planning approach that is based on the idea of planning step by step
at runtime taking into account immediate feedback of the environment, i.e. an
agent only decides upon the next plan or action and during execution expands
subgoals to further plans at runtime. This scheme of acting has been adopted also
by many other architectures such as 2/3APL and GOAL, described hereafter.

AOP Agents. The AOP (Agent Oriented Programming) architecture [84] envi-
sions a mentalistic agent description based on the notions beliefs, capabilities
and commitments. The fundamental idea is that an agent commits to execute
an action for another agent or itself at the current or a future point in time.
Actions are described as capabilities with a guard determining the applicabil-
ity in regard to the agent’s context. The means for engaging in commitments
is based on commitment rules that may include a message as well as a mental
condition. In case a commitment rule fires, a new commitment is added and kept
until it got executed or belief changes render the capability’s condition invalid. If
the latter situation occurs the commitment is removed and a notification to the
agent the commitment belong to should be prepared. Rule evaluation is done in
each agent deliberation cycle. Frameworks using AOP inspired architectures are
AgentFactory [31] and AgentBuilder14 [81].

PRS Agents. The PRS (procedural reasoning system) architecture [80] builds
on the BDI (belief-desire-intention) model of agency [17], which explains hu-
man behavior on basis folk-psychological notions, i.e. the BDI model explains
rational behavior in the way humans think that they think. Foundation of the
BDI model is the process of practical reasoning, which is composed of two sub-
sequent subprocess: goal deliberation and means-end reasoning [95]. The first
refers to the responsibility of deciding what goals to pursue, which might be
difficult when goals are conflicting. The latter is concerned with determining on

14 http://www.agentbuilder.com/

http://www.agentbuilder.com/

Rule-Based Distributed and Agent Systems 17

the means how to achieve a previously selected goal. The PRS architecture only
considers means-end resoning by casting BDI to beliefs, goals and plans. Goals
appear in form of events that trigger a plan selection and execution process
(means-end reasoning). Similar to processing event-condition-action rules the
PRS interpreter first selects a subset of applicable plans according to the event
type and then selects among those using the first plan with fulfilled precondi-
tions. In case of plan errors the means-end reasoning process can be initiated
again and other plans may used out until the goal is achieved or the last plan has
been chosen. The traditional PRS architecture has also been described as pro-
gramming language called AgentSpeak(L) [79]. Architectural extensions of PRS
have addressed the inclusion of declarative goal semantics by including different
goal types like achievement and maintenance [20] as well as conceptual support
for the goal deliberation phase [77,67]. Both forms of extensions emphasize the
role of rules in the PRS architectures as goal states have to be observed and
trigger actions. The PRS architecture has been used in many agent frameworks
including JIAC15, JACK16, Jason17 and Jadex18[15,16].

2/3APL Agents. 3APL (an abstract agent programming language) [52] and
2APL (a practical agent programming language) [32] are similar approaches for
programming agents using mentalistic notions and rules. As 2APL is the succes-
sor of 3APL only the former will be described in the following. A 2APL agent is
described by the typical BDI attitudes beliefs, goals, and plans and additionally
by three types of rules: planning goal rules, procedure call rules and plan repair
rules. Beliefs are specified as Prolog facts or belief inference rules that gener-
ate additional knowledge based on the agent’s beliefs. Goals are represented as
formulas describing world states the agent wants to attain. Planning goal rules
serve the generation of plans for goals. The condition part of a planning goal
rules consist the goal to be present as well as a specific belief state to be valid.
The action part contains a plan description composed of an action recipe, which
can consist of concrete as well as abstract actions. Procedure call rules are similar
to goal planning rules with the difference that as part of the condition instead
of goal, message events, environmental events or abstract actions can be used.
The usage of both kinds of rules allows for a context based interpretation of
goals and runtime expansion of plans. In addition, the third kind of rules called
plan repair rule enables reacting on plan failures. Such failures occur when an
action of a plan leads to an exception. The condition part of a plan repair rule
consists of a belief state check and an action description denoting the beginning
of the plan to repair, i.e. the first actions of that plan. The action part contains
a replacement plan description that can be used as alternative for the original
actions. The 2/3APL architectures have also been implemented in corresponding
agent platforms.19

15 http://www.jiac.de/
16 http://www.aosgrp.com.au/
17 http://jason.sourceforge.net/Jason/Jason.html
18 http://jadex-agents.informatik.uni-hamburg.de/
19 http://apapl.sourceforge.net/, http://www.cs.uu.nl/3apl/

http://www.jiac.de/
http://www.aosgrp.com.au/
http://jason.sourceforge.net/Jason/Jason.html
http://jadex-agents.informatik.uni-hamburg.de/
http://apapl.sourceforge.net/
http://www.cs.uu.nl/3apl/

18 C. Bădică, L. Braubach, and A. Paschke

GOAL Agents. A GOAL agent [51] is a BDI style of agent that makes use of
the following types of mentalistic notions. It uses knowledge and beliefs as data
structures for storing information. In this respect knowledge represents static
facts that will not change during runtime and beliefs contains more volatile
data that depends on the perceptual input and received messages. Both kinds of
structures may also contain knowledge refinement rules for generating additional
deduced facts. The motivations of an agent are synthesized as achievement goals
using formulas for describing the desired world states. The program logic is
defined by action rules referring to actions that are specified similar to STRIPS
actions and make use of pre- and postconditions. An action rule is similar to a
production rule consisting of a condition and action part. The condition part is a
mental state guard that can e.g. check for goal existence or belief states and the
action part contains an action that will be executed when the corresponding rule
fires. If more than one action rule is activated a GOAL agent arbitrary selects
among them yielding non-deterministic agent behavior. The GOAL architecture
is implemented in the GOAL agent system.20

SOAR Agents. The SOAR (originally for state, operator and result) agent ar-
chitecture [60,61] has been developed as a candidate for a UTC (unified theories
of cognition) [68] helpful for explaining the full gamut of human behavior in-
cluding e.g. problem solving, learning, and language. SOAR tries to achieve this
following the ’parsimony principle’, which states that the architecture complexity
should be low and it should rely on as few architecture mechanisms as possible.
The SOAR architecture is based on the idea of problem solving through operator
search and application. In contrast to other architectures SOAR completely relies
on production rules for realizing its goal directed behavior. These rules belong
to different conceptual groups and their matching and firing is controlled in a
sophisticated way by the agent’s deliberation cycle. This cycle first transfer sen-
sory input to the SOAR working memory. Thereafter, in the proposal phase, the
interpreter fires all activated inference, proposal and comparison rules. Inference
rules are used to generate new knowledge from the existing knowledge. Proposal
rules serve for operator generation adding them also to the working memory and
finally comparison rules are used to establish preferences among the proposed
operator instances. In the following decision phase, SOAR has to select exactly
one operator. In case the choice is easy and exactly one operator was proposed
or one operator is preferred against all others the interpreter directly enters the
next application phase. But it may also happen that no operator was selected,
several operators are equally well suited or insufficient information is available
for operator execution. As the interpreter performs only knowledge decisions it
will solve the problem by automatic subgoaling. This means that a subcontext
will be established in which SOAR tries to bear new knowledge to resolve the
impasse. In the application phase the operator will be executed by firing rules
that have been activated by the new operator. In the last phase domain de-
pendent output functions will be called using specific working memory elements

20 http://mmi.tudelft.nl/trac/goal

http://mmi.tudelft.nl/trac/goal

Rule-Based Distributed and Agent Systems 19

as parameters. An implementation of SOAR is developed by an active research
community21.

Vivid Agents. Vivid agents [83] is an approach that combines reactive and proac-
tive behavior using rules and planning. The underlying Vivid agent architecture
is named CAP (concurrent action and planning) and consists of two indepen-
dent modules. The reactive module relies on two kinds of rules: reaction and
action rules. Reaction rules are similar to event-condition-action rules and are
triggered by incoming messages and new environmental percepts. In case the op-
tional condition part is fulfilled the rule is activated and can be fired. In contrast
to reaction rules, action rules do not have a triggering event and operate on the
agents knowledge only. In Vivid agents three types of (reaction and action) rules
are distinguished based on the kind of effects involved: epistemic, physical and
communicative. Epistemic rules only have internal effects on the agent’s knowl-
edge, whereas physical actions refer to actions performed in the environment
and communicative actions deal with sending a message to another agent. The
planning module of CAP is responsible for proactive agent behavior. It uses a
STRIPS [82] inspired approach that is able to generate a plan for achieving a
goal. The planner uses the available action rules as operators and thus produces
a plan in form of a sequence of action rules that have to be executed in order to
reach the desired world state. After plan generation has been finished the pro-
duced plan is executed interleaved with reactive rules. A current implementation
of the architecture is not available.
Rule Responder. Rule Responder [73] is a Semantic Web infrastructure for
distributed rule-based event processing multi-agent eco-systems. The Rule Re-
sponder middleware is based on modern enterprise service technologies and Se-
mantic Web technologies for implementing intelligent rule-based agent services
that access data and ontologies, receive and detect events (e.g., for complex event
processing in event processing agent networks), and make rule-based inferences
and (semi-)autonomous pro-active decisions for reactions based on these rep-
resentations. The core of a Rule Responder agent (cf. Figure 2) are reasoning
engines such as the Prova rule engine 22,23 which implements the decision and
behavioral reaction logic of the agents’ roles. The Prova rule engine supports
different rule types:

– Derivation rules to describe the agent’s decision logic
– Integrity rules to describe constraints and potential conflicts
– Normative rules to represent the agent’s permissions, prohibitions and obli-

gation policies
– Defeasible rules to priorities rules for, e.g. handling conflicts between agent’s

goals and modularization of the agent’s KB to support multiple roles of an
agent

21 http://sitemaker.umich.edu/soar/home
22 http://prova.ws
23 And other rule engines, such as OO jDREW, DR-Device (initially in Emerald),

Euler, or Drools as long as they support Reaction RuleML as general interchange
format for agent communication.

http://sitemaker.umich.edu/soar/home
http://prova.ws

20 C. Bădică, L. Braubach, and A. Paschke

– Reaction rules to define reaction logic which are triggered on the basis of
detected (complex) events

– Messaging reaction rules to define the agents conversation-based workflow
reactions and behavioral logics based on complex event processing

An agent can employ vocabularies defined as Semantic Web ontologies (e.g.,
based on RDFS or OWL) or Java class hierarchies to give its rules a domain-
specific meaning. The vocabularies can be used within the conversation with
other agents to enable a semantic and pragmatic interpretation of the messages,
e.g. FIPA ACL pragmatic primitives as semantic ontology concepts in messaging
reaction rules.

Fig. 2. Rule Responder

For the deployment of agents on the Web and for the communication in agent
networks, Rule Responder uses an enterprise service bus (ESB) middleware,
which supports a multitude of synchronous and asynchronous transport proto-
cols (>40) such as MS, SMTP, JDBC, TCP, HTTP, XMPP, etc. to transport
rulebases, queries and answers between the agents. The de facto standard Re-
action RuleML 24 is used as a platform-independent rule interchange format for
agent conversation using Reaction RuleML messages. Reaction RuleML incorpo-
rates various kinds of production, action, reaction, and knowledge representation
temporal/event/action logic rules as well as (complex) event/action messages
into the native RuleML standard syntax.

Emerald. Emerald25 like Rule Responder employs reasoning engines as reason-
ing services that are implemented as reasoner agents, which intercommunicate
24 http://reaction.ruleml.org
25 http://lpis.csd.auth.gr/systems/emerald/rel.html

http://reaction.ruleml.org
http://lpis.csd.auth.gr/systems/emerald/rel.html

Rule-Based Distributed and Agent Systems 21

via FIPA ACL-based communication protocols. EMERALD is built on-top of
the JADE multi-agent system. The emerald framework can be used as one plat-
form specific agent framework in the general Rule Responder Semantic Web
middleware.

3.3 Rules on the Marco Layer

Rule-Based Negotiation. According to [64], negotiation is the process by
which a group of agents communicate to try to come to a mutually acceptable
agreement on some matter. It is one of the important methods for establishing
agent cooperation. Understood in this way, negotiation consists of two parts:
(i) negotiation protocol that represents the conventions under which negotiation
operates as a set of public rules of the agents’ interaction process. Agents must
comply to the protocol of the negotiation in order to be able to communicate; (ii)
negotiation strategy that represents the specification of the sequence of actions
that an agent plans to make during negotiation and that are supposed to lead
to a desired outcome.

Negotiation Protocols. Rules can be used to define a reusable formalization of
the semantics of the interaction between several negotiation participants. The
participants are required to obey the rules specific to a given negotiation pro-
tocol – for example a certain type of auction. One of the first approaches was
proposed by paper [62] that introduces AB3D26 – a rule-based scripting lan-
guage for expressing auction mechanisms. AB3D allows initialization of auction
parameters, definition of rules for triggering auction events, declaration of user
variables and definition of rules for controlling bid admissibility.

[7] introduces a conceptual framework for the development of agent-based au-
tomated negotiations focused on auctions that consists of: (1) negotiation infras-
tructure, (2) generic negotiation protocol, and (3) taxonomy of declarative rules,
is presented. The negotiation infrastructure defines roles of negotiation partici-
pants and of a host. Participants exchange proposals within a “negotiation locale”
managed by the host. The generic negotiation protocol defines three phases of a
negotiation: admission, exchange of proposals and formation of an agreement, in
terms of how, when and what types of messages should be exchanged between
the host and negotiation participants. Negotiation rules are used for enforcing
the negotiation protocol. Rules are organized into a taxonomy: rules for partici-
pants admission to negotiations, rules for checking validity of proposals, rules for
protocol enforcement, rules for updating the negotiation status and informing
participants, rules for agreement formation and rules for controlling the negotia-
tion termination. [25] presents an implementation of the conceptual negotiation
framework introduced in [7] in an agent-based e-commerce system. Furthermore,
paper [26] presents a representation of negotiation rules using R2ML27 markup
language for English auctions.

26 http://ai.eecs.umich.edu/AB3D/
27 https://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML

http://ai.eecs.umich.edu/AB3D/
https://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=R2ML

22 C. Bădică, L. Braubach, and A. Paschke

[89] proposes a formalization of negotiations that goes beyond the framework
of [7]. Its authors suggest usage of an ontology-based approach to expressing
negotiation protocols. Specifically, whenever an agent is admitted to negotiation
it is to obtain a specification of the negotiation rules in terms of a shared ontology.
This approach has been exemplified with a sample scenario by investigating
how the ontology can be used to tune the negotiation strategy of participating
agents.

Negotiation Strategies. In [87] an implementation of a system of Jade agents
that negotiate using strategies expressed in defeasible logic was described. The
implementation is demonstrated with a bargaining scenario involving one buyer
and one seller agent. The buyer strategy was defined by a defeasible logic
program.

Rule-Based Verification of Agent Systems and Workflows. Rules rep-
resented in temporal logics can be used to express patterns of properties ver-
ification of concurrent and distributed systems [35], including agent systems
and workflows. The pattern approach was taken further in [55] to define a set
of verification patterns for checking business process models translated into la-
beled transition systems, using model checking tools. The pattern approach can
considerably simplify the verification process by enabling the reuse of software
engineering expertise. This technique was applied for checking an agent-based
English auction service [23], as well as different types of middle-agents including
frontagents, matchmakers, and brokers [24].

4 Conclusion

In this paper we have surveyed several major approaches using rules in (multi)
agent systems and distributed agent architectures which run rule engines at
their core. The approaches differ, e.g., in their supported rule types, state rep-
resentation, rule evaluation mechanism, conflict resolution and truth mainte-
nance mechanisms. Depending on their expressiveness and semantics the used
rule engines might be capable of implementing agents in the strong sense of
cognitive architectures for intelligent agents with goal/task-based, utility-based
and learning-based functionalities, or in the weak sense of agent services with
simple reflexive functionalities for, e.g., deductive query-answering or simple re-
active capabilities. Following the general consensus defined by the strong notion
of agency in [97], the use of declarative rules for representing the agents’ deci-
sion and behavioral reaction logics makes them capable of reactive, proactive,
and communicative behavior and supports (semi-)autonomous (intelligent) de-
cisions. Additionally, mentalistic notions can be used in the rule language for
describing the agent behavior in an abstract and intuitive way, e.g. in the in-
teractions between agents to communicate the pragmatics of the interchanged
information.

Rule-Based Distributed and Agent Systems 23

References

1. Adi, A., Etzion, O.: Amit - the situation manager. VLDB J. 13(2), 177–203 (2004)
2. Amaral, J.N., Ghosh, J.: Speeding Up Production Systems: From Concurrent

Matching to Parallel Rule Firing, ch. 7, pp. 139–160. Elsevier, Amsterdam (1994)
3. Amaral, J.N., Ghosh, J.: A concurrent architecture for serializable production sys-

tems. IEEE Transactions on Parallel and Distributed Systems 7(12), 1265–1280
(1996)

4. Amarnath, B.R., Somasundaram, T.S., Ellappan, M., Buyya, R.: Ontology-based
grid resource management. Software Practice and Experience 39(17), 1419–1438
(2009)

5. Aref, M.M., Tayyib, M.A.: Lana-match algorithm: A parallel version of the rete-
match algorithm. Parallel Computing 24(5-6), 763–775 (1998)

6. Bach, J., Bauer, C., Vuine, R.: Micropsi: Contributions to a broad architecture of
cognition. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI),
vol. 4314, pp. 7–18. Springer, Heidelberg (2007)

7. Bartolini, C., Preist, C., Jennings, N.: A software framework for automated
negotiation. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.)
SELMAS 2004. LNCS, vol. 3390, pp. 213–235. Springer, Heidelberg (2005)

8. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with
JADE. John Wiley & Sons, Chichester (2007)

9. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons Ltd, Chichester (2007)

10. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(5) (May 2001)

11. Bikakis, A., Antoniou, G.: Distributed defeasible contextual reasoning in ambient
computing. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A.,
Schmidt, J., Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 308–325. Springer,
Heidelberg (2008)

12. Bikakis, A., Antoniou, G.: Distributed reasoning with conflicts in an ambient peer-
to-peer setting. In: Mühlhauser, M., Ferscha, A., Aitenbichler, E. (eds.) Construct-
ing Ambient Intelligence. CCIS, vol. 11, pp. 24–33. Springer, Heidelberg (2008)

13. Bonino, D., Corno, F.: DogOnt - ontology modeling for intelligent domotic envi-
ronments. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 790–803. Springer,
Heidelberg (2008)

14. Bonino, D., Corno, F.: Rule-based intelligence for domotic environments. Automa-
tion in Construction 19(2), 183–196 (2010)

15. Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer, Heidelberg (2005)

16. Bordini, R., Dastani, M., Dix, J., el Fallah-Seghrouchni, A. (eds.): Multi-Agent
Programming: Languages, Tools and Applications. Springer, Berlin (2009)

17. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

18. Bratman, M., Israel, D., Pollack, M.: Plans and Resource-Bounded Practical Rea-
soning. Computational Intelligence 4(4), 349–355 (1988)

19. Braubach, L.: Architekturen und Methoden zur Entwicklung verteilter agentenori-
entierter Softwaresysteme. PhD thesis, Universität Hamburg (2007)

24 C. Bădică, L. Braubach, and A. Paschke

20. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal Representation for
BDI Agent Systems. In: Bordini, R., Dastani, M., Dix, J., El Fallah-Seghrouchni,
A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg
(2005)

21. Brooks, R.A.: How to build complete creatures rather than isolated cognitive sim-
ulators. Architectures for Intelligence, 225–239 (1989)

22. Brzykcy, G., Bartoszek, J., Pankowski, T.: Schema mappings and agents’ actions in
p2p data integration system. Journal of Universal Computer Science 14(7), 1048–
1060 (2008)

23. Bădică, A., Bădică, C.: Specification and verification of an agent-based auction
service. In: Information System Development. Towards a Service Provision Society
(ISD 2008), pp. 239–248. Springer, Heidelberg (2009)

24. Bădică, A., Bădică, C.: Fsp and fltl framework for specification and verification of
middle-agents. Applied Mathematics and Computer Science 21(1), 9–25 (2011)

25. Bădică, C., Ganzha, M., Paprzycki, M.: Implementing rule-based automated price
negotiation in an agent system. Journal of Universal Computer Science 13(2), 244–
266 (2007)

26. Bădică, C., Giurca, A., Wagner, G.: Using rules and R2ML for modeling negotia-
tion mechanisms in E-commerce agent systems. In: Draheim, D., Weber, G. (eds.)
TEAA 2006. LNCS, vol. 4473, pp. 84–99. Springer, Heidelberg (2007)

27. Cabitza, F., Dal Seno, B.: Djess - a knowledge-sharing middleware to deploy dis-
tributed inference systems. In: Ardil, C. (ed.) The Second World Enformatika Con-
ference, WEC 2005, Enformatika, Çanakkale, Turkey, pp. 66–69 (2005)

28. Carbonell, J.G., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C.A., Minton, S.,
Veloso, M.M.: Prodigy: An integrated architecture for planning and learning.
SIGART Bulletin 2(4), 51–55 (1991)

29. Cardoso, H.L.: Integrating jade and jess (2007)
30. Christoph, U., Krempels, K.-H., Wilden, A.: Jamochaagent - a rule-based pro-

grammable agent. In: Filipe, J., Fred, A.L.N., Sharp, B. (eds.) ICAART 2009 -
Proceedings of the International Conference on Agents and Artificial Intelligence,
pp. 447–454 (2009)

31. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD thesis, University College Dublin (2001)

32. Dastani, M.: 2apl: a practical agent programming language. International Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS), Special Issue on
Computational Logic-based Agents 16(3), 214–248

33. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

34. Ding, H.: Integrating semantic metadata in p2p-based digital libraries. Library
Management 26(4/5), 218–229 (2005)

35. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. 21st International Conference on Software Engi-
neering (ICSE 1999), pp. 411–420. IEEE Computer Society Press, Los Alamitos
(1999)

36. Ferber, J.: Multi-Agents Systems - An Introduction to Distributed Artificial Intel-
ligence. Addison-Wesley, Reading (1999)

37. Fischer, K., Windisch, H.-M.: Magsy: Ein regelbasiertes multiagentensystem. KI
Zeitschrift 6(1), 22–26 (1992)

38. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-
lem. Artificial Intelligence 19(1), 17–37 (1982)

Rule-Based Distributed and Agent Systems 25

39. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

40. Foster, I.T., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. IJHPCA 15(3), 200–222 (2001)

41. Foundation for Intelligent Physical Agents (FIPA). FIPA ACL Message Structure
Specification (December 2002), document no. FIPA00061

42. Foundation for Intelligent Physical Agents (FIPA). FIPA SL Content Language
Specification (December 2002), document no. FIPA00008

43. Friedman-Hill, E.: Jess in Action: Java Rule-based Systems. Manning Publications
Co. (2003)

44. Frîncu, M.E., Petcu, D.: Osyris: a nature inspired workflow engine for service ori-
ented environments. Scalable Computing: Practice and Experience 11(1), 81–97
(2010)

45. Gross, T., Paul-Stueve, T., Palakarska, T.: Sensbution: A rule-based peer-to-peer
approach for sensor-based infrastructures. In: Proceedings of the 33rd EUROMI-
CRO Conference on Software Engineering and Advanced Applications, pp. 333–
340. IEEE Computer Society, Washington, DC, USA (2007)

46. Gupta, A., Forgy, C.L., Newell, A.: High-speed implementations of rule-based sys-
tems. ACM Transactions on Computer Systems 7(2), 119–146 (1989)

47. Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., Hermenegildo, M.V.: Paral-
lel execution of prolog programs: a survey. ACM Transactions on Programming
Languages and Systems 23(4), 472–602 (2001)

48. Hall, L.O.: Backpac: A parallel goal-driven reasoning system. Information Sci-
ences 62(1-2), 169–182 (1992)

49. Harmelen, F.: Large scale reasoning on the semantic web: What to do when success
is becoming a problem. In: Liu, J., Wu, J., Yao, Y., Nishida, T. (eds.) AMT 2009.
LNCS, vol. 5820, p. 3. Springer, Heidelberg (2009)

50. Herrero, P., Bosque, J.L., Salvadores, M., Perez, M.S.: A rule based resources
management for collaborative grid environments. International Journal of Internet
Protocol Technology 3, 35–45 (2008)

51. Hindriks, K.: Programming Rational Agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R. (eds.) Multi-Agent Programming: Languages,
Platforms and Applications, pp. 119–157. Springer, Heidelberg (2009)

52. Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.-J.: Agent Programming in
3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

53. Ishida, T.: Parallel, Distributed and Multiagent Production Systems. LNCS,
vol. 878. Springer, Heidelberg (1994)

54. Ishida, T.: Parallel, distributed and multi-agent production systems - a research
foundation for distributed artificial intelligence. In: Lesser, V.R., Gasser, L. (eds.)
Proceedings of the First International Conference on Multiagent Systems, ICMAS,
pp. 416–422. The MIT Press, Cambridge (1995)

55. Janssen, W., Mateescu, R., Mauw, S., Fennema, P., van der Stappen, P.: Model
checking for managers. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.)
SPIN 1999. LNCS, vol. 1680, pp. 92–107. Springer, Heidelberg (1999)

56. Kaelbling, L.P.: A situated-automata approach to the design of embedded agents.
SIGART Bulletin 2, 85–88 (1991)

57. Kinny, D., Georgeff, M.: Commitment and effectiveness of situated agents. In:
Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI 1991), pp. 82–88 (February 1991)

58. Knottenbelt, J.: Contract Related Agents. PhD thesis, Imperial College, London
(2006)

26 C. Bădică, L. Braubach, and A. Paschke

59. Langley, P., McKusick, K.B., Allen, J.A., Iba, W., Thompson, K.: A design for the
icarus architecture. SIGART Bulletin 2(4), 104–109 (1991)

60. Lehman, J.F., Laird, J., Rosenbloom, P.: A gentle introduction to Soar, an archi-
tecture for human cognition. In: Sternberg, S., Scarborough, D. (eds.) Invitation
to Cognitive Science, vol. 4, pp. 212–249. MIT Press, Cambridge (1996)

61. Lehman, J.F., Laird, J., Rosenbloom, P.: A gentle introduction to Soar, an archi-
tecture for human cognition. Technical report, University of Michigan (2006)

62. Lochner, K.M., Wellman, M.P.: Rule-based specification of auction mechanisms. In:
3rd International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pp. 818–825. IEEE Computer Society, Los Alamitos (2004)

63. Loke, S.W.: Declarative programming of integrated peer-to-peer and web based
systems: the case of prolog. Journal of Systems and Software 79(4), 523–536 (2006)

64. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for ne-
gotiation in electronic commerce. Group Decision and Negotiation 12(1), 31–56
(2003)

65. Gedik, B., Kumar, V., Losa, G., Soulé, R., Wu, K.-L., Hirzel, M., Andrade, H.
66. Mohammad Khanli, L., Analoui, M.: Active grid information server for grid com-

puting. The Journal of Supercomputing 50(1), 19–35 (2009)
67. Morreale, V., Bonura, S., Francaviglia, G., Centineo, F., Cossentino, M., Gaglio, S.:

Reasoning about goals in BDI agents: the PRACTIONIST framework. In: De Paoli,
F., Di Stefano, A., Omicini, A., Santoro, C. (eds.) Proceedings of Joint Workshop
“From Objects to Agents” (2006)

68. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge
(1990)

69. Nilsson, N.J.: Teleo-reactive programs for agent control. Journal Artificial Intelli-
gence Research 1, 139–158 (1994)

70. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: Distributed reasoning over large-scale semantic web data. Journal of Web
Semantics 7(4), 305–316 (2009)

71. Oskooei, A.R., Mirza-Aghatabar, M., Khorsandi, S.: Introduction of novel rule
based algorithms for scheduling in grid computing systems. In: Second Asia Inter-
national Conference on Modelling and Simulation (AMS 2008), pp. 138–143. IEEE
Computer Society, Los Alamitos (2008)

72. Padgett, J., Djemame, K., Dew, P.: Predictive adaptation for service level agree-
ments on the grid. International Journal of Simulation: Systems, Science & Tech-
nology 7(2), 29–42 (2006)

73. Paschke, A., Boley, H., Kozlenkov, A., Craig, B.: Rule responder: Ruleml-based
agents for distributed collaboration on the pragmatic web. In: Proceedings of the
2nd International Conference on Pragmatic Web, ICPW 2007, pp. 17–28. ACM,
New York (2007)

74. Paschke, A., Bichler, M.: Knowledge representation concepts for automated sla
management. Decision Support Systems 46(1), 187–205 (2008)

75. Perraju, T.S., Prasad, B.E.: Interference analysis in multiple rule firing systems.
Knowledge-Based Systems 13(4), 171–176 (2000)

76. Petcu, D., Petcu, M.: Distributed jess on a condor pool. In: Proceedings of the 9th
WSEAS International Conference on Computers, Stevens Point, Wisconsin, USA,
pp. 1–5. World Scientific and Engineering Academy and Society, WSEAS (2005)

77. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI
agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns,
M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 82–93. Springer, Heidelberg
(2005)

Rule-Based Distributed and Agent Systems 27

78. Pollack, M.E., Joslin, D., Nunes, A., Ur, S., Ephrati, E.: Experimental investi-
gation of an agent commitment strategy. Technical Report 94–31, Department of
Computer Science, University of Pittsburgh (1994)

79. Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Van de Velde, W., Perram, J. (eds.) MAAMAW 1996. LNCS, vol. 1038,
pp. 42–55. Springer, Heidelberg (1996)

80. Rao, A., Georgeff, M.: BDI Agents: from theory to practice. In: Lesser, V.
(ed.) Proceedings of the 1st International Conference on Multi-Agent Systems
(ICMAS 1995), pp. 312–319. MIT Press, Cambridge (1995)

81. Reticular Systems. AgentBuilder User’s Guide, version 1.3 edn (2000),
http://www.agentbuilder.com/

82. Russell, S., Norvig, P.: Artifical Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (2003)

83. Schroeder, M., Wagner, G.: Vivid agents: Theory, architecture, and applications.
Applied Artificial Intelligence 14(7), 645–675 (2000)

84. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1), 51–92
(1993)

85. Siddiqui, M., Villazon, A., Fahringer, T.: Semantic-based on-demand synthe-
sis of grid activities for automatic workflow generation. In: Proceedings of
the Third IEEE International Conference on e-Science and Grid Computing,
E-SCIENCE 2007, pp. 43–50. IEEE Computer Society, Washington, DC, USA
(2007)

86. Simon, H.A.: Cognitive science: the newest science of the artificial. Cognitive Sci-
ence 4, 33–46 (1980)

87. Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori, G., Bikakis, A.: Dr-
negotiate – a system for automated agent negotiation with defeasible logic-based
strategies. Data & Knowledge Engineering 63(2), 362–380 (2007)

88. Soma, R., Prasanna, V.K.: Parallel inferencing for owl knowledge bases. In: 37th
International Conference on Parallel Processing, ICPP 2008, pp. 75–82. IEEE Com-
puter Society, Los Alamitos (2008)

89. Tamma, V., Phelps, S., Dickinson, I., Wooldridge, M.: Ontologies for supporting
negotiation in e-commerce. Engineering Applications of Artificial Intelligence 18(2),
223–236 (2005)

90. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurrency and Computation: Practice and Experience 17(2-
4), 323–356 (2005)

91. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: Owl reasoning
with webpie: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou,
G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

92. Urbani, J., Kotoulas, S., Oren, E., Harmelen, F.: Scalable distributed reasoning
using mapReduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 634–649. Springer, Heidelberg (2009)

93. Vlahavas, I., Bassiliades, N.: Parallel, object-oriented, and active knowledge base
systems. Kluwer Academic Publishers, Norwell (1998)

94. Wolfson, O., Ozeri, A.: Parallel and distributed processing of rules by data-
reduction. IEEE Transactions on Knowledge and Data Engineering 5(3), 523–530
(1993)

95. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)

http://www.agentbuilder.com/

28 C. Bădică, L. Braubach, and A. Paschke

96. Wooldridge, M., Jennings, N.: Agent theories, architectures, and languages: A sur-
vey. In: Wooldridge, M., Jennings, N. (eds.) ECAI 1994 and ATAL 1994. LNCS,
vol. 890, pp. 1–39. Springer, Heidelberg (1995)

97. Wooldrige, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Chich-
ester (2002)

98. Zhang, W., Wang, K., Chau, S.-C.: Data partition and parallel evaluation of datalog
programs. IEEE Transactions on Knowledge and Data Engineering 7(1), 163–176
(1995)

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 29–43, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Extending a Multi-agent Reasoning Interoperability
Framework with Services for the Semantic Web Logic

and Proof Layers

Kalliopi Kravari1, Konstantinos Papatheodorou2,
Grigoris Antoniou2, and Nick Bassiliades1

1 Dept. of Informatics, Aristotle University of Thessaloniki,
GR-54124 Thessaloniki, Greece

{kkravari,nbassili}@csd.auth.gr
2 Institute of Computer Science, FORTH, Greece

Department of Computer Science, University of Crete, Greece
{cpapath,antoniou}@ics.forth.gr

Abstract. The ultimate vision of the Semantic Web (SW) is to offer an interop-
erable and information-rich web environment that will allow users to safely
delegate complex actions to intelligent agents. Much work has been done for
agents' interoperability; a plethora of proposals and standards for ontology-
based metadata and rule-based reasoning are already widely used. Nevertheless,
the SW proof layer has been neglected so far, although it is vital for SW agents
and human users to understand how a result came about, in order to increase the
trust in the interchanged information. This paper focuses on the implementation
of third party SW reasoning and proofing services wrapped as agents in a multi-
agent framework. This way, agents can exchange and justify their arguments
without the need to conform to a common rule paradigm. Via external reason-
ing and proofing services, the receiving agent can grasp the semantics of the re-
ceived rule set and check the validity of the inferred results.

Keywords: semantic web, logic layer, proof layer, rules, defeasible reasoning,
DR-Prolog, intelligent multi-agent systems, EMERALD.

1 Introduction

The Semantic Web (SW) [6] is a rapidly evolving extension of the current Web that
derives from Sir Tim Berners-Lee’s vision of a universal medium for data, informa-
tion and knowledge exchange, where the semantics of information and services is
well-defined, making it possible for people and machines to precisely understand
Web content. So far, the fundamental SW technologies (content representation, on-
tologies) have been established and researchers are currently focusing their efforts on
logic and proofs.

Intelligent agents (IAs) are software programs intended to perform tasks more effi-
ciently and with less human intervention. They are considered the most prominent
means towards realizing the SW vision [1]. The gradual integration of multi-agent

30 K. Kravari et al.

systems (MAS) with SW technologies will affect the use of the Web in the imminent
future; its next generation will consist of groups of intercommunicating agents travers-
ing it and performing complex actions on behalf of their users. Thus, IAs are considered
to be greatly favored by the interoperability that SW technologies aim to achieve.

IAs will often interact with other agents, belonging to service providers, e-shops,
Web enterprises or even other users. However, it is unrealistic to expect that all inter-
communicating agents will share a common rule or logic representation formalism;
neither can W3C impose specific logic formalisms in a dynamic environment like the
Web. Nevertheless, agents should somehow share an understanding of each other’s
position justification arguments, i.e. logical conclusions based on corresponding rule
sets and facts. This heterogeneity in representation and reasoning technologies com-
prises a critical drawback in agent interoperation.

A solution to this compatibility issue could emerge via equipping each agent with
its own inference engine or reasoning mechanism, which would assist in “grasping”
other agents’ logics. Nevertheless, every rule engine possesses its own formalism and,
consequently, agents would require a common interchange language. Since generating
a translation schema from one (rule) language into the other (e.g. RIF – Rule Inter-
change Format [16]) is not always plausible, this approach does not resolve the agent
intercommunication issue, but only moves the setback one step further, from argu-
ment interchange to rule translation / transformation.

An alternative, more pragmatic, approach was presented in [2, 4], where reasoning
services (called Reasoners) are wrapped in IAs, embedded in a common framework
for interoperating SW agents, called EMERALD. This approach avoids the drawbacks
outlined above and allows each agent to effectively exchange its arguments with any
other agent, without the need for all involved agents to conform to the same kind of
rule paradigm or logic. This way, agents remain lightweight and flexible, while the
tasks of inferring knowledge from agent rule bases and verifying the results is con-
veyed to the reasoning services.

Moreover, trust is a vital feature for Semantic Web. If users (humans and agents)
are to use and integrate system answers, they must trust them. Thus, systems should
be able to explain their actions, sources, and beliefs. Proofing services are extremely
important for this purpose as they let users to trust the inference services’ results.
Traditional trust models (EMERALD supports some of them) are able to guarantee
the agents trustworthiness, including the Reasoners’ trustworthiness. However, they
cannot guarantee the correctness of the inference service itself, meaning that the re-
sults exchanged between agents should be explainable to each other. This includes the
ability to provide the proof for a certain claim, as a result of an inference procedure,
as well as the ability to validate this proof. Therefore, automating proof generation,
exchange and validation are important for every inference task in the Semantic Web.

As the available inference engines list is constantly expanding, the aim of this paper
is to extend EMERALD by adding both new defeasible reasoning and proofing services.
The rest of the paper is organized as follows. In Section 2, we present EMERALD, a
multi-agent knowledge-based framework. Section 3 presents a more thorough descrip-
tion of the reasoning services provided by EMERALD. Section 4 features a new reason-
ing service supporting DR-Prolog is presented. Section 5 reports on proofs and their
validation, namely two new services. Section 6 discusses related work, and finally Sec-
tion 7 concludes with final remarks and directions for future work.

 Extending a Multi-agent Reasoning Interoperability Framework with Services 31

2 EMERALD: A Multi-agent Knowledge-Based Framework

EMERALD [2] is a multi-agent knowledge-based framework (Fig. 1), which offers
flexibility, reusability and interoperability of behavior between agents, based on Se-
mantic Web and FIPA language standards [8]. The main advantage of this approach is
that it provides a safe, generic, and reusable framework for modeling and monitoring
agent communication and agreements.

Fig. 1. EMERALD Generic Overview

In order to model and monitor the parties involved in a transaction, a generic, reus-
able agent prototype for knowledge-customizable agents (KC-Agents), consisted of an
agent model (KC Model), a yellow pages service (Advanced Yellow Pages Service)
and several external Java methods (Basic Java Library – BJL), is deployed (Fig. 2).

Agents that comply with this prototype are equipped with a Jess rule engine [4] and
a knowledge base (KB) that contains environment knowledge (in the form of facts),
behavior patterns and strategies (in the form of Jess production rules). A short de-
scription is presented below for better comprehension.

The generic rule format is: result ← rule (preconditions). The agent’s internal
knowledge is a set F of facts that consists of subset Fu of user-defined facts and subset

Fe of environment-asserted facts: Fu ≡ {fu1, fu2, …, fuk}, Fe ≡ {fe1, fe2, …, fem}, F ≡ Fu ∪

Fe. Agent behavior is a set P of potential actions, expressed as Jess production rules. P
consists of rules that derive new facts by inserting them into the KB (subset A) and
rules that lead to the execution of a special action (subset S). Special actions can ei-
ther refer to agent communication (subset C) or Java calls (subset J):

P ≡ A ∪ S, S ≡ C ∪ J

A≡{a| fe←a(fu1, fu2, …, fun)∧{fu1, fu2,..., fun}⊆Fu∧fe ∈Fe}

C≡{c| ACLMessage←c(f1, f2, …, fp)∧{f1, f2,..., fp}⊆F}

J≡{j| JavaMethod←j(f1, f2, …, fq)∧{f1, f2,..., fq}⊆F}

32 K. Kravari et al.

where ACLMessage is a template for defining ACL messages in Jess, while
JavaMethod refers to user-defined Java methods. A generic specification for the
communication rule syntax is:

(defrule Communication_Rule
;;; rule preconditions
=>
(ACLMessage (communicative-act ?c) (sender ?s) (receiver ?r) (content ?n)))

where communicative-act, sender, receiver and content are four template parameters
of ACLMessage, according to FIPA [8] Fipa2000 description.

The use of the KC-Agents prototype offers certain advantages, like interoperability
of behavior between agents, as opposed to having behavior hard-wired into the
agent’s code.

Fig. 2. The KC-Agents Prototype

Finally, as agents do not necessarily share a common rule or logic formalism, it is
vital for them to find a way to exchange their position arguments seamlessly. Thus,
EMERALD proposes the use of Reasoners [4], which are actually agents that offer
reasoning services to the rest of the agent community. It is important to mention that
although they are embedded in the framework, they can be added in any other multi-
agent system.

3 Reasoners

EMERALD’s approach for reasoning tasks does not rely on translation between rule
formalisms, but on exchanging the results of the reasoning process of the rule base
over the input data. The receiving agent uses an external reasoning service to grasp
the semantics of the rulebase, i.e. the set of conclusions of the rule base (Fig. 3). The
procedure is straightforward: each Reasoner stands by for new requests and as soon as
it receives a valid request, it launches the associated reasoning engine and returns the
results.

EMERALD implements a number of Reasoners that offer reasoning services in two
major reasoning formalisms: deductive and defeasible reasoning. Deductive reasoning
is based on classical logic arguments, where conclusions are proved to be valid, when
the premises of the argument (i.e. rule conditions) are true. Defeasible reasoning [17],
on the other hand, constitutes a non-monotonic rule-based approach for efficient reason-
ing with incomplete and inconsistent information. When compared to more mainstream
non-monotonic reasoning approaches, the main advantages of defeasible reasoning are
enhanced representational capabilities and low computational complexity [18]. Table 1
displays the main features of the four initial reasoning engines.

 Extending a Multi-agent Reasoning Interoperability Framework with Services 33

Fig. 3. Input – Output of a Reasoner Agent

The two deductive reasoners, based on the logic programming paradigm, that pro-
vides EMERALD are the R-Reasoner and the Prova-Reasoner. More specifically, the
R-Reasoner is based on R-DEVICE [19], a deductive object-oriented knowledge base
system for querying and reasoning about RDF metadata. The system is based on an
OO RDF data model, which is different from the established triple-based model, in
the sense that resources are mapped to objects and properties are encapsulated inside
resource objects, as traditional OO attributes. R-DEVICE features a powerful deduc-
tive rule language which is able to express arbitrary queries both on the RDF schema
and data, including generalized path expressions, stratified negation, aggregate,
grouping, and sorting, functions, mainly due to the second-order syntax of the rule
language, i.e. variables ranging over class and slot names, which is efficiently trans-
lated into sets of first-order logic rules using metadata. R-DEVICE rules define views
which are materialized and incrementally maintained, using forward chaining, fix-
point semantics. R-DEVICE rule language has a RuleML compatible syntax, extend-
ing the Datalog with negation-as-failure path of RuleML, having also OO features.

Table 1. Reasoning engine features

 Type of logic Implementation
R-DEVICE deductive RDF/CLIPS/RuleML

Prova deductive Prolog/Java
DR-DEVICE defeasible RDF/CLIPS/RuleML

SPINdle defeasible XML/Java

 Order of Logic Reasoning
R-DEVICE 2nd order (restricted) forward chaining

Prova 1st order backward chaining
DR-DEVICE 1nd order forward chaining

SPINdle zero – order forward chaining

On the other hand, the Prova-Reasoner is based on Prova (from Prolog+Java) [20],
a rule engine for rule-based Java scripting, integrating Java with derivation rules (for
reasoning over ontologies) and reaction rules (for specifying reactive behaviors of
distributed agents). Prova supports rule interchange and rule-based decision logic,
distributed inference services and combines ontologies and inference with dynamic
object-oriented programming. Actually, it is a rule-based system for Java and agent
scripting and information integration extending the Mandarax engine with a proper
language syntax and enhanced semantics. It combines natural syntax and typing of
Java with Prolog-style rules and database wrappers. Java calls may include both con-
structor and method calls as well as access to public variables in classes. Distributed
and agent programming transported via JMS or JADE protocols is based on reaction
rules specified in a natural syntax.

34 K. Kravari et al.

Furthermore, the two defeasible reasoners are the DR-Reasoner and the SPINdle-
Reasoner. The DR-Reasoner is based on DR-DEVICE [5]. DR-DEVICE accepts as
input the address of a defeasible logic rule base, written in an OO RuleML-like syn-
tax. The rule base contains only rules; the facts for the rule program are contained in
RDF documents, whose addresses are declared in the rule base. Finally, conclusions
are exported as an RDF document. DR-DEVICE is based on the OO RDF model of
R-DEVICE. Furthermore, defeasible rules are implemented through compilation into
the generic rule language of R-DEVICE. DR-DEVICE supports multiple rule types of
defeasible logic, both classical (strong) negation and negation-as-failure, and conflict-
ing literals, i.e. derived objects that exclude each other.

The SPINdle-Reasoner is based on SPINdle [21], an open-source, Java-based de-
feasible logic reasoner that supports reasoning on both standard and modal defeasible
logic; including fact, strict and defeasible rules, defeaters and superiority relation
among rules. It accepts defeasible logic theories, represented via a text-based pre-
defined syntax or via a custom XML vocabulary, processes them and exports the
results via XML. SPINdle only considers rules that are essentially propositional.
Rules containing free variables are interpreted as the set of their ground instances.

Finally it is important to mention that Reasoners commit to SW and FIPA standards,
such as the RuleML language [6] for representing and exchanging agent policies and e-
contract clauses, since it has become a de facto standard and the RDF model [14] for
data representation both for the private data included in agents’ internal knowledge and
the reasoning results generated during the process. For some of them RuleML support is
inherent in the original rule engine (such as R-DEVICE and DR-DEVICE), whereas in
SPINDLE and Prova, the wrapper agent provides this interface.

4 DR-Prolog Reasoner

At this paper, a new defeasible Reasoner supporting DR-Prolog [22] was imple-
mented. DR-Prolog uses rules, facts and ontologies, and supports all major Semantic
Web standards, such as RDF, RDFS, OWL and RuleML. Moreover, it deals with both
monotonic and nonmonotonic rules, open and closed world assumption and reasoning
with inconsistencies.

Although this Reasoner deals with DR-Prolog, it is important to maintain the EM-
RALD’s general approach. Thus, the Dr-Prolog Reasoner follows the Reasoners’
general functionality; it stands by for new requests and as soon as it receives a valid
request, it launches the associated reasoning engine and returns the results. However,
it has to add some new steps in the procedure in order to be able to process the receiv-
ing queries and to send back the appropriate answer in RDF format (Fig. 4).

Fig. 4. DR-Prolog Reasoner Functionality

 Extending a Multi-agent Reasoning Interoperability Framework with Services 35

First of all, the DR-Prolog Reasoner receives a new query in RuleML, however the
query has to comply with a specific RuleML prototype; an extended RuleML syntax
used by DR-Prolog. In order to extract the DR-Prolog rules, that are comprised in the
RuleML query, a new parser was implemented called RuleMLParser. RuleMLParser
receives the RuleML file containing the query, extracts the DR-Prolog rules and
stores them in a new file (*.P) in DR-Prolog format. More specifically, at first the
parser sections the RuleML file indicating the rules. Then, each rule is divided and
processed. Each processed part of the RuleML rule generates a specific part of the
DR-Prolog rule. Eventually, the generated DR-Prolog parts are combined forming the
final rules in DR-Prolog format (Fig, 5). In addition, this parser extracts the queries
that are included in the RuleML query, indicating whether it is an “answer” or a
“proof” query. For instance a query in DR-Prolog format is deployed in Fig. 5.

Fig. 5. RuleMLParser: RuleML to DR-Prolog

However, turning the initial RuleML query into DR-Prolog is not enough. The rule
base has to be translated, too. Typically, the rule base is in RDF format, which must
be transformed into Prolog facts. For this purpose, another parser was implemented,
called RDFParser. This parser uses the SW Knowledge Middleware [23], a set of
tools for the parsing, storage, manipulation and querying of Semantic Web (RDF)
Knowledge bases, to extract the RDF triples and turn them to Prolog facts (Fig. 7).

36 K. Kravari et al.

Fig. 6. ResultParser: Prolog to RDF

Thus, a new query in DR-Prolog with the associated rule base in Prolog facts is
available. The DR-Prolog Reasoner is ready to invoke the engine. As soon as, the infer-
ence results (in prolog) are available the Reasoner has to turn them into RDF format and
forward them back to the requesting agent. For this purpose, a third parser called Re-
sultParser was implemented. This parser receives the initial query (in DR-Prolog) and
the results (a prolog list) and returns the query results in RDF (Fig. 6). It is important to
mention that the returned RDF results contain only the results that are required by the
initial query and not the complete information that is available at the results’ base.

 Extending a Multi-agent Reasoning Interoperability Framework with Services 37

Fig. 7. RDFParser: RDF rule base to DR-Prolog facts

5 Defeasible Proofing Services

In the Semantic Web, the Proof layer is assumed to answer agents about the question
of why they should believe the results. At present, there is no technology recom-
mended by W3C to this layer. However, it is a vital issue and thus researchers are
now focusing their attention on this direction.

5.1 The Dr-Prolog Reasoner Equipped with a Defeasible Proof Service

The DR-Prolog Reasoner that was presented in the previous section was selected to be
updated with a new proofing service. Thus, the Reasoner will be able not only to
provide the appropriate results for a receiving query but also to explain them, increas-
ing the trust of the users.

In this context, (defeasible) proof explanation functionality was added to DR-
Prolog Reasoner. At first, the Reasoner was equipped with a system, presented in
[25], that produces automatically proof explanations using a popular logic program-
ming system (XSB), by interpreting the output from the proof’s trace and converting
it into a meaningful representation. More specific, this proof explanation system sup-
ports explanations in defeasible logic for both positive and negative answers in user
queries. Additionally, it uses a pruning algorithm that reads the XSB trace and re-
moves the redundant information in order to formulate a sensible proof.

Although proof explanations are extremely useful there is one more important
aspect to deal with. The provided explanations have to be checked. Hence, the DR-
Prolog Reasoner was also equipped with a newly developed defeasible proof valida-
tor’s functionality, presented in the next section. More specific, the proof explanations
are fed into the proof validator that verifies the validity of the conclusions. Hence, the
Reasoner is now capable of not only processing queries in DR-Prolog but also provid-
ing proof explanations (for the inference results) and validity checks (for the proof
explanations).

However, the proof explanations and their validity check (though the proof valida-
tor) are available only on demand; meaning that the Reasoner can also be used as
usual sending back just the results; but whenever it is requested to provide explana-
tions, the service uses its proof generation engine and sends back both the results and
their explanation, along with their validity reassurance. More about the project teams
that worked in both DR-Prolog Reasoner and Proof Validator can be found at [26].

38 K. Kravari et al.

5.2 The Defeasible Proof Validator

In this context a new defeasible proof checker (Proof Validator) was implemented. It
follows the Reasoners’ functionality, meaning that it receives requests and returns
back a reply; however, it can also be embedded in any other system. Its competence is
to decide whether the provided proof, given a theory (in XML), is valid or not. In the
case the proof is not valid, an appropriate error message is returned, depending on the
nature of the problem.

At first, the proof validator receives the validation request, then parses the received
proof and constructs a prolog query based on the claimed proof. The received theory
is also constructed and loaded on the prolog engine in support to the proof validator.
The XML-formatted proof, contains a lot of redundant or unnecessary information
that is omitted from the validation query. Elements declaring provability of a predi-
cate along with the predicate and often the rule name are of major concern, while
elements describing the body of a rule or superiority claims are ignored as mentioned.
Notice that, due to the lack of an XML schema or a DTD describing the proof con-
structs the parser does not yet provide any XML validation. It is important to mention
that this proof validator uses also DR-Prolog. More details about its structures, rules
and facts are described below.

Four assumptions were made during the validator implementation:

1. It is assumed that the theory is the same as the one given to the proof generator.
Moreover, any given theory is accepted as valid without any checks.

2. No checks are performed recursively. Thus, any information is required in depth
more than one a priori.

3. Any knowledge given in the theory is considered to be definitely provable. For
instance all facts are added as definite knowledge regardless of the presence of a
statement in the proof supporting it.

4. The minimal information that will contribute to the proof checking process is re-
quired.

5.2.1 Data Structures
The proof validator distinguishes between two groups of collections, theory structures
and proof deduction structures. The theory structures are four knowledge bases hold-
ing the strict rules, defeasible rules, facts and rules hierarchy. These help as retrieve
any information used by the proof.

:- dynamic strictkb/1. :- dynamic defeasiblekb/1.

:- dynamic factkb/1. :- dynamic supkb/1.

The proof deduction structures are knowledge bases holding any deduced informa-
tion already stated by the proof and confirmed by the validator.

:- dynamic definitelykb/1.

:- dynamic defeasiblykb/1.

:- dynamic minusdefinitelykb/1.

:- dynamic minusdefeasiblykb/1.

 Extending a Multi-agent Reasoning Interoperability Framework with Services 39

For example a rule that adds knowledge to the defintlykb is the following:

definitelyCheck(X, printOn) :-

factkb(F), memberchk(X,F), addDefinitely(X).

5.2.2 Facts
All facts given in the theory are also added in the definite knowledge base. This
means that any stated fact is by default considered by the proof validator, e.g. the
following two statements are all accepted, provided that f is a fact in the theory:

fact(f). definitely(f).

5.2.3 Rules
Generally the rules are not stated explicitly in the contents of the proof validation
result, since they are a priori accepted and considered valid (fist assumption in section
5.2). More specifically in the proof, the rules are not stated explicitly (see proof ex-
ample 5.2.2.), a mere reference of the rule name is used: for example defeasi-
bly(e,r2) in the proof means that e is derived using rule r2 which can be found in
the rule base of the original theory.

5.2.4 Deductions
A conclusion in D (defeasible) is a tagged literal and may have one of the following
forms [27]:

• +Δq, meaning that q is definitely provable in D.
• +∂q, meaning that q is defeasibly provable in D.
• −Δq, meaning that q has proved to be not definitely provable in D.
• −∂q, meaning that q has proved to be not defeasibly provable in D.

In order to prove +Δq, a proof for q consisting of facts and strict rules needs to be
established. Whenever a literal is definitely provable, it is also defeasibly provable. In
that case, the defeasible proof coincides with the definite proof for q. Otherwise, in
order to prove +∂q in D, an applicable strict or defeasible rule supporting q must exist.
In addition, it should also be ensured that the specified proof is not overridden by
contradicting evidence. Therefore, it has to be guaranteed that the negation of q is not
definitely provable in D. Successively, every rule that is not known to be inapplicable
and has head ~q has to be considered. For each such rule s, it is required that there is a
counterattacking rule t with head q that is applicable at this point and s is inferior to t.

In order to prove −Δq in D, q must not be a fact and every strict rule supporting q
must be known to be inapplicable. If it is proved that −Δq, then it is also proved that
−∂q. Otherwise, in order to prove that −∂q, it must firstly be ensured that −Δq. Addi-
tionally, one of the following conditions must hold: (i) None of the rules with head q
can be applied, (ii) It is proved that −Δ~q, and (iii) There is an applicable rule r with
head ~q, such that no possibly applicable rule s with head q is superior to r.

The proof validator, presented here, uses two separate predicates for strict deduc-
tions, namely +Δ (definitely) and –Δ (not definitely) and two for defeasible

deductions; predicates defeasibly for +∂ and not defeasibly for –∂. In general,

40 K. Kravari et al.

for positive deductions (+Δ and +∂), when the conclusion is proven by a rule, the
name of the rule is required by the proof validator. Otherwise, i.e. when the conclu-
sion is a fact, or when it is already given or deducted at a previous step, it is not re-
quired. This approach is followed for the sake of efficiency. On the other hand, for
negative deductions, giving the name of the rule would be redundant. That is because,
even if a negative result is concluded by one rule, the validator still has to retrieve all
existing relevant rules regardless of whether the proof states them or not. For exam-
ple, the rules that check if a stated literal, claimed to be either a fact or an already
proven literal, is definitely provable or not, are the following:

definitelyCheck(X,printOn) :-

factkb(F), memberchk(X,F), addDefinitely(X).

definitelyCheck(X,printOff) :-

factkb(F), memberchk(X,F).

definitelyCheck(X,_) :-

definitelykb(K), memberchk(X,K).

definitelyCheck(X,Print) :-

logError(Print,[X,' is neither a fact nor has yet been proven.']).

The second argument is used to state if errors are to be printed or not and it can
take two values: printOn and printOff. The first two rules check if X is a fact (i.e.
it is a member of the fact knowledge base). The third rule checks if X is already a
member of the definite knowledge base (it has already been proven that X is definitely
provable). Should these three rules fail, it means that X is neither a fact nor a literal
that has been proven definitely, so the fourth rule prints an error message.

5.2.5 Examples
Below the evaluation steps for a complex team defeat example are explained.

r1: a => e. r2: b => e. r3: c => ~e. r4: d => ~e.

r1 > r3. r2 > r4. a. b. c. d.

A valid and correct proof is the following:

defeasibly(a), defeasibly(b), defeasibly(c), defeasi-
bly(d), defeasibly(e, r2).

The first four statements are deduced in an obvious way, since a, b, c, d are facts.
The last, i.e. defeasibly(e,r2), has to make some proof checks such as:

1. Is there any rule “r2” in the theory, with head equal to e? Yes.
 2. Is there any attacking rule? Yes, r3, r4

2.1 Is r2 of higher priority than r3? No.
2.1.1 Are the conditions of r3 (i.e. c) defeasibly provable? Yes.
2.1.2 Is there any attacking rule of r3 (different from r2), which defeats r3?
 Yes, r1, because its conditions are met and r1 > r3.

2.2 Is r2 of higher priority than r4? Yes.

 Extending a Multi-agent Reasoning Interoperability Framework with Services 41

6 Related Work

A similar architecture for intelligent agents is presented in [12], where various reason-
ing engines are employed as plug-in components, while agents intercommunicate via
FIPA-based communication protocols. The framework is build on top of the OPAL
agent platform [13] and, similarly to EMERALD, features distinct types of reasoning
services that are implemented as reasoner agents. The featured reasoning engines are
3APL [14], JPRS (Java Procedural Reasoning System) and ROK (Rule-driven Object-
oriented Knowledge-based System) [15]. 3APL agents incorporate BDI logic elements
and first-order logic features, providing constructs for implementing agent beliefs,
declarative goals, basic capabilities and reasoning rules, through which an agent’s
goals can be updated or revised. JPRS agents perform goal-driven procedural reason-
ing and each JPRS agent is composed of a world model (agent beliefs), a plan library
(plans that the agent can use to achieve its goals), a plan executor (reasoning module)
and a set of goals. Finally, ROK agents are composed of a working memory, a rule-
base (consisting of first-order, forward-chaining production rules) and a conflict set.
Thus, following a similar approach to EMERALD, the framework integrates the three
reasoning engines into OPAL in the form of OPAL micro-agents. The primary differ-
ence between the two frameworks lies in the variety of reasoning services offered by
EMERALD. While the three reasoners featured in [12] are all based on declarative
rule languages, EMERALD proposes a variety of reasoning services, including de-
ductive, defeasible and modal defeasible reasoning, thus, comprising a more inte-
grated solution. Finally, and most importantly, the approach of [12] is not based on
Semantic Web standards, like EMERALD, for rule and data interchange.

The Rule Responder [24] project builds a service-oriented methodology and a rule-
based middleware for interchanging rules in virtual organizations, as well as negotiat-
ing about their meaning. Rule Responder demonstrates the interoperation of various
distributed platform-specific rule execution environments, based on Reaction RuleML
as a platform-independent rule interchange format. We have a similar view of reason-
ing service for intelligent agents and usage of RuleML. Also, both approaches allow
utilizing a variety of rule engines. However, contrary to Rule Responder, our frame-
work (EMERALD) is based on FIPA specifications, achieving a fully FIPA-
compliant model and proposes two reputation mechanisms to deal with trust issues.
Finally, and most importantly, our framework does not rely on a single rule inter-
change language, but allows each agent to follow its own rule formalism, but still be
able to exchange its rule base with other agents, which will use trusted third-party
reasoning services to infer knowledge based on the received ruleset.

7 Conclusions and Future Work

The paper argued that agent technology will play a vital role in the realization of the
Semantic Web vision and presented a variety of reasoning services called Reasoners,
wrapped in an agent interface, embedded in a common framework for interoperating
SW IAs, called EMERALD, a JADE multi-agent framework designed specifically for
the Semantic Web. This methodology allows each agent to effectively exchange its
argument base with any other agent, without the need for all involved agents to conform

42 K. Kravari et al.

to the same kind of rule paradigm or logic. Instead, via EMERALD, IAs can utilize
third-party reasoning services, that will infer knowledge from agent rule bases and ver-
ify the results.

The framework offers a variety of popular inference services that conform to vari-
ous types of logics. The paper presents how new types of logic were embedded in
new Reasoners, as well as it argues about the importance of the SW proof layer and
presents how proofing services were designed and embedded also in the system.

As for future directions, it would be interesting to integrate an even broader variety
of distinct reasoning and proof validation engines, thus, forming a flexible, generic
environment for interoperating agents in the SW. Finally, our intention is to develop
methodologies to integrate the generated proofs with the trust mechanism of EMER-
ALD, in order to interconnect the Proof and Trust layers of the SW.

References

1. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16(2), 30–37 (2001)
2. Kravari, K., Kontopoulos, E., Bassiliades, N.: EMERALD: A Multi-Agent System for

Knowledge-based Reasoning Interoperability in the Semantic Web. In: Konstantopoulos,
S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010.
LNCS, vol. 6040, pp. 173–182. Springer, Heidelberg (2010)

3. JESS, the Rule Engine for the Java Platform, http://www.jessrules.com/
4. Kravari, K., Kontopoulos, E., Bassiliades, N.: Trusted Reasoning Services for Semantic

Web Agents. Informatica: Int. J. of Computing and Informatics 34(4), 429–440 (2010)
5. Bassiliades, N., Antoniou, G., Vlahavas, I.: A Defeasible Logic Reasoner for the Semantic

Web. IJSWIS 2(1), 1–41 (2006)
6. Boley, H., Tabet, S.: RuleML: The RuleML Standardization Initiative (2000),

http://www.ruleml.org/
7. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Maga-

zine 284(5), 34–43 (2001) (revised 2008)
8. FIPA Specifications, http://www.fipa.org/specifications/
9. Resource Description Framework (RDF) Model and Syntax Specification,

http://www.w3.org/TR/PR-rdf-syntax/
10. Mule ESB, http://www.mulesoft.org
11. Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B.: The OO jDREW reference implemen-

tation of ruleML. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS,
vol. 3791, pp. 218–223. Springer, Heidelberg (2005)

12. Wang, M., Purvis, M., Nowostawski, M.: An Internal Agent Architecture Incorporating
Standard Reasoning Components and Standards-based Agent Communication. In:
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2005),
pp. 58–64. IEEE Computer Society, Washington, DC (2005)

13. Purvis, M., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A Multi-Level Infrastruc-
ture for Agent-Oriented Software Development. In: Information Science Discussion Paper
Series, number 2002/01. University of Otago, Dunedin, New Zealand (2002) ISSN 1172-
602

14. Dastani, M., van Riemsdijk, M.B., Meyer, J.-J.C.: Programming multi-agent systems in
3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming: Languages, Platforms and Applications. Springer, Berlin (2005)

15. Nowostawski, M.: Kea Enterprise Agents Documentation (2001)

 Extending a Multi-agent Reasoning Interoperability Framework with Services 43

16. Boley, H., Kifer, M.: A Guide to the Basic Logic Dialect for Rule Interchange on the Web.
IEEE Transactions on Knowledge and Data Engineering, 1593–1608 (2010)

17. Nute, D.: Defeasible Reasoning. In: 20th Int. C. on Systems Science, pp. 470–477. IEEE,
Los Alamitos (1987)

18. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1(6), 691–711 (2001)

19. Bassiliades, N., Vlahavas, I.: R-DEVICE: An Object-Oriented Knowledge Base System
for RDF Metadata. Int. Journal on Semantic Web and Information Systems 2(2), 24–90
(2006)

20. Kozlenkov, A., Penaloza, R., Nigam, V., Royer, L., Dawelbait, G., Schröder, M.: Prova:
Rule-based Java Scripting for Distributed Web Applications: A Case Study in Bioinfor-
matics. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S.,
Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,
vol. 4254, pp. 899–908. Springer, Heidelberg (2006)

21. Lam, H., Governatori, G.: The Making of SPINdle. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Heidelberg (2009)

22. Antoniou, G., Bikakis, A.: DR-Prolog: A System for Defeasible Reasoning with Rules and
Ontologies on the SW. IEEE Transactions on Knowledge and Data Engineering 19, 2
(2007)

23. Semantic Web Knowledge Middleware, http://139.91.183.30:9090/SWKM/
24. Paschke, A., Boley, H., Kozlenkov, A., Craig, B.: Rule responder: RuleML-based Agents

for Distributed Collaboration on the Pragmatic Web. In: 2nd International Conference on
Pragmatic Web, vol. 280, pp. 17–28. ACM, New York (2007)

25. Antoniou, G., Bikakis, A., Dimaresis, N., Governatori, G.: Proof Explanation for a Non-
monotonic Semantic Web Rules Language. Data and Knowledge Engineering 64(3), 662–
687 (2008)

26. CS-566 Project 2010, http://www.csd.uoc.gr/~hy566/project2010.html
27. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for de-

feasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 44–51, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Cross-Community Interoperation between the
EMERALD and Rule Responder Multi-Agent Systems

Kalliopi Kravari1, Taylor Osmun2, Harold Boley2, and Nick Bassiliades1

1 Dept. of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
{kkravari,nbassili}@csd.auth.gr

2 Inst. for Information Technology, NRC Canada, Fredericton, NB, E3B 9W4, Canada
{taylor.osmun,harold.boley}@nrc.gc.ca

Abstract. The vision of the Semantic Web allows users to delegate complex ac-
tions to intelligent agents, which will act on behalf of their users in a variety of
real-life applications. This paper focuses on two Semantic Web enabled multi-
agent systems, EMERALD and Rule Responder, which can be employed to as-
sist communities of users based on Semantic Web and multi-agent standards
such as RDF, OWL, RuleML, and FIPA. The present work demonstrates how
these multi-agent systems can interoperate to automate collaboration across
communities using a declarative, knowledge-based approach. In addition, a
multi-step interaction scenario among agents is presented, demonstrating the
usefulness of interoperating between the above systems, exemplifying a general
approach to cross-community collaboration.

Keywords: RuleML, Semantic Web, Web Rules, intelligent multi-agent
systems, gateway, EMERALD, Rule Responder, SymposiumPlanner.

1 Introduction

The Semantic Web (SW) [8] is an evolving extension of the current Web, where the
semantics of information and services are well-defined, making it possible for people
and machines to understand, and act upon, Web content with high precision. The
evolution of the SW technologies offer interoperability and, thus, enables Intelligent
Agents. Agents are considered the most promising means towards realizing the SW
vision [1]. Via the use of agents, programs are extended to perform tasks more effi-
ciently and with less human intervention. The gradual integration of multi-agent sys-
tems (MAS) with SW will affect the use of the Web in the future; the next generation
of Web tools will comprise groups of intercommunicating SW agents traversing the
Web and performing complex actions on behalf of their users in real-life applications.

At present, a number of multi-agent systems are available; however they are typi-
cally isolated, as their organizational philosophies and architectures are typically
different, and their agents usually do not share the same logic or rule representation
formalism. In this work, two such multi-agent systems, EMERALD [2] and Rule
Responder [3], have been analyzed and made interoperable, by extending EMERALD
with an appropriate Rule Responder bridge, which can be used in a variety of

 Cross-Community Interoperation 45

interoperation scenarios. Each agent, regardless the MAS it belongs to, has its own
policy, a set of private rules representing its requirements, obligations and restrictions,
and its idiosyncratic knowledge about the world, which makes interoperation a diffi-
cult task.

The aim of this paper is to demonstrate how these multi-agent systems can interop-
erate to automate collaboration across communities using a declarative, knowledge-
based approach, exemplifying the usefulness of a general approach to cross-
community collaboration. In this framework, a multi-step interaction scenario among
agents is also presented where users are considering sponsoring a symposium mod-
eled by two communities.

In the rest of the paper, we present EMERALD, a multi-agent knowledge-based
framework, in Section 2, while Section 3 presents Rule Responder, an open source
framework for creating virtual organizations as multi-agent systems. In Section 4, the
EMERALD–Rule Responder interoperation gateway is presented, whereas Section 5
illustrates the usefulness of the approach via a multi-step interaction scenario. Section
6 discusses related work, and finally Section 7 concludes with final remarks and di-
rections for future work.

2 EMERALD: A Multi-Agent Knowledge-Based Framework

EMERALD [2] is a multi-agent knowledge-based framework, which offers flexibility,
reusability and interoperability of behavior between agents, based on SW and FIPA
language standards. The main advantage of this approach is that it provides a safe,
generic, and reusable framework for modeling and monitoring agent communication
and agreements. EMERALD supported, so far, the implementation of various applica-
tions, like brokering, bargaining and agent negotiations.

In order to model and monitor the parties involved in a transaction, a generic, reus-
able agent prototype for knowledge-customizable agents (KC-Agents), consisted of an
agent model (KC Model), a yellow pages service (Advanced Yellow Pages Service)
and several external Java methods (Basic Java Library), is deployed. Agents that
comply with this prototype are equipped a knowledge base (KB) that contains envi-
ronment knowledge, behavior patterns and. The use of the KC-Agents prototype offers
certain advantages, like interoperability of behavior between agents, as opposed to
having behavior hard-wired into the agent’s code.

Additionally, as trust has been recognized as a key issue in SW MAS, EMERALD
adopts among others two reputation mechanisms, a decentralized and a centralized
one [2]. Finally, as agents do not necessarily share a common rule or logic formalism,
it is vital for them to find a way to exchange their position arguments seamlessly.
Thus, EMERALD proposes the use of Reasoners [4], which are actually agents that
offer reasoning services to the rest of the agent community. This approach does not
rely on translation between rule formalisms, but on exchanging the results of the rea-
soning process of the rule base over the input data. The receiving agent uses an exter-
nal reasoning service to grasp the semantics of the rulebase, i.e. the set of conclusions
of the rule base. The procedure is straightforward: each Reasoner stands by for new
requests and as soon as it receives a valid request, it launches the associated reasoning
engine and returns the results.

46 K. Kravari et al.

EMERALD currently implements a number of Reasoners that offer reasoning ser-
vices in two major reasoning formalisms: deductive and defeasible reasoning. The
two deductive reasoners, based on the logic programming paradigm are the R-
Reasoner (based on R-DEVICE) and the Prova-Reasoner (based on Prova). Further-
more, the two defeasible reasoners are the DR-Reasoner (based on DR-DEVICE) and
the SPINdle-Reasoner (based on SPINdle).

Following the above specifications we commit to SW and FIPA standards, namely,
we use the RuleML language [6] for representing and exchanging agent policies and
e-contract clauses, since it has become a de facto standard. In addition, we use the
RDF model for data representation both for the private data included in agents’ inter-
nal knowledge and the reasoning results generated during the process.

3 Rule Responder

Rule Responder [3] is an open source framework for creating virtual organizations as
multi-agent systems that support collaborative teams on the Semantic Web. It comes
with a number of official instantiations implementing virtual organizations such as
SymposiumPlanner for supporting the chairs of the RuleML Symposia. Rule
Responder provides the infrastructure for rule-based collaboration between the dis-
tributed members of such a virtual organization. Human members are assisted by
semi-autonomous rule-based agents, which use Semantic Web rules that describe
aspects of their owners' derivation and reaction logic.

Each Rule Responder instantiation employs four classes of agents, an Organiza-
tional Agent (OA), Personal Agents (PAs), External Agents (EAs) and Computational
Agents (CAs). The OA represents goals and strategies shared by its virtual organiza-
tion as a whole, using a global rule base that describes its policies, regulations, oppor-
tunities, etc. Each PA assists a single person of the organization, (semi-autonomously)
acting on his/her behalf by using a local knowledge base of derivation rules defined
by the person. Each EA uses a Web (HTTP) interface, accepting queries from users
and passing them to the OA. Each CA can be seen as an (often low level) agent that
performs an automated (computing) task.

CAs are comparable to PAs. Their output is meant to assist the OA in answering
the query from the EA. They are designed to perform very specific tasks that may
involve invoking services independently from the rest of the virtual organization. The
OA employs an OWL ontology as a "responsibility assignment matrix" to find a PA
that can handle an incoming query. The OA uses reaction rules to send the query to
this PA, receive its answer(s), do validation(s), and send answer(s) back to the EA.

Rule Responder uses an Enterprise Service Bus (ESB) called Mule [9] to transfer
data. Mule transfers this data via "data endpoints". In the case of Rule Responder,
each agent (EAs/OA/PAs) has their own endpoint for which data will travel upon.
Additionally, Rule Responder only uses HTTP as a transfer protocol but others can
certainly be implemented. Moreover, the supported reasoning engines, with their
languages, in Rule Responder are Prova, OO jDREW with POSL and Euler with N3.
The present work uses the OO jDREW [10], a deductive reasoning engine for the
RuleML web rule language, written in Java. It is an Object Oriented extension to
jDREW, which implements Object Oriented extensions to RuleML including Order
Sorted Types, Slots and Object Identifiers.

 Cross-Community Interoperation 47

4 EMERALD–Rule Responder Interoperation Gateway

In order to develop an interface between EMERALD and Rule Responder (RR) so
that they can interoperate, the two systems were compared regarding among others
their agent-connection topologies, their interchange principles, their used subsets of
RuleML language and the role of the Prova language (Table 1). Based on this analy-
sis, two uni-directional RuleML gateways between EMERALD and Rule Responder
were designed and implemented. Fig. 1, displays the gateways’ architecture.

Table 1. Comparison between EMERALD and Rule Responder

 Rule Responder EMERALD
Agent technology Java servlets / Mule Java (JADE) agents

Interchange principles Mule middleware JADE (ACL)

RuleML Reaction RuleML (D)R-DEVICE RuleML

Agent knowledge
Internal rule base

Internal & External
data-knowledge base

External rule base
External data-knowledge base

Reasoning
Multiple reasoning engines and
instances of reasoning engines

Multiple reasoning engines
(independent external services)

Directory service NO AYPS

The EMERALD Rule Responder (EMERALD–RR) Gateway was implemented as
a new proxy agent in EMERALD, communicating directly with RR OA. The RRP
Agent is an EMERALD agent, acting as a Rule Responder gateway. This RRP agent
is flexible and reusable and, thus, not hardwired, meaning that it can receive any
(RuleML) query, connect to Rule Responder, forward the query by invoking the
proper Rule Responder agent and finally receive the result. Thus, RRP was developed
as a Java (EMERALD) agent class that integrates API methods for interacting both
with EMERALD agents and Rule Responder’s PAs.

On the other hand, the Rule Responder EMERALD (RR–EMERALD) Gateway
was implemented as a new CA that handles an appropriate communication channel.
CAs in Rule Responder are implemented as Java servlets, which serve as wrappers for

Fig. 1. The EMERALD–Rule Responder gateway architecture

48 K. Kravari et al.

the corresponding reasoning engines. This CA (the gateway) is called EMERALD
Chair and has been developed as a Java servlet class that integrates API methods for
interacting with EMERALD as well as core RR methods for exchanging messages
with the Organizational Agent (OA).

The key feature at EMERALD and Rule Responder collaboration is the inter-
change of information. RuleML was selected as the data interchange language stan-
dard since it is supported by both systems and it has become a de facto standard.

5 A Multi–Step Interaction Scenario

A scenario where an external-to-SymposiumPlanner partner (an EMERALD agent in
particular) would like to sponsor the RuleML-20XY Symposium was selected. Sym-
posiumPlanner [5] is a series of use cases based on the RuleML Symposium series
(e.g. http://2010.ruleml.org) created with Rule Responder (RR). Using Friend of a
Friend (FOAF) profiles, each chair position (e.g. general chair) has a Personal Agent
(PA). Each PA has a knowledge base containing the responsibilities of the position in
order to answer queries relevant to the chair's role.

In this scenario, the partner has to decide whether or not to sponsor RuleML-20XY
Symposium. The decision on the sponsoring level will be based on its personal pref-
erences, related to the benefits of each level. More specifically, the agent has a maxi-
mum amount of money to spend but it does not want just to get whatever is available
for this amount ("What I get for this amount of money?"). The partner wants to get
specific benefits ("If I want these benefits, what amount of money do I have to
spend?"), thus it has to get all the sponsoring levels and theirs benefits which can be
obtained from the corresponding chair, namely the Publicity Chair.

Thus, the EMERALD agent has to communicate with the PublicityChair in the
SymposiumPlanner application. First of all, it sends its query (requesting the sponsor-
ing levels and their benefits) to the RRP agent, the Rule Responder Proxy agent (an
EMERALD agent too), in order to forward it to the PA. RRP agent forwards the
query and waits for the reply. As soon as, it receives the response, the RRP agent
returns it back to the partner. The decision making of the partner is based on rules,
and more specifically on defeasible logic rules. Thus, the partner transforms the re-
ceived RuleML message to RDF, in order to be used as a fact base for the rule base,
which is formed in a defeasible RuleML dialect. The rule base contains partner’s
personal preferences: the partner has a $5000 budget and wants the cheapest sponsor-
ing level providing at least a free registration and a demo for the company’s products.
Hence, the partner sends the rule base and a link to the data that will be used (RDF
file) to the defeasible logic reasoner (DR-Reasoner), hosted by EMERALD, in order
to find out the best sponsoring level.

Then, DR-Reasoner calls the associated reasoning engine (DR-DEVICE) in order
to perform inference and provide results. As soon as the inference results are avail-
able, DR-Reasoner forwards them to the partner. In this case the decision was the
Gold sponsoring level, among the five available levels presented in Table 2.

 Cross-Community Interoperation 49

Fig. 2. The scenario overview

Afterwards, the partner receives back DR-Reasoner’s response and sends a new
query to the PublicityChair (through the RRP agent) requesting the appropriate sub-
mission information for that level; e.g. to contact appropriate chair by e-mail/phone or
to wait for his/her call. In this case responsible for the sponsorship is the Publicity
Chair and the potential partner has to wait for a call. Thus, the partner is able to sub-
mit a sponsoring request and wait for the Publicity Chair’s phone call or to continue
this conversation in order to get any additional information.

Table 2. The Sponsoring Levels

Bronze
($500)

Logo on website
Acknowledgement in proceedings

Silver
($1,000)

Bronze level benefits +
Sponsor student participants

Gold
($3,000)

Silver level benefits +
Logo in proceedings
Show demo
1 free registration

Emerald ($
7,500)

Platinum level benefits +
1 additional free registration

Platinum
($5,000)

Gold level benefits +
Name included in all advance
publicity.
Distribution of material to all
participants.
1 additional free registration

Information (and source code) about both the EMERALD – Rule Responder inter-
operation project and the above scenario is available at the project’s site [7].

6 Related Work

The architecture proposed in [14] is similar to ours in terms of system interoperabil-
ity. However, [14] investigates only FIPA-compliant systems. Another work dealing

50 K. Kravari et al.

with agent interoperability was presented in [15]. This work presents an implemented
agent that allows interoperability across MAS. The authors describe the issues and
design challenges regarding the design and implementation of an interoperator. They
define a multiagent system interoperator as an entity that provides agents of one MAS
architecture access to the desired capabilities and services offered by another MAS
architecture. Our proposal on the other hand deals with heterogeneous systems, FIPA
and non-FIPA –compliant, providing the guiding lines for general interoperability
architecture by using a variety of SW standards based on system gateways.

A similar to EMERALD architecture for intelligent agents is presented in [11],
where various reasoning engines are employed as plug-in components, while agents
intercommunicate via FIPA-based communication protocols. The framework is build
on top of the OPAL agent platform [12] and, similarly to EMERALD, features dis-
tinct types of reasoning services that are implemented as reasoner agents. Following a
similar approach to EMERALD, the framework integrates the three reasoning engines
into OPAL in the form of OPAL micro-agents. The primary difference between the
two frameworks lies in the variety of reasoning services offered by EMERALD.
While the three reasoners featured in [11] are all based on declarative rule languages,
EMERALD proposes a variety of reasoning services, including deductive, defeasible
and modal defeasible reasoning, thus, comprising a more integrated solution. Finally,
and most importantly, the approach of [11] is not based on SW standards, like EM-
ERALD and Rule responder, for rule and data interchange.

Speaking for interchange, there are many efforts aiming to rule interchange and
building a general rule markup and modeling standard for the (Semantic) Web. Sev-
eral general standardization efforts including RuleML [6], W3C RIF [13], OMG PRR
are already proposed. However, no methodological and architectural design and com-
prehensive implementation exists which makes this idea of a practical distributed rule
layer in the Semantic Web a reality, as the one proposed in this work.

7 Conclusions and Future Work

This paper presents the interoperation between EMERALD and Rule Responder, two
SW enabled multi-agent systems. EMERALD is a fully FIPA-compliant MAS, devel-
oped on top of JADE, which uses trusted, independently-developed reasoning ser-
vices. Rule Responder is an open source framework for creating virtual organizations
as multi-agent systems that support collaborative teams on the Semantic Web. These
two systems were compared and analyzed. Based on this comparison, bidirectional
Rule Responder and EMERALD gateways were implemented in order to provide
automated collaboration across these communities using a declarative, knowledge-
based approach. Finally, the paper presents a use case scenario that illustrates the
usability of the framework and the integration of the technologies involved in the
EMERALD–Rule Responder Gateway.

In future, we plan to develop a benchmark suite for bidirectional RuleML-based
gateways such as between Rule Responder and EMERALD. We also plan to adapt the
RuleML gateways to other interoperation needs, such as interchange of proofs be-
tween agents or sharing of agent directories. Moreover, we envision formalizing fur-
ther multi-step interaction scenarios among EMERALD and Rule Responder agents.

 Cross-Community Interoperation 51

Finally, we would like to explore further cross-community agent interoperation needs
and provide generalized gateway principles and architectures based on SW standards.

References

1. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16(2), 30–37 (2001)
2. Kravari, K., Kontopoulos, E., Bassiliades, N.: EMERALD: A Multi-Agent System for

Knowledge-based Reasoning Interoperability in the Semantic Web. In: Konstantopoulos,
S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010.
LNCS, vol. 6040, pp. 173–182. Springer, Heidelberg (2010)

3. Paschke, A., Boley, H., Kozlenkov A., Craig B.: Rule Responder: RuleML-Based Agents
for Distributed Collaboration on the Pragmatic Web. In: 2nd ACM Pragmatic Web Con-
ference (ICPW 2007), pp. 17–28 (2007)

4. Kravari, K., Kontopoulos, E., Bassiliades, N.: Trusted Reasoning Services for Semantic
Web Agents. Informatica: Int. J. of Computing and Informatics 34(4), 429–440 (2010)

5. Symposium Planner, http://ruleml.org/SymposiumPlanner/
6. Boley, H., Paschke, A., Shafiq, O.: The Overarching Specification of Web Rules. In: Dean,

M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 162–178.
Springer, Heidelberg (2010)

7. EMERALD – Rule Responder Interoperation Project,
http://tinyurl.com/EMERALDRR

8. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Maga-
zine 284(5), 34–43 (2001) (revised 2008)

9. Mule ESB, http://www.mulesoft.org
10. Ball, M., Boley, H., Hirtle, D., Mei, J., Spencer, B.: The OO jDREW reference implemen-

tation of ruleML. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS,
vol. 3791, pp. 218–223. Springer, Heidelberg (2005)

11. Wang, M., Purvis, M., Nowostawski, M.: An Internal Agent Architecture Incorporating
Standard Reasoning Components and Standards-based Agent Communication. In: Proc.
IAT 2005, Washington, DC, pp. 58–64 (2005)

12. Purvis, M., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A Multi-Level Infrastruc-
ture for Agent-Oriented Software Development. In: Information Science Discussion Paper
Series, number 2002/01. University of Otago, New Zealand (2002) ISSN 1172-602

13. Boley, H., Kifer, M.: A Guide to the Basic Logic Dialect for Rule Interchange on the Web.
IEEE Transactions on Knowledge and Data Engineering, 1593–1608 (2010)

14. Georgousopoulos, C., Rana, O., Karageorgos, A.: Supporting FIPA Interoperability for
Legacy Multi-agent Systems. LNS, vol. 2935, pp. 361–379 (2003)

15. Giampapa, J., Paolucci M., Sycara K.: Agent interoperation across multiagent system
boundaries. In: 4th Int. Conf. on Autonomous Agents, pp. 179–186 (2000)

Rules, Agents and Norms:

Guidelines for Rule-Based Normative
Multi-Agent Systems

Antonino Rotolo1 and Leendert van der Torre2

1 CIRSFID, University of Bologna,
Bologna, Italy

antonino.rotolo@unibo.it
2 Computer Science and Communication, University of Luxembourg, Luxembourg

leon.vandertorre@uni.lu

Abstract. In this survey paper we focus on some requirements for de-
veloping normative multi-agent systems (NMAS). In particular, we dis-
cuss Boella et al.’s guidelines proposed for NMAS. Finally, we deal with
two more specific questions concerning the role of norms in rule-based
NMAS: the concepts of compliance and norm change.

1 Introduction

Normative systems are “systems in the behavior of which norms play a role
and which need normative concepts in order to be described or specified” [37,
preface]. There has been in the last years an increasing interest in normative
systems in the computer science community, due, among the other reasons, to
the AgentLink RoadMap [35]’s observation that norms must be introduced in
agent technology in the medium term for infrastructure for open communities,
reasoning in open environments and trust and reputation. Indeed, NMAS revolve
around the idea that, while the main objective of MAS is to design systems of au-
tonomous agents, it is likewise important that agent systems may exhibit global
desirable properties. One possible strategy to achieve this goal is that, like in hu-
man societies, such desirable properties be ensured if the interaction of artificial
agents, too, adopts institutional models whose goal is to regiment agents’ be-
havior through normative systems in supporting coordination, cooperation and
decision-making. The deontic-logic and artificial-intelligence-and-law communi-
ties, for instance, agree about the rule structure and properties of norms [21].
Hence NMAS, too, has strong and obvious connections with the development of
rule-based systems and technologies.

However, despite the widely-acknowledged role that normative concepts can
play in MAS, there is no consensus yet in regard to some fundamental research
questions, such as the kind of norms to be used, or the way to use them. During
the past two decades normative systems have been studied in deontic logic in
computer science (ΔEON), and NMAS are the research field where the tradi-
tional normative systems and ΔEON meet agent research. Part of this research

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 52–66, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Rules, Agents and Norms 53

community has later converged into a series of NorMAS workshps, during which
two consensus definitions of NMAS have been proposed. Here, we will re-discuss
and revise some of [8,12,6,7]’s guidelines proposed for NMAS that were moti-
vated by these two consensus definitions (Section 2). The remainder of the paper
(Sections 3.1 and 3.2) will highlight, with some more details, research questions
concerning two crucial aspects of the role of norms in rule-based NMAS: the
concepts of compliance and norm change.

2 NMAS Requirements

The concepts of “norm” and “normative system” have been investigated in many
distinct disciplines, such as philosophy, sociology, law, and ethics. Before we
consider some general guidelines and requirements for NMAS, it is useful for
the remaining discussion to bear in mind some basic achievements of theoretical
investigations on the nature of norms and normative systems:

Rule structure of norms. It is widely acknowledged that norms have usually
a conditional structure that captures the applicability conditions of the norm
and its effects when it is triggered1. This very general view highlights an
immediate link between the concepts of norm and rule.

Types of norms. There are many types of norms. The common sense meaning
of norm refers to having a regulatory and mainly prescriptive character. But
norms express not only regulations about how to act. For example, von
Wright [43] classified norms into the following main types (among others):

1. determinative rules, which define concepts or constitute activities that
cannot exist without such rules. These rules are also called in the liter-
ature ‘constitutive rules’;

2. technical rules, which state that something has to be done in order for
something else to be attained;

3. prescriptions, which regulate actions by making them obligatory, per-
mitted, or prohibited. These norms, to be complete, should indicate

– who (norm-subjects)
– does what (the action-theme)
– in what circumstances (conditions of application), and
– the nature of their guidance (the mood).

Basic features of normative systems. Herbert Hart, among other philoso-
phers, clarified for the law under what conditions normative systems exist
[30]. However, Hart’s remarks can be somehow generalized and can help us
identify some very basic features of almost any other normative domain:

1 Indeed, norms can be also unconditioned, that is their effects may not depend upon
any antecedent condition. Consider, for example, the norm “everyone has the right
to express his or her opinion”. Unconditioned norms can formally be reconstructed
in terms conditionals with no antecedent conditions.

54 A. Rotolo and L. van der Torre

norm recognition and hierarchies: it is possible to state or identify cri-
teria for normative systems to establish whether norms belong to them;
also, normative systems can assign to their norms a different ranking
status and organize them in hierarchies;

norm application: it is possible to state or identify criteria for normative
systems to correctly apply their norms to concrete cases;

norm change: it is possible to state or identify criteria for changing nor-
mative systems.

Following [8,12,6,7], we can formulate two definitions of NMAS, which we discuss
in the remainder of this section.

2.1 The Norm-Change Definition

The first definition runs as follows:

Definition 1 (The Norm-change definition [8]). “A normative multiagent
system is a multiagent system together with normative systems in which agents
on the one hand can decide whether to follow the explicitly represented norms,
and on the other the normative systems specify how and in which extent the
agents can modify the norms.”

In [6,7] three guidelines for NMAS were derived from Definition 1.

Guideline 1. Motivate which definition of NMAS is used and so explain whether,
either

1. norms must be explicitly represented in the system (the ‘strong’ interpreta-
tion), or

2. norms must be explicitly represented in the system specification (the ‘weak’
interpretation), or

3. none of the above interpretations should be adopted.

It was argued in [6,7] that the strong interpretation must be preferred whenever
we want to prevent a too generic notion of norm. In fact, we should avoid trivi-
alizing this notion, which is a risk when we see any specification requirement as
a norm that the system has to comply with. Rather, the weak interpretation is
sometimes more suitable to address the following problems:

Problem 1 (Norm compliance). How to check whether a system complies with
relevant norms applicable to it?

Problem 2 (Norm implementation). How can we design a system such that it
complies with a given set of norms?

Problems 1 and 2 amount to studying the concept of compliance at runtime and
at design time, so they can be meaningful also when we adopt for NMAS the
strong reading. Notice that both problems require in general to articulate the
conditions under which the relevant norms are part of the normative system at

Rules, Agents and Norms 55

hand and can correctly be triggered and applied: these issues correspond, as we
said, to the first two basic features of any normative domain.

Finally, notice that any attempt to address Definition 1 and Guideline 1 also
requires to preliminarily clarify what types of norm we need to embed within
NMAS. This clarification is very relevant, since different types of norms some-
times correspond to different formal (and logical) models and so distinct options
may differently affect the choice between the strong and weak interpretations for
the explicit representation of norms within NMAS. We have already mentioned
von Wright’s norm classification. In [21] an extensive analysis of requirements
for representing norms has been proposed for the law. Consider the following
aspects, which contribute to classify norms and which can be extended to other
normative domains besides the law2:

Temporal properties [28]. Norms can be qualified by temporal properties,
such as:
1. the time when the norm is in force;
2. the time when the norm can produce effects;
3. the time when the normative effects hold.

Normative effects. There are many normative effects that follow from ap-
plying norms, such as obligations, permissions, prohibitions and also more
articulated effects such as those introduced for the law, for example, by Ho-
hfeld (see [41]). Below is a rather comprehensive list of normative effects
[39]:
Evaluative, which indicate that something is good or bad, is a value to be

optimised or an evil to be minimised. For example, “Human dignity is
valuable”, “Participation ought to be promoted”;

Qualificatory, which ascribe a normative quality to a person or an object.
For example, “x is a citizen”;

Definitional, which specify the meaning of a term. For example, “Tolling
agreement means any agreement to put a specified amount of raw ma-
terial per period through a particular processing facility”;

Deontic, which, typically, impose the obligation or confer the permission
to do a certain action. For example, “x has the obligation to do A”;

Potestative, which attribute powers. For example, “A worker has the power
to terminate his work contract”;

Evidentiary, which establish the conclusion to be drawn from certain evi-
dence. For example, “It is presumed that dismissal was discriminatory”;

Existential, which indicate the beginning or the termination of the exis-
tence of a normative entity. For example, “The company ceases to exist”;

Norm-concerning effects, which state the modifications of norms; for the
law: abrogation, repeal, substitution, and so on.

2 Gordon et al. also study whether existing rule interchange languages for the legal
domain are expressive enough to fully model all the features listed below (and those
recalled infa, Section 2.2): RuleML, SBVR, SWRL, RIF, and LKIF.

56 A. Rotolo and L. van der Torre

Definition 1 raises other two fundamental research questions, which concern,
respectively, whether agents in NMAS can violate norms and how and why norms
can be changed in NMAS.

Hence, the second guideline follows from the fact that agents, insofar as are
supposed to be autonomous, can decide whether to follow the norms. Indeed, it
would be misleading for the specification of a NMAS to disregard “the distinction
between normative behavior (as it should be) and actual behavior (as it is)” [37,
preface]. Avoiding to make this distinction is misleading for three reasons: if any
“illegal behavior is just ruled out by specification”

– we are unable to “specify what should happen if such illegal but possible
behaviors occurs!” [37, preface];

– we fail to adopt a meaningful concept of norm, since philosophers and deontic
logicians mostly agree that genuine norms (and their effects) can be violated
(as an extreme example, it does not make any sense to say that A ∧ ¬A is
forbidden);

– agents cannot violate norms and so we do not model one important aspect
of agents’ autonomy in normative agent architectures and decision making
[16].

Accordingly, a theoretically sound definition of NMAS would assume that
agents can violate norms, so if a norm is a kind of constraint, the question
immediately is raised what is special about them. While hard constraints are
restricted to preventative control systems in which violations are impossible,
soft constraints are used in detective control systems where violations can be
detected. This justifies the following guideline:

Guideline 2. Make explicit why your norms are a kind of (soft) constraints
that deserve special analysis.

A typical illustration of how normative soft constraints work is the situation
in which one can enter a train without a ticket, but she may be checked and
sanctioned. Instead, a supposed illustration of a hard-constraint implementation
of a norm is the situation in which one cannot enter a metro station without
a ticket [6,7]. However, a closer inspection of the metro example shows that,
strictly speaking, this does not correspond to a genuine case where violations are
made impossible, but only where they are normally and in most cases prevented
to occur: indeed, one could, for instance, break the metro barriers and travel
without any ticket. When violations are impossible in any conceivable way, the
concept of norm does not make much sense.

On the other hand, if the norms are represented as soft constraints, then how
to analyze that detective control is the result of actions of agents and therefore
subject to errors and influenceable by actions of other agents? For example,
it may be the case that violations are not often enough detected, there are
conflicting obligations in the normative system, that agents are able to block
the sanction, update the normative system, etc.

More on compliance and norm violation in Section 3.1.

Rules, Agents and Norms 57

The third guideline follows from the fact that norms can be changed by the
agents or by the system. Suppose, for example, that a NMAS must be checked
against some legal system. As is well-known, one of the peculiar features of
the law is that it necessarily takes the form of a dynamic normative system [33].
Hence, the life-cycle of agents must be described with respect to a changing set of
norms. Similar considerations can be applied to many other normative domains,
as we argued that it is possible to state or identify criteria for changing many
types of normative system:

Guideline 3 (Norm change). Explain why and how norms can be changed at
runtime.

In general, in NMAS a norm can be made by an agent, as legislators do in a legal
system, or there can be an algorithm that observes agent behavior, and suggests
a norm when it observes a pattern. The agents can vote on the acceptance of
the norm. Likewise, if the system observes that a norm is often violated, then
apparently the norm does not work as desired, and it undermines the trust of
the agents in the normative system, so the system can suggest that the agents
can vote whether to retract or change the norm.

More on norm change in Section 3.2.

2.2 The Mechanism Design Definition

The second definition of NMAS runs as follows:

Definition 2 (The mechanism design definition [12]). “A normative mul-
tiagent system is a multiagent system organized by means of mechanisms to rep-
resent, communicate, distribute, detect, create, modify, and enforce norms, and
mechanisms to deliberate about norms and detect norm violation and fulfilment.”

Norms are rules used to guide, control, or regulate desired system behavior.
A normative multiagent system is a self-organizing system, and norms can be
violated. Boella et al. [6,7] derive two guidelines from this definition, which focus
on the role of norms, either as a mechanism or as part of a larger institution or
organization.

Guideline 4. Discuss the use and role of norms always as a mechanism in a
game-theoretic setting.

Guideline 5. Clarify the role of norms in your system as part of an organiza-
tion or institution.

Both these guidelines lead to handle more specific research problems:

Problem 3 (Norms and games). Games can explain that norms should satisfy
various properties and also the role of various kinds of norms in a system. For
example, Bulygin [14] explains why permissive norms are needed in normative
systems using his “Rex, Minister and Subject” game. Boella and van der Torre

58 A. Rotolo and L. van der Torre

introduce a game theoretic approach to normative systems [11] to study viola-
tion games, institutionalized games, negotiation games, norm creation games,
and control games. Norms should satisfy various properties to be effective as
a mechanism to obtain desirable behavior. For example, the system should not
sanction without reason, and sanctions should not be too low or too high.

Problem 4 (Norms and their functions). As we mentioned in the previous sec-
tion, norms may have a number of different effects, and so they do not only im-
pose duties and establish sanctions for their violation. Hence, in a game-theoretic
perspective they do not only have a preventive character, but, for instance, also
provide incentives. However, moral incentives are very different from financial or
legal incentives. For example, the number of violations may increase when finan-
cial sanctions are imposed, because the moral incentive to comply with the norm
is destroyed [34,19, p. 18–20]. Moreover, norms and trust have been discussed to
analyze backward induction [31].

Problem 5 (Norms and organizational design). Norms are addressed to roles
played by agents [10] and used to model organizations as first class citizens in
multiagent systems. In particular, constitutive norms are used to assign pow-
ers to agents playing roles inside the organization. Such powers allow to give
commands to other agents, make formal communications and to restructure the
organization itself, for example, by managing the assignment of agents to roles.
Moreover, normative systems allow to model also the structure of an organization
and not only the interdependencies among the agents of an organization. Legal
institutions are defined by Ruiter [40] as “systems of [regulative and constitu-
tive] rules that provide frameworks for social action within larger rule-governed
settings”. They are “relatively independent institutional legal orders within the
comprehensive legal orders”.

Hence, Definition 2, Guideline 4 and 5 and the related research problems require,
too, additional clarification on the types of norm we need to model for NMAS.
Also in this second perspective, many of Gordon et al.’s requirements [21] for
specifically representing norms in the law are directly applicable for the roles,
organizations and institutions. Important requirements for legal rule languages
from the field of AI & Law include the following:

Isomorphism [5]. To ease validation and maintenance, there should be a one-
to-one correspondence between the rules in the formal model and the units
of natural language text which express the rules in the original normative
sources, such as sections of legislation. This entails, for example, that a gen-
eral rule and separately stated exceptions, in different sections of a statute,
should not be converged into a single rule in the formal model.

Rule semantics. Any language for modeling norms should be based on a pre-
cise and rigorous semantics, which allows for correctly computing the effects
that should follow from a set of norms.

Defeasibility [20,38,41]. When the antecedent of a norm is satisfied by the
facts of a case, the conclusion of the rule presumably holds, but is not

Rules, Agents and Norms 59

necessarily true. The defeasibility of norms breaks down in the law into
the following issues:
Conflicts [38]. Rules can conflict, namely, they may lead to incompatible

legal effects. Conceptually, conflicts can be of different types, according
to whether two conflicting rules
– are such that one is an exception of the other (i.e., one is more specific

than the other);
– have a different ranking status;
– have been enacted at different times;

Accordingly, rule conflicts can be resolved using principles about rule
priorities, such as:
– lex specialis, which gives priority to the more specific rules (the ex-

ceptions);
– lex superior, which gives priority to the rule from the higher authority

(see ‘Authority’ above);
– lex posterior, which gives priority to the rule enacted later (see ‘Tem-

poral parameters’ above).
Exclusionary norms [38,41,20]. Some norms provide one way to explic-

itly undercut other rules, namely, to make them inapplicable.
Contributory reasons or factors [41]. It is not always possible to formulate

precise rules, even defeasible ones, for aggregating the factors relevant for
resolving a normative issue. For example: “The educational value of a work
needs to be taken into consideration when evaluating whether the work is
covered by the copyright doctrine of fair use.”

Norm validity [28]. Norms can be invalid or become invalid. Deleting invalid
norms is not an option when it is necessary to reason retroactively with norms
which were valid at various times over a course of events. For instance, in
the law:
1. The annulment of a norm is usually seen as a kind of repeal which in-

validates the norm and removes it from the legal system as if it had
never been enacted. The effect of an annulment applies ex tunc: annul-
reled norms are prevented from producing any legal effects, also for past
events.

2. An abrogation on the other hand operates ex nunc: The norm continues
to apply for events which occurred before the rule was abrogated.

Legal procedures. Norms not only regulate the procedures for resolving nor-
mative conflicts (see above), but also for arguing or reasoning about whether
or not some action or state complies with other, substantive norms [22]. In
particular, norms are required for procedures which
1. regulate methods for detecting violations of the law;
2. determine the normative effects triggered by norm violations, such as

reparative obligations, namely, which are meant to repair or compensate
violations.

Persistence of normative effects [29]. Some normative effects persist over
time unless some other and subsequent event terminate them. For example:
“If one causes damage, one has to provide compensation”. Other effects hold

60 A. Rotolo and L. van der Torre

on the condition and only while the antecedent conditions of the rules hold.
For example: “If one is in a public office, one is forbidden to smoke”.

Values [4]. Usually, norms promote some underlying values or goals. Modeling
norms sometimes needs to support the representation of these values and
value preferences, which can play also the role of meta-criteria for solving
norm conflicts. (Given two conflicting norms r1 and r2, value v1, promoted
by r1, is preferred to value v2, promoted by r2, and so r1 overrides r2.)

Some of these requirements, as they are formulated above (they are indeed re-
called from [21]), are peculiar of the legal domain only or, at least, of any “codi-
fied” system of norms (consider, e.g., the “Isomorphism” requirement). However,
almost all can be easily adjusted to fit many other normative domains. Besides
some very general requirements, such as “Defeasibility” and “Rule semantics”—
which correspond to aspects widely acknowledged for most normative domains—
also the other requirements are important for NMAS. Consider, for instance, the
problem of the temporal persistence of norm effects, the fact that norms can be
valid only under some conditions, or the role of exclusionary reasons.

3 Specific Developments

In the previous sections we mentioned two important issues for the development
of NMAS: the role of norms as soft constraints and the compliance problem, and
the problem of norm change. In what follows we offer an outline of some research
questions related to them.

3.1 How Do Agents Comply with Norms?

There are in general two fundamental strategies to characterize norm enforce-
ment and the concept of compliance in NMAS [32,18,42,9,26]:

– Norms are hard constraints and agent’s compliance is achieved by design.
This option is usually implemented by adopting the so-called norm regimen-
tation strategy, which can amount to simply designing the system in such a
way as illegal states are ruled out and made impossible in it, or by imposing
that the occurrence of any illegal states is in theory possible but it leads to
the system global failure;

– Norms are soft constraints and so do not limit in advance agents’ behavior.
Compliance is then ensured by system mechanisms stating that violations
should result in sanctions or other normative effects which are supposed to
recover from violations.

Of course, there are pros and cons for both options. We have situations which
must be avoided and made impossible. Think about a serious failure affecting
the system’s overall functionality. Hard constraints can be used to this end, but
the question is whether this solution can be implemented by invoking, and take
advantage of the NMAS paradigm. As we previously argued, a genuine concept

Rules, Agents and Norms 61

of normativity makes sense when norms are in principle violable. Hence, in a
game-theoretic approach such as the one proposed in Definition 2, if agents are
supposed to coordinate their behavior and NMAS are basically self-organizing
systems (but the overall functionality of the system is not directly in jeopardy),
then norms (as soft constraints) can play a decisive role to guide and control the
desired system behavior.

Some research issues are worthy to be mentioned in regard to what we have
already outlined in Section 2. In particular, one of the crucial points is that we
need sometimes a rich and expressive language for modeling normative systems,
otherwise we cannot truly capture the concept of compliance. However, when
such expressive frameworks are required, achieving compliance by design can be
very hard:

Problem 6 (Compliance by recovering from violations). Norms often specify
obligatory actions to be taken in case of their violations, actions which can vary
from penalties to the termination of an interaction itself. Obligations in force
after some other obligations have been violated correspond to various types of
contrary-to-duty obligations [15]. Among them, we have the reparative obliga-
tions, which are meant to ‘repair’ or ‘compensate’ violations of primary obli-
gations [22]. These constructions identify situations that are not ideal but still
acceptable. The ability to deal with violations is an essential requirement for
NMAS where norms are soft constraints, since some failures can occur, but they
do not necessarily mean that the whole process has to fail. However, these con-
structions can give rise to very complex rule dependencies, because we can have
that the violation of a single rule can activate other (reparative) rules, which, in
case of their violation, refer to other rules, and so forth [24].

Problem 7 (Rich ontologies of norms). NMAS may be regulated by different
types of obligations (see Section 2). For instance, when norm effects are tem-
porally qualified, we may have obligations requiring (1) to be always fulfilled
during a certain temporal interval or the execution of a certain agent’s sub-plan,
(2) that a certain condition must occur at least once before a certain temporal
deadline or before the execution of a certain action and the obligations persist
(or do not) persist after this deadline or action if they are not complied with,
(3) that something is done instantaneously [23]. These types of obligation make
things more complex when we deal with the compliance of a NMAS with respect
to chains of reparative obligations (Problem 6). For example, if the primary
obligation is persistent and states to pay before action A, and the secondary
(reparative) obligation is to pay a fine in the action B successive to A, we are
compliant not only when we pay before A, but also when we do not meet this
deadline, pay later and pay the fine at B. If the secondary obligation rather
requires to be always fulfilled for all actions successive to A, compliance condi-
tions will change. In addition, other types of obligation can be considered: for
instance, we may have provisions stating that some A is obligatory and which
are fulfilled even if A was obtained before the provision was in force, whereas
other provisions state that A is obligatory but they are complied with only when
A holds after they are in force.

62 A. Rotolo and L. van der Torre

Problems 6 and 7 may significantly affect the feasibility of achieving compliance
by design:

Problem 8 (Compliance by design: complexity). An approach for achieving com-
pliance with a preventative focus can raise complexity problems. This may hap-
pen when a rich ontology of obligations is used to regulate agents’ plans. Con-
sider, for example, the case where the design and/or execution of agents’ actions
or plans is described as complex structures such as directed graphs [26,27]. For
instance, when plans require the execution of parallel actions which are regulated
by obligations such as those mentioned in Problem 7, there are cases where we
have to handle the combinatorial explosion of the number of possible execution
paths to be verified for compliance.

Similar computational problems (but for different reasons) can be encoun-
tered when we try to achieve compliance by design in BDI-like systems, where
compliance is obtained at the deliberative stage by imposing that obligations
will always prevail over conflicting intentions [13,25]. However, when the sys-
tem allows us to derive agents’ intentions from beliefs (for example, if an agents
believes that Amsterdam is in Europe and intends to travel to Amsterdam, if
the agent is assumed to be rational we may have reasons to derive the intention
to travel to Europe), then achieving compliance by design is an NP-complete
problem [25].

3.2 How Do Norms Change?

Obligations can change while the normative system remains the same. For ex-
ample, due to change in the world or in the agents’ knowledge and beliefs, new
obligations can be detached from the norms, or an agent can delegate one of its
obligations to another agent. This change of obligations and permissions over
time is a relatively clear and well studied subject, investigated mostly in the 70s
and 80s. Moreover, a code of regulations is itself not static either, but changes
over time. For example, a legislative body may want to introduce new norms or
to eliminate some existing ones. To study how norm change is different from how
obligation change, and how these two are related, several workshops on norm
change have been organized (Luxembourg 2007, Amsterdam 2010, Ghent 2011),
addressing topics such as:

– Norm revision and contraction, e.g. change of legal code
– Norm evolution, e.g. change of social norms
– Merging normative systems, e.g. the merge of companies

Note that we presuppose a distinction between norms and obligations, which
is too often ignored. Norms, imperatives, promises, legal statutes, and moral
standards are usually not viewed as being true or false. E.g.: “John, leave the
room!” and “Mary, you may enter now” do not describe, but demand or allow a
behaviour on the part of John and Mary. Lacking truth values, norms cannot be
premise or conclusion in an inference, be termed consistent or contradictory, or
be compounded by truth-functional operators. The usual way out is to say that

Rules, Agents and Norms 63

“John is obliged to leave the room” describes the obligation which follows from
the prescriptive “John, leave the room!” [36] raises the question: How can deontic
logic be reconstructed in accord with the philosophical position that norms are
neither true nor false? The derived problem is: how to How to formalize the
relation between norm change and obligation change?

Norm revision. Little work exists on the logic of the revision of a set of norms.
To the best of our knowledge, Alchourrón and Makinson were the first to study
the changes of a legal code [2,3]. The addition of a new norm n causes an enlarge-
ment of the code, consisting of the new norm plus all the regulations that can be
derived from n. Alchourrón and Makinson distinguish two other types of change.
When the new norm is incoherent with the existing ones, we have an amendment
of the code: in order to coherently add the new regulation, we need to reject those
norms that conflict with n. Finally, derogation is the elimination of a norm n
together with whatever part of G implies n. In [2] a “hierarchy of regulations” is
assumed. Few years earlier, Alchourrón and Bulygin [1] already considered the
Normenordnung and the consequences of gaps in this ordering. For example, in
jurisprudence the existence of precedents is an established method to determine
the ordering among norms.

Some of the AGM axioms seem to be rational requirements in a legal context,
whereas they have been criticized when imposed on belief change operators. An
example is the success postulate, requiring that a new input must always be
accepted in the belief set. It is reasonable to impose such a requirement when
we wish to enforce a new norm or obligation. However, it gives rise to irrational
behaviors when imposed to a belief set, as observed for instance in [17]. Below
are some relevant research questions:

– Does AGM offer a satisfactory framework for norm revision? Role of minimal
change in norm change, revision of conditional norms.

– What triggers the change of a norm? AGM says a new or removed norm
– Do general patterns in the revision of norms exist? If so, how to formalize

them?
– Derogation is contraction? How about annulment?

Evolution of norms. How to formalize the evolution of (social) norms? Con-
sider, e.g.,

– E.g., norm about phone calls during meetings;
– No persons who change the norm like in legal code;
– Change of social norm triggered by norm violations;
– Social delegation cycle: relates agent desires and social goals.

Merging sets of norms. We now want to turn to another type of change, that
is the aggregation of regulations. This problem has been only recently addressed
in the literature and therefore the findings are still very partial.

64 A. Rotolo and L. van der Torre

The first noticeable thing is the lack of general agreement about where the
norms that are to be aggregated come from. Some works focus on the merging of
conflicting norms that belong to the same normative system, while other works
assume that the regulations to be fused belong to different systems. The first
situation seems to be more a matter of coherence of the whole system rather
than a genuine problem of fusion of norms. However, such approaches have the
merit to reveal the tight connections between fusion of norms, non-monotonic
logics and defeasible deontic reasoning.

We have seen that the initial motivation for the study of belief revision was
the ambition to model the revision of a set of regulations. On the contrary,
the generalization of belief revision to belief merging is exclusively dictated by
the goal to tackle the problem — arising in computer science — of combining
information from different sources. The pieces of information are represented in
a formal language and the aim is to merge them in an (ideally) unique knowledge
base. Can the belief merging framework deal with the problem of merging sets
of norms?

4 Summary

In this paper we discussed five guidelines for the development of NMAS proposed
in [6,7] and compared them with some of the requirements for legal knowledge
representation outlined in [21].

