

Lecture Notes in Computer Science 6812
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Udaya Parampalli Philip Hawkes (Eds.)

Information Security
and Privacy

16th Australasian Conference, ACISP 2011
Melbourne, Australia, July 11-13, 2011
Proceedings

13

Volume Editors

Udaya Parampalli
The University of Melbourne
Department of Computer Science and Software Engineering
Melbourne, VIC 3010, Australia
E-mail: udaya@csse.unimelb.edu.au

Philip Hawkes
Qualcomm Incorporated
Suite 301, Level 3, 77 King Street
Sydney, NSW 2000, Australia
E-mail: phawkes@qualcomm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22496-6 e-ISBN 978-3-642-22497-3
DOI 10.1007/978-3-642-22497-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931295

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2, J.1, G.2.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The annual Australasian Conference on Information Security and Privacy (ACISP)
is the premier Australian academic conference in its field, showcasing research
from around the globe on a range of topics. The 16th conference in this series—
ACISP 2011—was held during July 11–13, 2011, at RMIT University in Mel-
bourne, Australia.

There were 103 paper submissions for the conference. These submissions were
reviewed by the Program Committee and a number of other individuals, whose
names can be found overleaf. The Program Committee then selected 24 papers
for presentation at the conference. These papers are contained in these proceed-
ings. Theoretical research features prominently in these papers.

This year the Program Committee introduced a practice of accepting some
submissions for presentation as poster papers, for the first time in ACISP his-
tory. The purpose of this practice is to allow ACISP to include more practically
oriented research in our program. Ten submissions were selected as poster pa-
pers. Extended abstracts for these poster papers have been included in these
proceedings.

The conference program included two invited lectures by Claude Carlet of
Universities of Paris 8 and 13 and CNRS, and Nick Ellsmore of Stratsec (a BAE
Systems Company). Prof. Carlet spoke about “Differentially Uniform Functions”
and his paper is included in the proceedings. We would like to express our grati-
tude to Claude and Nick for contributing their knowledge and insight, and thus
expanding the horizons of the conference delegates.

We would like to thank the authors of all submissions for offering their re-
search for presentation at ACISP 2011. We extend our sincere thanks to the Pro-
gram Committee and other reviewers for the high-quality reviews and in-depth
discussions. The Program Committee made use of the EasyChair electronic sub-
mission and reviewing software written by Andrei Voronkov and maintained
by the University of Manchester, UK. We would like to express our thanks to
Springer, particularly Alfred Hofmann, for continuing to support the ACISP con-
ference series and for helping in the production of the conference proceedings.

We also thank the Organizing Committee, led by the ACISP 2011 General
Chair Serdar Boztaş, with key contributions from Leanne O’Doherty and Keith
Tull, for their involvement in the conference. Finally, we would like to thank
Qualcomm Incorporated, The University of Melbourne and the ISI-Informatics
Research Group at RMIT University for their support, and the School of Mathe-
matical and Geospatial Sciences at RMIT University for hosting the conference.

July 2011 Udaya Parampalli
Philip Hawkes

Organization

General Chair

Serdar Boztaş RMIT University, Australia

Program Co-chairs

Udaya Parampalli University of Melbourne, Australia
Philip Hawkes Qualcomm Incorporated, Australia

Program Committee

Michel Abdalla École Normale Supérieure, France
Magnus Almgren Chalmers University of Technology, Sweden
Tuomas Aura Microsoft Research, USA
Joonsang Baek Institute for Infocomm Research, Singapore
Feng Bao Institute for Infocomm Research, Singapore
Lynn Batten Deakin University, Australia
Alex Biryukov University of Luxembourg, Luxembourg
Colin Boyd Queensland University of Technology, Australia
Joo Yeon Cho Nokia A/S, Denmark
Sherman Chow University of Waterloo, Canada
Carlos Cid Royal Holloway, University of London, UK
Andrew Clark Queensland University of Technology, Australia
Nicolas Courtois University College London, UK
Yvo Desmedt University College London, UK
Christophe Doche Macquarie University, Australia
Pooya Farshim Royal Holloway, University of London, UK
Praveen Gauravaram Technical University of Denmark, Denmark
Peter Gutmann University of Auckland, New Zealand
Kwangjo Kim KAIST, Korea
Xuejia Lai Shanghai Jiao Tong University, China
Mark Manulis TU Darmstadt, Germany
Keith Martin Royal Holloway, University of London, UK
Atefeh Mashatan École Polytechnique Fédérale de Lausanne,

Switzerland
Mitsuru Matsui Mitsubishi Electric, Japan
Krystian Matusiewicz Macquarie University, Australia

VIII Organization

Chris Mitchell Royal Holloway, University of London, UK
Atsuko Miyaji JAIST, Japan
Yi Mu University of Wollongong, Australia
Rei Safavi Naini University of Calgary, Canada
Juan Gonzalez Nieto Queensland University of Technology, Australia
Claudio Orlandi Aarhus University, Denmark
C. Pandu Rangan IIT, Madras, India
Vincent Rijmen KU Leuven, Belgium and TU Graz, Austria
Bimal Roy Indian Statistical Institute, India
Palash Sarkar Indian Statistical Institute, India
Jennifer Seberry University of Wollongong, Australia
Leonie Simpson Queensland University of Technology, Australia
Damien Stehle École Normale Supérieure de Lyon, France
Ron Stenfield Macquarie University, Australia
Douglas Stinson University of Waterloo, Canada
Willy Susilo University of Wollongong, Australia
Vijay Varadharajan Macquarie University, Australia
Maria Isabel Gonzalez Vasco Universidad Rey Juan Carlos, Spain
Damien Vergnaud École Normale Supérieure, France
Huaxiong Wang Nanyang Technological University, Singapore
Kan Yasuda NTT, Japan
Yuliang Zheng University of North Carolina at Charlotte, USA

External Reviewers

Ejaz Ahmed
Toru Akishita
Martin Albrecht
Kazumaro Aoki
Frederik Armknecht
Man Ho Au
Jean-Philippe Aumasson
Manuel Barbosa
Asli Bay
Rishiraj Bhattacharyya
Andrey Bogdanov
Jens-Matthias Bohli
Richard Brinkman
Debrup Chakraborty
Sanjit Chatterjee
Kai-Yuen Cheong
Sherman S.M. Chow
Cheng-Kang Chu
Lizzie Coles-Kemp
Paolo D’Arco

Angelo De Caro
Yi Deng
Sharmila Deva Selvi
Sun Dongdong
Ming Duan
Domingo Gomez
Zheng Gong
Fuchun Guo
Jian Guo
Jinguang Han
Guillaume Hanrot
Islam Hegazy
Javier Herranz
Jason Hinek
Deukjo Hong
Kathy Horadam
Jinguang Huang
Xinyi Huang
Daniel Hulme
Sebastiaan Indesteege

Erland Jonsson
Kiyoto Kawauchi
Przemyslaw Kubiak
Yee Wei Law
Gregor Leander
Gaëtan Leurent
Allison Lewko
Tingting Lin
Joseph Liu
Zhiqiang Liu
Yiyuan Luo
Vadim Lyubashevsky
Florian Mendel
Theodosis Mourouzis
Sascha Müller
Mridul Nandi
Kris Narayan
Ta Toan Khoa Nguyen
Abderrahmane Nitaj
Mehrdad Nojoumian

Organization IX

Tatsuaki Okamoto
Kazumasa Omote
Khaled Ouafi
Sumit Pandey
Serdar Pehlivanoglu
Bertram Poettering
Elizabeth A. Quaglia
Kenneth Radke
Somindu Ramanna
Asha Rao
Reza Rezaeian Farashahi
Sondre Roenjom
Yasuyuki Sakai
Shoji Sakurai
Subhabrata Samajder
Santanu Sarkar

Yu Sasaki
Desmond Schmidt
Haya Shulman
Martijn Stam
Adriana Suarez Corona
Dongdong Sun
Li Sun
Suriadi Suriadi
Colleen Swanson
Christophe Tartary
Sui Guan Teo
Subhashini Venugopalan
Frederik Vercauteren
Eric Vetillard
Jorge Villar
Sree Vivek

Yongtao Wang
Lei Wei
Puwen Wei
Andrew White
Shuang Wu
Wei Wu
Yanjiang Yang
Huihui Yap
Po-Wah Yau
Kazuki Yoneyama
Yu Yong
Fangguo Zhang
Liangfeng Zhang
Wei Zhang
Huafei Zhu
Angela Zottarel

Table of Contents

Invited Talks

On Known and New Differentially Uniform Functions 1
Claude Carlet

Symmetric Key Cryptography

New Impossible Differential Attacks of Reduced-Round Camellia-192
and Camellia-256 . 16

Jiazhe Chen, Keting Jia, Hongbo Yu, and Xiaoyun Wang

Results on the Immunity of Boolean Functions against Probabilistic
Algebraic Attacks . 34

Meicheng Liu, Dongdai Lin, and Dingyi Pei

Finding More Boolean Functions with Maximum Algebraic Immunity
Based on Univariate Polynomial Representation . 47

Yusong Du and Fangguo Zhang

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis . . . 61
Phuong Ha Nguyen, Hongjun Wu, and Huaxiong Wang

State Convergence in the Initialisation of Stream Ciphers 75
Sui-Guan Teo, Ali Al-Hamdan, Harry Bartlett, Leonie Simpson,
Kenneth Koon-Ho Wong, and Ed Dawson

On Maximum Differential Probability of Generalized Feistel 89
Kazuhiko Minematsu, Tomoyasu Suzaki, and Maki Shigeri

Double SP-Functions: Enhanced Generalized Feistel Networks:
Extended Abstract . 106

Andrey Bogdanov and Kyoji Shibutani

Algebraic Techniques in Differential Cryptanalysis Revisited 120
Meiqin Wang, Yue Sun, Nicky Mouha, and Bart Preneel

Hash Functions

Faster and Smoother – VSH Revisited . 142
Juraj Šarinay

Cryptanalysis of the Compression Function of SIMD 157
Hongbo Yu and Xiaoyun Wang

XII Table of Contents

Protocols

Electronic Cash with Anonymous User Suspension 172
Man Ho Au, Willy Susilo, and Yi Mu

T -Robust Scalable Group Key Exchange Protocol with O(log n)
complexity . 189

Tetsuya Hatano, Atsuko Miyaji, and Takashi Sato

Application-Binding Protocol in the User Centric Smart Card
Ownership Model . 208

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Access Control and Security

Security in Depth through Smart Space Cascades . 226
Benjamin W. Long

GeoEnc: Geometric Area Based Keys and Policies in Functional
Encryption Systems . 241

Mingwu Zhang and Tsuyoshi Takagi

An Efficient Rational Secret Sharing Scheme Based on the Chinese
Remainder Theorem . 259

Yun Zhang, Christophe Tartary, and Huaxiong Wang

DMIPS - Defensive Mechanism against IP Spoofing 276
Shashank Lagishetty, Pruthvi Sabbu, and Kannan Srinathan

Public Key Cryptography

Provably Secure Key Assignment Schemes from Factoring 292
Eduarda S.V. Freire and Kenneth G. Paterson

Efficient CCA-Secure CDH Based KEM Balanced between Ciphertext
and Key . 310

Yamin Liu, Bao Li, Xianhui Lu, and Dingding Jia

Generic Construction of Strongly Secure Timed-Release Public-Key
Encryption . 319

Atsushi Fujioka, Yoshiaki Okamoto, and Taiichi Saito

Identity-Based Server-Aided Decryption . 337
Joseph K. Liu, Cheng Kang Chu, and Jianying Zhou

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 353
Sanjit Chatterjee, Alfred Menezes, and Berkant Ustaoglu

Table of Contents XIII

A Single Key Pair is Adequate for the Zheng Signcryption 371
Jia Fan, Yuliang Zheng, and Xiaohu Tang

Towards Public Key Encryption Scheme Supporting Equality Test with
Fine-Grained Authorization . 389

Qiang Tang

Posters

Lattice-Based Completely Non-malleable PKE in the Standard Model
(Poster) . 407

Reza Sepahi, Ron Steinfeld, and Josef Pieprzyk

Compliance or Security, What Cost? (Poster) . 412
Craig Wright

Preimage Attacks on Full-ARIRANG (Poster) . 417
Chiaki Ohtahara, Keita Okada, Yu Sasaki, and Takeshi Shimoyama

Finding Collisions for Reduced Luffa-256 v2 (Poster) 423
Bart Preneel, Hirotaka Yoshida, and Dai Watanabe

Improved Security Analysis of Fugue-256 (Poster) . 428
Praveen Gauravaram, Lars R. Knudsen, Nasour Bagheri, and
Lei Wei

Improved Meet-in-the-Middle Cryptanalysis of KTANTAN (Poster) 433
Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu,
Huaxiong Wang, and San Ling

Toward Dynamic Attribute-Based Signcryption (Poster) 439
Keita Emura, Atsuko Miyaji, and Mohammad Shahriar Rahman

A Verifiable Distributed Oblivious Transfer Protocol (Poster) 444
Christian L.F. Corniaux and Hossein Ghodosi

Impracticality of Efficient PVSS in Real Life Security Standard
(Poster) . 451

Kun Peng

Electromagnetic Analysis Enhancement with Signal Processing
Techniques (Poster) . 456

Hongying Liu, Yukiyasu Tsunoo, and Satoshi Goto

Author Index . 463

Erratum

Compliance or Security, What Cost? (Poster) .
Craig Wright

E1

On Known and New Differentially Uniform

Functions

Claude Carlet

LAGA, Universities of Paris 8 and Paris 13 and CNRS
Dept. of Math, Univ. of Paris 8, 2 rue de la liberté, 93526 Saint-Denis Cedex, France

claude.carlet@inria.fr

Abstract. We give a survey on the constructions of APN and differ-
entially 4-uniform functions suitable for designing S-boxes for block ci-
phers. We recall why the search for more of such functions is necessary.
We propose a way of designing functions which can possibly be APN or
differentially 4-uniform and be bijective. We illustrate it with an example
of a differentially 4-uniform (n, n)-permutation for n odd, based on the
power function x3 over the second order Galois extension of F2n+1 , and
related to the Dickson polynomial D3 over this field. These permuta-
tions have optimal algebraic degree and their nonlinearity happens to be
rather good (but worse than that of the multiplicative inverse functions).

Keywords: Block cipher, vectorial Boolean function, S-box.

1 Introduction

Block ciphers use substitution boxes (in brief, S-boxes) to bring the confusion
(a requirement already mentioned by C. Shannon) into the systems, which is
necessary to withstand known (and hopefully future) attacks. Given two positive
integers n and m, the functions from Fn

2 to Fm
2 , often called (n, m)-functions

or (if the values n and m are omitted) vectorial Boolean functions, are used
as substitution boxes and play a central role in the robustness of block ciphers.
The main attacks (differential attacks, linear attacks and higher order differential
attacks) result in design criteria on the whole ciphers and on the particular S-
boxes used in each round. These functions must be Almost Perfect Nonlinear
(APN) or differentially 4-uniform (see definitions below) to allow resistance to
the differential attack [1]; they must have high nonlinearity to resist the linear
attack [31] and an algebraic degree at least 4 to resist the higher order differential
attack [26] (which is described by Knudsen when the degree is 2 but a degree
3 seems insufficient for a reasonable resistance). Of course, in practice, since a
cryptosystem must resist all these attacks, having for instance an APN function
with bad nonlinearity or with low algebraic degre is less interesting than having a
differentially 4-uniform function with high nonlinearity and not too low algebraic
degree. Moreover, we like the S-boxes to be permutations (if the cipher is a
Substitution-Permutation Network as in the AES, then this is a mandatory
condition) or at least balanced (that is, uniformly distributed, with m ≤ n; in

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 C. Carlet

a Feistel cipher, attacks exist when the S-box is not balanced, which concretely
oblige to use an expansion box - like in the DES - which makes the cipher more
complex and slower). We need also the S-boxes to be efficiently computable,
which in software is easier if n is a power of 2 (which is also more convenient
for the design of the whole cipher), concretely if n = 4, 8 or 16, since it allows
decomposing optimally the computation of the output in F2n into computations
in subfields. In hardware, n does not need to be a power of 2, but we like in
general the cryptosystem to be efficient in both hardware and software.

Such (n, m)-function F being given, the Boolean functions f1, . . . , fm defined
by F (x) = (f1(x), . . . , fm(x)), are called the coordinate functions of F . The
design criteria on S-boxes result in necessary properties of the coordinate func-
tions, but not only them. The linear combinations of the coordinate functions
with non all-zero coefficients are called the component functions of F and need
to satisfy the same properties as the coordinate functions (the attacks work on
two linearly equivalent vectorial functions with the same complexity).

The Walsh transform of an (n, m)-function F maps any ordered pair (u, v) ∈
Fn

2 × Fm
2 to the sum (calculated in Z):

WF (u, v) :=
∑
x∈Fn

2

(−1)v·F (x)+u·x,

where the same symbol “·” is used to denote inner products in Fn
2 and Fm

2 .
For v �= 0, it calculates the correlation between any component function v · F
and any linear function u · x. The Walsh transform satisfies Parseval’s relation:∑

u∈Fn
2

(WF (u, v))2 = 22n, for every v. The Walsh spectrum of F is the multi-set
of all the values of the Walsh transform of F , for u ∈ Fn

2 and v ∈ Fm
2

∗ (where
Fm

2
∗ = Fm

2 \ {0}); its extended Walsh spectrum is the multi-set of their absolute
values, and its Walsh support is the set of those ordered pairs (u, v) such that
WF (u, v) �= 0.

Any (n, m)-function F can be represented by its algebraic normal form (ANF):

F (x) =
∑

I⊆{1,···,n}
aI

(∏
i∈I

xi

)
; aI ∈ Fm

2 (1)

(this sum being calculated in Fm
2) which exists and is unique.

The algebraic degree of the function (and more generally of a function defined
over an affine subspace of Fn

2) is by definition the global degree of its ANF
(resp. the minimum algebraic degree of the (n, m)-functions which extend the
function). A function is affine if its algebraic degree is at most 1. It is called
quadratic if its algebraic degree is at most 2. The generalized Reed-Muller code
of order 1 (respectively 2) is the set of (n, m)-functions of degrees at most 1
(respectively 2).

But S-boxes are rarely defined through their ANF. The known functions
achieving the necessary features needed for an S-box (see below) are defined
through a second representation which exists (uniquely) when m = n (note this
is necessarily the case when the S-box is used in an SPN) or more generally when

On Known and New Differentially Uniform Functions 3

m divides n: we endow Fn
2 with the structure of the field F2n ; any (n, n)-function

F then admits a unique univariate polynomial representation over F2n , of degree
at most 2n − 1:

F (x) =
2n−1∑
j=0

bjx
j , bj ∈ F2n . (2)

The component functions are then the functions trn(vF (x)), v �= 0, where
trn(x) = x + x2 + x22

+ · · · + x2n−1
is the trace function from F2n to F2.

We denote by w2(j) the Hamming weight of the binary expansion
∑n−1

s=0 js2s

of j, i.e. w2(j) =
∑n−1

s=0 js and call it the 2-weight of j. Then, the function F
has algebraic degree maxj/ bj �=0 w2(j). This comes from the fact that, decom-
posing x over a basis (β1, · · · , βn), we have: x =

∑n
i=1 xiβi with xi ∈ F2 and

xj =
∏n−1

s=0 (
∑n

i=1 xiβ
2s

i)js .
If m is a divisor of n, then any (n, m)-function F can be viewed as a function

from F2n to itself, since F2m is a sub-field of F2n .
As shown by Rivain and Prouff [36], to allow counter measures to side channel

attacks which do not reduce too much the speed of the cipher, the univariate
representation of the S-boxes involved in a block cipher should be calculable
with a sufficiently small number of nonlinear multiplications (recall that multi-
plying an element by a constant is a linear function as well as multiplying the
element by itself, and that multiplying the element by its square, for instance, is
a nonlinear multiplication). This condition is clearly not contradicory with the
need of efficiency of the S-box in terms of computability but it may represent a
limitation for ensuring the other properties listed above.

An (n, m)-function F is balanced (that is, |F−1(z)| = 2n−m for every z ∈ F2m)
if and only if its component functions are balanced (i.e. have Hamming weight
2n−1) [28].

The nonlinearity nl(F) of an (n, m)-function F is the minimum Hamming
distance between all the component functions of F and all affine functions on n
variables and quantifies the level of resistance of the S-box to the linear attack
[31]. We have:

nl(F) = 2n−1 − 1
2

max
v∈Fm

2
∗; u∈Fn

2

|WF (u, v)| . (3)

Two main upper bounds are known on the nonlinearity:
1. the covering radius bound:

nl(F) ≤ 2n−1 − 2n/2−1

which can be directly derived from Parseval’s relation and from (3); it is tight
if and only if n is even and m ≤ n/2, as proved by Nyberg [32]. The functions
achieving it with equality are those such that WF (u, v) = ±2n/2 for every v �= 0
and u; they are called bent. Since bent functions exist only for m ≤ n/2 which
seems too small with respect to n, they are not used as S-boxes (a second reason
for this is that they are not balanced). But they can be used to build S-boxes
(see [17]).

4 C. Carlet

2. the Sidelnikov-Chabaud-Vaudenay bound1 (in brief, SCV bound) [37,22], valid
for m ≥ n− 1:

nl(F) ≤ 2n−1 − 1
2

√
3× 2n − 2− 2

(2n − 1)(2n−1 − 1)
2m − 1

which equals the covering radius bound when m = n − 1 and is strictly better
when m ≥ n. As proved in [22], the SCV bound is tight if and only if m = n (it
simplifies then to nl(F) ≤ 2n−1− 2

n−1
2) and if n is odd (the functions achieving

it with equality are those such that WF (u, v) ∈ {0,±2
n+1
2 } for every v �= 0 and

u; they are called almost bent, in brief, AB). Note that the SCV bound confirms
for m ≥ n only that no bent function exists for m > n/2 and obtaining a bound
better than the covering radius bound for n/2 < m < n is an open problem.

An (n, m) function is bent if and only if all its derivatives DaF (x) = F (x) +
F (x+ a), a ∈ Fn

2
∗, are balanced. Bent functions are also called perfect nonlinear

(in brief, PN) for this reason. They allow optimal resistance to both the linear
attack and the differential attack. But as we already mentioned, they do not
exist for n = m; in this case and for n odd, it is the AB functions which oppose
optimal resistance. For n even, the best possible nonlinearity is unknown; we
know it lies between 2n−1− 2n/2 (value provably achieved by the nonlinearity of
a few functions, see below) and 2n−1−2n/2−1. As proved in [22], any AB function
is almost perfect nonlinear (in brief, APN). An (n, n)-function (where n can be
odd or even) is APN if all its derivatives DaF , a ∈ Fn

2
∗, are 2-to-1 (i.e. every

element of Fn
2 has 0 or 2 pre-images by DaF). Such APN (n, n)-functions, whose

notion has been studied by Nyberg in [35], contribute to an optimal resistance
to the differential attack [1]. APN-ness does not imply back AB-ness, except for
quadratic functions when n is odd or more generally for functions having Walsh
spectra divisible by 2

n+1
2 [16].

More generally, F is called differentially δ-uniform if, for every nonzero a and
every b, the equation DaF (x) = b has at most δ solutions (that is, any derivative
is at most δ-to-1).

These notions, as well as the nonlinearity, are invariant under affine equiv-
alence; two functions are called affine equivalent if one is equal to the other,
composed on the left and on the right by affine permutations. More gener-
ally, these notions are preserved by extended affine equivalence (in brief, EA-
equivalence); two functions are called EA-equivalent if one is affine equivalent
to the other, added with an affine function. Still more generally, these no-
tions are CCZ-invariant; two functions are called CCZ-equivalent if their graphs
{(x, y) ∈ Fn

2 ×Fn
2 | y = F (x)} and {(x, y) ∈ Fn

2 × Fn
2 | y = G(x)} are affine equiv-

alent, that is, if there exists an affine automorphism L = (L1, L2) of Fn
2 × Fn

2

such that y = F (x) ⇔ L2(x, y) = G(L1(x, y)). Denoting F1(x) = L1(x, F (x))
and F2(x) = L2(x, F (x)), we have then G = F2 ◦ F−1

1 . A permutation and its
inverse are CCZ-equivalent. It is shown in [15] that CCZ-equivalence is more
general than EA-equivalence extended by allowing replacing the permutations
1 Sidelnikov proved it first in the framework of sequences - hence, for power functions

- and Chabaud-Vaudenay proved it for all functions.

On Known and New Differentially Uniform Functions 5

by their inverses. The algebraic degree is EA-invariant (when it is strictly larger
than 1), but not CCZ-invariant.

A lot of work has been done during the last ten years to find new APN
or differentially 4-uniform functions. However few have been found, and none
possesses all the desired features. The research in the domain of S-boxes for
block ciphers progresses slowly. A reason why so few infinite classes of good
vectorial functions are know is that, contrarily to Boolean functions (e.g. bent
functions or more generally Boolean functions with good nonlinearity, resilient
functions, ...), no secondary construction (that is, construction of good functions
in some number of variables from known functions in another - smaller or equal
- number of variables) is known.

Only one sporadic example of an APN permutation in even number of vari-
ables is known [23]. This 6 variable function, found by Dillon and Wolfe, is
complex to compute. There exist also few differentially 4-uniform permutations.
The most famous example is the multiplicative inverse function (used with 8
input bits in the AES). It has very good characteristics, except that it has a
peculiarity representing a potential risk that we shall detail below: its graph
has low degree annihilators. Another differentially 4-uniform function found in
[5] is interesting but has some drawbacks (see below). In fact, finding infinite
classes of APN or differentially 4-uniform permutations in even numbers of in-
put variables (hopefully equal to powers of two), with high (or at least, not low)
algebraic degrees and whose graphs have no low degree annihilator is an open
problem which does not seem easily solvable. And finding such S-boxes with a
large nonlinearity is still more open.

In this paper, after a survey of the constructions of APN and differentially 4-
uniform functions, we propose in Section 3 a new construction of a differentially
4-uniform permutation over Fn

2 (n odd) based on the APN power function x3 over
F22n+2 and related to the Dickson polynomial of index 3. We study the algebraic
degree of this function and its nonlinearity. We also generalize the function to
the case n even. We hope that the new way of constructing differentially 4-
uniform functions presented in this section can lead to functions gathering all
the necessary features.

2 The Know AB, APN and Differentially 4-Uniform
Functions and Their Respective Drawbacks

2.1 AB and APN Functions

• The most numerous interesting known functions are power functions x �→ xd on
the field F2n . There are two reasons for that: (1) a power function is APN, that
is, its derivatives DaF , a �= 0, are all at most δ-to-1 if and only if one of them
(any of them) is at most δ-to-1; hence the density of APN (resp. differentially 4-
uniform) functions is higher for power functions than for general (n, n)-functions
(2) the notion of AB power function xd corresponds in sequence theory to the fact
that the decimation by d of an m-sequence has optimal crosscorrelation with the

6 C. Carlet

original m-sequence; so much work had been already done for power functions in
the framework of the research of good sequences for telecommunications when
the notion of AB function appeared in 1994.

We list below the exponents of the known APN or AB power functions. Of
course, the functions xd and x2jd are affine equivalent for every j, so we shall
give only one value of d for each cyclotomic coset of 2 mod 2n − 1; also, power
APN functions are permutations when n is odd as proved by Dobbertin (see his
proof reported in [19]), and if a function is AB (resp. APN) and bijective, its in-
verse is AB (resp. APN); so we shall also omit 1/d when d is co-prime with 2n−1:

– d = 2i + 1 with gcd(i, n) = 1; these Gold functions are AB for every odd n
and APN for every even n, in which case they have best known nonlinearity
as well: 2n−1 − 2n/2. But they have algebraic degree 2 and cannot be used
as S-boxes.

– d = 22i − 2i + 1 with gcd(i, n) = 1; these Kasami functions have the same
properties as the Gold functions and have larger degree (precisely i + 1 if
i < n/2). They have best known nonlinearity 2n−1 − 2n/2 for n even as
well. For n odd, they are related to quadratic functions by the fact that
d = 23i+1

2i+1 and 2i + 1 is co-prime with 2n − 1, which means that the Kasami
functions have the form F (x) = Q2 ◦Q−1

1 (x) where Q1 and Q2 are quadratic
permutations; this has some similarity with a function CCZ-equivalent to a
quadratic function. Maybe this could be used in an extended higher order
differential attack.

– d = 2(n−1)/2 + 3 (Welch function) is an AB permutation for every odd n.

–
d = 2(n−1)/2 + 2(n−1)/4 − 1; n ≡ 1 (mod 4)
d = 2(n−1)/2 + 2(3n−1)/4 − 1; n ≡ 3 (mod 4)

(Niho functions): idem.

– d = 2n − 2, n odd (inverse function) is an APN involution for every odd n;
it has nonlinearity the highest even number bounded above by 2n−1 − 2n/2.

– d = 2
4n
5 + 2

3n
5 + 2

2n
5 + 2

n
5 − 1 ((Dobbertin function) is an APN function for

every n divisible by 5. Note that n divisible by 5 is not favorable to efficiency
in software. Also, its nonlinearity is not very good
All these APN functions are not balanced when they are in even dimension
(moreover, Gold functions are quadratic and Kasami functions may be re-
lated to quadratic functions); this is why the differentially 4-uniform inverse
function was preferred for the AES (see below).

• Non-power functions:

– some non-quadratic AB functions (for n odd) and APN functions (for n
even), new up to EA-equivalence have been found in [15] by applying CCZ-
equivalence to Gold functions; but a risk exists that the higher order differ-
ential attacks could be extended to functions CCZ-equivalent to quadratic
functions.

– several infinite classes of quadratic AB and APN functions CCZ-inequivalent
to power functions have been found in [2,3,12,13]. These functions being
quadratic cannot be used as S-boxes.

On Known and New Differentially Uniform Functions 7

– a classification under CCZ-equivalence of all APN functions up to dimension
five and a (non-exhaustive) list of CCZ-inequivalent functions in dimension
6 have been given in [7]. APN functions in dimensions 6, 7 and 8 have been
obtained in [8]. One of the functions in dimension 6 is CCZ-inequivalent to
power functions and to quadratic functions, as proved by Edel and Pott in
[24]. This function is:

x3 + α17(x17 + x18 + x20 + x24) + tr2(x21) + tr3(α18x9)
+α14 tr6 (α52x3 + α6x5 + α19x7 + α28x11 + α2x13).

It equals the sum of a quadratic APN function and a cubic Boolean function
(it has been searched this way).

– an example of APN permutation in 6 variables has been given by J. Dillon
at conference Fq 9 (the problem of finding an example of APN permutation
in even number of variables had been open for ten years). But it is CCZ-
equivalent to a quadratic function and its expression is complex.
Open problem: do there exist infinite classes of APN permutations in even
numbers of variables?

Differentially 4-uniform functions

• The multiplicative inverse function is differentially 4-uniform when n is even
[35] (and this function is used as the S-box of the AES with n = 8). It has
optimal nonlinearity 2n−1 − 2n/2. But it is the worst possible with respect
to algebraic attacks (which are not yet efficient but which represent a threat)
since denoting y = x2n−2 = 1

x (with 1
0 = 0) we have the bilinear relation

x2y = x and other relations of the same kind having more generally global
algebraic degree 2.
• Differentially 4-uniform functions can be obtained from APN functions by

adding a Boolean function, or composing (on the right or on the left) by
2-to-1 affine functions but this does not seem to be a good way of designing
S-boxes.
• The Gold functions x2i+1 such that gcd(i, n) = 2 are straightforwardly differ-

entially 4-uniform, but these functions are quadratic; the Kasami functions
x22i−2i+1 such that n is divisible by 2 but not by 4 and gcd(i, n) = 2 are
also differentially 4-uniform [6].
• Several other infinite classes of differentially 4-uniform quadratic functions

have been found but clearly cannot be chosen as S-boxes.
• The functions x2n−1−1 + ax5 (n odd, a ∈ F2n) and x2n/2+2n/4+1 (n divisible

by 4) are differentially 4-uniform, as shown in [6,5], but the first one, which
is close to the inverse function, is never bijective as proved by Leander in
a personal communication and its nonlinearity has not been studied; the
second one, which is interesting because it has a very good (best known)
nonlinearity 2n−1 − 2n/2 and is a power function over F2n (which simplifies
its computation), has algebraic degree 3 which is insufficient for a concrete
use; moreover, it is a permutation only when the number of variables is
divisible by 4 but not by 8.

8 C. Carlet

• Non-quadratic differentially 4-uniform functions can be obtained by concate-
nating the outputs to a bent function and to another function [17]:
– The function (x, y)→ (xy, (x3 + w)(y3 + w′)), where w, w′ and w

w′ belong
to F2n/2 \ {x3, x ∈ F2n/2}, with n/2 even.
– The function (x, y)→ (xy, x3(y2 + y + 1) + y3), with n/2 odd.
– The function F : X ∈ F2n → (X2n/2+1, (X2n/2+1)3 + wX3 + (wX3)2

n/2
),

which has algebraic degree 4). These functions (which have the interest of
being already decomposed over F2n/2 without any extra work) are not per-
mutations and have not very good nonlinearities.

So, except for the multiplicative inverse function (which has however a poten-
tial weakness) and maybe for the Kasami functions (but these functions may be
too close in some sense to quadratic functions), the known APN functions have
all drawbacks. Hence, the research of more APN functions, hopefully having all
the desired features, must continue.

3 A Way of Constructing Differentially Uniform
Permutations

Recall that, given any integer n, every element u of F∗
2n can be expressed uniquely

in the form h+ 1
h where h ∈ F∗

22n , since the equation h+ 1
h = u being equivalent

to
(

h
u

)2
+ h

u = 1
u2 , has two solutions inverses of each other and differing by u,

because tr2n

(
1
u2

)
= 0. This allows for every positive integer d to define the so-

called Dickson polynomial Dd(X) over F2n , such that Dd

(
h + 1

h

)
= hd + 1

hd for
every h ∈ F22n (Dd is a permutation polynomial if d is co-prime with 22n − 1).
We have D0(X) = 0, D1(X) = X and Dd+2(X) = XDd+1(X) + Dd(X) for
every d (which implies that Dd(F2n) ⊆ F2n). It is a simple matter to check that
D3 is APN and D5 is differentially 4-uniform. But D3(X) = X3 + X differs by
a linear function from a Gold function, and so is not new, and D5 having degree
5 (as univariate polynomial), its differential 4-uniformity is trivial.

Remark 1. More generally, for every v ∈ F∗
2n , every element u of F∗

2n can be
expressed uniquely in the form h + v

h where h ∈ F∗
22n which allows defining

Dd(X, v) equal by definition to hd +
(

v
h

)d. In [25], the fact that, for some d,
function v �→ Dd(a, v) (called reversed Dickson polynomial) is a permutation
polynomial on F2n is related to the fact that Xd is APN on F2n (resp. on F22n).

We show now a way of designing functions which can be APN or differentially 4-
uniform and which can also be permutations (we illustrate it with an example).
The idea is, instead of using the field structure of F2n , to use that of F2n+1 .
This leads to identifying an affine hyperplane in this field and a function which
maps this hyperplane to a hyperplane as well. This simple idea may lead to more
numerous easily computable APN or differentially 4-uniform functions. Let us
illustrate it with a precise construction.

On Known and New Differentially Uniform Functions 9

Let N = n+1 and q = 2N . We identify any binary vector x ∈ Fn
2 as an element

of the linear hyperplane H = {x ∈ Fq | trN (x) = 0}, where trN (x) =
∑N−1

i=0 x2i

is the trace function from Fq to F2. This identification is possible (through the
choice of a basis of H) because Fn

2 and H are both n-dimensional F2-vectorspaces.
Let α be a fixed element in Fq \H . Then x+α ranges over Fq \H when x ranges
over H . Let tr2N denote the trace function from Fq2 to F2 and Tr2N

N (x) = x+xq

the trace function from Fq2 to Fq. We need the known lemma below (we give a
proof, to be self-contained).

Lemma 1. Let U = {xq−1 , x ∈ F∗
q2} be the (q + 1)-th order multiplicative sub-

group of F∗
q2 . The image of U \{1} by Tr2N

N equals the set { 1
u ; u ∈ Fq , trN (u) =

1} and every element of this set is exactly the image of two conjugate elements
h and hq = 1

h of U \ {1} by Tr2N
N .

Proof. For every h ∈ U \ {1}, we have Tr2N
N (h) �= 0 since kerTr2N

N = Fq and
U ∩ Fq = {1}.
By definition of U , we have hq+1 = 1 and therefore Tr2N

N (h) = h + 1
h and thus,

if h �= 1: trN

(
1

Tr2N
N (h)

)
= trN (h

h2+1) = trN (1
h+1 + 1

h2+1) = 1
h+1 + 1

hq+1 =
1

h+1 + 1
1
h +1

= 1.

For every u ∈ F∗
q such that trN

(
1
u

)
= 1, the elements h ∈ F∗

q2 such that h+ 1
h = u,

that is such that
(

h
u

)2
+ h

u = 1
u2 do not belong to Fq since trN

(
1
u2

)
= trN

(
1
u

) �= 0

and since h
u ∈ Fq would imply trN

((
h
u

)2
+ h

u

)
= 0, a contradiction. Moreover

if h is a solution then hq is also a solution; hence h and hq are the two distinct
solutions of the equation h2 + uh + 1 = 0; their product hq+1 equals 1 and their
sum h + hq equals u. Hence h belongs to U \ {1} and satisfies Tr2N

N (h) = u. �

Remark 2. A simpler way of proving the surjectivity of Tr2N
N from U \ {1} to

{ 1
u ; u ∈ Fq , trN (u) = 1} and the second part of Lemma 1 is to observe

that since two elements of U have the same trace Tr2N
N if and only if they

are conjugate, the image of U \ {1} has q/2 elements, but the way we prove it
above gives a little more insight. Note that the polynomial z2 +Tr2N

N (h)z + 1 =
(z + h)(z + hq) is the minimal polynomial of h over Fq.

We can now introduce our construction:

Definition 1. Let n be any positive integer and N = n + 1, q = 2N . Let d be
any integer co-prime with q +1. Let α ∈ Fq be such that trN (α) = 1. We denote
by Fd the function from Fn

2 to itself defined as follows:

– We identify the input x with an element of H = {u ∈ Fq , trN (u) = 0};
– Let h and hq = 1

h be the elements of U\{1} such that Tr2N
N (h) = Tr2N

N

(
1
h

)
=

h+ 1
h = 1

x+α (these elements exist and are unique up to conjugacy, according
to Lemma 1);

– We define Fd(x) = 1
Tr2N

N (hd)
+ α = 1

hd+ 1
hd

+ α = 1
Dd(1

x+α)
+ α ∈ H (viewed

as an element of Fn
2).

10 C. Carlet

For every d, function Fd is well defined because, for every h ∈ U \{1}, hd belongs
to U \ {1} and h �→ hd commutes with h �→ hq.
Note that 3 is coprime with q + 1 if and only if N is even (that is, n is odd) and
5 is coprime with q + 1 if and only if N is not congruent with 2 modulo 4 (that
is, n is not congruent with 1 modulo 4).

Proposition 1. For every positive integer n and every integer d coprime with
q + 1, the function Fd defined above is a permutation of Fn

2 .

Indeed, d being coprime with q + 1, the function h �→ hd is a permutation of
U \ {1} and we have: {h, 1

h} �= {h′, 1
h′ } ⇒ {hd, 1

hd } �= {h′d, 1
h′d }.

Proposition 2. For every N even, F3(x) equals x + 1
(x+α+1) + 1

(x+α+1)2 and
has algebraic degree n− 1.

Proof. We have F3(x) = (x+α)3

x2+α2+1 + α = x3+α2x+α
x2+α2+1 = x + x+α

(x+α+1)2 = x +
1

(x+α+1) + 1
(x+α+1)2 . To study the algebraic degree we need to extend a well-

known result in Lemma 2 below. We apply this lemma to the function F (x) =
F3(x + α + 1). Taking k = n − 1, we have i = 0 and

∑
x / trN (x)=1

F (x) =

∑
x∈F∗

2N

(
trN (x)

x
+
(

trN (x)
x

)2
)

= 1 + 1 = 0, since for every x ∈ F∗
2N , we have

trN (x)
x = 1+x+ · · ·+x2N−1−1 and since

∑
x∈F2N

(1+x+ · · ·+x2N−1−1) = 0; and

taking k=n−2 and i=1, we have
∑

x/ trN (x)=1

xF (x)=
∑

x∈F∗
2N

(
trN (x) +

trN (x)
x

)
=1.

This completes the proof. �

Hence the algebraic degree of F3 is optimal for an (n, n)- permutation.

Lemma 2. Let n ≤ N , let F be the restriction to an n-dimensional affine space
E of a function F ′ from F2N to F2N and let k be a positive integer. Then F has
algebraic degree at most k if and only if, for every integer i of 2-weight at most
n− k − 1, we have

∑
x∈E xiF (x) = 0.

Proof. F has algebraic degree at most k if and only if, for every a, the Boolean
function trN (aF (x)) over E has algebraic degree at most k, that is, if and only
if for every Boolean function h of algebraic degree at most n− k − 1 over F2N ,
we have

∑
x∈E trN (aF (x))h(x) = 0, that is,

∑
x∈E trN (aF (x)h(x)) = 0. This

is equivalent to
∑

x∈E F (x)h(x) = 0 for every Boolean function h of algebraic
degree at most n−k−1 and therefore for every vectorial function h of algebraic
degree at most n− k− 1. The set of functions xi, w2(i) ≤ n− k− 1 generates all
vectorial functions h of algebraic degrees at most n − k − 1 and this completes
the proof. �

On Known and New Differentially Uniform Functions 11

Remark 3. Hence, the rather complex Definition 1 simplifies with Proposition
2; this gives a new approach: we know that what makes the inverse function not
APN in even dimension is only its value at 0; so we consider its restriction to
a hyperplane not containing 0, and since we need then the image to be also a
hyperplane, we compose the inverse function by the linear mapping x+x2 whose
image is the hyperplane {x ∈ F2N / trN(x) = 0}.

Remark 4. For every N �≡ 2 [mod 4], that is, n �≡ 1 [mod 4], F5(x) =
(x+α)5

x4+x2+α4+α2+1 + α = x5+α2x3+(α3+α)x2+α4x+α3+α
x4+x2+α4+α2+1 .

Proposition 3. For every positive odd integer n, function F3 is differentially
4-uniform.

Proof. According to Proposition 2, function F3 is EA-equivalent to L ◦ F where
F is the restriction to a hyperplane of the multiplicative inverse function over
F2N , and L(x) = x + x2. Since the multiplicative inverse function is APN and L
is a linear 2-to-1 function, this completes the proof. �

We can see that the differentiality of F3 is not a big deal since it is a direct
consequence of the APNness of the inverse function. However, an interesting
quality of this function is to be bijective. We know (see [29,30]) that there is no
permutation EA-equivalent to the inverse function which is not in fact affinely
equivalent to it. Here we have a different situation.

Remark 5. It can be shown similarly that function F5 is differentially 8-uniform.

Remark 6. Function F3 can be adapted to the case n even, by taking the function
x+ 1

(x+α) +
1

(x+α)2 on {x ∈ F2N / trN (x) = 0} (and not the function x+ 1
(x+α+1) +

1
(x+α+1)2 , because for N odd, α+1 has null trace). This function is differentially
4-uniform as well. Indeed, the inverse function over F2N is not APN for N even
but its restriction to a hyperplane excluding 0 is APN. Hence the same proof as
in Proposition 3 works.

Proposition 4. Function F3 and its generalization have nonlinearity at least
2n−1 − 2

n
2 +1 if n is even and 2n−1 − �2 n

2 +1� − 1 if n is odd.

Proof. The nonlinearity of F3 and of its generalization F is equal to that of the
restriction of the function 1

x + 1
x2 to the affine hyperplane {x ∈ F2N / trN (x) =

1}. For every nonzero v �∈ F2 (we need to exclude the elements v which are
orthogonal to the image {x ∈ F2N / trN (x) = 0} of the function to have one of
its component functions with v · F) and every u ∈ F2N we have∑

x∈F2N / trN (x)=1

(−1)trN

(
v
(

1
x +(1

x)2
)
+ux

)
=

1
2

⎛⎝ ∑
x∈F2N

(−1)trN

(
v
(

1
x +(1

x)2
)
+ux

)
−
∑

x∈F2N

(−1)trN

(
v
(

1
x +(1

x)2
)
+(u+1)x

)⎞⎠ =

12 C. Carlet

1
2

⎛⎝ ∑
x∈F2N

(−1)trN

(
(v+v2N−1

) 1
x +ux

)
−
∑

x∈F2N

(−1)trN

(
(v+v2N−1

) 1
x +(u+1)x

)⎞⎠ .

We know according to Lachaud and Wolfmann [27] that the set of values of
each of these two sums equals the set of all integers s ≡ 0 [mod 4] in the range
[−2n/2+1 + 1; 2n/2+1 + 1], this completes the proof, using (3). �

The table below compares the values of the nonlinearities of F3, computed for
small n, with the values given by our bound.

n N bound nl(F3)
7 8 48 50
9 10 224 226
11 12 960 962

The nonlinearity of F3 is less than that of the inverse function but it is still
interesting. Note that its values are different from the nonlinearities of the known
APN functions, so F3 is CCZ-inequivalent to them.

Remark 7. Recall that with the inverse function y = x2n−2, x ∈ F2n , we had
x2y = x. Here we do not seem to have bilinear relations but we have quadratic
ones: (x + α)2y = 1 + x + α + x3 + α2x.

Remark 8. According to the calculations above, we have∑
x∈F2N / trN (x)=1

(−1)trN

(
v
(

x+ 1
x +(1

x)2
))

=

1
2

⎛⎝ ∑
x∈F2N

(−1)trN

(
(v+v2N−1

) 1
x +vx

)
−
∑

x∈F2N

(−1)trN

(
(v+v2N−1

) 1
x +(v+1)x

)⎞⎠ .

Since F3 is a permutation for n odd, we deduce the following property of Kloost-
erman sums: for every even N and every v ∈ F2N \ F2, we have∑

x∈F2N
(−1)trN

(
(v+v2N−1

) 1
x +vx

)
=
∑

x∈F2N
(−1)trN

(
(v+v2N−1

) 1
x +(v+1)x

)
.

Remark 9. We studied other functions:

1. Under the hypotheses of Definition 1, let β ∈ Fq2 be such that Tr2N
N (β) = 1

and let H ′ be a linear hyperplane of Fq (we can take H ′ = H or any other
hyperplane). We can then define the function Gd as follows: for every x ∈ H ,
let h and hq be the elements of U \ {1} such that Trq2

q (h) = Trq2

q (hq) = 1
x+α ,

as above. Note that β + hd

Trq2
q (hd)

belongs to Fq since Trq2

q

(
hd

Trq2
q (hd)

)
= 1 and

Fq = {z ∈ Fq2 |Trq2

q (z) = 0}. We define Gd(x) = β + hd

Trq2
q (hd)

(identified with an

element of Fn
2) if β + hd

Trq2
q (hd)

∈ H ′, and Gd(x) = γ + β + hd

Trq2
q (hd)

= β + hdq

Trq2
q (h)

On Known and New Differentially Uniform Functions 13

otherwise, where γ ∈ Fq \ H ′. This function is well defined since the output
does not depend on the choice between h and hq. But it is linearly equivalent to

Fd: taking H ′ = H , it equals β + hd

Trq2
q (hd)

+ γ trq

(
β + hd

Trq2
q (hd)

)
= 1

Trq2
q (hd)

+

γ trq

(
1

Trq2
q (hd)

)
+ cst. So it equals Fd composed with a linear function, which

is necessarily a permutation since otherwise, Gd could not be differentially 4-
uniform for d = 3.
2. Let Hd be defined as follows: Hd(x) = (β+x)d(q−1)

Tr2N
N ((β+x)d(q−1))

+ β. It is well defined

and bijective since it equals the function x ∈ Fq �→ (β +x)q−1 ∈ U \ {1} which is
bijective since β �∈ Fq, composed with the function h ∈ U \ {1} �→ hd ∈ U \ {1},
the function h ∈ U \ {1} �→ h

Tr2N
N (h)

∈ {z ∈ Fq2 |Tr2N
N (z) = 1} and the function

z ∈ Fq2 |Tr2N
N (z) = 1 �→ β + z ∈ Fq. But the resulting function does not seem to

be differentially δ-uniform for interesting values of δ as computer investigation
suggests.

Acknowledgement. We thank Lilya Budaghyan for a nice observation on how
proving the differentiality of the function. We also thank Tomas Roche for his
computer investigations and Gregor Leander for a useful information.

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology 4(1), 3–72 (1991)

2. Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost
perfect nonlinear trinomials and multinomials. Finite Fields and their Applica-
tions 14, 703–714 (2008)

3. Bracken, C., Byrne, E., Markin, N., McGuire, G.: A few more quadratic APN
functions. arXiv:0804.4799v1 (2007)

4. Bracken, C., Byrne, E., McGuire, G., Nebe, G.: On the equivalence of quadratic
APN functions. To appear in Designs, Codes and Cryptography (2011)

5. Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power
mapping that permutes fields of even degree. Finite Fields and Their Applica-
tions 16(4), 231–242 (2010)

6. Bracken, C., Leander, G.: New families of functions with differential uniformity of
4. In: Proceedings of the conference BFCA 2008, Copenhagen (2008) (to appear)

7. Brinkmann, M., Leander, G.: On the classification of APN functions up to
dimension five. Designs, Codes and Cryptography 49(1-3), 273–288 (2008); Re-
vised and extended version of a paper with the same title in the Proceedings of
the Workshop on Coding and Cryptography WCC 2007, pp. 39-48 (2007)

8. Browning, K., Dillon, J.F., Kibler, R.E., McQuistan, M.: APN polynomials and
related codes. Special volume of Journal of Combinatorics, Information and Sys-
tem Sciences, honoring the 75-th birthday of Prof. D.K.Ray-Chaudhuri 34, 135–
159 (2009)

9. Budaghyan, L.: The simplest method for constructing APN polynomials
EA-inequivalent to power functions. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007.
LNCS, vol. 4547, pp. 177–188. Springer, Heidelberg (2007)

14 C. Carlet

10. Budaghyan, L., Carlet, C.: Classes of Quadratic APN Trinomials and Hexanomials
and Related Structures. IEEE Trans. Inform. Theory 54(5), 2354–2357 (2008)

11. Budaghyan, L., Carlet, C.: On CCZ-equivalence and its use in secondary con-
structions of bent functions. In: Proceedings of WCC 2009 (2009)

12. Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials
inequivalent to power functions. IEEE Trans. Inform. Theory 54(9), 4218–4229
(2008)

13. Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from
known ones. Finite Fields and Applications 15(2), 150–159 (2009)

14. Budaghyan, L., Carlet, C., Leander, G.: On a construction of quadratic APN func-
tions. In: Proceedings of ITW workshop, Taormina, Italy, October 11-16 (2009)

15. Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost
Perfect Nonlinear Polynomials. In: Proceedings of the Workshop on Coding and
Cryptography 2005, Bergen, pp. 306–315 (2005); A completed version has been
published in IEEE Trans. Inform. Theory 52(3), 1141–1152 (March 2006)

16. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued
crosscorrelation: A proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1),
4–8 (2000)

17. Carlet, C.: Relating three nonlinearity parameters of vectorial functions and
building APN functions from bent functions. Designs, Codes and Cryptography
59(1-3), 89–109 (2010); post-proceedings of WCC 2009

18. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In:
Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pp. 257–397. Cambridge University Press,
Cambridge (2010); Preliminary version available at
http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html

19. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, Y.,
Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, pp. 398–469. Cambridge University Press, Cambridge
(2010); Preliminary version available at
http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html

20. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2),
125–156 (1998)

21. Carlet, C., Ding, C.: Nonlinearities of S-boxes. Finite Fields and its Applica-
tions 13(1), 121–135 (2007)

22. Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

23. Dillon, J.F.: APN polynomials: an update. In: Conference Finite Fields and
Applications Fq9, Dublin, Ireland (July 2009)

24. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic.
Advances in Mathematics of Communications 3(1), 59–81 (2009)

25. de Hou, X., Mullen, G.L., Sellers, J.A., Yucas, J.L.: Sellers and J. L. Yucas.
Reversed Dickson polynomials over finite fields. Finite Fields and Their Applica-
tions 15(6), 748–773 (2009)

26. Knudsen, L.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

27. Lachaud, G., Wolfmann, J.: The Weights of the Orthogonals of the Extended
Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)

http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html
http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html

On Known and New Differentially Uniform Functions 15

28. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its
Applications, vol. 20. Addison-Wesley, Reading (1983)

29. Li, Y., Wang, M.: On EA-equivalence of certain permutations to power mappings.
Designs, Codes and Cryptography 58(3), 259–269 (2010)

30. Li, Y., Wang, M.: On permutation polynomials EA-equivalent to the inverse func-
tion over GF(2n). IACR ePrint Archive 2010/573

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

32. Nyberg, K.: Perfect non-linear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

33. Nyberg, K.: On the construction of highly nonlinear permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg
(1993)

34. Nyberg, K.: New bent mappings suitable for fast implementation. In: Anderson,
R. (ed.) FSE 1993. LNCS, vol. 809, pp. 179–184. Springer, Heidelberg (1994)

35. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

36. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427.
Springer, Heidelberg (2010)

37. Sidelnikov, V.M.: On the mutual correlation of sequences. Soviet Math. Dokl. 12,
197–201 (1971)

New Impossible Differential Attacks of

Reduced-Round Camellia-192 and Camellia-256�

Jiazhe Chen1,2, Keting Jia3, Hongbo Yu4, and Xiaoyun Wang1,2,3,��

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

2 School of Mathematics, Shandong University, Jinan 250100, China
jiazhechen@mail.sdu.edu.cn

3 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
4 Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
{ktjia,yuhongbo,xiaoyunwang}@mail.tsinghua.edu.cn

Abstract. Camellia, which is a block cipher selected as a standard
by ISO/IEC, is one of the most widely used block ciphers. In this pa-
per, we propose several 6-round impossible differentials of Camellia with
FL/FL−1 layers in the middle of them. With the impossible differentials
and a well-organized precomputed table, impossible differential attacks
on 10-round Camellia-192 and 11-round Camellia-256 are given, and the
time complexities are 2175.3 and 2206.8 respectively. In addition, an impos-
sible differential attack on 15-round Camellia-256 without FL/FL−1 lay-
ers and whitening is also be given, which needs about 2236.1 encryptions.
To the best of our knowledge, these are the best cryptanalytic results
of Camellia-192/-256 with FL/FL−1 layers and Camellia-256 without
FL/FL−1 layers to date.

Keywords: Camellia Block Cipher, Cryptanalysis, Impossible Differen-
tial, Impossible Differential Attack.

1 Introduction

Block cipher Camellia is proposed by NTT and Mitsubishi in 2000 [1]. Its block
size is 128 bits and it supports 128-, 192- and 256-bit key sizes with 18, 24 and
24 rounds respectively. Camellia was selected as an e-government recommended
cipher by CRYPTREC [5] and recommended in NESSIE [15] block cipher port-
folio. Then it was selected as an international standard by ISO/IEC 18033-3 [8].

The structure of Camellia is Feistel structure with FL/FL−1 layers inserted
every 6 rounds. The FL and FL−1 functions are keyed linear functions which are
designed to provide non-regularity across rounds [1]. In the past years, Camellia

� Supported by 973 Project (No.2007CB807902), the National Natural Science Foun-
dation of China (Grant No.60931160442) and Graduate Independent Innovation
Foundation of Shandong University (No. 11140070613183).

�� Corresponding author.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 16–33, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 17

has attracted the attention of the cryptanalytic community. The square-type
attacks are efficient to attack Camellia, which can be used to analyze 9-round
Camellia-128 and 10-round Camellia-256 [11]. Furthermore, Hatano et al. used
the higher order differential attack to analyze the last 11 rounds Camellia-256,
with complexity 2255.6 [7].

There are a number of results on simple versions of Camellia which exclude the
FL/FL−1 layers and whitening in recent years [6,10,13,14,16,17,18,19]. Among
them, the impossible differential attacks [4] are most efficient [13,14,17,18]. Since
the existence of FL/FL−1 layers will probably destroy the impossibility, none
of the impossible differentials in these attacks includes the FL/FL−1 layers.
For the attacks of Camellia-256 without FL/FL−1 layers and whitening, the
14-round attack in [13] was pointed out to be incorrect by [20]. Later Mala et
al. [14] pointed out a flaw in [20] and showed that the time complexities of the
12-round Camellia-128 and 16-round Camellia-256 attacks were more than ex-
haustive search. As a result, the best analysis of Camellia-256 without FL/FL−1

layers and whitening dated back to [12], which was a 13-round attack with com-
plexity 2211.7.

Our Contribution. In this paper, we present 6-round impossible differentials
with FL/FL−1 layers in the middle, which turn out to be first impossible dif-
ferentials with FL/FL−1 layers. Due to one of these impossible differentials
and a precomputation table that is carefully constructed, we propose impossi-
ble differential attacks on 10-round Camellia-192 and 11-round (round 1∼11)
Camellia-256 with complexity 2175.3 and 2206.8 respectively. Then by carefully
using the subkey relations and one of the 8-round impossible differentials with-
out FL/FL−1 layers proposed in [18], we also present an impossible differential
attack on 15-round Camellia-256 without FL/FL−1 layers and whitening, and
the complexity is about 2236.1 encryptions.

The rest of this paper is organized as follows. We give some notations and
a brief description of Camellia in Section 2. Some properties of Camellia and
6-round impossible differentials with FL/FL−1 layers are given in Section 3.
Section 4 describes the impossible differential attacks on reduced-round Camellia
with FL/FL−1 layers and whitening. The impossible differential attack on 15-
round Camellia-256 without FL/FL−1 layers and whitening is illustrated in
Section 5. Finally, we conclude the paper in Section 6.

2 Preliminaries

Some notions used in this paper and a simple description of the Camellia algo-
rithm are given in this section.

2.1 Notations

Lr−1, L′r−1 : the left half of the 128-bit r-th round input
Rr−1, R′r−1 : the right half of the 128-bit r-th round input
ΔLr−1 : the difference of Lr−1 and L′r−1

18 J. Chen et al.

6 rounds

FL FL-1

6 rounds

FL FL-1

6 rounds

FL FL-1

6 rounds

KS P

KS P

KS P

KS P

KS P

KS P

∩ <<<1

klL

∩ klR

∩

∩

<<<1

klR

klL

FL-function

FL-1-function

kw1 kw2

kw3 kw4

Fig. 1. Camellia-192/-256

ΔRr−1 : the difference of Rr−1 and R′r−1

Sr, S′r: the output value of the S-box layer of the r-th round
ΔSr: the output difference of the S-box layer of the r-th round
Ai: the i-th byte of a 64-bit value A (i = 1, ..., 8)
B ≪ j: left rotation of B by j bits
XL(64): the left half of a 128-bit word X
XR(64): the right half of a 128-bit word X
YL(32): the left half of a 64-bit word Y
YR(32): the right half of a 64-bit word Y
||: the cascade of two words
x: the bitwise complement of x
⊕, ∩, ∪: bitwise exclusive-OR(XOR), AND, OR

2.2 The Camellia Algorithm

Camellia [1] is a 128-bit block cipher with Feistel structure. It has 18 rounds for
128-bit key, and 24 rounds for 192-/256-bit key. We give the encryption proce-
dure of Camellia-192/-256 as follows, see Fig. 1.

Encryption Procedure. The input of the encryption procedure is a 128-bit
plaintext M , and 64-bit subkeys kwi (i = 1, ..., 4), kr (r = 1, ..., 24) and klj

(j = 1, ..., 6). First M is XORed with kw1 and kw2 to get two 64-bit intermediate
values L0 and R0: L0||R0 = M ⊕ (kw1||kw2). Then the following operations are
carried out for i = 1 to 24, except for r = 6, 12 and 18:

Lr = Rr−1 ⊕ F (Lr−1, kr), Rr = Lr−1.

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 19

For r = 6, 12 and 18, do the following:

L∗r = Rr−1 ⊕ F (Lr−1, kr), R∗r = Lr−1.

Lr = FL(L∗r, kl2r/6−1), Rr = FL−1(R∗r, kl2r/6).

Finally the 128-bit ciphertext C is computed as: C = (R24||L24)⊕ (kw3||kw4).
The FL function is defined as: (XL(32)||XR(32), klL(32)||klR(32)) �→

(YL(32)||YR(32)), where:

YR(32) = ((XL(32) ∩ klL(32)) ≪ 1)⊕XR(32),

YL(32) = (YR(32) ∪ klR(32))⊕XL(32).

The FL−1 function is the inverse of FL function, and FL and FL−1 are linear
as long as the keys are fixed [2].

The round function F is composed of the key-addition layer, S-box layer S
and linear transformation P . In the key-addition layer, the input of the round
function is XORed with the subkey. There are four 8 × 8 S-boxes S1, S2, S3, S4

used in the S-box layer, and each S-box is used twice. Finally, the linear trans-
formation P : ({0, 1}8)8 → ({0, 1}8)8 maps (z1, ..., z8)→ (y1, ..., y8). P function
and its inverse function P−1 are:

y1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 z1 = y2 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8

y2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8 z2 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8

y3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 z3 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8

y4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z4 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y7

y5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8 z5 = y1 ⊕ y2 ⊕ y5 ⊕ y7 ⊕ y8

y6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8 z6 = y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8

y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8 z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7

y8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 z8 = y1 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8

Key Schedule. For Camellia-256, the 256-bit main key K = KL||KR, where KL

and KR are 128 bits. And for Camellia-192, the 192-bitmain key K = KL||KRL(64)

and KRR(64) = KRL(64). Using KL and KR, the key schedule algorithm first cal-
culate KA and KB, which is described in Fig. 2. Where F is the round function
of Camellia and Ci (1 ≤ i ≤ 6) are constants used as the keys. Then the subkeys
kwi (i = 1, ..., 4), kr (r = 1, ..., 24) and klj (j = 1, ..., 6) are derived from rotating
KL, KR, KA or KB. For details of Camellia, we refer to [1].

It can be known from Fig. 2 that, if KB and KR are known, KA is known.
Therefore, one can get KL using the relation between KL and KA described in
[14], Section 3.2. So once KB and KR are known, K can be computed.

3 Properties and 6-Round Impossible Differentials of
Camellia with FL/FL−1 Functions

In this section, we first give some useful properties of Camellia and then propose
several impossible differentials.

20 J. Chen et al.

F

F

F

F

F

F

KL KR

KL

KR

KA KB

C1

C2

C3

C4

C5

C6

Fig. 2. The Calculation of KA and KB

Property 1. For a 3-round Camellia structure, if the input difference is of the
form ΔLi = (0, a, 0, 0, 0, 0, 0, 0), ΔRi = (0, 0, 0, 0, 0, 0, 0, 0), then:
1. ΔLi+1 = (0, b, b, b, b, b, 0, 0), ΔSi+2 = (0, b2, b3, b4, b5, b6, 0, 0),
ΔLi+2 = ΔRi+3 = P (a, b2, b3 ⊕ a, b4 ⊕ a, b5 ⊕ a, b6 ⊕ a, 0, 0),
2. ΔSi+3

l = (P−1(ΔLi+3))l, for l = 1, 3, 4, ..., 8,
where a, b, b2, b3, b4, b5, b6 are non-zero bytes.

Property 2. For a 3-round Camellia structure, the necessary conditions of
ΔLi+3 = (0, 0, 0, 0, 0, 0, 0, 0) and ΔRi+3 = (0, a, 0, 0, 0, 0, 0, 0) are:
1. ΔLi+1 = (0, b, b, b, b, b, 0, 0), ΔSi+2 = (0, b2, b3, b4, b5, b6, 0, 0),
ΔLi = P (a, b2, b3 ⊕ a, b4 ⊕ a, b5 ⊕ a, b6 ⊕ a, 0, 0), and
2. ΔSi+1

l = (P−1(ΔRi))l, for l = 1, 3, 4, ..., 8,
where a, b, b2, b3, b4, b5, b6 are non-zero bytes.

To better describe the properties, we also illustrate them in Fig. 3. Property 1.1
and 2.1 are trivial, which have been used in most previous impossible attacks of
Camellia. Property 1.2 and 2.2 are also simple, but to the best of our knowledge,
none of the previous attacks used them. The proofs of the properties are similar
and the proof of Property 1 is given as an example.

Proof. Apparently, ΔSi+1 is of the form (0, b, 0, 0, 0, 0, 0, 0), where b an is un-
known non-zero byte. And ΔLi+1 = (0, b, b, b, b, b, 0, 0) as P function is linear.
After the key-addition layer and S-box layer, it can be obtained that ΔSi+2 =
(0, b2, b3, b4, b5, b6, 0, 0), where b2, b3, b4, b5 and b6 are unknown non-zero bytes.

Since ΔLi+2 = P (ΔSi+2)⊕ΔLi and P−1(ΔLi) = (a, 0, a, a, a, a, 0, 0),

ΔLi+2 = P (a, b2, b3 ⊕ a, b4 ⊕ a, b5 ⊕ a, b6 ⊕ a, 0, 0).