We assumed that norms are used to coordinate, organize, guide, regulate or
control interaction among distributed autonomous systems. The so-called ‘norm-
change’ definition supports the derivation of those guidelines that require to mo-
tivate which definition of normative multiagent system is used, to make explicit
why norms are a kind of soft constraints deserving special analysis, and to ex-
plain why and how norms can be changed at runtime. The so-called ‘mechanism
design’ definition entails the guidelines recommending to discuss the use and
role of norms as a mechanism in a game-theoretic setting and to clarify the role
of norms in the multiagent system. [21]’s formal requirements offer a comple-
mentary analysis to [6,7]’s account, as they provide a fine-grained account of the
notions of norm and normative system.

Finally, we considered in some detail several research issues concerning two
important aspects of NMAS design and implementation: norm compliance and
norm change.

References

1. Alchourrón, C.E., Bulygin, E.: The expressive conception of norms. In: Hilpinen,
R. (ed.) New Studies in Deontic Logic, pp. 95–125. D. Reidel Publishing Company,
Dordrecht (1981)

2. Alchourrón, C.E., Makinson, D.C.: Hierarchies of regulations and their logic. In:
Hilpinen, R. (ed.) New Studies in Deontic Logic, pp. 125–148. D. Reidel Publishing
Company, Dordrecht (1981)

Rules, Agents and Norms 65

3. Alchourrón, C.E., Makinson, D.C.: The logic of theory change: Contraction func-
tions and their associated revision functions. Theoria 48, 14–37 (1982)

4. Bench-Capon, T.: The missing link revisited: The role of teleology in representing
legal argument. Artificial Intelligence and Law 10(2-3), 79–94 (2002)

5. Bench-Capon, T., Coenen, F.: Isomorphism and legal knowledge based systems.
Artificial Intelligence and Law 1(1), 65–86 (1992)

6. Boella, G., Pigozzi, G., van der Torre, L.: Five guidelines for normative multiagent
systems. In: JURIX, pp. 21–30 (2009)

7. Boella, G., Pigozzi, G., van der Torre, L.: Normative systems in computer sci-
ence - ten guidelines for normative multiagent systems. In: Boella, G., Noriega,
P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent Systems, Dagstuhl,
Germany. Dagstuhl Seminar Proceedings, vol. 09121, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2009)

8. Boella, G., Torre, L.V.D.: Introduction to normative multiagent systems. Compu-
tational and Mathematical Organization Theory 12, 71–79 (2006)

9. Boella, G., van der Torre, L.: Fulfilling or violating obligations in multiagent sys-
tems. In: Procs. IAT 2004 (2004)

10. Boella, G., van der Torre, L.: The ontological properties of social roles in multi-
agent systems: Definitional dependence, powers and roles playing roles. Artificial
Intelligence and Law Journal, AILaw (2007)

11. Boella, G., van der Torre, L., Verhagen, H.: Normative multi-agent systems. In:
Internationales Begegnungs und Porschungszentrum fur Informatik, IBFI (2007)

12. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on nor-
mative multiagent systems. Autonomous Agents and Multi-Agent Systems 17(1),
1–10 (2008)

13. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the
BOID architecture. Cognitive Science Quarterly 2(3-4), 428–447 (2002)

14. Bulygin, E.: Permissive norms and normative systems. In: Martino, A., Natali,
F.S. (eds.) Automated Analysis of Legal Texts, pp. 211–218. Publishing Company,
Amsterdam (1986)

15. Carmo, J., Jones, A.: Deontic logic and contrary to duties. In: Gabbay, D., Guen-
ther, F. (eds.) Handbook of Philosophical Logic, 2nd edn. Kluwer, Dordrecht (2002)

16. Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm-acceptance. In: Pa-
padimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI),
vol. 1555, pp. 99–112. Springer, Heidelberg (1999)

17. Gabbay, D.M., Pigozzi, G., Woods, J.: Controlled revision - an algorithmic ap-
proach for belief revision. J. Log. Comput. 13(1), 3–22 (2003)

18. Garca-Camino, A., Rodrguez-Aguilar, J., Sierra, C., Vasconcelos, W.: Constraint
rule-based programming of norms for electronic institutions. Autonomous Agents
and Multi-Agent Systems 18, 186–217 (2009), doi:10.1007/s10458-008-9059-4

19. Gneezy, U., Rustichini, A.: A fine is a price. The Journal of Legal Studies 29(1),
1–18 (2000)

20. Gordon, T.F.: The Pleadings Game; An Artificial Intelligence Model of Procedural
Justice. Springer, New York (1995)

21. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule
interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

22. Governatori, G.: Representing business contracts in RuleML. International Journal
of Cooperative Information Systems 14(2-3), 181–216 (2005)

66 A. Rotolo and L. van der Torre

23. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines
in temporal modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

24. Governatori, G., Rotolo, A.: An algorithm for business process compliance. In:
JURIX, pp. 186–191 (2008)

25. Governatori, G., Rotolo, A.: Bio logical agents: Norms, beliefs, intentions in defea-
sible logic. Autonomous Agents and Multi-Agent Systems 17(1), 36–69 (2008)

26. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Web Intelli-
gence/IAT Workshops, pp. 488–491 (2009)

27. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: 7th Asia-Pacific Conference on Conceptual Modelling (APCCM 2010),
vol. 110, pp. 3–12. ACS (2010)

28. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annul-
ments in defeasible logic. The Logic Journal of IGPL (forthcoming)

29. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in de-
feasible logic. In: 10th International Conference on Artificial Intelligence and Law
(ICAIL 2005), pp. 25–34. ACM Press, New York (2005)

30. Hart, H.: The concept of law. Clarendon, Oxford (1994)
31. Hollis, M.: Trust within reason. Cambridge University Press, Cambridge (1998)
32. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems: the

normative systems perspective, pp. 275–307. John Wiley and Sons Ltd., Chichester
(1993)

33. Kelsen, H.: General theory of norms. Clarendon, Oxford (1991)
34. Levitt, S.D., Dubner, S.J.: Freakonomics: A Rogue Economist Explores the Hidden

Side of Everything. William Morrow, New York (May 2005)
35. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation

Computing. AgentLink (2003), electronically
http://www.agentlink.org/roadmap/

36. Makinson, D.C.: On a fundamental problem of deontic logic. In: Prakken, H.,
McNamara, P. (eds.) Norms, Logics and Information Systems. New Studies in
Deontic Logic and Computer Science, pp. 29–54. IOS Press, Amsterdam (1998)

37. Meyer, J.-J., Wieringa, R.: Deontic Logic in Computer Science: Normative System
Specification. John Wiley & Sons, Chichester (1993)

38. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting argument in
legal reasoning. Artificial Intelligence and Law 4(3-4), 331–368 (1996)

39. Rubino, R., Rotolo, A., Sartor, G.: An OWL ontology of fundamental legal con-
cepts. In: Proceedings of JURIX 2006, pp. 101–110 (2006)

40. Ruiter, D.: A basic classification of legal institutions. Ratio Juris 10(4), 357–371
(1997)

41. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer, Dordrecht
(2005)

42. Tinnemeier, N., Dastani, M., Meyer, J.-J.: Roles and norms for programming agent
organizations. In: Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2009, Richland, SC, vol. 1, pp. 121–128.
International Foundation for Autonomous Agents and Multiagent Systems (2009)

43. von Wright, G.H.: Norm and Action. Routledge, London (1963)

http://www.agentlink.org/roadmap/

Rule-Based Agents, Compliance, and Intention
Reconsideration in Defeasible Logic

Antonino Rotolo

CIRSFID, University of Bologna, Italy
antonino.rotolo@unibo.it

Abstract. This paper shows how belief revision techniques can be used in Defea-
sible Logic to change rule-based theories characterizing the deliberation process
of cognitive agents. We discuss intention reconsideration as a strategy to make
agents compliant with the norms regulating their behavior.

1 Introduction and Background

Many works in MAS on cognitive agents combined two different perspectives [7, 10–
13, 40]: (a) a classical (BDI-like) cognitive model of agents that specifies their mental
attitudes; (b) a model of agents’ behaviour based on normative concepts. This combina-
tion leads to an account of agents’ deliberation and behaviour in terms of the interplay
between mental attitudes and normative (external) factors such as obligations.

A crucial aspect in this trend is that reasoning about agents is embedded in rule-based
non-monotonic systems, as one the most interesting problems concerns the cases where
the agent’s intentions are in conflict with obligations. Indeed, it is important that agent
systems may exhibit desirable properties and obligations are precisely meant to ensure
them. However, if intentions prevail over obligations, this poses the question of agents’
norm compliance.There are in general two strategies to get compliance in MAS:

– Norm compliance (i.e., the fact that intentions are not incompatible with obliga-
tions) is achieved by design, namely, by stating that rules supporting the derivation
of obligations always prevail over rules supporting conflicting intentions [7, 20].

– Norms should not limit in advance agents’ behaviour, but would instead provide
soft constraints which can be violated [4]. Getting compliance is then ensured by
stating that violations should result in sanctions or other normative effects [21].

There are of course pros and cons in both approaches. But, independently of this,
a research issue is still overlooked in the literature: what’s the relation between norm
compliance and intention reconsideration? Indeed, agents cannot simply maintain in-
tentions, once adopted, without ever stopping to reconsider. It is necessary from time
to time for them to check whether the intention has been achieved or whether it is no
longer achievable. Most of the existing models of intentional systems view the recon-
sideration of intention as either a costly computational process or mainly dependent on
the dynamics of beliefs [6, 8, 9, 30–33, 35–37, 39, 41]. However, agents’ deliberation
can be itself a computationally costly process and may require an appropriate inten-
tion reconsideration policy which helps the agent to deliberate only when necessary.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 67–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

68 A. Rotolo

In this picture, it is still overlooked the problem of changing intentions not because of
the change of beliefs, but because the normative constraints require so.

In this paper, we will thus address this research issue: how to characterize intention
reconsideration with the specific purpose of making agents compliant with obligations?
More precisely, we will explore how different types of intention reconsiderations can
be modeled by applying techniques from revision theory to an extension of Defeasible
Logic (DL) which embeds modalities for obligations and intentions [20, 23] and also—
this is another novelty—makes use of path labels to keep track of the reasoning chains
leading to “illegal” intentions.

The layout of the paper is as follows. Section 2 presents the extension of DL with
path labels to reason about intentions and obligations; the purpose is to develop a for-
malism able to handle intention reconsideration when intentions conflict with obliga-
tions. Section 3 recalls a classification between different types of intentions and then
shows how different techniques from revision theory can used in the proposed logical
framework.

2 The Logical Framework

In line with [20, 23] we develop a constructive account of the modalities O and I cor-
responding to obligations and intentions: rules for these concepts are thus meant to
devise suitable logical conditions for introducing modalities. For example, rules such
as a1, . . . ,an ⇒O b and d1, . . . ,dn ⇒I e if applicable, will allow for deriving Ob and Ie,
meaning the former that b is obligatory, the latter that e is an intention of an agent.

In our language, for X ∈ {O,I}, strict rules have the form φ1, . . . ,φn →X ψ . Defea-
sible rules have the form φ1, . . . ,φn ⇒X ψ . A rule of the form φ1, . . . ,φn �X ψ is a
defeater. Strict rules support indisputable conclusions whenever their antecedents, too,
are indisputable; defeasible rules can be defeated by contrary evidence; defeaters can-
not lead to any conclusion but are used to defeat some defeasible rules by producing
evidence to the contrary.

Definition 1 (Language). Let PROP be a set of propositional atoms, MOD = {O,I},
and Lbl be a set of labels. The sets defined below are the smallest ones closed under the
given construction conditions:

Literals
Lit = PROP∪{¬p|p ∈ PROP}

If q is a literal, ∼q denotes the complementary literal (if q is a positive literal p
then ∼q is ¬p; and if q is ¬p, then ∼q is p);

Modal literals
ModLit = {X l,¬X l|X ∈ {O,I} , l ∈ Lit}

Rules Rul = RulXs ∪RulXd ∪RulXdft, where X ∈ {I,O}, such that

RulXs = {r : φ1, . . . ,φn →X ψ |r ∈ Lbl,A(r) ⊆ Lit∪ModLit,ψ ∈ Lit}
RulXd = {r : φ1, . . . ,φn ⇒X ψ |r ∈ Lbl,A(r) ⊆ Lit∪ModLit,ψ ∈ Lit}
RulXdft = {r : φ1, . . . ,φn �X ψ |r ∈ Lbl,A(r) ⊆ Lit∪ModLit,ψ ∈ Lit}

Rule-Based Agents, Compliance, and Intention Reconsideration 69

We use some obvious abbreviations, such as superscripts for the rule mode (I,O),
subscripts for the type of rule, and Rul[φ] for rules whose consequent is φ , for
example:

RulI = {r : φ1, . . . ,φn ↪→I ψ | ↪→∈ {→,⇒,�}}
RulXsd = {r : φ1, . . . ,φn ↪→X ψ |X ∈ MOD, ↪→∈ {→,⇒}}
Ruls[ψ] = {φ1, . . . ,φn →X ψ |∀X ∈ MOD}

We use A(r) to denote the set {φ1, . . . ,φn} of antecedents of the rule r, and C(r) to
denote the consequent ψ of the rule r.

An agent theory is the knowledge base which is used to reason about the agent’s inten-
tions and their interplay with a set of normative rules regulating the agent’s deliberation.

Definition 2 (Agent Theory). An agent theory D is a structure (F,RO,RI,
) where

– F ⊆ Lit∪ModLit is a finite set of facts;
– RO ⊆ RulO is a finite set of obligation rules;
– RI ⊆ RulI is a finite set of intention rules;
–
 is an acyclic (superiority) relation over (RI ×RI)∪ (RO ×RO).

Definition 3. A path based on an agent theory D is a structure

[α11 , . . . ,αn1]1[α12 , . . . ,αn2]2 . . . [ω] j

where αlw , 1 ≤ w ≤ j−1 and 1w ≤ lw ≤ nw, is either a literal, modal literal, or a rule,
such that j ≥ 0. If j ≥ 1, then

– either
• ω = −r where r ∈ RO ∪RI; or
• ω ∈ RO

sd ∪RI
sd such that, if j = 1 then A(ω) = /0; or

• if ω ∈ RO
sd ∪RI

sd and j > 1, then ∀b ∈ A(ω) ∃αk j−1 such that either
∗ if b ∈ Lit, then αk j−1 = b ∈ F, or
∗ if b = Xl ∈ModLit, then either αk j−1 = b∈F or l =C(αk j−1) : αk j−1 ∈ RX

sd;
– ∀αxt , 1 < t ≤ j−1, αxt ∈ RO

sd ∪RI
sd such that ∀b ∈ A(αxt) ∃αyt−1 such that either

• if b ∈ Lit, then αyt−1 = b ∈ F, or
• if b = Xl ∈ ModLit, then either αyt−1 = b ∈ F or l = C(αyt−1) : αyt−1 ∈ RX

sd.

An empty path is a path where j = 0. A broken path is a path where ω = −r. A rule r
occurs in a path iff r = αlw , or r = ω .

Example 1. A path recalls the notion of argument for a literal l of [18]:
Oc

Oa

I f

Oe

Ib

Ig

d

r : Oe ⇒I f
s : I f ⇒O a
t : d ⇒I g
u : Ig ⇒I b
w : Oa,Ib ⇒O c
z :⇒O e
d ∈ F

70 A. Rotolo

The tree on the left side is the argument for the modal literal Oc we can build using
the rules r, s, t, u, w, z and the fact d, which are shown on the right side. From this
structure we can obtain, e.g., the path [z,d]1[r, t]2[s,u]3[w]4.

Proofs are sequences of literals and modal literals together with the so-called proof
tags +Δ , −Δ , +∂ and −∂ . These tags can be labeled by modalities and paths: the
modality indicates the mode of the conclusion (if it is an intention or an obligation),
the path keeps track of the facts and rules used to obtain it. Hence, if X ∈ {O,I}, given
an agent theory D, +Δ XL q means that literal q is provable as modalized with X (e.g.,
Oq, if X = O) in D using the facts and strict rules in the path L , −Δ XL q means that
it has been proved in D that q is not definitely provable in D, +∂ XL q means that q
is defeasibly provable as modalized with X in D using the facts and rules in L , and
−∂ XL q means that it has been proved in D that q is not defeasibly provable in D. We
will clarify later the structure of paths in the case of the negative proof tags.

Definition 4. Given an agent theory D, a proof in D is a linear derivation, i.e, a se-
quence of labelled formulas of the type +Δ XL q, −Δ XL q, +∂ XL q and −∂ XL q,
where the proof conditions defined in the rest of this section hold.

Definition 5. Let D be an agent theory. Let # ∈ {Δ ,∂} and X ∈ {O,I}, L be any path
based on D, and P = (P(1), . . . ,P(n)) be a proof in D. A literal q is #L -provable in P
if there is a line P(m), 1 ≤ m ≤ n, of P such that either

1. q is a modal literal X p and P(m) = +#XL p or
2. q is a modal literal ¬X p and P(m) = −#XL p.

A literal q is #L -rejected in P if there is a line P(m) of P such that

1. q is a modal literal X p and P(m) = −#XL p, or
2. q is a modal literal ¬X p and P(m) = +#XL p.

The definition of Δ X describes just forward (monotonic) chaining of strict rules:
given 1 ≤ j ≤ n

If P(n + 1) =+Δ XL [α1, . . . ,αn][r]q then
(1) ∃x ∈ RX

s [q]:
(1.1) x = r and
(1.2) ∀a ∈ A(r) either

(1.2.1) a ∈ F , or
(1.2.2) a is ΔL [α j]-provable.

If P(n + 1) =−Δ XL [α1, . . . ,αn][r]q then
(1) ∀x ∈ RX

s [q] either
(1.1) x �= r or
(1.2) ∃a ∈ A(r):

(1.2.1) a �∈ F , and
(1.2.2) a is ΔL [α j]-rejected.

The path supporting q is built step by step by including the rules and facts used to obtain
it. In the case of negative proof tags, any path involved is in fact empty, since there is
no reasoning chain supporting q. See also Proposition 1 below.

Rule-Based Agents, Compliance, and Intention Reconsideration 71

Example 2. Suppose I am obliged to go to Italy (because, for example, I have to renew
my passport, which is going to expire) and I have the intention to eat good tortellini.
In this case, if I have this intention, then by necessity I also have the intention to go to
Bologna (no way to eat good tortellini elsewhere!). As a conclusion, if I have this last
intention, by necessity I will also have the intention to go to Italy, thus complying with
the obligation:

F = {OGoToItaly,IGoodTortellini}
R = {r1 : IGoodTortellini →I GoToBologna,

r2 : IGoToBologna →I GoToItaly}

= /0

Let us work on the proof conditions to illustrate them. The obligation OGoToItaly does
not trigger any rule. The fact IGoodTortellini triggers r1 (condition (1.1)): hence we
obtain +Δ I[IGoodTortellini][r1]GoToBologna. Now, using proof condition (1.2), we
trigger r2 to get +Δ I[IGoodTortellini][r1][r2]GoToItaly. This last conclusion shows that
the agent’s deliberation is intuitively compliant.

Consider now proof conditions for ∂ X : given 1 ≤ j ≤ n,

If P(n + 1) =+∂ XL [α1, . . . ,αn][r]q then
(1) +Δ XL [α1, . . . ,αn][r]q or
(2) (2.1) −Δ XX ∼q ∈ P[1..n] and

(2.2) ∃x ∈ RX
sd[q] :

(2.2.1) x = r and
(2.2.2) ∀a ∈ A(r)

(2.2.2.1) a ∈ F , or
(2.2.2.2) a is ∂L [α j]-provable, and

(2.3) ∀s ∈ RX [∼q] either ∃a ∈ A(s):
a is ∂Y -rejected, or
(2.3.1) ∃t ∈ RX [q]: ∀a ∈ A(r)

a is ∂Z -provable and t
 s.

If P(n + 1) =−∂ XL [α1, . . . ,αn][r]q then
(1) −Δ XL [α1, . . . ,αn][r]q and
(2) (2.1) +Δ XX ∼q ∈ P[1..n] or

(2.2) ∀x ∈ RX
sd[q] either

(2.2.1) x �= r, or
(2.2.2) ∃a ∈ A(r):

(2.2.2.1) a �∈ F , and
(2.2.2.2) a is ∂L [α j]-rejected, or

(2.3) ∃s ∈ RX [∼q]: ∀a ∈ A(s)
a is ∂Y [s]-provable, and
(2.3.1) ∀t ∈ RX [q], ∃a ∈ A(r):

a is ∂Z -rejected or t �
 s,
where [r] = [−r] if ∀a ∈ A(r)

a ∈ F , or
a is ∂L [α j]-provable.

72 A. Rotolo

To show that a literal q is defeasibly provable with the mode X we have two choices:
(a) We show that q is already definitely provable; or (b) We need to argue using the
defeasible part of an agent theory D. For this second case, some (sub)conditions must
be satisfied: First, we need to consider possible reasoning chains in support of ∼q with
the mode X , and show that ∼q is not definitely provable with that mode (2.1 above).
Second, we require that there must be a strict or defeasible rule with mode X for q
which can be applied (2.2 above). Third, we must consider the set of all rules which are
not known to be inapplicable and which permit to get ∼q with the mode X (2.3 above).
Essentially, each such a rule s attacks the conclusion q. For q to be provable, s must be
counterattacked by a rule t for q with the following properties: t must be applicable and
must prevail over s. Thus each attack on the conclusion q must be counterattacked by a
stronger rule. In other words, r and the rules t form a team (for q) that defeats the rules
s. The mechanism for handling paths is basically the one for definite conclusions. The
only difference is that here we can have broken paths when a rule is made applicable
but is defeated by a stronger rule: in this case, the path keeps track of the defeated rule
r, which is marked as −r.

Proposition 1. (a) For −Δ : if condition (1) holds, then L [α1, . . .αn][r] is an empty
path.

(b) For −∂ : if condition (2.2) holds, then L [α1, . . .αn][r] is an empty path;
(c) For −∂ : if condition (2.3) holds and L [α1, . . .αn][r] is broken, then rule r is

applicable.

Proof (Sketch). Consider the case (a): if condition (1) holds, this means that there is
no path and proof supporting q, and so L [α1, . . .αn][r] must be empty. The same ar-
gument applies to the case (b). Consider case (c): here, by construction there is a path
and a proof supporting the antecedents of r, even though any r is defeated. Hence r is
applicable.

Example 3. Let us expand the theory in Example 2:

F = {OGoToItaly,IGoodTortellini,Hungry}
R = {r1 : IGoodTortellini →I GoToBologna,

r2 : IGoToBologna →I GoToItaly,

r3 :�O ¬EatModerately,

r4 : IGoodTortellini ⇒O EatModerately,

r5 : Hungry ⇒I ¬EatModerately,

r6 :⇒I ¬EatModerately,

r7 : I¬EatModerately,IGoodTortellini ⇒O Abstinence}

= {r4
 r3}

Since the defeasible part of the theory cannot affect the derivation obtained using the
monotonic part (which is the same of Example 2), the following conclusions still hold:

+Δ I[IGoodTortellini][r1]GoToBologna +Δ I[IGoodTortellini][r1][r2]GoToItaly

Rule-Based Agents, Compliance, and Intention Reconsideration 73

Let us briefly comment the new rules: r3 works as a permission, since it is supposed
to block the opposite conclusion (that EatModerately is obligatory) [22]; r4 states that
eating moderately is obligatory whenever the agent intends to eat good tortellini; r5 says
that, when hungry, the agents intends not to eat moderately; r6 assumes that the agent is
greedy, as she normally intends not eat moderately in general; r7 states that, when the
agent intends not to eat moderately and to eat good tortellini, then she obliged to have
abstinence afterwards. What are our conclusions? The fact IGoodTortellini triggers r4,
which conflicts with r3; if r3 could prevail, we would have −∂ O[−r3]EatModerately,
but this is not the case since r4 is stronger than r3, thus leading to

+∂ O[IGoodTortellini][r4]EatModerately (1)

The fact Hungry makes r5 applicable, and so

+∂ I[Hungry][r5]¬EatModerately (2)

The rule r6 is always applicable, thus supporting

+∂ I[r6]¬EatModerately (3)

Finally, since IGoodTortellini is a fact and we have both (2) and (3), we will obtain

+∂ O[Hungry][r5,IGoodTortellini][r7]Abstinence
+∂ O[r6,IGoodTortellini]Abstinence

Definition 6. Given an agent theory D, D � ±#X l (i.e., ±#X l is a conclusion of D),
where # ∈ {Δ ,∂} and X ∈ {c,O,I}, iff there is a proof P = (P(1), . . . ,P(n)) in D such
that P(n) = ±#Xl.

Proposition 2. Let D be an agent theory where the transitive closure of
 is acyclic.
For every # ∈ {Δ ,∂}, X ∈ {O,I} and every pair of paths L and M (where, possibly,
L = M):

– It is not possible that both D � +#XL p and D � −#XM p;
– if D � +∂ XL p and D � +∂ XM∼p, then D � +Δ XL p and D � +Δ XM∼p.

Proof. The proof is a trivial variation of the ones for Theorems 1 and 2 in [24]. Proposi-
tion 2 shows the soundness of the logic: it is not possible to derive a tagged conclusion
and its opposite, and that we cannot defeasibly prove both p and its complementary
unless the definite part of the theory proves them; this means that inconsistency can be
derived only if the theory we started with is inconsistent, and even in this case the logic
does not collapse to the trivial extensions (i.e., everything is provable).

Definition 7. Given a theory D, the universe of D (UD) is the set of all the atoms oc-
curring in D; the extension of D (ED), is defined as follows:

ED = (Δ+(D),Δ−(D),∂+(D),∂−(D))

where for X ∈ {I,O}
Δ+(D) =

{
Xl|D � +Δ XL l

}
Δ−(D) =

{
Xl|D � −Δ XL l

}
∂+(D) =

{
Xl|D � +∂ XL l

}
∂−(D) =

{
Xl|D � −∂ XL l

}
.

74 A. Rotolo

3 Compliance and Revising Intentions

3.1 Conceptual Background

Suppose the agent’s intentions conflict with some obligations. If we assume that obli-
gations are unchangeable, the possibility to avoid violations relies on the possibility to
handle rules for intentions.

As we argued elsewhere [20, 23], we can conceptually distinguish between different
types of intentions: unchangeable intentions, strong intentions and weak intentions. The
first type corresponds in our logic to intentional facts of an agent theory (elements of F),
the second type to definite conclusions (+Δ I), the third to defeasible conclusions (+∂ I).
Unchangeable intentions cannot be reconsidered in any case (see [23] for a discussion
on this issue). To give up a strong intention we have necessarily to change (revise) the
theory (i.e., we have to modify the strict rules), while we can abandon a weak intention
if we have an exception to it without having to change the theory. To illustrate this point
let us consider the following rules:

r1 : a →I b r2 : c →I ¬b (4)

Suppose the same connections are expressed as defeasible rules:

r′1 : a ⇒I b r′2 : c ⇒I ¬b r′2
 r′1 (5)

In both cases we obtain Ib given a as a fact. However if both a and c are given then
from (4) we get an inconsistency, since definite conclusions cannot be blocked and we
have to revise the theory. If we use belief revision to change the theory then we have
to remove r1 from the theory. A consequence of this operation is that we are no longer
able to derive Ib from a. An alternative would be to use base revision instead of belief
revision. If this strategy is taken then r1 is changed into

r′′1 : a,¬c →I b (6)

Again, it is not possible to obtain Ib from a. To derive it we have to supplement the
theory with the information whether c or ¬c is definitely the case, increasing then the
cognitive burden on the agent.

If the same information were encoded as weak intentions, as in (5), then we would
not suffer from the above drawback, since (5) prevents the conclusion of an inconsis-
tency (in case we do not specify that r′2 is stronger than r′1, we are not able to conclude
Ib nor I¬b). Indeed, the defeasibility of weak intentions makes it possible to block
the application of the intention to the particular case without reconsidering it. This is
in agreement with [6]. This way the amount of deliberation required for intention re-
consideration can be minimized to some extent.

Unfortunately, if the first and compelling purpose is to make agents compliant, not
in all cases the defeasibility of intentions is the solution. Indeed, if a theory containing
(5) allows for deriving Ob, there is no way to recover, unless we change the theory.

3.2 A Simple Model

Let us first formally characterize the notion of compliance to a norm:

Rule-Based Agents, Compliance, and Intention Reconsideration 75

Definition 8 (Rule Fulfilment and Violation). An agent theory D = (F,RO,RI,
) ful-
fil a rule r ∈ RO

sd iff, if D � +∂ OLC(r), then, either

– if C(r) is a positive literal l (r is a conditional obligation), then there is an Y such
that D � +∂ IY l, or

– if C(r) is a negative literal ¬l (r is a conditional prohibition) for any L , D �
−∂ IL l.

D violates the rule r whenever D does not fulfil r. D is compliant iff D does not violate
any rule in it.

As we briefly discussed in Section 3.1, an option to recover from violations and reinstate
compliance is to revise intentions by using AGM techniques. This idea looks natural
(see e.g. [8, 30]). However, it is far from obvious how to do it in DL. Fortunately, AGM
fundamental operations have been defined for propositional DL in [2].

The first step is thus to extend [2]’s notions of expansion and contraction to cover
DL with modalities, which is trivial. Consider an agent theory D and suppose we want
to expand the extension of D with c = Ip1, . . . ,Ipn:

D+
c =

⎧⎪⎨
⎪⎩

D if ∃i ∈ {1, . . .n}: I∼pi ∈ ∂+(D)
D if ∃i, j ∈ {1, . . .n}: ∼pi = p j

(F,RO,RI′ ,
′) otherwise

where

RI′ =RI ∪{w1 :⇒I p1, . . . ,wn :⇒I pn}

′ =(
 ∪ {wi
 r |1 ≤ i ≤ n,r ∈ RI[∼p]})−

{r
 wi |1 ≤ i ≤ n,r ∈ RI[∼p]}.

(7)

Thus, we add rules that prove p1, . . . pn as intentions; these rules are always applicable
and are strictly stronger than any possibly contradicting rules. This solution looks useful
to deal with many cases of violation.

Example 4. Consider the following theory D.

F = {a}
R = {r1 : a →I b,r2 : Ib ⇒O c,r3 : a �I ¬c,r4 : Ib ⇒I c}

= /0

Here we obtain, among other conclusions, +∂ O[a][r1][r2]c. To be compliant, we should
be able to derive that c is intended, but this is not possible. We have here that
−∂ I[a][r1][−r4]c. What we can do is to expand D with Ic by simply adding an in-
tention rule w for c and applying (7). Since this operation satisfies AGM postulates for
expansion [2], Ic is successfully added to the positive extension of D. Hence, we obtain
+∂ I[w]c and make D compliant.

Let us define the procedure explained in Example 4.

76 A. Rotolo

Definition 9 (Positive Revision). Let D = (F,RO,RI,
) be an agent theory. If D vi-
olates the rules r1, . . . ,rn ∈ RO, then D+

c where c = Ip1, . . . ,Ipn such that C(r1) =
p1, . . . ,C(rn) = pn.

Let us adjust [2]’s definition of contraction. Here, too, we trivially extends [2]’s ap-
proach. If we want to contract c = Ip1, . . . ,Ipn in D, then:

D−
c =

{
D if Ip1, . . . ,Ipn �∈ ∂+(D)
(F,RORI′ ,
′) otherwise

where

RI′ =RI ∪{s : Ip1, . . . ,Ipi−1,Ipi+1, . . . ,Ipn �I ∼pi|
1 ≤ i ≤ n}

′ =
− {r
 s | r ∈ RI′ −RI}.

(8)

(8) blocks the proof of Ip1, . . . ,Ipn. It is ensured that at least one of the Ipis will not
be derived. The new rules in RI′ are such that, if all but one Ipi have been obtained, a
defeater with head ∼p j is triggered. The defeaters are not weaker than any other rules,
so the defeater cannot be “counterattacked” by another rule, and p j will not be proven
as an intention.

Example 5. Consider the following theory D.

F = {a,Id}
R = {r1 : a →I b,r2 : Ib ⇒O c,r3 : Id ⇒I ¬c}

= /0

We obtain, among other conclusions, +∂ O[a][r1][r2]c. To be compliant, we should de-
rive that Ic, but we obtain the opposite through r3. More precisely, we get +∂ I[Id][r3]¬c.
What we can do is to contract I¬c by simply adding a defeater s :�I c and thus applying
(8). Since this operation satisfies AGM postulates for contraction [2], I¬c is success-
fully removed from the positive extension of D and added to the negative extension.

Definition 10 (Negative Revision). Let D = (F,RO,RI,
) be an agent theory. If D
violates the rules r1, . . . ,rn ∈ RO, then D−

c where c = Ip1, . . . ,Ipn such that C(r1) =
¬p1, . . . ,C(rn) = ¬pn.

Definitions 9 and 10 guarantee to recover from violations, are very simple, and directly
exploit techniques and results from [2]. Also, they do not make any essential use of
paths, which sometimes may look cumbersome. However, they have two serious draw-
backs: (a) They work only on the defeasible part of agent theories, and so cannot be
used to recover from violations when these are caused by strong intentions (see the
discussion in Section 3.1); (b) They apply only to the last rule of the reasoning chains
supporting “illegal” intentions.

To overcome the above difficulties, DL with paths is useful.

Rule-Based Agents, Compliance, and Intention Reconsideration 77

3.3 Refinements: Using Paths

The advantage of using paths is that we can easily identify (i) which rules have been vio-
lated, and (ii) which rules for intentions have determined the violation of an
obligation.

Let us see when Definitions 9 and 10 clearly fail while DL with paths succeeds.

Example 6 (Strong Intentions). Consider this theory:

F = {a,Ib}
R = {r1 : a →I ¬c,r2 : Ib ⇒O c,r3 : Ib →I d,

r4 : Id,a →I ¬c}

= /0

We have two reasons for the violation of r2 (indeed, we obtain +∂ O[Ib][r2]c). In fact, we
can derive +Δ I[a][r1]¬c and +Δ I[Ib][r3,a][r4]¬c. Since strict rules cannot be defeated,
the only solution is rule removal. Hence, we have to operate over r1 but we are free to
remove either r3 or r4. For example, if we prefer not to remove r4, we will successfully
get compliance by removing r1 and only r3.

Definition 11 (Rule Removal). Let D = (F,RO,RI,
) be an agent theory. For each r ∈
RO

sd such that the paths L1, . . .Ln are the ones based on D such that D � +Δ IL1 p, . . . ,
D � +Δ ILn p and D � +∂ OY C(r), where C(r) = ¬p, the theory D−X is such that

– X = {w1, . . . ,wm} is the smallest set of rules in RI such that, for each k ∈ {1, . . . ,n},
there is at least a wj ∈ X that occurs in Lk,

– RI−X = RI −X, and
– F−X = F, RO

−X = RO, and
−X=
.

Let us work on weak intentions only. The following definition proposes intention
retraction for DL with paths by exploiting the contraction of intentions as framed in (8).

Definition 12 (Contraction with Paths). Let D = (F,RO,RI,
) be an agent theory.
For each r ∈ RO

sd such that the paths L1, . . .Ln are the ones based on D such that
D � +∂ IL1 p, . . . ,D � +∂ ILn p and D � +∂ OY C(r), where C(r) = ¬p, the theory
D�p = (F,RO,RI′ ,
′) is such that

(i) RI′ = RI ∪{s :�I ∼q}∪{t :�I ∼x},
(ii)
′=
 − [{rk
 s|rk ∈ RI[∼C(s)],rk occurs in Lk ∀k ∈ {1, . . . ,n}}∪{w
 t | for

each path M [−w] based on D such that C(w) = x, either x = p or w occurs in
Lk ∀k ∈ {1, . . . ,n}}].

Example 7 (Paths). Consider the following agent theory:

F = {a,Ib}
R = {r1 : a ⇒I ¬c,r2 : Ib ⇒O c,r3 : Ib ⇒I d,r4 : Id,a ⇒I ¬c

r5 : g ⇒I ¬c}

= /0

78 A. Rotolo

Like in Example 6, we obtain +∂ O[Ib][r2]c. We also derive +∂ I[a][r1]¬c and
+∂ I[Ib][r3,a][r4]¬c, which violate rule r2. Definition 12 allow us to add, for exam-
ple, a defeater for c which is stronger than r1 and another defeater for ¬d which is
stronger than r3. Hence, as we have already seen in Example 6, Definition 12 does not
only provide tools to affect the rules r1 and r4 that directly prove illegal intentions, but
also rules preceding them in the involved path (e.g., r3).

Finally, notice that we can use paths also with positive revisions (expansion), but only
when the literal we want to add is in fact the one which directly would support compli-
ance:

Example 8. Suppose we have the following:

F = {a}
R = {r1 : a ⇒I ¬c,r2 : a ⇒O d,r3 : I¬c ⇒I b,r4 : Od,Ib ⇒I d,

r5 :⇒I ¬b}

= {r5
 r3}

Here the reasoning chain supporting Id is broken at r3. Hence the only path available to
work with is [a][r1][−r3], which is not explicitly linked with the potential derivation of
Id. The idea could work if r5 would attack r4. In this case, we would have a path like
[a][a,r1][r2,r3][−r4]: since the head of r4 is d, we could add a new rule which defeats
r5. However, this is nothing but an application of Definition 9.

The following proposition shows that the proposed operations for reconsidering inten-
tions are successful:

Proposition 3 (Success). Let D = (F,RO,RI,
) be an agent theory. If, for each r ∈ RO
sd

we have D � +∂ OY C(r), where C(r) = ¬p, and for the paths L1, . . .Ln based on D

(a) D � +Δ IL1 p, . . . ,D � +Δ ILn p, then Ip �∈ Δ+(D−X);
(b) D � +∂ IL1 p, . . . ,D � +∂ ILn p, then Ip �∈ ∂+(D�p) unless Ip ∈ Δ+(D).

Proof (Sketch). Case (a): By construction, Definition 11 guarantees that at least one
strict intention rule is removed in every path based on D supporting Ip.

Case (b): An inspection of the proof conditions for ∂ shows that Definition 12 suc-
cessfully blocks the derivation of Ip, unless it is derived using only strict rules. Notice
that condition (ii) in Definition 12 ensures that, in case the attacks made by the defeaters
s activate other (previously defeated) rules supporting Ip, these last potential derivations
are made unsuccessful.

4 Related Work

This paper investigates how to model the norm compliance of rule-based agents by
providing different theory-revision strategies for reconsidering agents’ intentions. To
the best of our knowledge, this is the first work which jointly address these two specific
research issues.

Rule-Based Agents, Compliance, and Intention Reconsideration 79

The literature on norm compliance in MAS is large (see, e.g., [1, 3, 5, 14–16, 26,
27, 29]). Independently of the specific techniques proposed, all these works adopt one
or both of the two fundamental strategies to characterize norm enforcement [4, 17, 21,
28, 38]: (a) norms are hard constraints and agent’s compliance is achieved by design;
(b) norms are soft constraints and so do not limit in advance agents’ behavior. As far as
cognitive (BDI-like) agents are concerned, the problem amounts to model the relation
between intentions and obligations. In this regard, the main approach proposed in the
literature adopts the first of the two above mentioned strategies [7, 20]: compliance is
then obtained at the deliberative stage by introducing the notion of social agent, i.e.,
by imposing that obligations always prevail over conflicting intentions. No role for
intention reconsideration is acknowledged in this context.

Intention reconsideration, too, is a topic widely investigated in the MAS literature,
which is classically related with the problem of persistence of intentions [6, 9, 39]. In-
deed, following [6] it is often assumed that intentions obey the law of inertia and resist
retraction or revision, since the deliberation of resource-bounded agents would be too
expensive if all intentions were susceptible of being changed without any constraints.
A typical condition under which intentions can be reconsidered is when new relevant,
and significant information comes in. In Section 1 we mentioned a list of works in this
field and provided some general comments. Let us focus on some of them, which are
closer to our approach and discuss how to apply theory revision techniques. Such tech-
niques are discussed in this context by, e.g., [8, 30]: their approaches, though inspired
by different ideas and purposes, consider AGM operations but not in the context of rule-
based non-monotonic frameworks. A very sophisticated work is [39], where beliefs are
modeled as sets of Linear Temporal Logic formulas and intentions are derived from the
agents current active plans. A dynamic update operator is introduced and the revision
of intentions is determined by the dynamics of agents’ beliefs. No reference however is
made here in regard to the role of other factors, such as obligations.

5 Summary and Future Work

In this paper we presented an extension of DL with path labels to reason about inten-
tions and obligations The formalism was able to handle intention reconsideration when
the agent’s intentions conflict with obligations. In particular, we showed that the recon-
sideration of different types of intentions can be modeled using various techniques from
revision theory.

This is a preliminary step towards modeling intention reconsideration in DL. A num-
ber of open issues should be addressed.

– According to [25] if I violate a norm r but I comply with an obligation which is
meant to compensate the violation of r, I am still compliant. In [10] we introduced
the operator ⊗ to handle compensations in a version of DL with modalities but
without paths. What happens if we combine ⊗ with DL with paths?

– In [20] we showed that the extensions of agent theories, in some modal versions of
DL, can be computed in linear time. We will have to check whether this is preserved
in the new logic.

80 A. Rotolo

– We have to investigate the properties of the new operations over agent theories. In
particular, we have to better study how to minimize changes.

– Another possibility is not to revise the set of rules for intention, but to change rule
priorities [19]. Also this question is left to a future research.

Acknowledgments. This paper benefited from conversations with Guido Governatori
and Leon van der Torre. A different version of it was published in the IJCAI 2011
proceedings [34].

References

1. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni, P.: Compliance ver-
ification of agent interaction: a logic-based software tool. Applied Artificial Intelligence
20(2-4), 133–157 (2006)

2. Billington, D., Antoniou, G., Governatori, G., Maher, M.J.: Revising nonmonotonic theories:
The case of defeasible logic. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999.
LNCS (LNAI), vol. 1701, pp. 101–112. Springer, Heidelberg (1999)

3. Boella, G., Broersen, J., van der Torre, L.: Reasoning about constitutive norms, counts-as
conditionals, institutions, deadlines and violations. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.)
PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 86–97. Springer, Heidelberg (2008)

4. Boella, G., van der Torre, L.: Fulfilling or violating obligations in multiagent systems. In:
Proc. IAT 2004 (2004)

5. Bou, E., López-Sánchez, M., Rodrı́guez-Aguilar, J.A.: Adaptation of autonomic electronic
institutions through norms and institutional agents. In: O’Hare, G.M.P., Ricci, A., O’Grady,
M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 300–319. Springer,
Heidelberg (2007)

6. Bratman, M.E.: Intentions, Plans and Practical Reason. Harvard University Press, Cambridge
(1987)

7. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-
tecture. Cognitive Science Quarterly 2(3-4), 428–447 (2002)

8. Cawsey, A., Galliers, J., Logan, B., Reece, S., Sparck Jones, K.: Revising beliefs and in-
tentions: A unified framework for agent interaction. In: Proc. 9th Biennial Conference of
the Society for the Study of Artificial Intelligence and Simulation of Behaviour. IOS Press,
Amsterdam (1993)

9. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial Intelli-
gence 42(1), 213–261 (1990)

10. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Programming cognitive agents in
defeasible logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 621–636. Springer, Heidelberg (2005)

11. Dastani, M., Governatori, G., Rotolo, A., van der Torre, L.: Preferences of agents in defea-
sible logic. In: Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 695–704.
Springer, Heidelberg (2005)

12. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law 7(1), 69–79
(1999)

13. Dignum, F., Morley, D., Sonenberg, L., Cavedon, L.: Towards socially sophisticated BDI
agents. In: ICMAS 2000, pp. 111–118 (2000)

14. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based middle-
ware for electronic institutions. In: Proc. AAMAS 2004. ACM, New York (2004)

Rule-Based Agents, Compliance, and Intention Reconsideration 81

15. Flores, R.A., Chaib-draa, B.: Modelling flexible social commitments and their enforcement.
In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS (LNAI), vol. 3451,
pp. 139–151. Springer, Heidelberg (2005)

16. Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.-A., Vasconcelos, W.:
Distributed norm management in regulated multiagent systems. In: Proc. AAMAS 2007.
ACM, New York (2007)

17. Garca-Camino, A., Rodrguez-Aguilar, J., Sierra, C., Vasconcelos, W.: Constraint rule-based
programming of norms for electronic institutions. Autonomous Agents and Multi-Agent Sys-
tems 18, 186–217 (2009), doi:10.1007/s10458-008-9059-4

18. Governatori, G., Maher, M.J., Billington, D., Antoniou, G.: Argumentation semantics for
defeasible logics. Journal of Logic and Computation 14, 675–702 (2004)

19. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of
defeasible theories. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 104–118. Springer, Heidelberg (2010)

20. Governatori, G., Rotolo, A.: Bio logical agents: Norms, beliefs, intentions in defeasible logic.
Autonomous Agents and Multi-Agent Systems 17(1), 36–69 (2008)

21. Governatori, G., Rotolo, A.: How do agents comply with norm? In: Web Intelligence/IAT
Workshops, pp. 488–491 (2009)

22. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: Proc. ICAIL 2005, pp. 25–34. ACM, New York (2005)

23. Governatori, G., Padmanabhan, V., Rotolo, A., Sattar, A.: A defeasible logic for modelling
policy-based intentions and motivational attitudes. Logic Journal of the IGPL 17(3), 227–265
(2009)

24. Governatori, G., Rotolo, A.: A computational framework for institutional agency. Artif. In-
tell. Law 16(1), 25–52 (2008)

25. Governatori, G., Rotolo, A.: A conceptually rich model of business process compliance. In:
APCCM, pp. 3–12 (2010)

26. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 101–114. Springer,
Heidelberg (2007)

27. Fred Hübner, J., Boissier, O., Bordini, R.H.: From organisation specification to normative
programming in multi-agent organisations. In: Dix, J., Leite, J., Governatori, G., Jamroga,
W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 117–134. Springer, Heidelberg (2010)

28. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems: the normative
systems perspective, pp. 275–307. John Wiley and Sons Ltd., Chichester (1993)

29. López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms. In: Proc.
AAMAS 2002. ACM, New York (2002)

30. Lorini, E.: Variations on intentional themes: From the generation of an intention to the exe-
cution of an intentional action. PhD thesis, University of Siena (2007)

31. Lorini, E., Herzig, A.: A logic of intention and attempt. Synthese 163(1), 45–77 (2008)
32. Meyer, J.-J.C., van der Hoek, W., van Linder, B.: A logical approach to the dynamics of

commitments. Artif. Intell. 113, 1–40 (1999)
33. Rao, A.S., Georgeff, M.P.: Modelling rational agents within a BDI-architecture. In: Proc.

KR 1991. Morgan Kaufmann, San Francisco (1991)
34. Rotolo, A.: Norm compliance of rule-based cognitive agents. In: Proc. IJCAI 2011. AAAI

Press, Menlo Park (2011)
35. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60, 51–92 (1993)
36. Singh, M.P.: On the commitments and precommitments of limited agents. In: Proc.

IJCAI 1991 Workshop on Theoretical and Practical Design of Rational Agents (1991)

82 A. Rotolo

37. Singh, M.P., Asher, N.M.: A logic of intentions and beliefs. Journal of Philosophical Logic
38. Tinnemeier, N., Dastani, M., Meyer, J.-J.: Roles and norms for programming agent organi-

zations. In: Proc. AAMAS 2009, pp. 121–128. IFAAMS, Richland (2009)
39. van der Hoek, W., Jamroga, W., Wooldridge, M.: Intention is choice with commitment. Ar-

tificial Intelligence 42(1), 213–261 (1990)
40. van der Torre, L., Boella, G., Verhagen, H. (eds.) Normative Multi-agent Systems, Special

Issue of JAAMAS, vol. 17(1) (2008)
41. Wooldridge, M.: Reasoning about rational agents. MIT Press, Cambridge (2000)

A Dynamic Metalogic Argumentation

Framework Implementation

Jenny S.Z. Eriksson Lundström1, Giacomo Aceto2,�, and Andreas Hamfelt3

1 Dept of Informatics and Media, Uppsala University, Sweden
2 Faculty of Engineering, University of Bologna, Italy

{jenny.eriksson,andreas.hamfelt}@im.uu.se, giacomo.aceto@gmail.com

Abstract. One of the main challenges that faces the AI-community is
to express close approximations of human reasoning as computational
formalizations of argument. In this paper we present a full implemen-
tation and accompanying software for defeasible adversarial argumen-
tation. The work is based on the metalogic framework of defeasible
adversarial argumentation games of [9]. The software we developed con-
sists of: a meta-interpreter, a declarative implementation of the argu-
mentation game model and a graphical interface developed in Java that
shows the results of the game execution and the construction of the ar-
gumentation derivation tree1.

1 Introduction

A core endeavor of formal argumentation is to contribute to formal philosophy a
characterization of argumentation, capturing aspects of its phenomena in a way
precise enough for scientific evaluation and prediction. However, to also present
this characterization in the form of a specification executable by computer sys-
tems is essential for enabling the evolution of software directed towards the
addressed domain; here computational aid for the advancement and scrutinizing
of argumentation. It turn, such implementations provide a contribution to for-
mal philosophy as they may enhance the acceptance and spread of the means of
formal description of the identified phenomena. As an example, research in gen-
eral defeasible argumentation has presented some large scale implementations
adapted for eg. robotics [5] and the semantic web [2]. Both making significant
contributions to the field of defeasible reasoning and formal argument.

For formal models of disputes, there exist comprehensive approaches to de-
feasible logic and argumentation in the field of AI and law cf. e.g. [24][7].

As an early example [11] presents a normative formalization and fully im-
plemented computational model, using conditional entailment while identifying
issues in the argumentation. For rule-based logic frameworks, a full implemen-
tation of defeasible logic in Prolog was presented in [20]. However, surveying the
� This paper was written when this author was a visiting student at the Department

of Informatics and Media, Uppsala University, Sweden.
1 The source code of the software and accompanying documentation are available on

the web site [splogad.altervista.org].

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 83–98, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

84 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

Table 1. Won and lost dialogues. Source: [10], [9]

won lost

� κ � ¬κ

pro |∼ κ ∧ opp-rep exhausted |� κ ∧ prop-rep exhausted

some valid move leads to lost all valid moves lead to won

for the opponent (at turntaking) for the opponent (at turntaking)

� ¬κ � κ

opp |∼ ¬κ ∧ prop-rep exhausted |∼ κ ∧ opp-rep exhausted

some valid move leads to lost all valid moves lead to won

for the proponent (at turntaking) for the proponent (at turntaking)

legal argumentation literature, after [11], the contributions are mostly theoretical
studies of extensions to the framework of [8]. Thus, making it less straightfor-
ward to incorporate these contributions in the evolution of software in the legal
domain.

In this paper we present a full implementation and accompanying software
for defeasible adversarial argumentation. Our findings are illustrated by an ap-
plication of defeasible logic by means of an argumentation framework for legal
debate, based on [9]. The argumentation framework is based on a metalogic for-
malization of adversarial dispute of two debating parties. The argumentation
draws on game trees for unraveling the debate.

The paper is outlined as follows: In Section 2 the metalogic argumentation
framework of [9] is discussed. In Section 3 we present our defeasible meta-
interpreter. In Section 4 the time and space complexity of our approach is ana-
lyzed. In Section 5, we present the graphical interface of the system. In Section 6,
we touch upon related work, and in Section 7, we conclude.

2 Metalogic and Argumentation

Human argumentation can be seen as dynamic and non-monotonic in its nature.
To us this suggests that argumentation and the validity of arguments need to
be scrutinized in a dynamical and flexible setting where the interaction is in-
fluenced by the parties previous arguments. In addition, while disputing, each
party choose to put forward their arguments from separate and private reposito-
ries that, until presented by the party itself, remains hidden from the adversary.
The metalogic framework for adversarial argumentation analysis is a dynamical,
flexible and exhaustive approach to the logical analysis and formalization of ar-
gumentation and dispute cf. e.g. [14][9]. It presents a customizable framework
and computational system utilizing AI methods for the formal modeling and
analysis of argumentation. In its current form, we have in mind situations in
which the case circumstances, the applicable background knowledge as well as
the parties pleas and argumentation strategies are available, eg. in legal audits

A Dynamic Metalogic Argumentation Framework Implementation 85

concerning the correctness of a litigation, as an alternative approach to dynamic
priorities of rules; or if the complete knowledge is yet to be presented, for in-
termediate analysis of the current standing of a dispute, eg. for assessing the
strategic burden of proof discussed in [23]. The model and system is inspired by
and adheres to the four layers of legal argumentation proposed by [22]. A dis-
tinguishing feature of the framework is the close approximation of the dynamic
progression taking place in an adversarial dispute. Hence, focus is placed on the
formalization of the interaction between the logical layer of defeasible argumen-
tation and the dynamic progression in the argumentation. Thus, in the model
we find a dynamical, exhaustive procedural layer of dialectical disputation, in
which the control of the game reasoning mechanism that captures the nondeter-
ministic nature of the argumentation process as a dialectic process is explicitly
exercised via the metalogic formalism. A computational dynamical defeasible
logic dialectical layer is devised, in which the logical and dialectical layers are
handled by a defeasible logic framework that is inspired by [1,12]. Adhering to
our key objectives described above, a key difference of our approach is that the
parties in general advance their available knowledge stepwise.

The model provides a closer approximation of key aspects of argumentation,
as it accommodates that in most non-trivial disputes, the parties lack insight in
the future moves of the other player. Hence, each party has the possibility to
withhold arguments in order to strengthen its own position. Stated in metalogic
the layers are clearly stratified although joined into seamless interaction. This
caters for a dynamical and flexible computation of the game, drawing on the
strengths of the AI-techniques of game tree analysis.

2.1 Argumentation Games

Consider an adversarial argumentation game as an interaction between two par-
ties, the Proponent and the Opponent. Debating over a topic, the parties take
turn in putting forward a subset of these arguments, i.e. move, with the sole
purpose of justifying their claim. From these arguments, logical consequences of
the claims and the available common knowledge could be deduced. The challenge
of the game is to conduct a winning strategy analogous to the elaboration of a
winning strategy in a board game like chess.

The game is governed by a protocol for admissible moves and the conditions
for winning/losing the game. For this purpose, the analogy to board games have
been used when formalizing the termination criteria, i.e. e.g. the notions won and
lost cf Table 1. We note that in many cases the game may be expected to come
out as a draw. This is the case in situations where the proponent can defend her
claim against attack, but cannot justify it by the logical means available, e.g.
available evidence, and presented arguments.

The knowledge of the players is separated into private knowledge and public
knowledge. Hence, each party has its own private repository of sentences from
which they can put forward during the dispute. We are inspired by the defeasible
logic of [1,12] in which sentences take form of implication clauses comprising a
body of premises and a head. Ordinary strict clauses use the implication symbol

86 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

→, whereas defeasible clauses use ⇒. Arguments are generally single rules and
multi-steps moves are allowed without a specific order, that means that if a player
has got the following rules: ⇒ p, → p and the opponent has the following ones
⇒ s , ⇒ t , then both players can choose which rules to put forward from their
private repository. In order to prevent the party from repeating itself, and thus,
to prevent the argumentation game from reducing to a blackboard trivialization,
when a party makes a move, the rules have to be retracted from the private
knowledge base. The arguments put forward are required to be consistent in the
sense that a party cannot contradict herself. The outcome of a dispute is not
to depend only on the arguments available, but also on the strategy played by
the party. Hence, a special clause ‘resting’ is used to express that the party is
refraining from putting forward additional arguments.

The public knowledge forms the common set of arguments in the form of
propositional statements in a defeasible logic. A distinction is made between
strict rules, expressing indisputable assertions and the defeasible rules represent-
ing beliefs that can be overruled by additional information. The model allows
for reasoning on the strength of different rules of the same type. The public
knowledge and propositions that form the object language clauses are encoded
as terms in metalogic.

A certain state in the argumentation game is like a state in the board game.
Initially this public knowledge base is like the initial situation of a board game
like chess. The computational analysis of the argumentation game then proceeds
in analogy to the analysis of game trees for board games having been studied
extensively in artificial intelligence, cf. e.g., [18]. During the argumentation, the
knowledge base is extended with the arguments put forward by the parties. For
a comprehensive presentation of the intuitions constraining the arguments to be
presented during the dispute cf. [9].

2.2 A Sample Legal Case in Defeasible Logic

Let us consider a simplified legal dispute concerned with prescriptive rights2.
A prescriptive right is a legal right principle dating back to Roman law, en-

abling the obtaining of ownership by sustained use or possession of land or
physical objects. However, legal ownership is not granted if the possessor has
obtained or received permission or has engaged in a contract with the legal
owner. As a main rule, the possession must have lasted without interruption at
least for twenty years, possibly through a succession of possessors.

In the common knowledge base we find the following clauses:
possession ⇒ ownership
possession ∧ permission → ¬ownership
permission → possession

The first two clauses formalize the principle of prescriptive right. The third
clause expresses that granting of an unrequested permission implies that posses-
sion has taken place.

2 The example was introduced in [14].

A Dynamic Metalogic Argumentation Framework Implementation 87

We set up a particular argumentation game by specifying repositories of the
two parties and a key claim.

Repository of the Proponent: ⇒ possession
The keyclaim κ of the proponent is ownership. The clause ⇒ possession

denotes that the proponent claims that possession has taken place.
Repository of the Opponent: ⇒ ¬possession → permission
The opponent has the option of claiming that possession has not taken place.

On the other hand, she has also at her disposal the second clause enabling her
to disclose a permission, meant here as evidence which is not to be disputed.

For this simple example the argumentation game tree unfolds as follows:
The proponent initiates the argumentation by uttering her sole clause. Then

the opponent can choose between the two clauses available in her repository.
If the opponent utters the first clause the dispute becomes a draw, because the
question of possession remains unsettled and hence, ownership is not established.
Neither the key claim nor the negation of the key claim is justified. However,
the opponent may choose another move, namely putting forward evidence of a
permission being granted. In this case the negation of the key claim is justified
in the defeasible logic and the game is then won by the opponent, in spite of
possession being acknowledged.

The upshot of this argumentation game analysis is that the opponent, by play-
ing her second choice, can win the argumentation despite that the proponent’s
claim remains undisputed. Hence, we note that the outcome of this particular
dispute depends not only on the arguments available, but also on the strategy
played by the party.

2.3 Metalogic Program Formalization

In the argumentation game exploration, we determine the state of the game by
the current state (S). (S) consists of the common knowledge base and the two
repositories. Extending the termination criteria from Table 1 to all argumenta-
tion states, an argumentation state is said to be won if there exists a move to a
subsequent state that is lost for the other party. An argumentation state is lost
if all admissible moves leading to a subsequent state are won by the other party.

Appealing to negation as failure for the definition of mutually recursive clauses
for the non-terminal states ofwon and lost (using existential and universal quantifi-
cation alternately), we may obtain the game tree explorer with the Prolog clauses:

won(S) ← move(S, S′) ∧ lost(S′)
lost(S) ← not defensible(S)
defensible(S) ← move(S, S′) ∧ not won(S′)

where defensible is an auxiliary predicate.
We implement move as the argumentation state transition from state S to the

subsequent state S′ by means of a selected proposition according to appropriate
contextual and termination criteria for the argumentation.

As the dynamical defeasible logic dialectical layer is clearly separated from
the elaboration at the formal metalevel, an easy replacement of the defeasible

88 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

logic can be achieved. In fact, in [9] both an ambiguity propagating defeasible
logic prover and an ambiguity blocking defeasible logic prover, inspired by [12],
are realized in metalogic programming. Due to space limitations, the interested
reader is conferred to [9] for the full formalization.

The argumentation game tree explorer is to appeal to the defeasible logic
prover with a termination criterion to check whether the key claim or its denial
hold, i.e. whether the keyclaim or its denial has become irrefutably defeasible
in the current argumentation state. The game tree explorer is invoked with the
initial state comprising the common knowledge resource and the two repositories.

Given the above presented, the advantage of a logic formalization of argumenta-
tion becomes visible. The logic formalization provides a symbolic knowledge rep-
resentation while preserving a comprehensible behavior of the devised knowledge
representation systems reasoning.Thenon-monotonicnatureof thedefeasible logic
layer accommodates the representational issues, and the metalogic program estab-
lishesthesoundcomputationandhowtointerpretthesemanticsofthecomputation.

3 Implementation: A Dynamical Meta-Interpreter for DL

We now turn our interest from the metalogic characterization to the implementa-
tion issues of a software directed towards the addressed domain; computational
aid for the advancement and scrutinizing of legal argumentation.

Using Prolog (Sictus 1.4) we developed an implementation of a non-ground
defeasible meta-interpreter. Prolog fits well with our approach as it uses the
same data structures to represent programs as well as data. In addition, the
non-monotonic nature of the defeasible logic is facilitated by Prolog as it allows
for easy knowledge base update and new goal evaluations.

As stated in the previously presented Section 2.1, we emphasize a clear strati-
fied architecture. It caters for the modularity and scalability of our implementa-
tion. Given an object language (a defeasible theory expressed as Prolog-clauses),
its evaluation is performed by our defeasible meta-interpreter. As described
above, the assessment is conducted at a meta-level able to reason on the object-
level language. Thus, our first issue is to implement the defeasible logic dialectic
layer (extending the expressivity to include defeasible arguments and defeasible
derivability), and, second we have to find a representative and computationally
efficient way to implement the argumentation game model with its metalogic
representation encoding of variables, constants and the other terms of our de-
feasible logic theory (a type-free language) as terms in our meta-language.

3.1 Implementation: The Dynamical Defeasible Logic Prover

Our point of departure was the Prolog-defeasible logic implementation presented
by [20]. A key difference in our approach is that we aim to handle human argu-
mentation in general and legal dispute in particular, and thus need to be able to
handle conflicting superiority relations that requires meta-superiority relations
to be resolved. Due to the structure of legal rules and exceptions to such, these

A Dynamic Metalogic Argumentation Framework Implementation 89

are quite common in the legal domain cf. the Italian Villa example discussed by
[22]. In the example this is illustrated by that if a building needs restructuring
then its exterior can be modified. However, there also exists an earlier rule saying
that if a building is a protected building because of archeological or historical
values, then it cannot be modified. Those rules clearly conflict, and cannot be
straightforwardly handled by a single level superiority relation.

Basic features
Strict rules are represented by the “ : −/2′′ operator in Prolog:
flies(X):- bird(X).
In order to extend the Prolog engine to handling defeasible reasoning, we defined
a new kind of rules (defeasible rules). As common in the literature, the defeasible
rules are represented by the “ := /2′′ operator, as follows:
flies(X) := bird(X).

In our defeasible logic prover, besides from negation as failure, classical nega-
tion is implemented to cater for the non-monotonic and dynamical behavior of
possibly incompatible defeasible arguments. We represent classical negation, i.e.
when something is not the case, by the operator neg/1. In contrast to negation
as failure in use in a traditional Prolog clause, this operator allows us to put the
negation at the head of a clause.
neg flies(X) :- house(X).

Although the argumentation game assessment is governed by the argumen-
tation game model interpreter, i.e. the dynamical procedural layer of the ap-
plication, the dynamical defeasible logic prover can evaluate the following basic
features of a theory that we put forward:

Derivability3. Given a rule the system tries to derive it using the rules in the
knowledge bases. The derivation can be:

– Strict: The system tries to evaluate a goal by only using strict rules.
– Defeasible: The system derives a goal using both strict rules and defeasible

rules.
Attackability. With attackability the system addresses potential conflicts be-
tween defeasible rules in the knowledge base:

– Rebutting attacks in which a new conclusion is proposed in opposition to
an existing rule, and

– Undercutting attacks in which the conclusion is blocked.

We could fit our defeasible logic prover as an integration of [19] and [17] as
it is able to execute both ambiguity propagation and ambiguity blocking (cf.
[4]). In our system we can perform either ambiguity propagation or ambiguity
blocking by changing the criteria for the evaluation. This impacts the assessment
3 It should be noted that in this evaluation we don’t distinguish between derivable

rules and supportive rules as in [3]. Our system finds all supportive rules for a given
goal automatically, as it investigates both the conclusions and the conclusions of the
supportive rules in the body of the clause.

90 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

of attackability. If a defeasible rule (that is defeasibly derivable) is attacked by
another defeasibly derivable rule we implemented two different behaviors: For
ambiguity propagation we say that a rule R is rebutted by a rule R’ iff both rules
are derivable and there exists a superiority relation in favor of R’; otherwise for
ambiguity blocking, we say a rule R is rebutted by a rule R’ iff both rules are
derivable and there do not exist a superiority relation in favor of R.

This implementation provides a more general definition of ambiguities more
suitable for programming logic due to its scalability and as it better represents
the state of each nested derivability predicates invocation.

Decision Criteria
In order to properly address the complexities of human argumentation in general
and legal dispute in particular, one important class of rules that is needed to
solve potential conflicts of arguments is decision criteria. Hence, the defeasible
logic prover is augmented by features such as defeasible incompatibility rules,
defeasible superiority relations, multiple superiority relations evaluation, and a
loop detector equipped to handle inconsistent superiority relations.

– Incompatibility: An incompatible rule can be considered as a special un-
dercutting criterion. We say that two rules R and R′ are incompatible if R
and R′ are defeasible rules, which both are derivable, and there exists a rule
incompatible(R, R). In other words, it means that the system cannot reach
a conclusion since R’ conflicts with R.

An alternative approach is to define priorities between rules.
– Superiority relations: we say that a rule R is superior to another rule,

say, R’ if there exists a strict superiority rule arguing that:
1. there exists a strict superiority rule arguing that and its body is

derivable.
2. there exists a superiority rule in favor of R and there are no derivable

superiority rules in favor of R’ ;
3. there is a superiority rule sup rule1 in favor of R and there is a superi-

ority rule sup rule2 in favor of R’, but those rules are included in a third
superiority relation that argues that sup rule1 is superior to sup rule2.

The superiority relation is expressed by a sup/2 predicate stating that in
case of conflict, the former argument is superior to the latter.

For the special case of superiority we find specificity cf. [25][6] as an addi-
tional criterion for choosing between two conflicting rules.

– Specificity: In our implementation the Specificity predicate belongs to su-
periority relation one. If the above criteria fail, we check if the condition of
R is more specific than the condition of R’, i.e. if the body of R’ is derivable
using the body of R and the contrary does not hold.

Rejecting criterion: when we add information to our knowledge base (in the
form of rules), we introduce a consistency check. If the newly introduced rule
is the negation of a rule that already belongs to our common knowledge base
then the rule is to be rejected. This criterion is valid for the introduction of
both new strict as well as new defeasible rules.

A Dynamic Metalogic Argumentation Framework Implementation 91

The criteria presented above emphasize the flexibility of the implementation as
its complex behavior is the result of mutual and multiple invocation of the various
predicates. In addition, inspired by [20] the defeasible logic prover provides addi-
tional tools able to investigate the reasons of a given derivation failure/success.

3.2 Implementation: The Dynamical Game Model Interpreter

Our second objective was to find a representative and computationally efficient
way to implement the dynamic exhaustive metalayer. For this purpose, a non-
ground representation, a Vanilla-like meta-interpreter, was chosen as the point
of departure4.

The Vanilla-interpreter is well equipped to handle propositional defeasible
logic as quantifier problems are not to arise. In addition, it requires less resources
to hold the terms of the object language, and it is straightforward to implement,
as the object-language variables are encoded as meta-language variables, instead
of constants as in a ground representation. The idea is to represent the whole
object-language in the meta-level in order to manipulate and execute the object-
level predicates without translation. Thus, the otherwise needed, rather compli-
cated definitions for the built-in logical predicate about unification, renaming,
et c are superfluous.

We present an implementation of the dynamical exhaustive procedural layer
of dialectical disputation in which the control of the game reasoning mechanism
captures the nondeterministic nature of an adversarial argumentation dispute
as discussed in Section 2. It should be noted that for the evaluation we can as-
sume different protocols for the argumentation game analysis. The implemented
protocol is based on [9](Chapter 10) regarding the definition of the two funda-
mental predicates won and lost. In the following we present the argumentation
game implementation for the ‘won proponent’ characterization, cf. Figure 1.

We implement the argumentation game as an AND/OR-graph. Hence, the
tree structure is built starting from the root. Recursively it traverses down to
the leaf nodes acquiring the generated data.

In an ambiguity propagating setting, given the characterization presented in
the table, we will see some complexity issues arising due to a possible double
deliberation for the lost predicate. Indeed we need to implement two different
alternatives of the lost predicate. For this purpose, in the implementation both
of the two following different approaches are considered:

1. We allow for an asymmetrical interpretation of the lost predicate and accept
the increased complexity resulting from a double evaluation.

2. We only use the interpretation of an explicit negation of the keyclaim and
switch to a skeptical semantics in order to avoid that both the keyclaim and
its negation could be true.

As the game involves two players, we distinguish among each player’s private
repository of information and a public knowledge called CKB. Indeed, when one
4 Differences between ground and non-ground meta-interpreter are discussed by [15],

who elaborates on the advantages and disadvantages of each approach respectively.

92 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

won(pro,CKB, ProKB, OppKB,Tree,NewTree):-

keyclaim(Keyclaim),

assertall(CKB),

strict der(KB, Keyclaim),

nl,write(’Proponent won...strict!’),nl,

append(Tree,[[’Proponent won’,�, []]],NewTree),

unassertall(CKB),!.

won(pro,CKB, ProKB, OppKB, Tree, NewTree):-

isEmpty(OppKB),
keyclaim(Keyclaim),

assertall(CKB),

def der(KB, Keyclaim),

append(Tree,[[’Proponent won’,�, []]],NewTree),

unassertall(CKB),!,

nl,write(’The keyclaim is defeasible

and the opponent repository is exhausted!’).

won(pro,CKB, , , ,) :-

unassertall(CKB),fail.

won(pro,CKB,ProKB,OppKB,Tree,NewTree):-

orand,

countPlayer(ProKB,ProItem),

findall([X,′�′,NewTreeLost],

(

member(X,ProKB),

move(X,CKB),

append(CKB,[X],NewCKB),

delete(X, ProKB, NewProKB),

nl,write(’Calling ‘lost(opp)’ and adding: ’),

write(X),

lost(opp,NewCKB,NewProKB,OppKB,Tree,

NewTreeLost),

List),

)

append(Tree,List,NewTree),nl,

countPlayer(List,N),

N == ProItem.

won(pro,CKB,ProKB,OppKB,Tree,NewTree):-

\+ orand,

countPlayer(ProKB,ProItem),

findall([X,’�’,NewTreeLost],

(

member(X,ProKB),

move(X,CKB),

append(CKB,[X],NewCKB),

delete(X, ProKB, NewProKB),

nl,write(’Calling "lost(opp)" and adding: ’),

write(X),

lost(opp,NewCKB,NewProKB,OppKB,Tree,

NewTreeLost),

List),

)

append(Tree,List,NewTree),

countPlayer(List,N),

List =̄ [].

Fig. 1. Implementation for the ‘won proponent’ characterization

of the players puts forward a new rule, the system will have to remember which
of the players moved and in which node the player made its move, thus, each
branch represents a unique evolution of the keyclaim evaluation.

Each node represents a new state characterized by a new rule being put for-
ward by one of the parties, we have a node for each move, and for each branch
that rule is put forward in different levels. As, our meta-interpreter is based on a
non-monotonic logic, it means that by evaluating the derivability of the keyclaim
in different nodes, the evaluation of the keyclaim could change. Hence, in each
node of the particular argumentation game tree we should evaluate the keyclaim
asserting a related set of rules that are valid for that particular node. The root is
the keyclaim, and its children are all the possible moves that the adversary can
put forward. It ensures the exhaustiveness of our approach cf. Section 2. If there
exists (OR) at least one branch in which the proponent wins in the subsequent
step for each (AND) of her/his moves, the debate is won by the proponent, and
vice versa. Actually, the game trees that we have to explore are two, the first
one tries to derive a victory for the proponent, the second tree tries to establish
a victory of the opponent.

A Dynamic Metalogic Argumentation Framework Implementation 93

(a) 4 rules (b) 5 rules

Fig. 2. Resources Usage

4 Complexity

In this section we discuss some performance tests of our system and we pro-
pose some coding improvements in order to enable a better performance. Our
assessment provides information about the time (measured in ms) to finish an
argumentation game and the total amount of memory used during the task exe-
cution. We tested the application adding some theories with a growing number
of rules, on a Centrino 2 T2300@1.66Ghz, 1Gb Ram, kernel Linux 2.6.32.22-
generic. Initially, we were not able to get a result (except for trivial examples)
due to the stack limitation blocking our application. The system slowed down
and arrived at a deadlock. On the Linux OS, this problem was easily solved as
we are able to switch the stack limitation to unlimited performance.

In a simple challenge between two parties whose private KB contains not more
than 5 rules for each one, the system spent 1h11min. to reach a conclusion, and
it required more than 70mb. In Figure 2 we show the complexity results.

In the lefthand chart of Figure 2 we notice in a four times four rule example
that we get excessive usage of memory, although the time for the evaluation
is approximately 2.5 seconds. It is not a great result, but considering that the
application is not yet optimized it may be acceptable. Unfortunately, the resource
usage explodes just by adding one more rule for each party. In the righthand
chart of Figure 2 we can see that the time needed for a five times five rule
evaluation is 4.079.490 ms (approx. 1h and 8 minutes), and the task requires
more than 69MB of memory. This result is cumbersome as a non-trivial theory
should contain a large number of possible rules to put forward, cf. e.g. [16,13].

4.1 Complexity Analysis

This problem is due to the fact that the argumentation game tree is built starting
from the root recursing to the leaf nodes while requiring the generated data via
backwards reasoning. Given the exhaustiveness of this approach, it means that

94 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

in a particular node, after won/lost predicate invocation, Prolog cannot remove
the invoking predicate from the stack as it must remain open and wait until the
sub-tree explorations are completed. Since each node represents the addition of
a new rule by one of the parties, we have a node for each move, and all branches
are permutations of a branch in which all the rules are inserted.

To better understand the causes of this huge increase of time and memory we
measure the complexity of the system:

State Space Complexity: Given k and q, where k is number of rules of the
proponent and q opponent number of rules, the number of total nodes would
be the following succession:nodenumber = 1+k+k ∗ q +k ∗ q ∗ (k−1)+ ...+
k ∗ q ∗ (k − 1) ∗ (q − 1) ∗ (k − 2) ∗ (q − 2) + ...that could be expressed with a
recursive function. We can round down this number only by using depth and
branch factors. In this case we use a depth (d) of k+q (in the worst case)
and a branching factor (b) that is the average among k, q which renders the
complexity to approximately O(bd);

Game Tree Size: The game tree size represents the number of conclusions that
we can reach, i.e. the number of child nodes of our tree, namely, k! ∗ q!;

Game Tree Complexity: The complexity of the game tree represents the
minimum number of leaves that we have to explore. It coincides with the
total number of leaves, k! ∗ q!;

Computational Complexity: The computational complexity depends on the
number of input arguments, hence, we can see that the number of items
increases factorially. Furthermore, for each node instance we would create a
data structure containing three different lists (Common KB and two private
KB). It should be noted that in a 5X5 rules dispute we would have 14400
leaf nodes, each containing a different data structure whose size is between
1Kb-3Kb (in our simple examples). It means that just for the children nodes
we would need approx. 50MB of memory. It is easy to demonstrate that
this problem is an ExpTime problem. Also in terms of memory we have an
exponential complexity for task execution.

4.2 Complexity Reduction

In this section we suggest some possible code optimizations by means of par-
allelism and recursion optimization. As stated in the previous Section 3.2, our
bottleneck is caused by the mutual and multiple recursion. In other words, that
in a given node, after won/lost predicate invocation, Prolog cannot remove the
invoking predicate from the stack and it must remain open and wait till the end
of the generated sub-tree explorations.

Taking a look on the code, we notice that in our implementation, the find-all
predicate causes two separate problems: First, even in the case that it is invoked
by the last rule in the clause, the execution of the find-all predicate requires mul-
tiple invocation of the same predicate and thus, leaves us with the situation that
tail recursion can only be partially implemented. Secondly, the find-all predicate
cannot be the last rule to be executed, because after an execution of the find-
all predicate we need to evaluate whether the won/lost predicate is verified for

A Dynamic Metalogic Argumentation Framework Implementation 95

all child nodes of the argumentation game tree. Hence, a possible solution is to
re-design our algorithm to prevent that the recursion fills the stack, or at least
prevent the excessive usage of the processor during execution. To fix this we can
completely change our recursive approach and edit our algorithm regarding the
forward tree building, the find-all parallelism or by delaying the AND/OR check.

Forward Tree Building
Forward-tree building concerns one of the heaviest recursive issues, namely, that
before completing its result a parent node has to wait until all the children sub-
executions have completed the building of their respective sub-lists. To perform
this task the processor slows down due to the extensive memory usage. Thus,
it would be a better solution if each parent node sent its “up-list” to its child
nodes. This also goes for the case that the tail-recursion cannot completely close
the parent predicate. In this way we can save memory as the allocation decreases.

Find-All Parallelism
The time needed for a complete execution of a last invocation, of the find-all
predicate is a thorny problem as multiple recursion is not easily prevented. In
our implementation, however, the nested execution of the find-all arguments is
completely independent. It means that we can execute its argument in parallel
by exploiting the Muse framework, provided by SicstusProlog5, and thereby im-
prove our performance. In the literature, there are some examples that report
a speed up to about 3.8. In our example argumentation game of 5X5 rules, it
means that we could reduce the time from 1h8min. to 17min. It is a promis-
ing result, but we still have to remember that in our case the time increases
exponentially and the 5X5 rule example is just an elementary example. Never-
theless, by a combination of all the changes we may achieve an even better result.

Delaying the AND/OR Check
Finally, we said that the find-all predicate cannot be the last rule as we need to
check whether at least for one branch (OR) the proponent wins and for all branches
(AND) whether the opponent loses. In the implementation all the child nodes, be-
fore completion, create tracks of their list.The list is forwarded in a data structure,
and thus, we are able to build the argumentation tree in a bottom-up fashion.

Furthermore, there are more solutions such as a complete rewriting of the code
in a strongly typed language. In particular we suggest Erlang, which has been
invented in order to improve recursion performance and thanks to this provides
efficient implementations of concurrent programming.

5 Ubongo

The graphical interface Ubongo consists of the following components: The Ap-
plication Engine: The core of the application that has the job to manage the
5 This framework asserts a new predicate “muse flag(num workers, ,

<number of workers>)” while leaving the Prolog syntax unchanged.

96 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

other components; The Prolog Parser : An extended Prolog parser that accepts
also defeasible rules and initialization rules in order to configure the challenge;
The TreeViewer : A simple viewer that draws the derivation tree; The Defeasible
Meta-Interpreter.

Ubongo has been developed using Java(TM) SE Runtime Environment (build
1.6.020 − b02),, eclipse Galileo and javacc 5.0. The application is the graphical
interface front-end that provides some examples by default. It takes the theory
from the text viewer and sends it to the parser that is responsible for evaluating
the syntax. It is a Prolog parser built over YProlog. The parser has been modified
to also be able to handle evaluation of defeaters, defeasible rules and initialization
rules, which are used to instigate the initialization of a game. The following rules
are available:

– rule(key, <keyclaim>) : the rule that we have to use in order to put forward the keyclaim;
– rule(pro, <rule>) : <rule> is a rule that belongs to the private knowledge base of the Proponent;
– rule(opp, <rule>) : <rule> is a rule that belongs to the private knowledge base of the Opponent;
– rule(ambiguity blocking, <on/off>) : enables or disables the ambiguity propagation;
– rule(defeasible priority, <on/off>) : enables or disables defeasible priority;
– rule(orandTree, <on/off>) : enables or disables the AND/OR tree derivation;
– rule(metaSupRel, <on/off>) : enables or disables the meta superiority relation level, it controls

possible paradoxes that are put forward in the common knowledge base CKB;
– rule(mess, <rule>) : is a rule that we can use to add a message rule as for example write(‘<text-

to-write>’);

It should be noted that in this way Ubongo facilitates writing a theory and
its subsequent execution. The application uses an instance of pParser to check
whether the theory is correctly written. When a correct theory is introduced,
and the execution button is clicked (after the parser evaluation) Ubongo tries
to access a script and execute Maggie from java. Maggie loads the theory and
provides the assessment. This task is performed by opening a command editor
(shell in Linux) whose stack size is increased to unlimited value. The external
usage of Maggie allow us to simply add a folder in the root directory of Ubongo,
providing us with a completely modular scenario. This facilitates the easy re-
placement of the meta-interpreter version, i.e. by just changing the folder, you
are able to choose between the latest beta-release, Maggie 0.7 or a customized
version of the system. Actually, there is no direct invocation from java to Prolog,
since our aim is to leave this application non Sicstus-dependent, so by changing
the path of the Prolog engine a new script for Prolog invocation will be built
and executed. The result is presented as a tree built by gTreeViewer.

6 Related Work

The first defeasible meta interpreter was presented in [20] and based on the
formalism (LDR1 in [19]) in which competition was among Prolog rules. This
implementation provided both ambiguity blocking and ambiguity propagation
and a first attempt to define superiority relations. Nevertheless, this metainter-
preter was not able to solve most of the common problems in literature because
some limitations such as only one level of superiority relations and non-defeasible
incompatibility relations. The implementations accounted for in domains such

A Dynamic Metalogic Argumentation Framework Implementation 97

as robotics [5] and the semantic web [2] are all inspired by the defeasible meta
interpreter by [20] and draws on Nutes’ defeasible logic. They implemented a for-
malism able to cope with problems such as team defeat, prove disjunction and
failure by loop. A main difference to our approach is that the authors focus on
drawing conclusions from a given theory, while in our case the resulting mecha-
nism addresses sequences of defeasible (meta) theories, and uses meta-reasoning
(meta-rules or high level rules) to assess the acceptability and priorities of rules
for the theories at lower levels. Our goal was to provide a full Nute metain-
terpreter evolution for such adversarial argumentation games, in order to solve
problems such as the Roman Villa example described by [21] which we find arises
in human language domains in general and the legal field in particular.

7 Conclusion and Future Work

We have presented a full implementation and accompanying software for defeasi-
ble adversarial argumentation as an approach to expressing close approximations
of human reasoning as computational formalizations of argument. Hence, we
dealt with knowledge representations, non-monotonic logics and a game-model
that make possible building a human reasoning simulator able to contend a le-
gal debate between two parties. We proposed a meta-interpreter that provides
some features proposed in the literature over the years eg. defeasible superior-
ity relations. In addition, we propose some approaches in order to reduce the
argumentation game-model complexity. We noticed that the performance of our
dynamical meta interpreter is quite satisfactory as it is able to solve most of
the problems presented in the literature. We go forth with a deep theoretical
analysis to shed light on the intrinsical complexity of the system.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework
for defeasible logics. In: 17th American National Conference on Artificial Intelli-
gence, AAAI 2000 (2000)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of
defeasible reasoning logics and its implementation. In: Proc. of the 14th European
Conference on Artificial Intelligence, pp. 459–463. IOS Press, Amsterdam (2000)

3. Antoniou, G., Bikakis, A.: Dr-prolog: A system for defeasible reasoning with rules
and ontologies on the semantic web. IEEE Trans. on Knowl. and Data Eng. 19,
233–245 (2007)

4. Billington, D.: The proof algorithms of plausible logic form a hierarchy. In: Zhang,
S., Jarvis, R.A. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 796–799. Springer,
Heidelberg (2005)

5. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Using temporal consis-
tency to improve robot localisation. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G.,
Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI),
vol. 4434, pp. 232–244. Springer, Heidelberg (2007)

98 J.S.Z. Eriksson Lundström, G. Aceto, and A. Hamfelt

6. Brewka, G.: A reconstruction of rescher’s theory of formal disputation based on
default logic. In: Proceedings of the 11th European Conference on Artificial Intel-
ligence, pp. 336–370 (1994)

7. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM
Computing Surveys, 32(4) (2000)

8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming and n-person game. Artificial Intelli-
gence 77, 321–357 (1995)

9. Eriksson Lundström, J.: On the Formal Modeling of Games of Language and Ad-
versarial Argumentation - A Logic-Based Artificial Intelligence Approach (2009)

10. Eriksson Lundström, J., Hamfelt, A., Fischer Nilsson, J.: A common framework
for board games and argumentation games. In: EJC 2008. IOS Press, Amsterdam
(2008)

11. Gordon, T.: The Pleadings Game: An artificial intelligence model of procedural
justice. Journal of Artificial Intelligence and Law, 2(4) (1993)

12. Governatori, G., Antoniou, G., Billington, D., Maher, M.J.: Argumentation seman-
tics for defeasible logics. Journal of Logic and Computation 14(5) (2004)

13. Grosof, B.N.: Representing e-commerce rules via situated courteous logic programs
in ruleml. Electronic Commerce Research and Applications 3(1), 2–20 (2004)

14. Hamfelt, A., Eriksson Lundström, J., Nilsson, J.F.: A metalogic formalization of
legal argumentation as game trees with defeasible reasoning. In: ICAIL 2005, Int.
Conference on AI and Law, Bologna, Italy, pp. 250–251 (2005)

15. Hill, P.M., Lloyd, J.W.: Analysis of Meta-Programs. In: Abramson, H., Rogers,
M.H. (eds.) Meta-Programming in Logic Programming. MIT Press, Cambridge
(1989)

16. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible
reasoning systems. International Journal on Artificial Intelligence Tools 10(4), 483–
501 (2001)

17. Nute, D., Maier, F.: Ambiguity propagating defeasible logic and the well-founded
semantics. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.)
JELIA 2006. LNCS (LNAI), vol. 4160, pp. 306–318. Springer, Heidelberg (2006)

18. Nilsson, N.J.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann, Califor-
nia (1998)

19. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 3, pp. 353–395. Oxford University Press, Oxford (1994)

20. Nute, D., Covington, M.A., Vellino, A.: Prolog Programming in Depth. Scott Fores-
man and Co., Chicago (1998)

21. Prakken, H., Sartor, G.: Presumptions and burdens of proof. In: Jurix 2006, pp.
21–30. IOS Press, Amsterdam (1996)

22. Prakken, H., Sartor, G.: Modelling reasoning with precedents in a formal dialogue
game. AI and Law 2(4), 231–287 (1998)

23. Prakken, H., Sartor, G.: Formalising arguments about the burden of persuation.
In: ICAIL 2007, pp. 97–106. ACM Press, New York (2007)

24. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gab-
bay, D.M. (ed.) Handbook of Philosophical Logic, pp. 219–318 (2002)

25. Reiter, R.: A logic for default reasoning. AI 13(1), 81–132 (1980)

Integrating Written Policies in Business Rule

Management Systems�

Adeline Nazarenko, Abdoulaye Guissé, François Lévy,
Nouha Omrane, and Sylvie Szulman

LIPN, Université Paris 13 & CNRS (UMR 7030), France

Abstract. Knowledge acquisition is a key issue in the business rule
methodology. As Natural Language (NL) policies and regulations are
often important or even contractual sources of knowledge, we propose
a framework for acquisition and maintenance of business rules based on
NL texts. It enables business experts to author the specification of rule
applications without the help of knowledge engineers. This framework
has been created as part of the ONTORULE project, which is defining
an integrated platform for acquisition, maintenance and execution of
business-oriented knowledge bases combining ontologies and rules.

Our framework relies on a data structure, called ”index”, encompass-
ing and connecting the source text, the ontology and a textual repre-
sentation of rules. Textual rules are as close to the Structured English
representation of SBVR as possible for business users in charge of rule
elicitation. The index relies on W3C technologies, which makes the tools
interoperable and enable semantic search. We show that such an index
structure supports the parallel maintenance of policy documents and
knowledge bases (acquisition, consistency check and update).

Two detailed examples with preliminary results are provided, one from
air travel and the other from the automotive industry.

1 Introduction

Even if rule-based applications rely on powerful rule engines, several challenges
must still be met to ensure their development. From this perspective, the ON-
TORULE project has set three main objectives: 1) provide methodology and
software tools that use open standards, especially SBVR, PRR, RIF and OWL;
2) enable specification of these applications at the business modeling level rather
than in terms of information systems data models, as typically happens in cur-
rent practice, and in the form of ”business rules models” composed a business
vocabulary and of business rules based on that vocabulary; 3) support busi-
ness users in owning and driving the specifications, by defining and owning the
ontologies and rules on which the specifications are based.
� This work was realised as part of the FP7 231875 ONTORULE project

(http://ontorule-project.eu). We thank to our partners for the fruitful discussions,
especially to John Hall (Model Systems) for introducing us to the SBVR world and
to Audi for the collaboration on their use case. We are also grateful to American
Airline who is the owner of one of our working corpora.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 99–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

100 A. Nazarenko et al.

In this perspective, acquisition remains a knowledge engineering bottleneck.
This paper describes a text-based approach for acquisition of business rule mod-
els (BR models) to be exploited by BRMS. It combines automated natural lan-
guage processing (NLP) and tactical human intervention to develop models that:
1) are compliant with the policies given in the documents, 2) take the form of
ontologies and rule models that serve as the basis for specification of information
systems, and 3) are expressed using business vocabulary, i.e. in the terms that
business expert use so that they are able to author, validate and maintain them
without having to rely on IT people.

Our approach is part of the platform developed in ONTORULE which is de-
signed for the acquisition, authoring, maintenance and execution of BR models.
The methodology focuses on the first part of the acquisition process, namely the
knowledge elicitation, that must be driven and controlled by business people.
The resulting model might be semi-formal but it is intended to be a comprehen-
sive and explicit specification that can be passed on to knowledge engineers for
further formalization and transformation into an executable model.

Another originality of this text-based approach is in the assumption that BR
models are designed from documents but cannot be directly extracted from them.
We argue that NLP can help, not by translating policy documents into business
rules automatically, but by supporting the modelling activity and indexing the
source documents with respect to the resulting knowledge base. The result is a
”documented business rule model”, which index structure is a critical resource
for acquiring the BR models, for consistency maintenance, for the traceability
of decisions and to bring models up to date when regulations change.

Within ONTORULE, our acquisition and index-based approach has been
tested on two use cases for which two real BR models and rule applications
had to be defined, exploiting available sources of information. The AAdvantage
use case aims at developing a classification application that determines the ben-
efits that an airline customer retention program member has earned over a given
period. In the Audi use case, a rule application is being defined to certify the
conformance of Audi procedures with vehicle safety international regulations.

Section 2 presents the state of the art. Section 3 describes the index structure
that underlies our approach. The following section shows how the acquisition
methodology and tools enable a business expert to build a BR model and to
index the source documents with respect to it. The knowledge bases and index
structures built for the use cases are presented in Section 5. The last section
illustrates how such an index structure can be exploited for the joint management
of BR models and policy documents.

2 Related Works

2.1 Business Modelling

Some attempts have been made to exploit NLP tools in order to parse written
policies and transform them into formal statements.

Integrating Written Policies in Business Rule Management Systems 101

A first approach takes as input the statements written by business experts dur-
ing the modelling process. It is embodied for instance in Oracle Policy
Modeling1 suite, which may feed eligibility applications with the executable busi-
ness rules resulting from the parsing of the rules written in NL. However the input
is controlled rather than natural language: one simple sentence per line and with
explicit ’and’, ’or’, ’if ... then’ relations. The IBM SPARCLE policy workbench
[4] also offers entering of policies in NL and generation of a machine readable
version of the policy. It had encouraging results for usability but the input must
be written according to strict templates allowing its automatic translation. Sim-
ilarly, semantic wikis are now proposed for collaborative ontology management
in controlled languages, such as Attempto Controlled English, and as knowledge
engineering environments [8,3]. In all these cases, however, acquisition does not
start from existing plain NL documents as regulations or policies often are.

A second approach takes as input texts which have not been written on pur-
pose for rule modelling, such as [6] which aims at checking conformance of organ-
isational procedures to regulations. It consists of parsing the source regulation
and representing it as a set of Abstract Syntax Trees that a knowledge engineer
then edits and transforms into logical CTL formulae2. ASTs thus provide an
intermediary structure between text and rules, but the operations transforming
ASTs into formulas are not described.

No approach handles the complete automated translation of NL texts into
exploitable models. Such a process actually involves complex transformations
that business rules practitioners are accustomed to make but which depend on
the target application and use case as well as on the rule executable language
and technology. Business rules are not fully explicit in documents and human
interpretation is involved in their modelling, even when relying on regulations.

The importance of human conceptualisation has been long recognised in the
domain of ontology acquisition. Although attempts have been made for auto-
matically ”learning” ontologies from texts [5], most approaches integrate human
control in the conceptualisation process, either by incorporating human valida-
tion in an iterative classification process [7] or by revising an automatically built
ontology [12]. The terminological approach, as it is for instance embodied in
terminae [2], relies on NLP tools for extracting textual clues but also on the
strong belief that those textual elements and conceptual ones differ in nature
and that the latter ones cannot be automatically derived from the former ones.

Beyond acquisition, the Object Management Group has developed the stan-
dard Semantics of Business Vocabulary and Business Rules (SBVR)3 for doc-
umenting the semantics of business vocabularies, fact types, and rules. SBVR
supports the role of human expertise in business model acquisition and man-
agement and encourages making models understandable by business people. It
defines business models as a combination of a conceptual vocabulary used by
the target business community, the structural rules that defines the structure of

1 www.oracle.com/technology/products/applications/policy-automation/index.html
2 CTL is a temporal logic frequently used in model checking.
3 http://www.omg.org/spec/SBVR/1.0/

102 A. Nazarenko et al.

an organisation and the operative rules that control its operation. By making
business experts authoring ontologies and rules, we adopt a similar approach.

2.2 Semantic Annotation

As knowledge cannot be extracted from written policies but nevertheless need
to be acquired from and maintained together with those policies, we propose an
approach based on semantic annotation. This is a way to ease the ”transitions
on the knowledge formalization continuum” as proposed by [3].

Several projects have proposed to articulate texts with a semantic model in
order to be able to query both the text and its semantic model, the two ap-
proaches being complementary. Our approach differs from previous works which
either annotate controlled language [8] or consider a single type of link (e.g. to
individuals [9,1]). We exploit a richer annotation of NL texts where any ontolog-
ical element (concepts, roles, their instances) or rule can be linked to a textual
element. However, as previous works on semantic annotation, our framework
relies on W3C technologies and standards.

In the following, we propose a new way to work with written policies, which is
based on semantic annotation. We show that articulating a policy document with
a rich semantic model gives a ”documented business rule model” and enables
powerful search functionalities, which meets the needs for the documentation and
maintenance of BR models. [11] builds a similar index linking documentation,
business rules and code, for the need of expert validation and rule maintenance,
although the reverse engineering workflow is opposite of ours (from code to rules,
then to documents) and the nature of documents is quite different (the technical
data descriptions are plain lists of property-value pairs).

3 A Core Index Structure

For integrating policy documents into BRMS, we propose to design ”documented
business rule models”. This approach relies on an index structure4 that encom-
passes and links the source documents and the BR model, be it under construc-
tion or ready for execution. Since the BR model is not equivalent to the source
text, it is actually important that the written policy remains accessible during
the whole lifetime of the rule application. This is achieved through the semantic
annotation of the source documents with respect to a semantic model, the BR
model which itself combines ontology and rules. As will be shown in Sections 4
and 6, the index structure is built during the acquisition phase which progres-
sively relies on it and it is exploited for controlling the resulting BR model, for
its maintenance and for traceability.

The index defines a common structure that integrates and links together the
source documents on the one hand, and the ontology and the rules that form
4 We use ”index” in the generic sense of a system designed to make finding informa-

tion easier and by analogy with the ”back-of-the-book index” which is a semantic
structure (keyword list or thesaurus) built upon a document and linked to it.

Integrating Written Policies in Business Rule Management Systems 103

Textual
policies

XML

Ontology
OWL

Rules
SBVR-SE

R4
R2

R3

Links
RDF/RDFa

Semantic modelDocuments

Fig. 1. Index structure representing a documented business rule model

the semantic model, on the other hand (Fig. 1). Such an index builds a semantic
space in which one can navigate from any piece of text to the related rules and
vice-versa, from the rules to the ontology and from the ontology to the text
or rules. The semantic structure associated to the text allows for search and
reasoning that cannot be done on the source document.

Document model. The document model defines which textual elements or docu-
ment units can be annotated. So far, we have adopted a simple document model
allowing any character sequence as document unit. In the future however, the
document model should be an XML structure, thus allowing constraints on the
linguistic types of the document units (e.g. word, sentences) and reference to
the structure of the document. The semantic annotations embedded in the doc-
ument are represented in RDFa (RDF in attributes) and can be visualized by
HTML navigators (Fig. 5).

Semantic model. The semantic model represents the BR model which is pro-
gressively enriched during acquisition. It combines an ontology and rules. The
ontology is conventionally represented in OWL-DL but a specific rule format has
been defined for rules in the perspective of BR model acquisition.

The rule base is a list of candidate rules (CR) statements expressing any
type of static constraint or operative rule relevant for the specification of the
target application as in SBVR. We call them ”candidate” as they are not yet
totally formalized and will require further interpretation to be transformed into
executable rules. It is also possible that only part of the candidate rules can
be integrated in the formal model at the end but our acquisition methodology
makes explicit which parts of the business expert specification are left over. The
underlying idea is that CRs are progressively revised by business experts during
the elicitation and authoring process until they can be turned into RIF formulae
by a knowledge engineer. A CR statement can be 1) in plain natural language, 2)
in annotated or semi-controlled language if some words belong to the conceptual
vocabulary, or 3) in controlled language, if it is a well-formed SBVR Structured
English (SBVR-SE) statement5 combining keywords and conceptual elements.

Each candidate rule is represented in RDF by a rule ID and is associated with
various properties, one of which being its NL statement (ruleText).

5 SBVR-SE is the controlled language associated to SBVR and used in ONTORULE
but our approach makes no specific assumption on the type of controlled language.

104 A. Nazarenko et al.

4 Acquiring a Business Rule Model

Acquisition is an important part of ONTORULE’s methodology. The BR model
is composed of an ontology that sets the business vocabulary in use in a given
business community and a set of business rules expressed as most as possible in
these terms. The acquisition process encompasses two main phases (Fig. 2). The
ontology, which models the underlying business domain and which is supposed
to be relatively stable, is designed first and the rules, which are more frequently
updated, are then built on that ontological knowledge.

Text
Ontology
 (OWL)

Lexical
knowledge

Ontology
acquisition

Semantic
annotator

Rule editor

x
x

x

Index
(RDF/RDFa)

(SKOS)

x
x

x

R1
R5

R4
R2R3

Navigator

Search engine
SPARQL
QUERY

Selected elements

Index
(RDF/RDFa)
enriched with

Business rules
(SBVR-SE/RDF)

ACQUISITION

EXPLOITATION

Fig. 2. Overall of the acquisition process

Part of ONTORULE’s rationale is that the ontology with its structural con-
straints and the operative rules are owned by different business user roles, even if
for a BR model of limited scope, both roles may be played by the same business
expert. ONTORULE’s goal is to enable them to design, author and maintain
ontologies and rules without having to rely on specialists of information tech-
nologies, and relying on professional knowledge engineers only for formalization.
We show, in the following, how tools support this acquisition process.

4.1 Acquisition of a Domain Ontology

Even when one relies on textual documentation, designing ontologies is a con-
ceptualisation process that requires some human interpretation. This process
cannot be fully automated but acquisition tools can ease and guide it.

ONTORULE’s methodology for ontology acquisition relies on terminae [2],
a method and tool for building domain ontologies from texts. An ontology is
designed in three stages:

– Automatic extraction of the textual units – terms and named entities –
and relations that seem semantically relevant in the domain to be modelled,
starting from the source text and using NLP tools.

– Normalizing that initial terminological description in a termino-conceptual
network: terms which are variants of each other are clustered into a single

Integrating Written Policies in Business Rule Management Systems 105

termino-concept; ambiguous terms are decomposed into several; irrelevant
terms are eliminated and termino-conceptual relations are added6.

– Formalization into a conceptual or ontological structure.

For instance, in the AAdvantage use case, at the terminological level, the
business expert has selected the term airline participant in the initial term list
and clustered the variant forms (Airline participant, participant) under the same
canonical form (participant). As the term is relevant for the domain, a termino-
concept Participant has been created but, since it is ambiguous7, it is linked
to a second distinct termino-concept, Member, also termed participant in some
contexts. Two concepts, Participant and Member, were also created to model
those termino-concepts at the conceptual or ontological level. Similarly, verbs
such as belongs to are turned into termino-conceptual relations and formalized
into conceptual roles (belongs to with Member and Program as domain and
range).

The whole acquisition process is interactive. At each level, the business expert
has to select the relevant items and to organise them, a complex and tedious
task that is supported by terminae interfaces. Figure 3 shows the interface
presented at the termino-conceptual level: a hierarchical view of the termino-
concepts is presented on the left and the right part details the features of the
selected termino-concept (Sapphire in the present case) to help the business
expert’s analysis. The new version of terminae tool can be plugged into the
Neon Toolkit8 which ontology editor is exploited to work at the conceptual level.

The originality of this approach lies in the links that relate one level to an-
other. An OWL concept or class at the conceptual level is linked, through an
unambiguous termino-concept, to several terms at the terminological level and
usually some of their occurrences in the source text. This ensures the traceabil-
ity of the resulting ontology and produces the intermediate lexical knowledge
required to annotate documents with respect to that ontology.

4.2 Semantic Annotation

In the business rule perspective, ontologies are used for modelling and must be
incorporated as soon as possible in rule design. One way to achieve this is to
annotate the policy document with respect to the ontology, which emphasizes
the terms and phrases referring to ontological entities in the source policy.

Achieving such a semantic annotation requires a relevant lexicalised ontology
as produced by terminae, where concepts, individuals and roles are related
to termino-conceptual and terminological elements. In practice, the termino-
conceptual and terminological levels of terminae form a thesaurus which can
be exported in a SKOS9 format and used for the annotation of texts.
6

terminae also allows to give explicit termino-conceptual elements NL definitions
and differential properties but, in pratice, this is seldom done in a systematic way.

7 Participant alternatively refers to the companies that participate or collaborate in
the program and the customers who are members of it and benefit from it.

8 http://neon-toolkit.org
9 http://www.w3.org/2004/02/skos/

106 A. Nazarenko et al.

Fig. 3. Termino-concept Sapphire

For instance, in the Audi use case, the business expert has created the termino-
concepts Adjusting device and Low-temperature chamber and associated
each one with a set of synonymous terms (resp. adjusting device/belt adjust-
ment device and low-temperature chamber/refrigerated cabinet) represented as
preferred and alternate labels in the SKOS exported file. Annotating the source
policy with the concept AdjustingDevice or the role tested by consists in
tagging the label occurrences with the corresponding concept or role, NLP tools
allowing to take into account the surface variations that labels undergo in texts
(e.g. adjusting device(s), device for belt adjustement).

Semantically annotating the source document is a first step in the creation of
the index structure described above. It links ontological and document units.

4.3 Acquisition of Business Rules

Designing rules requires a detailed analysis and reformulation of the source text.
SemEx, the tool designed for rule elicitation and exploration in ONTORULE,
supports that rule editing process and enables the business expert to progres-
sively reformulate the source text as a set of candidate rules that form a detailed
business rule specification. Any candidate rule is a SBVR-SE-like statement ex-
pressing a constraint or operative rule relevant for the target application but
still has to be formalized according to the specific rule engine features.

Our rule design methodology relies on the following SemEx functionalities:

– The navigation perspective (Fig. 5) presents the current index structure with
the loaded ontology on the left and the annotated policy on the right, so that
the business expert can easily explore the source document. Rule acquisition
actually strongly relies on the conceptual vocabulary formalized in ontology.

– A list of generic linguistic markers (e.g. modals, if-then) are automatically
emphasized to help the expert locating rule fragments in large documents.

Integrating Written Policies in Business Rule Management Systems 107

Fig. 4. Example of rule derivation

– To edit a rule, the business expert selects a relevant fragment of text, opens
a rule editor perspective (Fig. 6) and progressively reformulates the initial
fragment into a self-contained, unambiguous and simplified CR statement
which words belong either to a set of predefined keywords (orange words
in the examples in Fig. 4) or to the conceptual vocabulary defined by the
ontology (green, red and blue resp. for concepts, individuals and roles). The
coloured annotation inspired from SBVR-SE gives an immediate feedback
to the user. The remaining black text requires further revision.

– The business expert can save as many versions of a rule as necessary. Each
version is an additional CR that is linked to the previous version by a
previousForm link (e.g. R14 in the rule hierarchy of Figure 4).

– The business expert can also decompose a CR into several ones, which are
linked to their parent rule by a subRule link (e.g. R16 and R17).

The typical transformations made on CRs consist in normalizing the vocabu-
lary to conform to the ontology, simplifying the syntax (e.g. the transformation
from R14 to R15), making explicit some contextual information (e.g. in the
context of R13, test must be understood as micro slip test).

Fig. 5. SemEx - Navigation perspective. The class hierarchy of the ontology is presented
on the left. The right window shows the source document annotated wrt. the ontology.

108 A. Nazarenko et al.

Fig. 6. SemEx - Rule Editor. The rule base is presented on the left as a derivation
hierarchy. The old and new versions of the edited rule appear in the middle zone. The
right form allows the business expert to describe the properties of the new rule.

The editing process enriches the index, as all the rules derived from the source
text are linked to the sentence(s) from which they are originated (text to rule
links) and because the CR content is itself annotated with respect to the ontology
(rule to ontology links).

5 Results

Our acquisition methodology has been tested on the two use cases presented
above. The BR models are built from the various sources: for AAdvantage use
case, documentation downloaded from the American Airlines (AA) web site, in
particular the Terms and Conditions (5,744 words), which describes different
membership statuses and the associated benefits; for Audi use case, the Chapter
7 of the regulation n◦16 of the UNO agreement “concerning the adoption of
uniform technical prescriptions for wheeled vehicles” (3,704 words).

These source texts are typical of those rather short documents that are nev-
ertheless difficult to master simply by reading and require careful analysis. ter-

minae has been used to build the AAdvantage and Audi ontologies from those
texts. The resulting ontologies have been exploited for modelling candidate rules.
The final rule bases and underlying ontologies form the BR models to be used
by the BRMS developed within ONTORULE.

Ontologies. In the AAdvantage use case, an existing ontology of the legal domain,
Lkif10, has been exploited to model the upper level concepts organizing the

10 http://www.estrellaproject.org/lkif-core/

Integrating Written Policies in Business Rule Management Systems 109

domain specific concepts. In the current state, the AA ontology is composed of
210 concepts, among which 32 have been imported from Lkif. The Audi ontology
is smaller but should be progressively extended as new regulations are considered.
The detailed figures of these ontologies are presented in Table 1.

Rules. In the AAdvantage use case, 101 independent candidate rules have been
created but they have not been edited and transformed yet. In the Audi use case,
the complete rule editing methodology has been applied on a first regulation: 83
candidate rules have been created, half of them being revision or decomposition
of other rules. Results are presented in Table 1.

Table 1. Semantic models built for the two use-cases. Ontologies are described in terms
of concepts (OWL classes), individuals (class instances) and roles (properties). Various
types of rules are distinguished depending on how they have been created (directly
from the text or by revision/decomposition of another rule).

Ontology Use case Concepts Individuals Roles
AAdvantage 210 25 74

Audi 77 31 19

Business rules Use case Initial rules Revised rules Decomposed rules Total
AAdvantage 101 0 0 101

Audi 40 27 16 83

Index. The resulting indexes are dense structures where ontologies and rules are
strongly related to each other and to the source text (Table 2). The coverage of
the source text by the ontology and the rules (O2T or R2T coverage11) gives an
idea of the density of the index. For instance, in the Audi use case, 1/3 of words
are covered (or annotated) by the ontology and 1 sentence of the text out of 3
is linked to a rule. It is also interesting to compare the coverage of the ontology
on the text taken as a whole and on the part that support the rules (O2T vs.
O2R coverage). Both ontologies better fit the text of the rules than the rest of
the text, which shows that the ontologies have been designed for rule modelling.

Beyond their density, it is difficult to evaluate the quality of the resulting
indexes which cannot be assessed independently of their use in rule applications.

11 O2T coverage = AnnTextOcc/TextOcc where AnnTextOcc is the number of word
occurrences in the text which are annotated wrt. the ontology and TextOcc is the
total number of word occurrences. Only the occurrences of open class words (OCW,
that is nouns, verbs and adjectives) are considered.
R2T coverage = RuleSentences/TextSentences where RuleSentences is the number
of sentences of the text that are linked to a rule and TextSentences is the total
number of sentences in the text.
O2R coverage = AnnRuleOcc/RuleOcc where AnnRuleOcc is the number of OCW
occurrences which are annotated wrt. the ontology and RuleOcc is the total number
of OCW occurrences, both in the part of the text that supports the rules.

110 A. Nazarenko et al.

Table 2. Density of the index for the two use-cases

Use Case Ontology to text coverage Ontology to rules coverage Rule to Text coverage
(O2T coverage) (O2R coverage) (R2T coverage)

AAdvantage 46.4 % 54.8 % 41 %

Audi 33.8% 40 % 33.8 %

6 Exploiting and Exploring the Resulting Index

The resulting ontologies, rules bases and annotation links build a rich index
structure which is time-consuming to build for business experts but crucial for
the elicitation and management of BR models. This section illustrates how the in-
dexes built for the AAdvantage and Audi use cases can be searched and exploited
and how they support the overall business rule methodology of ONTORULE
(acquisition, consistency checking and maintenance).

6.1 Semantic Search

The semantic search engine integrated in SemEx is a key component for exploit-
ing the index. It allows navigation within and across models.

The three resources that compose the index (document, ontology and rules)
can be explored independently of each other:

– Traditional text search allows for locating the various occurrences of a word
and navigating from one to another; additional browsing functionalities ex-
ploit the text structure (e.g. sections) if it is encoded in XML.

– Navigating in the ontological structure can be used to explore the hierarchy
of concepts, to identify the instances subsumed by a given concept, to ckeck
the properties associated with any concept or instance.

– Browsing the rule base is useful to understand how a given rule has been
revised and decomposed or to visualize the list of candidate rules resulting
from the editing process.

The annotation links also allow for navigating from one resource to another.
One can go from the document to the semantic model and vice-versa but also
navigate between the ontology and rule base that compose the semantic model.
One can visualize the concepts or rules associated with a given text fragment
and, conversely, the document units associated to any concept or rule.

Beyond the browsing functionalities accessible from the navigation interface,
SemEx also offers a semantic search interface. It allows the business expert to
run queries for a deeper and personalised exploration of the index semantic space
(Fig. 7). Since the user is not expected to design complex SPARQL queries, a
user-friendly interface will be designed for a set of predefined useful queries.

Integrating Written Policies in Business Rule Management Systems 111

Fig. 7. SemEx - Search engine perspective. Running the SPARQL query presented on
the left returns the candidate rules that share a common concept with the rule R19.

6.2 Acquisition

The index structure supports the acquisition process itself. Actually the index
is built in parallel with the BR model:

– The first annotation links are built by terminae as a help for the ontology
conceptualisation work: browsing the sentences referring to a given concept
helps to capture its precise semantics, for instance.

– An extensive annotation of the source text is performed once the ontology
is stabilized or after any ontology revision. This is a way to normalize the
text vocabulary and to emphasize the conceptual elements in the document.
It is a first step towards reformulating the rules.

– When rules are extracted from the source policy, additional rule annotations
are associated to the corresponding text fragments. These text-to-rule links
help to identify holes in the coverage of the rule base under construction.

– Finally the rule statements are annotated wrt. the ontology in the same way
the source document is. This helps reformulating and comparing the rules.

6.3 Support for Consistency Checking

Checking the consistency of BR models is a critical issue for any rule applica-
tion. Combined with the consistency checking module developed in ONTORULE
framework, the index can support the diagnosis and resolution of some inconsis-
tencies.

The inconsistent rules detected by the consistency checker can be traced back
to the textual fragments from which they have been derived. This helps to un-
derstand whether the inconsistency comes from the source text which must be
revised or is due to an error of interpretation in the rule editing process.

112 A. Nazarenko et al.

It is also interesting to analyze the rule base a priori, i.e. before rule execu-
tion, at the candidate rule level. Knowing what types of inconsistency problems
often occur [10], generic SPARQL queries can be predefined to bring potential
problems to light, and added as navigation features for use by non technical
users. For instance, since inconsistency is frequently due to the incompleteness
of the rule base (some cases are covered by no rule), it is useful to cluster all
the rules whose premise contain a given concept or any of its subconcept, and
analyze them together to check for missing cases.

6.4 Maintenance

As regulations are often updated, BR models must be carefully maintained to
remain up to date. The rules are changing faster but the ontology may also
evolve. Since the indexing links ensure the traceability of the BR model to the
text and vice-versa, one can identify the semantic elements impacted by a change
in the source documentation, and which parts of the regulation must be revised
when the BR model is updated. A future functionality should enable the marking
of units as potentially obsolete or as new candidates and allow for a global
analysis of the revised BR model prior to its update.

7 Conclusion

This paper presents a text-based approach for rule acquisition, which is part
of ONTORULE’s methodology. It is designed for business experts that have to
elicit, author and maintain the BR models of rule-applications. We propose a
method and tools enabling them to build domain ontologies and business rules
which are anchored in the source policies, serve as specification for the targeted
application and enable the parallel maintenance of BR models and policies.

Our framework exploits semantic annotation as well as OMG and W3C stan-
dards and technologies. It relies on an index structure that encompasses and
inter-links the knowledge sources of rule-based applications: source NL policies,
ontology and rules. An interactive method has been proposed for the design of
such documented BR models: the associated tools, terminae and SemEx guide
the modelling of ontology and rules. The resulting indexed resources form a se-
mantic space, in which one can navigate from one textual element to the ontology
or a rule, from the ontology to the associated pieces of text and rules and from
a rule to its source text or ontological elements. The documented model can
also be explored by a semantic search engine: the tracing, updating and analysis
functionalities are useful for maintaining the BR models of rule applications.

The proposed approach has been tested and illustrated on two real use cases.
Even if they will be extended in the next future, these experiments show the va-
lidity of our approach. Acquisition remains a time-consuming activity but NLP,
knowledge engineering and semantic web techniques provide guidance so that
business experts can author and maintain comprehensive and understandable
business rule models that serve as semi-formal specification for rule applications.

Integrating Written Policies in Business Rule Management Systems 113

References

1. Amardeilh, F., Laublet, P., Minel, J.L.: Document annotation and ontology pop-
ulation from linguistic extractions. In: Proc. of the 3rd Int Conf. on Knowledge
Capture, pp. 161–168. ACM, New York (2005)

2. Aussenac-Gilles, N., Després, S., Szulman, S.: The terminae method and platform
for ontology engineering from texts. In: Buitelaar, P., Cimiano, P. (eds.) Bridging
the Gap between Text and Knowledge: Selected Contributions to Ontology learning
from Text, pp. 199–223. IOS Press, Amsterdam (2008)

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: Knowwe: A semantic wiki for knowl-
edge engineering. Applied Intelligence (in press, 2011)

4. Brodie, C., Karat, C.M., Karat, J.: An empirical study of natural language parsing
of privacy policy rules using the sparcle policy workbench. In: SOUPS 2006 (2006)

5. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation
And Applications. Springer, New York (2006)

6. Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions and ex-
ceptions to laws in regulatory conformance checking. In: van der Meyden, R., van
der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076, pp. 110–124. Springer,
Heidelberg (2008)

7. Faure, D., Nédellec, C.: Knowledge acquisition of predicate argument structures
from technical texts using machine learning: the system asium. In: Stude, R.,
Fensel, D. (eds.) Proc. of the 11th Int. Conf. on Knowledge Engineering and Knowl-
edge Management, pp. 329–334. Springer, Heidelberg (1999)

8. Nalepa, G.J.: Collective knowledge engineering with semantic wikis. Journal of
Universal Computer Science 16(7), 1006–1023 (2010)

9. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim – a semantic
platform for information extraction and retrieval. Nat. Lang. Eng. 10(3-4), 375–392
(2004)

10. Pührer, J., El Ghali, A., Chniti, A., Korf, R., Schwichtenberg, A., Lévy, F., Hey-
mans, S., Xiao, G., Eiter, T.: D2.3 consistency maintenance. Intermediate report,
ONTORULE IST-2009-231875 Project (December 2010),
http://ontorule-project.eu/deliverables

11. Putrycz, E., Kark, A.W.: Connecting legacy code, business rules and documenta-
tion. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008. LNCS,
vol. 5321, pp. 17–30. Springer, Heidelberg (2008)

12. Wang, Y., Volker, J., Haase, P.: Towards semi-automatic ontology building sup-
ported by large-scale knowledge acquisition. In: AAAI Fall Symp. On Semantic
Web for Collaborative Knowledge Acquisition, vol. FS-06-06, pp. 70–77. AAAI
Press, Arlington (2006)

http://ontorule-project.eu/deliverables

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 114–121, 2011.
© Springer-Verlag Berlin Heidelberg 2011

On Complex Event Processing for Real-Time
Situational Awareness

Nenad Stojanovic1 and Alexander Artikis2

1 FZI Karlsruhe, 76131 Karlsruhe, Germany
Nenad.Stojanovic@fzi.de

2 NCSR Demokritos, Athens 15310, Greece
a.artikis@iit.demokritos.gr

Abstract. In this paper we give an overview of the existing research results and
open research challenges in applying complex event processing for real-time
situational awareness. We consider two different viewpoints: better detection of
emerging complex situations and prediction of future situations. In order to il-
lustrate these viewpoints we consider two application areas: activity recognition
from the video content and social media observation, respectively.

Keywords: Situation awareness, Social media observation, Activity
recognition.

1 Introduction

Real-time data processing has become very important for many applications, such as
item-tracking in RFID-supported logistics, social-media channels observation, activity
recognition from video content, computer network monitoring, patient monitoring and
trader behavior evaluation in financial markets. In all of these applications the amount
of data being generated requires on–the-fly processing and immediate reaction in
order to be managed in an efficient way. Indeed, such real-time orientation enables
the detection of problems (e.g. a damaged item in a delivery, or bad image of a com-
pany in recently posted tweets) as soon as they happen, so that a corresponding reac-
tion can be successfully performed.

In the nutshell of this mechanism is the ability to recognize in real-time1 (or even
ahead of time) some interesting situations, what is called “real-time situational aware-
ness”. Note that this goes beyond the traditional (static) situational awareness that is
focused on the understanding a situation (if possible in real-time). Real-time situational
awareness introduces the notion of real-time emergency: the main goal is to recognize a
situation of interest as soon as possible in order to be able to react to it properly.

Such a process introduces several challenges for the processing of data:

1. it should be very efficient in order to deal with a huge amount of events,
2. it should be intelligent in order to enable an early recognition of interesting

situations,

1 We consider „business real-time“ as the criteria for declaring something to be processed in

real-time.

 On Complex Event Processing for Real-Time Situational Awareness 115

3. it should be very flexible in order to deal with various and dynamically changing
patterns (situations) of interests (that should be recognized in real-time), and

4. it should be tolerant to various types of noise.

Due to its real-time processing orientation, complex event processing (CEP) is a
technology that aims to resolve these challenges. Indeed, CEP is in the nutshell about
efficient management of the pattern detection process in the huge and dynamic data
streams and as such it is very suitable for detecting/recognizing complex real-time
situations. However, CEP can be also viewed as a technology for detecting trends in
the flow of data that leads to predicting some future situations. In this paper we give
an overview of the application of complex event processing for the real-time situ-
ational awareness from these two different viewpoints:

• better detection of emerging complex situations (complex real-time-situation
awareness) and

• prediction of future situations (future-situation awareness).

In order to illustrate these viewpoints we consider two application areas: a) activ-
ity recognition from the video content, and b) social media observation, respectively.

Indeed, in the area of activity recognition one has to deal with several of the prob-
lems faced by traditional event processing systems such as the real-time recognition
of long-term activities given large amounts of detected short-term activities the con-
tinuous, automated refinement of long-term activity representation for increased rec-
ognition accuracy, as well as the accurate recognition in the presence of noise.

Social media observation is dealing with detecting interesting information in the
streams of data coming from various social media channels. These channels have
become very important sources for monitoring public opinion in order to, e.g.
(re)define marketing strategies. Recently the term real-time marketing intelligence has
been coined for describing the need for reacting immediately on the
threats/opportunities for having more and more satisfied customers.

Moreover, this paper discusses about the application of two machine learning ap-
proaches in CEP:

• using unsupervised learning for predicting novel situations and
• using supervised learning for automatically refining complex event representations

and handling noise.

2 Activity Recognition

2.1 Motivation

One of the objectives of computer vision research is to recognize in an automated way
what happens in scenes depicted by video sequences. An automatic video interpreta-
tion system takes video sequences as input and produces as output the interpretation
of these sequences. Such a system is typically composed of two main components.
The first component produces a symbolic representation of the mobile objects de-
tected on raw video sequences, as well as of the 'short-term activities' of the mobile

116 N. Stojanovic and A. Artikis

objects – simple events, in the terminology of event processing – such as when a
person is walking, running, stays inactive, moves abruptly, and so on. The second
component recognizes various types of 'long-term activity' – complex events – such as
when a person leaves an object unattended, two people are fighting, etc. A long-term
activity is defined as a set of temporal, spatial and/or logical constraints on a set of
short-term activities.

Automatic video interpretation systems have to deal with several of the problems
faced by traditional event processing systems:

• They have to recognise in real-time long-term activities given thousands of short-
term activities per second.

• They are required to recognize long-term activities that are possibly about to take
place, such as when a person is about to leave an object unattended.

• They need machine learning techniques to automatically and continuously refine
what constitutes a long-term activity. Such a refinement increases recognition ac-
curacy.

• They have to deal with uncertainty, as the detection of short-term activities from
video content is often noisy.

In following we discuss how some of the above issues are being addressed in the
field of activity recognition, as we believe that several of the methods of this field are
directly applicable to complex event processing.

2.2 A Representative Approach

Several approaches have been proposed in the literature for long-term activity recog-
nition – [3, 5, 7, 7, 8] are but a few recent examples. To address the issue of uncer-
tainty mentioned above, various probabilistic reasoning frameworks have been
adopted. One such framework, that is increasingly gaining attention, is Markov Logic
Networks (MLN) [4]. MLN combine first-order logic and probabilistic graphical
models. The use of first-order logic allows for the representation of long-term activi-
ties including complex temporal constraints – this is opposed to sequential graphical
models that allow for restricted temporal representation. The main concept behind
MLN is that the probability of a world increases as the number of formulas it violates
decreases. Therefore, a world violating formulas becomes less probable, but not im-
possible as in first-order logic. Syntactically, each formula Fi in Markov logic is rep-
resented in first-order logic and it is associated with a weight wi. The higher the value
of the weight, the stronger the constraint represented by Fi. Semantically, a set of
Markov logic formulas (Fi, wi) represents a probability distribution over possible
worlds.

MLN have been recently used for long-term activity recognition – consider, for ex-
ample, [3, 8]. (A detailed account of the use of MLN for activity recognition and
complex event processing in general may be found in [1].) The MLN inference algo-
rithms take into consideration the weights attached to the short-term activities de-
tected by the underlying computer vision component. As mentioned above, it is often
the case that short-term activity detection is noisy and, therefore, this feature of MLN
is very helpful for long-term activity recognition. Furthermore, using MLN one may
attach weights to the first-order logic rules expressing a long-term activity. Strong

 On Complex Event Processing for Real-Time Situational Awareness 117

weights are given to rules that are almost always true, while weak weights are given
to rules that describe exceptions.

An important feature of MLN is that they are supported by a variety of machine
learning algorithms. More precisely, it is possible to estimate the weights of the first-
order rules expressing a long-term activity and/or the rules themselves, given a set of
training data, that is, short-term activities annotated with long-term activities. Weight
learning in MLN is performed by optimising a likelihood function, which is a statisti-
cal measure of how well the probabilistic model (MLN) fits the training data. Weights
can be learned by either generative or discriminative estimation. Generative learning
attempts to optimise the joint distribution of all variables in the model. In contrast,
discriminative learning attempts to optimise the conditional distribution of a set of
outputs, given a set of inputs.

In addition to weight learning, the structure of a MLN, that is, the rules expressing
long-term activities, can be learned from training data. A variety of structure learning
methods have been proposed for MLN. These methods build upon the techniques of
Inductive Logic Programming (ILP) [6]. In brief, the MLN structure learning methods
can be classified into top-down and bottom-up methods [4]. Top-down structure learn-
ing starts from an empty or existing MLN and iteratively constructs clauses by adding
or revising a single predicate at a time, using typical ILP operations and a search proce-
dure. However, as the structure of a MLN may involve complex long-term activities, the
space of potential top-down refinements may become intractable. For this reason, bot-
tom-up structure learning can be used instead, starting from training data and searching
for more general hypotheses. This approach usually leads to a more specialised model,
following a search through a manageable set of generalisations.

Long-term activity recognition in MLN involves querying a ground Markov net-
work about long-term activities. A ground Markov network is produced by grounding
all first-order logic rules expressing long-term activities using a finite set of constants
concerning the application under consideration. Complete grounding of MLN, even
for simple long-term activity knowledge bases, results in complex and large networks,
compromising inference efficiency. For this reason, we may employ ‘lazy inference
methods’, or ‘lifted inference methods’ which can answer queries without grounding
the entire network [4].

2.3 Research Challenges

Markov Logic Networks (MLN) combine the strengths of logical and probabilistic
inference. Consequently, they address, to a certain extent, the following issues that
often arise in activity recognition and complex event processing in general: incom-
plete simple event (short-term activity) streams, erroneous simple event detection, and
inconsistent annotation of simple events and complex events (long-term activities).
MLN also offer a very expressive framework, as the full power of first-order logic is
available.

Being based on logic, MLN benefit from a formal and declarative semantics, a va-
riety of inference mechanisms, and methods for learning a knowledge base of com-
plex events from data. Compared to procedural methods, logic-based ones facilitate
efficient development and management of complex event representations, which are
clearly separated from the generic inference mechanism. Moreover, compared to

118 N. Stojanovic and A. Artikis

methods exhibiting informal semantics, logic-based approaches support validation
and traceability of results.

Although MLN are increasingly being used for activity recognition and, in general,
complex event processing, there are several issues that need to be resolved still, such
as the incorporation and use of numerical temporal constraints in MLN inference, and
the simultaneous learning of numerical parameters — for example, weights and nu-
merical temporal constraints — and the logical structure of the knowledge base ex-
pressing complex events.

3 Future-Situation Awareness in Social Media

3.1 Motivation

The power of data processing has migrated in recent years from explaining the past
using very efficient (web) search mechanisms (answering on the question “What
happened?”) into understanding the present through different social media-based
filtering mechanisms (answering on the question “What is happing now?”). Indeed, in
last two years there is a huge proliferation of systems for the real-time analyses of the
streams from news portals, discussion forums, Twitter, etc. leading to different types
of services for filtering interesting information, e.g. automatic notification in the case
that interesting information has appeared. This feature enables developing of very
efficient reactive systems that will react as soon as a problem/opportunity appears. It
boosts the competitiveness through the real-time awareness that increases the speed of
reaction. In this case the data is used for an efficient detection of some already known
and already-happened situations. However, an extreme dynamicity and complexity of
the modern business implies the need for creating awareness of that what can happen
in order to be able not only to react on problems, but to avoid that they will happen at
all (the task of the so-called proactive systems).

On the other hand, there are new, community-driven, sources of information and
influences that can be considered and exploited for estimating what can happen, like
the wisdom of crowds, the power of an individual blogger to impact a company’s
image, the fact that consumers now buy as communities, and the potential radical
restructuring of classic functions like product design because consumers are designing
their own products. In that case the data should be used for an efficient prediction that
some situations might happen, including the detection of prior unknown situations
(answering on the question “What will happen?”). This data-driven proactivity opens
possibilities to provide new solutions for new situations and from the business point
of view it will boost competitiveness trough innovativeness. Many added value ser-
vices based on this proactivity can be envisioned, starting from calculating specific,
context-based predictions that can point to new business threats or opportunities, till
providing efficient actions based on predictions. Just as short example imagine a
SME that can produce small series of specialized chips and can discover (using spe-
cific predictions calculated from data streams) that in a segment of the market there
would be, in a shorter period of time, either problems in the supply or new demand
for specific types of chips (small series).

 On Complex Event Processing for Real-Time Situational Awareness 119

Obviously, this posts new requirements for processing streams of data2 in the fu-
ture, which the following two are the most important of: a) generating streams of
interesting information out of streams of data (interestingness is defined through the
statistics-based notion of unusuality) and b) generating different trend-based analytics
(incl. relevant predictions) out of streams of interesting information. We argue that
these two processing steps define a basic pipeline for the so-called proactive process-
ing of streams that will enable the creation of many business models around various
derivatives of streams of data.

3.2 State of the Art/Current Situation

The need for predicting some parameters of the business is well recognized and mainly
supported by predictive analytics, which encompasses a variety of techniques from
statistics, data mining and game theory that analyze current and historical facts to make
predictions about future events. However, predictive analytics is usually used for defin-
ing some operative data (like what revenue can be expected and from what channels -
direct sales, partners, etc.) and it is based on developing very formal mathematical
models (e.g. a customer profile can include more than 200 descriptive variables, such as
income, age group, gender, occupation, and education level). As such it doesn’t exploit
the potential of data streams for listening to the rumors and finding weak signals in the
marketplace that can be used for the competitive advantage.

On the other hand, many portals have been developed in last two years around
available real-time data streams (like twitter) with the goal of using them for building
different (real-time) opinion maps, usually as a part of analyzing effects of some mar-
keting activities. We have analyzed more than 230 solutions (mainly from USA and
Germany) in the area of social media monitoring. Social media monitoring tools are
used to observe user-generated-content in order to gain marketing relevant insight.
Radia6 (acquired by Salesforce recently), Sysomos, Lithum, Attensity360 are the most
popular solutions in this area. Almost more than the half of them analyzes content only
from blogs, Twitter and Facebook. The remaining systems are built either for Twitter
or Facebook. Usage of other available sources, like crawling discussion forums and
web pages is missing in these systems. None of the systems consider mining tech-
niques in order to gain intelligent insights. Prediction based on collected data is also
not in the focus of these systems. There is no existing solution which deals with an
advanced analysis of the data (like providing unusual information) or working towards
predicting some trends for the future. To the best of our knowledge there is only one
approach which deals scientifically with the predictions based on the data from social
media [10]. This approach uses the chatter from Twitter.com to forecast box-office
revenues for movies and outperform other prediction methods. However, this ap-
proach, like above mentioned predictive analytics, deals with predicting some opera-
tive data and the goal approach aims to discover/predict completely new/unexpected
business threats and opportunities, that couldn’t be detected otherwise.

2 Note that we consider as streams of data all data which is coming with a time stamp from a

data source, independently of the frequency of changes. For example, publishing
changes/updates in a web page represents such a stream of data. Other examples are updates
from discussion forums, twitter and facebook (wall). Note that we are talking mainly about
community-driven data.

120 N. Stojanovic and A. Artikis

3.3 Research Challenges and Beyond State of the Art

New research work should be mainly focused on developing efficient and scalable
solutions for finding unusuality (changes) in the data flow: the value of data streams
is determined not only by the data itself (i.e. data value) but rather by the context the
data values have appeared in. For example, if there are two complaints coming from
the gold-customer about X in a short period of time, one will react on that differently
depending on that if that customer complains very rarely or quite often including
multiple complaints. This will enable finding interesting information in data streams
(see previous section). This will require methods for the detection of unusual situa-
tions in textual data streams.

Discovering unusual situations have been studied widely through many different
fields of science and economy. In [11] the authors isolate outliers to assure high qual-
ity of stored data. In [12] and [13] a feature-based clustering algorithm is presented.
They mark that previous approaches considers outliers as binary properties and intro-
duced LOF (local outlier actor) to measure the degree of an outlier.

From the data mining point of view, very important is the work of [14], who pro-
vides a framework for effective examining of multidimensional data streams with the
use of “velocity density estimation". It allows both a fast computation and to derive a
visual perspective of the changes. The idea behind it is to estimate the changing rate
of the data based on some user-defined temporal window.

As a short conclusion, most approaches in this field are using unsupervised learn-
ing techniques to detect unusualness. The large number of such approaches is due to
the possibility for fast computation. However, they are only adjusted to some specific
domains. In unpredictable situations it is not desirable to readjust the underlying pa-
rameter. Further, none of the presented approaches, aside Data Stream Mining solu-
tions, has real-time capabilities.

4 Conclusions

Although CEP is in the nutshell about efficient management of the pattern detection
process in the huge and dynamic data streams, it can be also viewed as a technology for
detecting trends in the flow of data that leads to predicting some future situations. In
this paper we give an overview of the application of complex event processing for the
real-time situational awareness from these two different viewpoints: better detection of
emerging complex situations (complex real-time-situation awareness) and prediction of
future situations (future-situation awareness). In order to illustrate these viewpoints we
consider two application areas: a) activity recognition from the video content, and b)
social media observation, respectively. We presented the most important research chal-
lenges for these areas and gave guidelines for the further research in these directions.

Acknowledgments

Alexander Artikis is supported by the EU-funded PRONTO project (FP7-ICT
231738). Nenad Stojanovic is partially financed by EU in the following FP7 projects:
ALERT (ICT-258098) and PLAY (ICT-258659).

 On Complex Event Processing for Real-Time Situational Awareness 121

References

1. Thirunarayan, K., Henson, C., Sheth, A.: Situation Awareness via Abductive Reasoning
for Semantic Sensor Data: A Preliminary Report. In: Proc. 2009 Int. Symposium on Col-
laborative Technologies and Systems (CTS 2009), Baltimore, MD (May 18-22, 2009)

2. Artikis, A., Porter, F., Skarlatidis, A., Paliouras, G.: Logic-based representation, reasoning
and machine learning for event recognition. In: International Conference on Distributed
Event-Based Systems (DEBS), pp. 282–293. ACM, New York (2010)

3. Biswas, R., Thrun, S., Fujimura, K.: Recognizing activities with multiple cues. In: Elgam-
mal, A., Rosenhahn, B., Klette, R. (eds.) Human Motion 2007. LNCS, vol. 4814, pp. 255–
270. Springer, Heidelberg (2007)

4. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence.
Morgan & Claypool Publishers (2009)

5. Hakeem, A., Shah, M.: Learning, detection and representation of multi-agent events in
videos. Artificial Intelligence 171(8-9), 586–605 (2007)

6. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4), 295–318
(1991)

7. Shet, V., Neumann, J., Ramesh, V., Davis, L.: Bilattice-based logical reasoning for human
detection. In: Proceedings of International Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–8. IEEE, Los Alamitos (2007)

8. Thonnat, M.: Semantic activity recognition. In: Proceedings of European Conference on
Artificial Intelligence (ECAI), pp. 3–7 (2008)

9. Tran, S.D., Davis, L.S.: Event modeling and recognition using markov logic networks. In:
Proceedings of Computer Vision Conference, pp. 610–623 (2008)

10. Asur, S., Huberman, B.A.: Predicting the Future with Social Media, wi-iat. In: 2010
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, vol. 1, pp. 492–499 (2010)

11. Last, M., Kandel, A.: Automated Detection of Outliers in Real-World Data. In: Proc. of the
Second International Conference on Intelligent Technologies, pp. S292–S301 (2001)

12. Minh, L.M., Nguyen, Q., Omiecinski, E.: A Fast Feature-Based Method to Detect Unusual
Patterns in Multidimensional Datasets. Springer, Heidelberg (2009)

13. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.L.: identifying density-based local out-
liers. SIGMOD Rec. 29(2), S93–S104 (2000)

14. Aggarwal, C.: A Framework for Diagnosing Changes in Evolving Data Streams. In: ACM
SIGMOD Conference, S575–S586 (2003)

Retractable Complex Event Processing
and Stream Reasoning

Darko Anicic1, Sebastian Rudolph2, Paul Fodor3, and Nenad Stojanovic1

1 FZI Research Center for Information Technology, Germany
2 AIFB, Karlsruhe Institute of Technology, Germany
3 State University of New York at Stony Brook, USA

Abstract. Complex Event Processing (CEP) deals with processing of continu-
ously arriving events with the goal of identifying meaningful patterns (complex
events). In existing stream database approaches, CEP is manly concerned by tem-
poral relations between events. This paper advocates for a knowledge-rich CEP
with Stream Reasoning capabilities. Secondly, we address the problem of revi-
sion in event processing. Events are often assumed to be immutable and therefore
always correct. Revision in event processing deals with the circumstance that cer-
tain events may be revoked. This necessitates to reconsider complex events which
might have been computed based on the original, flawy history as soon as part of
that history is corrected.

In this paper, we present a novel approach for knowledge-based CEP and
Stream Reasoning, including revisions of events too. We present a rule-based
language for pattern matching over event streams with a precise syntax and the
declarative semantics. We devise an execution model for the proposed formal-
ism, and provide a prototype implementation. Extensive experiments have been
conducted to demonstrate the efficiency and effectiveness of our approach.

1 Introduction

While existing semantic technologies and reasoning engines are constantly being im-
proved in dealing with time invariant domain knowledge, they lack in support for pro-
cessing real-time streaming data. Real-time data on Web is valuable only if it is cap-
tured, processed, and delivered instantly. Examples include traffic monitoring, real-time
financial services, web click analysis and advertisement, various social web and real-
time collaboration tools, and so forth.

Complex Event Processing (CEP) is a set of techniques and tools that help us in
understanding and controlling real-time and event-driven systems [11]. As such, it is
a technology that can help in processing real-time data on the Web too. CEP deals
with processing continuously arriving events with the goal of identifying meaningful
event patterns (complex events). An event represents something that occurs, happens,
or changes the current state of affairs. For example, an event may represent a stock price
change, a complied transaction, a new piece of information, knowledge made available
by a Web service, and so forth. In all these situations, to structure the course of affairs
and describe more complex dynamic situations, we compose simple (atomic) events
into complex events. Today’s CEP systems [1,13,4], however, focus on high throughput

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 122–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Retractable Complex Event Processing and Stream Reasoning 123

and timeliness as two important characteristics, while they do not meet the complexity
requirements of event-driven applications. Pattern matching over streams poses two
new challenges directly impacting the complexity of CEP systems:

Knowledge-based CEP & Stream Reasoning. According to [11], the time critical ac-
tions are supposed to be taken upon complex events. The question is, however, whether
event patterns detectable by today’s CEP systems are expressive enough to capture
complex (business) events in all their aspects. How likely is that critical decisions are
taken merely on event patterns of type, e.g., “event a is followed by event b in last
10 seconds”? For some applications such patterns are expressive enough; however, for
knowledge-rich applications, they are certainly not. In such applications real-time ac-
tions are triggered not only by events, but also upon additional knowledge. This knowl-
edge captures the domain of interest, or context related to business critical actions and
decisions. Its purpose is to be evaluated during detection of complex events in order to
enrich events with background information (context); or to detect more complex situa-
tions. The task of reasoning over streaming data (events) and the background knowledge
constitutes a new challenge known as Stream Reasoning [15].

The Linked Open Data (LOD) initiative1 has made available on the Web hundreds
of datasets and ontologies. Examples also include the New York Times dataset2, fi-
nancial ontologies3, encyclopedic data (e.g., DBpedia), Linked-GeoData4, and so forth.
This knowledge is commonly represented as structured data (e.g., using RDFS). Struc-
tured data enable machines to reason over explicit knowledge in order to infer new
(implicit) information. However, current CEP systems [1,13,4] cannot utilize the struc-
tured knowledge, and they cannot do stream reasoning.

To achieve the aforementioned goal, various approaches have been proposed [6,5,10].
They are capable to process either additional background or structured knowledge
(though varying in Complex Event Processing capabilities they provide). In this pa-
per, we propose an approach that is capable to do both, Complex Event Processing and
Stream Reasoning. Moreover, the goal of this paper is to provide an additional feature
(in comparison to [6,5,10]), namely, event revision.

Non-blocking event revision. CEP systems such as [1,13,4] detect complex events
based on reported atomic events. Once a complex event has been detected, typically
there is no chance to revise this event later. Events are assumed to be immutable and
therefore always correct. In practice, there is a number of reasons requiring revisions
in event stream processing. For example, an event was reported by mistake, but did not
happen in reality (and the mistake was realized later); an event happened, but it was not
reported (due to failure of either a sensor, or failure of the event transmission system);
or an event was triggered and later revoked due to the transaction failure. Also very
often streaming data sources contend with noise (e.g., financial data feeds, Web stream-
ing data, updates etc.) resulting in erroneous inputs and, therefore, erroneous complex
event results. As recognised in [14], event stream sources may issue “revision tuples”

1 such as e.g., http://linkeddata.org/
2 Linked Open Data from the New York Times http://data.nytimes.com/
3 Financial ontology: http://www.fadyart.com/
4 LinkedGeoData: http://linkedgeodata.org

http://linkeddata.org/
http://data.nytimes.com/
http://www.fadyart.com/
http://linkedgeodata.org

124 D. Anicic et al.

(revision events) that amend previously issued events. A CEP system should therefore
be capable to take these revisions into account and produce correct revision outputs.
There exist approaches for dealing with revision in event processing [9,12]). However,
these approaches (as rooted in stream databases) cannot do Stream Reasoning.

The goal of this work is to provide a fundamental framework for processing event
streams, exceeding the capabilities of today’s CEP systems. We propose a formalism
featuring an expressive declarative and rule-based semantics. As such, the formalism
enables effective Complex Event Processing and Stream Reasoning. Apart from this,
our approach naturally captures revision of acquired knowledge5. Extensive experi-
ments have been conducted to demonstrate the practical efficiency and effectiveness
of our approach.

2 Formal Model for Knowledge-Based Event Processing with
Revision

We have defined a basic language for CEP in [3]. In this section, we extend the language
to handle retractions. In order to keep the presentation of the overall formalism self-
contained, we will also recall basics of the language from [3].

2.1 Event Processing Language Syntax

In this section, we present the formal syntax of our language for event processing, while
in the remaining sections of the paper, we will gradually introduce other aspects of the
language (i.e., the declarative and operational semantics as well as the performance of
a prototypical implementation based on the language).

The syntax of our language allows for the description of time and events. We repre-
sent time instants as well as durations as nonnegative rational numbers q ∈ Q+. Events
can be atomic or complex. An atomic event refers to an instantaneous occurrence of
interest. Atomic events are described by ground atoms (i.e., predicates followed by
arguments which are terms not containing variables). Intuitively, the arguments of a
ground atom describing an atomic event denote information items (i.e., event data) that
provide additional information about that event.

Atomic events can be composed to form complex events via event patterns. We use
event patterns to describe how events can (or have to) be temporally situated relative
to other events or absolute time points. The language P of event patterns is formally
defined by

P ::= pr(t1, . . . , tn) | P WHERE t | q | (P).q
| P BIN P | NOT(P).[P, P]

Thereby, pr a predicate name with arity n, ti denote terms, t is a term of type
Boolean, q is a nonnegative rational number, and BIN is one of the binary operators
SEQ, AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES. As a side con-
dition, in every expression p WHERE t, all variables occurring in t must also occur in
the pattern p. Finally, an event rule is defined as a formula of the following form:

5 We focus on revision of events. Revision of background knowledge is out of scope.

Retractable Complex Event Processing and Stream Reasoning 125

pr(t1, . . . , tn) ← p

where p is an event pattern containing every variable occurring in pr(t1, . . . , tn) at least
once outside any function application.

Figure 1 demonstrates the various ways of constructing complex event descriptions
from simpler ones in our language for event processing. Moreover, the figure informally
introduces the semantics of the language, which will be formally defined in Section 2.3.

Fig. 1. Language for Event Processing - Composition Operators

It is worth noting that the language captures the set of all possible 13 relations on
two temporal intervals as defined in [2] and can therefore be used for extensive temporal
reasoning.

2.2 Examples

Let us briefly review the modeling capabilities of the presented pattern language.

General examples. One might be interested in defining an event matching stock market
working days:

workingDay() ← NOT(marketCloses())[marketOpens(), marketCloses()].

Moreover, we might be interested in detecting the event of two bankruptcies happening
on the same market working day:

dieTogether(X, Y)←(
bankrupt(X)SEQ bankrupt(Y)

)
DURING workingDay().

126 D. Anicic et al.

This event rule also shows how event information (about involved institutions, prove-
nance, etc.) can be “passed” on to the defined complex events by using variables. Fur-
thermore, variables may be employed to conditionally group events into complex ones
if they refer to the same entity:

indirectlyAcquires(X, Y) ← buys(Z, Y) AND buys(X, Z)

Knowledge-based patterns. Let us consider an example demonstrating knowledge-
based pattern detection. Suppose that we want to detect the stock price increase in a
supply chain system of companies. The following pattern monitors two stock price in-
creases in two companies (occurred within certain time window), and checks whether
the companies are parts of the supply chain system.

trendIncrease() ← (
stockIcr(CompanyA) SEQ stockIcr(CompanyB)

)
.10

AND inSupChain(CompanyA, CompanyB).

The supply chain system is represented as a set of explicit links between companies,
e.g., with linked(A, B) we represent two interconnected businesses involved in the
ultimate provision of a product. We assume that such explicit relationships are con-
tinuously being updated via information events as, for instance, our data mining tool
processes different information sources, delivering events of the form:

linked(CompanyA, CompanyB)
...
linked(CompanyY, CompanyZ)

The above set of linked relations can be represented, with no restriction, as a set
of RDF triples too. Our prototype implementation (see Section 4) uses Semantic Web
Library6 to represent an RDFS ontology as a set of Prolog rules and facts.

The following transitive closure pattern can then be used to span over semantic rela-
tionships between companies scenario where direct supply relationships are represented
explicitly, and hence discover implicit relationships, i.e., whether two stock price in-
creases also covered the whole supply chain system.

inSupChain(X, Y) ← linked(X, Y).
inSupChain(X, Z) ← linked(X, Y) AND inSupChain(Y, Z).

To generalize, for a given set of events that satisfy certain temporal relationships,
our approach may be used to additionally check whether these events satisfy certain
semantic relationships with respect to domain knowledge that itself may be dynamically
collected. Semantic relationships between occurring events is an important dimension,
neglected in today’s CEP systems. It helps discovering the context in which events
occurred by combining knowledge management techniques (e.g., deductive reasoning)
with event stream processing.

Event revision. To illustrate how event revision can be useful in practise, let us con-
sider the following example. An automated stock brokerage system sells stocks to its
clients. The system emits an event described by availableStock to a client every time

6 SWI-Prolog: http://www.swi-prolog.org/pldoc/package/semweb.html

http://www.swi-prolog.org/pldoc/package/semweb.html

Retractable Complex Event Processing and Stream Reasoning 127

when the respective stocks become available. The event contains information about the
company’s stock ID, the current price Pri, and the available amount of stocks Amt.
A client (identified by CID) may now signal the request to buy the offered stocks by
sending an event trChecked back to the system, stating the wanted amount Amt1 of
stocks. Event availableStock followed by event trChecked will trigger a complex
event buyStocks according to the following rule:

buyStocks(CID, ID, Pri, Amt1) ← availableStock(ID, Pri, Amt)
SEQ trChecked(CID, ID, Pri, Amt1) WHERE Amt1 ≤ Amt.

Upon detection, event buyStocks will trigger two transactions: the first transaction
transfers money from the client’s account to the broker’s account, the second transaction
maintains the balance of available stocks, by subtracting Amt1 from Amt. The mainte-
nance is necessary as available stocks are also offered to other interested clients. Since
the stock trading is carried out in real-time, it is important that execution in the stock
brokerage system is automated and that the transaction of one client does not block exe-
cutions of other clients (as long as Amt > 0). Now, suppose that event balanceChange
is triggered whenever the balance of available stocks changes from Amt2 to Amt3 by
customer identified as CID (i.e., whenever the second transaction completes). For ex-
ample, these events may be used for transaction execution monitoring, statistical anal-
ysis, etc. Let us furthermore assume that the following pattern is used to detect stock
trades of suspiciously large volume, which may hint at a potential fraud.

bigTrade(CID, ID, Amt1) ← buyStocks(CID, ID, Pri, Amt1)
SEQ balanceChange(CID, Amt2, Amt3) WHERE (Amt2 − Amt3) > 10000.

Many transactions concurrently change the balance, and after each change, event
balanceChange is triggered. Now let us suppose that an event bigTrade has been
detected, and a fraud investigation was initiated. Just a second afterwards, the money
transfer transaction fails (due to insufficient account balance of a customer). In this
situation, the amount of available stocks will be restored by executing a compensation
transaction. Moreover, the corresponding balanceChange event needs to be retracted.
Finally, the bigTrade complex event needs to be revoked too, leading to the cancelation
of the fraud investigation.

The automated stock brokerage system operates with flexible policies, allowing cus-
tomers to cancel their transaction within certain time. If after detection of event
bigTrade, a customer cancels her transaction (by retracting event trChecked) the
atomic event buyStocks will be revoked too, which in turn will necessitate the retrac-
tion of event bigTrade.

2.3 Declarative Semantics

We define the declarative formal semantics of our language for event processing in a
model-theoretic way.

Note that we assume a fixed interpretation of the occurring function symbols, i.e., for
every function symbol f of arity n, we presume a predefined function f∗ : Conn →
Con. That is, in our setting, functions are treated as built-in utilities.

128 D. Anicic et al.

As usual, a variable assignment is a mapping μ : V ar → Con assigning a value to
every variable. We let μ∗ denote the extension of μ to terms defined in the usual way:

μ∗ :

⎧⎨
⎩

v �→ μ(v) if v ∈ V ar,
c �→ c if c ∈ Con,

f(t1, . . . , tn) �→ f∗(μ∗(t1), . . . , μ∗(tn)) otherwise.

In addition to the set of rules R, we define an event stream S = (E, ev, occ, rev).
Thereby, E is a set of events, ev : E → Ground a function assigning a ground
atom (specifying the event type and possibly additional information) to every event
and occ, rev : E � Q+ partial functions assigning to events time points at which they
occur or are revoked, respectively. As a side condition, we presume that for all e ∈ E
with rev(e) defined, occ(e) is defined as well and occ(e) < rev(e), i.e., an event can
only be revoked after it has occurred. Moreover, we require the event stream to be free
of accumulation points, i.e., for every q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ =
occ(e) for some e ∈ E} is finite.

Given an event stream S = (E, ev, occ, rev) and a time “viewpoint” v ∈ Q+, we
now define the auxiliary function εv : Ground → 2Q+

from ground atoms into sets of
nonnegative rational numbers by

εv (at) := occ
(
ev−1(at) ∩ (

occ−1([0, v]) \ rev−1([0, v])
))

It thereby indicates at what time instants what event types occur according to all the
(occurrence and revocation) information obtained up to the time viewpoint v.

Now, we define an interpretation I : Ground → 2Q+×Q+
as a mapping from the

ground atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every
〈q1, q2〉 ∈ I(g) for all g ∈ Ground.

Given an event stream S and a viewpoint v ∈ Q+, we call an interpretation I model
for a rule set R – written as I |=v

S R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every g ∈ Ground and q ∈ εv (g).
C2 for every rule atom ← pattern and every variable assignment μ we have Iμ(atom)

⊆ Iμ(pattern) where Iμ is inductively defined as displayed in Figure 2.

Given an interpretation I and some q ∈ Q+, we let I|q denote the interpretation
defined via I|q(g) = I(g) ∩ {〈q1, q2〉 | q2 − q1 ≤ q}.

Given two interpretations I and J , we say that I is preferred to J if there exists a
q ∈ Q+ with I|q ⊂ J |q.

A model I is called minimal if there is no other model preferred to I. It is easy
to show that for every event stream S, viewpoint v ∈ Q+, and rule base R there is a
unique minimal model IS,v,R.

Finally, given an atom a and two rational numbers q1, q2, we say that the event a[q1,q2]

is a consequence of the event stream ε and the rule base R at the viewpoint v (written
S, v,R |= a[q1,q2]), if 〈q1, q2〉 ∈ IS,v,R

μ (a) for some variable assignment μ.
Clearly, the problem of deciding S, v,R |= a[q1,q2] is time polynomial with respect

to the combined size of R and S, given bounded arity of the used predicates and poly-
nomial computation time for the built-in functions. This result is a straightforward con-
sequence from the fact that there only polynomially many a[q1,q2] to be considered

Retractable Complex Event Processing and Stream Reasoning 129

pattern Iμ(pattern)

pr(t1, . . . , tn) I(pr(μ∗(t1), . . . , μ∗(tn)))
p WHERE t Iμ(p) if μ∗(t) = true

∅ otherwise.
q {〈q, q〉} for all q ∈ Q+

(p).q Iμ(p) ∩ {〈q1, q2〉 | q2 − q1 = q}
p1 SEQ p2 {〈q1, q4〉 | 〈q1, q2〉 ∈ Iμ(p1) and 〈q3, q4〉 ∈ Iμ(p2) for some q2, q3 ∈ Q+ with q2 < q3}
p1 AND p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉 ∈ Iμ(p1) and 〈q3, q4〉 ∈ Iμ(p2) for some q2, q3 ∈ Q+}
p1 PAR p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉 ∈ Iμ(p1) and 〈q3, q4〉 ∈ Iμ(p2)

for some q2, q3 ∈ Q+ with max(q1, q3) < min(q2, q4)}
p1 OR p2 Iμ(p1) ∪ Iμ(p2)
p1 EQUALS p2 Iμ(p1) ∩ Iμ(p2)
p1 MEETS p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iμ(p1) and 〈q2, q3〉 ∈ Iμ(p2) for some q2 ∈ Q+}
p1 DURING p2 {〈q3, q4〉 | 〈q1, q2〉 ∈ Iμ(p1) and 〈q3, q4〉 ∈ Iμ(p2) for some q2, q3 ∈ Q+ with q3 < q1 < q2 < q4}
p1 STARTS p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iμ(p1) and 〈q1, q3〉 ∈ Iμ(p2) for some q2 ∈ Q+ with q2 < q3}
p1 FINISHES p2 {〈q1, q3〉 | 〈q2, q3〉 ∈ Iμ(p1) and 〈q1, q3〉 ∈ Iμ(p2) for some q2 ∈ Q+ with q1 < q2}
NOT(p1).[p2, p3] Iμ(p2 SEQ p3) \ Iμ(p2 SEQ p1 SEQ p3)

Fig. 2. Definition of extensional interpretation of event patterns. We use p(x) for patterns, q(x) for
rational numbers, t(x) for terms, and pr for predicates .

and their validity can be computed in a bottom-up way with increasing interval length.
The computational overhead introduced by event revision is not measurable in terms of
worst-case complexity which is PTime with and without the revision component.

In the sequel, we will see how this declarative, time-dependent semantics is realized
incrementally, as v proceeds, i.e., the “computed semantics” at some time viewpoint v
is revised to obtain the semantics at some latter stage, instead of computing everything
from scratch.

3 A Rule-Based Execution Model

This section starts with a brief explanation on how complex events can be computed
with event-driven backward chaining (EDBC) rules [3]. This is our basic mechanism
for derivation of complex events in a data-driven fashion (with logic rules). Later on,
we extend the mechanism to handle event revision too.

Sequence with event revision. Let us consider a sequence of events represented as a rule:
e ← a SEQ b SEQ c. Event e is detected when event a7 is followed by b and in turn fol-
lowed by event c. We can always represent the above pattern as e ← ((a SEQ b) SEQ c).

We refer to this way of “coupling events” as binarization of events. Effectively, in bi-
narization we introduce two-input intermediate events (goals). For example this allows
us to rewrite the above sequence as ie1 ← a SEQ b, and e ← ie1 SEQ c. Every moni-
tored event (either atomic or complex), including intermediate events, will be assigned
with one or more logic rules, fired whenever that event occurs.

In the following, we give more details about assigning rules to each monitored event.
Algorithm 1 accepts as input a rule referring to a binary sequence ei ← a SEQ b, and
produces executable rules for the sequence pattern. A detected sequence can also be
retracted by the given transformation. If this occurs, the retraction is further propagated
amongst other patterns (built upon that sequence).

7 More precisely, by “event a” is meant an instance of the event of type a.

130 D. Anicic et al.

Algorithm 1. Sequence

Output: event-driven backward chaining rules for SEQ operator including revision.
Each event binary goal ie1 ← a SEQ b is converted into: {

a(ID, [T1, T2]) : − for each(a, 1, ID, [T1, T2]).
a(1, ID, [T1, T2]) : − assert(goal(b(, [,]), a(ID, [T1, T2]), ie1(, [,]))).

rev a(ID, [T3, T4]) : − for each(rev a, 1, ID, [T3, T4]).
rev a(1, ID, [T3, T4]) : − goal(b(, [,]), a(ID, [T1, T2]),

ie1(, [,])), retract(goal(b(, [,]), a(ID, [T1, T2]))).
rev a(2, ID, [T3, T4]) : − (ie 1(ID, [T1, T2]),

retract(ie 1(ID, [T1, T2])), rev ie1(ID, [T1, T2])); true.
b(ID, [T3, T4]) : − for each(b, 1, ID, [T3, T4]).

b(1, ID, [T3, T4]) : − goal(b(, [,]), a(ID, [T1, T2]),
ie1(, [,])), T2 < T3, ie1(ID, [T1, T4]).

rev b(ID, [T5, T6]) : − for each(rev a, 1, ID, [T5, T6]).
rev b(1, ID, [T5, T6]) : − (ie1(ID, [T1, T4]),

retract(ie1(ID, [T1, T4])), rev ie1(ID, [T1, T4])); true.
ie 1(ID, [T1, T4]) : − for each(ie 1, 1, ID, [T1, T4]).

ie 1(1, ID, [T1, T4]) : − assert(ie 1(ID, [T1, T4])).}
}

The binarization step must precede the rule transformation. We first consider rules
that handle sequence without event revision. These rules in Algorithm 1 do not have
prefix rev event name (e.g., rev a(1, ID, [T3, T4])), and belong to one of two differ-
ent classes of rules8. We refer to the first class as to goal inserting rules. The second
class corresponds to checking rules. For example, the second rule in Algorithm 1 (i.e.,
with a(1, ID, [T1, T2]) in the rule head) belongs to the first class of rules, as it inserts
goal(b(,), a(T1, T2), ie1(,)). This rule will fire when an event of type a occurs, and
the meaning of the inserted goal is as follows: “an event a has occurred at [T1, T2],9

and we are waiting for event b to happen in order to detect event ie1.” Obviously, the
goal does not carry information about times for b and ie1, as we don’t know when they
will occur. In general, the second event in a goal always denotes the event that has just
occurred. The role of the first argument is to specify what we are waiting for, to detect
an event that is on the third position.

The rule with b(1, ID, [T3, T4]) in the rule head (see Algorithm 1) belongs to
the second class (i.e., checking rule). This rule checks whether certain prerequisite
goals already have been asserted, in which case it triggers the more complex event.
In this example, the rule will fire whenever event b occurs. The rule checks whether
goal(b(, [,]), a(ID, [T1, T2]), ie1(, [,])) already exists (i.e., a has previously hap-
pened), in which case the rule triggers ie1, by calling ie1(ID, [T1, T4]). After detection
of event ie1, goal(b(, [,]), a(ID, [T1, T2]), ie1(, [,])) could be removed from

8 There exist the third class of rules too (with for each predicate). However these auxiliary
rules, implementing a sort of “for each” loop, and ensuring that whenever an event of certain
type happens, all rules with that event in the head fire.

9 Apart from the timestamp, an event may carry other data parameters. They are omitted here
for the sake of readability.

Retractable Complex Event Processing and Stream Reasoning 131

the database to free up memory (as it is “consumed”). However this is not the case, as
the goal still may be useful if the revision of event a takes place (see below the case
when event rev a happens).

The time occurrence of ie1 (i.e., [T1, T4]) is defined based on the occurrence of con-
stituting events (i.e., a(ID, [T1, T2]), and b(ID, [T3, T4]), see Section 2.3). By calling
ie1(ID, [T1, T4]), this event will be inserted as a fact (see Algorithm 1). If later on, the
revision process takes place, this fact will serve as a proof that event ie1 occurred and
hence may be retracted. If event ie1 is further used in composition of other complex
events, there will exist another rule with ie1 in the rule head (apart from the current
rules). The purpose of those rules would be to propagate the occurrence of event ie1
upward (since it is an intermediate event).

Let us now explain how Algorithm 1 handles event revision in a sequence of two
events. If once detected, event ie1 may be retracted by an occurrence of either event
rev a or rev b. That is why there are two sets of revision rules: rev a and rev b, see
Algorithm 1. Additionally, events rev a and rev b may retract other detected events, if
they were used in their detections and their IDs match. The identification (ID) is used
to make a distinction between possible retractions of instances of the same event types.

If an event rev a happens, rules rev a(1, ID, [T3, T4]) and rev a(2, ID, [T3, T4])
aim to nullify a prior occurrence of an event a. In particular, if an event a has hap-
pened, a goal goal(b(, [,]), a(ID, [T1, T2]), ie1(, [,])) will be inserted into the
database. Therefore the subsequent occurrence of rev a needs to delete that goal.
The rule rev a(1, ID, [T3, T4]) does that. If the following sequence of events occurs:
a, rev a, b, then event ie1 will not be detected (as rev a has nullified the occurrence
of a). If event rev a happens after event b, event ie1 will need to be retracted (as it has
already been detected). The rule with rev a(2, ID, [T3, T4]) in the head is used in the
latter scenario.

In the previously described algorithm, we assumed that all events in a binarized
pattern have the same ID (i.e., ie1(ID) ← a(ID) BIN b(ID)). It is worth noting that
some intermediate or complex events may be composed of events with different IDs. In
such cases, an additional ID may be added, e.g., ie1(ID1, ID2). ID1 will then denote
an ID of the left-hand-side event (a(ID1)), and ID2 will denote an ID of the right-
hand-side event (b(ID2)). Checking these IDs when certain events are retracted allows
to employ event revision using the presented algorithms with no further restriction.

Rules produced by the transformation in Algorithm 1 are executable rules (Prolog
rules). With no restriction these rules may be accompanied by other Prolog rules, used
for example to express the background or domain knowledge (see Example “Knowledge-
based patterns” from Section 2.2). To also enable use of existing online knowledge
bases expressed as RDFS ontologies (e.g., from LOD initiative and other sources, see
Section 1), we use existing tools for conversion of RDFS to Prolog, such as SWI-Prolog
Semantic Web Library. This conversion is done at design-time, and has no impact at
run-time characteristics of our framework.

Rule transformations for other language constructs – defined in Section 2 – are omit-
ted for space reasons.

132 D. Anicic et al.

4 Experimental Results

As a proof of concept, we have provided a prototype implementation of the presented
framework for knowledge-based CEP with event revision capabilities. The implementa-
tion is part of our open-source engine for event processing called ETALIS10. Since our
approach is based on deductive rules, it was convenient to provide the implementation
in Prolog.11 The prototype automatically compiles the user-defined complex patterns,
written in the presented language (see Section 2) into Prolog rules. Also, our engine can
automatically load an accompanied RDFS ontology (as a domain background knowl-
edge base) into Prolog. YAP Prolog version 5.1.312 is then used to execute the compiled
rules. All tests were carried out on a workstation with Intel Core Quad CPU Q9400
2,66GHz, 8GB of RAM, running Windows Vista x64. To run tests on streaming data,
we have implemented an event stream generator that creates time series data with prob-
abilistic events. We present a test with real data set too.

Knowledge-based CEP test. As a concrete example, we show the evaluation of the
trendIncrease complex pattern from Section 2.2. We varied the pool of companies
in the transitive closure, ranging from 100 to 100,000 linked companies. Figure 3(a)
shows the throughput in thousands of events/second, obtained after detection of stockIcr
events. To prove the supply-chain connectivity between two companies, the system
needs to evaluate transitive closure rules, i.e., it needs to perform Stream Reasoning
(see inSupChain rules from Section 2.2). It can be seen that the computation of the
recursive relation inSupChain has a relatively small effect, ∼10%, on the overall com-
plex processing execution time (even when the system needs to traverse 100,000 links
in between two stockIcr events). Our system detects more 20000 complex events per
second, where for each complex event, the system additionally needed to process back-
ground knowledge consisting of 100000 facts (or RDF triples).

0

10

20

30

100 1000 10000 100000

Recursion depth

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Throughput Change

0

10

20

30

5% 10% 20%

Percentage of revised events

T
hr

ou
gh

pu
t (

10
00

 x
 E

ve
nt

s/
S

ec

Revision Flag off Revision Flag on

Fig. 3. (a) CEP with Stream Reasoning (b) Throughput comparison (c) Negation and revision

Event revision CEP experiments. Figure 3(b) shows experimental results we obtained
for an event pattern represented by rule (1). In particular, Figure 3(b) shows the through-
put comparison with and without handling event revision. We did the measurement for
a pattern that exhibits different event operators (i.e., BIN instantiated by SEQ , AND ,
OR) of two events and the join operation on their ID attribute. The y-axis shows the

10 ETALIS: http://code.google.com/p/etalis/
11 With similar effort, our revision model could be implemented in other rule languages too.
12 YAP Prolog: http://www.dcc.fc.up.pt/˜vsc/Yap/

http://code.google.com/p/etalis/
http://www.dcc.fc.up.pt/~vsc/Yap/

Retractable Complex Event Processing and Stream Reasoning 133

event throughput achieved by our prototype when events are, and are not, retractable.
The x-axis shows different event operators in rule (1). The performance loss when re-
vision is handled is moderate, and it happens mainly due to the fact that more events
(goals) are kept in memory; hence more data needs to be indexed and processed.

e(ID) ← a(ID) BIN b(ID). (1)

We also present an in-comparison throughput for negation. The tested pattern with
negation is depicted by rule (2). The pattern detects an event a followed by an event b,
with no occurrence of an event c in between (provided that all event instances must have
the same ID). Figure 3(c) shows evaluation results for this pattern. We compare two
throughputs, one obtained by processing streams without retracted events; and another
with retracted events. The percentage of negated events (i.e., those of type c) in both
streams varies from 5% to 20%. Additionally, streams with retracted events contain
negated events with the same percentage (i.e., from 5% to 20%). The achieved results
are similar to those from other operators.

e(ID) ← NOT(c(ID)).[a(ID) SEQ b(ID)]. (2)

We have also tested the latency caused by retraction of a hierarchy of complex events
(i.e., not only complex events detected directly from an input stream). Complex events
in this tests are chained events, as represented by rule (3). That is, when event e1 occurs,
it will trigger other n events in a chain. Also if event e1 is retracted, all n chained events
will be retracted. We have created event chains of different sizes, ranging from 1000
events to 50000 events. Once the chains are created, we retract the first event in the
chain and measure the time required to retract all other triggered events. Figure 4 shows
the experiment results. Retraction of 1000 event is done in 31 ms and all up to 10000
events the delay seems fairly negligible (less than a second). However to retract 20000
and specially for 50000 events, the time increases exponentially (i.e., approx. 3 s and 16
s). Note that this test is rather hard as we assumed that all 50000 events have the same
ID, so no goal could have been removed while computing and retracting all of them.
Obviously, this fact has its consequences on the performance.

e2(ID) ← e1(ID).
e3(ID) ← e2(ID).
...
en+1(ID) ← en(ID).

(3)

All presented tests so far were carried out with probabilistic synthetic data streams.
We could not find available real data sets with revision tuples (as they are usually
kept proprietarily). Still to present a more realistic scenario, we took a stream of IBM
stocks from 1962 year up to now, provided by Yahoo Finance13. We artificially inserted
5% of revision tuples to this stream. Format of events provided by Yahoo Finance is
stock(ID, Date, Opn, High, Low, Cls, V ol, Adj) where ID is a company ID; Date
is a current date; Opn, High, Low, Cls denote the opening, the highest, the lowest, and
closing price, respectively; Adj is the closing price adjusted for dividends and splits.

13 Yahoo Finance: http://finance.yahoo.com/

http://finance.yahoo.com/

134 D. Anicic et al.

0
2
4
6
8

10
12
14
16
18

1000 2000 5000 10000 20000 50000

Ti
m

e
(S

ec
)

Number of retracted events

Latency Change

Fig. 4. Event latency

The event pattern is represented by rule (4). We monitored the price increase of two
successive stock updates w.r.t Adj data. Additionally a filter for the price increase was
specified by X , where X varied between 0% and 10%. Figure 5(b) compare results
obtained for the original stream and the one modified with revision tuples.

stockIncr(ID, Adj1, Adj2) ←
stock(ID, Date1, Opn1, High1, Low1, Cls1, V ol1, Adj1)
SEQ

stock(ID, Date2, Opn2, High2, Low2, Cls2, V ol2, Adj2)
WHERE (Adj1 ∗ X < Adj2).

(4)

0
2
4
6
8

10
12
14
16
18

0% 0,50% 1% 2% 5% 10%Th
ro

ug
hp

ut
 (1

00
0

x
ev

en
ts

/s
ec

)

Price Increase

with revision without revision

Fig. 5. Stock price change on a real data set

First, we see that the throughput without revision is lower than the one obtained from
a similar test (see Figure 3(b)). Our closer investigation has shown that this difference
was not caused by the use of real data set. Instead it has to do with more efficient in-
dexing in the former test (Figure 3(b)). Note that in the real stream, all events are of
the same type (i.e., stock) whereas in the synthetic data set we have two types (i.e.,

Retractable Complex Event Processing and Stream Reasoning 135

a and b). Our engine is more effective when events are discriminated upon their types
(rather than on data attributes, e.g., an ID). Second, we can observe that the throughput
without revision slightly increases as the filter condition gets tighter. This result is un-
derstandable, since in this case, less complex events, are computed and the throughput
(based on the input stream) raises up.

At the end, it is worth mentioning that costs of compilation of an event program
(written in the formalism, proposed in Section 2) into Prolog rules are minor. Typically,
a program is compiled in few micro seconds, and the compilation is done only once at
the design-time. Hence, the compilation does not cause a significant overhead.

5 Related Work

Work related to ours goes in two directions. The first direction reviews existing ap-
proaches from Data Stream Management Systems (DSMS) that also handle event revi-
sion (retraction). The other discusses Knowledge-based CEP & Stream Reasoning. We
are not aware of any approach covering both aspects.

DSMS approaches. The Borealis CEP engine [9] features a mechanism for revision
processing. The mechanism handles erroneous input events by generating corrections
of previously output query results on data streams.

This work has been extended in [12] by proposing a revision model based on “replay”
of event history. The technique assumes that a stream engine maintains an archive of
recent data seen on each of its input streams. These archives are revised when revision
tuples occur, and reprocessing (replaying) the sequence of input tuples than generates
any of the query results invalidated by the revision.

While this technique is general and works well for all classes of patterns supported
by Borealis system [9], it requires the event history to be kept (persisted). The history
is kept as long as revision needs to be guaranteed. In our approach we also need to keep
extra data in order to enable revision. However we saw (in Section 3) that we do not
need to keep the whole event history (i.e., during the period of time in which revision is
guaranteed). We keep only intermediate results (goals) relevant w.r.t detected complex
events. Moreover we do not need to replay the whole history when computing revisions.
The intermediate results (goals) represent partial results, hence they enable us to obtain
revisions without re-computing them from scratch.

In [7] revision is considered as a problem caused by out of order events, i.e., it is
possible to revise the occurrence time as well as the time when an event is reported
to the system. We consider a general case where not only times can be revised, but
the whole event can be retracted. Moreover, the consequences of that retraction are
amended not only on detected patterns but also on complex patterns that are built out
of them (i.e., hierarchies of complex events). The work in [7] is based on buffering and
synchronization points. An input stream may be blocked in between synchronization
points until events are reordered. On the other hand, we propose an approach that never
blocks the input events. Further on, we never buffer the input stream and reorder it.

Knowledge-based CEP & Stream Reasoning. Continuous SPARQL (C-SPARQL)
[5] is a language for continuous query processing over streams of RDF data. It extends

136 D. Anicic et al.

the SPARQL language by adding support for window and aggregation operations. The
work in [8] introduces Streaming SPARQL. The approach is built on temporal relational
algebra, and the authors provide an algorithm to transform SPARQL queries to that
algebra. As in [5], the approach is lacking event processing capabilities, i.e., detecting
RDF triple sequences occurring in a specific time relatedness.

Finally, in [10] an approach for integrating sensor streams with LOD background
knowledge has been presented. As a part of this work, a continuous query language,
CQELS, has been proposed. The language supports sliding windows, aggregations, and
other operators supported by SPARQL language (which are now adapted to stream
processing).

Our work is similar to this and other, previously mentioned, approaches. We, how-
ever, follow completely a deductive rule-based paradigm, providing an effective so-
lution for CEP and Stream Reasoning. Additionally our approach handles revision in
event processing too.

6 Conclusions and Future Work

Complex Event Processing (CEP) deals with processing of continuously arriving events
with the goal of identifying meaningful patterns, (complex events). In existing CEP ap-
proaches complex events consist merely of more simple (temporally situated) events.
We proposed a knowledge-based event processing, advocating a richer formalism for
CEP, capable not only to match patterns based on temporal relations among events
but also to evaluate contextual knowledge and prove their semantic relations. More-
over, we proposed a framework which enables revision in pattern matching. We have
demonstrated that our deductive rule-based approach for CEP represents a natural way
to realize knowledge-based CEP with Stream Reasoning, and express routines required
for event revisions.

Acknowledgments

This work was partially supported by the European Commission funded project PLAY
(FP7-20495) and by the ExpresST project funded by the German Research Foundation
(DFG). We thank Jia Ding and Ahmed Khalil Hafsi for their help in implementation
and testing ETALIS.

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event
streams. In: SIGMOD, pp. 147–160 (2008)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26, 832–843 (1983)

3. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A rule-based
language for complex event processing and reasoning. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg (2010)

Retractable Complex Event Processing and Stream Reasoning 137

4. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations
and query execution. VLDB Journal 15, 121–142 (2006)

5. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for c-sparql
queries. In: EDBT, pp. 441–452 (2010)

6. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Incremental reasoning on
streams and rich background knowledge. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije,
A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp.
1–15. Springer, Heidelberg (2010)

7. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through time: A vision
for event stream processing. In: Proceedings of the 3rd Biennial Conference on Innovative
Data Systems Research (CIDR 2007), pp. 363–374 (2007)

8. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to pro-
cess data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

9. Carney, D., et al.: Monitoring streams: a new class of data management applications. In:
VLDB 2002, pp. 215–226 (2002)

10. Le-Phuoc, D., Parreira, J.X., Hausenblas, M., Hauswirth, M.: Unifying stream data and
linked open data. DERI Technical Report (August 15, 2010)

11. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley, Reading (2002)

12. Maskey, A.S., Cherniack, M.: Replay-based approaches to revision processing in stream
query engines. In: SSPS, pp. 3–12 (2008)

13. Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detecting com-
posite events. In: SIGMOD, pp. 193–206 (2009)

14. Ryvkina, E., Maskey, A.S., Cherniack, M., Zdonik, S.: Revision processing in a stream pro-
cessing engine: A high-level design. In: ICDE 2006, USA, pp. 141–143 (2006)

15. Valle, E.D., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning upon
rapidly changing information. IEEE Intelligent Systems 24, 83–89 (2009)

A Declarative Framework for Matching Iterative

and Aggregative Patterns against Event Streams

Darko Anicic1, Sebastian Rudolph2, Paul Fodor3, and Nenad Stojanovic1

1 FZI Research Center for Information Technology, Germany
2 AIFB, Karlsruhe Institute of Technology, Germany
3 State University of New York at Stony Brook, USA

Abstract. Complex Event Processing as well as pattern matching
against streams have become important in many areas including financial
services, mobile devices, sensor-based applications, click stream analysis,
real-time processing in Web 2.0 and 3.0 applications and so forth. How-
ever, there is a number of issues to be considered in order to enable
effective pattern matching in modern applications. A language for de-
scribing patterns needs to feature a well-defined semantics, it needs be
rich enough to express important classes of complex patterns such as
iterative and aggregative patterns, and the language execution model
needs to be efficient since event processing is a real-time processing. In
this paper, we present an event processing framework which includes an
expressive language featuring a precise semantics and a corresponding ex-
ecution model, expressive enough to represent iterative and aggregative
patterns. Our approach is based on a logic, hence we analyse deductive
capabilities of such an event processing framework. Finally, we provide
an open source implementation and present experimental results of our
running system.

1 Introduction

Pattern matching against event streams is a paradigm of processing continu-
ously arriving events with the goal of identifying meaningful patterns (com-
plex events). For instance, occurrence of multiple events form a complex event
pattern by matching certain temporal, relational or causal conditions. Com-
plex Event Processing (CEP) has recently aroused significant interest due to its
wide applicability in areas such as financial services (e.g., dynamic tracking of
stock fluctuations, surveillance for frauds and money laundering etc.), sensor-
based applications (e.g., RFID monitoring), network traffic monitoring, Web
click analysis etc.

While the pattern matching over continuously arriving events has been well
studied [1,10,5,6,9], so far the focus was mostly on the high-performance and the
pattern language expressivity. A common approach for stream query process-
ing has been to use select-join-aggregation queries [5,6,9]. While such queries
can specify a wide range of patterns, they are unable to express Kleene clo-
sure. Kleene closure can be used to extract from the input stream a finite yet

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 138–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Declarative Framework for Matching Iterative and Aggregative Patterns 139

unbounded number of events with a particular property. Recent study [1] has
presented that non-deterministic finite automate (NFA) are suitable for pattern
matching, including also the matching on unbounded events streams.

In this work, we propose a logic rule-based approach that supports the class of
patterns expressible with select-join-aggregation queries, as well as with Kleene
closure and transitive closure. In our formalism these patterns are realized as
iterative rules.

We advocate here a logic rule-based approach because a rule-based formalism
is expressive enough and convenient to represent diverse complex event patterns.
Rules can easily express complex relationships between events by matching cer-
tain temporal, relational or causal conditions. Detected patterns may further be
used to build more complex patterns (i.e., the head of one rule may be used in
the body of other rule, thereby creating more and more complex events). Also
declarative rules are free of side-effects. Moreover, with our rule-based formalism
it is possible to realize not only a set of event patterns, but rather the whole
event-driven application (realized in a single, uniform formalism). Ultimately, a
logic-based event model enables reasoning over events, their relationships, entire
state, and possible contextual knowledge. This knowledge captures the domain
of interest, or context related to business critical actions and decisions (that are
triggered in real-time by complex events). Its purpose is to be evaluated during
detection of complex events in order to enrich recorded events with background
information; to detect more complex situations ; to propose certain intelligent
recommendations in real-time; or to accomplish complex event classification,
clustering, and filtering.

Our approach is based on an efficient, event-driven, model for detecting event
patterns. The model has inference capabilities and yet good run-time charac-
teristics (comparable or better than approaches with no reasoning capabilities).
It provides a flexible transformation of complex patterns into intermediate pat-
terns (i.e., goals) updated in the dynamic memory. The status of achieved goals
at the current state shows the progress toward matching of one or more event
patterns. Goals are automatically asserted as relevant events occur. They can
persist over a period of time “waiting” in order to support detection of a more
complex goal or complete pattern. Important characteristics of these goals are
that they are asserted only if they are used later on (to support a more complex
goal or an event pattern), goals are all unique, and goals persist as long as they
remain relevant (after the relevant period they are deleted). Goals are asserted
by declarative rules, which are executed in the backward chaining mode. We have
implemented the proposed language in a Prolog-based prototype called ETALIS,
and evaluated the implementation in Section 4.

2 A Language for Complex Event Processing

We have defined a basic language for CEP in [4]. In this and the following sec-
tions, we extend the language to handle iterative and aggregative event patterns.
In order to keep the presentation of the overall formalism self-contained, in this
section we also recall basics of the language from [4].

140 D. Anicic et al.

The syntax and semantics of the ETALIS formalism features (i) static rules
accounting for static background information about the considered domain and
(ii) event rules that are used to capture the dynamic information by defining
patterns of complex events. Both parts may be intertwined through the use of
common variables. Based on a combined (static and dynamic) specification, we
will define the notion of entailment of complex events by a given event stream.

We start by defining the notational primitives of the ETALIS formalism. An
ETALIS rule base is based on:

– a set V of variables (denoted by capitals X , Y , ...)
– a set C of constant symbols including true and false
– for n ∈ N, sets Fn of function symbols of arity n
– for n ∈ N, sets Ps

n of static predicates of arity n
– for n ∈ N, sets Pe

n of event predicates of arity n, disjoint from Ps
n

Based on those, we define terms by:

t ::= v | c | ps
n(t1, . . . , tn) | fn(t1, . . . , tn)

We define the set of (static or event) atoms as the set of all expressions
pn(t1, . . . , tn) where p is a (static or event) predicate and t1, . . . tn are terms.

An ETALIS rule base R is composed of a static Rs and an event part Re.
Thereby, Rs is a set of Horn clauses using the static predicates Ps

n. Formally, a
static rule is defined as a : −a1, . . . , an with a, a1, . . . , an static atoms. Thereby,
every term that a contains must be a variable. Moreover, all variables occurring
in any of the atoms have to occur at least once in the rule body outside any
function application.

The event part Re allows for the definition of patterns based on time and
events. Time instants and durations are represented as nonnegative rational
numbers q ∈ Q+. Events can be atomic or complex. An atomic event refers to
an instantaneous occurrence of interest. Atomic events are expressed as ground
event atoms (i.e., event predicates the arguments of which do not contain any
variables). Intuitively, the arguments of a ground atom representing an atomic
event denote information items (i.e. event data) that provide additional infor-
mation about that event.

Atomic events are combined to complex events by event patterns describing
temporal arrangements of events and absolute time points. The language P of
event patterns is defined by

P ::= pe(t1, . . . , tn) | P where t | q | (P).q
| P bin P | not(P).[P, P]

Thereby, pe is an n-ary event predicate, ti denote terms, t is a term of type
boolean, q is a nonnegative rational number, and bin is one of the binary opera-
tors seq, and, par, or, equals, meets, during, starts, or finishes

1. As a
1 Hence, the defined pattern language captures all possible 13 relations on two tem-

poral intervals as defined in [2].

A Declarative Framework for Matching Iterative and Aggregative Patterns 141

side condition, in every expression p where t, all variables occurring in t must
also occur in the pattern p.

Finally, an event rule is defined as a formula of the shape

pe(t1, . . . , tn) ← p

where p is an event pattern containing all variables occurring in pe(t1, . . . , tn).
We define the declarative formal semantics of our formalism in a model-

theoretic way. Note that we assume a fixed interpretation of the occurring func-
tion symbols, i.e. for every function symbol f of arity n, we presume a predefined
function f∗ : Conn → Con. That is, in our setting, functions are treated as built-
in utilities.

As usual, a variable assignment is a mapping μ : V ar → Con assigning a
value to every variable. We let μ∗ denote the canonical extension of μ to terms:

μ∗ :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v �→ μ(v) if v ∈ V ar,
c �→ c if c ∈ Con,

f(t1, . . . , tn) �→ f∗(μ∗(t1), . . . , μ∗(tn)) for f ∈ Fn,

p(t1, . . . , tn) �→
{

true if Rs |= p(μ∗(t1), . . . , μ∗(tn)),
false otherwise.

Thereby, Rs |= p(μ∗(t1), . . . , μ∗(tn)) is defined by the standard least Herbrand
model semantics.

In addition to R, we fix an event stream, which is a mapping ε : Grounde →
2Q+

from event ground predicates into sets of nonnegative rational numbers. It
indicates what elementary events occur at which time instants.

Moreover, we define an interpretation I : Grounde → 2Q+×Q+
as a mapping

from the event ground atoms to sets of pairs of nonnegative rationals, such that
q1 ≤ q2 for every 〈q1, q2〉 ∈ I(g) for all g ∈ Grounde. Given an event stream ε,
an interpretation I is called a model for a rule set R – written as I |=ε R – if
the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Ground with q ∈ ε(g)
C2 for every rule atom ← pattern and every variable assignment μ we have

Iμ(atom) ⊆ Iμ(pattern) where Iμ is inductively defined as displayed in
Fig. 1.

For an interpretation I and some q ∈ Q+, we let I|q denote the interpretation
defined by I|q(g) = I(g) ∩ {〈q1, q2〉 | q2− q1 ≤ q}. Given interpretations I and
J , we say that I is preferred to J if I|q ⊂ J |q for some q ∈ Q+. A model I
is called minimal if there is no other model preferred to I. Obviously, for every
event stream ε and rule base R there is a unique minimal model Iε,R.

Finally, given an atom a and two rational numbers q1, q2, we say that the
event a[q1,q2] is a consequence of the event stream ε and the rule base R (written
ε,R |= a[q1,q2]), if 〈q1, q2〉 ∈ Iε,R

μ (a) for some variable assignment μ.
It can be easily verified that the behavior of the event stream ε beyond the time

point q2 is irrelevant for determining whether ε,R |= a[q1,q2] is the case2. This
2 More formally, for any two event streams ε1 and ε2 with ε1(g)∩ {〈q, q′〉 | q′ ≤ q2} =

ε2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that ε1,R |= a[q1,q2] exactly if ε2,R |= a[q1,q2].

142 D. Anicic et al.

pattern Iμ(pattern)

pr(t1, . . . , tn) I(pr(μ∗(t1), . . . , μ∗(tn)))

p where t Iμ(p) if μ∗(t) = true
∅ otherwise.

q {〈q, q〉} for all q∈Q+

(p).q Iμ(p) ∩ {〈q1, q2〉 | q2 − q1 = q}
p1 seq p2 {〈q1, q4〉 | 〈q1, q2〉∈Iμ(p1) and 〈q3, q4〉∈Iμ(p2) and q2<q3}
p1 and p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉∈Iμ(p1) and 〈q3, q4〉∈Iμ(p2)}
p1 par p2 {〈min(q1, q3), max(q2, q4)〉 | 〈q1, q2〉∈Iμ(p1)

and 〈q3, q4〉∈Iμ(p2) and max(q1, q3)<min(q2, q4)}
p1 or p2 Iμ(p1) ∪ Iμ(p2)

p1 equals p2 Iμ(p1) ∩ Iμ(p2)

p1 meets p2 {〈q1, q3〉 | 〈q1, q2〉∈Iμ(p1) and 〈q2, q3〉∈Iμ(p2)}
p1 during p2 {〈q3, q4〉 | 〈q1, q2〉∈Iμ(p1) and 〈q3, q4〉∈Iμ(p2) and q3<q1<q2<q4}
p1 starts p2 {〈q1, q3〉 | 〈q1, q2〉∈Iμ(p1) and 〈q1, q3〉∈Iμ(p2) and q2<q3}
p1 finishes p2 {〈q1, q3〉 | 〈q2, q3〉∈Iμ(p1) and 〈q1, q3〉∈Iμ(p2) and q1<q2}
not(p1).[p2, p3] Iμ(p2 seq p3) \ Iμ(p2 seq p1 seq p3)

Fig. 1. Definition of extensional interpretation of event patterns. We use p(x) for pat-
terns, q(x) for rational numbers, t(x) for terms and pr for event predicates.

justifies to take the perspective of ε being only partially known (and continuously
unveiled along a time line) while the task is to detect event-consequences as soon
as possible.

The theoretical properties of the presented formalism heavily depend on the
conditions put on the formalism’s signature. On the negative side, without fur-
ther restrictions, the formalism turns out to be ExpTime-complete as a straight-
forward consequence from according results in [7]. On the other side, the for-
malism turns not only decidable but even tractable if both C and the arity of
functions and predicates is bounded:

Theorem 1. Given natural numbers k, m, the problem of detecting complex
events in an event stream ε with an ETALIS rule base R which satisfies |C| ≤ k
and Fn = Ps

n = Fe
n = ∅ for all n ≥ m is PTime-complete w.r.t. |R|+ |ε|.

Proof. PTime-hardness directly follows from the fact that the formalism sub-
sumes function-free Horn logic which is known to be hard for PTime, see e.g. [7].

For containment in PTime, recall that in our formalism, function symbols have
a fixed interpretation. Hence, given an ETALIS rule baseR with finite C, we can
transform it into an equivalent function-free rule base R′: we eliminate every n-
ary function symbol f by introducing an auxiliary n+1-ary predicate pf and “ma-
terializing” the function by adding ground atoms pf(c1, . . . , cn, f∗(c1, . . . , cn)).
This can be done in time polynomial time, given the above mentioned arity
bound. Naturally, also the size of R′ is polynomial compared to the size of R.

A Declarative Framework for Matching Iterative and Aggregative Patterns 143

Next, observe that under the above circumstances, the least Herbrand model
of Rs′ (which is then arity-bounded and function-free) can be computed in
polynomial time (as there are only polynomially many ground atoms). Finally,
note that the number of time points occurring in an event stream ε is linearly
bounded by |ε|, whence there are only polynomially many relevant “interval-
endowed ground predicates” a[q1,q2] possibly entailed by ε and Re′. Finally these
entailments can be checked in polynomial time in a forward-chaining manner
against the respective (polynomial) grounding of Re′. This concludes the proof.

Example. The following pattern rules (1) demonstrates the usage of the ETALIS
formalism by defining a common financial pattern called the “tick-shape” pat-
tern. Let’s consider a simple day trader pattern that looks for a peak followed by
a continuous fall in price of stocks, followed by a rise in price. We are interested
in a raise only if (and as soon as) it grows higher than the beginning price. The
“tick-shape” pattern is monitored for each company symbol over online stock
events, see rules (1).

down(I, P1, P2) ← not(stock(I, P)).[stock(I, P1),
stock(I, P2)] where P1 < P2.

down(I, P1, P3) ← not(stock(I, P)).[down(I, P1, P2),
stock(I, P3)] where P2 > P3.

up(I, P1) ← stock(I, P1).
up(I, P2) ← not(stock(I, P)).[up(I, P1), stock(I, P2)]

where P1 < P2.
tickShape(I) ← down(I, P1, P2) meets

not(stock(I, P)).[up(I, P3), stock(I, P4)]
where P3 < P1 ∧ P4 > P1.

(1)

In this example, we first start detecting a short increase (in order to detect the
peak) and subsequent fall in price using down(I, P1, P2) iterative rules. Thereby,
I takes the identifier of the monitored company, P1 the price at the peak directly
preceding the decrease and P2 the price at the end of the interval. The usage of
the not pattern ensures that no stock events in between are left out and hence,
the decrease in price is monotone. Similarly we can detect a rise in price, defined
by up(I, P1) (where P1 assumes the price at the end of the interval). Finally,
tickShape(I) will be triggered when a down event meets an up event which ends
at a prize value below the preceding peak, and the next incoming stock event
for I reports a prize above that peak value.

2.1 Iterations and Aggregate Functions

In this section, we show how unbound iterations of events, possibly in combina-
tion with aggregate functions can be expressed within our defined formalism.

Many of the formalisms concerned with Complex Event Processing feature
operators indicating that an event may be iterated arbitrarily often. Mostly, the
notation of these operators is borrowed from regular expressions in automata
theory: the Kleene star (·∗) matches zero or more occurrences whereas the Kleene
plus (·+) indicates one or more occurrences.

For example, thepattern expressiona seq b+
seq cwouldmatchanyof the event

sequences abc, abbc, abbbc etc. It is easy to see that – given our semantics – this

144 D. Anicic et al.

pattern expression is equivalent to the pattern a seq b seq c (as essentially, it
allows for “skipping” occurring events)3. Likewise, all patterns in which this kind
of Kleene iteration occurs can be transformed into non-iterative ones.

However, frequently iterative patterns are used in combination with aggregate
functions, i.e. a value is accumulated over a sequence of events. Mostly, CEP for-
malisms define new language primitives to accommodate this feature. However,
within the ETALIS formalism, this situation can be handled via recursive event
rules.

As an example, assume an event should be triggered by a sequence of repeated
selling events if the total income generated by them is above 100000$. For this,
we have to sum over the single incomes indicated by the atomic selling events.
This can be realized by the below set of rules.

income(Price) ← sell(Item, Price).
income(P1 + P2)← income(P1) seq sell(Item, P2).

bigincome← income(Price) where Price > 100000.
(2)

In the same vein, every aggregative pattern can be expressed by sets of re-
cursive rules, where we introduce auxiliary events that carry the intermediate
results of the aggregation as arguments.

As a further remark, note that for a given natural number n, the n-fold sequen-
tial execution of an event a (a pattern usually written as an) can be recognized
by iteration(a, n) defined as follows:

iteration(a, 1) ← a.
iteration(a, k + 1) ← a seq iteration(a, k). (3)

This allows us to express patterns where events are repeated many times in
a compact way.

A common scenario in event processing is to detect patterns on moving length-
based windows. Such a pattern is detected when certain events are repeated as
many times as the window length is. A sliding window moves on each new event
to detect a new complex event (defined by the length of a window). Rules (4)
implement such a pattern in ETALIS for the length equal to n (n is typically
predefined). For instance, for n=5, e will be triggered every time when the system
encounters five occurrences of a.

iteration(a, 1) ← a.
iteration(a, k + 1) ← not(a).[a, iteration(a, k)].

e ← iteration(a, n).
(4)

3 Execution Model

Complex event patterns that a user can create with the language proposed in
Section 2 are not convenient to be used for event-driven computation. These are
3 Note that due to the chosen semantics, this encoding would also match sequences

like acbbc or abbacbc. However, if wanted, these can be excluded by using the slightly
more complex pattern (a seq b seq c) equals not(a or c).[a, c].

A Declarative Framework for Matching Iterative and Aggregative Patterns 145

rather Prolog-style rules suitable for backward chaining evaluation. Such rules
are understood as goals which, at certain time, either can or cannot be proved
by an inference engine. The difficulty is that such an inference process cannot
be done in an event-driven fashion.

Our execution model is based on a goal-directed event-driven rules. The ap-
proach is established on decomposition of complex event patterns into two-input
intermediate events (i.e., goals). The status of achieved goals at the current state
shows the progress toward completeness of an event pattern. Goals are automat-
ically asserted by rules as relevant events occur. They can persist over a period
of time “waiting” in order to support detection of a more complex goal or pat-
tern. In the remaining part of this subsection we explain the transformation of
user-defined patterns into goal-directed event-driven rules (i.e., executable rules
capable to detect events as soon as they really occur).

Algorithm 1. Sequence

Input: event binary goal e ← a seq b where t.
Output: event-driven backward chaining rules for seq operator and a static rule t.
Each event binary goal ie ← a seq b is converted into: {

a(T1, T2) : − for each(a, 1, [T1, T2]).
a(1, T1, T2) : − assert(goal(b(,), a(T1, T2), ie(,))).
b(T3, T4) : − for each(b, 1, [T3, T4]).

b(1, T3, T4) : − goal(b(T3, T4), a(T1, T2), ie), T2 < T3,
retract(goal(b(T3, T4), a(T1, T2), ie(,))), ie(T1, T4).

}
ie(T1, T4) : − t, e(T1, T4).

Let us first consider a sequence of events e ← p1 seq p2 seq p3... seq pn

where e is detected when an event p1 is followed by p2,.., followed by pn. We
can always represent the above pattern as e← (((p1 seq p2) seq p3)... seq pn).
We refer to this coupling of events as binarization of events. Effectively, in
binarization we introduce intermediate events (goals), e.g., ie1 ← p1 seq p2,
ie2 ← ie1 seq p3, etc. Every monitored event (either atomic or complex), in-
cluding intermediate events, will be assigned with one or more logic rules which
are fired whenever that event occurs. Using the binarization, it is more conve-
nient to construct event-driven rules. First, it is easy to implement an event
operator when events are considered on a “two by two” basis. Second, the bi-
narization increases the sharing among events and intermediate events (when
detecting complex patterns). Third, the binarization eases the management of
rules. For example, each new use of an event (in a pattern) amounts to appending
only one rule to the existing rule set.

Algorithm 1 accepts as input a binary sequence e ← a seq b where t, and
produces event-driven backward chaining rules (i.e., executable rules). Addi-
tionally a user needs to define a static rule for a predicate t and add it into
a rule base. As discussed, t is application specific, and can be used for event
enrichment, filtering, querying historical data, as well as for reasoning about the
context.

146 D. Anicic et al.

Event-driven backward chaining rules produced by Algorithm 1 belong to two
different classes of rules. We refer to the first class as to rules used to generate
goals. The second class corresponds to checking rules.

When an a event occurs at some (T1, T2) it will trigger the first rule, which
in turn will trigger each a(n, T1, T2)4. In this case n = 1, since the a event is
used only once in the pattern. In general there can be more than one rule of this
type, e.g., a(1, T1, T2)...a(3, T1, T2), if the a event appears three times in user’s
complex event patterns.

a(1, [T1, T2]) is a rule that generates goal(b([,]), a([T1, T2]), ie([,])). Its in-
terpretation is that “an event a has occurred at [T1, T2]5, and we are waiting for b
to happen in order to detect ie”. Obviously, the goal does not carry information
about times for b and ie, as we don’t know when they will occur. In general,
the second event in a goal always denotes an event that has just occurred. The
role of the first event is to specify what we are waiting for to detect an event
that is on the third position. b(1, [T3, T4]) belongs to the checking rules. They
check whether certain goals already exist in the database, in which case they
trigger more complex events. For example, rule b(1, [T3, T4]) will fire whenever
b occurs. The rule checks whether goal(b([T3, T4]), a([T1, T2]), ie([,])) already
exists (i.e., an a has previously happened), in which case it triggers ie (by call-
ing ie([T1, T4]). The time occurrence of ie (i.e. [T1, T4]) is defined based on the
occurrence of constituting events (i.e. a[T1, T2], and b[T3, T4]).

The ie([T1, T4]) event will trigger the last rule. If the static predicate, t,
evaluates to true, then the rule will call the e event. Calling e[T1, T4], this event
is effectively propagated either upward (if it is an intermediate event) or triggered
as a complex event.

More detailed description of event-driven computation in ETALIS (including
other operators from the language too) can be found in [3]. Other issues regard-
ing the execution model, such as the various consumption policies and memory
management were also studied in [8].

3.1 Kleene Plus Closure

The main principle behind the execution model of Kleene closure is similar as for
the sequence operator. To explain how this closure can be computed in ETALIS
let us go back to example rules (2), Section 2.1. Algorithm 1 can be used to
transform these rules into event-driven backward chaining rules, which can be
directly executed by ETALIS prototype.

Essentially these rules handle an unbounded stream of sell (Item, Price)
events, compute the sum of their prices and detect bigincome if the sum is
greater than 100000 $. The first rule sets a condition which defines when the
pattern detection should start6. In our example it is just an occurrence of start

4 By using a predicate, foreach. Implementation details for this predicate can be found
in [3].

5 Apart from the time stamp, an event may carry other data parameters that are
omitted here in order to make the presentation more readable.

6 It also sets the starting Price value to 0.

A Declarative Framework for Matching Iterative and Aggregative Patterns 147

event (e.g. it can be at the beginning of a day, a month or just an event oc-
currence denoting that something significant to our business happened). An
occurrence of start([T1, T2]) event7 will unconditionally cause an occurrence of
income event with Price = 0, and the same timestamp [T1, T2]. As income is
used to build a sequence of events in the second rule, goal(sell (Item, P2, [,]),
income(P1, [T1, T2]), income(P1 + P2, [,])) will be inserted. The goal states
that an instance of income event occurred at [T1, T2], and the CEP engine waits
for sell to happen to detect another income (iteratively). If sell occurs at some
[T3, T4], T2 < T3, a corresponding checking rule will check whether goal(sell
(Item, P2, [,]), income(P1, [T1, T2]), income(P1 + P2, [,])) is already in the
database, in which case it will trigger income(P1 + P2, [T1, T4]) (adding price
P2 to the current aggregated value, P1). Events of type income are intermediate
events in our overall complex pattern. The third rule monitors these events in
order to detect bigincome. The rule sets a condition which defines when the pat-
tern detection should stop (taking into account that we deal with an unbounded
stream of events).

3.2 Implementation of Iterative Rules and Common Aggregate
Functions

The aggregate functions are computed incrementally, by starting with an ini-
tial value for the increment, and iterating the aggregate function over events.
However, window size and the sliding window require us to use efficient data
structures and algorithms in Logic Programming (e.g., in Prolog) to obtain fast
implementations.

For any aggregate function we implement the following two rules.

iteration(StartCntr = 0, StartV al)← start event(StartV al).
iteration(OldCntr + 1, NewV al)←

iteration(OldCntr, OldV al) seq a(AggArg)
where {assert(AggArg),

window(WndwSize, OldCntr, OldV al, AggArg, NewV al)}.

(5)

The first rule starts the iteration process (when start event) occurs with
its initial value and possible condition on that value (see the first rule). The
second rule defines the iteration itself, i.e., whenever an event participating in the
iteration occurs (event a), it will trigger the rule and generate a new iteration
event.

In each iteration it is possible to calculate certain operations (an aggregate
function). To achieve this, the iterative rule contains the static part (the WHERE
clause) for two reasons: to save data from the seen events as history relevant
w.r.t the aggregation function (see assert(AggArg)), and to compute the sliding
window incrementally (i.e., to delete events that expired from the sliding window
and calculate the aggregate function on the rest, see the window expression).

7 As start is an atomic event, T1 = T2.

148 D. Anicic et al.

The functionality of assert predicate is simply to add data on which aggre-
gation is applied (i.e., an aggregation argument AggArg) to database. Sliding
window functionality is also simple, and it is realized by rule (6).

window(WndwSize, OldCntr, OldV al, AggArg, NewV al) : −
OldCntr + 1 >= WindowSize− >
retract(LastItem),
spec aggregate(OldV alue, AggArg, NewV alue);
spec aggregate(OldV alue, AggArg, NewV alue).

(6)

We check whether the current counter value (i.e., the incremented old counter,
OldCntr + 1) exceeds the window size (line 2) in which case we retract the last
item from the window (line 3) and compute a specific aggregate function (line 4).
Recall that new data element (AggArg) was previously added by the iteration
rule (assert(AggArg)). If the counter does not exceed the window’s value, we
simply compute a specific aggregate function (line 5).

Based on these iterative pattern and sliding window rules we can implement
other various aggregation functions. The iterative rules (7) (SUM aggregate func-
tion) implement the sum of certain values from selected events (see SUM aggre-
gate function).

As we already explained, the iteration begins when start event occurs and
sets the StartV al. The iteration is further continued whenever event a occurs.
Note that events start event and a can be of the same type. We can additionally
have where clause to set filter conditions for both StartV al and AggArg. We
omit filters here to keep the pattern rules simple, however it is clear that neither
every start event must start the iteration nor that every a must be accepted
in an ongoing iteration. The assert predicate adds new data (AggArg) to the
current sum, and the window rule deducts the expired (last) value from the
window in order to produce NewSum.

Note that the same rules can be used to compute the moving average (AVG)
(hence we omit to repeat them to save space). As we have the current sum and
the counter value, we can simply add AvgV al = NewSum/(OldCntr+1) in the
where clause of the second rule.

sum(StartCntr = 0, StartV al)← start event(StartV al).
sum(OldCntr + 1, NewSum)←

sum(OldCntr + 1, OldSum) seq a(AggArg)
where {assert(AggArg),

window(WndwSize, OldCntr,
OldSum + AggArg, AggArg, NewSum)}.

window(WndwSize, OldCntr, CurrSum, NewSum) : −
OldCntr + 1 >= WindowSize− >
retract(LastItem),
NewSum = CurrSum− LastItem;
NewSum = CurrSum− LastItem.

(7)

A Declarative Framework for Matching Iterative and Aggregative Patterns 149

In general, the iterative rules give us possibility to realize essentially any ag-
gregate functions on event streams, no matter whether events are atomic or
complex (note that there is no assumption whether event a is atomic or com-
plex). We can also have multiple aggregations, computed on a single iterative
pattern (when they are supposed to be calculated on the same event stream). For
instance, the same iterative rules can be used to compute the average and the
standard deviation. This feature can potentially save computation resources and
increase the overall performance. Finally, it is worth noting that we are not con-
strained to compute the Kleene plus closure only on sequences of events (as it is
common in other approaches [1,10]). With no restriction, instead of seq we can
also put (in line 3) other event operators such as and or par . The following
iterative pattern computes the maximum over a sliding window of events.

max(StartCntr = 0, StartV al)← start event(StartV al).
max(OldCntr + 1, NewMax)←

max(OldCntr + 1, OldMax) seq a(AggArg)
where {assert(AggArg),

window(WndwSize, OldCntr, NewMax)}.

window(WndwSize, OldCntr, NewMax) : −
OldCntr + 1 >= WindowSize− >
retract(LastItem), , get(NewMax);
get(NewMax).

(8)

The rules are very similar to rules for other aggregation functions (e.g., see
rules (8)). However there is one difference in implementation of the window rule.
The history of events necessary for computing aggregations on sliding windows
can be kept in the memory using different data structures. Essentially we need a
queue where the latest event (or its aggregation value) is inserted into the queue
and the oldest event from the window is removed. For example, we implemented
efficiently the sum and the average using two data structures: stacks and differ-
ence lists. Stacks can be easy implemented in Prolog using assert and retract
commands, and difference list are convenient as the cost for deleting the oldest
element that expired from the window is O(1).

Queues with difference lists are however not good enough for computing aggre-
gations such as the maximum and the minimum. For these functions, searching
the maximum (or the minimum) in a sliding window when the current maximum
(minimum) is deleted requires a price of O(Window) (to find the new maximum
or the minimum). Still to provide an efficient implementation we use balanced
binary search trees. We know what is the event that will be deleted from the
history queue. We keep a red-black (RB) balanced tree to be indexed on the
aggregate argument, so that we can do cleanup of overdue events efficiently. In
each node, we keep a counter with how many times that an event with the afore-
mentioned key came. At each time the maximum (minimum) is the rightmost
(leftmost) leaf. Additionally we can also keep the timestamp of events. This al-
lows us also to prune events (data) based on the time w.r.t the sliding window.

150 D. Anicic et al.

With the balanced tree this search is reduced to O(logN). For instance, for a
window of 1000 events, the price of 1000 operations is reduced to at most 10 at
each step (210 = 1024).

Pruning events based on their timestamps is the basis for time-based sliding
windows. So far we have discussed count-based sliding windows (i.e., the pruning
is based on the number of events in the window). For event patterns with time-
based sliding windows, we do not need the window rule (e.g., rule (6)). Instead,
we use only iterative patterns with a garbage collector (set to prune events out
of the specified sliding window). Events are stored internally in order as they
come (we index them on the timestamp information [T2, T1]). This eases the
process of pruning expired events, using either of our two memory management
techniques.

iteration(StartCntr = 0, StartV al)← start event(StartV al).
iteration(NewCntr) ←

iteration(OldCntr) seq a(AggArg)
where {NewCntr = getCount([T2, T1]), window(3min)}.

(9)

The count aggregation is typically used on time-based sliding windows, see
the pattern (9). Whenever a relevant event occurs (e.g., event a), its timestamp
will be asserted by the getCount predicate and the current counter number will
be returned. Additionally we set a garbage collector to incrementally remove
outdated timestamps, so that getCount always returns the correct result. In
the same vein, we have realized other aggregate functions with the time-based
sliding windows (i.e., SUM, AVG, MAX, MIN).

4 Performance Evaluation

We have implemented the proposed framework for iterative and aggregative
patterns. In this section we present experimental results we have obtained with
our open-source implementation, called ETALIS8. Experimental results compare
our logic programming-based implementation with Esper 3.3.09. Esper is a state-
of-the-art engine primarily relying on NFA. We choose Esper as it is available
as open source, and also it is a commercially proven system.

We have evaluated the sum aggregation function, defined by iterative pattern
(7) (we omit rewriting the pattern here to save space). The moving sum is
computed over the stream of complex events. Complex events are defined as
a conjunction of two events, joined on their ID (see pattern rule (10)). The
sum is aggregated on the attribute X of complex events a(ID, X, Y). Figure
2(a) shows the performance results. In particular, the figure shows how the
throughput depends on different sizes of the sliding window. Our system ETALIS
was run in two modes: using the window implementation based on the stack and

8 ETALIS, can be found on: http://code.google.com/p/etalis/
9 Esper: http://esper.codehaus.org

http://code.google.com/p/etalis/
http://esper.codehaus.org

A Declarative Framework for Matching Iterative and Aggregative Patterns 151

0

5

10

15

20

25

30

100 500 1000 50000

Window size

T
hr

ou
gh

pu
t (

10
00

 x
 E

ve
nt

s/
S

ec

Esper 3.3.0 P-Stack P-Dlists

0

5

10

15

20

25

30

100 1000 50000

window size

T
hr

ou
gh

pu
t (

10
00

 x
 E

ve
nt

s/
S

ec

Esper 3.1.0 P-Stack P-RB trees

Fig. 2. (a) SUM-AND: throughput vs. window size (b) AVG-SEQ: throughput vs.
window size

difference lists, denoted as P-Stack and P-Dlists, respectively. In both modes our
implementation has outperformed Esper 3.3.0 (see Figure 2(a)).

a(ID, X, Y) ← b(ID, X) and c(ID, Y). (10)

In the next test we computed the moving average (avg) over the stream
of complex events. Complex events were defined by rule (10) where operator
and was replaces with the sequence seq . Again ETALIS was run with win-

dows implemented with the stack and different lists. Results are presented in
Figure 2(b), showing again the dominance of our system.

Example application: supply chain. CEP can be combined with evaluation
of the background knowledge to detect (near) real-time situations of interest. To
demonstrate this functionality, let us consider the following example. Suppose
we monitor a shipment delivery process in a supply chain system. The following
rules represent a complex pattern (delivery event), triggered by every shipment
event. This iterative pattern may be used to aggregate certain values carried by
shipment events.

delivery(start, start) ← shipment(start).
delivery(From, To) ← delivery(From, PrevTo)

seq shipment(To)
where inSupChain(From, To).

(11)

Additionally there is a constraint that every shipment on its way needs to
pass a number of sites, defined with a delivery path. Valid paths are represented
as sets of explicit links between sites, e.g., with linked(site3, site4) we represent
two connected sites. If for that shipment there exists also another connection
linked(site4, site5), the system can infer that the path site3, site4, site5 is a
valid path (performing the reasoning over the following transitive closure and
available background knowledge).

152 D. Anicic et al.

0

10

20

30

40

50

100 500 1000 5000

Recursion depth

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)
Complex pa ern 1
Complex pa ern 2

50

70

90

110

100 500 1000 5000

Recursion depth

M
em

or
y

co
ns

um
p

on
 in

 M
B

Memory change

Fig. 3. (a) Throughput comparison (b) Memory consumption

inSupChain(X, Y) : − linked(X, Y).
inSupChain(X, Z) : − linked(X, Y) and inSupChain(Y, Z).

We have evaluated the iterative delivery pattern for different sizes of supply
chain paths (between 100 and 5000 links), see Figure 3 (a). In “Complex pattern
1” we enforce that for each new shipment event, the valid path must be proved
from its beginning (see inSupChain(From, To) in rule (11)). For longer paths
(e.g., 5000 links) this is a significant overhead, and we see that the through-
put declines. But if we relax the check so that for every new event the path
must be checked with respect only to the last delivery event, i.e., we replace
inSupChain(From, To) with inSupChain(PrevTo, T o) in rule (11)) we obtain
the throughput which is almost constant (see “Complex pattern 2” in Figure 3
(a)). Figure 3 (b) shows the total memory consumption for the presented test.
There is no difference in memory consumption for complex patterns 1 and 2,
hence we present only one curve.

5 Conclusions

We have presented an extended formalism for logic-based event processing. The
formalism is rather general, however in this paper we put emphasis on handling
iterative and aggregative patterns matched against unbounded event streams.
The paper presents syntax and declarative semantics of ETALIS Language for
Events, demonstrates its use for more knowledge-oriented and intelligent event
processing, provides an execution model, and finally shows performance evalua-
tion of our prototype implementation.

Acknowledgments

This work was partially supported by the European Commission funded project
PLAY (FP7-20495) and by the ExpresST project funded by the German
Research Foundation (DFG). We thank Jia Ding and Ahmed Khalil Hafsi for
their help in implementation and testing ETALIS.

A Declarative Framework for Matching Iterative and Aggregative Patterns 153

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching
over event streams. In: SIGMOD, pp. 147–160 (2008)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26, 832–843 (1983)

3. Anicic, D., Fodor, P., Rudolph, S., Sthmer, R., Stojanovic, N., Studer, R.: Rea-
soning in Event-based Distributed Systems. In: Etalis: Rule-Based Reasoning in
Event Processing. Series in Studies in Computational Intelligence, Sven Helmer,
Alex Poulovassilis and Fatos Xhafa (2010)

4. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In: Hitzler, P.,
Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg
(2010)

5. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic
foundations and query execution. VLDB Journal 15, 121–142 (2006)

6. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Tele-
graphcq: Continuous dataflow processing for an uncertain world. In: Proceedings
of the 1st Biennial Conference on Innovative Data Systems Research, CIDR 2003
(2003)

7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Computing Surveys 33, 374–425 (2001)

8. Fodor, P., Anicic, D., Rudolph, S.: Results on out-of-order event processing. In:
Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 220–234.
Springer, Heidelberg (2011)

9. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM Transactions on Database Systems 34 (2009)

10. Mei, Y., Madden, S.: Zstream: a cost-based query processor for adaptively detecting
composite events. In: SIGMOD, pp. 193–206 (2009)

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 154–169, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Entity-Based State Management
for Complex Event Processing Applications

Hannes Obweger1, Josef Schiefer1, Martin Suntinger1, and Robert Thullner2

1 UC4 Senactive Software GmbH, Vienna, Austria
2 Secure Business Austria, Vienna, Austria

hannes.obweger@uc4.com

Abstract. Complex Event Processing (CEP) using Event-Condition-Action
(ECA) rules has proved particularly suitable for detecting noteworthy business
situations of a defined length and structure. By contrast, challenges arise when
the state of a complex, durable entity – e.g., a counter, a server, or a task queue
– shall be derived from continuous streams of low-level updates. In this paper,
we present a novel approach to state management for CEP applications. We
propose business entity providers, which encapsulate arbitrary state-calculation
logic and manage state in the form of typed, application-wide data structures.
Using a plug-in-based component model, business entity providers can be inte-
grated into an application based on the specific requirements of a business sce-
nario. We present an ECA rule model that allows accessing business entities
well-integrated with event-pattern detection and demonstrate our approach in a
real-world scenario from the workload automation domain.

Keywords: Complex Event Processing, ECA rules, state management.

1 Introduction

Complex Event Processing (CEP) [12] has emerged a new paradigm for monitoring
business environments and automated, reactive decision making. CEP systems define
monitoring logic on an event-based abstraction of the underlying business
environment, where relevant state changes or actions are transformed into events of
respective event types. On the resulting, continuous stream of events, specialized
pattern-detection algorithms can be applied to detect noteworthy event patterns in
near real time. Event-Condition-Action (ECA) rules, defined in a tailored Event
Processing Language (EPL), have proved suitable for describing event-processing
logic in a way that is understandable to business users. In an ECA rule, a (possibly
complex) event is associated with sets of Boolean conditions and actions. When the
triggering pattern is detected in a stream of events and all conditions are fulfilled, the
actions are executed.

ECA-based CEP works particularly well for detecting noteworthy business situa-
tions of a defined temporal extent and structure, where the focus lies on relationships
between the involved events. In the logistics domain, for instance, an ECA rule could
be used to detect all transports of a specific carrier that are delayed by hours or
longer, and trigger a notification event in response.

 Entity-Based State Management for Complex Event Processing Applications 155

By contrast, ECA-based CEP faces significant challenges when the overall state of
a complex, durable business entity – e.g., a counter, a server, or a task queue – shall
be derived from a incremental, low-level updates of that state, and each update is
represented by a (possibly complex) event. The state of such entities may, however,
be of paramount importance for the monitoring of a system, both during event
processing and for the ex-post analysis of historic event data. Consider an example
from the workload automation domain: Provided events of type “Task enqueued” and
“Task started” as emitted by the source system, a system administrator might wish to
be notified whenever the average sojourn time of a task queue exceeds a specified
threshold, or investigate the development of a queue’s load over the past weeks.

We identified the following challenges for state-of-the-art, ECA-based CEP:

• Durable entity state. Many CEP engines use sliding time windows to detect event
patterns of a defined length and to limit the number of events which must be kept
in memory. While this strategy is suitable for event-pattern detection, it generally
contradicts with the idea of durable business entities. By contrast, entity data re-
quire a separate, non-volatile data-management layer that can be updated based on
incoming events and takes into account the specific characteristics of the managed
entities. Entity data, their development over time and possible relationships to
event data may eventually provide valuable insights to the behavior of a system
and should be available for ex-post analysis.

• Complex state-calculation logic. Calculating the overall state of an entity from
low-level updates may be of considerable complexity; consider, for instance, the
above calculation of average sojourn time from a series of “add” and “remove” op-
erations. Implementing such logic directly within ECA rules easily bloats an appli-
cation and makes it difficult to read and maintain. Calculation of entity state should
instead be encapsulated and decoupled from end-user-defined business logic.

• Active entity monitoring. In many CEP frameworks, durable data can only be
accessed at the occurrence of an event, in the “condition” or “action” part of a rule.
As a consequence, to continuously check entities for exceptional states, high-level
monitoring logic must be based on the same event patterns that are used for updat-
ing these entities. To avoid a tight coupling between these aspects, a framework
should instead enable rules to actively react to entity-level state changes, generally
independent from the events and rules that originally caused these state changes.

• Context-aware data access. Concepts such as contexts [2] and correlation sets
[18] have been developed to partition the overall set of events based on user-
defined relations between events. For the sake of consistency across event-pattern
detection and state management, access to entity data should be integrated with
contexts and related concepts, if such are available.

• Ease of use. Usability from an end-user perspective is seen as a key issue in the
future development of CEP (cf. [6, 8]). As a general concern, the definition of ap-
plication-specific state-management logic, the monitoring of business entities as
well as their integration with event-pattern detection should therefore be oriented
towards business users and require as little technical expertise as possible.

In this paper, we present a novel approach to state management for Complex Event
Processing applications. We introduce business entity providers, which encapsulate

156 H. Obweger et al.

custom state-calculation logic and manage virtual entities as system-wide, typed data
structures. The presented architecture allows business entity providers to be imple-
mented as plug-in-like components that can be incorporated depending on the specific
requirements of a given business scenario. Within this architecture, plugged-in busi-
ness entity providers expose easy-to-use interfaces for updating and querying entities
to end-user-defined event-processing logic. We eventually present a business-user-
oriented, ECA-based rule model that has been extended towards business entity pro-
viders and allows accessing entities fully integrated with event-pattern detection.

Fig. 1 shows the presented approach from a high-level perspective. On the “updat-
ing” side of a business entity provider, ECA rules are applied on the incoming stream
of business incidents for filtering, transformation and aggregation purposes, as well as
to detect events that signify updates to the state of an entity. In the action part of such
rule, the concerned business-entity instance is identified from the detected event pat-
tern and the respective update operation is invoked on the business entity provider. To
support a decoupling between updating and monitoring business entities, the proposed
architecture provides for updating rules to be defined generally independent from
possible monitoring logic; by contrast, these rules are specified with the general goal
of keeping the various business entities of an application “up to date”.

On the “monitoring” side, ECA rules may then use the query interface of a busi-
ness entity provider to monitor business entity states for exceptional values, e.g., to
test the load of a task queue against a specified threshold. The proposed architecture
supports two access modes: On the one hand, ECA rules may run a query on demand,
e.g., at the occurrence of an event. On the other hand, ECA rules may evaluate a con-
dition continuously and immediately react to exceptional states independent from the
events that originally caused that update. Depending on the used data-management
approach, a business entity provider may eventually provide historic entity data to
tailored data mining and visualization tools for the ex-post analysis of a system.

Facilitating the integration of custom state calculation and management logic, the
presented solution enables companies to exploit the benefits of CEP also in entity-
centric business scenarios, which are difficult, if not impossible, to approach with

Fig. 1. A High-Level View on Business Entity Providers

 Entity-Based State Management for Complex Event Processing Applications 157

purely event-based strategies. Exposing their functionality through easy-to-use inter-
faces, business entity providers simplify end-user-defined event-processing logic,
which may now focus on event-pattern detection rather than low-level calculations.
The proposed architecture furthermore supports a clear separation of concerns be-
tween state updating and state monitoring: Updating rules can be defined with the
general goal of keeping business entities up-to-date, independently from possible
monitoring logic. Conversely, monitoring rules can focus on high-level decision mak-
ing and may be added and removed without having to touch the low-level infrastruc-
ture of an application. In many cases, the resulting decoupling complies with the or-
ganizational framework conditions of an enterprise: While high-level business logic
would typically be administrated by business users and change frequently, low-level
integration logic would typically be administrated by technical personnel and be more
stable over time. The presented architecture eventually outperforms problem-specific,
ad-hoc solutions by providing full integration with the framework’s rule model inde-
pendent from plugged-in business-entity provider implementations.

The remainder of this paper is structured as follows: In Section 2, we discuss re-
lated work. Section 3 presents the meta model for business entity providers, along
with reference implementations for commonly needed kinds of entities. An extended,
ECA-based rule model for updating and monitoring entities is presented in Section 4.
Section 5 discusses the implementation architecture of our approach. In Section 6, we
demonstrate our solution by a concrete example from the workload automation do-
main. Section 7 concludes this paper and gives an outlook to future work.

2 Related Work

Since introduced to a wider community by Luckham [12], Complex Event Processing
has inspired numerous projects of academic (e.g., [1, 2, 3, 4, 21]) as well as commer-
cial nature (cf. [9]). Although listed as one of seven key building blocks for CEP
applications by Etzion and Niblett [8], the issue of state management – i.e., the han-
dling of durable data and their integration into event-based, real-time decision making
– has received little attention in research on stream and ECA-based CEP. In the fol-
lowing, we discuss existing CEP solutions and their approaches to state management,
if such are available. Our survey is roughly structured by the basic ideas and para-
digms underlying these solutions; detailed discussions on the different perspectives on
CEP, their strengths and weaknesses can be found in the literature [15].

In inference-based approaches, reasoning about (complex) events is naturally inte-
grated with reasoning about durable data, with both kinds of data being managed as
facts in working memory. Logic-based approaches based on Event Calculus [10] and
its variants (e.g., [14]) use fluents to model entity state; in principle, a fluent
represents “anything whose value is subject to change over time” [22]. In the follow-
ing, we focus on approaches that perform event-pattern detection directly on volatile
(streams of) events and do not per se set up on an underlying knowledge base.

Many approaches to stream and ECA-based event processing are entirely event-
based and do not provide access to non-event data (e.g., [12, 21]). If supported at all,
monitoring the state of an entity based on low-level updates requires a system to

158 H. Obweger et al.

collect all events for that entity and re-calculate its state whenever new updates occur.
Such approach primarily suffers from time-window issues, but also leads to complex
rules and a tight coupling between state calculation and monitoring.

In stream-oriented event processing, query tables [23] and related concepts have
been introduced to make durable data joinable with event data and updatable within
event-stream queries. While query tables provide means for persistent data manage-
ment, the calculation of entity state must still be defined as part of a rule, using the
framework’s EPL. FlexStreams [25] allow incorporating procedural, potentially state-
ful logic as part of a query. Kozlenkov et al. [10] present a context-aware approach to
state management that builds upon a separation between stream processing and (infe-
rence-based) state management. In both cases, state management is well encapsulated
and allows users to define event-processing logic in a decoupled manner. Yet, to our
best knowledge, both approaches dictate a certain style of programming (procedural
vs. inference-based); as a consequence, their usefulness could vary depending on the
given application scenario and the data to be managed.

Several ECA-based event processing frameworks allow accessing persistent data
sources – e.g., Web data such as XML or RDF [5], or databases – in the “condition”
and “action” part of a rule. When using passive data storages such as files or non-
active databases, entity state must be calculated directly within rules and explicitly be
retrieved in order to be monitored. Active object databases [16] allow encapsulating
durable data along with functions for updating these data, and furthermore provide
means for active entity monitoring. Rules in active databases are, however, internally-
oriented (i.e., limited to events that occur within the underlying database) and typical-
ly defined with a global scope (cf. [15]).