Finally, because ΔSi+3 = P−1(ΔLi+1 ⊕ ΔLi+3), P−1(ΔLi+1) = (0, b, 0, 0, 0,
0, 0, 0) and P−1 function is linear,

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 21

KS P

KS P

KS P

KS P

KS P

KS P

ΔLi (0,a,0,
0,0,0,0,0)

ΔRi=(0,0,0,
0,0,0,0,0)

ΔLi+1=(0,b,b,
b,b,b,0,0)

ΔSi+2=(0,b2,b3,
b4,b5,b6,0,0)

ΔSi+1

ΔLi+2=P(a,b ,
b a,b a,b
a,b a,0,0)

ΔSi+3

ΔLi+3 ΔRi+3

ΔLi=P(a,b ,b
a,b a,b a,
b a,0,0)

ΔSi+1 ΔRi

ΔLi+1=(0,b,b,
b,b,b,0,0)

ΔSi+2=(0,b2,b3,
b4,b5,b6,0,0)

ΔLi+2 (0,a,
0,0,0,0,0,0)

ΔLi+3=(0,0,
0,0,0,0,0,0)

ΔRi+3 (0,a,
0,0,0,0,0,0)

ΔSi+3

Fig. 3. Properties of 3-round Camellia

ΔSi+3
l = (P−1(ΔLi+3))l, for l = 1, 3, 4, ..., 8. �

Property 3. (from [9]) Let x, x′, k be 32-bit values, and Δx = x⊕x′, then the
differential properties of AND and OR operations are:

(x ∩ k)⊕ (x′ ∩ k) = (x⊕ x′) ∩ k = Δx ∩ k,

(x ∪ k)⊕ (x′ ∪ k) = (x⊕ k ⊕ (x ∩ k))⊕ (x′ ⊕ k ⊕ (x′ ∩ k)) = Δx⊕ (Δx ∩ k).

Property 4. Let M = (m1, m2, m3, m4, m5, m6, m7, m8) be the input difference
of FL function, and N = (n1, n2, n3, n4, n5, n6, n7, n8) be the the output differ-
ence of FL, where nl, ml (l = 1, ..., 8) are arbitrary 8-bit values. Then if ni = 0
(i ∈ {5, 6, 7, 8}), ni−4 = mi−4.

Proof. Let us denote the subkey used for AND operation as kL and the subkey
used for OR operation as kR. By Property 3, the following equations must hold:

((ML(32) ∩ kL) ≪ 1)⊕MR(32) = NR(32)

ML(32) ⊕NR(32) ⊕ (NR(32) ∩ kR) = NL(32) (1)

Then if ni = 0 (i ∈ {5, 6, 7, 8}), it can be deduced from Equation (1) that
ni−4 = mi−4. �

Impossible Differential. Now we demonstrate that the 6-round differential
in Fig. 4 is impossible. The input difference is

((0, 0, 0, 0, 0, 0, 0, 0); (0, a, 0, 0, 0, 0, 0, 0)),

where a is arbitrary non-zero byte. The output difference of the first round is

((0, a, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0)).

Then by Property 1, the output differences of the second round and third round
are

22 J. Chen et al.

KS P

KS P

KS P

KS P

FL

KS P

KS P

(0,0,0,0,0,0,0,0)
(0,a,0,0,0,0,0,0)

(0,a,0,0,0,0,0,0)

(0,b,b,b,b,b,0,0)

(0,b,b,b,b,b,0,0)

(0,b2,b3,b4,b5,b6,0,0)

(c1,c2,c3,c4,c5,c6,c7,c8)

(c1,c2 a,c3,c4,
c5,c6,c7,c8)

(0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(0,e,0,0,0,0,0,0)

(0,e,0,0,0,0,0,0)
(0,d,d,d,d,d,0,0)

FL-1

(0,d,d,d,d,d,0,0)

(0,d2,d3,d4,d5,d6,0,0)

(f1,f2 e,f3,f4,f5,
f6,f7,f8)

(0,b,b,b,b,b,0,0)

∩ <<<1

kL

∩ kR

(c1,c2 a,c3,c4) (c5,c6,c7,c8)

(0,d,d,d) (d,d,0,0)

(0,b,b,b)

∩

∩

<<<1

kR

kL

(b,b,0,0)

(f1,f2 e,f3,f4) (f5,f6,f7,f8)

FL-function

FL-1-function

Fig. 4. 6-round Impossible Differential with the FL/FL−1 Layer in the Middle

((0, b, b, b, b, b, 0, 0); (0, a, 0, 0, 0, 0, 0, 0)) and
((c1, c2 ⊕ a, c3, c4, c5, c6, c7, c8); (0, b, b, b, b, b, 0, 0))

with probability 1, as long as

(c1, c2, c3, c4, c5, c6, c7, c8) = P (0, b2, b3, b4, b5, b6, 0, 0),

where b, b2, b3, b4, b5, b6 are unknown non-zero bytes, (0, b2, b3, b4, b5, b6, 0, 0) is
evolved from (0, b, b, b, b, b, 0, 0) after the S-box layer and cl (l = 1, .., 8) are
unknown bytes.

Similarly, in the backward direction, we know that for arbitrary non-zero byte
e, if the output difference of the sixth round is

((0, e, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0)),

then the input difference of the fourth round is

((0, d, d, d, d, d, 0, 0); (f1, f2 ⊕ e, f3, f4, f5, f6, f7, f8)),

where d is an unknown non-zero byte and fl (l = 1, .., 8) are unknown bytes.
Now the input and output differences of the FL function are determined. It

can be deduced from Property 4 that c3 = d and c4 = d, which means c3 = c4.
But this implies b4 = 0 as

c3 = b2 ⊕ b3 ⊕ b5 ⊕ b6,

c4 = b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6,

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 23

which contradict b4 �= 0 (By the input and output difference of FL−1 function,
we can also deduce another contradiction that d4 = 0 � d4 �= 0). As a result,
the differential

((0, 0, 0, 0, 0, 0, 0, 0); (0, a, 0, 0, 0, 0, 0, 0)) 6−round−→
((0, e, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

is impossible.
Actually, there are three more 6-round impossible differentials with FL/FL−1

layers in the middle, which are:

((0, 0, 0, 0, 0, 0, 0, 0); (a, 0, 0, 0, 0, 0, 0, 0)) 6−round
�

((e, 0, 0, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))
((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, a, 0, 0, 0, 0, 0)) 6−round

�
((0, 0, e, 0, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

((0, 0, 0, 0, 0, 0, 0, 0); (0, 0, 0, a, 0, 0, 0, 0)) 6−round
�

((0, 0, 0, e, 0, 0, 0, 0); (0, 0, 0, 0, 0, 0, 0, 0))

4 Impossible Differential Attacks on Camellia with
FL/FL−1 Functions and Whitening

In this section, we present impossible differential attacks on 11-round Camellia-
256 and 10-round Camellia-192 using the impossible differential proposed in
Section 3.

6-round impossible differential
with FL/FL-1 inside

(0,0,0,0,0,0,0,0) (0,a,0,0,0,0,0,0)

(0,e,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

KS P

KS P

KS P

KS P

KS P

kw1 kw2

kw3 kw4

(0,a,0,0,0,0,0,0)

(0,g,g,g,g,g,0,0)

(0,g,g,g,g,g,0,0)

(0,g2,g3,g4,g5,g6,0,0)

P(0,g2,g3,g4,g5,g6,
0,0)

P(a,g2,a g3,a g4,
a g5,a g6,0,0)

(0,h,h,h,h,h,0,0)

(0,h2,h3,h4,h5,h6,0,0)

P(e,h2,e h3,e h4,e
h5,e h6,0,0)

6-round impossible differential
with FL/FL-1 inside

(0,0,0,0,0,0,0,0) (0,a,0,0,0,0,0,0)

(0,e,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

KS P

KS P

KS P

KS P

kw1 kw2

(0,a,0,0,0,0,0,0)

(0,g,g,g,g,g,0,0)

(0,g2,g3,g4,g5,g6,
0,0)

P(0,g2,g3,g4,g5,
g6,0,0)

ΔS1

ΔS2

ΔS2

ΔS3

ΔS3

ΔS1

ΔS10

ΔS10

ΔS11

ΔL0=P(a,g2,a g3,a
g4,a g5,a g6,0,0)

ΔL1=(0,g,g,g,g,g,
0,0)

ΔL10=(0,h,h,h,h,
h,0,0)

kw3 kw4

Fig. 5. Impossible Differential Attacks on 10-Round Camellia-192 and 11-Round
Camellia-256 with Whitening and FL/FL−1

24 J. Chen et al.

4.1 Impossible Differential Attack on 11-Round Camellia-256

We add 3 rounds on the top and 2 rounds on the bottom of the 6-round im-
possible differential to analyze 11-round Camellia-256, see Fig. 5 in the right.
In order to deal with the whitening keys, we first denote equivalent subkeys
ka = kw1⊕ k1, kb = kw2⊕ k2, kc = kw1⊕ k3, kd = kw4⊕ k10 and ke = kw3⊕ k11.
Then the cipher acts as there are no whitening keys except that the round func-
tions use the equivalent subkeys instead of the original ones. The attack aims
to discard the wrong equivalent subkeys by means of the impossible differential,
i.e., if there is a plaintext/ciphertext pair meets the differential in Fig. 5, then
the corresponding subkey must be wrong. After finding the correct equivalent
subkeys, the main key will be recovered by the key schedule. Before introducing
the attack procedure, we first set up a precomputation table which is used to
reduce the time complexity of the attack.

Precomputation. A precomputation hash table H for rounds 2 ∼ 3 is set up
here, which contains all possible pairs that can follow the differential in rounds
2 ∼ 3 and their corresponding subkeys kb, kc

2. This table can also be used for
rounds 10 ∼ 11, as in the backward direction, the differences are the same as
that of rounds 2 ∼ 3. The table is constructed as follows:

For every (L1, g, kb, L2
2, a, kc

2), sieve the ones satisfying S2(L2
2⊕ kc

2)⊕S2(L2
2⊕

a⊕kc
2) = g, where g and a are non-zero bytes. There are 2160 (L1, g, kb, L2

2, a, kc
2)s,

and 2152 of which remain after the sieve. Then compute L′1 = L1⊕(0, g, g, g, g, g,
0, 0), T = F (L1, kb), T ′ = F (L′1, kb), ΔT = T ⊕ T ′ and insert (kb, kc

2) into the
row indexed by (L1, g, ΔT ⊕ (0, a, 0, 0, 0, 0, 0, 0), L2

2⊕ T2). As we aim to recover
the equivalent subkeys, the values L1, L2 and R1 are not related to the whitening
keys. Consequently, for each pair, once we get the value (L1, ΔL1

2, ΔR1, R1
2), we

can access the corresponding row in H to get the equivalent subkeys such that
the pair satisfies the differential.

Because there are only 240 ΔT s which lead to 248 ΔT ⊕ (0, a, 0, 0, 0, 0, 0, 0)s,
there are 2128 rows in H and each row contains 224 72-bit equivalent subkeys
(kb, kc

2). As a result, the memory complexity of the table is about 2155.2 bytes
and the time complexity of the precomputation is less than 2161 one round en-
cryptions.

Data Collection. Choose 2n structures of plaintexts, and each structure con-
tains plaintexts with the following form:

(P (y1, y2, y3, y4, y5, y6, α, β); (x1, x2, x3, x4, x5, x6, x7, x8)),

where yi (i = 1, ..., 6) and xj (j = 1, ..., 8) take all possible values and α, β are
fixed in each structure. As a result, there are 2112 plaintexts in each structure
and we can get 2n × 2112×2−1 = 2n+223 plaintext pairs totally. For each of the
pairs, (P−1(ΔL0))7 = 0, (P−1(ΔL0))8 = 0.

Ask for the encryptions of the plaintexts in each structure to get the corre-
sponding ciphertexts, and keep the pairs whose ciphertext differences satisfy the
following form by birthday paradox:

((0, h, h, h, h, h, 0, 0); P (e, h2, e⊕ h3, e⊕ h4, e⊕ h5, e⊕ h6, 0, 0)),

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 25

where e, h, h2, h3, h4, h5 and h6 are non-zero bytes. So there are 2n+223−72 =
2n+151 pairs remaining.

Key Recovery. In the key recovery procedure, we use Property 2 and the
precomputation table H to discard the wrong keys.

1. For l = 1, 3, ..., 8, guess ka
l and keep the pairs that satisfy the equation

�S1
l = (P−1(�R0))l. Next guess ka

2 , so (L1, L′1) can be computed. For each
of the remaining pairs, do Step 2.

2. Initialize a table Γ of 2144 all possible values (kb, kc
2, k

e, kd
2), for each of the

remaining pairs, access the row (L1, ΔL1
2, ΔR1, R1

2) and the row (L10, ΔL10
2 ,

ΔL11, L11
2) in table H . Then combine the values in the two rows to get

(kb, kc
2, k

e, kd
2), and remove the corresponding value from Γ .

3. If Γ is not empty, output the 208-bit value (ka, kb, kc
2, k

d
2 , ke), jump out of

the iteration and go to step 4 to recover the main key; otherwise go to Step
1 and try another guess.

4. The following equations are deduced from Table 3 in [1]:

ka = (KL ≪ 0)L(64) ⊕ (KB ≪ 0)L(64), (2)

kb = (KL ≪ 0)R(64) ⊕ (KB ≪ 0)R(64), (3)
kc
2 = ((KL ≪ 0)L(64) ⊕ (KR ≪ 15)L(64))2, (4)

ke = (KB ≪ 111)L(64) ⊕ (KA ≪ 45)L(64), (5)

kd
2 = ((KB ≪ 111)R(64) ⊕ (KL ≪ 45)R(64))2. (6)

We guess every possible value of KL. For each guess, KB can be calculated
by Equations (2) and (3), then sieve this (KL, KB) pair by Equation (6).
For each of the (KL, KB)s that satisfy Equation (6), further compute 64
bits of KA by Equation (5). Then guess the other 64-bits of KA, by the
key schedule of Camellia-256, KR can be fully determined by KB and KA.
Equation (4) will further reduce the keys by a factor of 28. So we get about
2192 × 2−8 × 2−8 = 2176 (KL, KR)s and the correct K = KL||KR can be
obtained by trial encryption.

Complexity. In Step 1, it is expected that about 2n+151 × 2−8×7 = 2n+95

pairs will be kept for each guess of ka. Step 2 removes 248 wrong (kb, kc
2, k

e, kd
2)s

for each pair remained after Step 1, so a proportion of 248

2144 = 2−96 of wrong
(kb, kc

2, k
d
2 , ke)s are removed for each pair. Consequently, the number of remaining

wrong 208-bit values (ka, kb, kc
2, k

d
2 , ke) after analyzing all the pairs is σ = 264×

2144 × (1 − 2−96)2
n+95

. In order to let σ � 0, we choose n = 9. Then the data
complexity is 2121 chosen plaintexts, and the complexity of choosing proper pairs
that meet the required form of ciphertext differences by birthday paradox is less
than 2121 one-round encryptions.

The complexity of Step 1 is about 2×(
7∑

i=1

2160−8(i−1)×28i)× 1
8 +2×264×2104 ≈

2170 one round encryptions, equivalent to 2166.5 encryptions. There are 224 values
in H , so in Step 2, 2 × 224 memory access to H and 248 memory access to

26 J. Chen et al.

Γ are needed for each pair, which result in 264 × 2104 × 248 = 2216 memory
access. As one memory access is equivalent to one XOR operation and there are
52 XOR operations in one round Camellia, the complexity of Step 2 is about
2216× 1

52 × 1
11 ≈ 2206.8 11-round encryptions. The complexity of Step 4 is about

2184 2-round encryptions, so the time complexity is dominated by Step 2, which
about 2206.8 encryptions. And the memory complexity is dominated by storing
the 2160 pairs after the data collection phase, which is about 2166 bytes.

4.2 Impossible Differential Attack on 10-Round Camellia-192

We remove one round from the bottom of the 11-round attack, and give an attack
on 10-round Camellia-192, see Fig. 5 in the left. In this attack, the table H is
also set up in the precomputation phase. The choice of plaintexts is the same as
the 11-round attack, and the ciphertext pairs are sieved by the difference:

(0, e, 0, 0, 0, 0, 0, 0; 0, h, h, h, h, h, 0, 0),

where e and h are non-zero values. After the sieve, about 2120 pairs remain.
Denote equivalent subkeys ka = kw1 ⊕ k1, kb = kw2 ⊕ k2, kc = kw1 ⊕ k3 and

kd = kw3 ⊕ k10. The key recovery phase is as follows:

1. Guess kd
2 and check whether ΔS10

2 = ΔL10
2 , discard the pairs that do not

satisfy this condition. Then for l = 1, 3, ..., 8, guess ka
l and discard the pairs

that do not satisfy the equation �S1
l = (P−1(�R0))l. Next guess ka

2 , so
(L1, L′1) can be computed. For each of the remaining pairs, do Step 2.

2. Initialize a table Γ ′ of 272 all possible values (kb, kc
2), for each of the remaining

pairs, access the row (L1, ΔL1
2, ΔR1, R1

2) in table H . For each value in the
row, remove the corresponding value from Γ ′.

3. If Γ ′ is not empty, output the 144-bit value (ka, kb, kc
2, k

d
2), jump out of the

iteration and go to step 4; otherwise go to Step 1 and continue the iteration.
4. The main key can be recovered when (ka, kb, kc

2, k
d
2) is obtained by the similar

method of the 11-round attack, except that there are only four equations that
can be used:

ka = (KL ≪ 0)L(64) ⊕ (KB ≪ 0)L(64), (7)

kb = (KL ≪ 0)R(64) ⊕ (KB ≪ 0)R(64), (8)
kc
2 = ((KL ≪ 0)L(64) ⊕ (KR ≪ 15)L(64))2, (9)

kd
2 = ((KB ≪ 111)L(64) ⊕ (KL ≪ 45)R(64))2. (10)

Again, we guess every possible value of KL. For each guess, KB can be cal-
culated by Equations (7) and (8), then sieve this (KL, KB) pair by Equation
(10). For the (KL, KB) that satisfy Equation (10), compute 8 bits of KR

by Equation (9), and further guess the rest unknown 56 bits of KR. Fur-
thermore, we test whether the (KL, KR, KB) can pass the key schedule of
Camellia-192. About 2184 × 2−8 × 2−128 = 248 keys will remain, and the
correct K = KL||KR can be obtained by trial encryption.

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 27

In this attack, the time complexity is dominated by Step 4, which is about
2176 6-round encryptions, equivalent to about 2175.3 10-round encryptions. The
memory complexity is 2155.2 bytes, which is dominated by the precomputation.
If we do not take the pre-/post- whitening key into account, then we deal with
the original subkeys instead of the equivalent ones and Step 4 is unnecessary. So
the complexity would be determined by Step 2, which is about 2144 encryptions.

5 Impossible Differential Cryptanalysis of 15-Round
Camellia-256 without FL/FL−1 Layers and Whitening

In this section, we give an improved impossible differential attack on Camellia-
256 by using the 8-round impossible differential without FL/FL−1 layers in Fig.
7, which was proposed in [18]. By adding 4 rounds on the top and 3 rounds on
the bottom, we can attack 15-round Camellia-256 without FL/FL−1 layers and
whitening, see Fig. 6. We give in Table 1 the corresponding positions of k1, k2

and k15 in KB, and the corresponding positions of k3, k14, k4
2 and k13

2 in KR. It
is obvious that there are close relations among the subkeys, i.e., there are com-
mon bits in some of the subkeys, which can be used to reduced the complexity
of the attack. From Table 1 we know that the subkey bits used in the 15-th
round are also involved in the subkeys of the first and second round. As the first

KS P

KS P

KS P

KS P

KS P

KS P

KS P

8−round ID

ΔS1

ΔS2

ΔS3

ΔS4

ΔS13

ΔS14

ΔS15

ΔL0

ΔL1

ΔR0

ΔR1

ΔR2

ΔL2=(0,z,z,z,z,z,0,0)

ΔL3=(0,a,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(0,a,0,0,0,0,0,0)

(0,z2,z3,z4,z5,z6,0,0)

(0,i,0,0,0,0,0,0)

(0,j2,j3,j4,j5,j6,0,0)
ΔR13=(0,i,0,0,0,0,0,0)

ΔL13=(0,j,j,j,j,j,0,0)

ΔR14=(0,j,j,j,j,j,0,0)
ΔL14

ΔL15 ΔR15

Fig. 6. Impossible Differential Attack on 15-Round Camellia-256 without FL/FL−1

Layers and Whitening

28 J. Chen et al.

two rounds contribute most to the time complexity, we set up a precomputation
table below to store the required pairs in advance.

Precomputation. First, we set up a hash table Γ1 for the first two rounds
of the 15-round model. Property 2 implies that ΔL1 = P (a, z2, z3 ⊕ a, z4 ⊕
a, z5 ⊕ a, z6 ⊕ a, 0, 0), so we choose all the 248 ΔL1s with the required form.
Furthermore, all possible ΔL0, L0 ⊕ k1 and (R0 ⊕ k2)2 are chosen. For each of
the values, we compute T = P (S(L0 ⊕ k1)), T ′ = P (S(L0 ⊕ k1 ⊕ ΔL0)), and
get the value (R0 ⊕ k2)l (l = 1, 3, ..., 8) from ΔL1

l , (P−1(ΔL0))l, T , and the
corresponding differential table of S-box. Insert L0 ⊕ k1 and R0 ⊕ k2 into the
row indexed by ΔR0 = T ⊕ T ′ ⊕ΔL1, ΔL0, bits 61 ∼ 64 of L0 ⊕ k1, and bits
1 ∼ 4, 13 ∼ 60 of R0 ⊕ k2. As 2184 (ΔL0,ΔL1,L0 ⊕ k1,(R0 ⊕ k2)2)s are totally
chosen and we get 2184 (ΔL0,ΔL1,L0 ⊕ k1,R0 ⊕ k2)s whose (ΔL1, P−1(ΔL0))s
are possible input/output pairs of the S-box layer in the second round. Further-
more, there are 2184 rows in the table, so we get about one (L0 ⊕ k1, R0 ⊕ k2)
in each row on average.

The complexity of the precomputation is about 2× 2184 2-round encryptions,
equivalent to 2182.1 15-round encryptions. The table requires about 2184 × 16 =
2188 bytes of memory.

Data Collection. For 2122.5 known plaintexts, ask for the encryptions and
insert the ciphertexts into a hash table indexed by the 7-th and 8-th bytes of
P−1(ΔR15). That is because by Property 1, the right half of ciphertexts must
have the form

ΔR15 = ΔL14 = P (i, j2, j3 ⊕ i, j4 ⊕ i, j5 ⊕ i, j6 ⊕ i, 0, 0).

By birthday paradox, we can get 2244× 2−16 = 2228 pairs that the 7-th and 8-th
bytes of P−1(ΔR15) are 0.

Key Recovery. In this phase, our attack is benefit from the subkey rela-
tion and the precomputation. Note that once we know 61 ∼ 64 of k1 and bits
1 ∼ 4, 13 ∼ 60 of k2 (which are also included in the 15-th round), we can access
the corresponding (L0 ⊕ k1, R0 ⊕ k2) from Γ1. The procedure is demonstrated
as follows.

1. For l = 1, 3, ..., 8, guess k15
l (KB : 61 ∼ 68, 73 ∼ 124) and remove the pairs

that do not satisfy ΔS15
l = (P−1(ΔL15))l. About 2228−7×8 = 2172 pairs will

be kept. From Table 1, bits 61 ∼ 64 of k1 and bits 1 ∼ 4, 13 ∼ 60 of k2 are
known.

2. For each of the remaining pairs, compute bits 61 ∼ 64 of L0 ⊕ k1 and bits
1 ∼ 4, 13 ∼ 60 of R0 ⊕ k2, then access the value in the corresponding row in
Γ1. Insert (ΔL0, ΔR0, L0, R0) to a hash table Γ2 indexed by bits 1 ∼ 60 of
k1 (KB : 1 ∼ 60) and bits 5 ∼ 12, 61 ∼ 64 of k2 (KB : 69 ∼ 76, 124 ∼ 128).
As a result, Γ2 has 272 rows with about 2100 (ΔL0, ΔR0, L0, R0)s in each.

3. Guess bits 1 ∼ 60 of k1 and bits 5 ∼ 12, 61 ∼ 64 of k2, access the corre-
sponding row in Γ2, and compute 2100 (L2, L′2)s and (R2, R′2)s by two-round

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 29

encryptions as the whole KB is known. The memory of table Γ2 will be freed
once we finish using it.

4. From Property 1, it is clear that if a pair follows the path in Fig. 6, it has
to satisfy ΔS14

l = (P−1(ΔL14))1 ⊕ (P−1(ΔL14))l (l = 3, ..., 6) and ΔS14
2 =

(P−1(ΔL14))2. Then:
(a) Further guess k14

2 (KR : 5 ∼ 12), partially decrypt round 15 and round
14 to discard the pairs which do not satisfy ΔS14

2 = (P−1(ΔL14))2. After
this procedure, the number of remaining pairs is 2100−8 = 292.

(b) For l = 3, ..., 6, guess k14
l (kR : 13 ∼ 44) and keep the pairs which satisfy

ΔS14
l = (P−1(ΔL14))1 ⊕ (P−1(ΔL14))l. There are 292−8×4 = 260 pairs

being kept.
5. (a) Guess bits 45 ∼ 47 of kR, now k3

2 , k3
3 , and k3

4 (KR : 24 ∼ 47) are known.
Detect if ΔS3

2 = (P−1(ΔR2))2, ΔS3
3 = (P−1(ΔR2))1 ⊕ (P−1(ΔR2))3,

and ΔS3
4 = (P−1(ΔR2))1 ⊕ (P−1(ΔR2))4. The number of remaining

pairs is 260−8×3 = 236.
(b) For l = 5, 6, guess k3

l (kR : 48 ∼ 63) and keep the pairs that satisfy
ΔS3

l = (P−1(ΔR2))1 ⊕ (P−1(ΔR2))l. There are 236−8×2 = 220 pairs
being kept.

6. Guess k14
1 (KR : 125 ∼ 128, 1 ∼ 4) (now the whole k14 is known) and k13

2

(KR : 69 ∼ 76), keep the pairs that meet ΔS13
2 = ΔL13

2 . The number of
remaining of pairs will be 220−8 = 212.

7. Guess the rest 8 bits of k3 (KR : 64 ∼ 68, 77 ∼ 79), now the whole k3

(KR : 16 ∼ 79) is known. We further guess k4
2 (KR : 88 ∼ 95) and check if

there is a pair satisfy ΔS4
2 = ΔL2

2. If there is a pair satisfy this, then discard
the key guess. Otherwise for every 219-bit key guess, exhaustively search the
rest 37 bits of KR to calculate KA, use the relation of KA and KL to recover
KL, and test the resulting (KL, KR) by trial encryption.

Complexity. The data complexity is 2122.5 known plaintexts. In the data col-
lecting phase, the computation of the 7-th and 8-th bytes of P−1(ΔR15) is less

Table 1. Corresponding Bit Positions of the Subkeys in KB and KR

Subkey Bit positions Subkey Bit positions Subkey Bit positions Subkey Bit positions
bytes in KB bytes in KB bytes in KR bytes in KR

k1
1 1 ∼ 8 k2

5 97 ∼ 104 k3
1 16 ∼ 23 k14

1 125 ∼ 4
k1
2 9 ∼ 16 k2

6 105 ∼ 112 k3
2 24 ∼ 31 k14

2 5 ∼ 12
k1
3 17 ∼ 24 k2

7 113 ∼ 120 k3
3 32 ∼ 39 k14

3 13 ∼ 20
k1
4 25 ∼ 32 k2

8 121 ∼ 128 k3
4 40 ∼ 47 k14

4 21 ∼ 28
k1
5 33 ∼ 40 k15

1 61 ∼ 68 k3
5 48 ∼ 55 k14

5 29 ∼ 36
k1
6 41 ∼ 48 k15

2 69 ∼ 76 k3
6 56 ∼ 63 k14

6 37 ∼ 44
k1
7 49 ∼ 56 k15

3 77 ∼ 84 k3
7 64 ∼ 71 k14

7 45 ∼ 52
k1
8 57 ∼ 64 k15

4 85 ∼ 92 k3
8 72 ∼ 79 k14

8 53 ∼ 60
k2
1 65 ∼ 72 k15

5 93 ∼ 100 k4
2 88 ∼ 95 k13

2 69 ∼ 76
k2
2 73 ∼ 80 k15

6 101 ∼ 108
k2
3 81 ∼ 88 k15

7 109 ∼ 116
k2
4 89 ∼ 96 k15

8 117 ∼ 124

30 J. Chen et al.

than 2/8 one round encryption, so the complexity of computing the 7-th and 8-
th bytes of P−1(ΔR15) for all the ciphertexts is at most 2122.5× 1

4 × 1
15 ≈ 2116.6

15-round encryptions. Below we elaborate the complexity of each step in the
key-recovery phase.

1. The complexity is about 7 × 2 × 28 × 2228 = 2240 one round encryptions,
which is about 2236.1 encryptions.

2. This step needs about 2× 256× 2172 = 2229 memory access and 272× 2100×
16 = 2176 bytes of memory.

3. The complexity of this step is about 2 × 2128 × 2100 = 2229 two round
encryptions.

4. (a) The complexity of this step is about 2 × 2136 × 2100 = 2237 one round
encryptions, equivalent to 2233.1 encryptions.

(b) The complexity of the each operation in this step is about one round
encryption, so the complexity of is about: 2×∑3

i=0(2
144+8×i×292−8×i×

1
15) ≈ 2235.1.

5. (a) The complexity of this step is about 2× 1
15 × 2171 × (260 + 252 + 244) ≈

2228.1.
(b) The complexity of this step is about 2× 1

15 × (2179 × 236 + 2187× 228) ≈
2213.1.

6. This step requires 2× 2203 × 220 × 1
15 ≈ 2220.1 encryptions.

7. In step 7, we expect 2219×(1−2−8)2
12 ≈ 2196.6 of the key guess remained. So

about 2196.6+37 = 2233.6 trail encryptions are required to recover the whole
key. The complexity of this step is thus 2× 2219× [1 + (1− 2−8) + . . . + (1−
2−8)2

12
]× 1

15 + 2233.6 ≈ 2233.6.

As a result, the time complexity is dominated by Step 1, which is about 2236.1

15-round encryptions.

Table 2. Summary of the Attacks on Camellia

Cipher #Rounds FL/FL−1 Attack Type Data Time Source

Camellia-128 8 × Truncated DC 283.6CP 255.6 [10]
9

√
Square Attack 248CP 2122 [11]

9 × Collision Attack 2113.6CP 2121 [19]
9 × Square Attack 266CP 284.8 [6]
11 × Impossible DC 2118CP 2126MA [12]
12 × Impossible DC 2116.3CP 2116.6 [14]

Camellia-192 12 × Impossible DC 2120 CP 2181 [18]
10

√
Impossible DC 2121CP 2175.3 this paper

Camellia-256 10
√

Square Attack 248CP 2210 [11]
last 11 rounds

√
Higher Order DC 293CC 2255.6 [7]

11
√

Impossible DC 2121CP 2206.8 this paper
12 × Linear Attack 2119KP 2247 [16]
12 × Square Attack 266CP 2249.6 [6]
13 × Impossible DC 2120CP 2211.7 [12]
15 × Impossible DC 2122.5KP 2236.1 this paper

KP: known plaintext; CP: chosen plaintext; CC: chosen ciphertext; DC: differential attack

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 31

6 Conclusion

In this paper, we present several 6-round impossible differentials with FL/FL−1

layers in the middle, which lead to impossible differential attacks on 10-round
Camellia-192 and 11-round Camellia-256. Then an impossible differential crypt-
analysis of 15-round Camellia-256 without FL/FL−1 layers and whitening is
given by carefully using the subkey relation and a precomputation table. A sum-
mary of the previous attacks and our analysis of Camellia is given in Table 2.

Acknowledgement

We are grateful to the anonymous reviewers for their valuable comments on this
paper.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher Suitable for Multiple Platforms-Design and
Analysis. In: SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J.,
Tokita, T.: Specification of Camellia-a 128-bit block cipher. version 2.0 (2001),
http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html

3. Biham, E., Shamir, A.: Differential cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. CRYPTREC-Cryptography Research and Evaluation Committees, report, Archive
(2002), http://www.cryptrec.go.jp/english/index.html

6. Duo, L., Li, C., Feng, K.: Square like attack on camellia. In: Qing, S., Imai, H.,
Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 269–283. Springer, Heidelberg
(2007)

7. Hatano, Y., Sekine, H., Kaneko, T.: Higher Order Differential Attack of Camellia
(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146.
Springer, Heidelberg (2003)

8. International Standardization of Organization (ISO), International Standard-
ISO/IEC 18033-3, Information technology-Security techniques-Encryption algo-
rithms -Part 3: Block ciphers (2005)

9. Kühn, U.: Improved cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

10. Lee, S., Hong, S.H., Lee, S.-J., Lim, J.-I., Yoon, S.H.: Truncated differential crypt-
analysis of Camellia. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 32–38.
Springer, Heidelberg (2002)

11. Lei, D., Chao, L., Feng, K.: New observation on Camellia. In: Preneel, B., Tavares,
S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

12. Lu, J.: Cryptanalysis of block ciphers. PhD Thesis, Department of Mathematics,
Royal Holloway. University of London, England (2008)

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://www.cryptrec.go.jp/english/index.html

32 J. Chen et al.

13. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the efficiency of impossible
differential cryptanalysis of reduced Camellia and MISTY1. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

14. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New results on impos-
sible differential cryptanalysis of reduced–round Camellia–128. In: Jacobson Jr.,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

15. NESSIE-New European Schemes for Signatures, Integrity, and Encryption, final
report of European project IST-1999-12324. Archive (1999),
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

16. Shirai, T.: Differential, linear, boomerang and rectangle Cryptanalysis of Reduced-
Round Camellia. In: Proceedings of the Third NESSIE Workshop, Munich, Ger-
many, (November 6-7, 2002)

17. Sugita, M., Kobara, K., Imai, H.: Security of reduced version of the block ci-
pher Camellia against truncated and impossible differential cryptanalysis. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg
(2001)

18. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of Reduced-
Round ARIA and Camellia. Journal of Computer Science and Technology 22(3),
449–456 (2007)

19. Wu, W., Feng, D., Chen, H.: Collision attack and pseudorandomness of reduced-
round Camellia. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 252–266. Springer, Heidelberg (2004)

20. Wu, W., Zhang, L., Zhang, W.: Improved impossible differential cryptanalysis of
reduced-round Camellia. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 442–456. Springer, Heidelberg (2009)

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

New Impossible Differential Attacks of Reduced-Round Camellia-192/256 33

A 8-Round Impossible Differential without FL/FL−1

Layer

KS P

KS P

KS P

KS P

KS P

KS P

KS P

KS P

(0,0,0,0,0,0,0,0)
(0,a,0,0,0,0,0,0)

(0,a,0,0,0,0,0,0)

(0,b,b,b,b,b,0,0)

(0,c2,c3,c4,c5,c6,0,0)
(d1,d2,d3,d4,d5,d6,d7,d8)

(d1,a d2,d3,d4,d5,d6,
d7,d8)

(0,0,0,0,0,0,0,0)(0,i,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(0,i,0,0,0,0,0,0)
(0,h,h,h,h,h,0,0)

(0,h,h,h,h,h,0,0)
(0,g2,g3,g4,g5,g6,0,0)

(f1,f2,f3,f4,f5,f6,f7,f8)

(f1,i f2,f3,f4,f5,f6,f7,f8)

(f1,i b f2,b f3,b f4,
b f5,b f6,f7,f8)

(i,b g2,i g3,i g4,
i g5,i g6,0,0)
d7 =d8=0 → c3=0,

which contradicts c3≠0

Fig. 7. 8-round Impossible Differential without FL/FL−1 Layer (from [18])

Results on the Immunity of Boolean Functions

against Probabilistic Algebraic Attacks�

Meicheng Liu1, Dongdai Lin1, and Dingyi Pei2

1 The State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 College of Mathematics and Information Sciences, Guangzhou University,
Guangzhou 510006, China

meicheng.liu@gmail.com, ddlin@is.iscas.ac.cn, gztcdpei@scut.edu.cn

Abstract. In this paper, we study the immunity of Boolean functions
against probabilistic algebraic attacks. We first show that there are func-
tions, using as filters in a linear feedback shift register based nonlinear
filter generator, such that probabilistic algebraic attacks outperform de-
terministic ones. Then we introduce two notions, algebraic immunity dis-
tance and k-error algebraic immunity, to measure the ability of Boolean
functions resistant to probabilistic algebraic attacks. We analyze both
lower and upper bounds on algebraic immunity distance, and also present
the relations among algebraic immunity distance, k-error algebraic im-
munity, algebraic immunity and high order nonlinearity.

Keywords: Boolean functions, algebraic attacks, algebraic immunity,
algebraic immunity distance, k-error algebraic immunity, high order non-
linearity.

1 Introduction

Algebraic attacks, which cleverly use over-defined systems of multi-variable non-
linear equations to recover the secret key, have been regarded as a great threat
against stream ciphers based on linear feedback shift register (LFSR). A new
cryptographic property known as algebraic immunity (AI) is used to scale the
ability of Boolean functions to resist algebraic attacks. The AI of a function is
defined by the minimum degree of nonzero annihilators of the function or its
complement. There are a number of literatures, e.g. [2,5,9,10,11,14,15,16,23], in-
vestigating algebraic immunity but few referring to the immunity of Boolean
functions against probabilistic algebraic attacks. As long ago as 2003, Courtois
and Meier [7] described the probabilistic scenario of algebraic attacks:

S4. There exists a nonzero function g of low degree such that gf can be approx-
imated by a function of low degree with probability 1− ε.

� This work was in part supported by the National 973 Program of China under Grant
2011CB302400, the National Natural Science Foundation of China under Grants
10971246 and 60970152, the Grand Project of Institute of Software under Grant
YOCX285056 and the CAS Special Grant for Postgraduate Research, Innovation
and Practice.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 34–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Results on the Immunity of Boolean Functions against PAA 35

In 2005, Braeken and Preneel [3] generalized S4 to the two scenarios:

S4a. There exists a nonzero function g of low degree such that gf = g on
{x | f(x) = 0} with probability 1− ε.

S4b. There exists a nonzero function g of low degree such that gf = 0 on
{x | f(x) = 1} with probability 1− ε.

The probability for the scenario S4a is equal to p = 1 − d(gf,g)
2n−wt(f) , and equal to

p = 1 − d(gf,0)
wt(f) for the scenario S4b. Taking g equal to a function of degree r

and with Hamming weight 2n−r, the minimum between d(gf, f) and d(gf, 0) is
smaller than or equal to the average 2n−r−1. Then p ≥ 1 − 2−r for a balanced
function. In order to compute the probability for applying scenarios S4a and S4b,
by means of the Walsh spectrum the authors derived a formula for measuring the
distance, denoted by X in their paper, between a given function and a function
with annihilator equal to an indicator of a flat of small co-dimension (i.e. a
product of small number of affine functions). The authors also gave an example
of a function on 6 variables for which probabilistic algebraic attacks perform
better than classical algebraic attacks if the length of the LFSR is less than or
equal to 18.

Later, Pometun [22] introduced the notion of the high order partial nonlin-
earity as a measure of the ability of Boolean functions resistant to probabilistic
algebraic attacks, and showed that the r-th order partial nonlinearity is always
less than or equal to the r-th order nonlinearity for a balanced function. The
author also constructed a class of vulnerable functions against probabilistic al-
gebraic attacks:

F (x) = x1x2 + x1x2 · · ·xn + f(x)(x1x2 + 1).

Since x1x2F (x) = x1x2 +x1x2 · · ·xn, we know that x1x2F (x) = x1x2 holds with
very high probability. Nevertheless, the function F + 1 admits annihilators of
degree 3, such as x1x2(x3 +1), which implies that the function is also vulnerable
to classical algebraic attacks.

Recently, Pasalic [21] claimed that from time complexity point of view deter-
ministic algebraic attacks are in general more efficient than probabilistic ones
for practical sizes L (e.g. L = 256) of LFSR in the context of their application
to certain LFSR-based stream ciphers under an assumption that the minimum
distance of the code derived by shortening Reed-Muller code which depends on
the filter function meets the Gilbert-Varshamov (GV) bound. Nevertheless, one
should still verify whether the structure of the function itself allows a low-degree
approximation that is satisfied with high probability. This raises the question of
whether there exist Boolean functions using as filters in an LFSR-based nonlinear
filter generator for which probabilistic algebraic attacks outperform determinis-
tic ones for practical sizes L.

In this paper, we consider this question and further research the immunity
of Boolean functions against probabilistic algebraic attacks. At the beginning,
we discuss the complexities and validity of probabilistic algebraic attacks, and

36 M. Liu, D. Lin, and D. Pei

show two examples of functions that probabilistic algebraic attacks outperform
deterministic ones for practical sizes L. Furthermore, we introduce the notions
of algebraic immunity distance and k-error algebraic immunity. The algebraic
immunity distance of r-th order is the minimum distance between a given func-
tion and all functions with AI at most r. It is always hold that the algebraic
immunity distance is less than or equal to the aforementioned distance X . For
the case r = 1, the algebraic immunity distance is the minimum of the distances
X of the function and its complement. The algebraic immunity distance is simi-
lar to but different from high order partial nonlinearity. For a balanced function,
the former is half of the latter. In this context, some upper bounds on algebraic
immunity distance can be derived from previous results. A lower bound on alge-
braic immunity distance of functions with designated AI was implied by Carlet
[4]. The bound is confirmed to be tight for balanced function in this paper.
We also present other new bounds, including both upper and lower bounds, on
algebraic immunity distance. The bounds reveal the relations among algebraic
immunity distance, algebraic immunity and high order nonlinearity. The notion
of k-error algebraic immunity is a dual concept of algebraic immunity distance.
The former relates to minimum degree for applying PAA with high probability
while the latter relates to maximum probability for applying PAA with small
degree. Several properties of k-error algebraic immunity is then obtained by its
relation with algebraic immunity distance. Lastly a sufficient and necessary con-
dition for Boolean functions to achieve designated k-error algebraic immunity is
described.

2 Preliminary

Let F2 be the binary field. An n-variable Boolean function is a mapping from Fn
2

into F2. Denote by Bn the set of all n-variable Boolean functions. An n-variable
Boolean function can be uniquely represented as a truth table of length 2n, f =
[f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)]. Denote 1f = {x | f(x) = 1}.
The number of ones in the truth table of f is called the Hamming weight of f ,
denoted by wt(f). If wt(f) = 2n−1, then f is called balanced. The number of
x ∈ Fn

2 at which f(x) �= g(x) is called the Hamming distance between f and g,
denoted by d(f, g). It is well known that d(f, g) = wt(f + g).

An n-variable Boolean function can also be uniquely represented as a multi-
variate polynomial over F2: f(x) =

∑
c∈Fn

2
acx

c, xc = xc1
1 xc2

2 · · ·xcn
n , ac ∈ F2,

called algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is defined as max{wt(c) | ac �= 0}.

The minimum distance between f and Boolean functions with degree at most
r is called r-th order nonlinearity of f , denoted by nlr(f). That is nlr(f) =
min{d(f, g) | deg(g) ≤ r}. It is called nonlinearity, denoted by nl(f), if r = 1.

Definition 1. [20] The algebraic immunity of the function f , denoted by AI(f),
is defined as

AI(f) = min{deg(g) | gf = 0 or g(f + 1) = 0, g �= 0}.

Results on the Immunity of Boolean Functions against PAA 37

3 Probabilistic Algebraic Attacks

This section mainly focuses on the complexities of probabilistic algebraic attacks
on an LFSR-based nonlinear filter generator.

3.1 Time Complexity

Let p be the probability for S4a or S4b. Then an overdetermined system of
nonlinear equations with degree r is obtained where each equation holds with
probability p. In the affine case probabilistic algebraic attacks relate to the
(fast) correlation attacks [3], so we always consider the nonlinear case here. One
can use the linearization algorithm to solve the system, where R =

∑r
i=0

(
L
i

)
equations are used and hold with probability pR. Then the time complexity of
probabilistic algebraic attacks (PAA) is p−RRw (w ≈ 2.807 is the exponent
of the Gaussian reduction), compared with T w of classical algebraic attacks
(AA) (T =

∑AI(f)
i=0

(
L
i

)
), and 2ED log2 D [12] of fast algebraic attacks (FAA)

(E =
∑e

i=0

(
L
i

)
and D =

∑d
i=0

(
L
i

)
with e = deg(g) < d = deg(gf)).

Our work shows that there are functions for which probabilistic algebraic
attacks outperform deterministic ones for practical sizes L of LFSR. An example
is the function

F (x) = f(x1, · · · , xn−1) + xn

where f(x) = 1 if wt(x) < t − 1 (t ≤ n/2) and otherwise f(x) = 0. First, the
function F is balanced and has algebraic immunity t [16, Lemma 3.5]. Second, the
function f+1 admits no annihilator of degree less than n−t+1 [16, Theorem 3.1],
so any nonzero multiple h of F has degree equal to or more than n− t + 1, then
d ≥ n− t+1 for any e ≥ 1. Third, taking g = x1 · · ·xr−1(xn +1) gives wt(gF) =∑t−r−1

i=0

(
n−r

i

)
(since gF takes values 1 at and only at (1, · · · , 1, xr, · · · , xn−1, 0)

with wt(xr , · · · , xn−1) ≤ t − r − 1), and therefore p = 1 −∑t−r−1
i=0

(
n−r

i

)
/2n−1

for S4b. Fixing t, the probability p becomes closer to 1 as n increases. For
reasonable n and t, probabilistic algebraic attacks will outperform deterministic
ones, even including fast algebraic attacks (e.g., see Table 1). For instance, when
L = 256, n = 29 and t = 8, we can calculate wt(gF) = 101584 = 216.6 and
p = 1− 2−11.4 = 0.9996 for r = 2, then the time complexity of the PAA is 260.1

while the AA requires 2136.4 operations and the FAA runs in 2120.6 or larger.
Nevertheless, the function F has nonlinearity equal to nl(F) = 2

∑t−2
i=0

(
n−1

i

)
according to [16, Lemma 3.5], which is low.

Table 1. Time complexities of PAA (r = 2), AA and FAA for L = 256

(n, t) (18,4) (20,5) (22,6) (24,7) (26,7) (28,8) (29,8) (30,9) (32,10)

PAA 248.3 257.7 272.7 293.7 260.4 271.7 260.1 286.3 2104.1

AA 276.9 292.8 2108 2122.4 2122.4 2136.4 2136.4 2149.8 2162.8

FAA ≥ 294.6 298.5 2102.4 2106.2 2113.6 2117.1 2120.6 2120.6 2124

38 M. Liu, D. Lin, and D. Pei

Another example with a little higher nonlinearity is the function

F (x) =

⎧⎨⎩
1, if wt(x) < t

(x1x2 · · ·xr + 1)b(xr+1, · · · , xn), if t ≤ wt(x) ≤ n− t
0, if wt(x) > n− t

where b, if any, is a function such that wt(F) = 2n−1. The function F has al-
gebraic immunity equal to or more than t [16, Corollary 4.2] and admits the
function g = x1x2 · · ·xr such that wt(gF) =

∑t−r−1
i=0

(
n−r

i

)
. Again, for reason-

able n and t probabilistic algebraic attacks will outperform deterministic ones.
Despite of low nonlinearities resulting in vulnerabilities to the affine case of the
PAA, the quadratic version of the PAA might performs better than the affine
one. For example, for L = 256, n = 29, t = 8 and r = 2, the quadratic one
requires 260.1 operations while the affine one runs in p−(L+1)(L + 1)w ≈ 2129.3

with p ≈ 0.75.

3.2 Data Complexity1

Assume that there are N equations each of which holds with probability p, and
that every R equations of these equations are independent. Then

(
N
R

)
systems

are established. Now, we need p−R systems of equations to mount PAA. Note
that

(
N
R

) ≥ (N
R)R ≥ p−R for N ≥ p−1R. Then the amount of keystream used in

the PAA is at most p−1R, which is much smaller than T of the AA and D + E
of the FAA.

3.3 Validity

Without loss of generality, we suppose that f coincides with S4b. Denote by
Pr[A] the probability of an event A and let

δf (g) = Pr[g(x) = 0 | x ∈ 1f]− Pr[g(x) = 0],

where 1f = {x | f(x) = 1}. If δf (g) ≈ 0, then solving the equation systems of
g(x) = 0 (x ∈ 1f) is almost equivalent to solve the equation systems of g(x) = 0,
and therefore probabilistic algebraic attacks cannot be applied. Hence, proba-
bilistic algebraic attacks make necessary that δf (g) �≈ 0. The value δf (g) reflects
the validity of probabilistic algebraic attacks on f using the function g. The
smaller δf (g) is, the worse probabilistic algebraic attacks behave; but not vice
versa.

Theorem 1. Let f be an n-variable balanced Boolean function. Then

max{|δf (g)| | deg(g) ≤ r} =
2n−1 − nlr(f)

2n
.

1 This section was suggested by Frederik Armknecht and an anonymous referee.

Results on the Immunity of Boolean Functions against PAA 39

Proof. Since the function f is balanced, we have

δf (g) = (1− wt(gf)
2n−1

)− (1− wt(g)
2n

) =
wt(g)− 2wt(gf)

2n
.

Because wt(g) + wt(f) = 2 wt(gf) + d(f, g), we obtain

δf (g) = −2n−1 − d(f, g)
2n

.

Therefore

max{|δf (g)| | deg(g) ≤ r} =
2n−1 − nlr(f)

2n
.

Note that nlr(f + 1) = nlr(f). Theorem 1 also applies to f + 1. Therefore the
scenarios S4a and S4b have both been considered in Theorem 1. The theorem
shows that if the function f is balanced and of good r-th order nonlinearity,
then f may be robust against r-th order probabilistic algebraic attacks to some
extent.

4 Algebraic Immunity Distance

Hereinafter, S4a and S4b are included into the scenario:

S4′. There exists a nonzero function g of low algebraic immunity such that f = g
with probability 1− ε.

In this section, we consider the set of the n-variable Boolean functions with
algebraic immunity ≤ r, and discuss the minimum distance between a given
function and that set.

Denote by AIr = {f ∈ Bn | AI(f) ≤ r} the set of the n-variable Boolean
functions with algebraic immunity ≤ r. By convention AI0 = {0, 1}.
Proposition 2. Let r ≥ 1. Then AIr = {gh + c | g, h ∈ Bn, c ∈ F2, 1 ≤
deg(g) ≤ r}.
Proof. Denote by A the right part of the equality. Let us prove A ⊂ AIr first.
For f ∈ A, there exist g, h ∈ Bn with 1 ≤ deg(g) ≤ r such that f = gh+c. Then
(g + 1)(f + c) = (g + 1)gh = 0 where g + 1 �= 0, so AI(f) ≤ r. Hence f ∈ AIr.
Next we check that AIr ⊂ A. It is clear that AI0 ⊂ A. For f ∈ AIr\AI0,
there exists a nonzero function g with degree ≤ r such that g(f + c) = 0 for
c ∈ F2. Then f = (g + 1)(f + c) + c. Since f /∈ AI0, we have g �= 1. Therefore
1 ≤ deg(g) ≤ r. Then f ∈ A. Hence AIr = A.

It is significant to study the set AIr, since its complement Bn\AIr contains all
the functions with algebraic immunity ≥ r + 1. Some results for the case r = 1
was presented by Tu and Deng [24].

Now we introduce the notion of algebraic immunity distance.

40 M. Liu, D. Lin, and D. Pei

Definition 2. The minimum distance between the function f and Boolean func-
tions with algebraic immunity ≤ r is called the r-th order algebraic immunity
distance, denoted by dair(f), i.e.,

dair(f) = d(f,AIr) = min{d(f, g) | AI(g) ≤ r}.
Remark 1. The algebraic immunity distance is always less than or equal to the
distance X [3] between a given function and functions with annihilator equal to
a product of small number of affine functions. For the case r = 1, the algebraic
immunity distance is the minimum between the distance X of the function and
that of its complement.

Remark 2. The r-th order algebraic immunity distance is similar to but not
the same as the r-th order partial nonlinearity [22] which is given by

nlpr(f) = min{2n Pr[g �= f |f = c] | c ∈ F2, 1 ≤ deg(g) ≤ r}.
The algebraic immunity distance implicitly reflects the maximum probability for
applying probabilistic algebraic attacks while the partial nonlinearity explicitly
describes it. The latter relates to the Hamming weight and is therefore difficult
to be analyzed.

Proposition 3. dair(f) = min{d(gf, 0), d(gf, g) | 1 ≤ deg(g) ≤ r}.
Proof. By Proposition 2, we have AIr = {gh, gh + 1 | 1 ≤ deg(g) ≤ r}. Then

dair(f) = d(f,AIr)
= min{d(f, gh), d(f, gh + 1) | 1 ≤ deg(g) ≤ r, g, h ∈ Bn}
≤ min{d(f, gf), d(f + 1, g(f + 1)) | 1 ≤ deg(g) ≤ r}. (1)

It is clear that d(f, gh) = wt(f + gh) ≥ wt((g + 1)(f + gh)) = wt(gf + f) =
d(f, gf). Similarly, d(f + 1, gh) ≥ d(f + 1, g(f + 1)). Therefore

dair(f) ≥ min{d(f, gf), d(f + 1, g(f + 1)) | 1 ≤ deg(g) ≤ r}. (2)

By (1) and (2) it follows that

dair(f) = min{d(f, gf), d(f + 1, g(f + 1)) | 1 ≤ deg(g) ≤ r}
= min{d((g + 1)f, 0), d((g + 1)f, g + 1) | 1 ≤ deg(g) ≤ r}
= min{d(gf, 0), d(gf, g) | 1 ≤ deg(g) ≤ r}.

Remark 3. The above theorem shows that dair(f) = 1
2 nlpr(f) for balanced

function f .

4.1 Bounds on Algebraic Immunity Distance

Braeken and Preneel [3] proved that X ≤ 2n−r−1 by Eq.(3) and Eq.(4) in their
paper. Then dair(f) ≤ 2n−r−1 since dair(f) ≤ X . This can also be explained by

Results on the Immunity of Boolean Functions against PAA 41

the fact that taking g equal to a function with degree r and with Hamming weight
2n−r gives that dair(f) ≤ min{d(gf, 0), d(gf, g)} ≤ 1

2 [d(gf, 0) + d(gf, g)] =
1
2 wt(g) = 2n−r−1. In [22], Pometun observed that for balanced f , nlpr(f) ≤
nlr(f). By Remark 3 it follows that dair(f) ≤ 1

2 nlr(f) for a balanced function.
Next we present some new results on both upper and lower bounds on algebraic
immunity distance.

Theorem 4. Let f ∈ Bn. If nlr(f) = min{d(g, f) | 1 ≤ deg(g) ≤ r}, then
dair(f) ≤ 1

2 nlr(f).

Proof. Since d(g, f) = wt((g + 1)f) + wt(g(f + 1)), we have

dair(f) = min{wt(gf), wt(g(f + 1)) | 1 ≤ deg(g) ≤ r}
= min{wt((g + 1)f), wt(g(f + 1)) | 1 ≤ deg(g) ≤ r}

≤ min{d(g, f)
2

| 1 ≤ deg(g) ≤ r}

=
nlr(f)

2
.

Note that for a balanced function it always holds that nlr(f) = min{d(g, f) |
1 ≤ deg(g) ≤ r}. Therefore the result of [22] is a special case of Theorem 4.

It is well known that any Boolean function h with AI > r has Hamming weight∑r
i=0

(
n
i

) ≤ wt(h) ≤ 2n −∑r
i=0

(
n
i

)
[10]. In other words, if min{wt(h), wt(h +

1)} <
∑r

i=0

(
n
i

)
then the function h has AI ≤ r. Therefore Theorem 5 follows.

Theorem 5. Let f ∈ Bn and wtmin(f) = min{wt(f), wt(f + 1)}. Then

dair(f) ≤ wtmin(f)−
r∑

i=0

(
n

i

)
+ 1.

Proof. Without loss of generality, we assume that wtmin(f) = wt(f). Let h be
a function such that 1h ⊂ 1f and wt(h) =

∑r
i=0

(
n
i

) − 1. Then AI(h) ≤ r

and d(f, h) = wt(f) − wt(h) = wt(f) −∑r
i=0

(
n
i

)
+ 1, showing that dair(f) ≤

wtmin(f)−∑r
i=0

(
n
i

)
+ 1.

Corollary 6. Let n > 1 be an odd integer and f ∈ Bn. Then dain−1
2

(f) ≤ 1.

Now we discuss the lower bounds on algebraic immunity distance. The result
of Carlet [4] implies a lower bound on algebraic immunity distance of functions
with designated AI.

Lemma 7. [4, Proposition 5] Let f, g ∈ Bn and deg(g) = r. Then wt(gf) ≥∑AI(f)−r−1
i=0

(
n−r

i

)
.

The two classes of balanced functions constructed in Section 3.1 both admit
a function g with degree r such that wt(gf) =

∑AI(f)−r−1
i=0

(
n−r

i

)
. Note that

Lemma 7 also applies to f + 1. Then Theorem 8 follows.

42 M. Liu, D. Lin, and D. Pei

Theorem 8. Let f ∈ Bn. Then dair(f) ≥ ∑AI(f)−r−1
i=0

(
n−r

i

)
and there exist

balanced functions achieving the bound.

Based on computation experiments, Pometun [22] stated that if the second or-
der partial nonlinearity of Boolean function f equals nlp2(f) = 2, then its al-
gebraic immunity AI(f) ≤ 3. (In fact, this can be explained by the fact that
if dair(f) ≤ 1 then AI(f) ≤ r + 1.) Further Pometun conjectured that there
exists a connection between algebraic immunity and partial nonlinearity. Note
that nlpr(f) = 2 dair(f) for a balanced function. From cryptographic viewpoint
it seems that the above results is the answer to the problem.

Theorem 9. Let f ∈ Bn and wtmax(f) = max{wt(f), wt(f + 1)}. Then

dair(f) ≥ 2n−r−1 +
1
2

nlr(f)− 1
2

wtmax(f).

Proof. Let g be a function of degree d, 1 ≤ d ≤ r. Then wt(g) ≥ 2n−d ≥ 2n−r.
Since wt(gf) = 1

2 [wt(g) + wt(f)− d(g, f)], we have

wt(gf) =
1
2
[wt(g) + d(g + 1, f)− wt(f + 1)]

≥ 1
2
[2n−r + nlr(f)− wt(f + 1)]. (3)

Taking f + 1 in place of f , we know

wt(g(f + 1)) ≥1
2
[2n−r + nlr(f)− wt(f)]. (4)

By Proposition 3 and from (3) and (4) we obtain

dair(f) ≥ 2n−r−1 +
1
2

nlr(f)− 1
2

wtmax(f).

For large r, the bound of Theorem 9 may be negative. However, we only need
consider small r in practice, for example, r = 2. Theorem 9 states that balanced
functions is optimal among the functions of the same r-th order nonlinearity.
This coincides with the viewpoint that balancedness is an important property in
cryptography for Boolean functions. The theorem also shows that if a balanced
function has high r-th order nonlinearity, then the r-th order algebraic immunity
distance of the function is not bad. Again, it states that a balanced function of
good r-th order nonlinearity can avoid the scenario S4′ to some extent.

From Theorem 4 and Theorem 9, we obtain that dai1(f) = 1
2 nl(f) for bal-

anced function, showing that in the affine case there is no better approximation
for probabilistic algebraic attacks than the correlation attacks. This was also
observed by Braeken and Preneel [3].

Corollary 10. Let f ∈ Bn. If nlk(f) > wtmax(f) − 2n−k, then dair(f) >
2n−r−1 − 2n−k−1 for 1 ≤ r ≤ k and AI(f) > k.

Results on the Immunity of Boolean Functions against PAA 43

Since Bent functions have Hamming weight 2n−1±2
n
2 −1 and nonlinearity 2n−1−

2
n
2 −1, by Corollary 10 we obtain the result proven by Tu and Deng [24]: Bent

functions with n ≥ 4 have algebraic immunity greater than 1.

Corollary 11. Let f ∈ Bn. If AI(f) ≤ k, then nlk(f) ≤ wtmax(f) − 2n−k and
therefore nlk(f) ≤ 2n−1 − 2n−k−1.

Proof. The first half part is clear. Then

nlk(f) ≤ min{wtmax(f)− 2n−k, wtmin(f)}
≤ 1

2
[wtmax(f)− 2n−k + wtmin(f)] = 2n−1 − 2n−k−1.

For instance, nl(f) ≤ 2n−2 when AI(f) ≤ 1 [24], and nl2(f) ≤ 3 · 2n−3 when
AI(f) ≤ 2.

Some results on the lower bound on the high order nonlinearity of Boolean
functions with designated algebraic immunity was presented by Carlet [4], Mes-
nager [19] and Lobanov [17]. To the best of our knowledge, this is the first time
that a new upper bound is obtained.

5 k-Error Algebraic Immunity

If a function has low algebraic immunity distance of small order, then the func-
tion would be vulnerable to probabilistic algebraic attacks. The lower bound on
algebraic immunity distance gives an upper bound on the probability for apply-
ing the attacks. A high probability relates to sufficiently small distance. Fixing
the distance, there is a lower bound on the degree for applying the attacks. In
this section, we consider this lower bound, i.e., the minimum AI of the functions
having a small Hamming distance to a given function. This leads to the notion
of k-error algebraic immunity.

Definition 3. Let k ≥ 0 be an integer and f ∈ Bn. The k-error algebraic
immunity of the function f is defined as

AIk(f) = min{AI(f + ε) | wt(ε) ≤ k, ε ∈ Bn}.
The new notion of k-error algebraic immunity generalizes the notion of algebraic
immunity which is exactly AI0(f), and also generalizes the notion of the extended
algebraic immunity (EAI) proposed by Zhang [25] which is a special case of
AI1(f) (since for extended algebraic immunity the function ε only takes over the
two functions 0 and (x1+1)(x2+1) · · · (xn+1)). In brief, we have AI0(f) = AI(f)
and AI1(f) ≤ EAI(f).

By Definition 2 and Definition 3, we can obtain the following result.

Corollary 12. Let f ∈ Bn. Then dair(f) = min{k | AIk(f) ≤ r}.
Proof. Let kmin = min{k | AIk(f) ≤ r}. It is clear that dair(f) ≤ kmin. On
the other hand, there is a function h ∈ AIr such that d(f, h) = dair(f). Then
AIdair(f)(f) ≤ AI(h) ≤ r, showing that kmin ≤ dair(f). Hence kmin = dair(f).

44 M. Liu, D. Lin, and D. Pei

The duality between algebraic immunity distance and k-error algebraic immunity
indicates that AIdair(f)(f) ≤ r and daiAIk(f)(f) ≤ k.

Corollary 13. Let f ∈ Bn and k <
∑r

i=0

(
n−AI(f)+r+1

i

)
. Then AIk(f) ≥

AI(f)− r.

Proof. Let r0 = AI(f) − r − 1. We know min{k | AIk(f) ≤ r0} = dair0(f) by
Corollary 12. Furthermore, it holds that dair0(f) ≥∑r

i=0

(
n−r0

i

)
by Theorem 8.

This states that if k <
∑r

i=0

(
n−r0

i

)
then AIk(f) ≥ r0 + 1 = AI(f)− r.

Taking r = 1 gives
∑r

i=0

(
n−AI(f)+r+1

i

)
= n − AI(f) + 3 and therefore

AIn−AI(f)+2(f) ≥ AI(f)−1, which implies the result of [25]: EAI(f) ≥ AI(f)−1.
In particular, if f is a function with AI �n

2 �, then AI�
n
2 	+2(f) ≥ �n

2 � − 1.
Next we will discuss the sufficient and necessary condition for Boolean func-

tions to achieve high possible k-error algebraic immunity.
Let g be an annihilator of f with algebraic degree < d. Let

g(x) =
∑

c∈Fn
2 ,wt(c)<d

gcx
c, gc ∈ F2.

We have g(b) = 0 for b ∈ 1f . Then∑
c∈Fn

2 ,wt(c)<d

bcgc = 0, for b ∈ 1f . (5)

The above equations on gc’s are homogeneous linear. Denote the coefficient ma-
trix of the equations by V (f, d), which is a wt(f) ×∑d−1

i=0

(
n
i

)
matrix. Then f

has no annihilator of algebraic degree < d if and only if the rank of the matrix
V (f, d) equals the number of gc’s which is

∑d−1
i=0

(
n
i

)
, i.e., V (f, d) has full col-

umn rank (see also [23]). In the view of this result we can affirm the following
theorem.

Proposition 14. Let f ∈ Bn. Then AIk(f) ≥ d if and only if all the matri-
ces obtained by removing k rows from V (f, d) and all the matrices obtained by
removing k rows from V (f + 1, d) have full column rank.

6 Conclusion

As described in [3,22], probabilistic algebraic attacks works more effectively than
deterministic algebraic attacks with their applications to the nonlinear filter gen-
erator if the filter function has very low algebraic immunity distance of small
order. Two classes of vulnerable functions are demonstrated in this paper, but
both of them do not have good nonlinearities. We leave as an open problem
whether there are algebraic immunity functions with good nonlinearity vulnera-
ble to probabilistic algebraic attacks. Another problem is the practical applica-
tions of probabilistic algebraic attacks.