Our survey shows that several approaches to stream and ECA-based CEP provide
access to durable data; however, many of these approaches require state-calculation
logic to be written directly within rules. Only few approaches have been proposed
where state management is well encapsulated. In ECA-based event processing, we are
not aware of any approach that combines support for encapsulated state-calculation
logic, entity-aware data management, and full CEP capabilities. Neither in stream nor
in ECA-based CEP, we are aware of any approach that allows incorporating arbitrary
state-management logic in a way that it is seamlessly integrated with the framework’s
EPL and can easily be adapted to the specific requirements of a use case.

This paper presents a novel approach to state management for the generic event-
processing framework Sense-and-Respond Infrastructure (SARI) [20]. Our solution is
based on the idea of business entities [7, 13], which we understand as typed, identifia-
ble, system-wide data structures. Being identifiable via (possibly composite) keys and
accessible through easy-to-use interfaces, business entities are, in some respects,
comparable to objects in (active) object databases. By contrast, our framework pro-
vides an additional layer of abstraction that allows incorporating arbitrary state-
calculation logic and data-management strategies. In addition, a type model is pro-
vided that enables end users to easily configure plugged-in business entity providers
based on the specific requirements of an application scenario.

 Entity-Based State Management for Complex Event Processing Applications 159

3 Business Entity Provider Model

The presented framework is designed as a generic state-management layer that can be
equipped with plug-in-like business entity providers depending on the requirements of
a given use case. Each business entity provider encapsulates state-management logic
for a certain “kind” of entity; a business entity provider could, for instance, be pro-
vided for queues as discussed in Section 1. Apart from a basic structure prescribed by
the framework, this state-management logic can be defined freely by the implementer
of a business entity provider – e.g., using OOP and in-memory data management,
SQL statements, or any other suitable approach – and optimized with respect to the
managed data. In the following, we present a meta model for business entity providers
and discuss exemplary realizations for commonly needed kinds of entities.

3.1 Meta Model

Fig. 2 sketches the meta model for business entity providers, defining the basic struc-
ture a business entity provider must adhere to in order to be used in the proposed
framework. The meta model is roughly separated into a non-empty collection of busi-
ness entity types, a collection of business entities conforming to these types, as well as
collections of update and query interfaces for accessing business entities.

Fig. 2. Business Entity Provider Meta-Model

Business entity types. While the basic semantics of a business entity provider are
given through its implementation, the proposed framework allows tailoring a provider
to the specific application in which it is used, through a non-empty collection of busi-
ness entity types. Each type thereby specifies the exact structure of a class of business
entities to be managed: For example, given a business entity provider for queues, a
business entity type could describe a class “Task queue” of queues, with respective
characteristics. Albeit business entity types are generally provider-specific – see Sec-
tion 3.2 for concrete examples – the proposed architecture requires all business entity
types to define a (possibly composite) key, through a non-empty collection of typed
key properties . At run time, a tuple of key-property values can then be used to iden-
tify a specific instance of that type, e.g., when updating or querying its state.

Business entities. During run time, business entity providers manage state as collec-
tions of business entities. Each business entity conforms to exactly one business entity

160 H. Obweger et al.

type , … and is uniquely identified by a tuple of key-property values for
all key properties in . By definition, the key of a business entity is immutable.

Update and query interfaces. Business entity providers eventually provide access to
managed data through easy-to-use interfaces for updating and querying business enti-
ties. These interfaces are exposed per business entity type; therefore, in order to
access an interface, a caller must first specify the concerned business entity type.

The update interface for a business entity type , … is defined by a non-
empty collection of update functions for creating, modifying and destroying -typed
entities. By definition, an update function takes as input a non-empty collection of key
property values (indentifying the entity to which the update shall apply) and a
collection of function parameters , further specifying the demanded update. The
query interface provides access to the managed -entities through a non-empty collec-
tion of typed query properties. Provided the unique key of an entity, these properties
may be used to define conditions on the current state of that entity; for instance, a rule
could test if the query property “Size” of a queue is greater than 100. Query properties
are typically provided for all (type-specific and type-independent) properties of enti-
ties. In addition, properties may be available for aggregates over multiple updates and
meta information such as the last update time stamp.

3.2 Exemplary Business Entity Providers

Based on the above meta model, the proposed framework enables application devel-
opers to integrate arbitrary business-entity provider implementations according to the
specific problems that need to be solved. In the following, we illustrate the presented
model by the example of three commonly needed kinds of entities: Base entities,
scores and sets. Business entity providers for these entities have been implemented as
part of our prototype (see Section 5 for further details) and showed to be useful in
many practical application scenarios. In their type model, all of the following exam-
ples provide a Boolean history flag, indicating whether the provider shall maintain the
complete history of an entity, as well as a Boolean persistence flag, indicating wheth-
er entity states shall be kept persistent in a database or managed in memory only.

Base entities. Base entities associate a tuple of key properties with a collection of
entity properties, which can be updated and queried via the provider’s interfaces.
Base entities are typically used as virtual representations of complex real-world enti-
ties such as customers or products: Whenever an event indicates an update to a real-
world entity, this update is “mirrored” to the respective base-entity instance. Monitor-
ing rules are typically used to detect exceptional events based on the current state of a
related entity; for instance, a rule could trigger an alert if a delay is signified for an
order of a customer with the property “Rating” set to “Premium”.

Scores. Scores associate a tuple of key properties with a single, numeric score value.
Through the provider's update interface, this value can be set, increased and decreased
by a user-defined delta. Query properties are available for the current score value and a
collection of “moving” aggregates, such as the moving average and median; the number
of values to be considered for these aggregates is defined as part of a score type.
Albeit simple, scores form the basis for concepts such as counters and Key Performance

 Entity-Based State Management for Complex Event Processing Applications 161

Indicators and are part of almost any practical SARI installation. Monitoring rules are
typically used to detect scores that are above/below a certain threshold.

Sets. Sets are an extension to above-described base entities that allow modeling col-
lection data such as FIFO queues, priority queues, or stacks. Besides grouping a num-
ber of entity properties, sets act as a container for multi-variate set elements, which by
themselves are defined by a set element identifier and a collection of set element
properties. Through the update interface, set elements can be inserted and removed.
Via the query interface, the current set elements, their sojourn time, and metrics such
as the overall number of elements fulfilling a certain condition can be retrieved.

4 Rule Model

In the proposed architecture, ECA rules are applied for both updating business entities
based on low-level events and monitoring these entities for exceptional states. In the
following, we present the rule model of Sense-and-Respond Infrastructure (SARI),
along with diverse extensions for its integration with business entity providers.

4.1 Base Rule Model

SARI features a two-layered rule model, which conceptually, as well as technically, is
separated into event correlation and pattern detection. Event correlation denotes the
grouping of events that are generally related to each other, e.g., with respect to a
common real-world process from which they arise. From the resulting event situa-
tions, pattern detection picks those that are noteworthy in a certain sense and triggers
reaction logic in response. The described separation between event correlation and
pattern detection enables users to define these aspects in decoupled, simplified (sub-)
models and facilitates reuse of correlation information, e.g., across rule definitions,
during event processing, as well as for the ex-post analysis of a system (cf. [18]).

Fig. 3. Exemplary SARI Rule

162 H. Obweger et al.

A complete SARI rule eventually associates with each other a user-defined corre-
lation set, describing a basic relation between events of different event types, and a
user-defined decision graph, describing those aspects of an event situation that make
it noteworthy in the given context plus reaction logic. Fig. 31 sketches a simple rule
“Delayed transport” from the logistics domain; for detailed discussions on correlation
sets and decision graphs, the interested reader may refer to Schiefer et al. [18, 19].

Correlation set. The rule’s correlation set “Transport process” (Fig. 3a) describes a
relation between events of type “Order received”, “Order shipped”, and “Transport
update”, which are to be correlated by their “Order ID”. When an event is correlated
based on this definition, it is assigned to the respective correlation session – e.g., all
events of a certain transport #42 – or, if no session exists, establishes a new one.

Decision graph. Setting up on the so-defined correlation set, the rule's decision graph
(Fig. 3b) picks from all transports those that are delayed by two hours or longer and
generates a “Delayed transport” event in response. Decision graphs orchestrate un-
derstandable pieces of event-processing logic – so-called rule components – in a di-
rected, acyclic graph. During event-pattern detection, predecessors in the decision
graph are then considered as preconditions in the evaluation process; to activate a
component , an event situation must conform to (at least) one valid path through the
decision graph. Depending on the evaluation result of , further parts are activated,
and so forth. Multiple preconditions may be combined using AND, OR, or XOR.

In the base decision-graph model, two kinds of rule components are available:
Event conditions specify a “triggering” event type as well as a Boolean expression

 on the underlying event situation; when all preconditions are fulfilled and a -
event occurs, is evaluated and the correct output port is activated. Response event
actions specify an abstract response-event template, which consists of an event type
and expression for all event attributes in . Whenever all preconditions are fulfilled, a
response event is instantiated and published to the event-processing network.

4.2 Correlation Model Extensions

In practical scenarios, semantic relations may exist not only between events, but also
between events and entities, and different kinds of entities. As a first extension to
SARI’s rule model, we therefore present a generalization of the original correlation
model [18], enabling users to define relationships on event types as well as business
entity types; while the former are correlated based on event attributes, the latter are
correlated based on key properties. Within a SARI rule, the so-defined relationship
then identifies the business entities that are generally concerned with the occurrence
of an event or the status change of a business entity: For state-management rule com-
ponents as discussed in the following sections, those entities that are related to the
active correlation session serve as the basic target for update and query operations. An
exemplary correlation set from the logistics domain is shown in Fig. 4 below.

1 SARI’s rule modeling facilities enable users to model correlation sets as well as decision

graphs in an entirely visual, business-user-oriented fashion; while XML-based representa-
tions are used internally, these are not currently optimized for readability. Fig. 3 and all
following example figures are therefore based on the standard renderings of SARI’s graphical
rule editors.

 Entity-Based State Management for Complex Event Processing Applications 163

Fig. 4. An exemplary extended correlation set on the event of an order process and a base entity
of type “Customer”. As shown here, the granularity of correlation sessions is not necessarily
equal to the granularity of business entities: While correlation sessions exist per process ID,
entities exist per customer ID; thus, a single entity may be associated with several correlation
sessions. Conversely, in other scenarios, a single correlation session could equally be associated
with several entities.

Fig. 5. Exemplary Business Entity Action (a) and Business Entity Condition (b)

4.3 Business Entity Actions

On the updating side of a business entity provider, ECA rules are applied to detect the
(possibly complex) events that indicate updates to an entity and trigger the respective
update operation at the provider. To support the described behavior in SARI’s rule
model, we extend the base decision-graph model as discussed in Section 4.1 by so-
called business entity actions, rule components that, whenever activated, directly and
synchronously call a user-defined update function on a business entity provider.

Fig. 5a. shows an exemplary action for incrementing the value of a score “Alarms
per Server”. A business entity action , , , , is defined by:

• a business entity provider
• a business entity type , … for
• an optional collection of key-property expressions for selected key properties in

. Evaluated on the active correlation session prior to the actual updating process,
the resulting values allow further restricting the set of concerned business entities.

• an update function for
• a collection of function parameter expressions for each function parameter of

Whenever a so-defined rule component is activated, the component's key-property
expressions in are evaluated on the active correlation session, resulting in a collec-
tion of concrete values for selected key properties. In a second step, the specified
update is applied for all instances of that are

a. correlated to the activate correlation session, and
b. conform to the calculated key-property values, if available.

164 H. Obweger et al.

4.4 Business Entity Conditions

In the proposed framework, so-called monitoring rules are applied for the real-time
detection of noteworthy entity states. From practical use cases, we identified two
access modes required for ECA-based monitoring: In on demand access mode, the
state of an entity shall be checked at a certain point in time – e.g., on the occurrence
of an event – while subsequent developments of that entity are not taken into account.
In continuous access mode, the state of an entity shall be checked continuously,
enabling rules to react on noteworthy states independent from the exact point in time
in which they occur. To support business-entity monitoring in SARI’s rule model, we
extend the base decision-graph model by so-called business entity conditions. Busi-
ness entity conditions allow evaluating a Boolean expression on one or more business
entities and activate downstream rule logic according to the result of such evaluation.

Fig. 5b. shows an exemplary condition for scores of type “Alarms per server”, test-
ing the current value of a score against a specified threshold. A business entity condi-
tion , , , , , is defined by:

• a business entity provider , a business entity type , … for and an op-
tional collection of key-property expressions

• a Boolean condition on business entities of type . is to be defined based on
the set of query properties for and may furthermore consider events of the active
correlation session; for instance, a condition could test a score value against an
event-attribute value of a preceding event. The syntax of is oriented towards
SARI’s business-user-oriented event-access language [17], which aims to support
an integrated approach to event-pattern detection and state management.

• a binary connective {AND, OR, XOR}, indicating whether all, at least one or
exactly one business entity must conform to

• an execution mode {on demand, continuous}

Whenever a so-defined business entity condition is evaluated, is calculated for
all -instances that are correlated to the activate correlation session and conform to
the calculated key-property values, if such are available. Depending on the results of
these calculations and the chosen connective , the component’s output port for “true”
or “false” is activated. In case of on demand execution, the described evaluation
process is executed on activate, i.e., every time the preconditions of the condition are
fulfilled. In case of continuous execution, the evaluation process is triggered whenev-
er a correlated, -typed business entity is updated at the business entity provider. As a
consequence, the component allows reacting to state changes actively and fully de-
coupled from low-level updating logic.

5 Implementation

In the course of our research, we implemented the presented approach as an experi-
mental extension to SARI. Reference business-entity providers are available for base
entities, scores and sets (see Section 3.2). In the following, we give an overview to
SARI’s basic rule evaluation approach and discuss the architecture of our solution.

 Entity-Based State Management for Complex Event Processing Applications 165

5.1 Rule Evaluation in SARI

SARI’s rule model is generally based on a separation between event correlation – i.e.,
the grouping of events that are generally related to each other – and pattern detection,
which picks from the resulting event situations those that are noteworthy in a certain
sense. At run time, SARI uses a rule’s correlation set to correlate events before start-
ing the actual decision-graph evaluation. For each of the resulting correlation ses-
sions, SARI maintains a separate decision-graph state, which, among others, includes
the set of activated output ports. An incoming event is then said to activate the deci-
sion graph for the correlation session to which it belongs, and is processed with
the associated decision-graph state. In its pattern-detection engine, SARI forwards
to all active rule components (in bottom-up direction), which process based on the
encapsulated rule logic and activate their output ports accordingly.

5.2 State-Management Architecture

In the extended SARI architecture, business entity providers must be provided in the
form of .NET assemblies and referenced in a configuration file. Given the unique ID
of a business entity type, a business entity provider must provide XML-formatted
descriptions of the respective update and query interfaces; during the design time of a
SARI application, these descriptions are used for the type-safe definition of ECA
rules. While data management is generally implementation-specific, business entity
providers are provided access to an application’s default event-data repository.

Fig 6a sketches the run-time architecture of a SARI application. Plugged-in busi-
ness entity providers are managed in a central provider management service, which
performs common tasks such as inter-service communication and the evaluation of
complex conditions based on a provider’s query properties. In an application’s event-
processing network, so-called rule services evaluate sets of rules on incoming event
streams. If a business entity action or an on-demand business-entity condition is acti-
vated within such rule, the rule service calls the provider management and passes all
data necessary for performing the update or query. On the update interface of a busi-
ness entity provider, function calls are received generally independent from triggering
events and their exact time of creation. Thus, if a strict ordering of events is required,
this must be ensured explicitly through a preceding resequencer service.

Fig. 6. Business Entity Providers in SARI (a), Continuous Monitoring Implementation (b)

166 H. Obweger et al.

Fig. 6b sketches the approach to continuous entity monitoring. On start up, all rules
containing a continuous business-entity condition are registered as listeners at the
concerned business entity providers. At run time, whenever an update to a business
entity is performed, a special notification – a so-called signal – is published to all
registered rule services. Here, SARI’s basic correlation mechanism is used to retrieve
the decision-graph states for all related correlation sessions. For each session, the
incoming signal is then tested against the condition's key-property expressions; if the
condition is concerned with the update, the provider management is called as with on-
demand evaluations. Note that signals – just like any “common” event – are processed
asynchronously by default; thus, a (potentially noteworthy) state at time stamp may
be re-set before the actual evaluation is triggered at time stamp . While such issues
showed to be of little relevance in many practical use cases, we implemented an alter-
native, synchronous execution mode to the expense of overall event-processing per-
formance; further improvements to this mode are subject to future work.

6 Example

In the following, we demonstrate our framework in a real-world example from the
workload automation domain. One of the major challenges observed in corporations
with distributed, inhomogeneous IT landscapes is to manage the proper execution of
IT processes and ensure the performance of potentially thousands of servers across
disconnected data centers. Traditional workload automation has been developed to
overcome these difficulties, but is driven by scheduled batch execution, and lacks
capabilities for flexible, event-driven execution. We applied SARI on top of an auto-
mation engine to fill this gap and add an additional layer of flexibility and control.

Fig. 7. Example Overview

Fig 7. sketches the presented scenario. In the source system, an automation plat-
form distributes tasks on a network of (virtual or physical) task execution agents. To
control the load on such agents, the platform uses extended task queues as an inter-
mediate layer between its engine and the executing agents: Besides providing priority-
aware queuing functionality, such a queue allows configuring a certain number of
execution slots; all tasks that lie within these slots are then executed in parallel on the
associated agent. During run time, the number of slots can be adapted dynamically,
e.g., based on a schedule or on demand by a user. SARI continuously senses the given

 Entity-Based State Management for Complex Event Processing Applications 167

IT landscape at several integration points: Events of type “Task enqueued”, “Task
finished” and “Queue configuration changed” are retrieved directly from the platform.
On agent hosts, “Performance snapshot” events are published at regular intervals.
“Log file” events are generated whenever message are written to the log. Conversely,
SARI may trigger actions directly on the platform and send email notifications.

The described scenario illustrates many of the challenges ECA-based CEP is faced
with in entity-centric environments: Serving as a key indicator to the health of a sys-
tem, the overall state of task queues needs to be calculated from incremental, low-
level updates and made accessible to ECA-based decision making. Counteractions
will typically be required whenever a task queue reaches an exceptional state, e.g.,
whenever its load exceeds a certain threshold; to support this behavior decoupled
from low-level updating logic, means for active entity monitoring must be provided.
Eventually, the application’s business logic is likely to change over time and should
be understandable and editable to business users with restricted technical skills.

In the example’s SARI application, a set type “Task Queue” is used to track the
overall state of underlying, real-world task queues and make it accessible to ECA-
based monitoring logic. It is defined by a single key property “Host ID” (identifying a
queue by the host to which it belongs), a set of entity properties including an Integer-
typed property “Execution Slots”, as well as a collection of set-element properties
including a task’s ID, type and priority. Fig. 8a shows an exemplary rule for updating
the resulting business entities: In response to incoming “Task enqueued” events, the
“insert” operation is called for the correlated task queue. Further updating rules are
applied to remove tasks and to update the number of slots. Fig 8b shows a simple
monitoring rule for detecting overload situations: Executed in continuous access
mode, a condition triggers an “Email” event whenever a queue’s load exceeds the
number of execution slots by a factor greater than four. Fig 8c demonstrates on de-
mand access to task queues: Here, the number of high-priority file transfers is re-
trieved and tested against a threshold whenever an event of type “Recurring file-write
error” occurs; in response, the automation engine could be instructed to throttle the
number of file transfers or to provision an additional agent. Recurring file-write errors
are detected through a preceding ECA rule from accumulations of “Log file” events.

Fig. 8. Example Rules

168 H. Obweger et al.

7 Conclusion and Future Work

In this paper, we presented a novel approach to state management for Complex Event
Processing. It is based on the idea of business entities, which we understand as identi-
fiable, typed data structures that are accessible across an application. The proposed
framework allows integrating arbitrary business entity providers as plug-in-like com-
ponents, depending on the specific requirements of a business scenario. The model is
fully integrated with SARI’s ECA-based rule model, which enables users to define
event patterns fully integrated with updating and monitoring business entities.

Existing challenges with state-of-the-art, ECA-based CEP as discussed in Section 1
of this paper are addressed as follows:

• Durable entity state, complex state-calculation. Within SARI applications, busi-
ness entity providers fully encapsulate the calculation of complex entity states from
low-level updates, as well as the management of resulting data over time. Access
to business entities is provided through easy-to-use update and query interfaces.

• Active entity monitoring. In the proposed framework, business entities can be
monitored based on two “access modes – on-demand vs. continuous access. In the
latter case, a rule evaluates its conditions whenever an update to a business entity is
signified, independent from the events that originally caused that update.

• Context-aware data access. The concept of business entities is fully integrated
with SARI’s correlation model, which enables users to define semantic relations
between events and the business entities to which they belong. In an ECA rule, up-
dates and queries are implicitly directed towards those business entities of a user-
defined type that are associated with the triggering event or business entity.

• Ease of use. The presented approach explicitly focuses on usability from a busi-
ness-user perspective. For the simple definition of state-management logic, a type
model for business entities is presented that enables end users to configure pre-
pared state-management logic according to the specific requirements of their appli-
cation. Access to so-defined business entities is well integrated with SARI’s visual
rule model and can be defined using predefined, easy-to-use rule components.

The presented work is part of a long-term research effort towards user-oriented rule
management for CEP. Apart from improvements in the evaluation of business entities
at run time, future work will especially focus on the entity-driven analysis of histori-
cal event data; while a line-chart based visualization for scores has been implemented
and incorporated into SARI’s event-analysis framework [24], tailored visualization
methods for business objects and sets are still to be designed.

References

1. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker,
M., Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data stream man-
agement. VLDB J. 12(2), 120–139 (2003)

2. Adi, A., Etzion, O.: AMiT – The situation manager. VLDB J. 13(2), 177–203 (2004)
3. Brenna, L., Demers, A., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte, M.,

White, W.: Cayuga: A high-performance event processing engine. In: Proc. 2007 ACM
SIGMOD Int. Conf. on Management of Data, pp. 1100–1102 (2007)

 Entity-Based State Management for Complex Event Processing Applications 169

4. Bry, F., Eckert, M.: Rule-based composite event queries: The language XChangeEQ and its
semantics. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524,
pp. 16–30. Springer, Heidelberg (2007)

5. Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactivity on the Web: Paradigms and applications of
the language XChange. J. of Web Engineering 5(1), 3–24 (2006)

6. Chandy, K.M., Schulte, W.R.: Event Processing: Designing IT Systems for Agile Compa-
nies. McGraw Hill, New York (2009)

7. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-
tions and processes. IEEE Data Engineering Bulletin 32(3), 3–9 (2009)

8. Etzion, O., Niblett, P.: Event Processing in Action. Manning (2010)
9. Gualtieri, M., Rymer, J.R.: The Forrester Wave: Complex Event Processing (CEP) Plat-

forms, Q3 2009. Forrester Research, Cambridge, MA, USA (2009)
10. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation Com-

puting 4, 67–95 (1986)
11. Kozlenkov, A., Jeffery, D., Paschke, A.: State management and concurrency in event

processing. In: Proc. 3rd ACM Int. Conf. on Distributed Event-Based Systems, DEBS
2009 (2009)

12. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Additions-Wesley, Reading (2001)

13. Nandi, P., König, D., Moser, S., Hull, R., Klicnik, V., Clausen, J., Kloppmann, M., Vergo,
J.: Data4BPM, Part 1: Introducing Business Entities and the Business Entity Definition
Language (BEDL). IBM Corp., Riverton (2010)

14. Paschke, A.: ECA-RuleML/ECA-LP: A homogenous Event-Condition-Action logic pro-
gramming language. In: Proc. Int. Conf. on Rules and Rule Markup Languages for the
Semantic Web, RuleML 2006 (2006)

15. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In: Governa-
tori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 53–66. Springer,
Heidelberg (2009)

16. Paton, N.W., Díaz, O.: Active database systems. ACM Comput. Surv. 31(1), 63–103 (1999)
17. Rozsnyai, S., Obweger, H., Schiefer, J.: Event Access expressions: A business user lan-

guage for analyzing event streams. In: Proc. 25th Int. Conf. on Advanced Information
Networking and Applications (AINA 2011), pp. 191–199 (2011)

18. Schiefer, J., Obweger, H., Suntinger, M.: Correlating business events for event-triggered
rules. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
67–81. Springer, Heidelberg (2009)

19. Schiefer, J., Rozsnyai, S., Rauscher, C., Saurer, G.: Event-driven rules for sensing and res-
ponding to business situations. In: Proc. 2007 Int. Conf. on Distributed Event-Based Sys-
tems (DEBS 2007), pp. 198–205 (2007)

20. Schiefer, J., Seufert, A.: Management and controlling of time-sensitive business processes
with Sense & Respond. In: Proceedings of the Int. Conf. on Computational Intelligence for
Modelling, Control and Automation (CICMA 2005), pp. 77–82 (2005)

21. Seiriö, M., Berndtsson, M.: Design and implementation of an ECA rule markup language.
In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 98–112.
Springer, Heidelberg (2005)

22. Shanahan, M.: The Event Calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial
Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999)

23. StreamBase Systems, Inc., StreamBase 7.0.3 (2011)
24. Suntinger, M., Obweger, H., Schiefer, J., Gröller, M.E.: The Event Tunnel: Exploring

event-driven business processes. IEEE Comput. Graph. Appl. 28(5), 46–55 (2008)
25. Sybase, Inc., Beyond relational operators: Programming with FlexStreams in the Sybase

Aleri Streaming Platform. Technical Note (2010)

Declarative Traces into
Fuzzy Computed Answers�

Pedro-Jose Morcillo, Ginés Moreno, Jaime Penabad, and Carlos Vázquez

University of Castilla-La Mancha,
Faculty of Computer Science Engineering,

2071, Albacete, Spain
{pmorcillo,cvazquez}@dsi.uclm.es

{Gines.Moreno,Jaime.Penabad}@uclm.es

Abstract. Fuzzy logic programming is a growing declarative paradigm
aiming to integrate fuzzy logic into logic programming. In this setting,
the so-called Multi-Adjoint Logic Programming approach, MALP in brief,
represents an extremely flexible fuzzy language for which we are devel-
oping the FLOPER tool (Fuzzy LOgic Programming Environment for
Research). Currently, the platform is useful for compiling (to standard
Prolog code), executing and debugging fuzzy programs in a safe way and
it is ready for being extended in the near future with powerful transfor-
mation and optimization techniques designed in our research group in
the recent past. In this paper, we focus in a nice property of the system
regarding its ability for easily collecting declarative traces at execution
time, without modifying the underlying procedural principle. The clever
point is the use of lattices modeling truth degrees (beyond {true, false})
enriched with constructs for directly visualizing on fuzzy computed an-
swers not only the sequence of program rules exploited when reaching
solutions, but also the set of evaluated fuzzy connectives together with
the sequence of primitive (arithmetic) operators they call, thus giving a
detailed description of their computational complexities.

Keywords: Fuzzy Logic Programming, Declarative Traces, Lattices.

1 Introduction

Logic Programming (LP) [16] has been widely used as a formal method for prob-
lem solving and knowledge representation in the past. Nevertheless, traditional
LP languages do not incorporate techniques or constructs to treat explicitly
with uncertainty and approximated reasoning. To fulfill this gap, Fuzzy Logic
Programming has emerged as an interesting and still growing research area try-
ing to consolidate the efforts for introducing fuzzy logic into logic programming.

During the last decades, several fuzzy logic programming systems have been
developed, such as [3,4,6,15,13,30], the QLP scheme of [27] and the many-valued
� This work was supported by the EU (FEDER), and the Spanish Science and Innova-

tion Ministry (MICINN) under grants TIN 2007-65749 and TIN2011-25846, as well
as by the Castilla-La Mancha Administration under grant PII1I09-0117-4481.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 170–185, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Declarative Traces into Fuzzy Computed Answers 171

logic programming language of [28,29], where the classical inference mechanism
of SLD–Resolution has been replaced by a fuzzy variant which is able to handle
partial truth and to reason with uncertainty.

This is also the case of multi-adjoint logic programming approach MALP
[19,17,18], a powerful and promising approach in the area. In this framework,
a program can be seen as a set of rules each one annotated by a truth degree
and a goal is a query to the system plus a substitution (initially the empty
substitution, denoted by id). Admissible steps (a generalization of the classical
modus ponens inference rule) are systematically applied on goals in a similar
way to classical resolution steps in pure logic programming, thus returning a
state composed by a computed substitution together with an expression where
all atoms have been exploited. Next, during the so called interpretive phase (see
[10,21,24]), this expression is interpreted under a given lattice, hence returning
a pair 〈truth degree; substitution〉 which is the fuzzy counterpart of the classical
notion of computed answer used in pure logic programming.

The main goal of the present paper is to present the benefits of introducing
different notions of multi-adjoint lattices for managing truth degrees even in a
single FLOPER’s work-session without changing a given MALP program and
goal. In particular, we are especially interested now in showing the collateral
effect of these actions regarding debugging capabilities (i.e., the generation of
declarative traces inside fuzzy computed answers).

The structure of the paper is as follows. In Section 2, we summarize the
main features of multi-adjoint logic programming, both language syntax and
procedural semantics. Section 3 presents a discussion on multi-adjoint lattices
and their nice representation by using standard Prolog code, in order to facilitate
its further assimilation inside the FLOPER tool. As described in Section 4, we
propose too a sophisticated kind of lattices capable for taking into account details
on declarative traces, such as the sequence of computations (regarding program
rules, fuzzy connectives and primitive operators) needed for evaluating a given
goal. Finally, in Section 5 we give our conclusions and some lines of future work.

2 Multi-Adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming
(see [19,17,18] for a complete formulation of this framework). In what follows,
we will use the abbreviation MALP for referencing programs belonging to this
setting.

2.1 MALP Syntax

We work with a first order language, L, containing variables, constants, func-
tion symbols, predicate symbols, and several (arbitrary) connectives to increase
language expressiveness: implication connectives (←1,←2, . . .); conjunctive op-
erators (denoted by &1, &2, . . .), disjunctive operators (∨1,∨2, . . .), and hybrid
operators (usually denoted by @1, @2, . . .), all of them are grouped under the
name of “aggregators”.

172 P.-J. Morcillo et al.

Aggregation operators are useful to describe/specify user preferences. An ag-
gregation operator, when interpreted as a truth function, may be an arithmetic
mean, a weighted sum or in general any monotone application whose arguments
are values of a complete bounded lattice L. For example, if an aggregator @ is
interpreted as [[@]](x, y, z) = (3x + 2y + z)/6, we are giving the highest prefer-
ence to the first argument, then to the second, being the third argument the
least significant.

Although these connectives are binary operators, we usually generalize them
as functions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . , @(xn−1, xn), . . .). By definition, the truth
function for an n-ary aggregation operator [[@]] : Ln → L is required to be
monotonous and fulfills [[@]](�, . . . ,�) = �, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice
〈L,�,←1, &1, . . . ,←n, &n〉, equipped with a collection of adjoint pairs 〈←i, &i〉,
where each &i is a conjunctor which is intended to the evaluation of modus
ponens [19]. More exactly, in this setting the following items must be satisfied:

– 〈L,�〉 is a bounded lattice, i.e. it has bottom and top elements, denoted by
⊥ and �, respectively.

– Each operation &i is increasing in both arguments.
– Each operation ←i is increasing in the first argument and decreasing in the

second.
– If 〈&i,←i〉 is an adjoint pair in 〈L,�〉 then, for any x, y, z ∈ L, we have

that: x � (y ←i z) if and only if (x &i z) � y.

This last condition, called adjoint property, could be considered the most impor-
tant feature of the framework (in contrast with many other approaches) which
justifies most of its properties regarding crucial results for soundness, complete-
ness, applicability, etc.

In general, L may be the carrier of any complete bounded lattice where a
L-expression is a well-formed expression composed by values and connectives of
L, as well as variable symbols and primitive operators (i.e., arithmetic symbols
such as ∗, +, min, etc...).

In what follows, we assume that the truth function of any connective @ in L is
given by its corresponding connective definition, that is, an equation of the form
@(x1, . . . , xn) � E, where E is a L-expression not containing variable symbols
apart from x1, . . . , xn. For instance, in what follows we will be mainly concerned
with the following classical set of adjoint pairs (conjunctors and implications)
in 〈[0, 1],≤〉, where labels L, G and P mean respectively Łukasiewicz logic, Gödel
intuitionistic logic and product logic (which different capabilities for modeling
pessimist, optimist and realistic scenarios, respectively):

&P(x, y) � x ∗ y ←P (x, y) � min(1, x/y) Product

&G(x, y) � min(x, y) ←G (x, y) �
{

1 if y ≤ x

x otherwise
Gödel

&L(x, y) � max(0, x + y − 1) ←L (x, y) � min{x− y + 1, 1} Łukasiewicz

Declarative Traces into Fuzzy Computed Answers 173

A rule is a formula H ←i B, where H is an atomic formula (usually called
the head) and B (which is called the body) is a formula built from atomic for-
mulas B1, . . . , Bn — n ≥ 0 —, truth values of L, conjunctions, disjunctions and
aggregations. A goal is a body submitted as a query to the system. Roughly
speaking, a multi-adjoint logic program is a set of pairs 〈R; α〉 (we often write
“R with α”), where R is a rule and α is a truth degree (a value of L) expressing
the confidence of a programmer in the truth of rule R. By abuse of language,
we sometimes refer a tuple 〈R; α〉 as a “rule”.

2.2 MALP Procedural Semantics

The procedural semantics of the multi–adjoint logic language L can be thought
of as an operational phase (based on admissible steps) followed by an interpre-
tive one. In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the –possibly empty– context C[]. Moreover, C[A/A′] means the
replacement of A by A′ in context C[], whereas Var(s) refers to the set of dis-
tinct variables occurring in the syntactic object s, and θ[Var(s)] denotes the
substitution obtained from θ by restricting its domain to Var(s).

Definition 1 (Admissible Step). Let Q be a goal and let σ be a substitution.
The pair 〈Q; σ〉 is a state and we denote by E the set of states. Given a program
P, an admissible computation is formalized as a state transition system, whose
transition relation →AS ⊆ (E×E) is the smallest relation satisfying the following
admissible rules (where we always consider that A is the selected atom in Q and
mgu(E) denotes the most general unifier of an equation set E [14]):

1) 〈Q[A]; σ〉 →AS 〈(Q[A/v&iB])θ; σθ〉,
if θ = mgu({A′ = A}), 〈A′←iB; v〉 in P and B is not empty.

2)1 〈Q[A]; σ〉 →AS 〈(Q[A/v])θ; σθ〉,
if θ = mgu({A′ = A}) and 〈A′←i; v〉 in P.

3) 〈Q[A]; σ〉→AS〈(Q[A/⊥]); σ〉,
if there is no rule in P whose head unifies with A.

Note that 3th case is introduced to cope with (possible) unsuccessful admissible
derivations (this kind of step is useful when evaluating, for instance, an expres-
sion like “∨(p, 0.8)”, which returns a value different from 0 even when there is no
program rule defining p). As usual, rules are taken renamed apart. We shall use
the symbols →AS1, →AS2 and →AS3 to distinguish between computation steps
performed by applying one of the specific admissible rules. Also, the application
of a rule on a step will be annotated as a superscript of the →AS symbol.

1 Note that this case could be subsumed by the first one, after expressing each fact
〈A′←i; v〉 as a program rule of the form 〈A′←i; v〉.

174 P.-J. Morcillo et al.

Multi-adjoint logic program P :

R1 : p(X) ←P &G(q(X), @aver(r(X), s(X))) with 0.9
R2 : q(a) ← with 0.8
R3 : r(X) ← with 0.7
R4 : s(X) ← with 0.5

Admissible derivation:

〈p(X); id〉 →AS1
R1

〈&P(0.9, &G(q(X1), @aver(r(X1), s(X1)))); {X/X1}〉 →AS2
R2

〈&P(0.9, &G(0.8, @aver(r(a), s(a)))); {X/a, X1/a}〉 →AS2
R3

〈&P(0.9, &G(0.8, @aver(0.7, s(a)))); {X/a, X1/a, X2/a}〉 →AS2
R4

〈&P(0.9, &G(0.8, @aver(0.7, 0.5))); {X/a, X1/a, X2/a, X3/a}〉

Interpretive derivation:

〈&P(0.9, &G(0.8, @aver(0.7, 0.5))); {X/a}〉 →IS

〈&P(0.9, &G(0.8, 0.6)); {X/a}〉 →IS

〈&P(0.9, 0.6); {X/a}〉 →IS

〈0.54; {X/a}〉.

Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X)

Definition 2. Let P be a program, Q a goal and “id” the empty substitution.
An admissible derivation is a sequence 〈Q; id〉→AS . . .→AS〈Q′; θ〉. When Q′ is a
formula not containing atoms (i.e., a L-expression), the pair 〈Q′; σ〉, where σ =
θ[Var(Q)], is called an admissible computed answer (a.c.a.) for that derivation.

Example 1. Let P be the multi-adjoint fuzzy logic program described in Figure
1 where the equation defining the average aggregator @aver must obviously has
the form: @aver(x1, x2) � (x1 + x2)/2. Now, we can generate the admissible
derivation shown in Figure 1 (we underline the selected atom in each step). So,
the admissible computed answer (a.c.a.) in this case is composed by the pair:
〈&P(0.9, &G(0.8, @aver(0.7, 0.5))); θ〉, where θ only refers to bindings related with
variables in the goal, i.e., θ = {X/a, X1/a, X2/a, X3/a}[Var(p(X))] = {X/a}.
If we exploit all atoms of a given goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms
(a L-expression) which can be then directly interpreted w.r.t. lattice L by ap-
plying the following definition we initially presented in [10]:

Declarative Traces into Fuzzy Computed Answers 175

Definition 3 (Interpretive Step). Let P be a program, Q a goal and σ a
substitution. Assume that [[@]] is the truth function of connective @ in the lattice
〈L,�〉 associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive computa-
tion as a state transition system, whose transition relation →IS ⊆ (E × E) is
defined as the least one satisfying:

〈Q[@(r1, . . . , rn)]; σ〉 →IS 〈Q[@(r1, . . . , rn)/rn+1];σ〉

Definition 4. Let P be a program and 〈Q; σ〉 an a.c.a., that is, Q is a goal not
containing atoms (i.e., a L-expression). An interpretive derivation is a sequence
〈Q; σ〉→IS . . .→IS〈Q′; σ〉. When Q′ = r ∈ L, being 〈L,�〉 the lattice associ-
ated to P, the state 〈r; σ〉 is called a fuzzy computed answer (f.c.a.) for that
derivation.

Example 2. If we complete the previous derivation of Example 1 by applying 3
interpretive steps in order to obtain the final f.c.a. 〈0.54; {X/a}〉, we generate
the interpretive derivation shown in Figure 1.

3 Truth-Degrees and Multi-Adjoint Lattices in Practice

In [23] we describe a very easy way to model truth-degree lattices for being
included into the FLOPER tool. All relevant components of each lattice are
encapsulated inside a Prolog file which must necessarily contain the definitions
of a minimal set of predicates defining the set of valid elements (including special
mentions to the “top” and “bottom” ones), the full or partial ordering established
among them, as well as the repertoire of fuzzy connectives which can be used
for their subsequent manipulation. In order to simplify our explanation, assume
that file “bool.pl” refers to the simplest notion of (a binary) adjoint lattice, thus
implementing the following set of predicates:

– member/1 which is satisfied when being called with a parameter representing
a valid truth degree. In the case of finite lattices, it is also recommend to
implement members/1 which returns in one go a list containing the whole
set of truth degrees. For instance, in the Boolean case, both predicates
can be simply modeled by the Prolog facts: member(0)., member(1). and
members([0,1]).

– bot/1 and top/1 obviously answer with the top and bottom element of the
lattice, respectively. Both are implemented into “bool.pl” as bot(0). and
top(1).

– leq/2 models the ordering relation among all the possible pairs of truth
degrees, and obviously it is only satisfied when it is invoked with two elements
verifying that the first parameter is equal or smaller than the second one. So,
in our example it suffices with including into “bool.pl” the facts: leq(0,X).
and leq(X,1).

176 P.-J. Morcillo et al.

– Finally, if we have some fuzzy connectives of the form &label1 (conjunction),
∨label2 (disjunction) or @label3 (aggregation) with arities n1, n2 and n3 respec-
tively, we must provide clauses defining the connective predicates
“and_label1/(n1+1)”, “or_label2/(n2+1)” and “agr_label3/(n3+1)”, where the
extra argument of each predicate is intended to contain the result achieved af-
ter the evaluation of the proper connective. For instance, in the Boolean case,
the following two facts model in a very easy way the behaviour of the classical
conjunction operation: and_bool(0,_,0). and_bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl” when working with
MALP programs whose rules have the form:

“A ←bool &bool(B1, . . . , Bn) with 1”

.... being A and Bi typical atoms2, successfully mimics the behaviour of classical
Prolog programs where clauses accomplish with the shape “A : − B1, . . . , Bn”.
As a novelty in the fuzzy setting, when evaluating goals according to the proce-
dural semantics described in Section 2, each output will contain the correspond-
ing Prolog’s substitution (i.e., the crisp notion of computed answer obtained by
means of classical SLD-resolution) together with the maximum truth degree 1.

On the other hand and following the Prolog style regulated by the previous
guidelines, in file “num.lat” we have included the clauses shown in Figure 2.
Here, we have modeled the more flexible lattice (that we will mainly use in our
examples, beyond the boolean case) which enables the possibility of working
with truth degrees in the infinite space (note that this condition disables the
implementation of the consulting predicate “members/1”) of the real numbers
between 0 and 1, allowing too the possibility of using conjunction and disjunction
operators recasted from the three typical fuzzy logics proposals described before
(i.e., the Łukasiewicz, Gödel and product logics), as well as a useful description
for the hybrid aggregator average.

Note also that we have included definitions for auxiliary predicates, whose
names always begin with the prefix “pri_”. All of them are intended to describe
primitive/arithmetic operators (in our case +, −, ∗, /, min and max) in a
Prolog style, for being appropriately called from the bodies of clauses defining
predicates with higher levels of expressivity (this is the case for instance, of the
three kinds of fuzzy connectives we are considering: conjuntions, disjunctions
and agreggations).

Since till now we have considered two classical, fully ordered lattices (with a
finite and infinite number of elements, collected in files “bool.pl” and “num.pl”,
respectively), we wish now to introduce a different case coping with a very simple
lattice where not always any pair of truth degrees are comparable. So, consider
the following partially ordered multi-adjoint lattice in the diagram below for
which the conjunction and implication connectives based on the Gödel intuis-
tionistic logic described in Section 2 conform an adjoint pair.... but with the
2 Here we also assume that several versions of the classical conjunction operation have

been implemented with different arities.

Declarative Traces into Fuzzy Computed Answers 177

member(X) :- number(X),0=<X,X=<1. % no members/1 (infinite lattice)

bot(0). top(1). leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).
and_godel(X,Y,Z):- pri_min(X,Y,Z).
and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).
or_godel(X,Y,Z) :- pri_max(X,Y,Z).
or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).
agr_aver2(X,Y,Z):- or_godel(X,Y,Z1),or_luka(X,Y,Z2),agr_aver(Z1,Z2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Fig. 2. Multi-adjoint lattice modeling truth degrees in the real interval [0,1] (“num.pl”)

particularity now that, in the general case, the Gödel ’s conjunction must be
expressed as &G(x, y) � inf(x, y), where it is important to note that we must
replace the use of “min” by “inf ” in the connective definition.

�

α β

⊥

member(bottom). member(alpha).
member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha). leq(alpha,top).
leq(beta,beta). leq(beta,top). leq(X,top).

and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom):-!.
pri_inf(alpha,X,alpha):-leq(alpha,X),!.
pri_inf(beta,X,beta):-leq(beta,X),!.
pri_inf(top,X,X):-!.
pri_inf(X,Y,bottom).

To this end, observe in the Prolog code accompanying the figure above that we
have introduced five clauses defining the new primitive operator “pri_inf/3”
which is intended to return the infimum of two elements. Related with this fact,
we must point out the following aspects:

178 P.-J. Morcillo et al.

– Note that since truth degrees α and β (or their corresponding representations
as Prolog terms “alpha” and “beta” used for instance in the definition(s)
of “members(s)/1”) are incomparable then, any call to goals of the form
“?- leq(alpha,beta).” or “?- leq(beta,alpha).” will always fail.

– Fortunately, a goal of the form “?- pri_inf(alpha,beta,X).”, or alterna-
tively “?- pri_inf(beta,alpha,X).”, instead of failing, successfully pro-
duces the desired result “X=bottom”.

– Note anyway that the implementation of the “pri_inf/1” predicate is
mandatory for coding the general definition of “and_godel/3”.

4 Declarative Traces into f.c.a.’s Using FLOPER

As detailed in [1,20,23,24,25], our parser has been implemented by using the
classical DCG’s (Definite Clause Grammars) resource of the Prolog language,
since it is a convenient notation for expressing grammar rules. Once the applica-
tion is loaded inside a Prolog interpreter (in our case, Sicstus Prolog v.3.12.5),
it shows a menu which includes options for loading, parsing, listing and saving
fuzzy programs, as well as for executing fuzzy goals.

All these actions are based in the translation of the fuzzy code into standard
Prolog code. The key point is to extend each atom with an extra argument,
called truth variable of the form “_TVi”, which is intended to contain the truth
degree obtained after the subsequent evaluation of the atom. For instance, the
first clause in our target program is translated into:

p(X,_TV0) :- q(X,_TV1),
r(X,_TV2),
s(X,_TV3),
agr_aver(_TV2,_TV3,_TV4),
and_godel(_TV1,_TV4,_TV5),
and_prod(0.9,_TV5,_TV0).

Moreover, the second clause in our target program in Figure 1, becomes the
pure Prolog fact “q(a,0.8)” while a fuzzy goal like “p(X) ”, is translated into
the pure Prolog goal: “p(X, Truth_degree)” (note that the last truth degree
variable is not anonymous now) for which the Prolog interpreter returns the
desired fuzzy computed answer [Truth_degree = 0.54, X = a]. The previous set
of options suffices for running fuzzy programs (the “run” choice also uses the
clauses contained in “num.pl”, which represent the default lattice): all internal
computations (including compiling and executing) are pure Prolog derivations
whereas inputs (fuzzy programs and goals) and outputs (fuzzy computed an-
swers) have always a fuzzy taste, thus producing the illusion on the final user of
being working with a purely fuzzy logic programming tool.

Declarative Traces into Fuzzy Computed Answers 179

On the other hand, in [23] we explain that FLOPER has been recently
equipped with new options, called “lat” and “show”, for allowing the possibility
of respectively changing and displaying the multi-adjoint lattice associated to a
given program. Assume that “new_num.pl” contains the same Prolog code than
“num.pl” with the exception of the definition regarding the average aggregator).
Now, instead of computing the average of two truth degrees, let us consider a new
version which computes the average between the results achieved after applying
to both elements the disjunctions operators described by Gödel and Łukasiewicz,
that is: @aver(x1, x2) � (∨G(x1, x2)+∨L(x1, x2))∗ 0.5. The corresponding Prolog
clause modeling such definition into the “new_num.pl” file could be:

agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),
or_luka(X,Y,Z2),
pri_add(Z1,Z2,Z3),
pri_prod(Z3,0.5,Z).

and now, by selecting again the “run” option (without changing the program and
goal), the system would display the new solution: [Truth_degree = 0.72, X = a].

Let us consider now the so called domain of weight values W used in the QLP
(Qualified Logic Programming3) framework of [27], whose elements are intended
to represent proof costs, measured as the weighted depth of proof trees (although
close to MALP, the QLP scheme allows a lesser repertoire of connectives in the
body of program rules). In essence, W can be seen as lattice 〈R ∪∞,≥〉, where
≥ is the reverse of the usual numerical ordering (with ∞ ≥ d for any d ∈ R) and
thus, the bottom elements is ∞ and the top element is 0 (and not vice versa).

By using again the “lat” option of FLOPER, we can associate this lattice W
to the program seen before after changing the “weights” of each program rule
to 1 (the underlying idea is that “the use of each program rule in a derivation
implies the application of one admissible step”). Moreover, since in this lattice
the arithmetic operation “+” plays the role of a conjunction (t-norm) connective,
we assume the definitions of the set of connectives appearing in the program
mapped to “+” (i.e. &P(x, y) � x + y, &G(x, y) � x + y and @aver(x, y) � x + y).
Now, for goal “p(X)” we could generate an admissible derivation similar to the
one seen in Figure 1, but ending now with 〈&P(1, &G(1, @aver(1, 1))); {X/a}〉
And since: &P(1, &G(1, @aver(1, 1))) = +(1, +(1, +(1, 1))) = 4, the final fuzzy
computed answer or f.c.a. 〈4; {X/a}〉 indicates that goal “p(X)” holds when X
is a, as proved after applying 4 admissible steps, as wanted.

Moreover, we can also conceive a more powerful lattice expressed as the carte-
sian product of the one seen in Figure 2 (real numbers in the interval [0, 1])
and W . Now, each element has two components, coping with truth degrees and
cost measures. In order to be loaded into FLOPER, we must define in Prolog
the new lattice, whose elements could be expressed, for instance, as data terms
of the form “info(Fuzzy_Truth_Degree,Cost_Number_Steps)”. Moreover, the
clauses defining some predicates required for managing them are:

3 Although close to MALP, the QLP scheme allows a lesser repertoire of connectives
into the body of program rules.

180 P.-J. Morcillo et al.

member(info(X,Y)) :- number(X), 0=<X, X=<1, number(Y), Y=<0.
leq(info(X1,Y1),info(X2,Y2)) :- X1=<X2, Y1>=Y2. top(info(1,0)).
and_godel(info(X1,Y1),info(X2,Y2),info(X3,Y3)) :- pri_min(X1,X2,X3),

pri_add(Y1,Y2,Y3).

Finally, if the weights assigned to the rules of our running example be
“info(0.9,1)” for R1, “info(0.8,1)” for R2, “info(0.7,1)” for R3 and
“info(0.5,1)” for R4, then, for goal “p(X)” we would obtain the desired fuzzy
computed answer 〈info(0.54, 4); {X/a}〉 with the obvious meaning that we need
4 admissible steps to prove that the query is true at a 56 % degree when X is a”.

One step beyond, in what follows we are going to design a much more complex
lattice to cope with declarative traces. Its elements must have two components,
taking into account truth degrees and “labels” collecting information about the
program rules, fuzzy connectives and primitive operators used when executing
programs. In order to be loaded into FLOPER, we need to define again the new
lattice as a Prolog program, whose elements will be expressed now as data terms
of the form “info(Fuzzy_Truth_Degree, Label)” as shown in Figure 3 (note
that the complex version of the average connective is called here agr_aver2 and
invokes the simple version agr_aver).

Here, we see that when implementing for instance the conjunction operator
of the Product Logic, in the second component of our extended notion of “truth
degree”, we have appended the labels of its arguments with the label ’&PROD.’
(see clauses defining and_prod, pri_app and append). Of course, in the fuzzy
program to be run, we must also take into account the use of labels associated
to the program rules. For instance, in set of rules of our example (where we use
the complex version of average, i.e., @aver2 in the first rule) must have the form:

p(X) <prod &godel(q(X),@aver2(r(X),s(X))) with info(0.9,’RULE1.’).
q(a) with info(0.8,’RULE2.’).
r(X) with info(0.7,’RULE3.’).
s(X) with info(0.5,’RULE4.’).

Now, the reader can easily tests that, after executing goal p(X), we obtain
the desired fuzzy computed answers which includes the desired declarative trace
regarding program-rules/connective-calls/primitive-operators evaluated till find-
ing the final solution:

>> run.

[Truth_degree=info(0.72, RULE1.RULE2.RULE3.RULE4.
@AVER2.|GODEL.#MAX.|LUKA.
#ADD.#MIN.@AVER.#ADD.#DIV.
&GODEL.#MIN.&PROD.#PROD.), X=a]

In this fuzzy computed answer we obtain both the truth value (0.72) and sub-
stitution (X = a) associated to our goal, but also the sequence of program rules
exploited when applying admissible steps as well as the proper fuzzy connec-
tives evaluated during the interpretive phase, also detailing the set of primitive
operators (of the form #label) they call.

Declarative Traces into Fuzzy Computed Answers 181

member(info(X,_)):-number(X),0=<X,X=<1. bot(info(0,_)).

top(info(1,_)). leq(info(X1,_),info(X2,_)):- X1 =< X2.

and_prod(info(X1,X2),info(Y1,Y2),info(Z1,Z2)) :-
pri_prod(X1,Y1,Z1,DatPROD),pri_app(X2,Y2,Dat1),
pri_app(Dat1,’&PROD.’,Dat2),pri_app(Dat2,DatPROD,Z2).

or_godel(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
pri_max(X1,Y1,Z1,DatMAX),pri_app(X2,Y2,Dat1),
pri_app(Dat1,’|GODEL.’,Dat2),pri_app(Dat2,DatMAX,Z2).

or_luka(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
pri_add(X1,Y1,U1,DatADD),pri_min(U1,1,Z1,DatMIN),
pri_app(X2,Y2,Dat1),pri_app(Dat1,’|LUKA.’,Dat2),
pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatMIN,Z2).

agr_aver(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
pri_add(X1,Y1,Aux,DatADD),pri_div(Aux,2,Z1,DatDIV),
pri_app(X2,Y2,Dat1),pri_app(Dat1,’@AVER.’,Dat2),
pri_app(Dat2,DatADD,Dat3),pri_app(Dat3,DatDIV,Z2).

agr_aver2(info(X1,X2),info(Y1,Y2),info(Z1,Z2)):-
or_godel(info(X1,’’),info(Y1,’’),Za),
or_luka(info(X1,’’),info(Y1,’’),Zb),
agr_aver(Za,Zb,info(Z1,Dat3)),pri_app(X2,Y2,Dat1),
pri_app(Dat1,’@AVER2.’,Dat2),pri_app(Dat2,Dat3,Z2).

pri_add(X,Y,Z,’#ADD.’) :- Z is X+Y. pri_sub(X,Y,Z,’#SUB.’):- Z is X-Y.
pri_prod(X,Y,Z,’#PROD.’):-Z is X * Y. pri_div(X,Y,Z,’#DIV.’):- Z is X/Y.
pri_min(X,Y,Z,’#MIN.’) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_max(X,Y,Z,’#MAX.’) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_app(X,Y,Z) :- name(X,L1),name(Y,L2),append(L1,L2,L3),name(Z,L3).
append([],X,X). append([X|Xs],Y,[X|Zs]):-append(Xs,Y,Zs).

Fig. 3. Multi-adjoint lattice modeling truth degrees with labels

Strongly related with this, in [21] we proposed a variant of the original notion
of interpretive step (see Definition 3) which was able to distinguish calls to fuzzy
connectives (conjunctions, disjunctions and aggregations) and computations de-
voted to the evaluation of primitive operators, thus providing cost measures
about the complexity of connectives. Such new notion, called small interpretive
step, has been recently implemented into FLOPER, as described in [24], in order
to generate “evaluation trees” like the one shown in Figure 4. However, compared
with our present approach where we don’t need any additional modification of
the underlying execution machinery, the implementation of [24] required strong
changes in the core of the systems, including a new representation of the fuzzy
code much more involved than the one based in the compilation to Prolog code
described at the beginning of this section.

The research line on cost measures mentioned above was motivated after ev-
idencing in our fuzzy fold/unfold framework described in [26,5,9] that it is pos-
sible to improve the “shape” of a set of program rules but with the “risk” of

182 P.-J. Morcillo et al.

Fig. 4. Building a graphical interface for FLOPER

automatically generating a set of artificial connectives (see the definition of the
aggregation transformation described in [5]) which necessarily invoke other con-
nectives, thus producing nested definitions of aggregators. For this reason, it is
very important to “calibrate” the complexities of these new connectives (i.e., to
visualize the number of direct/indirect calls they perform to other connectives
and/or primitive operators) in order to detect if the whole transformation pro-
cess really returns improved sets of program rules and connective definitions. In
this sense, the present work can be seen as a first stage to achieve this goal.

5 Conclusions and Future Work

The experience acquired in our research group regarding the design of techniques
and methods based on fuzzy logic in close relationship with the so-called multi-
adjoint logic programming approach ([10,26,5,9,11,12,7,8,21,22]), has motivated
our interest for putting in practice all our developments around the design of the
FLOPER environment [20,24,23]. Our philosophy is to friendly connect this fuzzy
framework with Prolog programmers: our system, apart for being implemented
in Prolog, also translates the fuzzy code to classical clauses (in two different
representations) and, what is more, in this paper we have also shown that a
wide range of lattices modeling powerful and flexible notions of truth degrees
also admit a nice rule-based characterizations into Prolog. The main purpose
of this work has been the illustration of an interesting kind of lattices where
truth-degrees are accompanied with labels, having the ability of augmenting
fuzzy computed answers with declarative traces (i.e., by listing the sequence of

Declarative Traces into Fuzzy Computed Answers 183

program rules, connective calls and primitive operators used for finding solutions)
without requiring additional cost.

Apart for our ongoing efforts devoted to providing FLOPER with a graphical
interface as illustrated in Figure 44, nowadays we are especially interested in ex-
tending the tool with testing techniques for automatically checking that lattices
modeled according the Prolog-based method established in this paper, verify the
requirements of our fuzzy setting (with special mention to the adjoint property).

In a more practical way, we are currently working in our ongoing applica-
tion available from http://dectau.uclm.es/fuzzyXPath/, where we propose a
flexible extension of the popular XPath language for querying XML documents.
The material presented in [2] represents the first real-world application devel-
oped with the fuzzy logic language MALP (using too our FLOPER tool), by
showing its capabilities for easily modeling scenarios where concepts somehow
based on fuzzy logic play a crucial role.

For the future, we plan to implement all the manipulation tasks developed
in our group on fold/unfold transformations [5,9], partial evaluation [12] and
thresholded tabulation [8].

References

1. Abietar, J.M., Morcillo, P.J., Moreno, G.: Designing a software tool for fuzzy logic
programming. In: Simos, T.E., Maroulis, G. (eds.) Proc. of the International Con-
ference of Computational Methods in Sciences and Engineering, ICCMSE 2007.
Computation in Modern Science and Engineering, vol. 2, pp. 1117–1120. American
Institute of Physics (distributed by Springer) (2007)

2. Almendros-Jiménez, J.M., Luna, A., Moreno, G.: A Flexible XPath-based Query
Language Implemented with Fuzzy Logic Programming. In: Bassiliades, N., Gov-
ernatori, G., Pasckhe, A. (eds.) RuleML 2011. LNCS, vol. 6826, p. 8. Springer,
Heidelberg (2011)

3. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning
in Artificial Intelligence. John Wiley & Sons, Inc., Chichester (1995)

4. Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy Prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems 144(1), 127–150 (2004)

5. Guerrero, J.A., Moreno, G.: Optimizing fuzzy logic programs by unfolding, aggre-
gation and folding. Electronic Notes in Theoretical Computer Science 219, 19–34
(2008)

6. Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K.
(ed.) Proceedings of the 9th Int. Joint Conference on Artificial Intelligence, IJCAI
1985, pp. 701–703. Morgan Kaufmann, San Francisco (1985)

7. Julián, P., Medina, J., Moreno, G., Ojeda, M.: Thresholded tabulation in a fuzzy
logic setting. Electronic Notes in Theoretical Computer Science 248, 115–130 (2009)

8. Julián, P., Medina, J., Moreno, G., Ojeda, M.: Efficient thresholded tabulation for
fuzzy query answering. Studies in Fuzziness and Soft Computing (Foundations of
Reasoning under Uncertainty) 249, 125–141 (2010)

4 Here we show an unfolding tree evidencing an infinite branch where states are colored
in yellow and program rules exploited in admissible steps are enclosed in circles.

184 P.-J. Morcillo et al.

9. Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Ap-
proach. Fuzzy Sets and Systems 154, 16–33 (2005)

10. Julián, P., Moreno, G., Penabad, J.: Operational/Interpretive Unfolding of Multi-
adjoint Logic Programs. Journal of Universal Computer Science 12(11), 1679–1699
(2006)

11. Julián, P., Moreno, G., Penabad, J.: Measuring the interpretive cost in fuzzy logic
computations. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI),
vol. 4578, pp. 28–36. Springer, Heidelberg (2007)

12. Julián, P., Moreno, G., Penabad, J.: An Improved Reductant Calculus using
Fuzzy Partial Evaluation Techniques. Fuzzy Sets and Systems 160, 162–181 (2009),
doi:10.1016/j.fss.2008.05.006

13. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming 12, 335–367 (1992)

14. Lassez, J.L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J. (ed.)
Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan
Kaufmann, Los Altos (1988)

15. Li, D., Liu, D.: A fuzzy Prolog database system. John Wiley & Sons, Inc., Chich-
ester (1990)

16. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
17. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with

continuous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR
2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001)

18. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint
logic programming. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 290–297. Springer, Heidelberg (2001)

19. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-
adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)

20. Morcillo, P.J., Moreno, G.: Programming with fuzzy logic rules by using the
FLOPER tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)

21. Morcillo, P.J., Moreno, G.: Modeling interpretive steps in fuzzy logic computations.
In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp.
44–51. Springer, Heidelberg (2009)

22. Morcillo, P.J., Moreno, G.: On cost estimations for executing fuzzy logic programs.
In: Arabnia, H.R., de la Fuente, D., Olivas, J.A. (eds.) Proceedings of the 11th
International Conference on Artificial Intelligence, ICAI 2009, Las Vegas, Nevada,
USA, July 13-16, pp. 217–223. CSREA Press (2009)

23. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A Practical Management of
Fuzzy Truth Degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)

24. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: Modeling interpretive steps
into the FLOPER environment. In: Arabnia, H.R., et al. (eds.) Proceedings of
the 12th International Conference on Artificial Intelligence, ICAI 2010, Las Vegas,
Nevada, USA, July 12-15, pp. 16–22. CSREA Press (2010)

25. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: Fuzzy Computed Answers
Collecting Proof Information. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN
2011, Part II. LNCS, vol. 6692, pp. 445–452. Springer, Heidelberg (2011)

26. Moreno, G.: Building a Fuzzy Transformation System. In: Wiedermann, J., Tel,
G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831,
pp. 409–418. Springer, Heidelberg (2006)

Declarative Traces into Fuzzy Computed Answers 185

27. Rodríguez-Artalejo, M., Romero-Díaz, C.: Quantitative logic programming revis-
ited. In: Garrigue, J., Hermenegildo, M. (eds.) FLOPS 2008. LNCS, vol. 4989, pp.
272–288. Springer, Heidelberg (2008)

28. Straccia, U.: Query answering in normal logic programs under uncertainty. In:
Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 687–700. Springer,
Heidelberg (2005)

29. Straccia, U.: Managing uncertainty and vagueness in description logics, logic pro-
grams and description logic programs. In: Baroglio, C., Bonatti, P.A., Małuszyński,
J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224,
pp. 54–103. Springer, Heidelberg (2008)

30. Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370
(2001)

A Flexible XPath-Based Query Language
Implemented with Fuzzy Logic Programming�

Jesús M. Almendros-Jiménez1, Alejandro Luna2, and Ginés Moreno2

1 Dep. of Languages and Computation, University of Almería, Spain
jalmen@ual.es

2 Dep. of Computing Systems, University of Castilla-La Mancha, Spain
{Gines.Moreno,Alejandro.Luna}@uclm.es

Abstract. In this paper we present an extension of the XPath query
language for the handling of flexible queries. In order to provide ranked
answers, our approach proposes fuzzy variants of and, or and avg oper-
ators for XPath conditions, as well as two structural constraints, called
down and deep, for which a certain degree of relevance is associated. Our
proposal has been implemented with a fuzzy logic language to take profit
of the clear sinergies between both target and source fuzzy languages.

1 Introduction

The XPath language [3] has been proposed as a standard for XML querying and
it is based on the description of the path in the XML tree to be retrieved. XPath
allows to specify the name of nodes (i.e., tags) and attributes to be present in
the XML tree together with boolean conditions about the content of nodes and
attributes. XPath querying mechanism is based on a boolean logic: the nodes
retrieved from an XPath expression are those matching the path of the XML tree.
Therefore, the user should know the XML schema in order to specify queries.
However, even when the XML schema exists, it can not be available for users.
Moreover, XML documents with the same XML schema can be very different in
structure. Let us suppose the case of XML documents containing the curriculum
vitae of a certain group of persons. Although they can share the same schema,
each one can decide to include studies, jobs, training, etc. organized in several
ways: by year, by relevance, and with different nesting degree.

Therefore, in the context of semi-structured databases, the need for flexible
query languages arises, in which the user can formulate queries without taking
into account a rigid schema database. In addition, they should be equipped
with a mechanism for obtaining a certain ranked list of answers. The ranking
of answers can provide satisfaction degree depending on several factors. In a
structural XPath-based query, the main criteria to provide a certain degree of
� This work has been partially supported by the EU, under FEDER, and the Spanish

Science and Innovation Ministry (MICINN) under grants TIN 2008-06622-C03-03,
TIN 2007-65749 and TIN2011-25846, as well as by the Castilla-La Mancha Admin-
istration under grant PII1I09-0117-4481.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 186–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Flexible XPath-Based Query Language 187

satisfaction depends on the hierarchical deepness and document order. Therefore
the query language should provide mechanisms for giving priority to answers
when they occur in different parts of the document.

In this paper we present an extension of the XPath query language for the
handling of flexible queries. Our approach proposes two structural constraints
called down and deep for which a certain degree of relevance can be associated.
In such a way that down provides a ranked set of answers depending on the
path is found from “top to down” in the XML document, and deep provides a
set of answers depending on the path is found from “left to right” in the XML
document. Both structural constraints can be combined. In addition, we provide
fuzzy operators and, or and avg for XPath conditions. In this way, users can
express the priority they give to answers. Such fuzzy operators can be combined
to provide ranked answers. Our approach has been implemented by means of
multi-adjoint logic programming and the FLOPER tool.

The need for providing flexibility to XPath has recently motivated the inves-
tigation of extensions of the XPath language. The most relevant ones are [4,5]
in which authors introduce in XPath flexible matching by means of fuzzy con-
straints called close and similar for node content, together with below and near
for path structure. In addition, they have studied deep-similar notion for tree
matching. In order to provide ranked answers they adopt a Fuzzy set theory-based
approach in which each answer has an associated numeric value (the membership
degree). The numeric value represents the Retrieval Status Value (RSV) of the
associated item. In the work of [7], they propose a satisfaction degree for XPath
expressions based on associating a degree of importance to XPath nodes, and
they study how to compute the best k answers. In both cases, authors allow the
user to specify in the query the degree in which the answers will be penalized.
On the other hand, in [6], they have studied how to relax XPath queries by
means of rewriting in order to improve information retrieval in the presence of
heterogeneous data resources.

Our work is similar to the proposed by [4,5]. The below operator of [4,5] is
equivalent to our proposed down: both extract elements that are direct descen-
dants of the current node, and the penalization is proportional to the distance.
The near operator of [4,5], which is defined as a generalization of below, ranks
answers depending of the distance to the required node, in any XPath axis. Our
proposed deep ranks answers depending of the distance to the current node, but
the nodes considered can be direct and non direct descendants. Therefore our
proposed deep combined with down is a particular case of near. However, our
aim is to extend the number of constraints and fuzzy operators of our approach
thanks to the expressivity power of our framework based on fuzzy logic pro-
gramming. The so-called multi-adjoint logic programming approach, MALP in
brief [9], is an extension of logic programming for covering with fuzzy logic. Such
framework provides theoretical basis for defining flexibility to XPath in many di-
rections. In addition, the framework provides mechanism for customizing ranked
answers as assigning priority of elements with independence when they occur.

188 J.M. Almendros-Jiménez, A. Luna Tedesqui, and G. Moreno

With respect to similar and close operators proposed in [4,5], our framework
lacks on similarity relations, rather than it focus on structural (i.e. path-based)
flexibility. With regard to tree matching, the operator deep-similar defined in
[4,5] can be simulated by means of deep and down operators. We believe that we
could also work in the future in adapting our framework for working with degree
of importance to XPath nodes in the line of [7], and relaxing XPath expressions
by rewriting in the line [6]. In both cases, our framework could provide ranked
answers w.r.t. the degree of importance, and degree of matching. Our proposal
makes use of the multi-adjoint logic programming framework for defining new
fuzzy operators for XPath: and, or and avg. Such operators are used in XPath
conditions on nodes and attribute values. They provide fuzzy combinations for
ranking answers.

Finally, let us remark that our work is an extension of previous works about
the implementation of XPath by means of logic programming [2], which has been
extended to XQuery in [1]. The proposed extension follows the same encoding
proposed in [1] in which a predicate called xpath is defined by means of Prolog
rules, which basically traverse the Prolog representation of the XML tree by
means of a Prolog list. In order to implement the flexible extension of XPath by
means of the «Fuzzy LOgic Programming Environment for Research» FLOPER
(which is devoted to the management of MALP programs [10,11]), we proceed
similarly to the Prolog implementation of XPath, but proposing a new (fuzzy)
predicate called fuzzyXPath implemented in MALP. The new query language
returns a set of ranked answers each one with an associated RSV. Such RSV
is computed by easily using MALP rules (thus exploiting the correspondences
between the languages for-being and to-be implemented), where the notion of
RSV is modeled inside a multi-adjoint lattice, and usual fuzzy connectives of the
MALP language act as ideal resources to represent new flexible XPath operators.

The structure of the paper is as follows. Whereas in Section 2 we present our
fuzzy extension of XPath, Section 3 is devoted to describe the main elements
of the implementation of XPath in MALP and FLOPER. Finally, Section 4
concludes by also planning future work.

2 Flexible XPath

Our flexible XPath is defined by means of the following rules:

xpath := [deepdown]path
path := literal | text() | node | @att |

node/path | node//path
node := QName | QName[cond]
cond := path op path

deepdown := DEEP=degree,DOWN=degree
op := > | = | < | and | or | avg

A Flexible XPath-Based Query Language 189

<bib>
<book year="2001" price="45.95">

<title>Don Quijote de la Mancha</title>
<author>Miguel de Cervantes Saavedra</author>
<publications> <book year="1997" price="35.99">

<title>La Galatea</title>
<author>Miguel de Cervantes Saavedra</author>
<publications>

<book year="1994" price="25.99">
<title>Los trabajos de Persiles y Segismunda</title>
<author>Miguel de Cervantes Saavedra</author></book>

</publications></book>
</publications></book>

<book year="1999" price="25.65">
<title>La Celestina</title>
<author>Fernando de Rojas</author></book>

<book year="2005" price="29.95">
<title>Hamlet</title>
<author>William Shakespeare</author>
<publications>

<book year="2000" price="22.5">
<title>Romeo y Julieta</title>
<author>William Shakespeare</author></book>

</publications></book>
<book year="2007" price="22.95">

<title>Las ferias de Madrid</title>
<author>Felix Lope de Vega y Carpio</author>
<publications>

<book year="1996" price="27.5">
<title>El remedio en la desdicha</title>
<author>Felix Lope de Vega y Carpio</author> </book>

<book year="1998" price="12.5">
<title>La Dragontea</title>
<author>Felix Lope de Vega y Carpio</author></book>

</publications></book>
</bib>

Fig. 1. Input XML document in our examples

Basically, our proposal extends XPath as follows:

– A given XPath expression can be adorned with «[DEEP = r1, DOWN = r2]»
which means that the deepness of elements is penalized by r1 and that the
order of elements is penalized by r2, and such penalization is proportional
to the distance. In particular, «[DEEP = 1, DOWN = r2]» can be used for
penalizing only w.r.t. document order. DEEP works for //, and DOWN
works for / and //.

– Moreover, the classical and and or connectives admit here a fuzzy behavior
based on fuzzy logic, i.e., assuming two given RSV’s r1 and r2, operator and
is defined as r3 = r1 ∗ r2 and operator or returns r3 = r1 + r2 − (r1 ∗ r2). In
addition, the avg operator is defined as r3 = (r1 + r2)/2.

In general, an extended XPath expression defines, w.r.t. a XML document, a se-
quence of subtrees of the XML document where each subtree has an associated
RSV. XPath conditions, which are defined as fuzzy operators applied to XPath
expressions, compute a new RSV from the RSVs of the involved XPath expres-
sions, which at the same time, provides a RSV to the node. In order to illustrate

190 J.M. Almendros-Jiménez, A. Luna Tedesqui, and G. Moreno

Fig. 2. XML skeleton represented as a tree

these explanations, let us see some examples of our proposed fuzzy version of
XPath according to the XML document shown in Figure 1, whose skeleton is
depicted in Figure 2.

Document RSV computation

<result>
<title rsv="0.81">Don Quijote de la Mancha</title>
<title rsv="0.6561">La Galatea</title>
<title rsv="0.531441">Los trabajos de Persiles y ...</title>
<title rsv="0.648">La Celestina</title>
<title rsv="0.5184">Hamlet</title>
<title rsv="0.419904">Romeo y Julieta</title>
<title rsv="0.41472">Las ferias de Madrid</title>
<title rsv="0.3359232">El remedio en la desdicha</title>
<title rsv="0.26873856">La Dragontea</title>

</result>

0.81 = 0.92

0.6561 = 0.94

0.531441 = 0.96

0.648 = 0.92 ∗ 0.8
0.5184 = 0.92 ∗ 0.82

0.419904 = 0.94 ∗ 0.82

0.41472 = 0.92 ∗ 0.83

0.3359232 = 0.94 ∗ 0.83

0.26873856 = 0.94 ∗ 0.84

Fig. 3. Output of a query using DEEP/DOWN

Example 1. Suppose the XPath query: « [DEEP=0.9,DOWN=0.8]//title », that
requests title’s penalizing the occurrences from the document root by a propor-
tion of 0.9 and 0.8 by nesting and ordering, respectively, and for which we obtain
the file listed in Figure 3. In such document we have included as attribute of
each subtree, its corresponding RSV. The highest RSVs correspond the main
book’s of the document, and the lowest RSVs represent the book’s occurring in
nested positions (those annotated as related publication’s).

A Flexible XPath-Based Query Language 191

Document RSV computation
<result>

<book rsv="0.5" ...> <title>Don Quijote ...</title> ...</book>
<book rsv="1.0"...><title>La Celestina</title> ...</book>
<book rsv="1.0" ...><title>Hamlet</title> ...</book>
<book rsv="0.5" ...><title>Las ferias de Madrid</title> ...</book>

</result>

0.5 = (0 + 1)/2
1 = (1 + 1)/2
1 = (1 + 1)/2
0.5 = (1 + 0)/2

Fig. 4. Output of a query using AV G

Document RSV computation

<result>
<title rsv="0.3645">La Galatea</title>
<title rsv="0.295245">Los trabajos de Persiles y... </title>
<title rsv="0.72">La Celestina</title>
<title rsv="0.288">Hamlet</title>
<title rsv="0.2304">Las ferias de Madrid</title>
<title rsv="0.2985984">El remedio en la desdicha</title>
<title rsv="0.11943936">La Dragontea</title>

</result>

0.3645 = 0.93 ∗ 1/2
0.295245 = 0.95 ∗ 1/2
0.72 = 0.9 ∗ 0.8 ∗ 1
0.288 = 0.9 ∗ 0.82 ∗ 1/2
0.2304 = 0.9 ∗ 0.83 ∗ 1/2
0.2985984 = 0.93 ∗ 0.84 ∗ 1
0.11943936 = 0.93 ∗ 0.85 ∗ 1/2

Fig. 5. Output of a query using all operators

Example 2. Figure 4 shows the answer associated to the XPath expression: «
/bib/book[@price<30 avg @year<2006] ». Here we show that books satisfying
a price under 30 and a year before 2006 have the highest RSV.

Example 3. Finally, combining all operators «[DEEP=0.9,DOWN=0.8]
//book [(@price>25 and @price<30) avg (@year<2000 or @year>2006)]/title»,
the RSV values are more scattered, as shown in Figure 5.

3 Some Implementation Hints Using MALP

In this section we assume familiarity with logic programming and its most popu-
lar language Prolog [8], for which MALP [9] (Multi-Adjoint Logic Programming1)
allows a wide repertoire of fuzzy connectives connecting atoms in the bodies of
clauses.

Although the core of our application is written with (fuzzy) MALP rules, our
implementation is based on the following items:

(1) We have reused/adapted several modules of our previous Prolog-based im-
plementation of (crisp) XPath described in [1,2].

(2) We have used the SWI-Prolog library for loading XML files, in order to
represent a XML document by means of a Prolog term2.

(3) The parser of XPath has been extended to recognize the new keywords deep,
down, avg, etc... with their proper arguments.

1 See also [10,11] and visit http://dectau.uclm.es/floper for downloading our pro-
totype system FLOPER.

2 The notion of term (i.e., data structure) is just the same in MALP and Prolog.

192 J.M. Almendros-Jiménez, A. Luna Tedesqui, and G. Moreno

[element(bib,[],
[element(book,[year=2001,price=45.95],

[element(title,[],[Don Quijote de la Mancha]),
element(author,[],[Miguel de Cervantes Saavedra]),
element(publications,[],

[element(book,[year=1997,price=35.99],
[element(title,[],[La Galatea]),
element(author,[],[Miguel de Cervantes Saavedra]),

element(publications,[],...])...]),])])

Fig. 6. A data-term representing a XML document

(4) Each tag is represented as a data-term of the form: element(Tag, Attribu-
tes, Subelements), where Tag is the name of the XML tag, Attributes is
a Prolog list containing the attributes, and Subelements is a Prolog list con-
taining the subelements (i.e. subtrees) of the tag. For instance, the document
of Figure 1 is represented in SWI-Prolog like in Figure 6. Loading of docu-
ments is achieved by the predicate load_xml(+File,-Term) and writing by
the predicate write_xml(+File,+Term).

(5) A predicate called fuzzyXPathwhere fuzzyXPath(+ListXPath,+Tree,+De-
ep,+Down) receives four arguments: (1) ListXPath is the Prolog represen-
tation of an XPath expression; (2) Tree is the term representing an input
XML document and (3) Deep/Down which have the obvious meaning.

(6) The evaluation of the query generates a truth value which has the form of a
tree, called tv tree. For instance, the query shown in Example 1, generated
the one illustrated in Figure 7. The main power of a fuzzy logic programming
language like MALP w.r.t. Prolog, is that instead of answering questions with
a simple true/false way, solutions are reported in a much more tinged, docu-
mented form. Basically, the fuzzyXPath predicate traverses the Prolog tree
representing a XML document annotating into the tv tree the corresponding
deep/down values according to the movements performed in the horizontal
and vertical axis, respectively. In addition, the tv tree is annotated with the
values of and, or and avg operators in each node.

(7) Finally, the tv tree is used for computing the output of the query, by multi-
plying the recorded values. A predicate called tv_to_elem has been imple-
mented to output the answer in a pretty way.

tv(0.9,[[],
tv(0.9,[element(title,[],[Don Quijote de la Mancha]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[La Galatea]),[],
tv(1,[[],[],
tv(1,[[],

tv(0.9,[[],
tv(0.9,[element(title,[],[Los trabajos de Persiles..]),...]),

tv(0.8,[[],
tv(0.9,[element(title,[],[La Celestina]),[],[]]),...

Fig. 7. Example of a MALP output

A Flexible XPath-Based Query Language 193

More details about our implementation of the flexible version of XPath re-
ported in this paper, are available on: http://dectau.uclm.es/fuzzyXPath/

4 Conclusions and Future Work

In this paper we have enriched XPath with new constructs (both structural
-deep and down- and constraints -avg and fuzzy versions of classical or/and
operators-) in order to flexibly query XML documents. This paper represents
the first real-world application developed with the fuzzy logic language MALP,
by showing its capabilities for easily modeling scenarios where concepts somehow
based on fuzzy logic play a crucial role. We think that this research line promises
fruitful developments in the near future by reinforcing the power of fuzzy XPath
commands, extensions to cope with XQuery and the semantic web, etc.

References

1. Almendros-Jiménez, J.M.: An Encoding of XQuery in Prolog. In: Bellahsène, Z.,
Hunt, E., Rys, M., Unland, R. (eds.) XSym 2009. LNCS, vol. 5679, pp. 145–155.
Springer, Heidelberg (2009)

2. Almendros-Jiménez, J.M., Becerra-Terón, A., Enciso-Baños, F.J.: Querying XML
documents in logic programming. TPLP 8(3), 323–361 (2008)

3. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay, M., Robie, J.,
Siméon, J.: XML path language (XPath) 2.0. W3C (2007)

4. Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., Spoletini, P.: A fuzzy
extension of the XPath query language. Journal of Intelligent Information Sys-
tems 33(3), 285–305 (2009)

5. Damiani, E., Marrara, S., Pasi, G.: FuzzyXPath: Using fuzzy logic an IR features
to approximately query XML documents. In: Melin, P., Castillo, O., Aguilar, L.T.,
Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 199–208.
Springer, Heidelberg (2007)

6. Fazzinga, B., Flesca, S., Furfaro, F.: On the expressiveness of generalization
rules for XPath query relaxation. In: Proceedings of the Fourteenth International
Database Engineering & Applications Symposium, pp. 157–168. ACM, New York
(2010)

7. Fazzinga, B., Flesca, S., Pugliese, A.: Top-k Answers to Fuzzy XPath Queries. In:
Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp.
822–829. Springer, Heidelberg (2009)

8. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)
9. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based Unification: a multi-

adjoint approach. Fuzzy Sets and Systems 146, 43–62 (2004)
10. Morcillo, P.J., Moreno, G.: Programming with Fuzzy Logic Rules by using the

FLOPER Tool. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML
2008. LNCS, vol. 5321, pp. 119–126. Springer, Heidelberg (2008)

11. Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A Practical Management of
Fuzzy Truth Degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)

A RIF-Style Semantics for RuleML-Integrated
Positional-Slotted, Object-Applicative Rules

Harold Boley

Institute for Information Technology,
National Research Council of Canada,
Fredericton, NB, E3B 9W4, Canada

Abstract. In F-logic and RIF, objects (frames) are defined entirely sep-
arately from function and predicate applications. In POSL and RuleML,
these fundamental notions are integrated by permitting applications with
optional object identifiers and, orthogonally, arguments that are po-
sitional or slotted. The resulting positional-slotted, object-applicative
(psoa) terms are given a novel formalization, reducing the number of
RIF terms by generalizing its positional and slotted (named-argument)
terms as well as its frame terms and class memberships. Like multi-slot
frames accommodate for (Web-)distributed slotted descriptions of the
same object identifier (IRI), multi-tuple psoa terms (e.g., shelves) do
for positional descriptions. The syntax and semantics of these integrated
terms and rules over them are defined as PSOA RuleML in the style
of RIF-BLD. The semantics provides a novel first-order model-theoretic
foundation, blending frame slotribution, as in F-logic and RIF (as well as
shelf tupribution) with integrated psoa terms, as in POSL and RuleML.

1 Introduction

Logic-based (e.g., FOL, Horn, LP) as well as object-oriented (and frame-based)
paradigms (e.g., CLOS, RDF, N3) have been employed for knowledge repre-
sentation and problem solving in AI, the (Semantic) Web, and IT at large.
In search for a unified paradigm for AI/(Sem)Web languages, there have been
various approaches to combining these paradigms in Description Logics (DLs),
Object-Oriented Databases (OODBs) / Deductive Object-Oriented Databases
(DOODs), and object-oriented logic languages such as LIFE [AK93] and
F-logic [KLW95]. The W3C Rule Interchange Format (RIF) [BK10a] adopted a
semantics based on F-logic with a serialization syntax based on RuleML [BPS10].

While F-logic and RIF have accommodated the standard first-order model-
theoretic semantics [CL73] for the incorporation of objects (frames), these are
added separately from function and predicate applications to arguments. The
resulting complexity of the object-extended semantics can be reduced by inte-
grating objects with applications. In this paper we present an integration based
on the positional-slotted, object-applicative rules of POSL and RuleML [Bol10].
F-logic’s model-theoretic semantics in the style of RIF is also the starting point
of our integrated semantics. Our integration permits applications with optional

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 194–211, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Semantics for Positional-Slotted, Object-Applicative Rules 195

object identifiers and, orthogonally, arguments that are positional or slotted.
Structured by these independent dimensions of defining features, language con-
structs can then be freely combined.

The integration is based on positional-slotted, object-applicative (psoa)
terms and rules over them. A psoa term applies a function or predicate sym-
bol, possibly instantiated by an object, to zero or more positional or slotted
(named) arguments. In the interpretation of a psoa term as an atomic formula,
the predicate symbol is both the class (type) of the object and the relation be-
tween the arguments, which describe the object. Each argument of a psoa term
can be a psoa term that applies a function symbol.

The intuition behind the fundamental distinctions in the taxonomy of
psoa terms is as follows. Psoa terms that apply a predicate symbol (as a
relation) to positional arguments can be employed to make factual assertions.
An example, in simplified RIF (presentation) syntax,1 is the term
married(Joe Sue) for the binary predicate married applied to Joe and Sue,
where the positional (left-to-right) order can be used to identify the husband, as
the first argument, and wife, as the second argument.

Psoa terms that apply a predicate symbol (as a class) to slotted arguments
correspond to typed attribute-value descriptions. An example is the psoa term
family(husb->Joe wife->Sue) or family(wife->Sue husb->Joe) for the family-
typed attribute-value pairs (slots) {<husb,Joe>, <wife,Sue>}. Such a de-
scription can be easily extended with further slots, e.g. by adding one or more
children, as in family(husb->Joe wife->Sue child->Pete).2 Usually, slotted
terms describe an object symbol, i.e. an object identifier (OID), maintaining ob-
ject identity even when slots of their descriptions are added or deleted. This leads
to (typed) frames in the sense of F-logic. For example, using RIF’s membership
syntax #, the OID inst1, as a member of the class family, can be described
by inst1#family(husb->Joe wife->Sue), by inst1#family(husb->Joe wife->Sue
child->Pete), etc. Psoa terms can also specialize to class membership terms,
e.g. inst1#family(), abridged inst1#family, represents inst1 ∈ family.

While positional and slotted, object-oriented and applicative terms have
mostly been treated separately, psoa terms integrate them, allowing for all in-
termediate forms. Like OID-describing slotted terms constitute a (multi-slot)
‘frame’, positional terms that describe an object constitute a (single-tuple) ‘shelf’,
similar to a (one-dimensional) array describing its name. Thus, in the family
example, the husb and wife slots can be positionalized as in the earlier married
example: inst1#family(Joe Sue) describes inst1 with the argument tuple
[Joe Sue]. Combined positional-slotted psoa terms are allowed, as in XML ele-
ments (tuple�subelements, slots�attributes), optionally describing an object,

1 In this introduction, we omit RIF’s namespace prefixes for simplicity.
2 As in RDF and RIF, attributes are multi-valued by default, allowing, e.g.,
family(... child->Pete child->Jane). Duplications of entire slots are also
syntactically permitted, e.g., family(... child->Pete child->Pete), but will be
semantically treated as duplicate-free, e.g., family(... child->Pete).

196 H. Boley

as always required by RDF descriptions (object�subject, slots�properties).3
For example, inst1#family(Joe Sue child->Pete) describes inst1 with two
positional and one slotted argument.

On the other hand, the positional married example could be made slotted,
leading to married(husb->Joe wife->Sue), and even be used to describe a
(marriage) object: positionally, as in inst2#married(Joe Sue), or slotted, as in
inst2#married(husb->Joe wife->Sue).

Summarizing, an object’s description or an application’s arguments can con-
sist of slots as well as a tuple of values. This includes object-describing atomic
formulas playing the role of frames, shelves, or the combination of both.

A frame without an explicit class is semantically treated as typing its object
with the root class � (syntactically, Top). For example, the (untyped) frame
inst3[color->red shape->diamond] in square-bracketed F-logic/RIF syntax
is equivalent to our parenthesized inst3#Top(color->red shape->diamond).4

An atomic formula without an OID is treated as having an implicit OID.
An OID-less application is objectified by a syntactic transformation as follows:
The OID of a ground fact is a new constant generated by the ‘new local constant’
(a stand-alone _); the OID of a non-ground fact or of an atomic formula in a
rule conclusion, f(...), is a new, existentially scoped variable ?i, leading to
Exists ?i (?i#f(...)); the OID of any other atomic formula is a new variable
generated by the ‘anonymous variable’ (a stand-alone ?). Objectification allows
compatible semantics for an atom constructed as a RIF-like slotted (named-
argument) term and a corresponding frame, solving an issue with RIF’s named-
argument terms.5

For example, the slotted-fact assertion family(husb->Joe wife->Sue) is
syntactically objectified to the assertion _#family(husb->Joe wife->Sue), and
– if _1 is the first new constant from _1, _2, . . . – to _1#family(husb->Joe wife->Sue).
This typed frame, then, is semantically slotributed to _1#family(husb->Joe) and
_1#family(wife->Sue). The query family(husb->Joe) is syntactically objectified
to the query ?#family(husb->Joe), i.e. – if ?1 is the first new variable in ?1, ?2, . . . –
to ?1#family(husb->Joe). Posed against the fact, it succeeds with the first slot,
unifying ?1 with _1. Slotribution (‘slot distribution’) avoids POSL’s ‘rest-slot’
variables [Bol10]: a frame’s OID ‘distributes’ over the slots of a description.

Rules can be defined on top of psoa terms in a natural manner. A rule derives
(a conjunction of possibly existentially scoped) conclusion psoa atoms from (a
formula of) premise psoa atoms. Let us consider an introductory example with
a rule deriving family frames; this will be modified in Example 4 of Section 4.

Example 1 (Rule-defined anonymous family frame). A Group is used to collect
a rule and two facts. The Forall quantifier declares the original universal argu-
ment variables as well as the generated universal OID variables ?2, ?3, ?4. The
3 See earlier XML/RDF unification: http://www.dfki.uni-kl.de/~boley/xmlrdf.html.
4 Top will allow us to always use parenthesized typed frames, and to reserve square

brackets for enclosing positional tuples.
5 See Dave Reynolds’ point: http://lists.w3.org/Archives/Public/public-rif-

wg/2008Jul/0000.html.

Semantics for Positional-Slotted, Object-Applicative Rules 197

:- infix separates the conclusion from the premises of a rule, which derives an
anonymous/existential family frame from a married relation And from a kid
relation of the husb Or wife (the left-hand side is objectified on the right).

Group (
Forall ?Hu ?Wi ?Ch (

family(husb->?Hu wife->?Wi child->?Ch) :-
And(married(?Hu ?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))))
married(Joe Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (
Exists ?1 (
?1#family(husb->?Hu wife->?Wi child->?Ch)) :-
And(?2#married(?Hu ?Wi)

Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch))))
_1#married(Joe Sue)
_2#kid(Sue Pete)

)

Semantically, this example is modeled by predicate extensions corresponding
to the following set of ground facts (the subdomain of individuals D ind will be
defined in Section 3.1):
{o#family(husb->Joe wife->Sue child->Pete) } ∪
{_1#married(Joe Sue), _2#kid(Sue Pete)}, where o ∈ D ind.

A language incorporating this integration, PSOA RuleML, is defined here. The
rest of the paper is organized as follows. Section 2 gives the human-readable pre-
sentation syntax of PSOA RuleML. Section 3 gives its model-theoretic semantics.
Section 4 concludes the paper and discusses future work.

2 The Presentation Syntax

The presentation syntax of PSOA RuleML is built on the one of RIF-BLD and
described in “mathematical English”. An EBNF syntax is then given, although
it cannot fully capture the presentation syntax, as the latter is not context-free.

2.1 Alphabet of PSOA RuleML

Definition 1 (Alphabet). The alphabet of the presentation language of PSOA
RuleML consists of the following disjoint sets:

– A countably infinite set of constant symbols Const (including the root
class Top ∈ Const and the positive-integer-enumerated local constants
_1, _2, . . .∈ Const as well as individual, function, and predicate symbols).

– A countably infinite set of variable symbols Var (including the positive-
integer-enumerated variables ?1, ?2, . . .∈ Var).

– The connective symbols And, Or, and :-.
– The quantifiers Exists and Forall.
– The symbols =, #, ##, ->, External, Import, Prefix, and Base.
– The symbols Group and Document.
– The auxiliary symbols (,), <, >, ˆˆ, and _.

Constants have the form "literal"ˆˆsymspace, where literal is a sequence of
Unicode characters and symspace is an identifier for a symbol space. An example
is "_123"ˆˆrif:local. Constants can use shortcuts as defined in [PBK10],

198 H. Boley

including the underscore notation _literal (e.g., _123) for the above form with
symspace specialized to rif:local. Top is a new shortcut for the root class
constant " Top" ˆˆpsoa:global in PSOA RuleML’s global symbol space.

Anonymous variables are written as a stand-alone question mark symbol (?);
named variables, as Unicode strings preceded with the question mark symbol.

The symbols = and ## are used in formulas that define equality and subclass re-
lationships. The symbols # and -> are used in positional-slotted, object-applicative
formulas for class memberships and slots, respectively. The symbol External in-
dicates that an atomic formula or a function term is defined externally (e.g., a
built-in) and the symbols Prefix and Base enable abridged representations of
IRIs (Internationalized Resource Identifiers). ��
The language of PSOA RuleML is the set of formulas built using the above
alphabet according to the construction methods given below.

2.2 Terms

The main parts of rules are called terms. PSOA RuleML defines several kinds
of terms: constants and variables, psoa terms, equality, subclass, and external
terms. Thus “term” will be used to refer to any one of these constructs.

Below, the phrase base term means a simple term, an anonymous psoa term
(i.e., an anonymous frame term, single-tuple psoa term, or multi-tuple psoa
term), or a term of the form External(t), where t is an anonymous psoa term.
An anonymous term can be deobjectified (by omitting the main ?#) if its re-
objectification (cf. Section 1) results in the original term (i.e., re-introduces ?#).

Definition 2 (Term). PSOA RuleML defines several different types of logic
terms. Here we describe the syntax of the most important ones.

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple term.
2. Equality terms. t = s is an equality term if t and s are base terms.
3. Subclass terms. t##s is a subclass term if t and s are base terms.
4. Positional-slotted, object-applicative terms. o#f([t1,1 ... t1,n1] ... [tm,1

... tm,nm] p1->v1 ... pk->vk) is a positional-slotted, object-applicative
(psoa) term if f ∈ Const and o, t1,1, ..., t1,n1 , ..., tm,1, ..., tm,nm , p1, ...,
pk, v1, ..., vk, m ≥ 0, k ≥ 0, are base terms.
Psoa terms can be specialized in the following way.6

– For m = 0 they become (typed or untyped) frame terms
o#f(p1->v1 ... pk->vk). We consider two overlapping subcases.
• For k = 0 they become class membership terms o#f(), abridged

to o#f, corresponding to those in F-logic and RIF.
6 Distinctions similar to those for m = 1, and further ones, could be made for m > 1,

i.e. multi-tuple psoa terms, but for space reasons we leave most of them implicit
in the general psoa term definition here. We do note that for m > 1 and k = 0
multi-tuple psoa terms specialize to multi-tuple shelf terms. Also, for o being the
anonymous variable ?, these terms become anonymous multi-tuple psoa terms.

Semantics for Positional-Slotted, Object-Applicative Rules 199

• For k ≥ 0 they can be further specialized in two ways, which can be
orthogonally combined.
∗ For o being the anonymous variable ?, they become

anonymous frame terms (slotted terms) ?#f(p1->v1 ...
pk->vk), deobjectified f(p1->v1 ... pk->vk), corresponding to
terms with named arguments in RIF.

∗ For f being the root class Top, they become untyped frame
terms o#Top(p1->v1 ... pk->vk) corresponding to frames in
the abridged form o[p1->v1 ... pk->vk] of F-logic and RIF,
where square brackets are used instead of round parentheses.

– For m = 1 they become single-tuple psoa terms o#f([t1,1 ... t1,n1]
p1->v1 ... pk->vk), abridged to o#f(t1,1 ... t1,n1 p1->v1 ... pk->vk).
These can be further specialized in two ways, which can be orthogonally
combined:7

• For o being the anonymous variable ?, they become anonymous
single-tuple psoa terms ?#f(t1,1 ... t1,n1 p1->v1 ... pk->vk),
deobjectified f(t1,1 ... t1,n1 p1->v1 ... pk->vk).
These can be further specialized:
∗ For k = 0, they become positional terms ?#f(t1,1 ... t1,n1),

deobjectified f(t1,1 ... t1,n1), corresponding to the usual terms
and atomic formulas of classical first-order logic.

• For f being the root class Top, they become untyped single-tuple
psoa terms o#Top(t1,1 ... t1,n1 p1->v1 ... pk->vk).
These can be further specialized:
∗ For k = 0, they become untyped single-tuple shelf terms
o#Top(t1,1 ... t1,n1) describing the object o with the positional
arguments t1,1, ..., t1,n1 .

5. Externally defined terms. If t is an anonymous psoa term then External(t)
is an externally defined term.
External terms represent built-in function or predicate invocations as well as
“procedurally attached” function or predicate invocations. Procedural attach-
ments are often provided by rule-based systems, and external terms constitute
a way of supporting them in PSOA RuleML. �

The notion of psoa term is generalized here from allowing a single tuple, as
in [Bol10], to allowing a bag (multi-set) of tuples. Together with ‘tupribution’ (cf.
definition 5, item 3), this accommodates for distributed positional descriptions
of the same OID. For multiple tuples (m>1) each tuple is enclosed by square
brackets, which can be omitted for a single tuple (m=1). The special case n1 =
... = nm is useful to describe the distributed object with ‘homogeneous’ equal-
length tuples of a relation: the OID names the extension of the relation’s tuples.

Observe that the argument names of psoa terms, p1, ..., pn, are base terms,
hence can be constants or variables. Since psoa terms include anonymous frames
7 The combination of o = ? and f = Top leads to anonymous, untyped psoa
terms, describing anonymous variables without a class/type, which could be further
specialized for m = 0 and for k = 0.

200 H. Boley

(slotted terms), this generalizes RIF, where the corresponding named-argument
terms can only use argument names from a separate set ArgNames, to reduce
the complexity of unification [BK10a]. PSOA RuleML could emulate such a
special treatment of slotted terms based on reserving an ArgNames-style subset
of Const for argument names. On the other hand, as shown in Section 1, since
PSOA RuleML’s slotted terms via objectification are conceived as frames, they
can be queried by slotribution rather than unification.

2.3 Formulas
An atomic formula is any psoa term of the form f(...) or o#f(...), with f
being a predicate symbol and o a simple term (constant or variable), or any equal-
ity or subclass term, or any externally defined term of the form External(ϕ),
where ϕ is an atomic formula. Simple terms are not formulas. More general
formulas are built from atomic formulas via logical connectives.

Definition 3 (Formula).
A formula can have one of the following forms:

1. Atomic: An atomic formula is also a formula.
2. Condition formula: A condition formula is either an atomic formula or a

formula that has one of the following forms:
– Conjunction: If ϕ1, ..., ϕn, n ≥ 0, are condition formulas then so is

And(ϕ1 ... ϕn), called a conjunctive formula. As a special case, And()
is allowed and is treated as a tautology, i.e., a formula that is always true.

– Disjunction: If ϕ1, ..., ϕn, n ≥ 0, are condition formulas then so is
Or(ϕ1 ... ϕn), called a disjunctive formula. As a special case, Or()
is considered as a contradiction, i.e., a formula that is always false.

– Existentials: If ϕ is a condition formula and ?V1, ..., ?Vn, n>0, are dis-
tinct variables then Exists ?V1 ... ?Vn(ϕ) is an existential formula.

3. Rule implication: ϕ :- ψ is a formula, called rule implication, if:
– ϕ is a head formula or a conjunction of head formulas, where a head

formula is an atomic formula or an existentially scoped atomic formula,
– ψ is a condition formula, and
– none of the atomic formulas in ϕ is an externally defined term (i.e., a

term of the form External(...)).
Note that external terms can occur in the arguments of atomic formulas
in the rule conclusion, but they cannot occur as atomic formulas.

4. Universal rule: If ϕ is a rule implication and ?V1, ..., ?Vn, n>0, are distinct
variables then Forall ?V1 ... ?Vn(ϕ) is a universal rule formula. It is
required that all the free variables in ϕ occur among the variables ?V1 ...
?Vn in the quantification part. Generally, an occurrence of a variable ?v is
free in ϕ if it is not inside a subformula of ϕ of the form Exists?v (ψ) and
ψ is a formula. Universal rules are also referred to as PSOA RuleML rules.

5. Universal fact: If ϕ is an atomic formula and ?V1, ..., ?Vn, n>0, are distinct
variables then Forall ?V1 ... ?Vn(ϕ) is a universal fact formula, provided
that all the free variables in ϕ occur among the variables ?V1 ... ?Vn.
Universal facts are treated as rules without premises.

Semantics for Positional-Slotted, Object-Applicative Rules 201

6. Group: If ϕ1, ..., ϕn are PSOA RuleML rules, universal facts, variable-
free rule implications, variable-free atomic formulas, or group formulas then
Group(ϕ1 ... ϕn) is a group formula.
Group formulas are used to represent sets of rules and facts. Note that some
of the ϕi's can be group formulas themselves, i.e. groups can be nested.

7. Document: An expression of the form Document(directive1 ... directiven
Γ) is a PSOA RuleML document formula, if
– Γ is an optional group formula; it is called the group formula associated

with the document.
– directive1, ..., directiven is an optional sequence of directives. A directive

can be a base directive, a prefix directive or an import directive. For
details see [BK10a]. �

2.4 Well-Formed Formulas

Not all formulas or documents are well-formed in PSOA RuleML. The well-
formedness restriction is similar to standard first-order logic: it is required that
no constant appear in more than one context. Informally, unique context means
that no constant symbol can occur within the same document as an individual
or a (plain or external) function or predicate symbol in different places. The
detailed definitions are as in RIF-BLD, found in [BK10b], Section 2.5.

2.5 EBNF Grammar for the Presentation Syntax of PSOA RuleML

Until now, we have been using mathematical English to specify the syntax of
PSOA RuleML. Since tool developers might prefer a more succinct overview of
the syntax using familiar grammar notation, our PSOA RuleML specification
also supplies an EBNF definition. For instance, a condition formula in mathe-
matical English becomes a FORMULA nonterminal in EBNF.

The EBNF grammar for the PSOA RuleML presentation syntax is as follows:

Rule Language:
Document ::= 'Document' '(' Base? Prefix* Import* Group? ')'
Base ::= 'Base' '(' ANGLEBRACKIRI ')'
Prefix ::= 'Prefix' '(' Name ANGLEBRACKIRI ')'
Import ::= 'Import' '(' ANGLEBRACKIRI PROFILE? ')'
Group ::= 'Group' '(' (RULE | Group)* ')'
RULE ::= ('Forall' Var+ '(' CLAUSE ')') | CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= (HEAD | 'And' '(' HEAD* ')') ':-' FORMULA
HEAD ::= ATOMIC | 'Exists' Var+ '(' ATOMIC ')'
PROFILE ::= ANGLEBRACKIRI

Condition Language:
FORMULA ::= 'And' '(' FORMULA* ')' |

'Or' '(' FORMULA* ')' |
'Exists' Var+ '(' FORMULA ')' |

202 H. Boley

ATOMIC |
'External' '(' Atom ')'

ATOMIC ::= Atom | Equal | Subclass
Atom ::= PSOA
Equal ::= TERM '=' TERM
Subclass ::= TERM '##' TERM
PSOA ::= TERM '#' TERM '(' TUPLE* (TERM '->' TERM)* ')'
TUPLE ::= '[' TERM* ']'
TERM ::= Const | Var | Expr | 'External' '(' Expr ')'
Expr ::= PSOA
Const ::= '"' UNICODESTRING '"ˆˆ' SYMSPACE | CONSTSHORT
Var ::= '?' UNICODESTRING?
SYMSPACE ::= ANGLEBRACKIRI | CURIE

The following subsections explain and illustrate the two parts of the syntax; first
the foundational language of positive conditions, then the language of rules.

EBNF for the Condition Language. The Condition Language represents
formulas that can be used as queries or in the premises of PSOA RuleML rules.

The production for the non-terminal FORMULA represents PSOA RuleML con-
dition formulas (cf. definition 3, item 2). The connectives And and Or define
conjunctions and disjunctions of conditions, respectively. Exists introduces ex-
istentially quantified variables. Here Var+ stands for the list of variables that
are free in FORMULA. A PSOA RuleML FORMULA can also be an ATOMIC term,
i.e., an Atom, Equal, or Subclass. A TERM can be a constant, variable, Expr, or
External Expr.

Example 2 (PSOA RuleML conditions). This example shows conditions that are
composed of psoa terms ("Opticks" is a shortcut for "Opticks"ˆˆxs:string).

Prefix(bks <http://eg.com/books#>)
Prefix(auth <http://eg.com/authors#>)
Prefix(cts <http://eg.com/cities#>)
Prefix(cpt <http://eg.com/concepts#>)

Formula that uses an anonymous psoa (positional term):
?#cpt:book(auth:Newton "Opticks")

Deobjectified version:
cpt:book(auth:Newton "Opticks")

Formula that uses an anonymous psoa (slotted term):
?#cpt:book(cpt:author->auth:Newton cpt:title->"Opticks")

Deobjectified version:
cpt:book(cpt:author->auth:Newton cpt:title->"Opticks")

Formula that uses a named psoa (typed frame):
bks:opt1#cpt:book(cpt:author->auth:Newton cpt:title->"Opticks")

Formula that uses a named psoa (untyped frame):
bks:opt1#Top(cpt:author->auth:Newton cpt:title->"Opticks")

Deobjectified version of a formula that uses an anonymous psoa (multi-tuple term):
cpt:book([auth:Newton "Opticks"] [cts:London "1704"ˆˆxs:integer])

Deobjectified version of a formula that uses an anonymous psoa (positional-slotted term):
cpt:book(auth:Newton "Opticks" cpt:place->cts:London cpt:year->"1704"ˆˆxs:integer)

Semantics for Positional-Slotted, Object-Applicative Rules 203

EBNF for the Rule Language. The EBNF for PSOA RuleML rules and
documents is given in Section 2.5. A PSOA RuleML Document consists of an op-
tional Base directive, followed by any number of Prefixes and then any number
of Imports. These may be followed by an optional Group. Base and Prefix are
employed by the shortcut mechanisms for IRIs. An Import directive indicates
the location of a document to be imported and an optional profile. A PSOA
RuleML Group is a collection of any number of RULE elements along with any
number of nested Groups.

Rules are generated using CLAUSE elements via two RULE alternatives:

– In the first, a CLAUSE is in the scope of the Forall quantifier. In that case,
all variables mentioned in CLAUSE are required to also appear among the
variables in the Var+ sequence.

– In the second alternative, CLAUSE appears on its own. In that case, CLAUSE
cannot have variables.

Var, ATOMIC, and FORMULA were defined as part of the syntax for positive condi-
tions in Section 2.5. In the CLAUSE production, ATOMIC is what is usually called
a fact. An Implies rule can have a HEAD element or a conjunction of HEAD ele-
ments as its conclusion; a HEAD is an ATOMIC element or an Exists of an ATOMIC
element. The Implies has a FORMULA as its premise. Note that, by Definition 3,
externally defined atoms (i.e., formulas of the form External(Atom)) are not
allowed in the conclusion part of a rule (ATOMIC does not expand to External).

Example 3 (PSOA RuleML business rule). This example adapts a business rule
from a POSL logistics use case [Bol10]. The ternary reciship conclusion repre-
sents reciprocal shippings, at a total cost (as the single positional argument),
between a source and a destination (as two slotted arguments). The first two
premises apply a 4-ary shipment relation that uses an anonymous cargo and
named cost variables as two positional arguments, as well as reciship’s slot-
ted arguments (in both ‘directions’). The third premise is an External-wrapped
numeric-add built-in [PBK10] applied on the right-hand side of an equality to
sum up the shipment costs for the total cost. With the two facts, ?cost = ?57.0.

��������	
 ��

	��������������	
����
���������� ��

	�������������������
����������� ��

	�������������������������
�������
������
��������� ��

	����������������!�"#$%����&���
'���	 �

(��&)���
)���
!)���
�)*)+ �
�	
�������	�)���
 �	
��������)* �	
,��
��)+� �

*�,��	
���	���
�))���
! �	
��������)* �	
,��
��)+�
�	
���	���
�))���
� �	
��������)+ �	
,��
��)*�
)���
 - .�
���& �������������&,,�)���
!)���
��� �

�
���	���
�/�0/11���
���� /2��3/11��� �&
 �	
�����������+��
��#�% �	
,��
�����$��,��%��#�
���	���
�/�4*/11���
���� /5�3/11��� �&
 �	
�����������$��,��%��# �	
,��
�����+��
��#�%�

�

The rule can be objectified as follows (Externals are not being transformed):
Forall ?cost ?cost1 ?cost2 ?A ?B ?2 ?3 (
Exists ?1 (?1#cpt:reciship(?cost cpt:source->?A cpt:dest->?B)) :-

And(?2#cpt:shipment(? ?cost1 cpt:source->?A cpt:dest->?B)

204 H. Boley

?3#cpt:shipment(? ?cost2 cpt:source->?B cpt:dest->?A)
?cost = External(func:numeric-add(?cost1 ?cost2)))

)

Further, it can be tupributed and slotributed thus (actually done by the semantics):
Forall ?cost ?cost1 ?cost2 ?A ?B ?2 ?3 (
Exists ?1 (And(?1#cpt:reciship(?cost)

?1#cpt:reciship(cpt:source->?A)
?1#cpt:reciship(cpt:dest->?B))) :-

And(?2#cpt:shipment(? ?cost1)
?2#cpt:shipment(cpt:source->?A)
?2#cpt:shipment(cpt:dest->?B)
?3#cpt:shipment(? ?cost2)
?3#cpt:shipment(cpt:source->?B)
?3#cpt:shipment(cpt:dest->?A)
?cost = External(func:numeric-add(?cost1 ?cost2)))

)

3 Semantics

The formalization of the PSOA RuleML semantics in this section is in the style
of RIF-BLD [BK10a], which in some respects is more general than what would
be actually required. The reason for this generality is the need to ensure that the
semantics stay comparable, and that a future RIF logic dialect could be specified
to cater for PSOA (e.g., via an updated RIF-FLD [BK10c]).

For the interpretation of (multiple) PSOA RuleML documents, we refer to
the RIF-BLD article [BK10a]. We mention that a local constant, marked by an
underscore prefix (e.g., _uvw), is encapsulated within documents, i.e. it can be in-
terpreted differently in different documents. Based on that, in a given document,
the new local constant generator, written as a stand-alone _, denotes the first
new local constant _i, i ≥ 1, from the sequence _1, _2, . . . that does not already
occur in that document (cf. anonymous ID symbols in [YK03]). For each docu-
ment we will assume OID-less psoa terms to be objectified by the transformation
of Section 1, whose head existentials make PSOA RuleML non-Horn.

To save space, in describing the semantics we omit lists and datatypes, and
simplify the semantics of external functions and predicates, all found in the
RIF-BLD specification [BK10b].

3.1 Semantic Structures

The semantics of PSOA RuleML is an extension of the standard semantics for
Horn clauses. This semantics is specified using general models while the seman-
tics for Horn clauses is usually given via Herbrand models [Llo87]. Without head
existentials, the two semantics become equivalent. We will use TV to denote
{t,f}–the set of truth values used in the semantics. TV is used in RIF because
it is intended to address (through RIF-FLD [BK10c]) a range of logic languages,
including those that are based on multi-valued logics. Since PSOA RuleML is
based on the classical two-valued logic, its set TV is particularly simple.

Truth valuation of PSOA RuleML formulas will be defined as a mapping
TValI in two steps: 1. A mapping I generically bundles the various mappings

Semantics for Positional-Slotted, Object-Applicative Rules 205

from the semantic structure, I; I maps a formula to an element of the domain D .
2. A mapping I truth takes such a domain element to TV . This indirectness allows
HiLog-like generality, as detailed at the beginning of Section 3.2.

The key concept in a model-theoretic semantics for a logic language is the
notion of semantic structures [End01], which is defined next.

Definition 4 (Semantic structure). A semantic structure, I, is a tuple of
the form <TV, DTS, D, Dind, Dfunc, IC, IV, Ipsoa, Isub, I=, Iexternal, Itruth>.
Here D is a non-empty set of elements called the domain of I, and Dind, Dfunc
are nonempty subsets of D. The domain must contain at least the root class:
� ∈ D. Dind is used to interpret the elements of Const that play the role of
individuals. Dfunc is used to interpret the constants that play the role of function
symbols. As before, Const denotes the set of all constant symbols and Var the set
of all variable symbols. DTS denotes a set of identifiers for primitive datatypes.

The remaining components of I are total mappings defined as follows:

1. IC maps Const to D. This mapping interprets constant symbols. In addition:
– If a constant, c ∈ Const, is an individual then it is required that IC(c) ∈

Dind.
– If c ∈ Const is a function symbol then it is required that IC(c) ∈ Dfunc.
– It is required that IC(Top) = �.

2. IV maps Var to Dind. This mapping interprets variable symbols.
3. Ipsoa maps D to total functions that have the general form

Dind × SetOfFiniteBags(D*ind) × SetOfFiniteBags(Dind × Dind) → D.
This mapping interprets psoa terms, uniformly combining positional, slotted,
and frame terms, as well as class memberships. An argument d ∈ D of Ipsoa
uniformly represents the function or predicate symbol of positional terms
and slotted terms, and the object class of frame terms, as well as the class of
memberships. An element o ∈ Dind represents an object of class d, which
is described with two bags.
– A finite bag of finite tuples {<t1,1, ..., t1,n1>, ..., <tm,1, ..., tm,nm>}
∈ SetOfFiniteBags(D*ind), possibly empty, represents positional infor-
mation. Here D*ind is the set of all finite tuples over the domain Dind.
Bags rather than sets of tuples are used since the order of the tuples in a
psoa term is immaterial and tuples may repeat, e.g., o#d([a b c][a b
c]). Such repetitions arise through variable instantiations as explained
below for slots.

– A finite bag of attribute-value pairs {<a1,v1>, ..., <ak,vk>} ∈
SetOfFiniteBags(Dind × Dind), possibly empty, represents slotted in-
formation. Bags are again used since the order of the attribute-value pairs
in a psoa term is immaterial and pairs may repeat, e.g., o#d(a->b a->b).
Such repetitions arise naturally when variables are instantiated with con-
stants. For instance, o#d(?A->?B ?C->?D) becomes o#d(a->b a->b) if
variables ?A and ?C are instantiated with the symbol a and ?B, ?D with
b. (We shall see later that o#d(a->b a->b) is actually equivalent to
o#d(a->b).)

206 H. Boley

In addition:
– If d ∈ Dfunc then Ipsoa(d) must be a (Dind-valued) function Dind ×

SetOfFiniteBags(D*ind) × SetOfFiniteBags(Dind × Dind) → Dind.
– This implies that when a function symbol is applied to arguments that

are individual objects then the result is also an individual object.
We will see shortly how Ipsoa is used to determine the truth valuation of psoa
terms.

4. Isub gives meaning to the subclass relationship. It is a total mapping of the
form Dfunc × Dfunc → D.
An additional restriction in Section 3.2 ensures that the operator ## is tran-
sitive, i.e., that c1 ## c2 and c2 ## c3 imply c1 ## c3.

5. I= is a mapping of the form Dind × Dind → D. It gives meaning to the
equality operator.

6. Iexternal is a mapping that is used to give meaning to External terms. It
maps symbols in Const designated as external to fixed functions of appropri-
ate arity. Typically, external terms are invocations of built-in functions or
predicates, and their fixed interpretations are determined by the specification
of those built-ins.

7. Itruth is a mapping of the form D→ TV. It is used to define truth valuation
for formulas.

We also define the following generic mapping from terms to D, which we
denote by I.

– I(k) = IC(k), if k is a symbol in Const
– I(?v) = IV(?v), if ?v is a variable in Var
– I(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk)) =

Ipsoa(I(f))(I(o),
{<I(t1,1), ..., I(t1,n1)>, ..., <I(tm,1), ..., I(tm,nm)>},
{<I(a1),I(v1)>, ..., <I(ak),I(vk)>})

Here {...} again denote bags of tuples and attribute-value pairs. Section 3.2
will show that duplicate elements in such a bag do not affect the value of
Ipsoa(I(f)). For instance, I(o#f(a->b a->b)) = I(o#f(a->b)).

– I(c1##c2) = Isub(I(c1), I(c2))
– I(x=y) = I=(I(x), I(y))
– I(External(p(s1 ... sn))) = Iexternal(p)(I(s1), ..., I(sn)).

In addition, PSOARuleML imposes certain restrictions on datatypes so that they
would be interpreted as intended (for instance, that the constants in the symbol space
xs:integer are interpreted by integers). Details are found in [BK10b]. �

3.2 Formula Interpretation

This section establishes how semantic structures determine the truth value of
PSOA RuleML formulas other than document formulas. Truth valuation of doc-
ument formulas is as defined in RIF-BLD [BK10a]. Here we define a mapping,
TValI , from the set of all non-document formulas to TV .

Semantics for Positional-Slotted, Object-Applicative Rules 207

Observe that in case of an atomic formula φ, TValI(φ) is defined essentially
as I truth(I (φ)). Recall that I (φ) is just an element of the domain D and I truth
maps D to truth values in TV . This might surprise those used to textbook-style
definitions, since normally the mapping I is defined only for terms that occur
as arguments to predicates, not for atomic formulas. Similarly, truth valuations
are usually defined via mappings from instantiated formulas to TV , not from
the interpretation domain D to TV . This HiLog-style definition [CKW93] is
inherited from RIF-FLD [BK10c] and is equivalent to a standard one for first-
order languages such as RIF-BLD and PSOA RuleML. In RIF-FLD, this style
of definition is a provision for enabling future RIF dialects that support higher-
order features, such as those of HiLog, Relfun, and FLORA-2 [YKZ03].

Definition 5 (Truth valuation). Truth valuation for well-formed formulas
in PSOA RuleML is determined using the following function, denoted TValI:

1. Equality: TValI(x = y) = Itruth(I(x = y)).
– To ensure that equality has precisely the expected properties, it is required

that:
Itruth(I(x = y)) = t if I(x) = I(y) and that Itruth(I(x = y)) = f
otherwise.

– This can also be expressed as TValI(x = y) = t if and only if I(x) = I(y).
2. Subclass: TValI(sc ## cl) = Itruth(I(sc ## cl)).

In particular, for the root class, Top, and all sc ∈ D, TValI(sc ## Top) = t.
To ensure that ## is transitive, i.e., c1 ## c2 and c2 ## c3 imply c1 ## c3,
the following is required:
– For all c1, c2, c3 ∈ D, if TValI(c1 ## c2) = TValI(c2 ## c3) = t then

TValI(c1 ## c3) = t.
3. Psoa formula:

TValI(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk)) =
Itruth(I(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk))).
Since the formula consists of an object-typing membership, a bag of tuples
representing a conjunction of all the object-centered tuples (tupribution),
and a bag of slots representing a conjunction of all the object-centered slots
(slotribution), the following restriction is used, where m ≥ 0 and k ≥ 0:

– TValI(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1... ak->vk)) = t
if and only if
TValI(o # f) =
TValI(o#Top([t1,1 ... t1,n1]))=...=TValI(o#Top([tm,1 ... tm,nm])) =
TValI(o#Top(a1->v1)) = ... = TValI(o#Top(ak->vk)) =
t.
Observe that on the right-hand side of the “if and only if” there are
1+m+k subformulas splitting the left-hand side into an object member-
ship, m object-centered positional formulas, each associating the object
with a tuple, and k object-centered slotted formulas, i.e. ‘triples’, each

208 H. Boley

associating the object with an attribute-value pair. All parts on both sides
of the “if and only if” are centered on the object o, which connects the
subformulas on the right-hand side (the first subformula providing the
o-member class f, the remaining m+k ones using the root class Top).

For the root class, Top, and all o ∈ D, TValI(o # Top) = t.
To ensure that all members of a subclass are also members of its superclasses,
i.e., o # f and f ## g imply o # g, the following restriction is imposed:

– For all o, f, g ∈ D, if TValI(o # f) = TValI(f ## g) = t then
TValI(o # g) = t.

4. Externally defined atomic formula:TValI(External(t))=Itruth(Iexternal(t)).
5. Conjunction: TValI(And(c1 ... cn)) = t if and only if TValI(c1) = ... =

TValI(cn) = t. Otherwise, TValI(And(c1 ... cn)) = f. The empty conjunc-
tion is treated as a tautology: TValI(And()) = t.

6. Disjunction: TValI(Or(c1 ... cn)) = f if and only if TValI(c1) = ... =
TValI(cn) = f. Otherwise, TValI(Or(c1 ... cn)) = t. The empty disjunction
is treated as a contradiction: TValI(Or()) = f.

7. Quantification:

– TValI(Exists?v1 ... ?vn (ϕ)) = t if and only if for some I*, described
below, TValI∗(ϕ) = t.

– TValI(Forall?v1 ... ?vn (ϕ)) = t if and only if for every I*, described
below, TValI∗(ϕ) = t.

Here I* is a semantic structure of the form <TV, DTS, D, Dind, Dfunc,
IC, I*V, Ipsoa, Isub, I=, Iexternal, Itruth>, which is exactly like I, except that
the mapping I*V, is used instead of IV. I*V is defined to coincide with IV
on all variables except, possibly, on ?v1,...,?vn.

8. Rule implication:

– TValI(conclusion :- condition) = t, if either TValI(conclusion) = t or
TValI(condition) = f.

– TValI(conclusion :- condition) = f otherwise.
9. Groups of rules:

If Γ is a group formula of the form Group(ϕ1 ... ϕn) then

– TValI(Γ) = t if and only if TValI(ϕ1) = ... = TValI(ϕn) = t.
– TValI(Γ) = f otherwise.

In other words, rule groups are treated as conjunctions. �

The tupribution and slotribution in item 3 render their syntactic counterparts
(cf. Example 3) unnecessary.

Semantics for Positional-Slotted, Object-Applicative Rules 209

4 Conclusions

As a W3C Recommendation, RIF-BLD has provided a reference semantics for
extensions, e.g. with negations, and for continued efforts, as described here.
Implementations of RIF-BLD engines are currently being planned or developed,
including as extensions to the F-logic engine Flora 2 and the POSL and RuleML
engine OO jDREW. Flora 2, OO jDREW, and other engines could be extended
for the PSOA RuleML semantics of this paper. A subset of PSOA RuleML with
single-tuple psoa terms has already been prototyped in OO jDREW.

The PSOA RuleML syntax of this paper is built on RIF-BLD’s presentation
syntax, which in OO jDREW will be complemented with a generalized POSL
syntax. A psoa term o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)
corresponds to f(oˆt1,1, ..., t1,n1 ; ...; tm,1, ..., tm,nm ; p1->v1; ...; pk->vk)
in POSL, where the OID moves into the argument list, separated from the
other arguments by a hat infix, and tuple brackets are replaced with comma in-
fixes that have precedence over the tuple- and slot-separating semicolon infixes.
The generalization here with respect to the POSL publication [Bol10] is multi-
tuple psoa terms.8 Their PSOA RuleML/XML serialization can build on the
XML schemas of Hornlog RuleML (with some FOL RuleML) and RIF-BLD (with
some RIF-FLD), adding a <Tuple> element, different from RuleML’s <Plex> and
RIF’s <List>. On the other hand, POSL’s explicit rest-slot variables are avoided
through frame slotribution.

Our semantics gives a first-order model-theoretic foundation for a revised
POSL and PSOA RuleML, showing how a RIF-style semantics can be adapted
for them. By blending implicit rest slots from F-logic and RIF with integrated
psoa terms from POSL and RuleML, the advantages of both rule approaches
have thus been combined. This is a crucial step in RIF-RuleML convergence,
which could lead to a RIF-PSOA dialect corresponding to PSOA RuleML and,
ultimately, to a joint RIF-PSOA RuleML.

Future work on psoa terms includes encoding (multi-)slots and slotribution as
(multi-)tuples and tupribution; conversely, tuples could be encoded as multi-list
values of a tuple slot. Web ontologies, especially taxonomies, in OWL 2, RDF
Schema, etc. could be reused for PSOA RuleML’s OID type systems by align-
ments rooted in their classes owl:Thing, rdfs:Resource, etc. and in Top. While
the base terms used as (function-applying) arguments of a psoa term currently
are anonymous psoa terms, uses of named base terms could be studied. PSOA
RuleML could incorporate more features of POSL such as signature declarations.
Membership of an object, e.g. atv1, in multiple classes, e.g. car and ship, is writ-
ten as a conjunction of psoa terms, e.g. And(atv1#car(borne->land drive->wheel)
atv1#ship(borne->water drive->propeller)); instead using DL-style class inter-
section, e.g. atv1#Intersect(car ship)(... slot union ...), may be feasible.

Further efforts concern Horn rules. Notice Example 1 is not Horn in that
there is a head existential after objectification. To address this issue, it can be
modified as follows.

8 For m = 1 they gracefully degenerate to f(oˆt1,1 , ..., t1,n1 ; p1->v1; ...; pk->vk).

210 H. Boley

Example 4 (Rule-extended named family frame). This Horn-rule version of
Example 1 retrieves a family frame with a named OID variable in the premise
and uses its binding to extend that frame in the conclusion (the left-hand side
is objectified on the right).
Group (
Forall ?Hu ?Wi ?Ch ?o (
?o#family(husb->?Hu wife->?Wi child->?Ch) :-
And(?o#family(husb->?Hu wife->?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))))
inst4#family(husb->Joe wife->Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?o ?1 ?2 (
?o#family(husb->?Hu wife->?Wi child->?Ch) :-
And(?o#family(husb->?Hu wife->?Wi)

Or(?1#kid(?Hu ?Ch) ?2#kid(?Wi ?Ch))))
inst4#family(husb->Joe wife->Sue)
_1#kid(Sue Pete)

)

It leads to a simpler semantics corresponding to the following set of ground facts:
{inst4#family(husb->Joe wife->Sue child->Pete), _1#kid(Sue Pete)}.

Various sublanguages of PSOA RuleML could be defined to reflect Horn rules
and other restrictions, both syntactic and semantic. It will be interesting to
precisely align these with existing RuleML sublanguages as well as RIF dialects.
While the current PSOA RuleML is closest to Hornlog RuleML and RIF-BLD,
its integrated psoa terms with implicit rest slots could be ‘lifted’ to full FOL
RuleML and RIF-FLD as well as ‘lowered’ to Datalog RuleML and RIF-Core,
further advancing the unified RIF RuleML effort for Web rule interchange.

Acknowledgements

Many thanks go to Michael Kifer and all colleagues in the RuleML Technical
Groups and the W3C RIF Working Group for Web rule collaboration. Also
thanks to Tara Athan, Jidi Zhao, and Alexandre Riazanov for helpful discussions
on drafts of this paper. Further thanks go to the RuleML-2011@IJCAI reviewers
and editors. NSERC is thanked for its support through Discovery Grants.

References

[AK93] Aït-Kaci, H.: An Introduction to LIFE: Programming with Logic, Inher-
itance, Functions, and Equations. In: Miller, D. (ed.) Proceedings of the
1993 International Symposium on Logic Programming, Vancouver, B.C.,
Canada, pp. 52–68. MIT Press, Cambridge (October 1993)

[BK10a] Boley, H., Kifer, M.: A Guide to the Basic Logic Dialect for Rule Inter-
change on the Web. IEEE Transactions on Knowledge and Data Engineer-
ing 22(11), 1593–1608 (2010)

[BK10b] Boley, H., Kifer, M.: RIF Basic Logic Dialect, W3C Recommendation
(June 2010), http://www.w3.org/TR/rif-bld

[BK10c] Boley, H., Kifer, M.: RIF Framework for Logic Dialects, W3C Recommen-
dation (June 2010), http://www.w3.org/TR/rif-fld

[Bol10] Boley, H.: Integrating Positional and Slotted Knowledge on the Seman-
tic Web. Journal of Emerging Technologies in Web Intelligence 4(2),
343–353 (2010), http://ojs.academypublisher.com/index.php/jetwi/
article/view/0204343353

http://www.w3.org/TR/rif-bld
http://www.w3.org/TR/rif-fld
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353

Semantics for Positional-Slotted, Object-Applicative Rules 211

[BPS10] Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specifi-
cation of Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.)
RuleML 2010. LNCS, vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

[CKW93] Chen, W., Kifer, M., Warren, D.S.: HiLog: A Foundation for Higher-Order
Logic Programming. Journal of Logic Programming 15(3), 187–230 (1993)

[CL73] Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Prov-
ing. Academic Press, London (1973)

[End01] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press,
London (2001)

[KLW95] Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of ACM 42, 741–843 (1995)

[Llo87] Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Hei-
delberg (1987)

[PBK10] Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-ins 1.0, W3C
Recommendation (June 2010), http://www.w3.org/TR/rif-dtb

[YK03] Yang, G., Kifer, M.: Reasoning about Anonymous Resources and Meta
Statements on the Semantic Web. In: Spaccapietra, S., March, S.T.,
Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 69–
97. Springer, Heidelberg (2003)

[YKZ03] Yang, G., Kifer, M., Zhao, C.: FLORA-2: A Rule-Based Knowledge Repre-
sentation and Inference Infrastructure for the Semantic Web. In: Chung,
S., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003.
LNCS, vol. 2888, pp. 671–688. Springer, Heidelberg (2003)

http://www.w3.org/TR/rif-dtb

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 212–226, 2011.
© Springer-Verlag Berlin Heidelberg 2011

COROR: A COmposable Rule-Entailment Owl Reasoner
for Resource-Constrained Devices

Wei Tai, John Keeney, and Declan O’Sullivan

Knowledge and Data Engineering Group,
School of Computer Science & Statistics, Trinity College Dublin, Ireland
{TaiW,John.Keeney,Declan.OSullivan}@cs.tcd.ie

Abstract. OWL (Web Ontology Language) reasoning has been extensively
studied since its standardization by W3C. While the prevailing research in the
OWL reasoning community has targeted faster, larger scale and more
expressive OWL reasoners, only a small body of research is focused on OWL
reasoning for resource-constrained devices such as mobile phones or sensors.
However the ever-increasing application of semantic web technologies in per-
vasive computing, and the desire to push intelligence towards the edge of the
network, emphasizes the need for resource-constrained reasoning. This paper
presents COROR a COmposable Rule-entailment Owl Reasoner for resource-
constrained devices. What distinguishes this work from related work is the use
of two novel reasoner composition algorithms that dynamically dimension a
rule-based reasoner at runtime according to the features of the particular se-
mantic application. This reasoner is implemented and evaluated on a resource-
constrained sensor platform. Experiments show that the composition algorithms
outperform the original non-composable reasoner while retaining the same level
of reasoning capability.

Keywords: Composable Reasoner, Resource-Constrained Reasoning, OWL
Reasoning, Rule-engine Optimization, OWL.

1 Introduction

Quite a few OWL reasoners, using different reasoning technologies, have been devel-
oped to provide OWL reasoning services for different purposes. For example some
Description Logic (DL) tableau-based reasoners, e.g. Pellet [12], RacerPro [14] and
FaCT++ [13], aim to provide sound and complete OWL reasoning services. Some
reasoners, e.g. KAON2 [16] and QuOnto [17], are designed to support efficient query
services over large data sets. Reasoners such as CEL [18] are specifically dimen-
sioned to provide an efficient subsumption algorithm for some applications (e.g.
medical or bio-informatics). Yet more reasoners such as OWLIM [19] and Oracle 11g
[22] provide certain levels of embedded OWL (entailment) reasoning services in
(large) data stores.

Much of the existing OWL reasoning research aims to develop faster, larger-scale
and more expressive OWL reasoners, while there exists only limited work on OWL
reasoners for resource-constrained devices such as embedded devices, mobile phones

 COROR: A COmposable Rule-Entailment Owl Reasoner 213

or sensor platforms. However, as more intelligent embedded systems become perva-
sive, and with the proliferation of smarter mobile devices, the need for “on-device”
semantic reasoning becomes more pronounced, for example, information filtering in
context-aware mobile personal information system [28], localized fault diagnoses in
wireless sensor networks [29] and context-addressable messaging services in mobile
ad-hoc networks [30].

This paper presents COROR, a COmposable Rule-entailment Owl Reasoner for re-
source-constrained devices. The key contribution of this work is the use of two com-
position algorithms, i.e. a selective rule loading algorithm and a two-phase RETE
algorithm. Instead of selecting a static reasoner configuration, or selecting a-priori
from a set of known reasoners or reasoner configurations, composition algorithms try
to dimension the OWL entailment rule set and the reasoning algorithm on-the-fly
during execution by considering the particular semantic features of the ontology to be
reasoned. Our reasoner COROR is implemented and evaluated on a resource-
constrained sensor platform (SunSPOT). Experiments show our composition algo-
rithms result in a large reduction in memory and reasoning time while retaining the
same amount of reasoning capabilities, freeing up resources on resource-constrained
devices or allowing larger ontologies to be reasoned.

This work is currently based on OWL (rather than OWL2) since a de-facto stan-
dard OWL2RL rule-set had yet become available. However, the composition algo-
rithms presented in this work are independent of any particular OWL semantic level
and they can be equally applied to OWL2 without any fundamental modifications.
This selection of a candidate OWL2RL rule-set is subject of ongoing work.

Section 2 presents background and related work. Section 3 details the two compo-
sition algorithms implemented in COROR. Details of the implementation are given in
section 4, while experiment design, setup and results are discussed in detail in section
5. Section 6 concludes with a discussion of ongoing and further work.

2 Background and Related Work

Background and related work are briefly discussed in this section, including OWL
and its sublanguages, the RETE algorithm [5] and some of its optimizations, and
finally other resource-constrained semantic reasoners.

2.1 OWL and OWL Sublanguages

OWL is an ontology modelling language standardized by the W3C, consisting of a set
of formally defined OWL constructs each of which is given a logic-based semantic
[24]. The formal definition of OWL enables reasoning, e.g. entailment computation,
to be performed automatically over OWL ontologies. OWL has three standard sub-
languages, i.e. OWL-Full, OWL-DL and OWL-Lite, varying in the set of constructs
supported, the semantic expressivity, and the complexity of reasoning tasks. Non-
standard OWL sublanguages, such as pD* semantics family [4], DL-Lite family [23]
and DLP [51], are also designed for different usages according to the OWL features
supported.

214 W. Tai, J. Keeney, and D. O’Sullivan

In this research we choose the pD* semantics family due to its provision of a de-
finitive entailment rule set and tractable entailment. Some OWL-DL constructs are
missing, such as cardinality constructs (cardinality, minCardinality and maxCardinal-
ity), some (in)equality constructs (allDifferent and distinctMembers), Boolean combi-
nation constructs (unionOf, complementOf and intersectionOf), and oneOf, but still a
substantial subset of OWL-DL constructs is kept. Given the resource-constrained
context where this work will be applied, any ontology will be generally less complex
than OWL-DL. We feel that the pD* family generally have sufficient expressivity and
semantics to model our domain to an acceptable degree. COROR is configured to use
the pD*sv entailments that extend the pD* semantics with OWL’s iff semantics for
owl:someValuesFrom, but at the cost of possibly intractable entailment. Nevertheless,
COROR can be configured to use the pD* semantics by simply altering the rule set in
use for better computational complexity.

2.2 RETE and RETE Optimizations

The RETE algorithm is a fast pattern matching algorithm for forward-chaining pro-
duction systems. It forms the basis for most modern production engines, and is the
underlying algorithm for COROR. In general RETE builds a discrimination network,
termed RETE network, matching and joining facts in the network. A typical RETE
network consists of an alpha network and a beta network. The alpha network per-
forms intra-condition matching for individual condition elements in the left hand side
(l.h.s.) of each rule. For each rule, successfully matched facts for each condition ele-
ment, said to partially match the rule, are stored in alpha memory as intermediate
results and are propagated into the beta network. In the beta network inter-condition
joins are performed by pairwise checking the consistency of variable bindings for
intermediate values (i.e. pairwise joins of condition elements). New intermediate
results are generated for consistent pairs and they are passed down the beta network
for further matching. The final join results that eventually satisfy all condition ele-
ments are termed the instantiations of a rule and are added into a conflict set for firing
(i.e. fire the r.h.s. action of the corresponding rule). Firing rules may add/remove facts
into/from the fact base triggering another RETE cycle as described above.. Multiple
RETE cycles are usually required for full entailment of a fact base. The RETE algo-
rithm completes when no more new facts are generated.

Caching intermediate results can substantially speeds up join operations. However
an inappropriately ordered sequence of joins can cause very excessive unnecessary
memory usage and processing time in the beta network, in particular when two condi-
tion elements have no common variables, which leads to a production join. Several
heuristics, such as ‘most specific condition first’, ‘pre-evaluation of join connec-
tivity’, etc, have been developed to cope with the excessive memory overhead from
inappropriate join sequences. Direct application of these can result in optimized
RETE networks, however, they have several shortcomings. Firstly direct application
of heuristics relies largely on human tuning of the original rule set (e.g. manual order
of condition elements in rules) according to heuristics. This is a very onerous task
where reasoners are deployed in an environment with diverse or changing rule sets or
changing dataset characteristics. For example in sensor networks different sensors
may have different rule sets, and rules may change over time. Secondly, direct

 COROR: A COmposable Rule-Entailment Owl Reasoner 215

application of heuristics [2, 3] usually only considers the rule-set therefore they usu-
ally cannot produce optimal join structures for different fact bases [1], where diversity
in fact bases and their structure is commonplace in sensor networks.

Researchers have proposed some approaches to automatically optimize join se-
quences while taking account of the fact base. These optimizations are usually hard to
implement and in most cases require modification of the RETE algorithm. However
they do not require input from humans and can give different optimizations for differ-
ent fact bases. Ishida in [1] proposes to use a trial execution before the real execution
to collect statistics about the fact set. A predefined cost model is used to evaluate a set
of candidate RETE structures and the RETE structure with the minimal cost is se-
lected. This approach can find an optimal RETE structure however its obvious draw-
back is that a trial execution may not always be practical, particularly where memory,
processing ability and power are limited.

Other join structures are also studied to reduce the resource required by RETE
network. Work in [10] studies the combination of RETE and TREAT [11] such that
the size of beta network can change automatically. The Gator network [50] is pro-
posed as a generalized RETE join network. However Gator and TREAT are not con-
sidered as at this stage for COROR as it designed as an experimental reasoner for
investigating composition algorithms on rule-entailment OWL reasoners, where the
adoption of RETE in rule-entailment OWL reasoners is prevalent.

2.3 Mobile Reasoners

Other work has been devoted to porting semantic reasoning capability onto resource-
constrained devices. MiRE4OWL [25] is a resource-constrained rule-entailment OWL
reasoner developed using C++ for PPC. It adopts two mechanisms to reduce the
memory usage of the RETE engine. One is to restrict the number of facts of the same
type and the other is to use a primary key to detect duplication of facts and to use an
update key to specify the operation to take for duplications. These mechanisms are
useful for keeping a light-weight and up-to-date fact base with continuously incoming
facts. However its RETE implementation is not optimized and therefore it is likely
that inefficient production joins may occur if rules are not tuned by rule experts.
μOR [26] is a resolution-based OWL-DL reasoner for ambient intelligent devices

(J2ME CDC compliance). A dynamic rule generation mechanism (similar to the one
used in [7]) is used to automatically generate specific inference rules for all con-
cepts/properties/individuals. This approach can construct small specific rules leading
to a small (or no) beta network, and scales well for large ABoxes. The drawback,
however, is obvious: the size of rule set will increase rapidly with the increase on the
size of the TBox.

Bossam [21] is a forward-chaining OWL reasoner for the J2ME CDC platform.
However rather than on reducing the runtime memory footprint, Bossam concentrates
on providing web-friendly and distributed reasoning.

The above reasoners are the most relevant research to COROR, however their tar-
get platform is much less constrained than that of COROR, i.e. SunSPOT (CLDC 1.1
conformant). Some other less related work exists. They are mostly mobile DL tab-
leaux reasoners. Pocket KRHyper [27] is a mobile DL reasoner based on hyper tab-
leaux algorithm. Work in [8] introduces an ontology-based context fusion framework

216 W. Tai, J. Keeney, and D. O’Sullivan

for context-aware computing using a sequential rule matching algorithm. Work in [9]
discusses mTaleaux, a tableaux algorithm for resource-constrained devices. However,
they are not directly comparable to our work and due to space considerations will not
be discussed in detail here.

3 Composition Algorithms

This section briefly presents our composition algorithms, i.e. the selective rule load-
ing algorithm and the two-phase RETE algorithm that are implemented in COROR.

3.1 Selective Rule Loading Algorithm

The selective rule loading algorithm automatically composes a reasoner rule-base
depending on the reasoning capabilities required. It dimensions a selected entailment
rule set by estimating which entailment rules are required or desired for reasoning
specific ontologies and then selectively loading only these rules into the reasoner.
Estimation is performed by comparing OWL constructs used in the ontology against
OWL constructs in the l.h.s. of each entailment rule. All OWL constructs used by the
ontology are inserted into a construct set. Each rule is then individually checked for
usefulness. A rule is considered as useful if all OWL constructs used in its l.h.s. are
included in the construct set, and it is selected as it could be fired for reasoning this
ontology. OWL constructs used in the right-hand side (r.h.s.) of each selected rule are
then inserted into the construct set as its firing could lead to the insertion of these
OWL constructs into the ontology. This process iterates over the remaining unse-
lected rules until all useful rules are identified, while the remaining rules are not used,
resulting in a resource saving.

Note that not all selected rules will be fired as the existence of a rule’s OWL con-
structs in the target ontology does not necessitate successful instantiation of that rule.
However, unselected rules cannot be fired even if they were loaded due to the absence
of relevant OWL constructs in the ontology. A prototype desktop-based implementa-
tion and an initial evaluation of this algorithm can be found in [6]. Experiment results
show a moderate amount of memory usage reduction but scarcely any reduction in
reasoning time in this implementation.

3.2 Two-Phase RETE Algorithm

Rather than optimizing based on reasoning capabilities, as per the selective rule load-
ing algorithm, the two-phase RETE algorithm composes the reasoner at the RETE
algorithm level. A novel interrupted RETE network construction mechanism is
adopted that performs only the first RETE cycle immediately after the construction
the alpha network (first phase). This enables some information about the ontology to
be collected without requiring a full pre-match or traversal of the fact-base. The con-
struction of the beta network resumes after the first-phase matching and a customized
RETE network can be composed for the second-phase, tuned for the particular ontol-
ogy by taking collected information into account. The first RETE cycle resumes after
the construction of entire RETE network and the following cycles are performed as in
the normal RETE algorithm. The following subsections discuss each phase in detail.

 COROR: A COmposable Rule-Entailment Owl Reasoner 217

First Phase. In the first phase a shared alpha network is built and the first RETE
cycle starts by matching triples against individual rule condition elements in the alpha
network. Matched triples are cached in alpha memory awaiting further propagation
into the beta network (which is not yet constructed at this stage). A variety of infor-
mative statistics about the ontology, e.g. the size of each alpha memory node, the join
selectivity factor, etc., can be collected during or after this phase without introducing
extra efforts such as specific traversal of the ontology or pre-matching all rules. In our
prototype only the number of matched triples for each condition element is gathered.
This helps to order beta network join sequences later. An alpha node sharing mecha-
nism is also used to allow condition elements common across different rules to share
the same alpha node, thereby reducing the size of the alpha memory and also fact
matching time to 1/n for an alpha node (condition element) shared by n rules.

As multiple RETE cycles may be required for reasoning a fact base, information
collected at this stage can only be used to optimize the first RETE cycle. However, we
notice that for most ontologies that we experimented on (see section 5), the majority
of (alpha network) matches and (beta network) joins occur in the first RETE iteration:
15 of a total of 19 ontologies have an average of 75% joins performed in the first
iteration (for the remaining 4 ontologies this is still above 50%). Furthermore an aver-
age of 83% inferred facts are generated in this iteration. Hence it is appropriate to
optimize the RETE network by applying first-cycle optimization heuristics.

Second Phase. In the second phase a beta network is constructed heuristically and the
first RETE cycle resumes propagating partially matched intermediate results down
through the beta network as condition elements are pairwise joined. However infor-
mation collected in the first phase enables the application of heuristics to rely not only
on characteristics of rules but also on characteristics of the ontology such that a cus-
tomized beta network (rather than a generally optimized one) can be composed for the
particular ontology. Two join sequence optimization heuristics, i.e. the most specific
condition first heuristic and the connectivity heuristic, are implemented in the beta
network construction. Their applications are discussed in detail in the following para-
graphs.

The most specific condition first heuristic orders join sequences according to their
specificity to avoid long chain effects [3], i.e. where the absence of successful joins is
only detected after a large amount of expensive join operations have been performed,
leading to a waste of computational resources, in particularly beta network memory.
In a previous study [2] Özacar et al assert that using the number of matched facts of a
condition element as a criterion to estimate its specificity can guarantee to find the
most specific condition elements. However, this metric can only be calculated after
matching, which makes it useless in normal RETE implementations. However we
argue that this information can be collected in the first phase of our novel interrupted
RETE construction mechanism without introducing extra effort and thereafter it can
be used here as a straight forward criterion to estimate the specificity: the more facts
matched for a condition element’s alpha-network node the less specific that condition
element is for the particular ontology. A corollary presents where fewer triples match,
a condition is more specific. Although the following RETE cycles may affect this
specificity ordering (i.e. number of matching facts), it is still sufficient as most joins
and intermediate values are generated in the first RETE cycle.

218 W. Tai, J. Keeney, and D. O’Sullivan

More sophisticated criteria can be introduced for specificity estimation, for exam-
ple including the cardinality of values to be joined. At this stage we did not imple-
ment such heuristics, but the approach taken is equally applicable and, as described
later, the approach taken substantially reduces memory and reasoning time.

The connectivity heuristic ensures that all joining condition elements have vari-
ables in common. This prevents product joins and thus can further reduce the amount
of intermediate results in the beta network. The connectivity test is performed after
the ‘most specific condition first’ join ordering heuristic: if a condition Cuncon is found
to be not connectable to all previous conditions Cpre, then Cuncon is swapped with the
first condition after Cuncon in the join sequence that is connectable to Cpre, say Ccon. As
the join sequence has already been ordered by the most specific condition first heuris-
tic, Ccon is then the one that connects with Cpre and with the least specificity of all later
connectable conditions. This ensures connectivity in the join sequence and also main-
tains the specificity ordering of joins where possible.

3.3 Analytical Comparisons between Composition Algorithms

In this section analytical comparisons between the two composition algorithms are
presented from three aspects, including reasoning algorithm independence, semantic
independence and flexibility in handling changes. Empirical analyses and compari-
sons can be found in section 5.

As the selective rule loading algorithm constructs a selective ruleset only by ana-
lyzing the constructs used in the entailment rules themselves, it is completely inde-
pendent of reasoning algorithm or ruleset used. This feature enables it to be applied in
all forward-chaining rule-entailment reasoners regardless the reasoning algorithms
such as RETE or DBMS. Furthermore its application does not need to change the
reasoning algorithm and hence it is relative easy to be applied. The two-phase RETE
algorithm can only be applied for the RETE algorithm and therefore is not reasoning
algorithm independent. In addition its implementation involves changes to the reason-
ing algorithm i.e. interrupting RETE construction, so is harder to implement
compared to the selective rule loading algorithm. Both algorithms are semantic inde-
pendent. Both the two-phase RETE algorithm and the selective rule loading algorithm
are completely independent of the particular ontology or entailment rule set in use.

Addition and deletion are discussed separately with respect to flexibility of han-
dling dynamic changes in the fact-base. Additions can be handled incrementally by
the two-phase RETE algorithm due to the intrinsic capability of RETE to handle addi-
tion incrementally. Simple deleting facts may lead to logical errors (e.g. deleting facts
with different justifications) and therefore may require truth maintenance mecha-
nisms. As truth maintenance is not yet implemented on COROR re-reasoning the
entire ontology is required for every deletion. However given that many existing se-
mantic applications only need to reason on static ontology rather than changing KBs,
COROR is still sufficient for them. Additions may introduce previously unseen OWL
constructs which may cause a problem with the selective rule loading algorithm. In
this case re-execution of the selective rule loading algorithm and re-reasoning of the
entire ontology are required.

The semantic independence feature of both composition algorithms enables the ex-
tension of COROR to support OWL 2 RL without any fundamental modification.

 COROR: A COmposable Rule-Entailment Owl Reasoner 219

Given growing adoption of OWL 2 the extension of COROR to support OWL 2 RL is
considered as an important task in future work.

4 Implementation

COROR is implemented on the SunSPOT [48] sensor board emulator with SDK v4.0
(blue). The μJena framework [49], a cut down J2ME version of Jena [15], is used to
read and handle OWL ontologies. It provides a powerful interface for ontology access
and modification, e.g. parse ontology definitions, support to assert/retrieve OWL
axioms, query resources and so on. Rule handling and reasoning are not supported by
μJena. Given the close connection between μJena and Jena we ported the Jena RETE
engine (and relevant modules) into μJena rather than implementing them from
scratch. As the SunSPOT is only conformant with CLDC 1.1, a subset of J2ME,
substantial modifications were required to port the Jena rule engine onto μJena and
SunSPOT.

The selective rule loading algorithm is implemented as a Java class (RuleSetCom-
poser) outside of the RETE engine. To enable faster OWL construct identification,
instead of analyzing entailment rules at runtime using μJena APIs, we manually ana-
lyze them beforehand: OWL constructs from both l.h.s. and r.h.s. are identified and
coded as rule-construct mappings in a text file which will be loaded and analyzed by
the selective rule loading algorithm. A drawback of this approach is it requires differ-
ent rule-construct mappings to be created manually for different entailment rule sets.
The checking for OWL constructs in any ontology is performed automatically at load-
time by enumerating the OWL constructs using the μJena ontology manipulation API.

The two-phase RETE algorithm is implemented inside the RETE engine
(RETEEngine class). One problem encountered in the implementation is Jena’s exten-
sive use of Java arrays as variable binding vectors where bound values are stored in
the corresponding positions in the array as in the rule. This hampers the sharing of
common conditions between rules, thereby requiring extensive code refactoring. Four
composition modes, i.e. NonComposable mode, Selective Rule Loading mode, Two-
Phase RETE mode, and Hybrid mode, are implemented corresponding to the use of
no, one or both composition algorithms. In the Hybrid mode both composition algo-
rithms are used and the selective rule loading algorithm first dynamically constructs a
selective entailment ruleset for use in the two-phase RETE algorithm.

Entailment is the key reasoning task implemented by COROR. However, some
common reasoning tasks can be realized by querying the ontology with all entail-
ments calculated, coined entailment closure (at the moment COROR supports only
single-triple-based query). For example, subsumption between two classes C and D
can be reduced to querying the entailment closure with the triple C rdfs:subClassOf
D, instantiation of C as querying with the triple ?x rdf:type C, where ?x is a variable
and satisfiability of a class C as querying with the triple C rdfs:subClassOf
owl:Nothing, checking if x is an instance of class C as querying for the triple x
rdf:type C, and so on. Some other reasoning tasks are not directly supported by this
approach. For example, realization of an instance a requires finding the most special-
ized class that a instantiates, which requires pairwise subsumption checking for all
classes retrieved using a rdf:type ?x.

220 W. Tai, J. Keeney, and D. O’Sullivan

A configuration file is used where users can specify the composition mode, the
ruleset to be used, and specify the ontology to be reasoned. Rules are encoded in the
Jena rule format in a separate rule file, giving users flexibility to modify the rule set,
in particular providing simple support for application-specific reasoning.

5 Experiments and Discussions

This section presents and discusses two experiments carried out to evaluate COROR
from both the performance and the correctness perspectives.

5.1 Design and Execution

Experiments were performed to investigate the performance impacts of composition
algorithms on rule-entailment reasoners.

The memory usage and execution time required to fully calculate entailments of a
selected set of ontologies on the SunSPOT emulator (v 4.5.0) is compared for differ-
ent composition algorithms. These metrics were selected since they directly represent
changes in reasoning performance. Some other metrics used to evaluation other OWL
reasoners were not selected here as they are not quite suitable for COROR. For exam-
ple, conjunctive query answering time is not yet implemented in the current version of
COROR; reasoning speed on ever enlarging KB is also omitted here as COROR per-
forms load-time reasoning for resource-constrained devices and therefore small or
medium ontologies with static sizes are the target of this work. The separate evalua-
tion of individual reasoning tasks such as classification are also not performed in this
work as entailment is the key reasoning task in COROR and all other tasks are re-
duced to querying the entailment closure (as discussed in Section 4).

The memory usage and execution time of COROR (configured to use the hybrid
mode) were also compared with other OWL reasoners. As MiRE4OWL and μOR are
not accessible, Bossam and three other desktop rule-entailment reasoners, i.e. Jena
2.6.3, BaseVISor 1.5.0 [20], and swiftOWLIM v3.0.1, were selected in this compari-
son due to their similarity with COROR in terms of expressivity and reasoning
algorithm. Note that although Bossam supports J2ME CDC we failed to port it onto
SunSPOT as java.util.List is widely used in Bossam while not supported by CLDC
1.1. Jena was configured to used RETE engine only and also the pD*sv rule set. Pellet
was also included in this comparison giving readers an intuition of the performance of
COROR comparing to a full fledged DL tableau reasoner. As it has proved time pro-
hibitive to port these reasoners onto SunSPOT platform this second evaluation step
was performed using a J2SE platform on a desktop computer with Dual Core CPU @
2.4GHz, Java SE 6 Update 14, and maximum heap size as 128MB (the SunSPOT
emulator ran on the same desktop machine).

In total 17 ontologies varying in size and expressiveness were used in our experi-
ments, including: teams [31], owls-profile [32], koala[33], university [34], beer [35],
mindswapper [36], foaf [37], mad_cows [38], biopax [39], food [40], miniTambis
[41], atk-portal [42], wine [43], amino-acid [44], pizza [45], tambis-full [46] and nato
[47]. These ontologies are of small or medium size and are from different domains
therefore their usage can avoid any unintentional bias where some OWL constructs
are over- or under-used by some ontology designers in different application domains.

 COROR: A COmposable Rule-Entailment Owl Reasoner 221

They are well known and commonly used, and so are relatively free from errors. Due
to the low memory and processing power available on SunSPOT only 11 of the 17
ontologies were used in the experiment on the SunSPOT platform while all 17 on-
tologies were used in the comparison with other reasoners.

5.2 Results and Discussion

The memory usage and reasoning time required by different composition modes on
SunSpot COROR implementation are illustrated in figure 1 and 2. Results show that
all composition modes use less memory and reasoning time than the NonComposable
mode. Note that some tests produced no data e.g. the memory usage required to rea-
son the food ontology in the NonComposable mode, required manual termination
before completion due to a long reasoning time (over 30 minutes).

0

500

1,000

1,500

2,000

2,500

T
eam

s

O
W

L
S

-
profile

K
oala

U
niversity

B
eer

M
indsw

apper

F
O

A
F

m
ad_cow

s

B
iopax

food

m
iniT

am
bis

M
em

or
y(

K
B

)

Noncomposable
Selective Rule Loading
Two-Phase RETE
Hybrid

Fig. 1. Memory usage for different composition algorithms (KB)

0

50

100

150

200

250

300

350

T
eam

s

O
W

L
S

-
profile

K
oala

U
niversity

B
eer

M
indsw

apper

m
ad_cow

s

foaf

B
iopax

food

m
iniT

am
bis

T
im

e(
se

c)

Noncomposable
Selective Rule Loading
Two-Phase RETE
Hybrid

609s 416s 760s 836s517s

Fig. 2. Reasoning execution time for different composition algorithm (second)

Different composition algorithms vary in their performances. The two-phase RETE
algorithm outperforms the selective rule loading algorithm for all tested ontologies.
In addition the time/memory reductions in hybrid mode are also limited (comparing to
the two-phase RETE mode). We can conclude the reasons for these performance

222 W. Tai, J. Keeney, and D. O’Sullivan

differences by analysing the algorithms, rulesets and ontologies used. The selective
rule loading algorithm reduces memory and time by unloading rules. Loaded rules are
not optimized. Heuristics used in the two-phase RETE algorithm, however, apply to
all rules, even rules that could have been omitted. The two-phase RETE algorithm
reorders join sequences of rules according to the number of matched facts of each
condition, so any condition element from an unneeded rule with no matching OWL
facts is placed at the start of the join sequence. In this way join sequences of unneeded
rules can be reordered such that no join operation is needed, as if they are “unloaded”.
Despite this, some shared alpha network nodes may still be created for the other con-
dition elements of these unneeded rules reducing the size of alpha network, which is
not in the selective rule loading algorithm. Hence the two-phase RETE algorithm can
have better performance than the selective rule loading algorithm. This also explains
the limited benefit in hybrid mode beyond the two-phase mode.

In depth investigations into composition algorithms are performed to identify the
sources for the time/memory reductions. Several metrics are selected. As join and
match are respectively the two major operations in alpha and beta network, changes
on the number of matches (#M) and the number of joins (#J) are used to respectively
represent changes on the reasoning time in alpha and beta network. Similarly changes
on the number of intermediate results (#IR) generated by matches/joins (#IRM/#IRJ)
are used to represent changes on memory in the corresponding network. By enumerat-
ing the #M, #J and #IR values by rule for each ontology under the selective rule load-
ing mode we find that these metrics all drop to zero for unneeded/unloaded rules
leading to the reduction of memory usage and reasoning time. For loaded rules these
metrics remains the exact same as for the NonComposable mode. These metrics and a
close comparison of the results of all modes show that the optimizations applied do
not in any way change the results of the entailment process, so the correctness of the
process is not affected.

Insights into the two-phase RETE algorithm show that the alpha node sharing
mechanism in alpha network contributes most memory reduction in this experiment as
the reduced #IRM occupies the majority of the total reduced #IR (an average of 95% of
the intermediate result reductions occur in the alpha network for all tested ontologies).
However, it is reductions in both the #M and #J values (in both the alpha- and beta-
networks) that contribute to the decrease in reasoning time, but due to the differences
in the processing time required for different per match/join operations it is difficult to
conclude which contributes more.

Close investigation of the rule set explain the limited memory reduction resulting
from the join-reordering in the beta network. The selected pD*sv ruleset is already
manually optimized in terms of condition ordering and therefore nearly no automatic
optimization is required for this ruleset. This leads to only small reductions in the #IRJ
(and therefore small contribution to the memory reduction). To show that the two-
phase RETE algorithm is able to greatly reduce the reasoning time and memory the
pD*sv rule set was re-processed to re-order conditions elements for each rule in a
sub-optimal manner (as would be typical for user-authored or application specific
rules). Tests performed in figure 1 and 2 were re-executed for the rearranged
non-optimized rule set and results show that the NonComposable mode required
substantially more time and memory than it required before. However the two-phase
RETE algorithm required the exact same amounts of time and memory as shown in
figures 1 and 2, which shows the ability of two-phase RETE algorithm to greatly

 COROR: A COmposable Rule-Entailment Owl Reasoner 223

reduce reasoning time and memory with sub-optimal ordering of rule conditions.
These results show that the approach and heuristics selected for COROR are capable
of automatically optimizing rules condition ordering to an extent comparable to that
of a rule authoring expert.

The comparisons of reasoning time and memory usage between COROR and other
state of the art reasoners are given in Figures 3 and 4. The time-based performance
COROR is comparable to Jena and BaseVISor. For some small ontologies it runs
slightly faster than BaseVISor. Generally Jena requires a longer time to finish its
reasoning mainly due to its complicated design to enable flexible ontology manipula-
tion rather than fast reasoning. However, the reasoning execution time of COROR is
substantially worse than OWLIM and Bossam.

R
easoning T

im
e (sec)

0

1

2

3

4

5

6

7

8

9

10

T
eam

s

O
W

L
S

-profile

K
oala

U
n

iversity

B
eer

M
ind

sw
ap

per

F
O

A
F

m
ad

_cow
s

B
iop

ax

food

m
in

iT
am

b
is

A
T

K
-P

ortal

w
ine

am
ino-acid

p
izza

tam
bis-fu

ll

N
A

T
O

Coror Jena

Bossam BaseVISor

OWLIM Pellet

Fig. 3. Comparison of reasoning execution time with other OWL reasoners

M
em

ory U
sage (M

B
)

0

5

10

15

20

25

30

35

T
eam

s

O
W

L
S-p

rofile

K
oala

U
niversity

B
eer

M
indsw

apper

F
O

A
F

m
ad

_cow
s

B
iopax

food

m
iniT

am
bis

A
T

K
-P

ortal

w
in

e

am
in

o-acid

pizza

tam
b

is-full

N
A

T
O

Coror Jena Bossam

OWLIM Pellet

Fig. 4. Comparison of memory usage with other OWL reasoners

224 W. Tai, J. Keeney, and D. O’Sullivan

On the other hand the memory performance of COROR is much better than the
other reasoners. It uses the least memory for all tested ontologies, which indicates
much smaller memory footprint can be gained when COROR is applied on resource-
constrained devices. Bossam failed for some ontologies so there are no values for
them. BaseVISor hides its reasoning process from external inspection so we cannot
accurately measure its memory usage and it is omitted from the memory comparison.

The correctness of algorithms (in terms of the pD* semantics) were tested by com-
paring results of the mode based on the original Jena RETE engine (NonComposable
mode) with results from the other composition modes. All the four composition
modes generate identical results for all 17 ontologies. Given the tight relationship
between the NonComposable mode and Jena RETE engine, we can conclude that our
algorithms do not affect correctness.

6 Conclusion and Future Work

We present COROR, a composable reasoner for resource constrained devices. It im-
plements two novel complementary algorithms to compose a custom OWL reasoner
at the entailment ruleset level and at the RETE algorithm level. The selective rule
loading algorithm establishes a perfect-fit entailment rule subset for the target ontol-
ogy by selecting only the entailment rules required for that ontology and then loading
them into the reasoner. The two-phase RETE algorithm dynamically collects optimi-
zation statistics during the reasoning process and uses them to optimize the RETE
network building process. This reasoner was implemented on the SunSPOT platform.
Experiments show that all combinations of the composition algorithms require less
memory and time than the non-optimized version of the reasoner, and require substan-
tially less memory than other off-the-shelf rule-based reasoners.

Further work is actively addressing a number of outstanding topics. First different
types of statistics can be collected in the first phase and more sophisticated heuristics
can be designed or selected. For example, as mentioned earlier the heuristics we are
currently using to evaluate the specificity of a condition is relatively simplistic, de-
spite its good performance. Secondly the capability to process conjunctive queries
needs to be included. This allows richer queries, characteristic of sensor applications.
Thirdly, indexing and other join methods, e.g. merge-join, can be studied and tested
for better efficiency. Finally, consideration of the recently published W3C OWL2
standard, and the selection of a candidate OWL 2 RL rule set is ongoing.

Acknowledgement

This work is supported by the Irish Government in the “Network Embedded Systems”
project (NEMBES), part of the Higher Education Authority's Programme for Re-
search in Third Level Institutions (PRTLI) cycle 4, and by Science Foundation Ireland
via grant 08/SRC/I1403 - "Federated, Autonomic Management of End-to-End
Communications Services" (FAME).

 COROR: A COmposable Rule-Entailment Owl Reasoner 225

References

1. Ishida, T.: An optimization algorithm for production systems. IEEE Transactions on
Knowledge and Data Engineering 6, 549–558 (1994)

2. Ozacar, T., Ozturk, O., Unalir, M.O.: Optimizing a Rete-based Inference Engine using a
Hybrid Heuristic and Pyramid based Indexes on Ontological Data. J. of Computers 2, 41
(2007)

3. Scales, D.J.: Efficient Matching Algorithm for the OAR/OPS5 Production System. Tech-
nical Report KSL-86-47, Department of Computer Science, Stanford University (1986)

4. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 3, 79–115 (2005)

5. Forgy, C.: Rete: A Fast Algorithm for the many pattern/many object pattern match prob-
lem. Artificial Intelligence 19, 17–37 (1982)

6. Tai, W., Brennan, R., Keeney, J., O’Sullivan, D.: An Automatically Composable OWL
Reasoner for Resource Constrained Devices. In: Proc. Intl. Conf. on Semantic Computing
(2009)

7. Meditskos, G., Bassiliades, N.: A Rule-Based Object-Oriented OWL Reasoner. IEEE
Transactions on Knowledge and Data Engineering 20, 397–410 (2008)

8. Gu, T., Kwok, Z., Koh, K.K., Pung, H.K.: A Mobile Framework Supporting Ontology
Processing and Reasoning. In: Proc. Workshop on Requirements and Solutions for Perva-
sive Software Infrastructures (2007)

9. Steller, L., Krishnaswamy, S.: Pervasive Service Discovery: mTableaux Mobile Reason-
ing. In: Proc. Intl. Conf. on Semantic Systems (2008)

10. Wright, I., Marshall, J.: The execution kernel of RC++: RETE*, a faster RETE with
TREAT as a special case. Int. J. of Intelligent Games and Simulation 2 (2003)

11. Miranker, D.P.: TREAT: A better match algorithm for AI production systems. In: Proc. of
AAAI Conf., pp. 42–47 (1987)

12. Pellet reasoner, http://clarkparsia.com/pellet/
13. FaCT++, http://owl.man.ac.uk/factplusplus/
14. RacerPro, http://www.racer-systems.com/
15. Jena, http://jena.sourceforge.net/
16. KAON2 reasoner, http://kaon2.semanticweb.org/
17. QuOnto, http://www.dis.uniroma1.it/~quonto/
18. CEL, http://lat.inf.tu-dresden.de/systems/cel/
19. OWLIM, http://www.ontotext.com/owlim/
20. BaseVISor, http://vistology.com/basevisor/basevisor.html
21. Bossam, http://bossam.wordpress.com/about-bossam/
22. Oracle Database Semantic Technologies,

http://www.oracle.com/technetwork/database/options/
semantic-tech/index.html

23. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reason-
ing and Efficient Query Answering in Description Logics: The DL-Lite Family. Journal of
Automated Reasoning 39, 385–429 (2007)

24. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Web Ontology Language (OWL) Abstract
Syntax and Semantics, W3C Recommendation (2004)

25. Kim, T., Park, I., Hyun, S.J., Lee, D.: MiRE4OWL: Mobile Rule Engine for OWL. In:
Proc. Intl. Workshop on Middleware Engineering, ME 2010 (2010)

226 W. Tai, J. Keeney, and D. O’Sullivan

26. Ali, S., Kiefer, S.: μOR - A Micro OWL DL Reasoner for Ambient Intelligent Devices. In:
Abdennadher, N., Petcu, D. (eds.) GPC 2009. LNCS, vol. 5529, pp. 305–316. Springer,
Heidelberg (2009)

27. Sinner, A., Kleemann, T.: KRHyper - In Your Pocket. In: Nieuwenhuis, R. (ed.) CADE
2005. LNCS (LNAI), vol. 3632, pp. 452–457. Springer, Heidelberg (2005)

28. Kleemann, T., Sinner, A.: User Profiles and Matchmaking on Mobile Phones. In: Umeda,
M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS
(LNAI), vol. 4369, pp. 135–147. Springer, Heidelberg (2006)

29. Brennan, R., Tai, W., O’Sullivan, D., Aslam, M.S., Rea, S., Pesch, D.: Open Framework
Middleware for Intelligent WSN Topology Adaption in Smart Buildings. In: Proc. Intl.
Conf. on Ultra Modern Telecommunications & Workshops (2009)

30. Koziuk, M., Domaszewicz, J., Schoeneich, R.O., Jablonowski, M., Boetzel, P.: Mobile
Context-Addressable Messaging with DL-Lite Domain Model. In: Roggen, D., Lombriser,
C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp.
168–181. Springer, Heidelberg (2008)

31. Teams, http://owl.man.ac.uk/2005/sssw/teams
32. OWLS-profile, http://www.daml.org/services/owl-s/1.1/Profile.owl
33. Koala,

http://protege.stanford.edu/plugins/owl/
owl-library/koala.owl

34. University,
http://www.mindswap.org/ontologies/debugging/university.owl

35. Beer, http://www.purl.org/net/ontology/beer
36. Mindswapper, http://www.mindswap.org/2004/owl/mindswappers
37. FOAF, http://xmlns.com/foaf/0.1/
38. mad_cows, http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/

mad_cows.owl
39. Biopax, http://www.biopax.org/release/biopax-level1.owl
40. food, http://www.w3.org/2001/sw/WebOnt/guide-src/food
41. miniTambis,

http://www.mindswap.org/ontologies/debugging/miniTambis.owl
42. ATK-Portal, http://www.aktors.org/ontology/portal
43. wine, http://www.w3.org/2001/sw/WebOnt/guide-src/wine
44. amino-acid,

http://www.co-ode.org/ontologies/amino-acid/2005/10/11/
amino-acid.owl

45. pizza,
http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl

46. tambis-full, http://www.mindswap.org/ontologies/tambis-full.owl
47. NATO, http://www.mindswap.org/ontologies/IEDMv1.0.owl
48. SUN SPOT, http://www.sunspotworld.com/
49. μJena, http://poseidon.elet.polimi.it/ca/?page_id=59
50. Hanson, E.N., Hasan, M.S.: Gator: An Optimized Discrimination Network for Active Da-

tabase Rule Condition Testing. Tech. Report, CIS Dept, University of Florida (1993)
51. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining

logic programs with description logic. In: Proc. Intl. Conf. on World Wide Web (2003)

Rule-Based Trust Assessment on the

Semantic Web

Ian Jacobi1, Lalana Kagal1, and Ankesh Khandelwal2,�

1 MIT CSAIL,
Cambridge, MA 02139

{jacobi,lkagal}@csail.mit.edu
2 Rensselaer Polytechnic Institute,

Troy, NY 12180
ankesh@cs.rpi.edu

Abstract. The Semantic Web is a decentralized forum on which any-
one can publish structured data or extend and reuse existing data. This
inherent openness of the Semantic Web raises questions about the trust-
worthiness of the data. Data is usually deemed trustworthy based on
several factors including its source, users’ prior knowledge, the reputa-
tion of the source, and the previous experience of users. However, as rules
are important on the Semantic Web for checking data integrity, repre-
senting implicit knowledge, or even defining policies, additional factors
need to be considered for data that is inferred. Given an existing trust
measure, we identify two trust axes namely data and rules and two trust
categories namely content-based and metadata-based that are useful for
trust assignments associated with Semantic Web data. We propose a
meta-modeling framework that uses trust ontologies to assign trust val-
ues to data, sources, rules, etc. on the Web, provenance ontologies to
capture data generation, and declarative rules to combine these values
to form different trust assessment models. These trust assessment models
can be used to transfer trust from known to unknown data. We discuss
how AIR, a Web rule language, can be used to implement our frame-
work and declaratively describe assessment models using different kinds
of trust and provenance ontologies.

1 Introduction

The rise of the Semantic Web and Linked Data, and the machine-understandable
interlinked data they promise, has led to an increased reuse of data. Vocabularies
such as RDF Schema (RDFS) [7] and the Web Ontology Language (OWL) [2,25]
have been developed to enable consumers of Semantic Web data to exchange data
with some knowledge of the meaning of this data, allowing not only for the reuse
of data, but the reuse of schemas and terminology as well.

Given the inherent openness of the Semantic Web, where anyone can say
anything, the reliability and usefulness of web data depends on evaluating its
� Author names are arranged in alphabetic order.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 227–241, 2011.
� Springer-Verlag Berlin Heidelberg 2011

228 I. Jacobi, L. Kagal, and A. Khandelwal

trustworthiness. Users need to make decisions about their subjective belief of
whether the data is true; such decisions may be based on a number of factors,
including which sources to rely on, their prior knowledge, the reputation of the
source, and their experience [1]. However, trust assessment becomes challenging
when the consumers of this data are applications and agents. In order to auto-
mate the assignment of “truthfulness” or trustworthiness measures, it must be
possible for trust values to be associated with different aspects of the data such as
the actual content of the data, the data sources, recency of updates, the schemas
being used, and the creator, and for these, trust values be combined together to
evaluate trust in the actual data. For example, there might be multiple Friend
Of a Friend (FOAF)1 files for Tim Berners-Lee that describe his social profile
in Resource Description Framework (RDF), but the one that is most trusted is
the one available at the W3C website. This is because the trustworthiness of the
source, W3C, is higher than that of the other sources. Different trust levels may
also be assigned to sources relative to their contents. For example, a hospital
may be trusted with information about a potential virus outbreak but may not
be trusted with respect to its economic predictions. We suggest that the trust
associated with any Web data is some combination of these different trust values
associated with the content of the data as well as meta-data about the data such
as its source, creator, etc.

Rules are often used with Semantic Web data to check its integrity or repre-
sent implicit knowledge as well as to define policies and business logic. As the
machine-understandability of Semantic Web data encourages the use of this data
by software agents, mechanisms for the automated evaluation of inferred data
becomes important. The trustworthiness of inferred data may be evaluated from
its provenance, metadata describing how data came to be known. This prove-
nance could be as simple as the source of the data or contain the entire deduction
trace. These justifications or deduction traces may provide detailed provenance
information, including the data sources, facts used, and rules applied, to allow
the evaluation of the particular result. Any number of reasons may exist to
assign different levels of trust in a rule or rule set (or the derivations produced
therefrom), including differing levels of expertise, familiarity with domain knowl-
edge, or even malicious intent. Thus, the ability to assign or determine a level of
trust in a rule and its conclusions are required for trust on the Semantic Web. In
case of inferred data, the trust value is a combination of trust values associated
with its data as well as its rules that in turn can be calculated from the trust
associated with their content as well as meta-data.

In this paper we focus on developing models that involve non-statistical func-
tions to assess trust in Semantic Web data in terms of the content and meta-data
(source, creator, recency, provenance, reputation, etc.) of data and rules. Along
with the trust values associated with the data used, we propose that the trust
assignments of rules used in data generation is an important factor in the trust
evaluation of the generated data. We suggest that there are two main trust cate-
gories for Semantic Web data from which different trust assessment models may

1 http://www.foaf-project.org/

Rule-Based Trust Assessment on the Semantic Web 229

be derived: content-based trust and metadata-based trust. In content-
based trust, we derive our trust values from the contents of the data or rule
itself. The metadata-based trust category is more helpful when calculating trust
based on circumstantial facts about the data or rule such as reputation assign-
ments, user ratings, and provenance, rather than the content itself. We propose
a meta-modeling framework that uses trust ontologies to assign metadata-based
and content-based trust values to data, sources, rules, etc. on the Web, prove-
nance ontologies to capture justification/deduction traces, and declarative rules
to combine these values to form different trust assessment models. We show how
this meta-modeling system can be used to define a range of trust assessment
strategies in AIR, a Semantic Web rule language.

This paper is structured as follows: we begin by introducing existing work
dealing with trust on the Web. In Section 3, we discuss trust problems on the
Semantic Web and discuss different possible trust representations and assess-
ment strategies. The next section provides an overview of the AIR language. In
Section 5 we describe how AIR can be used for different trust assessment strate-
gies on the Web. Section 6 identifies the contributions of our work and finally,
Section 7 provides a summary and directions for future work.

2 Related Work

Well-known trust management systems such as PolicyMaker [19], KeyNote [6],
REFEREE [8], and Delegation Logics [17] view trust management as an au-
thorization problem. That is, they define mechanisms for inferring whether a
requester (software or human agent) is permitted to perform a certain action or
access a certain resource based on a set of constraints defined by the action/data
owner. Our goals are different in that we look at the role of trust in rule based
reasoning. Our framework is focused on expressing trustworthiness of data on
the open Web, evaluating trustworthiness of inferred data and on allowing mech-
anisms for decisions based off trust and trust computations to be declaratively
specified.

[22,11,12,16] discuss how trust values for users and data sources can be com-
puted. Richardson et al. enable users to maintain trust for other users and pro-
vide functions to merge these values into trust values for all users by leveraging
the path of trust between users [22]. Kuter et al. allow users to maintain trust
values or trust estimates for data sources and provide a probabilistic technique
to use that information to compute a trust estimate for a data source [16]. Our
approach can be thought of as a meta-modeling approach that allows different
trust frameworks to be declaratively developed and possibly combined. It pro-
vides a rule language, mechanisms for accessing the Web and cryptographic,
math, string and other related functions that may be used to specify how trust
is assigned and calculated.

The WIQA framework [5] is also related to the trust assessment framework
that we’ve developed using AIR, however, it is much simpler. The WIQA frame-
work allows RDF data to be filtered according to policies expressed as graph

230 I. Jacobi, L. Kagal, and A. Khandelwal

patterns (Please refer to Section 3.3 for more information about patterns) and
provides an explanation for this filtering by identifying the matched patterns.
Our framework supports more than just filtering as graph patterns are part of
rule definitions and filtered data take part in some rule based reasoning. Fur-
thermore, data may be filtered not just based on some patterns but also based
on trust assigned (or assessed) to data as well as patterns.

SAOR [13] and Straccia et al. [24] incorporate trust in rule based reason-
ing. They employ different trust representations and use trust differently. While
Straccia et al. assume that every triple is annotated with trust (and other an-
notations such as fuzziness), SAOR doesn’t consider trust valuation of triples in
isolation. At the rule application time, trust on a triple is evaluated based on
what it is being used to prove, and the trust value is binary, i.e. a triple is either
considered authoritative for that instance of rule application or is not used for
derivation. In contrast every triple is used for derivation in the framework pro-
posed by Straccia et al. and the inferred triples are associated with trust derived
from that of triples required for inferring it. AIR reasoner is not trust aware in
the sense that SAOR and the framework proposed by Straccia et al. are, but we
show that the language features of AIR give a lot of freedom to reason about
knowledge base annotated with trust. In the approach proposed, the trust val-
uations are incorporated in the rule conditions and may be used for different
affects. For instance a pattern with trust smaller than 7 may be rejected for one
rule, and accepted with lower trust value of 6 for other (because it is rejected
for trust value less than 5). Furthermore, we treat rules as part of the knowledge
that people may have varying degrees of trust.

3 Semantic Web and Trust

The reliability and usefulness of Web data depends on evaluating its trustwor-
thiness, the subjective measure of the belief which a user has that the data is
“true”. Our approach supports the vision provided by the Semantic Web layer-
cake2 by building trust out of rules about provenance and proofs/justifications
related to data on the Semantic Web. Thus, in order to better understand how
trust might be modeled in the Semantic Web, it is important to understand the
underlying concepts employed by the Resource Description Framework (RDF),
which serves as the foundation for all Semantic Web data.

3.1 Resource Description Framework (RDF)

Resource Description Framework (RDF) is the data modeling framework for
the Semantic Web and it uses 3-tuples, or triples, to represent facts. RDF is
described in more detail in [3], but we will proceed to give a short outline below.

Each triple in an RDF model consists of a subject, predicate, and object,
much like the subject, predicate, and object of a natural language sentence. For
example, one possible triple representing the rating of a movie, :citizenkane
2 http://www.w3.org/2004/Talks/0412-RDF-functions/slide4-0.html

Rule-Based Trust Assessment on the Semantic Web 231

:stars “5”.3, consists of a subject :citizenkane, a predicate :stars and an
object “5”. Triples may also be thought of as logical predicates taking two
arguments, such as stars(citizenkane , 5).

In the RDF data model, each triple may be thought of as a directed edge in
a labelled RDF graph, where the subject and object are nodes in the graph, and
the predicate is a labelled edge. Nodes may be uniquely identified by a Uniform
Resource Identifier (URI), and thus, subjects and objects may be specified by
a URI. Nodes may also be made anonymous, without such an identifier. Such
anonymous nodes are called blank nodes, or bnodes.

Predicates are also identified by a URI. Unlike subjects and objects, however,
these URIs do not identify a unique edge, but rather identify the type/meaning
of the edge linking the two entities. Objects may also be a literal, that is, a string
or a simply-typed object (such as an integer or date), but these do not uniquely
identify a node.

3.2 Models of Trust for the Semantic Web

When speaking of a trust metric, T (a quantitative measurement of trust), which
is applicable to the RDF data derived from rules, we must ground such trust in
the two inputs needed to draw such conclusions: trust in the data from which
the conclusion was drawn, T (f), and trust in the rule which generated the con-
clusion, T (r). These two axes of trust are independent of each other, but must
be considered together in order to draw a meaningful idea of the trust that may
be placed in any conclusions.

If we consider rules to be black boxes, we must necessarily separate trust in
rules from trust in data in this way. Any inferences generated by a rule may be
generated locally or by a third party in exactly the same way. Because inferences
may be generated by an unknown third party, it is difficult to offer strong guar-
antees about the trust of any inferences made. RDF and rule systems do not
innately have any semantics pertaining to trust, and, as trust is subjective in
any case, it is difficult to offer any universal guarantees in how input data might
be used or how output data might be generated in order to determine the level
of trust that might apply to a particular inferred fact. Thus, as in certain modal
logics of trust, we must ground the degree of trust in the output data in the
degree of trust we have in the particular rule which generated that particular
data [18].

Similarly, provenance-based approaches to trust evaluation necessarily con-
sider the “paths” by which data came to be (i.e. from whom data came from, as
well as the processes which generated them, which may include rule systems) [9].
Thus, when calculating the trust in a derived fact, we must necessarily consider
the trust in the rule which generated the conclusion, T (r) in any meta-modeling
system capable of assessing trust.

3 Throughout this paper, we use Turtle syntax for RDF
(http://www.w3.org/TeamSubmission/turtle/), which is a subset of the No-
tation 3 syntax compatible with the RDF abstract syntax.

http://www.w3.org/TeamSubmission/turtle/

232 I. Jacobi, L. Kagal, and A. Khandelwal

Furthermore, as rules may depend on external knowledge to create conclu-
sions, our trust in these conclusions must, necessarily, be no greater than our
trust in this input knowledge. This differs from our trust in rules in much the
same way that a quantitative process or algorithm may generate precise results
without necessarily being accurate (perhaps due to some bias in the input data).
Thus, while a trusted rule may generate reliable output data (i.e. it is precise),
the output data may only be reliable for other purposes to the extent that the
input data is reliable (i.e. its results may not be accurate).

Although both axes should be considered when determining whether or not
to trust a conclusion, the trust model used for drawing such conclusions may
vary from one “invocation” of a rule to the next. The trust model used for one
axis may differ from that used for the other, but both generally must consist
of a synthesis of two different categories of trust: content-based trust, and
metadata-based trust [10,5].

In content-based trust, we derive our trust values from the contents of the
facts asserted. Thus, any metric T would be defined in terms of one or more
facts, f ∈ F , the set of all facts known. For example, one trust metric might
determine trust in external statements about the actors in certain movies if the
source happens to agree with certain statements about the directors of the movies
known a priori (T ∼ |Fknown ∩ Fsource|). Similarly, one might place a higher trust
value on statements which use a well-defined and well-used ontology rather than
an ill-defined one (T ∼ ∀f∈Fsourcepredicate(f)).

Metadata-based trust is more helpful when calculating trust based on circum-
stantial facts about the data, rather than facts in the data itself. Each fact f ∈ F
may be considered to have a vector of corresponding “metadata” facts M(f)
which describe additional information regarding the fact, such as authorship,
creation times, data sources, and other such derivative data. Metadata-based
trust subsumes all data that might describe a given fact, including the prove-
nance of the fact and any user-generated trust values or ratings of the source
from which the fact is derived. Any of these metadata-facts may then be used
to calculate T .

For example, one may have a higher trust value in statements made by one’s
friends than those made by arbitrary people (T ∼ Msource(f)). Such a trust
value depends not on the data being said, but rather on the source of the data.
Similarly, if, during a science experiment, a bad sensor is identified and replaced,
different trust values may be assigned to the data recorded at different times in
the experiment (T ∼ time −Mtime(f)). In this case, the trust value depends on
the time data was collected, Mtime(f), rather than in the data itself (which may
have no information indicating its accuracy or lack thereof).

Content-based trust and metadata-based trust may be synthesized in any
number of ways to create a trust metric. For example, we may trust statements
made about the actors of the movie to a different degree from statements about
the creators of the movie. In constrast, metadata-based trust allows us to assign
different trust values to statements made by the creators of the movie, Avatar,
separate from statements made by the actors of the movie. Thus content-based

Rule-Based Trust Assessment on the Semantic Web 233

trust is associated with the statements themselves whereas metadata-based trust
may be based on facts related to the statements such as their authors.

As mentioned previously, these two trust categories apply not only to the
facts that caused the deduction of new facts, but also to the rules themselves.
For example, we may have metadata-based trust in a rule and be able to trust
rules that deduce information about a movie’s rating that have been written by
a movie critic, but not necessarily the same rules written by a director interested
in promoting his own movies.

Any language seeking to be used for the purpose of calculating trust in rules
or using trust levels to make deductions must be able to model trust metrics
not only based on the rules and facts, but it should be able to synthesize trust
values based on both metadata about the data, and the data itself. We believe
that the AIR rule language is capable of doing so, and we will illustrate this in
the following sections.

3.3 Possible Trust Representations in RDF

Given any trust measure, there are numerous ways trust assignments may
be made using RDF. One of the simplest ways to declare binary trust is
by defining two classes of trust such as Trusted and UnTrusted and declare
URIs, sources, rules, or any resource, to be one or the other. We demonstrate
such a model in example (a) in Figure 1, where Isabel trusts two resources,
:RobertEbert and :Karl, but does not trust the resource identified by the URI,
<http://example.org/critix.n3>.

The above trust assignment is simple and only allows users to classify resources
as trusted or not. In order to have finer grained trust values, it is possible to define
a property such as trustvalue and use it to assign values (either quantitative or
qualitative) to resources. This property can also be used to model fuzzy RDF
where triples are annotated with a degree of truth in [0, 1] as defined by Straccia
et al. [24]. For example, ’Rome is a big city to degree 0.8’ can be represented
in Notation 3 (Please refer to Section 4.1 for more information about Notation
3) as {:Rome :a :BigCity} :trustvalue 0.8. In example (b) from Figure 1,
Isabel defines trust as her confidence in the accuracy of the data/resource and
associates trust values with :RogerEbert, <http://example.org/critix.n3>, a
rule, :KarlWatchRule, and a statement about CitizenKane.

Instead of using a quantitative approach as above, an alternate approach
would be to create properties for every discrete type of trust possible such as
the model for social networks proposed by Golbeck et al. [12]. Golbeck defines
individual properties for different trust relationship between users — distrusts
absolutely, distrusts highly, distrusts moderately, distrusts slightly, trusts neu-
trally, trusts slightly, trusts moderately, trusts highly, and trusts absolutely. In
example (c) from Figure 1, Isabel highly trusts :RogerEbert but trusts :Karl
moderately.

Additionally, it is possible to trust certain sources or documents with certain
information but not all information they contain. For example, a hospital may
be trusted with information about a potential virus outbreak but may not be

234 I. Jacobi, L. Kagal, and A. Khandelwal

Example (a)

Isabel�s trust declaration
:RogerEbert a :Trusted .
<http://example.org/critix.n3> rdf:type :Untrusted .
:Karl a :Trusted .

Example (b)

Isabel�s trust declaration
:RogerEbert :trustvalue 5 .
<http://example.org/critix.n3> :trustvalue 9 .
:KarlWatchRule :trustvalue 7 .
{:CitizenKane :rating :ThumbsUp} :trustvalue 8 .

Example (c)

Isabel�s trust declaration
:Isabel :trustsHighly :RogerEbert .
:Isabel :trustsModerately :Karl .

Example (d)

Isabel�s trust declarations
<http://example.org/critix.n3> :istrustedwith :some-t.
:some-t rdf:type :TrustInfo;

:tval 95;
:tpattern { :RogerEbert ?p ?o } .

Fig. 1. Trust Representations

trusted with respect to its economic predictions. This could be modeled in No-
tation 3 (Please refer to Section 4.1 for more information about Notation 3) in
several ways, one of which is to use quoted formulae [4]. A property, istrusted-
with is defined whose object is of type TrustInfo and is associated with data
sources. The TrustInfo class has two properties tpattern and tval. The tpattern
is a graph pattern that describes the facts that are trusted from that particular
source. The tval is similar to the trustvalue property and is a trust value asso-
ciated with all those facts that match the (graph) pattern. The example (d) in
Figure 1 shows how these properties are defined and Isabel’s trust declaration
states that she assigns a quantitative trust value of 95 to all statements made
about :RogerEbert described in document <http://example.org/critix.n3>.

4 AIR Web Rule Language

AIR is made up of a set of built-in functions and two independent ontologies —
the first is for the specification of AIR rules, and the second deals with describing
justifications for the inferences made by AIR rules [14]. The built-in functions
allow rules to access (Semantic) Web resources, query remote RDF databases, as
well as to perform basic math, string and cryptographic operations. We describe
the syntax and functionality of the AIR language and the Rule ontology next.
The AIR justification ontology is derived from PML [20] and customized for AIR
reasoning, and is described in detail at [15]. However, we will use only the PML
vocabulary in the paper, as the specifics of AIR reasoning are not important.

Rule-Based Trust Assessment on the Semantic Web 235

@prefix s: <http://s.example.org/ontology#> .
@prefix a: <http://a.example.org/instance#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://src1.example.org/JohnAnalyst#> .

:Jim rdf:type foaf:Person.
:Matt rdf:type foaf:Person.

a:StarWars s:rec s:Watch.
a:TheRoom s:rec s:DontWatch.
a:TheGraduate s:rec s:Watch.

:RogerEbert :said {a:CitizenKane :rating :ThumbsUp}.

Fig. 2. Content of an RDF Data Source

4.1 Syntax

AIR extends Notation 3 (N3) [3], a syntax based on the RDF abstract syntax.
N3 makes use of a number of basic concepts from RDF, including the concept
of triples. N3 extends RDF’s abstract syntax by adding formula quoting, which
allows for RDF Graphs to be treated as subjects or objects, and variable quan-
tification. Figure 2 provides some examples of N3 statements. Please refer to
http://www.w3.org/2000/10/swap/Primer for an overview of N3.

AIR uses N3’s formula quoting and variable quantification to describe graph
patterns, which are similar to the Basic Graph Pattern (BGP) of SPARQL
queries4, that are to be matched before rules may fire.

4.2 Rule Ontology

The AIR rule vocabulary consists of several key classes and properties. Belief-
rule is a class of resources representing the set of all rules. These rules may then
have the properties if , then , and else associated with them to represent the
N3 pattern to be matched, and the actions to take if the pattern matches, or
does not match, respectively. then and else actions may be described in terms
of the facts they assert (using the assert property) or the rules they cause to
match next (using the rule property).

If the graph pattern or condition matches the current state of the world,
defined as the facts known or inferred to be true so far, then all the actions
under then are fired, otherwise all the actions under else are fired. The condition
matches the current state if there is a subgraph of known facts that matches the
graph pattern.

Figure 3 demonstrates how the AIR rule vocabulary can be used to define
the recommendation rule Isabel uses. The rule suggests that Isabel only watch
movies, air:assert { :Isabel s:shouldWatch :MOVIE}, if there is a five-star
rating, :MOVIE s:starRating 5 . The same rule is illustrated in a tabular
representation in Figure 4. For clarity we use this tabular representation of AIR
rules for the remainder of this paper.

4 http://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

http://www.w3.org/2000/10/swap/Primer
 http://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

236 I. Jacobi, L. Kagal, and A. Khandelwal

@forAll :MOVIE.
:IsabelWatchRule a air:Belief-rule;

air:if { :MOVIE s:starRating 5 };
air:then [air:assert { :Isabel s:shouldWatch :MOVIE }].

Fig. 3. Example AIR Syntax

:IsabelWatchRule a air:Belief-rule .

@forAll :MOVIE .

IF
Implicitly trust all 5-star ratings.

:MOVIE s:starRating 5 .

THEN assert :Isabel s:shouldWatch :MOVIE .

Fig. 4. Example AIR Rule: IsabelWatchRule implicitly encodes content-based
trust into the rule by explicitly trusting all stated 5-star ratings to the full degree
without regard to how the ratings were generated or who stated them. Although there
is no reliance on trust values of the statement or its pattern itself, it is the same as if
complete trust was placed in all such statements.

5 Trust Assessment Framework

Our trust assessment framework is not restricted to any specific trust measure
such as reputation, degree of truth, or completeness. As long as the trust assign-
ment can be captured in RDF, it can be used by our framework. However, it is
up to the user developing the trust assessment model to ensure that the seman-
tics associated with different trust assignments is maintained when combining
different trust values.

In this section we show how our framework can be used to evaluate trust
in a movie recommendation scenario. Assume that a movie streaming service,
WebCinema, offers several different methods of movie recommendations to its
clients. Isabel, a member of WebCinema, uses one of WebCinema’s metrics, which
recommends movies that have at least one five-star rating. WebCinema permits
users to select the critics giving the five-star ratings, so as to ignore reviews from
critics users disagree with, and Isabel has chosen to make use of this feature.
Some of WebCinema’s customers may create their own rules which merge the
results of several of WebCinema’s built-in rules. Karl uses WebCinema’s rating-
based rules as part of his decision making process, but does not entirely trust
them. Karl may wish to only partially trust WebCinema’s ratings-based rules,
depending additionally on the trust he places on the facts used by the rules to
make recommendations.

For this scenario, we assume that trust declarations are made using the istrust-
edwith property, where we trust a source with respect to certain data, and the
trustvalue property, where we associate a trust value with a resource, as defined
in Section 3.3. The rule in Figure 5, :IsabelWatchRule, uses metadata-based
trust and assigns trust to sources of data with respect to watch recommendations
and creators of data. The rule looks for patterns referring to watch recommen-
dations in sources whom she trusts more than 75 with the specified pattern

Rule-Based Trust Assessment on the Semantic Web 237

:IsabelWatchRule a air:Belief-rule .

@forAll :CRITICREVIEWS, :VARIABLE, :MOVIE, :STRUST,

:CREATOR, :CTRUST, :VAL, :TRUST .

IF

:CRITICREVIEWS

t:istrustedwith [t:pattern { :VARIABLE s:rec s:Watch . } ;

t:value :STRUST] .

:STRUST math:notLessThan 75 .

:CRITICREVIEWS log:includes { :MOVIE s:rec s:Watch . }.
:CRITICREVIEWS foaf:maker :CREATOR .

:CREATOR t:trustvalue :CTRUST .

(:STRUST 100) math:integerQuotient :VAL .

(:CTRUST :VAL) math:product :TRUST .

:TRUST math:notLessThan 80 .

THEN assert :Isabel s:shouldWatch :MOVIE .

Fig. 5. Compute trust in data using metadata-based trust: IsabelWatchRule

uses the trust ontology described in section 3.3 to assign trust to critics with respect
to watch recommendations. The source is only searched if the trust in the source is
greater than 75. The trust in the new information is calculated from the trust in the
source website and creator of the information.

{ :VARIABLE s:rec s:Watch . }. If the source contains this information, the
rule calculates trust for this new information based on her trust in the source
and the creator of the data and recommends that she watch it if the trust is
greater than 80.

As AIR is a general purpose reasoner, AIR rules can be written to consume
these trust declarations and combine them in different ways in order to compute
trust values for data or inferences of interest. IsabelWatchRule as defined in
Figure 4 uses metadata-based trust and assigns trust to critics with respect to
watch recommendations. :IsabelWatchRule recommends that Isabel watch a
movie if there is a watch recommendation made by a critic with trust value
greater than 7.

As rules themselves could have trust values associated with them, as described
in Section 3.3, it is possible to reason about the trustworthiness of rules and use
them to deduce trust in the inferences made by them. AIR’s support for the
air:justifies property allows for the execution of other rules which we may be
able to query for trust. The rule :KarlWatchRule in Figure 6 encapsulates such
a rule (which synthesizes rule-trust with data-trust); it recommends that Karl
watch a movie only if both the rule and data used to justify the recommendation
are trusted by Karl with an average trust value greater than or equal to 7.

In :KarlWatchRule, air:justifies is used to run the rules at the URL
<http://webcinema.example.com/rules> against some trusted data. The result
of this reasoning is stored in the output variable :RULEJUST, which may be used
with other built-in functions, like log:includes, to determine not only which
facts are asserted by the rules, but also the justifications for such. These justifi-
cations may then be used to determine the rules which caused some conclusion
to be found to be true and their trust values.

238 I. Jacobi, L. Kagal, and A. Khandelwal

:KarlWatchRule a air:Belief-rule .

@forAll :RULESET, :RULEJUST, :MOVIE, :RULEAPPEVENT,

:EXTRACTIONEVENT, :SOURCE, :RULE, :RULETRUST, :SOURCETRUST,

:TRUSTSUM, :TRUSTAVG .

IF

<http://webcinema.example.com/rules> log:semantics :RULESET .

((:RULESET) (:DATA)) air:justifies :RULEJUST .

:RULEJUST log:includes {
@forSome :RULEAPPEVENT .

:Karl s:shouldWatch :MOVIE .

:RULEAPPEVENT pmlj:outputdata { :Karl s:shouldWatch :MOVIE . } .

:RULEAPPEVENT pmll:operation :RULE .

:RULEAPPEVENT pmll:antecedent :EXTRACTIONEVENT .

:EXTRACTIONEVENT pmlp:source :SOURCE .

} .

:RULE t:trustvalue :RULETRUST .

:SOURCE t:trustvalue :SOURCETRUST .

(:RULETRUST :SOURCETRUST) math:sum :TRUSTSUM .

(:TRUSTSUM 2) math:quotient :TRUSTAVG .

:TRUSTAVG math:notLessThan 7 .

THEN assert :Karl s:shouldWatch :MOVIE .

Fig. 6. Compute trust in data using metadata-based trust in rules:
KarlWatchRule uses the trust ontology described in section 3.3 to assign trust to the
rules used by WebCinema to generate recommendations. If the average trust in the rule
used to generate a watch recommendation and the data used by the rule has a trust
value greater than or equal to 7, then the rule recommends that Karl should watch
that movie.

We could use a similar rule to more generally judge the output of rules based
on where the output came from. While the above rule checks trust values in the
rule and source individually, rules could also be written to expressly generate
trust based on properties of the rule or data, as well as the trust measurements
themselves (for example, we could check the “author” of a rule to implicitly trust
all rules authored by WebCinema, giving their results a high trust value.)

Provenance models such as the Open Provenance Model (OPM) [21] or
Provenir [23] are also supported by our framework. OPM and Provenir are high-
level, general-purpose provenance models that may be encoded in RDF and be
queried using the AIR language in a manner similar to that shown above. As
long as it is possible to identify the URIs of rules used in a particular fact’s
derivation, one need only express an appropriate pattern which may be used to
find and bind the rule’s identifier to search for an appropriate trust value for the
rule.

For example, content-based trust models may be used together with languages
like OPM and Provenir to identify and determine trust in particular products
of generic scientific processes. The faulty scientific sensor example discussed in
Section 3.2 may be easily implemented in our framework when the provenance
is encoded in OPM as can be observed in the sample rule in Figure 7.

Rule-Based Trust Assessment on the Semantic Web 239

:BadSensorRule a air:Belief-rule .

@forAll :DATA, :PROCESS, :TIME, :UNIXTIME .

IF

:DATA a opm:Artifact ;

opm:wasGeneratedBy :PROCESS ;

opm:wasGeneratedAt :TIME .

:PROCESS owl:sameAs :BadSensorProcess .

:TIME time:inSeconds :UNIXTIME .

THEN activate-rule :BadSensorTimeRule

:BadSensorTimeRule a air:Belief-rule .

IF :UNIXTIME math:greaterThan :BadSensorFixedTime .

THEN assert :DATA t:trustvalue 7.

ELSE assert :DATA t:trustvalue 3.

Fig. 7. Deriving trust from OPM provenance: BadSensorRule uses provenance
metadata about some datum encoded in OPM to assign trust to the datum depending
on the time the data was generated by the faulty sensor

6 Contributions

As demonstrated above, our framework has several unique features that make it
useful for trust assessment and modeling thanks to its foundation in the Semantic
Web. First, its use of the RDF data model and ability to uniquely identify and
specify rules allows for the augmentation of existing rulesets with trust data.
Trust values and metrics may be defined separate from the data for which trust
is being assigned. This also allows third-party representations of trust, which
may not be possible in all trust model implementations. Furthermore, its rule-
based nature allows for more nuanced trust-assessment on the web than a simple
binary trust model, although binary trust models are also supported.

Although the examples in this paper make use of specific terms for trust and
PML and OPM ontologies for provenance, the general principles employed in the
motivating use case implementations can be used with any other trust and
provenance vocabularies that have an RDF representation. Our framework
may serve to construct and evaluate trust metrics in general, regardless of the
vocabularies used to encode provenance and trust.

Second, as a generic Semantic Web rule language, AIR is capable of reason-
ing over several different semantic representations of trust metrics, including
straightforward numerical values like that in Figure 7 and trust values assigned
on a per-pattern basis, such as in Figure 5. Thus, existing trust metrics may
be integrated with framework needing only a suitable mapping into the RDF
data model, and users may thus choose a trust model that best captures their
requirements.

Finally, our framework identifies two trust categories, namely content-based
and metadata-based, for assigning trust and recognizes that trust in rules is as
important as trust in data on the Semantic Web as rules are used frequently to

240 I. Jacobi, L. Kagal, and A. Khandelwal

make inferences over Web data. So far as we can tell, there exists no literature
regarding these categories or axes of trust within the context of rule systems.

7 Summary and Future Work

In this paper, we discussed the importance of trust on the Semantic Web and
identified two trust axes namely data and rules and two trust categories namely
content-based and metadata-based that are useful for trust declarations associ-
ated with Semantic Web data. Furthermore, we outlined a meta-modeling trust
framework and demonstrated how an implementation of this framework in the
AIR Web rule language could be used to develop different trust assessments
models.

Though this work demonstrates the usefulness of AIR, it relies on user-
generated rules for handling trust. As part of our future work, we will work
on general rules that will handle trust transparently such that users do not need
to explicitly know about or handle trust in their systems but will be able to
customize these rules to do it for them. We also intend to evaluate the addition
of trust as a first-class entity within AIR, potentially adding explicit support for
trust in built-in functions. Although the benefits to adding trust as an implicit
part of a rules language may be great, it is possible that the flexibility of trust
models is preferable to forcing one particular trust model on the language.

Acknowledgements

This paper is based upon work supported by the National Science Foundation
under Award No. CNS-0831442 and by the Air Force Office of Scientific Research
under Award No. FA9550-09-1-0152.

References

1. Artz, D., Gil, Y.: A Survey of Trust in Computer Science and the Semantic Web.
Web Semantics 5, 58–71 (2007)

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference, W3C Rec-
ommendation (February 10, 2004), http://www.w3.org/TR/owl-ref/

3. Berners-Lee, T.: Primer: Getting into RDF and Semantic Web using N3 (2005),
http://www.w3.org/2000/10/swap/Primer

4. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3Logic: A Logical
Framework For the World Wide Web. Journal of Theory and Practice of Logic
Programming (2007)

5. Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy
framework. Journal of Web Semantics 7, 1–10 (2009)

6. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust Man-
agement System Version. Internet RFC 2704 (September 1999)

7. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation (February 2002), http://www.w3.org/TR/rdf-schema

http://www.w3.org/TR/owl-ref/
http://www.w3.org/2000/10/swap/Primer
http://www.w3.org/TR/rdf-schema

Rule-Based Trust Assessment on the Semantic Web 241

8. Chu, Y.-H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: REFEREE:
Trust management for Web Applications. Computer Networks and ISDN Sys-
tems 29(8-13), 953–964 (1997)

9. Dai, C., Lin, D., Hwang, J., Kantarcioglu, M.: An Approach to Evaluate
Data Trustworthiness Based on Data Provenance. In: Jonker, W., Petković, M.
(eds.) SDM 2008. LNCS, vol. 5159, pp. 82–98. Springer, Heidelberg (2008),
doi:10.1007/978-3-540-85259-9 6

10. Gao, Q., Houben, G.-J.: A Framework for Trust Establishment and Assessment on
the Web of Data. In: Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, pp. 1097–1098. ACM, New York (2010)

11. Gil, Y., Ratnakar, V.: Trusting Information Sources One Citizen at a Time. In:
Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 162–176. Springer,
Heidelberg (2002)

12. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In:
Proceedings of Cooperative Intelligent Agents, pp. 238–249 (2003)

13. Hogan, A., Harth, A., Polleres, A.: SAOR: Authoritative Reasoning for the Web.
In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 76–90.
Springer, Heidelberg (2008)

14. Kagal, L., Hanson, C., Weitzner, D.: Using Dependency Tracking to Provide Ex-
planations for Policy Management. In: IEEE Policy 2008 (2008)

15. Kagal, L., Jacobi, I., Khandelwal, A.: Gasping for AIR: Why we need linked rules
and justifications on the Semantic Web. Technical Report MIT-CSAIL-TR-2011-
023, Massachusetts Institute of Technology (April 2011)

16. Kuter, U., Golbeck, J.: SUNNY: a new algorithm for trust inference in social
networks using probabilistic confidence models. In: Proceedings of the 22nd Na-
tional Conference on Artificial Intelligence, pp. 1377–1382. AAAI Press, Menlo
Park (2007)

17. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation Logic: A Logic-based Approach
to Distributed Authorization. ACM Transactions on Information Systems Security
(TISSEC) 6(1) (February 2003)

18. Liau, C.-J.: Belief, information acquisition, and trust in multi-agent systems–A
modal logic formulation. Artificial Intelligence 149, 31–60 (2003)

19. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Pro-
ceedings of IEEE Conference on Privacy and Security (1996)

20. McGuinness, D.L., Ding, L., da Silva, P.P., Chang, C.: PML 2: A Modular Ex-
planation Interlingua. In: AAAI 2007 Workshop on Explanation-aware Computing
(2007)

21. Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan, Y.,
Futrelle, J., Mcgrath, R.E., Myers, J., Paulson, P., Bowers, S., Ludaescher, B.,
Kwasnikowska, N., Bussche, J.V.D., Ellkvist, T., Freire, J., Groth, P. (eds.): The
Open Provenance Model (v1.01) (2008),
http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf

22. Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic
Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 351–368. Springer, Heidelberg (2003)

23. Sahoo, S.S., Sheth, A.: Provenir ontology: Towards a Framework for eScience Prove-
nance Management. In: Microsoft eScience Workshop (October 2009)

24. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A General Framework for Rep-
resenting and Reasoning with Annotated Semantic Web Data. In: AAAI (2010)

25. W3C OWL Working Group. OWL 2 Web Ontology Language, W3C Recommen-
dation (October 27, 2009), http://www.w3.org/TR/owl2-overview/

http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf
http://www.w3.org/TR/owl2-overview/

SOWL: A Framework for Handling

Spatio-temporal Information in OWL 2.0

Sotiris Batsakis and Euripides G.M. Petrakis

Department of Electronic and Computer Engineering,
Technical University of Crete (TUC),

Chania, Greece
{batsakis,petrakis}@intelligence.tuc.gr

Abstract. We propose SOWL, an ontology for representing and rea-
soning over spatio-temporal information in OWL. Building upon well
established standards of the semantic web (OWL 2.0, SWRL) SOWL
enables representation of static as well as of dynamic information based
on the 4D-fluents (or, equivalently, on the N-ary) approach. Both RCC-
8 topological and cone-shaped directional relations are integrated in
SOWL. Representing both qualitative temporal and spatial information
(i.e., information whose temporal or spatial extents are unknown such as
“left-of” for spatial and “before” for temporal relations) in addition to
quantitative information (i.e., where temporal and spatial information is
defined precisely) is a distinctive feature of SOWL. The SOWL reasoner
is capable of inferring new relations and checking their consistency, while
retaining soundness, completeness, and tractability over the supported
sets of relations.

1 Introduction

Ontologies offer the means for representing high level concepts, their properties,
and their interrelationships. Dynamic ontologies in addition enable representa-
tion of information evolving in time and space. Welty and Fikes [2] showed how
quantitative temporal information (i.e., in the form of temporal intervals whose
left and right endpoints are well defined) as well as the evolution of concepts
in time can be represented effectively in OWL using the so-called “4D-fluents
approach”.

In our previous work [1], we extended this approach in certain ways: (a) the
4D-fluents mechanism was enchanced with qualitative (in addition to quantita-
tive) temporal expressions allowing for the representation of temporal intervals
with unknown endpoints by means of their relation (e.g., “before”, “after”) to
other time intervals, and (b) spatial information was also supported. Accordingly,
the spatial representation supports both quantitative and qualitative expres-
sions. However, only basic (non-disjunctive) relations were supported. Neither
soundness nor completeness of reasoning were guaranteed.

This work handles all these issues. The expressiveness of the model increases
by introducing sets of disjunctive relations by means of SWRL rules and OWL 2.0

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 242–249, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

SOWL: A Framework for Handling Spatio-temporal Information 243

constructs. Both, the 4D-fluents and the N-ary relations approach are expanded
to accommodate this information. Reasoning implements path consistency [4]
and it is sound and complete.

Related work in the field of knowledge representation is discussed in Section 2.
This includes issues related to representing and reasoning about information
evolving in time and space. The SOWL representation model is presented in
Section 3 and the corresponding reasoning mechanism in Section 4, followed by
conclusions and issues for future work in Section 5.

2 Background and Related Work

The OWL-Time temporal ontology1 describes the temporal content of Web
pages and the temporal properties of Web services. Apart from language con-
structs for the representation of time in ontologies, there is still a need for
mechanisms for the representation of the evolution of concepts (e.g., events)
in time.Representation of time in the Semantic Web can be achieved using Reifi-
cation, N-ary relations2, temporal RDF [3], named graphs [10] or 4D-fluents [2].

Reification is a general purpose technique for representing n-ary relations us-
ing a language such as OWL that permits only binary relations. Specifically, an
n-ary relation is represented as a new object that has all the arguments of the
n-ary relation as objects of properties. Fig. 1(a) illustrates the relation Works-
For(Employee, Company, TimeInterval) representing the fact that an employee
works for a company during a time interval. Reification offers limited OWL rea-
soning capabilities [2] since the n-ary relation is represented as the object of
a property and thus OWL semantics over properties (e.g., inverse properties),
are no longer applicable. Following the N-ary relations approach, the temporal
property is represented by two properties each one related with the new object
(Fig.1(b)). This approach requires only one additional object for every temporal
interval, it maintains property semantics, but it suffers from data redundancy
in the case of inverse and symmetric properties (e.g., the inverse of a relation is
added explicitly twice instead of once as in 4D-fluents).

The 4D-fluents (perdurantist) approach [2] suggests that concepts in time
are represented as 4-dimensional objects with the 4th dimension being the time
(timeslices). Following the approach by Welty and Fikes [2], to add a time di-
mension to an ontology, classes TimeSlice and TimeInterval with properties
TimeSliceOf and timeInterval are introduced. Properties having a time dimen-
sion are called fluent properties and connect instances of class TimeSlice (see
Fig.1(c)). The 4D-fluents approach still suffers from proliferation of objects, but
it maintains full OWL expressiveness and reasoning support.

Representing spatio-temporal knowledge has also motivated research within
the Semantic Web community. Katz et al. [5] propose representing RCC-8 topo-
logic relations as OWL-DL class axioms (instead of object properties as in [1]),
but this approach has limited scalability as shown in [11]. In our previous work
1 http://www.w3.org/TR/owl-time
2 http://www.w3.org/TR/swbp-n-aryRelations

244 S. Batsakis and E.G.M. Petrakis

(a) Reification (b) N-ary Relations

(c) 4D fluents

Fig. 1. Example of (a) Reification (b) N-ary Relations and (c) 4D-fluents

[1], we proposed a spatio-temporal representation model supporting both quan-
titative and qualitative information. The qualitative relations were restricted to
basic (non disjunctive) relations.

3 SOWL Ontology

In SOWL, the 4D-fluents (or the N-ary representation), is enhanced with qual-
itative temporal relations holding between time intervals whose left and right
endpoints are not specified. This is implemented by introducing temporal rela-
tionships as object relations between time intervals. This can be one of the 13
pairwise disjoint Allen’s relations [8]. In addition, SOWL supports several types
of qualitative spatial relations. These can be either topologic or directional [4].
Fig. 2(a) illustrates the ontology representation of a static (non moving) object.
Since the location of the object is a static property, it is a property of the object
and not of a timeslice of the object (or the intermediate object introduced by
the N-ary approach). Class Location has attribute name (of type string). More-
over, a Location object can be optionally connected with a footprint class with
subclasses Point, Line, Polyline, and MBR, representing points, line segments,
surrounding contours of objects (or regions) as sets of consecutive line segments,
and Minimun Bounding Rectangles, respectively. In case of a moving object the
location is a property of a timeslice belonging to a specific time interval (Fig.
2(b)) or the intermediate object introduced by the N-ary approach.

In an ontology, each spatialRelation connects two locations and has two sub-
properties, namely, topologicRelation and directionalRelation. The topologic spa-
tial relations between regions can be extracted from their surrounding MBRs by
comparing their coordinates or contours using computational geometry. In case
of point-based representations, directional relations are computed using their
formal definitions [7,13], while, in case of regions, the directional relations are

SOWL: A Framework for Handling Spatio-temporal Information 245

(a) Static Object (b) Moving Object

Fig. 2. Ontology representation of (a) Static and (b) Moving objects

Y

Y

X X

X Y

X Y X Y

X

Y

X PO Y

Y
X

Y
X

X TPPi YX EQ Y

X DC Y X EC Y X TPP Y X NTPP Y

X NTPPi Y

W

SW
S

N
NE

SE

E

NW

.

Fig. 3. Topologic relations (left) Directional relations (right)

defined using their centroids. If quantitative information (i.e., location coordi-
nates) is not given, qualitative relations can be asserted into the ontology instead.
In this case, the reasoning mechanism will infer additional relations and detect
inconsistencies.
The topologic relations holding between two regions x,y (DC, EC, EQ, NTPP,
NTPPi, TPP, TPPi, PO), are referred to as RCC-8 relations [6], as shown in
Fig. 3 Direction relations holding between two points are defined based on cone-
shaped areas [7,13], as shown in Fig. 3. Nine direction relations can be identified,
namely, North (N), North East (NE), East (E), South East (SE), South (S),
South West (SW), West (W) North West (NW), and the identical point relation
(O), following the cone-shaped areas approach of Frank [7]. Directional relations
apply to objects represented by points (e.g., by their centroid).

4 Reasoning in SOWL

Reasoning in SOWL is realized by introducing a set of SWRL3 rules operating
on spatial (topologic or directional) relations as well as by a set of temporal
Allen rules for asserting inferred temporal relations. Notice that, OWL does not
support role intersection and that (in order to retain decidability4) transitivity
of properties cannot be combined with property disjointess . In SOWL, path

3 http://www.w3.org/Submission/SWRL
4 http://www.w3.org/TR/2009/REC-owl2-syntax-20091027

246 S. Batsakis and E.G.M. Petrakis

consistency is implemented using SWRL. Reasoners that support DL-safe rules
such as Pellet5 can be used for inference and consistency checking over spatio-
temporal relations.

The temporal reasoner implements the compositions of the 13 basic Allen re-
lations defined in [8]. These relations are: Before, After, Meets, Metby, Overlaps,
Overlappedby, During, Contains, Starts, Startedby, Ends, Endedby and Equals.
Not all compositions yield a unique relation as a result. For instance, the com-
position of relations During and Meets yields the relation Before as result,
while the composition of relations Overlaps and During yields the three possi-
ble relations Starts, Overlaps, and During. Rules corresponding to compositions
of relations R1, R2 yielding a unique relation R3 can be expressed in SWRL as
follows:

R1(x, y) ∧R2(y, z) � R3(x, z)

An example of temporal inference rule is the following:

During(x, y) ∧Meets(y, z) � Before(x, z)

Rules yielding a set of possible relations cannot be represented in SWRL since
disjuctions of atomic formulas are not permitted as a rule head. Instead, disjunc-
tions of relations are represented using new relations whose compositions have
been defined and asserted into the knowledge base. For example, if the relation
DOS represents the disjunction of relations During, Overlaps and Starts, then
the composition of Overlaps and During is expressed as:

Overlaps(x, y) ∧During(y, z) � DOS(x, z)

In addition to the above, inverse axioms (relations After, Metby, Overlappedby,
Startedby, Contains and Finishedby are the inverses of Before, Meets, Overlaps,
Starts, During and Finishes, respectively) and rules defining the relation hold-
ing between two intervals with known starting and ending points (e.g., if the
end of interval1 is smaller than the start of interval2, then interval1 is before
interval2) are also asserted into the knowledge base.

Notice that, starting and ending points of intervals are represented using con-
crete datatypes such as xsd:date that support ordering relations. Axioms con-
cerning relations that represent disjunctions of basic relations are defined using
the corresponding axioms for these basic relations. Specifically, compositions of
disjunctions of basic relations are defined as the disjunction of the compositions
of these basic relations. Similarly, the inverse of a disjunction of basic relations is
the disjunction of the inverses of these basic relations. For example, the inverse
of the disjunction of relations Before and Meets is the disjunction of the inverse
relations of Before and Meets (After and MetBy, respectively).

By applying compositions of relations, the implied relations may be incon-
sistent. Consistency checking is achieved using path consistency [4]. Path con-
sistency is implemented by consecutive applications of suitable instances of the
following formula:
5 http://clarkparsia.com/pellet

SOWL: A Framework for Handling Spatio-temporal Information 247

∀x, y, k Rs(x, y) � Ri(x, y) ∩ (Rj(x, k) ◦Rk(k, y))

representing intersection of compositions of relations with existing relations (the
symbol ∩ denotes intersection and the symbol ◦ denotes composition and sym-
bols Ri, Rj , Rk, Rs denote Allen relations). The formula is applied until a fixed
point is reached (i.e., application of rules does not yield new inferences) or until
the empty set is reached, implying that the ontology is inconsistent.

An additional set of rules defining the result of intersection of relations holding
between two intervals are also introduced. These rules have the form:

R1(x, y) ∧R2(x, y) � R3(x, y)

where R3 can be the empty relation. For instance, the intersection of relation
DOS (that represents the disjunction of During, Overlaps and Starts), and the
relation During yields the relation During as result:

DOS(x, y) ∧During(x, y) � During(x, y)

Intersection of relations During and Starts yields the empty relation, and an
incosistency is detected:

Starts(x, y) ∧During(x, y) � ⊥

The maximal tractable subset of Allen relations containing all basic relations
when applying path consistency comprises of 868 relations [12]. Tractable subsets
of Allen relations containing 83 or 188 relations [12] can be used for reasoning
as well, offering reduced expessivity, but increased efficiency over the maximal
subset. Notice that, the proposed temporal reasoning mechanism affects only
relations of temporal intervals and can work equally well in conjunction with
either the 4D-fluents or the N-ary relations approach.

The SOWL spatial reasoner implements rules for RCC-8 relations and cone-
shaped direction relations using SWRL and OWL 2.0 property axioms. All basic
relations are pairwise disjoint. Their inverse relations (e.g., North is the inverse
of South) are defined as well. Furthermore, the point identity relation (O) is
handled using the OWL SameAs keyword applied on points instead of explicity
asserting the relation. Path consistency is implemented by introducing rules
defining compositions and intersections of supported relations until a fixed point
is reached or until an incosistency is detected [9,13].

The directional relations in SOWL (under the assumption that the line sepa-
rating two 2D cone shaped areas, e.g., North from North-West, is part of one
of these areas, preserving the disjointness of basic relations) are a special case
of the revised Star Calculus [13] and therefore are decided by path consistency
when applied on basic relations. Furthermore, given a tractable set of relations
and by applying compositions, intersections and inverse operations until a set
of relations that is closed under these operations is yielded, the resulting set of
relations is also tractable [4]. By applying this method (closure method) on the

248 S. Batsakis and E.G.M. Petrakis

basic directional relations, a tractable set of relations containing the basic direc-
tional relations and all relations appearing as the result of their composition is
yielded. This set of directional relations is used for directional spatial reasoning.

Reasoning on RCC-8 relations also combines OWL property axioms along
with a set of composition rules (i.e., rules defining compositions of RCC-8 re-
lations) and intersection rules. Specifically, relations DC, EC and PO are sym-
metrical, and relations NTPPi and TPPi are inverse of NTPP and TPP, re-
spectively. In SOWL, the spatial reasoner implements the RCC-8 composition
rules defined in [9]. Notice that, extracting spatial relations from the raw spatial
data depends on the application and is not part of the reasoning mechanism. In
contrast to the model presented in [1], the proposed model is extended with addi-
tional relations corresponding to disjunctions of basic relations. Notice that using
the full set of relations (28− 1 relations in case of RCC-8) leads to intractability
since this set cannot be decided by path consistency. However, tractable sub-
sets of the full set are known to exist [4,12]. Such subsets are used in this work
offering increased expressive power while retaining tractability.

The resulting OWL ontology it is decidable, since it complies with OWL 2
specifications. and does not contain role inclusion axioms with cyclic dependences
or restrictions on composite (e.g., transitive) properties. Introducing the set of
temporal qualitative rules of Section 4 retains decidability since rules are DL-
safe rules6 and they apply only on named individuals of the ontology Abox
using Pellet (which support DL-safe rules). Furthermore, computing the rules
has polynomial time complexity since tractable subsets of Allen’s temporal and
RCC-8 and directional spatial relations are used. The selection of these tractable
subsets is a design decision representing a tradeoff between expressiveness and
efficiency.

As shown in [4], by restricting the supported relations set to a tractable subset
of Allen’s interval algebra (and the corresponding RCC-8 and directional spatial
relations), path consistency has O(n5) worst time complexity (with n being the
number of intervals) and is sound and complete. Also, any time interval (or
location) can be related with every other interval (or location) by at most k
relations, where k is the size of the set of supported relations. Therefore, for
n intervals or locations, using O(k2) rules, at most O(kn2) relations can be
asserted into the knowledge base. Note that, extending the model to the full
set of relations would result into an intractable reasoning procedure. Applying
the closure method over Allen, RCC-8, and directional relations, the minimal
tractable sets containing the basic relations consist of 29,49, and 33 relations,
respectively. For these sets, the required number of OWL axioms and SWRL
rules are 983, 1439, and 964, respectively.

5 Conclusions and Future Work

We introduce SOWL, an ontology capable of handling spatio-temporal informa-
tion in ontologies. The SOWL model extends our previous work [1] to handle
6 http://www.w3.org/TR/rif-rdf-owl

SOWL: A Framework for Handling Spatio-temporal Information 249

both quantitative and qualitative spatial and spatio-temporal information using
a sound and complete reasoning method based on path consistency. Incorpo-
rating additional forms of information (e.g., size and distance information) and
addressing performance and scalability issues for large scale applications are
important issues for future research.