Results on the Immunity of Boolean Functions against PAA 45

The algebraic immunity distance and k-error algebraic immunity of Boolean
functions relate to their resistances to probabilistic algebraic attacks. The results
of Section 4 imply the lower bound on algebraic immunity distance of r-th order
of a balanced function

max{2n−r−1 +
1
2

nlr(f)− 2n−2,

AI(f)−r−1∑
i=0

(
n− r

i

)
}, (6)

and the upper bound

min{2n−r−1,
1
2

nlr(f), 2n−1 −
r∑

i=0

(
n

i

)
+ 1}. (7)

The lower bound shows that Boolean functions with good high order nonlin-
earity and good algebraic immunity have algebraic immunity distance not too
bad. The upper bound gives the minimum value of the probability for applying
probabilistic algebraic attacks. However, it is not yet clear how to find the best
approximation for the attacks.

Acknowledgement. The authors thank the anonymous referees of ACISP 2011
and SCC 2010 for their valuable comments on this paper. Meicheng Liu is grate-
ful to Frederik Armknecht for helpful conversations on probabilistic algebraic
attacks, and also for his careful reading of the manuscript and useful sugges-
tions.

References

1. Armknecht, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004)

2. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006)

3. Braeken, A., Preneel, B.: Probabilistic algebraic attacks. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 290–303. Springer, Heidel-
berg (2005)

4. Carlet, C.: On the higher order nonlinearities of algebraic immune functions. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 584–601. Springer, Heidel-
berg (2006)

5. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal alge-
braic immunity, good immunity to fast algebraic attacks and good nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

6. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering codes. North-Holland,
Amsterdam (1997)

7. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer,
Heidelberg (2003)

46 M. Liu, D. Lin, and D. Pei

8. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

9. Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean func-
tions with maximum possible annihilator immunity. Designs, Codes and Cryptog-
raphy 40(1), 41–58 (2006)

10. Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for crypto-
graphically significant boolean functions. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)

11. Du, Y., Pei, D.: Construction of Boolean functions with maximum algebraic
immunity and count of their annihilators at lowest degree. Sci. China Inf. Sci, 53(4),
780–787 (2010)

12. Hawkes, P., Rose, G.: Rewriting variables: The complexity of fast algebraic at-
tacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004)

13. Li, N., Qu, L., Qi, W., et al.: On the construction of Boolean Functions with
optimal algebraic immunity. IEEE Trans. Inform. Theory 54(3), 1330–1334 (2008)

14. Li, N., Qi, W.: Boolean functions of an odd number of variables with maximum
algebraic immunity. Sci. China Ser. F-Inf. Sci. 50(3), 307–317 (2007)

15. Liu, M., Pei, D., Du, Y.: Identification and construction of Boolean functions with
maximum algebraic immunity. Sci. China. Inf. Sci, 53(7), 1379–1396 (2010)

16. Liu, M., Du, Y., Pei, D., Lin, D.: On designated-weight Boolean functions with
highest algebraic immunity. Sci. China. Math, 53(11), 2847–2854 (2010)

17. Lobanov, M.: Tight bounds between algebraic immunity and nonlinearities of high
orders., http://eprint.iacr.org/2007/444

18. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-
Holland, New York (1977)

19. Mesnager, S.: Improving the Lower Bound on the Higher Order Nonlinearity of
Boolean Functions With Prescribed Algebraic Immunity. IEEE Transactions on
Information Theory 54(8), 3656–3662 (2008)

20. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

21. Pasalic, E.: Probabilistic versus deterministic algebraic cryptanalysis – a perfor-
mance comparison. IEEE Transactions on Information Theory 55(11), 5233–5240
(2009)

22. Pometun, S.: Study of Probabilistic Scenarios of Algebraic Attacks on Stream
Ciphers. Journal of Automation and Information Sciences 41(2), 67–80 (2009),
http://eprint.iacr.org/2007/448

23. Qu, L., Feng, G., Li, C.: On the Boolean functions with maximum pos-
sible algebraic immunity: construction and a lower bound of the count.,
http://eprint.iacr.org/2005/449

24. Tu, Z., Deng, Y.: Algebraic Immunity Hierarchy of Boolean Functions. ChinaCrypt
(2007), http://eprint.iacr.org/2007/259

25. Zhang, X., Pieprzyk, J., Zheng, Y.: On algebraic immunity and annihilators. In:
Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 65–80. Springer,
Heidelberg (2006)

http://eprint.iacr.org/2007/444
http://eprint.iacr.org/2007/448
http://eprint.iacr.org/2005/449
http://eprint.iacr.org/2007/259

Finding More Boolean Functions with Maximum

Algebraic Immunity Based on Univariate
Polynomial Representation�

Yusong Du and Fangguo Zhang

School of Information Science and Technology, Sun Yat-sen University,
510006 Guangzhou, China

yusongdu@hotmail.com, isszhfg@mail.sysu.edu.cn

Abstract. Algebraic immunity is an important cryptographic property
for Boolean functions against algebraic attacks. Constructions of Boolean
functions with the maximum algebraic immunity (MAI Boolean func-
tions) by using univariate polynomial representation of Boolean functions
over finite fields have received more and more attention. In this paper,
how to obtain more MAI Boolean functions from a known MAI Boolean
function under univariate polynomial representation is further investi-
gated. The sufficient condition of Boolean functions having the maxi-
mum algebraic immunity obtained by changing a known MAI Boolean
function under univariate polynomial representation is given. With this
condition, more balanced MAI Boolean functions under univariate poly-
nomial representation can be obtained. The algebraic degree and the
nonlinearity of these Boolean functions are analyzed.

Keywords: stream ciphers, algebraic attacks, Boolean functions, alge-
braic immunity, nonlinearity.

1 Introduction

In order to resist algebraic attacks, Boolean functions used in stream ciphers
should have large algebraic immunity (AI) [1,2]. Construction of Boolean func-
tions with the maximum algebraic immunity (MAI Boolean functions) is an
important problem [3]. Nowadays, there have been many constructions of MAI
Boolean functions. However, many of constructed functions were not proven to
have good nonlinearity.

In 2008, Carlet and Feng exploited the univariate polynomial representation
of Boolean functions over finite fields and constructed a class of balanced MAI
Boolean functions with good nonlinearity [4], which is called Carlet-Feng func-
tions. From then on, MAI Boolean functions under univariate (bivariate) poly-
nomial representation received more and more attention and the nonlinearity of
balanced MAI Boolean functions was improved further [5,6,7].
� This work is supported by National Natural Science Foundation of China (Grant

No. 61070168, Grant No. 10971246, Grant No. 10871222) and Research Fund for the
Doctoral Program of Higher Education of China (20094410110001).

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 47–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

48 Y. Du and F. Zhang

More recently, P.Rizomiliotis discussed the resistance of Boolean functions
against (fast) algebraic attacks and provided a sufficient and necessary condi-
tion of Boolean function having the maximum AI under univariate polynomial
representation [8]. Before long, X.Zeng et al. exploited the sufficient and neces-
sary condition and provided more constructions of MAI Boolean functions under
univariate polynomial representation [9].

Inspired by two papers above, in this paper, we would like to consider a
typical method of finding MAI Boolean functions. That is to obtain new MAI
Boolean functions by changing the majority Boolean function. The idea of this
method firstly appeared in [10]. It was then realized by N.Li and W.Qi in [11,12]
for Boolean functions in odd number of variables. It was further generalized in
[13] for Boolean functions in any number of variables. With this method all the
MAI Boolean functions can be obtained theoretically. However, the disadvan-
tage of this method is mainly the poor cryptographic properties (except AI)
of the majority Boolean function, which may result the failure to prove newly-
constructed MAI Boolean functions having good cryptographic properties. This
motivate us to consider replacing the majority Boolean functions with a new
MAI Boolean function under univariate polynomial representation possessing
good cryptographic properties. We hope that some newly-constructed Boolean
functions in this way can be proven to have good cryptographic properties.

Recall that finding an odd n-variable MAI Boolean function is equivalent
to finding an invertible submatrix in a given 2n−1 × 2n−1 matrix W [11]. We
would like to know if there exists similar relation under univariate polynomial
representation. If it exists, what does the given matrix W like and how to find
invertible submatrixes efficiently? And how about Boolean functions in even
number of variables? In this paper we manage to find the answers.

The rest of the paper is organized as follows. Section 2 provides some prelimi-
naries and recalls the sufficient and necessary condition given by P.Rizomiliotis.
Section 3 gives the sufficient condition of Boolean functions having the maximum
AI obtained by changing a known MAI Boolean function under univariate poly-
nomial representation. Section 4 provides some concrete methods of finding more
MAI Boolean functions in odd number of variables and further discusses the case
when Boolean functions have even number of variables. Section 5 analyzes the
algebraic degree and the nonlinearity.

2 Preliminaries

Let n always be a positive integer in this paper. An n-variable Boolean function
may be viewed as a mapping from Fn

2 to F2. We denote by Bn the set of all the
n-variable Boolean functions.

Any n-variable Boolean function has a unique representation as a multivariate
polynomial over F2, called the algebraic normal form(ANF),

f(x1, x2, · · · , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+ a12···nx1x2 · · ·xn,

Finding More Boolean Functions 49

where a0, ai, aij , . . . , a12···n belong to F2. The algebraic degree of Boolean func-
tion f , denoted by deg(f), is the degree of this polynomial, i.e., the number of
variables in the highest order term with nonzero coefficient. A boolean function
is affine if there exists no term of degree strictly greater than 1 in the ANF.

For the simplicity, we omit ∗ and replace f∗g with fg to denote the polynomial
multiplication over F2. A Boolean function g ∈ Bn is called an annihilator of
f ∈ Bn if fg = 0. The lowest algebraic degree of all the nonzero annihilators of
f and 1+f is called algebraic immunity of f or 1+f [1,2], denoted by AI(f). It
has been proved that AIn(f) ≤ �n

2 � for a given f ∈ Bn [14]. A Boolean function
f ∈ Bn has the maximum algebraic immunity (MAI) if AIn(f) = �n

2 �.
For f ∈ Bn, the set of x = (x1, x2, · · · , xn) ∈ Fn

2 for which f(x) = 1 (resp.
f(x) = 0) is called the on-set (resp. off-set), denoted by 1f (resp. 0f). The
Hamming weight of f is the cardinality of 1f , denoted by wt(f). f is called
balanced if wt(f) = 2n−1. If f ∈ Bn is an MAI Boolean function then f is
balanced when n is odd and

∑n
2 −1
i=0

(
n
i

) ≤ wt(f) ≤∑n
2
i=0

(
n
i

)
when n is even [14].

The Hamming distance of f ∈ Bn from g ∈ Bn is the Hamming weight of f +g.
The nonlinearity of an n-variable Boolean function f is its minimum Hamming
distance from all the n-variable affine functions. The nonlinearity of f can be
described through its Walsh transform: nl(f) = 2n−1− 1

2maxω∈Fn
2
|Wf (ω)|, where

Wf (ω) =
∑

x∈Fn
2
(−1)f(x)+ω·x and ω · x ∈ F2 is the usual inner product over Fn

2 .
By identifying the finite field F2n with the vector space Fn

2 , an n-variable
Boolean function f can be written as a univariate polynomial over F2n :

f(x) =
2n−1∑
i=0

fix
i,

where f0, f2n−1 ∈ F2 and f2i = (fi)2 ∈ F2n , 1 ≤ i ≤ 2n − 2. The algebraic
degree deg(f) (not the degree of the polynomial over F2n) is given by the largest
integer s = wt2(k), such that fk �= 0, where wt2(k) is the number of nonzero
coefficients in the binary representation of k.

A cyclotomic coset Cd modulo 2n − 1 can be written as

Cd = {d, d · 2, · · · , d · 2nd−1}
where nd is the smallest integer such that d = d · 2nd(mod2n − 1) and d is the
coset leader of Cd.

Denote by Γ (n) the set of all the coset leader modulo 2n−1, and by rd(x) the
minimal polynomial of αd over F2. Denote by Rd(x) the product of the minimal
polynomial over F2 of all the elements α−i ∈ F2n , where wt2(i) = d, i.e.,

Rd(x) =
∏

i∈Γ (n),wt2(i)=d

r−i(x),

for 1 ≤ d ≤ n− 1. Let Rn(x) = x + 1, R0(x) = x and

Rd1,d2(x) =
d2∏

i=d1

Ri(x), 0 ≤ d1 ≤ d2 ≤ n.

50 Y. Du and F. Zhang

Define the
∑d1

i=0

(
n
i

)×∑d2
i=0

(
n
i

)
matrix Rd1+1,d2 , for d1 < d2, as follows. The

rth row of Rd1+1,d2 consists of the coefficients of the polynomial xrRd1+1,d2(x)
for 0 ≤ r ≤ ∑d1

i=0

(
n
i

) − 1, appended with zeros. Namely, matrix Rd1+1,d2 pro-
duces a linear cyclic code C(N, k), where N =

∑d2
i=0

(
n
i

)
and k =

∑d1
i=0

(
n
i

)
.

Clearly, Rd1+1,d2 has full rank
∑d1

i=0

(
n
i

)
, i.e., rank(Rd1+1,d2) =

∑d1
i=0

(
n
i

)
.

Let A ⊆ F∗
2n . We denote by R(A)

d+1,n−1 the submatrix of Rd+1,n−1, such that

the jth column of Rd+1,n−1, for 0 ≤ j ≤ 2n− 2, belongs to R(A)
d+1,n−1, if αj ∈ A.

Particularly, for f ∈ Bn, we have submatrix R(1f)
d+1,n−1 and submatrix R(0f)

d+1,n−1

of Rd+1,n−1.
Based on notations above, P.Rizomiliotis gave a sufficient and necessary con-

dition of Boolean function having the maximum AI under univariate polynomial
representation.

Lemma 1. [8] Let f ∈ Bn and d = �n
2 � − 1. AI(f) = d + 1 if and only if

rank(R(1f)
d+1,n−1) =

d∑
i=0

(
n

i

)
and

rank([γ1f
(d) R(0f)

t+1,n−1]) =
d∑

i=0

(
n

i

)
where γ1f

(d) = R(1f)
d+1,n−1 ·1T

wt(f) and 1T
wt(f) is the transpose of the all ones vector

with length wt(f).

Let n be odd and f ∈ Bn. It is well-known that AI(f) = n+1
2 if and only if f is

balanced and has not nonzero annihilators of degree less than n+1
2 [3].

Lemma 2. Let n be odd, f ∈ Bn and d = n−1
2 . AI(f) = d + 1 if and only if

rank(R(1f)
d+1,n−1) is an invertible square matrix.

3 Deciding Boolean Functions Having Maximum AI
under Univariate Polynomial Representation

In this section, we give the decision condition of Boolean functions having the
maximum AI obtained by changing a known MAI Boolean function under uni-
variate polynomial representation. We begin with the definition of the majority
function[15].

Lemma 3. Let d = �n
2 � − 1 and x ∈ Fn

2 . Fn ∈ Bn satisfies

Fn(x) =
{

1 wt(x) ≤ d
0 wt(x) > d

,

where wt(x) is the number of nonzero components of vector x ∈ Fn
2 . Then

AI(Fn) = d + 1 = �n
2 �.

Finding More Boolean Functions 51

Boolean function Fn is called the majority function and has the maximum AI. A
typical idea is to obtain a new MAI function by changing the majority function
Fn [10]. When n is odd, this idea can be converted to the problem of finding out
an invertible submatrix in a given 2n−1 × 2n−1 matrix [11]. When n is even, it
can be converted to the problem of finding out two submatrixes with full column
rank in a

∑n
i=d+1

(
n
i

)×∑d
i=0

(
n
i

)
matrix with d = �n

2 � − 1 [13].
Now we consider replace the majority function with a new MAI Boolean func-

tion under univariate polynomial representation. The new function comes from
a known class of MAI Boolean functions under univariate polynomial represen-
tation.

Lemma 4. [8] Let f ∈ Bn and α be a primitive element of the finite field F2n.
f is considered as a univariate polynomial over F2n and satisfies

1f = {1, α, α2, · · · , αDn−1} ∪ S,

where S ⊂ {αDn , αDn+1, · · · , αD̂n−1}, Dn =
∑�n

2 �−1
i=0

(
n
i

)
and D̂n = 2n − Dn.

Then AI(f) = �n
2 �.

For the convenience of the description of this paper, in Lemma 4, the definition
of S and D̂n has been changed, but the function f in Lemma 4 is essentially
same as the function f given by Definition 2 in [8]. Based on Lemma 4, we can
define the majority function under univariate polynomial representation.

Definition 1. Let α be a primitive element of the finite field F2n . Boolean func-
tion Fn ∈ Bn is called the majority function in n variables under univariate
polynomial representation if its on-set is exactly equal to {1, α, α2, · · · , αDn−1}
where Dn =

∑�n
2 �−1

i=0

(
n
i

)
.

In Lemma 4, if n is odd, then Dn = D̂n = 2n−1 and Fn ∈ Bn is the unique
function defined as Lemma 4. For the simplicity, in the following content of this
paper, we call Fn ∈ Bn the majority function and we always let α be a primitive
element of the finite field F2n , Dn =

∑�n
2 �−1

i=0

(
n
i

)
and D̂n = 2n −Dn.

Definition 2. For 1 ≤ j1 < j2 < · · · < jt ≤ Dn and 1 ≤ i1 < i2 < · · · < is ≤
D̂n − 1, f = Fn(i1, i2, · · · , is; j1, j2, · · · , jt) = Fn(A;B) ∈ Bn is defined as

f(x) =
{

Fn(x) + 1 if x ∈ A ∪ B
Fn(x) else

where
A = {αj1−1, αj2−1, · · · , αjt−1} ⊆ 1Fn ,

B = {αDn+i1−1, αDn+i2−1, · · · , αDn+is−1} ⊂ 0Fn ,

1 ≤ |A| = t ≤ Dn and 1 ≤ |B| = s ≤ D̂n − 1.

Boolean function f = Fn(A;B) is obtained by changing the majority function
according to A and B. We want to know what A and B should be when AI(f) =
�n

2 �. The following corollary gives an answer directly from Lemma 2 and the
definition of matrix Rd+1,n−1 with d = �n

2 � − 1.

52 Y. Du and F. Zhang

Corollary 1. Let n be odd. For any integers i (1 ≤ i < 2n−1), if

Ai = {αi, αi+1, · · · , αDn−1}
and

Bi = {αDn−1+i, αDn+i, · · · , α2n−2},
then AI(Fn(Ai;Bi)) = n+1

2 .

Proof. Let d = n−1
2 . According to the definition of matrix Rd+1,n−1, the first i

rows of R(1Fn\Ai)
d+1,n−1 form an upper triangular matrix, which is invertible, and all

the entries on the rest of rows of R(1Fn\Ai)
d+1,n−1 are zero. Similarly, the last 2n−1 − i

rows of R(Bi)
d+1,n−1 form a lower triangular matrix, which is also invertible, and all

the entries on the rest of rows of R(Bi)
d+1,n−1 are zero. Therefore, R((1Fn\Ai)∪Bi)

d+1,n−1

is an invertible matrix and AI(Fn(Ai;Bi)) = n+1
2 from Lemma 2. ��

Definition 3. Let f ∈ Bn and d = �n
2 � − 1. The matrix V (1f) is defined to be

(R(1f)
d+1,n−1)

T and the matrix V (0f) is defined to be (R(0f)
d+1,n−1)

T where T is the
transpose of the matrix. Particularly, the (D̂n − 1) × Dn matrix Wn is defined
to be

Wn = V (0Fn) · V (1Fn)−1,

for the majority function Fn ∈ Bn.

With the notations in Definition 2, we can write αjt+1−1, αjt+2−1, · · · , αjDn−1

as the rest of elements of 1Fn after excluding all the elements of A. Similarly,
0, αDn+is+1−1, αDn+is+2−1, · · · , αDn+iD̂n−1−1 are the rest of elements of 0Fn after
excluding all the elements of B.

We denote by Wn(A;B) the s × t submatrix with all the entries on rows
i1, i2, · · · , is and columns j1, j2, · · · , jt of Wn, and by W ∗

n(A;B) the (D̂n − s −
1) × (Dn − t) submatrix with all the entries on rows is+1, is+2, · · · , iD̂n−1 and
columns jt+1, jt+2, · · · , jDn of Wn. We call W ∗

n(A;B) the complementary matrix
of Wn(A;B).

According to Definition 3, if f ∈ Bn satisfies 1f = (1Fn \ A) ∪ B, then V (1f)
and V (0f) can be obtained by swapping t rows of V (1Fn) with s rows of V (0Fn).
Since Wn = V (0Fn) · V (1Fn)−1, from some linear algebra knowledge (or see
Lemma 6 in [13] directly), it is not hard to prove that rankV (1f) = Dn if and
only if Wn(A;B) have full column rank and rankV (0f) = Dn if and only if
W ∗

n(A;B) have full column rank.
When n is even, rank ([γ1f

(d) R(0f)
d+1,n−1]) = Dn if V (0f) have full column rank

Dn. Therefore, from Lemma 1 AI(f) = �n
2 � if both Wn(A;B) and W ∗

n(A;B)
have full column rank.

Theorem 1. Let n be even. AI(Fn(A;B)) = n
2 if both Wn(A;B) and W ∗

n(A;B)
have full column rank.

When n is odd, if |B| = |A|, then Fn(A;B) is balanced. From Lemma 2 we have
the following result.

Finding More Boolean Functions 53

Theorem 2. Let n be odd. AI(Fn(A;B)) = n+1
2 if and only if Wn(A;B) is an

invertible square matrix.

Theorem 1 and Theorem 2 mean that finding MAI Boolean functions in n vari-
ables under univariate polynomial representation can be converted to finding
submatrixes with full column rank in (D̂n−1)×Dn matrix Wn. It is interesting
to study the properties of Wn.

Theorem 3. Let d = �n
2 � − 1. The ith column of Wn equals to the coeffi-

cient list (written as a column vector) of polynomial qi−1(x) = xi−1 · b(x) mod
(Rd+1,n−1(x)) where 1 ≤ i ≤ Dn and b(x) · xDn ≡ 1 mod (Rd+1,n−1(x)).

Proof. According to the definition of Rd+1,n−1, the ith row of Rd+1,n−1 equals
to the coefficient list of polynomial xi−1Rd+1,n−1(x). since(

V (1Fn)
V (0Fn)

)
= (Rd+1,n−1)T ,

we have(
V (1Fn)
V (0Fn)

)
· V (1Fn)−1 =

(
In

Wn

)
= ((V (1Fn)−1)T ·Rd+1,n−1)T ,

where In is the identity matrix. Thus the ith column of
(

In

Wn

)
is a codeword

of the linear cyclic code generated by (Rd+1,n−1)T , which equals to the coeffi-
cient list (written as a column vector) of the polynomial denoted by Ci(x) =
xi−1 + qi−1(x) · xDn with Ci(x) ≡ 0 mod (Rd+1,n−1(x)) where deg(qi−1(x)) <
2n − Dn − 1. Therefore the ith column of Wn equals to the coefficient list of
polynomial qi−1(x), then equals to the coefficient list of polynomial qi−1(x) =
xi−1 · b(x) mod (Rd+1,n−1(x)) where b(x) · xDn ≡ 1 mod (Rd+1,n−1(x)) since
gcd(xDn , Rd+1,n−1(x)) = 1. ��
Corollary 2. For 1 ≤ i ≤ D̂n − 1 and 1 ≤ j ≤ Dn, the entry on row i and
column j of Wn is denoted by W

(i,j)
n . Then W

(i,j)
n satisfies the following recursive

relation: {
W

(i,1)
n = ai−1

W
(i,j)
n = W

(i−1,j−1)
n + W

(D̂n−1,j−1)
n · ai−1 for j ≥ 2

where ai−1 ∈ F2 is the coefficient of the term xi−1 in the q0(x) defined in Theo-
rem 3 and W

(0,j)
n = 0 for 1 ≤ j ≤ Dn.

Example 1. Let n = 5. d = �n
2 � − 1 = 2. It can be verified that

q0(x) = b(x) = 1 + x4 + x5 + x6 + x7 + x8 + x10 + x12 + x13 + x14.

Then the first column of W5 is (1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1)T, and the sec-
ond column of W5 is

(1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0)T

= (0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1)T ⊕ (1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1)T ,

54 Y. Du and F. Zhang

and the third column of W5 is (0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0)T , and so on.
Finally, we have

W5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0
0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0
0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0
0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1
1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1
1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1
1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1
1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0
0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1
1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0
0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1
1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1
1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1
1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4 Finding MAI Boolean Functions under Univariate
Polynomial Representation

In this section, we give some concrete methods of finding MAI Boolean functions
in odd number of variables and further discuss the case when Boolean functions
have even number of variables.

When n is odd, from Corollary 2, we can find the nonzero entries in Wn and
obtain new MAI Boolean functions directly.

Corollary 3. Let n be odd. For 1 ≤ i ≤ Dn − 1 and 1 ≤ j ≤ Dn, f ∈ Bn is
defined as

f(x) =
{

Fn(x) + 1 if x ∈ {αDn+i−1, αj−1}
Fn(x) else

Then, AI(f) = �n
2 � if and only if the entry on row i and column j of Wn is

nonzero.

Section 3 shows that finding an MAI Boolean function in odd n variables under
univariate polynomial representation is equivalent to finding an invertible square
matrix . Although it is hard to find out all the invertible matrixes, finding some
special invertible matrixes in Wn may be possible.

In the following two algorithms, Algorithm 1 aims at finding some upper
triangular submatrix of Wn, while algorithm 2 can give an upper triangular
submatrix as well as a lower triangular submatrix. The invertible submatrixes
found by Example 2 and Example 3 are emphasized with bold font in W5, which
has been shown in Example 1.

Algorithm 1. The algorithm can be divided into 3 steps.

1. Find integers j (1 ≤ j < Dn) and s ≥ 2 such that the coefficient of xl in
qj−1(x) mod (Rd+1,n−1) equals to 0 for Dn − s ≤ l < Dn − 1 and 1 for
l = Dn − s− 1.

2. Let i1 = Dn − s, i2 = Dn − s + 1, · · · , is = Dn − 1 and j1 = j, j2 = j +
1, · · · , js = j + s− 1.

3. Output an MAI Boolean function f = Fn(i1, · · · , is; j1, · · · , js).

Finding More Boolean Functions 55

Example 2. Let n = 5. D5 = 16

1. q5(x) mod (Rd+1,n−1) = x+x4 +x6 +x7 +x9 +x11. The coefficients of terms
x12, x13, x14 are zeros and the coefficients of x11 is 1. Thus, we find out two
integers j = 5 + 1 = 6 and s = 4 satisfying the given conditions.

2. Let i1 = D5 − s = 12, i2 = D5 − s + 1 = 13, i3 = D5 − s + 2 = 14, i4 =
D5−1 = 15 and j1 = j = 6, j2 = j +1 = 7, j3 = j +2 = 8, j4 = j +s−1 = 9.

3. Output an MAI Boolean function f = Fn(12, 13, 14, 15; 6, 7, 8, 9).

Algorithm 2. The algorithm can be divided into 6 steps and outputs two MAI
Boolean functions.

1. Find integers j (1 ≤ j < Dn) and s ≥ 3 such that the coefficient of xl in
qj−1(x) mod (Rd+1,n−1) equals to 0 for Dn − s ≤ l < Dn − 1 and 1 for
l = Dn − s− 1.

2. Find k (1 ≤ k < Dn − 1) and 2 ≤ s′ < s such that the coefficient of xl in
qj−1(x) mod (Rd+1,n−1) equals to 0 for k ≤ l < k + s′ − 2 and 1 for k − 1
and l = k + s′ − 2.

3. Let i1 = k, i2 = k + 1, is′ = k + s′ − 1 and j1 = j, j2 = j + 1, j′ = j + s′ − 1.
4. Output an MAI Boolean function f = Fn(i1, · · · , is′ ; j1, · · · , js′).
5. Let i1 = k + s′, i2 = k + s′ + 1, is′ = k + 2s′ − 1.
6. Output an MAI Boolean function f = Fn(i1, · · · , is′ ; j1, · · · , js′).

Example 3. Let n = 5. D5 = 16

1. q4(x) mod (Rd+1,n−1) = 1+x3 +x5 +x6 +x8 +x10. The coefficients of terms
x11, x12, x13, x14 are zeros and the coefficients of x10 is 1. Thus, we find out
two integers j = 4 + 1 = 5 and s = 5 satisfying the given conditions.

2. Note that the coefficients of terms x, x2 are zeros and the coefficients of x0

and x3 are 1. Thus, k = 1 and s′ = 3 satisfy the given conditions.
3. Let i1 = k = 1, i2 = k + 1 = 2, i3 = k + s′ − 1 = 3 and j1 = j = 5, j2 =

j + 1 = 6, js = j + 3− 1 = 7.
4. Output an MAI Boolean function f = Fn(1, 2, 3; 5, 6, 7).
5. Let i1 = k + s′ = 4, i2 = k + s′ + 1 = 5, i3 = k + 2s′ − 1 = 6.
6. Output an MAI Boolean function f = Fn(4, 5, 6; 5, 6, 7).

Now we consider finding MAI Boolean functions in even number of variables.
From Theorem 1, we need to guarantee two submatrixes in Wn having full col-
umn rank at same time, which is difficult, if we want to obtain a new MAI
Boolean function in even n variables from the majority function Fn. Our idea
in this paper is to restrict choice of B firstly such that W ∗

n(A;B) always has full
column rank, then find Wn(A;B) with full column rank.

Lemma 5. Let n be even. AI(Fn(A;B)) = n
2 if Wn(A;B) has full column rank

and B ⊂ {αDn , αDn+1, · · · , αD̂n−2}.

56 Y. Du and F. Zhang

Proof. Let d = n
2 − 1, from the definition of matrix Rd+1,n−1, the last Dn

columns of Rd+1,n−1 form a lower triangular matrix, which is invertible. Then,
from the definition of matrix Wn, the last Dn rows of Wn form a upper triangular
matrix, which is invertible. Therefore, Wn(A;B) is a submatrix with full column
rank taken only from the first D̂n −Dn − 1 rows of Wn and its complementary
submatrix W ∗

n(A;B) always has full column rank. This means thatAI(f) = �n
2 �.��

Generally, in fact, excluding arbitrary Dn rows of Wn which form an invertible
matrix, if Wn(A,B) is taken only from the rest of rows of Wn, its complementary
W ∗

n(A,B) always has full column rank. Thus, we have following result.

Lemma 6. Let n be even and S ⊂ 0Fn\{0} such that Wn(1Fn ;S) is an invertible
square matrix. For A ⊂ 1Fn and B ⊂ 0Fn \ (S ∪ {0}), AI(Fn(A;B)) = n

2 if
Wn(A;B) has full column rank.

With the notations in Lemma 4, let S = {αDn , αDn+1, · · · , αD̂n−2}, i.e., the
on-set of the function is {1, α, α2, · · · , αD̂n−2} and the off-set of the function is
{αD̂n−1, αD̂n , · · · , α2n−2} ∪ {0}, we denote by F̄n ∈ Bn this function .

Definition 4. Let n be even. With notations in Definition 3, the (D̂n−1)×Dn

matrix W̄n is defined to be

W̄n = V (1F̄n
) · V (0F̄n

)−1,

for the Boolean function F̄n ∈ Bn.

Let
Ā = {αi1−1, αi2−1, · · · , αis−1} ⊂ 1F̄n

,

and
B̄ = {αD̂n+j1−2, αD̂n+j2−2, · · · , αD̂n+jt−2} ⊂ 0F̄n

,

where Dn + 1 ≤ i1 < i2 < · · · < is ≤ D̂n − 1 and 1 ≤ j1 < j2 < · · · < jt ≤ Dn.
Similarly, we denote by W̄n(Ā; B̄) the s × t submatrix with all the entries on
rows i1, i2, · · · , is and columns j1, j2, · · · , jt of W̄n.

Lemma 7. Let S = (0F̄n
\ (B̄ ∪ {0})) ∪ Ā. Wn(1Fn ;S) is an invertible square

matrix if and only if W̄n(Ā; B̄) is an invertible square matrix.

Proof. Let f ∈ Bn such that 0f = S ∪{0} = (0F̄n
\ B̄)∪Ā. V (0f) is an invertible

matrix if and only if W̄n(Ā; B̄) is an invertible square matrix. Since V (0f) ·
V (1Fn)−1 = Wn(1Fn ;S), V (0f) is an invertible matrix if and only if Wn(1Fn ;S)
is an invertible square matrix. Therefore, Wn(1Fn ;S) is an invertible square
matrix if and only if W̄n(Ā; B̄) is an invertible square matrix. ��
From lemma 6 and Lemma 7, we have the following result.

Theorem 4. Let n be even and S = (0F̄n
\ (B̄ ∪ {0})) ∪ Ā. For A ⊂ 1Fn and

B ⊂ 0Fn \ (S ∪ {0}), AI(Fn(A;B)) = n
2 if Wn(A;B) has full column rank and

W̄n(Ā; B̄) is an invertible square matrix.

Finding More Boolean Functions 57

Theorem 5. Let n be even and d = n
2 − 1. The ith column of W̄n equals

to the coefficient list (written as a column vector) of polynomial qi−1(x) =
xD̂n+i−2 mod (Rd+1,n−1(x)) where 1 ≤ i ≤ Dn.

Proof. Being similar to the proof of Theorem 3, we have(
V (1F̄n

)
V (0F̄n

)

)
· V (0F̄n

)−1 =
(

W̄n

In

)
= ((V (0F̄n

)−1)T ·Rd+1,n−1)T

Thus the ith column of
(

W̄n

In

)
is a codeword of the linear cyclic code gen-

erated by (Rd+1,n−1)T , which equals to the coefficient list (written as a col-
umn vector) of the polynomial denoted by Ci(x) = qi−1(x) + xi−1xD̂n−1 with
Ci(x) ≡ 0 mod (Rd+1,n−1(x)) where deg(qi−1(x)) < D̂n − 1. Therefore the ith
column of Wn equals to the coefficient list of polynomial qi−1(x) = xD̂n+i−2 mod
(Rd+1,n−1(x)). ��
Based on the discussion above, when finding an MAI Boolean function in even
number of variables, we can find an invertible square matrix W̄n(Ā; B̄) in W̄n

firstly, then restrict the choice of B according to Ā and B̄, finally we find
a submatrix Wn(A;B) with full column rank and obtain Fn(A;B) with the
maximum AI.

5 Analysis of Algebraic Degree and Nonlinearity

In this section, we analyze the algebraic degree and the nonlinearity of f =
Fn(A;B) ∈ Bn given by Definition 2.

Theorem 6. When f = Fn(A;B) ∈ Bn is balanced, deg(f) = n− 1 if and only
if ∑

x∈A∪B
x �= 1 + αDn

1 + α

Proof. Let f(x) =
∑2n−1

i=0 fix
i be the univariate polynomial representation of f .

Then f0 = f(0) = 0 and f2n−1 = 0, i.e., deg(f) ≤ n− 1 since f is balanced. For
every i ∈ {1, 2, · · · , 2n − 2}:

fi =
2n−2∑
j=0

f(αj)α−ij .

We define F (x) =
∑2n−2

j=0 f(αj)xj . Then deg(f) = n−1 if and only if F (α−i) �= 0
for some i with wt2(i) = n−1. Note that ik = 2n−1−2k with k = 0, 1, · · · , n−1

58 Y. Du and F. Zhang

are all the positive integers less than 2n − 1 such that wt2(ik) = n − 1. Thus,
deg(f) = n − 1 if and only if F (α−(2n−1−2k)) = F (α2k

) =
∑2n−2

j=0 f(αj)αj2k

=

F (α)2
k �= 0 for some integer k with 0 ≤ k ≤ n − 1. Finally, F (α)2

k �= 0 if and
only if F (α) �= 0, for F (α) we have

F (α) =
∑
x∈1f

x =
∑

x∈(1Fn\A)∪B
x =

∑
x∈1Fn

x +
∑

x∈A∪B
x =

∑
x∈A∪B

x +
1 + αDn

1 + α
.

This completes the proof. ��
Let λ ∈ F∗

2n . Carlet and Feng proved

max
λ∈F∗

2n

∣∣∣∣∣∣
2n−2∑

i=2n−1−1

(−1)tr(λαi)

∣∣∣∣∣∣ ≤ 2
n
2 · n ln 2 + 1

when considering the nonlinearity of Boolean functions constructed by them[4].
With a similar proof idea, Zeng et al. recently gave a better bound[9], i.e.,

max
λ∈F∗

2n

∣∣∣∣∣∣
2n−1−1∑

i=0

(−1)tr(λαi)

∣∣∣∣∣∣ ≤ 2
n
2 · cn ln 2 + 1

where cn = ln 2
3 (n− 1) + 5

6 + 1
3
√

3
+ 1

6
√

2
< n ln 2 for large n. Based on this, for

any integer k (0 ≤ k ≤ 2n − 2), we have

max
λ∈F∗

2n

∣∣∣∣∣∣
2n−1−1+k∑

i=k

(−1)tr(λαi)

∣∣∣∣∣∣ ≤ 2
n
2 · cn ln 2 + 1

and the following result.

Lemma 8. If g ∈ Bn satisfies 1g = {αk, αk+1, · · · , αk+2n−1−1} where 0 ≤ k ≤
2n − 2, then g is balanced and nl(g) > 2n−1 − 2

n
2 · cn ln 2− 1.

Theorem 7. Let f = Fn(A;B) ∈ Bn be balanced. For any integer k (1 ≤ k ≤
Dn), if A satisfies

S1 = {1, α, · · · , αk−1} ⊆ A ⊆ 1Fn

and B satisfies

S2 = {αDn , αDn+1, · · · , αDn+k−1, · · · , αDn+k+ D̂n−Dn
2 −1} ⊆ B ⊆ 0Fn \ {0},

then nl(f) > 2n−1− 2
n
2 · cn ln 2− |A\S1| − |B \ S2| − 1, where cn = ln 2

3 (n− 1)+
5
6 + 1

3
√

3
+ 1

6
√

2
.

Finding More Boolean Functions 59

Proof. Let g ∈ Bn such that 1g = {αk, αk+1, · · · , αk+2n−1−1}. It is not hard to
see that

1f = (1Fn \ A) ∪ B = (1g \ (A \ S1)) ∪ (B \ S2).

When we identify the vector space Fn
2 with the finite field F2n , we can take for

inner product: λ · x = tr(λx) where tr(·) is the absolute trace function. Then,
for λ ∈ F∗

2n , we have

Wf (λ) = −2
∑
x∈1f

(−1)tr(λx) = −2
∑

x∈(1Fn\A)∪B
(−1)tr(λx)

= −2

⎛⎝∑
x∈1g

(−1)tr(λx) −
∑

x∈A\S1

(−1)tr(λx) +
∑

x∈B\S2

(−1)tr(λx)

⎞⎠ .

Then

|Wf (λ)| ≤ 2

∣∣∣∣∣∣
∑
x∈1g

(−1)tr(λx)

∣∣∣∣∣∣+ 2|A \ S1|+ 2|B \ S2|.

Note that Wf (0) = 0 since f is balanced and nl(g) > 2n−1 − 2
n
2 · cn ln 2 − 1 by

Lemma 8. Therefore,

nl(f) ≥ 2n−1 − max
λ∈F∗

2n

∣∣∣∣∣∣
∑
x∈1g

(−1)tr(λx)

∣∣∣∣∣∣− |A \ S1| − |B \ S2|

= nl(g)− |A \ S1| − |B \ S2|.
> 2n−1 − 2

n
2 · cn ln 2− |A \ S1| − |B \ S2| − 1.

This proves the theorem. ��
With ideas in Section 4, it is possible to find out Fn(A;B) with the maximum
AI satisfying the conditions in Theorem 7. Generally, Theorem 7 still holds for
any n-variable Boolean function g such that 1g = (1Fn \ S1)∪ S2 with S1 ⊆ 1Fn

and S2 ⊆ 0Fn \{0}. If such a Boolean function g has better nonlinearity, we may
find MAI Boolean functions with better nonlinearity.

6 Conclusion

In this paper, how to find more MAI Boolean functions by changing the new
majority function under univariate polynomial representation is further investi-
gated. It shows that finding MAI Boolean functions in n variables under univari-
ate polynomial representation can be converted to finding submatrixes with full
column rank in the (D̂n−1)×Dn matrix Wn. It studies some basic properties of
Wn, which makes finding some special invertible submatrixes be possible. It also
analyzes the algebraic degree and the nonlinearity of Boolean functions obtained
in this way.

60 Y. Du and F. Zhang

References

1. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2729, pp. 345–359. Springer,
Heidelberg (2003)

2. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

3. Canteaut, A.: Open problems related to algebraic attacks on stream ciphers. In:
Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 120–134. Springer, Heidelberg
(2006)

4. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal alge-
braic immunity, good immunity to fast algebraic attacks and good nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

5. Tu, Z., Deng, Y.: A Conjecture on Binary String and Its Applications on Con-
structing Boolean Functions of Optimal Algebraic Immunity. Cryptology ePrint
Archive, Report 2009/272., http://eprint.iacr.org/2009/272.pdf

6. Tang, X., Tang, D., Zeng, X., Hu, L.: Balanced Boolean functions with (almost)
optimal algebraic immunity and very high nonlinearity. Cryptology ePrint Archive,
Report 2010/443., http://eprint.iacr.org/2010/443

7. Wang, Q., Peng, J., Kan, H., Xue, X.: Constructions of cryptographically significant
Boolean functions using primitive polynomials. IEEE Trans. Inform. Theory 56(6),
3048–3053 (2010)

8. Rizomiliotis, P.: On the Resistance of Boolean Functions Against Algebraic Attacks
Using Univariate Polynomial Representation. IEEE Trans. Inform. Theory 56(8),
4014–4024 (2010)

9. Zeng, X., Carlet, C., Shan, J., Hu, L.: Balanced Boolean Functions with Optimum
Algebraic Immunity and High Nonlinearity. Cryptology ePrint Archive, Report
/2010/606, http://eprint.iacr.org/2010/606

10. Qu, L., Li, C.: On the Boolean functions with maximum possible algebraic
immunity: construction and a lower bound of the count. Cryptology ePrint Archive,
Report 2005 /449, http://eprint.iacr.org/2005/449

11. Li, N., Qi, W.: Construction and analysis of boolean functions of 2t+1 variables
with maximum algebraic immunity. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 84–98. Springer, Heidelberg (2006)

12. Li, N., Qi, W.: Boolean functions of an odd number of variables with maximum
algebraic immunity. Sci. China Ser. F-Information Sciences 50(3), 307–317 (2007)

13. Liu, M., Pei, D., Du, Y.: Identification and construction of Boolean functions
with maximum algebraic immunity. Sci. China Ser. F-Information Sciences 53(7),
1379–1396 (2010)

14. Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic Immunity for Crypto-
graphically Significant Boolean Functions: Analysis and Construction. IEEE Trans.
Inform. Theory 52(7), 3105–3121 (2006)

15. Dalai, D.K., Maitra, S., Sarkar, S.: Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity. Designs, Codes and
Cryptography 40(1), 41–58 (2006)

http://eprint.iacr.org/2009/272.pdf
http://eprint.iacr.org/2010/443
http://eprint.iacr.org/2010/606
http://eprint.iacr.org/2005/449

Improving the Algorithm 2 in Multidimensional

Linear Cryptanalysis

Phuong Ha Nguyen, Hongjun Wu, and Huaxiong Wang

Division of Mathematical Sciences,
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

ng0007ha@e.ntu.edu.sg, {wuhj,hxwang}@ntu.edu.sg

Abstract. In FSE’09 Hermelin et al. introduced the Algorithm 2 of mul-
tidimensional linear cryptanalysis. If this algorithm is m-dimensional and
reveals l bits of the last round key with N plaintext-ciphertext pairs, then
its time complexity is O(mN2l). In this paper, we show that by applying
the Fast Fourier Transform and Fast Walsh Hadamard Transform to the
Algorithm 2 of multidimensional linear cryptanalysis, we can reduce the
time complexity of the attack to O(N + λ2m+l), where λ is 3(m + l) or
4m+3l. The resulting attacks are the best known key recovery attacks on
11-round and 12-round Serpent. The data, time, and memory complex-
ity of the previously best known attack on 12-round Serpent are reduced
by factor of 27.5, 211.7, and 27.5, respectively. This paper also simulates
the experiments of the improved Algorithm 2 in multidimensional linear
cryptanalysis on 5-round Serpent.

Keywords: Multidimensional linear cryptanalysis, Linear Cryptanaly-
sis, Serpent, Fast Fourier Transform, Fast Walsh Hadamard Transform.

1 Introduction

In 1993, Matsui [13] introduced the linear cryptanalysis and two algorithms,
Algorithm 1 and Algorithm 2. These two algorithms exploit block cipher’s linear
approximation between the plaintext P , the ciphertext C and the secret key
with a certain probability. Algorithm 2 is the modified version of Algorithm 1
by relaxing the first round and/or the last round of the linear approximation
of Algorithm 1. Algorithm 2 can recover multiple secret key bits instead of one
bit in Algorithm 1 with the same number of samples N required by the attack.
However, the time complexity of the distillation phase of Algorithm 2 is much
higher than that of Algorithm 1. Without loss of generality, the Substitution
Permutation Network (SPN) n-round block cipher is considered, the last round of
cipher is relaxed with l-bit subkey Kn of the last round key involved in the attack
and N samples given. The time complexity for recovering l-bit Kn is O(2lN).
Matsui [15] suggested a method to reduce the time complexity to O(N +22l) by
using one pre-computed table T . In 2007, Collard [7] et al. realized that table

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 61–74, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

62 P. Ha Nguyen, H. Wu, and H. Wang

T is a circulant matrix and applied the Fast Fourier Transform (FFT) to this
table to reduce the time complexity to O(N + 3l2l).

There are several important papers [12,2,9] which extended Matsui’s algo-
rithms, i.e., m linear approximations are used instead of one linear approxi-
mation in the attack. By combining m linear approximations together in the
attack, the number of samples N is expected to be reduced. Two of the most
outstanding models are the full Biryukov’s model [11] and Hermelin’s model [10]
which is known as multidimensional linear cryptanalysis. The time complexity
of the extended Algorithm 2 of these models is O(mN2l). Even if we apply
the algorithm in [7] to the full Biryukov’s model, the time complexity of the
extended Algorithm 2 is O(2mN + 3l2l+m), which is still too high. Due to the
high time complexity, the extended Algorithm 2 of these models can not be used
to attack as many rounds as Algorithm 2 of Matsui or the extended Algorithm
1 does.

The extended Algorithm 2 in [10] computes the information for the attack by
using a very natural algorithm which, however, it has a high computation cost,
i.e., O(mN2l). Our main contribution is to show that by applying the FFT and
Fast Walsh Hadamard Transform (FWHT) to the extended Algorithm 2, the
time complexity of the attack is reduced to O(N + λ2m+l), where λ is 3(m + l)
or 4m + 3l. Firstly, we work with N pairs of samples (P, C) to extract the
information for the attack only once. Secondly, we use two assistant tables to
compute the information extracted from N samples. Finally, we apply FFT ,
FWHT to these tables to derive the correct key from 2l guessed keys. Based on
the steps above, we introduce two methods, method 1 and method 2, for two cases
of the extended Algorithm 2 to reduce the time complexity to O(N + λ2m+l),
where λ is 3(m+l) or 4m+3l. Applying these methods to the extended Algorithm
2, we attack 11-round Serpent with 2116 data complexity, 2107.5 time complexity,
2104 memory complexity. The previously best known result on 11-round Serpent
is given in [7] with 2118 data complexity, 2114.3 time complexity, 2108 memory
complexity. Therefore, the attack in this paper is the best on 11 rounds. For
12-round Serpent, we have two attacks. The first reduces the data and time
complexity in [17] by factors of 25.5 and 219.4, respectively, but the memory
requirements are higher by a large factor of 2100. In comparison with [17], the
second attack reduces the data, time, and memory complexity by 27.5 , 211.7,
and 27.5, respectively. Hence our second attack on 12 rounds is much better
than [17].

This paper is organized as follows. Section 2 introduces the background as well
as some notations and definitions. Next, Section 3 gives the brief description of
Algorithm 2 of the full Biryukov model and of the Hermelin model. In this sec-
tion, the algorithm with time complexity O(mN2l), which is used to compute
the information for determining the correct key, is also explained. Then, Sec-
tion 4 describes two efficient computing methods for two cases of the extended
Algorithm 2. The experimental results on 5-round Serpent and the best crypt-
analytic results against 11-round and 12-round Serpent are reported in Section
5. Lastly, Section 6 concludes this paper.

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis 63

2 Notations and Background

The notations and definitions used in the rest of paper are introduced in this
section. For the sake of convenience we follow the notations in [9].

Let Vm = GF (2)m denote the space of m-dimensional binary vectors. If a =
(a1, . . . , am), b = (b1, . . . , bm) are two vectors in Vm, its inner product a · b is
defined as follows: a · b =

⊕m
i=1 aibi. The function f : Vm → V1 is called a

Boolean function. The function f = (f1, . . . , fm) : Vl → Vm is called a vectorial
Boolean function, where fi : Vl → V1 is a Boolean function for i = 1, · · · , m.

Let X be a random variable in Vm and pη = Pr(X = η), where η ∈ Vm.
Then p = (p0, p1, . . . , p2m−1) is the probability distribution of random variable
X . If we associate with a vectorial Boolean function f : Vl → Vm a random
variable Y := f(X), where X is uniformly distributed in Vl, then the probability
distribution of Y is p(f) := (p0(f), . . . , p2m−1(f)) where pη(f) = Pr(f(X) = η),
for all η ∈ Vm.

The correlation between a binary random variable X and 0 is ρ = Pr(X =
0) − Pr(X = 1). The value ε = ρ/2 is called a bias of the random variable X .
Let g : Vm → V1 be a Boolean function. Its correlation with 0 is defined as

ρ = 2−m(#{η ∈ Vm|g(η) = 0})−#{η ∈ Vm|g(η) = 1})
= 2Pr(g(X) = 0)− 1,

where X is uniformly distributed in Vm.
We recall important results on the Fast Fourier Transform [8], Fast Walsh-

Hadamard Transform [16] and Parseval′s theorem. Given a k-dimensional vec-
tor E = (E1, . . . , Ek) and a matrix Fk×k, we have k-dimensional vector D =
FET , where ET is the transpose of E. The matrix F is a Hadamard matrix if
F(i, j) = (−1)ij for i, j = 0, · · · , k − 1. The matrix F is a Fourier matrix if
F(i, j) = (e)2π

√−1ij/k , for i, j = 0, · · · , k − 1. If matrix F is either Fourier or
Hadamard, then vector D can be computed with complexity O(k log k) instead
of O(k2) by FFT or FWHT , respectively.

If F is a matrix then we denote F[·, j],F[i, ·] the j-th column and the i-th row
of matrix F, respectively.

3 Algorithm 2 of Multidimensional Linear Cryptanalysis

The m-dimensional linear cryptanalysis based on m linear approximations is in-
troduced by Hermelin et.al [9]. In the attack, 2m linear approximations which
are the combinations of m linear approximation are exploited to reduce the data
complexity. At first, we briefly review the multidimensional linear cryptanaly-
sis as well as the results of [9], which are needed for our efficient computing
methods. Then, we present the extended Algorithm 2 of multidimensional lin-
ear cryptanalysis of the full Biryukov’s model and the Hermelin’s model and we
explain the high time complexity of the extended Algorithm 2 afterwards.

64 P. Ha Nguyen, H. Wu, and H. Wang

3.1 Construction of Multidimensional Probability Distribution

Let f : Vl → Vn be a vectorial Boolean function and binary vectors wi ∈ Vn, ui ∈
Vl (i = 1, . . . , m) be selection patterns such that pairs (ui, wi) are linearly inde-
pendent. Define the functions gi as

gi(η) := wi · f(η)⊕ ui · η, ∀η ∈ Vl

and gi has correlation ρi (i = 1, · · · , m). Then ρ1, . . . , ρm are called the base-
correlations and g1, . . . , gm are the base approximations of f . Let g=(g1, . . . , gm)
be an m-dimensional vectorial Boolean function and denote p = (p0, . . . , p2m−1)
probability distribution of g.

Lemma 1. [9] Let g = (g1, . . . , gm) : Vl → Vm be a vectorial Boolean function
and p = (p0, . . . , p2m−1) its probability distribution. Then

2lpη = 2−m
∑

a∈Vm

∑
b∈Vl

(−1)a·(g(b)⊕η), η ∈ Vm.

Define

ρ(a) = 2−l
∑
b∈Vl

(−1)a·g(b) = Pr(a · g(X) = 0)− Pr(a · g(X) = 1),

where X is an random variable uniformly distributed in Vl. Thus, the combined
approximation a · g has the correlation ρ(a) for all a ∈ Vm.

Corollary 1. Let g : Vl → Vm be a vectorial Boolean function with probability
distribution p and correlations ρ(a) of the combined approximations a · g, for all
a ∈ Vm. Then for η ∈ Vm,

pη = 2−m
∑

a∈Vm

(−1)a·ηρ(a). (1)

3.2 Brief Analysis on Algorithm 2 of the Full Biryukov’s Model and
Hermelin’s Model

Algorithm 2 of the multidimensional linear cryptanalysis is the extension of the
Matsui’s Algorithm 2 [13] by using 2m linear approximations constructed from
m base linear approximations. Let us consider the SPN block cipher with n
rounds. Let u · P ⊕ v · Cn−1 ⊕ w · K̄ be the (n− 1)-round linear approximation
of the block cipher, where u, v, w are the selection patterns of the plaintext
P , the output Cn−1 of (n − 1)-th round, and the inner key K̄, respectively. In
the Matsui’s Algorithm 2, this linear approximation is extended to n rounds by
replacing v·Cn−1 = z ·S−1(Kn⊕Cl), where z is a selection pattern corresponding
to v on the input of the last round, S−1 is the inverse of the last S-box layer, Kn

is the l bits out of the last round key and Cl is the l bits out of the ciphertext C
involved in the attack. Let us denote z ·S−1(Kn⊕Cl) function f(Kn⊕Cl), then
we have the following linear approximation which is used in Matsui’s Algorithm 2

u · P ⊕ f(Kn ⊕ Cl)⊕ w · K̄.

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis 65

Since the above linear approximation has correlation, the linear approximation
u · P ⊕ f(Kn ⊕ Cl) also has correlation and then Matsui’s Algorithm 2 [13]
will determine the right key Kn based on this linear approximation. Instead
of using one linear approximation, the extended Algorithm 2 uses many linear
approximations. Let us assume that the extended Algorithm 2 is m-dimensional
and recovers l-bit subkey Kn of the last round key. The m linear approximations
used in the extended Algorithm 2 as base linear approximations are gi := ui ·
P ⊕f(Kn⊕Cl) for i = 1, . . . , m, where ui are the selection patterns of plaintext.
Define the vectorial boolean function g = (g1, . . . , gm). Then, a · g := a · (u1 ·
P, . . . , um · P) ⊕ f(Kn ⊕ Cl) are combined approximations with the correlation
ρ(a) for a ∈ Vm.

The aim of the extend Algorithm 2 is to exploit 2m combined approximations
a·g in order to reduce the the data complexity N , i.e, [10]N ∼ O(1/c), where c =∑

∀a∈Vm,a�=0 ρ2(a) is called a capacity of the system. In practice, the correlation
ρ(a) of a · g is computed by Piling-Up Lemma [9]. The probability distribution
p = (p0, . . . , p2m−1) of g is not uniformly distributed. The distillation phase
[2,3] working on N samples (P, C) helps us to derive the correct Kn from 2l

guessed keys K. The time complexity of this phase is the major factor in the
total time complexity of the attack. Let p2l×2m

be the matrix in which each row
is empirical probability distributions of g for each candidate key K, i.e., p[K, ·] =
(p[K, 0], . . . ,p[K, 2m−1]) (∀K ∈ Vl). In [11], Hermelin et al. proved that the full
Biryukov’s model is equal to the convolution model and the distillation phase
of the convolution model uses the same algorithm with the Hermelin’s model of
Algorithm 2 to compute the empirical m-dimensional probability distribution of
g, i.e., p. The algorithm in [11] is as follows:

Input: N pairs of plaintext-ciphertexts {(P1, C1), . . . , (PN , CN)},
g = (g1, . . . , gm)

Output: the matrix p of empirical probability distribution for all
candidate Kn ∈ Vl

foreach K ∈ Vl, η ∈ Vm do
set p[K, η] = 0.

end
foreach K ∈ Vl, t:=0,. . . , N do

Calculate η = g(Pt, Ct, K) = (g1(Pt, Ct, K), . . . , gm(Pt, Ct, K));
p[K, η]++;

end
foreach K ∈ Vl, η ∈ Vm do

p[K, η] = p[K, η]/N .
end

Algorithm 1. The Hermelin’s Algorithm to compute the p with given N samples
plaintext-ciphertext

In Hermelin’s Algorithm, we use only m linear approximations g1, . . . , gm and
the distillation phase computes all values of p[K, ·] (∀K ∈ Vl) with mN2l time

66 P. Ha Nguyen, H. Wu, and H. Wang

complexity. Based on the Wrong Key Hypothesis [10], if K is the wrong key, its
p[K, ·] is uniformly distributed and the right key K’s p[K, ·] is non uniformly
distributed. The χ2 or LLR statistic [10] is applied to determine what kind of
probability distribution for all p[K, ·] (∀K ∈ Vl). Then, the correct key K is
determined by the information received from the chosen statistic.

Although the algorithm used to compute all p[K, ·] (∀K ∈ Vl) directly from N
samples (P, C) is very elegant and can be easily implemented, its complexity is
much higher in comparison to the extended Algorithm 1 [11,14] or to Algorithm
2 of Matsui. In cryptanalysis, it is the bottleneck in terms of time complexity.
Therefore the extended Algorithm 2 is not comparable to Algorithm 2 of Matsui
in terms of the number of rounds attacked or time complexity.

4 Efficient Computation of Distillation Phase of
Extended Algorithm 2 of Matsui

In this section, we describe two efficient computing methods, method 1 and
method 2, for two cases in multidimensional linear cryptanalysis. These methods
use Lemma 1, Corollary 1, the FFT, FWHT and two pre-computed tables T, E
to avoid repeatedly working on N samples and 2l guessed keys Kn in order
to reduce the time complexity from O(mN2l) to O(N + λ2m+l), where λ is a
positive number which is specified for each case.

4.1 Case 1 and Method 1

In the first case, we have N pairs of samples (P, C) and m base linear approx-
imations gi := ui · P ⊕ f(Kn ⊕ Cl) for i = 1, . . . , m, where Cl is l bits out of
ciphertext C involved in attack. All m base approximation gi share one function
f(·) and m selection patterns of plaintext u1, . . . , um are linearly independent.
Suppose g = (g1, . . . , gm), we then need to compute the empirical probability
distribution matrix p of g.

Lemma 2. For the first case, there exists a method (method 1) which computes
the empirical probability distribution p of g with O(N + (4m + 3l)2m+l) time
complexity.

Due to the word count limit of this paper, the proof and description of method
1 are presented in Appendix A.

4.2 Case 2 and Method 2

In this case, the first and the last round keys of cipher are considered in the
attack. We have N pairs of samples (P, C) and m base linear approximations
gi := f i

1(K1⊕Pl1)⊕f2(Kn⊕Cl2) for i = 1, . . . , m, where K1 is l1 bits of the first
round key, Pl1 is l1 bits of the plaintext P , Kn is l2 bits of the last round key,
Cl2 is l2 bits of the ciphertext C, f i

1, f2 (i = 1, . . . , m) are the boolean functions
in [13,7]. The functions f i

1(·) are constructed in the same way of f2(·) for i =
1, . . . , m. Suppose g = (g1, . . . , gm), we then need to compute the empirical
probability distribution matrix p of g.

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis 67

Lemma 3. For the second case, there exists a method (method 2) which
computes the empirical probability distribution p of g with
O(N + 3(l1 + l2 + m)2l1+l2+m) time complexity.

Due to the word count limit of this paper, the proof and description of method
2 are presented in Appendix B.

5 Results on Cryptanalysis of Serpent

In this section, the experimental results of 5-round Serpent are reported first.
Serpent [1] is the SPN block cipher which is one of the five AES finalists. Serpent
has 128-bit block size and supports 128-bit, 192-bit and 256-bit keys. Based on
the experimental results, we manage to confirm some facts claimed in [7] for the
extended Algorithm 2. Then, we describe our attacks against 11-round and 12-
round Serpent. The cryptanalytic results show that the multidimensional linear
cryptanalysis can reduce the number of samples N and the time complexity in
comparison to other methods, i.e., the linear cryptanalysis of Matsui and the
differential-linear cryptanalysis on Serpent [17].

5.1 Experimental Results on 5-Round Serpent

In this subsection, the experiment on 5-round Serpent aims to confirm the results
in [3,10] by using the extended Algorithm 2 with method 1. We call the extended
Algorithm 2 with method 1 or method 2 improved extended Algorithm 2. For
simplicity, the χ2 statistic is applied to 4-, 7-, 10-dimensional linear cryptanalysis
with N = 220, 221, . . . , 226 and l = 12. The capacities are 2−23, 2−22, 2−21 for 4-,
7-, 10-dimensional linear cryptanalysis, respectively. If the correct l-bit key Kn

has rank r out of 2l possible guessed keys, then the attack obtains an (l− log2 r)-
bit advantage over exhaustive search [3]. We test fifty keys and compute the
advantage [2,3] for each key. Then, we construct the comparison table of average
advantages for 4-, 7-, and 10-dimensional linear cryptanalysis for each set of N
pairs. Table 1 displays the average of advantages for each set of N samples and
4-, 7-, 10-dimensional linear cryptanalysis.

The results confirm the facts that the extended Algorithm 2 with χ2 statistic
does not work as well as expected and when m = 4 the average of advantages
is the highest. Furthermore, the experiments tell us that, given capacity c and
if N = 22/c,then the advantage ≥ 1 of certain key has more than 50% success

Table 1. The average of advantages on 5-round Serpent

log2(N) 20 21 22 23 24 25 26

m=4 1.30 1.45 1.60 1.64 1.65 1.65 1.55

m=7 1.46 1.50 1.39 1.19 1.29 1.35 1.37

m=10 1.21 1.19 1.30 1.25 1.38 1.55 1.52

68 P. Ha Nguyen, H. Wu, and H. Wang

probability. According to the experimental results in [3], if the combination of
LLR statistic and maximum KL is used instead of χ2 statistic, then the multi-
dimensional linear cryptanalysis works better, i.e., the average of advantages is
much higher for each set of N samples.

5.2 Cryptanalysis of 11-Round and 12-Round Reduced Serpent

Before going to the cryptanalysis of 11-round and 12-round Serpent, we recall
the fact that both methods do not require any decryption or encryption opera-
tion as that in Algorithm 2 of Matsui or in the differential-linear cryptanalysis
[17]. We only need to extract the subset of bits involved in the plaintext P and
the ciphertext C to compute the table E. The linear cryptanalysis can reach
11-round reduced Serpent by Algorithm 2 of Matsui based on the 9-round lin-
ear approximation [1,7,5]. The improved extended Algorithm 2 uses the 9-round
linear approximation in [7,6,4] which is called 9-round linear approximation of
Collard. The 10-round linear approximation is constructed by adding one more
round before the above 9-round linear approximation. The 11-round linear ap-
proximation, which is constructed from this 10-round linear approximation with
the last round S4 relaxed, is as follows:

S2 −→ S3 −→ . . . −→ S3︸ ︷︷ ︸
9-round linear approximation of Collard︸ ︷︷ ︸

10-round

−→ S4︸︷︷︸
round relaxed

.

In S2 at the first round, there are 15 active S-boxes. The output masks of these
active S-boxes described in hexadecimal number are:

S-box 0 3 5 6 9 10 11 13 15 16 17 24 28 29 30
output-mask e d 7 c 3 6 4 b 4 b 2 1 1 e 8

Table 2. Comparison of the attacks against reduced-round Serpent

Round complexity
data time memory

11 Lin.cryptanalysis [5] 2118 KP 2166 En 2121

Lin.cryptanalysis [5] 2118 KP 2173.5 En 297

Lin.cryptanalysis [7] 2118 KP 2114.3 En 2108

MultiDim.cryptanalysis [this paper](method 1) 2116 KP 2107.5 En 2104

MultiDim.cryptanalysis [this paper](method 1) 2118 KP 2109.5 En 2100

12 Differential-Lin.cryptanalysis [17] 2123.5 CP 2249.4 En 2128.5

MultiDim.cryptanalysis [this paper](method 2) 2118 KP 2228.8 En 2228

MultiDim.cryptanalysis [this paper](method 1) 2116 KP 2237.5 En 2121

En - Encryptions, KP - Known Plaintexts, CP - Chosen Plaintexts.

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis 69

Based on the observation on active S-boxes of S2, we choose 56 linearly inde-
pendent selection patterns of plaintext u1, . . . , u56, i.e., we have 56-dimensional
linear cryptanalysis attack.

If S4 at the 11-th round has 12 active S-boxes, then in the 11-th round,
the number of key bits l is 48 and the capacity c of 56-dimensional system is
computed as follows:

c =
∑

a�=0,a∈V56

ρ2(a)

= (2−57)2
11∑

m=0

C11
m 8m211−m44(2−4m2−2(11−m)2−8)

= 2−114.

(2)

Let the number of samples required N be 2116. If method 1 is used, then the
total time complexity is (N/352 + 2111.6/352) which is equal to 2107.5 11-round
Serpent encryptions and the memory will be 2104.

If S4 at the 11-round has 11 active S-boxes, then in the 11-th round, l is
44 and the capacity is 2−116. Let N be 2118, then the total time complexity is
(N/352+2107.5/352) which is equal to 2109.5 11-round Serpent encryptions and
the memory is 2100.

We attack the 12-round Serpent by using the above 11-round linear approx-
imation and relaxing 12-th round S4, which has 11 active S-boxes.

S1 −→ S2 −→ S3 −→ . . . −→ S3︸ ︷︷ ︸
9-round linear approximation of Collard︸ ︷︷ ︸

11-round

−→ S4︸︷︷︸
round relaxed

.

The capacity is 2−116. Let N = 2118, l1 = 128 bits and l2 = 44 bits. Based
on method 2, the total time complexity is (N/384 + 2237.4/384) which is equal
to 2228.8 12-round Serpent encryptions and the memory is 2228.

We can attack 12-round Serpent by method 1 by relaxing the first and the
12-th rounds. We search for all 2128 possible keys in S1 at the first round and
use method 1 for the other 11 rounds similarly to the case N = 2116. Then the
time and memory complexity are 2237.5, 2121. Table 2 shows that the improved
extended Algorithm 2 is better than all the previously known algorithms, i.e.,
linear cryptanalysis and differential-linear cryptanalysis, on 11-round and 12-
round Serpent.

6 Conclusion

We studied two methods to reduce the time complexity in distillation phase of
extended Algorithm 2 from O(mN2l) to O(N + λ2m+l), where m is the number
of dimension of the attack, N is the number of samples needed, l is the number

70 P. Ha Nguyen, H. Wu, and H. Wang

of key bits in the first and/or in the last rounds. These methods are introduced
when we combine the Corollary 1, the Lemma 1, exploiting the repeated struc-
ture of data and key and using 2 assistant pre-computed tables T, E. Applying
FFT, FWHT to the tables T, E, we have two efficient computing methods to
determine the correct key out of 2l guessed keys .

We have simulated the experiments on 5-round Serpent to check the improved
extended Algorithm 2 and to confirm claims in [3,10]. Based on the results of
the experiments, we develop attack on 11-round, 12-round Serpent by using
the improved extended Algorithm 2. These results are the best among those
reported so far. On 12-round Serpent, we can reduce the data complexity, time
and memory complexity of the previously best known attack by factors of 27.5,
211.7 and 27.5, respectively. The result of 11-round Serpent is even better than
the best currently reported, i.e., data complexity, time complexity, and memory
complexity are reduced by factor of 22, 27, and 24, respectively. The improved
extended Algorithm 2 is competitive to the extended Algorithm 1 and Algorithm
2 of Matsui in terms of data complexity, time complexity and the number of
rounds attacked. The extended Algorithm 2 usually involves many active S-boxes
in the outer round(s) because it uses many linear approximations. Intuitively, it
is easy to reach the limit of complexity in terms of time complexity and memory
complexity. It implies that the bound of number of rounds attacked in improved
extended Algorithm 2 is close to that in Algorithm 2 of Matsui somehow.

Acknowledgements

This work was supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2- 2007-03. The first author is supported by the
Singapore International Graduate (SINGA) Scholarship.

References

1. Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round
serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer,
Heidelberg (2002)

2. Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approxima-
tions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer,
Heidelberg (2004)

3. Cho, J.Y., Hermelin, M., Nyberg, K.: A new technique for multidimensional linear
cryptanalysis with applications on reduced round serpent. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 383–398. Springer, Heidelberg (2009)

4. Collard, B.: Private Communication (2010)
5. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear

cryptanalysis of reduced round serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008)

6. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear
Cryptanalysis of Reduced Round Serpent - Description of the Linear Approxima-
tions (2007) (unpublished manuscript)

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis 71

7. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

8. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
Hill Higher Education. McGraw-Hill Higher Education, New York (2001)

9. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of
reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008.
LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008)

10. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of matsui’s
algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

11. Hermelin, M., Nyberg, K.: Dependent linear approximations: The algorithm
of biryukov and others revisited. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS,
vol. 5985, pp. 318–333. Springer, Heidelberg (2010)

12. Kaliski Jr., B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994)

13. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

14. Nguyen, P.H., Wei, L., Wang, H., Ling, S.: On multidimensional linear cryptanal-
ysis. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 37–52.
Springer, Heidelberg (2010)

15. Matsui, M.: The first experimental cryptanalysis of the data encryption stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994)

16. Rao Yarlagadda, R.K., Hershey, J.E.: Hadamard Matrix Analysis and Synthe-
sis: with Applications to Communications and Signal/image Processing. Kluwer
Academic Publishers, Norwell (1997)

17. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round
serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)

Appendix

A Proof and Description of Lemma 2

Proof. The Lemma 1 and the corollary 1 show that the probability distribution
p of g can be calculated from correlations ρ(a) of combined approximations a · g
for a ∈ Vm. The a · g combined approximations are defined as follows:

a · g :=

{
0 if a is a zero vector
a · (u1P, . . . , umP)⊕ f(Kn ⊕ Cl) a ∈ Vm , a �= 0 .

Let r2m×2l

[a, K] be the matrix whose elements r[a, K] are the correlations of
linear approximations a · g when Kn = K. We have 2 following cases:

1. a is zero vector. Since a · g is equal to 0, r[0, K] = 1, (∀K ∈ Vl).

72 P. Ha Nguyen, H. Wu, and H. Wang

2. a is not zero vector. method 1 below will compute r[a, K] (K ∈ Vl).

Since our aim is to reduce as much as possible the number of times of working
with N samples for computing r[a, K], we will need 2 assistant tables T 2m×2l

and E2m×2l

.
In practice, the empirical r[a, K] is computed as follows [7]:

r[a, K] =
�{(Pt, Ct) : a · g(Pt, Ct, K) = 0} − �{(Pt, Ct) : a · g(Pt, Ct, K) = 1}

N
,

t = 1, . . . , N.

We go through all a ∈ Vm, (Pt, Ct) for t = 1, . . . , N to compute the value of
table T . The elements of this table are computed as follows:

a(u1Pt, . . . , umPt) =

{
0→ T (a, (Cl)t) + +
1→ T (a, (Cl)t)−−

,

where (Cl)t is the l bits of ciphertext Ct involved in function f(·) , ∀a ∈ Vm and
(Pt, Ct) (t = 1, . . . , N).

Let T [a, v] = T [a, v]/N (a ∈ Vm, v ∈ Vl), then

r[a, K] =
2l−1∑
v=0

(−1)f(K⊕v)T [a, v].

Let S2l×2l

be a matrix with S[i, j] = (−1)f(i⊕j) (∀i, j ∈ Vl). Hence,

r[a, ·] = ST [a, ·]. (3)

Based on the proposition in [7], matrix S is a circulant matrix. Therefore, vector
r[a, ·] is computed with complexity 3l2l and we only need 2l memory units to
store the first column ((−1)f(0), . . . , (−1)f(2l−1))T of matrix S to calculate r[a, ·].

The time complexity is very high if we directly compute T from N samples,
i.e., O(2mN). We show a way to compute T more efficiently by assistant table
E. We construct E2m×2l

as follows:

E[h1, h2] = �{(Pt, Ct), t = 1, . . . , N : (u1 · Pt, . . . , um · Pt) = h1 and (Cl)t = h2},
h1 ∈ Vm, h2 ∈ Vl.

The time complexity for constructing E is mN and the memory complexity is
2m+l. If we do m computing u1 · Pt, . . . , um · Pt for each sample (Pt, Ct) at the
same time, then the time complexity for constructing E is N .

For ∀v ∈ Vl, ∀a ∈ Vm, We have

T [a, v] =
2m−1∑
h1=0

(−1)ah1E[h1, v]. (4)

Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis 73

Let H2m×2m

be a matrix with H [i, j] = (−1)ij (∀i, j ∈ Vm). Then,

T [·, v] = HE[·, v]. (5)

Since matrix H is a Hadamard matrix, T [·, v] can be computed using FWHT
algorithm with time complexity m2m and memory complexity 2m.

In summary, the steps taken in method 1 are as follows:

1. Compute E2m×2l

with N time complexity and 2m+l memory complexity.
2. For ∀v ∈ Vl, compute T [·, v] = (T [0, v], . . . , T [2m− 1, v]) using FWHT algo-

rithm in (5). Time complexity is 2lm2m(= m2l+m) and memory complexity
is 2m+l.

3. For ∀a ∈ Vm, a �= 0, compute r[a, ·] by the algorithm of circulant matrix [7]
in (3). Time complexity is 2m3l2l(= 3l2l+m) and memory complexity is 2l.

4. If a is a zero vector, then r[a, ·] is vector 1.
5. We need 2m+l memory units to store all r[a, K] (∀K ∈ Vl, ∀a ∈ Vm).
6. If we need to compute p[K, ·] (∀K ∈ Vl), then time complexity is 3m2m2l(=

3m2l+m) and 2m+l memory units needed for all p.

The total time complexity is O(N + 2l+m(4m + 3l)) and memory complexity
is O(2m+l).

B Proof and Description of Lemma 3

Proof. The combined approximations a · g are defined as follows:

a · g =

⎧⎪⎨⎪⎩
a · f1(K1 ⊕ Pl1)⊕ f2(Kn ⊕ Cl2)

if a is not a zero vector
0 if a is a zero vector

,

where f1(K1 ⊕ Pl1) = (f1
1 (K1 ⊕ Pl1), . . . , f

m
1 (K1 ⊕ Pl1)), ∀a ∈ Vm.

Let r2m×2l1×2l2 be the matrix containing all the correlations of a · g with
a ∈ Vm, K1 ∈ Vl1 , Kn ∈ Vl2 . We have the following 2 cases:

1. If a is vector 0, then r[a, k1, k2] = 1 (∀k1 ∈ Vl1 , ∀k2 ∈ Vl2).
2. If a is not vector 0, then we can compute r[a, k1, k2] (∀k1 ∈ Vl1 , ∀k2 ∈ Vl2)

by method 2 below.

We need 2 assistant tables T 2m×2l1×2l2 and E2l1×2l2 .
Let

r[a, k1, ·] = (r[a, k1, 0], . . . , r[a, k1, 2l2 − 1]),

T [a, k1, ·] = (T [a, k1, 0], . . . , T [a, k1, 2l2 − 1]).

For ∀a ∈ Vm, (Pt, Ct) (t = 1, . . . , N) , ∀k1 ∈ Vl1 , the elements of table T are
calculated as follows:

74 P. Ha Nguyen, H. Wu, and H. Wang

af1(k1 ⊕ (Pl1)t) =

{
0→ T [a, k1, (Cl2)t] + +
1→ T [a, k1, (Cl2)t]−−

,

where (Pl1)t and (Cl2)t are l1 bits of Pt and l2 bits of Ct involved in the attack,
respectively.

Let T [a, k1, k2] = T [a, k1, k2]/N .
With the same argument in method 1, we have

r[a, k1, k2] =
2l2−1∑
v=0

(−1)f2(k2⊕v)T [a, k1, v].

Let S2l2×2l2

2 be a matrix with S2[i, j] = (−1)f2(i⊕j) (∀i, j ∈ Vl2). Hence,

r[a, k1, ·] = S2T [a, k1, ·]. (6)

According to [7], matrix S2 is a circulant matrix. Hence, vector r[a, k1, ·] is
computed with time complexity 3l22l2 and 2l2 memory units.

In order to efficiently compute T [a, k1, v], we construct the table E2l1×2l2 as
follows:

E[h1, h2] = �{(Pt, Ct), t = 1, . . . , N : (Pl1)t = h1, (Cl2)t = h2},∀h1 ∈ Vl1 ,∀h2 ∈ Vl2 .

The time complexity to construct E is N and the memory complexity is 2l1+l2 .
Then,

T [a, k1, v] =
2l1−1∑
u=0

(−1)af1(k1⊕u)E[u, v]. (7)

Let S2l1×2l1

a be a matrix with Sa[i, j] = (−1)af1(i⊕j) (∀i, j ∈ Vl1). Then,

T [a, ·, k2] = SaE[·, v], (8)

where E[., v] is the column of matrix E.
Based on [7], matrix Sa is a circulant matrix. Hence, the vector T [a, ·, k2] is

computed in 3l12l1 computations and the memory needed is 2l1 .

In summary, the steps taken in method 2 are as follows:

1. Construct table E. Time complexity is N and the memory needed for E is
2l1+l2 .

2. For ∀a ∈ Vm, ∀v ∈ Vl2 , we compute all T [a, ·, k2] by (8). Time complex-
ity is 2m2l23l12l1(= 3l12l1+l2+m). We need 2m+l1+l2 memory units for all
T [a, k1, v] (∀a ∈ Vm, ∀k1 ∈ Vl1 , ∀v ∈ Vl2).

3. For ∀a ∈ Vm, a �= 0, ∀k1 ∈ Vl1 compute all r[a, k1, ·] by (6). The time com-
plexity is 2m2l13l22l2(= 3l22l1+l2+m). If a is a vector zero, the r[a, k1, ·] is
the vector 1 (∀k1 ∈ Vl1). We need 2l1+l2+m memory for r.

4. If we need to compute p, then time complexity is 3m2m2l1+l2(= 3m2l1+l2+m)
and memory complexity is 2m+l1+l2 .

Consequently, the total time complexity is O(N +3(l1 + l2 +m)2l1+l2+m) and
the memory complexity is O(2m+l1+l2).

State Convergence in the Initialisation of

Stream Ciphers

Sui-Guan Teo1, Ali Al-Hamdan1, Harry Bartlett1,2, Leonie Simpson1,2,
Kenneth Koon-Ho Wong1, and Ed Dawson1

1 Information Security Institute,
Queensland University of Technology

126 Margaret Street, Brisbane Qld 4001, Australia
{sg.teo,kk.wong,e.dawson}@qut.edu.au, a.alhamdan@student.qut.edu.au

2 Faculty of Science and Technology,
Queensland University of Technology

GPO Box 2434, Brisbane Qld 4001, Australia
{h.bartlett,lr.simpson}@qut.edu.au

Abstract. An initialisation process is a key component in modern
stream cipher design. A well-designed initialisation process should ensure
that each key-IV pair generates a different keystream. In this paper, we
analyse two ciphers, A5/1 and Mixer, for which this does not happen
due to state convergence. We show how the state convergence problem
occurs and estimate the effective key-space in each case.

Keywords: Streamcipher, initialisation, state convergence,A5/1,Mixer.

1 Introduction

Modern stream cipher applications use a secret key and an initialisation vec-
tor (IV) to form an initial internal state before keystream generation begins.
A good initialisation process should ensure that each key-IV pair generates a
distinct keystream. This is possible for recent proposals where the state size is
large enough but may not be the case for older designs. This paper analyses two
stream ciphers, A5/1 and Mixer, where state convergence occurs during initial-
isation, resulting in different key-IV pairs producing the same keystream. We
show how state convergence occurs in each case and demonstrate that increas-
ing the number of iterations in the initialisation process effectively decreases the
security provided.

2 Background and Notation

Keystream generators for stream ciphers operate by maintaining an internal state
and applying update and output functions to the state. In many cases, the state
space is provided by a combination of linear and/or nonlinear feedback shift
registers (LFSR/NLFSR respectively). In this paper, we consider two ciphers

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 75–88, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

76 S.-G. Teo et al.

based on binary shift registers, where each register stage holds one bit. We use
the notation Rt[i] to denote the contents of stage i of register R at time t where
i = 0, 1, . . . , r − 1, for an r-bit register. The state S of a stream cipher is of size
s bits. For the two ciphers examined in this paper, s is the sum of the component
register lengths.

Modern keystream generators take two inputs: a secret key and an IV, of size
l and j bits respectively. A stream cipher with an l-bit key and a j-bit IV has a
keyspace of 2l bits and an IV-space of 2j bits. Let k0, k1, . . . kl−1 represent the
l-bit key and v0, v1, . . . vj−1 represent the j-bit IV. Before keystream generation
commences, a key-IV pair is used to form an internal state value. This process
is referred to as initialisation and can be considered as a mapping from binary
vectors of length l + j to those of length s.

The purpose of the initialisation process is to diffuse the key-IV pair across the
entire state and make mathematical relationships between the key-IV pair and
the keystream hard to establish. The initialisation process is often performed
in three phases: key-loading, IV-loading and the diffusion phase. In the key-
loading and IV-loading phase, the secret key and IV are transferred to the stream
cipher’s state. When both the secret key and IV have been transferred, the stream
cipher is in its “loaded state”. Following this, the diffusion phase begins. This is
generally the most complex phase and it is important, as using the loaded state
directly to begin keystream generation could make the stream cipher vulnerable
to correlation attacks. The diffusion phase consists of a number of iterations,
denoted α in this paper, of the initialisation state-update function. Each iteration
of the initialisation state-update function can be considered as a function which
maps the state space to itself. This mapping should be one-to-one and nonlinear
in nature. After the initialisation process is complete, the keystream generator
is said to be in its initial state.

To prevent time-memory-data tradeoff attacks, modern stream ciphers have
internal states which are at least the size of the key-IV pair. That is, 2s ≥ 2l+j .
Since the state space is at least the size of the space spanned by all key-IV
pairs, it is reasonable to expect that the initialisation process will be one-to-one,
that is, each distinct key-IV pair should map to a distinct state at the end of
initialisation.

Some initialisation processes are not one-to-one. Considering the state-update
function in the forwards direction, for a given St, there is a single St+1. However,
when considering the reverse direction, for a given value of St+1, there may be
multiple values for St. That is, multiple states converge during one iteration of
the initialisation state update function. If this state convergence occurs at any
point during the initialisation process, the same initial state will be attained
at the end of initialisation. Multiple distinct key-IV pairs will then generate the
same keystream. This could leave the stream cipher vulnerable to ciphertext-only
attacks [4] or time-memory-data tradeoff attacks [1].

One key factor to consider when designing the initialisation process is the
number of iterations of the initialisation state-update function to be performed.
A small number can be performed quickly, which may be desirable in applications

State Convergence in the Initialisation of Stream Ciphers 77

where rekeying is frequent. However, an initialisation function with very few iter-
ations may not provide sufficient diffusion and could leave the cipher vulnerable
to attacks, including correlation and algebraic attacks. Many iterations might
provide resistance to attacks, but the time taken to re-key could make it un-
suitable for real-time applications. Therefore, it is important to balance security
and performance when designing stream cipher initialisation functions. Where
state convergence occurs during initialisation, increasing the number of itera-
tions can reduce both the rekeying efficiency and the security provided by the
cipher. State convergence results in multiple key-IV pairs producing the same
keystream at the end of initialisation. A user who encrypts multiple messages
and chooses a different key-IV pair cannot now be sure that this will result in a
distinct keystream for each message. Clearly, this is not desirable.

3 Case Studies

3.1 A5/1 Stream Cipher

Description of A5/1. A5/1 [3] is a bit based stream cipher based on three
LFSRs, denoted A, B and C, with lengths of 19, 22 and 23 bits respectively,
giving a state size of 64 bits. Each LFSR has a primitive feedback polynomial. A
single 64-bit secret key is used for each conversation and a 22-bit frame number
is used as the IV. The three registers are regularly clocked during loading of
the key and IV (frame number), while a majority clocking mechanism is used
for the diffusion phase and for keystream generation. This is the only nonlinear
operation performed.

To implement the majority clocking scheme, each register has a clocking tap:
stages At[8], Bt[10] and Ct[10]. The contents of these stages determine which
registers will be clocked at the next iteration: Those registers for which the
clock control bits agree with the majority value are clocked. For example, if
At[8] = 0, Bt[10] = 1 and Ct[10] = 0, then the majority value is 0 and registers
A and C are clocked. Thus, either two or three registers are clocked at each step.
Figure 1 shows the components of the A5/1 keystream generator, including the
feedback taps and the clocking tap for each register.

Initialisation Process. Prior to loading, all stages of the three registers are set
to zero. Each register is autonomous during key and IV loading. Each register
is regularly clocked 64 times and each key bit, ki, is XORed with the register
feedback to form the new value of stage 0. Following this, each register is regularly
clocked 22 times as the IV is loaded in the same manner [2].

The diffusion phase involves performing 100 iterations of the initialisation
state update function using the majority clocking scheme. At the end of this
phase an initial state is obtained.

Previous Work. Few previous analyses of A5/1 focussed specifically on the
effect of state convergence during initialisation. Two papers that deal with this
topic as part of a broader analysis are Golić [6] (based on [5]) and Biryukov,
Shamir and Wagner [2].

78 S.-G. Teo et al.

Fig. 1. A5/1 Stream cipher

Golić [6] considered the inverse mapping for the majority clocking function
and identified some states with no pre-image and which therefore cannot be
reached from any loaded state in a single iteration. He demonstrated that these
states comprise 3

8 of the loaded states of the system. Thus, the usable state space
shrinks by a factor of 5

8 (from 264 to 5 × 261 ≈ 263.32) at the first iteration of
the diffusion phase. Golić also identified some states with unique pre-images and
others with up to four pre-image states. Figure 2 presents a graphical summary of
the six cases identified by Golić. In this figure, (Ri, Rj , Rk) is any permutation of
the set {A, B, C} of registers and the shaded stage in each register is its clocking
tap. The symbol x represents either 0 or 1, while # represents the complement
of x; a blank square represents a bit which can take either value.

The proportion of loaded states for each case in Figure 2 is presented in Table 1,
along with the corresponding number of pre-images. Note that the case identified
as (i) cannot be clocked back to any valid state. That is, states of this form cannot
be reached after the first iteration of the initialisation state update function.

Biryukov, Shamir and Wagner [2] also provide convergence estimates when
exploring the efficiency of their attack. They report that, of 108 randomly chosen
states, only about 15% can be clocked back 100 iterations. That is, 85% of states
could not be reached by a 100 iteration forward clocking process.

Fig. 2. A5/1 pre-image cases

State Convergence in the Initialisation of Stream Ciphers 79

Table 1. Proportions of states in each of Golić’s cases

Case (i) (ii) (iii) (iv) (v) (vi)

Proportion of states 3
8

3
8

1
32

3
32

3
32

1
32

Number of pre-images 0 1 1 2 3 4

Our analysis. As the total size of key and IV for A5/1 (64 + 22 = 86 bits)
exceeds the 64 bit state size, a degree of compression occurs during the loading
phases of initialisation. In fact, as the state-update function is linear during the
loading phases, it can be shown that there are 222 key-IV pairs corresponding
to each possible loaded state.

Nonlinear operations in the state-update function are introduced during the
diffusion phase via majority clocking. However, this also introduces state con-
vergence. (This convergence continues into the keystream generation stage but
this is beyond the scope of this paper.) This effect was reported by Golić [5, 6]
and quantified to some extent by Biryukov, Shamir and Wagner [2]. Our analysis
supports and extends these results.

Golić’s results demonstrate that the majority clocking process is not one-to-
one and can result in state convergence in one iteration. We extend Golić’s logic
to identify the states which cannot be reached after each of the first six itera-
tions of the diffusion phase. We show that state convergence continues with each
iteration, though not uniformly at each iteration, contrary to Golić’s assump-
tions [6]. Some of the inaccessible states we identified for multiple iterations are
presented in Figure 3.

We now sketch the reasoning used to identify states that are inaccessible after
two iterations. We use the term “downstream” to refer to the stages in Figure
2 and 3 that are to the left of the clocking stages. By reversing the logic of
the majority clocking process, the following conditions apply when we invert an
iteration:

1. A state obtained by clocking a pair of registers must have the contents of the
stages immediately downstream of the clocking bit in these registers identical
in value to one another, and different in value from the clocking bit of the
third register.

2. A state obtained by clocking all three registers must have the contents of
the stages immediately downstream of the clocking tap identical in all three
registers.

For Figure 2, we note that condition 1 applies to case (ii), condition 2 applies
to case (iii), both conditions apply to cases (iv) to (vi), but neither applies to
case (i). In cases (iv), (v) and (vi), condition 1 applies to different numbers of
the three possible pairs of registers.

Applying this logic to the pattern labelled “2 steps” in Figure 3 shows that
such a state can arise only by clocking a combination of registers that includes

80 S.-G. Teo et al.

Fig. 3. Inaccessible states for various numbers of iterations (steps)

register Rk. But this implies that any previous state belongs to case (i) of Figure
2 (possibly with additional values specified among the clocking bits). Since case
(i) cannot be reached by the first clocking step, this “2 steps” state cannot be
reached at the subsequent clocking step. (Note: it can, however, be reached by
the first clocking step, since case (i) is a valid loaded state.)

We now show that this pattern is the only inaccessible pattern at this step.
Any state which is inaccessible after two iterations must clock back only to states
that were inaccessible after the first step. So all such states must be contained
in the image space (under clocking) of case (i) above. This image space can be
found by completing the unspecified values in case (i) in all possible ways and
applying the clocking rule to each (see Figure 4(a)). When this is done, we find
that many of the image states are accessible, as they have multiple pre-images,
some of which are accessible (see Figure 4(b) for an example). If we discard
these states and retain those which can clock back only to case (i), we find that
the pattern presented above is indeed the only new inaccessible pattern at the
second step.

A similar process can be followed to identify inaccessible patterns after α
iterations. There is a branching tree of patterns for these inaccessible states: as
well as the two “3 step” patterns presented in Figure 3, there are five distinct
patterns at the fourth iteration, 17 at the fifth iteration and many more at each

Fig. 4. Determining inaccessible states at the second step:(a) Results of clocking
case (i) forwards. (b) Possible pre-images for one of these results

State Convergence in the Initialisation of Stream Ciphers 81

subsequent iteration. Table 2 presents the cumulative proportion of inaccessible
states (out of all possible loaded states) after each of the first six iterations,
together with the corresponding proportion and number of accessible states.

Table 2. Proportion of available states after α iterations

α (number of iterations) 1 2 3 4 5 6

new proportion 3
8

3
64

9
512

57
4096

423
32768

6453
524288inaccessible

cumulative proportion 0.375 0.422 0.439 0.453 0.466 0.479inaccessible
proportion accessible 0.625 0.578 0.561 0.547 0.534 0.521
number of accessible 263.322 263.209 263.165 263.129 263.094 263.061

states

The number and complexity of the patterns obtained so far indicates that
obtaining a general expression for the number of accessible states after a given
number of iterations is not a simple task for large values. Extrapolating from
the known values in Table 2 provides an approximation. Using an exponential
extrapolation based on 2–6 iterations, we obtain an approximation of the pro-
portion of accessible states after 100 iterations of around 5% of the number of
loaded states.

Another approach to determining the extent of state convergence over the en-
tire diffusion phase is to perform exhaustive experimental evaluation of a scaled-
down version with three LFSRs and a majority clocking arrangement, but only
a 15-bit internal state. (LFSR lengths of 4, 5 and 6 bits were used.) All possible
loaded states were used and the number of distinct states remaining after each
iteration was recorded. Results for small numbers of iterations align very closely
with those reported in Table 2, while the proportion of distinct states observed
after 100 iterations was found to be 6278

32768 = 19.2% of the original number. This
is similar to Biryukov, Shamir and Wagner’s [2] results for random sampling
with A5/1 itself.

Summary. State convergence occurs during the diffusion phase of the A5/1
initialisation process (and also during keystream generation) as a result of the
majority clocking operation. Increasing the number of iterations in the diffusion
phase results in a further reduction of the total number of distinct initial states,
decreasing both security and efficiency.

The total number of distinct internal states of A5/1 is reduced to approxi-
mately half of the loaded value after six iterations. This is equivalent to a loss
of around one bit of its internal state. After 100 iterations, the total number of
distinct states is potentially reduced to 15%–20% of the number of loaded states
(i.e. effective key space of 261.26–261.68).

82 S.-G. Teo et al.

3.2 Mixer

Description ofMixer. Mixer is a bit-based stream cipher proposed by Kanso [7]
which uses a 128-bit key and a 64-bit IV. The keystream generator is based on
two shift registers, denoted A and B, of lengths 128-bits and 89-bits respectively,
giving a total state size of 217 bits. Figure 5 illustrates the components of Mixer
and their interaction during both initialisation (includes both solid and dotted
lines) and keystream generation (solid lines are used only). A is a regularly clocked
LFSR and B is an irregularly clocked NLFSR which is controlled by A as follows.
An integer function, FINT , takes the contents of w stages of A as input and outputs
an integer c(b): the number of times B is to be clocked. The Mixer specification
does not fix the value for w or specify the tap positions for FINT , but recommends
that w ∈ {2, 3, . . .7} be used for efficiency reasons.

Although the feedback function of B is nonlinear, it can be approximated by
a linear function with very high probability. We take this approach. A nonlinear
Boolean function, g(x), takes inputs from five stages of A to determine whether
the output of B will be used or discarded.

Select/Discard
g(x)

B(x)

A(x)

FINT

NLFSR BLFSR A

Fig. 5. Mixer state update functions

Initialisation Process. During the loading phase of the initialisation function,
the key is loaded into A such that A[i] = ki, for 0 ≤ i ≤ 127 and the IV is loaded
into B such that B[j] = vj , for 0 ≤ j ≤ 63. The remaining stages of B are
filled with ones. The diffusion phase involves performing 200 iterations of the
initialisation state update function. Each iteration is performed as follows:

1. Clock register A once.
2. For the updated state At+1, calculate:

(a) The integer value ct+1(b) using FINT .
(b) The output of the nonlinear Boolean function gt+1(x)

3. Clock register B ct+1(b) times.
4. If gt+1(x) = 0 then this iteration is complete.
5. If gt+1(x) = 1 then XOR the output bit of B (after ct+1(b) clocks) with the

contents of both register stages A[127] and B[88].

State Convergence in the Initialisation of Stream Ciphers 83

We refer to the XOR operation in Step 5 as the mixing operation. This is the
only operation in the initialisation process where the contents of the two registers
are directly combined. The output bit from B which is XORed is referred to as
the mixing bit, and denoted m. During initialisation no keystream is produced.
After 200 iterations of the above process, Mixer is in an initial state and is ready
to begin keystream generation.

Our Analysis. The total key-IV space of Mixer (128 + 64 bits) indicates the
potential for 2192 distinct initial states. However, this does not occur. Our analy-
sis of the initialisation process begins with the observation that the state update
function is not one-to-one. In this section we examine the state convergence dur-
ing one iteration of the initialisation state update function, and across multiple
iterations of the initialisation process.

The Mixer initialisation state update function requires calculation of g(x), as
the update of A[127] and B[88] with the mixing value m is conditional on the
value of g(x). The possibilities for the state transitions from St to St+1 are:

1. g(x) = 0. No mixing operation occurs, regardless of the value of m.
2. g(x) = 1 and m = 0. The mixing operation occurs but the contents of

A[127] and B[88] remain unchanged after the mixing operation. That is, the
outcome is the same as when g(x) = 0.

3. g(x) = 1 and m = 1: The mixing operation occurs, and the contents of
A[127] and B[88] are complemented.

A is an LFSR with a primitive feedback function and g(x) is a balanced nonlinear
Boolean function. If A was autonomous, then the probability that g(x) = 1 would
be very close to 0.5. After the first iteration the feedback from B complicates
this. However, assuming this probability is still very close to 0.5 and considering
the four possible combinations of g(x) and m values, effective mixing occurs with
a probability of 0.25.

Consider inverting the initialisation state update function. That is, given St+1

we want to obtain St. Recall that A is a regularly clocked LFSR, which controls
the clocking of B. The value of gt+1(x) is readily calculated. The possibilities
for the state transitions from St+1 to St are conditional on gt+1(x) and m:

1. gt+1(x) = 0. No mixing occurred. In this case, we use At+1 to calculate
ct+1(b), and clock A back once and B back ct+1(b) times.

2. gt+1(x) = 1. Mixing has occurred, but the effect depends on the value of m:
(a) If m = 0 then again use At+1 to calculate ct+1(b), and clock A back once

and B back ct+1(b) times.
(b) If m = 1 then complement both At+1[127] and Bt+1[88], and then use

At+1 to calculate ct+1(b), and clock A back once and B back ct+1(b)
times.

The difficulty in inverting the state update function lies with computing the value
of m. We cannot obtain this directly from Bt+1 as it is discarded from B after
the mixing operation. Therefore, given g(x) = 1 we consider two possibilities (m
equals 0 or 1). Thus there are two possible previous states. Figure 6 shows the

84 S.-G. Teo et al.

format of two states at time t which converge to the same state at time t + 1.
Note that x′ and m′ represent the complements of x and m respectively. The
contents of the other register stages must be the same.

NLFSR BLFSR A

LFSR A NLFSR B

x

x′

S1
t

S2
t

m

c(b) clocks

c(b) clocks

m′

Fig. 6. States which converge to the same next state

For the first iteration of the diffusion phase 50% of all loaded states have
g(x) = 0. Each of these produces a distinct next state. For the other 50% g(x) = 1
and these states can be grouped into pairs that converge to the same next state.
Thus, after the first iteration of the state update function, the number of distinct
states is only 75% of the number of loaded states.

At the next iteration, we consider firstly those states for which g1(x) = 0.
Applying the argument above, after the second iteration the number of distinct
states is 75% of the size of this group. For the states where g1(x) = 1, the pairing
argument may not hold (some of the relevant states may have been eliminated
in the previous iteration) so the number of remaining states may be more than
75%.

Combining these results gives upper and lower bounds on the number of dis-
tinct states after two iterations of 62.5% and 56.25% of the number of loaded
states, respectively. Continuing these arguments for α iterations gives upper and
lower bounds on the proportion of states remaining as nupper = N

2 (1+2−α) and
nlower = N × 0.75α where N is the number of loaded states.

As an alternative approach to estimating the degree of state convergence,
we ran some computer simulations for a reduced-round diffusion phase. We set
w = 2 and took inputs to FINT from A[70] and A[71]. In our experiments, 100
loaded states were randomly generated. For each loaded state, α iterations of
the Mixer initialisation process were performed, for α = 1, 2, . . . , 30. We refer to
the initial state resulting from this process as the target initial state. For each
value of α and for each target obtained, the state was clocked back α times and
all loaded states which generate the same target were recovered.

Data corresponding to α = 5, 10, 15, 20, 25 and 30 have been collated to form
Table 3. For each value of α, the table includes:

– The total number (Total) of loaded states found for all 100 target states.
– The minimum number (Min) and maximum number (Max) of loaded states

found for any target.
– The mean and standard deviation (S.D) of the number of loaded states for

each target state.

State Convergence in the Initialisation of Stream Ciphers 85

Table 3. Number of Mixer loaded states for 100 random targets

α Total Min Max Mean S.D

5 766 1 32 7.66 6.47
10 3327 2 256 33.27 35.072
15 8120 2 1024 81.2 96.522
20 14239 4 1152 142.39 149.068
25 20328 4 1344 203.28 211.736
30 23180 4 1848 231.8 242.39

The table clearly shows that as α increases, the number of loaded states
corresponding to a target also increases. That is, the number of loaded states
which converge to a particular initial state increases with α. Also, it is clear that
the rate of state convergence is not uniform across all key-IV pairs which form
the loaded states.

From our experiments, we plotted a graph of the mean number of loaded
states per target, n, against α. Two versions of this experiment were run:
one in which candidate loaded states must conform to the specifications (with
B[64], . . . , B[88] = 1, 1, . . . , 1) and another without this restriction. These are
labelled Format check and No Format check respectively in Figure 7. For ref-
erence, the figure also includes the graphs of two other curves: n = 1.25α and
n = 1.5α.

Our experimental sample size of 100 trials represents a very small fraction
of the 2192 possible loaded states. This, coupled with the non-uniform rate of
convergence, may have affected the accuracy of our estimate of the number of
loaded states converging to each target after α iterations.

Summary. State convergence during the diffusion phase is largely due to the
mixing operation. This operation results in convergence at each iteration, reduc-
ing the number of distinct states by a factor of between 0.75 and 1.0. Increasing
the number of iterations in the diffusion phase results in a further reduction in
the number of distinct states. Both theoretical and experimental results support
this. Further analysis on the effect larger w values or different tap positions has
on state convergence remains future work.

4 Discussion

Traditional stream cipher designs used a state space of equal size to that of the
secret key. For applications that make use of an IV as well as a key, the state
space of these ciphers is less than the key-IV space, so it is clear that compression
will occur. That is, multiple key-IV pairs will produce the same keystream. For
some ciphers, this is further compounded by state convergence, reducing the
effective key size. This was the case for A5/1 where both compression and further
convergence occur.

86 S.-G. Teo et al.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

N
o
.
o
f
eq
u
iv
a
le
n
t
st
a
te
s

No. of iterations

Format check
No Format check

y = 1.5x

y = 1.25x

Fig. 7. Mean number of loaded states per target for various α

Modern stream ciphers have much larger state space. This permits a designer
to avoid the compression issue associated with traditional designs as each key-IV
pair can map to a distinct loaded state. However, problems with state conver-
gence may still occur if the initialisation process is not carefully considered. It is
crucial that the state-update function during initialisation is one-to-one. This is
exactly the problem for Mixer. The compression problem experienced with A5/1
is avoided but the convergence problem remains.

Where state convergence does occur, it might not occur uniformly across all
possible keys. For example, it is possible that only a single key-IV pair generates
a particular initial state and associated keystream, while another initial state
could have been generated by many key-IV pairs. Thus, not all keystreams are
equally likely. This observation has implications for the effectiveness of time-
memory-data tradeoff (TMDT) attacks.

During the pre-computation phase of a TMDT attack, for a given IV an
attacker selects a few keys and generates a length of keystream corresponding to
each key. This key-keystream pair is stored in a lookup table. During the real-
time phase, the attacker compares a segment of keystream they have obtained
with the entries in the lookup table. If there is a match, the attacker assumes the
key corresponding to the matching segment is the correct key. If the initialisation
process was one-to-one, the attacker would be able to use this secret key with
the other IVs to correctly decrypt other messages. However, if the initialisation
process was not one-to-one, it is possible for the key the attacker obtains is not

State Convergence in the Initialisation of Stream Ciphers 87

the correct key but one that also produces the same initial state when used with
the given IV. For an alternative IV, the two keys may not result in the same
initial state, resulting in the incorrect decryption of other messages. That is,
if the initialisation process is one-to-one, the TMDT attack is a deterministic
attack. However, if the initialisation process is not one-to-one, the TMDT attack
may be a probabilistic attack.

The overall security provided by a stream cipher with state convergence prob-
lems is also directly related to the number of distinct initial states that can be
obtained as a result of the initialisation process. That is, we need to consider the
total number of key-IV pairs and the total number of distinct initial states. If the
state convergence is such that the total number of distinct initial states is less
than the total number of key-IV pairs, then it is possible that the same secret
key with different IVs will produce the same keystream. If the total number of
distinct initial states is less than the total number of keys, then clearly for any
given IV there will be multiple keys that produce the same keystream, so the
effective keyspace is reduced.

5 Conclusion

A common belief in symmetric key cryptography is that increasing the num-
ber of iterations of a nonlinear process increases the security provided by the
cipher. This is accompanied by a corresponding decrease in efficiency. For some
applications, an appropriate tradeoff can be identified. However where the non-
linear function is not one-to-one, as in the case of A5/1 and Mixer, increasing
the number of iterations decreases the efficiency of the rekeying process with no
corresponding increase in security.

Stream cipher proposals usually include both design specifications and an
analysis section outlining resistance against common attacks. The focus of the
security analysis is generally only on the cipher’s keystream generation function.
Less attention is paid to the analysis of the initialisation process. We recommend
that stream cipher designers consider carefully the design of the initialisation
process, and perform sufficient analysis to ensure that state update function is
one-to-one so that state convergence does not occur.

Acknowledgments. The authors would like to thank the anonymous review-
ers for their helpful comments. Computational resources and services used in
this work were provided by the HPC and Research Support Unit, Queensland
University of Technology.

References

1. Biryukov, A., Shamir, A.: Cryptanalytic time/Memory/Data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

88 S.-G. Teo et al.

2. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

3. Briceno, M., Goldberg, I., Wagner, D.: A Pedagogical Implementation of A5/1
(1999), http://cryptome.org/jya/a51-pi.htm

4. Dawson, E., Nielsen, L.: Automated Cryptanalysis of XOR Plaintext Strings. Cryp-
tologia 20(2), 165–181 (1996)

5. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

6. Golić, J.D.: Cryptanalysis of Three Mutually Clock-Controlled Stop/Go Shift Reg-
isters. IEEE Transactions on Information Theory 46(3), 1081–1090 (2002)

7. Kanso, A.A.: Mixer — A new stream cipher. Journal of Discrete Mathematical
Sciences and Cryptography 11(2), 159–179 (2008)

http://cryptome.org/jya/a51-pi.htm

On Maximum Differential Probability of

Generalized Feistel

Kazuhiko Minematsu1, Tomoyasu Suzaki1, and Maki Shigeri2

1 NEC Corporation. 1753, Shimonumabe, Nakahara, Kawasaki 211-8666, Japan
2 NEC Software Hokuriku, Ltd. 1, Anyoji, Hakusan, Ishikawa 920-2141, Japan

{k-minematsu@ah,t-suzaki@pd,m-shigeri@pb}.jp.nec.com

Abstract. The maximum differential probability (MDP) is an impor-
tant security measure for blockciphers. We investigate MDP of Type-2
generalized Feistel structure (Type-2 GFS), one of the most popular ci-
pher architectures. Previously MDP of Type-2 GFS has been studied for
partition number (number of sub-blocks) k = 2 by Aoki and Ohta, and
k = 4 by Kim et al. These studies are based on ad-hoc case analysis
and it seems rather difficult to analyze larger k by hand. In this paper,
we abstract the idea of previous studies and generalize it for any k, and
implement it using computers. We investigate Type-2 GFS of k = 4, 6, 8
and 10 with k+1 rounds, and obtain O(pk) bound for all cases, when the
round function is invertible and its MDP is p. The bound for k = 4 is im-
proved from Kim et al. and those for larger k are new. We also investigate
an improvement of Type-2 GFS proposed by Suzaki and Minematsu, and
obtain similar bounds as Type-2.

Keywords: blockcipher, generalized Feistel, differential probability.

1 Introduction

Generalized Feistel Structure (GFS) is a top-level blockcipher scheme based on
Feistel permutation. While classical Feistel cipher partitions an input into two
sub-blocks, GFS partitions it into k sub-blocks. k is called the partition num-
ber. Zhang et al. [2] proposed such a generalization and defined Type-1, 2, and 3
GFSs. Among them, Type-2 has been received much attention as its implementa-
tion can be quite small yet provides large parallereizability and high throughput,
which is desirable for emerging ultra-small devices such as RFID. In fact there
are some modern blockciphers based on Type-2, e.g., CLEFIA [3] (k = 4) and
HIGHT [7] (k = 8). When we build a blockcipher based on Type-2 GFS, we
must evaluate its strength against Differential Cryptanalysis (DC) [9]. Formally,
this requires us to find (an upper bound of) the cipher’s maximum differential
probability (MDP)1. For an N -bit blockcipher, if maximum differential proba-
bility (MDP) of the cipher is sufficiently close to 2−N , the cipher is immune to
DC. Such a cipher is called “provably secure against DC”[15].

1 It is also called Maximum Expected Differential Probability, MEDP. See Sect. 2.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 89–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

90 K. Minematsu, T. Suzaki, and M. Shigeri

The first result was provided by Nyberg and Knudsen [12]. They studied MDP
of the classical Feistel cipher, corresponding to Type-2 with k = 2. Later, Aoki
and Ohta [13] optimized their result and proved MDP bound p2 for 3-round
Feistel with invertible round functions of MDP p. As MDP bound becomes diffi-
cult to compute as k grows, it is common to evaluate the maximum differential
characteristic probability [16] for k > 2 [14][4] for a substitute of MDP. This is
much simpler, but generally does not provide a rigorous MDP bound. Recently,
Kim et al. proved that 5-round 4-partition Type-2 GFS with invertible round
function has MDP bound p4 + 2p5 [10]. Their analysis consists of many prob-
ability calculations found by a divide-and-conquer, (possibly) by hand. Nyberg
[8] also studied a variant of 4-partition Type-2 GFS and proved a similar bound.
These heuristic approaches seem difficult to extend for larger k.

In this paper, we study the ad-hoc analyses of previous studies and distill a
formal procedure that basically works for any k. In particular our algorithm is
deeply inspired by Kim et al.’s work [10]. We implement our algorithm on com-
puters, and provide MDP of Type-2 for k up to 10. To our knowledge, this is the
first attempt to derive MDP of GFS for any k. Here, the situation is quite con-
trastive to the Substitution-Permutation Network (SPN). It has been extensively
studied and a succinct MDP bound is known for any k (e.g. [5][6])2. Basically
our algorithm is not a surprising one, however, its implementation needed much
cares as the real program must handle various cases which were not appeared at
Kim et al.’s analysis. For k-partition Type-2 GFS with invertible round function,
we obtained a bound O(pk) with k+1-round, for all k = 4, 6, 8, 10. In particular,
our bound for k = 4 is p4 + p5, thus slightly improves Kim et al.’s result (for
exact bounds of other k, see Sect. 4). Note that we have not studied the tightness
of these bounds (it is generally difficult to see as our postulate is only the MDP’s
upper bound of round function). At the same time, our bounds are at least close
to the lowest possible if p itself is too.

We also investigate a generalization/improvement of Type-2 GFS, recently
proposed by Suzaki and Minematsu [14], which we call Type-2i (i for improve-
ment) GFS. They proposed to use a sub-block shuffle different from the cyclic
shift employed by Type-2, and proved a better diffusion property for k ≥ 6.
They presented various optimally-diffusive shuffles found via exhaustive search
or built from the De Bruijn graph. Although differential characteristic proba-
bility of Type-2i have been investigated [14][4], no result is known on its MDP.
Using our bounding algorithm we investigated Type-2i with k = 6, 8. We were
interested in knowing whether Type-2i has better MDP than Type-2; say if k-
round Type-2i could have O(pk) bound. However, as far as we investigated, the
MDPs are almost the same as Type-2 or even slight worse, especially in proving
MDP O(pk) for k-partition. This phenomenon is probably a consequence of a
limit of our proof method, and it is open if we can improve or not.

Finally, we have to mention that the impact of our result on current blockci-
phers is rather minor, as Type-2 with large k is not widely deployed, and there

2 Here, k denotes the number of sub-blocks in a round where one sub-block is given
to a unit cryptographic permutation (typically S-box).

On Maximum Differential Probability of Generalized Feistel 91

is no real proposal based on Type-2i (it is quite new). Instead, we expect our
study helps understanding Type-2 and Type-2i and boosts the spread of Type-
2/2i based ciphers.

2 Preliminaries

2.1 Type-2 GFS and Its Generalization

Our targets are Type-2 GFS and its further generalization [14], which we call
Type-2i. As Type-2i includes Type-2, we first explain Type-2i. For even integer
k ≥ 2, we consider a blockcipher over M = ({0, 1}κ)k for some κ. Let π be a
permutation overM, in particular a shuffle of k sub-blocks. The single round of
k-partition Type-2i GFS using shuffle π is,

(x0, x1, . . . , xk−1)

→ π
(
x0, F (K0, x0)⊕ x1, x2, F (K1, x2)⊕ x3, . . . , F (K(k−2)/2, xk−2)⊕ xk−1

)
,

(1)

where xi ∈ {0, 1}κ and F (K, ∗) is a keyed function with key K. If above round
is iterated for r times the resulting cipher is denoted by Φr

k[π] (here κ is not
important hence omitted). For the decryption, we perform an inversion of Eq. (1)
using the inverse, π−1. In particular, if π is the right cyclic shift3, i.e.,

πcyc(x0, . . . , xk−1)
def= (xk−1, x0, x1, . . . , xk−2), (2)

the resulting cipher corresponds to Type-2 GFS. For convenience we also use the
index representation for π. Hence πcyc can be written as πcyc(0, 1, . . . , k − 1) =
(k − 1, 0, 1, . . . , k − 2), or we simply use (k − 1, 0, 1, . . . , k − 2) to mean πcyc.

The Conditions for Shuffles. To make Φr
k[π] cipher secure, π should dif-

fuse an input difference to all outputs. For instance, identity shuffle makes no
sense since an input difference never diffuses no matter how many rounds are
iterated, indicating a simple distinguisher from random permutation. Formally,
π must have finite DRmax, a measure of goodness-of-diffusion introduced by
[14]. The definition of DRmax is related to the diameter of directed graphs
induced by the shuffle4, and reflects the needed rounds for full-diffusion. For
example, DRmax of πcyc with k-partition is k. Suzaki and Minematsu proved
that, for k ≥ 6 there are shuffles with smaller DRmax than πcyc, by present-
ing shuffles with minimum DRmax up to k = 16 and a construction assuring
DRmax = 2 log2 k for any k being power of two. See [14] for exact presentation
of shuffles.

3 One may think of using the left cyclic shift instead. From the property of cyclic shift
the results of this paper are the same for both definitions.

4 An idea similar to Massey [1].

92 K. Minematsu, T. Suzaki, and M. Shigeri

2.2 Maximum Differential Probability

For any keyed function F (K, ∗) having binary domain and range we define

DPF (K,∗)(α→ β) def= Pr[F (K, X)⊕ F (K, X ⊕ α) = β], and (3)

DPF (K,∗)
max

def= max
α�=0,β

DPF (K,∗)(α→ β), (4)

where probability is defined by K and X , which is independent and uniform.
For simplicity we omit K and write as F (X), assuming a fixed probability dis-
tribution of K. Theoretically, the lower bound of MDP for N -bit keyed function
(permutation) is (1/2N) (1/(2N − 1)), achieved by random N -bit function (per-
mutation).

Caveat. If K ∈ K is uniform DPF (K,∗) is the average of probability DPF (η,∗)
max ,

where probability is defined solely by X , for all K = η. In some cases DPF (K,∗)
max

is called the Maximum Expected Differential Probability (MEDP) if we need to
distinguish it from DPF (η,∗)

max . We use the word “MDP” to mean MEDP.
Our purpose is to derive an upper bound of DPΦr

k[π]
max , for various π (shuffle),

even k (partition number), and r (round). In a similar manner to [13] and [10],
we assume the following for Φr

k[π];

Assumption 1

– For r-round, k-partition blockcipher there are (k/2)r keys of F (where one
round has k/2 keys, as shown by Eq. (1)) and they are independently sampled
from a fixed probability distribution.

– F is invertible, i.e., a permutation over {0, 1}κ for any K = η.
– DPF

max ≤ p for some 1/(2κ − 1) ≤ p ≤ 1.

With these assumptions, for given k ≥ 2 we primarily try to find the smallest
r such that DPΦr

k[π]
max ≤ O(pk). This goal is rational, since we generally can not

expect to have pk+1 as MDP (as our proof is independent of the real value of p).
We call such r the limit round. As well as previous studies, the following lemma
[15] plays a crucial role in our analysis :

Lemma 1. For any keyed function F , we have∑
β

DPF (α→ β) = 1 for any α, and

∑
α

DPF (α→ β) = 1 for any β, if F is invertible.

3 MDP Bounding Algorithm

3.1 Overview

With Assumption 1, previous results are DPΦ3
2[πcyc]

max ≤ p2 [13] and DPΦ5
4[πcyc]

max ≤
p4 + 2p5 [10]. We further extend these results, i.e., derive DPΦr

k[π]
max for various

On Maximum Differential Probability of Generalized Feistel 93

k, r, and π. Our algorithm can basically work for any π, but for simplicity we
focus on the even-odd ones [14], which means that, any i-th input sub-block
for even i is mapped to an output j-th sub-block for odd j, and vice versa.
This includes Type-2 and Type-2i of Suzaki-Minematsu. According to [14] the
smallest DRmax is always achieved by even-odd shuffles. In order to keep the
notational compatibility with Kim et al., we index the input sub-blocks from
1 to k throughout Sect. 3. The number of F functions involved in Φr

k[π] is s =
(k/2) · r, and we indexed them from top left to bottom right, such as F1, . . . , Fs

(See Fig. 1).
We explain the procedure for deriving a bound of DPΦr

k[π]
max (α → β), where

α = (α1, . . . , αk) and β = (β1, . . . , βk), are input and output differential. The
overall MDP bound is derived as the maximum for all pairs of (α, β). The output
differential of Fi is denoted by δi except for the last two rounds (i.e. for (k/2)(r−
2) < i ≤ s), as the output differentials of the last two rounds are determined
by other variables, since π is even-odd. We define δ = (δ1, . . . , δq), where q =
(k/2) · (r − 2). See Fig. 1 for example.

Our algorithm has three search parameters: n, nd, and ub. The algorithm
first tries to prove DPΦr

k[π]
max ≤ pn. If this is not possible it tries DPΦr

k[π]
max ≤∑

i=n,...,nd ci · pi for non-negative integers cn+1, . . . , cnd and cn ≥ 1. The pa-
rameter ub determines the size of window search over δ.

3.2 Ordered Sum

For given Φr
k[π], the input/output differential of each Fi is represented as a sum

(XOR) of α, β, and δ, which we call clause. For i = 1, . . . , s the differential
equation for Fi is denoted by Ei, and its input (output) side clause is denoted
by Ei,0 (Ei,1). See Fig. 1 for the case of Φ5

4[πcyc]. Moreover, we write the set of
δ appeared in Ei,j as Hi,j and define Hi = Hi,0 ∪ Hi,1. For example, in Fig. 1
we have E7,0 = α2 ⊕ δ1 ⊕ δ6, and E7,1 = α3 ⊕ β3 ⊕ δ4, and H7,0 = {δ1, δ6},
H7,1 = {δ4}, and H7 = {δ1, δ4, δ6}.

The list of all differential equations are written as E = (E1, . . . , Es). From
Markov cipher theory [16], the MDP is written as

DPΦr
k[π]

max = max
α,β∈({0,1}κ)k\{(0...,0)}

∑
δi∈{0,1}κ:i=1,...,s

∏
j

DP(Ej), (5)

where DP(Ej) denotes DPF (Ej). Note that DPF (Ej) = DPF (Ej,0 → Ej,1) is a
function of α, β, and δ. As the number of possible (α, β) is huge, we collect them
into (2k − 1)2 cases5, where each case assigns αi = 0 or αi �= 0, and βi = 0 or
βi �= 0, for all i (here all-zero pattern is omitted). We also utilize a tool called
ordered sum [10] for reducing the complexity w.r.t. δ. Since original presentation
of Kim et al. is slight informal, we here present a formal one. The proof is clear
from Lemma 1.
5 Generally some input-output differential patterns may have its dual and we could

exploit it to reduce the complexity, as performed by Kim et al.

94 K. Minematsu, T. Suzaki, and M. Shigeri

Proposition 1. Let E ′ = (Ei1 , . . . , EiM) ⊆ E be a list of M differential equa-
tions. We assume

⋃M
j=1Hij = {δh1 , . . . , δhM }. If Hij \

⋃j−1
j′=1Hij′ = {δhj} (where⋃0

j′=1Hij′ is defined as empty) and {δhj} �∈ Hij ,0 ∩ Hij ,1, for 1 ≤ j ≤ M , we
have ∑

δh1 ,...,δhM

DP(Ei1) ·DP(Ei2) · · · ·DP(EiM)

=
∑
δh1

DP(Ei1)
∑
δh2

DP(Ei2) · · ·
∑
δhM

DP(EiM) = 1.

Here, the condition {δhj} �∈ Hij ,0 ∩ Hij ,1 is needed to make sure that each
equation Eij in the summation

∑
δhj

DP(Eij) contains δhj in its left or right hand
side, but not both. If both sides contain δhj , the ordered sum is not guaranteed to
be 1. Such a case does not happen in the initial stage of our algorithm. However,
it can happen later as the algorithm may rewrite variables of E .
Example 1. Let E1 = [α1 → δ1] and E2 = [β1 ⊕ δ1 → δ2]. Then we can take an
ordered sum for E1 and E2 since∑

δ1,δ2

DP(E1) ·DP(E2) =
∑
δ1

DP(α1 → δ1)
∑
δ2

DP(β1 ⊕ δ1 → δ2) (6)

=
∑
δ1

DP(α1 → δ1) = 1 (7)

holds for any (including 0) α1 and β1. However, if E2 is replaced with [β1⊕ δ1⊕
δ2 → δ2], the second equality does not hold true (as {δ2} ∈ H2,0 ∩ H2,1), thus
ordered sum can not be taken.

3.3 Details of Bounding Algorithm

Constraints, Labels, and States. The algorithm handles many linear con-
straints on clauses, such as α1 ⊕ δ1 = 0 or β1 �= 0. The set of these constraints
are defined by two clause sets, C0, C1. If we have V ∈ C0 (V ∈ C1) for clause
V , it means V = 0 (V �= 0) is given as a linear constraint. The algorithm also
uses label and state, each assigned for a clause and an equation in E . A label
is one of nz, zr, and any. For clause V , if V = 0 (V �= 0) is deduced from C0
and C1 we write V = zr (V = nz). Otherwise we write V = any. Especially, the
label of Ei,j is denoted by Li,j ∈ {zr, nz, any}. For instance, if C0 = {α1, α2} and
E1,1 = α1⊕α2 we have L1,1 = zr. Moreover if C1 = {δ1, δ2} and E2,1 = δ1⊕δ2 we
have L2,1 = any. We define the label set L = (L1, . . . , Ls), where Li = (Li,0, Li,1).

The state set is defined as S = (S1, . . . , Ss), where Si represents a status on the
probability of Ei. Possible states are 0 (probability is zero), 1 (probability is one), p
(probability is at most p), and u (probability is unknown). Hence Si ∈ {0, 1, p, u}.

Update. The working structure of the algorithm is Π
def= (E ,L,S, C0, C1). Fol-

lowing Lemma 1, the algorithm first updates Π considering their relationships
in a similar manner to Kim et al. For example, let us assume E1 = [α1 → δ1] and
E2 = [δ2⊕α2 → α3⊕ δ3] and C0 = {α3⊕ δ3}, C1 = {α1}. Now, since α1 ∈ C1 and

On Maximum Differential Probability of Generalized Feistel 95

F
1

F
2

F
3

F
4

F
5

F
6

α
1

α
2

α
3

α
4

F
7

F
8

F
9

F
10

β
1

β
2

β
3

β
4

δ
1

δ
2

δ
3

δ
4

δ
5

δ
6

Fig. 1. Type-2 GFS with k = 4, r = 5

each F is invertible, δ1 must be non-zero. Then we make (L1,0, L1,1) = (nz, nz)
and add {δ1} to C1, and make (L2,0, L2,1) = (zr, zr) and add {δ2 ⊕ α2} to C0 in
a similar manner. As we obtain (L1,0, L1,1) = (nz, nz) and (L2,0, L2,1) = (zr, zr),
we make S1 = p and S2 = 1. If we observe an inconsistency, for instance α1 ∈ C0
and δ1 ∈ C1 with E1 = [α1 → δ1], we make (L1,0, L1,1) = (zr, nz) and thus
S1 = 0. This implies the overall differential probability is zero.

In addition, we update E so that the number of δi appeared is minimized
using the knowledge of C0. For example if δ1⊕α1⊕ β2 ∈ C0, we substitute δ1 by
α1 ⊕ β2 for every equations of E containing δ1. Of course, if δi = 0 we remove
it from E . The update of E can be done via a triangulation of C0, considering
it as a binary matrix. The procedure is trivial, hence we skip the details. We
define U ⊆ {δ1, . . . , δq} as the set of remaining δis after update of E . As a
result, the members of U are independent of C0’s constraints, while those of
U def= {δ1, . . . , δq} \ U are linearly dependent on α, β, and other members of U .
The exact update procedure is shown as Algorithm 2 of Appendix A.

Bound Derivation. Given an initial constraint α, β ∈ {nz, zr}k\{(zr, . . . , zr)},
the algorithm first sets C0 and C1 as C0 = {αi : αi = zr}∪{βi : βi = zr} and C1 =
{αi : αi = nz}∪{βi : βi = nz}. Then the algorithm iteratively updates Π and C0,
C1 as described above, until there is no change of C0 and C1. Next, the algorithm
checks if it is possible to build an ordered sum6 for all δi ∈ U without using

6 Practically, an ordered sum can be smaller than 1 as δi ∈ U can have some impossible
values implied by C1, e.g., if {δ1 ⊕ α1, α1} ⊆ C1 the summation for δ1 = α1 is
redundant. For upper-bound derivation, it is sufficient to assume that a possible
ordered sum has always probability 1.

96 K. Minematsu, T. Suzaki, and M. Shigeri

(at least) n equations whose states are p, which implies DPΦr
k[π]

max (α→ β) ≤ pn. If
this is possible, we say we can “extract pn”. This is done by a simple exhaustive
search using E and S. If we cannot extract pn, we give additional constraints,
represented as (δi1 , . . . , δih

) = (vi1 , . . . , vih
), with (vi1 , . . . , vih

) ∈ {zr, nz}ih for
{δi1 , . . . , δih

} ⊆ U with δij = any, for all h = 1, . . . , ub. Here, (δi1 , . . . , δih
)

is called a δ-combination and (vi1 , . . . , vih
) is called a v-assignment. Hence if

|{δi ∈ U : δi = any}| = ρ, we have
∑ub

h=1

(
ρ
h

)
δ-combinations. For each δ-

combination, (δi1 , . . . , δih
), we have 2h v-assignments.

We choose a δ-combination, and for each v-assignment we temporarily update
Π and find maximum of m ∈ {n, . . . , nd} such that we can extract pm. If all
2h v-assignments are successful (i.e. we can extract pn or more), the sum of the
results for all v-assignments is DPΦr

k[π]
max (α → β). In this case the bound will be

the form of
∑nd

h=n cnpn for non-negative integer cn with
∑nd

i=n ci = 2h. We try
all δ-combinations until we success. If all δ-combinations fail we declare the total
failure and quit. A case of 4-partition 5-round Type-2 is shown by Example 2.

Example 2. Φ5
4[πcyc] with α = (nz, nz, nz, nz), β = (nz, nz, zr, nz) (a sub-case of

Case 9-3 of [10]). We assume n = 4, nd = 5, and ub = 1. Then we have

E1 = [α1 → δ1], L1 = (nz, nz), S1 = p,

E2 = [α3 → δ2], L2 = (nz, nz), S2 = p,

E3 = [α4 ⊕ δ2 → δ3], L3 = (any, any), S3 = u,

E4 = [α2 ⊕ δ1 → δ4], L4 = (any, any), S4 = u,

E5 = [α3 ⊕ δ4 → δ5], L5 = (any, any), S5 = u,

E6 = [α1 ⊕ δ3 → δ6], L6 = (any, any), S6 = u,

E7 = [α2 ⊕ δ1 ⊕ δ6 → α3 ⊕ β3 ⊕ δ4], L7 = (any, any), S7 = u,

E8 = [α4 ⊕ δ2 ⊕ δ5 → α1 ⊕ β1 ⊕ δ3], L8 = (nz, nz), S8 = p,

E9 = [β1 → α2 ⊕ β2 ⊕ δ1 ⊕ δ6], L9 = (nz, nz), S9 = p,

E10 = [β3 → α4 ⊕ β4 ⊕ δ2 ⊕ δ5], L10 = (zr, zr), S10 = 1,

where C0 = {β3, α4 ⊕ β4 ⊕ δ2 ⊕ δ5} and C1 = {α1, α2, α3, α4, β1, β2, β4, δ1, δ2, α2 ⊕ β2 ⊕
δ1 ⊕ δ6, α4 ⊕ δ2 ⊕ δ5, α1 ⊕ β1 ⊕ δ3}.

As δ2 = α4 ⊕ β4 ⊕ δ5, we rewrite E2, E3, E8, E10 and try to build an ordered
sum with U = {δ1, δ3, δ4, δ5, δ6}. However we cannot extract p4 since there are 4
equations with state p and remaining equations have |Hi| = 2 (an ordered sum
must contain at least one equation with |Hi| = 1). Then we consider δ3 (whose
label is any) as a δ-combination. If δ3 = nz we add δ3 to C1 and S3 is updated
to p. Then we can extract p4 as∑

δ1,δ3(=nz),δ4,δ5,δ6

DP(E1) · · · · ·DP(E10)

≤ p4
∑

δ1,δ3(=nz),δ4,δ5,δ6

DP(E1) ·DP(E4) ·DP(E5) ·DP(E6) ·DP(E7)

≤ p4
∑
δ1

DP(E1) ·
∑
δ4

DP(E4) ·
∑
δ5

DP(E5) ·
∑
δ3

DP(E6) ·
∑
δ6

DP(E7) ≤ p4. (8)

On Maximum Differential Probability of Generalized Feistel 97

If δ3 = zr we obtain δ5 = β4 and add δ3 and δ5⊕β4 to C0 and update states as
S3 = 1, S5 = S6 = S7 = p. Then U is changed to {δ1, δ4, δ6} and we can extract
p5 with a similar computation as Eq. (8). Summing up both cases, we obtain

DPΦ5
4[πcyc]

max (α→ β) ≤
∑

δ1,δ3(=nz),
δ4,δ5,δ6

∏
i=1,...,10

DP(Ei) +
∑

δ1,δ3(=zr),
δ4,δ5,δ6

∏
j=1,...,10

DP(Ej) (9)

≤ p4 + p5. (10)

The basic flow of the algorithm is depicted at Fig. 2. The pseudocode is
in Appendix A. The algorithm here generates one polynomial of p for each
(α, β). We need some post-processing for taking the maximum among them.
Hence, it may be the case the total MDP bound we obtain is of the form
max{poly1(p), poly2(p), . . . , }, say, if poly1(p) = p4 and poly2(p) = 10p5. This is
in fact the case, see Table 3.