References

1. Batsakis, S., Petrakis, E.G.M.: SOWL: Spatio-temporal Representation, Reasoning
and Querying over the Semantic Web. In: 6th International Conference on Semantic
Systems, Graz, Austria, September 1-3, pp. 1–9 (2010)

2. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. Frontiers in Arti-
ficial Intelligence and Applications 150, 226–236 (2006)

3. Gutierrez, C., Hurtado, C., Vaisman, A.: Introducing Time into RDF. IEEE Trans.
on Knowledge and Data Engineering 19(2), 207–218 (2007)

4. Renz, J., Nebel, B.: Qualitative Spatial Reasoning using Constraint Calculi. In:
Handbook of Spatial Logics, pp. 161–215. Springer, Netherlands (2007)

5. Katz, Y., Grau, B.: Representing Qualitative Spatial Information in OWL-DL. In:
Proc. of Int. Workshop: OWL Experiences and Directions, Galway, Ireland (2005)

6. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection.
In: Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, pp. 165–176.
Morgan Kaufmann, San Mateo (1992)

7. Frank, A.: Qualitative Spatial Reasoning: Cardinal Directions as an Example. Int.
Journal of Geographic Information Systems 10(3), 269–290 (1996)

8. Allen, J.F.: Maintaining Knowledge About Temporal Intervals. Communications
of the ACM 26, 832–843 (1983)

9. Cohn, A., Bennett, B., Goodayand, J., Gotts, N.: Qualitative Spatial Represen-
tation and Reasoning with the Region Connection Calculus. GeoInformatica 1(3),
275–316 (1997)

10. Tappolet, J., Bernstein, A.: Applied Temporal RDF: Efficient Temporal Querying
of RDF Data with SPARQL. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009)

11. Stocker, M., Sirin, E.: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning
and Query Engine. In: CEUR Workshop Proceedings, OWLED 2009, vol. 529, pp.
2–31 (2009)

12. Renz, J.: Maximal Tractable Fragments of the Region Connection Calculus: A
Complete Analysis. In: Int. Joint Conference on Artificial Intelligence, vol. 16, pp.
448–455 (1999)

13. Renz, J., Mitra, D.: Qualitative Direction Calculi with Arbitrary Granularity. In:
Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI),
vol. 3157, pp. 65–74. Springer, Heidelberg (2004)

Conditional Learning of Rules and Plans
by Knowledge Exchange in Logical Agents

Stefania Costantini1, Pierangelo Dell’Acqua2, and Luı́s Moniz Pereira3

1 Dip. di Informatica, Università di L’Aquila, Coppito 67010, L’Aquila, Italy
stefania.costantini@univaq.it

2 Dept. of Science and Technology - ITN, Linköping University, Norrköping, Sweden
pierangelo.dellacqua@liu.se

3 Dept. de Informática, Centro de Inteligência Artificial (CENTRIA), Universidade Nova de
Lisboa, 2829-516 Caparica, Portugal

lmp@di.fct.unl.pt

Abstract. This paper is related to logical agents and in particular discusses is-
sues related to learning sets of rules from other agents. In principle, the approach
extends to agent societies a feature which is proper of human societies, i.e., the
cultural transmission of abilities. However, the new knowledge cannot be blindly
accepted and incorporated, but should instead be evaluated (and thus possibly dis-
carded) according to its usefulness. We propose a technique and its formalization.

1 Introduction

Adaptive autonomous agents are capable of adapting their behavior according to changes
in the environment, by means of some kind of approach. As it is widely acknowledged, the
effects of learning should include at least one of the following: (i) the range of behaviors
is expanded: the agent can do more; (ii) the accuracy on tasks is improved: the agent can
do things better; (iii) the speed is improved: the agent can do things faster.

In this paper, we discuss an approach to learning centered on the possibility of ac-
quiring sets of rules from other agents, namely “learning by being told”. We assume in
fact that, whatever the formalism they are based upon, the agents that we are considering
have a rule-based knowledge base. The acquired sets of rules can either define a reac-
tion to a previously unknown event, or they can represent a plan to reach an objective.
Indeed, learning from others is a fairly practical and economical way of increasing abil-
ities, widely used by human beings: in fact, avoiding the cost of learning is an important
benefit of imitation. An agent that learns and re-elaborates the learned knowledge may
become itself an information producer, from which others can learn in turn.

However, agents should not blindly incorporate the new knowledge. Rather, they
should be able to evaluate how useful the new knowledge is, and on this basis decide
whether to keep or discard it. To this aim, we propose to associate to the acquired
knowledge a specific objective and (possibly) a set of conditions, including a time limit.
The purpose is that the new rules should help the agent reach that objective and fulfill the
conditions within the given time limit. After a while, the agent will evaluate whether
(or to what extent) this has been achieved. More sophisticated conditions/constraints
that have to be verified can also be specified. If the evaluation is unsatisfactory, the new

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 250–265, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Conditional Learning of Rules and Plans 251

knowledge will be discarded or possibly deactivated for future re-trial in a modified
context. There is a clear similarity between our approach and reinforcement learning,
where here the action that is to be evaluated is the use of the new knowledge.

The approach is developed in the context of a general agent model proposed in [1],
that provides high flexibility in how an agent is built and may evolve. In fact, we equip
an agent with forms of understanding and awareness that are “situated” at different
control layers. Beyond the basic control layer we introduce in fact a meta-control, where
non-trivial supervising and tuning tasks can be performed, based on suitable control and
meta-control information. It is at the meta-control level that we introduce the check for
the evaluation of the acquired knowledge.

The present work was initiated by the experiments with the prototype implemen-
tation presented in [2], developed in DALI [3,4]. Later on, we have empowered the
implementation with the temporal-logic-like operators that we introduced in [5,6], and
we have performed some experiments in Ambient Intelligent applications [7]. In this
paper, we present a further evolution of our approach, which as mentioned has been
enriched with a meta-evaluation component, and generalized so as to make it usable in
many rule-based agent-oriented approaches.

The paper is organized as follows. In Section 2 we further discuss motivations
and potential usefulness of the proposed approach, and we outline the features of our
proposal that we illustrate in more detail in Section 3. We introduce the semantics in
Section 4. In Section 5 we propose a case-study, formalized in the language of our im-
plementation: namely, we define an artificial fish able to learn from its shoal what to
do in certain situations. Finally, we discuss related work and conclude in Section 6. In
the Appendix we present the DALI language, as in fact our approach has been imple-
mented in DALI and is under some respects inspired to features of the DALI language
and architecture.

2 Motivations and Overall Framework

Learning may allow agents to survive and reach their goals in environments where a
static knowledge is insufficient. The environmental context can change, cooperative
or competitive agents can appear or disappear, ask for information, require resources,
propose unknown goals and actions. Then, agents may try to improve their potential by
interacting with other entities so as to perform unknown or difficult tasks.

One of the key features of MAS is the ability of “sub-contracting” computations to
agents that may possess the ability to perform them. More generally, agents can try to
achieve a goal by means of cooperative distributed problem-solving. However, on the
one hand not all tasks can be delegated, and on the other agents may need or may want
to acquire new abilities to cope with unknown situations. In our view, an improvement
in the effectiveness of MAS may consist in introducing a key feature of human societies,
i.e., cultural transmission of abilities. Without this possibility, agents are limited under
two important respects:

– they are unable to expand the set of perceptions they can recognize, elaborate on
and react to;

– they are unable to expand their range of expertise.

252 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

In fact, a well-known and particularly difficult problem in AI is the so-called “brit-
tleness” problem: automated systems tend to “break” when confronted with even slight
deviations from the situations specifically anticipated by their designers. Indeed, the
flexibility and thus the “intelligence” of agents may increase if they become able not
only to refine but also to enlarge their own capabilities. The need of acquiring new
knowledge can be recognized by an agent at least in relation to the following situations:

1. There is an objective that the agent has been unable to reach: it has been unable to
relate a plan (in the KGP perspective [8]) or intention (in a BDI perspective [9])
to that objective (or desire) and it has to acquire new knowledge (beliefs)1. As a
particular case, there is a situation the agent is unable to cope with; for instance,
there is an exogenous event that the agent does not recognize.

Use case. An agent located in a network router for security management has to
recognize and respond to attacks, and perform repairs. It is impossible to delegate
this tasks, it is instead possible in some cases to learn suitable behaviors from
trusted agents. For instance, the agent may perceive an unknown external event that
presumably corresponds to an unknown attack: it can try to learn how to respond.
Also, the agent can recognize an attack, and devise a plan for response and repair,
but some step of this plan fails: the agent can try to learn alternative ways to reach
the objective.

2. There is some kind of computation that the agent is unable to perform.
Use case. An agent which acts as a mediator in a data integration context is

responsible for reformulating, at runtime, queries defined on a (virtual) mediated
schema into the local(actual) schemata of the underlying data sources. Most medi-
ator systems use wrappers to handle the task of data access, data retrieval, and data
translation: a wrapper module is able to access specific data sources, extract se-
lected data, and translate source data formats into a common data model designed
for the integration system. If a new data source is added to the system, a suitable
wrapper may be missing. Delegating the wrapping is unpractical and would in most
cases unacceptably spoil efficiency. The agent can try to acquire the wrapper from
another and thus “learn” how to cope with the new data format.

Assuming that the agent establishes that it cannot resort to cooperation to get its task
performed, it can still resort to cooperation in order to try to acquire the necessary piece
of knowledge from another agent. The problems involved in this issue are at least the
following: how to ask for what the agent needs; how to evaluate the actual usefulness
of the new knowledge; and, how this kind of acquisition can be semantically justified
in a logical agent.

In this paper, we make the simplifying assumption that there are ways for asking
other agents and obtaining the potentially needed new knowledge. In our view it should
not in principle be required that the involved agents be based on the same inference
mechanism. It is reasonable however to assume that they are somehow “compatible”:

1 By some abuse of notation, we use the words ’knowledge’ and ’belief’ as synonyms when
referring to agents. In fact, we implicitly consider autonomous agents that are in general not
able to resort to ’knowledge’ as such but only have their possibly subjective ’beliefs’.

Conditional Learning of Rules and Plans 253

in particular, we assume that all the involved agents are rule-based and are able to
incorporate prolog-like sets of rules.

In order to show that indeed we do not neglect this issue, we briefly summarize the
learning rules process that we have defined and experimented in the prototype imple-
mentation of [2]. This solution is based on the introduction of a mediator agent that we
called yellow rules agent , keeping track of the agents specialization and reliability,
and of which pieces of knowledge they are willing to share with others. When an entity
needs to learn something, it asks the yellow rules agent for the names of agents hav-
ing a certain specialization and being more reliable, that have declared to possess the
needed piece of knowledge. In particular, in our implementation the requester provides
the yellow rules agent with a set of keywords that the latter will try to match with the
current contents of its directory.

Once obtained this information, the agent may acquire the desired knowledge by
some of them. If the agent will finally decide to incorporate the learned rules in its
program because they work correctly, it will also send to yellow rules agent a message
indicating satisfaction. This will result in an increment of the reliability of the agent that
has provided the rules. A negative experience will imply an unfavorable dispatch. In the
present implementation agents return a numeric value indicating the “level of trust”. In
updating the level of trust, our yellow rules agent adopts a model that updates trust
only when the information is sufficient, i.e., after a certain number of reports which are
in accordance, sent by reliable agents (we have treated this topic at some length in [10]).

However, as described in the Appendix the DALI language provides a communica-
tion layer where meta-rules can be defined so as to filter incoming and out-coming com-
munications. These meta-rules are defined independently of the main agent program, so
that the communication behavior of an agent can be “tuned” in an elaboration-tolerant
way. This allows one to equip an agent with specific meta-rules, according to the strat-
egy of trust management and knowledge retrieval that one wants to adopt. Therefore,
our implementation is easily customizable to accommodate any strategy.

In summary, when an agent needs some knowledge it will first obtain the names
of one or more agents that it is possible to ask for missing rules. Then it will contact
(some of) them according to both the society’s and the personal reliability evaluation
of these agents. Finally, it will get the required item in a standard format (see e.g. the
case-study in Section 5) so as to be able to use it. The exchanged piece of knowledge
should include all the relevant rules in the sense of [11], i.e., all the rules which are
required (directly or indirectly) for actually using that knowledge. Also, acquired rules
should be submitted to a suitable renaming process so as not to overlap or interfere with
the original knowledge base of the receiver agent.

At this stage, the receiver agent has to face two problems:

(a) establish whether the new knowledge is consistent, or at least compatible, with its
knowledge base, and also self-consistent given the facts and the knowledge base.
This is a topic which has long been studied in belief revision [12], and that we do
not discuss here.

(b) establish whether the new knowledge is actually useful to the purposes for which
it has been acquired. If so, it can possibly be definitely asserted in the knowledge
base. Otherwise, it can possibly be discarded.

254 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

Thus, agents should be able to evaluate how useful the new knowledge is. Similarly
to reinforcement learning, techniques must be identified so as to make this evaluation
feasible with reasonable efficiency. The discussion of heuristics for the evaluation is
outside the scope of this paper, where we intend to outline the general setting, that can
however accommodate several possibilities in a modular fashion. In fact, as discussed
in the next section, the evaluation will be performed by means of a set of meta-rules
that can be modularly defined independently of the “main” agent program. However, in
general in our framework usefulness will not be evaluated by a simulation (which would
be time-costly and would possibly worsen the problem of brittleness), rather it will be
evaluated based on practical usage. This makes the topic of trustworthiness particu-
larly relevant, as knowledge obtained by reliable sources is assumed to be maybe “not
so good” but however not harmful for the receiving agent. Simple techniques to cope
with this problem that we have already to some extent experimented in our prototype
implementation are the following.

1. The new knowledge has been acquired in order to cope with an unknown event so
as to fulfill some conditions: the agent can confirm/discharge the new knowledge
according to the conditions being satisfied or not.

2. The new knowledge has been acquired in order to reach an objective: the agent can
confirm/discharge the new knowledge according to its reaching/not reaching the
objective. This evaluation can be related to additional parameters, like e.g. time,
amount of resources needed, quality of results.

3. The new knowledge has been acquired for performing a computation: results which
are not “sufficiently good” (given some sort of evaluation) lead to the elimination
of the related piece of knowledge. The agent can possibly acquire the same type of
knowledge from several sources, and compare/combine the results.

When some new knowledge is received, it will be used by the agent, one or more
times, to the aim for which it has been acquired. After these trials, the receiver agent
is able to assess the usefulness of the new knowledge, and decide whether it can be
confirmed (i.e., permanently added to the knowledge base) or discarded. Possibly, rather
than totally discarded the new knowledge can be de-activated for future possible re-trial
or usage in a modified context.

The main point of our approach and the novel aspect proposed in this paper is that a
meta-level device will be responsible of checking the usefulness of the new knowledge.
Meta-level axioms will state on which basis the knowledge has to be evaluated. In fact,
it is widely recognized (see, e.g., [13]) that coping with unexpected situations involves,
for an agent, meta-level monitoring, reasoning about, and, when necessary, altering its
own behavior. The agent meta-control, based on a meta-history, will then determine
assimilation or discarding or deactivation of the new knowledge, by performing the
checks for deciding whether to keep it.

Though our experiments have been performed in DALI, we do not intend to commit
to a specific agent formalism or language. In fact, the semantic that we propose in Sec-
tion 4 is general enough to accommodate many agent-oriented rule-based approaches.

Conditional Learning of Rules and Plans 255

3 The Approach

In this Section we illustrate the specific features of the proposed approach. Let A be
an agent defined according to some logic-based agent model M. Assume that A has
reached some stage of its operation where it recognizes the need of acquiring new
knowledge from the outside in order to cope with a situation that cannot be managed by
means of the knowledge which is presently available. A learning step is thus in order.

We introduce the possibility for the agent to learn reactive rules and plans. Once
acquired, the new knowledge is stored in two forms.

– As plain knowledge added to the set of beliefs, so that the agent is able to use it.
– As meta-information, that allows the agent to “trace” the new knowledge, in the

sense of recording what has been acquired, when and with which expectations. The
meta-information allows the agent to perform meta-reasoning on these aspects. If
the agent should conclude that the new rules must be removed because the expec-
tations have not been met, the meta-information will be used to locate the rules in
the beliefs and remove them.

The syntax that we adopt both in this Section and in the case-study of Section 5 is
often reminiscent of logic programming: variables in upper case, constants and pred-
icates in lower case, connective ← (or :- like in many practical systems) between the
head (conclusion) of a rule, and its body (conditions). Syntax is also reminiscent of the
DALI language, where some new connectives are introduced (e.g., :> is a new connec-
tive that defines a reactive rule).

However, this syntax (which is the syntax of our implementation) is in general terms
by no means mandatory, as it is basically aimed at illustrating on the one hand the
conceptual elements of the approach and on the other hand how it can be put at work.
A suitable variant of the syntax can be developed when applying the approach to some
other practical setting.

We may assume for instance that the meta-information associated to a set of rules
that an agent learns from the outside for coping with a previously unknown event has
the following form:

react(R, event(E), rules(R1,. . . ,Rn), cond(pos(P), neg(N)), time(T))

where R is an identifier for this set of rules (a constant); E specifies the event to
be coped with; R1, . . . , Rn are the acquired reactive rules plus their required auxiliary
rules; cond specifies in the pos part the positive condition(s) that have to be fulfilled
after reaction ensues, and in the neg part the negative conditions; time specifies the time
threshold allowed for condition fulfillment. For example:

react(r1,event(rains), rules((head(rains),body(open umbrella))),
cond(pos(true),neg(wet)), time())

means that r1 is a rule acquired for coping with external event of rain, and that the
condition to be fulfilled via the reaction is not getting wet. One rule is provided, in
particular a reactive rule where the head is the event that has occurred, i.e., rains and
the body specifies the action to be undertaken then, i.e., open umbrella.

256 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

Analogously, we assume that the meta-information associated to a set of rules that
an agent learns from the outside and that represent a plan for coping with an objective
that previously could not be reached has the following form:

plan(P, obj(O), steps(S1,. . . ,Sn), cond(pos(P), neg(N)), time(T))

where P is an identifier for this plan (a constant); O specifies the objective to be reached
via this plan; S1, . . . , Sn represent the steps of the plan plus the needed auxiliary rules;
cond specifies in the pos part the positive condition(s) that have to be fulfilled while
reaching for the objective, and in the neg part the negative conditions; time specifies the
time threshold allowed for reaching the objective. Example:

plan(toAirport, objective(atAirport), steps(. . .),
cond(pos(moneySpent≤ 200), neg(lostPlane)), time(18:30))

meaning that plan toAirport is aimed at getting at the airport while spending less that
an amount 200 and avoiding to lose the plane.

Supervising activities will in general rely upon a meta-history generated during the
agent’s operation, that integrates in time the existing meta-control information. The
meta-history should contain at least a list of:

- which goals have been set and at which time;
- which goals resulted in being successful/failed/timed-out and at which time;
- which incoming external events were known to the agent (and thus have been re-

acted to) and which ones were unknown instead.

The basic supervising activity can be based upon a mechanism similar to that of
the internal events of the DALI logic programming agent-oriented language [3,4]. I.e.,
expectations related to each piece of new knowledge are (automatically) checked from
time to time, and actions are undertaken on awareness of their violation.

Various properties that should be respected by the agent behavior can be expressed
over the meta-history, also in terms of (adapted versions of) temporal statements, such
as those introduced in [5,6]. When goal g is set, a record goal set(g) : t1, t2 is added to
the meta-history, meaning that the agent has decided at time t1 to pursue this goal, that
should be achieved by time t2.

Whenever a goal is either reached, or failed or timed-out, a record of the form
successful(g) : t or failed(g) : t or timed out(g) : t is added to the meta-history,
where t is the time where the meta-conclusion about the outcome has been reached.
Assume that time-stamps can be omitted if not needed.

Whenever an external event e that reaches the agent is recognized, a record of the
form known(e) : t is added to the meta-history, where t is the time when the event
occurred. If instead the event is not recognized, a record of the form unknown(e) : t is
instead added.

4 Semantics of Learning by Rule Exchange

We adopt here the general agent model of [1], which does not stick to any specific ap-
proach for defining logical agents. Rather, the specific agent modelM that one intends

Conditional Learning of Rules and Plans 257

to embrace is an “input parameter” of the overall framework. As we will see however,
it is defined in terms of components that, together, constitute and agent program, and is
thus particularly suitable to represent rule-based agents.

An agent in this framework is characterized by an agent programP (defined in terms
of the specific instance agent model M) and a suitable underlying operational mech-
anism U that can be understood as an implementation which is able to run the agent
program. P encompasses an explicit control component C, operating on suitable con-
trol information CI.

To the aims of the approach that we are introducing in this paper, below we aug-
ment the framework of [1] by introducing a meta-control componentMC, operating on
suitable control informationMCI. Correspondingly, the underlying operational mech-
anism is enriched by a meta-control mechanismH. Formally:

Definition 1. Let M be an agent model. An agent program or simply “agent” P is a
tuple 〈B,DI,SC,BM, CS,A, C, CI,MC,MCI〉 of software components where: B is
the set of the agent’s beliefs;DI the set of desires and intentions; SC is the sensing and
communication component; BM is the belief management; CS a set of constraints; A
is the set of actions that the agent has devised to perform; C is the object-level control
component and CI the control information; MC is the meta-control component and
MCI the meta-control information. Each component of the tuple is defined (or omitted)
according to M.

The operational behavior of the agent will result from the control and meta-control
components C and MC given the control and meta-control information CI and MCI
. In general, this information will be partly specified in advance and partly up-
dated/generated later. The agent actual functioning in the environment where its is situ-
ated relies on underlying control and meta-control mechanismsU andH that implement
the practical counterpart of the agent model.

Definition 2. Let M be an agent model and P an agent program. Let the initial agent
A0 = P Let E = {E0, . . . , En} be a sequence of sets of events. The underlying control
mechanism U ofM is a transformation function that transforms (E0, A0) step by step
into a sequence of agents A1, . . . , An. This transformation exploits the events Ei and
the components Ci and CIi of every agent Ai (i ≥ 0):

(Ei, Ai) U(Ci,CIi)−−−−−−→ Ai+1

The meta-control acts by means of single steps, similarly to the control. Then, given as
before an agent program P , and an initial agent A0 = P :

Definition 3. Let E = {E0, . . . , En} be a sequence of sets of events. The underlying
meta-control mechanismH ofM is a transformation function that transform (E0, A0)
into a sequence of agents A1, . . . , An. This transformation exploits the events Ei and
the componentsMCi andMCIi of every agent Ai (i ≥ 0):

(Ei, Ai) H(MCi,MCIi)−−−−−−−−−−→ Ai+1

258 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

Based on suitable (meta-)control information, the meta-control can be exploited either
in a domain-dependent or in a domain-independent fashion for supervising, checking,
tuning many aspects.

Definition 4. Let M be an agent model and P an extended agent program. Given a
sequence of sets of events E = {E0, . . . , En}, the operational behavior of P is defined
as a sequence of transformation steps interleaving control and meta-control.

We thus assume to perform some steps of meta-control after a number of steps of con-
trol. We do not specify here how many these steps are: they may be specified either in
advance (built-in in UM andHM) or in the control information.

Our approach to rule exchange fits in this semantic framework: in fact, the history
and the meta-history will be included into the control and meta-control information CI
and MCI. Among the actions devised by an agent at each step there may be a request
for new rules to other agents. An incoming event can be the arrival of such new rules
that will be managed, as exemplified in Section 5, by the meta-control MC and thus
made available to the control component C.

For the declarative semantics, we refer to the general setting introduced in [14].
where changes, either external (e.g., agent’s reception of exogenous events) or internal
(e.g., courses of actions undertaken based on internal conditions) are considered as
producing a corresponding change in the agent program, which is a logical theory, and
in its semantics (however defined). For such a change to be represented, we understand
this change as the application of a program-transformationfunction. Also belief revision
can be seen as a step of program transformation that in this case results in the updated
theory.

In order to cope with adding and deleting the new knowledge we rely on the approach
of EVOLP [3], that allows (sets of) rules to be conditionally added or deleted from a
program. The EVOLP approach can be smoothly merged into our semantics: some of
the evolution steps determined by the meta-control will be (a series of) EVOLP steps
that imply requiring, adding or dropping some knowledge pieces.

5 Case Study: An Artificial Fish

The case-study that we consider is in the realm of adaptive controllers, where an adap-
tive controller can change its behavior in response to changes in the dynamics of the
process and the disturbances [15]. In particular, we consider hybrid control systems,
i.e., systems whose behavior is defined by processes of diverse characteristics. In our
setting, such a controller is modeled ad depicted in Fig 1.

Its architecture consists of two loops. The inner loop is an ordinary feedback loop
composed of the process and the controller. The behavior of the controller is adjusted by
the outer loop which consists of a supervisory controller, that coincides with the meta-
control component. In this context, we assume that the rules included in the controller
are not completely available from the beginning, but instead are learned when needed
and then evaluated by the supervisor.

We consider as a scenario a virtual marine world inhabited by a variety of fish. They
autonomously explore their dynamic world in search for food. Hungry predator fish

Conditional Learning of Rules and Plans 259

E

Supervisor
H(MC,MCI)

Controller

Process

E
U(C,CI)

Fig. 1. Supervisory control system architecture

stalk smaller fish who scatter in terror. For simplicity, the behavior of a fish is reduced
to eating food and escaping, and is determined by the motivation of it being satiated
and safe. In [16], McCarthy considers that “A fish cannot take instruction from a more
experienced fish in how to swim better” as an example of a handicap that prevents fish
from improving their behavior. Next, we show how our artificial fish can overcome this
obstacle by receiving instructions, say from members of its shoal. In the reality, it will
most presumably just imitate its mates. In our setting, this behavior is realized by asking
for rules that will help it cope with an unknown situation.

Each fish is described by variables with values in the range [0 1] with higher values
indicating a stronger desire to eat or to avoid predators. In the formalization, we let t
denote the clock time of the system.

– hungry : it expresses how hungry the fish is and it is approximated by

hungry(t) = min {ΔT × a, 1}
where ΔT denotes the time since the last meal and a indicates the appetite of the
fish;

– fear : it quantifies the fear of the fish by taking into account the distance d(t) of the
fish to visible predators

fear(t) = min {D/d(t), 1}
where D indicates how coward the fish is.

The input vector to the controller is

x̃(t) =
[

hungry(t)
fear(t)

]

The fish behavior as well as its internal state (i.e., its beliefs) are modeled by means
of an agent program

M = 〈B, C, CI,MC,MCI〉
where B is the fish’s beliefs component (the remaining components are omitted as not
necessary for this application). The controller and its supervisor are formalized via C

260 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

and CI, andMC andMCI, respectively. Assume that at some state α the meta-control
information componentMCIα contains the rules

prop1(E)← SOMETIMES not know(E)

(r1) prop1(E):>learn(new rule for(E))

know(hunger)

stating that any time there exists an unknown event, then a new rule to cope with that
event must be learned. Suppose that at state α the fish knows that it has to search for
food when it is hungry. This is formalized in CIα with the reactive rule (see Appendix):

hunger(X), X ≥ 0.5, not food :> search(food)

where X is the value of hungriness. Note that the stimuli of the fish (i.e., its input
vector x̃(t)) are represented at the controller level via the notion of event. For example,
the value v of the stimulus hungry(t) of the process is represented as hunger(v).

Suppose that the fish perceives the stimulus of fear. Being this stimulus unknown,
MC requires a new rule to handle the unknown event via the reactive rule (r1).

Assume that at a later state α2, the meta-control receives in response to its request
the rule:

(r2) react(#2, event(fear), rules(�fear(X), X ≥ 0.5, nearby(predator) :> flee�),
cond(pos(true), neg(nearby(predator))), time(10))

Here, �r� abbreviates the representation of a rule r and #2 is a unique rule iden-
tifier. Rule r2 is a meta-rule, and is aimed at producing actual object-level rules to be
employed by the fish. In particular, upon reception of r2 rules r4 and r5 are generated
in a standard way and added to the fish belief base. r2 looks highly domain-specific,
as it is supposed to be provided by some other fish of the shoal. However, its structure
is general, and it can be seen as the instance of a meta-meta rule for encoding sets of
rules to be shared with other agents. In this setting, we suppose that the supervisor also
receives a related evaluation rule which is more detailed than r2 and declaratively ex-
presses how to evaluate r2. In principle, different evaluation rules might be associated
to the same learned meta-rule.

(r3) eval(#2, act(pos(nearby(predator)), neg(false)),
obj(pos(true), neg(nearby(predator))),
time(20), criticality(high), action(drop rule))

Abstracting away from domain-specific aspects, it can be seen that r3 is an instance
of a meta-meta rule and in fact it states (in addition to what already expressed in r2):
the activation conditions to start the evaluation (in this case, the simple fact that r2
has been received); the objectives that need to be achieved as well as the time interval
to achieve them (in this case they add nothing to r2, but more conditions might be
stated), the criticality level of the rule under evaluation; the action to be undertaken if
the objectives are not fulfilled within the time constraints. From r3, rules r6-r9 below
can be automatically generated.

Conditional Learning of Rules and Plans 261

Then, the extended agent program (representing the overall behavior of the fish) Aα2

evolves through a meta-control step as follows:

(Eα2 , Aα2) H(MCα2 ,MCIα2)−−−−−−−−−−−−→ Aα2+1

where

Eα2 = {r2, r3}
Aα2 = 〈Bα2 , Cα2 , CIα2 ,MCα2 ,MCIα2〉
Aα2+1 = 〈Bα2+1, Cα2+1, CIα2+1,MCα2+1,MCIα2+1〉 (defined below)

The aim of this meta-control step is to incorporate the new learned rules into the
extended agent program Aα2 . These new rules may be possibly de-activated later if
they are considered not useful. When a rule is acquired it is assumed to be active. Every
learned rule is exploited only if active. Whenever the supervisor takes the decision to
drop a rule, it simply drops the assumption of the rule being active. This leaves the way
open to a possible later re-activation of the rule.

As mentioned, the rules that are added at the object level so as to make the incoming
rules r2 and r3 operative are rules r4-r12 (specified below in the same syntax that we
have already employed in Section 3). Rule r4 states that the reactive rule related to
r2 (and denoted by its identifier #2) can be applied whenever: (i) it is active and (ii)
the corresponding event (left-hand side) has occurred. In this case the reaction (right-
hand side) will take place. Rule r5 states that #2 is active. Rule r6 sets the objectives
specified in the evaluation rule r3, while r7 asserts the related meta-history item. Rules
r8 checks whether the objective has been achieved in time, while r9 asserts the related
meta-history item.

Rules r10-r12 can be considered to be specific of this particular agent, and state what
to do whenever the evaluation of knowledge acquired from outside is negative. In partic-
ular, rule r10 specifies that an objective must never go timed-out (which in this setting
subsumes failure) and r11 states what to do if this requirement is violated: drop rule
#2. This will consist, as discussed above, in performing an assert(not active(#2)) to
de-activate the rule.

(r4) active(#2), fear(X), X ≥ 0.5, nearby(predator) :> flee
(r5) active(#2)

(r6) obj(#2, cond(pos(true), neg(nearby(predator))))←
nearby(predator), active(#2)

(r7) obj(#2,X), not obj set(#2,), current time(T) :> assert(obj set(#2,X):T,T+10)

(r8) obj achieved(#2):T←
obj set(#2,cond(pos(P),neg(N))):T1,T2,
P, not N, current time(T), T ≤ T2

(r9) obj achieved(#2):T :> assert(obj achieved(#2):T)

262 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

(r10) prop3← NEVER obj set(#2,), timed out(#2)
(r11) not prop3 :> drop(#2)
(r12) timed out(#2)←

not obj achieved(#2), obj set(#2,):T1,T2
current time(T), T > T2

The extended agent program Aα2+1 is therefore defined as follows (where in EVOLP
notation ◦ denotes rule assertion):

CIα2+1 = CIα2 ◦ {r4, r5}
MCIα2+1 = MCIα2 ◦ {r5 − r12}
andMCα2+1 = MCα2

Bα2+1 = Bα2 ◦ {}
Cα2+1 = Cα2 ◦ {}
MCα2+1 =MCα2 ◦ {}

That is, Aα2+1 is obtained by updating (wrt. the EVOLP semantics) the components
of Aα2 with the specified sets of rules.

In this kind of setting, preferences/priorities among events are particularly impor-
tant (in DALI, such priorities can be provided in the initial control information as-
sociated to an agent program). In fact, in our example fear must be given higher
priority than hunger. Otherwise, paradoxical behavior may arise: suppose that in a
later state α3, the controller and the supervisor perceive high values for both the
fear and the hunger stimuli, and the event that a predator is nearby, that is, Eα3 =
{nearby(predator), fear(0.7), hunger(0.6)}. In such a situation, the controller has two
alternative choices: either search for food or flee. Suppose that, without priorities having
been stated, it selects the first alternative. Then, it is easy to see that if the time interval
of 10 passes by, time out(#2) holds in MCIα3+i, for some i. Being the objective set
for #2, prop3 holds by rule r10. This will trigger the reactive rule r11 thus resulting in
the removal (more precisely, in the de-activation) of rule r4. That is, CIα3+i+1 would
be CIα3+i ◦ {assert(not active(#2))}.

6 Related Work and Concluding Remarks

We have proposed an approach that allows logical agents to adopt a form of learning
which consists in improving each agent’s skills by acquiring new knowledge from other
agents. We believe that this kind of technique can be often useful, and in some applica-
tion contexts it can even be a key feature.

The problem that we have tackled here is specific to the particular realm of agents,
that are able to acquire knowledge from other agents, i.e., from the “society” to which
they belong. This is not in contrast with an agent adopting direct (“deep”) learning
techniques, rather it is complementary. In fact, as deep learning is time-consuming and
costly, each agent in a society may apply a combination of deep learning and imitation.

We have illustrated a specific instance of the approach, that we have implemented in
DALI, and we have discussed a case-study. The implementation, though prototypical

Conditional Learning of Rules and Plans 263

and specific for DALI agents, constitutes a proof-of-concept for the effectiveness of the
approach. However, in the overall framework that we have depicted we did not stick to a
specific formalism or language for logical agents. In fact, the approach and its semantics
are general enough to allow for a wide applicability.

Our approach brings some similarity with the approach of [17,18]. There, a BDI
agent not possessing a plan to manage an event, is able to ask agents from a certain
set S for such a plan. Symmetrically, an agent can define each of its plans as private,
public, or sharable with a set of trusted agents. This copes with the problem of where
to find the needed knowledge. Their approaches has been implemented and applied for
instance to the scenario of service-oriented computing. Our approach adds the aspect of
meta-reasoning for evaluating, activating and de-activating the new knowledge, where
this evaluation may in principle affect the level of trust of source agent.

The works in [19,20] are aimed, again in a BDI context, at filtering new percepts
according to their expected relevance to the current agent’s ongoing desires and inten-
tions. This may also help an agent to understand when to reconsider her deliberations.
The latter proposal adopts meta-reasoning techniques for doing so. The principles and
methods outlined in these works might be suitably integrated in our approach so as to
evaluate how relevant the acquired new knowledge can be to the current context: in
our experiments we considered quite rough methods for knowledge evaluation, while
the mentioned approaches propose more involved evaluation techniques. As however
our approach is modular w.r.t. this aspect, we can in future work implement such tech-
niques in the communication layer of our architecture. In fact, [20] explicitly advocates
this kind of meta-reasoning to be performed in a preprocessing module on incoming in-
formation. Future work will certainly be concerned with more involved techniques for
knowledge retrieval and evaluation. To this aim, we intend to design meta-meta levels
for controlling knowledge exchange.

Finally, we intend to fully implement an instance of the proposed framework, ac-
commodating not only DALI agents but also other kinds of agents and architectures.

References

1. Costantini, S., Tocchio, A., Toni, F., Tsintza, P.: A multi-layered general agent model.
In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 121–132.
Springer, Heidelberg (2007)

2. Costantini, S., Tocchio, A.: Learning by knowledge exchange in logical agents. In: Proc. of
WOA 2005, From Objects to Agents: Intelligent Systems and Pervasive Computing (2005)
ISBN 88-371-1590-3

3. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424,
p. 1. Springer, Heidelberg (2002)

4. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 685–688. Springer,
Heidelberg (2004)

5. Costantini, S., Dell’Acqua, P., Pereira, L.M.: A multi-layer framework for evolving and
learning agents. In: Proc. of the AAAI 2008 Workshop on Metareasoning: Thinking about
Thinking. Stanford University, AAAI Press (2008)

264 S. Costantini, P. Dell’Acqua, and L. Moniz Pereira

6. Costantini, S., Dell’Acqua, P., Pereira, L.M., Tsintza, P.: Runtime verification of agent prop-
erties. In: Proc. of the Int. Conf. on Applications of Declarative Programming and Knowledge
Management, INAP 2009 (2009)

7. Costantini, S., Dell’Acqua, P., Pereira, L.M., Toni, F.: Learning and evolving agents in user
monitoring and training. In: Proc. of the AICA Italian Conference, L’Aquila, Italy (2010)

8. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis,
K., Terreni, G., Toni, F.: The KGP model of agency: Computational model and prototype
implementation. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 340–367.
Springer, Heidelberg (2005)

9. Rao, A.S., Georgeff, M.: Modeling rational agents within a bdi-architecture. In: Proc. of the
Second Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1991), pp.
473–484. Morgan Kaufmann, San Francisco (1991)

10. Costantini, S., Tocchio, A., Verticchio, A.: Communication and trust in the DALI logic pro-
gramming agent-oriented language. J. of the Italian Association of Artificial Intelligence,
Intelligenza Artificiale 2(1) (2005) (in English)

11. Dix, J.: A classification theory of semantics of normal logic programs: I. strong properties.
Fundamenta Informaticae 22(3) (1995)

12. Antoniou, G.: Nonmonotonic Reasoning. The MIT Press, Cambridge (1997), with contribu-
tions by M.-A. Williams, ISBN 0-262-01157-3

13. Anderson, M.L., Perlis, D.R.: Logic, self-awareness and self-improvement: The metacogni-
tive loop and the problem of brittleness. Journal of Logic and Computation 15(1) (2005)

14. Costantini, S., Tocchio, A.: About declarative semantics of logic-based agent languages.
In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI),
vol. 3904, pp. 106–123. Springer, Heidelberg (2006)

15. Åstrom, K.J., Wittenmark, B.: Computer-Controlled Systems. Theory and Design. Prentice
Hall Internal Inc., Englewood Cliffs (1990)

16. McCarthy, J.: Making robots conscious of their mental states. Machine Intelligence 15, 3–17
(1995)

17. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-agentspeak: Cooperation in
AgentSpeak through plan exchange. In: 3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), New York, NY, USA, August 19-23, pp.
696–705. IEEE Computer Society, Los Alamitos (2004)

18. Bozzo, L., Mascardi, V., Ancona, D., Busetta, P.: Coows: Adaptive BDI agents meet service-
oriented computing. In: EUMAS 2005 - Proceedings of the Third European Workshop
on Multi-Agent Systems, Brussels, Belgium, December 7-8, p. 473. Koninklijke Vlaamse
Academie van Belie voor Wetenschappen en Kunsten (2005)

19. Lorini, E., Piunti, M.: Introducing relevance awareness in BDI agents. In: Braubach, L.,
Briot, J.-P., Thangarajah, J. (eds.) ProMAS 2009. LNCS, vol. 5919, pp. 219–236. Springer,
Heidelberg (2010)

20. Koster, A., Koch, F., Dignum, F., Sonenberg, L.: Augmenting bdi with relevance: Support-
ing agent-based, pervasive applications. In: Proc. of Pervasive Mobile Interaction Device,
PERMID 2008 (2008)

21. Costantini, S., D’Alessandro, S., Lanti, D., Tocchio, A.: DALI web site, download of the
interpreter (2010), http://www.di.univaq.it/stefcost/Sito-Web-DALI/
WEB-DALI/index.php, With the contribution of many undergraduate and graduate stu-
dents of Computer Science, L’Aquila. For beta-test versions of the interpreter (latest advance-
ments) please ask the authors

http://www.di.univaq.it/stefcost/Sito-Web-DALI/WEB-DALI/index.php
http://www.di.univaq.it/stefcost/Sito-Web-DALI/WEB-DALI/index.php

Conditional Learning of Rules and Plans 265

A The DALI Language and Architecture

DALI [3,4] is an Active Logic Programming language designed for executable specifi-
cation of logical agents. The DALI interpreter is freely available [21]. A DALI agent is
a logic program that contains a particular kind of rules, reactive rules, aimed at interact-
ing with an external environment. The environment is perceived in the form of external
events, that can be exogenous events, observations, or messages by other agents. In
response, a DALI agent can perform actions, send messages, adopt goals, etc. The re-
active and proactive behavior of the DALI agent is triggered by several kinds of events:
external events, internal, present and past events.

External events are syntactically indicated by the postfix E. When an event arrives
to the agent from its “external world”, the agent can perceive it and decide to react.
The reaction is defined by a reactive rule which has in its head that external event (or,
possibly, a conjunction of external events). The special token :>, used instead of :-,
indicates that reactive rules performs forward reasoning. The agent remembers to have
reacted by converting an external event into a past event (postfix P).

However, when an agent perceives an event from the “external world”, it doesn’t
necessarily react to it immediately: it has the possibility of reasoning about the event,
before (or instead of) triggering a reaction. In this situation, the event is called present
event and is indicated by the postfix N.

In DALI, actions (indicated with postfix A) may have or not preconditions: in the
former case, the actions are defined by actions rules, in the latter case they are just
action atoms. An action rule is just a plain rule, but in order to emphasize that it is
related to an action, we have introduced the new token :<, thus adopting the syntax
action :< preconditions. Similarly to events, actions are recorded as past actions.

Internal events make a DALI agent agent proactive. An internal event is syntactically
indicated by the postfix I, and its description is composed of two rules. The first one
contains the conditions (knowledge, past events, procedures, etc.) that must be true
so that the reaction (in the second rule) may happen. Thus, a DALI agent is able to
react to its own conclusions. Internal events are automatically attempted with a default
frequency customizable by means of directives in the initialization file.

The DALI communication architecture consists of four layers. The first layer im-
plements the DALI/FIPA communication protocol and a filter on communication, i.e. a
set of rules that decide whether or not to receive or send a message. The second layer
includes a meta-reasoning user-customizable module that tries to understand message
contents, possibly based on ontologies and/or on forms of commonsense reasoning.
The third layer consists of the DALI interpreter. The fourth layer implements a filter for
the out-coming and incoming messages.The DALI/FIPA protocol consists of the main
FIPA primitives, plus few new primitives which are particular to DALI.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 266–280, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Framework for the Automatic Extraction of
Rules from Online Text

Saeed Hassanpour, Martin J. O’Connor, and Amar K. Das

Stanford Center for Biomedical Informatics Research,
Stanford, CA 94305, U.S.A.

{saeedhp,martin.oconnor,amar.das}@stanford.edu

Abstract. The majority of knowledge on the Web is encoded in unstructured
text and is not linked to formalized knowledge, such as ontologies and rules. A
potential solution to this problem is to acquire this knowledge through natural
language processing and text mining methods. Prior work has focused on auto-
matically extracting RDF- or OWL-based ontologies from text; however, the
type of knowledge acquired is generally restricted to simple term hierarchies.
This paper presents a general-purpose framework for acquiring more complex
relationships from text and then encoding this knowledge as rules. Our ap-
proach starts with existing domain knowledge in the form of OWL ontologies
and Semantic Web Rule Language (SWRL) rules and applies natural language
processing and text matching techniques to deduce classes and properties. It
then captures deductive knowledge in the form of new rules. We have evaluated
our framework by applying it to web-based text on car rental requirements. We
show that our approach can automatically and accurately generate rules for re-
quirements of car rental companies not in the knowledge base. Our framework
thus rapidly acquires complex knowledge from free text sources. We are ex-
panding it to handle richer domains, such as medical science.

Keywords: Knowledge Acquisition, Rule Extraction, Natural Language Proc-
essing, Text Mining, Ontology, SWRL, OWL.

1 Introduction

There is an increasing need for RDF and OWL ontologies to support the Semantic
Web and intelligent systems. The linked data community (linkeddata.org), for exam-
ple, is focused on providing large amounts of information in the form of ontologies.
Knowledge acquisition remains a bottleneck; this problem has driven research in the
area of acquiring knowledge directly from unstructured sources [1-4]. Researchers
have attempted to glean information from publicly available text-based sources using
a variety of standard natural language processing (NLP) techniques. One of the earli-
est goals of these efforts was finding terms in text to acquire vocabularies. Commonly
available text processing tools can perform tasks such as word stemming, and tools
like WordNet [5] can find synonyms or identify parts of speech. The vocabularies

 A Framework for the Automatic Extraction of Rules from Online Text 267

created by these tools can be used to generate domain ontologies, which can be used
to process documents with similar content.

Recent work has attempted to infer logical relationships between terms in a source.
These efforts have used more complex NLP techniques to process text. Instead of
simply extracting terms, these techniques analyze the grammatical structure of sen-
tences to determine term usage. They then infer possible is-a relationships between
terms, which can be used to build classification hierarchies. The hierarchies them-
selves are useful, and can greatly support intelligent search capabilities. For example,
when users search for a particular term, the search mechanism can consider not just
direct term matches, but also the hierarchies of both the term and candidate matches.
This expansion can produce more intelligent search results.

There has been much less work in extracting more complex relationships from text.
In particular, rule-like information is common in many sources, but has not been the
focus of prior work. Online documents frequently contain rule-like specifications of
regulations or policies or rule-like definition of concepts. Common examples include
item return policies, car rental requirements, late fee policies, and shipping rate calcu-
lations. For instance, a typical example of eligibility to rent requirements from a car
rental company could look as follows:

All Drivers Must: Meet the renting location's minimum age requirements. Have a
valid driver's license. Present a major credit card in their name at the time of rental
or meet the location’s cash qualification requirements.

Clearly, these rule-like requirements cannot be represented as ontology term hier-
archies. Instead, a representation encoding the knowledge using a rule-like formalism
is required. Automatically acquiring this type of knowledge can be of great benefit in
developing rule bases directly from online content.

A number of challenges must be met to address this knowledge acquisition re-
quirement. These challenges include:

(1) The ability to recognizing domain concepts in the text, such as, for example,
drivers, locations, and minimum age requirements. To robustly detect concept
use, a concept recognition mechanism must employ text processing techniques
such as synonym expansion and word morphology. Compound expressions refer-
ring to concepts must also be handled so that, for example, major credit card and
charge card can be determined to be equivalent.

(2) Words or phrases representing relationships between domain concepts must also
be detected. In the above example, words like present and have represent these
relationships. Recognizing these relationships requires text processing techniques
similar to those required for concept recognition.

(3) The grammatical structure of sentences in the text must be analyzed to identify
the way in which these relationships are used to refer to domain concepts. Rec-
ognizing the relationships between domain concepts is key to acquiring rule-like
information from text. Ideally, each domain concept recognized in text should be
linked to another domain concept through these relationships to determine how
the concepts are related to each other. Performing this linkage requires a

268 S. Hassanpour, M.J. O’Connor, and A.K. Das

grammatical analysis of the source text to identify the different parts of speech in
which the concepts and relationships are used. The results of this analysis can
then be used to construct chains of relationships between domain concepts, which
can then be formed into rules. This process must also determine conjunctive and
disjunctive use of these relationships in text.

We address these challenges with a framework for acquiring rule-like information
from unstructured free text. In this paper, we focus on processing short segments of
text, each typically the length of a paragraph, that contains a single regulation or re-
quirement. The context of the text (i.e., the domain) will be assumed, as opposed to
the case where knowledge about the goal or context of the text is required. The goal
of the method is to generate a single rule from each text segment. Our approach uses
the OWL ontology language and its associated Semantic Web Rule Language
(SWRL). The approach requires the existence of an OWL-based domain ontology
describing the core concepts in the source text. It uses domain concepts and concept
relationships represented in this ontology. It also uses existing domain rules written in
SWRL. We apply NLP techniques to identify new rules within the text. In particular,
our framework uses WordNet to help identify terms in free text and then uses the
Stanford Parser to find grammatical relationships between these terms [6]. In analyz-
ing grammatical relationships, our framework uses OWL concepts and SWRL rules in
the existing domain ontology to generate new SWRL rules encoding chains of rela-
tionships between concepts in the source document. We show how SWRL’s tight
integration with OWL supports a principled extraction process and can help ensure
semantic consistency when adding new rules.

The paper is organized as follows. We first overview related work. We then de-
scribe the sub-methods within our framework. Next, we describe the development of
a Java-based implemented of this system. We then present an evaluation based on
automatically generating a set of SWRL rules from online text-based car rental re-
quirements. We end with a discussion of the results and conclude that our framework
can accurately generate new rules from text.

2 Related Work

Automatic acquisition of rule-like knowledge from data has a long history. The associa-
tion rule mining field is perhaps the most active [7], though a variety of other methods
have been used [8]. The general aim is to discover important relationships between
variables in structured data that can be encoded as rules. The expansion of online infor-
mation repositories has steered work towards extracting knowledge from less structured
data sources. In the scientific field, the availability of large number of abstracts and full-
text publications has driven the development of many new approaches. Initial work
concentrated on automatically classifying the subjects of papers in a corpus; this infor-
mation was used to find papers related to particular research questions. Further work
employed deeper textual analysis techniques to infer relationships between the entities
described in the papers themselves. For example, Madkour et al. [9] described a method
for extracting interactions between proteins from MEDLINE papers. Efforts on non-
scientific areas include extracting rules from Wikipedia [10].

 A Framework for the Automatic Extraction of Rules from Online Text 269

Many knowledge extraction efforts have used ontologies in the key role of provid-
ing structured terminologies. Recently, researchers have begun to attempt to derive
ontologies from text by automatically extracting domain terms from a corpus and
finding pair-wise relationships between them [1-4, 11-15]. A variety of approaches
have been adopted, and range from simple term matching to techniques that use word
stemming and compound word recognition. In some cases, a domain ontology pro-
vides an initial controlled vocabulary for identifying terms. Other approaches attempt
to generate a domain ontology from scratch using an analysis of the core terms in a
corpus. Another focus of work attempts to construct a subsumption hierarchy from the
terms. Again, a variety of techniques are used to find such relationships. Documents
can be analyzed for syntactic patterns that indicate relationships between terms. Tem-
plate-based approaches have been used to encode syntactic patterns. Statistical
methods have also been adopted to detect term co-occurrence, which can indicate
relationships. These approaches are often combined, but remain limited to inferring
relationships between pairs of concepts.

In contrast, acquiring domain knowledge in form of rules is more challenging be-
cause the relationships rules can model are significantly more complex [16]. Instead
of detecting relationships between pairs of concepts, these approaches must automati-
cally link a series of these relationships together to build compound requirements.
These compound requirements can be encoded as rules. Few approaches to ontology-
based rule extraction are described in the literature. Duboue and McKeown described
a system for capturing content selection rules from free text [17]. Content selection
rules identify the parts of a corpus that are relevant to a certain topic. Their method
used a Frame-based knowledge representation format to drive statistical methods to
produce these types of rules from short segments of user-supplied free text. This text
is assumed to contain relevant information that can be encoded using rules. Manine
et al. [4] presented an approach for acquiring gene interaction rules from text, which
were then encoded using ontologies. The approach used an existing ontology as an
hypothesis language. This ontology was supplied as input to an inductive logic algo-
rithm, which then used it to learn inference rules from pre-selected free text. Park and
Lee [18] developed an ontology-based method to extract rules semi-automatically
from web documents. Like other rule acquisition approaches, the method required an
existing domain ontology and manual selection of relevant web pages as method
input. This approach used very basic NLP techniques based on WordNet so was lim-
ited in its ability to handle complex source text. Of note in this approach was its use
of the eXtensible Rule Markup Language (XRLM) [19]. This XML-based language
was designed to mark up web pages that contain rule-like content. It included a sub-
language called Rule Identification Markup Language (RIML). This sub-language
was designed to allow users to tag implicit rules in a web page and to identify the
components of such rules. It could be used to automatically acquire rules from text.
However, XRML or RIML were not widely adopted and few systems have used it for
automatic rule acquisition.

270 S. Hassanpour, M.J. O’Connor, and A.K. Das

A general limitation of the rule acquisition methods described here is that they did
not support a general-purpose rule extraction framework, and were restricted to use in
particular domains.

3 Methods

Our rule extraction framework requires two inputs: existing knowledge and free text.
The knowledge is in the form of an OWL ontology that describes a particular domain.
In addition to basic definitions of core concepts in the domain, the ontology of exist-
ing knowledge contains SWRL rules that encode deductive relationships. The free
text encodes knowledge of the domain in unstructured natural language in English.
The goal is to formalize new knowledge in the text as SWRL rules. Each piece of text
encoding a rule may be a few sentences long and is assumed to contain requirements
or regulations. In our current framework, the text has been already identified in the
source to contain rule-like information about concepts in the domain ontology.

Our framework relies upon the existing SWRL rules to serve as templates that can
guide the extraction of new rules. Unlike many other rule languages, SWRL is not
general purpose and is designed work directly with OWL. All entities referred to in a
SWRL rule must exist in the OWL ontology in which the rules are developed. SWRL
provides six main types of SWRL atoms that govern interactions between SWRL and
OWL (see Table 1). The rules themselves have a simple Horn-like structure with a
body and a head. Bodies and heads contain conjunctions of atoms. Of the six atom
types, class and object property are the primary source of information about entities in
an ontology and the relationships between them. These atoms refer to OWL classes,
which capture classification information about individuals, and OWL object proper-
ties, which relate individuals to each other. Our method currently focuses on these
two atom types, though we plan to extend it to support built-in and data valued prop-
erty atoms, which will allow the representation of numerical criteria in rules.

Table 1. The six types of SWRL atoms defined by the SWRL Submission. Examples of each
are shown. Entity names such as Person and hasLicense refer to OWL classes or properties.

SWRL Atom Type Example Atom

Class atom Person(?x), Car(?y)

Individual property atom
hasLicense(?x, ?y)

hasLocation(?x, ?y)

SameAs/DifferentFrom atom
sameAs(?x, ?y)

differentFrom(?x, ?y)

Data valued property atom
hasName(?x, “Joe”)

hasAge(?x, ?g)

Built-in atom
swrlb:notEqual(?state, “CA”)

swrlb:lessThan(?g, 18)

Data range atom xsd:double(?x)

 A Framework for the Automatic Extraction of Rules from Online Text 271

3.1 Expansion of Domain Ontology Terms

As noted, we start with an existing OWL ontology that encodes domain information
as a set of OWL classes and object properties. We use the names of these OWL
entities to produce an expanded list of equivalent or related terms. If the OWL entity
names are meaningful in the domain, we use these terms; otherwise, we use the RDFS
label annotation property associated with each entity. In the first step, we focus on the
OWL properties from the ontology. These property names are the initial set of terms
that are the basis of matching text to rules. Using WordNet, we extend the list of rele-
vant terms for each property to the list of synonym terms and their morphological
variations. For example, we extend the verb present to terms such as show, submit,
and give. These terms are used in text analysis to detect equivalent relationships. We
perform an equivalent process to expand the names of OWL domain classes. This
expanded list is used to detect equivalent domain concepts referred to in text.

3.2 Finding Dependencies in Text

In the second step, we use the Stanford Parser (available at nlp.stanford.edu) to analyze
the grammatical relationships in each sentence in the text. The Stanford Parser is a sta-
tistical parser that finds the most likely parse tree for a piece of text (limited to 71
words), based on the parse trees it has been trained on. The parser presents the relation-
ships in the parse tree as predicates representing binary relationships between pairs of
terms. The predicates are abbreviations for grammatical relationships. Predicate argu-
ments are terms from the text. Table 2 shows a selection of these abbreviations.

Table 2. Some abbreviations used by the Stanford Parser to denote grammatical relationships

Abbreviation Explanation
Det determiner
nsubject nominal subject
Aux auxiliary
Amod adjectival modifier
nn noun compound modifier
dobj direct object

For example, the parser identifies nine dependencies in the sentence All drivers
must meet the renting location's minimum age requirements. These dependencies are:

det(drivers-2, all-1), nsubj(meet-4, drivers-2), aux(meet-4, must-3),

det(requirements-10, the-5), amod(requirements-10, renting-6),

nn(requirements-10, location's-7), amod(requirements-10, minimum-8),

nn(requirements-10, age-9), dobj(meet-4, requirements-10)

The number following each term indicates its position in the sentence. These rela-
tionships can be displayed in a typed dependency graph. Figure 1 shows a graph for

272 S. Hassanpour, M.J. O’Connor, and A.K. Das

Fig. 1. Typed dependencies in the sentence All drivers must meet the renting location's mini-
mum age requirements that were extracted by the Stanford Parser. Nodes are text terms and
labeled edges represent relations.

this sample sentence. Text terms are shown as nodes. The dependency between two
terms is depicted as a labeled edge. The direction of an edge is from the first argument
of the binary relation to the second.

We take each sentence in the source text and feed them to the parser. We then use
the results of this analysis to help find the relationships between terms in the text.

3.3 Finding Relationships in the Text

In the third step, we first search the text for relations corresponding to OWL proper-
ties in the domain ontology. As noted, we use the expanded synonym and morpho-
logical term list when performing this match. In the example sentence, only the word
meet corresponds to an OWL property in the input ontology. After finding all relevant
terms, we extract the dependencies involving them. Our expansion process considers
only dependencies that indicate a direct object relationship. For instance, from the
three dependences that involved meet, we only consider the direct object dependency
between it and requirements. The noun subject relationship to drivers and the auxil-
iary relationship to must are secondary. Terms that are not matched are dropped so
irrelevant text and dependencies are effectively ignored.

After finding first-level dependencies, we expand them by considering each de-
pendent’s dependencies. We continue these expansions iteratively until we capture all
related terms from the domain ontology, effectively calculating the transitive closure
of the first-level direct-object dependencies. Figure 2 shows the dependency expan-
sion of meet from the sample sentence.

 A Framework for the Automatic Extraction of Rules from Online Text 273

Fig. 2. Expansion of dependencies for the OWL ontology property related term meet

After constructing the dependency graph for an OWL property, we extract all the
node terms and consider them as related terms. Then, we sort these terms based on
their original positions in the text and combine them together to build a dependent
phrase. For example, for meet we produce the dependent phrase the renting location’s
minimum age requirement. This dependent phrase is assumed to be a domain concept.

3.4 Finding Concepts in Text

After we find dependent phrases, we try to identify OWL classes in the domain ontol-
ogy corresponding to each phrase. To accomplish this alignment, we use the Needle-
man-Wunsch global sequence alignment algorithm [20], which is commonly used in
bioinformatics to align DNA and protein sequences. It employs a dynamic-
programming approach to find the best sequence alignment based on the scores of all
possible alignments for two sequences. The scores depend on matches, mismatches,
and gaps in each candidate alignment. We use an affine gap penalty approach, in
which the gap penalty decreases linearly with the size of the gap in the alignment.

Using the Needleman-Wunsch algorithm, we compare a dependent phrase to the
expanded synonym and morphological term list for all the OWL classes in the ontol-
ogy to find the class that produced the best alignment score. For example, for the
dependent phrase the renting location’s minimum age requirement, we find mini-
mum_age_requirement as a corresponding class.

3.5 Assembling Rule Bodies

As the next step we need to assemble each rule body using the relationships that were
identified in the last step. The first stage of this process involves assembling chains of
object property atoms, where each atom property contains an OWL object property
corresponding to a relationship identified in the source text. If no disjunctions are
identified by the parser, we generate conjunctions of relevant object property atoms.
Since SWRL does not support disjunctions of atoms, rules containing disjunctions
must be handled differently. Such rules can be handled by breaking such a rule into
multiple separate rules. In our extraction process, we use the Stanford Parser to

274 S. Hassanpour, M.J. O’Connor, and A.K. Das

identify disjunctive relationships between text terms corresponding to OWL proper-
ties. We generate multiple rules for these rules containing disjunctive relationships.
For example, if a requirements rule specified that a driver must present a driver’s
license plus cash or credit card payment in order to rent, we generate two rules. One
covers the driver’s license and cash requirements, and the other covers driver’s li-
cense and credit card requirements. Conceptually, our method considers these multi-
ple rules represent a single rule.

3.6 Linking Relationships to Domain Concepts

After generating rules with property atoms using the relevant OWL properties, we
determine the OWL classes that type the individuals associated with the subject and
object arguments of these atoms. This process ensures that we restrict generated rules
to refer to specific domain concepts. Otherwise, rules could match any arbitrary enti-
ties that are associated through matched OWL properties. To extract the type of the
subject individuals in an atom, we use the OWL domain restriction of the associated
property, if present. The OWL class corresponding to the dependent phrase is used as
the type of property atom’s object individual. In addition, we use the associated prop-
erties’ range classes as a sanity check in our rule extraction process. In our semantic
checking, we verify that the corresponding class extracted from the text for the object
argument was the same as, or is a subclass of, the class that specified as the range of
the OWL property. After finding appropriate classes for all properties atoms, we gen-
erate class atoms for them. For example, for the meet property from the earlier exam-
ple, we generate the following SWRL atoms:

Person(?a) ^ minimum_age_requirement(?b) ^ meet(?a, ?b)

Here, classes Person and minimum_age_requirement are identified through the do-
main and range of the meet object property. If no domain or range are present, no
class atoms are generated.

3.7 Generating Rule Heads

As a final step, we generate rule heads. We use the structure of existing SWRL rules
as templates to complete the head part of the each rule. We used these templates to
extract rule heads for generated rule bodies. For example, the completed rule for the
earlier sample sentence is as follows:

Person(?a) ^ minimum_age_requirement(?b) ^ meet(?a, ?b) ^ national(?c)

-> qualifiedToRentFrom(?a, ?c)

A limitation of our method is that we currently only handle rule heads that already
exist in the rule base. The domain and range of the head property is used to align the
variables in the head with the variables from the corresponding types in the body.

 A Framework for the Automatic Extraction of Rules from Online Text 275

4 Implementation and Results

We developed a Java-based implementation of our method. The implementation uses
the latest 3.0 release of WordNet and version 1.6.5 of the Stanford Parser. Version
3.4.4 of the Protégé-OWL API was use to work with OWL ontologies and SWRL
rules.

To evaluate our framework, we chose text on rental requirements for car rental
companies. We chose all companies linked to the airport websites of the four largest
cities in California [21]: Los Angeles International Airport (LAX), San Diego Interna-
tional Airport (SAN), San Jose International Airport (SJC), and San Francisco Inter-
national Airport (SFO). We found online regulations for 17 car rental companies in
these airports and used company web sites as sources of text for car rental require-
ment rules. We manually identified relevant text on basic car rental requirements. We
used six of the 17 companies as training cases to develop an input domain ontology
containing terms and relationships referred to in the training text. The six training
cases were chosen because their car rental requirement information exceeded the 71-
word limit for input into the Stanford Parser and thus could not be processed directly
by our approach. We encoded the rental regulations of these six companies as SWRL
rules. We then tested our framework on the other 11 cases, which we have provided
as an Appendix. Table 3 provides a list of companies and whether they are located in
LAX, SAN, SJC or SFO. The table also specifies whether or not information from the
company was used as a training or test case.

Table 3. Car rental companies, their airport locations and their roles in our evaluation

No. Company Location(s) Usage

1 Ace SAN Testing
2 Advantage LAX, SAN, SJC Training
3 Alamo LAX, SAN, SFO, SJC Testing
4 Avis LAX, SAN, SFO, SJC Testing
5 Budget LAX, SAN, SFO, SJC Training
6 Dollar LAX, SAN, SFO, SJC Training
7 Enterprise LAX, SAN, SFO, SJC Testing
8 Fox LAX, SAN, SFO, SJC Testing
9 Hertz LAX, SAN, SFO, SJC Testing
10 Midway SAN Testing
11 National LAX, SAN, SFO, SJC Testing
12 Pacific SAN Testing
13 Payless LAX, SAN Testing
14 Renty SAN Testing
15 Thrifty LAX, SAN, SFO, SJC Training
16 TravCar SAN Training
17 West Coast SAN Training

276 S. Hassanpour, M.J. O’Connor, and A.K. Das

Fig. 3. Screen shot of Protégé-OWL showing set of user-developed SWRL rules describing car
rental requirements for the six companies in the training set

Using the text from the six training rental companies, we first developed an OWL
domain ontology describing the core entities referred to in the requirements text. The
ontology contained classes representing persons, rental companies, policies, and so
on, and object properties representing relationships between those entities. We also
created classes representing the testing rental companies. We then developed SWRL
rules that encoded the requirements for each company in the training set (shown in
Figure 3). For each testing company, we applied our framework to its extracted text to
generate new requirements rules.

Fig. 4. The core minimum requirements for renting a car from Avis. The text in the box was
used as an input in our method to automatically extract a car rental requirement.

 A Framework for the Automatic Extraction of Rules from Online Text 277

As an example, Avis’s web page (shown in Figure 4) provides information about
basic requirements that must be met when renting a car [22]:

Avis requires that each customer and additional driver meet the Avis minimum age
requirement, present a valid driver's license and an acceptable driving record, and
present an Avis-honored charge card or cash rental qualification at the time of rental.

We applied our method on the text from the web site. The Stanford Parser correctly
identified the disjunction caused by the or in the final clause and our method. The
compound term Avis-honored charge card was identified as the object of the meets
relationship and the term analysis indentified its closest match as the credit_card
class. The following two rules were generated:

Person(?a) ^ credit_card(?b) ^ present(?a,?b) ^

minimum_age_requirement(?c) ^ present(?a,?c) ^ valid_driver_license(?d)
^ present(?a,?d) ^ acceptable_driving_record(?e) ^ present(?a,?e) ^

avis(?f)
-> qualifiedToRentFrom(?a ,?f)

Person(?a) ^ cash_qualification(?b) ^ present(?a,?b) ^

minimum_age_requirement(?c) ^ present(?a,?c) ^ valid_driver_license(?d)
^ present(?a,?d) ^ acceptable_driving_record(?e) ^ present(?a,?e) ^

avis(?f)
-> qualifiedToRentFrom(?a,?f)

The equivalent requirements from the Enterprise web site are [23]:

All Drivers Must: Meet the renting location's minimum age requirements. Have a
valid driver's license. Have a major credit card in their name at the time of rental or
meet the location’s cash qualification requirements.

Our method extracted the following two rules from this text:

Person(?a) ^ credit_card(?b) ^ has(?a, ?b) ^ valid_driver_license(?c) ^
has(?a, ?c) ^ minimum_age_requirement(?d) ^ meet(?a, ?d) ^

enterprise(?e) -> qualifiedToRentFrom(?a, ?e)

Person(?a) ^ cash_qualification(?b) ^ meet(?a, ?b) ^
valid_driver_license(?c) ^ has(?a, ?c) ^ minimum_age_requirement(?d) ^

meet(?a, ?d) ^ enterprise(?e) -> qualifiedToRentFrom(?a, ?e)

Out of 11 test cases, we verified that in 9 cases we generated one or more rules that
accurately reflected the rental company’s requirements. That is, the generated rule or
rules contained all relationships specified in the text. For two cases (Fox and Pacific),
the generated rules were incomplete. They lacked four relationships that used termi-
nology (such as contact phone number) not present in the training set. Our approach
found 96 out of the 100 relevant relationships present in the text of the test set; we
calculated that our approach provided a recall of 96%. The resulting rules did not
contain any relationships that were not relevant; the precision was thus 100%.

5 Discussion

We have presented a novel framework for acquiring complex domain knowledge
from text and then encoding this information as new rules. Our approach addresses a

278 S. Hassanpour, M.J. O’Connor, and A.K. Das

major shortcoming of prior work in which extracted knowledge is largely in the form
of properties between classes or subsumption hierarchies. Considerable amounts of
rule-based knowledge is available online, and our framework provides an opportunity
to extend an existing rule base with new rules. Our work can thus enable the auto-
mated expansion of the rule base as new web content appears and potentially the
maintenance of the rule base if the rule-based information changes.

Our approach combines OWL-based domain ontologies with NLP techniques to
capture this knowledge and then represents it using the SWRL rule language. We
performed an initial evaluation of this framework by applying it to a set of online
regulations in the car rental domain. This approach successfully acquired rules from
these sources with a high level of accuracy. The close relationship between OWL and
SWRL allows us to generate rule that are not only informed by the domain ontology
but work directly with that domain ontology once generated. A further advantage is
that the generated rules can be validated semantically against the ontology.

We intend to analyze our approach over a variety of different sources to determine its
robustness. The car rental domain that we chose is arguably simple in nature, and the
accuracy of the results we achieved may be less with more complex domains. In our
future work, we would thus like to identify situations in which matches are poor.
The framework we have developed is generalizable, however. We thus expect that im-
proving the robustness of certain steps in the framework can incrementally improve
accuracy. In particular, we will focus on three core areas that can benefit from deeper
analyses: (1) the ability to acquire information from text with complex grammatical
content; (2) the sensitivity of matching to named OWL entities in the domain ontology;
and (3) the ability to acquire numerical criteria from text and encode them in rules.

A shortcoming our work is that users must manually develop a detailed OWL do-
main ontology before applying the method. This shortcoming is shared with other
similar rule extraction approaches [4, 17, 19]. A significant amount of current work is
directed at automatically acquiring domain ontologies from free text. We intend to
combine our method with one or more of these approaches to determine the feasibility
of automatically seeding a domain ontology without user intervention. An additional
shortcoming of our current approach is that users must manually select the text con-
taining rule-like information and present that text to the method. In ongoing separate
work, we are developing a method to automate this process so that the appropriate
text is automatically selected for our framework. We have already developed an ap-
proach to automatically find sections of publication that correspond to SWRL rules
[24]. We intend to combine this method with the framework described in the paper to
produce a fully automated mechanism for finding and generating rules from text. By
combining these approaches, we plan to create an overall learning system that can
start with an existing set of rules, identify online text corresponding to rules, and
automatically extract out new rules. By including user feedback on the accuracy
within this knowledge acquisition loop, we expect that the system can iteratively
improve and thus robustly transform unstructured rule-based knowledge on the web to
the more formal representation needed for reasoning.

Acknowledgments. This research was supported in part by National Institutes of
Health grants R01LM009607 and R01MH87756.

 A Framework for the Automatic Extraction of Rules from Online Text 279

References

1. Yangarber, R., Grishman, R., Tapanainen, P., Huttunen, S.: Automatic Acquisition of Do-
main Knowledge for Information Extraction. In: Proceedings of COLING 2000: The 18th
International Conference on Computational Linguistics, Saarbrücken, Germany (2000)

2. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intell. Sys. 16(2)
(2001)

3. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.R.:
Automatic Ontology-Based Knowledge Extraction from Web Documents. IEEE Intell.
Sys. 18(1), 14–21 (2003)

4. Manine, A.P., Alphonse, E., Bessières, P.: Learning ontological rules to extract multiple
relations of genic interactions from text. Int. J. Med. Informat. 78(12), e31–e38 (2009)

5. Miller, G.A.: WordNet: A Lexical Database for English. Com. ACM 38(11), 39–41 (1995)
6. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating Typed Dependency

Parses from Phrase Structure Parses. In: Proceedings of 5th International Conference on
Language Resources and Evaluation (LREC 2006), Genoa, Italy (2006)

7. Liu, B., Hsu, W., Ma, Y.: Integrating Classification and Association Rule Mining. In:
Knowledge Discovery in Databases (1998)

8. Held, C.M., Heiss, J.E., Estevez, P.A., Perez, C.A., Garrido, M., Algarin, C., Peirano, P.:
Extracting Fuzzy Rules From Polysomnographic Recordings for Infant Sleep Classifica-
tion. IEEE Trans. Biomed. Eng. 53, 1954–1962 (2006)

9. Madkour, A., Darwish, K., Hassan, H., Hassan, A., Emam, O.: BioNoculars: Extracting
Protein-Protein Interactions from Biomedical Text. In: BioNLP, Prague, Czech Republic
(2007)

10. Shnarch, E., Barak, L., Dagan, I.: Extracting Lexical Reference Rules from Wikipedia. In:
Proceedings of the 47th Annual Meeting of the ACL, Suntec, Singapore (2009)

11. Xu, F., Kurz D., Piskorski J., Schmeier S.: A Domain Adaptive Approach to Automatic
Acquisition of Domain Relevant Terms and Their Relations with Bootstrapping. In: Proc.
Third Int’l Conf. Language Resources and Evaluation (LREC 2002) (2002)

12. Muller, H.M., Kenny, E.E., Sternberg, P.W.: Textpresso: an ontology-based information
retrieval and extraction system for biological literature. PLoS Biol. 2, e309 (2004)

13. Riloff, E., Jones, R.: Learning Dictionaries for Information Extraction by Multi-Level
Bootstrapping. In: Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence (AAAI 1999), pp. 474–479 (1999)

14. Crow, L., Shadbolt, N.: Extracting Focused Knowledge from the Semantic Web. Int. J.
Hum. Comput. Stud. 54, 155–184 (2001)

15. Buitelaar, P., Olejnik, D., Sintek, M.: A Protégé plug-in for ontology extraction from text
based on linguistic analysis. In: Proceedings of the International Semantic Web Confer-
ence, ISWC (2003)

16. Kang, J., Lee, J.K.: Rule Identification from Web Pages by the XRML Approach. Decision
Support Systems 41(1), 205–227 (2005)

17. Duboue, P.A., McKeown, K.R.: Statistical acquisition of content selection rules for natural
language generation. In: Proceedings of EMNLP, pp. 121–128 (2003)

18. Park, S., Lee, J.K.: Rule identification using ontology while acquiring rules from Web
pages. Int. J. Hum.-Comput. Stud. 65(7), 659–673 (2007)

19. Lee, J.K., Sohn, M.: Extensible Rule Markup Language - toward intelligent Web platform.
Communications of the ACM 46, 59–64 (2003)

20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities
in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

280 S. Hassanpour, M.J. O’Connor, and A.K. Das

21. California cities by population, http://en.wikipedia.org/wiki/
 List_of_California_cities_by_population

22. Avis information web page, http://www.avis.com/car-rental/
 content/render-faq.ac

23. Enterprise information web page,
 http://enterprise.custhelp.com/app/answers/detail/a_id/
 3061/session/L3NpZC9MZjFxTlNtaw%3D%3D/sno/0

24. Hassanpour, S., Das, A.K. Semantics-based Text Mining of Biomedical Concepts in Scien-
tific Publications. Stanford Institute of Biomedical Informatics Research, Technical Report
BMIR-2010-1421 (2010)

Appendix: Extracted Online Text on Basic Rental Requirements
from 11 Airport-Based Rental Car Companies in California, Used
as Testing Cases

1. Ace: “All drivers must possess a valid drivers license issued in their country of
residence, and an acceptable means of payment as identified in the Local Policy
Details page.”

2. Alamo: “All Drivers: Must meet the renting location's minimum age require-
ments Have a valid driver's license Present a major credit card in their name at
the time of rental”

3. Avis: “Avis requires that each customer and additional driver meet the Avis
minimum age requirement present a valid driver's license and an acceptable driv-
ing record, and present an Avis-honored charge card or cash rental qualification
at the time of rental.”

4. Enterprise: “All Drivers Must Meet the renting location's minimum age require-
ments. Have a valid driver's license. Have a major credit card in their name at the
time of rental or meet the locations' cash qualification requirements.”

5. Fox: “All renters/drivers will be required at the time of rental to supply A valid
drivers license, current home address, a current home and local contact number,
and second contact phone number.”

6. Hertz: “You must meet the renting location's minimum age requirement or qual-
ify with the age differential. You must have a valid driver's license. You must
have a valid form of payment.”

7. Midway: “To rent a car from Midway car rental you must have a driver's license,
and credit card present in your name at the time that you pick up the vehicle.”

8. National: “All Drivers Must meet the renting location's minimum age require-
ments. Have a valid driver's license. Present a major credit card in their own
name at the time of rental.”

9. Pacific: “All drivers must be at least 21 years of age, with a valid driver license
and MAJOR CREDIT CARD."

10. Payless: “All drivers must meet the renting location minimum age requirements,
have a valid driver license, clean driving record, and present a major credit card
in his/her own name at the time of rental.”

11. Renty: “Customer needs to have a valid driver license, debit card/credit card, and
valid full coverage insurance on the rental car.”

Classification Rule Mining

for a Stream of Perennial Objects

Zaigham Faraz Siddiqui and Myra Spiliopoulou

University of Magdeburg,
Magdeburg 39106, Germany

{siddiqui,myra}@iti.cs.uni-magdeburg.de

Abstract. We study classification over a slow stream of complex ob-
jects like customers or students. The learning task must take into ac-
count that an object’s label is influenced by incoming data from adjoint,
fast streams of transactions, e.g. customer purchases or student exams,
and that this label may even change over time. This task involves com-
bining the streams, and exploiting associations between the target label
and attribute values in the fast streams. We propose a method for the
discovery of classification rules over such a confederation of streams, and
we use it to enhance a decision tree classifier. We show that the new
approach has competitive predictive power while building much smaller
decision trees than the original classifier.

1 Introduction

Stream mining assumes that objects arrive, update the model (e.g., a decision
tree) and are then forgotten. This covers learning tasks like assessing whether
a customer transaction is fraudulent, but not the task of predicting whether a
customer will pay back a loan, given the customer’s activities thus far. There
are very few methods for supervised learning upon such objects which are fed
by one or more transaction streams [15,12]. These methods are either limited to
numerical data [12], or treat data inefficiently, i.e., over-simplify the problem by
assuming attributes to be independent and thus building very deep decision trees
[15]. In this study, we propose the combination of classification rules’ discovery
with decision tree learning over a confederation of interrelated streams for the
discovery of accurate and compact decision trees.

The need to learn over objects fed by transaction streams occurs in several
contexts. Consider the customer records of a company or the student records of a
university. New individuals are recorded continuously, hence such data constitute
a slow stream T , which is the target of a supervised learning task – e.g. predicting
the customer’s affinity to a marketing campaign or a student’s final rank. The
purchases of the customers, or the students’ presentations and exams constitute
streams of transactions S1, . . . ,SJ , whose contents affect the classification of T .

Classification over a slow stream fed by fast transaction streams is a new prob-
lem that poses two challenges. First, the (attribute, value)-pairs of the transac-
tion streams must be incorporated into the slow stream; this incorporation is not

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 281–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

282 Z.F. Siddiqui and M. Spiliopoulou

a stream-join: for the learning task, we cannot generate a new customer record
for each transaction made by the customer. Second, appropriate classification
algorithms must be designed for this new type of stream data.

In our earlier work we proposed a solution to the first problem [13]: it is called
incremental propositionalisation, and corresponds to combining the slow stream
with the fast streams in a buffer-like manner, except that the data values in
the fast streams do not become records of the slow stream but rather expand
the slow stream with new attributes. For the second problem, we proposed a
tree classifier called TrIP [15]. However, the combination of incremental proposi-
tionalisation with decision tree learning leads to inefficient, deep classifiers with
low accuracies. The reason is that the attributes from the fast stream may be
correlated but incremental propositionalisation treats them as independent. In
this paper, we propose classification rule mining for the discovery of attributes
of high predictive power, and enhance the algorithm TrIP to exploit these at-
tributes during learning.

The paper is organized as follows. In section 2, we formalize the new learning
problem we study, and discuss literature advances that are relevant or applica-
ble to this problem. In section 3, we present our new classification rule mining
algorithm. In section 4, we compare our approach to the baseline algorithm [13]
over two datasets. The last section concludes with a summary and open issues.

2 Problem Specification and Background Literature

In the previous section, we used the terms slow stream and fast stream or trans-
action stream to distinguish between two types of stream. We now explain the
learning task in more detail. Then, in subsection 2.3 we elaborate on the few
studies that address this problem, and on research advances from conventional
stream classification, which can be extended for the task at hand.

2.1 Problem Specification

In our introductory example, we considered a slow stream of customers T and
fast transaction streams S1, . . . ,SJ that feed the slow stream, e.g. the customers’
purchases, the customers’ complaints and reclamations, the customers’ interac-
tions with the hotline etc. The learning task concerns solely T , e.g. predicting
whether a customer will respond to a marketing campaign (Y) or not (N), or
labelling customers on their Customer Lifetime Value for the company (typically
in four classes A, B, C, D where A is best and D is worst). We denote the set of
class labels as C (cf. Table 1) and allow for o ≥ 2 labels. Obviously, the contents
of the fast streams should be taken into account when building the classifier.

Learning on a Stream of Perennial Objects. The slow stream T exhibits three
properties that are atypical for streams. Differently from conventional stream
objects that are seen, processed and forgotten, objects of T may not be deleted:
an examinations office may file away the results of a successful exam, but does
not file away the students who passed the exam; a product purchase may be

Classification Rule Mining for a Stream of Perennial Objects 283

Table 1. Symbols and Parameters

Notation Description

T stream of perennial objects – target of the learning task

Sj the jth stream, j = 1, . . . J , feeding T
C set of class labels {l1, l2, . . . , lo}
ti the ith timepoint
w size of the window, defined as number of tuples

Sj
i tuples from Sj inside the window at ti

Ti objects from T referenced by tuples in ∪J
j=1Sj

Wi propositionalised objects built by combining Ti with Sj
i , j = 1 . . . J

I classification rule X → [p1, p2, . . . , po]: X is the antecedent (a set of
(attribute,value)-pairs), and pu is the number of tuples with antecedent X
and label lu, i.e. the ”contribution” of I to lu (u = 1, . . . , o)

L lattice of classification rules
F set of features extracted from the lattice L for the classification of the stream

T , where a feature f ∈ F is the antecedent of a classification rule
τmax maximum number of features to be extracted from L; the size of L is an upper

boundary for this threshold

smin minimum support a rule must have, before adding a tentative rule below it to
L

e(I) entropy of I,:
∑o

u=1 ρulogρu, where ρu = pu∑o
l=1 pl

d(I) d-score of I as its un-interestingness
dmin minimum permitted d-score of a rule

δ confidence threshold for significance computations

shifted to a backup medium after completion, but the customer who did the
purchase remains in the database. One can even argue that T is not a stream at
all. However, it is obvious that new objects arrive (new customers, new students),
while old objects are filed away after some time (e.g. students who completed
their degree and customers who have quitted the relationship with the company).
We use the term perennial objects or stream of perennial objects for the slow
stream T (cf. notation Table 1).

Second, the objects in T may appear several times, e.g. whenever the prop-
erties of a customer (e.g. her address) change and whenever this customer is
referenced by a fast stream (i.e. when the customer performs a transaction).
Third, the label of a T object may change over time: a customer who earlier
responded to marketing campaigns (Y) may stop doing so (label becomes N); a
B-customer may become an A-customer or a C-customer. Hence, the label of a
perennial object x is not a constant; at every timepoint t, at which x is observed,
its label is label (x, t). The learning task is to predict this label at t, given the
labelled data seen thus far and given the streams that feed T .

Observing a Stream of Perennial Objects and its Adjoint Streams. We observe
the target stream of perennial objects T and the fast transaction streams feeding
it S1, . . . ,SJ . The term feeding means that the objects in Sj , j = 1 . . . J reference
objects in T and deliver new information to them.

To learn a classifier over T while taking the contents of S1, . . . ,SJ into
account, we must combine T with the fast streams. A stream join is not an

284 Z.F. Siddiqui and M. Spiliopoulou

appropriate operator though: if we join a customer with her 10 purchases, we
acquire 10 purchase records expanded with customer data; we rather need one
customer object expanded with the data of 10 purchases. An appropriate op-
erator, called propositionalisation, for static data has been proposed in [11]; we
expanded it for stream data in [13] under the name incremental propositionali-
sation. We use this operator and describe it in subsection 2.2 below.

For simplicity, we use the term object for a perennial object, i.e. an element
of T , and the term tuple for an element of a fast stream Sj that feeds T .

2.2 Incremental Propositionalisation

We use incremental propositionalisation method [13] from our earlier work to
combine the stream of perennial objects with the streams feeding it. The incre-
mental propositional algorithm uses a sliding window of w timepoints for the fast
transaction streams S1, . . . ,SJ . We denote as Sj

i the set of tuples from stream
Sj , j = 1 . . . J that are inside the sliding window at timepoint ti.

For the stream of perennial objects T , the incremental propositionalisation
algorithm uses a cache: at timepoint ti, the cache contains the perennial objects
referenced by the arriving tuples in the transaction streams, i.e. the perennial
objects referenced in S1

i , . . . ,SJ
i . These perennial objects constitute Ti.

The incremental propositionalisation algorithm [13] operates incrementally
over the contents of the caches and windows at each timepoint ti. It starts with
a semi-join between Ti and Sj

i for each j = 1 . . . J , so that each object x ∈ Ti is
associated with the set of matching tuples matches(x, j, i) ⊂ Sj

i .
Next, each set of matching tuples is summarized into a single sub-object :

(i) each numerical attribute A in matches(x, j, i) is mapped to the min, max,
count and average of the A values seen in matches(x, j, i); (ii) for each nominal
attribute A, the algorithm generates as many columns(rA) with counts for A
as there are distinct values in

⋃
x matches(x, j, 0) at t0. The domain of A may

change after t0, in the sense that previously unseen values emerge, while old

Transaction Customer

Product

Fig. 1. (a) Interrelated streams Customer, Transaction and Product, (b) join of the
three streams vs (c) propositionalization into the target stream Customer

Classification Rule Mining for a Stream of Perennial Objects 285

values are no more referenced. If the domain grows larger than rA, then values
are grouped into rA clusters on similarity: two values of A are similar, if they
appear in similar tuples. The process of propositionalisation is also shown in
Fig 1. Further details can be found in [13].

We denote as Wi := Ti � S1
i � . . . � SJ

i the result of combining Ti with
Sj

i , j = 1 . . . J at ti. The objects in Wi are essentially the perennial objects in
Ti, expanded with data from the adjoint streams. In other words, Wi is Ti after
the invocation of the operator ”incremental propositionalisation”.

2.3 Related Work and Background Literature

The stream learning problem described in subsection 2.1 is fairly new. It has been
studied in [12] for streams of numerical signals, but the solution does not transfer
to streams of conventional data records that contain categorical data. We pro-
posed a solution for unsupervised learning on perennial objects in [14], while the
problem of supervised learning on perennial objects was studied in [15].

The algorithm TrIP [15] builds upon our earlier work on incremental propo-
sitionalisation [13] to combine the slow stream of perennial objects with the fast
transaction streams. It is apparent that the propositionalisation algorithm gen-
erates a large set of output columns. Moreover, it suppresses associations among
the original attributes, notably associations between attribute and label in T .
This problem becomes apparent in the learning phase of TrIP [15].

TrIP is a decision tree learner for a slow stream of perennial objects that is
accompanied by fast transaction streams [15]. TrIP is inspired by the CVFDT
algorithm that was proposed in [10] for a conventional data stream. TrIP deals
with the re-appearance of perennial objects and with the fact that these objects
may change their label. However, TrIP, like all decision tree learners assumes
independency of the attributes and cannot exploit cases where some attribute
values acquire predictive power as the stream progresses. This issue can be dealt
with classification rule miners.

Gupta et al. [8] use concept analysis for discovering classification rules incre-
mentally: the rules are defined as concepts and are stored in one lattice per class.
As new objects arrive, concepts are added/updated in the lattice. The algorithm
only handles binary attributes. For discovering rules, lattice is traversed and rules
are returned with the label as a consequent. It is not entirely clear how the algo-
rithm would behave if the lattices of different classes produce the same rule.

The methods of Aydin et al., IRIL [1] and ICRIL[2] learn classification rules
over streaming data but the objective is not to build a classifier, but to find in-
teresting rules. The notion of interestingness used by the algorithm is subjective
and requires user interaction.

The method of Ferrer et al. FACIL [7] is classification rule mining algo-
rithm for numerical data streams that focuses on processing border examples.
FACIL iterates over the examples multiple times to discover rules whose purity

286 Z.F. Siddiqui and M. Spiliopoulou

(i.e., the extent to which a rules contains examples from a single class) is above
user-defined threshold κ. Unlike FACIL, our algorithm is a single-pass algorithm
and operates both on numerical and categorical data.

Yu et al. [17] distinguish between exact [5,16] and approximate [9,4] associ-
ation rule miners over streams. These studies focus on effectively mining and
maintaining a growing set of rules.

Method of Veloso et al. [16] maintain only the maximally frequent itemsets.
This results in information loss, though, hence a database scan is required to
recover all the frequents itemsets and their supports. Moment maintains only
the closed frequent itemsets over a sliding window [5]; for these rules there is no
information loss. The authors propose a closed enumeration tree (CET) to store
selected itemsets over a sliding window: they rank the nodes on how promising
they are, and then define a boundary between closed frequent itemsets. The new
rules are captured through the boundary movements.

CARMA is an approximate single-pass algorithm [9]. It stores the frequent
itemsets in a lattice, which is updated incrementally. Since a newly created
itemset may have missed some previously inserted tuples, CARMA maintains
support intervals. If CARMA has the chance to access the tuples again, its
Phase II calculates the exact support.

Our CRMPES is a single-pass algorithm inspired by CARMA and Moment.
However, CARMA and Moment are designed to find association rules, and they
build the rule lattice accordingly. In contrast, CRMPES builds a lattice of classi-
fication rules, and is designed to add rules in the lattice only if they have higher
predictive power than the rules that are already in the lattice.

3 Incremental Classification Rule Learning

To enhance classification over a stream T of perennial objects, we identify at-
tributes in the fast transaction streams S1, . . . ,SJ

i which have potentially high
predictive power with respect to the class label in T . To do so, our Classification
Rule Miner for a stream of Perennial Objects, CRMPES, learns a lattice L of
classification rules incrementally, derives predictive attributes from them and
delivers them to a decision tree classifier.

CRMPES consists of several components that operate as follows. At each ti,
the labels from T are propagated to the arriving tuples of the fast streams, and
the rules in the lattice are updated, as described in subsection 3.1. The lattice
is grown incrementally, thereby removing uninteresting rules, as explained in
subsection 3.2. Next, attributes are generated from the learned lattice, as dis-
cussed in subsection 3.3. The incremental propositionalisation producing Wi =
Ti�S1

i � . . .�SJ
i at each ti is done next to generate the input to the stream clas-

sification algorithm. This input, together with the classification rules found at ti
are used for stream classification, as explained in subsection 3.4. The notation
and parameters are presented in Table 1.

Classification Rule Mining for a Stream of Perennial Objects 287

Algorithm 1. CRMPES StreamAlign
Input : y, cnt, Ti,L
Output: L

1 x ← perennial object in Ti that is referenced by y; lu ← label of x
2 foreach I ∈ L do
3 if y supports I then
4 if I is not ”tentative” then I.pu ← I.pu + cnt

5 return L

3.1 Aligning the Fast Streams to the Slow Stream

Let T be the stream of perennial objects, and let S1, . . . ,SJ be the streams
feeding it. As explained in subsection 2.2, we use a sliding window of length w,
and denote as S1

i , . . . ,SJ
i the contents of these streams inside the window at

timepoint ti; the objects of T referenced by these tuples constitute Ti.
The label of each x ∈ Ti is propagated to all tuples in ∪J

j=1Sj
i that reference

x, i.e. to all tuples in ∪J
j=1matches(x, j, i) (cf. subsection 2.2). For example,

assume that we classify customers by lifetime value into classes A, B, C, D, and
let customer x at timepoint ti belong to class B: B becomes the label of all
transactions performed by x that are inside the sliding window.

A classification rule I has the form X → [p1, p2, . . . , po], where X is a set of
(attribute, value)-pairs in accordance to the schema of one of the fast streams,
and pu is the number of tuples supporting X and having the label lu ∈ C =
{l1, . . . , lo}. We call pu the contribution of X to label lu (cf. notation in Table 1).
We build a lattice L of classification rules incrementally as described in the next
subsection.

The operation of stream alignment, i.e. label propagation and lattice updating,
is depicted in Algorithm 1: CRMPES StreamAlign takes as input the currently
observed tuple y, the cache of perennial objects Ti and the current state of
the lattice L. Intuitively, the algorithm reads the label of the perennial object
x referenced by y (Line 1), finds all classification rules supported by tuple y
and, for each such rule I, it increases the support of this label pu (Line 7). As
can be seen in Algorithm 1, though, CRMPES StreamAlign is more elaborate.
In particular, it takes the value by which the support should be increased as
input cnt. Further, it treats ”tentative” rules differently (Line 5). The nature
of these rules and the particularities of CRMPES StreamAlign are explained in
subsection 3.2, when we explain how the lattice is grown and shrunk.

3.2 Building a Lattice of Classification Rules Incrementally

The core of our Classification Rule Miner, CRMPES Core (cf. Algorithm 2),
grows the lattice L of classification rules incrementally. At ti, CRMPES Core
considers the tuples in ∪J

j=1Sj
i . Some of these tuples will be forgotten later, i.e.

they exit the sliding window, while new ones, yet unseen in ti, will enter the
sliding window. Let OLDi be the tuples to be forgotten at ti, and NEWi be the
new tuples at ti.

288 Z.F. Siddiqui and M. Spiliopoulou

Algorithm 2. CRMPES Core
Input : OLDi, NEWi, Ti,L, smin, dmin, δ
Output: L

1 foreach y ∈ NEWi do CRMPES StreamAlign(y, +1, Ti,L) /* UPDATE L */

2 E ← ∅
3 foreach I ∈ L do /* GROW L */

4 if I has no children AND is not ”tentative” AND is not ”locked” then
5 if

∑o
u=1 I.pu ≥ smin then add I to E

6 Expand L by creating new rules as children of the rules in E
7 Mark the new rules as ”tentative”

8 foreach y ∈ OLDi do CRMPES StreamAlign(y,−1, Ti,L) /* UPDATE L */

9 foreach I ∈ L do /* SHRINK L */

10 let I′ be the child of I
11 if I is ”redundant” towards I′ then mark I as ”locked”
12 redirect accesses to I towards I′

13 else if
∑o

u=1 I.pu < smin OR e(I) − e(I′) < ε then
14 mark I as ”locked”
15 remove all children of I from L
16 unmark all ”locked” rules that are redirecting towards I
17 else umark I
18 return L

CRMPES Core takes as input (1) the tuples in OLDi and NEWi, (2) the
objects Ti referenced by these tuples, (3) the lattice L built thus far, and (4)
thresholds smin on the support of classification rules, dmin on their interesting-
ness, and δ on the confidence in estimating rules’ redundancy. CRMPES Core
traverses L from the root downwards, grows it by adding rules and shrinks it by
removing rare, uninteresting and redundant ones, as we explain below.

UPDATE L with new tuples (Line 1). CRMPES Core starts processing L
by first updating the supports of the rules in it. It invokes CRMPES StreamAlign
for each new tuple y, whereupon the label of y is identified (cf. Algorithm 1, Line
1), and the contribution of each rule supported by y to this label is increased by
+1 (cf. invocation of CRMPES StreamAlign in Algorithm 2, Line 1).

GROW L with new rules (Lines 2-7). Arriving tuples in NEWi may give
raise to new rules that are not yet in the lattice. CRMPES Core grows the lattice
pro-actively. First, it identifies all classification rules that have no children and
are supported by at least smin tuples thus far (Lines 3-5) and then expands them
(Line 6) by tentative rules (Line 7).

Lattice expansion is only possible for rules that have no common child yet,
and whose antecedents differ by only one attribute. For each such a pair of
rules, with antecedents XB and XD respectively, a common child with an-
tecedent XBD is created and marked as ”tentative”. From this moment on, the

Classification Rule Mining for a Stream of Perennial Objects 289

contribution of XBD to the label of each arriving tuple y is increased whenever
CRMPES StreamAlign is invoked (cf. Algorithm 1, Line 5)! However, the lattice
cannot grow below a tentative rule (cf. Algorithm 2, Line 4), i.e. a tentative rule
cannot acquire a child until it stops being ”tentative” (cf. Line 17). We explain
the treatment of tentative rules in sequel.

UPDATE L with old tuples (Line 8). When a tuple exits the sliding
window, the rules it supports must be modified: CRMPES Core invokes CRM-
PES StreamAlign for each tuple y ∈ OLDi with a count value of −1, so that
the support of the rules is decreased (cf. Algorithm 1, Line 4). An exception is
made for tentative rules whose support is not decreased.

The reason for this exception lays in the behaviour of the sliding window.
Let ti be the timepoint of creating a new tentative rule IXBD. To compute
its support, all ∪J

j=1Sj
i tuples should be considered. However, CRMPES Core

processes only the tuples that arrive new at ti (cf. Line 1), while those that
have already been seen are not reconsidered – although they are still inside the
sliding window. Since the tuples that are getting removed have no contribution
towards the support of the tentative rule, its support is not decreased. Once all
such tuples have exited the window, tentative rules are unmarked, provided of
course that they are worth retaining in the lattice: CRMPES Core uses several
criteria to shrink the lattice by eliminating useless rules.

SHRINK L by removing useless rules (Lines 9-17). CRMPES Core uses
three criteria to assess the usefulness of a rule: the rule’s support, the rule’s
predictive power, and the rule’s redundancy with respect to its children.

A rule I ′ is redundant if it is parent of a rule I and its support is not sig-
nificantly higher than the support of I. Then, the parent rule I ′ is marked as
”locked” (Line 11), and all accesses to it are redirected to I. For the significance
test, we use χ2 =

∑o
u=1 (p′u − pu)2/pu (with critical value χ2

1−δ), where pu, p′u
are the contributions of I, resp. I ′ to label lu, u = 1 . . . o.

If the support of a rule I remains/drops below the threshold smin (Line 13),
then the rule is also marked as ”locked” (Line 11). This means that the lattice
cannot grow below it (Line 4). Further, all existing rules below I (i.e. being
more specific and thus having no higher support than I) are removed from L
(Line 15). In contrast, rules that were earlier ”locked” and redirecting to the
now locked rule I are themselves unlocked (Line 16).

A rule I may have adequate support but its predictive power might not be
significantly better than its parent I′. Such rules are also marked as locked. It
is based on the entropy of a rule I: e(I) =

∑
u ρulogρu, where ρu = pu/

∑
l pl.

The significance test is done using the Hoeffding bound [3,6]. It states that, if
e(I)− e(I ′) < ε for some threshold ε, then the rule I is not better than I ′.

Classification rules that have high support and predictive power are retained
in the lattice. If they were marked earlier (as ”tentative” or ”locked”), they are
unmarked (Line 17). Retaining them in the lattice may turn other rules redun-
dant though: it is possible that a small number of rules suffices for distinguishing
among the classes, while the rest are redundant.

290 Z.F. Siddiqui and M. Spiliopoulou

We also model the interestingness of a rule I by combining the rule’s support
and entropy e(I) (cf. Table 1. We define:

d(I) =
∑o

u=1 pu

w
× (1 − e(I)) (1)

where a rule is the more interesting, the higher its d()-score is. The weight of
a rule’s support ratio inside the sliding window with the 1-complement of the
rule’s entropy is intended to prevent rare rules with possibly low entropy from
acquiring high d() scores. CRMPES Core uses the score d() to rank and to
eliminate the rules with scores lower than dmin from L. Uninteresting rules are
treated similarly to those with very low support (Lines 13-16).

3.3 Generating Features from the Classification Rules’ Lattice

The lattice of classification rules built and maintained by CRMPES Core is used
to generate additional features for the learning task over the stream of perennial
objects T . A feature f is not a single attribute but rather the antecedent X of
some classification rule I in the lattice L, i.e. a set of (attribute,value)-pairs, as
specified in Table 1.

Feature generation takes place at each timepoint ti. The Feature Generation
algorithm CRMPES FGen (cf. Algorithm 3) takes as input the lattice L built by
CRMPES Core thus far, and it incrementally builds a set of generated features
F of cardinality τmax.

First, CRMPES FGen ranks the classification rules in L on their interesting-
ness d()-score, as defined in Eq. 1, thereby skipping closed and tentative rules
(Line 1). Let R be an ordered list of ranked rules (Line 2), so that R[k] is the rule
at position k with k = 1, . . . , |R|, and R[k].antecedent is this rule’s antecedent.
At the first iteration, CRMPES FGen selects the antecedent of the top-ranked
classification rule (Line 3) and removes it from R (Line 5). At the mth iteration,

Algorithm 3. CRMPES FGen
Input : L, τmax

Output: F
1 L′ ← {I ∈ L|I is not ”closed” and not ”tentative”}
2 rank L′ on d()-score descending → R
3 F ← {R[1].antecedent }
4 SF ← R[1].antecedent
5 remove(R, R[1])
6 for m = 2, . . . , τmax do
7 I ← argminm{R[k]antecedent ∩ SF = ∅}
8 F ← F ∪ {I.antecedent}
9 SF ← SF ∪ I.antecedent

10 remove(R, I)

11 return F

Classification Rule Mining for a Stream of Perennial Objects 291

the rule of highest rank is chosen among those that have an empty intersection
of (attribute, value)-pairs to the set SF , i.e. to the set of (attribute,value)-pairs
already in F (Line 7). Then, the sets and the list R are updated accordingly
(Lines 8-10).

In fact, the selection of the mth rule is slightly more general than depicted
in Line 7. If CRMPES FGen finds no rule with empty intersection to SF , it
considers rules in R that have minimal intersection. This implies additional scans
over the list R. However, the additional cost is low, since R becomes smaller at
each iteration (Lines 5, 10).

3.4 Enhancing a Decision Tree Classifier with Predictive Attributes

A learning algorithm over a stream of perennial objects receives as input a propo-
sitionalised stream [15], the schema of which is a large set of derived attributes
(Section 2.2). With CRMPES, we deliver an additional set of features, derived
from classification rules of high predictive power. We enhance the tree induc-
tion algorithm TrIP [15], by allowing it to choose from a list of such predictive
attributes for learning.

The complete algorithm, as invoked at each timepoint ti is outlined in Algo-
rithm 4. At each timepoint, the contents of the fast streams are updated (Line
3), the referenced perennial objects in T are placed in the cache Ti (Line 4),
the contents of the sliding window are adjusted (Line 5), and CRMPES Core
is invoked (Line 6). It returns an updated lattice, from which CRMPES FGen
derives the set of currently predictive features F (Line 6). Then, the data are
propositionalised (Line 7) as for the conventional TrIP [15], which is invoked
with an additional parameter - the set of predictive features at timepoint ti
(Line 8). ζ is the model learned and adapted by TrIP from one timepoint to the
next. It can also be delivered as output (Line 9).

It must be noted that the adaptive learning of TrIP, as shown in Algorithm 4,
is simplified. TrIP grows a decision tree gradually, adding subtrees as new data

Algorithm 4. CRMPES TrIP
Input : w, smin, dmin, δ, τmax

Output: ζ

1 L ← ∅
2 foreach timepoint ti do

3 foreach j=1,. . . ,J do update contents of Sj into Sj
i

4 update contents of T into Ti

5 compute OLDi, NEWi using w

6 L ←CRMPES Core(OLDi , NEWi, Ti,L, smin, dmin, δ)
7 F ←CRMPES FGen(L, τmax)

8 Wi ← incrementalPropositionalization(Ti , S
1
i , . . . , SJ

i)
9 ζ ← AdaptDecisionTree(ζ,Wi,F)

10 return ζ

292 Z.F. Siddiqui and M. Spiliopoulou

arrive, removing obsolete branches, and retaining alternative subtrees. These
activities are summarized here into a function ”AdaptDecisionTree()”, omitting
the full set of parameters. The original TrIP can be found in [15], page 646, as
Algorithm 1. Our extensions are to be inserted after line 3 of the original TrIP,
just before the incremental propositionalisation step (Line 7 in CRMPES TrIP,
line 4 in the original TrIP).

4 Experiments

We study the quality of the rules discovered by CRMPES and the effect of the
derived attributes on the quality of the final stream classifier. We use a synthetic
dataset on learning user profiles, and the dataset of the PKDD 1999 Challenge
on predicting defaults in bank loans. Both datasets exhibit concept drift. Quality
is measured as the area under the ROC curve (AUC) at each timepoint.

4.1 Learning User Profiles

We used a multi-relational data generator1 to create a stream of users and adjoint
streams of items and user ratings. The core idea of the data generation process
is as follows. There are item descriptors and user profiles. An item descriptor
is essentially a cluster centroid: items are generated as points around it. A user
profile determines the affinity of a user for an item descriptor: a generated rating
for an item depends on the user’s affinity for the item’s cluster, as set in her
profile, and on the distance of that item from its cluster’s centroid. A user may
change from a profile to another (drift). The learning task is to predict each
user’s profile at each moment, given the ratings thus far.

Note that our scenario is not for predicting ratings. Item descriptors may be
movie genres, user profiles may be ”teenager fans of action and Gothic”, ”sci-fi
fans”, ”kids liking cartoons” etc. Each profile affects the predisposition of a user
towards a genre, and determines (with some variance �) the ratings of the user
for individual movies. Users may shift from one profile to another, since people’s
preferences change with time.

We specified 6 user profiles and 8 item descriptors described by 5 numeri-
cal attributes, and generated 800 items and 1000 users. Since TrIP is a binary
classifier, we grouped the profiles into two classes (á three profiles).

We set the CRMPES parameters to w = 30 timepoints, smin = 0.05, dmin =
0.4, δ = 0.95 (for χ2 and ε), and the TrIP parameters τ = 0.01 and n = 500
objects seen before starting with learning.

For the experiments we have used three strategies: P uses only attributes
generated by the incremental propositionalisation, while R uses only rule-based
attributes delivered by CRMPES, and PR uses both. Essentially, strategy P
corresponds to TrIP, as proposed in [15] and is our baseline. All strategies are

1 The data generator along with further results can be downloaded from
http://omen.cs.uni-magdeburg.de/itikmd/mitarbeiter/zaigham-faraz-siddiqui.html

Classification Rule Mining for a Stream of Perennial Objects 293

Fig. 2. (l-to-r): Results without drift for 1000 users and 800 items (a) with approxi-
mately 1500 transactions at each timepoint (b) with approximately 6500 transactions
at each timepoint and (c) run times of the system for the dataset with 1000, 500 and
250 users and 6500, 3500 and 1500 transactions per timepoint

evaluated using the prequential evaluation except for the Fig 2a&b where we use
hold out a part of stream data for evaluation.

The graphs in Fig 2a&b show the performance of the strategies when no drift
is present. PR shows competitive performance for both the experiments. This
is mainly due to the advantage that it draws from utilising the rich feature
space. Whereas P and R experiences a drop in performance as concept becomes
complex for their learning methodology. In Fig 2c the run times for our algorithm
(i.e., rule mining + propositionalisation + TrIP) are shown for different dataset
sizes for w = 30 units. They are averaged over 5 runs for each dataset size. There
is overheard involve for using MySQL but run times stay linear to the size of the
dataset.

In Fig 3a, we see the AUC values. At the beginning, all strategies show good
performance, since the classes are rather easy to learn. After timepoint 30, the
concept shift causes a performance drop. The simultaneous introduction of noise
through � = 50 prevents the strategies from recovering their earlier performance.
Strategy R suffers most from noise and is unstable, P is more stable, and PR
performs comparably or better than P.

In Fig 3b, we see how the size of the tree learned by TrIP varies for each of the
strategies. The classification rules learned by R result in very large trees, so more
after the concept changes at timepoint 30. The tree learned by the baseline (TrIP
upon strategy P) is consistently much larger than the tree learned by TrIP upon
PR. Hence, PR achieves comparable or better predictive performance than the
baseline, while learning smaller and less volatile trees.

In a separate experiment Fig 3c&d, we show the performance with 1000 users.
Here, the drift occurs around t50 and is the only place where PR’s tree grows
to adjust to the drift. Strategy R is unable to learn the concept before the drift
and shows a volatile behaviour after. Strategy P overtakes PR during t50− t70,
but it is more of over-fitting than better performance as its tree is big and is
forced to adjust in the subsequent time points.

294 Z.F. Siddiqui and M. Spiliopoulou

Fig. 3. TrIP with 3 strategies (l-to-r): (a & b) AUC and tree size with 150 users, (c
& d) AUC and tree size with 1000 users (e) Financial Dataset with w = 30, size of
Account cache=200 and size of District cache=40

4.2 Predicting Defaults in Bank Loans

The dataset ”Financial” of the PKDD 1999 Challenge contains data on bank
customers, the transactions of their bank accounts and static data on the districts
they come from. The data are timestamped, so we can transform them into the
dataset District, the stream Transaction and the slower stream Account,
which contain the customer data is the target stream. The learning task is to
predict whether a customer (represented by her Account) will default in paying
back her loan. The originally 4 classes were already merged into two (loan-trusted
and loan-risk) during the 1999 Challenge.

In [15], we stressed that the ”Financial” dataset exhibits a difficult learning
problem: the class distributions reflect the state of the accounts only when they
have matured. Hence, labels become applicable at a much later timepoint than
when the objects are introduced. So, we expect low performance at the first
timepoints. We also point out that the amount of data cached per stream affects
performance. We experimented with similar settings.

We set the CRMPES parameters to δ = 0.95, smin = 0.01, dmin = 0.1. For
TrIP, we set τ = 0.01 and n = 200. For the incremental propositionalisation, we
allow r = 3 columns per nominal attribute to accommodate values and g = 8
columns for rule-based attributes.

We used only the baseline P and strategy PR. We see in Fig 3e that they
perform similarly. Inspection of the CRMPES output showed that there are
some useful rules, e.g. balance within [-600, 600] AND penalty imposed

Classification Rule Mining for a Stream of Perennial Objects 295

→ loan-risk , but they were not very frequent and were not utilised by TrIP.
An explanation is also the nature of the dataset: the labels are predictable only
when the accounts mature, i.e. rather late. Further, the Financial dataset con-
tains many nominal attributes that can be exploited directly by TrIP; numerical
attributes, as in the synthetic dataset, are more difficult to exploit in a decision
tree, so CRMPES brings higher advantage.

5 Conclusion

In this paper, we proposed a classification rule mining algorithm for a stream
of perennial objects. Such a stream consists of objects that are of static nature,
e.g., customers or university students, fed by additional streams of conventional
nature, e.g. purchase transactions, product impressions, course enrolments and
exams. The learning task, like predicting a customer’s responsiveness to a mar-
keting campaign or a student’s final rank, refers to the static objects but is
influenced by the information in the feeding streams. Learning algorithms for
this kind of stream are scarce and suffer from the caveats of a very large feature
space.

We have used classification rules over the perennial objects’ stream to identify
attributes of high predictive power. We maintain these rules in a lattice, and
adjust the lattice as new data arrive in the feeding streams, allowing for drift
of any of the labels. Classification rules are used to identify attributes of high
predictive power for some label. These attributes are then used with priority for
learning. Tree induction is performed with an existing algorithm for a perennial
objects’ streams: we have extended it to focus only on the prioritised attributes.
Our experiments show that the enhanced algorithm has superior performance,
while considering less attributes and thus consuming less space.

We have considered a binary classification problem, but our stream classifica-
tion rule discovery approach is designed for an arbitrary number of labels, and
can also be used for overlapping classes, i.e. for the multi-label learning problem.
We intend to extend our approach towards multi-label stream learning over a
stream of perennial objects.