3.4 Optimized Version

The algorithm described above immediately terminates if it finds a δ-combination
that provides

∑
i=n,...,nd ci · pi with non-negative integer ci. Hence the result may

have the leading coefficient, cn, being larger than 1. We therefore implemented
an “optimized version” that minimizes cn with an exhaustive search for all δ-
combinations. It produces multiple candidate polynomials of p for each (α, β),
where DPΦr

k[π]
max (α→ β) is the minimum of them (see Appendix B).

4 Experimental Results

4.1 Results for Type-2

We implemented the described algorithm and performed it using eight 2GHz,
dual-core computers. For Type-2, the experiments are done7 for k = 4, 6, 8 and
10. We first ran our algorithm and saw if unoptimized (w.r.t the leading coeffi-
cient, see Sect. 3.4) bound was obtained. If this was successful, we then tried to
optimize the bound. The Type-2 uses the cyclic shift as defined by Eq. (2). For
completeness, see Table 1. Unoptimized bounds were relatively easy to derive. In
contrast the optimized ones needed much time: for (k, r, n) = (8, 9, 8) we spent
about three weeks for the optimized bound, p8 + 26p9, while unoptimized one
was derived within a few days. For k = 10 and r = 11 we could only derive
unoptimized bound. For k ≥ 12, our algorithm seems infeasible for now.

The results are shown by Table 2. During the experiment, nd was set to n+1
as larger values did not provide a noticeable improvement, and ub was set from
1 to 5. In Table 2, “suc” indicates that the obtained bound is cnpn + cn+1p

n+1 +
· · · + cndp

nd with some cn ≥ 1. “fail(x)” indicates the failure, where x is the
number of (α, β) pairs that fails (corresponding to line 30 of Algorithm 1 in
Appendix A).
7 We did not test for k = 2 as the bound of Aoki-Ohta is already p2.

98 K. Minematsu, T. Suzaki, and M. Shigeri

Y

N

Y

N

Y

N

N

Y

N

Y

N

Y

Fig. 2. The flow of our algorithm

For k = 4 and r = 5, we derived p4+p5, which improves the previous bound of
p4+2p5. This is due to our finer case analysis: Kim et al. divided (α, β) pairs into
24 cases, whereas we divided it into (24−1)2 = 225 cases. For instance, Kim et al.
considered α = (nz, nz, nz, nz) with β1 = nz and β3 = zr as an initial constraint
and derived p4 + 2p5 for this case, whereas we analyze α = (nz, nz, nz, nz) with
each of 15 cases of β, and derive p4 or p4 + p5 for each case. One of the case is
given at Example 2. Our result implies that the limit round (see Sect. 2.2) for
Type-2 is k + 1, where we verified it for k ≤ 10. It would be an interesting open
problem to prove it for any k. More generally we conjecture the following:

Conjecture 1. Under Assumption 1, DPΦr
k[πcyc]

max = O(pr−1), for 1 ≤ r ≤ k + 1.

Note that it is generally impossible to have O(pk) for k rounds of Type-2. If input
difference α = (zr, . . . , zr, nz) is given to Φk

k[πcyc], we always have βk = αk with
probability 1 (this is quite easy to verify. See Fig. 2 of [14] for instance). In this
sense the limit rounds we derived is tight.

On Maximum Differential Probability of Generalized Feistel 99

Table 1. Investigated shuffles of Type-2 (left) and Type-2i (right). For compatibility
with [14] the block index is from 0 to k − 1.

k shuffle

4 {3, 0, 1, 2}
6 {5, 0, 1, 2, 3, 4}
8 {7, 0, 1, 2, 3, 4, 5, 6}
10 {9, 0, 1, 2, 3, 4, 5, 6, 7, 8}

k name shuffle

6 Opt (6) {3, 0, 1, 4, 5, 2}
8 Opt (8-1) {3, 0, 1, 4, 7, 2, 5, 6}
8 Opt (8-2) {3, 0, 7, 4, 5, 6, 1, 2}

Table 2. Derived MDP bounds of Type-2 GFS

k r n result bound

4 5 4 suc p4 + p5 (improved from [10])

6 5 4 suc p4

6 5 5 fail (33)

6 6 5 suc p5 + p6

6 6 6 fail (66)

6 7 6 suc p6 + 10p7

8 7 6 suc p6

8 7 7 fail (176)

8 8 7 suc p7 + 3p8

8 8 8 fail (360)

8 9 8 suc p8 + 26p9

10 11 10 suc 14p10 + 2p11(unoptimized)

4.2 Results for Type-2i

We also investigated shuffles provided by [14] for k = 6 and 8. According to [14]
there are one shuffle with DRmax(π) = 5 (while DRmax(πcyc) = 6) and two
shuffles with DRmax(π) = 6 (while DRmax(πcyc) = 8), except isomorphic ones.
They are called “optimum block shuffles”. See Table 1.

Since these shuffles provide a faster diffusion than the cyclic shift, one may
expect some improved results from Type-2, say O(p6) bound with k = 6 and
r = 6. However the result does not follow this expectation, as shown by Table
3. Interestingly, the obtained bounds are roughly the same as Type-2 as long
as r ≤ k or in a sense better, for a smaller number of failures. For instance, if
(k, r, n) = (8, 8, 8) we have 360 failures for Type-2, 240 for Opt (8-1), and only
16 for Opt (8-2). In contrast, the result is quite unpredictable for r ≥ k + 1
with n = k. For k = 6 we need 8 rounds to have O(p6) with Opt (6). For k = 8
we need 9 rounds to have O(p8) for Opt (8-2), which is the same as Type-2. While

100 K. Minematsu, T. Suzaki, and M. Shigeri

Table 3. Derived MDP bounds for Type-2i

k r n shuffle result bound

6 5 4 Opt (6) suc p4

6 5 5 Opt (6) fail (6)

6 6 5 Opt (6) suc p5 + p6

6 6 6 Opt (6) fail (36)

6 7 6 Opt (6) fail (3)

6 8 6 Opt (6) suc p6 + 9p7

k r n shuffle result bound

8 7 6
Opt (8-1) suc p6 + 3p7

Opt (8-2) suc p6 + 3p7

8 7 7
Opt (8-1) fail (24)

Opt (8-2) fail (6)

8 8 7
Opt (8-1) suc p7 + 7p8

Opt (8-2) suc p7 + 7p8

8 8 8
Opt (8-1) fail (240)

Opt (8-2) fail (16)

8 9 8
Opt (8-1) fail (53)

Opt (8-2) suc max{p8 + 31p9, 2p8}
8 10 8 Opt (8-1) fail (16)

8 11 8 Opt (8-1) fail (4)

8 12 8 Opt (8-1) suc 13p8 + 19p9 (unopt.)

Table 4. An intermediate outputs of failure case with Opt (6) and (k, r, n) = (6, 7, 6).
α = (zr, nz, zr, nz, zr, zr) and β = (zr, nz, zr, zr, zr, nz). Eis with Li,0 = Li,1 = zr

(thus Si = 1) are omitted.

Ei

round 1 E1: E2: E3:
round 2 E4: α4 → δ12 E5: α2 → δ11 E6:
round 3 E7: δ11 → δ9 E8: δ12 → δ8 E9:
round 4 E10: δ8 → δ11 E11: α4 + δ9 → δ5 E12: α2 → δ4
round 5 E13: δ5 → β6 + δ8 E14: E15: δ4 + δ12 → α4 + δ9
round 6 E16: α2 → δ5 E17: β6 → δ4 + δ12 E18:
round 7 E19: E20: E21:

Si(Hi)
round 1 S1: 1 S2: 1 S3: 1
round 2 S4: p(δ12) S5: p(δ11) S6: 1
round 3 S7: p(δ9, δ11) S8: p(δ12, δ8) S9: 1
round 4 S10: p(δ8, δ11) S11: p(δ5, δ9) S12: p(δ4)
round 5 S13: p(δ5, δ8) S14: 1 S15: p(δ4, δ9, δ12)
round 6 S16: p(δ5) S17: p(δ4, δ12) S18: 1
round 7 S19: 1 S20: 1 S21: 1

C0 = {δ1 + δ9 + α4, δ2, δ3 + δ8 + β6, δ6 + δ11, δ7, δ10, δ13, δ14, δ15}
C1 = {α2, α4, β2, β6, δ1, δ3, δ4, δ5, δ6, δ8, δ9, δ11, δ12, δ4 + δ12, α4 + δ9}
U = {δ4, δ5, δ8, δ9, δ11, δ12}

Opt (8-1) needs 12 rounds to have O(p8). That is, Conjecture 1 seems to hold
with these shuffles for r ≤ k, but it is unclear for r = k + 1; the limit round may
depend on the shuffle.

On Maximum Differential Probability of Generalized Feistel 101

An Analysis of Anomalous Failure Case. To see why Type-2i fails to provide
O(pk) when r = k + 1, let us show one failure case (among three) of (k, r, n) =
(6, 7, 6) with Opt (6). Table. 4 is built from intermediate outputs of our algorithm
for α = (zr, nz, zr, nz, zr, zr) and β = (zr, nz, zr, zr, zr, nz). We need to take an
ordered sum using U = {δ4, δ5, δ8, δ9, δ11, δ12} (here δi is indexed in the reverse-
order: from bottom right to top left). However there are 11 Sis not being 1, hence
we could extract p5 at best. In addition, all δi ∈ U are non-zero (nz) thus there
is no possible δ-combination. Therefore the algorithm declares failure and quits.

We still have a chance to improve the result by introducing some constraints
other than δ-combination (though we did not find one). Another plausible ap-
proach is taking the structure of F into account (not only MDP being p). In any
case, we consider this failure as a consequence of the limit of our approach.

5 Conclusion

In this paper, we have derived MDP bounds of Type-2 GFS and its generalization
w.r.t the block shuffle, called Type-2i. For Type-2, the bounds of k = 2, 4-
partition have been known, while we have shown bounds for k = 6, 8, 10. For
Type-2i, we derived bounds for k = 6, 8, which is the first result on Type-2i, as
far as we know. In deriving bounds, we utilized the idea of Kim et al.’s analysis
for 4-partition Type-2, and distilled a formal procedure that basically works for
any k with any block shuffle and implemented it on computers. Although MDP
of SPN structure has been much studied and the bound is known for any k, this
is the first attempt to derive MDP of GFS for any k. Our result would provide a
fresh insight on the Type-2 and Type-2i GFSs and help build real ciphers based
on them.

A future direction is reducing the complexity: for k > 10 the complexity of the
current algorithm is not practical. Reducing the complexity will enable a more
comprehensive investigation. In addition, it would be interesting to study if we
can improve our bounds on Type-2i, which can fill the gap between differential
characteristic probability evaluation (such as [4]) and ours.

Acknowledgments

We would like to thank Hiroyasu Kubo, Hirokatsu Nakagawa, Teruo Saito, Man-
abu Kurohashi, Daisuke Ikemura and Takeshi Kawabata for discussions and soft-
ware implementation. We are deeply grateful for anonymous reviewers providing
many useful comments.

References

1. Massey, J.: On the Optimality of SAFER+ Diffusion. In: Second AES Candidate
Conference. National Institute of Standards and Technology (1999)

2. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

102 K. Minematsu, T. Suzaki, and M. Shigeri

3. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit Block-
cipher CLEFIA. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195.
Springer, Heidelberg (2007)

4. Shibutani, K.: On the Diffusion Properties of Generalized Feistel Structures.
In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544,
pp. 211–228. Springer, Heidelberg (2011)

5. Park, S., Sung, S., Lee, S., Lim, J.: Improving the upper bound on the maximum
differential and the maximum linear hull probability for SPN structures and AES.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer, Heidel-
berg (2003)

6. Hong, S., Lee, S., Lim, J., Sung, J., Cheon, D., Cho, I.: Provable security against
differential and linear cryptanalysis for the SPN structure. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, p. 273. Springer, Heidelberg (2001)

7. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for low-
resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

8. Nyberg, K.: Generalized Feistel Networks. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 90–104. Springer, Heidelberg (1996)

9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

10. Kim, J., Lee, C., Sung, J., Hong, S., Lee, S., Lim, J.: Seven New Block Cipher
Structures with Provable Security against Differential Cryptanalysis. IEICE Trans.
Fundamentals E91-A(10) (2008)

11. Corporation, S.: The 128-bit Blockcipher CLEFIA Security and Performance Eval-
uations. Revision 1.0 (June 1, 2007)

12. Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 566–574. Springer,
Heidelberg (1993)

13. Aoki, K., Ohta, K.: Strict Evaluation of the Maximum Average of Differen-
tial Probability and the Maximum Average of Linear Probability. IEICE Trans.
Fundamentals E80-A(1), 2–8 (1997)

14. Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

15. Matsui, M.: New Structure of Block Ciphers With Provable Security against Differ-
ential and Linear Cryptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039.
Springer, Heidelberg (1996)

16. Lai, X.: On the Design and Security of Block Ciphers. Hartung-Gorre (1992)

On Maximum Differential Probability of Generalized Feistel 103

A Pseudocode of MDP Derivation Algorithm

The following is the pseudocode of (unoptimized version of) our algorithm. As it
reflects the real program there are some minor differences from the description
of the body texts. In particular the update function does not change E , instead
OrdSum function does. The label of a clause is determined via triangulation of
C0, represented as rank(C0 ∪ {V }) step in Algorithm 3. Here, rank denotes the
rank computation of the matrix corresponding C0 ∪ {V }, where each element
corresponds to a binary row vector.

Algorithm 1. MDP derivation for (α1, . . . , αk) ∈ {nz, zr}k, (β1, . . . , βk) ∈
{nz, zr}k
1: procedure Initialization

2: C0 ← ∅, C1 ← ∅
3: L ← (any, . . . , any), S ← (u, . . . , u).
4: Add {αi : αi = nz}i=1,...,k and {βi : βi = nz}i=1,...,k to C1

5: Add {αi : αi = zr}i=1,...,k and {βi : βi = zr}i=1,...,k to C0

6: end procedure
7: (t, Π) ← Update(Π)

8: if t = IMP then return “DP
Φr

k[π]
max (α → β) = 0”

9: else if OrdSum(n, Π)=Suc then return “DP
Φr

k[π]
max (α → β) ≤ pn”

10: else
11: for h = 1, . . . , ub do
12: for all i1, . . . , ih, s.t. Labeling(δij , C0, C1) = any do
13: cn, . . . , cnd ← 0, w ← Suc
14: for all (v1, . . . , vh) ∈ {nz, zr}h do

15: C̃0 ← C0, C̃1 ← C1,
16: add {δij : vj = nz} to C̃1 and {δij′ : vj′ = zr} to C̃0, Π̃ ←

(E ,L,S , C̃0, C̃1)

17: (t, Π̃) ← Update(Π̃)
18: if t = OK then
19: if OrdSum(n, Π̃) = Fail then w ← Fail, break
20: else
21: s∗ ← max{s : s ∈ {n, . . . , nd},OrdSum(s, Π̃) = Suc}
22: cs∗ ← cs∗ + 1
23: end if
24: end if
25: end for
26: if w = Suc then return “DP

Φr
k[π]

max (α → β) ≤∑i=n,...,nd ci · pi”
27: end if
28: end for
29: end for
30: return “Fail (DP

Φr
k[π]

max (α → β) is not derived)”
31: end if

104 K. Minematsu, T. Suzaki, and M. Shigeri

Algorithm 2. Update
1: function Update(Π)
2: while γ = 1 do
3: γ ← 0
4: for all Li,j = any do Li,j ←Labeling(Ei,j , C0, C1)
5: end for
6: for all i = 1, . . . , s, Si = u do
7: if Li = (zr, nz) or (nz, zr) then Si ← 0, return (“IMP”, Π)
8: else if Li = (zr, zr) then Si ← 1
9: else if Li = (nz, nz) then Si ← p

10: else if Li = (nz, any) then Si ← p, Li,1 ← nz, add Ei,1 to C1, γ ← 1
11: else if Li = (any, nz) then Si ← p, Li,0 ← nz, add Ei,0 to C1, γ ← 1
12: else if Li = (zr, any) then Si ← 1, Li,1 ← zr, add Ei,1 to C0, γ ← 1
13: else if Li = (any, zr) then Si ← 1, Li,0 ← zr, add Ei,0 to C0, γ ← 1
14: end if
15: end for
16: end while
17: return (“OK”, Π)
18: end function

Algorithm 3. Determine label of clause V

1: function Labeling(V,C0, C1)
2: if rank(C0 ∪ {V }) = rank(C0) then return zr

3: end if
4: for all V ′ ∈ C1 do
5: if rank(C0 ∪ {V ⊕ V ′}) = rank(C0) then return nz

6: end if
7: end for
8: return any

9: end function

Algorithm 4. Ordered sum
1: function OrdSum(n,Π)
2: Determine U using triangulation of C0

3: Obtain linear expressions for δi ∈ U , rewrite E ′ ← E
4: E ′ ← E ′ \ {Ei : Si = 1}
5: ν ← |U|, {δu1 , . . . , δuν} ← U :
6: for all Ei1 , . . . , Ein s.t. Si1 = · · · = Sin = p do
7: Ẽ ← E ′ \ {Ei1 , . . . , Ein}
8: for all {Ei1 , . . . , Eiν} ∈ Ẽ s.t.

⋃ν
h=1 Hih) = U do

9: if Hij \ ⋃j−1
h=1 Hih = {δuj} and {δuj } �∈ Hij ,0 ∩ Hij ,1, for j = 1, . . . , ν

then
10: return “Suc”
11: end if
12: end for
13: end for
14: return “Fail”
15: end function

On Maximum Differential Probability of Generalized Feistel 105

B A Sample of Program Output

The following is an output sample of (optimized version of) our program applied
to Type-2 with (k, r, n) = (6, 7, 6). The optimized version produces multiple
polynomials for each (α, β), hence we manually do some post-processing to derive
overall MDP.

k=6, r=7, n=6, nd=7, asmpt_lb=0, asmpt_ub=4, a_ub=0x5c000000, a_lb=0xfc000000,
b_ub=0x04000000, b_lb=0xfc000000
detail=ON
Fi
R 1 F 1: a1->d15 F 2: a3->d14 F 3: a5->d13
R 2 F 4: a2+d15->d12 F 5: a4+d14->d11 F 6: a6+d13->d10
R 3 F 7: a3+d12->d9 F 8: a5+d11->d8 F 9: a1+d10->d7
R 4 F10: a4+d9+d14->d6 F11: a6+d8+d13->d5 F12: a2+d7+d15->d4
R 5 F13: a5+d6+d11->d3 F14: a1+d5+d10->d2 F15: a3+d4+d12->d1
R 6 F16: a6+d3+d8+d13->a1+b1+d5+d10 F17: a2+d2+d7+d15->a3+b3+d4+d12

F18: a4+d1+d9+d14->a5+b5+d6+d11
R 7 F19: b1->a2+b2+d2+d7+d15 F20: b3->a4+b4+d1+d9+d14 F21: b5->a6+b6+d3+d8+d13

a_lp = 0xFC000000(=0b111111)
b_lp = 0xFC000000(=0b111111)
DP=p^6+p^7+p^6+p^6 number=2 di=(d1,d4)
DP=p^6+p^7+p^7+p^7+p^6+p^7+p^7+p^7 number=3 di=(d1,d2,d12)
DP=p^6+p^7+p^7+p^7+p^7+0+p^7+0+p^7+p^7+p^7+p^7+p^7+0+0+0 number=4 di=(d4,d7,d9,d10)
a_lp = 0xFC000000(=0b111111)
b_lp = 0xF8000000(=0b111110)
DP=p^6+p^6 number=1 di=(d1)
DP=p^6+p^7+p^7+p^7 number=2 di=(d1,d11)
DP=p^6+p^7+p^7+0+p^7+p^7+p^7+0 number=3 di=(d4,d9,d12)
DP=p^6+p^7+p^7+0+p^7+0+p^7+0+p^7+0+p^7+0+0+p^7+0+0 number=4 di=(d4,d7,d9,d12)
a_lp = 0xFC000000(=0b111111)
b_lp = 0xF4000000(=0b111101)
DP=p^6+p^7+p^7+p^7 number=2 di=(d1,d6)
DP=p^6+p^7+p^7+0+p^7+p^7+p^7+0 number=3 di=(d4,d9,d12)
DP=p^6+p^7+p^7+0+p^7+0+p^7+0+p^7+0+p^7+0+0+p^7+0+0 number=4 di=(d4,d7,d9,d12)
a_lp = 0xFC000000(=0b111111)
b_lp = 0xF0000000(=0b111100)
DP=p^6+p^7 number=1 di=(d7)
DP=p^6+p^7+p^7+0 number=2 di=(d7,d10)
DP=p^6+p^7+p^7+0+p^7+p^7+0+p^7 number=3 di=(d1,d6,d8)
DP=p^6+p^7+p^7+0+p^7+0+p^7+0+p^7+0+0+p^7+p^7+0+0+0 number=4 di=(d6,d8,d9,d11)
a_lp = 0xFC000000(=0b111111)
b_lp = 0xEC000000(=0b111011)
DP=p^6+p^6 number=1 di=(d2)
DP=p^6+p^7+p^7+p^7 number=2 di=(d1,d4)
DP=p^6+p^7+p^7+0+p^7+p^7+p^7+0 number=3 di=(d4,d8,d11)
DP=p^6+p^7+p^7+0+p^7+0+p^7+0+p^7+0+0+p^7+p^7+0+0+0 number=4 di=(d5,d7,d8,d10)
a_lp = 0xFC000000(=0b111111)
b_lp = 0xE8000000(=0b111010)
DP=p^6 number=0

Double SP-Functions: Enhanced

Generalized Feistel Networks�

Extended Abstract

Andrey Bogdanov1 and Kyoji Shibutani2

1 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
andrey.bogdanov@esat.kuleuven.be

2 Sony Corporation, Japan
kyoji.shibutani@jp.sony.com

Abstract. This work deals with the security and efficiency of type-I
and type-II generalized Feistel networks (GFNs) with 4 lines. We pro-
pose to instantiate the GFNs with double SP-functions (substitution-
permutation layer followed by another substitution-permutation layer)
instead of single SP-functions (one substitution-permutation layer). We
provide tight lower bounds on the number of differentially and linearly
active functions and S-boxes in such ciphers. Based on these bounds, we
show that the instantiation with double SP-functions using MDS diffu-
sion has a proportion of differentially and linearly active S-boxes by up to
33% and 50% higher than that with single SP-functions for type-I and
type-II GFNs, respectively. This opens up the possibility of designing
more efficient block ciphers based on GFN structure. Note that type-I
and type-II GFNs are the only non-contracting GFNs with 4 lines under
a reasonable definition of a GFN.

Keywords: block cipher, generalized Feistel network, type-I GFN, type-
II GFN, double SP-functions, active S-boxes, trail probability,
substitution-permutation network.

1 Introduction

In this paper, we will demonstrate that instantiating the GFNs with double SP-
functions (two subsequent substitution-permutation layers) is significantly more
efficient with respect to differential and linear cryptanalysis than using single
SP-functions for this purpose in terms of the proportion of active S-boxes.

1.1 Background

Generalized Feistel networks. Type-I and type-II [12] GFNs are block ci-
phers with specific internal structures as shown in Figure 1. In this paper, we
focus on GFNs with 4 equally wide lines: One round of both type-I and type-II
� A part of this work has been presented at the Seventh International Workshop on

Coding and Cryptography in April 2011, Paris, France.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 106–119, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

andrey.bogdanov@esat.kuleuven.be
kyoji.shibutani@jp.sony.com

Double SP-Functions: Enhanced Generalized Feistel Networks 107

f f1 f2

Type-I GFN Type-II GFN

Fig. 1. Round transforms of type-I and type-II GFNs with 4 lines

GFNs divides the round input α into 4 equally long parts: α = [α1, α2, α3, α4].
A round of type-I GFN outputs [α2⊕f(α1), α3, α4, α1] for some keyed nonlinear
function f . A round of type-II GFN outputs [α2 ⊕ f1(α1), α3, α4 ⊕ f2(α3), α1]
for keyed nonlinear functions f1 and f2. Note that the inverse of type-I GFN is
type-III GFN with some appropriate input and output shuffling.

The functions of the round transforms often exhibit the substitution-
permutation (SP) structure (subkey addition followed by a layer of m S-boxes
si and a linear diffusion map M). If two SP-functions are applied one after an-
other, we speak about double SP-functions. See Figure 2 for both single and
double SP-functions.

Upper-bounding trail probability for Feistel networks. Apart from the
concrete block cipher and hash function proposals based on Feistel networks
instantiated with SP-type functions, thorough security analysis of more generic
designs has been performed in the literature with respect to differential and linear
cryptanalysis. Most cryptanalysis is aimed at the derivation of upper bounds on
the probability of differential and linear trails by lower-bounding the number
of differentially and linearly active S-boxes [3] — a tool that turned out to be
highly useful for the security evaluation of various designs.

For balanced Feistel networks (BFNs), the work [4] proves the minimum num-
ber of active S-boxes in BFNs with SP-functions when the diffusion matrix is
the same in all rounds (single-round diffusion). The papers [8, 9] deal with the
difference cancellation effect for such BFNs and introduces the diffusion switch-
ing mechanism which relies on using several distinct diffusion matrices over
multiple rounds (multiple-round diffusion). The lower bounds on the number
of active S-boxes for BFN with SP-functions and multiple-round diffusion are
proven in [7]. Those for BFNs with SPS-functions and single-round diffusion are
analyzed in [1]. Note that using distinct diffusion matrices in different rounds
(as required by the multiple-round diffusion) reduces the efficiency.

... ... M

ki

s1
s2

sm

single SP-function

... MM

k
(1)
i k

(2)
i

s1s1
s2s2

smsm

double SP-function

Fig. 2. Single and double SP-functions

108 A. Bogdanov and K. Shibutani

For GFNs, lower bounds on the number of active S-boxes are obtained for
type-I and type-II GFNs with SP-functions and single-round diffusion in [11]
and [5], respectively. Bounds for unbalanced Feistel networks with contracting
multiple-round diffusion are derived in [2]. Rough lower bounds for type-I and
type-II with single SP-functions and multiple-round diffusion were proven by [6].
The work [6] also provides some numeric analysis for two specific cases of type-I
and type-II GFNs with single SP-functions and multiple-round diffusion.

In this work, we will focus on 4-line type-I and type-II GFNs with double
SP-functions and single-round diffusion (i.e. using the same diffusion matrix in
all diffusion layers of the cipher) and obtain tight lower bounds on the number
of active S-boxes in such constructions.

Efficiency metrics. A metric has to be defined to enable an efficiency com-
parison between different designs. Since a single metric capturing all implemen-
tation types and details is unlikely to exist, one might consider any comparison
not based on concrete implementation figures illustrative. However, there are
indeed metrics that adequately reflect at least some important efficiency prop-
erties. Inspired by [7], we use the proportion of active S-boxes in all S-boxes
for this purpose with respect to differential and linear cryptanalysis, nonlinear
operations being often most costly to implement:

Definition 1 (Efficiency metrics, Em and E). The efficiency metric Em is
defined as Em = limr→∞

Am,r

Sm,r
, where Am,r is the number of active S-boxes over

r rounds and Sm,r is the total number of S-box computations over r rounds. The
efficiency metric E is defined as E = limm→∞ Em.

As above (Figures 1 and 2), m corresponds to the block size of a cipher (for 4-
line GFNs, the block size is 4m components in a block, m components in a line).
The reason for Em being asymptotic in the number of rounds is technical: One
can operate with security results without having to extend them to an arbitrary
number of rounds. Sometimes, for clarity, it is desirable to compare just two
efficiency numbers, which is possible for large blocks (e.g. for hash functions or
wide-block encryption) and justifies the usage of E as an efficiency metric in
such cases. The metrics make most sense for tight bounds and iterative trails.

1.2 Contributions and Outline

GFNs with double SP-functions. We propose to instantiate the type-I
and type-II GFNs with invertible double SP-functions (substitution-permutation
layer followed by another substitution-permutation layer) instead of single SP-
functions (one substitution-permutation layer). The intuition behind this specific
choice of functions is as follows:

– Due to the second S-box layer, double SP-functions allow, on the one hand, to
limit the analysis to the differential and linear activity patterns of functions
and, on the other hand, to have effectively a higher number of active S-boxes.

– The second diffusion layer of a double SP-function constrains the differential
effect (many differential trails contributing to the same differential) which
might be present for SPS-functions.

Double SP-Functions: Enhanced Generalized Feistel Networks 109

– Having an odd number of SP-layers does not enable to prove tight bounds
on the number of active S-boxes by working with the number of active func-
tions only. An even number of SP-layers is similar to the case of double
SP-functions.

– The invertibility prevents a function from absorbing differences: If a nonzero
difference enters a bijective function the output difference will also be nonzero.

Under some reasonable restrictions, among the 4-line GFNs, the type-I and type-
II structures are the only two unique non-contracting GFNs. All the other 4-line
GFNs exhibit a differential effect, since at least one line is XOR-updated more
than once before being used as an input to a function there [2]. This effectively
reduces the proportion of active S-boxes for contracting GFNs, which is not the
case for type-I and type-II GFNs.
Truncated trails and lower bounds on active functions. We use a string-
based technique to show tight lower bounds on the number of differentially and
linearly active functions for the GFNs. We demonstrate an equivalence between
truncated differential and linear trails as well as imposed structural constraints
which allows to deal with differential and linear cryptanalysis simultaneously.

We obtain that, for 4-line type-I and type-II GFNs with invertible functions,
at least a half of their functions over 14 and 6 rounds, respectively, are active
(Section 3). Note that this is not necessarily the case for GFNs with more than
4 lines: type-II GFNs with 8 lines do not seem to provide a proportion of more
than 0.35 active functions [10].

Table 1. Efficiency E 4-line GFNs with single and double invertible SP-functions using
MDS diffusion matrices with respect to differential and linear cryptanalysis, see also
Figures 1 and 2. For more comparison see Section 4 and Table 2

type-I GFN type-II GFN

E E4 E8 E E4 E8

single SP 0.188 [11] 0.250 [11] 0.219 [11] 0.167 [5] 0.229 [5] 0.198 [5]

double SP (this paper) 0.250 0.313 0.281 0.250 0.313 0.281

advantage of double SP 33.3% 25.0% 28.3% 50.0% 36.7% 41.9%

Improved efficiency of GFNs. For double SP-functions, the lower bound on
the number of active functions for type-I and type-II GFNs directly translates
to the lower bound on the number of active S-boxes. Based on the demonstrated
bounds, we show that the instantiation with double SP-functions provides a
proportion E of differentially and linearly active S-boxes by up to 33% and
50% higher than that with single SP-functions using MDS diffusion for type-I
and type-II GFNs, respectively. In other words, GFNs with double SP-functions
outperform GFNs with single SP-functions in terms of differential and linear
efficiency by a considerable margin. This opens up the possibility of designing
significantly more efficient block ciphers based on GFN structures. A brief com-
parison is provided in Table 1. For more comparative analysis see Section 4.

110 A. Bogdanov and K. Shibutani

2 Equivalence of Differential and Linear Truncated Trails

Here we analyze constraints on the truncated differential and linear trails of
type-I and type-II GFNs. We demonstrate an equivalence between differential
and linear truncated trails for the GFNs with respect to these constraints. This
allows to study truncated differential and linear trails simultaneously by treating
them as bit strings.

2.1 Truncated Differential Trails and Constraints

A differential trail for an iterative block cipher is a sequence of input and output
differences for the consecutive rounds of the cipher. Let

Δxi, Δxi+1, Δxi+2, Δxi+3

be the input difference to a type-I or type-II GFN with 4 lines. Then a differential
trail over t functions is the sequence of t + 4 differences

Δxi, Δxi+1 . . . , Δxi+t+2, Δxi+t+3.

Let the bit value di+j be defined as:

di+j =
{

0, if Δxi+j = 0
1, if Δxi+j �= 0 for j ∈ {0, . . . , t + 3}.

Then the string of t + 4 bits

di, di+1, . . . , di+t+3 (1)

is called a truncated differential trail over t functions illustrated in Figure 3.

didi di+1di+1 di+2di+2 di+3di+3

di+4

di+4 di+5

di+5

di+6

di+6 di+7

di+7

type-I GFN type-II GFN

Fig. 3. Truncated differential trails of type-I (4 rounds) and type-II (2 rounds) GFNs
with 4 lines. di+j ∈ {0, 1}, where di+j = 1 indicates that the line is differentially active

Due to the properties of XOR used to update lines and the invertibility of the
functions, the propagation of differences through type-I and type-II GFNs with
4 lines obeys the following rules:

Double SP-Functions: Enhanced Generalized Feistel Networks 111

Property 1 (Differential zero rule for GFN-I). If two of di, di+3, di+4 are zero,
then all of them are zero, where i = 0, 1, 2, . . .

Property 2 (Differential nonzero rule for GFN-I). If di, di+3, di+4 are not all
zero, at least two of them are nonzero, where i = 0, 1, 2, . . .

Property 3 (Differential zero rule for GFN-II). If two of di, di+3, di+5 are zero,
then all of them are zero. Similarly, if two of di+1, di+2, di+4 are zero, then all
of them are zero, where i = 0, 2, 4, . . .

Property 4 (Differential nonzero rule for GFN-II). If di, di+3, di+5 are not all
zero, at least two of them are nonzero. Similarly, if di+1, di+2, di+4 are not all
zero, at least two of them are nonzero, where i = 0, 2, 4,

2.2 Truncated Linear Trails and Constraints

A linear trail for an iterative block cipher is a sequence of input and output
selection patterns for the consecutive rounds of the cipher. Let

Γxi, Γxi+1, Γxi+2, Γxi+3

be the input selection pattern for a type-I or type-II GFN with 4 lines. Then a
linear trail over t functions is the sequence of t + 4 selection patterns

Γxi, Γxi+1 . . . , Γxi+t+2, Γxi+t+3.

Similarly to truncated differential trails, let the bit value li+j be defined as:

li+j =
{

0, if Γxi+j = 0
1, if Γxi+j �= 0 for j ∈ {0, . . . , t + 3}.

Then the string of t + 4 bits

li, li+1, . . . , li+t+3 (2)

is called a truncated linear trail over t functions illustrated in Figure 4.
Like for differential trails, the propagation of selection patterns through type-I

and type-II GFNs with 4 lines with invertible functions is due to the following
rules:

Property 5 (Linear zero rule for GFN-I). If two of li, li+1, li+4 are zero, then
all of them are zero, where i = 0, 1, 2, . . .

Property 6 (Linear nonzero rule for GFN-I). If li, li+1, li+4 are not all zero, at
least two of them are nonzero, where i = 0, 1, 2, . . .

Property 7 (Linear zero rule for GFN-II). If two of li, li+2, di+5 are zero, then
all of them are zero. Similarly, if two of li+1, li+3, li+4 are zero, then all of them
are zero, where i = 0, 2, 4, . . .

Property 8 (Linear nonzero rule for GFN-II). If li, li+2, li+5 are not all zero,
at least two of them are nonzero. Similarly, if li+1, li+3, li+4 are not all zero, at
least two of them are nonzero, where i = 0, 2, 4, . . .

112 A. Bogdanov and K. Shibutani

lili li+1li+1 li+2li+2 li+3li+3

li+4

li+4 li+5

li+5

li+6

li+6 li+7

li+7

type-I GFN type-II GFN

Fig. 4. Truncated linear trails of type-I (4 rounds) and type-II (2 rounds) GFNs with
4 lines. li+j ∈ {0, 1}, where li+j = 1 indicates that the line is linearly active

2.3 Active Functions and Equivalence for Type-I GFNs

With respect to differential cryptanalysis, we look for a tight lower bound on the
number of differentially active functions among t consecutive functions of type-I
GFN. In other words, for some positive number λd, our aim is to prove

t+2∑
j=3

di+j ≥ λd, (3)

see Figure 3. At the same time, a tight lower bound λl on the number of linearly
active functions among t functions means that (cf. Figure 4)

t∑
j=1

li+j ≥ λl. (4)

Direct manipulations with the indexes of di+j and li+j yield

Proposition 1. Under the change of variables di+j �→ li+t+3−j , j ∈ {0, . . . , t +
3} the following holds for a 4-line type-I GFN with invertible functions:

– truncated differential trail (1) translates to truncated linear trail (2),
– Property 1 translates to Property 5,
– Property 2 translates to Property 6, and
– if inequality (3) holds for λd = λ, then inequality (4) holds for λl = λ, and

vice versa.

2.4 Active Functions and Equivalence for Type-II GFNs

Similarly to type-I GFNs, we explore tight lower bounds λd and λl on the number
of differentially and linearly active functions among t functions of type-II GFN,
i.e.:

t+3∑
j=2

di+j ≥ λd (5)

Double SP-Functions: Enhanced Generalized Feistel Networks 113

and
t+3∑
j=2

li+j ≥ λl, (6)

respectively (see Figures 3 and 4). Also here, we obtain the following

Proposition 2. Under the change of variables di+j �→ li+t+3−j , j ∈ {0, . . . , t +
3} the following holds for a 4-line type-II GFN with invertible functions:

– truncated differential trail (1) translates to truncated linear trail (2),
– Property 3 translates to Property 7,
– Property 4 translates to Property 8, and
– if inequality (5) holds for λd = λ, then inequality (6) holds for λl = λ, and

vice versa.

Propositions 1 and 2 say that once we have a proof that the minimum number of
differentially active functions among t consecutive functions of type-I and type-
II GFNs with 4 lines is λ, we automatically obtain a proof that the minimum
number of linearly active functions among t functions of the cipher is also λ.

3 Bounds for Active Functions

We focus on differentially active functions in this section, since one automatically
obtains a proof for the minimum number of linearly active functions from a
proof for the minimum number of differentially active functions as shown in the
previous section (Propositions 1 and 2).

3.1 Some Truncated Differential Trails

Let function i of type-I or type-II GFN indicate the function whose output XOR-
updates line number i. We refer to the XOR connecting to the i-th function’s
output as the XOR of function i. Then, if at least two of three lines connecting
to the XOR of function i are non-active, the XOR is called all-zero XOR. Also, if
at least one of the three lines connecting to the XOR of function i is active, the
XOR is called nonzero XOR. These notions are related to Properties 1 to 4. For
instance, when the XOR of function i of type-I GFN is all-zero, di, di+3 and di+4

are all zero due to Property 1. Also, when the XOR of function i of type-II GFN
is nonzero, at least two of di, di+3, di+5 are nonzero due to Property 4. Using
these notions, the following truncated differential trails (treated as bit strings1)
are derived (the proof is provided in the full version):

GFN-I-1 (consecutive all-zero XORs). If the XORs of functions i and
i + 1 of type-I GFN are both all-zero, the forward and backward difference
propagations will follow the truncated differential trail:

di−7di−6...didi+1...di+8di+9 = 11 ∗ 10110010001111.
1 In the bit strings, ∗ denotes 0 or 1.

114 A. Bogdanov and K. Shibutani

GFN-I-2 (no consecutive all-zero XORs). If the XOR of function i of type-
I GFN is all-zero and there are no consecutive all-zero XORs, the forward
and backward difference propagations will follow the truncated differential
trail:

di−4di−3di−2di−1didi+1di+2di+3di+4di+5 = 11 ∗ 1011001.

GFN-II-1 (consecutive all zero XORs in even-numbered functions).
If the XORs of functions i and i + 2 of type-II GFN are both all-zero,
the forward and backward difference propagations will follow the truncated
differential trail:

di−6di−5...didi+1...di+9di+10 = 1 ∗ 111001001010111.

GFN-II-2 (consecutive all-zero XORs in odd-numbered functions).
If the XORs of functions i + 1 and i + 3 of type-II GFN are both all-zero,
the forward and backward difference propagations will follow the truncated
differential trail:

di−5di−4...didi+1...di+10di+11 = 111011000010111 ∗ 1.

GFN-II-3 (no consecutive all-zero XORs in even- and odd-numbered
functions). If the XORs of functions i of type-II GFN is all-zero and there
is no consecutive all-zero XORs in even- and odd-numbered functions, the
forward and backward difference propagations will follow the truncated dif-
ferential trail:

di−3di−2di−1didi+1di+2di+3di+4di+5di+6di+7 = 1110110 ∗ 0 ∗ 1.

GFN-II-4 (no consecutive all-zero XORs in even and odd numbered
functions). If the XORs of functions i + 1 of type-II GFN is all-zero and
there is no consecutive all-zero XORs in even and odd numbered functions,
the forward and backward difference propagations will follow the truncated
differential trail:

di−4di−3di−2di−1didi+1di+2di+3di+4di+5di+6 = 1 ∗ 1110010 ∗ 1.

We employ the above bit strings to demonstrate the minimum number of differ-
entially active functions of type-I and type-II GFNs in the following subsections.

3.2 Differentially Active Functions of Type-I GFNs

Using the truncated differential trails of Subsection 3.1, one derives the following
statements (proofs are omitted here due to space limitations but can be found
in the full version of the paper):

Lemma 1. For 4-line type-I GFNs with invertible functions, every nontrivial
differential trail over 14 rounds with at most 4 all-zero XORs has at least 7
active functions.

Double SP-Functions: Enhanced Generalized Feistel Networks 115

Lemma 2. For 4-line type-I GFNs with invertible functions, every nontrivial
differential trail over 14 rounds with consecutive all-zero XORs has at most 4
all-zero XORs.

Lemma 3. For 4-line type-I GFNs with invertible functions, every nontrivial
differential trail over 14 rounds without consecutive all-zero XORs has at most
4 all-zero XORs.

Lemmata 1 to 3 yield

Proposition 3 (Active functions for type-I GFNs). The 4-line type-I GFN
with invertible functions provides at least 7 differentially active functions over
14 consecutive rounds for each non-trivial input difference.

3.3 Differentially Active Functions in Type-II GFNs

Lemma 4. For 4-line type-II GFNs with invertible functions, every differential
trail over 6 rounds with at most 3 all zero XORs has at least 6 active functions.

Lemma 5. For 4-line type-II GFNs with invertible functions, every nontrivial
differential trail over 6 rounds with consecutive all-zero XORs in even numbered
functions has at most 3 all-zero XORs.

Lemma 6. For 4-line type-II GFNs with invertible functions, every nontrivial
differential trail over 6 rounds, with consecutive all-zero XORs in odd numbered
functions has at most 3 all-zero XORs.

Lemma 7. For 4-line type-II GFNs with invertible functions, every nontrivial
differential trail over 6 rounds, without consecutive all-zero XORs in both even
numbered rounds and odd numbered rounds has at most 3 all-zero XORs.

Again, Lemmata 4 to 7 yield

Proposition 4 (Active functions for type-II GFNs). The 4-line type-II
GFN with invertible functions provides at least 6 differentially active functions
over 6 rounds for each non-trivial input difference.

4 Comparative Efficiency of GFNs

4.1 Converting Active Functions to Active S-Boxes

If u ∈ Fnm
2 is represented by a bundle u = (u1, . . . , um) of m elements in Fn

2 ,
ui ∈ Fn

2 , w(u) denotes the bundle weight of u, that is, the number of nonzero
Fn

2 -components in u, w(u) = #{ui : ui �= 0, 1 ≤ i ≤ m}. The branch number of a
linear map M : Fnm

2 → Fnm
2 , is then defined as B(M) = minu�=0{w(u)+w(M ·u)}.

Higher values of B(M) indicate stronger diffusion, since a higher number of n-
bit elements at inputs and outputs of an SP-function are nonzero then. The

116 A. Bogdanov and K. Shibutani

maximum value of B(M) is m+1. Linear transforms M with the highest branch
number can be built from the generator matrices of maximum distance separable
codes and are called MDS. Note that, for GFNs utilizing SP-functions with the
diffusion matrix M , B(M) and B(tM) imply the diffusion property for differential
and linear attacks, respectively [4, 5], where tM is the transpose matrix of M .

When a type-I or type-II GFN is instantiated with double SP-functions, the
minimum number of differentially and linearly active functions directly translates
to a lower bound on the number of differentially and linearly active S-boxes,
unlike the Feistel constructions with single SP-functions for which quite involving
techniques are usually necessary at this point. We formulate this formally as

Proposition 5 (Active functions to active S-boxes). Let B be the branch
number of the diffusion matrix M or its transpose tM . Whenever a function
is active (differentially or linearly) in type-I or type-II GFNs with double SP-
functions, it provides at least B (differentially or linearly) active S-boxes.

Combining Proposition 5 with Propositions 3 and 4 gives the minimum number
of differentially active S-boxes for type-I and type-II GFNs. Then the equivalence
between differential and linear cryptanalysis (Propositions 1 and 2) yields the
minimum number of linearly active S-boxes. Thus, one directly obtains:

Theorem 1 (Active S-boxes for type-I GFNs). For each nontrivial dif-
ferential or linear trail, every 14R, R ≥ 1, rounds of 4-line type-I GFN with
double SP-functions provide at least 7BR active S-boxes (differentially or lin-
early), where B is the branch number of the diffusion matrix or its transpose in
the SP-functions.

Theorem 2 (Active S-boxes for type-II GFNs). For each nontrivial dif-
ferential or linear trail, every 6R, R ≥ 1, rounds of 4-line type-II GFN with
double SP-functions provide at least 6BR active S-boxes (differentially or lin-
early), where B is the branch number of the diffusion matrix or its transpose in
the SP-functions.

Theorems 1 and 2 can be seen as the main results of this paper. One can see
that their bounds are actually tight. The lower bounds on the number of active
functions translate to upper bounds on the differential and linear trail proba-
bilities in a standard way: If p and q are the maximum linear and differential
probabilities of the S-boxes, the probability of a 14R-round nontrivial linear and
differential trail will be upper-bounded by p7BR and q7BR, respectively, for type-I
GFNs. For type-II GFNs, the probability of a 6R-round nontrivial differential
and linear trail will be upper-bounded by p6BR and q6BR, respectively.

4.2 GFNs: Double SP-Functions vs Single SP-Functions

Now we can compare type-I and type-II GFNs with single and double SP-
functions with respect to the efficiency metrics E and Em. The usefulness of
these metrics is not limited to reflecting the time performance of some software
implementations. We also expect it to indicate efficiency regarding such crucial

Double SP-Functions: Enhanced Generalized Feistel Networks 117

parameters as energy and area consumption of a design in hardware. Note that
the double SP-functions might require an additional memory buffer between the
first SP-function and the second SP-function in certain implementations.

Recall that m is the number of components in each of the 4 lines of the cipher
constructions under consideration. We perform comparison for MDS diffusion
matrix M , i.e. for B(M) = m+1. The results are given in Table 2 and Figure 5.

Table 2. Efficiency metrics Em and E for 4-line type-I and type-II GFNs with MDS
diffusion: single SP-functions vs double SP-functions, see also Figure 5

r Am,r Sm,r Em E

GFN-I, single SP [11] 16R [3(m + 1) + 1]R 16mR 3m+4
16m

3/16

GFN-II, single SP [5] 6R [2(m + 1) + 2]R 12mR 2m+3
12m

1/6

GFN-I, double SP (Th. 1) 14R [7(m + 1)]R 28mR m+1
4m

1/4

GFN-II, double SP (Th. 2) 6R [6(m + 1)]R 24mR m+1
4m

1/4

Am,r = number of active S-boxes in r rounds for m components in a line
Sm,r = number of all S-boxes in r rounds for m components in a line

Em = limr→∞
Am,r

Sm,r
, Definition 1

E = limm→∞ Em, Definition 1

As one can see from Figure 5, type-I and type-II GFNs perform consistently
better with double SP-functions than with single SP-functions with respect to
Em for all block sizes. For short blocks (m = 2), the advantage is at least 20%
for type-I GFN and at least 28% for type-II GFN. For longer blocks (m =
32), Em becomes close to E and the advantage amounts to about 33% and
50%, respectively. These results show that the instantiation with the double SP-
functions can more than halve the required number of rounds compared to that
with the single SP-function. This implies that the double SP construction is still
more efficient than the single SP construction, even if a single round computation
of the double SP is twice as slow as that of the single SP. Therefore, our results
are not a tradeoff between the number of S-boxes in a single-round and the
required number of rounds. See also Table 1.

Furthermore, we compare with the bounds for 4-line type-I and type-II GFNs
using multiple-round diffusion with optimal diffusion matrices proven in [6]. Em

given by Theorems 1 to 4 of [6] for type-I and type-II GFNs is (m + 1)/6m for
both differentially and linearly active S-boxes (i.e. E4 = 0.208, E8 = 0.188, and
E = 0.167). A comparison of these values to Tables 1 and 2 yields that type-I
and type-II GFNs with double SP-functions and single-round diffusion are much
more efficient than the respective constructions with single SP-functions and

118 A. Bogdanov and K. Shibutani

2 4 8 12 16 20 24 28 32
0.15

0.2

0.25

0.3

0.35

0.4
GFN-I, single SP

GFN-II, single SP

GFN-I and -II, double SP

m

E
m

2 4 8 12 16 20 24 28 32
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

GFN-I

GFN-II

m

E
m
(d
o
u
b
le

S
P
)/
E

m
(s
in
g
le

S
P
)

Fig. 5. Efficiency metric Em for type-I and type-II GFNs with 4 lines: Absolute values
of Em (on the left) and normalized advantage of double SP-functions over single SP-
functions (on the right)

multiple-round diffusion. However, the proven bounds of [6] do not appear to
be tight. That is why we do not include this consideration into Table 2 and
Figure 5.

5 Conclusions

In this paper, we have proposed to instantiate the functions of 4-line type-I and
type-II GFNs with invertible double SP-functions having single-round diffusion
(the same matrix in all rounds). We proved that at least a half of their functions
are differentially and linearly active. This result allows us to show that every
14 rounds of type-I GFNs add at least 7B active S-boxes and every 6 rounds
type-II GFNs add at least 6B active S-boxes, where B is the branch number of
the underlying linear diffusion matrix.

We demonstrate that 4-line type-I and type-II GFNs are consistently more effi-
cient with respect to differential and linear cryptanalysis when instantiated with
double SP-functions than when standard single SP-functions are employed (ad-
vantage of up to 33% and 50% for type-I and type-II GFNs, respectively). This
opens up the possibility of building considerably more efficient cryptographic
primitives based upon GFNs.

Acknowledgements. Andrey Bogdanov is a postdoctoral fellow of the Fund
for Scientific Research - Flanders (FWO). He was also partially supported by
the Research Fund K.U.Leuven grant “A mathematical theory for the design
of symmetric primitives”. This work is sponsored in part by the IAP Pro-
gramme P6/26 BCRYPT of the Belgian State (Belgian Science Policy). We
would like to thank the reviewers of FSE 2011 and ACISP 2011 for their insightful
comments.

Double SP-Functions: Enhanced Generalized Feistel Networks 119

References

1. Bogdanov, A.: On the Differential and Linear Efficiency of Balanced Feistel Net-
works. Inf. Process. Lett. 110(20), 861–866 (2010)

2. Bogdanov, A.: On Unbalanced Feistel Networks with Contracting MDS Diffusion.
Des. Codes Cryptography. Special issue: Coding and Cryptography 2009 (2010)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – The Advanced Encryption
Standard. Springer, Heidelberg (2002)

4. Kanda, M.: Practical Security Evaluation against Differential and Linear Crypt-
analyses for Feistel Ciphers with SPN Round Function. In: Stinson, D.R., Tavares,
S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 324–338. Springer, Heidelberg (2001)

5. Shibutani, K.: On the Diffusion of Generalized Feistel Structures Regarding Differ-
ential and Linear Cryptanalysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 211–228. Springer, Heidelberg (2011)

6. Shirai, T., Araki, K.: On Generalized Feistel Structures Using the Diffusion Switch-
ing Mechanism. IEICE Transactions 91-A(8), 2120–2129 (2008)

7. Shirai, T., Preneel, B.: On Feistel Ciphers Using Optimal Diffusion Mappings
Across Multiple Rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 1–15. Springer, Heidelberg (2004)

8. Shirai, T., Shibutani, K.: Improving Immunity of Feistel Ciphers against Differen-
tial Cryptanalysis by Using Multiple MDS Matrices. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 260–278. Springer, Heidelberg (2004)

9. Shirai, T., Shibutani, K.: On Feistel Structures Using a Diffusion Switching Mech-
anism. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer,
Heidelberg (2006)

10. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

11. Wu, W., Zhang, W., Lin, D.: Security on Generalized Feistel Scheme with SP
Round Function. I. J. Network Security 3(3), 215–224 (2006)

12. Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

Algebraic Techniques in Differential

Cryptanalysis Revisited�

Meiqin Wang1,2,3,��, Yue Sun1, Nicky Mouha2,3,���, and Bart Preneel2,3

1 School of Mathematics, Shandong University, Jinan 250100, China
2 Department of Electrical Engineering ESAT/SCD-COSIC,

Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

mqwang@sdu.edu.cn

Abstract. At FSE 2009, Albrecht et al. proposed a new cryptanalytic
method that combines algebraic and differential cryptanalysis. They in-
troduced three new attacks, namely Attack A, Attack B and Attack C.
For Attack A, they explain that the time complexity is difficult to de-
termine. The goal of Attacks B and C is to filter out wrong pairs and
then recover the key. In this paper, we show that Attack C does not pro-
vide an advantage over differential cryptanalysis for typical block ciphers,
because it cannot be used to filter out any wrong pairs that satisfy the ci-
phertext differences. Furthermore, we explain why Attack B provides no
advantage over differential cryptanalysis for PRESENT. We verify our
results for PRESENT experimentally, using both PolyBoRi and Min-
iSat. Our work helps to understand which equations are important in
the differential-algebraic attack. Based on our findings, we present two
new differential-algebraic attacks. Using the first method, our attack on
15-round PRESENT-80 requires 259 chosen plaintexts and has a worst-
case time complexity of 273.79 equivalent encryptions. Our new attack on
14-round PRESENT-128 requires 255 chosen plaintexts and has a worst-
case time complexity of 2112.83 equivalent encryptions. Although these
attacks have a higher time complexity than the differential attacks, their
data complexity is lower.

Keywords: Differential-Algebraic Attack, Block Cipher, PRESENT.

� This work was supported in part by the Research Council K.U.Leuven: GOA
TENSE, the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Sci-
ence Policy), and in part by the European Commission through the ICT program
under contract ICT-2007-216676 ECRYPT II.

�� This author is supported by 973 Project (No.2007CB807902), NSFC Projects
(No.61070244 and No.60931160442), Outstanding Young Scientists Founda-
tion Grant of Shandong Province (No.BS2009DX030), IIFSDU Project (No.
2009TS087).

��� This author is funded by a research grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 120–141, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algebraic Techniques in Differential Cryptanalysis Revisited 121

1 Introduction

Differential cryptanalysis [6, 7] is one of classic cryptanalytic methods for block
ciphers. Resistance against differential cryptanalysis is a typical design crite-
rion for new block ciphers. Algebraic cryptanalysis is a general method to at-
tack ciphers. It has been widely used to cryptanalyze many primitives such as
stream ciphers [13, 16], multivariate cryptosystems [19] and in particular block
ciphers [14, 15, 17, 22]. The basic idea of algebraic cryptanalysis is to express
the block cipher as a large multivariate polynomial system of equations. The
secret key of the cipher is the solution of this system of equations. If the system
is very sparse, overdefined or structured, it may be solved faster than a generic
non-linear system of equations. By solving the system of equations for the block
cipher, the key can be recovered with only a few plaintext-ciphertext pairs.

There are several methods to solve these systems of equations, such as com-
puting a Gröbner basis or using a SAT solver. To compute a Gröbner basis,
PolyBoRi [11] can be used. MiniSat [18] is a fast SAT solver. The advantage of
computing a Gröbner basis is that useful equations can be generated, but this
computation is typically slower than using a SAT solver and can more easily run
out of memory.

However, the feasibility of algebraic cryptanalysis against block ciphers still
remains a source of speculation. The main problem is that the size of the cor-
responding algebraic system is so large (thousands of variables and equations)
that it seems infeasible to correctly predict the complexity of solving such poly-
nomial systems. Therefore, algebraic cryptanalysis has so far had limited success
in targeting modern block ciphers.

Recently, some works combining statistical cryptanalysis and algebraic crypt-
analysis were presented [2–4, 20, 26]. Specifically, the combination of differen-
tial cryptanalysis and algebraic cryptanalysis appears to offer an advantage in
reducing the data complexity. In [2, 3], Albrecht et al. propose new differential-
algebraic cryptanalytic methods, which they refer to as Attack A, Attack B and
Attack C. In order to describe them, let p denote the probability of the r-round
differential characteristic for an N -round block cipher.

In Attack A, the system of equations consists of the equations of the plaintext
bits, ciphertext bits, and subkey bits, the equations of the key schedule, and
the linear equations resulting from the differential characteristic and the filter
equations of the last (N − r) rounds (i.e. the equations that must hold if the
output difference after round r holds). Attack A recovers the key by solving this
system of equations for each of the about 1/p plaintext-ciphertext pairs.

In Attack B, the same system of equations is used. The longest time to find
that the system of equations is inconsistent, is measured. If this time is exceeded,
a right pair is found with a high probability.

In Attack C, the system of equations only consists of the filter equations after r
rounds for an r-round differential and the key schedule algorithm after r rounds.
The conditions resulting from the differential characteristic and the conditions
from the plaintext to the corresponding ciphertext are omitted in Attack C.
The goal of Attack C in [3] is to filter out wrong pairs by solving the system of

122 M. Wang et al.

equations using tools such as PolyBoRi or MiniSat, and use the remaining right
pair to recover the subkey bits.

In differential cryptanalysis, the filtering process can only filter out the wrong
pairs according to the difference values of the ciphertext pairs. That is, after
the filtering process, a lot of wrong pairs may still remain, which may increase
the time complexity to recover the key in the differential attack. However, in
Attack B and Attack C, Albrecht et al. claim that the right pairs can be identified
with a good probability if the equations after the r-th round of the differential
characteristic are inconsistent. They claim that with their technique, the time
complexity will be lower than in the standard differential attack. Their work
received a lot of attention in the cryptographic community [5, 8, 12, 21, 23],
because it gives hope for the combination of a statistical attack and an algebraic
attack.

In this paper, we will revisit the differential-algebraic attack given by Al-
brecht et al., which they applied to PRESENT [9]. We find that Albrecht’s
method cannot filter out most of the wrong pairs satisfying the ciphertexts
differences. However, we will show that wrong pairs that do not satisfy the
ciphertext differences, can easily be filtered out without the algebraic method.
Using [3, 4], it is not possible to filter out more wrong pairs than using differential
cryptanalysis.

Firstly, we show that Attack C typically cannot be used to filter out wrong
pairs that do not satisfy the difference values of the ciphertexts to improve the
differential cryptanalysis. Secondly, we verify using PolyBoRi and MiniSat2 that
Attack B does not improve the current differential results for the PRESENT
block cipher. The reason is that there are too few usable equations in the system
of equations to derive an inconsistency for the wrong pairs or to find a solution
for the right pairs. Based on our findings, we introduce two new methods that can
more reliably use the right pairs to solve the right key within an acceptable time.
For wrong pairs, no solution will be produced. One method is to fix certain key
bits in the system of equations. This will allow an inconsistency to be derived
faster. Another method is to use more than one plaintext-ciphertext pair to
construct the system of equations.

We apply our attack methods to a reduced-round PRESENT block cipher.
With the first method, we attack 15-round PRESENT-80 with 259 chosen plain-
texts and 273.79 equivalent encryptions in the worst case. The 2R-differential
attack on 15-round PRESENT-80 has a data complexity of more than 259 and
a time complexity of less than 262 memory accesses. Therefore, the time com-
plexity of the differential-algebraic attack for PRESENT-80 is much larger than
that of the differential attack, but the data complexity is lower and the key does
not have to be the same for every pair. If the number of chosen plaintext pairs
that the attacker can obtain is limited, the algebraic-differential attack might be
the only feasible attack. Note, however, that more rounds can be attacked in the
case of PRESENT-80 using differential cryptanalysis (16 rounds instead of 15
rounds). We also provide a new attack on 14-round PRESENT-128 with a data

Algebraic Techniques in Differential Cryptanalysis Revisited 123

complexity of 255 chosen plaintexts and a worst-case time complexity of 2112.83

equivalent encryptions.
With our second method, the time complexity will be larger than with the

first method for 15-round PRESENT-80. It is an open question whether the
second method can offer an improvement for other block ciphers.

Our work also points out which equations are important in the differential-
algebraic attack. With pure algebraic cryptanalysis, a 5-round PRESENT block
cipher [15, 22] can be attacked. Compared to this result, our differential-algebraic
attack can attack more rounds, but the data complexity will be higher than that
for the pure algebraic attack.

This paper is organized as follows. Section 2 describes Albrecht’s differential-
algebraic attack. In Sect. 3, we show why Attack C cannot filter out more wrong
pairs than differential cryptanalysis for most block ciphers. We verify using Poly-
BoRi and MiniSat2 that Attack B cannot improve the differential cryptanalysis
of the PRESENT block cipher. In Sect. 4, we present two methods that can be
used to successfully solve the right key with the right pairs. Our attack methods
are then applied to a reduced-round PRESENT block cipher. We conclude the
paper in Sect. 5.

2 Description of Albrecht’s Differential-Algebraic Attack

In [2, 3], Albrecht et al. proposed three types of attacks that combine algebraic
techniques with differential cryptanalysis. They are referred to as Attack A,
Attack B and Attack C. We now describe these three types of attacks.

Attack A. For an r-round differential characteristic Δ = (δ0, δ1, . . . , δr), the
probability of the differential characteristic is denoted by p. For a pair of plain-
texts (P ′, P ′′), where P ′⊕P ′′ = δ0, and the corresponding ciphertexts (C′, C′′),
two systems of equations F ′ and F ′′ are constructed under the same encryption
key K. With the differential characteristic, the following linear equations are
constructed:

X ′
i,j ⊕X ′′

i,j = ΔXi,j → ΔYi,j = Y ′
i,j ⊕ Y ′′

i,j ,

where X ′
i,j and X ′′

i,j are the j-th bit of the input to the S-box layer in round i
for the systems F ′ and F ′′ respectively. The corresponding output bits are Y ′

i,j

and Y ′′
i,j . The values resulting from the differential characteristic are ΔXi,j and

ΔYi,j . The linear expressions corresponding to bits of active S-boxes hold with
some non-negligible probability. For the non-active S-boxes, the following linear
relations also hold with non-negligible probability:

X ′
i,j ⊕X ′′

i,j = 0 = Y ′
i,j ⊕ Y ′′

i,j .

If the r-round differential characteristic is used to recover the key for N rounds,
the differences from the (r + 1)-th round to the N -th round can be derived from
the output difference of the r-th round. Theses differences after the r-th round
are described by equations. Attack A combines the two systems of equations F ′

and F ′′, the above linear relations resulting from the differential characteristic
and the equations from the difference values after round r to produce the system

124 M. Wang et al.

of equations F that holds with probability p. If about 1/p systems corresponding
to 1/p pairs of plaintext-ciphertext can be solved, a right pair is expected to
be found which can then be used to obtain the right key. However, the time
complexity to solve the system about 1/p times may be very high.

Attack B. Attack B uses the same system equations as Attack A to filter out
the wrong pairs. In a differential attack, the ciphertext difference values are
commonly used to filter out wrong pairs. However, in Attack B, by measuring
the time t it maximally takes to find that the system is inconsistent, it is assumed
that a right pair has been identified with high probability if a time t has elapsed
without finding an inconsistency. More specifically, Attack B assumes that ΔY1,j

holds with a high probability after time t has elapsed. With the remaining pairs,
the subkey bits involved in the active S-boxes in the first round can be recovered.
An alternative form of Attack B is to recover key bits from the last round. It is
assumed that if time t passes for a given plaintext-ciphertext pair, a right pair
has been found. In this case, some subkey bits in the last rounds will be fixed,
and then it is checked whether time t still passes without contradiction. The
time to find an inconsistency or a reduced-round PRESENT block cipher was
measured in Appendix C of [3].

Attack C. In Attack C, the differential is used instead of the differential char-
acteristic as in Attack B. If the r-round differential δ0 → δr is used to recover the
key for N rounds, the system of equations only consists of the equations resulting
from the round functions from round (r + 1) to round N , the relations for the
difference values from the (r + 1)-th round to the N -th round, and the equations
of key schedule from the (r + 1)-th round to the N -th round. In this system of
equations, there are no equations to restrict the relations between the plaintext
and the corresponding ciphertext, and there are no equations for the difference
values from the first round to the r-th round. By solving the system of equations
and waiting for a fixed time t, a contradiction can be found in the system of
equations. If one tested pair did not produce a contradiction after a fixed time,
it is assumed to be a right pair satisfying the differential. Then with the right
pair, the partial information for the subkey bits can be recovered. Appendix D
in [3] measured the time to find an inconsistency for a reduced-round PRESENT
block cipher. Based on this measured time, attacks on 16-round PRESENT-80,
17, 18 and 19 rounds of PRESENT-128 block cipher were given in [2, 3].

3 Inapplicability of Albrecht et al.’s Attacks

3.1 Inapplicability of Attack C

In this section, we will show that Attack C typically cannot be used to filter out
the wrong pairs satisfying the difference values of the ciphertexts. Therefore,
the right pairs cannot be identified and the key cannot be recovered. Moreover,
Attack C can not filter out more wrong pairs than differential cryptanalysis
to improve the differential cryptanalysis. As in the previous description, the

Algebraic Techniques in Differential Cryptanalysis Revisited 125

system of equations in Attack C consists of the equations resulting from the
round functions from round (r + 1) to round N , the relations resulting from the
difference values from the (r + 1)-th round to the N -th round, and the equations
of key schedule from the (r + 1)-th round to the N -th round. Let C′

i and C′′
i

be the i-th bit of ciphertext pair C′ and C′′ respectively, and ΔCi is the i-th
bit of the difference value of ciphertext pair C′ and C′′. We then classify these
equations into three groups, Group A, Group B and Group C.

Group A. The linear equations resulting from the difference values of cipher-
texts corresponding to the non-active S-boxes in the last round are

ΔCi = C′
i ⊕ C′′

i = 0 ,

where the i-th bit position corresponds to an output bit of any non-active S-box.

Group B. The equations resulting from the difference values of ciphertexts
corresponding to the active S-boxes in the last round are

(ΔCi1 ‖ ΔCi2 ‖ · · · ‖ ΔCia) =
(
C′

i1 ‖ C′
i2 ‖ · · · ‖ C′

ia

)⊕ (C′′
i1 ‖ C′′

i2 ‖ · · · ‖ C′′
ia

)
= δN , δN ∈ ΓN ,

where i1, i2, . . . , ia correspond to output bits of the active S-boxes, and ΓN is
the set of the ciphertext difference values.

Group C. The remaining equations are the equations resulting from the round
functions from round (r + 1) to round N , the relations resulting from the differ-
ence values from the (r + 1)-th round to the (N−1)-th round, and the equations
of key schedule from the (r + 1)-th round to the N -th round.

If a plaintext-ciphertext pair satisfies all the equations in Group A, Group B
and Group C, it must be a right pair for the given differential. In the differential
attack, the wrong pairs that do not satisfy the equations in Group A and Group B
are easy to filter out using a look-up table combined with a time-memory trade-
off. Because the equations in Group C involve unknown subkey bits, they cannot
easily be used to filter out the remaining wrong ciphertext pairs after the filtering
process with the ciphertext differences. In Attack C, Albrecht et al. wish to
measure the maximum time t to identify a pair as a wrong pair with all the
equations in Group A, B and C. In fact, the equations in Group A and Group B
can easily be used to find a contradiction because they are only related to the
ciphertext difference values. For a typical block cipher, it is impossible to find
contradictions for the equations in Group C. To understand why this is the case,
we claim the following.

Claim 1. If there is a wrong ciphertext pair that satisfies all the equations in
Group A and Group B but does not satisfy the equations in Group C, it is
impossible for a typical block cipher to find a contradiction for the equations in
Group C.

126 M. Wang et al.

S

KN

C′

X ′

S

C′′

X ′′

Ωr

ΩeY ′ Y ′′

KN

ΔC

(a) Right pair, right key

S

KN ⊕ Z

C′ ⊕ Z

X ′

S

C′′ ⊕ Z

X ′′

Ωr

ΩeY ′ Y ′′

KN ⊕ Z

ΔC

(b) Wrong pair, wrong key

Fig. 1. It is not possible to detect that (C′ ⊕Z, C′′ ⊕Z) is a wrong pair (see Claim 1)

Proof. We consider a block cipher based on a substitution-permutation network
(SPN). For other structures (Feistel, Generalized Feistel,...), a similar proof can
be given. We assume that the difference value of the ciphertext pair satisfies
the equations in Group A and Group B, but does not satisfy the equations in
Group C. First, we will prove Claim 1 for a 1R-attack and extend the proof to
an sR-attack1 (s = 1, 2, 3, . . .).

In a 1R-attack, the wrong ciphertext pair satisfies the output difference values
of all non-active and active S-boxes in the last round, but does not satisfy the
input difference of some active S-boxes in the last round. In most SPN block
ciphers, after the S-box layer in the last round, the whitening subkeys will be
XORed.

Let us introduce the shortened notation

X ′
i ← X ′

i,j1 ||X ′
i,j2 || . . . ||X ′

i,jm
,

where X ′
i,j is the j-th bit of the input to the S-box layer in round i. We can then

describe the round function for the last round as follows:

Y ′
N = S[X ′

N] , C′
N = Y ′

N ⊕KN ,

Y ′′
N = S[X ′′

N] , C′′
N = Y ′′

N ⊕KN ,

where X ′
N and X ′′

N are the inputs of the S-box layer S in the last round for the
system F ′ and F ′′ respectively, and Y ′

N and Y ′′
N are the corresponding outputs.

The values C′
N and C′′

N are the ciphertext bits, and K ′
N is the whitening subkey

in the last round.
We now consider Fig. 1. Under the right key, the wrong ciphertext pair

(C′ ⊕ Z, C′′ ⊕ Z) will result in the output difference of the S-box Ωe and the
input difference of the S-box Ωw, however, the right pair (C′, C′′) will result

1 An sR-attack means that the r-round differential is used to recover the key for (r+s)
rounds of the block cipher. We require in this paper that s � N , which is the case
for typical differential attacks.

Algebraic Techniques in Differential Cryptanalysis Revisited 127

in the output difference and the input difference for the S-box as Ωe and Ωr

respectively. As the subkey bits in the above equations are unknown variables,
we will solve the following system of equations,

X ′
N ⊕X ′′

N = Ωr.

We can obtain
S−1[Y ′

N]⊕ S−1[Y ′′
N] = Ωr,

where S−1 denotes the inverse S-boxes Layer. Then we have

S−1[C′
N ⊕KN]⊕ S−1[C′′

N ⊕KN] = Ωr .

Because the right pair always can produce the difference from Ωr �→ Ωe for
the active S-boxes, there is at least one pair of input values (X ′

r, X
′′
r) and the

corresponding output values (Y ′
r , Y ′′

r) satisfying the following equations:

X ′
r ⊕X ′′

r = Ωr, Y ′ ⊕ Y ′′ = Ωe .

We have
S−1[Y ′

r]⊕ S−1[Y ′′
r] = X ′

r ⊕X ′′
r = Ωr.

For the wrong pair (C′ ⊕Z, C′′ ⊕Z), let the whitening subkey in the last round
satisfy the following equations:

C′
N ⊕ Z ⊕KN = Y ′

r , C′′
N ⊕ Z ⊕KN = Y ′′

r .

The resulting wrong whitening subkey KN ⊕ Z in the last round can make
the wrong pair (C′ ⊕ Z, C′′ ⊕ Z) produce the right input difference Ωr, so the
wrong pair (C′⊕Z, C′′⊕Z) cannot be filtered out with the system of equations
in the last round.

The proof for 1R-attack is helpful to understand the idea. The analysis of
the sR-attack works in a similar way. As stated by Biham and Shamir [7] (and
similarly by Selçuk [24]):

“Each surviving pair suggests several possible values for [the subkey] bits. Right
pairs always suggest the correct value for [the subkey] bits (along with several
wrong values), while wrong pairs suggest random values [for the subkey bits].”

This statement is true for typical block ciphers. Therefore, any remaining wrong
pair must produce some solutions for the subkey satisfying the difference values
in the last s-round. The solution may be the right subkey or the wrong subkey.
Thus, it is impossible for most block ciphers to produce a contradiction for the
sR-attack in the above s-round equations.

The equations for the key schedule may lead to a contradiction in Group C for
the derived subkey value for the last s rounds, but the number of the subkey bits
involved in the last s rounds is usually not large enough to produce a contradic-
tion, assuming the key schedule is random. However, assume that the equations

128 M. Wang et al.

for the key schedule result in a contradiction for the subkey values of the last s
rounds. Then, this contradiction holds for all values of the subkeys. That is, the
contradiction is independent of the subkey values. The contradiction must be
a contradiction on the difference of the ciphertext pair: a contradiction on the
values of the ciphertext pair cannot appear because the ciphertext is calculated
as C = YN ⊕KN . Therefore, this contradiction can be included into Group A
or Group B. Because the differential cryptanalysis attack uses the equations of
Group A and Group B to filter the ciphertext values, an inconsistency in the
key schedule does not improve the differential attack. �	

In order to verify Claim 1, we tested the filtering time for different values of N
and r of the PRESENT block cipher. In our tests, we constructed wrong cipher-
text pairs that only satisfy the equations in Group A and Group B, but do not
satisfy the equations in Group C when evaluated on the correct key. We used the
source code provided by Albrecht [1] to apply Attack C with PolyBoRi-0.6 and
MiniSat2. We performed a Gröbner basis computation to generate the filtering
equations from the (r + 1)-th round to the (r + 4)-th round for the differen-
tial characteristic (2 ≤ r ≤ 14) for PRESENT-80. These filtering equations can
speed up the procedure of producing the contradiction.

However, there is no contradiction for any ciphertext pair with PolyBoRi-0.6
after six hours of computation. MiniSat2 always obtained the wrong solution
for the key. In Table 1, we list these test results. For the wrong pairs under the
right key, the wrong solution can be obtained within t seconds. We tested 20
wrong pairs for different values of r and N , and list one example of a wrong
pair (P ′, P ′′) and the corresponding right key K. Due to space limitations, we
only present the difference values for the wrong pair in the last row of Table 1
and the differential characteristic for the right pair in Table 2. In Table 2, the
output difference for the wrong pair of the r-th (r = 12) round is not equal to
the output difference of the characteristic, but the output difference of the 13-th
round is equal to the output difference of the characteristic. Therefore, this is a
wrong pair.

At the same time, we construct the wrong ciphertext pairs for PRESENT-80
which do not satisfy the equations in any Group, the contradiction can be pro-
duced quickly and the filtering time is listed in Table 3. In addition, we construct
some wrong ciphertext pairs that only satisfy the equation in Group A, the time
to produce the contradiction is listed in Table 4. Moreover, we use a look-up ta-
ble combined with a time-memory trade-off in differential cryptanalysis to filter
out these pairs. As a result, our filter is more efficient than Attack C.

The computer we used is an IBM X3950 M2 with a CPU clock frequency of
2.4 GHz and 64GB RAM. From Tables 3 and 4, our test time with PolyBoRi
approaches the corresponding time in Appendix D of [3], but our tested time with
MiniSat2 is greater. The main reason is that our CPU is not same as Albrecht’s.
However, we can deduce that the wrong pairs Albrecht et al. used are wrong
pairs that do not satisfy the equations in Group A or Group B, so they did not
filter out wrong pairs that do satisfy the equations in Group A and Group B.
Furthermore, even if Attack C is used as a filter for wrong pairs that do not

Algebraic Techniques in Differential Cryptanalysis Revisited 129

satisfy the equations in Group A and Group B, its efficiency is much lower than
the filter used in differential cryptanalysis. This shows that Attack C does not
provide an advantage over differential cryptanalysis for most block ciphers.

Using Group A and Group B in a Differential Attack. We now clarify
in more detail how the equations of Group A and Group B can be used in a
differential attack. We consider two types of differential attacks:

(a) By generating a table of all possible ciphertext differences (corresponding to
all solutions to the equations of Group A and Group B), wrong pairs can
easily be filtered out. Because key counters will be used for the subkey bits
corresponding to the active S-boxes, the number of output differences is less
than the number of key counters required. Therefore, the table of all possible
ciphertext differences provides only a relatively small overhead.

(b) In the filtering process, for each pair of ciphertexts (C′, C′′), a table is made
of all possible input differences for the last round. This table does not depend
on the value of the subkey bits in the last round. If we do not find a valid
input difference for a particular pair of ciphertexts, this pair is identified as a
wrong pair (i.e. it does not satisfy the equations of Group A and Group B).
In this way, it is only necessary to make table of all input differences, and
not all ciphertext differences. Typically, the table of all input differences
should be small. For the remaining pairs, subkey bits in the last round will
be guessed (instead of using key counters), to filter out pairs. For a wrong
key, no pairs will remain, but the right pair will remain for the right key.

Note that (b) is in fact a time-memory trade-off applied to (a). In both (a) and
(b), if output differences are invalid for some active S-boxes, they can be filtered
using smaller tables. Then, the table that is described in (a) and (b) will be used
to filter out the remaining pairs. In the next paragraph, we describe in detail
how (a) can be used for a 2R attack on PRESENT. To construct a filter for a
3R and 4R attack on PRESENT, (b) can be used.

Relation to the Work of [4]. The equation system that Albrecht et al. set up
in [4], is similar to the system of [3], except that the ciphertext bits (C′

i and C′′
i)

Table 1. Attack C’s Filtering Test for Wrong Pairs with MiniSat2

N r P ′ P ′′ K t(s)

8-10 7 8b29917c174f21b7 8c29917c174f26b7 2b8bc6ad5d4b869101c2 12.20-12.77

9-11 8 d549bf122a09edfa d249bf122a09eafa 5d05c98dce5da5894fc5 12.26-12.92

10-12 9 f5fc5a0d3979d9d3 f2fc5a0d3979ded3 f53e4ecaf9ce361ee6d7 12.11-13.03

11-13 10 50d752ee7f6017d7 57d752ee7f6010d7 afc238c99ce160d8254b 12.22-12.73

12-14 11 155fdec5b70e8b3a 125fdec5b70e8c3a b544c98fce9474d53925 12.33-12.92

13-15 12 504ad07e763a8289 574ad07e763a8589 a7ece17b6ab73269d7e9 12.01-12.71

N : the round number we attack; r: the round number of the differential; K: right key;
(P ′, P ′′): one example of wrong pairs; t: the wrong solution obtained within t seconds.

130 M. Wang et al.

are variables instead of fixed values. This equation system is used to compute a
Gröbner basis for PRESENT up to degree D = 3 using PolyBoRi. Polynomials
that contain non-ciphertext variables are removed.

The resulting equations are used as a first filter for the ciphertext pairs.
The probability p1 that a random ciphertext pair passes the first filter, is esti-
mated by Albrecht et al. as p1 ≈ 2−50.669 for a 2R-attack on PRESENT-80 and
PRESENT-128. Afterwards, [4] uses Attack C to filter out the remaining pairs.
They estimate the total filtering probability p2 ≈ 2−51.669 for PRESENT-80 and
p2 ≈ 2−51.361 for PRESENT-128.

For a 2R-attack on PRESENT, it is straightforward to write a fast program
to compute the total number of ciphertext differences. We find that 11664 ≈
213.51 ciphertext differences are possible, and store them in a small table. This
results in the accurate filtering probability of pa = 213.51/264 = 2−50.49 for
both PRESENT-80 and PRESENT-128. When we derive the probability of p1

ourselves, using the equations in [4, Fig. 2], we find that p1 = p2 = pa = 2−50.49.
This confirms our result, and shows that the calculation of p1 and p2 in [4]
is not correct. The accurate filtering probability pa is slightly lower than the
probability of the rough filter used by Wang [25].

By storing the output differences in a small table, we can easily filter out
the wrong ciphertext pairs without using the algebraic method. Furthermore,
we calculate that the reinterpretation of Attack C in [4] as a technique to filter
ciphertext differences, does not result in a better filter. Therefore, Attack C
does not provide an advantage over differential cryptanalysis in the case of a
2R-attack on PRESENT.

For a 3R-attack and a 4R-attack on PRESENT, we used a look-up table
combined with a time-memory trade-off to filter out 1000 randomly generated
wrong pairs. We note that although the filtering probability of our filter and
Attack C is same, our filter is much faster than Attack C.

3.2 Inapplicability of Attack B to PRESENT

Attack B involves two other types of equations, besides the equations in Group A,
Group B and Group C in Attack C. The first type of equations is the linear
equations derived from the difference values from round 1 to round r, and the
second type of equations is the round functions and the key schedule algorithm
from round 1 to round r. In this way, the restriction from the plaintext to the
corresponding ciphertext was added. Although we cannot show that Attack B
does not provide an advantage over differential cryptanalysis for any block cipher,
we make the following two observations for Attack B:

Observation 1. If N approaches the maximum number of rounds that can be
attacked with a pure algebraic attack, the linear equations for the inner rounds
and the round functions restricting the relation between the plaintext and the
ciphertext are all usable to solve the system of equations. There are three possible
subcases:

Algebraic Techniques in Differential Cryptanalysis Revisited 131

1. If the key size is much larger than the block size, for a wrong pair, the
probability that a solution can be found for the key in the system of equations
is non-negligible. In this way, there is a non-negligible probability that a
contradiction for the wrong pairs cannot be produced. Attack B will likely
fail.

2. If the key size is smaller than the block size, for a wrong pair, the probability
that no solution can be found for the key in the system of equations is high. In
this way, the contradiction for the wrong pairs can be produced and the right
solution for the right pair can be found with a high probability. Attack B is
likely to succeed.

3. If the key size approaches the block size, Attack B can either succeed or fail.

Observation 2. If N is much larger than the maximum number of rounds that
can be attacked with a pure algebraic attack, the linear equations for the inner
rounds and the round functions and the key schedule algorithm for the inner
rounds are not crucial to solve the system of equations. Only the equations for
the outer rounds are relevant. We consider two subcases.

1. If there are few active S-boxes in the outer rounds, the restriction condi-
tions are so few that a contradiction will be produced with low probability.
Attack B will likely fail.

2. If there are many active S-boxes in the outer rounds, there are enough re-
striction conditions to derive a contradiction with high probability. Attack B
is then likely to succeed.

Table 2. Difference Values for Wrong Pair and Right Pair in Attack C

R Δwrong Δright R Δwrong Δright

I x2 = 7, x14 = 7 x2 = 1, x14 = 1

R1 S x2 = 1, x14 = 1 x2 = 1, x14 = 1 R8 S x0 = 9, x2 = 9 x8 = 9, x10 = 9
R1 P x0 = 4, x3 = 4 x0 = 4, x3 = 4 R8 P x0 = 5, x12 = 5 x2 = 5, x14 = 5

R2 S x0 = 5, x3 = 5 x0 = 5, x3 = 5 R9 S x0 = 1, x12 = 1 x2 = 1, x14 = 1
R2 P x0 = 9, x8 = 9 x0 = 9, x8 = 9 R9 P x0 = 1, x3 = 1 x0 = 4, x3 = 4

R3 S x0 = 4, x8 = 4 x0 = 4, x8 = 4 R10 S x0 = 3, x3 = 3 x0 = 5, x3 = 5
R3 P x8 = 1, x10 = 1 x8 = 1, x10 = 1 R10 P x0 = 9, x4 = 9 x0 = 9, x8 = 9

R4 S x8 = 3, x10 = 3 x8 = 9, x11 = 9 R11 S x0 = 4, x4 = 4 x0 = 4, x8 = 4
R4 P x2 = 5, x6 = 5 x2 = 5, x14 = 5 R11 P x8 = 1, x9 = 1 x8 = 1, x10 = 1

R5 S x2 = 1, x6 = 1 x2 = 1, x14 = 1 R12 S x8 = 9, x9 = 9 x8 = 9, x10 = 9
R5 P x0 = 4, x1 = 4 x0 = 4, x3 = 4 R12 P x2 = 3, x14 = 3 x2 = 5, x14 = 5

R6 S x0 = 5, x1 = 5 x0 = 5, x3 = 5 R13 S x2 = 1, x14 = 1 x2 = 1, x14 = 1
R6 P x0 = 3, x8 = 3 x0 = 9, x8 = 9 R13 P x0 = 4,x3 = 4 x0 = 4, x3 = 4

R7 S x0 = 1, x8 = 1 x0 = 4, x8 = 4
R7 P x0 = 1, x2 = 1 x8 = 1, x10 = 1

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); Δwrong: differential value for wrong pair;

Δright: differential value for right pair.

132 M. Wang et al.

Table 3. Filter Time for Wrong Pairs Not Satisfying Equations in any Group

N r �trails PolyBoRi MiniSat2 N r �trails PolyBoRi MiniSat2

9 8 20 3.51-3.85 4.06-4.64 13 12 20 4.99-5.34 4.96-5.25
10 8 20 4.89-5.23 7.57-8.44 14 12 20 6.67-6.83 8.86-9.26
11 8 20 7.89-8.41 11.29-12.34 15 12 20 9.69-10.20 12.80-13.15

10 9 20 3.92-4.27 4.55-4.79 14 13 20 5.66-5.78 5.07-5.37
11 9 20 5.32-5.66 8.40-8.66 15 13 20 7.02-7.50 9.08-9.38
12 9 20 6.24-6.59 12.19-12.45 16 13 20 7.99-8.51 12.91-13.58

11 10 20 4.28-4.67 4.73-4.99 15 14 20 6.06-6.18 5.24-5.52
12 10 20 4.75-5.09 8.35-8.59 16 14 20 6.50-6.95 9.04-9.47
13 10 20 6.93-7.05 12.32-12.59 17 14 20 8.48-8.88 13.17-13.77

12 11 20 4.66-5.02 4.87-5.12
13 11 20 6.09-6.42 8.69-8.97
14 11 20 7.41-10.17 12.42-12.75

�trails: the number of wrong pairs we test;
PolyBoRi: the filtering time in seconds with PolyBori;
MiniSat2: the filtering time in seconds with Minisat2.

Table 4. Filter Time for Wrong Pairs Only Satisfying Equations in Group A

N r �trails PolyBoRi MiniSat2

10 8 20 5.07-5.55 8.09-8.53

11 9 20 6.33-6.68 7.34-7.81

12 10 20 6.02-6.45 7.53-8.12

In order to verify our observations for a small number of rounds, we apply
Attack B to PRESENT-80 with for N = 4, r = 3. The block size and the key
size for PRESENT-80 are 64 and 80, respectively. We have tested 10 wrong pairs
satisfying the filter conditions in Group A and Group B, but not satisfying the
conditions in Group C. We found that among 10 wrong pairs, only one wrong
pair was filtered out within 1500 seconds. The reason is that the key size is larger
than the block size.

As N and r increase, we ran several tests and list the results in Table 5. We
identify different differential characteristics for the PRESENT-80 block cipher.
For any value of r we tested, the characteristics have two active S-boxes from
round 1 to round r. There will be two active S-boxes in round (r + 1) and 6, 7
or 8 active S-boxes in round (r + 2). Round r + 3 has at least 12 active S-boxes
and round (r+4) has 16 active S-boxes. We use MiniSat2 to filter out the wrong
pairs. For N = r, N = r + 1 or N = r + 2, no wrong pairs were filtered out. For
N = r +3, very few wrong pairs were filtered out. Although for N = r +4, more
wrong pairs were filtered out compared to N = r + 3, lots of wrong pairs still
remain. The reason is that there are more active S-boxes in round (r + 4) than
in round (r+3). This result is consistent with Table 10.8 of [2], where N = r+4
is used as well.

Further experiments are listed in Table 5. In Table 5, the plaintext pairs
are all wrong pairs and we cannot filter them out within 1500 seconds. Even

Algebraic Techniques in Differential Cryptanalysis Revisited 133

if wrong pairs can be filtered out after 1500 seconds, the time complexity of
Attack B would become much higher than differential cryptanalysis. Due to
space limitations, we only present the difference values for the pair in the last
row of Table 5 and the characteristics for the right pair in Table 6. For the pair
in Table 6, the output difference of the r-th (r = 14) round is same as that
of the characteristics, but the difference values from round 2 to round 10 are
different from that of the characteristic. Therefore, this pair is a wrong pair. We
also confirmed experimentally that Attack B cannot filter out wrong pairs that
do not satisfy the output difference for the first round.

Observation 2 can be derived from the following statements:

1. SAT solvers use a tree-structured search algorithm, where branching is per-
formed by heuristic guesses based on non-algebraic criteria. In order to re-
duce the search time, we must minimize both the average search depth and
the dependencies of the unknown variables. In this way, those equations
should be identified that tend to result in an inconsistency sooner.

2. In the system of equations in Attack B, the equations that lead to incon-
sistencies the soonest, are the equations related to the difference values, the
round functions in the outer rounds such as the previous few rounds and the
later few rounds. In contrast, the equations related to the difference values
and the round functions in the inner rounds do not easily lead to inconsisten-
cies. Therefore, the equations in the inner rounds can be removed in order
to reduce the solving time.

3. Since the equations for the difference value in the outer rounds are very
important for the solving process, we must obtain enough such equations to
ensure there are enough restrictions for the dependent unknown subkey bits.
If there are fewer active S-boxes in the outer rounds, there are not enough
restrictions on the involved unknown subkey bits to obtain the right solution
or filter out the wrong solutions. In other words, if there are more active S-
boxes in the outer rounds, the solving process or the filtering process will be
more efficient.

Table 5. Attack B’s Filtering Test for Wrong Pairs Satisfying Ciphertext Difference
Values with MiniSat2 (Timeout t = 1500 s)

N r P ′ P ′′ K

5-7 4 67279b1efdb93674 60279b1efdb93174 9ad864e12a6ecc872280

6-8 5 cdc43299824183d4 cac43299824184d4 70be32f5dd35396cdbfd

7-9 6 bc887a5de0597dd6 bb887a5de0597ad6 716d9698292707b0b6da

8-10 7 c53f11ab7329e7cf c23f11ab7329e0cf 78bf3977acaffded898a

9-11 8 6d736a36a28d4f93 6a736a36a28d4893 5e7f5234d2063c5dd11d

10-12 9 94bd4ffd6585072e 93bd4ffd6585002e 1e00538c107f7abc4a73

11,12,13 10 f02f740d8d4b6d37 f72f740d8d4b6a37 df76f9fdaf4ead07d9a2

12,13,14 11 85f4ab19cf1dd9ac 82f4ab19cf1ddeac 5d0de0769a874e36d362

13,14,15 12 ca8b8755e65217af cd8b8755e65210af 2d0d71c7a40d3084ac3a

15,16,17 14 934c64486fa9ed41 944c64486fa9ea41 8b1c1828ec601df09214

134 M. Wang et al.

Table 6. Difference Values for Wrong Pair and Right Pair in Attack B

R Δwrong Δright R Δwrong Δright

I x2 = 7, x14 = 7 x2 = 7, x14 = 7

R1 S x2 = 1, x14 = 1 x2 = 1, x14 = 1 R8 S x8 = 5, x10 = 5 x8 = 9, x10 = 9
R1 P x0 = 4, x3 = 4 x0 = 4, x3 = 4 R8 P x2 = 5, x10 = 5 x2 = 5, x14 = 5

R2 S x0 = 9, x3 = 9 x0 = 5, x3 = 5 R9 S x2 = 1, x10 = 1 x2 = 1, x14 = 1
R2 P x0 = 9, x12 = 9 x0 = 9, x8 = 9 R9 P x0 = 4, x2 = 4 x0 = 4, x3 = 4

R3 S x0 = 4, x12 = 4 x0 = 4, x8 = 4 R10 S x0 = 5, x2 = 5 x0 = 5, x3 = 5
R3 P x8 = 1, x11 = 1 x8 = 1, x10 = 1 R10 P x0 = 5, x8 = 5 x0 = 9, x8 = 9

R4 S x8 = 9, x11 = 9 x8 = 9, x10 = 9 R11 S x0 = 4, x8 = 4 x0 = 4, x8 = 4
R4 P x2 = 9, x14 = 9 x2 = 5, x14 = 5 R11 P x8 = 1, x10 = 1 x8 = 1, x10 = 1

R5 S x2 = 4, x14 = 4 x2 = 1, x14 = 1 R12 S x8 = 9, x10 = 9 x8 = 9, x10 = 9
R5 P x8 = 4, x11 = 4 x0 = 4, x3 = 4 R12 P x2 = 5, x14 = 5 x2 = 5, x14 = 5

R6 S x8 = 5, x11 = 5 x0 = 5, x3 = 5 R13 S x2 = 1, x14 = 1 x2 = 1, x14 = 1
R6 P x2 = 9, x10 = 9 x0 = 9, x8 = 9 R13 P x0 = 4, x3 = 4 x0 = 4, x3 = 4

R7 S x2 = 4, x10 = 4 x0 = 4, x8 = 4 R14 S x2 = 4, x10 = 4 x0 = 4, x8 = 4
R7 P x8 = 4, x10 = 4 x8 = 1, x10 = 1 R14 P x0 = 9, x8 = 9 x0 = 9, x8 = 9

Rj: output difference after round j (S: after S-box layer,
P: after permutation layer); Δwrong: differential value for wrong pair;

Δright: differential value for right pair.

It is noted that if there are more active S-boxes in the outer rounds, the
filtering process will be efficient, but it is not favorable to filter out the wrong
ciphertext pairs directly according to the difference value of the ciphertexts. This
will further increase the time complexity.

To overcome these problems, we propose the following two methods for the
differential-algebraic attack. The first method is to fix certain key bits to ensure
with a high probability that the right key can be recovered from the right pair.
The second method has the same goal, but adds some extra equations. We will
describe these two attacks in Sect. 4.

4 New Differential-Algebraic Attacks

In Sect. 3, we showed that neither Attack C nor Attack B can improve the
differential cryptanalysis of the PRESENT block cipher. We also explained why
Attack C does not provide an improvement for most block ciphers. The reason
is that the attacks cannot filter out the wrong pairs satisfying the ciphertext
difference values to identify the right pair. We present two methods that can
find the right solution in acceptable time t, based on the system of equations
constructed in Attack B. For the right pair, we can solve the right key within
time t. If a pair cannot be filtered within time t, we discard it and consider
another pair.

Attack 1 Based on Fixing Certain Key Bits. According to the key schedule
algorithm and the outer rounds of the characteristic, fix the key bits related

Algebraic Techniques in Differential Cryptanalysis Revisited 135

to the active S-boxes in the top rounds or the bottom rounds. In this way,
inconsistencies can be found sooner. As we showed in Sect. 3.2, Attack B cannot
be used to filter out most wrong pairs. Therefore, our attack fixes key bits in
all tested pairs. The idea of fixing key bits was already proposed in [3]. The
difference with Attack 1 is that we recover the entire key, and not only subkey
bits from the last rounds.

Attack 2 Based on Multiple Pairs. Because the equations for the differ-
ence values in the outer rounds lead to inconsistencies sooner, appending more
such equations will be helpful to find the inconsistency. Using multiple plaintext-
ciphertext pairs to construct more equations of outer rounds will make the solv-
ing process or the filtering process more efficient. For example, if two plaintext-
ciphertext pairs are used to perform the attack, the number of such equations
will double. This means that if we use two right pairs to solve the system of
equations, the right key can be found. However, if there is at least one wrong
pair involved in the two pairs, the key cannot be found. In addition, if we use
three plaintext-ciphertext pairs, the efficiency can be improved further. However,
as the number of pairs increase, the number of combinations of pairs grows expo-
nentially and the time complexity increases. So the number of pairs to construct
the system of equations should not be too high.

Our experiments show that some wrong pairs can be filtered out quickly, but
others cannot. However, if most of the wrong pairs cannot be filtered out, the
attack becomes infeasible. So we attack the PRESENT block cipher with the
above approaches and try to solve the right key with the right pairs.

4.1 Attack 1 for the PRESENT Block Cipher

We now apply Attack 1 to the PRESENT block cipher. The results are listed
in Table 7. If we use r = 13 to attack N = 15 rounds of PRESENT-80, the
probability of the characteristic is 2−58 (using the last 13 rounds of the 14-round
characteristic of [25]). The filtering probability according to the difference value
for the ciphertext pair is 2−50.49 (as calculated at the end of Sect. 3.1). The
CPU clock frequency is 2.4 GHz. From Table 7, we find that it takes at most
523.16 s to find an inconsistency. The table also shows that we should guess at
least 34 key bits, so the time complexity will be 234 ·258−50.49 ·2.4 ·109 ·523.16 =
234 · 27.51 · 231.16 · 29.03 = 281.70 CPU cycles. We assume that a single encryption
costs at least 16 CPU cycles per round2. Therefore, the time complexity for our
attack (273.79 equivalent encryptions) is better than exhaustive search (280).3

The data complexity is 259 chosen plaintexts. For the 2R-differential attack, the
data complexity must be higher than 259 chosen plaintexts, because then one
right plaintext-ciphertext pair is not sufficient to recover the key with a high
success probability. However, the time complexity of the 15-round 2R-differential
2 The bitsliced implementation of PRESENT by Albrecht achieves 16.5 cycles per

round [2].
3 We used 20 trials to obtain time t. Although more trials may result in a longer time

t, we expect that our attack will still be much faster than exhaustive search.

136 M. Wang et al.

Table 7. Time to Solve Right Key under Some Fixed Key Bits with MiniSat2

Ks N r �trails Nk t(s) Ks N r �trails Nk t(s)

80 10 10 20 32 45.18-285.20 80 14-17 14 20 36 63.47-120.08
80 11 10 20 32 64.45-564.87 128 10 10 20 79 43.75-288.63
80 12 10 20 32 61.88-591.56 128 11 10 20 78 63.38-821.45
80 13 10 20 32 53.49-497.96 128 12 10 20 75 79.83-966.38
80 11 11 20 33 60.19-151.28 128 13 10 20 72 89.15-751.30
80 12 11 20 33 53.01-316.94 128 11 11 20 79 98.35-662.19
80 13 11 20 33 56.64-528.03 128 12 11 20 79 58.73-483.92
80 14 11 20 33 56.25-104.26 128 13 11 20 79 69.41-805.18
80 12 12 20 34 97.19-487.77 128 14 11 20 71 78.20-891.08
80 13 12 20 34 69.24-680.41 128 12 12 20 82 57.35-115.11
80 14 12 20 34 61.09-110.02 128 13 12 20 82 118.08-668.53
80 15 12 20 34 59.25-77.82 128 14 12 20 78 61.84-251.14
80 13-16 13 20 34 85.54-523.16 128 15 12 20 66 64.86-309.90

Nk: the number of fixed key bits.

attack must be lower than 262 memory accesses (the time complexity given
for the 16-round differential attack in [25]). Depending on the processor, one
memory access requires about 2 to 10 CPU cycles. This means the complexity
of the differential-algebraic attack for PRESENT-80 is much higher than that
of the differential attack, but the data complexity is lower. Depending on how
many chosen plaintext-ciphertext pairs the attacker can obtain, the algebraic-
differential attack might however be the only feasible attack.

For PRESENT-128, we could not identify the right pairs for r > 12 using
the method from [2]. If we use the 12-round differential characteristic with the
probability 2−54 to attack 14-round PRESENT-128, the time complexity will be
about 278+54−50.49+31.16+7.97 = 2120.64 CPU cycles, or about 2112.83 equivalent
encryptions. The data complexity is 255 chosen plaintexts.

4.2 Attack 2 for the PRESENT Block Cipher

We respectively use two pairs and three pairs to attack the PRESENT. The test
results are listed in Tables 8 and 9. For the right pairs, the right key can be
solved within t seconds. We ran 10 trails for different values of r and N , and one
example of right pairs {(P ′

0, P
′′
0), (P ′

1, P
′′
1)} or {(P ′

0, P
′′
0), (P ′

1, P
′′
1), (P ′

2, P
′′
2)} and

list the corresponding right key K. As in Attack 1, we can solve the right key
from the right pairs, but the wrong pairs cannot always be filtered out. So we
perform the test with the right pairs to recover the right key. We obtained the
following results:

1. For N = r + 3 or N = r + 4 rounds of PRESENT-80 with the r-round
differential characteristic, the right key can be solved with the two right
pairs. Some test results are listed in Table 8. However, because we use two
right pairs, this means that if m pairs of ciphertexts remain after filtering

Algebraic Techniques in Differential Cryptanalysis Revisited 137

Table 8. Time to Solve Right Key using Two Right Pairs with MiniSat2

Ks N r P ′
0, P

′
1 P ′′

0 , P ′′
1 K t(s)

80 12 9 39121b2bffad3bbc, 3e121b2bffad3cbc, 4634342e33 ‖ 132.88-377.13
91f1a75a4f4d33e0 96f1a75a4f4d34e0 0d53e8cd71

80 13 10 67bb6eecd081767c, 60bb6eecd081717c, 6fcaf3033d ‖ 122.00-849.89
6f62c9bd561f718e 6862c9bd561f768e 39296c0f66

80 14 11 c2b3135aa3b8f3b4, c5b3135aa3b8f4b4, 22c587b7b2 ‖ 129.01-213.98
8a43480c3122ab14 8d43480c3122ac14 607cddab90

80 15 12 c2b3135aa3b8f3b4, 125fcb08afed6df3, 155fcb08af ‖ 133.64-141.75
85c6576306a6a545 82c6576306a6a245 ed6af317f1

80 13 9 0c03406225bf97cd, 0b03406225bf90cd, cca9deeb2c ‖ 115.61-133.35
0bbd25aea7c5b0c9 0cbd25aea7c5b7c9 0d98071ca6

80 14 10 9434381cb8083429, 9334381cb8083329, ab7b47fdf8 ‖ 124.22-132.99
0b40a64e215244c6 0c40a64e215243c6 93fb87c9cd

80 15 11 8814d6bea07fd660, 8f14d6bea07fd160, a7d16cda8d ‖ 130.48-144.89
f02e367f419a412e f72e367f419a462e b76ec42756

80 16 12 cbaef2f923614742, ccaef2f923614042, 6b9b4087a6 ‖ 189.26-280.49
b37ee1f334c4207b b47ee1f334c4277b 254f2bbef2

according to the ciphertext difference, we must consider
(
m
2

)
combinations

of two pairs. However, the solving time for
(
m
2

)
combinations of two pairs

becomes unacceptable. If we attack 16-round PRESENT-80 with a 13-round
differential characteristic with the probability 2−58, we choose 259 pairs of
plaintexts and the filtering probability with the ciphertext difference is about
2−25.711, so the number of the remaining ciphertext pairs is about 233.289

which will be combined to produce 265.578 combinations of two pairs. The
time complexity will be 265.578 · 231.16 · t > 288. We have not identified the
right pairs for r = 13, so we cannot test the time for t and it should be more
than 100 seconds according to the test time for r < 13. Therefore, Attack 2
is slower than exhaustive search.

2. For N = r + 2 rounds of PRESENT-80, only few combinations of two right
pairs can be used to solve the right key, so the success rate is too low.

3. For N = r + 4 rounds of PRESENT-128 with the r-round differential, only
few combinations of two right pairs can be used to recover the right key and
the success rate is also very low.

4. For N = r+3 rounds of PRESENT-80 and N = r+4 rounds of PRESENT-128
with the r-round differential, the right key can be solved with the three right
pairs. The test results are listed in Table 9. However, because we use three
pairs, this means that if m pairs of ciphertexts remain, there are

(
m
3

)
combi-

nations of three pairs. However, the solving time for
(
m
3

)
combinations of three

pairs becomes unacceptable.

From the above results, Attack 2 (using two pairs or three pairs for PRESENT)
has no advantage over Attack 1 (fixing certain key bits). Maybe these attacks
have some advantage for other ciphers. For example, if there would be more ac-

138 M. Wang et al.

Table 9. Time to Solve Right Key using Three Right Pairs with MiniSat2

Ks N r P ′
0,P

′
1,P

′
2 P ′′

0 ,P ′′
1 ,P ′′

2 K t(s)

80 11 9 d9591ff50fc1df6d, de591ff50fc1d86d,
f9866c0009f3bf44, fe866c0009f3b844, 66efab8af3 ‖ 177.77-1402.2
0e768137f568779d 09768137f568709d 74afe67553

80 12 10 3a659aa3dc72107c, 3d659aa3dc72177c,
62129df1a637b88f , 65129df1a637bf8f , 2dc9fceff3 ‖ 240.70-578.68
c566bb319010f0df c266bb319010f7df 174f9919c4

80 13 11 383663a9bc01cec5, 3f3663a9bc01c9c5,
88042f67e3b59e95, 8f042f67e3b59995, a0f5a7209b ‖ 247.53-t
c842b19a415d9105 cf42b19a415d9605 b95180a21c (t > 2500)

80 14 12 2ddbc9427defb9ee, 2adbc9427defbeee,
2aa2624e2cb1dede, 2da2624e2cb1d9de, 3200679dd6 ‖ 293.21-408.40
4d19fefd126a29ee 4a19fefd126a2eee 3d29ae18bc

80 12 9 3d84126858c7435e, 3a84126858c7445e,
32a6811bd0c6a32e, 35a6811bd0c6a42e, 5da70ed0b5 ‖ 216.35-239.90
cd66cbdb18c23c55 ca66cbdb18c23b55 13fb14435c

80 13 10 e519cccfa40ce691, e219cccfa40ce191,
e5aa80afcfc216a3, e2aa80afcfc211a3, 72ada6021d ‖ 238.47-258.13
8a179faf87127908 8d179faf87127e08 d2667ab4e5

80 14 11 f5a33b54749b6624, f2a33b54749b6124,
b2f64b6c661d6101, b5f64b6c661d6601, 8ab6e28d86 ‖ 292.15-319.56
2d106b5e6d2b4e24 2a106b5e6d2b4924 9ef6858a87

80 15 12 e6005b48d2abd194, e1005b48d2abd694,
41909dfa1ac196d9, 46909dfa1ac191d9, 393d660706 ‖ 271.31-340.26
0e43381eb485d900 0943381eb485de00 1dbe32c806

128 13 9 9d6902f268514522, 9a6902f268514222, 0578224d0c9eba10 ‖
95d585a882e6e250, 92d585a882e6e550, bb0fd3b56d8b4834 235.64-265.20
2da0d2114f1805c2 2aa0d2114f1802c2

128 14 10 972331fa763f86bd, 902331fa763f81bd, d8ca446899016e69 ‖
50d342a2a6dce17a, 57d342a2a6dce67a, 17641f71e11d09f5 235.16-291.02
efdfd44485f1ee81 e8dfd44485f1e981

128 15 11 76971713b1f0d438, 71971713b1f0d338, 9e3328405c865b25 ‖
aed2ee07ad11dc6d, a9d2ee07ad11db6d, 2201229c273fd1dd 285.00-303.82
e609bfed79d4143b e109bfed79d4133b

128 16 12 eb449a907d31f33e, ec449a907d31f43e, 73fdf364db99c472 ‖
84363465aaddb304, 83363465aaddb404, bb7a8e563b20a1f2 316.21-414.30
e3a2e5866f5814a9 e4a2e5866f5813a9

tive S-boxes involved in the outer rounds in PRESENT, maybe we could obtain
the right key using two right pairs with a high success probability.

5 Conclusion

The cryptanalytic method combining differential cryptanalysis and algebraic
cryptanalysis has been a focus topic in the field of the cryptanalysis of sym-
metric ciphers. At FSE 2009, Albrecht et al. propose new differential-algebraic

Algebraic Techniques in Differential Cryptanalysis Revisited 139

attacks, which they claim improves the results of the differential cryptanalysis.
In this paper, we revisited Albrecht’s cryptanalytic method and identified that
the time complexity to identify the right pairs is not correct. Firstly, we showed
that Attack C cannot be used to filter out the wrong pairs satisfying the differ-
ence value of the ciphertexts for most block ciphers to improve the differential
cryptanalysis. We identified some important properties for Attack B and showed
that Attack B does not provide an advantage over differential cryptanalysis for
PRESENT. Faugère et al. presented a similar attack for DES, however, they
could only attack 8-round DES with a 5-round differential characteristic. Their
attack for DES is accordant with our Observation 1 in Sect. 3.2 because the key
size for DES is smaller than the block size.

In this paper, we introduce two new methods to perform a differential-algebraic
attack. The first method is to fix certain key bits to solve the system of equations
and the second method is to use multiple pairs to construct the system of equa-
tions. This method is more efficient for the PRESENT block cipher and its data
complexity is better than that of the differential attack, but the time complexity
is worse. Although we did not significantly improve the results of the differential
cryptanalysis for PRESENT, our work indicates which equations are important
in the differential-algebraic attack. For the differential-algebraic attack, we obtain
the following three conclusions:

1. Compared with the differential cryptanalysis, the differential-algebraic at-
tack can reduce the data complexity, but the time complexity increases.
Compared with the algebraic cryptanalysis, the differential-algebraic attack
can attack more rounds because the relations resulting from the differential
characteristic are very important for the solving process.

2. In order to make the solving process in the differential-algebraic attack more
efficient, more active S-boxes should be involved in the outer rounds. How-
ever, more active S-boxes will reduce the filtering probability with the ci-
phertext difference and it will increase the time complexity. The lower bound
for the number of the active S-boxes should be used to ensure the system
of equations can be solved reliably. The detailed analysis of this case can be
seen as future work.

3. If the methods to solve systems of equations can be improved, and if the com-
putational power available increases, we expect that differential-algebraic
attacks will gain in importance.

Acknowledgments. The authors would like thank the anonymous reviewers
for their detailed comments and suggestions.

References

1. Albrecht, M.: Tools for the algebraic cryptanalysis of cryptographic primitives.,
http://www.ecrypt.eu.org/tools/tools-for-algebraic-cryptanalysis

2. Albrecht, M.: Algorithmic Algebraic Techniques and their Application to Block
Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of London (2010)

http://www.ecrypt.eu.org/tools/tools-for-algebraic-cryptanalysis

140 M. Wang et al.

3. Albrecht, M., Cid, C.: Algebraic Techniques in Differential Cryptanalysis. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 193–208. Springer, Heidelberg
(2009)

4. Albrecht, M., Cid, C., Dullien, T., Faugère, J.-C., Perret, L.: Algebraic precompu-
tations in differential and integral cryptanalysis. In: INSCRYPT 2010, p. 18 (2010)
(to appear)

5. Bard, G.V.: Algebraic Cryptanalysis. Security and Cryptology, vol. XXXIV.
Springer, Heidelberg (2009)

6. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-Round DES. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Hei-
delberg (1993)

8. Blondeau, C., Gérard, B.: Multiple Differential Cryptanalysis: Theory and Prac-
tice. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg
(2011)

9. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

10. Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)

11. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner-basis computa-
tions with Boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)

12. Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J.
(ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

13. Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In:
Boneh (ed.) [10], pp. 176–194

14. Courtois, N., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

15. Courtois, N., Debraize, B.: Specific S-Box Criteria in Algebraic Attacks on Block
Ciphers with Several Known Plaintexts. In: Lucks, S., Sadeghi, A.-R., Wolf, C.
(eds.) WEWoRC 2007. LNCS, vol. 4945, pp. 100–113. Springer, Heidelberg (2008)

16. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

17. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

18. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

19. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In: Boneh (ed.) [10], pp. 44–60

20. Faugère, J.-C., Perret, L., Spaenlehauer, P.-J.: Algebraic-Differential Cryptanalysis
of DES. In: Western European Workshop on Research in Cryptology - WEWoRC
2009, pp. 1–5 (2009)

21. Gong, Z., Hartel, P., Nikova, S., Zhu, B.: Towards Secure and Practical MACs
for Body Sensor Networks. In: Roy, B.K., Sendrier, N. (eds.) INDOCRYPT 2009.
LNCS, vol. 5922, pp. 182–198. Springer, Heidelberg (2009)

Algebraic Techniques in Differential Cryptanalysis Revisited 141

22. Nakahara, J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and Algebraic
Cryptanalysis of the Block Cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

23. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight Block Ciphers Revisited:
Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., Nieto,
J.M.G. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009)

24. Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis.
J. Cryptology 21(1), 131–147 (2008)

25. Wang, M.: Differential Cryptanalysis of Reduced-Round PRESENT. In: Vaudenay,
S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg
(2008)

26. Wang, M., Wang, X., Hui, L.C.: Differential-algebraic cryptanalysis of reduced-
round of Serpent-256. SCIENCE CHINA Information Sciences 53(3), 546–556
(2010)

Faster and Smoother – VSH Revisited

Juraj Šarinay�

EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
juraj.sarinay@epfl.ch

Abstract. We reconsider the provably collision resistant Very Smooth
Hash and propose a small change in the design aiming to improve both
performance and security. While the original proofs of security based on
hardness of factoring or discrete logarithms are preserved, we can base
the security on the k-sum problem studied by Wagner and more recently
by Minder & Sinclair. The new approach allows to output shorter digests
and brings the speed of Fast VSH closer to the range of “classical” hash
functions. The modified VSH is likely to remain secure even if factor-
ing and discrete logarithms are easy, while this would have a devastating
effect on the original versions. This observation leads us to propose a vari-
ant that operates modulo a power of two to increase the speed even more.
A function that offers an equivalent of 128-bit collision resistance runs
at 68.5 MB/s on a 2.4 GHz Intel Core 2 CPU, more than a third of the
speed of SHA-256.

Keywords: hash functions, generalized birthday problem, knapsacks,
provable security.

1 Introduction

A hash function is a mapping that on input a string of arbitrary length outputs
a fixed-length digest. Such functions are among the most basic building blocks
in cryptology. In the recent years there have been several attempts to design
provably secure hash functions. Several of them follow the same general idea
and hash by computing sums in finite Abelian groups.

Very Smooth Hash. The function designed by Contini et al. [7] is a provably
collision resistant hash function based on arithmetic in multiplicative groups
modulo an integer. If the modulus is of a proper form, collision resistance of the
function can be proved under an assumption heuristically linked to well-known
problems, such as integer factoring and discrete logarithm. The function is rela-
tively practical, but still considerably less convenient than the established hash
functions. For example, in order to reach collision resistance that corresponds to
1024-bit RSA security, one needs to compute a digest that is 1516 bits long. The
function was reported to be about 25 times slower than SHA-1. It is our goal to
improve the multiplicative VSH in terms of both efficiency and security.
� Supported by a grant of the Swiss National Science Foundation, 200021-116712.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 142–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Faster and Smoother – VSH Revisited 143

The generalized VSH-DL variants proposed in [16] are not targeted in this
paper. While the functions output shorter digests, their performance is much
worse than in case of the multiplicative versions.

Knapsack Based Functions. From a high level point of view, VSH can
be seen as a multiplicative knapsack. Compression function families based on
0-1 knapsacks in groups were introduced by Impagliazzo & Naor. Such func-
tions are parametrized by k randomly selected elements of a finite group G
denoted by a1, . . . , ak. The function maps a k-bit string b1 . . . bk to

∑
i∈T ai

where T ⊆ {1, . . . k} is the set of indices i such that bi = 1. If k > lg |G|,1 the
functions compress. Under certain assumptions it was shown that the families
were universal and one way. Examples were given in groups (Zn, +) and (Z∗

n,×)
and the security of some variants related to hardness of discrete logarithm and
factoring [13,14].

A similar additive function was proposed by Damg̊ard in [9]. It is again
a 0-1 knapsack, where ai are positive integers and the group operation is ad-
dition. In a concrete example, k equaled 256 and the ai were random integers
with bit length under 120. The function was broken by Camion & Patarin using
techniques that turn out to be central to our paper [6]. Joux et al. successfully
applied lattice reduction to the class functions [15].

Following Ajtai’s discovery of the one-way function related to worst case as-
sumptions on lattices [1], Goldreich et al. showed that the function is actually
collision resistant [12]. It is a 0-1 knapsack on k random elements of the additive
group Zn

q for prime q = O(nc) and n lg q < k ≤ q
2n4 .

Micciancio generalized the concept to certain rings in [20,21]. Parametrize the
function by k elements of a ring R. For T ⊆ R, define a compression function
T k → R as

∑n
i=1 xi ·ai. For appropriate choices of R, the family is pre-image and

collision resistant. Properties of the family are connected to worst-case assump-
tion on special classes of lattices. For comprehensive treatment of the family,
see also [24,18]. A practical hash function SWIFFT following the principles was
proposed in [17,19] and its modification SWIFFTX was submitted as a SHA-3
candidate [2]. The generalized knapsacks considerably lower the key length and
the number of operations needed to hash a bit. If b = lg |T |, then kb bits can
be hashed in k ring multiplications and k − 1 ring additions and only k ring
elements are needed to specify a particular function.

Incremental Hashing. Bellare and Micciancio proposed a family of incremen-
tal hash functions in [5]. The functions are designed to map strings of arbitrary
length to group elements. Fix an integer b, assume that the message is composed
of kb bits. Denote the i-th b-bit chunk of the input by xi. Define a function
f : N × {0, 1}b → G and map xi to f(i, xi).2 Obtain k group elements, output
their product in G. The authors define a balance problem in groups and use it as
a security assumption in proofs. The groups considered include (Zn, +), (Z∗

n,×),
1 lg stands for base 2 logarithm.
2 The f is considered a random oracle in proofs and instantiated by a real-world hash

function such as SHA.

144 J. Šarinay

(Zn
q , +), (Zn

2 , +). The functions defined in these groups were named AdHASH,
MuHASH, LtHASH and XHASH, respectively. In case of multiplicative groups,
security follows from hardness of discrete logarithm. The authors observe that
the construction appears more secure than what the proof suggests, there seems
to be no attack even if discrete logarithms were easy to compute.

The (Extended) k-tree Algorithm. All the above functions map an input
string of length kb to k group elements that are then added in G. This can be
seen as if we had k lists of 2b group elements each and selected a single element
from every list. This view is valid also for 0-1 knapsacks where b = 1, simply
think of the lists as containing the identity element of G in addition to ai. The
problem of inverting such a function was considered by Wagner, it is known as
the generalized birthday problem [28,27]. In many groups it can be solved by
the tree algorithm in time O

(
k2

S
1+lg k

)
where S = lg |G|, provided all the lists

contain enough elements. The idea is a generalization of the attack of Camion
and Patarin on Damg̊ard’s function. Minder and Sinclair extended the algorithm
to cases where the length of the lists is restricted [22].

Recent Provably Secure Hash Functions. The fastest known attack on
SWIFFT applies the extended tree algorithm while ignoring the ring structure
and the relation to lattices [19].

Finiasz et al. proposed a code based function FSB that is essentially a knap-
sack in the group (Zn

2 , +) [3]. Joux et al. broke the function applying Wagner’s
algorithm [8]. Later variants of FSB [4,10,11] consider Wagner’s attack in secu-
rity analysis. This paper is in part inspired by the known applications of the tree
algorithm to hash functions.

Main Contributions. We propose two new variants of VSH and interpret
them as knapsacks or k-sums. This brings the function closer to SWIFFT or FSB
and allows us to adapt the cryptanalytic methods previously used on the two
compression functions. We quantify security of the new VSH variants applying
the known results on complexity of the extended k-tree algorithm. This suggests
that our minor modification may improve security by many orders of magnitude
compared to the original VSH variants. We point out evidence that the functions
remain secure even if factoring and discrete logarithms are easy. Practicality of
the new functions is demonstrated on an implementation.

2 Very Smooth Hash Algorithm

We recall two variants of VSH from [7] that are the starting points for our
improvements. Denote the i-th prime number by pi. In addition let p0 = −1.

Fast VSH. Let n be an S-bit integer, fix a small integer b > 0. Let k be the
maximal integer such that

∏k
i=1 pi2b < n. Have an l-bit message m, denote the

r-th b-bit chunk of m by m[r] with 0 ≤ m[r] < 2b. The Fast VSH algorithm
proceeds as follows:

Faster and Smoother – VSH Revisited 145

1. Let x0 = 1.
2. Let L = l

bk �. Pad the message with zero bits up to an integral multiple of
bk.

3. Append a bk-bit binary representation of l to the message, denote the new
chunks m[Lk + 1] to m[(L+ 1)k].

4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod n .

5. Return xL+1.

Step 4 maps the S bits of xj and kb fresh message bits to a new S-bit value
xj+1. The xj can be viewed as a chaining variable, Fast VSH employs a variant
of the Merkle-Damg̊ard transform [9]. This special chaining mode is made use
of in the original security proof that links collision resistance to the hardness of
the following problem:

Definition 1 (VSSR: Very Smooth number nontrivial modular Square
Root). Let n be the product of two primes of approximately the same size and
let k′ ≤ (log n)c. Given n, find x such that x2 ≡ ∏k′

i=0 pei

i mod n and at least
one of the e0, e1, . . . , ek′ is odd.

The (Fast) VSH security proof establishes that any collision in Fast VSH leads
to a solution to VSSR with k′ = k2b.

Fast VSH-DL. If the modulus is replaced by an S-bit prime number p = 2q+1
for prime q, one obtains the Discrete Log variant of Fast VSH. This function maps
Lbk bits to S bits for fixed L ≤ S − 2. It uses the same iteration as Fast VSH,
but because the length is fixed, no length needs to be appended. To hash Lbk
bits proceed as follows:

1. Let x0 = 1.
2. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod p .

3. Return xL+1.

The compression function can be extended to process inputs of arbitrary
length by applying the Merkle-Damg̊ard transform. The function is proved col-
lision resistant assuming the following problem is hard:

Definition 2 (VSDL: Very Smooth number Discrete Log). Let p, q be
prime numbers with p = 2q + 1 and let k′ ≤ (log p)c. Given p, find integers
e1, e2, . . . , ek′ such that 2e1 ≡ ∏k′

i=2 pei

i mod p with |ei| < q for i = 1, 2, . . . , k′,
and at least one of e1, e2, . . . , ek′ is non-zero.

146 J. Šarinay

2.1 Security

Security of Fast VSH is related to the hardness of factoring the modulus n. The
designers base the assessment of collision resistance of Fast VSH on the following
assumption:

Computational VSSR Assumption. Solving VSSR is as hard as factoring
a hard to factor S′-bit modulus, where S′ is the least positive integer such that

L′[2S′
] ≥ L′[n]

k2b
, (1)

where the function

L′[n] = e1.923(log n)1/3(log log n)2/3
(2)

approximates the running time of Number Field Sieve factoring the integer n.
Heuristically, given k2b solutions to VSSR, one can use linear algebra to find

x �≡ ±y mod n such that x2 ≡ y2 mod n and obtain factorization of the mod-
ulus. If NFS is assumed to be the fastest method for factoring integers of the
form of n, the VSSR problem is no easier than a fraction 1

k2b of the cost of NFS.
The above assumption can directly be used to derive a provable lower bound on
collision resistance for a particular Fast VSH variant.

In contrast, no computational VSDL assumption was made in the proposal.
Therefore no computational lower bound on collision resistance of Fast VSH-DL
can immediately be derived.

Generating Collisions. Collisions in Fast VSH are trivial to create if the
factorization of the modulus n is known. This allows to compute ϕ(n) = (p −
1)(q−1). The hash function computes a modular multi-exponentiation

∏k2b

i=1 pei

i

mod n. The product does not change if an integral multiple of ϕ(n) is added
to any of the exponents. Creating messages that lead to appropriate differences
in ei is rather easy. Note that the collisions created in this way are quite long,
measuring some Skb bits. Creating short collisions appears to be a much harder
problem, even if p and q are known.

Similarly, the ability to compute discrete logarithms modulo p leads to an im-
mediate straightforward way to create collisions in Fast VSH-DL.

3 A Variant without Modular Squaring

We now proceed to modify Fast VSH and Fast VSH-DL such that the collision
attacks from the previous section are no longer possible. The changes we make
preserve the original security proofs.

Note that if kb > S, the operation

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod n

Faster and Smoother – VSH Revisited 147

in Step 4 of Fast VSH compresses its input. It can therefore be extended to
a hash function in the usual ways, such as the plain Merkle-Damg̊ard mode. Our
new Fast VSH variant will impose the condition kb > S and build a compression
function only.

Faster VSH. Have an S-bit modulus n, let k, b be integers such that kb > S
and k2b < log(n)c. Define a compression function H from kb bits to S bits that
outputs

H(m) =
k∏

i=1

p(i−1)2b+m[i]+1 mod n .

The function computes a modular product of precisely k out of the primes
p1, . . . , pk2b . If n = pq, we can prove collision resistance of the compression
function based on the VSSR problem:

Theorem 1. A collision in Faster VSH solves VSSR for k′ = k2b.

Proof. Suppose there are two messages m �= m′ such that H(m) = H(m′) and

H(m) =
k∏

i=1

si mod n (3)

H(m′) =
k∏

i=1

ti mod n . (4)

Denote the hash value H(m) by x. From (3) and (4) it follows that

x2 ≡
k∏

i=1

ti

k∏
i=1

si mod n .

Because m �= m′, at least one of the exponents on the right hand side equals
one, the above expression solves VSSR. �	

If n is replaced by the prime p = 2q + 1 for prime q, we are in the Fast VSH-DL
setting. In a direct analogy of the original proof we can link the security of
modified Fast VSH-DL to VSDL.

Theorem 2. A collision in Faster VSH-DL solves VSDL for k′ = k2b.

The modular squaring is no more crucial for the security proof. Our modi-
fied function is secure under the original assumptions, the proofs can be easily
adapted to the new setting.

Note however, that our modification limits all the exponents in the prime
products to one. The factoring attack on Fast VSH and the discrete log attack
on Fast VSH-DL do not extend to the modified variants.

148 J. Šarinay

Performance. The change proposed in this section slows the functions down.
Only bk−S fresh bits are processed per iteration due to the use of the ordinary
Merkle-Damg̊ard mode. In contrast, the original Fast VSH processed bk bits per
iteration. The performance of the modified variant is approximately a fraction
1 − S

bk of the original. The greater the compression ratio of the new function,
the less significant the slowdown.

The proposed modification to Fast VSH does not appear to be beneficial at
all. The mere fact that the original collision-finding attacks do not work is not
worth the performance loss. The security level implied by security proofs is the
same after all.

As we will show in the next section, the modification allows a radical change
in security assessment and in the end permits faster and/or more secure hashing.

4 The k-Sum Problem and the Tree Algorithm

The following equivalent view of the two new VSH variants will be useful in
security analysis. Split the primes into k lists L1, . . . , Lk, such that Li contains
the 2b primes p(i−1)2b+1, . . . , pi2b .

Let fi : {0, 1}b → Li be a function that interprets the bit string m[i] as
an integer and returns the element on position m[i] from the list Li. The new
compression functions can be rewritten as follows:

H(m) = f1(m[1]) ∗ f2(m[2]) ∗ · · · ∗ fk(m[k]) (5)

where m[i] is the i-th b-bit chunk of the input m. In the above description,
∗ stands for modular multiplication. For the rest of this section, let ∗ simply
denote a group operation in a finite Abelian group G such that lg |G| ≈ S.

To measure the security of compression functions of the above type consider
the following problem:

Definition 3 (The k-sum problem). Given a group G, an element y ∈ G
and disjoint lists of group elements L1, . . . , Lk find gi ∈ Li such that

g1 ∗ g2 ∗ . . . ∗ gk = y .

Pre-image resistance of our two new compression functions is easily seen to be
equivalent to an instance of the above problem. We show that collisions also
naturally correspond to an instance of a k-sum problem.

Given the k lists Li, form new lists L′
i containing all the elements gh−1 for

g, h ∈ Li. Size of L′
i is approximately 22b. A collision in H corresponds to

a solution to the k-sum problem with the lists L′
i and target value 1. Note that

a solution to the new k-sum problem leads in turn to a pair of colliding messages.
A solution is necessarily of the form g1h

−1
1 ∗ g2h

−1
2 ∗ . . . ∗ gkh

−1
k . If m[i] ∈ {0, 1}b

is the unique value such that fi(m[i]) = gi and m′[i] ∈ {0, 1}b is such that
fi(m′[i]) = hi, then the concatenation of m[i] collides with the concatenation of
m′[i]. This leads to a collision if m �= m′, or equivalently if the solution to the

Faster and Smoother – VSH Revisited 149

k-list problem does not select 1 in all of the lists.3 In general, collision search
for H is as hard as pre-image search for a function (over the same group) that
compresses twice as much as H .

Known Lower Bounds. For certain groups, hardness of the k-sum problem fol-
lows from more “usual” assumptions. Wagner shows that the problem in a cyclic
group is no easier than discrete logarithms. Impagliazzo & Naor prove that
a 0-1 knapsack in any group G is hard whenever there is a homomorphism onto
G that is hard to invert [14]. Their theorem easily extends to k-sums.

The connection of k-sums to homomorphisms was also pointed out in [5]. The
discrete logarithm is a special case. Squaring in the multiplicative group of
quadratic residues modulo n = pq is another example of an onto homomorphism.
Solving the k-sum problem in the group is therefore at least as hard as factoring n.

Wagner’s Tree Algorithm. The tree algorithm by Wagner solves the k-sum
problem in about k2

S
1+lg k group operations, provided all the lists contain at least

2
S

1+lg k elements. To simplify the exposition, we deliberately neglect other oper-
ations the algorithm performs, such as sorting and comparisons. The algorithm
needs a sequence of groups Kj normal in G for j = 0, . . . 1 + lg k, such that
K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ K1+lg k and |Kj | ≈ |G|

j
1+lg k . In addition, the algorithm

makes use of homomorphisms ρj : G→ G/Kj with Kj = Ker ρj .
Without loss of generality one can assume that the target value y is the

identity of G. For a different y, simply multiply all elements in one of the lists
by y−1 and solve for 1. The tree algorithm successively merges pairs of the lists.
Only “useful” entries that fall in the subgroups Kj are kept. For details of the
algorithm, the reader is referred to [27].

It is not necessary that the Kj form a sequence of normal subgroups of G.
A “weaker” chain of subsets may be sufficient, as demonstrated in Wagner’s
paper for groups (ZM , +) where a chain of intervals in used. We will further
assume that the structure of G allows the tree algorithm to run with k lists
for any k. This is a strong assumption, the group structure will often limit the
applicability and/or exact performance of the algorithm. Our goal is to estimate
the cost of the tree algorithm from below. The assumption well fits the purpose
and greatly simplifies further analysis.

Extended Tree Algorithm. Wagner’s analysis assumes the lists are long
enough. If it is not the case, one can combine the short lists into (fewer) longer
lists and invoke the ordinary tree algorithm once the lists are long enough. The
extended tree algorithm by Minder and Sinclair4 [22] builds lists of maximal
length 2u where

u =
S − b2p

lg k − p
(6)

3 We might remove the element 1 from all the lists and limit ourselves to colliding
messages that differ in all b-bit blocks.