References

1. Aydin, T., Güvenir, H.A.: Learning interestingness of streaming classification rules.
In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp.
62–71. Springer, Heidelberg (2004)

2. Aydın, T., Güvenir, H.A.: Modeling interestingness of streaming classification rules
as a classification problem. In: Savacı, F.A. (ed.) TAINN 2005. LNCS (LNAI),
vol. 3949, pp. 168–176. Springer, Heidelberg (2006)

3. Catlett, J.: Megainduction: Machine Learning on Very Large Databases. Ph.D.
thesis, University of Sydney (1991)

4. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

296 Z.F. Siddiqui and M. Spiliopoulou

5. Chi, Y., Wang, H., Yu, P.S., Muntz, R.: Moment: Maintaining closed frequent item-
sets over a stream sliding window. In: Proceedings of the International Conference
on Data Mining, ICDM 2004 (2004)

6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
International Conference on Knowledge Discovery in Databases, KDD 2000, pp.
71–80. ACM, New York (2000)

7. Ferrer-Troyano, F., Aguilar-Ruiz, J.S., Riquel Jose, C.: Data streams classification
by incremental rule learning with parameterized generalization. In: ACM Sympo-
sium on Applied Computing, SAC 2006, pp. 657–661. ACM, New York (2006),
http://doi.acm.org/10.1145/1141277.1141428

8. Gupta, A., Kumar, N., Bhatnagar, V.: Incremental classification rules based on
association rules using formal concept analysis. In: Perner, P., Imiya, A. (eds.)
MLDM 2005. LNCS (LNAI), vol. 3587, pp. 11–20. Springer, Heidelberg (2005)

9. Hidber, C.: Online association rule mining. Tech. Rep. UCB/CSD-98-1004, EECS
Department, University of California, Berkeley (1998),
http://www.eecs.berkeley.edu/Pubs/TechRpts/1998/5677.html

10. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of International Conference on Knowledge Discovery in Databases,
KDD 2001. ACM, New York (2001)

11. Kroegel, M.A.: On Propositionalization for Knowledge Discovery in Relational
Databases. Ph.D. thesis, University of Magdeburg, Germany (2003)

12. McGovern, A., Hiers, N., Collier, M., Gagne II, D.J., Brown, R.A.: Spatiotemporal
relational probability trees. In: Proceedings of the International Conference on
Data Mining, ICDM 2008 (2008)

13. Siddiqui, Z.F., Spiliopoulou, M.: Combining multiple interrelated streams for in-
cremental clustering. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp.
535–552. Springer, Heidelberg (2009)

14. Siddiqui, Z.F., Spiliopoulou, M.: Stream clustering of growing objects. In: Gama,
J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp.
433–440. Springer, Heidelberg (2009)

15. Siddiqui, Z.F., Spiliopoulou, M.: Tree induction over perennial objects. In: Gertz,
M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 640–657. Springer,
Heidelberg (2010)

16. Veloso, A., Meira, J.W., Carvalho, M., Possas, B., Parthasarathy, S., Zaki, J.:
Mining frequent itemsets in evolving databases. In: Proceedings of the 2nd SIAM
International Conference on Data Mining (2002)

17. Yu, P.S., Chi, Y.: Association rule mining on streams. In: Encyclopedia Database
Systems (2009)

http://doi.acm.org/10.1145/1141277.1141428
http://www.eecs.berkeley.edu/Pubs/TechRpts/1998/5677.html

A Case for Learning Simpler Rule Sets with

Multiobjective Evolutionary Algorithms

Adam Ghandar1, Zbigniew Michalewicz1,2, and Ralf Zurbruegg3

1 School of Computer Science,
University of Adelaide, Adelaide, SA 5005, Australia

2 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warsaw, Poland

and
Polish-Japanese Institute of Information Technology,

ul. Koszykowa 86, 02-008 Warsaw, Poland
3 School of Commerce, University of Adelaide,

Adelaide, SA 5005, Australia

Abstract. Fuzzy rules can be understood by people because of their
specification in structured natural language. In a wide range of decision
support applications in business, the interpretability of rule based sys-
tems is a distinguishing feature, and advantage over, possible alternate
approaches that are perceived as “black boxes”, for example in facilitat-
ing accountability. The motivation of this paper is to consider the rela-
tionships between rule simplicity (the key component of interpretability)
and out-of-sample performance. Forecasting has been described as both
art and science to emphasize intuition and experience aspects of the pro-
cess: aspects of intelligence manifestly difficult to reproduce artificially.
We explore, computationally, the widely appreciated forecasting “rule-
of-thumb” expressed in Ockham’s principle that “simpler explanations
are more likely to be correct”.

1 Introduction and Background

The combination of evolutionary algorithms and fuzzy systems has led to many
and varied successful applications. In this paper, we a fixed size integer repre-
sentation to of fuzzy rules and multiobjective EAs to learn classification rules.
We compare the performance with results reported for benchmark datasets; and
examine the generalizability of learned rules. Compared with other evolutionary
methods proposed to learn rules, the approach presented involves less special-
ization to the rule learning problem. We use a mixed integer and floating point
problem representation of fixed size, a key feature is that it remains within the
framework of a standard EA needing no additional parameters or routines.This
allows us for instance to use different evolutionary algorithms when useful and
makes implementation more straight forward.

Genetic Fuzzy Systems (GFS) are a category of techniques for learning fuzzy
systems, or parts of them, using evolutionary computation. The definition could
be extended to include the categories of other nature inspired population based

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 297–304, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

298 A. Ghandar, Z. Michalewicz, and R. Zurbruegg

heuristics such as particle swarm optimization, ant systems, etc. They are part of
recent trends, in soft computing and computational intelligence, to combine neural
networks, fuzzy systems and a range of heuristic techniques. We apply several mul-
tiobjective evolutionary algorithms, including NSGAII and a steady state version
of NSGAII SSNSGAII [2], and SPEA2 [11]. In addition, we adapt the approach to
MOCell (a cellular algorithm)which increases diversity on the pareto front [9], and
FastPGA which reduces CPU time expensive fitness evaluations [4].

The remainder of the paper is organized as follows. section 2 describes the
approach and methodology. Section 3 provides experimental results comparing
the methodology to other techniques using standard datasets. Finally section 4
concludes the paper.

2 Approach and Method

This section provides details on the approach to implementing an evolving fuzzy
rule system for classification. We describe the classification problem and the
tradeoff between classifier accuracy and simplicity, followed by the fuzzy rule
based approach.

2.1 Description of the Problem and Multiple Objectives

We consider classifiers to be rulebases which can define a mapping D : �n → Ω
from a vector of observations x = x1, . . . , xn ∈ �n to a set of c class labels
ω1, . . . , ωc ∈ Ω. The problem considered in this paper is to utilize the relation-
ship between classifier characteristics simplicity and accuracy to promote gener-
alizable classifiers. This is through defining two primary conceptual objectives in
the classifier design: accuracy in classification and simplicity of the classification
rules. Given a decision vector g, a series of “genes” which on decoding specify
a fuzzy rulebase classifier. there are two objectives denoted ferror(x) (the accu-
racy objective) and fcomplexity(x), (the rulebase simplicity objective). We can
express this problem as follows:

minimize z = ferror(x), fcomplexity(x).

The accuracy objective performance is a measure of the classification error in
determining the class of a set of examples T . Each example is a tuple containing
crisp feature observations yi and a matching class ci = (y1, y2, . . . , yn, ci) ∈ C.
The is measured as follows:

ferror(x) = 1− No. correct classifications
Total No. of training examples

.

A set of fuzzy if-then rules always contains three main sources of complexity:

1. the number of rules,
2. the number of statements about linguistic labels within each rule (i.e. the

number of inputs in the rules),
3. the complexity of the qualifiers or membership functions (e.g. if a rule uses

the qualifier “high”, then how is high defined).

A Case for Learning Simpler Rule Sets 299

It is not possible to reduce the output complexity except possibly by changing to
a different type of fuzzy system. Therefore, fsimplicity is decomposed into three
components (which are modeled as separate objectives in the evolutionary ap-
proach). These objectives are: counting the number of rules used in classification,
and the second is the average number of inputs used per rule = total number of in-
puts/number of rules. And so, for this multiobjective problem, given two evolved
fuzzy rulebase solutions, x1 and x2, we can say that x1 dominates x2 iff

1. ferror(x1) < ferror(x2) and,
2. fNo.rules(x1) < fNo.rules(x2) and,
3. fNo.inputs/rule(x1) < fNo.inputs/rule(x2).

If one of these conditions is true, then we can say t x1 dominates x2 in that
objective.

2.2 Fuzzy Rule Based Classifiers

In the evolutionary approach, a fundamental aspect of the method is to define
of a mapping between the representation of fuzzy rules that is used in applica-
tion (termed the phenotype) and the internal representation that is used in the
evolutionary process (called the genotype).

A single rule rk of M rules that make up a rulebase has the following form:

Rk : if x1 is A1 ∧ . . . ∧ xn is An; then (zk,1, . . . , zk,c)

where x1 . . . xn are feature observations that are described by linguistic labels
A1 . . . An, these are common in the different rules. Examples of possible descrip-
tions are low, high, medium etc. A rulebase is a set of rules r1, r2, . . . , rk. The
consequent is interpreted as a degree of certainty an observation is a member in
each class given the pattern of features specified in the antecedent if part. The
output is calculated analytically in the approach from training data:

zk,i =
Sum of matching degrees of rule k with examples of class i
Sum of total matching degrees of rule k for all examples

We implement classifiers of the Tageki-Sugeno-Kang form (TSK) including types
1 to 4, see for instance [8].

The genotype is the the internal representation for the evolutionary process.
The genotype comprises of ordered slots to contain each rule (and within each
rule, the input and consequent components), and these slots have a boolean
switch to indicate whether the rules (or rule component) are active. Rulebases
are represented internally using a sequence of integers and floating point values.

3 Experimentation

The approach is examined using five separate datasets from the UCI Machine
Learning repository. Due to limited space, additional information on the datasets
may be found at UCIML website 1.
1 http://archive.ics.uci.edu/ml/

300 A. Ghandar, Z. Michalewicz, and R. Zurbruegg

Table 1 shows results for the datasets reported in the literature. Table 2 shows
the average best result from 30 runs for the MOEA and fuzzy system evaluation
methods that were tested. Those results we obtained that were as good, or better
than, previous best results are marked with an asterix in table 2.

Table 1. Results for classification error that have been reported in the literature and
references

Dataset Reported Error Reference

Breast Cancer 4.1 - 6.5 [7,10]
Iris 0.5 - 4 [3]

Glass 24.4, 32.06 [1,6]
Ionosphere 13.1 (C4.5 algorithm res. = 5.9), 5-6 (Fung’s res.) [3,5]

P I Diabetes 26 - 27 (C4.5 was 24.4) [3]

Table 2. Average best results of the methods tested (from 30 runs). NB * means better
or as good as results used as a comparison found in the literature (table 1).

NSGAII SPEA2 SSNSGA FPGA Cell

BC
FS 1 6.35* 6.44* 7.32 10.53 7.86
FS 2 37.5 39 38.9 39.72 37.87
FS 3 4.47* 4.29* 5.33* 7.11 6.17
FS 4 36.11 38.2 38.9 37.5 39.1

Iris
FS 1 1.67* 2.29* 4.16 3.33* 5
FS 2 0.83* 2.5* 1.67* 5 3.33*
FS 3 2.08* 1.67* 1.67* 3.33* 4.16
FS 4 4.17 3.33* 1.67* 4.16 1.67*

Glass
FS 1 36.05 35.19 32.57 33.14 34.3
FS 2 34.88 41.86 34.89 40.69 42.44
FS 3 30.81* 28.49* 30.81* 33.72 30.23*
FS 4 38.95 37.2 37.21 36.05 41.86

Ionosphere
FS 1 14.084* 15.84 18.66 19.71 23.94
FS 2 60.3 59.32 58.09 64.789 62.67
FS 3 16.54 19.71 20.422 21.83 17.25
FS 4 64.12 63.98 63.38 60.91 63.03

Diabetes
FS 1 23.7* 23.86* 20.13 * 21.76* 22.89*
FS 2 25.32 25.81 28.24 24.18 28.41
FS 3 22.72* 18.83 * 21.1 * 20.29* 19.96*
FS 4 29.38 26.79 27.59 23.53* 25.32

A Case for Learning Simpler Rule Sets 301

Table 3. Regression equations with form ClassificationError = Intercept +
(NoRules)X1 + (NoInput)X2 together with coefficient of determination (R2). Re-
sults where no tradeoff was found are not included (TSK FS 2 and 4 sometimes did
not provide a tradeoff between complexity and interpretability in the more complex
datasets).

Intercept No.Rules Coef. No.Input Coef. R2

Breast Cancer Dataset
TSK FS 1
SPEA2.Error 31.8 -4.07 (p = 4.56e-66) -2.77 (p= 9.34e-40) 0.68
NSGAII.Error 27.87 -4.81 (p = 1.07e-47) -2.27 (p= 2.48e-31) 0.73

TSK FS 3
SPEA2.Error 27.99 -7.3 (p = 1.01e-14) -1.43 (p= 1.94e-46) 0.72
NSGAII.Error 29.22 -6.43 (p = 7.38e-33) -2.58 (p= 8.24e-25) 0.65

Glass Dataset
TSK FS 1
SPEA2.Error 60.37 -5.12 (p = 2.53e-02) -0.61 (p= 4.96e-22) 0.37
NSGAII.Error 55.52 -1.43 (p = 2.77e-07) -1.35 (p= 8.9e-03) 0.16

TSK FS 2
SPEA2.Error 64.02 -3.85 (p = 3.82e-42) -2.67 (p= 5.3e-26) 0.62
NSGAII.Error 65.46 -1.52 (p = 8.4e-48) -4.45 (p= 1.80e-02) 0.45

TSK FS 3
SPEA2.Error 60.35 -0.84 (p = 9.4e-31) -3.96 (p= 1.39e-01) 0.43
NSGAII.Error 61.89 -5.06 (p = 3.06e-25) -2.2 (p= 7e-36) 0.5

TSK FS 4
SPEA2.Error 59.37 0.15 (p = 9.48e-34) -3.39 (p= 8.05e-01) 0.37
NSGAII.Error 59.55 -1.58 (p = 1.15e-31) -3.04 (p= 3.17e-04) 0.33

Ionosphere Dataset
TSK FS 1
SPEA2.Error 58.08 -3.67 (p = 3.61e-02) -0.83 (p= 4.81e-110) 0.83
NSGAII.Error 61.48 -4.62 (p = 2.05e-11) -5.89 (p= 9.77e-59) 0.82

TSK FS 3
SPEA2.Error 62.07 -2.04 (p = 1.35e-43) -11.47 (p= 3.55e-34) 0.8
NSGAII.Error 58.92 -3.62 (p = 4.84e-02) -1.78 (p= 1.42e-45) 0.64

TSK FS 4
SPEA2.Error 62.07 -2.04 (p = 1.35e-43) -11.47 (p= 3.55e-34) 0.8
NSGAII.Error 58.92 -3.62 (p = 4.84e-02) -1.78 (p= 1.42e-45) 0.64

Pima Indians Diabetes
TSK FS 1
SPEA2.Error 33.26 -2.15 (p = 9.02e-10) -0.53 (p= 7.74e-24) 0.4
NSGAII.Error 31.54 -0.77 (p = 6.41e-05) -0.43 (p= 1.16e-02) 0.14

TSK FS 2
SPEA2.Error 32.5 0.61 (p = 3.1e-16) -1.02 (p= 7.91e-02) 0.17
NSGAII.Error 32.97 -1.92 (p = 5.89e-01) 0.08 (p= 2.58e-05) 0.08

TSK FS 3
SPEA2.Error 28.04 -0.13 (p = 2.69e-27) -1.07 (p= 6.58e-01) 0.38
NSGAII.Error 36.2 -4.08 (p = 1.30e-08) -0.55 (p= 6e-44) 0.51

Iris Dataset
TSK FS 1
SPEA2.Error 51.34 -8.65 (p = 2.13e-109) -5.05 (p= 2.16e-27) 0.74
NSGAII.Error 61.34 -18.81 (p = 1.79e-97) -6.13 (p= 2.53e-68) 0.74

TSK FS 2
SPEA2.Error 64.23 -28.75 (p = 1.25e-49) -4.85 (p= 2.85e-69) 0.81
NSGAII.Error 61.04 -29.38 (p = 3.05e-21) -2.96 (p= 8.57e-48) 0.71

TSK FS 3
SPEA2.Error 56.07 -19.56 (p = 1.92e-77) -4.85 (p= 1.68e-68) 0.75
NSGAII.Error 52.35 -18.33 (p = 2.15e-62) -4.34 (p= 6.76e-62) 0.72

TSK FS 4
SPEA2.Error 61.85 -35.07 (p = 3.16e-29) -3.05 (p= 3.98e-85) 0.8
NSGAII.Error 61.28 -28.98 (p = 6.13e-36) -3.21 (p= 4.02e-77) 0.78

302 A. Ghandar, Z. Michalewicz, and R. Zurbruegg

Table 4. Comparison of the best performance VS simplicity for IN and OUT sample
results for the No. of Rules and the No. of Input

OUT Rules IN Rules OUT Input IN Input
Breast Cancer Dataset
TSK FS 1
SPEA2.Error 4 6 1.2 3
NSGAII.Error 6 8 2.14 2.33

TSK FS 3
SPEA2.Error 3 6 1.25 1.57
NSGAII.Error 5 4 1 1.4
Glass Dataset
TSK FS 1
SPEA2.Error 2 6 1.67 2.71
NSGAII.Error 4 7 1.4 3.25

TSK FS 2
SPEA2.Error 3 6 1.75 2
NSGAII.Error 6 5 1.28 1

TSK FS 3
SPEA2.Error 7 8 3.5 3.44
NSGAII.Error 4 8 3.2 2.77

TSK FS 4
SPEA2.Error 5 7 1.67 2.25
NSGAII.Error 6 6 2.28 2.42
Ionosphere Dataset
TSK FS 1
SPEA2.Error 3 2 7 6.33
NSGAII.Error 3 3 6 6

TSK FS 3
SPEA2.Error 2 2 6 6.33
NSGAII.Error 1 3 2 7.5
Pima Indian Diabetes
TSK FS 1
SPEA2.Error 4 5 1.6 1.83
NSGAII.Error 2 6 0.67 2.28

TSK FS 2
SPEA2.Error 5 6 1 2
NSGAII.Error 7 8 2.5 2.56

TSK FS 3
SPEA2.Error 4 7 1.4 2.875
NSGAII.Error 4 7 2.4 2.375

TSK FS 4
SPEA2.Error 5 8 1.17 2.33
NSGAII.Error 6 7 1.86 1.625
Iris Dataset
TSK FS 1
SPEA2.Error 5 7 1.5 1.625
NSGAII.Error 4 4 1.2 1

TSK FS 2
SPEA2.Error 4 7 1 0.875
NSGAII.Error 7 7 1.125 1.125

TSK FS 3
SPEA2.Error 4 8 0.8 1.11
NSGAII.Error 5 6 0.83 1

TSK FS 4
SPEA2.Error 8 8 1.11 1.11
NSGAII.Error 3 6 0.75 0.85

AVERAGE 4.4 6 2.0 2.5

A Case for Learning Simpler Rule Sets 303

Examples of good overall performance was most common when fuzzy systems
of tsk type 1 and 3 were used. The more complex rule aggregation methods
did not seem to translate into improved performance in the learned classifiers.
However, the more complex tnorm used to aggregate the rule inputs in tsk 3
systems did produce better performance. Generally, these two approaches did
achieve respectable results, except in the Ionosphere dataset.

Table 4 shows the simplicity objectives and the classification error solutions
in the 5 datasets. Table 3 shows results of fitting a linear model of the relation-
ship between simplicity and accuracy (other models could be used but a linear
approach provides balance that allows some insight to be extracted in the gen-
eral case. In iris the error was reduced, on average, by 3-5% for each increase in
average inputs by 1 and by around 25% for additional rules. The linear model
of the relationship between simplicity and error (table 3) shows that accuracy is
increased by adding rules in all cases and that its impact on the error is statis-
tically significant. The gradient of improvement as additional rules and inputs
are added varies in the different cases considered and shows whether additional
complexity is useful (ie a shallow gradient means more complexity is useful).

4 Conclusion

This paper has provided an overview the application of a genetic fuzzy system
for learning classifiers. It was found that by looking at the best solution overall
for out of sample testing, that in comparison to methods in the literature, this
approach to learning classification systems was able to perform comparably or
better in almost all of the datasets tested. In the introduction we suggested that
randomized algorithms might provide some insight into a computer approxima-
tion of the “simpler explanations are better” heuristic. The approach showed that
there is a clear nexus between simple models and out of sample performance:
in over 95% of the test runs the performance the best performing out of sample
solution was simpler than the best performing in sample solution. The experi-
ments show interpretability objectives in multiobjective evolutionary algorithms
for learning fuzzy rules can lead to rules with greater prediction capability as
well as avoiding supercilious complexity.

References

1. Athitsos, V., Sclaroff, S.: Boosting nearest neighbor classifiers for multiclass recog-
nition. Boston University Computer Science Tech. Report No, 2004-006 (February
2004), athitsos@cs.bu.edu

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

3. Eggermont, J., Kok, J.N., Kosters, W.A.: Genetic programming for data classifi-
cation: partitioning the search space. In: SAC, p. 1001 (2004)

304 A. Ghandar, Z. Michalewicz, and R. Zurbruegg

4. Eskandari, H., Geiger, C., Lamont, G.: FastPGA: A dynamic population sizing
approach for solving expensive multiobjective optimization problems. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 141–155. Springer, Heidelberg (2007)

5. Fung, G., Dundar, M., Bi, J., Bharat Rao, R.: A fast iterative algorithm for fisher
discriminant using heterogeneous kernels. In: ICML (2004)

6. Jiang, Y., Zhou, Z.-H.: Editing training data for knn classifiers with neural network
ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173,
pp. 356–361. Springer, Heidelberg (2004)

7. Zhang, J.l.: Selecting typical instances in instance-based learning. In: Proceedings
of the Ninth International Machine Learning Conference, pp. 470–479 (1992)

8. Kuncheva, L.I.: How good are fuzzy if-then classifiers? IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B 30(4), 501–509 (2000)

9. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Mocell: A cellular
genetic algorithm for multiobjective optimization. Int. J. Intell. Syst. 24(7), 726–
746 (2009)

10. Mangasarian, O.L., Wolberg, W.H.: Selecting typical instances in instance-based
learning. Proceedings of the National Academy of Sciences, 91–93 (1990)

11. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evo-
lutionary algorithm. Technical report (2001)

Algorithms for Rule Inference
in Modularized Rule Bases�

Grzegorz J. Nalepa, Szymon Bobek, Antoni Ligęza, and Krzysztof Kaczor

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

{gjn,szymon.bobek,ligeza,kk}@agh.edu.pl

Abstract. In the paper an extended knowledge representation for rules is con-
sidered. It is called Extended Tabular Trees (XTT2) and it provides a network of
decision units grouping rules working in the same context. The units are linked
into an inference network, where a number of inference options are considered.
The original contribution of the paper is the proposal and formalization of several
different inference algorithms working on the same rule base. Such an approach
allows for a more flexible rule design and deployment, since the same knowledge
base may be used in different ways, depending on the application.

1 Introduction

Rules constitute a cardinal concept of the rule–based expert systems (RBS for short) [4].
Building such systems requires creating a knowledge base, which in case of RBS can
be separated into two parts: fact base containing the set of facts and rule base containing
the set of rules. To make use of these two parts, the inference engine must be provided.
The inference engine is responsible for generating findings, based on the current state
of the fact base using rule conditions. In the first task of the inference mechanism the
conditional parts of the rules are checked against the facts from the fact base. This task
is performed by pattern matching algorithm. The output of the algorithm is the set of
rules, which conditional parts are satisfied. This set of rules is called a conflict set. The
next task of the engine is the execution of the rules from the conflict set. There are many
different algorithms for determining an execution order of the rules.

A rule-base can contain thousands or even millions rules. Such large rule-bases cause
maintenance problems and cause inefficiency of inference (a large number of rules may
be unnecessary processed). The modularization of the rule-base that introduces struc-
ture to the knowledge base can be considered as the way to avoid them. Rules can be
grouped in modules, to facilitate the maintenance of a large set of rules.

The main focus of this paper is the inference in the structured rule bases. Sect. 2
presents knowledge base structuring and inference control algorithms in the well-known
expert system shells. The discussion includes three main pattern matching algorithms.
In Sect. 3 the issue of knowledge modularization as well as the motivation is given. In
Sect. 4 the main concepts of the XTT2 knowledge representation method are introduced.

� The paper is supported by the PARNAS Project funded from NCN (National Science Centre)
resources for science.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 305–312, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

306 G.J. Nalepa et al.

Sect. 5 introduces the inference methods for XTT2 knowledge bases. A practical case
study is presented in Sect. 6. The conclusions of the paper are included in Sect. 7.

2 Classic Rule Inference Algorithms

An expert system shell is a framework that facilitates creation of complete expert sys-
tems. Usually, they provide most of the important functionalities: rule language, infer-
ence algorithm, explanation mechanism, user interface, knowledge base editor.

CLIPS [4] is an expert system tool that is based on the Rete algorithm. It provides
its own programming language that supports rule-based, procedural and object-oriented
programming. JESS [3] is a rule engine and scripting environment derived form CLIPS
and written entirely in Java. It uses CLIPS rule syntax. Drools [1] provides a unified and
integrated platform for Business Rules, Workflows (Processes) and Events. All these
shells share similar inference control solutions.

Every inference algorithm performs the following operations: 1) Match rule LHSs
(Left Hand Sides) to determine which are satisfied according to the content of the work-
ing memory (WM). 2) Conflict set resolution selects rules(s) (instantiation(s)) that has
satisfied LHS. 3) Action Perform the actions in the RHS (Right Hand Sides) of the
selected rule(s). 4) Goto 1. The first step is a bottleneck of inference process. The algo-
rithms, which are presented in this section, try to address this problem.

The Rete algorithm [2] is an efficient pattern matching algorithm for implementing
production rule systems. The main advantage of the Rete algorithm is that it tries to
avoid iterating over production and WM by storing the information between cycles.
Each pattern stores the list of the elements that it matches – when WM is changed
only the changes are analyzed. Rete also can avoid iterating over production set. When
the WM is changed, the altered working elements are let in to the a tree-like structure
(network) that was compiled previously from the patterns (rules). Each node of the
network tries to match the given working element. If it matches, then the copy of the
element is passed to all the successors of the node. The leaves of the Rete tree contain
information about changes to be applied to the conflict set.

The main idea of the TREAT algorithm [6] is to exploit the conflict set support for
temporarily redundant systems. The conflict set is explicitly retained across produc-
tion system cycles which allows for the following advancements comparing to Rete:
1) in case of addition of WM element, conflict set remains the same, and constrained
search for new instantiation of only those rules that contain newly added WM element
is performed. 2) deletion from WM triggers direct conflict set examination for rules to
remove. No matching is required to process deletion since any instantiation of the rule
containing removed element is simply deleted.

Gator algorithm. Both Rete and TREAT offer static networks that dos not depend on
the characteristic of the system. This very often leads to the creation of networks that are
not optimal for some knowledge bases. To address this problem a new discrimination
network algorithm called Gator was proposed. It is based on Rete, but additionally
implements mechanisms for optimizing network structure according to specific kno-
wledge base characteristic. It can be said that Rete and TREAT are special cases of
Gator and as reported in [5] it outperforms TREAT and Rete in most cases.

Algorithms for Rule Inference in Modularized Rule Bases 307

3 Knowledge Modularization Techniques

Most of expert systems have flat knowledge base, so the inference mechanism has to
check each rule against each fact. When the knowledge base contains a large number of
rules and facts this process becomes inefficient. This problem is addressed by providing
a structure in the knowledge base that allows for checking only a subset of rules.

CLIPS can organize rules into so called modules that allow for restriction of access to
their elements from other modules. They can be compared to global and local scoping
in other programming languages. Modularization of knowledge base helps managing
rules, and improves efficiency of rule-based system execution. Each module has its own
pattern-matching network for its rules and its own agenda. Only module that has focus
set is processed by the inference engine. The current focus can be dynamically switched
in RHS of the rule or can be arbitraly set at the begining of the inference process.

Jess provides modules mechanism that helps to manage large numbers of rules. Mod-
ules also provide a control mechanism: the rules in a module will fire only when that
module has the focus, and only one module can be in focus at a time. The main differ-
ence between CLIPS module and Jess module is that the second one can be considered
as nothing more than a namespace for rules. In terms of efficiency the modules mecha-
nism does not influence on the performance of the conflict set creation.

Drools have a built-in functionality to define the structure of the rulebase which
can determine the order of the rules evaluation and execution. This functionality is
provided by the jBPM5 component. The rules can be grouped in a ruleflow–groups
which defines the subset of rules that are evaluated and executed. Ruleflow–groups have
a graphical representation as the nodes on the ruleflow diagram. They are connected
with the links what determines the order of its evaluation. However, there is no policy
which determines when a rule can be added to the ruleflow-group. Due to this fact, the
rules groupping can cause problems in the rule base especially in case of large rulebases.

The limitations of rule inference in existing shells give motivation for this research. A
flexible and expressive rule formalization method is considered. It allows for proposing
different formalized inference modes for modularized rule bases.

4 Formalization of Modularized Rule Bases with XTT2

XTT2 rule representation method is formalized with the use of the Attributive Logic
with Set Values over Finite Domains ALSV(FD) [8]. This calculus was proposed to
increase the expressive power of the rule language, as well as to open up possiblity of
fromalized design and analysis of rules. In this logic it is assumed tha the state of a
rule-based system is described using attributes. Each attribute has the set of allowed
values which it can take (a domain) A domain is assumed to be a finite (discrete) set.
In ALSV(FD) two types of attributes are identified: simple taking only one value at
any time, and generalized taking multiple values at any time. Using a set of relational
operators formulae are built. These formulae form rule conditions.

ALSV(FD) triples ei are defined as follows: (Ai,∝, Vi) for attributes that can take
sets as a value and (Ai,∝, di) for attributes that can take a single value, where Ai is
an attribute, ∝ is an ALSV(FD) operator. The Vi is a set of values from the attributes
domain and di is a single value from the attribute domain.

308 G.J. Nalepa et al.

XTT2 Rule Let us consider the set of all rules defined in the knowledge base denoted
as R. A single XTT2 rule is a triple: r = (COND, DEC, ACT) where COND ⊂ E,
DEC ⊂ E, where E is the set of ALSV(FD) triples and ACT is a set of actions to
be executed when a rule is fired. A rule can also be written using LHS and RHS :
LHS(r) → RHS(r),DO(ACT), where LHS(r) and RHS(r) correspond respectively
to the condition and decision parts of the rule r, and DO(ACT) involves executing
actions from a predefined set. Actions are not included in the RHS of the rule because
it is assumed that they are independent from the considered system, and the execution
of actions does not change the state of the system.

Rule Schema. Let us consider a concept of a rule schema. Each rule has a schema that
is a pair of attributes sets: h(r) = (Hcond, Hdec), where Hcond and Hdec sets define
the attributes occuring in the conditional and decision part of the rule. A schema is used
to identify rules working in the same situation (operational context). Such a set of rules
can form a decision component in the form of a decision table. A schema can also be
considered a table header.

Decision Component (Table). Let us consider a decision component (or table). It is
an ordered set (sequnce) of rules having the same rule schema, defined as follows:
t = (r1, r2, . . . , rn) ∀i,j : ri, rj ∈ t ⇒ h(ri) = h(rj) where h(ri) is a schema of the
rule ri. In XTT2 the rule schema h can also be called the schema of the component (or
table). Components are connected (linked) in order to provide inference control.

Inference Link. An inference link l is an ordered pair: l = (r, t), l ∈ R×T∪{⊥}where
R is the set of rules in the knowledge base, and T is the set of tables in the knowledge
base. A single link connects a single rule (a row in a table) with another table. An empty
link is denoted as ⊥. A structure composed of linked decision components is called a
XTT2 knowledge base.

XTT2 Knowledge Base. The XTT2 knowledge base is the set of components con-
nected with links. It can be defined as an ordered pair: X = (T, L) where: T is a
set of components (tables), L is a set of links, and all the links from L connect rules
from R with tables from T. Links are introduced during the design process according
to the specification provided by the designer. The knowledge base forms an inference
network.

5 XTT2 Inference Algorithms Formalization

Below, we describe three algorithms for inference control in the XTT2 network (see 1).
In order to define and formalize inference approaches a general algorithm is given first.

Main Inference Algorithm
INPUT:

U – an ordered set of tables, U ⊂ T; the function z determining the number of tokens
needed for a table execution: z : T → N × N and z(t) = (kn, kr) where kn is the
number of tokens required for execution of a given table, and kr a number of received
tokens; initial state s0. U and z are built using the selected algorithm: DDI, TDI, GDI.

Algorithms for Rule Inference in Modularized Rule Bases 309

OUTPUT: the final state of the system: sn.

1. If U = ∅ then STOP.
2. Initialize the current state sc ← s0.
3. In a loop, process all tables in U:

(a) Select the next table from U as t.
(b) For the table t if kr < kn, where z(t) = (kn, kr) then go to step 3a.
(c) In a loop, process all rules in table t:

i. Select next rule in table t as r.
ii. Fire rule r, that changes the system state sc ← s′.

iii. If there exists a link from r in t to a table t′, and k′
r < k′

n, where z(t′) =
(k′

n, k′
r), then k′

r ← k′
r + 1.

4. sn ← sc.
5. STOP.

The Data-Driven Inference algorithm identifies start tables, and puts all the tables
that are linked to the initial ones in the XTT2 network into a FIFO queue. When there
are no more tables to be added to the queue, the algorithm fires selected tables in the
order they are popped from the queue.

Data-Driven Inference Algorithm

INPUT: set of tables: T, set of schemas: H.
OUTPUT: ordered set of tables to be fired: U, and corresponding values of z.

1. Find the set of start tables N1 ⊂ T containing tables where conditional attributes are
independent of other attributes (in the sense of table schemas): N1 ← {ti : h(ti) =
(Hcond

i , Hdec
i), ∀j : h(tj) = (Hcond

j , Hdec
j), Hdec

i ∩Hcond
j = ∅}, i �= j

2. In a loop:
(a) If N1 ← ∅ then STOP.
(b) Build set of tables N2 ⊂ T containing these tables which have the same set

of attributes in their conditional part (Hcond) as the set of attributes in the
conclusion part of the tables (Hdec) from N1:
N2 ← {tk : ∀iti ∈ N1 : Hcond

k = Hdec
i } and N2 ∩ (U ∪N1) = ∅

(c) ∀tk ∈ N2 : z(tk) = (0, 0).
(d) U ← U ∪N1.
(e) N1 ← N2.

The forward-chaining strategy is suitable for simple tree-like inference structures.
However, it has limitations in a general case, because it cannot determine tables having
multiple dependants.

The Token-Driven Inference is based on monitoring the partial inference order de-
fined by the network structure with tokens assigned to tables. A table can be fired only
when there is a token at each input. Let us consider L a set of all links, and T is set of
all tables. Two functions prev and leaves are introduced: prev returns a set of previous
tables determined by links. leaves returns a set of start tables determined by links.

Token-Driven Inference Algorithm

INPUT: set of tables: T, set of links: L.
USES: leaves(ti, N), prev (t).

310 G.J. Nalepa et al.

OUTPUT: ordered set of tables to be fired: U, corresponding values of z

1. Find the set of tables N1 ⊂ T where decision attributes constitute system response.
2. In a loop:

(a) If N1 ← ∅ then STOP.
(b) Find the set N2 ⊂ T of previous tables for each tables belonging to N1:

N2 ← {t ∈ T : t ∈ prev(ti)} ∀iti ∈ N1, where t /∈ (Q ∪N1)
(c) Find the number of start tables for all tables in N2:

z(t) = (|leaves(t, ∅)|, 0) for every t ∈ N2.
(d) U ← U ∪N1

(e) N1 ← N2

This model of inference execution covers the case of possible loops in the network,
e.g. if there is a loop and a table should be fired several times, the token is passed from
its output to its input, and it is analyzed if can be fired; if so, it is placed in the queue.

The goal-driven approach works backwards with respect to selecting the tables nec-
essary for a specific task, and then fires the tables forward so as to achieve the goal.
One or more output tables are identified as the ones that can generate the desired goal
values and are put into a LIFO queue. As a consequence, only the tables that lead to
the desired solution are fired, and no rules are fired without purpose. The algorithm of
building a stack for the goal-driven inference can be defined as follows.

Goal-Driven Inference Algorithm

INPUT: set of tables: T, set of schemas: H, where h(ti) = (Hcond
i , Hdec

i) is a schema
of table ti ∈ T.
OUTPUT: ordered set of tables to be fired: U, and corresponding values of z

1. Find the set of tables N1 ⊂ T, that have conclusion attributes constituting a required
system response (the goal): N1 ← {ti ∈ T : ∀i�tj Hdec

i = Hcond
j , i �= j}

2. In a loop:
(a) If N1 ← ∅ then STOP.
(b) Build set of tables N2 ⊂ T containing these tables which have the same set of

attributes in their conclusion part as the set of attributes in the conditional part
of the tables from N1: N2 ← {tk ∈ T : ∀iH

dec
k = Hcond

i }, ti ∈ N1

(c) z(t) = (0, 0) for every t ∈ N2

(d) U ← U ∪N1

(e) N1 ← N2

The Goal-Driven Inference may be particularly suitable for situations where the con-
text of the opeartion may clearly defined and it is possible to clearly identify the knowl-
edge component that needs to be evaluated.

6 Simple Case Study

The implementation of the XTT2 method includes two representations: textual suit-
able for processing by a rule engine, and visual aimed at a design tool. The visual one is

Algorithms for Rule Inference in Modularized Rule Bases 311

F
ig

.1
.D

if
fe

re
nt

in
fe

re
nc

e
m

od
es

312 G.J. Nalepa et al.

supported by the HQEd graphical editor. The textual one is called HMR (HeKatE Meta
Representation). It is directly processed by a dedicated inference engine for XTT2 rule
bases – HeaRT [7]. It implements the custom inference control algorithms. Depending
on the problem that has to be solved, different inference algorithm can be selected to
improve efficiency of the reasoning process. Applying different inference modes to the
same knowledge base can be compared to asking system different questions.

In Fig. 1 three queries to the simple XTT2 system were presented. The system, based
on user profile and age is supposed to suggest a cinema to go to watch a movie. Three
possible ways of reasoning are possible thanks to the three inference modes described
in Sect. 5: Data Driven – to answer the question what time and what films a customer
can see in which cinemas; Goal Driven – what science-fiction films are suitable for a
customer; Token Driven – the same as Data Driven, but with highly improved efficiency,
due to omitting tables that do not led to the solution.

7 Concluding Remarks

In this paper the issue of providing different inference algorithms for modularized rule
bases was tackled. Modularization is useful in case of larger rule bases where number
of rules working in the same context are related on the logical level. While existing
systems provide certain technical means of rule set decomposition, the inference algo-
rithms they use do not support efficient inference in the decomposed rule base.

The original contribution of the paper is the introduction of practical inference algo-
rithms for modularized (non-flat) rule bases built with the XTT2 representation. The
algorithms allow for reusing the same rule base for different inference tasks and use-
case scenarios. While the approach is oriented towards a custom rule language, it can
be considered a more generic one. In fact, the XTT2 language is expressive enough to
cover the semantics of classic CLIPS-like production rules languages.

References

1. Browne, P.: JBoss Drools Business Rules. Packt Publishing (2009)
2. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif.

Intell. 19(1), 17–37 (1982)
3. Friedman-Hill, E.: Jess in Action, Rule Based Systems in Java. Manning (2003)
4. Giarratano, J., Riley, G.: Expert Systems. Principles and Programming, 4th edn. Thomson

Course Technology, Boston (2005) ISBN 0-534-38447-1
5. Hanson, E.N., Hasan, M.S.: Gator: An Optimized Discrimination Network for Active

Database Rule Condition Testing. Tech. Rep. 93-036, CIS Department University of Florida
(December 1993)

6. Miranker, D.P.: TREAT: A Better Match Algorithm for AI Production Systems; Long Version.
Tech. Rep. 87-58, University of Texas (July 1987)

7. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 598–
605. Springer, Heidelberg (2010)

8. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems.
International Journal of Applied Mathematics and Computer Science 20(1), 35–53 (2010)

Modularity in the Rule Interchange Format

Carlos Viegas Damásio1, Anastasia Analyti2, and Grigoris Antoniou3

1 CENTRIA, Departamento de Informática Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

cd@di.fct.unl.pt
2 Institute of Computer Science, FORTH-ICS, Crete, Greece

analyti@ics.forth.gr
3 Institute of Computer Science, FORTH-ICS, and

Department of Computer Science, University of Crete, Crete, Greece
antoniou@ics.forth.gr

Abstract. The adoption of standards by the knowledge representation
and logic programming communities is essential for their visibility and
impact. The Rule Interchange Format is a fundamental effort in this di-
rection that should be supported by users, developers and theoreticians.
For this reason, it is essential to the community to discuss the recommen-
dations published by the W3C RIF Working Group. In particular, this
paper presents the semantics of Rule Interchange Format (RIF) of multi-
documents, analyses it and some deficiencies are elicited. A more general
approach is proposed as an alternative semantics for multi-documents.
As a side important result, some relevant problems in the semantics of
RIF-FLD are also discussed and possible ways out are proposed.

Keywords: Semantic Web, Rule Interchange Format, Modularity, Logic
Programming, Language Issues, Many-valued Semantics.

1 Introduction

The development of the Semantic Web requires appropriate modular constructs
for the combination of rulebases and ontologies. This is an essential problem to
software engineering and its difficulty rockets with the distributed and woven
character of the Semantic Web. The simplest mechanism is the basic importing
of ontologies or rulebases, like the ones available in the Web Ontology Lan-
guage [21,20] and Rule Interchange Format [27]. Others address the problem
of extracting and reusing subsets of ontologies in order to avoid using irrelevant
parts of knowledge and thus reducing complexity of reasoning (e.g. see [14,16,18]
and references therein). Packaged-Based Description Logic [6] is a general ap-
proach of contextualized interpretations of ontologies with semantic mappings
among names, addressing several fundamental issues in a theoretical sound way.
Compositionality and modularity of reasoning for logic programming languages
has been studied for a long time [8] and recently have obtained novel results for
Answer Set based semantics [19,13]. Finally, the syntactic modular constructs for

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 313–328, 2011.
© Springer-Verlag Berlin Heidelberg 2011

314 C.V. Damásio, A. Analyti, and G. Antoniou

logic programming systems for programming-in-the-large have been extensively
analysed and several approaches appear in the literature (e.g. [17,5]).

This paper results from the attempt to align the syntax and semantics of
our Modular Web Framework [4,5], which allows the safe and controlled use of
weak negation in the Semantic Web, with the general RIF Framework for Logic
Dialects (RIF-FLD [27]). Unfortunately, this proved to be impossible due to
general problems identified both in the semantics of ordinary formulas and of
document formulas in RIF-FLD. Here we report the identified problems, discuss
and advance proposals for their correction.

The Rule Interchange Format Framework for Logic Dialects [27] proposes two
forms of structuring logical documents, via import and module mechanisms.
The import mechanism allows the use of profiles in order to include in a RIF
logical theory other logical theories with a specific semantics or syntax, e.g.
RDF or OWL. The semantics of import with profiles is left open for the RIF
dialects to define the intended behaviour. The import mechanism without profile
corresponds roughly to the textual import of the contents of RIF documents,
modulo local constants, and will be discussed in detail in this paper. The module
mechanism allows the remote linking of external theories to the enclosing RIF
document where it is used, and will also be analysed.

This paper start by illustrating the MWeb approach with a motivating ex-
ample. Next, we present the basics of the RIF-FLD semantics, and in particular
describing the semantics of some connectives and elicit their problems. Subse-
quently we describe the syntax of RIF document formulas, and overview in de-
tail the corresponding semantics and its singular features. The deficiencies of the
current proposal will be pointed out and an alternative semantics encompassing
solution will be provided. The changes in the definition of some connectives re-
quire also a generalization of the notion of model, and the corresponding notion
of logical entailment, which are briefly treated. Conclusions finish this work.

2 The MWeb Approach

The Modular Web framework [4,5] addresses in a principled way several aspects
of knowledge sharing and integration in the Semantic Web. The MWeb frame-
work provides mechanisms supporting safe uses of non-monotonic negation in
scoped closed and open world assumptions in logic rules for Semantic Web ap-
plications, under the full control of rulebase providers and consumers. In order to
make the MWeb approach widely applicable, we have started the alignment with
the RIF syntax as well as an attempt to semantically extend RIF-FLD frame-
work to encompass MWeb’s semantics. Several issues have been elicited in this
process, which are better explained with a concrete MWeb rulebase example.

Typical MWeb rulebases can be found in figures 1 and 2 where Geographical
data is provided and used to describe information about universities1. Every

1 The examples can be tried out with the implementation publicly available
at http://centria.di.fct.unl.pt/~cd/mweb

http://centria.di.fct.unl.pt/~cd/mweb

Modularity in the Rule Interchange Format 315

MWeb rulebase has an interface, and a logical document part where knowl-
edge is specified by facts and rules. The current MWeb syntax is akin to RIF’s
presentation syntax, where the # operator expresses class membership in RIF,
while ## subclass inclusion. Moreover, we also allow F-logic like frames of the
form o.[p1-»v1, . . . , p2-»vn, . . .] (equivalent to o.[p1-»v1], and o.[p2-»v2], and . . .)
represent that object o is related via property p1 to value v1, etc. With this
information, the meaning of the logical part of both rulebases is immediate.

GEO interface (geo.mw)

:- rulebase 'http://geography.int'.

:- prefix xsd = 'http://www.w3.org/2001/XMLSchema#'.
:- prefix geo='http://geography.int#'.
:- import('rdf.mw',interface).

:- defines local closed class(geo:Continent).
:- defines local open class(geo:Country) wrt context class(geo:PoliticalEntity).
:- defines local open ?X.[rdf:type -» geo:Country] wrt context class(geo:PoliticalEntity).
:- defines local definite class(geo:City), class(geo:PoliticalEntity).
:- defines local definite property(geo:located_in), property(geo:part_of),

property(geo:city_name).

GEO rulebase (geo.rb)

:- import('rif.rb', rulebase).
:- import('rdf.rb', rulebase).

geo:Africa # geo:Continent. geo:America # geo:Continent.
geo:Antarctica # geo:Continent. geo:Asia # geo:Continent.
geo:Europe # geo:Continent. geo:Oceania # geo:Continent.

geo:Country ## geo:PoliticalEntity.

geo:EU.[geo:part_of -» geo:Europe, rdf:type -» geo:PoliticalEntity].
geo:Spain.[geo:part_of -» geo:EU, rdf:type -» geo:Country].
geo:Portugal.[geo:part_of -» geo:EU, rdf:type -» geo:Country].
geo:Cataluna.[geo:part_of -» geo:Spain, rdf:type -» geo:PoliticalEntity].

geo:Barcelona.[geo:located_in -» geo:Cataluna, rdf:type -» geo:City,
geo:city_name -» "Barcelona"ˆˆxsd:string].

geo:Lisboa.[geo:located_in -» geo:Portugal, rdf:type -» geo:City,
geo:city_name -» "Lisboa"ˆˆxsd:string, geo:city_name -» "Lisbon"ˆˆxsd:string].

?X.[geo:located_in -» ?Z] :- ?Y.[geo:part_of -» ?Z], ?X.[geo:located_in -» ?Y].

Fig. 1. Geographic MWeb Rulebase

The interface document provides an Internationalized Resource Identifier (IRI)
for the rulebase, an optional base IRI address as well as prefixes for shortening
writing of IRIs. More important, the interface can (textually) import other in-
terfaces. In Fig. 1 and Fig. 2, an interface defining the vocabulary of the RDF
language is imported (not shown). An optional vocabulary declaration can be
used to list the vocabulary of the rulebase. Next, follow two blocks of declara-
tions. The first block defines the predicates being defined in the MWeb rulebase,
and correspond to a generalization of the export declarations found in logic pro-
gramming based languages. The second block corresponds to a generalization of
import declarations, as shown in the rulebase of Fig. 2.

316 C.V. Damásio, A. Analyti, and G. Antoniou

INST interface (inst.mw)
:- rulebase 'http://institution.int'.
:- prefix xsd = 'http://www.w3.org/2001/XMLSchema#'.
:- prefix geo='http://geography.int#'.
:- prefix inst = 'http://institution.int#'.
:- import('rdf.mw',interface).

:- defines local normal class(inst:Institution).
:- defines local normal inst:address(?ID,?NAME,?STREET,?NUMBER,?CITY,?COUNTRY).

:- uses definite class(geo:Country).
:- uses definite property(geo:located_in), property(geo:city_name).
:- uses definite property(rdf:type) from 'http://geography.int#'.

INST rulebase (inst.rb)
:- import('rdf.rb', rulebase).

:- defines internal definite inst:address/5.

?ID # inst:Institution :- inst:address(?ID, ?_, ?_, ?_, ?_).

inst:address(inst:UBAR,"Universitat Barcelona"ˆˆxsd:string,
"Calle 1"ˆˆxsd:string,2,"Barcelona"ˆˆxsd:string).

inst:address(inst:UNL, "Universidade Nova de Lisboa"ˆˆxsd:string,
"Rua 2"ˆˆxsd:string,3,"Lisboa"ˆˆxsd:string).

inst:address(?ID,?NAME,?STREET,?NUMBER,?CITY,?COUNTRY) :-
inst:address(?ID,?NAME,?STREET,?NUMBER,?CITYNAME),
?CITY.[geo:city_name -» ?CITYNAME],
(?CITY.[geo:located_in -» ?COUNTRY]) @ 'http://geography.int',
(?COUNTRY.[rdf:type -» geo:Country]) @ 'http://geography.int'.

Fig. 2. Institutional MWeb Rulebase

The interesting feature of the MWeb framework is that besides scope (i.e.
internal, local, or global), different reasoning modes can be associated to predi-
cates (i.e. definite, open, closed, or normal). This allows control of monotonicity
of reasoning by the producer and consumer of the knowledge. In what follows,
we use the term predicates to mean an ordinary predicate, a class or a property.

Global and local predicates are visible in the Semantic Web, the difference
being that local predicates can only be declared in a single rulebase; internal
predicates are not visible. Normal predicates are general predicates which can
use weak negation in the bodies, and therefore are non-monotonic. The remaining
predicates cannot use weak negation in the bodies of rules, but strong negation
is allowed. Closed predicates are used to make closed-world assumptions with
respect to the rulebase vocabulary, or with respect to the provided context in the
declaration. For instance, declaring the class geo:Continent closed means that
everything which is not concluded to be a continent in the geographic MWeb
rulebase of Fig. 1 is assumed to be non-continent. In practice, this corresponds
to define the class by the program containing the facts in the program plus the
extra logical rule: neg ?X # geo:Continent :- naf ?X # geo:Continent.

The rule expresses that every ?X which cannot be proved to be a continent
(naf ?X # geo:Continent) then it is known not to be a continent (neg ?X #
geo:Continent). In intuitive terms, the above rule states that the list of conti-
nents provided is exhaustive. This illustrates the extra power of having two forms

Modularity in the Rule Interchange Format 317

of negations, and why we require them in our MWeb language. Open predicates
implement open-world assumptions, where unknown information can be either
true or false. This is captured by a rule like the one above and its dual with re-
spect to strong negation. Definite predicates are monotonic predicates which can
use the monotonic strong negation. Also note in Fig. 1 that the geo:Country class
is made open and exported in two ways, the last one in the form of frames rep-
resenting RDF triples. The relationship between RIF predicate # and rdf:type
frames is captured by the rules in 'rdf.rb', which is imported by 'geo.rb'.
The import of document 'rif.rb' provides the rules for capturing the semantics
of # and ##, and is redundant since it is imported as well in 'rdf.rb'.

Regarding the uses declarations, a rulebase must specify the import mode of
the predicate which is combined with the defining mode. In general, the predicate
is obtained (called) at runtime from all rulebases defining it, except when an
explicit rulebase list is provided specifying the providing rulebases (as in the last
declaration of Fig. 2). A used predicate can be complemented with extra rules
in the logical part. However, one can explicitly indicate the rulebase to call with
the @ operator and thus uses the original predicate, as shown in Fig. 2.

From this short presentation of MWeb, it is concluded that we require mech-
anisms to represent the interface, the logical document, import documents, call
predicates in other modules, as well as two forms of negation. We will see that
RIF-FLD presents difficulties/problems in any of these issues.

3 Basics of Rule Interchange Format Semantics

The Rule Interchange Framework for Logic Dialects [27] provides the general
syntax and semantics for the rule languages to be used in the Semantic Web.
The syntax and semantics is quite flexible and general having 13 distinct kinds
of terms and 9 kinds of formulas, which can be further extended. It supports
the usual conjunctive, disjunctive, rule, and quantified formulas and provides
also two forms of negation, namely symmetric (strong) and default negation.
Additionally, it includes document and remote formulas. Document formulas
are used for defining the semantics of formulas in multi-documents (e.g. for
defining the notion of module) and remote formulas are used for querying other
documents inside a formula in a RIF document.

Specific dialects like RIF Core [26], RIF Basic Logic Dialect [23] have been
specified but none uses default negation (designated Naf by RIF) nor symmetric
negation (designated Neg). The other main recommendation being developed by
W3C RIF group is RIF Production Rule Dialect [28] which uses only default
negation over sets of ground facts, and cannot be applied to predicates defined
by rules. Additionally, there have been defined some specialized RIF Dialects
to cover the syntax of semantics of disjunctive logic programs under the stable
model semantics RIF-CASPD ([24]) and well-founded semantics with default
and strong (symmetric) negation RIF-CLPWD ([25]). However, the approach
followed in the definitions of RIF-CASPD and RIF-CLPWD is against the cur-
rent trends in the literature for defining the semantics of logic programs [22,10,9]

318 C.V. Damásio, A. Analyti, and G. Antoniou

because of the way RIF-FLD semantics has been defined. Namely, RIF-CASPD
and RIF-CLPWD resort to an explicit quotient syntactic definition in order to
obtain the intended models, while in the approaches of [22,10,9] this is fully
captured model-theoretically by appropriate definitions of the truth-value lat-
tices and interpretation of logical connectives. A "minimization" or preferential
entailment is still necessary, as in RIF-FLD semantics.

The details of the syntax and semantics of RIF-FLD are long and involved,
and cannot be fully presented in this paper. Therefore, we will focus on the rel-
evant parts of the recommendation where we found some problems. For further
information, the reader is referred to the standards defined by the RIF W3C
Working Group [27] and to the recent overview [7]. RIF-FLD semantics is based
on a complex semantic structure with more than a dozen kinds of different map-
pings, for capturing the intended meaning of each of the type of terms that the
language allows. However, for our purpose is enough to analyse the underlying
set of truth-values as well as the semantics of negations and rule formulas.

Definition 1 (Set of truth-values [27]). Each RIF dialect must define the
set of truth values, denoted by TV.

1. This set must have a partial order, called the truth order, denoted ≤t. In
some dialects, ≤t can be a total order.

2. In addition, TV must be a complete lattice with respect to ≤t.
3. TV is required to have two distinguished elements, f and t, such that f ≤t elt

and elt ≤t t for every elt ∈ TV.
4. TV has an operator of negation, ∼: TV → TV, such that

– ∼ is a self-inverse function: applying ∼ twice gives the identity mapping.
– ∼ t = f (and thus ∼ f = t).

00

01

11 02

12

22

x ∧ y = glb(x, y)
x ∨ y = lub(x, y)

→ 00 01 11 02 12 22

00 22 22 22 22 22 22
01 00 22 22 22 22 22
11 00 02 22 02 22 22
02 00 11 11 22 22 22
12 00 01 11 02 22 22
22 00 01 11 02 12 22

∼
00 22
01 11
11 11
02 00
12 00
22 00

Fig. 3. Truth values and truth-tables for Partial Equilibrium Logic (WFS) [9]

Notice that the condition forcing the existence of elements f and t is redundant
since this follows immediately from TV being a complete lattice. Conjunction
and disjunction are interpreted as greatest lower bound (glb) and least upper
bound (lub) in TV. The first significant remark is that the only sensible and
widely adopted constraint imposed to negation operators has not been stated:
a negation operator must be anti-monotonic, i.e. reverse the truth ordering.
Formally, for every elt1, elt2 ∈ TV if elt1 ≤t elt2 then ∼ elt2 ≤t ∼ elt1. The
other constraints are questionable, as we explain below.

Modularity in the Rule Interchange Format 319

TV = {−2 < −1 < 0 < +1 < +2}

x ∧ y = min(x, y)
x ∨ y = max(x, y)

→ −2 −1 0 +1 +2

−2 +2 +2 +2 +2 +2
−1 +2 +2 +2 +2 +2

0 +2 +2 +2 +2 +2
+1 −1 −1 0 +2 +2
+2 −2 −1 0 +1 +2

∼
−2 +2
−1 +2

0 +2
+1 −1
+2 −2

−
−2 +2
−1 +1

0 0
+1 −1
+2 −2

Fig. 4. Truth values and truth-tables for Equilibrium Logic (ASP) [22]

I

III

II

f

t

df

dt

IV

→ f df III ⊥ IV dt I II t

f t t t t t t t t t
df t t t t t t t t t

III t t t t t t t t t
⊥ t t t t t t t t t

IV t t t t t t t t t
dt t t t t t t t t t
I f f f f f f t t t

II f f f f f f t t t
t f f f f f f t t t

∼
f t

df t
III I
⊥ ⊥

IV I
dt f
I I

II I
t f

−
f t

df dt
III II
⊥ ⊥

IV IV
dt df
I I

II III
t f

Fig. 5. Truth values and truth-tables for Nine Logic (WFSXp) [11]

The interpretation of the negations is then defined in RIF-FLD as follows,
where TVal I is the truth-valuation function from the set of formulas other than
document formulas and remote formulas to the set of truth-values TV. Docu-
ment formulas and remote terms are analysed in the next section.

Definition 2 (Truth-valuation for negations [27]). Let Φ be a RIF well-
formed formula other than a document formula or a remote formula, and I be a
semantic structure.

– TVal I(Neg Neg Φ) = TVal I(Φ).
– TVal I(Naf φ) = ∼ TVal I(Φ).

While the interpretation of Neg is rather loose, just requiring that the double
negation law is obeyed, on the contrary, the interpretation of Naf is too strong.

TV = {F0 < F1 < F2 < . . . < 0 < . . . < T2 < T1 < T0}

x → y =

{
T0 if x ≤ y
y otherwise

∼ F0 F1 . . . Fn . . . 0 . . . Tn . . . T1 T0

T1 T2 . . . Tn+1 . . . 0 . . . Fn+1 . . . F2 F1

Fig. 6. Truth values and truth-tables of the Infinite Valued Semantics (WFS) [10]

320 C.V. Damásio, A. Analyti, and G. Antoniou

The essential problem with the previous definition is that the negations of Equi-
librium Logic [22] underlying Answer Set semantics [15] and extensions are ruled
out by RIF-FLD semantics. The same happens to Well-founded Semantics with
Explicit Negation and its extensions [2,1,12]. The reason is the same for all these
semantics since the double negation law for default negation does not hold, as
can be seen in Figures 3-6 (the truth-table for symmetric negation is −).

Moreover, the remaining condition imposing that the negation of true is false
and vice-versa is not even obeyed by the infinite-valued logic [10] presented in
Fig. 6, which can be seen as the proper model-theoretical definition of well-
founded semantics. Thus, both conditions imposed by Def. 1 discard all the
(recent) model-theoretical approaches found in the literature for the major se-
mantics of logic programming. In fact, a common general condition that all these
semantics obey is that negation is anti-monotonic, which is not enforced. The
double negation law for strong negation holds in the shown cases, corresponding
to the major semantics in the literature.

The semantics of rule-implication also brings problems to some of the above-
mentioned semantics since one of the imposed constraints is again not obeyed.

Definition 3 (Truth-valuation for rule implication [27]). Let Φ be a RIF
well-formed formula other than a document formula or a remote formula, and I
be a semantic structure.

1. TVal I(head :- body) = t if TVal I(head) ≥t TVal I(body);
2. TVal I(head :- body) <t t otherwise.

All the mentioned model-theoretical semantics for logic programming with nega-
tion(s) obey to the first condition imposed. However, the second condition is not
satisfied by the Equilibrium Logic and by the Well-founded Semantics with Ex-
plicit Negation (the ones having strong negation – see figures 4 and 5). For this
reason, we suggest discarding completely the second condition from the semantics
of rule implication. This is related to the notion of logical entailment, which we
will discuss subsequently. However, we require first the notion of multi-structure
to be able to introduce the notion of logical entailment.

4 Rule Interchange Format Document Formulas

The RIF document formulas provide the general encapsulation of the RIF group
of Formulas. Note that group formulas are not document formulas, and a docu-
ment formula is associated to at most one group formula.

Definition 4 (Document and Group Formulas [27]). The presentation
syntax of document and group formulas of RIF-FLD is captured by the following
EBNF grammar.

Document ::= IRIMETA? ’Document’
’(’ Dialect? Base? Prefix* Import* Module* Group? ’)’

Dialect ::= ’Dialect’ ’(’ Name ’)’

Modularity in the Rule Interchange Format 321

Base ::= ’Base’ ’(’ ANGLEBRACKIRI ’)’
Prefix ::= ’Prefix’ ’(’ NCName ANGLEBRACKIRI ’)’
Import ::= IRIMETA? ’Import’ ’(’ LOCATOR PROFILE? ’)’
Module ::= IRIMETA? ’Module’ ’(’ (Const | Expr) LOCATOR ’)’
Group ::= IRIMETA? ’Group’ ’(’ (FORMULA | Group)* ’)’

For our purposes we are interested solely in the Import and Module directives.
The import directive has a mandatory LOCATOR which specifies where the cor-
responding document can be found. Locators include for instance URLs but
others can be defined by the dialect. The module directive has a an argument
(a logical Term) before LOCATOR which will be used to refer to the module in
remote terms of the form Φ @ Term, which can be found at LOCATOR.

A first issue is immediately recognized: RIF-FLD does not have the notion of
interface. There are two easy solutions for this problem, always depending on
using a document (formula) to express the interface information. A first solution
relies on the use of meta-annotations to provide the missing information, while
the other alternative requires assertion of specific formulas in a new vocabulary
to express this information, as is done for instance with RDF schema or OWL2
Declaration axiom. We tend to prefer the latter approach, since this would allow
to use RIF’s Import to express our own import (in interfaces and logical parts of
MWeb), and RIF’s Module to capture our uses declaration.

The semantics of document formulas is captured by semantic multi-structures,
i.e. a special set of RIF-FLD semantic structures. See [27,7] for full details.
Semantic structures are an extension of first-order logic semantics in order to
be able to assign meaning to every kind of (HiLOG) terms and formulas in the
language, including for instance datatypes and remote terms. These semantic
structures are built from a set of truth-values TV (see the previous section),
datatypes, the domain D (or universe) and several total mappings to interpret
the different RIF-FLD formulas. In particular, we need for our discussion the
total mapping IC mapping constants in the countable infinite set of constant
symbols Const to elements of the domain D, and Itruth mapping elements of the
domain D to truth values in TV for evaluating arbitrary formulas (see [27] for
more details). A significant feature of the RIF-FLD semantics is that any formula
is mapped first into an element of the domain, and afterwards the mapping Itruth

is used to determine its truth-value.

Definition 5 (Semantic multi-structures [27]). A semantic multi-structure,
Î = {J, K; Ii1, Ii2 , . . . ; M j1 , M j2 , . . .}, is a set of semantic structures such that

– J and K are the usual RIF-FLD semantic structures; and
– Iik and M jk , where k = 0, 1, 2, . . ., are semantic structures adorned with

locators of RIF-FLD document formulas (one can think of adorned structures
as locator-structure pairs). The locators used in Î must be of the kinds allowed
in the Import and Module directives.

The semantic structures J , K, and all the structures Iik in the import group
are required to be identical in all respects except that the mappings JC , KC , and
Iik

C (for all ik), which interpret constants in the semantic structures, may differ

322 C.V. Damásio, A. Analyti, and G. Antoniou

on those constants in Const that belong to the rif:local symbol space. The
semantic structures M jk in the last group have many more degrees of freedom:
they are required to agree with the other structures in Î only to the extent that
the mappings M jk

C must coincide with JC , KC, and Iik

C on all constants in Const
except the ones in the rif:local symbol space.

As detailed in [27], the first semantic structure, J , is used to interpret non-
document formulas (i.e. the group formula and its contents). The structure K
is used for document formulas. The structures in the middle group, Iik , are op-
tional; they are used to interpret imported documents (via the Import directive).
All structures in that group must be adorned with the locators of distinct docu-
ments. The structures in the last group, M jk , are also optional; they are used to
interpret documents that are linked as remote modules to other documents (via
the Module directive). The structures in that group must also be adorned with
locators of distinct documents. However, the same locator can adorn a structure
in the import group and a structure in the module group.

Mark that rif:local constants are interpreted locally in each document,
either in imported or module documents. The import structures must coincide
except for these constants, while modules must interpret constants in the same
way except for the rif:local constants. This simplifies a lot matters, but some
approaches like Package-Description Logics refuse such a condition [6] having
explicit mechanisms for mapping of vocabulary between different packages, in
particular constants. We will not address this issue in this paper but can be
identified as a potential problem of the RIF multi-document semantics.

Definition 6 (Imported document [27]). Let Δ be a document formula and
Import(loc) be one of its import directives, where loc is a locator of another
document formula, Δ′. In this case, we say that Δ′ is directly imported into Δ. A
document formula Δ′ is said to be imported into Δ if it is either directly imported
into Δ or it is imported (directly or not) into another document, which itself is
directly imported into Δ.

Definition 7 (Remote module [27]). Let Δ be a document formula and let
Module(n loc) be one of its remote module directives2, where loc is a locator
for another document formula, Δ′. In this case, we say that Δ′ is a directly
linked remote module of Δ. A document formula Δ′ is said to be a linked remote
module for Δ if it is either directly linked to Δ or it is linked (directly or not) to
another document, which is directly linked to Δ.

Notice that the import relation and the linked module relation are made indepen-
dent by the previous definitions, which is in our opinion a major source of prob-
lems. However, some relation between them is imposed by the next definition,
which specifies how remote formulas are handled by linking to the interpretation
of remote modules:

2 Note that n is the term used to refer to the module.

Modularity in the Rule Interchange Format 323

Definition 8 (Term-interpreting mapping for remote term refs [27]).
Let Δ be a document formula and Î = {J, K; Ii1, Ii2 , . . . ; M j1 , M j2 , . . .} be a se-
mantic multi-structure that contains semantic structures for all the documents
that are imported into Δ or linked to it as remote modules (directly or indi-
rectly). Let Φ@r be a remote term that appears in Δ or one of its imported or
linked documents, say Δ′, and let L ∈ Î be a semantic structure. If there is a
unique remote module directive Module(n jk) in Δ′ such that L(r) = L(n) then
L(Φ@r) = M jk(Φ). If no such remote module directive exists or if such a direc-
tive is not unique, then L(Φ@r) is indeterminate, i.e., it can be any element in
the domain of L. Truth valuation is extended as TValL(Φ@r) = Itruth(L(Φ@r))3.

In our reading, the previous definition has two problems. First, if there is a
module directive inside an imported document, say il, then the corresponding
semantic structure will not be added to Î since the import relation does not
include them (modules are not followed by the import). But, then the module
directive Module(n jk) in Δil

will be used to provide meaning to the remote
term Φ@r via the (possibly) non-existing M jk semantic structure. An even more
strange behaviour occurs for import directives inside modules, which are ignored
by the previous definition. An example of these situations can be found in Fig. 7,
which is based on the rulebases described in Section 2.

Document(

 Import('rif.rb')

 Import('rdf.rb')

 …

)

geo.rb
Document(

 Import('rif.rb')

 …

)

rdf.rb

Document(

 …

)

rif.rb
Document(

 Import('inst.rb')

 …

)

people.rb

Document(

 Module(ppl 'people.rb')

 …

)

ruleml2011.rb

Document(

 Import('rdf.rb')

 Module(geo 'geo.rb')

…

)

inst.rb e rb

 M

…

t(D

))

)

r

))

Directly imported

Directly Linked

Fig. 7. Multi-document example

When trying to assign meaning to the document formula in 'ruleml2011.rb',
the multi-document structure will only include semantic structures for docu-
ments in 'people.rb', while one would expect to have semantic structure for all
documens in the figure, and in particular the module in 'geo.rb'. Additionally,
there is a problem lurking which is that imported documents in different modules
are interpreted by the same semantic structure, which does not make sense at
all. In the figure, one would expect a different semantic structure for interpreting
the imported document 'rdf.rb' in rulebases 'inst.rb' and 'geo.rb'. To complete
the overview of the RIF-FLD semantics for document formulas we just need to
introduce the truth-valuation of all formulas, document or not:
3 Itruth is a total mapping D → TV used to define truth valuation for formulas.

324 C.V. Damásio, A. Analyti, and G. Antoniou

Definition 9 (Truth valuation in multi-document structures [27]). Let
Δ be a document formula and let Δ1 . . .Δn be all the RIF-FLD document for-
mulas that are imported (directly or indirectly, according to the previous defini-
tion) into Δ. Let Γ, Γ1, . . . , Γn denote the respective group formulas associated
with these documents. Let Î = {J, K; Ii1 , Ii2 , . . . ; M j1 , M j2 , . . .} be a semantic
multi-structure whose import group contains semantic structures adorned with
the locators i1 . . . in in the documents Δ1 . . . Δn. Then we define:

TVal Î(Δ) = glbt(TValK(Γ),TValIi1 (Γ1), . . . ,TValIin (Γn)).

For the non-document formulas Φ then TVal Î(Φ) = TValJ (Φ).

5 Alternative Semantics for Multi-documents

Our approach to the semantics of multi-documents is based on separating the
interpretations of import from module directives. We take care first of import
via importing multi-structures, which will be used to interpret documents as
well as modules. A semantic importing multi-structure corresponds to RIF-FLD
multi-structure without the optional module semantic structures.

Definition 10 (Semantic importing multi-structures). A semantic im-
porting multi-structure, Ĩ = {JI, KI; Ii1 , Ii2 , . . .}, is a set of semantic structures
of the form where

– JI and KI are the usual RIF-FLD semantic structures; and
– Iik where k = 0, 1, 2, . . ., are semantic structures adorned with locators of

RIF-FLD document import formulas.

The semantic structures JI, KI, and all the structures Iik in the import group
are required to be identical in all respects except that the mappings JIC , KIC ,
and Iik

C (for all ik), which interpret constants in the semantic structures, may
differ on those constants in Const that belong to the rif:local symbol space.

Each module as well as the main document will have a corresponding seman-
tic importing multi-structure in our new notion of modular semantic multi-
structure.

Definition 11 (Modular semantic multi-structure). A modular semantic
multi-structure is a set M = {M̃?j0 , M̃j1 , M̃j2 , . . .} of semantic importing multi-
structures such that

– M̃?j0 is a semantic importing multi-structure, for providing the interpreta-
tion of the main document, which might be adorned with a locator j0; and

– M̃jk where k = 0, 1, 2, . . . are semantic importing multi-structures adorned
with locators of RIF-FLD document module formulas,

Moreover, all the mappings of constants in the semantic structures composing
M̃?j0 , M̃j1 , M̃j2 . . . must coincide on all constants in Const except the ones in
the rif:local symbol space.

Modularity in the Rule Interchange Format 325

The rationale of modular semantic multi-structures is that each module may
interpret differently their imported documents but must all coincide in the non-
local constants. Remote term references will be interpreted in the corresponding
semantic importing multi-structure.

Definition 12 (Term-interpretingmapping for remote termreferences).
Let Δ be a document formula and M = {M̃?j0 , M̃j1 , M̃j2 , . . .} be the modular
semantic multi-structure with optional locator j0 such that

– M̃?j0 is a semantic importing multi-structure, containing an ordinary se-
mantic structure for all the documents that are imported into Δ (directly, or
indirectly);

– M̃jk is a semantic importing multi-structure, containing an ordinary seman-
tic structure for all the documents that are imported into Δjk (directly, or
indirectly), where Δjk is the document formula of a module located in jk;

– if a directive Module(n jm) occurs in any document formula of Δ or Δjk or
in any document imported or linked by them, then the corresponding semantic
importing multi-structure M̃jm must occur in M. The locator j0 of main
document is mandatory if it occurs in some Module directive.

Let Φ@r be a remote term that appears in Δ (resp. Δjk) or in one of its imported
documents, say Δ′, and let L ∈ M̃?j0 (resp. L ∈ M̃jk) be an ordinary semantic
structure. If there is a unique remote module directive Module(n jm) in Δ′

such that L(r) = L(n) then L(Φ@r) = JM̃jm (Φ). If no such remote module
directive exists or if such a directive is not unique, then L(Φ@r) is indeterminate,
i.e., it can be any element in the domain of L. Truth valuation is extended as
TValL(Φ@r) = Itruth(L(Φ@r)).

The conditions of Definition 12 guarantee that imported modules are treated sep-
arately in the several modules, and that each semantic importing multi-structure
contains all the imported modules directly or indirectly. Furthermore, all mod-
ules occurring in a document formula or any imported or remote linked document
have a corresponding semantic importing multi-structure.

Returning to the example of Fig. 7, we will have in the modular semantic
multi-structure three semantic importing multi-structures. The one for the main
document located in 'ruleml2011.org' has no importing semantic structures.
The importing multi-structure for document in 'geo.rb' contains importing se-
mantic structures for 'rdf.rb' and 'rif.rb'. The remaining importing seman-
tic structure results from module in 'people.rb', and contains three importing
structures for 'rdf.rb', 'rif.rb', and 'inst.rb'. Note that it is not needed a
semantic importing multi-structure for 'inst.rb' since this document is never
mentioned in a Module declaration. Finally, the semantics for multi-documents
can be appropriately defined by extending the truth-valuation function for se-
mantic importing and modular semantic multi-structures.

Definition 13 (Truth valuation in multi-document structures). Let Δ
be a document formula and let Δ1 . . .Δn be all the RIF-FLD document formu-
las that are imported (directly or indirectly, according to the previous definition)

326 C.V. Damásio, A. Analyti, and G. Antoniou

into Δ. Let Γ, Γ1, . . . , Γn denote the respective group formulas associated with
these documents. Let Ĩ = {JI, KI; Ii1 , Ii2 , . . .} be a semantic importing multi-
structure whose import group contains semantic structures adorned with the lo-
cators i1 . . . in in the documents Δ1 . . . Δn. Then we define:

TVal Ĩ(Δ) = glbt(TValKI(Γ),TVal Ii1 (Γ1), . . . ,TVal Iin (Γn)).

For the non-document formulas Φ then TVal Ĩ(Φ) = TValJI(Φ).
Consider now a modular semantic multi-structure M = {M̃?j0 , M̃j1 , M̃j2 , . . .}

for any formula (document or not) ϕ then TValM(ϕ) = TValM̃?j0 (ϕ).

Basically, the original truth-valuation for multi-document structures is adopted
by semantic importing multi-structures, and the semantics of a document is
provided by the semantic importing multi-structure of its document formula
captured by M̃?j0 . Notice that the other semantic importing multi-structures in
M only affect the semantics of the original document via remote terms, which
is apparently the intention under the RIF-FLD semantics for remote modules.

6 Models and Logical Entailment

The notion of model by RIF-FLD follows a standard approach of classical logic
and some fuzzy logics:
Definition 14 (Models [27]). Let I be a semantic structure or multi-structure.
We say that I is a model of a formula, Φ , written as I |= Φ iff TVal I(Φ) = t.
Here Φ can be a document or a non-document formula.
The only comment that this definition deserves is that it restricts the usual no-
tion of model in many-valued logics by limiting the distinguished truth-values
to t. However, for instance, the logic underlying paraconsistent well-founded
semantics with explicit negation has three distinguished truth-values. We sug-
gest generalizing the above definition by allowing a set of truth-values DV and
substituting the condition TVal I(Φ) = t by TVal I(Φ) ∈ DV and additionally
enforcing that t ∈ DV. Notice that this definition is an extension of Def. 14
and does not have any impact in already existing dialects. Finally, let us discuss
logical entailment:

Definition 15 (Logical entailment [27]). Let Φ and Ψ be (document or non-
document) RIF-FLD formulas. We say that Φ |= Ψ iff for every intended seman-
tic multi-structure Î it is the case that TVal Î(Φ) ≤t TVal Î(Ψ).

This is a natural definition of logical entailment for many-valued logics, and
the relationship to the original definition of rule implication is obvious since
Φ |= Ψ iff |= Φ → Ψ , i.e. it is assumed the deduction meta-theorem. However, the
notion of logical entailment adopted for instance in Equilibrium Logic [22] resorts
again to the notion of designated truth-values. Accordingly, an alternative more
encompassing notion of logical entailment for the RIF-FLD framework would
be that Φ |= Ψ iff |= Φ → Ψ iff for every intended semantic multi-structure Î
it is the case that TVal Î(Φ → Ψ) ∈ DV, which captures the notion of logical
entailment for all the logics presented in Section 3, and generalises Def. 15.

Modularity in the Rule Interchange Format 327

7 Conclusions and Further Work

This paper brings out some issues in the RIF-FLD semantics, for negation con-
nectives, rule implication, models and logic entailment, as well as for multi-
documents, all necessary to capture the Modular Web framework [4,5]. It has
been shown that the adoption of double negation law for the semantics of nega-
tion hinders the RIF intention of providing a sufficient general semantics ca-
pable of capturing in a natural way an interesting subset of existing semantics
for rule-based systems, namely for extended logic programming under Answer
Set Semantics [15] or Well-founded Semantics with Explicit Negation [3,2]. It
is argued that the only natural condition to impose is anti-monotonicity of the
negation symbol. Problems are also found in the semantics of rule implication,
and suggested the removal of one of the conditions. The notion of model is gen-
eralized and a proposal for new definition of logical entailment is also advanced.
All these proposals are backwards compatible with any existing RIF-FLD di-
alects. Finally, the semantics of multi-documents in RIF-FLD has been detailed
and problems brought out. These issues have been formally corrected according
to what seems to be the spirit of [27]. In this way, we expect to succeed in the
alignment of the syntax and semantics of our Modular Web framework.

References

1. Alcântara, J., Damásio, C.V., Pereira, L.M.: An encompassing framework for para-
consistent logic programs. J. Applied Logic 3(1), 67–95 (2005)

2. Alferes, J.J., Damásio, C.V., Pereira, L.M.: A Logic Programming System for Non-
monotonic Reasoning. Journal of Automated Reasoning 14(1), 93–147 (1995)

3. Alferes, J.J., Pereira, L.M.: On Logic Program Semantics with Two Kinds of Nega-
tion. In: Proc. of JICSLP 1992, pp. 574–588 (1992)

4. Analyti, A., Antoniou, G., Damásio, C.V.: A Principled Framework for Modular
Web Rule Bases and Its Semantics. In: KR 2008, pp. 390–400. AAAI press, Menlo
Park (2008)

5. Analyti, A., Antoniou, G., Damásio, C.V.: MWeb: A principled framework for
modular web rule bases and its semantics. ACM TOCL 12(2):#17, 41 (2011)

6. Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-based description logics.
In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies.
LNCS, vol. 5445, pp. 349–371. Springer, Heidelberg (2009)

7. Boley, H., Kifer, M.: A guide to the basic logic dialect for rule interchange on the
web. IEEE Trans. Knowl. Data Eng. 22(11), 1593–1608 (2010)

8. Bugliesi, M., Lamma, E., Mello, P.: Modularity in Logic Programming. Journal of
Logic Programming 19(20), 443–502 (1994)

9. Cabalar, P., Odintsov, S.P., Pearce, D., Valverde, A.: Partial equilibrium logic.
Ann. Math. Artif. Intell. 50(3-4), 305–331 (2007)

10. Cabalar, P., Pearce, D., Rondogiannis, P., Wadge, W.W.: A purely model-theoretic
semantics for disjunctive logic programs with negation. In: Baral, C., Brewka, G.,
Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 44–57. Springer,
Heidelberg (2007)

328 C.V. Damásio, A. Analyti, and G. Antoniou

11. Damásio, C.V., Pereira, L.M.: A model theory for paraconsistent logic program-
ming. In: Pinto-Ferreira, C., Mamede, N.J. (eds.) EPIA 1995. LNCS (LNAI),
vol. 990, pp. 377–386. Springer, Heidelberg (1995)

12. Damásio, C.V., Pereira, L.M.: A Survey of Paraconsistent Semantics for Logic
Programs. In: Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and
Uncertainty Management Systems, vol. 2, pp. 241–320. Kluwer Academic Publish-
ers, Dordrecht (1998)

13. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic
programming revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 145–159. Springer, Heidelberg (2009)

14. Doran, P., Tamma, V., Iannone, L.: Ontology module extraction for ontology reuse:
an ontology engineering perspective. In: Proc. of ACM-CIKM 2007, pp. 61–70.
ACM, New York (2007)

15. Gelfond, M., Lifschitz, V.: Logic programs with Classical Negation. In: 7th Inter-
national Conference on Logic Programming (ICLP 1990), pp. 579–597 (1990)

16. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: Proc. IJCAI 2007, pp. 298–304. AAAI, Menlo Park (2007)

17. Kifer, M.: Flora-2: An object-oriented knowledge base language (2007),
http://flora.sourceforge.net/

18. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logics. In: Proc. of ECAI 2008, pp. 55–59. IOS Press,
Amsterdam (2008)

19. Oikarinen, E., Janhunen, T.: Modular Equivalence for Normal Logic Programs. In:
Proc. of ECAI 2006, pp. 412–416 (2006)

20. W3C OWL Working Group (ed.) OWL 2 Web Ontology Language Document
Overview. W3C Recommendation (October 27, 2009)

21. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax. W3C Recommendation (February 10, 2004)

22. Pearce, D.: Equilibrium logic. Annals of Math. and Artificial Intelligence 47(1-2),
3–41 (2006)

23. Boley, H., Kifer, M. (eds.) RIF Basic Logic Dialect. W3C Recommendation (June
22, 2010)

24. Heymans, S., Kifer, M. (eds.) RIF Core Answer Set Programming Dialect, 2009.
RuleML specification (December 17, 2009)

25. Kifer, M. (ed.) RIF Core Logic Programming Dialect Based on the Well-founded
Semantics, 2009. RuleML specification (August 13, 2010)

26. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.)
RIF Core Logic Dialect, W3C Recommendation (2010) (June 22, 2010)

27. Boley, H., Kifer, M. (eds.) RIF Framework for Logic Dialects, W3C Recommenda-
tion (2010) (June 22, 2010)

28. de Sainte Marie, C., Hallmark, G., Paschke, A. (eds.): RIF Production Rule Dialect.
W3C Recommendation (June 22, 2010)

http://flora.sourceforge.net/

Overview of Knowledge Formalization
with XTT2 Rules�

Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof Kaczor

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
{gjn,ligeza,kk}@agh.edu.pl

Abstract. The paper discusses a new formalized knowledge representation for
rule-based systems called XTT2. This hybrid knowledge representation combines
decision diagrams with extended decision tables. A single decision table contains
a set of rules of similar structure operating within a common context. The struc-
ture of XTT2 constitutes a hierarchical knowledge representation consisting of
lower level knowledge components, where specification is provided by a set of
rules working in the same context, and at the higher level, where the decision
diagram defines the overall structure of the knowledge base. This model has a
concise formalization which opens up possibility for rigorous design and verifi-
cation. The focus of the paper is on the presentation of the formal aspects of the
approach starting from an initial logical specification.

1 Introduction

Formalization of knowledge within a rule-based system can be based on mathematical
logic or performed on the basis of engineering intuition. Distinctive examples of rule-
based languages emerging from elegant logical formalism include Prolog and Datalog.
On the other hand, modern rule-based shells, such as CLIPS, Jess, or Drools, follow
the classical paradigm where the rule language is just a programming solution, with no
formal definition in the sense of rigorous logical formalism.

The main objectives for introducing a formalization of the rule language are: 1) pro-
viding a transparent logical framework enabling in-depth analysis of expressive power
and formal properties of the rule base; 2) speeding up the design process – formalized
rule language opens possibility to partially formalize the design process which can in
turn lead to better design error detection at early design stages; 3) allow for a superior
knowledge base quality control – formal methods can be used to identify logical er-
rors in rule formulation [2]; 4) simplifying knowledge translation – partially formalized
translation to other knowledge representation formats are possible; 5) propose custom
inference modes – structured rule bases require alternative inference strategies [4].

The rule representation discussed in this paper is called XTT2 (Extended Tabular
Trees version 2). This hybrid knowledge representation combines decision diagrams
and decision tables. It forms a transparent and hierarchical visual representation of

� The paper is supported by the AGH UST Grant 11.11.120.859.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 329–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

330 G.J. Nalepa, A. Ligęza, and K. Kaczor

the decision tables linked into a network structure. Such knowledge representation as-
sures high density of data presentation. This is due to the fact that the XTT2 model
represents rules using the ALSV(FD) (Attributive Logic with Set of Values over Finite
Domains) logic [4] and decision tables. It is much more expressive than the classic
(mostly propositional) rule languages, e.g. it allows for formal specification of non-
atomic values of attributes in rule preconditions.

The approach discussed in this paper is based on certain concepts related to dynamic
system modeling. The primary assumption is that the rule-based model is a dynamic
system having certain internal state. The state is described using some attributes, that
describe certain crucial properties of the system. The state is represented by the set
of current attribute values. A statement that an attribute has a given value can be in-
terpreted as a fact in terms of classic expert systems. The dynamics of the system –
transitions between states – is modeled using rules. For this paper we assume a simple
model where given an initial state, the system performs reasoning process that includes
firing number of rules and reaching a final state – producing a certain decision. The
conditional parts of the rules take the form of a conjunction of atomic formulae in the
ALSV(FD) logic which are the attribute-operator-value triples. The decision part of the
rule includes statements that modify the system state in case the rule is fired (the proper
decision) and possibly some actions to be executed.

In the next section an introduction to ALSV(FD) logic is given. In Sect. 3 a pro-
posal of the formalization of the approach is given. A practical example and evaluation
follows. Then a short discussion of related works is presented. The paper ends with
concluding remarks.

2 Attributive Logic with Set Values over Finite Domains

In [1] a thorough discussion of attributive logics has been given. It includes a formal
framework of SAL (Set Attributive Logic) that provides syntax, semantics for calcu-
lus where attributes can take set values. Here an improved version of SAL, called
ALSV(FD) is considered. The formalism is oriented towards Finite Domains (FD)
and its expressive power is increased through the introduction of new relational sym-
bols enabling definitions of atomic formulae. Moreover, ALSV(FD) introduces a formal
specification of the partitioning of the attribute set needed for practical implementation,
and a more coherent notation.

Simple and Generalized Attributes. Let A denote the set of all attributes used to describe
the system. Each attribute has a set of admissible values that it takes (a domain). D is
the set of all possible attributes values: D = D1∪D2∪· · ·∪Dn where Di is the domain
of attribute Ai ∈ A, i = 1 . . . n. Any domain Di is assumed to be a finite, discrete set.
In the general case, the domain can be ordered, partially ordered or unordered.

In ALSV(FD) two types of attributes are identified: simple ones taking only one
value at a time, and generalized ones taking multiple values at a time. Therefore, we
introduce the following partitioning of the set of all attributes: A = As∪Ag, As∩Ag =
∅ where: As and Ag are respectively the sets of simple and generalized attributes.

A simple attribute Ai is a function (or a partial function) of the form: Ai : O → Di

where: Ai ∈ As, O is a set of objects, Di is the domain of attribute Ai.

Overview of Knowledge Formalization with XTT2 Rules 331

The definition of generalized attribute is as follows: Ai : O → 2Di where: O is a set
of objects and 2Di is the set of all possible subsets of attribute Ai domain Di.

Attribute Ai denotes a property of an object. The formula Ai(o), where o ∈ O,
denotes the value of property Ai of object o. However, here we assume that only one
object (in this case it is the system being described) with a specific property name exists.
This is why the following notational convention is used: the formula Ai simply denotes
a value of the attribute Ai.

State Representation. The current values of all attributes are specified within the con-
tents of the knowledge base. From logical point of view the state of the system is repre-
sented as a logical formula of the form: s : (A1 = S1)∧ (A2 = S2)∧ . . .∧ (An = Sn)
where Ai are the attributes and Si are their current values. Note that Si ∈ Di for simple
attributes and Si ⊆ Di for generalized ones.

The ALSV(FD) has been developed to describe rules. In order to do so, it provides
certain expressions to represent conditions and actions of rules. These expressions are
the atomic formulae of ALSV(FD). Their syntax is presented next.

Atomic Formulae Syntax. Let Ai be an attribute from A, and Di the domain related
to it. Let Vi denote an arbitrary subset of Di and let di ∈ Di be a single element of
the domain. The legal atomic formulae of ALSV(FD) along with their semantics are
presented below, for simple and general attributes respectively. If Vi is an empty set (the
attribute takes no value), we shall write Ai = ∅.

In the case when the value of Ai is unspecified, we shall write Ai = null . If the
current attribute value is of no importance , we shall write A = any.

More complex formulae can be constructed with conjunction (∧) and disjunction
(∨); both of these have classical meaning and interpretation. For enabling efficient ver-
ification, there is no explicit use of negation in the formulae.

The meaning of these formulae is presented as follows. For the simple attributes:
Ai = di means that the value of Ai is precisely defined as di. Ai ∈ Vi means that the
current value of Ai belongs to Vi. Ai �= di means that shorthand for Ai ∈ Di \ {di}.
Ai �∈ Vi means that shorthand for Ai ∈ Di \ Vi. For the generalized attributes: Ai = Vi

means that Ai equals to Vi (and nothing more). Ai �= Vi means that Ai is different from
Vi (at least one element). Ai ⊆ Vi means that Ai is a subset of Vi. Ai ⊇ Vi means that
Ai is a superset of Vi. Ai ∼ Vi means that Ai has a non-empty intersection with Vi.
Ai �∼ Vi means that Ai has an empty intersection with Vi.

Formulae Semantics. The semantics of the atomic formulae is as follows:

– If Vi = {d1, d2, . . . , dk}, then Ai = Vi means that the attribute takes as its value
the set of all the values specified with Vi (and nothing more).

– (Ai ⊆ Vi) ≡ (Ai = Ui) for some Ui such that Ui ⊆ Vi, i.e. Ai takes some of the
values from Vi (and nothing out of Vi),

– (Ai ⊇ Vi) ≡ (Ai = W), for some W such that Vi ⊆ W , i.e. Ai takes all of the
values from Vi, and

– (Ai ∼ Vi) ≡ (Ai = Xi), for some Xi such that Vi ∩Xi �= ∅, i.e. Ai takes some of
the values from Vi.

For a complete discussion of the syntax and semantics of ALSV(FD) see [4].

332 G.J. Nalepa, A. Ligęza, and K. Kaczor

The ALSV(FD) has been introduced with practical applications for rule languages
in mind. In fact, the primary aim of the presented language is to formalize and extend
the notational possibilities and expressive power of rule languages. The ALSV(FD)
logic formulae correspond to simple statements (facts) about attribute values. These
formulae are then used to express certain conditions. Using this formalism a complete
solution that allows for building decision rules is discussed in the next section.

3 Formalization of Modularized Rule Bases

The goal of the definitions presented here is to formalize the structure of the knowl-
edge base. Moreover, they are used to organize the process of the design and possible
translation of the knowledge base.

Rule Conclusion and Decision. Two identifiers are used to denote attributes as well
as operators in rule parts: cond corresponds to the conditional part of a rule, and dec
corresponds to the decision part of a rule. Using it, two subsets of the attribute set can
be identified. Acond is a subset of attributes set A that contains attributes present in the
conditional part of a rule. Adec is a subset of attributes set A that contains attributes
present in the decision part.

Relational Operators in Rules Considering the syntax of the legal ALSV(FD) formu-
lae the legal use of the relational operators in rules is specified. The set of all operators
has been divided into smaller subsets that contain all the operators, which can be used
at the same time.

The set of all relational operators that can be used in rules is defined as follows:
F = Fcond∪Fdec where: Fcond is a set of all operators that can be used in the conditional
part of a rule. Fcond = Fcond

a ∪ Fcond
s ∪ Fcond

g where:

– Fcond
a contains operators, that can be used in the rule conditional part with all at-

tributes. The set is defined as: Fcond
a = {=, �=}

– Fcond
g contains operators that can also be used in the rule conditional part with

generalized attributes. The set is defined as: Fcond
g = {⊆,⊇,∼, �∼}

– Fcond
s is the set that contains the operators, which can be used in a rule conditional

part with simple attributes. The set is defined as: Fcond
s = {∈, /∈}. ALSV(FD) also

allows for using the following operators <, >,≤,≥which provide only a variation
for ∈ operator. These operators can be used only with attributes whose domains are
ordered sets.

Fdec is a set of all operators that can be used in a rule decision part: Fdec = {:=}. The
operator := allows for assigning a new value to an attribute.

Moreover, to specify in the rule condition that the value of the attribute is to be null
(unknown) or any (unimportant) the operator = is used. To specify in the same rule
part the value of the attribute is not null the operator �= is used.
ALSV(FD) Triples. The ALSV(FD) triples are the “building blocks” of rules. Let
us consider the set E that contains all the triples that are legal atomic formulae in
ALSV(FD). The triples are build using the previously defined relational operators:

Overview of Knowledge Formalization with XTT2 Rules 333

E ={(Ai,∝, di), Ai ∈ As,∝∈ F \ Fcond
g , di ∈ Di} ∪

{(Ai,∝, Vi), Ai ∈ Ag,∝∈ F \ Fcond
s , Vi ∈ 2Di}

XTT2 Rule. Let us consider the set of all rules defined in the knowledge base denoted
as R. A single XTT2 rule is a triple: r = (COND, DEC, ACT) where: COND, DEC ⊂
E, and ACT is a set of actions to be executed.

A rule can be written using LHS (Left Hand Side) and RHS (Right Hand Side):
LHS(r) → RHS(r),DO(ACT) where LHS(r) and RHS(r) correspond respec-
tively to the condition and decision parts of the rule r, and DO(ACT) involves exe-
cuting actions from a predefined set. Actions are not included in the RHS of the rule
because it is assumed that they are independent from the considered system, and the
execution of actions does not change the state of the system.

Any rule can also be presented in the following form:
r : [φ1 ∧ φ2 ∧ · · · ∧ φn] → [θ1 ∧ θ2 ∧ · · · ∧ θm],DO(ACT) where: {1, . . . , n} and
{1, . . . , m} are the sets of identifiers, n ∈ N, m ∈ N φ1, . . . , φn ∈ COND and
θ1, . . . , θm ∈ DEC. From a logical point of view, the order of the atomic formulae
in both the precondition and conclusion parts is unimportant.

Rule Firing. Considering the previous definitions, firing a single XTT2 rule r involves
the following basic steps: 1) Checking if all the ALSV(FD) triples in the COND part
are satisfied. 2) If so, changing the system state by evaluating triples (assigning new
values to attributes) in the DEC part. 3) Executing actions defined by ACT; actions do
not change attribute values.

Having the structure of a single rule defined, the structure of the complete knowledge
base is introduced. The knowledge base is composed of tables grouping rules having
the same attributes lists (rule schemas).

Rule Schema. Let us consider a concept of a rule schema. Each rule has a schema that
is a pair of attributes sets: h = (Hcond, Hdec) where Hcond and Hdec sets define the
attributes occuring in the conditional and decision part of the rule.

A schema of the rule can be defined as follows: ∀r = (COND, DEC, ACT) : h =
(trunc(COND), trunc(DEC)) where the function trunc transforms the set of atomic
formulae into a set of attributes that are used in these triples. A schema is used to
identify rules working in the same situation (operational context). Such a set of rules
can form a decision component in the form of a decision table. A schema can also be
considered a table header.

Decision Component (Table). Let us consider a decision component (or table). It is an
ordered set (sequence) of rules having the same rule schema, defined as follows:
t = (r1, r2, . . . , rn) ∀i,j : ri, rj ∈ t ⇒ hi = hj where hi is a schema of the rule ri.
In XTT2 the rule schema h can also be called the schema of the component (or table).
Components are connected (linked) in order to provide inference control.

Let us observe Figure 1. On the left table t1 is represented. It is an example of a table
having three rules: r1, r2, r3. These rules have the same schema
h1 = ({A1, A2, A3}, {A4, A5}). This means that respective ALSV(FD) triples con-
tain given attribute e. g. a triple e2,3 is a part of rule r2 and it contains the attribute A3.

334 G.J. Nalepa, A. Ligęza, and K. Kaczor

To simplify the visual representation a convetion is introduced, where the schema of a
table is depicted on the top of the table.

Inference Link. A link l is an ordered pair: l = (r, t), l ∈ R×T∪{⊥} where: R is the
set of rules in the knowledge base, and T is the set of tables in the knowledge base. A
single link connects a single rule (a row in a table) with another table. An empty link is
denoted as ⊥. A structure composed of linked decision components is called a XTT2
knowledge base.

XTT2 Knowledge Base. It is the set of components connected with links. It can be
defined as an ordered pair: X = (T, L), where: T is a set of components (tables), L is
a set of links, and all the links from L connect rules from R with tables from T. Links
are introduced during the design process according to the specification provided by the
designer. The knowledge base can be perceived as an inference network.

Let us observe that a number of specific structures of knowledge bases could be
considered including decision trees. In such a decision tree-like structure nodes would
consist of single decision components. So, the XTT2 knowledge base can be seen as a
generalization of classic decision trees and tables.

4 Practical Example

An example of the XTT2 knowledge base is presented in Figure 1. The knowledge base
is composed of three tables (components), and two links: X1 = ({t1, t2, t3}, {l1, l2})
On the first component (t1) the rule schema, corresponding to the table header can be
observed. There are nine rules, three in each of the tables. In the first table the condi-
tional and decision parts are presented (action-related part is ommited for brevity). If
the rule r1 from the table t1 is fired the inference control would be passed to the table
t2 through the link l1. If the rule r3 is fired the inference control would be passed to the
table t3 through the link l2. This is the case of a simple forward chining mode, other
inference modes are also possible.

For practical example of rules, imagine a system recommending books to differ-
ent groups of persons depending on their age and reading preferences. The age of a

CONC DEC

Schema

Links

1 2 3 4 5

4

5

6 7 8 9

8 91 110t

t

t

r

r

r

r

r

r

r

r

r

1

2

2

3

1

3

4

5

6

7

8

9

l

l2

1

A AAAA

A AAAA

A AAAA

Fig. 1. Example of an XTT2 knowledge base

Overview of Knowledge Formalization with XTT2 Rules 335

reader and his/her preference could be represented by the following attributes: A =
{fav_genres, age, age_filter, rec_book} with corresponding domains:
D = Dfav_genres ∪ Dage ∪ Dage_filter ∪ Drec_book, defined as:
Dfav_genres = {horror, handbook, fantasy, science, historical, poetry},
Dage = {1 . . .99},
Dage_filter = {young_horrors, young_poetry, adult_horrors, adult_poetry,
Drec_book = { ’It’, ’Logical Foundations for RBS’, ’The Call of Cthulhu”}.
In this case the second attribute is a simple one, where as the first and third are gen-
eralized ones. The third one contains book titles that can be recommended to a reader.
In the example, both fav_genres, and age, attributes are input, age_filter is internal,
and rec_book is an output one.

Following the example, a state can be defined as: (age = 16) ∧ (fav_genres =
{horror, fantasy}) This means, that a given person is 16 years old and she or he likes
reading horror and fantasy books. In fact, it is a partial state where only the values of
the input attributes are defined. It is sufficient for the inference process. To specify the
full state the values of the remaining attributes should be defined as null .

Consider example of the following rules:
r1 : [age < 18 ∧ fav_genres ⊇ horror] −→ [age_filter := young_horrors]
r2 : [age = _ ∧ fav_genres ∈ {science}] −→ [age_filter := all_science]
r3 : [age_filter ∈ {young_horrors, adult_horrors}] −→ [rec_book := ’It’]

Having the defined state, it can be observed, that rules r1 and r3 can be fired.
The implementation of the XTT2 method includes two representations: a) textual

suitable for processing by a rule engine, and b) visual aimed at a design tool. The
textual representation of XTT2 is called HMR (HeKatE Meta Representation). HMR
allows for textual definition of all the XTT2 concepts. The visual representation of
XTT2 is supported by the HQEd graphical editor. Both of this two representations can
be used to design the system. However, the visual representation is more convenient.
In fact, the textual form of HMR can be written directly or automatically generated
by the HQEd tool according to the visual representation. The textual representation is
processed by HeaRT [3] tool which is a dedicated inference engine for XTT2 rule bases
implementing the custom inference algorithms.

5 Related Work

Considering the use of decision tables our approach is similar to Vanthienen’s research
on decision tables. In the paper [6] it is presented how the rule-based system can created
with the help of PROLOGA (Procedural Logic Analyzer) system, which is an interac-
tive rule-based tool for computer-supported construction and manipulation of decision
tables. The problems of maintenance, efficiency and verification of a large knowledge
bases are also discussed. In [5] an approach to a knowledge modularization is described
in order to increase an efficiency of verification.

However, in XTT2 the perspective is on state-base representation. Moreover, prac-
tical inference issues in structured rule bases are considered. The Vanthienen’s works
do not describe an influence of the knowledge base modularization on the inference
process. This is why, XTT2 provides dedicated inference engine (HeaRT), which al-

336 G.J. Nalepa, A. Ligęza, and K. Kaczor

lows for using the advanced inference strategies. In comparison to Vanthienen’s works,
XTT2 provides a stronger formalism and more expressive rule language.

The implicit rule base structure is an important feature of XTT2. Rules are grouped
into decision tables, and the inference control is designed during design. Therefore the
XTT2 representation is highly optimized towards rule base structuring. This is differ-
ent from all Rete-based solutions, including all the three previously mentioned, that is
CLIPS, Jess, and Drools. This feature makes the visual design much more transparent
and scalable. It also greatly improves the inference process. The well known inference
algorithms like Rete, and others (e.g. Treat or Gator) do not work well with modularized
knowledge bases (for details see [4]).

6 Concluding Remarks

In this paper a rigorous formalized language called XTT2 for building rule-based sys-
tems has been proposed. The approach is based on the ideas of using a formal, attribu-
tive logic based approach for rule description. Moreover, it allows to identify a structure
of the rule base, by using extended decision tables grouping rules working in the same
context. This approach seems superior to wide-spread rule-based solutions thanks to the
transparent and scalable visual representatio. It opens up possibility of formal verifica-
tion on the logical level.

References

1. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Heidelberg (2006)
2. Ligęza, A., Nalepa, G.J.: Rules verification and validation. In: Giurca, A., Gasevic, D., Taveter,

K. (eds.) Handbook of Research on Emerging Rule-Based Languages and Technologies: Open
Solutions and Approaches, pp. 273–301. IGI Global, Hershey (2009)

3. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114,
pp. 598–605. Springer, Heidelberg (2010)

4. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems.
International Journal of Applied Mathematics and Computer Science 20(1), 35–53 (2010)

5. Vanthienen, J., Mues, C., Aerts, A., Wets, G.: A modularization approach to the verification
of knowledge based systems. In: 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995) - Workshop on Validation & Verification of Knowledge Based Systems, Mon-
treal, Canada (August 20-25, 1995), http://eprints.soton.ac.uk/36413/

6. Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and implementing
knowledge based systems. In: ICTAI, pp. 198–205 (1993)

http://eprints.soton.ac.uk/36413/

HalVA - Rule Analysis Framework
for XTT2 Rules�

Grzegorz J. Nalepa, Szymon Bobek, Antoni Ligęza, and Krzysztof Kaczor

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
{gjn,szymon.bobek,ligeza,kk}@agh.edu.pl

Abstract. Quality and reliability issues are important in development
and exploration of rule-based systems. In the paper a formalized knowl-
edge representation for rules called XTT2 is considered. It is a rule
language based on an expressive attribute logic called ALSV(FD). A
custom runtime and verification framework for XTT2 called HalVA is
proposed. It allows for verification of certain formal properties of rules,
including determinism, subsumption or completeness.

1 Introduction

Rule-Based Systems have been in use for several decades in various branches
of engineering. In fact, they constitute straightforward, intuitive, and powerful
scheme for encoding operational knowledge. Among numerous rule-based lan-
guages and tools, one can mention classical solutions, such as Clips, its reincar-
nation in Java, JESS, Drools, ILOG Rules and many other. All of them offer
relatively matured solutions with respect to knowledge encoding and inference.

One of the critical issues concerning development of practical rule-based ap-
plication is the reliability and safety of the system. In order to assure correct be-
havior, certain intrinsic characteristics of the rulebase should be assured. Among
other, the system should work correctly for any admissible input data and pro-
duce deterministic, consistent solutions. Unfortunately, none of the above sys-
tems offers an appropriate solution in this area.

This paper is focused on expressive, formalized rule language called XTT2
(eXtended Tabular Trees version 2) [4]. We start with describing a logic in use
which is the key issue for knowledge verification. Together with the XTT2 rule
encoding scheme it provides an account for formal verification of rules for XTT2.

The paper is organized as follows. In Sect. 2 a state of the art is briefly
discussed with the motivation for the research given. Then the introduction to
the ALSV(FD) logic providing means for rule formalization is put forward. Rule
formalization with XTT2 is briefly discussed in Sect. 3. Practical approach to
verification of XTT2 rules is outlined in Sect. 4, followed by conclusions.

� The paper is supported by the BIMLOQ Project funded from 2010–2012 resources
for science as a research project.

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 337–344, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 G.J. Nalepa et al.

2 State-of-the-Art and Motivation

Expert systems are widely used in areas where computer high performance and
infallibility are important. In some cases failure of the expert systems can have
serious consequences, though it is crucial to ensure that the system works cor-
rectly in every possible situation. Many tools and methodologies that support
rule-based systems verification have been developed over the time, but none of
them covers all the needs that such systems should have. Anomalies in the set
of rules can cause the serious faults in system responses. Therefore the analysis
of knowledge base is a significant step during developing rule-based system.

The issue of verification and validation were discussed by many authors. Ac-
cording to [6] verification and validation procedures of the system can be un-
derstood as one of the following: anomaly detection, formal verification, parallel
use, rule base visualization to aid review, code review, testing. That study shows,
that verification of the rule based systems is dominated by testing and code re-
view. This approach highly depend on human skills, since incorrectly written test
may produce wrong results. Formal verification and anomaly detection are not
so widely used despite the fact that those methods usually have strong logical
foundations and in most cases exceed testing and debugging approach.

Apparently, the classic verification tools developed in the 90‘ are not com-
monly used. Based on comparison of existing verification tools in [5] one can
draw a conclusion, that the main reason why formal verification is not widely
used among expert system developers is that it requires formal knowledge rep-
resentation. In fact, most of these tools are usually based on propositional or
predicate logic. MELODIA uses propositional logic and flat rule base. CLINT,
COVER, SACCO uses predicate logic and a flat rulebase. Moreover, IN-DEPTH
introduces a hierarchical representation, COVADIS uses simple production rules
language with a flat rulebase, whereas KRUST uses frames. However, common
expert system shells such as CLIPS, Jess or Drools do not provide formal knowl-
edge representation, so it is not possible to use these tools. Although there
are some analysis tools that are dedicated to aforementioned shells like CRSV-
CLIPS [1,5] for CLIPS, Drools Verifier for Drools, their aim is not to provide
formal verification, but to offer a framework for writing tests.

Motivation for research presented here is to provide an expressive formalized
rule language that allows for formal verification. The XTT2 language is expres-
sive enough to cover the semantics of classic CLIPS-like languages, as well as
the business rules oriented Drools. The actual study of the expressiveness and
the mapping is out of scope of this paper. The focus here is to present practical
verification algorithms for XTT2. They are oriented towards formal verification
of selected formal rule properties, and use the notation based on the ALSV(FD)
introduced in the next section.

3 Formalization of Modularized Rule Bases

Knowledge representations based on attributes are not only common, but also
very intuitive. This kind of logic is omnipresent in various applications.

HalVA - Rule Analysis Framework for XTT2 Rules 339

It constitutes the basis for construction of relational database tables, attributive
decision tables and trees, attributive rule-based systems and is often applied to
describe the state of dynamic systems and autonomous agents. Here we consider
the Attributive Logic with Set Values over Finite Domains (ALSV(FD)) [4].

Let us now consider a set of all attributes used to describe the system A. Each
attribute Ai ∈ A has a set of allowed values (a domain) Di. Let D be the set of
all attributes values : D = D1 ∪D2 ∪ · · · ∪Dn where Di is the domain of attribute
Ai ∈ A. Any domain Di is assumed to be a finite (discrete) set. In a general
case, the domain can be ordered, partially ordered, or unordered.

In ALSV(FD) two types of attributes are identified: simple taking only one
value at any time, and generalized ones taking a set of values at any time.
Therefore, we introduce the following partitioning of the set of all attributes: A =
As∪Ag where: As - the set of simple attribute names. Ag - the set of generalized
attribute names. Let O denote a set of potential objects, and let T denote a
discrete set of time instants. A simple attribute Ai is a function (or partial
function) of the form: Ai : O × T → Di. The definition of generalized attribute
can be written as follows: Ai : O× T → 2Di Attribute Ai denotes a property of
certain objects at a certain instant of time. The formula Ai(o), where o ∈ O, is
the value of property Ai of object o. For simplicity the explicit specification of
object is not present (the whole system is considered as one object) and explicit
reference is only to the current instant of time. As a consequence, simplified
atomic formulae of the form Ai = d where d ∈ Di or Ai = V where V ⊆ Di are
used further on.

The current values of all attributes are specified within the contents of the
knowledge base. From the logical point of view the state of the system is repre-
sented as a logical formula of the form: (A1 = S1)∧ (A2 = S2)∧ . . .∧ (An = Sn)
where Ai are the attributes and Si are their current values; note that Si = di

(di ∈ Di) for simple attributes and Si = Vi, (Vi ⊆ Di) for complex ones.
The rule formalism considered here is called XTT2 and provides a formalized

rule specification. This section starts from presentation of operators needed to
express rules, then single rule formulation using the ALSV(FD) concepts, and
then provides definitions for grouping similar rules into decision units (tables)
linked into an inference network.

Rule Conclusion and Decision. In XTT2 each rule can be divided into two parts:
condition and conclusion (decision). Therefore, two identifiers will be used to
denote attributes as well as operators in rule parts: cond corresponds to the
conditional part of a rule, and dec corresponds to the decision part of a rule.

Relational Operators in Rules. Considering the syntax of the legal ALSV(FD)
formulae the use of the relational operators in rules can be specified. The set of
all operators can be defined as follows: F = Fcond ∪ Fdec where: Fdec = {:=} is
a set of all operators that can be used in a rule decision part. The operator :=
allows for assigning a new value to an attribute. Fcond = {=, �=,⊆,⊇,∼, �,∈, /∈}
is a set of all operators, that can be used in a rule conditional part. ALSV(FD)
also allows for using the following operators <, >,≤,≥ which provide only a
variation for the ∈ operator.

340 G.J. Nalepa et al.

ALSV(FD) Triples. Considering the legal ALSV(FD) atomic formulae the E
set can be introduced. It contains all the triples that are legal atomic formulae
in ALSV(FD) using the relational operators defined previously:
E = {(Ai,∝, di), Ai ∈ A,∝∈ F, di ∈ Di} ∪ {(Ai,∝, Vi), Ai ∈ A,∝∈ F, Vi ∈ 2Di}
XTT2 Rule. Let us consider the set of all rules defined in the knowledge base
denoted as R. A single XTT2 rule is a triple: r = (COND, DEC, ACT) where:
COND, DEC ⊂ E, and ACT is a set of actions to be executed.

A rule can be written using LHS (Left Hand Side) and RHS (Right Hand
Side): LHS(r) → RHS(r),DO(ACT) where LHS(r) and RHS(r) correspond
respectively to the condition and decision parts of the rule r, and DO(ACT)
involves executing actions from a predefined set. Actions are not included in
the RHS because it is assumed that they are independent from the considered
system, and the execution of actions does not change the state of the system.

Any rule can also be presented in the following form:
r : [φ1 ∧ φ2 ∧ · · · ∧ φn] → [θ1 ∧ θ2 ∧ · · · ∧ θm],DO(ACT) where: {1, . . . , n} and
{1, . . . , m} are the sets of identifiers, n ∈ N, m ∈ N φ1, . . . , φn ∈ COND and
θ1, . . . , θm ∈ DEC. From a logical point of view, the order of the atomic formulae
in both the precondition and conclusion parts is unimportant.

Rule Schema. Let us consider a concept of a rule schema. Each rule has a schema
that is a pair of attributes sets: h = (Hcond, Hdec) where Hcond and Hdec sets
define the attributes occuring in the conditional and decision part of the rule.

A schema of the rule can be defined as follows: ∀r = (COND, DEC, ACT) :
h = (trunc(COND), trunc(DEC)) where the function trunc transforms the set of
atomic formulae into a set of attributes that are used in these triples. A schema is
used to identify rules working in the same situation (operational context). Such
a set of rules can form a decision component in the form of a decision table. A
schema can also be considered a table header.

Decision Component (Table). Let us consider a decision component (or table).
It is an ordered set (sequnce) of rules having the same rule schema, defined as
follows: t = (r1, r2, . . . , rn) ∀i,j : ri, rj ∈ t → hi = hj where hi is a schema of
the rule ri. In XTT2 the rule schema h can also be called the schema of the
component (or table). Components are connected (linked) in order to provide
inference control.
Inference Link. A link l is an ordered pair: l = (r, t), l ∈ R×T∪{⊥} where: R is
the set of rules in the knowledge base, and T is the set of tables in the knowledge
base. A single link connects a single rule (a row in a table) with another table. An
empty link is denoted as ⊥. A structure composed of linked decision components
is called a XTT2 knowledge base.
XTT2 Knowledge Base. It is the set of components connected with links. It is
an ordered pair: X = (T, L), where: T is a set of components (tables), L is a set
of links, and all the links from L connect rules from R with tables from T. Links
are introduced during the design process according to the specification provided
by the designer. The knowledge base forms an inference network.