4 The algorithm was described for XOR as the group operation, but can be generalized
to other groups.

150 J. Šarinay

such that p is the least integer satisfying

S ≤ (lg k − p + 1)b2p . (7)

We will use the two above expressions to measure the security of Fast VSH vari-
ants. To simplify the exposition, we will measure the complexity of a particular
instance of the k-sum problem exclusively by the maximum expected length of
the lists produced. The workload will usually be slightly higher, but a lower
bound on the cost is sufficient for our purposes.

What If Factoring and DL Are Easy? Interestingly, the k-sum problems
over multiplicative groups appear to remain hard even if factoring and discrete
logarithms are easy. The multiplicative group Z∗

n for n = pq is isomorphic to
(Zp−1, +)×(Zq−1, +) and the multiplicative group Z∗

p is isomorphic to (Zp−1, +).
Suppose we can factor and compute discrete logarithms efficiently. This allows
us to compute the isomorphisms from the multiplicative to the additive group.
While a group isomorphism transposes a k-sum problem instance to a setting
where we may be able to compute faster, the lengths of the lists are preserved.
Even in (Zm, +) no faster approach than the (extended) tree algorithm is known.

For all the multiplicative functions we consider, the cost of factoring and/or
discrete logarithms is negligible compared to the cost of the tree algorithm. We
may therefore simply consider the steps to come for free in our analysis, even if
a run of the tree algorithm is preceded by DL computations.

4.1 Security of Faster VSH

Table 1 captures the collision resistance level implied by the computational VSSR
assumption (“factoring hardness”) and the new security estimates based on the
extended k-tree algorithm for two variants of Faster VSH. The parameters orig-
inate from [7]. The modulus is assumed to be a product of two large primes.
The factoring hardness measure is the complexity of factoring a hard to factor
integer of said bit length. Columns 5 and 6 are computed using (6) and (7).

Note that the two security measures are in somewhat incompatible units. The
exponent in column 5 means “bit security”, the number in column 4 is “RSA
security”.

Hardness of factoring a 1024-bit RSA modulus is considered equivalent to
roughly “80-bit” security. If Faster VSH with S = 1516 is assessed as a k-sum
problem, it provides collision resistance of at least 335 bits. For these parameters,

Table 1. Security estimates for variants of Faster VSH

k S b factoring coll coll pre

256 1516 8 1024 bits 2334.7 2502.0

1024 2874 8 2048 bits 2472.4 2616.7

Faster and Smoother – VSH Revisited 151

the removal of squarings and the use of Merkle-Damg̊ard mode slows down the
original Fast VSH by approximately 74%. This is only a moderate slowdown
given the great increase in security.

The slowdown is only approx. 35% for the other variant with S = 2874, while
the gap between the hardness of factoring an 2048-bit modulus and 472-bit
security is even greater.

Collision resistance of 335 or 472 bits is more than enough for many years
to come. We can therefore aim for lower security levels and tweak the parame-
ters, in particular the digest length, to gain performance. Precise parameters for
practical instances of the functions as well as speed measurements are given in
Section 6.

5 A Variant without Modular Reduction

The lower bound on the complexity of the extended tree algorithm only depends
on the number of lists k, the length of the lists 2b and the output length S.
While the structure of the particular group does affect the practicality of the
algorithm to an extent, it almost certainly makes the job harder than what our
estimates suggest.

Because we choose not to rely on the group structure, we propose to replace
the modulus in Faster VSH by a power of two. No costly modular reductions are
needed in the computation of the compression function, because reducing modulo
a power of two can be done for free. This will lead to a considerable speed-up
while maintaining the k-list security. Note that the prime 2 = p1 cannot be used
in this setting, because it does not belong to the multiplicative group of integers
modulo 2S . The lists are to be filled with small primes starting with p2 = 3. To
hash bk input bits, compute the following product:

H(m) =
k∏

i=1

p(i−1)2b+m[i]+2 mod 2S .

Any hash value will be an odd number, i.e. the least significant bit is always 1.
Therefore only S−1 leftmost bits of the S-bit modular product should be output.
Call the function Smoother VSH.5

Technically, the provable connection between the security of the function and
the VSSR assumption (or a variant of VSDL) is preserved. This provides little
confidence in security, because factoring the number 2S is trivial and so are
discrete logarithms in (the large cyclic subgroup of) Z∗

2S .
The security assessment based on the extended tree algorithm remains valid.

Recall that it does not rely on the modulus, but only on the values k, b and S.

6 Experimental Results

We propose seven parameter sets with varying security, speed, and memory
requirements. All the parameter choices were tailored to meet one of the three
5 Now we are running Very Smooth Hash modulo a smooth number.

152 J. Šarinay

collision resistance levels 2128, 2192 and 2256. The length of the modulus is always
an integral multiple of word size (64 bits in our case). The value b has a significant
impact on performance. Small b results in many multiplications, but keeps the
memory requirements down. With larger b one saves on multiplications, but
needs much more memory. The ideal value is best determined empirically. The
value b = 8 used in all our variants is the most convenient choice also from an
implementation point of view.

The pre-image and collision resistance are measured as list lengths in the
extended tree algorithm. For comparison, in the case of Faster VSH modulo
a product of two primes, we include “factoring” security levels implied by the
Computational VSSR assumption. The one bit difference in output length caused
by the even modulus can be neglected, we consider the two variants equivalent
for the purposes of the tree algorithm.

The modified functions are very simple and quite efficient in software. Our
C implementation uses GNU MP 5.0.1 to perform arithmetic on large integers.
The Faster VSH code uses Montgomery arithmetic to improve performance [23].

The speed was measured on a 2.40 GHz Intel Core 2 CPU running a 64-bit
system. Table 2 displays speed measurements for the variants running in the
Merkle-Damg̊ard mode. The table also captures the total size of the lists of
small prime numbers, represented by three bytes each. All the primes used in
the proposed variants are at most 21 bits long, therefore the product of any three
primes fits in 64 bits. Our implementation processes them in triples to save on
multiplications.

The values in columns 3 and 4 were computed using (6) and (7), column 5
follows from (1) and (2).

Use of the modulus 2S makes Smoother VSH approximately twice as fast as in
the case of a random S-bit modulus M . For comparison, the speed of SHA-256
on the same platform is approximately 160 MB/s.6 Our fastest variant with
128-bit collision resistance runs at more than third of that speed.

Note that none of the seven variants of Faster VSH would be considered suf-
ficiently secure based on the original computational VSSR assumption, possibly
with the exception of the last one that is as secure as a 1013-bit RSA modulus.

Table 2. Proposed parameters for Faster VSH and Smoother VSH

k S coll pre factoring coll memory Smoother VSH speed Faster VSH speed

128 640 2128 2192 375 96 kB 45.5 MB/s 24.9 MB/s

256 768 2128 2170 452 192 kB 63.4 MB/s 33.2 MB/s

512 896 2128 2160 528 384 kB 68.5 MB/s 35.8 MB/s

192 960 2192 2288 603 144 kB 34.0 MB/s 18.1 MB/s

384 1152 2192 2256 727 288 kB 48.0 MB/s 24.3 MB/s

256 1280 2256 2384 839 192 kB 27.9 MB/s 14.6 MB/s

512 1536 2256 2341 1013 384 kB 39.8 MB/s 19.8 MB/s

6 OpenSSL benchmark.

Faster and Smoother – VSH Revisited 153

7 Choice of the List Elements

The analysis in Section 4 assumes the k lists Li contain random elements of the
group G. This is not at all the case for our functions. We deliberately ignore this
and expect the tree algorithm to behave as if the elements were random. Similar
reasoning was used in cryptanalysis of SWIFFT and FSB, where the lists are far
from random [19,10,4].

Small prime numbers used in VSH have been known to have two positive
effects. Because a k-list function is defined by k2b group elements, if full S bits
were used for every single entry, the memory requirements would soon become
prohibitive. For the very same reason the function should not be implemented
in its equivalent additive representation.

Another advantage of the use of small primes is speed. Multiplication of the
S-bit modulus by a small (say 21-bit) prime is much easier an operation than
a full S×S bit multiplication. The small prime numbers are absolutely necessary
for VSH to remain practical.

7.1 Minimal Distance of Colliding Inputs

The list elements used in VSH are independent in a rather strong sense. Suppose
there is a pair of colliding inputs m �= m′ under Faster VSH such that

H(m) =
k∏

i=1

si mod n

H(m′) =
k∏

i=1

ti mod n

and the two inputs differ in precisely l ≤ k of the b-bit chunks that select
a particular element from a list. Given H(m) = H(m′), there is a congruence of
two products of primes:

l∏
i=1

s′i =
l∏

i=1

t′i mod n .

At least one of the products must exceed n. Therefore if d is the maximal bit
length of any prime in our lists, then

l ≥ S

d
.

More precisely, if the first k2b primes are used to fill the lists, the largest prime
is approximately k2b ln(k2b). Its bit length is then

d ≈ b + lg(bk ln 2 + k ln k) .

154 J. Šarinay

Any pair of colliding messages must differ in at least

l � S

b + lg(bk ln 2 + k ln k)

of the b-bit input chunks.
As an example, if k = 128 and S = 640, then l ≈ 35. For the variant with

k = 512 and S = 1536, the minimal number of different 8-bit chunks for colliding
messages is l ≈ 75.

Although we do not have a more direct link to collision resistance, we believe
this property may support confidence in the functions. Small changes in input
never lead to a collision. This property was in some form present in the original
VSH as well, but (to our knowledge) it was never explicitly described. It is
however considerably easier to quantify in our new setting.

A similar property was derived by Zémor & Tillich for hash functions based
on (Cayley) graphs [25,26].

8 On Provable Security

The main advantage of Fast VSH was the (heuristic) connection to well-known
hard algorithmic problems. The modifications we propose in Sections 3 and 5
drop this feature, security is no longer supported by hardness of factoring or
discrete logarithms.

Although our first modification to VSH preserved the proof, we ignored the
security level implied by the VSSR assumption and measured it in a different way.
This new viewpoint renders the proof and the VSSR assumption rather useless
and provides some justification for dropping the VSSR and VSDL altogether
with the smooth modulus in Section 5.

Note that in case of VSDL and the corresponding variant, there never has
been a hardness estimate leading to meaningful bounds on collision resistance.
All that was known is that discrete logs imply collisions. Our modification unifies
the DL and factoring variants and allows the two to be proved secure based on
a single new assumption.

The modified VSH shares several features with the functions SWIFFT and
FSB. The two are provably secure compression functions also building on the
hardness of the k-sum problem in commutative groups. The main feature shared
is the method for measuring security. All the three function families build on
their own hardness assumptions, originating from number theory (VSH), lattice
theory (SWIFFT) or coding theory (FSB). If the k-sum problem were better
understood, the various assumptions could be replaced by a single universal
k-sum assumption. The functions would then all share a single security proof.

9 Conclusions

We proposed modifications to Very Smooth Hash that allow a radical change in
security assessment. There was no need to apply the extended tree algorithm to

Faster and Smoother – VSH Revisited 155

the original multiplicative variants of VSH before, because the known attacks
were considerably faster.

Our new variants of Faster VSH are designed to prevent factoring and DL
attacks. The tree algorithm becomes a useful tool to measure security. We have
shown that (independent of factoring or discrete logarithms) there is a deep
combinatorial problem behind Faster VSH, the same problem that supports
several other k-list hash functions.

We designed a new multiplicative compression function Smoother VSH that
relies exclusively on the hardness of the k-sum problem. The function has still
much longer output compared to “classical” hash functions of comparable se-
curity, but its speed has become reasonable. There is room for improvement in
terms of implementation.

The extreme simplicity and clear structure of the new functions can be con-
sidered advantages. On the other hand, more insight in the complexity of mul-
tiplicative k-sum problems is desirable.

Acknowledgements. The author would like to thank Arjen Lenstra, Ron Ste-
infeld, Scott Contini, Dimitar Jetchev and the anonymous reviewers for useful
comments on the text.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

2. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen,
A.: SWIFFTX: A Proposal for the SHA-3 Standard, Submission to NIST (2008)

3. Augot, D., Finiasz, M., Sendrier, N.: A Fast Provably Secure Cryptographic Hash
Function (2003)

4. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic
hash functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 64–83. Springer, Heidelberg (2005)

5. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: Incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997)

6. Camion, P., Patarin, J.: The knapsack hash function proposed at crypto’89 can
be broken. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 39–53.
Springer, Heidelberg (1991)

7. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-
resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

8. Coron, J.-S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash func-
tion. Cryptology ePrint Archive, Report 2004/013 (2004)

9. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

10. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic
hash functions. In: ECRYPT Hash Function Workshop 2007 (2007)

11. Finiasz, M.: Syndrome based collision resistant hashing. In: Buchmann, J., Ding, J.
(eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 137–147. Springer, Heidelberg (2008)

156 J. Šarinay

12. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. Electronic Colloquium on Computational Complexity (ECCC) 3(42) (1996)

13. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. In: FOCS, pp. 236–241. IEEE, Los Alamitos (1989)

14. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptology 9(4), 199–216 (1996)

15. Joux, A., Granboulan, L.: A practical attack against knapsack based hash functions
(extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 58–66. Springer, Heidelberg (1995)

16. Lenstra, A.K., Page, D., Stam, M.: Discrete logarithm variants of VSH. In: Nguyên,
P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 229–242. Springer, Heidelberg
(2006)

17. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Provably Secure FFT
Hashing. In: 2nd NIST Cryptographic Hash Function Workshop (2006)

18. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

19. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086,
pp. 54–72. Springer, Heidelberg (2008)

20. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: FOCS, pp. 356–365.
IEEE Computer Society, Los Alamitos (2002)

21. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity 16(4), 365–411 (2007)

22. Minder, L., Sinclair, A.: The extended k-tree algorithm. In: Mathieu, C. (ed.)
SODA, pp. 586–595. SIAM, Philadelphia (2009)

23. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519 (1985)

24. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

25. Tillich, J.-P., Zémor, G.: Group-theoretic hash functions. In: Cohen, G.D., Litsyn,
S., Lobstein, A., Zémor, G. (eds.) Algebraic Coding 1993. LNCS, vol. 781, pp.
90–110. Springer, Heidelberg (1994)

26. Tillich, J.-P., Zémor, G.: Hashing with SL2. In: Desmedt, Y. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)

27. Wagner, D.: A generalized birthday problem. Long version,
http://www.eecs.berkeley.edu/~daw/papers/genbday-long.ps

28. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

http://www.eecs.berkeley.edu/~daw/papers/genbday-long.ps

Cryptanalysis of the Compression Function of

SIMD

Hongbo Yu1 and Xiaoyun Wang2,�

1 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

yuhongbo@tsinghua.edu.cn
2 Tsinghua University and Shandong University, China
xiaoyunwang@tsinghua.edu.cn, xywang@sdu.edu.cn

Abstract. SIMD is one of the second round candidates of the SHA-3
competition hosted by NIST. In this paper, we present the first attack for
the compression function of the reduced SIMD-256 and the full SIMD-512
(the tweaked version) using the modular difference method. For SIMD-
256, we give a free-start near collision attack on the compression function
reduced to 20 steps with complexity 2116. And for SIMD-512, we give a
free-start near collision attack on the 24-step compression function with
complexity 2235. Furthermore, we give a distinguisher attack for the full
compression function of SIMD-512 with complexity 2475. Our attacks are
also applicable for the final compression function of SIMD.

Keywords: SIMD, SHA-3 Candidate, near collision, distinguishing
attack.

1 Introduction

Hash functions play a fundamental role in modern Cryptography. Due to the
collision attacks on the series general hash functions [7,8,1], NIST hosted the
SHA-3 hash function competition to select a new cryptographic hash function as
the standard [5]. Until November 2008, NIST accepted 51 out of 64 submissions
as the first round. In July 2009, NIST announced 14 second round candidates.

The hash function SIMD is one of the second round candidates, and it is
designed by Leurent et al [4]. SIMD is a wide-pipe design based on the MD iter-
ative structure. In Indocrypt 2009 [3], Mendel et al give a distinguisher attack
on the SIMD-512 compression function with complexity 5.2425.8 using a differen-
tial distinguisher. Because Mendel et al ’s attack, the designers found some bad
properties of Feistel structure in SIMD, and they tweaked the SIMD by changing
rotation constants and permutations for diffusion between parallel Feistels. In
2010 [6], Nikolic et al give the distinguishing attack for the compression function

� Supported by the National Natural Science Foundation of China(NSFC Grant
No.60803125), 973 Project(No.2007CB807902), 863 Project(No.2006AA01Z420) and
the Tsinghua University Initiative Scientific Research Program (No.2009THZ01002).

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 157–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

158 H. Yu and X. Wang

of 12-step SIMD-512 using the rotation distinguisher [2]. In this paper, we give
series cryptanalysis results for the compression functions of the SIMD-256 and
SIMD-512:

1. For SIMD-256 reduced to 20 steps, we give a free-start near collision attack
with complexity 2116. So far, this is the first analysis result for the SIMD-256.

2. For SIMD-512 reduced to 24 steps, we give a free-start near collision attack
with complexity 2235. And for the full SIMD-512 compression function, we
give a distinguishing attack with complexity 2475 using a difference distin-
guisher.

This paper is organized as follows. In section 2, we define some notations and
give a brief description of SIMD. In section 3, we give the free-start near collision
attack on 20-step SIMD-256. In section 4, we give a near collision attack on the
24-step SIMD-512 and a distinguishing attack for the full SIMD-512. Finally we
conclude the paper in section 5.

2 Notations and Description of SIMD

The following notations can be used in this paper.

2.1 Notations

1. + and − denote addition and subtraction modular 232.

2. xi,j is the j-th bit of xi, where xi is a 32-bit word and xi,32 is the most
significant bit.

3. xi[j] and xi[−j] (where x is a 32-bit word) are the resultant values of chang-
ing only the j-th bit of the word xi from 0 to 1 and 1 to 0 respectively.

4. xi[j1, j2, ..., jl] is the value resulting by changing the j1-th, j2-th, ...and jl-th
bits of xi. Again the + sign means that the bit is changed from 0 to 1, and
the − sign means that the bit is changed from 1 to 0.

5. ≪ denote left-rotation by n-bit.

6. hi denote the chaining values in step i of SIMD-256 (or SIMD-512).

2.2 Description of SIMD

SIMD is an iterative hash function that follow the Merkle-Damg̊ard design. The
SIMD family hash function is based on two functions SIMD-256 and SIMD-512.
The SIMD-n with n ≤ 256 is defined as a truncation of SIMD-256, and SIMD-n
with 256 ≤ n ≤ 512 is defined as a truncation of SIMD-512. Each function SIMD-
n takes as input a message of arbitrary size, and outputs a digest of n bits. The

Cryptanalysis of the Compression Function of SIMD 159

input message is padded and then divided into k 512-bit (resp. 1024-bit) blocks
for SIMD-256 (resp. SIMD-512).

The compression function of SIMD-256 (resp. SIMD-512) takes a 512-bit (resp.
1024-bit) chaining value and a 512-bit (resp. 1024-bit) message and output an-
other 512-bit (resp. 1024-bit) chaining value. Each 512-bit (resp. 1024-bit) block
is first expanded into 4096 bits (resp. 8192 bits). The compression functions of
SIMD consist of 4 rounds, and each includes 8 steps. The feed-forward consists
of 4 additional steps with the IV as the message input. Each step has 4 (resp. 8)
parallel Feistel ladders, and they interact together because of the permutations
p(i)’s. At each step, a new value is computed in each Feistel ladder, and this new
value is sent to another Feistel ladder at the following step. In the rest of this
paper, we count the steps and bits starting from 1. In step i, the j − th feistel
ladder given are as follows:

aj
i = (dj

i−1 + wj
i + Φ(aj

i−1, b
j
i−1, c

j
i−1)) ≪ si + (ap(i)(j)

i−1) ≪ ri

bj
i = aj

i−1 ≪ ri

cj
i = bj

i−1

dj
i = cj

i−1

For SIMD-256, the permutation used at step i is p(i−1) mod 3, and it is defined
in the following:

j 0 1 2 3
p(0)(j) 1 0 3 2
p(1)(j) 2 3 0 1
p(2)(j) 3 2 1 0

For SIMD-512, pi = p(i−1) mod 7, and the seven permutations are defined:

j 0 1 2 3 4 5 6 7
p(0)(j) 1 0 3 2 5 4 7 6
p(1)(j) 6 7 4 5 2 3 0 1
p(2)(j) 2 3 0 1 6 7 4 5
p(3)(j) 3 2 1 0 7 6 5 4
p(4)(j) 5 4 7 6 1 0 3 2
p(5)(j) 7 6 5 4 3 2 1 0
p(6)(j) 4 5 6 7 0 1 2 3

In this paper, we omit to describe the message expansion algorithm because
our attack is independent with the message expansion.

The Boolean functions Φ used in the first 4 steps of each round is the chosen
function IF and last 4 steps is the majority function MAJ . The feed-forward
steps use the Boolean function IF . The rotation constants ri and si can refer to
the original paper [4], and they also are shown in our detail differential paths.

160 H. Yu and X. Wang

3 The Free-Start Near Collision Attack on the Reduced
SIMD-256

In this section, we use the modular difference method to find a differential path
with high probability. The modular differential method was presented in Eu-
rocrypt 2005 by Wang et al [7], and it is a precise difference that uses integer
modular subtraction in conjunction with exclusive-or as a measure of difference.
There are four steps in attacking a hash function using the modular difference
method. The first step is to select an appropriate message or initial value dif-
ference, which determines the success probability of the attack. The key step
of the modular difference attack is to select a feasible differential path accord-
ing to the selected message difference or initial value difference. This difficult
step requires intelligent analysis, sophisticated technique, lots of patience and
good luck. The third phase is to derive the sufficient conditions that guarantee
the feasibility of the differential path. In the process of searching for differential
paths, the chaining variable conditions can be determined. A feasible differential
path implies that all the chaining variable conditions deduced from the path do
not contradict each other. The last step is the message/IV modification which
forces the modified messages/IV to satisfy additional sufficient conditions.

3.1 Constructing the Specific Differential Path for 20-Step
SIMD-256

In this attack, we introduce the difference only in the IV. We keep the message
difference to be zero because the expanded message has a minimal distance
of 520 (resp. 1032) for SIMD-256 (resp. SIMD-512). Before the search of the
differential path, we observe that the difference propagation of SIMD is slower
in the backward direction than that in the forward direction. Our basic attack
strategy is first to introduce one bit difference in the intermediate chaining value
and trace this difference in the forward and backward direction using the modular
difference method to get a difference path with high probability. Because the IV
is introduced in the four feed-forward steps as messages, we then adjust the
differential path slightly so that the differences in IV can be used to cancel some
difference of the the feed-forward steps.

For SIMD-256, we introduce 1-bit initial difference in the last ladder of the
Step 16, and go 16 steps in the backward direction to obtain the initial dif-
ference, then we trace the 1-bit difference in the forward direction for 4 steps.
Furthermore, we go forward another 4 steps under the specific IV difference for
the feed-forward steps. In this way, we can get a 20-step differential path which
is shown in Table 3.2. The sufficient conditions for the differential path is given
in Table 3. It’s easy to compute the probability of the differential path of Table
3.2 which holds with probability 2−186 for the selected IV difference.

3.2 Message/IV Modification

In order to get a free-start near collision, we need to carry out the message or IV
modification technique to fulfill the conditions in the IV and the chaining vales

Cryptanalysis of the Compression Function of SIMD 161

Table 1. The conditions distribution of the Step 0 to 9 in Table 5

Chaining variables conditions Number

d0, d1, d2, d3 120

d4, d5, d6, d7 146

a8, b8, c8, d8 320

of the first round. In this section, we use the message/IV modification to fulfill
the conditions in IV and a1, a2, a3, and a4. We denote the chaining values xi in
the j-th ladder as xj

i .

1. From the Table 3, there are 29 conditions in IV (a0, b0, c0 and d0 of the four
ladders). These conditions can be satisfied by choosing the IV values freely.

2. There are 18 conditions in aj
1, j = 0, 1, 2, 3, and these conditions can be

satisfied by modifying the corresponding dj
0. From the step update formula

aj
1 = (dj

0 + wj
0 + IF (aj

0, b
j
0, c

j
0)) ≪ 23 + ap(j)

0 ≪ 3,

if the i-th bit in aj
1 doesn’t satisfied, it’s enough to set dj

0 = dj
0⊕2(i−24) mod 32.

3. There are 12 conditions in aj
2, j = 0, 1, 2, 3. From the trace

aj
2,i → dj

1,(i−17) mod 32 → cj
0,(i−17) mod 32,

the i-th bit of aj
2 can be modified by negating the (i − 17)mod32 bit of cj

0.
In the same way, we need to set the additional condition aj

0,(i−17)mod32 = 1

so that the change in cj
0 can not impact the output of aj

1.
4. There are 10 conditions in aj

3, j = 0, 1, 2, 3. From the trace

aj
3,i → dj

2,(i−27) mod 32 → cj
1,(i−27) mod 32 → bj

0,(i−27) mod 32,

the i-th bit of aj
3 can be modified by negating the (i − 27) mod 32 bit

of bj
0. We have to set the additional conditions aj

0,(i−27) mod 32 = 0 and

aj
1,(i−27) mod 32 = 1 so that the change in bj

0 can not impact the output of

aj
1 and aj

2.
5. There are 10 conditions in aj

4, j = 0, 1, 2, 3. From the trace

aj
4,i → dj

3,(i−3) mod 32→ cj
2,(i−3) mod 32→ bj

1,(i−3) mod 32→ aj
0,(i−3) mod 32,

the i-th bit of aj
4 can be modified by negating the bit aj

0,(i−3) mod 32. The

additional conditions bj
0,(i−3) mod 32 = cj

0,(i−3) mod 32 and aj
1,(i−3) mod 32 =

0, and aj
2,(i−3) mod 32 = 1 are needed so that the change in bj

0 can not impact

the output of aj
1 and aj

2 and aj
3. Furthermore, the change of aj

0,(i−3) mod 32

will cause the change in a
p(j)
1 , we have to adjust the value of d

p(j)
0 to cancel

this change.

162 H. Yu and X. Wang

Table 2. The differential path for 20-step SIMD-256

step r s h0
i h1

i h2
i h3

i pr

0 a0
0 a1

0 a2
0[7,−3] a3

0 2−14

b00[−13] b10[7, 13] b20[−1] b30[−19, 20, 23, 24,−25]
c0
0 c1

0[−21, 26] c2
0[−32] c3

0
d0
0 d1

0 d2
0 d3

0[15]

1 3 23 a0
1 a1

1 a2
1 a3

1[15] 2−15

b01 b11 b21[−6, 10] b31
c0
1[−13] c1

1[7, 13] c2
1[−1] c3

1[−19, 20, 23, 24,−25]
d0
1 d1

1[−21, 26] d2
1[−32] d3

1
2 23 17 a0

2 a1
2[−11,−12,−13,−14, 15] a2

2[−17] a3
2 2−18

b02 b12 b22 b32[6]
c0
2 c1

2 c2
2[−6, 10] c3

2
d0
2[−13] d1

2[7, 13] d2
2[−1] d3

2[−19, 20, 23, 24,−25]

3 17 27 a0
3[−8] a1

3 a2
3 a3

3[14,−18] 2−13

b03 b13[−28,−29,−30,−31, 32] b23[−2] b33
c0
3 c1

3 c2
3 c3

3[6]
d0
3 d1

3 d2
3[−6, 10] d3

3
4 27 3 a0

4 a1
4 a2

4 a3
4 2−10

b04[−3] b14 b24 b34[9,−13]
c0
4 c1

4[−28,−29,−30,−31, 32] c2
4[−2] c3

4
d0
4 d1

4 d2
4 d3

4[6]

5 3 23 a0
5 a1

5 a2
5 a3

5[29] 2−10

b05 b15 b25 b35
c0
5[−3] c1

5 c2
5 c3

5[9,−13]
d0
5 d1

5[−28,−29,−30,−31, 32] d2
5[−2] d3

5
6 23 17 a0

6 a1
6[−13,−14, 15] a2

6[−19] a3
6 2−8

b06 b16 b26 b36[20]
c0
6 c1

6 c2
6 c3

6
d0
6[−3] d1

6 d2
6 d3

6[9,−13]

7 17 27 a0
7 a1

7 a2
7 a3

7[−8] 2−6

b07 b17[−30,−31, 32] b27[−4] b37
c0
7 c1

7 c2
7 c3

7[20]
d0
7 d1

7 d2
7 d3

7
8 27 3 a0

8 a1
8 a2

8 a3
8 2−6

b08 b18 b28 b38[−3]
c0
8 c1

8[−30,−31, 32] c2
8[−4] c3

8
d0
8 d1

8 d2
8 d3

8[20]

9 28 19 a0
9 a1

9 a2
9 a3

9[7] 2−6

b09 b19 b29 b39
c0
9 c1

9 c2
9 c3

9[−3]
d0
9 d1

9[−30,−31, 32] d2
9[−4] d3

9
10 19 22 a0

10 a1
10[20] a2

10 a3
10 2−3

b010 b110 b210 b310[26]
c0
10 c1

10 c2
10 c3

10
d0
10 d1

10 d2
10 d3

10[−3]

11 22 7 a0
11 a1

11 a2
11 a3

11 2−2

b011 b111[10] b211 b311
c0
11 c1

11 c2
11 c3

11[26]
d0
11 d1

11 d2
11 d3

11
12 7 28 a0

12 a1
12 a2

12 a3
12 2−2

b012 b112 b212 b312
c0
12 c1

12[10] c2
12 c3

12
d0
12 d1

12 d2
12 d3

12[26]

13 28 19 a0
13 a1

13 a2
13 a3

13[13] 2−2

b013 b113 b213 b313
c0
13 c1

13 c2
13 c3

13
d0
13 d1

13[10] d2
13 d3

13
14 19 22 a0

14 a1
14 a2

14 a3
14 2−1

b014 b114 b214 b314[32]
c0
14 c1

14 c2
14 c3

14
d0
14 d1

14 d2
14 d3

14
15 22 7 a0

15 a1
15 a2

15 a3
15 2−1

b015 b115 b215 b315
c0
15 c1

15 c2
15 c3

15[32]
d0
15 d1

15 d2
15 d3

15

Cryptanalysis of the Compression Function of SIMD 163

Table 2. (continued)

16 7 28 a0
16 a1

16 a2
16 a3

16 2−1

b016 b116 b216 b316
c0
16 c1

16 c2
16 c3

16
d0
16 d1

16 d2
16 d3

16[32]

17 29 9 a0
17 a1

17 a2
17 a3

17[−9] 2−1

b017 b117 b217 b317
c0
17 c1

17 c2
17 c3

17
d0
17 d1

17 d2
17 d3

17
18 9 15 a0

18[−18] a1
18 a2

18 a3
18 2−2

b018 b118 b218 b318[−18]
c0
18 c1

18 c2
18 c3

18
d0
18 d1

18 d2
18 d3

18
19 15 5 a0

19 a1
19[1,−2] a2

19 a3
19 2−4

b019[−1] b119 b319 b319
c0
19 c1

19 c2
19 c3

19[−18]
d0
19 d1

19 d2
19 d3

19
20 5 29 a0

20 a1
20 a2

20 a3
20[−6] 2−5

b020 b120[6,−7] b220 b320
c0
20[−1] c1

20 c2
20 c3

20
d0
20 d1

20 d2
20 d3

20[−18]

21 4 13 a0
21[−10] a1

21 a2
21[−16, 20] a3

21[−31] 2−8

b021 b121 b221 b321[−10]
c0
21 c1

21[6,−7] c2
21 c3

21
d0
21[−1] d1

21 d2
21 d3

21
22 13 10 a0

22[−11,−23] a1
22 a2

22[−11,−12] a3
22 2−11

b022[−23] b122 b222[1,−29] b322[−12]
c0
22 c1

22 c2
22 c3

22[−10]
d0
22 d1

22[6,−7] d2
22 d3

22
23 10 25 a0

23[−21,−22] a1
23[−14, 19,−31] a2

23[−1,−21,−25] a3
23 2−16

b023[−1,−21] b123 b223[−21,−22] b323
c0
23[−23] c1

23 c2
23[1,−29] c3

23[−12]
d0
23 d1

23 d2
23 d3

23[−10]

24 25 4 a0
24 a1

24[−14,−18,−26] a2
24[−7, 12,−24] a3

24[−16, 19] 2−21

b024[−14,−15] b124[−7, 12,−24] b224[−14,−18,−26] b324
c0
24[−1,−21] c1

24 c2
24[−21,−22] c3

24
d0
24[−23] d1

24[−7] d2
24[1,−29] d3

24[−12]

In fact, we can also modify the conditions in a5 and a6, even a7 and a8,
but it’s more expensive and need to set many pre-conditions. It’s worth to note
that the conditions a1

2,11, a0
3,8, a3

3,14 and a3
3,18 can not be modified using the IV

modification, because the additional conditions needed to modify these bits are
contradict the fix conditions in Table 3. We can modify these four conditions by
the corresponding message. Due to the message expansion, we can not select the
message completely arbitrary. So we use the IV modification as much as possible
instead of message modification .

After the message/IV modification for IV and a1 ∼ a4, the differential path in
Table 3.2 holds with probability 2−116. This way, we can find a 25-bit free-start
near collision for the 20-step SIMD-256 with complexity 2116 which is lower than
the birthday attack.

164 H. Yu and X. Wang

Table 3. The sufficient conditions for the differential path in Table 3.2

a0 a0
0,13 = 0 a1

0,7 = 0, a1
0,10 = 0,

a1
0,13 = 0, a1

0,21 = 1,

a1
0,26 = 1

a2
0,1 = 0, a2

0,3 = 1,

a2
0,7 = 0, a2

0,32 = 1

a3
0,19 = 1, a3

0,20 = 0,

a3
0,23 = 0, a3

0,24 = 1,

a3
0,25 = 0

b0 b00,13 = 1 b10,7 = 0, b10,13 = 0 b20,1 = 1 b30,15 = a3
0,12, b30,19 = 1,

b30,20 = 0, b30,23 = 0,

b30,24 = 0, b30,25 = 1

c0 c1
0,21 = 1, c1

0,26 = 0 c2
0,3 = b20,3, c3

0,7 = b30,7

d0 d3
0,15 = 0

a1 a0
1,13 = 1 a1

1,7 = 1, a1
1,13 = 1,

a1
1,20 = a1

0,8, a1
1,21 =

a1
0,9, a1

1,22 = 1, a1
1,23 =

a1
0,11, a1

1,24 = a1
0,12

a2
1,6 = 0, a2

1,10 = 0,

a2
1,1 = 1, a2

1,26 = a2
0,14

a3
1,15 = 0, a3

1,19 = 1,

a3
1,20 = 1, a3

1,23 = 1,

a3
1,24 = 1, a3

1,25 = 1

a2 a0
2,23 = a0

1,17 a1
2,11 = 1, a1

2,12 = 1,

a1
2,13 = 1, a1

2,14 = 1,

a1
2,15 = 0

a2
2,6 = 1, a2

2,10 = 1,

a2
2,17 = 1

a3
2,1 = a3

1,27, a3
2,6 = 0,

a3
2,29 = a3

1,23

a3 a0
3,8 = 1 a1

3,28 = 0, a1
3,29 = 0,

a1
3,30 = 0, a1

3,31 = 0,

a1
3,32 = 1

a2
3,2 = 0 a3

3,6 = 1, a3
3,14 = 0,

a3
3,18 = 1

a4 a0
4,3 = a0

2,18 a1
4,28 = a1

3,1, a1
4,29 =

a1
3,2, a1

4,30 = a1
3,3,

a1
4,31 = b13,4, a1

4,32 =

a1
3,5

a2
4,2 = a2

3,7 a3
4,9 = a3

3,14, a3
4,13 =

a3
3,18, a3

4,26 = a3
3,2

a5 a0
5,3 = a0

4,32 a1
5,22 = a1

4,10, a1
5,23 =

a1
4,11, a1

5,24 = a1
4,12

a2
5,28 = a2

4,16 a3
5,29 = 0, a3

5,9 = a3
4,6,

a3
5,13 = a3

4,10

a6 a1
6,13 = 1, a1

6,14 = 1,

a1
6,15 = 0

a2
6,19 = 1 a3

6,20 = a3
4,17, a3

6,23 =

a3
5,17

a7 a1
7,30 = a1

5,7, a1
7,31 =

a1
5,8, a1

7,32 = a1
5,9 ⊕ 1

a2
7,4 = a2

5,13 a3
7,8 = 1, a3

7,20 = a3
6,3

a8 a1
8,30 = 1, a1

8,31 = 1,

a1
8,32 = 1

a2
8,4 = 1 a3

8,3 = 0, a3
8,11 = a3

7,12

a9 a1
9,1 = a1

8,24 a3
9,3 = 1, a3

9,7 = 0

a10 a1
10,20 = 0 a3

10,26 = 0

a11 a1
11,10 = 0 a3

11,26 = 1

a12 a1
12,10 = a1

11,3 a3
12,17 = a3

11,6

a13 a3
13,13 = 0

a14 a3
14,32 = a3

12,4

a15 a3
15,32 = a3

14,10

a16 a3
16,12 = a3

15,2

a17 a0
17,9 = a0

16,21 a3
17,9 = 1

a18 a0
18,18 = 1 a1

18,18 = a1
17,24,

a1
18,19 = a1

17,25

a3
18,18 = 0

a19 a0
19,1 = 0 a1

19,1 = 0, a1
19,2 = 1 a3

19,1 = a3
18,23, a3

19,18 =
1

a20 a0
20,1 = 1, a0

20,6 = a0
19,5,

a0
20,19 = 1

a1
20,6 = 0, a1

20,7 = 1 a2
20,12 = a2

19,11,

a2
20,16 = a2

19,15

a3
20,6 = 0, a3

20,27 =

a3
19,26

a21 a0
21,8 = 1, a0

21,10 = 1,

a0
21,30 = a0

20,7,

a1
21,6 = 1, a1

21,7 = 0 a2
21,8 = 1, a2

21,16 = 1,

a2
21,20 = 0, a2

21,30 =

a2
20,7, a2

21,31 = a2
20,8

a3
21,31 = 1, a3

21,10 = 0

a22 a0
22,11 = 1, a0

22,12 =

a0
21,9, a0

22,23 = 1

a1
22,4 = a1

21,1, a1
22,9 =

a1
21,6, a1

22,21 = a1
21,18

a2
22,1 = 0, a2

22,11 = 1,

a2
22,12 = 1, a2

22,15 =

a2
21,12, a2

22,23 = 1

a2
22,29 = 0,

a3
22,10 = 0, a3

22,12 = 1

a23 a0
23,1 = 0, a0

23,21 = 1,

a0
23,22 = 1 , a0

23,23 = 1

a1
23,14 = 1, a1

23,19 = 0,

a1
21,31 = 1

a2
23,1 = 1, a2

23,21 = 1,

a2
23,25 = 1, a2

23,29 = 1

a3
23,12 = 1

a24 a1
24,14 = 1, a1

24,18 = 1,

a1
24,26 = 1

a2
24,7 = 1, a2

24,12 = 0,

a2
24,24 = 1

a3
24,16 = 1, a3

24,19 = 0

Cryptanalysis of the Compression Function of SIMD 165

4 Free-Start Near Collision and Distinguishing Attack on
SIMD-512

4.1 Free-Start Near Collision Attack for the Compression Function
of 24-Step SIMD-512

In this section, we will show that finding a free-start near collision for the 24-
step SIMD-512 can be done with less effort than the birthday attack using our
differential path. Similar to the Section 3, we introduce the 1-bit difference in
chaining value of the 20-th step, and trace the difference in the forward and
backward direction using the modular difference method. We get a near-collision
differential path for 24-step SIMD-512 in Table 4 with probability about 2−364.
We utilize the message/IV modification technique to fulfill the 129 conditions in
IV and a1 ∼ a4. After the message/IV modification, the complexity to find a
51-bit free-start near collision for 24-step SIMD-512 is about 2235 operations.

4.2 A Differential Distinguisher for the Compression Function of
Full SIMD-512

Our strategy to find a differential path for the full SIMD-512 is a little different
from that of the 24-step near collision differential path. We start from 1-bit
difference in the Step 24 and trace this difference in backward direction. We
introduce the long difference bit carries from the Step 8 down to Step 3, and
shrink the difference bit carries from the Step 2 so that the Hamming weight of
the difference in IV as lower as possible. The differential distinguisher for the
full SIMD-512 compression function is shown in Table 5, and its most expensive
part focuses on Steps 3 to 9.

It’s worth to note that the bit carry in a7
3 of step 3 in Table 5 cross the 32-

th bit. The bit difference d7
2[4] cause the bit difference a7

3[−31,−32,−1, 2]. Let
t73 = (d7

2 + w7
2 + Φ(a7

2, b
7
2, c

7
2)) ≪ 27. In order to cause the bit carry across the

32-bit, we need set the additional conditions t73,31 = 1 and t73,32 = 1.
Let hj

i = (aj
i , b

j
i , c

j
i , d

j
i) denote the 128-bit outputs of the j − th ladder in

Step i, and hi = (h0
i , h

1
i , ..., h

7
i) is the 1024-bit output of the Step i of SIMD-512

compression function. Let xi = (x0
i , x

1
i , ..., x

7
i) be a 256-bit value, and x can be

a, b, c ,d and w. There are 941 sufficient conditions in Table 5. We divided those
conditions into two parts. The first part is from Step 0 to 9 and the second part
is from Step 10 to 36. The number of conditions in the first part is 586 and
that in the second part is 355. The conditions distribution of the first part is as
follows.

So we start from the chaining values h8 = (a8, b8, c8, d8) and go both in the
backward and forward direction to compute the IV and output h36. The 320
conditions in a8, b8, c8 and d8 can be fulfilled by choosing the chaining variables
h8 randomly. And the 466 conditions in d4, d5, d6 and d7 can be modified by
the message words w8, w7, w6 and w5.

The detail of our distinguishing algorithm for the full compression function of
SIMD-512 is as follows.

166 H. Yu and X. Wang

Table 4. The near-collision differential path for 24-step SIMD-512

step r s h0
i h1

i h2
i h3

i h4
i h5

i h6
i h7

i pr

0 a0
0[6] a1

0 a2
0[−17] a3

0[24] a4
0[2, −11] a5

0 a6
0[32] a7

0[−18] 2−34

b00[−8] b10[−1, ..., −7, 8, 15] b20 b30[−15] b40 b50[−16] b60[−28] b70[−18, 27]
c00[28] c10 c20 c30[−7] c40[21] c50[−14] c60 c70
d0
0 d1

0[−18] d2
0[−4] d3

0[29] d4
0 d5

0[−10, 23] d6
0[−31] d7

0[6, 12]

1 3 23 a0
1 a1

1 a2
1 a3

1 a4
1 a5

1[−1] a6
1[−22] a7

1[−29, 30] 2−29

b01[9] b11 b21[−20] b31[27] b41[5, −14] b51 b61[3] b71[−21]
c01[−8] c11[−1, ... − 7, 8, 15] c21 c31[−15] c41 c51[−16] c61[−28] c71[−18, 27]
d0
1[28] d1

1 d2
1 d3

1[−7] d4
1[21] d5

1[−14] d6
1 d7

1
2 23 17 a0

2 a1
2[25] a2

2 a3
2[−25] a4

2[6] a5
2[−31] a6

2 a7
2 2−30

b02 b12 b22 b32 b42 b52[−24] b62[−13] b72[−20, 21]
c2[9]0 c12 c22[−20] c32[27] c42[5, −14] c52 c62[3] c72[−21]
d0
2[−8] d1

2[−1, ..., −7, 8, 15] d2
2 d3

2[−15] d4
2 d5

2[−16] d6
2[−28] d7

2[−18, 27]

3 17 27 a0
3[−3] a1

3[28] a2
3 a3

3 a4
3 a5

3[−11] a6
3 a7

3[−13, 22] 2−19

b03 b13[10] b23 b33[−10] b43[23] b53[−16] b63 b73
c03 c13 c23 c33 c43 c53[−24] c63[−13] c73[−20, 21]
d0
3[9] d1

3 d2
3[−20] d3

3[27] d4
3[5, −14] d5

3 d6
3[3] d7

3[−21]

4 27 3 a0
4[−12, −13, a1

4 a2
4 a3

4 a4
4 a5

4 a6
4 a7

4 2−17

−14, 15]
b04[−30] b14[23] b24 b34 b44 b54[−6] b64 b74[−8, 17]
c04 c14[10] c24 c34[−10] c44[23] c54[−16] c64 c74
d0
4 d1

4 d2
4 d3

4 d4
4 d5

4[−24] d6
4[−13] d7

4[−20, 21]

5 3 23 a5 a0
5 a1

5 a2
5 a3

5 a4
5 a5

5[4, −5] a6
5[11] 2−16

b05[−15, −16, b15 b25 b35 b45 b55 b65 b75−17, 18]
c05[−30] c15[23] c25 c35 c45 c55[−6] c65 c75[−8, 17]
d0
5 d1

5[10] d2
5 d3

5[−10] d4
5[23] d5

5[−16] d6
5 d7

5
6 23 17 a0

6 a1
6 a2

6 a3
6[−27] a4

6[8] a5
6[−1] a6

6 a7
6 2−15

b06 b16 b26 b36 b46 b56 b66[27, −28] b76[2]
c06[−15, −16, c16 c26 c36 c46 c56 c66 c76−17, 18]
d0
6[−30] d1

6[23] d2
6 d3

6 d4
6 d5

6[−6] d6
6 d7

6[−8, 17]

7 17 27 a0
7 a1

7 a2
7 a3

7 a4
7 a5

7[−1] a6
7 a7

7[−3] 2−12

b07 b17 b27 b37[−12] b47[25] b57[−18] b67 b77
c07 c17 c27 c37 c47 c57 c67[27, −28] c77[2]
d0
7[−15, −16, d1

7 d2
7 d3

7 d4
7 d5

7 d6
7 d7

7−17, 18]
8 27 3 a0

8[−18, −19, a1
8 a2

8 a3
8 a4

8 a5
8 a6

8 a7
8 2−12

−20, 21]
b08 b18 b28 b38 b48 b58[−28] b68 b78[−30]
c08 c18 c28 c38[−12] c48[25] c58[−18] c68 c78
d0
8 d1

8 d2
8 d3

8 d4
8 d5

8 d6
8[27, −28] d7

8[2]

9 28 19 a0
9 a1

9 a2
9 a3

9 a4
9 a5

9 a6
9 a7

9[21] 2−10

b09[−14, −15, b19 b29 b39 b49 b59 b69 b79−16, 17]
c09 c19 c29 c39 c49 c59[−28] c69 c79[−30]
d0
9 d1

9 d2
9 d3

9[−12] d4
9[25] d5

9[−18] d6
9 d7

9
10 19 22 a0

10 a1
10 a2

10 a3
10[−2] a4

10[15] a5
10 a6

10 a7
10 2−9

b010 b110 b210 b310 b410 b510 b610 b710[8]
c010[−14, −15, c110 c210 c310 c410 c510 c610 c710−16, 17]
d0
10 d1

10 d2
10 d3

10 d4
10 d5

10[−28] d6
10 d7

10[−30]

11 22 7 a0
11 a1

11 a2
11 a3

11 a4
11 a5

11[−3] a6
11 a7

11 2−8

b011 b111 b211 b311[−24] b411[5] b511 b611 b711
c011 c111 c211 c311 c411 c511 c611 c711[8]
d0
11[−14, −15, d1

11 d2
11 d3

11 d4
11 d5

11 d6
11 d7

11−16, 17]
12 7 28 a0

12 a1
12 a2

12 a3
12 a4

12 a5
12 a6

12 a7
12 2−4

b012 b112 b212 b312 b412 b512[−10] b612 b712
c012 c112 c212 c312[−24] c412[5] c512 c612 c712
d0
12 d1

12 d2
12 d3

12 d4
12 d5

12 d6
12 d7

12[8]

13 28 19 a0
13 a1

13 a2
13 a3

13 a4
13 a5

13 a6
13 a7

13[27] 2−4

b013 b113 b213 b313 b413 b513 b613 b713
c013 c113 c213 c313 c413 c513[−10] c613 c713
d0
13 d1

13 d2
13 d3

13[−24] d4
13[5] d5

13 d6
13 d7

13
14 19 22 a0

14 a1
14 a2

14 a3
14 a4

14[27] a5
14 a6

14 a7
14 2−3

b014 b114 b214 b314 b414 b514 b614 b714[14]
c014 c114 c214 c314 c414 c514 c614 c714
d0
14 d1

14 d2
14 d3

14 d4
14 d5

14[−10] d6
14 d7

14
15 22 7 a0

15 a1
15 a2

15 a3
15 a4

15 a5
15 a6

15 a7
15 2−2

b015 b115 b215 b315 b415[17] b515 b615 b715
c015 c115 c215 c315 c415 c515 c615 c715[14]
d0
15 d1

15 d2
15 d3

15 d4
15 d5

15 d6
15 d7

15

Cryptanalysis of the Compression Function of SIMD 167

Table 4. (continued)

step r s h0
i h1

i h2
i h3

i h4
i h5

i h6
i h7

i pr

16 7 28 a0
16 a1

16 a2
16 a3

16 a4
16 a5

16 a6
16 a7

16 2−2

b016 b116 b216 b316 b416 b516 b616 b716
c016 c116 c216 c316 c416[17] c516 c616 c716
d0
16 d1

16 d2
16 d3

16 d4
16 d5

16 d6
16 d7

16[14]

17 29 9 a0
17 a1

17 a2
17 a3

17 a4
17 a5

17 a6
17 a7

17[23] 2−2

b017 b117 b217 b317 b417 b517 b617 b717
c017 c117 c217 c317 c417 c517 c617 c717
d0
17 d1

17 d2
17 d3

17 d4
17[17] d5

17 d6
17 d7

17
18 9 15 a0

18 a1
18 a2

18 a3
18 a4

18 a5
18 a6

18 a7
18 2−1

b018 b118 b218 b318 b418 b518 b618 b718[32]
c018 c118 c218 c318 c418 c518 c186 c718
d0
18 d1

18 d2
18 d3

18 d4
18 d5

18 d6
18 d7

18
19 15 5 a0

19 a1
19 a2

19 a3
19 a4

19 a5
19 a6

19 a7
19 2−1

b019 b119 b219 b319 b419 b519 b619 b719
c019 c119 c219 c319 c419 c519 c619 c719[32]
d0
19 d1

19 d2
19 d3

19 d4
19 d5

19 d6
19 d7

19
20 5 29 a0

20 a1
20 a2

20 a3
20 a4

20 a5
20 a6

20 a7
20 2−1

b020 b120 b220 b320 b420 b520 b620 b720
c020 c120 c220 c320 c420 c520 c620 c720
d0
20 d1

20 d2
20 d3

20 d4
20 d5

20 d6
20 d7

20[32]

21 29 9 a0
21 a1

21 a2
21 a3

21 a4
21 a5

21 a6
21 a7

21[9] 2−1

b021 b121 b221 b321 b421 b521 b621 b721
c021 c121 c221 c321 c421 c521 c621 c721
d0
21 d1

21 d2
21 d3

21 d4
21 d5

21 d6
21 d7

21
22 9 15 a0

22 a1
22 a2

22 a3
22 a4

22 a5
22 a6

22[18] a7
22 2−2

b022 b122 b222 b322 b422 b522 b622 b722[18]
c022 c122 c222 c322 c422 c522 c622 c722
d0
22 d1

22 d2
22 d3

22 d4
22 d5

22 d6
22 d7

22
23 15 5 a0

23[−1, −2, 3] a1
23 a2

23 a3
23 a4

23 a5
23 a6

23 a7
23 2−5

b023 b123 b223 b323 b423 b523 b623[1] b723
c023 c123 c223 c323 c423 c523 c623 c723[18]
d0
23 d1

23 d2
23 d3

23 d4
23 d5

23 d6
23 d7

23
24 5 29 a0

24 a1
24 a2

24[6] a3
24 a4

24 a5
24 a6

24 a7
24 2−6

b024[−6, −7, 8] b124 b224 b324 b424 b524 b624 b724
c024 c124 c224 c324 c424 c524 c624[1] c724
d0
24 d1

24 d2
24 d3

24 d4
24 d5

24 d6
24 d7

24[18]

25 4 13 a0
25 a1

25[10] a2
25[−30] a3

25[5] a4
25[15, −24] a5

25 a6
25[13] a7

25 2−11

b025 b125 b225[10] b325 b425 b525 b625 b725
c025[−6, −7, 8] c125 c225 c325 c425 c525 c625 c725
d0
25 d1

25 d2
25 d3

25 d4
25 d5

25 d6
25[1] d7

25
26 13 10 a0

26 a1
26[−5, 11, a2

26 a3
26[25] a4

26[23] a5
26[−26] a6

26[−6, 11, 18] a7
26[5, 2−23

25, 28] −11, −28]
b026 b126[23] b226[−11] b326[18] b426[−5, 28] b526 b626[26] b726
c026 c126 c226[10] c326 c426 c526 c626 c726
d0
26[−6, −7, 8] d1

26 d2
26 d3

26 d4
26 d5

26 d6
26 d7

26
27 10 25 a0

27[−6, 15, 31] a1
27[−16, 21, 28] a2

27[−4] a3
27[1, −32] a4

27[3, 14] a5
27[−7] a6

27[3, 6, a7
27 2−36

−15, 21]
b027 b127[3, 6, −15, 21] b227 b327[3] b427[1] b527[−4] b627[−16, 21, 28] b727[−6, 15, −21]
c027 c127[23] c227[−11] c327[18] c427[−5, 28] c527 c627[26] c727
d0
27 d1

27 d2
27[10] d3

27 d4
27 d5

27 d6
27 d7

27
28 25 4 a0

28[7, 28] a1
28 a2

28[−9, 15, a3
28[1], a4

28[8, 24, −31], a5
28[−9, a6

28[−3, −29] a7
28[16] 2−49

28, 31] 21, 27]
b028[8, 24, −31] b128[−9, 14, 21] b228[−29] b328[−25, 26] b428[7, 28] b528[−32] b628[−8, 14, 28, 31] b728
c028 c128[3,6,-15,21] c228 c328[3] c428[1] c528[−4] c628[−16, 21, 28] c728[−6, 15, −21]
d0
28 d1

28[23] d2
28[−11] d3

28[18] d4
28[−5, 28] d5

28 d6
28[26] d7

28

1. Select a 1024-bit chaining values h8 and a 1024-bit message M randomly,
and let h′

8 = h8 ⊕Δh8 where Δh8 is the difference in Step 8. Modify h8 to
satisfy the 146 conditions. Compute the chaining values h7 to h4 and h′

7 to
h′

4 in the backward directions.
2. Modify the conditions in d7, d6, d5 and d4 by h8 and the expanded message

w8, w7, w6 and w5 respectively. Update the message M according to the 1024-
bit expanded message w5, w6, w7 and w8 and compute the new expanded
message W .

3. Compute the chaining values h3 to h0 and h′
3 to h′

0 in the backward direc-
tions. If Δh0 is equal to the fixed difference ΔIV in Table 5, go to Step 4;
Otherwise, return Step 1.

168 H. Yu and X. Wang

Table 5. The differential path for the full SIMD-512

step r s h0
i h1

i h2
i h3

i h4
i h5

i h6
i h7

i pr

0 a0
0 a1

0[23, −24] a2
0[−3, a3

0[−6] a4
0[11, 20, a2

5 a6
0[−4, a7

0 2−50

26, −27] −21, 29] −23, 32]
b00 b10[1, 2, 3, b20 b30 b40 b50[−7, −8, 9] b60[10, −25] b70[4, 7,

−4, −15] −11, −13,
24, −27]

c0[3]0 c10 c20[−17, 18] c30[−8, 9, 26] c40[−3, −5, 18] c50[4, 5, c60 c70−17, 32]
d0
0 d1

0 d2
0[8] d3

0[−4, 15] d4
0 d5

0[−23] d6
0 d7

0[3, −12,

16, 30]
1 3 23 a0

1 a1
1 a2

1[−18, −19, a1[−27, −31] a1[11] a1 a1 a1[21] 2−55

..., 22, 31]
b01 b11[26, −27] b21[−6, b1[−9] b1[14, 23, b1 b1[3, −7, b1

29, −30] −24, 32] −26]
c01 c11[1, 2, 3, c21 c1 c1 c1[−7, −8, 9] c1[10, −25] c1[4, 7, −11,

−4, −15] −13, 24, −27]
d1[3]0 d1

1 d2
1[−17, 18] d1[−8, 9, 26] d1[−3, −5, 18] d1[4, 5, d1 d1

−17, 32]
2 23 17 a0

2[−20, a1
2[19, −21] a2

2 a3
2[11, 25] a4

2[3, 20, 21, a5
2[−2, a6

2 a7
2 2−56

−21, 22] 22, 23, −24] −17, 21]
b02 b12 b22[−9, −10, b32[−18, −22] b42[2] b52 b62 b72[12]

..., 13, 22]
c02 c12[26, −27] c22[−6, 29, −30] c32[−9] c42[14, 23, c52 c62[3, −7, c72

29, −30] −24, 32] −26]
d0
2 d1

2[1, 2, 3, d2
2 d3

2 d4
2 d5

2[−7, −8, 9] d6
2[10, −25] d7

2[4, 7, −11,

−4, −15] −13, 24, −27]
3 17 27 a0

3[17, 18, a1
3[−14, −15, a2

3 a3
3 a4

3[−17] a5
3[2] a6

3 a7
3[8, −9, 22, 2−75

..., −27] ..., 19] 23, ..., −30,
−31, −32,
−1, 2]

b03[−5, −6, 7] b13[4, −6] b23 b33[10, 28] b43[5, 6, 7 b53[−2, 6, −19] b63 b73
8, −9, 20]

c03 c13 c23[−9, −10, c33[−18, −22] c43[2] c53 c63 c73[12]
..., 13, 22]

d0
3 d1

3[26, −27] d2
3[−6, d3

3[−9] d4
3[14, 23, d5

3 d6
3[3, −7, d7

3
29, −30] −24, 32] −26]

4 27 3 a0
4 a1

4[−22, −29] a2
4[16, −32], a3

4 a4
4 a5

4 a6
4[−6, −7, a7

4 2−68

−8, −9]
b04[12, 13, b14[−9, −10, b24 b34 b44[−12] b54[29] b64 b74[3, −4, 17,

..., −22] ..., 14] 18, ..., −25,
−26, ..., 29]

c04[−5, −6, 7] c14[4, −6] c24 c34[10, 28] c44[5, 6, 7 c54[−2, 6, −19] c64 c74
8, −9, 20]

d0
4 d1

4 d2
4[−9, −10, d3

4[−18, −22] d4
4[2] d5

4 d6
4 d7

4[12]
..., 13, 22]

5 3 23 a0
5 a1

5 a2
5[13, −32] a3

5[−14] a4
5 a5

5 a6
5[−30, 32] a7

5[−14, −15] 2−65

b05 b15[−25, 32] b25[−3, 19] b35 b45 b55 b65[−9, −10, b75−11, −12]
c05[12, 13, c15[−9, −10, c25 c35 c45[−12] c55[29] c65 c75[3, −4, 17,

..., −22] ..., 14] 18, ..., −25,
−26, ..., 29]

d0
5[−5, −6, 7] d1

5[4, −6] d2
5 d3

5[10, 28] d4
5[5, 6, 7 d5

5[−2, 6, −19] d6
5 d7

5
8, −9, 20]

6 23 17 a0
6[3, −4, 22] a1

6 a2
6 a3

6[13, −27, a4
6[22, 23, a5

6[−19] a6
6[−29] a7

6 2−71

−28, ..., 32] ..., −31]
b06 b16 b26[4, −23] b36[−5] b46 b56 b66[−21, 23] b76[−5, −6]
c06 c16[−25, 32] c26[−3, 19] c36 c46 c56 c66[−9, −10, c76−11, −12]
d0
6[12, 13, d1

6[−9, −10, d2
6 d3

6 d4
6[−12] d5

6[29] d6
6 d7

6[3, −4, 17,

..., −22] ..., 14] 18, ..., −25,
−26, ..., 29]

7 17 27 a0
7[8, 9, −10] a1

7 a2
7 a7[−27]3 a4

7 a5
7[−24, −25, a6

7 a7
7[−21, −22, 2−51

..., 28] ..., 25]
b07[7, 20, −21] b17 b27 b37[−12, −13, b47[7, 8, b57[−4] b67[−14] b77

...17, 30] ..., −16]
c07 c17 c27[4, −23] c37[−5] c47 c57 c67[−21, 23] c77[−5, −6]
d0
7 d1

7[−25, 32] d2
7[−3, 19] d3

7 d4
7 d5

7 d6
7[−9, −10, d7

7−11, −12]
8 27 3 a0

8[12] a1
8[−28] a2

8[−6] a3
8 a4

8 a5
8[28] a6

8[12] a7
8 2−47

b08[3, 4, −5] b18 b28 b38[−22] b48 b58[−19, −20, b68 b78[−16, −17,

..., 23] ..., 20]
c08[7, 20, −21] c18 c28 c38[−12, −13, c48[7, 8, c58[−4] c68[−14] c78

...17, 30] ..., −16]
d0
8 d1

8 d2
8[4, −23] d3

8[−5] d4
8 d5

8 d6
8[−21, 23] d7

8[−5, −6]

9 28 19 a0
9 a1

9[−15] a2
9[−10, 23] a3

9 a4
9 a5

9 a6
9[10] a7

9[7, −26] 2−48

b09[8] b19[−24] b29[−2] b39 b49 b59[24] b69[8] b79
c09[3, 4, −5] c19 c29 c39[−22] c49 c59[−19, −20, c69 c79[−16, −17,

..., 23] ..., 20]
d0
9[7, 20, −21] d1

9 d2
9 d3

9[−12, −13, d4
9[7, 8, d5

9[−4] d6
9[−14] d7

9
...17, 30] ..., −16]

10 19 22 a0
10 a1

10 a2
10 a3

10[20] a4
10 a5

10 a6
10[−4] a7

10 2−27

b010 b110[−2] b210[10, −29] b310 b410 b510 b610[29] b710[−13, 26]
c010[8] c110[−24] c210[−2] c310 c410 c510[24] c610[8] c710
d0
10[3, 4, −5] d1

10 d2
10 d3

10[−22] d4
10 d5

10[−19, −20, d6
10 d7

10[−16, −17,

...23] ..., 20]

Cryptanalysis of the Compression Function of SIMD 169

Table 5. (continued)

step r s h0
i h1

i h2
i h3

i h4
i h5

i h6
i h7

i pr

11 22 7 a0
11 a1

11 a2
11 a3

11[−29] a4
11 a5

11 a6
11 a11[23]7 2−15

b011 b111 b211 b311[10] b411 b511 b611[−26] b711
c011 c111[−2] c211[10, −29] c311 c411 c511 c611[29] c711[−13, 26]
d0
11[8] d1

11[−24] d2
11[−2] d3

11 d4
11 d5

11[24] d6
11[8] d7

11
12 7 28 a0

12[4] a1
12[−20] a2

12 a3
12 a4

12 a5
12[−20, −21, 22] a6

12 a7
12 2−15

b012 b112 b212 b312[−4] b412 b512 b612 b712[30]
c012 c112 c212 c312[10] c412 c512 c612[−26] c712
d0
12 d1

12[−2] d2
12[10, −29] d3

12 d4
12 d5

12 d12[29]6 d7
12[−13, 26]

13 28 19 a0
13 a1

13[−21] a2
13[−29, −30, 31] a3

13 a4
13 a5

13 a6
13 a7

13[13] 2−14

b013[32] b113[−16] b213 b313 b413 b513[−16, −17, 18] b613 b713
c013 c113 c213 c313[−4] c413 c513 c613 c713[30]
d0
13 d1

13 d2
13 d2

13[10] d4
13 d5

13 d6
13[−26] d7

13
14 19 22 a0

14 a1
14 a2

14[21] a3
14 a4

14 a5
14 a6

14 a7
14 2−13

b014 b114[−8] b214[−16, −17, 18] b314 b414 b514 b614 b714[32]
c014[32] c114[−16] c214 c314 c414 c514[−16, −17, 18] c614 c714
d0
14 d1

14 d2
14 d3

14[−4] d4
14 d5

14 d6
14 d7

14[30]

15 22 7 a0
15 a1

15 a2
15 a3

15[6] a4
15 a5

15 a6
15 a7

15[5] 2−12

b015 b115 b215[11] b315 b415 b515 b615 b715
c015 c115[−8] c215[−16, −17, 18] c315 c415 c515 c615 c715[32]
d0
15[32] d1

15[−16] d2
15 d3

15 d4
15 d5

15[−16, −17, 18] d6
15 d7

15
16 7 28 a0

16[−28] a1
16 a2

16 a3
16 a4

16 a5
16[12] a6

16 a7
16 2−9

b016 b116 b216 b316 b416 b516 b616 b716[12]
c016 c116 c216[11] c316 c416 c516 c616 c716
d0
16 d1

16[−8] d2
16[16] d3

16 d4
16 d5

16 d6
16 d7

16[32]

17 29 9 a0
17 a1

17[−17] a2
17 a3

17 a4
17 a5

17 a6
17 a7

17 2−5

b017[−25] b117 b217 b317 b417 b517[9] b617 b717
c017 c117 c217 c317 c417 c517 c617 c717[12]
d0
17 d1

17 d2
17[11] d3

17 d4
17 d5

17 d6
17 d7

17
18 9 15 a0

18 a1
18 a2

18 a3
18 a4

18 a5
18 a6

18 a7
18 2−4

b018 b118[−26] b218 b318 b418 b518 b618 b718
c018[−25] c118 c218 c318 c418 c518[9] c618 c718
d0
18 d1

18 d2
18 d3

18 d4
18 d5

18 d6
18 d7

18[12]

19 15 5 a0
19 a1

19 a2
19 a3

19 a4
19 a5

19 a6
19 a7

19[17] 2−4

b019 b119 b219 b319 b419 b519 b619 b719
c019 c119[−26] c219 c319 c419 c519 c619 c719
d0
19[−25] d1

19 d2
19 d3

19 d4
19 d5

19[9] d6
19 d7

19
20 5 29 a0

20 a1
20 a2

20 a3
20 a4

20 a5
20[6] a6

20 a7
20 2−3

b020 b120 b220 b320 b420 b520 b620 b720[22]
c020 c120 c220 c320 c420 c520 c620 c720
d0
20 d1

20[−26] d2
20 d3

20 d4
20 d5

20 d6
20 d7

20
21 29 9 a0

21 a1
21 a2

21 a3
21 a4

21 a5
21 a6

21 a7
21 2−2

b021 b121 b221 b321 b421 b521[3] b621 b721
c021 c121 c221 c321 c421 c521 c621 c721[22]
d0
21 d1

21 d2
21 d3

21 d4
21 d5

21 d6
21 d7

21
22 9 15 a0

22 a1
22 a2

22 a3
22 a4

22 a5
22 a6

22 a7
22 2−2

b022 b122 b222 b322 b422 b522 b622 b722
c022 c122 c222 c322 c422 c522[3] c622 c722
d0
22 d1

22 d2
22 d3

22 d4
22 d5

22 d6
22 d22[22]7

23 15 5 a0
23 a1

23 a2
23 a3

23 a4
23 a5

23 a6
23 a7

23[27] 2−2

b023 b123 b223 b323 b423 b523 b623 b723
c023 c123 c223 c323 c423 c523 c623 c723
d0
23 d1

23 d2
23 d3

23 d4
23 d5

23[3] d6
23 d7

23
24 5 29 a0

24 a1
24 a2

24 a3
24 a4

24 a5
24 a6

24 a7
24 2−1

b024 b124 b224 b324 b424 b524 b624 b724[32]
c024 c124 c224 c324 c424 c524 c624 c724
d0
24 d1

24 d2
24 d3

24 d4
24 d5

24 d6
24 d7

24
25 4 13 a0

25 a1
25 a2

25 a3
25 a4

25 a5
25 a6

25 a7
25 2−1

b025 b125 b225 b325 b425 b525 b625 b725
c025 c125 c225 c325 c425 c525 c625 c725[32]
d0
25 d1

25 d2
25 d3

25 d4
25 d5

25 d6
25 d7

25
26 13 10 a0

26 a1
26 a2

26 a3
26 a4

26 a5
26 a6

26 a7
26 2−1

b026 b126 b226 b326 b426 b526 b626 b726
c026 c126 c226 c326 c426 c526 c626 c726
d0
26 d1

26 d2
26 d3

26 d4
26 d5

26 d6
26 d7

26[32]

27 10 25 a0
27 a1

27 a2
27 a3

27 a4
27 a5

27 a6
27 a7

27[25] 2−1

b027 b127 b227 b327 b427 b527 b627 b727
c027 c127 c227 c327 c427 c527 c627 c727
d0
27 d1

27 d2
27 d3

27 d4
27 d5

27 d6
27 d7

27
28 25 4 a0

28 a1
28 a2

28 a3
28[18] a4

28 a5
28 a6

28 a7
28 2−2

b028 b128 b228 b328 b428 b528 b628 b728[18]
c028 c128 c228 c328 c428 c528 c628 c728
d0
28 d1

28 d2
28 d3

28 d4
28 d5

28 d6
28 d7

28
29 4 13 a0

29 a1
29 a2

29[22] a3
29 a4

29 a5
29 a6

29 a7
29 2−3

b029 b129 b229 b329[22] b429 b529 b629 b729
c029 c129 c229 c329 c429 c529 c629 c729[18]
d0
29 d1

29 d2
29 d3

29 d4
29 d5

29 d6
29 d7

29

170 H. Yu and X. Wang

Table 5. (continued)

step r s h0
i h1

i h2
i h3

i h4
i h5

i h6
i h7

i pr

30 13 10 a0
30 a1

30 a2
30 a3

30 a4
30[3] a5

30 a6
30 a7

30 2−4

b030 b130 b230[3] b330 b430 b530 b630 b730
c030 c130 c230 c330[22] c430 c530 c630 c730
d0
30 d1

30 d2
30 d3

30 d4
30 d5

30 d6
30 d7

30[18]

31 10 25 a0
31 a1

31 a2
31 a3

31 a4
31 a5

31 a6
31[13] a7

31[−11, 12] 2−6

b031 b131 b231 b331 b431[13] b531 b631 b731
c031 c131 c231[3] c331 c431 c531 c631 c731
d0
31 d1

31 d2
31 d3

31[22] d4
31 d5

31 d6
31 d7

31
32 25 4 a0

32 a1
32 a2

32 a3
32[26] a4

32[4] a5
32[6] a6

32 a7
32 2−8

b032 b132 b232 b332 b432 b532 b632[6] b732[−4, 5]
c032 c132 c232 c332 c432[13] c532 c632 c732
d0
32 d1

32 d2
32[3] d3

32 d4
32 d5

32 d6
32 d7

32
33 4 13 a0

33[10] a1
33[−4, 8] a2

33[−7] a3
33[−19] a4

33[−1, 10, 24] a5
33 a6

33[−4, 13, a7
33 2−19

−17, 30]
b033 b033 b233 b333[30] b433[8] b533[10] b633 b733
c033 c033 c233 c333 c433 c533 c633[6] c733[−4, 5]
d0
33 d0

33 d2
33 d3

33 d4
33[13] d5

33 d6
33 d7

33
34 13 10 a0

34 a1
34[−17, 25, a2

34 a3
34[5, −14, 23] a4

34[23, −32] a5
34[17, −20] a6

34[−3, −17, a7
34[2, −5, 17, 2−37

−30] 20, 21] 21, −22]
b034[23] b134[−17, 21] b234[−20] b334[−32] b434[5, −14, 23] b534 b634[11, −17, b734

26, −30]
c034 c134 c234 c334[30] c434[8] c534[10] c634 c734
d0
34 d1

34 d2
34 d3

34 d4
34 d5

34 d6
34[6] d7

34[−4, 5]

35 10 25 a0
35[1, −10, a1

35[27, −30] a2
35[10, −13, a3

35[1, 12, −15, a4
35[11, −28] a5

35[3, −8, 25, a6
35[31] a7

35[1, −24, 29] 2−59

28] −27, 30, 31] 19, 27, −31] −27, 29, 30]
b035 b135[3, −8, b235 b335[1, 15, −24] b435[1, −10] b535[27, −30] b635[−13, −27, b735[12, −15,

−27] 30, 31] 27, 31, −32]
c035[23] c135[−17, 21] c235[−20] c335[−32] c435[5, −14, 23] c535 c635[11, −17, c735

26, −30]
d0
35 d1

35 d2
35 d3

35[30] d4
35[8] d5

35[10] d6
35 d7

35
36 25 4 a0

36[20, −23] a1
36[−3, 26] a2

36[5, −8, 13, a3
36[2, 3, −6, −8, a4

36[−1, 12, a5
36[4, 14, a6

36[−17, 22, 26] a7
36[2, 7, 2−86

20, −24, 26] 19, 20, 23, 24] −20, 22, 23, 28] −21, −27] 20, 24]
b036[−3, 21, b136[20, −23] b236[3, −6, b336[5, −8, 12, b436[4, −21] b536[−1, 18, b636[24] b736[−17, 22, 26]

26] −20, 23, 24] 20, −24, 26] −20, 22, 23, 28]
c036 c136[3, −8, c236 c336[1, 15, −24] c436[1, −10] c536[27, −30] c636[−13, −27, c736[12, −15,

−27] 30, 31] 27, 31, −32]
d0
36[23] d1

36[−17, 21] d2
36[−20] d3

36[−32] d4
36[5, −14, 23] d5

36 d6
36[11, −17, d7

36
26, −30]

4. Compute h9 to h36 and h′
9 to h′

36 in the forward direction using h8, h′
8 and

the expanded message W . If the differences Δh36 is equal to the fixed output
difference in Table 5, stop; Otherwise, go back to Step 1.