Let us now proceed to the descussion of the main verification tasks for the
XTT2 rules as well as corresponding algorithms.

HalVA - Rule Analysis Framework for XTT2 Rules 341

4 Rule Verification Tasks

4.1 Formal Definition of Verification Tasks

Consider the legal atomic formulae. Any single atomic formula ei = Ai ∝ Vi

can be considered as a kind of a constraint imposed on the values of the do-
main Di of Ai. Let us define the so-called set of examples of ei as follows:
[ei] = {d ∈ Di : ei is satisfied by d} for simple attributes, and [ei] = {V ⊆
Di : ei is satisfied by V } for generalized ones. In fact, the set of examples for
an atomic formula e is a set of legal attribute values satisfying this formula.
For example, consider Di = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and a formula ei = Ai ≥ 7.
Then the set of examples for ei is given by [ei] = {7, 8, 9}.

In the following sections we shall consider simplified rules of the form:
e1 ∧ e2 ∧ . . . ∧ en −→ h where h is an atomic formula assigning specific value
to some decision attribute. Let LHS denote the set of preconditions of the rule,
i.e. LHS = {e1, e2, . . . , en}.

Below, we consider definitions of some most common problems to be detected
and eliminated in rule-based systems.

Inconsistency of a single rule. can be result of the two following situations:
1) in the preconditions of the rule there are two logically inconsistent atomic
formulae and 2) in the preconditions of the rule there exists an atomic formula
logically inconsistent with the conclusion. The first situation can happen if there
exist some atomic formulae ei, ej ∈ LHS, such that: [ei] ∩ [ej] = ∅. The second
situation takes place when [ei] ∩ [h] = ∅. Obviously, in both cases, the formulae
must define constraints referring to the same attribute.

Inconsistency of a pair of rules. means that there exists a state satisfying the
preconditions of each rule, but conclusions define different values of the same
attribute. Consider two rules with preconditions given by LHSk and LHSl. The
preconditions of these rules can be simultaneously satisfied if and only if, for
any pair of atomic formulae ei, ej , such that ei ∈ LHSk and ej ∈ LHSl, ei and
ej define constraints over the same attribute the following condition s satisfied:
[ei] ∩ [ej] �= ∅. If the above holds, and simultaneously the rules define different
values of the same conclusion attribute, then the rules are inconsistent.

Completeness. is defined as the ability to react for every admissible input values.
This means that the Cartesian Product of domains of attributes of a group of
rules is covered by the rule preconditions. Consider a group of rules with precon-
ditions defined with use of attributes A1, A2, . . . , An. The Cartesian Product of
the domains of these attributes will be denoted as U. Now, consider a single rule
e1∧e2∧ . . .∧en −→ h. The Cartesian Product of states covered by preconditions
of the rule is given by P = [e1]× [e2]× . . .× [en] The completeness holds if and
only if, for any u ∈ U, there exists a rule with P such that u ∈ P .

Subsumption of conditions. It takes place, if and only if there are two atomic
formulae referring to the same attribute, but one of them is weaker then the
other. Let ei and ej be two atoms belonging to preconditions of some examined

342 G.J. Nalepa et al.

formula. The subsumption holds if and only if [ei] ⊆ [ej], i.e. ej subsumes ei.
Obviously, if ei is satisfied, then ej must be satisfied as well, but not vice versa.
The subsumed condition ei can be eliminated.
Subsumption of a pair of rules. takes place, if and only if one of the rules can be
fired always when the second one (and perhaps also in some more states), and
the rules have the same conclusion. The subsumption holds in fact among the
joint precondition formulae. Let Pk, Pl denote the Cartesian Products of states
covered by the respective formulae. Subsumption holds if and only iff Pi ⊆
Pj In more operational terms, the subsumption can also be defined as follows.
Consider two rules with preconditions constructed over the same attributes. Rule
l subsumes rule k if and only if, for any ei ∈ LHSk there exists ej ∈ LHSl, such
that [ei] ⊆ [ej], i.e. ej subsumes ei. Obviously, if ei is satisfied, then ej must be
satisfied as well, but not vice versa. The more general rule l cannot have any
extra atoms in preconditions, i.e. each of its preconditions must cover some atom
in preconditions of rule k. The subsumed rule k can be eliminated.
Identity and equivalence of rules. takes place when two rules can also be identical
or equivalent. Detection of identical rules is a trivial case. Rules are equivalent
if they both can be fired for the same set of input states and they have iden-
tical conclusions. Equivalence of preconditions can be easily defined as mutual
subsumption.

4.2 Verification Algorithms

Inconsistency of a single rule. Inconsistency within a single rule can be under-
stood on in two ways: presence of inconsistent conditions , and inconsistency
between one of the conditions and conclusion To discover inconsistency between
conditions within a single rule following steps should be performed:

1. Create a list of all attributes from condition part of the rule.
2. Take first attribute from the list and find all other conditions containing the

attribute. If there are no attributes left on the list, stop.
3. Calculate intersections of sets that are covered by selected conditions. If the

intersections is an empty set, report inconsistency.
4. Delete previously selected attribute and go to step 2.

Warning about potential inconsistency between conditions and conclusion of the
rule is generated when the same attributes exist in both conditional and decision
part of the rule.
Inconsistency of a pair of rules. Inconsistency between a pair of rules are un-
derstood as a situation when decision parts of two rules are different, but there
is a state when both rules are true. To discover inconsistency between a pair of
rules, following steps should be performed:

1. Designate states that two rules from the same context cover.
2. Calculate intersection of those states.
3. In case the intersection is not an empty set and decision parts of both rules

differ, report inconsistency.

HalVA - Rule Analysis Framework for XTT2 Rules 343

Completeness. The most difficult part of logical verification is completeness test.
To check if the system is complete, all possible input data has to be passed to the
system, and depending on the system response, the conclusion about complete-
ness is produced. The completeness tests described in this section are limited
to a group of rules – the single XTT2 table, not entire system. Checking entire
system for completeness is an issue far more complicated, and practically not
possible. Two approaches to this problem were developed and tested: Cartesian
product of partition of domains, Decision Tree.

The approach with Cartesian product of partitions of domains was not efficient
for bigger problems, where domains were partitioned into a lot of pieces by a
lot of rules within a XTT2 table. To enhance performance of the completeness
test, the approach with decision tree of system states was proposed. An idea
of this algorithm is to create a tree, where each branch represents a state that
should be covered. Every level of the tree corresponds to attributes that shall
cover states denoted by it. The completeness test is based on depth-first search
algorithm. The enhancement lies in the fact that when the branch is found that
is not covered by any condition of rules from analyzed XTT2 table, this branch,
with all its successors are cut and are not analyzed.
Subsumption of a pair of rules. Subsumption of a pair of rules is similar to the
case of inconsistency of a pair of rules described in Sec. 4.2. One rule subsumes
the other if its condition part is more general and decision part is the same.

A test for the presence of this kind of subsumption is done as follows:

1. Designate states that are covered by rules from given context (XTT2 table)
2. Calculate intersections of this states
3. In case the intersections is not an empty set and decision parts of the rules

are the same, report subsumption error

Identity and equivalence of rules. Problem of discovering equivalent rules is
reduced to finding rules in which: order of conditions were changed, one or more
conditions were duplicated, and one or more conditions are logically equivalent.

5 Summary and Future Work

The original contribution of the paper is the proposal of a formal verification
framework for XTT2. It is an expressive rule language, with possible mapping
to some common rule shells. In the paper verification algorithms for important
anomalies were given and their implementation was presented.

The implementation of the XTT2 method includes a textual representa-
tion called HMR (HeKatE Meta Representation). It is directly processed by
HeaRT [3] tool which is a dedicated inference engine for XTT2. HeaRT also
implements a verification framework, called HalVA (HeKatE Verification and
Analysis) [2]. The framework implements the discussed verification algorithms
as plugins. Verification plugins can be run from the interpreter or from the design
environment using a communication module.

344 G.J. Nalepa et al.

To further improve the efficiency of the algorithms, a new method of inves-
tigating system properties is proposed as a future work. The new approach is
based on analyzing logical dependencies between condition parts of rules, rather
than on algebra of sets (as it is now in domain partitioning approach). This
method requires defining special rules for every operator from ALSV(FD) logic
that would be used to conclude about existence of anomalies in system. Veri-
fication would be therefore domain independent, and specific values, or sets of
values would not be considered explicitly but intensionally instead – based on
aforementioned rules.

References

1. Culbert, S.: Expert system verifications & validation. In: Proc. of First AAAI Work-
shop on V,V & Testing (August 1988)

2. Ligęza, A., Nalepa, G.J.: Proposal of a formal verification framework for the XTT2
rule bases. In: Tadeusiewicz, R., Ligęza, A., Mitkowski, W., Szymkat, M. (eds.) CMS
2009: Computer Methods and Systems: 7th Conference, Kraków, Poland, Novem-
ber 26-27, pp. 105–110. AGH University of Science and Technology, Cracow, Opro-
gramowanie Naukowo-Techniczne, Kraków (2009)

3. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part
II. LNCS (LNAI), vol. 6114, pp. 598–605. Springer, Heidelberg (2010)

4. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent
systems. International Journal of Applied Mathematics and Computer Science 20(1),
35–53 (2010)

5. Tsai, W.T., Vishnuvajjala, R., Zhang, D.: Verification and validation of knowledge-
based systems. IEEE Trans. on Knowl. and Data Eng. 11, 202–212 (1999),
http://dx.doi.org/10.1109/69.755629

6. Zacharias, V.: Development and verification of rule based systems — A survey of
developers. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2008.
LNCS, vol. 5321, pp. 6–16. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-88808-6_4

http://dx.doi.org/10.1109/69.755629
http://dx.doi.org/10.1007/978-3-540-88808-6_4

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 345–359, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Rewriting Queries for Web Searches That Use
Local Expressions

Rolf Grütter1, Iris Helming1, Simon Speich1, and Abraham Bernstein2

1 Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
{rolf.gruetter,iris.helming,simon.speich}@wsl.ch
2 University of Zurich, Department of Informatics Zurich, Switzerland

bernstein@ifi.uzh.ch

Abstract. Users often enter a local expression to constrain a web search to a
geographical place. Current search engines’ capability to deal with expressions
such as “close to” is, however, limited. This paper presents an approach that
uses topological background knowledge to rewrite queries containing local
expressions in a format better suited to standard search engines. To formalize
local expressions, the Region Connection Calculus (RCC) is extended by
additional relations, which are related to existing ones by means of composition
rules. The approach is applied to web searches for communities in a part of
Switzerland which are “close to” a reference place. Results show that query
rewriting significantly improves recall of the searches. When dealing with
approx. 30,000 role assertions, the time required to rewrite queries is in the
range of a few seconds. Ways of dealing with a possible decrease of
performance when operating on a larger knowledge base are discussed.

Keywords: Local Expression, Query Rewriting, Region Connection Calculus
(RCC), Web Ontology Language (OWL), DL-safe SWRL Rules.

1 Introduction

Web searches are quite often constrained by local references (e.g., place names or
expressions for spatial relations between places) [1, 2]. However, existing search
engines are weak in supporting spatial queries. While local expressions, such as
“close to”, may be used as strings in a query, they are usually evaluated according to
the frequency of their occurrence in the indexed documents and not according to their
meaning in natural language. For some queries, Google1 returns resources of real
world entities which are “close to” or “in the surroundings of” a reference place.
However, this feature is limited to government agencies and commercial enterprises
such as hotels, surgeries and offices in urban areas, in a way similar to the yellow
pages2.

1 http://www.google.ch/
2 http://yellow.local.ch

346 R. Grütter et al.

Localized versions of standard search engines, such as Google, Yahoo3 and Bing4,
offer the option of displaying query results in the national language or from hosts in
the respective country. In addition, there are a number of search engines whose scope
is limited to a single country or a geographical region. These engines support queries
and return results in the language of the country (e.g., the Chinese search engine
Baidu5). They also provide local information, such as yellow and white pages. As a
motivating example will show, the advantage of a localized search goes beyond “just”
finding yellow and white pages in a national language.

This paper presents an approach to support web searches by rewriting queries using
topological background knowledge which is created from the administrative structure
of a country and from a tessellation of micro regions. The latter establish consistent
units for the analysis of spatial mobility. Applying our approach to web searches that
use local expressions significantly improves recall. When using an X86-based PC
operating on a knowledge base holding about 30,000 role assertions, query rewriting
takes 6,317.54 ms on the average.

The paper is organized as follows: Section 2 provides an overview of the Region
Connection Calculus (RCC) and DL-safe SWRL rules. RCC is used as a foundation
of the formalism which is introduced in section 4. DL-safe SWRL rules are used −
together with OWL DL − to implement the formalism which is described in section 5.
The same section also shows how queries are rewritten. In section 6, the approach is
applied to web searches for communities which are “close to” a reference place and
the results of this application are presented. Section 7 discusses related work and
section 8 concludes with an outlook on future work.

This paper extends previous work [3] by (i) refining the basic formalism and
separating it from background knowledge, (ii) considering spatial mobility as an
additional source of knowledge, and (iii) evaluating the approach on the basis of web
searches in a realistic scenario.

2 Region Connection Calculus and DL-Safe SWRL Rules

The Region Connection Calculus (RCC) is an axiomatization of certain spatial
concepts and relations in first order logic [4]. The basic theory assumes just one
primitive dyadic relation: C(x, y) read as “x connects with y”. Individuals (x, y) can be
interpreted as denoting spatial regions. The relation C(x, y) is reflexive and
symmetric.

Using the primitive relation C(x, y) a number of intuitively significant relations can
be defined. Of these relations, PP (“proper part of”), PPi (“inverse proper part of”), PO
(“partially overlaps”), EQ (“equal to”) and DR (“discrete from”) form a jointly
exhaustive and pairwise disjoint set, which is known as RCC-5. Similar sets of one,
two, three and eight of these relations are known as RCC-1, RCC-2, RCC-3 and RCC-
8, respectively. PP and PPi are subsumed by the relations P (“part of”) and Pi
(“inverse part of”). RCC also incorporates a constant denoting the universal region, a

3 http://ch.search.yahoo.com
4 http://www.bing.com
5 http://www.baidu.com

 Rewriting Queries for Web Searches That Use Local Expressions 347

sum function and partial functions giving the product of any two overlapping regions
and the complement of every region except the universe [4].

According to Randell et al. [4], regions support either a spatial or temporal
interpretation. For a spatial interpretation, a topological model is provided. According
to this model, regions are interpreted as sets of points in a point-based universe and
C(x, y) holds if the topological closures of regions x and y share (at least) a common
point. In order to comply with the model-theoretic semantics of Description Logics
(DL), the RCC relations are interpreted in this paper as binary relations between
individual regions in an abstract domain.

In order to infer new from existing knowledge or to check consistency of a
knowledge base holding spatial relations, so-called composition tables are used. The
entries in these tables share a uniform inference pattern which can be formalized as

composition axioms of the general form ∀x∀y∀z [S(x, y) ∧ T(y, z) → R1(x, z) ∨ … ∨

Rn(x, z)] where S, T, and Ri are variables for relation symbols.
RCC composition rules can be implemented as DL-safe SWRL rules. DL-safe

SWRL rules are function-free Horn rules with the restriction that each variable in the
rule occurs in a non-DL-atom in the rule body [5]. This is ensured by adding special
non-DL-literals such as O(x) to the rule body, and by adding a fact O(a) for each

individual a to the knowledge base.6 While in theory DL-safe SWRL rules support
complex, i.e., disjunctive, heads (or negation in the rule body) [6], there is currently
no implementation that supports this feature. However, since the RCC relations are
jointly exhaustive [4], it is always possible to replace a negative atom, for instance

¬disconnectedFrom(z, y), by a, possibly auxiliary (cf. section 4), positive atom, for

instance connectsWith(z, y).

3 A Motivating Example

Think of a woman taking up a new job in the community of Dietlikon (which is
located in the canton of Zurich). She might not be familiar with this part of
Switzerland, but still wants to find a home which is close to her place of work. Before
calling a housing agency she might want to inform herself about the communities
close to Dietlikon by searching the web. The retrieval problem triggered by her
information need can be put as follows: “For every community that is close to the
community of Dietlikon, retrieve all resources from the web.” Note that housing
agencies on the web usually offer the opportunity of searching within a selectable
Euclidean distance from a reference place. Euclidean distance, however, can be tricky
when looking for close places. It does not consider conditions such as topography and
local public infrastructure.

To make local expressions such as “close to” meaningful, the approach presented
in this paper uses topological background knowledge in terms of spatial relations
between administrative units and functional micro regions. Administrative units
establish the institutional structure of a country. They are typically organized into a

6 For the evaluation (cf. section 6) it was sufficient to add a fact O(a) for each individual a. The

requirement that O must not be a concept from the DL knowledge base was not considered.

348 R. Grütter et al.

set of partially ordered partitions. Units of the same partition share the same type.
Each unit is administered by a local authority. Switzerland, for instance, is organized
into 26 cantons, 147 districts and 2551 communities [7]. Micro regions, on the other
hand, do not contribute to a country’s administration. They have been established as
consistent units for the analysis of spatial mobility and “encode” things such as the
behavior of commuters. In Switzerland, the tessellation of micro regions consists of
106 units [7]. Whereas these form a partition similar to those of administrative units,
this does not align with the partial ordering of the latter. However, micro regions still
align with the smallest units of institutional organization in that a given community is
part of a single micro region only.

It is well documented that administrative boundaries influence how people
perceive distance (cf. section 7). Some evidence for this comes from the fact that
boundaries, for instance of districts, often take course along natural boundaries such
as ridges or watercourses thereby “encoding” some prominent topographic features.
Districts further divide a country into units performing decentralized administrative
tasks in areas such as health (hospitals), education (schools) and judiciary (courts) [7].
Hence, districts – and administrative units in general – suggest themselves as a
foundation for a formalism of proximity. Administrative units, however, do not
always properly reflect functional properties such as local public infrastructure. In
order to include these, the presented approach also considers a tessellation of
functional micro regions. Note that the work presented here is still in progress.
Further factors influencing the perception of proximity on different scales of social
organization may be added in the future.

Fig. 1. Eight communities close to the community of Dietlikon. Shaded areas show different
districts. The bold line borders the functional micro region of Glattal-Furttal.

 Rewriting Queries for Web Searches That Use Local Expressions 349

The formalism introduced in the following section is defined on a topological
structure.7 This is the basic idea: A region z is close to a region x if another region y is
a priori close to x and z connects with y. Note that the type of x implicitly encodes a
scale factor: What is close to a community is not the same as what is close to a
district.8 In the next section, this basic rule is refined and linked to two different
sources of background knowledge. In order to get back to the example, our approach
evaluates the eight labeled communities in Figure 1 as being close to Dietlikon. They
are in the intersection of communities that are part of or externally connected to the
district of Bülach and those that are located in the micro region of Glattal-Furttal
(bold borderline).

4 A Formalism for Proximity

4.1 The Basic Composition Rule

In order to formalize local expressions, RCC is extended by additional relations. In
the context of this paper, CL(x, y), which is read as “x is close to y”, is introduced as a
weakly asymmetrical relation, in accordance with empirical evidence [9]. Against the
background of knowledge considered in this paper, this means that the relation is
usually symmetrical, if x and y are members of the same administrative partition (e.g.,
both are communities), but asymmetrical, if y is a member of a more fine-grained
partition than x (e.g., y is a community and x a district) or else, if x is a non-
administrative region. CL(x, y) is further irreflexive, intransitive and not
antisymmetric.

The additional RCC relation is related to the existing ones by means of a
composition rule in such a way that the rule is a necessary condition for the relation:

Composition rule 1. ∀x∀y∀z [CLap(y, x) ∧ z{P, PO}y → CL(z, x)]; informally, a region

z is close to a region x if another region y is a priori close to x and z is part of or
partially overlaps y.

The subscript ap in the name of the relation CLap(y, x) stands for “a priori”. CLap(y, x)
is derived from background knowledge. In this paper we consider two sources of
background knowledge, (1) a country’s organization into different levels of
administrative partitions (cf. section 4.2) and (2) tessellations of different granularity
consisting of different types of functional regions (which may cross a country’s
borders).

Even though tessellations of different granularity may be organized as a system of
partitions similar to that of administrative regions, this does not have to be the case.
Our approach requires, however, that each administrative region must be related to
exactly one functional region. In the current implementation (cf. section 5.1) we use

7 This is consistent with Shariff, Egenhofer and Mark [8] who conclude that, for a large set of

spatial-relation terms, topology is a more important parameter of the semantics than metric.
8 Worboys [9] argues that for nearness the subject-referent dichotomy plays a dominant role in

that the referent creates the scale in which the relation has context.

350 R. Grütter et al.

the weak notion of “located in” which is introduced as subsumed by “spatially
related” – the most general RCC relation.

4.2 A Partially Ordered and Typed System of Partitions

Definition 1 uses the Boolean RCC function SUM and the RCC relation DR to
reformulate the well-known notion of a partition in terms of RCC. The RCC function
SUMi ∈ I xi is defined as ∀z [C(z, y) ↔ ⋁i ∈ I C(z, xi)] for a region y [4]. As is customary,
lower case letters are used for variables denoting individuals.

Definition 1 (Partition in RCC). A family of regions (xi)i ∈ I is a partition of a region

y if the following holds:

• y = SUMi ∈ I xi where I is a finite index set; this implies ∀xi P(xi, y);
• ∀xi∀xj DR(xi, xj) for i ≠ j;
• regions (xi)i ∈ I are named for all i ∈ I.

We consider only a small subset of partitions, namely those whose elements are typed
by kind of administrative region. For instance, Community(xi) says that xi is of type
Community. Multiple typing of regions is not considered, that is, the concepts used for
typing are mutually disjoint. Similarly, a given type is used for a single partition only.
This allows distinguishing the partitions by their types.

In order to account for the different scales of social organization a partial order on
the system of partitions in RCC is defined by comparing partitions with regard to their
granularity.

Definition 2 (Partial Order on Typed Partitions). Let C(xi)i ∈ I and D(yk)k ∈ K be

partitions of the same region of types C and D, respectively. We say that C(xi)i ∈ I is

more fine-grained than D(yk)k ∈ K, denoted by C(xi)i ∈ I D(yk)k ∈ K, if each element of

C(xi)i ∈ I is a (possibly improper) subset of an element of D(yk)k ∈ K. A partial order on

typed partitions is reflexive, transitive and antisymmetric.

This means that each element of D(yk)k ∈ K is partitioned by elements of C(xi)i ∈ I. For
instance, Community(xi)i ∈ I and District(yk)k ∈ K are both typed partitions of a canton and
each element of District(yk)k ∈ K is partitioned by elements of Community(xi)i ∈ I.

Definition 3 (Minimal Partial Order on Typed Partitions). We say that a partial
order on typed partitions is minimal with regard to a given conceptualization, denoted

by C(xi)i ∈ I min D(yk)k ∈ K, if the conceptualization does not provide a type for any

(wj)j ∈ J such that C(xi)i ∈ I (wj)j ∈ J D(yk)k ∈ K. A minimal partial order on typed

partitions is intransitive.

 Rewriting Queries for Web Searches That Use Local Expressions 351

For instance, if a given conceptualization provides the administrative types District and
Community, any partial order comprising a non-typed partition of intermediate
granularity is not minimal. Definition 3 excludes unwanted partitions such as those
consisting of a mash of districts and communities. For further information cf. [3].

4.3 Refining the Formalism

The above introduced background knowledge can be used to formalize the notion of a
priori closeness as shown in composition rule 2.

Composition rule 2. ∀xa ∈ (ai)i ∈ I ∀ya ∈ (ai)i ∈ I ∀b ∈ (bk)k ∈ K ∀w [P(xa, b) ∧ ya{P,

EC}b ∧ LOC(xa, w) ∧ LOC(ya, w) → CLap(ya, xa)]; informally, a region ya is a priori

close to a region xa, if (i) xa and ya belong to the same administrative partition (ai)i ∈ I

(e.g., both are communities); (ii) ya is part of or borders the same region b of the next

upper level of administrative partitions (bk)k ∈ K (e.g., a district) of which xa is part; and

(iii) xa and ya are located (LOC) in the same functional region w of appropriate
granularity; EC stands for “externally connected to”.

Note that in composition rule 2 the scope of the quantifiers for xa, ya and b is limited
to the elements of the respective partitions. This also applies to composition rule 1’, a
refinement of composition rule 1 which uses the consequence of composition rule 2 in
the rule body. Composition rules 1’ and 2 are implemented in our rule base.

Composition rule 1. ∀xa ∈ (ai)i ∈ I ∀ya ∈ (ai)i ∈ I ∀z [CLap(ya, xa) ∧ z{P, PO}ya → CL(z,

xa)]; informally, a region z is close to a region xa of an administrative partition (ai)i ∈ I

if another region ya of the same administrative partition is a priori close to xa and z is
part of or partially overlaps ya.

5 Rewriting Queries That Use Local Expressions

5.1 Representing Topological Background Knowledge

For the evaluation of composition rules 1’ and 2 three partitions of administrative
units and a tessellation of functional micro regions are asserted as background
knowledge in an OWL DL Knowledge Base (KB), consisting of a TBox T and an

ABox A. Rules are implemented in a DL-safe SWRL rule base (RB) (not shown).

The notation used for the KB is adopted from [10]. The expressivity of the description

language is ALCHOIF. Note that the complexity of the approach is determined by

DL complexity.
Partitions are represented in T by (anonymous) concepts that are made up of

individual names, also called nominals, {a1, …, an}. Nominals are linked to types by

352 R. Grütter et al.

axioms of the form C {a1, …, an}. In order to disallow multiple typing, the

concepts used for typing are defined as mutually disjoint, i.e. C ¬D.

The subsumption hierarchy of RCC relations [4] is implemented as a hierarchy of
roles. The role partOf and the roles subsumed by partOf are described as functional
roles, thereby making sure that an individual region ai can be part of a single region bj
only. This overrides the transitivity of the RCC relation P(x, y) and prevents, for
instance, communities from being related to cantons (or to countries or continents if
these were represented).

Disjunctions of RCC relations in the bodies of composition rules, such as {P, PO},
are represented by auxiliary roles subsuming the roles partOf and partiallyOverlaps, for
instance. This has some similarity with the design of RCC-12 [11]. RCC-12 relations
generalize the RCC-8 relations in such a way as to allow composition rules for being
expressed as (non-disjunctive) Horn rules.

Partitions are asserted in A as partOf(ai, bj), or any of the roles subsumed by

partOf(ai, bj), for all applicable ai ∈ {a1, …, an} and bj ∈ {b1, …, bm}. In so doing, A is

closed with regard to nominals denoting administrative regions.9 A minimal partial
order on typed partitions (cf. section 4.2) is implemented by asserting partOf(ai, bj) or
any of the roles subsumed by partOf(ai, bj) only for those pairs of individuals (ai, bj)

for which holds C(ai)i ∈ I min D(bj)j ∈ J. All individuals in the ABox are asserted as

being different from each other.

5.2 Rewriting Queries

Algorithm 1. Function CLOSETO computes (Q ∃closeTo.{a})(z) from KB and RB using

composition rules 1’ and 2 (cf. section 4.3).

FUNCTION CLOSETO
INPUT: Knowledge Base KB = {T, A}, Rule Base RB,
 Concept Q, Individual a
OUTPUT: Set<Individual>
0. U ← Ø, V ← Ø, W ← Ø, X ← Ø, Y ← Ø, Z ← Ø
1. {b} ← {b | A partOf(a, b)}
2. U ← {ui ∈ I | A partOfOrExternallyConnectedTo(ui, b)}
3. {c} ← {c | A locatedIn(a, c)}
4. V ← {vj ∈ I | A locatedIn(vj, c)}
5. Y ← U ∩ V

FOR (yk ∈ Y; Y ≠ Ø; Y \ yk) {
6. X ← X ∪ {xm ∈ M | A partOfOrPartiallyOverlaps(xm, yk)}}
7. W ← {wn ∈ N | A Q(wn)}
8. Z ← X ∩ W
9. OUTPUT Z

9 Note that partOf(ai, bj) and the roles subsumed by partOf(ai, bj) are used for asserting partitions

into administrative regions only.

 Rewriting Queries for Web Searches That Use Local Expressions 353

The terms used in a query reveal how a user conceptualizes a domain. Query
concepts can, thus, be used to determine the scale on which spatial relations are to be

evaluated. For the evaluation (cf. section 6), conjunctive queries of the form ∀z [Q(z)

∧ CL(z, a)] are used, which are expected to return the set of those individuals of type

Q that are close to a given individual a. In this query, the type of individual a, for
instance Community, determines the scale for the evaluation of CL(z, a).

Algorithm 1 show the steps (0–9) to take when rewriting a query. The query ∀z

[Q(z) ∧ CL(z, a)] is implemented in DL by the concept assertion (Q

∃closeTo.{a})(z). Given an ABox A and a concept description Q ∃closeTo.{a}, the

retrieval problem is thus to find all individuals z in A such that A (Q

∃closeTo.{a})(z).

6 Evaluation

6.1 Material and Methods

We compare the results of two series of web searches using 170 pairs of conceptually
(although not syntactically) consistent queries according to two different strategies.
According to the first search strategy, the queries are entered into the search engine as
a set of strings. According to the second search strategy, the queries are semantically
rewritten and the resulting queries are fed into the search engine. The knowledge
required to rewrite the queries is held in a consistent DL knowledge base and a DL-
safe SWRL rule base as described in section 5.1. The knowledge base holds 12
concepts, 21 roles, 210 individuals, 603 concept assertions and 29,003 role assertions.
Pellet 2.010 is used in order to rewrite the queries. Using Pellet 2.0 to reason on OWL
DL knowledge bases returns sound and complete results [12]. Reasoning on SWRL
rule bases is sound, but not necessarily complete [13]. However, the rewritten queries
that were considered for our motivating example in section 3 were also complete. The
search engine used for the comparison is GoForIt.11

In order to compare the searches, recall and precision are calculated. GoForIt is
based on the Open Directory Project (ODP).12 Different from ODP’s search engine,
however, GoForIt not only searches the directory’s content, but also the categorized
resources. This allows extracting all figures necessary for the calculation of recall and
precision. The numbers of relevant resources in the result sets are found by summing
up the figures in the relevant categories. To give an example, rewriting the query
<Gemeinden "in der Nähe von" Dietlikon> (i.e. German for communities
close to Dietlikon) returns the names of eight communities (cf. Fig. 1). The relevant
categories of a search using the disjunction of these names are Nürensdorf,
Dübendorf, Rümlang, Wallisellen, Kloten, Wangen-Brüttisellen,

10 http://clarkparsia.com/pellet
11 http://www.goforit.com/
12 http://www.dmoz.org/

354 R. Grütter et al.

Bassersdorf and Opfikon. For the calculation of recall, the returned resources in
these categories are related to the sum of all resources (not only of those found by the
engine) of the same categories. We thus make the common assumption that manually
categorized resources are more relevant than those found by a search algorithm. For
the calculation of precision, the returned resources are related to the numbers of
resources (whether relevant or not) in the result sets. A two-sided, pairwise t-test has
been performed on the resulting recall values to show the significance of our results.

This analysis is complemented by measuring the time required to rewrite the
queries.

6.2 Results

Searches without Query Rewriting. In this part of the evaluation the retrieval
problem stated in section 3 is put in terms of the strings <Gemeinden "in der
Nähe von" Dietlikon>. Similar queries are framed for the remaining 169
communities in the canton of Zurich.13 The results from web searches using such
strings are summarized in Table 1. They are discussed below.

Table 1. Results from searches without query rewriting (n = 170)

 Total relevant Total matches Relevant matches Recall Precision

Mean 191.39 14.65 0.10 0.00 --

Max 381 750 1 0.01 1.00

Min 20 0 0 0.00 0.00

Searches with Query Rewriting. In this part of the evaluation the retrieval problem
is put in terms of the following SPARQL query [14]:

SELECT ?z

WHERE {

 ?z rdf:type exp:Community .

 ?z rdf:type [a owl:Restriction;

 owl:onProperty exp:closeTo;

 owl:hasValue exp:Dietlikon] .

}

The result of the SPARQL query is fed into the search engine: <Nürensdorf OR

Dübendorf OR Rümlang OR Wallisellen OR Kloten OR Wangen-

Brüttisellen OR Bassersdorf>. Similar queries are framed for the remaining
169 communities. The numbers of community names resulting from query rewriting
range between 6 and 24. The results from the searches are summarized in Table 2.

13 Note that we excluded the community of Zurich from the analysis. The rewriting algorithm

returns intuitively satisfactory results for 170 communities, but not for Zurich. It seems that
for communities like Zurich a topological model also has to take into account the impact of
urban agglomeration.

 Rewriting Queries for Web Searches That Use Local Expressions 355

Table 2. Results from searches with query rewriting (n = 170)

 Total relevant Total matches Relevant matches Recall Precision

Mean 191.39 8,843.50 154.35 0.81 0.07

Max 381 30,880 305 0.91 0.31

Min 20 520 17 0.69 0.00

6.3 Discussion

Recall of all searches without query rewriting is low. Only 17 out of 170 searches
return a relevant match. The reason for this is that GoForIt does not return resources
of entities that are “close to” the reference places as does Google for government
agencies and commercial enterprises in urban areas (cf. section 1). Precision is
undefined for 102 searches which makes the calculation of a meaningful average
infeasible.

Query rewriting significantly (p < 0.01) increases recall of the searches. Precision
is defined for all searches with query rewriting, at a consistently low level, however.
When appraising precision one should keep in mind that the method of calculation
disregards the ranking algorithm of the search engine. Precision of the n-best results is

much higher. All 170 searches are located in the quadrant of the recall × precision

matrix (not shown) that is far from the precision axis (i.e. recall > 0.5) and close to the
recall axis (i.e. precision < 0.5). According to Salton and McGill [15], this
characterizes broad searches put in general terms.

Overall response time is determined by the time required to rewrite the queries.
When using an X86-based PC with a clock rate of 2,533 MHz and a Random Access
Memory of 4 GB to operate on the knowledge/rule base described in section 5.1, the
time required for query rewriting ranges between 5,608 ms and 19,452 ms (6,317.54
ms on the average). This is acceptable except for six queries which take over 10,000
ms to be rewritten.

The evaluation assumes that query rewriting properly interprets the intended
meaning of the expression “close to” in the given context (which remains to be seen).
However, even if our approach approximated the meaning of “close to” only roughly,
it would still be useful to improve the searches. This can be seen from a comparison
of the average total matches in Tables 1 and 2.

7 Related Work

7.1 Administrative Boundaries Influence the Perception of Distance

Maki [16] showed that the affiliation to a category, such as a state, plays an important
role in human perception of locations. Subjects should decide about the location of
two cities regarding their orientation east-west. If the cities in question belong to
different states, the reaction times were significantly shorter than with cities which
belong to the same state. The term “categorization effect” refers to the fact that human
beings are able to judge faster about entities on a continuum if they can make use of
category information.

356 R. Grütter et al.

Carbon and Leder [17] showed that the membership to different political systems,
structures or hierarchies influences the estimation of distance between two cities. In
their experimental setting, subjects should estimate distances between cities east and
west of the former border inside of Germany. Compared to pairs inside the same part
of the former republic, distances were overestimated if the cities in question belonged
to different parts.

Based on investigations in natural-language corpora, Hois and Kutz [18] are
providing parameters which influence the human perception of space. Among these is
“domain-specific knowledge of entities” which refers to things such as granularity.
Granularity in our approach is modeled via different layers of administrative regions.

7.2 Using Local Expressions in Web Searches

Mark and Egenhofer [19] describe an experiment to test how people think about
spatial relations between unbranched lines and simply connected regions. For the
predicates “the road crosses the park” and “the road goes into the park” there was a
great deal of consensus among the subjects. The authors conclude that the so-called 9-
intersection model forms a sound basis for characterizing line-region relations and
that many spatial relations can be well-represented by particular subsets of the
primitives differentiated by the 9-intersection model.

Different from the approach described here, Mark and Egenhofer [19] use verbs to
term natural language predicates and not prepositional phrases. This is reasonable,
because in their cases, verbs catch the intuition of the predicates better than any other
word class. Independent of the word class used, their results suggest that natural
language predicates can, in principle, be aligned with spatial relations as identified by
a mathematical model. This supports a similar suggestion for spatial relations between
simply connected regions made by the approach described here.

The European SPIRIT project addressed the shortcomings of web search facilities
when considering geographical context [20]. It developed methods supporting
spatially-aware information retrieval on the Internet. The core component of the
system is a geographical ontology that provides a model of the terminology and
structure of geographic space. The geographical ontology supports “part-of”,
“contains”, “overlap” and “adjacency” relations between geographic places. Together
with the disambiguated place name such relations are used to derive the desired
geographical search extent for the query. While “part-of”, “contains”, “overlap” and
“adjacency” can be mapped onto the RCC relations, they are arbitrarily chosen and do
not form a jointly exhaustive and pairwise disjoint set of relations. Relations that do
not fall into any of the four categories (e.g., “disconnected from”) and relations that
extend RCC (e.g., “close to”) are undefined.

Bishr [21] proposes to encode spatial inferences in the Semantic Web Rule
Language (SWRL) [22]. Even though not explicitly mentioned, the examples are
provided in an RCC-like style. The proposal can, in principle, be aligned with the
approach presented here. Different from [21], however, we introduce additional
relations and provide an implementation.

Schokaert, De Cock and Kerre [23] (in [24]) suggest augmenting the structured
information available to a local search service, such as Google Maps, with
information extracted from the web. They show how nearness information in natural

 Rewriting Queries for Web Searches That Use Local Expressions 357

language and information about the surrounding neighborhood of a place can be
translated into fuzzy restrictions and how such fuzzy restrictions can be used to
estimate the location of a place with an unknown address.

While the idea of augmenting the structured information available to a local search
service with information extracted from semi- and unstructured data, i.e. documents
on the web, is appealing, it requires that the latter is available in abundance. The “vast
amount” [23] of data addressed by the authors, together with the kinds of examples
they provide, suggest that their approach is targeted on mass searches. In our case, the
resources on the web, which could possibly be used to augment the searches, are
scarce (cf. section 6).

8 Conclusion and Outlook

We introduced an approach to rewrite queries for web searches that use local
expressions. Query rewriting makes use of topological background knowledge that is
implemented in an OWL DL knowledge base and a DL-safe SWRL rule base.
Applying the approach to searches for communities which are “close to” a reference
place shows that query rewriting significantly improves recall of the searches.

The spatial relations between two simply connected regions identified by the 9-
intersection model mentioned in section 7 equal the RCC-8 relations. To the best of
our knowledge, experiments testing natural language predicates for compliance with
these relations in a way similar to that described for unbranched lines and simply
connected regions [19] have not been performed so far. Likewise, no experiments
have been performed with the newly introduced relation “close to”. Whether the
described approach is empirically well founded or not remains to be seen.

Our approach requires that topologies of administrative units are available in RCC.
State-of-the-art geographic information systems (GIS) and spatial databases provide
ways and means to compute such topologies from GIS layers. In Switzerland the
relevant GIS layers can be downloaded from the website of the Swiss Federal
Statistical Office.14 Other European countries such as the United Kingdom and
Germany offer similar services. Technically, the approach is, thus, applicable to many
countries. Whether the semantics of the relation “close to”, expressed as rules applied
to the generated topologies, differs between countries remains to be seen.

The current prototype operates on topological knowledge that covers a part of
Switzerland. Since the knowledge base grows by the square of the number of regions
asserted, we expect the performance to decrease when extending the coverage area.
This applies even though an off the shelf PC was used for the evaluation, which could
easily be replaced by a faster one. Future work will explore ways of dealing with this
expected decrease of performance. This will include distribution of knowledge bases
and outsourcing of individuals in a database or a triple store which are known to scale
better than in-memory storage structures. An even better way might be to move
expensive knowledge processing from run-time to design-time. This requires that
search engines are enabled to use topological background knowledge when crawling

14 http://www.bfs.admin.ch/bfs/portal/de/index/dienstleistungen/geostat/datenbeschreibung/
 generalisierte_gemeindegrenzen.html

358 R. Grütter et al.

the web and indexing resources. Operating on index entries such as <Nürensdorf:
"close to" Dietlikon> at run-time is expected to be much faster than rewriting
queries.

The approach presented in this paper distinguishes between the basic formalism
and the way how background knowledge is used in order to ground the relation
CLap(y, x). This separation clears the way for using alternate sources of background
knowledge. Put the other way round, it facilitates the use of alternate approaches to
compute proximity on the basis of the background knowledge provided in this work.
Accordingly, we intend to use travel time as calculated by a route planning algorithm
to estimate spatial closeness and to relate the results to those obtained by the approach
presented here in the near future.

Acknowledgements. This research was funded by and conducted in cooperation with
the Swiss Federal Office for the Environment (FOEN) and the Swiss National Science
Foundation (SNF).

References

1. Sanderson, M., Kohler, J.: Analyzing geographic queries. In: Proceedings of the Workshop
on Geographic Information Retrieval (SIGIR). ACM Press, New York (2004)

2. Wang, L., Wang, C., Xie, X., Forman, J., Lu, Y., Ma, W.-Y., Li, Y.: Detecting Dominant
Locations from Search Queries. In: Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2005).
ACM, New York (2005)

3. Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic based on Regions and Connections.
In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the 3rd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1992), pp.
165–176. Morgan Kaufmann, San Mateo (1992)

4. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. J. Web
Semant., 549–563 (2004)

5. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming Live
Together Happily Ever After? In: Cruz, I.F., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
501–514. Springer, Heidelberg (2006)

6. Bundesamt für Statistik: Räumliche Gliederungen der Schweiz (2011),
http://www.bfs.admin.ch/bfs/portal/de/index/regionen/11/geo.
html

7. Shariff, A.R., Egenhofer, M., Mark, D.: Natural-Language Spatial Relations Between
Linear and Areal Objects: The Topology and Metric of English-Language Terms.
International Journal of Geographical Information Science 12(3), 215–246 (1998)

8. Worboys, M.F.: Nearness Relations in Environmental Space. International Journal of
Geographical Information Science 15(7), 633–651 (2001)

9. Grütter, R., Scharrenbach, T., Waldvogel, B.: Vague Spatio-Thematic Query Processing –
A Qualitative Approach to Spatial Closeness. Transactions in GIS 14(2), 97–109 (2010)

10. Baader, F., Nutt, W.: Basic Description Logics. In: Baader, F., Calvanese, D.,
McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic
Handbook: Theory, Implementation and Applications, 2nd edn., pp. 47–104. Cambridge
University Press, Cambridge (2007)

 Rewriting Queries for Web Searches That Use Local Expressions 359

11. Schockaert, S.: Reasoning About Fuzzy Temporal and Spatial Information From the Web.
Ph.D. thesis, Ghent University (2008)

12. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-DL
Reasoner. J. Web Semant., 51–53 (2007)

13. Parsia, B.: Understanding SWRL (Part 3): Some tricky bits. Weblog Clark & Parsia, LLC,
Thursday (September 13, 2007),
http://weblog.clarkparsia.com/2007/09/13/
understanding-swrl-part-3-some-tricky-bits/

14. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation (January 15, 2008), http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/

15. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New
York (1983)

16. Maki, R.H.: Categorization and Distance Effects With Spatial Linear Orders. Journal of
Experimental Psychology: Human Learning and Memory 7(1), 15–32 (1981)

17. Carbon, C.-C., Leder, H.: The Wall Inside the Brain: Overestimation of Distances Crossing
the Former Iron Curtain. Psychonomic Bulletin & Review 12(4), 746–750 (2005)

18. Hois, J., Kutz, O.: Natural Language Meets Spatial Calculi. In: Freksa, C., Newcombe,
N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp.
266–282. Springer, Heidelberg (2008)

19. Mark, D.M., Egenhofer, M.J.: Modeling Spatial Relations Between Lines and Regions:
Combining Formal Mathematical Models and Human Subjects Testing. In: Egenhofer,
M.J., Mark, D.M., Herring, J. (eds.) The 9-Intersection: Formalism and its Use for Natural-
Language Spatial Predicates. Technical Report 94-1, National Center for Geographic
Information and Analysis, University of California, Santa Barbara, CA (1994)

20. Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M., Weibel, R.:
Spatial Information Retrieval and Geographical Ontologies: An Overview of the SPIRIT
Project. In: Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 387–388. ACM Press, New York
(2002)

21. Bishr, Y.: Geospatial Semantic Web. In: Rana, S., Sharma, J. (eds.) Frontiers of
Geographic Information Technology, pp. 139–154. Springer, Heidelberg (2006)

22. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission,
World Wide Web Consortium (May 21, 2004),
http://www.w3.org/Submission/SWRL/

23. Schockaert, S., De Cock, M., Kerre, E.E.: Location approximation for local search services
using natural language hints. International Journal of Geographic Information
Science 22(3), 315–336 (2008)

24. Jones, C.B., Purves, R.S.: Special Issue: Geographical Information Retrieval. International
Journal of Geographic Information Science 22(3), 219–360 (2008)

Implementing General Purpose Applications
with the Rule-Based Approach

Igor Wojnicki

Institute of Automatics, AGH – University of Science and Technology
wojnicki@agh.edu.pl

Abstract. Using Rule Based Systems (RBS) for implementing general
purpose applications makes verification of their formal properties feasible
– especially conformance of such applications to their design. To make
the RBS approach suitable for general purpose applications an RBS ar-
chitecture and a certain knowledge representation should be engineered.
The paper proposes both the architecture (the Four Layer Architecture
– FLA) and an example knowledge representation (Extended Tabular
Trees – XTT2). A prototype RBS and an example application which
acknowledges the approach are also discussed.

1 Introduction

The main motivation to use a Rule Based System (RBS)[8] for implementing
general purpose applications is its reliability. Entire application logic is defined
formally, which allows for analysis of its properties[5]. It can be verified if the
application is implemented properly and if it covers all of the requirements.
There are two main issues while applying an RBS for implementing general

purpose applications. These are: the single-pass inference process (the interac-
tivity issue), and not well defined separation between the application logic and
the interface with the environment (the separation issue).
An RBS based on a single-pass inference process just reads all its inputs

runs, completes and generates all outputs. Any interactivity in this case is quite
limited, such a behavior is highly non interactive then. The interactivity issue
can be addressed by introducing an ability to read inputs and write outputs
during the inference process to the inference algorithm.
The separation issue regards poorly separated application logic and the in-

terface with the environment. It makes alteration of the application subject to
programmer’s mistakes[2,3]. Also upon altering the application logic one can
unintentionally disrupt its communication with the environment. To solve the
separation issue the Four Layer Architecture (FLA) is proposed. It consists of:
the application knowledge base, the environment knowledge base, the environ-
ment routines, and the inference engine. Such an architecture is inspired by the
Model-View-Controller (MVC1) approach known from Software Engineering[1].

1 Trygve Reenskaug made the original MVC note at Xerox PARC in 1978
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 360–367, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

Implementing General Purpose Applications with the Rule-Based Approach 361

The application knowledge base resembles the Model, the environment knowl-
edge base is the Controller, while the environment routines is the View. In such
a case the application logic (the application knowledge base) does not need to be
altered in order to change its communication with the environment i.e. provide a
different user interface, provide data from different sources, port or embed entire
RBS, etc.

2 Architecture Overview

According to the proposed approach, an application consists of the application
knowledge base, the environment knowledge base and the environment routines
(the fourth layer is the actual inference engine). The environment knowledge
base bridges the application knowledge base and the environment routines in a
declarative way. It defines relationship between rules and routines. It indicates
what routines are called in order to deliver input data from the environment to
the inference engine upon checking rule conditions. It also indicates what routines
should be called after firing the rules to deliver outcomes to the environment.
The purpose of the environment routines is to deliver data from/to the inference
engine, they are clearly separated from the application knowledge base.
For example, having rules based on Attributive Logic[5], each attribute is as-

signed to a class. The attribute class indicates if the attribute interacts with
the environment, if appropriate environment routine should be called upon ref-
erencing it or not. It is either state or one of the non-state classes: read-only
(ro), write-only (wo), and read-write (rw). The state class indicates that the at-
tribute does not interact with the environment, no environment routine is called
upon referencing it. If the attribute’s value comes (is read) from the environment
the ro class should be assigned. If the attribute’s value goes (is written) to the
environment the wo class should be assigned. For a bi-directional interaction,
writing or reading, the rw (read-write) class should be used.
Actual data transfer between the environment and attributes is provided

through environment routines which are also called triggers [4]. If an ro or rw
attribute is referenced by the inference engine while checking rule conditions
appropriate trigger is executed in order to deliver the value to the engine. If
an wo or rw attribute is referenced by the inference engine while firing a rule
appropriate trigger is executed in order to deliver the value to the environment.
Assignments between attributes and appropriate triggers constitute the envi-

ronment knowledge base. For an attribute of ro class, an ro trigger is assigned,
for a wo class, a wo trigger, for an rw, both ro and wo triggers. Triggers are
executed by the inference engine. An ro trigger sets the attribute value, it reads
it from the environment, delivering to the inference engine. An wo trigger writes
(or sends) the value to the environment.

3 Example Rule Representation and Run-Time

To implement the application knowledge base of the proposed Four Layer Archi-
tecture the XTT2 (EXtended Tabular Trees – Mark 2) knowledge representation

362 I. Wojnicki

is used (any rule representation might be used, FLA is designed to be rule repre-
sentation independent; XTT2 is used as a proof of concept). At the visual level
it is composed of decision tables. A single table is presented in Fig. 1. The table
represents a set of rules based on common attributes. A single rule can be read
as follows:

IF (A1 o11 a11) and...(An o1n a1n) THEN (B1=b11)...(Bp=b1p)

where A1...An are attributes used in the condition part, o11...o1n are logical op-
erators, B1...Bp are attributes used in the decision part; a11... a1n and b11...b1p
are expressions evaluating to single values or sets of values. Every attribute has
assigned a type and an indication whether it can hold single or multiple values.
XTT2 includes two main extensions compared to the classic RBS: non-atomic
attribute values (sets of values can be used both in conditions and decisions),
non-monotonic reasoning support (sets of values providing assert/retract like
functionality in decisions). Each table row corresponds to a decision rule. Tables
can be linked in a graph-like structure. A link is followed when the correspond-
ing rule is fired. Interconnected tables may form cycles which make the inference
process loop over.

An

bq1

b11

B1 Bp

bqp

b1p

om1 am1

o11 a11

A1

o1n a1n

omn amn

Fig. 1. A single XTT2 table

A table corresponds to a number of rules, processed in a sequence. If a rule is
fired and it has a link, the inference engine processes the rules in another table
the link points to. Each rule corresponds to a Horn clause: ¬p1∨¬p2∨. . .∨¬pk∨h
where pi is a literal in SAL (Set Attributive Logic[5]) in a form Ai(o) ∈ t where
o ∈ O is a object referenced in the system, and Ai ∈ A is a selected attribute
of this object, t ⊆ Di is a subset of attribute domain Ai. Rules are interpreted
using a unified knowledge and fact base, that can be dynamically modified during
the inference process using set based assignments in the rule decision part. The
approach has been extended and redesigned several times to make it more robust,
flexible and easy to use[6,7,9]. Moreover, it has been successfully applied to model
classic rule-based expert systems.
To verify the proposed approach a run-time environment is created. It is

capable of processing rules and interacting with the environment, thus imple-
menting the inference engine and providing appropriate means to call the envi-
ronment routines. Attribute values can be read or written multiple times during
the inference process. The run-time is named Beating HeaRT (HeaRT stands for
HeKatE Run-Time). It is one of the tools provided by the HeKatE Project (see
http://hekate.ia.agh.edu.pl).
XTT2 becomes rule representation providing the application knowledge base.

The attributes are assigned to ro, wo, rw classes. Appropriate environment

http://hekate.ia.agh.edu.pl

Implementing General Purpose Applications with the Rule-Based Approach 363

knowledge base is defined. At each step, if a non-state attribute is involved,
appropriate values are read from, or written to, the environment by launch-
ing corresponding triggers (the environment routines). The inference process is
highly interactive.
Summarizing, the Beating HeaRT provides a complete run-time with in-

put/output capabilities implementing the Four Layer Architecture, which en-
ables multi-pass rule interpretation.

4 Example Application

In the following section an example of FLA/XTT-based application, a simple
text editor, is presented. The application is highly interactive, calling different
triggers multiple times during the inference process.
The application knowledge base is given in Fig. 2. This visualization is slightly

enhanced comparing to the one presented in Sect. 3. The enhancements are tar-
geted toward easier table and rule identification. Each of the tables has a unique
identifier displayed in its bottom-left corner. Furthermore, each rule within a ta-
ble is uniquely labeled (the last column). The tables, form a directed graph with
optional cycles. A cycle indicates that under certain conditions the inference
process loops over.
There are the following attributes present in the system: key (character type,

single value, state class), inkey (character, single value, ro class), ochar (charac-
ter, multiple values, state class), outchar (character, multiple values, wo class),
ichar (character, multiple values, state class), inchar (character, multiple values,
ro class), cursor (integer, single value, wo class), and chars (character, multiple
values, wo class).
There are several operators used in the condition and decision parts of the

rules. These are: logical operators which evaluate to true or false (eq – equals,
neq – not equals, gt – greater than, lt – less than, in – in (∈), notin – not in
(/∈)), evaluative operators which evaluate to a value or set of values (add – add,
sub – subtract, insert – insert at given index (in case of multivalued attributes),
remove – remove from given index) and modification operators which modify
attribute’s value (assign – assign a value).
The proposed editor application is capable of reading in characters into a

buffer (the chars attribute) which contents is displayed at any change (since
chars is wo class). The cursor attribute represents cursor position in the buffer.
The inkey attribute holds a single key sequence typed by the user (ro class
attribute). There are several key sequences with special meaning, these are (ˆ
stands for Ctrl key): ˆo: open a file, ˆs : save the buffer to a file, backspace: erase
a character left of the current cursor position, left : move the cursor left by one
character, right : move the cursor right by one character, ˆq: quit the editor.
Any other incoming key sequence should insert a corresponding character at the
current position of the cursor into the buffer. The key attribute holds the same
value as inkey however it is a state class attribute. It allows to access this value
as many times as needed without reading another value from the environment.

364 I. Wojnicki

cursor chars cursor chars

 assign [0] assign [] rul_0

xtt_0

inkey key

in [left,right,backspace] assign inkey rul_1

eq [^o] assign inkey rul_2

eq [^s] assign inkey rul_3

eq [^q] rul_4

notin [left,right,backspace,^o,^s,^q] assign inkey rul_5

xtt_1

key cursor

eq [left] assign sub(cursor,[1]) rul_6

eq [right] assign add(cursor,[1]) rul_7

eq [backspace] assign sub(cursor,[1]) rul_8

notin [left,right,backspace,^o] assign add(cursor,[1]) rul_15

eq [^o] assign [0] rul_16

xtt_2

chars ochar

 assign chars rul_13

xtt_4

cursor key ichar chars

 eq [^o] assign ichar rul_9

 eq [backspace] assign remove(chars,cursor) rul_10

 notin [backspace,^o] assign insert(chars,cursor,key) rul_11

xtt_5

inchar ichar

 assign inchar rul_12

xtt_3

ochar outchar

 assign ochar rul_14

xtt_6

Fig. 2. Editor Case, XTT2

The outchar and inchar attributes (wo and ro class respectively) provide means
to write entire buffer contents to or read it from the environment at once (i.e.
transferring it from or to a file). The ochar and ichar attributes are similar to
outchar and inchar but they are of state class.
The inference process is started with a table labeled xtt 0. It presets values

of cursor and chars to 0 (zero) and empty, respectively. The xtt 1 is the main
logic of the application. It assigns a value to key based on the value of inkey
and forces the inference process to follow to the appropriate table based on this
value. If such a value has influence on the cursor position (left, right, backspace,
or ˆo) then the inference process switches to xtt 2 (the rules: rul 1, rul 2). If it
is ˆs, saving the buffer content, the inference switches to xtt 4 (the rul 3 rule). If
it is ˆq then the rule rul 4 without an outgoing link is fired which concludes the
inference process. Otherwise rul 5 is fired which leads to xtt 5. The xtt 2 table
is responsible for changing the cursor value (representing the cursor position).
It utilizes the sub and add operators. For example the rul 6 decision should be
read as: cursor = cursor−1. The xtt 5 table modifies the buffer by changing the

Implementing General Purpose Applications with the Rule-Based Approach 365

chars values. It assigns chars the values of ichar, if ˆo sequence is pressed (the
rul 9 rule). Otherwise it inserts another value into chars (rul 10) or removes a
value (rul 11). There are remove and insert operators used, the former removes
a value from a multi-valued attribute, at a given index, the latter inserts it
respectively. Other XTT2 tables should be self-explanatory at this point.

% inkey attribute
io(att_12,ro_trigger,get_character).
% inchar attribute
io(att_8,ro_trigger,read_chars_from_file).
% outchar attribute
io(att_10,wo_trigger,write_chars_to_file).
% chars attribute
io(att_3,wo_trigger,display_chars).
% cursor attribute
io(att_4,wo_trigger,display_cursor).

Fig. 3. Editor Case, IOD interfacing Prolog

To make the application communicate with the environment, to obtain typed
in characters, to display buffer contents and to react to control sequences, ap-
propriate trigger routines have to be implemented and assigned to non-state
attributes. The assignment provided by the IOD (Input Output Declarations,
a language for defining the environment knowledge base) is presented in Fig. 3.
It is expressed with a three argument predicate io/3 (IOD is based on Prolog
language syntax for simplicity). The first argument is the attribute unique iden-
tifier, the second indicates the trigger class (either ro trigger or wo trigger) and
the routine name to spawn as a trigger. Lines starting with % are comments.
The IOD in Fig. 3 states that the get character trigger is called upon refer-
encing the inkey attribute (att 12 attribute identifier) to obtain its value. This
action takes place if the attribute is in the condition part of a rule since inkey
is of ro class. The write chars to file and read chars from file are called
upon referencing the outchar attribute (unique identifier: att 10, wo class) in
the decision part and the inchar attribute (unique identifier: att 8, ro class) in
the condition part, respectively. The display chars and display cursor are
called upon referencing the chars (unique identifier: att 3, wo class) and the
cursor (unique identifier: att 4, wo class) in the decision part, respectively. The
above trigger routines are written in Prolog.
An alternative IOD for the same application knowledge base is given in Fig. 4.

The trigger routines are implemented in Java. Comparing with the IOD for Pro-
log there is a slight change due to semantics differences between Java and Prolog
languages. The third argument of the io predicate consists of three entries: the
class name, the method name and the object reference. The class and the method
implement appropriate trigger routine. The reference is optional and it allows
to call methods on existing objects (already instantiated). If the reference is not
present every time a trigger is called an object of the given class is created and

366 I. Wojnicki

% inkey attribute
io(att_12,ro_trigger,[’EditorWindow’,get_character,editor]).
% inchar attribute
io(att_8,ro_trigger,[’EditorWindow’,read_chars_from_file,editor]).
% outchar attribute
io(att_10,wo_trigger,[’EditorWindow’,write_chars_to_file,editor]).
% chars attribute
io(att_3,wo_trigger,[’EditorWindow’,display_chars,editor]).
% cursor attribute
io(att_4,wo_trigger,[’EditorWindow’,display_cursor,editor]).

Fig. 4. Editor Case, IOD interfacing Java

appropriate method is executed. If the reference is present, an object is created
upon the first call of the trigger. Any subsequent calls regard that object.
To start an XTT2 based application the application knowledge base has to be

loaded in along with corresponding IOD. Based on the IOD the run-time chooses
appropriate module to handle either Prolog or Java based trigger routines. Then
the inference process is started by indicating the initial XTT2 table.
The presented application is highly interactive. The user can type in charac-

ters, backspace, move the cursor, save the buffer into a file, or read it in. The
inference process ends upon obtaining ˆq sequence (see the rul 4 rule, Fig. 2),
from the user.

5 Summary and Further Research

Implementing general purpose software can be achieved through applying the
Four Layer Architecture (FLA) and choosing appropriate knowledge base rep-
resentation to support its interactivity (XTT2).
A test case application, a simple text editor, confirms applicability of the

proposed approach to design and implement general purpose applications with
RBS. The application is presented with two separate interfaces, a textual one,
implemented in Prolog, and a graphical one, implemented in Java. No changes
to the application logic are required to switch between these two interfaces
upon run-time. To run the application the Beating HeaRT run-time environment
is presented which provides the FLA. The run-time interprets the application
knowledge base stored as XTT2 rules. as well as given IOD (the environment
knowledge base), and triggers appropriate routines (the environment routines)
written in Prolog or Java.
An ongoing research focuses on providing a comprehensive set of reusable

trigger routines performing common tasks such as: file operations, user interfaces
and interactions with the underlying operating system. There are also plans
to replace the proposed IOD language with Input/Output Markup Language
(IOML) based on XML. Some changes in the inference algorithm are also under
consideration, including backtracking or parallel rule interpretation.

Implementing General Purpose Applications with the Rule-Based Approach 367

References

1. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc). Technical report, Department of Computer Science, Univer-
sity of Illinois, Urbana-Champaign (1992)

2. Friedman-Hill, E.: Jess in Action, Rule Based Systems in Java. Manning (2003)
3. Giarratano, J.C., Riley, G.D.: Expert Systems. Thomson (2005)
4. Leś, W., Łosiewicz, M.: The xtt inference engine and the java virtual machine cou-
pling. Master’s thesis, AGH – University of Sience and Technology (2009)

5. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Heidelberg (2006)
6. Nalepa, G.J., Ligęza, A.: A graphical tabular model for rule-based logic program-
ming and verification. Systems Science 31(2), 89–95 (2005)

7. Nalepa, G.J., Wojnicki, I.: Proposal of visual generalized rule programming model
for Prolog. In: Seipel, D., et al. (eds.) INAP, WLP: Proceedings, Wurzburg, pp.
195–204. Bayerische Julius-Maximilians-Universitat (September 2007)

8. Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow (2002) ISBN 0-201-71159-1

9. Wojnicki, I., Nalepa, G.J.: Prolog hybrid operators in the generalized rule program-
ming model. In: Seipel, D., et al. (eds.) INAP, WLP: Technical Report 434, pp.
205–214. Bayerische Julius-Maximilians-Universitat (September 2007)

OWL Web Ontology Language as a Scripting

Language for Smart Space Applications

Espen Suenson, Johan Lilius, and Iván Porres

Department of Information Technologies,
Åbo Akademi University,

Turku, Finland
givenname.surname@abo.fi

Abstract. We describe a scripting language for smart space applications
based on the OWL Web Ontology Language. The design goals of the
scripting language are: I. A syntax that easily expresses common script
applications for smart spaces. II. Based on OWL to enable synergy with
semantic web technologies. III. Ease of implementation by using existing
OWL reasoners.

We motivate the design of the scripting language and give some ex-
amples of how to use it. Furthermore, we will give a formal definition of
the syntax and semantics of the scripting language based on the OWL 2
definition.

Keywords: OWL, smart space, ontology, scripting, semantic web.

1 Introduction

The Semantic Web is based on the architecture of the World Wide Web. However,
there is also a wish to permit greater interoperability between portable devices,
and in particular to permit portable devices to discover and exchange information
about their immediate physical environments, that is, their context. A Smart
Space is an idea of connecting such devices in a local way similar to the Semantic
Web. [9] In this paper we define a smart space as a local network about the size
of a room consisting of smart phones, tablet PCs and the like, that is, devices
that are fairly computationally powerful.

Smart-M3 is a communication infrastructure for smart devices conceived by
Nokia. In Smart-M3, computational devices (smart phones and others) commu-
nicate within a limited physical space through a central database, the System
Information Broker (SIB). The communication is in the form of RDF. [3] A pro-
gram that communicates with the SIB is called a Knowledge Processor (KP). An
application may consist of several KPs acting together, KPs residing on other
devices and programs not communicating directly with the SIB. The KPs do not
communicate with each other since this is done via the SIB.

In this paper we describe a scripting language for simple smart space appli-
cations. The language targets the Smart-M3 platform. The first design goal of

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 368–375, 2011.
© Springer-Verlag Berlin Heidelberg 2011

OWL Web Ontology Language as a Scripting Language 369

our scripting language is that it should make it easier to make smart space ap-
plications. To satisfy this design goal our scripting language must make it easy
to express simple tasks, see the examples of section 3.

The second design goal is that the scripting language is based on OWL. [7]
Hence we will refer to the scripting language as OWL Script. By building on
well deliberated standards we hope to save some of the work of inventing new
standards and to enable greater interoperability between standards.

The third design goal is that OWL Script should be able to be implemented
without expending the effort to create a compiler or interpreter from ground. The
use of OWL means that it is possible to use existing OWL reasoning engines as
the computational core of OWL Script.

The main research question that we are trying to answer is how to make
a practically oriented scripting layer that combines the ideas of smart spaces
and the Semantic Web technologies. ’Practical’ is meant to be understood both
from from the point view of the scripting programmer as well as of the scripting
language implementer.

2 Related Work

Luukkala and Niemelä have proposed to use an Answer Set Programming im-
plementation as the basis for rule based computation on top of the Smart-M3
platform. [4] Their approach provides for rule based constraint programming
in a way that is computationally more powerful than using OWL. However, in
their approach variables can only hold single individuals. We believe that our
approach where variables refer to sets provides for more intuitive scripts with
regard to smart spaces.

Oliver and Honkola suggests using the WQL query language of Smart-M3 to
implement scripts similar to those considered in this paper. [5] However, they do
not describe the scripting language in detail.

As the individual scripts in our approach have a form similar to ’IF a THEN b’,
OWL Script, if viewed as a collection of rules, bears some resemblance to a pro-
duction rule system (with implementations such as Drools). However, the focus
of our work is not on the rules as a system, but rather on the individual ’rule’
level and its expression in OWL. Each script or ’rule’ will execute independently.

The Rule Interchange Format [8], RuleML [2] and REWERSE I1 Rule Markup
Language are rule formats that can be executed. However, the purpose of these
formats is mainly to serve as interchange formats between different rule nota-
tions, hence they do not address specifically a syntax suitable for smart space
scripting or implementation via OWL reasoners.

A number of OWL reasoning engines exist which could conceivably be used
as back ends in implementing the proposed scripting languages. To name some:
Pellet, Hermit, the Jena framework, Bossam and Racer.

370 E. Suenson, J. Lilius, and I. Porres

3 Programming with OWL Script

Shown in table 1 is an example KP in OWL Script. It checks whether a named
user is listed as busy in the SIB, and whether there’s a call to his phone. If so,
the phone’s voicemail is activated by inserting a command in the SIB that will
presumably be read by the phone at a later time and acted upon.

Table 1. OWL Script programming example

with user = /User and /Id == ”peter.smith@abo.fi”
phone = /Phone /Owner user
busyUser = user and /Busy
ringingPhone = phone and /IncomingCall

when busyUser, ringingPhone

then insert /ActivateVoicemail(ringingPhone)

The program has three clauses. The ’with’ clause defines an ontology in the
KP that we can think of as a declaring local variables. Any variable that has
the ’/’ access modifier prefixed will be fetched from the SIB. Variables without
access modifiers are local to the KP. All variables are sets, so even though we
assume that there’s only one user with a given ’Id’, the variables ’phone’ and
’ringingPhone’ could easily be conceived to have multiple members.

The ’when’ clause decides if the KP will take any action. In this case, if
both ’busyUser’ and ’ringingPhone’ are nonempty sets, the ’then’ clause will be
carried out. The ’then’ clause specifies the action that will be taken if the KP
fires. In our example a unary predicate will be inserted into the SIB over the set
’ringingPhone’.

Table 2. OWL Script programming example

when /SIB Location and /EmployeeRestaurant,
dev/Time > ”11:00:00” ˆ̂ xsd:time,
dev/Time < ”13:30:00” ˆ̂ xsd:time

then insert /AtLunch(user)

In table 2 we see an example that lists the user as busy in the SIB if he is
present in a restaurant and it is around lunch time. The example demonstrates
communication with the hosting device through the use of the ’dev/’ access
modifier. We also see that some things are outside the scope of OWL Script and
must be provided by the device, such as the current time.

4 Syntax

The syntax of OWL Script is defined by extending the syntax of OWL 2 Func-
tional Syntax and adding the syntactical categories for those things that are
exclusive to OWL Script.

OWL Web Ontology Language as a Scripting Language 371

Table 3. Extension of the OWL 2 syntax

AccessModifier := ’/’ | ’dev/’

NonlocalIdentifier := AccessModifier IRI

Quantifier := nonNegativeInteger |
’min’ nonNegativeInteger |
’max’ nonNegativeInteger |
’only’

Class += NonlocalIdentifier

ObjectProperty += NonlocalIdentifier

DataProperty += NonlocalIdentifier

DataRange += (’==’ | ’>’ | ’<’) Literal

ClassExpression += ’(’ ClassExpression ’)’ |
ClassExpression ’and’ ClassExpression |
ClassExpression ’or’ ClassExpression |
ClassExpression ’,’ ClassExpression |
[Quantifier] PropertyExpression

PropertyExpression := ClassExpression ObjectPropertyExpression ClassExpression |
’ ?’ ObjectPropertyExpression ClassExpression |
ClassExpression ObjectPropertyExpression ’ ?’ |
DataPropertyExpression DataRange

ClassAxiom += ClassExpression ’=’ ClassExpression

The extension of the OWL syntax is based on the OWL 2 Functional Syntax
definition. [7] The extensions are shown in table 3 in extended BNF notation. The
’+=’ symbol that is used in some places instead of the normal ’:=’ means that
the syntactic categories of OWL 2 are augmented with the productions shown,
that is, those productions can be used in addition to those already defined in
the standard. Syntactic categories that are not defined here are defined in the
OWL 2 standard.

The access modifiers ’/’ and ’dev/’ are the only extensions of the basic OWL 2
syntax that cannot be expressed in ordinary OWL 2. The rest of the extensions
in table 3 can be regarded as syntactic sugar for OWL 2 expressions. Of course,
the constructs of table 4 cannot be expressed in OWL.

Disregarding the access modifiers, the body of the ’with’ and ’when’ clauses is
standard OWL with added syntactic shortcuts. The ’then’ clause builds a set of
RDF triples and directs insertion or removal of triples. The full syntax for KPs
is shown in extended BNF notation in table 4.

372 E. Suenson, J. Lilius, and I. Porres

Table 4. OWL Script syntax

RDFExpression := NonlocalIdentifier ’(’ ClassExpression ’)’ |
NonlocalIdentifier ’(’ ClassExpression ’,’ ClassExpression ’)’ |
NonlocalIdentifier ’(’ ClassExpression ’,’ Literal ’)’

Action := ’new’ IRI |
’insert’ RDFExpression |
’remove’ RDFExpression

KnowledgeProcessor := [’with’ { Axiom }] ’when’ ClassExpression ’then’ { Action }

It should be noted that the presented syntax is ambiguous, but that the
ambiguity can be resolved by the proper use of parentheses.

5 Semantics

The semantics of an OWL ontology O is given in terms of an interpretation
I = (ΔI, ΔD, ·C, ·OP, ·DP, ·I, ·DT, ·LT, ·FA) where ΔI is an object domain of indi-
viduals and ΔD is a data domain of data values, ·C is the class interpretation
function, ·OP is the object property interpretation function, ·DP is the data prop-
erty interpretation function, ·I is the individual interpretation function, ·DT is the
datatype interpretation function, ·LT is the literal interpretation function and ·FA
is the data facet interpretation function. [6]

To describe the contents of the SIB and hosting device triple stores we de-
fine additionally the interpretation functions ·CSIB

, ·OPSIB
, ·DPSIB

, ·Cdev
, ·OPdev and

·DPdev.
To describe the semantics of variables with access modifiers we require the

following to hold given /name in O:

if /name ∈ VC then

x ∈ (name)C
SIB ⇒ x ∈ (/name)C

if /name ∈ VOP then

(x, y) ∈ (name)OPSIB⇒ (x, y) ∈ (/name)OP

if /name ∈ VDP then

(x, y) ∈ (name)DPSIB⇒ (x, y) ∈ (/name)DP

where VC, VOP and VDP are the vocabularies of classes, object properties and
data properties in O.

We define exactly similar requirements to hold for the device interpretation
functions ·Cdev

, ·OPdev and ·DPdev. Note that the vocabulary membership condi-
tions can be resolved syntactically.

We need to define the semantics for the rest of the syntactic additions we
have made to OWL. We do this by extending the domain of the interpretation

OWL Web Ontology Language as a Scripting Language 373

functions ·DT and ·C from the OWL 2 Direct Semantics definition. [6] The exten-
sion of ·DT is given in table 5. The extension of ·C is given in table 6. We have
added only one axiom form to the syntax, the condition that it imposes is given
in table 7.

Table 5. Extension of the datatype interpretation function

Data Range Interpretation ·DT

== lt {(lt)LT}

> lt (DT)DT ∩ (xsd : minExclusive, lt)FA

< lt (DT)DT ∩ (xsd : maxExclusive, lt)FA

where DT is the datatype of the literal lt if differ-
ent from rdf:PlainLiteral; otherwise it is xsd:integer.

Table 6. Extension of the class expression interpretation function

Class Expression Interpretation ·C

(CE) (CE)C

CE1 and CE2 (CE1)
C ∩ (CE2)

C

CE1 or CE2 (CE1)
C ∪ (CE2)

C

CE1 , CE2

⎧⎪⎨
⎪⎩

δ if ∃x, y : x ∈ (CE1)
C and y ∈ (CE2)

C

∅ otherwise

where δ ⊆ ΔI and δ �= ∅

CE1 OPE CE2 {x | ∃y : (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C}

n CE1 OPE CE2 {x | #{y | (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C} = n}

min n CE1 OPE CE2 {x | #{y | (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C} ≥ n}

max n CE1 OPE CE2 {x | #{y | (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C} ≤ n}

only CE1 OPE CE2 {x | ∀y : (x, y) ∈ (OPE)OP, x ∈ (CE1)
C implies y ∈ (CE2)

C}

? OPE CE {x | ∃y : (x, y) ∈ (OPE)OP and y ∈ (CE)C}

CE OPE ? {y | ∃x : (x, y) ∈ (OPE)OP and x ∈ (CE)C}

DPE DR {x | ∃y : (x, y) ∈ (DPE)DP and y ∈ (DR)DT}

The quantified forms of the syntactic forms ’? OPE CE’, ’CE OPE ?’ and ’DPE DR’ have
been omitted since they are similar to the forms shown. CE is a class expression, OPE
is an object property expression, DPE is a data property expression and DR is a data
range.

374 E. Suenson, J. Lilius, and I. Porres

Table 7. Extension of the class expression axiom satisfaction conditions

Axiom Condition

CE1 = CE2 (CE1)
C = (CE2)

C

We emphasize that the extensions are merely syntactical, they do not extend
the computational power of OWL. In other words, it is possible, though not
always efficient, to implement the extensions in ordinary OWL. In particular,
the syntactic form ’CE1 , CE2’ can be implemented as (∃�.(CE1)C)�(∃�.(CE2)C)
(borrowing notation from [1]) and the form ’CE OPE ?’ can be implemented with
the use of the OWL inversion operator ObjectInverseOf.

To define the semantics of the parts of OWL Script that doesn’t directly
extend OWL, we first define an interpretation function for RDF expressions,
·RDF. The definition of ·RDF is given in table 8.

The semantics of the ’Action’ syntactic category is as follows: An action of
the form ’new IRI’ defines a new blank RDF node x such that (IRI)C = {x}. An
action of the form ’insert RDFE’ indicates that the RDF triple set (RDFE)RDF

is to be written to the SIB or the hosting device triple store, depending on
the access modifier. Similarly, ’remove RDFE’ indicates triple sets that are to be
deleted.

The triple sets to be inserted or removed may be described by several actions.
The complete sets are written atomically to the SIB and the hosting device, but
the writing operations to the SIB and the device are not atomic with respect to
each other. Conflicts between ’insert’ and ’remove’ actions are resolved in favor
of insertion.

We can now define the semantics of a KP ’with O when CE then A’. Let I
be an interpretation that satisfies O under the additional SIB and device store
requirements. If (CE)C �= ∅ then the actions A are carried out and updates the
SIB and device triple stores according to the definition above of action semantics.

Table 8. RDF expression interpretation function

RDF Expression Interpretation ·RDF

NLI (CE) {((x)Ī, rdf : type, IRI) | x ∈ (CE)C}

NLI (CE1 , CE2)
{((x)Ī, IRI, (y)Ī) |

x ∈ (CE1)
C and y ∈ (CE2)

C}

NLI (CE , lt) {((x)Ī, IRI, lt) | x ∈ (CE)C}

where IRI is the IRI of the non-local identifier NLI and
·Ī is the inverse of ·I.

OWL Web Ontology Language as a Scripting Language 375

6 Conclusion

The scripting language we present demonstrates that it is feasible to use OWL
as a programming language in a limited domain setting. We believe that OWL
Script is easy to use for examples similar to the ones we have given. As we work
on incorporating further domains and examples, the language can be extended
to accomodate these.

The most important task of our future research is to make an implementation
of OWL Script and see how well it performs in practice, in particular to gauge
how suitable the syntax is to script programmers.

References

1. Baader, F., Nutt, W.: Basic description logics (2003)
2. Grosof, B.N., Gandhe, M.D., Mahesh, D.G., Finin, T.W.: Sweetjess: Inferencing in

situated courteous ruleml via translation to and from jess rules. In: Proceedings of
the ISWC 2002 International Workshop on Rule Markup Languages for Business
Rules on the Semantic Web, Sardinia, Italy (June 2002/2003)

3. Honkola, J., Laine, H., Brown, R., Tyrkko, O.: Smart-m3 information sharing plat-
form. In: IEEE Symposium on Computers and Communications, pp. 1041–1046
(2010)

4. Luukkala, V., Niemelä, I.: Enhancing a smart space with answer set programming.
In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 89–103. Springer, Heidelberg (2010)

5. Oliver, I., Honkola, J.: Personal semantic web through a space based computing en-
vironment. In: Proceedings of the 2nd International Conference on Semantic Com-
puting (2008)

6. W3C recommendation: Owl 2 web ontology language direct semantics (2009),
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

7. W3C recommendation: Owl 2 web ontology language structural specification and
functional-style syntax (2009),
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

8. W3C Working Group Note: Rif overview (2009),
http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/

9. Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic space: An
infrastructure for smart spaces. IEEE Pervasive Computing 3, 32–39 (2004)

http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/

N. Bassiliades et al. (Eds.): RuleML 2011 - Europe, LNCS 6826, pp. 376–383, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Rule-Based Complex Event Processing for Food Safety
and Public Health

Monica L. Nogueira and Noel P. Greis

Center for Logistics and Digital Strategy, Kenan-Flagler Business School,
The University of North Carolina at Chapel Hill,

Kenan Center CB#3440, Chapel Hill, NC 27599 U.S.A.
{monica_nogueira,noel_greis}@unc.edu

Abstract. The challenge for public health officials is to detect an emerging
foodborne disease outbreak from a large set of simple and isolated, domain-
specific events. These events can be extracted from a large number of distinct
information systems such as surveillance and laboratory reporting systems from
health care providers, real-time complaint hotlines from consumers, and inspec-
tion reporting systems from regulatory agencies. In this paper we formalize a
foodborne disease outbreak as a complex event and apply an event-driven rule-
based engine to the problem of detecting emerging events. We define an evi-
dence set as a set of simple events that are linked symptomatically, spatially and
temporally. A weighted metric is used to compute the strength of the evidence
set as a basis for response by public health officials.

Keywords: Rules engine; complex event processing; answer set programming.

1 Introduction

Even though the U.S. food supply is one of the safest in the world, thousands of food-
borne illness cases still occur each year [7]. Surveillance and response to foodborne
disease suffer from a number of systemic and other delays that hinder early detection
and confirmation of emerging contamination situations. At the onset of an outbreak it
is often impossible to link isolated events that may be related to events reported by
other data sources. Once distinct events are suspected to be related, public health
officials create a cluster and look for confirmatory evidence as part of a lengthy inves-
tigatory process. Latencies in the process could be reduced by the earlier availability
and synthesis of other confirmatory information, often outside formal public health
channels, including information from private companies and consumers.

In practice, local public health departments are usually the first to pick up the sig-
nals of foodborne disease. These signals may correspond to reports of illness gener-
ated by different types of events, e.g. E1: a patient with symptoms of gastro-intestinal
distress seeking medical attention at a hospital emergency room or visiting a private
physician’s office; E2: laboratory test results for an ill patient which confirm a causa-
tive pathogen, e.g. Salmonella; and E3: a cluster of ill patients due to a common
pathogen. Routinely, a state’s syndromic surveillance system collects data from local

 Rule-Based Complex Event Processing for Food Safety and Public Health 377

health care providers about events of type E1, E2 and E3 on a continuous basis, re-
porting them to the Centers for Disease Control and Prevention (CDC).

However, other events can signal an emerging foodborne disease outbreak. Many
public health authorities and food industry operators, e.g. food manufacturers and
grocery stores, maintain complaint hotlines (E4) where consumers report foodborne
illness or a suspected adulterated food product. Consumer complaints made directly
to public agency hotlines, e.g. local health departments (LHDs), state departments of
agriculture or departments of environment and natural resources, are officially re-
corded and may lead to an investigation, at the discretion of the receiving agency.

A public food recall notification (E5) may also signal existing illness cases. Food
manufacturers may voluntarily recall of one of their food products due to positive test
results for foodborne pathogens, unintentional adulteration, mislabeling, or the pres-
ence of an allergen or hazardous material in the food product. Recalls may also be
advised by authorities after routine inspections conducted by the U.S. Department of
Agriculture (USDA), U.S. Food and Drug Administration (FDA), and state agencies.

Food facility inspection reports (E6), which list violations to the food code appli-
cable to such facilities, provide another signal that may help to identify the root cause
of a contamination situation. Evaluation of the type, severity, recurrence, and other
characteristics of past code violations for a specific facility and the product(s) it
manufactures could help link such operations as a probable source of contamination.

Microblogging and social media networks, i.e. Twitter or Facebook, are non-
standard data sources that hold the potential, yet to be realized, to provide real-time
information about emerging food contamination situations. Bloggers posting microb-
log messages (E7) about illness after eating a certain food product or at a particular
restaurant can provide timely warning about an emerging problem.

The paper is organized as follows. Section 2 discusses the motivation and chal-
lenges in representing the food safety domain using rules. Section 3 presents our rule-
based event model and describes the inference engine developed for our application.
An illustrative example of the domain is shown in Section 4. Conclusions and direc-
tions for future research are discussed in Section 5.

2 Motivation and Challenges

Data associated with event types E1–E7 described above are collected by separate
information systems and maintained and managed by distinct governmental agencies.
Hence, in responding to the twin challenges of early detection of and rapid response
to emerging outbreak situations, a central problem is how to access, process and in-
terpret more events more quickly, thus reducing the time, scale, and scope of an
emerging event. Framing the problem of outbreak detection as a complex event ad-
dresses a major failure of current surveillance methods. Current syndromic surveil-
lance systems utilize statistics-based cumulative sum algorithms, i.e. CUSUM, to
detect increases in illness reporting numbers and to determine that a foodborne dis-
ease outbreak may be emerging or is on-going. Alerts are normally generated by the
system when the number of illness cases assigned to a certain syndrome, e.g. fever,
respiratory, or gastrointestinal distress, exceeds the threshold determined for that
particular syndrome for the geographic area originating these events, i.e. county, and

378 M.L. Nogueira and N.P. Greis

the local population baseline. These alerts are typically based solely on reported
illness cases, type E1 to E3 events above. Consideration of event types E4 to E7 aids
in the detection of emerging outbreaks before they are sufficiently advanced to rise
above the threshold of traditional CUSUM statistical methods.

To better understand the investigatory processes for outbreak detection, consider
the following situation. A couple experiences severe gastrointestinal ulceration (GIU)
symptoms after eating at a local restaurant chain and seeks medical attention at the
emergency room of their local hospital. Two separate illness reports are entered into
the health care system to be reported to the state’s public health syndromic surveil-
lance system. If the number of reported GIU and foodborne-related cases does not
exceed the corresponding threshold for GIU syndrome in the area, then no alert will
be generated by the CUSUM algorithm and detection of an emerging situation will be
delayed. However, consider that another person falls ill after eating at a different
branch of the same food chain and calls a consumer complaint hotline to make a re-
port. Currently, this event will be registered in the receiving agency’s database but not
automatically passed along to public health syndromic surveillance systems. Con-
sider that another person, also ill after eating at that chain, reports the illness on a
personal blog. Both these events occur “under the radar” of public health and are not
currently picked up as evidence of a possible emerging contamination.

3 Rule-Based Event Modeling

With respect to rule-based event modeling, our work: (1) extracts relevant informa-
tion from unstructured text, i.e. web-based recall notifications, to generate events that
trigger a rule-based inference engine to “reason” about what it knows in light of the
new information encoded by this event; (2) semantically links different types of
events by employing (simple) ontologies for food, U.S. geographic regions, North
Carolina counties, and foodborne diseases; (3) implements a rule-based inference
engine using the Answer Set Programming (ASP) paradigm to identify evidence sets
that signal an emerging foodborne disease outbreak; (4) computes an Event Evidence
Indicator for newly formed evidence sets as a measure of the strength of the evidence
in support of such sets; and (5) reduces latency in outbreak detection by identifying
emerging outbreaks when the number of cases affecting individual counties falls be-
low the statistical threshold.

3.1 Event Model

An event is defined as the acquisition of a piece of information that is significant
within a specific domain of interest to the application. In this application the domain
of interest is food safety. We distinguish between two different types of events: sim-
ple events and materialized complex events. Simple events include both atomic
events and molecular events. Atomic events have a distinct spatio-temporal identity,
i.e. they take place at a particular place and time that is relevant to the determination
of the complex event. An example of an atomic event would be a single reported case
of gastrointestinal illness, an FDA recall, or a consumer complaint. Molecular events
can be thought of as atomic events that are “linked together” by evidence, for example

 Rule-Based Complex Event Processing for Food Safety and Public Health 379

that are joined through previous evidence or by public health experts outside the sys-
tem. Molecular events could include a confirmed cluster of two or more Salmonella
cases as determined by DNA fingerprinting. An event stream is defined as the se-
quence of simple events received by the complex event processing (CEP) system that
are assigned a timestamp from a discrete ordered time domain and a geostamp con-
sisting of a longitude and latitude geocode. An atomic event has a single timestamp
and geostamp; molecular events may have multiple timestamps and geostamps. As
defined by [4], CEP consists of techniques and tools that enable the understanding
and control of event-driven information systems.

A complex or materialized event is an event that is inferred by the engine’s rules
evaluation of the occurrence of other simple events. For example, in our application
the materialized event is a foodborne disease outbreak.

3.1 Semantic Model

Our representation allows for incomplete information which is indicated by a unique
reserved symbol of the representation language. Sparse data is an inherent characteris-
tic of the problem, and one of our goals is to detect outbreaks when the number of
illness cases has not yet exceeded thresholds employed by traditional statistical meth-
ods. The events of interest are described by the following concepts.

A patient illness case record contains information about an event of type E1 and
uniquely identifies a patient; his county of residence; time and date of visit to health
care provider; syndrome or diagnosis assigned; and the disease-causing pathogen.
This record will be updated to confirm the pathogen identified by a laboratory test
when an event of type E2 corresponding to this patient enters the system. A simple
ontology of foodborne diseases and related syndromes is employed to enable the
semantic link of diagnosis data and pathogen data across different types of events.

By definition, an illness cluster – a molecular event – is formed by a number of pa-
tients with a common diagnosis caused by the same pathogen (as identified by labora-
tory test results or other causal links). The cluster patient with the earliest disease
onset date is referred to as “patient#1.” Events of type E3 are represented by two
different types of records: (a) a cluster record provides information that uniquely
identifies a specific cluster; and (b) a cluster illness case record contains information
about a specific patient of the cluster defined by a cluster record. A cluster record
contains a unique identification code, the disease-causing pathogen, number of coun-
ties affected by the outbreak, number of patients in the cluster, the unique identifica-
tion code of patient#1, and date of patient#1 visit to a health care provider. A cluster
illness case record contains that cluster identification code, and the patient’s unique
identification code and county of residence. A cluster illness case record acts as a
pointer to the more complete patient illness case record for that patient.

A consumer complaint call, an event of type E4, is represented by three types of
records. A complaint caller record provides a unique call identification code, date and
time of call, and information about the caller, e.g. caller’s county of residence; type of
illness codified using the responding agency’s medical code; and number of people
that fell ill because of the product. A complaint food operator record informs about
the manufacturer or retailer the caller has complained about. A complaint food prod-
uct record lists the food product and its FDA food code, date of manufacturing, and

380 M.L. Nogueira and N.P. Greis

other information provided by the caller. A food ontology semantically links recalled
food products to those implicated by consumer complaint calls. Neighboring relations
among North Carolina counties and cities are described by a separate ontology. A
recall notification, an event of type E5, is represented by two types of records. A
recall record contains the event unique identification code, the recall-issuing agency,
date and time of its release, recalling company, recalled food product, reason for the
recall, e.g. presence of allergen or pathogen, known number of illnesses, and number
of geographic areas affected. U.S. geographic areas are defined by a simple ontology
which includes all U.S. states and regions as defined by the U.S. Census Bureau. An
associated recall area record defines a geographic area affected.

3.2 ASP Rule-Based Inference Engine

In this work, we use a form of declarative programming known as Answer Set Pro-
gramming (ASP) [5], to represent the rule-based CEP of the food safety domain and
to search for/detect emerging outbreaks and other information of interest to public
health officials. ASP has been applied to industrial problems, but to the best of our
knowledge it has not been used in food safety applications.

The ASP paradigm is based on the stable model/answer set semantics of logic pro-
grams [1, 2] and has been shown to be a powerful methodology for knowledge repre-
sentation, including representation of defaults and multiple aspects of reasoning about
actions and their effects, as well as being useful in solving difficult search problems.
In the ASP methodology, search problems are reduced to the computation if the stable
models of the problem. Several ASP solvers – programs that generate the stable
models of a given problem encoded in the ASP formalism – have been implemented,
e.g. Cmodels, DLV, Smodels, etc. In what follows we provide the basic syntactic
constructs and the intuitive semantics of the ASP language used in this work. A com-
plete formal specification of the syntax and semantics of the language can be found at
[2, 6].

A signature Σ of the language contains constants, predicates, and function symbols.
Terms and atoms are formed as is customary in first-order logic. A literal is either an
atom (also called a positive literal) or an atom preceded by ¬ (classical or strong
negation), a negative literal. Literals l and ¬l are called contrary. Ground literals and
terms are those not containing variables. A consistent set of literals does not contain
contrary literals. The set of all ground literals is denoted by lit(Σ). A rule is a state-
ment of the form:

h1 ∨ … ∨ hk ← l1, …, lm, not lm+1, …, not ln . (1)

where hi’s and li’s are ground literals, not is a logical connective called negation as
failure or default negation, and symbol ∨ corresponds to the disjunction operator. The
head of the rule is the part of the statement to the left of symbol ←, while the body of
the rule is the part on its right side. Intuitively, the rule meaning is that if a reasoner
believes {l1, …, lm} and has no reason to believe {lm+1, …, ln}, then it must believe
one of the hi’s. If the head of the rule is substituted by the falsity symbol ⊥ then the
rule is called a constraint. The intuitive meaning of a constraint is that its body must
not be satisfied. Rules with variables are used as a short hand for the sets of their
ground instantiations. Variables are denoted by capital letters. An ASP program is a

 Rule-Based Complex Event Processing for Food Safety and Public Health 381

pair of 〈Σ, Π〉, where Σ is a signature and Π is a set of rules over Σ, but usually the
signature is defined implicitly and programs are only denoted by Π. A stable model
(or answer set) of a program Π is one of the possible sets of literals of its logical con-
sequences under the stable model/answer set semantics.

Our encoding – the set of rules of program Π – contains roughly 100 rules, while
event records (in ASP, rules with an empty body, also called “facts”) and the ontolo-
gies describing facts, utilized for experiments, are in the hundreds. We use the DLV
system [3] as our ASP solver. To illustrate the ASP methodology, a few (simplified)
rules used by our engine to detect emerging clusters are shown below. Rule (2)
means that if neighboring counties A and B reported a small number of cases of food-
related illnesses, due to pathogen P and/or syndrome S, this constitutes evidence for
the engine to create a suspected cluster with associated case records generated by
rules of form (3). Thus, an emerging outbreak affecting A and B, due to pathogen P,
is computed by rule (4).

suspcluster(A,B,P,S) ← neighbors(A,B),minreached(A,P,S),minreached(B,P,S). (2)

 suspcluster_illness(A,B,Id,P,A) ← suspcluster(A,B,P,S), P != S, (3)
 patient_illness(Id,H,M,AmPm,Day,Mon,Y,A,Sys,P).

 susp_outbreak(A,B,P) ← suspcluster(A,B,P,_). (4)

Suspected clusters are linked by (5) to existing recalls of food products affecting
the state or the geographic region where it is located. Recalls of food distributed di-
rectly to a state or a more specific region, as computed by (5) and (6), are of higher
interest.

 more_specif_susprecall_linked(R1,A,B,F1,M1,L1) ← (5)
 susprecall(R1,A,B,F1,M1,L1), susprecall (R2,A,B,F2,M2,L2),
 subregion(L1,L2), R1 != R2, not other_more_specif(A,B,L1,R2).

 other_more_specif(A,B,L1,R2) ← susprecall(R2,A,B,_,_,L2), (6)
 susprecall(R3,A,B,_,_,L3), subregion(L3,L1), R2 != R3.

3.3 Evidence Set and Event Evidence Indicator

The set of linked events that provide evidence of the materializing of a complex event
is called the Evidence Set. An evidence set is associated with a degree of uncertainty
as to whether an emerging outbreak event will materialize based on the information in
the event data. Rule (7) below exemplifies the computation of elements of the evi-
dence set. Intuitively, the rule meaning is that the engine will conclude that there is
evidence that a complaint call C, from county T implicating a food product F1 of type
FC–per the FDA Code, is connected to a materialized cluster of illness P affecting
neighboring counties A and B, if this call can be linked to an existing recall R of food
F2 manufactured by company M at location L, if food F2 is also of type FC.

evidence(A,B,P,S,R,F2,M,L,F1,FC,T) ← suspcluster(A,B,P,S), nccounty(T), (7)
 suspcall(C,A,B,F1,FC,T), susprecall(R,A,B,F2,M,L), type_of(F2,FC).

382 M.L. Nogueira and N.P. Greis

The engine computes a measure of the strength of the evidence supporting the con-
clusion of an emerging complex event through a ranking that ranges from 0, or no
evidence, to a maximum of 7, highest evidence rating. The computation of the Event
Evidence Indicator (EVI) is based on the number and strength of the relationships that
connect the events in the evidence set and corresponds to the weighted summation of
EVI components calculated for the subsets formed when linking pairs of different
types of events. For example, we compute the EVI component for the set of all events
corresponding to a suspected cluster and incoming recall notification. The engine also
uses EVI to determine what suspected outbreaks to “push” to users and, thus, possibly
produce a lower number of false positives, i.e. outbreaks not confirmed later.

4 Illustrative Application

The ASP rule-based inference engine was implemented in the North Carolina Food-
borne Events Data Integration and Analysis Tool (NCFEDA) shown in Figure 1. In
this application, incoming food-related event streams are processed by the Events
Manager components: (1) a set of databases; and (2) the Event Trigger Module. The
databases store all food-related events and geocoded datasets across all contributing
NCFEDA public and private sector stakeholders. The Events Manager continuously
monitors the databases for new incoming events that are determined by the Event
Trigger Module as possible triggers. As noted earlier, triggers are events that could
include a case related to a foodborne illness, a cluster of illnesses, a recall notification,
or a consumer complaint. Inspection reports and microblog messages will be added in
the future. The Event Trigger Module is composed of translation units that convert
incoming database event records to ASP facts to be evaluated by the ASP inference
engine together with all facts describing the domain within a chosen time period.

Fig. 1. NCFEDA CEP High-level Diagram

NCFEDA’s web scraping tool (not shown in Figure 1) retrieves recall notifications
issued by the FDA and USDA directly from their websites generating recall events
which are sent to the Events Manager for storing and processing. Upon arrival of a
new such event, the Events Manager sends the free-text record to the Event Trigger
Module’s recall translation unit which (1) parses the recall record text; (2) utilizes the

 Rule-Based Complex Event Processing for Food Safety and Public Health 383

Semantics Module and ontologies for extraction of any relevant recall information
from the text; and (3) generates the recall’s corresponding ASP facts.

NCFEDA’s Rule-based Inference Engine consists of the ASP program containing
(a) 100 inference rules for the food safety domain; (b) new and (selected) previously
stored facts describing the current situation being monitored; and (c) the DLV solver.
Arrival of new events triggers computation of new stable models of the assembled
program which will determine whether there is an emerging outbreak event occurring.

5 Conclusions and Future Directions

A primary contribution of this paper has been to frame the outbreak detection problem
as a complex event where events include not only structured event data (e.g. case
information) but also unstructured event data (e.g. recall or complaint data). We
develop semantic models that are able to extract meaningful information from un-
structured text data that can serve as event triggers. Using ontologies and rules we are
able to discover semantic links between events that provide evidence of an emerging
outbreak event. Identification of events that comprise the evidence set is accom-
plished using ASP. Finally, we introduce a novel concept, the Event Evidence Indica-
tor, which quantifies the strength of evidence in support of an emerging event as a
basis for response by public health officials. We successfully implemented these
concepts in the NCFEDA prototype. This work is on-going and we are continuing to
further develop the rule-based inference engine and the computational strategy for the
Event Evidence Indicator.

Acknowledgments. This work was funded by the Department of Homeland Security
and Institute of Homeland Security Solutions under Contract# HSHQDC-08-C-00100.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Intl. Logic. Progr. Conf. Symposium, pp. 1070–1080. MIT
Press, Cambridge (1988)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

3. Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi, T., Eiter, T., Gottlob, G., Ianni,
G., Ielpa, G., Koch, C., Perri, S., Polleres, A.: The DLV System. In: Flesca, S., Greco, S.,
Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 537–540. Springer,
Heidelberg (2002)

4. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing, Boston (2001)

5. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming para-
digm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer,
Berlin (1999)

6. Niemela, I., Simons, P.: Extending the Smodels System with Cardinality and Weight Con-
straints. In: Logic-Based Artificial Intelligence, pp. 491–521. Kluwer Academic Publishers,
Dordrecht (2000)

7. Scallan, E., et al.: Foodborne illness acquired in the United States–Major pathogens. Emerg.
Infect. Dis. 17(1), 7–15 (2011)

Author Index

Aceto, Giacomo 83
Almendros-Jiménez, Jesús M. 186
Analyti, Anastasia 313
Anicic, Darko 122, 138
Antoniou, Grigoris 1, 29, 313
Artikis, Alexander 114

Bǎdicǎ, Costin 3
Bassiliades, Nick 29, 44
Batsakis, Sotiris 242
Bernstein, Abraham 345
Bobek, Szymon 305, 337
Boley, Harold 44, 194
Braubach, Lars 3
Bueno, F. 2

Carro, M. 2
Costantini, Stefania 250

Damásio, Carlos Viegas 313
Das, Amar K. 266
Dell’Acqua, Pierangelo 250

Eriksson Lundström, Jenny S.Z. 83

Fodor, Paul 122, 138

Ghandar, Adam 297
Greis, Noel P. 376
Grütter, Rolf 345
Guissé, Abdoulaye 99

Haemmerlé, R. 2
Hamfelt, Andreas 83
Hassanpour, Saeed 266
Helming, Iris 345
Hermenegildo, Manuel V. 2

Jacobi, Ian 227

Kaczor, Krzysztof 305, 329, 337
Kagal, Lalana 227
Keeney, John 212
Khandelwal, Ankesh 227
Kravari, Kalliopi 29, 44

Lévy, François 99
Ligȩza, Antoni 305, 329, 337

Lilius, Johan 368
López-Garćıa, P. 2
Luna Tedesqui, Alejandro 186

Mera, E. 2
Michalewicz, Zbigniew 297
Moniz Pereira, Lúıs 250
Morales, J.F. 2
Morcillo, Pedro-Jose 170
Moreno, Ginés 170, 186

Nalepa, Grzegorz J. 305, 329, 337
Nazarenko, Adeline 99
Nogueira, Monica L. 376

Obweger, Hannes 154
O’Connor, Martin J. 266
Omrane, Nouha 99
Osmun, Taylor 44
O’Sullivan, Declan 212

Papatheodorou, Konstantinos 29
Paschke, Adrian 3
Penabad, Jaime 170
Petrakis, Euripides G.M. 242
Porres, Iván 368
Puebla, G. 2

Rotolo, Antonino 52, 67
Rudolph, Sebastian 122, 138

Schiefer, Josef 154
Siddiqui, Zaigham Faraz 281
Speich, Simon 345
Spiliopoulou, Myra 281
Stojanovic, Nenad 114, 122, 138
Suenson, Espen 368
Suntinger, Martin 154
Szulman, Sylvie 99

Tai, Wei 212
Thullner, Robert 154

van der Torre, Leendert 52
Vázquez, Carlos 170

Wojnicki, Igor 360

Zurbruegg, Ralf 297

	Title
	Preface
	Organization
	Table of Contents
	Keynote Speakers (Abstracts)
	Rule-Based Activity Recognition in Ambient Intelligence
	An Overview of the Ciao System
	Reference

	Rule-Based Distributed/Multi-Agent Systems
	Rule-Based Distributed and Agent Systems
	Introduction
	Rule-Based Distributed Systems
	Parallel Rule-Based Systems
	Rule-Based Systems as Agent Reasoning Models
	Rule-Based Grid/Cloud/High-Performance Computing Systems
	Rule-Based P2P Systems
	Rule-Based Event Processing Agent Systems

	Roles of Rules in Multi-Agent Systems
	Rules on the Micro Layer
	Hybrid Agent Architectures
	Rules on the Marco Layer

	Conclusion
	References

	Extending a Multi-agent Reasoning Interoperability Framework with Services for the Semantic Web Logic and Proof Layers
	Introduction
	EMERALD: A Multi-agent Knowledge-Based Framework
	Reasoners
	DR-Prolog Reasoner
	Defeasible Proofing Services
	The Dr-Prolog Reasoner Equipped with a Defeasible Proof Service
	The Defeasible Proof Validator

	Related Work
	Conclusions and Future Work
	References

	Cross-Community Interoperation between the EMERALD and Rule Responder Multi-Agent Systems
	Introduction
	EMERALD: A Multi-Agent Knowledge-Based Framework
	Rule Responder
	EMERALD–Rule Responder Interoperation Gateway
	A Multi–Step Interaction Scenario
	Related Work
	Conclusions and Future Work
	References

	Rules, Agents and Norms
	Rules, Agents and Norms: Guidelines for Rule-Based Normative Multi-Agent Systems
	Introduction
	NMAS Requirements
	The Norm-Change Definition
	The Mechanism Design Definition

	Specific Developments
	How Do Agents Comply with Norms?
	Change

	Summary
	References

	Rule-Based Agents, Compliance, and Intention Reconsideration in Defeasible Logic
	Introduction and Background
	The Logical Framework
	Compliance and Revising Intentions
	Conceptual Background
	A Simple Model
	Refinements: Using Paths

	Related Work
	Summary and Future Work
	References

	A Dynamic Metalogic Argumentation Framework Implementation
	Introduction
	Metalogic and Argumentation
	Argumentation Games
	A Sample Legal Case in Defeasible Logic
	Metalogic Program Formalization

	Implementation: A Dynamical Meta-Interpreter for DL
	Implementation: The Dynamical Defeasible Logic Prover
	Implementation: The Dynamical Game Model Interpreter

	Complexity
	Complexity Analysis
	Complexity Reduction

	Ubongo
	Related Work
	Conclusion and Future Work
	References

	Integrating Written Policies in Business Rule Management Systems�
	Introduction
	Related Works
	Business Modelling
	Semantic Annotation

	A Core Index Structure
	Acquiring a Business Rule Model
	Acquisition of a Domain Ontology
	Semantic Annotation
	Acquisition of Business Rules

	Results
	Exploiting and Exploring the Resulting Index
	Semantic Search
	Acquisition
	Support for Consistency Checking
	Maintenance

	Conclusion
	References

	Rule-Based Event Processing and Reaction Rules
	On Complex Event Processing for Real-Time Situational Awareness
	Introduction
	Activity Recognition
	Motivation
	A Representative Approach
	Research Challenges

	Future-Situation Awareness in Social Media
	Motivation
	State of the Art/Current Situation
	Research Challenges and Beyond State of the Art

	Conclusions
	References

	Retractable Complex Event Processing and Stream Reasoning
	Introduction
	Formal Model for Knowledge-Based Event Processing with Revision
	Event Processing Language Syntax
	Examples
	Declarative Semantics

	A Rule-Based Execution Model
	Experimental Results
	Related Work
	Conclusions and Future Work
	References

	A Declarative Framework for Matching Iterative and Aggregative Patterns against Event Streams
	Introduction
	A Language for Complex Event Processing
	Iterations and Aggregate Functions

	Execution Model
	Kleene Plus Closure
	Implementation of Iterative Rules and Common Aggregate Functions

	Performance Evaluation
	Conclusions
	References

	Entity-Based State Management for Complex Event Processing Applications
	Introduction
	Related Work
	Business Entity Provider Model
	Meta Model
	Exemplary Business Entity Providers

	Rule Model
	Base Rule Model
	Correlation Model Extensions
	Business Entity Actions
	Business Entity Conditions

	Implementation
	Rule Evaluation in SARI
	State-Management Architecture

	Example
	Conclusion and Future Work
	References

	Fuzzy Rules and Uncertainty
	Declarative Traces into Fuzzy Computed Answers�
	Introduction
	Multi-Adjoint Logic Programming
	MALP Syntax
	MALP Procedural Semantics

	Truth-Degrees and Multi-Adjoint Lattices in Practice
	Declarative Traces into f.c.a.’s Using FLOPER
	Conclusions and Future Work
	References

	A Flexible XPath-Based Query Language Implemented with Fuzzy Logic Programming�
	Introduction
	Flexible XPath
	Some Implementation Hints Using MALP
	Conclusions and Future Work
	References

	Rules and the Semantic Web
	A RIF-Style Semantics for RuleML-Integrated Positional-Slotted, Object-Applicative Rules
	Introduction
	The Presentation Syntax
	Alphabet of PSOA RuleML
	Terms
	Formulas
	Well-Formed Formulas
	EBNF Grammar for the Presentation Syntax of PSOA RuleML

	Semantics
	Semantic Structures
	Formula Interpretation

	Conclusions
	References

	COROR: A COmposable Rule-Entailment Owl Reasoner for Resource-Constrained Devices
	Introduction
	Background and Related Work
	OWL and OWL Sublanguages
	RETE and RETE Optimizations
	Mobile Reasoners

	Composition Algorithms
	Selective Rule Loading Algorithm
	Two-Phase RETE Algorithm
	Analytical Comparisons between Composition Algorithms

	Implementation
	Experiments and Discussions
	Design and Execution
	Results and Discussion

	Conclusion and Future Work
	References

	Rule-Based Trust Assessment on the Semantic Web
	Introduction
	Related Work
	Semantic Web and Trust
	Resource Description Framework (RDF)
	Models of Trust for the Semantic Web
	Possible Trust Representations in RDF

	AIR Web Rule Language
	Syntax
	Rule Ontology

	Trust Assessment Framework
	Contributions
	Summary and Future Work
	References

	SOWL: A Framework for Handling Spatio-temporal Information in OWL 2.0
	Introduction
	Background and Related Work
	SOWL Ontology
	Reasoning in SOWL
	Conclusions and Future Work
	References

	Rule Learning and Extraction
	Conditional Learning of Rules and Plans by Knowledge Exchange in Logical Agents
	Introduction
	Motivations and Overall Framework
	The Approach
	Semantics of Learning by Rule Exchange
	Case Study: An Artificial Fish
	Related Work and Concluding Remarks
	References

	A Framework for the Automatic Extraction of Rules from Online Text
	Introduction
	Related Work
	Methods
	Expansion of Domain Ontology Terms
	Finding Dependencies in Text
	Finding Relationships in the Text
	Finding Concepts in Text
	Assembling Rule Bodies
	Linking Relationships to Domain Concepts
	Generating Rule Heads

	Implementation and Results
	Discussion
	References

	Classification Rule Mining for a Stream of Perennial Objects
	Introduction
	Problem Specification and Background Literature
	Problem Specification
	Incremental Propositionalisation
	Related Work and Background Literature

	Incremental Classification Rule Learning
	Aligning the Fast Streams to the Slow Stream
	Building a Lattice of Classification Rules Incrementally
	Generating Features from the Classification Rules' Lattice
	Enhancing a Decision Tree Classifier with Predictive Attributes

	Experiments
	Learning User Profiles
	Predicting Defaults in Bank Loans

	Conclusion
	References

	A Case for Learning Simpler Rule Sets with Multiobjective Evolutionary Algorithms
	Introduction and Background
	Approach and Method
	Description of the Problem and Multiple Objectives
	Fuzzy Rule Based Classifiers

	Experimentation
	Conclusion
	References

	Rules and Reasoning
	Algorithms for Rule Inference in Modularized Rule Bases�
	Introduction
	Classic Rule Inference Algorithms
	Knowledge Modularization Techniques
	Formalization of Modularized Rule Bases with XTT2
	XTT2 Inference Algorithms Formalization
	Simple Case Study
	Concluding Remarks
	References

	Modularity in the Rule Interchange Format
	Introduction
	The MWeb Approach
	Basics of Rule Interchange Format Semantics
	Rule Interchange Format Document Formulas
	Alternative Semantics for Multi-documents
	Models and Logical Entailment
	Conclusions and Further Work
	References

	Overview of Knowledge Formalization with XTT2 Rules�
	Introduction
	Attributive Logic with Set Values over Finite Domains
	Formalization of Modularized Rule Bases
	Practical Example
	Related Work
	Concluding Remarks
	References

	HalVA - Rule Analysis Framework for XTT2 Rules�
	Introduction
	State-of-the-Art and Motivation
	Formalization of Modularized Rule Bases
	Rule Verification Tasks
	Formal Definition of Verification Tasks
	Verification Algorithms

	Summary and Future Work
	References

	Rule-Based Applications
	Rewriting Queries for Web Searches That Use Local Expressions
	Introduction
	Region Connection Calculus and DL-Safe SWRL Rules
	A Motivating Example
	A Formalism for Proximity
	The Basic Composition Rule
	A Partially Ordered and Typed System of Partitions
	Refining the Formalism

	Rewriting Queries That Use Local Expressions
	Representing Topological Background Knowledge
	Rewriting Queries

	Evaluation
	Material and Methods
	Results
	Discussion

	Related Work
	Administrative Boundaries Influence the Perception of Distance
	Using Local Expressions in Web Searches

	Conclusion and Outlook
	References

	Implementing General Purpose Applications with the Rule-Based Approach
	Introduction
	Architecture Overview
	Example Rule Representation and Run-Time
	Example Application
	Summary and Further Research
	References

	OWL Web Ontology Language as a Scripting Language for Smart Space Applications
	Introduction
	Related Work
	Programming with OWL Script
	Syntax
	Semantics
	Conclusion
	References

	Rule-Based Complex Event Processing for Food Safety and Public Health
	Introduction
	Motivation and Challenges
	Rule-Based Event Modeling
	Event Model
	Semantic Model
	ASP Rule-Based Inference Engine
	Evidence Set and Event Evidence Indicator

	Illustrative Application
	Conclusions and Future Directions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