By running the algorithm above, we can find a pair (M, IV) and (M, IV ′)
which has the fixed input and output differences in Table 5 with about 2475

SIMD-512 compression function computations. By using the more sophisticated
message/IV modification techniques, the complexity can be improved further.
But for a random function with output length n-bit, to find a plain pair (P, P ′)
which satisfy the fixed input and output difference has the probability 2−n.
Furthermore, our differential distinguisher is applicable for both the compression
function and the final compression function of SIMD-512.

5 Conclusions

In this paper, we find some differential paths using the modular difference
method for the reduced and full SIMD compression functions. Based on our
differential path, we give the free-start near collision and distinguisher attack
for the SIMD. Our attack does not contract with any security claims of the
designers.

Cryptanalysis of the Compression Function of SIMD 171

References

1. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

2. Khovratovich, D., Nikolic, I.: Rotational Cryptanalysis of ARX. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer, Heidelberg (2010)

3. Mendel, F., Nad, T.: A distinguisher for the compression function of SIMD-512.
In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 219–232.
Springer, Heidelberg (2009)

4. Leurent, G., Bouillaguet, C., Fouque, P.A.: SIMD Is a Message Digest, Submission
to NIST(round 2) (2009)

5. National Institute of Standards and Technoloy: Annoucing Request for Candidate
Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family.,
http://nist.gov

6. Nikolić, I., Pieprzyk, J., et al.: Rotational Cryptanalysis of (Modified) Versions of
BMW and SIMD, http://ehash.iaik.tugraz.at/wiki/SIMD

7. Wang, X.Y., Yu, H.B.: How to break MD5 and other hash functions. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

8. Wang, X.Y., Yin, Y.L., Yu, H.B.: Finding collisions in the full SHA-1. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://nist.gov
http://ehash.iaik.tugraz.at/wiki/SIMD

Electronic Cash with Anonymous User

Suspension

Man Ho Au, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{aau,wsusilo,ymu}@uow.edu.au

Abstract. Electronic cash (E-cash) is the digital counterpart of cash
payment. They allow users to spend anonymously unless they “dou-
ble spend” their electronic coins. However, it is not possible to prevent
users from misbehaving under some other subjective definitions of mis-
behavior, such as money laundering. One solution is to incorporate a
trusted third party (TTP), which, upon complaint, uses its power to
deanonymize the suspected user. This solution, known as fair e-cash, is
not fully satisfactory since additional measure has to be taken to stop
misbehaving users from further abusing the system after they have been
identified. We present a e-cash system with anonymous user suspension,
EC-AUS, which features an suspension manager (SM) that is capable
of suspending the underlying user that participates in any suspicious
transaction. Suspended users cannot participate in any transaction. The
suspension is anonymous in the sense that no party, not even SM, can
tell the identities of the suspended users nor link their past transactions.
If they are found innocent later, their suspension can be revoked easily.

1 Introduction

E-cash was introduced by David Chaum [18] as an electronic counterpart of
physical money. Extensive research [19,28,24,20,7,17,23,14] has been done on
the subject since then. In an e-cash scheme, a user withdraws an electronic coin
from the bank and the user can spend it to any merchant, who will deposit the
coin back to the bank.

A secure and practical e-cash should possess three essential properties, namely,
anonymity, balance and exculpability. Anonymity (also referred to as privacy), is
a distinctive feature of cash payments offers a customer. It means that payments
do not leak the customers’ whereabouts, spending patterns or personal pref-
erences. Balance means that no collusion of users and merchants together can
deposit more than they withdraw without being detected. Finally, exculpability
refers to the fact that honest spenders cannot be accused to have double-spent.

Too much privacy may cause problems in the regulatory levels since there is
no way misbehaving users can be identified, let alone being punished. Spending
the same electronic coin twice, also known as double-spending, is a prominent

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 172–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Electronic Cash with Anonymous User Suspension 173

example of misbehavior. Existing e-cash schemes tackle this dilemma by incorpo-
rating mechanisms such that spending an electronic coin twice provides sufficient
information for everyone to compute the user’s identity.

Unfortunately, misbehavior cannot always be represented by mathematical
relationships such as spending the same electronic coin twice. For instance, it is
hard to define mathematically transactions for money laundering, illegal goods
purchasing and blackmailing. Fair e-cash [15] addresses the issue by introduc-
ing an administrative party, called Open Authority (OA), which is capable of
outputting the identity of a user participating in a transaction. This solution,
however, does not stop the user from further abusing the system. The user can
still spend all his other electronic coins after his identity is revealed. This gives
the opportunity for the misbehaving user to transfer his money to some other
accounts. In order to stop this, OA will have to open identities of all the trans-
actions to check the flow of the money. The problem can be tackled using the
technique of traceable signatures [27] in which the administrative party discloses
some secret information, also known as tracing information, of a particular user,
which, enables everyone to test if a spending belongs to that specific user. This
property is sometimes known as coin traceability [10]. The problem is, once the
tracing information is disclosed, there is no way to restore the user’s privacy
even if he/she is found innocent later.

We think it is important to equip e-cash systems with anonymous user suspen-
sion in which users can be suspended without sacrificing their privacy. Suspended
users are simply stopped from accessing the system, while their identities remain
hidden. Law-enforcing agent can thus suspend users that participate in dubious
transactions, investigate the case, and un-suspend the suspect if he/she is found
innocent.

Our Contributions. We propose an electronic cash with anonymous user suspen-
sion (EC-AUS). We formalize the security model for such a system and prove
that our construction is secure under this model. Furthermore, we also evaluate
the performance of our system.

Paper Outline. In Section 2, we present preliminary information on the various
cryptographic tools used in our construction. In Section 3, we formalize the syn-
tax and security properties for EC-AUS. We present our construction and analyze
the algorithmic complexity in Section 4. We discuss extensions and several other
issues in Section 5 and conclude the paper in Section 6.

Related Work. Our EC-AUS is constructed based on the blacklisting technique
from blacklistable anonymous authentication systems [29,8]. Their idea can be
summarized as follow. For each authentication, a user with secret key x pro-
vides the server with a unique value, called ticket t, which is bx in some cyclic
group G for a random nonce b. The server provides the user with a blacklist
{(t1, b1), (t2, b2), . . . , (tn, bn)}. In order to authenticate, the user proves to the
server, in zero-knowledge, that ti �= bx

i for i = 1 to n and t = bx. This assures
the server that the authenticating user is not on the blacklist. If the server would

174 M. Ho Au, W. Susilo, and Y. Mu

like to blacklist this user later, the entry (t, b) is appended to the blacklist. If the
Decisional Diffie-Hellman (DDH) Problem is hard in G, the ticket t is unlinkable
and thus user anonymity is preserved.

2 Preliminaries

In this section we define some notations and review cryptographic tools that we
use as building blocks in our EC-AUS construction.

Notations. |S| represents the cardinality of a set S. If S is a non-empty set, a ∈R

S means that a is drawn uniformly at random from S. If n is a positive integer,
we write [n] to mean the set {1, 2, . . . , n}. If s1, s2 ∈ {0, 1}∗, then s1||s2 ∈ {0, 1}∗
is the concatenation of binary strings s1 and s2. We say that a function negl(λ)
is a negligible function [3], if for all polynomials f(λ), for all sufficiently large λ,
negl(λ) < 1/f(λ).

Bilinear Map. A pairing is a bilinear mapping from a pair of group elements
to a group element. Specifically, let G1, G2 be cyclic groups of prime order p. A
function ê : G1 × G1 → G2 is said to be a pairing if it satisfies the following
properties:

– (Bilinearity.) ê(ux, vy) = ê(u, v)xy for all u, v ∈ G1 and x, y ∈ Zp.
– (Non-Degeneracy.) ê(g, g) �= 1G2 , the identity element of G2.
– (Efficient Computability.) ê(u, v) is efficiently computable for all u, v.
– (Unique Representation.) All elements in G1, G2 have unique binary repre-

sentation.

Proof of Knowledge. In a Zero-Knowledge Proof of Knowledge (ZKPoK) pro-
tocol [25], a prover convinces a verifier that some statement is true, while the
verifier learns nothing except the validity of the statement. Σ-protocols are a
special type of three-move ZKPoK protocols, which can be converted into non-
interactive Signature Proof of Knowledge (SPK) schemes or simply signature
schemes [26] that are secure in the Random Oracle (RO) Model [4]. Σ-protocols
can be transformed to 4-move perfect zero-knowledge ZKPoK protocols [21].
They can also be transformed to 3-move concurrent zero-knowledge protocol in
the auxiliary string model using trapdoor commitment schemes [22].

We follow the notation introduced in [13]. For instance, PK{(x) : y = gx}
denotes a Σ-protocol that proves the knowledge of x ∈ Zp such that y = gx for
some y ∈ G. The values inside the parenthesis on the left of the colon denotes
variables whose knowledge is to be proven, while values on the right of the
colon except those inside the parenthesis denote publicly known value. We use
SPK{(x) : y = gx}(M) to denote the transformation of the above Σ-protocol
into signature of knowledge, which is secure in the random oracle model due
to Fiat-Shamir heuristic. We employ several existing Σ-protocols as building
blocks in our construction of EC-AUS. In particular, the ZKPoK of Knowledge
and Inequalities of Discrete Logarithms due to Camenisch and Shoup [12].

Electronic Cash with Anonymous User Suspension 175

BBS+ Signature. We briefly review the signature scheme proposed in [1], which
is based on the schemes of [11] and [6]. This signature scheme also serves as
building blocks in a number of cryptographic systems [2,29,9] and is referred to
as BBS+ signature or credential signature.

Let g0, g1, g2, . . ., g�, g�+1 ∈ G1 be generators of G1. Let ê be a bilinear map
as discussed. Let w = gγ

0 for some γ ∈R Zp. The public key of the signature
scheme is (g0, . . . , g�, w, ê), and the signing key is (γ).

A signature on messages (m1, . . . , m�) is a tuple (A, e, z), where e, z are ran-
dom values in Zp chosen by the signer such that A = (g0g

m1
1 · · · g�

m�gz
�+1)

1
γ+e .

Such a signature can be verified by checking if

ê(A, wge
0)

?= ê(g0g
m1
1 · · · g�

m�gz
�+1, g0).

It was proved in [1] that BBS+ is unforgeable under adaptively chosen mes-
sage attack if the q-SDH assumption holds, where q is the number of signature
queries, and that they also proposed a ZKPoK protocol which allows one to
prove possession of message-signature pairs.

3 Security Definition

We present the syntax of EC-AUS, followed by the security properties that any
EC-AUS construction must satisfy.

3.1 Syntax

The entities in EC-AUS are the Suspension Manager (SM), Bank (B), a set of
Merchants (M) and a set of users (U). EC-AUS consists of the following proto-
cols/algorithms:

– (bpk, bsk) ← BSetup(1λ). This algorithm is executed by the bank B to set
up the system. On input of one or more security parameters (say, 1λ), the
algorithm outputs a pair consisting of public key bpk and private key bsk. B
keeps bsk private and publishes bpk to the public. bpk is an implicit input
to all the algorithms described below.

– (pk, sk) ← KeyGen. This algorithm is executed by the user or merchant
to generate her key pairs. We assume there exists some kind of public key
infrastructure that ensures the public key pk is properly certified and is a
unique identifier for the user or merchant.

– {SUL← SSetup}. SM maintains a suspended user list SUL which is available
to all entities in the system and is empty initially.

– AccEstablish(B(bsk, pkU), U(pkU, skU)). This protocol is executed between B
and a legitimate user U with public key pkU to establish an account. Upon
successful completion of the protocol, the user obtains an account secret
cred, which she keeps private to herself, and is thereby eligible for conducting
transactions in the system.

176 M. Ho Au, W. Susilo, and Y. Mu

– Withdraw(B(bsk, SUL, pkU), U(cred, SUL, skU)). This protocol is executed be-
tween B and a legitimate user U to withdraw an electronic coin. Upon suc-
cessful completion of the protocol, the user obtains an electronic coin cn,
which she keeps private to herself.

– Spend(M(pkM, skM, SUL), U(cred, pkM, cn, SUL)). This protocol is executed
between a merchant M with public key pkM and a legitimate user U to spend
an electronic coin. Upon successful completion of the protocol, M accepts the
coin and obtains a transcript trans.

– Deposit(B(bsk, pkM), M(trans, skM)). This protocol is executed between B
and a merchant M for the later to deposit an electronic coin. Upon successful
completion of the protocol, B either accepts the request or outputs pk∗, along
with trans1, trans2, Π which serves as a proof that the party with public
key pk∗ has spent an electronic coin twice in transactions with transcripts
trans1, trans2.

– 0/1 ← VerGuilt(trans1, trans2, pk∗, Π). Everyone can execute this algo-
rithm to check if the party with public key pk∗ indeed spent an electronic
coin twice in transactions whose transcripts are trans1 and trans2.

– Suspension. This is a suite of three algorithms: ← Extract(trans), SUL←
Add(SUL′,) and SUL′ ← Remove(SUL,). These algorithms are executed
by SM to suspend or un-suspend a user. On input of a Spend protocol tran-
script trans, Extract extracts and returns a ticket from the transcript.
The suspended user list SUL is a collection of tickets. On input of a SUL and
a ticket, Add returns a new SUL that contains all the tickets in the input
SUL’ in addition to the input ticket. On the other hand, on input of SUL′

and a ticket, Remove returns a new SUL that contains all the tickets in it,
except the one(s) equivalent to the input ticket.

When we say that a user Alice is suspended, we mean that there exists a
Spend transaction between Alice and a merchant M with transcript trans
such that the SM has invoked Add(SUL, Extract(trans)) and no Remove(·,
Extract(trans)) has been invoked afterwards. If Alice is suspended, she can-
not conduct Withdraw or Spend. We would like to stress that SM learns
nothing about the identity of Alice, nor link any of Alice’s past action. All
SM does is to suspended an anonymous user that has participated in a spend
that results in transcript trans.

3.2 Security Requirements

We first describe various security properties that an EC-AUS construction must
possess. Their formal definitions will be given in Appendix A.

– Balance. The bank B is assured that no collusion of users and merchants can
deposit more than they withdraw without being identified. Consequently, any
double spender in the system will be identified.

– Suspension-Correctness. B is assured to accept Withdraw, while Ms are as-
sured to accept Spend, only from Us who are not suspended. On the other
hand, honest users that are not currently suspended by SM can always con-
duct the above transaction with honest B or Ms.

Electronic Cash with Anonymous User Suspension 177

– Anonymity. All that B, M and SM collude together can infer about the
identity of a spender is whether that user is suspended at the time of protocol
execution, and whether she is in possession of a valid electronic coin.

– Exculpability. An honest user will not be falsely accused of having spent an
electronic coin twice. That is, B cannot output (trans1, trans2, pk∗, Π)
such that 1 ← VerGuilt(trans1, trans2, pk∗, Π) even if B colludes with M
and SM.

The trust placed on various parties regarding the security requirements are
summarized in Table 1. The table is interpreted as follows. If Party A is to
be assured Security Requirement B, he/she needs to trust the party with tick
mark. For instance, users, bank and merchants need to trust that SM is honest
for suspension-correctness to hold. Indeed, that is the only trust placed in our
system. For instance, an honest user is guaranteed anonymity and exculpability
even if the bank, merchant, suspension manager are malicious.

Table 1. Trust Relationship of various parties

Party A Security Requirements B Bank Suspension Manager Merchant User
Bank Balance N/A × × ×

User/Bank/Merchant Suspension-Correctness × � × ×
User Anonymity × × × ×
User Exculpability × × × ×

4 Our System

4.1 High Level Description

We provide a high level description of EC-AUS, which combines the technique
of the e-cash scheme due to [2,10] and the anonymous blacklisting technique
from [29].

The Setup. Let G be a cyclic group and g, h, h0, h1 are generators of G. User
and Merchant are equipped with key pairs of the form (gx, x) where g is a
generator of G. The bank chooses a signature scheme and assume the key
pair is (pkSig, skSig). The public key of the bank is pkSig. The secret key is
skSig. The suspension manager makes available an empty list, SUL.

Account Creation. User U with public key gx creates an account with the bank
B by submitting a value hx to the bank, along with a proof-of-correctness.

Withdrawing an E-Coin. U first needs to show B he/she is not suspended. Both
parties first obtain the current SUL = {(t1, b1), (t2, b2), . . ., (tn, bn)} from
suspension manager SM. U proves to B that using his secret key x, none of
the relationships ti = bx

i hold. B only issues U with an electronic coin if U is
not suspended. An electronic coin for U is simply a signature σx,y from B on
values (x, y), where y is a random number unknown to B. σx,y is issued in a
“blind” way such that B learns nothing about x and y.

178 M. Ho Au, W. Susilo, and Y. Mu

Spending an E-Coin. U needs to prove to M that he/she is not suspended
before M would accept payment from U. Both parties first obtain the current
SUL = {(t1, b1), (t2, b2), . . ., (tn, bn)} from suspension manager SM. U and
M agree on a unique transaction identifier R and a random value b. U then
computes S = h0

y, T = hxhRy
1 and t = bx and proves the following facts.

1. U knows σx,y which is a valid signature from B on values x, y.
2. S, T , t are formed correctly with respective to x and y.
3. ti �= bx

i for i = 1 to n.
Depositing an E-Coin. M submits (S, T , t, R) to B, along with the transcript

trans of the spend operation. After checking the transcript, B checks if S is
in its database. If yes, it is a coin that has been spent before. If not, it stores
(S, T , t) in its database and credits M.

Dealing with Double-Spending. If B (S, T ′, t′, R′) is in its database, The public

key of the double-spender can be computed as (T R′

T R)
1

R′−R . Indeed, due to the
soundness of the proof in the spend protocol, T = hxhRy

1 and T ′ = hxhR′y
1 .

Thus (T R′

T R)
1

R′−R = ((hx)R′−R)
1

R′−R = hx = u.
Suspension. To suspend a user, SM appends the value (b, t), in the protocol

transcript of a spend operation, to SUL. Note that SM does not know the
identity of the user being suspended; he just suspend the user that engage in
this transaction. To un-suspend the user, SM removes that entry from SUL.

4.2 Construction Details

We now present our cryptographic construction of EC-AUS.

Parameters. Let λ be a sufficiently large security parameter. Let (G1, G2) be
a bilinear group pair such that |G1| = |G2| = p for some prime p of λ
bits. Also, let G be a group of order p where DDH Assumption holds. Let
g, g0, g1, g2, g3 ∈ G1, h, h0, h1 ∈ G be generators of G1 and G respectively
such that the relative discrete logarithm of the generators are unknown.1

Let H0 : {0, 1}∗ → G and H : {0, 1}∗ → Zp be secure cryptographic hash
functions, both of which will be modeled as random oracles.

BSetup, SSetup, KeyGen. The bank B randomly chooses γ ∈R Zp and computes
w = gγ

0 . The bank secret key is bsk = (γ) and the public key is bpk = (w).
The user U (resp. merchant M) randomly chooses x ∈R Zp and computes
u = hx. The secret key is sk = (x) and the public key is pk = (u).
The suspension manager SM initializes the suspended user list SUL.

AccEstablish. User U sends her public key pkU = (u) to B, along with the
following the zero-knowledge proof-of-knowledge PK{(x) : u = hx} to open
an account in the bank. U stores the account secret cred = (x).

1 This can be done by setting the generators to be the output of a cryptographic hash
function of some publicly known seeds. It is important for the users to verify this.
For instance, knowledge of the discrete logarithm of h1 to base h0 would allow the
bank to break the anonymity of the system.

Electronic Cash with Anonymous User Suspension 179

Withdraw
1. U and B retrieve the current SUL from SM and parse SUL as {(t1, b1),

. . ., (tn, bn)}.
2. U initializes the request, claims to be the user with public key u who has

already registered an account.
3. B sends a random challenge m ∈R Zp to U.
4. U sends a pair (C, Π1) to B, where C = gx

1 gy
2gz′

3 ∈ G1 is a commitment of
x, y ∈R Zp using randomness z′ and Π1 is a signature proof of knowledge
of

SPK 1

⎧⎨⎩(x, y, z′) : C = gx
1gy

2gz′
3 ∧ u = hx

⎛⎝ ∧
i∈[n]

ti �= bx
i

⎞⎠⎫⎬⎭ (m) (1)

on challenge m, which proves that C is correctly formed.
5. The B returns failure if the verification of Π1 returns invalid. Other-

wise B sends U a tuple (A, e, z′′), where e, z′′ ∈R Zp and A =
(g0Cgz′′

3)
1

e+γ ∈ G1.
6. U computes z = z′ + z′′. She returns failure if ê(A, wge

0) �=
ê(g0g

x
1gy

2gz
3 , g0). Otherwise she stores cn = (A, e, x, y, z) as her electronic

coin.
Note that (A, e, z) is a BBS+ signature on values (x, y).

Spend. During an execution of this protocol between a user U and the merchant
M, U’s private input is her electronic coin cn = (A, e, x, y, z). Let R be the
string that uniquely identifies this transaction. In particular, R includes the
public key pkM of M, the version of SUL used and a random nonce nonce.
When the protocol terminates, M outputs success or failure, indicating
whether the payment is accepted. Both parties retrieve the current SUL from
SM and parse SUL as {(t1, b1), . . ., (tn, bn)}.
1. (Challenge.) M sends a random challenge m ∈R Zpto U.
2. (Suspension Check.) U returns failure if ti = bx

i for some i (indicating
that she is suspended). She proceeds otherwise.

3. (Proof Generation.) U returns to M a tuple (S, T, t, Π2), where S = hy
0 ,

T = uhyR
1 , t = bx where b = H0(R). S is called the serial number of the

coin while T is called a double-spending equation. The pair (S, T) allows
the bank to identify the double spender. t is the ticket associated with
the transaction which allows suspension. Finally, Π2 is a signature proof
of knowledge of:

SPK 2

⎧⎪⎨⎪⎩(A, e, x, y, z) :
ê(A, wge

0) = ê(g0g
x
1gy

2gz
3 , g0) ∧

S = hy
0 ∧ T = hx(hR

1)y ∧
t = bx ∧

(∧
i∈[n] ti �= bx

i

)
⎫⎪⎬⎪⎭ (m) (2)

on the challenge m.

180 M. Ho Au, W. Susilo, and Y. Mu

4. (Proof Verification.) M returns failure if the verification of Π2 returns
invalid. Otherwise it returns success.

Deposit. The merchant M submits the tuple (S, T, t, R, Π2) to B. B first verifies
if R contains a fresh nonce nonce, the public key pkM of M and obtains
version of SUL used in this transaction. B then verifies Π2. It runs through
its database of spent coin, which is a list of tuples (Si, Ti, ti, Ri, Π2,i). If S
is not equal to any of the Si, B credits M and appends (S, T, t, R, Π2) to the
list.
If R contains a reused nonce nonce, B outputs pkM.
Otherwise, suppose there exists an entry (Sj , Tj, tj , Rj , Π2,j) for some index

j in the list such that S = Sj , B computes u∗ = (T Rj

T R
j

)
1

Rj−R and outputs

pk∗ = u∗, trans1 = (Sj , Tj, tj , Rj , Π2,j), trans2 = (S, T, t, R, Π2) and Π =
(trans1, trans2), indicating that u∗ is the public key of the double spender.

VerGuilt. Since the computation of the identity of the double spender does not
require bsk, everyone can verify the correctness of the bank’s computation
based on the two given transcripts.

Suspension. The three algorithms Extract, Add, Remove are all very simple and
efficient. Extract

(〈S, T, t, R, Π2〉
)

returns the ticket
(
t, b = H0(R)

)
in the

input transcript. Of course, SM should also verify Π2 to ensure that the
transcript is valid. Add

(
SUL, (t, b)

)
returns SUL′, which is the same as the

input SUL, with the input ticket (t, b) appended to it. Remove(SUL, (t, b))
returns SUL′, which is the same as the input SUL, with all entries equal to
the input ticket (t, b) dropped.

Formal security analysis of our construction is presented in Appendix A.

4.3 Efficiency Analysis

We analyze the efficiency of our construction in terms of both time and space/
communication complexities. Both complexities are linear in the size of SULfor
Withdraw and Spend protocols. Below we analyze the most expensive operation,
Spend, in our system.

Assume SUL contains n tickets. A proof Π2 of SPK 2 consists of 2 G1 elements,
n G elements and 2n+10 Zp elements. The total communication complexity for
a Spend protocol is thus n + 1 �-bit strings, 5 G1 elements, n G elements and
2n + 10 Zp elements.

A breakdown of time complexity of the Spend protocol into the number of
pairing operations and multi-exponentiations (multi-EXPs)2 in various groups is
shown in Table 2. Operations such as G addition and hashing have been omitted
as computing them takes relatively insignificant time. Some preprocessing is pos-
sible at the user’s side. In fact, all but 2n multi-EXPs in G can be precomputed
by the user.
2 A multi-EXP computes the product of exponentiations faster than performing the

exponentiations separately. We assume that one multi-EXP operation multiplies up
to 3 exponentiations.

Electronic Cash with Anonymous User Suspension 181

Table 2. Number of operations during a Spend protocol with a SUL of size n

Operation User w/o Preproc. User w/ Preproc. Merchant
G1 multi-EXP 6 0 3
G multi-EXP 3n + 6 2n 2n + 3

Pairing 1 0 1

5 Discussions

5.1 Incorporating Tracing Authority and Open Authority

Introduction of Open Authority (OA). It is relatively straightforward to intro-
duce an Open Authority (OA) which is capable of revealing the public key of the
user of any Spend transaction. One could simply require all users to verifiably
encrypt [12] their public key gx into ciphtertext Cx under the public key of the
OA in the Spend transaction. This allows the OA to decrypt Cx and obtains the
public key of the user participating in the Spend transaction.

Introduction of Tracing Authority (TA). We can also introduce TA in EC-AUS
based on the idea of traceable signature [27]. Each user is issued a traceable
signature signing key kx,trace from TA such that kx,trace is bind to the user
public key gx. All users are required to create a traceable signature σx using his
key kx,trace in the Spend transaction. If the TA would like to trace the spending
of a particular user, he/she reveal the tracing information of kx,trace so that
every one can link the traceable signature σx from user with key kx,trace and
thus link all his past actions.

Three levels of anonymity revocation. The trio of TA, OA and SM provide a bal-
ance between users’ privacy and accountability. For instance, when a suspicious
transaction is identified, the law-enforcing agent can at once request a suspen-
sion from SM on the underlying user. Since SM reveals least information on the
user, the threshold of issue could be fairy low. After preliminary investigations,
law-enforcing agent could request TA to release the tracing information so that
all transaction regarding the suspect can be linked and provide more information
for the law-enforcing agent to make further investigation. Finally, he/she could
request OA to reveal the identity of the spender for prosecution.

5.2 Managing the Size of SUL and the Bank’s Database

Our system does not scale well with the size of the SUL. Thus, we assume that
suspended users are eventually un-suspended if they are found innocent or their
identity are revealed by the OA for prosecution. This would help keeping the
size of SUL a minimum. Using practical parameters, modern computer handles
a multi-EXP at around 2 ms. Realistically, EC-AUS would support SUL of size
up to several thousands.

Another issue is the requirement that the bank has to keep record of all the
electronic coins deposited. One solution is to limit the lifetime of the user account

182 M. Ho Au, W. Susilo, and Y. Mu

as well as the coins. Users are required to establish a new account and have their
electronic coins re-issued at the end of the period. The account and coins are
made valid only for a specific period of time, say, a month, several months or
a year which offers a trade-off between database size and the frequency of the
re-issue. Thus, the bank only needs to record spent coins of the current time
period.

6 Conclusion

We presented EC-AUS, an electronic cash system with anonymous user suspen-
sion. Since suspended users remain anonymous, misbehavior can be judged sub-
jectively and imposed with less cation. We also discuss how to limit the size
of the bank’s storage. We believe the ability to suspend users while maintain-
ing their anonymity is a worthwhile endeavor. We left it as an open problem of
constructing schemes whose complexities is independent to the size of SUL.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-Size Dynamic k-TAA. In: Prisco, R.D.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

2. Au, M.H., Susilo, W., Mu, Y.: Practical Compact E-Cash. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer,
Heidelberg (2007)

3. Bellare, M.: A Note on Negligible Functions. J. Cryptology 15(4), 271–284 (2002)
4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-

ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

5. Boneh, D., Boyen, X.: Short Signatures without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Brands, S.: Untraceable Off-line Cash in Wallets with Observers (Extended Ab-
stract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318.
Springer, Heidelberg (1994)

8. Brickell, E., Li, J.: Enhanced Privacy ID: A Direct Anonymous Attestation Scheme
with Enhanced Revocation Capabilities. In: WPES, pp. 21–30 (2007)

9. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious Transfer with Access Con-
trol. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM Conference on Com-
puter and Communications Security, pp. 131–140. ACM, New York (2009)

10. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

11. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

Electronic Cash with Anonymous User Suspension 183

12. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 126–144. Springer, Heidelberg (2003)

13. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

14. Canard, S., Gouget, A.: Divisible E-Cash Systems can be Truly Anonymous. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497. Springer, Hei-
delberg (2007)

15. Canard, S., Traoré, J.: On Fair E-cash Systems Based on Group Signature Schemes.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 237–248.
Springer, Heidelberg (2003)

16. Canetti, R.: Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/

17. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer,
Heidelberg (1998)

18. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptol-
ogy: Proceedings of CRYPTO 1982, pp. 199–203. Plenum, New York (1983)

19. Chaum, D., Fiat, A., Naor, M.: Untraceable Electronic Cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

20. Chaum, D., Pedersen, T.P.: Transferred Cash Grows in Size. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer, Heidelberg (1993)

21. Cramer, R., Damg̊ard, I., MacKenzie, P.D.: Efficient Zero-Knowledge Proofs of
Knowledge without Intractability Assumptions. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)

22. Damg̊ard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

23. Eng, T., Okamoto, T.: Single-Term Divisible Electronic Coins. In: De Santis,
A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 306–319. Springer, Heidelberg
(1995)

24. Franklin, M.K., Yung, M.: Secure and Efficient Off-Line Digital Money (Extended
Abstract). In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS,
vol. 700, pp. 265–276. Springer, Heidelberg (1993)

25. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems (Extended Abstract). In: STOC, pp. 291–304 (1985)

26. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

27. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Ca-
menisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

28. Okamoto, T., Ohta, K.: Universal Electronic Cash. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992)

29. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable Anonymous Cre-
dentials: Blocking Misbehaving Users without TTPs. In: ACMCCS 2007, pp. 72–81
(2007)

http://eprint.iacr.org/

184 M. Ho Au, W. Susilo, and Y. Mu

A Formal Security Analysis

A.1 Security Model

We use a simulation-based approach to define security of EC-AUS formally. We
would like to remark that the definition we give do not entail all formalities
necessary to fit into the universal composability framework [16]; our goal here is
to prove security of our construction. Our model is static in the sense that the
adversary could not corrupt honest users and merchants during the execution of
the system.

We summarize the ideas of the model. The players in the system are the
suspension manager SM, the bank B, a set of users Us and a set of merchants
Ms. In the real world there are a number of players who communicate via cryp-
tographic protocols. Then there is an adversary A, who controls the dishonest
players in the system. We define an entity called environment, E , who provides
the inputs to the players and receives their outputs. E also interacts freely with
the adversary A.

In the ideal world, we have the same players. However, they do not commu-
nicate directly. Rather, there exists a trusted party T who is responsible for
all handling operations for all players. Specifically, T computes the outputs of
the players from their inputs, that is, applies the functionality that the crypto-
graphic protocols are supposed to realize. The environment E again provides the
inputs to, and receives the outputs from, the players, and interacts arbitrarily
with A who controls the dishonest players.

The ideal world. First we define the ideal world specification of EC-AUS.
Communication between a player and the trusted party T is not anonymous.
Ideal world EC-AUS supports the following operations. These operations are
scheduled according to the environment E ’s wish. Each call to the operation is
assigned a unique identifier tid. We also describe the behavior of T based on
the inputs of the ideal world players for the following operations. The SUL in
the ideal world is a list of tid of Spend operation.
• tid0 ← SSetup/BSetup/KeyGen(HP,AP). The system begin when E invokes

this operation which specified the set of honest players HP and dishonest
players AP . This must be the first operation in the schedule and can only
be called once.
• tidA ← AccEstablish(i). E instructs user Ui to establish an account with

bank B. Ui sends a request to T , T checks Ui has never established an
account before and informs B that Ui would like to establish an account. B
returns accept/reject to T and T forward it to Ui. Both Ui and B output
(tidA, accept/reject) to E individually.
• tidW ←Withdraw(i). E instructs user Ui to withdraw an electronic coin from

B. Ui sends a request to T , T requests the current version of SUL from SM and
forward SUL to Ui, along with a check result that indicate if Ui is suspended
or not. Ui replies to T if he/she chooses to proceed or not. T requests the
same version of SUL from SM, check if Ui has ever participated in the Spend

Electronic Cash with Anonymous User Suspension 185

specified in this SUL and forwards SUL to B, a bit indicating if Ui is suspended
and the request that Ui would like to withdraw an electronic coin. B returns
accept/reject to T and T forwards it to Ui. If B returns accept, T stores
tidW as Ui’s un-spent coin. Both Ui and B output (tidW , accept/reject)
to E individually.
• tidS ← Spend(i, tidW , j). E instructs user Ui to spend the electronic coin

he/she obtains in transaction tidW to merchant Mj . Ui sends a request to
T , T requests the current version of SUL from SM and forward SUL to Ui,
along with a check result that indicate if Ui is suspended or not as well
as whether tidW corresponds to an un-spent coin of Ui. Ui replies to T if
he/she chooses to proceed or not. T requests the same version of SUL from
SM, check if Ui is suspended and forwards SUL to Mj , the request that an
anonymous user that would like to spend a coin to Mj , and whether this user
is suspended or not and whether Ui is having a valid coin (valid means tidW

corresponds to a Withdraw that Ui participated in, it might be a spent-coin
though). Mj returns accept/reject to T and T forwards it to Ui. If Mj

returns accept, T marked tidW as Ui’s spent coin. Both Ui and Mj output
(tidS , accept/reject) to E individually.
• tidD ← Deposit(j, tidS). E instructs user Mj to deposit the electronic

coin he/she obtains in transaction tidS . Mj sends a request to T , T re-
quests the version of SUL used during Spend of tidS from SM and forward
SUL to B, along with a check result that indicate if tidS corresponds to
a Spendi, tidW , j that results in Mj outputting accept and that Ui is not
suspended based on SUL. Next T also informs B if tidW corresponds to a
deposited-coin. If yes, T gives B an identity, Ui or Mj , indicating if the coin
is spent twice by Ui or deposited twice by Mj . If not, T marks tidW as a de-
posited coin from Mj . Both B and Mj output (tidD, accept/reject(Ui/Mj))
to E individually.
• tidV ← VerGuilt(P, tidD, Ui/Mj). E instructs any player P to query if B

outputs a correct double-spender in transaction tidD. T replies with a bit,
indicating if the correct double-spender is outputted in tidD.
• tidSus ← Suspend(tid§). E instructs SM to add the Spend identified by
tidS to SUL.
• tidUn−Sus ← Un − Suspend(tid§). E instructs SM to removes the entry
tidS from SUL.

Ideal world EC-AUS provides all the desired security properties. Firstly, all
Spend transaction are anonymous. T only informs and M a certain anonymous
user would like to spend an e-coin. Thus, anonymity and exculpability is guar-
anteed. Secondly, T verifies if validity of the user during Withdraw, Spend and
Depositand thus balance is assured. Finally, T consults SM for SUL and checks if
the underlying user is suspended for the B and M and thus suspension-correctness
is attained.

186 M. Ho Au, W. Susilo, and Y. Mu

Next, we define a cryptographic EC-AUS which also supports the above eight
types of transaction. Since there is no trusted party T , the functionalities are
realized through cryptographic means. Below we highlight the difference.
• tid0 ← SSetup/BSetup/KeyGen(HP ,AP). SM, B, Us and Ms invokes the

respective algorithms SSetup, BSetup and KeyGen.
• tidA ← AccEstablish(i). Ui and B obtains the current version of SUL from

SM individually and engage in the AccEstablish protocol.
• tidW ← Withdraw(i).Ui and B obtains the current version of SUL from SM

individually and engage in the Withdraw protocol.
• tidS ← Spend(i, tidW , j). Ui and M obtains the current version of SUL from

SM individually and engage in the Spend protocol.
• tidD ← Deposit(j, tidS). Mj and B engage in the Deposit protocol in which

B obtains from SM the version of SUL used in the Spend protocol identified
by tidS .
• tidV ← VerGuilt(P, tidD, Ui/Mj). P interacts with B who proves to P the

identity of the double-spender is correctly computted.
Informally speaking, a cryptographic system is secure if for every real world

adversary A and every environment E , there exists an ideal world adversary S
controlling the same players in the ideal world as A does in the real world such
that, E cannot tell whether it is running in the real world interacting with A or
it is running in the ideal world interacting with S which has blackbox access to
A. The rationale is that since by default the ideal world EC-AUS is secure, and
the real world EC-AUS is indistinguishable to the ideal world EC-AUS, the real
world EC-AUS is also secure. Formally, we define it in Definition 1.

Definition 1 (Security). Let RealE,A(λ) (resp. IdealE,SA(λ)) be the probabil-
ity that E outputs 1 when run in the real world (resp. ideal world) with adversary
A (resp. S having blackbox access to A). A EC-AUS construction is secure if

|RealE,A(λ)− IdealE,SA(λ)| = negl(λ)

for every PPT algorithms E, A.

A.2 Security Analysis

The security of our EC-AUS construction depends on the following two assump-
tions:

Definition 2 (DDH). The Decisional Diffie-Hellman (DDH) problem in group
G is defined as follows: On input of a quadruple (g, ga, gb, gc) ∈ G4, output
1 if c = ab and 0 otherwise. We say that the DDH assumption holds if no
probabilistic polynomial time (PPT) algorithm has non-negligible advantage over
random guessing in solving the DDH problem.

Definition 3 (q-SDH). The q-Strong Diffie-Hellman (q-SDH) problem in G is
defined as follows: On input of a (q + 1)-tuple (g, gx, gx2

, . . ., gxq

) ∈ G, output

Electronic Cash with Anonymous User Suspension 187

a pair (A, e) ∈ G × Zp such that A(x+e) = g where |G| = p. We say that the
q-SDH assumption holds if no PPT algorithm has non-negligible advantage in
solving the q-SDH problem.

The q-SDH assumption was introduced by Boneh and Boyen [5] when they pro-
posed a new short signature. They derived a lower bound on any generic algo-
rithm that solves the q-SDH problem.

Regarding the security of EC-AUS, we have the following theorem.

Theorem 1. If the q-SDH assumption holds in G1 and the DDH assumption
holds in G, our construction of EC-AUS satisfies Definition 1 in the random
oracle model.

Proof of Theorem 1 is done by showing the indistinguishability between adver-
sary actions in the real world and the ideal world. The idea of the proof is that,
given a real world adversary A, we show how to construct an ideal world adver-
sary SA3 such that no environment E can distinguish whether it is interacting
with A or S. The proof is divided into three cases according to the subset of
players controlled by A. In the first case, A controls the SM, a subset of mer-
chants and users. This covers the security requirement of balance. In the second
case, A controls SM, the bank, a subset of merchants and users. This covers
the security requirement of exculpability and anonymity. In the third case, A
control a subset of merchants and users. This covers the security requirement
of suspension-correctness. We would like to remark that the three cases are or-
thogonal because on one hand, S has to represent all honest players to A, while
on the other hand S has to represent all dishonest players to E . Thus, an adver-
sary A controlling fewer parties does not necessarily makes the construction of
S easier. We complete the proof with the following three lemmas.

Lemma 1. For any environment E and real world adversaries A controlling the
SM, some subsets of merchants and users, there exists an ideal world simulator
SA such that

|RealE,A(λ)− IdealE,SA(λ)| = negl(λ)

Proof. (Sketch) We construct S as follow. On one hand, S represents the hon-
est merchants Ms, users Us and the bank B to A while on the other hand, S
represents the dishonest Us, Ms and SM to T as well as E based on the actions
from A. S forwards all the messages between between E and A. Next, for all
AccEstablish involving a dishonest user, S, playing the role of B, extracts the
secret x from A and uses x as an index for the underlying dishonest user. It
then represents that dishonest user to T and initiates an AccEstablish request.
For all Withdraw involving a dishonest user, S extracts the values (x, y, z′) from
Eq.1. For all Spend events involving a dishonest user, S, playing the role of an
honest merchant, runs through its list of (x, y, z) extracted and locate the user
by testing if S = hy

0 and t = bx and locate the tid of the corresponding Withdraw

3 The subscript A is used to emphasis that S is given blackbox access to A.

188 M. Ho Au, W. Susilo, and Y. Mu

event in the ideal world. It then represents that dishonest user to T and initiates
a Spend request.
S’s behavior in the view of E is exactly the same as A would provide, except in

the case when S cannot extract the values from A, or the extracted values do not
matches with previously extracted one. This represents A is able to break the
soundness of the various zero-knowledge proves, which happens with negligible
probability under the q-SDH Assumption.

Lemma 2. For any environment E and any real world adversaries A controlling
SM, the bank, some subsets of merchants and users, there exists an ideal world
simulator SA such that

|RealE,A(λ)− IdealE,SA(λ)| = negl(λ)

Proof. (Sketch) Construction of such S is straightforward. S forwards all the
messages between E andA. For all events when S has to represent an honest user,
S employs the zero-knowledge simulator to simulate the proofs using a random
and different (x, y). S’s behavior in the view of E is exactly the same as A would
provide, except in the case when A is able to break the zero-knowledgeness. This
happens with negligible probability under the DDH Assumption.

Lemma 3. For any environment E and any real world adversaries A controlling
some subsets of merchants and users, there exists an ideal world simulator SA
such that

|RealE,A(λ)− IdealE,SA(λ)| = negl(λ)

Proof. (Sketch) Construction of such S is straightforward. Again, S forwards all
the messages between E and A. For all events when S has to deal with dishonest
user, S extracts the user secret x from the zero-knowledge proofs. S’s behavior
in the view of E is exactly the same as A would provide, except in the case when
S cannot extract the values from A, or the extracted values do not matches with
previously extracted one. This represents A is able to break the soundness of the
various zero-knowledge proves, which happens with negligible probability under
the q-SDH Assumption.

T-Robust Scalable Group Key Exchange Protocol
with O(log n) Complexity

Tetsuya Hatano, Atsuko Miyaji�, and Takashi Sato

Japan Advanced Institute of Science and Technology
miyaji@jaist.ac.jp

Abstract. Group key exchange (GKE) allows a large group of n parties to share a
common secret key over insecure channels. The goal of this paper is to present T-
robust scalable GKE with communicational and computational complexity
O(log n) for the size of n parties. As a result, our GKE not only has a resis-
tance to party failures resulting from party crashes, run-down batteries, and net-
work failures, but also satisfies scalability: each party does not need to have the
same environment such as computational resources, batteries, etc. The previous
schemes in this area focus on Burmester-Desmedt GKE with complexity O(n)
(BDI) and without scalability. As a result, the previous robust GKEs, proposed
by Jarecki, Kim and Tsudik (JKT), need computational complexity O(n) without
scalability although it allows any T-party fault in any position.

We, by focusing the well-known Burmester-Desmedt GKE with complexity
O(log n) (BDII), propose a new robust GKE with scalability, called CH-GKE.
CH-GKE can reduce the communicational and computational complexity and al-
low parties be in different environments. Then, we extend CH-GKE to increase
the number of faults and present T-robust scalable efficient GKE by a novel com-
bination of CH-GKE and JKT. Our T-robust scalable GKE can work in flexi-
ble settings between fault tolerance and efficiency, such as communicational and
computational complexity.

Keywords: group key exchange, robustness, scalability.

1 Introduction

A group key exchange protocol (GKE) allows a large group of n parties to share a com-
mon secret key over an insecure channel, and thus, parties in the group can encrypt and
decrypt messages among group members. Secure communication within a large group
has become an integral part of many applications. For example, ad hoc wireless net-
works are deployed in many areas such as homes, schools, disaster areas, etc., where a
network is susceptible to attacks ranging from passive eavesdropping to active interfer-
ence. Besides ad hoc networks, another environment where ad hoc groups are popular
is in the context of new emerging social networks such as Facebook and LinkedIn.

Widely-known GKEs based on the DH-key exchange protocol, such as BDI [4] and
BDII [5], can work with constant rounds. The important difference in efficiency be-
tween BDI and BDII is that BDI needs communicational complexity O(n) while BDII

� This study is partly supported by Grant-in-Aid for Scientific Research (A), 21240001.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 189–207, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

190 T. Hatano, A. Miyaji, and T. Sato

works with only communicational complexity O(log n). Another important difference
in practicality between BDI and BDII is scalability. BDI assumes that all parties work
in the same environment. On the other hand, parties in BDII can work in different
environments. For example, some parties may have large computational resources, but
others may have low resources; while some parties may have almost unlimited electrical
power, others may run on small batteries. On the other hand, both schemes are not ro-
bust: if some parties fail during protocol execution, then some other parties cannot share
a common secret key. Therefore, the protocol must be re-started from scratch whenever
a player fails, which increases the computational, communicational, and round com-
plexity, since total complexity of protocols is multiplied by the number of faults. This
is why we need a constant-round GKE that is robust to some parties’ failures.

The first robust GKE was proposed by [1], which needs round complexity O(n).
Subsequently, the constant-round robust GKE was proposed by [6], which needs com-
municational complexity O(n2). The efficient robust GKE, called JKT in this paper,
was proposed by [9]. JKT works with constant-round complexity and both communi-
cational1 and computational complexity O(n + T), and tolerates up to T-party failures.
JKT has a useful feature of flexible trade-off between complexity and fault tolerance.
The feature is practical because complexity of GKE can be arranged according to the
reliability of network. R-TDH1 [3] achieves the full robustness for a tree-based GKE
[10], however, it does not have a feature of flexible trade-off between complexity and
fault tolerance.

In this paper, we focus on JKT, which is T-robust GKE and satisfies a feature of
flexible trade-off between complexity and fault tolerance. JKT is constructed by adding
robustness to BDI, and thus, it inherits all features described above from BDI: it can
achieve neither O(log n + T) complexity nor scalability. We present T-robust GKE
among n parties, which can achieve efficient communicational and computational com-
plexity as well as scalability up to T-party failures. From the feature of scalability, our
T-robust GKE can work in different environments of parties with large resources and/or
low resources. Our T-robust GKE can work with both computational and communica-
tional complexity O(log n+T). This is the first result that can work with O(log n) com-
plexity according to the size of parties n. Let us explain how we construct the efficient
T-robust GKE. In order to achieve such efficiency, we investigate adding robustness to
BDII and construct a new scalable constant-round robust GKE, which is secure in the
standard model under the Square Decision Diffie-Hellman assumption. The proposed
GKE, called CH-GKE in this paper, inherits efficiency and scalability described above
from BDII. For example, CH-GKE works with 2 round complexity with communica-
tional and computational complexity O(log n), which tolerates up to n

2 party failures.
Then, we generalize the construction of CH-GKE to increase the number of party fail-
ures. Finally, we combine both CH-GKE and JKT, and propose T-robust GKE with
O(log n) complexity, where it tolerates up to any T-party failures in any positions.

This paper is organized as follows. Section 2 summarizes computational assump-
tions, security assumptions and definitions of GKE, together with notations. Section 3

1 Communicational complexity can be measured from the point of view of maximum number
of sent or received messages. In JKT, maximum number of sent messages is O(T) but that of
received messages is O(n + T).

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 191

reviews the previous GKEs related with our scheme BDI, JKT, and BDII. Section 4
presents CH-GKE and its generalization. Then, T-robust GKE is presented in Section 5.
Section 6 compares our T-robust GKE with previous GKEs.

2 Preliminary
This section summarizes notations, assumptions, and the basic security notions used in
this paper.

2.1 The Security Assumptions, and Model of GKE

Let G be a cyclic group of prime order p and let k be a security parameter.

Definition 1. A DDH (Decision Diffie Hellman) parameter generatorIGDDH is a prob-
abilistic polynomial time (PPT) algorithm that, on input 1k, outputs a cyclic groupG of
prime order p. The DDH problem with respect to IGDDH is: given g, ga, gb, y ∈ G to
decide whether y = gab or not.

Definition 2. A Square-DDH (Square-Decision Diffie Hellman) parameter generator
IGSquare−DDH is a probabilistic polynomial time (PPT) algorithm that, on input 1k, out-
puts a cyclic group G of prime order p. The Square-DDH problem with respect to
IGSquare−DDH is: given g, gx, y ∈ G to decide whether y = gx2

or not.

Definition 3. Let P1,P2, . . . ,Pn be interactive polynomial-time Turing Machines with
history tapes that take part in a ProtocolΠ. ProtocolΠ is a Group Key Exchange (GKE)
if each member Pi computes the same key K = Ki when all group members follow the
protocol as specified. We call Pi a party and the n parties a group.

Definition 4 ([11]). Let Π be a GKE protocol with n parties, let k be a security pa-
rameter, and let P = {P1, · · · ,Pn} be a set of n parties, where n is bounded above
by a polynomial in k. We assume that parties do not deviate from the protocol. An
active adversary2 is given access to the following Send, Execute, Reveal, Corrupt
and Test oracles, where all except Test oracle are queried several times, and Test or-
acle is asked only once at any time during the adversary’s execution and on a fresh
instance3: Send(P, i,m) sends message m to instance Πi

P, and outputs the reply gen-
erated by this instance; Execute(P1, i1, · · · ,Pn, in) executes the protocol between un-

used i j-th instances of party Pj, {Πij

Pj
}1≤ j≤n, and outputs the transcript of the execution;

Reveal(P, i) outputs a session key ski
P for a terminated instance Πi

P; Corrupt(P) out-
puts the long-term secret key of a party P; Test(P, i) chooses a bit b ∈ {0, 1} uniformly
at random and outputs ski

P or a random session key if b = 1 or b = 0, respectively.

2 We follow the security model in [11] except deleting Corrupt and Send oracles, and those
related definitions. Because our protocol does not give a long-term secret key to any party P.

3 Πi
P is a fresh instance unless the following is true: A, at some point, queried Reveal (P, i) or

Reveal (P′, j) with P′ ∈ pidi
P, where pidi

P denotes the party identity for Πi
P.

192 T. Hatano, A. Miyaji, and T. Sato

Finally, the adversary outputs a guess bit b′. Then, Succ, the event in whichA wins
the game for a protocol Π, occurs if b = b′ where b is the hidden bit used by the Test
oracle. The advantage ofA is defined as AdvΠ(k) = |Prob[Succ] − 1/2|. We say Π is a
secure group key exchange protocol against an active adversary, if, for any PPT active
adversaryA, AdvKEΠ is negligible (in k).

In the passive adversary model, Send oracle is ignored. We focus solely on the passive
case since the Katz-Yung compiler [11] or a variant of [7] transforms any GKE secure
against a passive adversary into one secure against outside active adversaries.

2.2 Notation and Assumptions on GKE

We make some assumptions necessary to compute the computational complexity. The
GKE we will build consists of multiplications on G, scalar multiplications on G, and
inversions on G, whose computational complexity are denoted by M, EM, and I, re-
spectively.

This paper focuses on GKE which can be robust against some number of node faults,
while keeping both communicational and computational complexity per party down.
Let us first make some observations on GKE. In this paper, when we evaluate the com-
municational complexity per party, it is from the point of view of the party with the
maximum sent and received data. We distinguish between point-to-point and broadcast
communication, while we do not distinguish between multicast and broadcast com-
munication. We use p (resp. b) to denote messages in G through point-to-point (resp.
broadcast) communication, both of which are investigated in two cases of sent and re-
ceived messages. The computational complexity is measured by the number of M, EM,
and I.

We also use the phrase of “auxiliary elements”, introduced in [8]. In some GKEs,
some parties compute data, which help other parties compute a shared key. That is, those
parties cannot compute a shared key without auxiliary elements”. Actually, failures
happen for those parties who need auxiliary elements to compute a shared key but those
are not sent to them. In order to achieve a GKE robust against party faults, we will
discuss how we provide auxiliary elements in spite of fault parties.

3 Background

This section summarizes previous GKEs: BDI [4], its fault-tolerant version [9], and
BDII [5]. In BDI, parties are arranged in a ring (See Figure 3.1). When n parties P1,
P2,· · · , Pn wish to generate a session key, they proceed as follows (the indices are taken
modulo n so that party P0 is Pn and party Pn+1 is P1).

Protocol 1 (BDI[4])

1. Each Pi computes zi = gri for a secretly chosen ri ∈ Z∗p and sends it to Pi−1 and
Pi+1.

2. Each Pi computes x[i−1, i+1] =
(

zi+1
zi−1

)ri
= griri+1−ri−1ri and broadcasts.

3. Each Pi computes a shared key K = (zi−1)nri · xn−1
[i−1, i+1] · xn−2

[i, i+2] · · ·
x[i−3, i−1]= gr1r2+r2r3+···+rnr1 .

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 193

Fig. 3.1. BDI Fig. 3.2. JKT

Level 2

Level

Level

Level 1

Fig. 3.3. BDII

The original BDI is not robust because if any message in the 2nd round is not delivered,
then all parties abort, since all parties need auxiliary elements broadcasted in the 2nd
round to compute a shared key. BDI is modified to achieve robustness in [9], which
is called JKT in this paper. JKT uses Hamilton cycle or Hamilton path to compute a
shared key. The maximum failures as well as the key computation in the Hamilton-cycle
JKT are different from ones in the Hamilton-path JKT when both compute the same
amount of auxiliary elements in the 2nd round. Here we present both Hamilton-cycle
and Hamilton-path JKT in the case of sending the same amount of auxiliary elements
and discuss each differences (see Figure 3.2).

Protocol 2 (JKT[9])

1. Each Pi computes zi = gri for a secretly chosen ri ∈ Z∗p and broadcasts.
2. Let ActiveList1 be the list of indices of all parties who complete the 1st round.

Each Pi computes x[k, i] =
(

zi
zk

)ri
= gr2

i −rkri for T nearest neighbors to the right and
T nearest neighbors to the left among parties k ∈ ActiveList1 and broadcasts.

3. Let ActiveList2 be the list of indices of all parties who complete the 2nd round.
Each Pi sorts the parties in ActiveList2 in the same order. We assume that the
alive parties constructs a Hamilton cycle or Hamilton path taken twice:
{Pa1 ,Pa2 , · · · ,Pam} or {Pa1 , · · · ,Pam−1 ,Pam ,Pam−1 , · · · ,Pa2}, respectively. In the case
of Hamilton cycle or path, each Pai computes a shared key K = z

m·rai
ai−1
· Xm−1

ai
·

Xm−2
ai+1
· · ·Xai−2 = gra1 ra2+ra2 ra3+···+ram ra1 or K = z

(2m−2)·rai
ai−1

· X2m−3
ai

· X2m−4
ai+1
· · ·Xai−2 =

g2(ra1 ra2+ra2 ra3+···+ram−1 ram), respectively. Here, Xai = x[ai−1, ai]·(x[ai+1, ai])
−1 = grai rai+1−rai−1 rai .

Let us discuss how many auxiliary elements in the 2nd round is necessary to achieve
T-robust GKE. T-robust GKE means that GKE toterates all patterns of party faults up
to T. In the case of Hamilton cycle, 2(T + 1) auxiliary elements are necessary for T-
robust GKE. In the case of Hamilton path, 2T auxiliary elements are enough to achieve
T-robust GKE. The detailed comparisons among two types of JKT and our scheme will
be shown in Section 6. The security of JKT is given in the theorem below.

Theorem 1 ([9]).. Assuming the Square-DDH over G is hard, JKT is a secure group
GKE protocol.

Another typical GKE is BDII, proposed by the same authors as BDI. Both BDI and
BDII have different features. BDI is fully contributory, but requires O(n) computational
and message complexity for any party. In fact, all parties are arranged symmetrically,
and thus all parties need to have the same computational resources. On the other hand,

194 T. Hatano, A. Miyaji, and T. Sato

BDII is not contributory, but can work with O(log n) computational and message com-
plexity for any party. Furthermore, parties are not arranged symmetrically, and thus
BDII can adapt to the situation of parties with different computational resources.

Up to now, no fault-tolerant version of BDII has been proposed. In order to achieve
robust GKE with O(log n) message size, we focus on BDII in this paper. In BDII,
parties are arranged in a binary tree (See Figure 3.3). Therefore, all but the leaves of the
tree, each has one parent and two children. We denote the parent, the left child, and the
right child by parent(i), l.child(i), and r.child(i), respectively, and denote the set
of ancestors of a party Pi by ancestor(i). Parties P1 and P2 are parents to each other,
that is, P1 (resp. P2) is the parent of P2 (resp. P1). Such a relation is used to compute
xl.child(i) and xr.child(i) for i = 1 or 2. However, for a party Pi, either P1 or P2 is included
in ancestor(i).

When n parties P1, P2, · · · , Pn wish to generate a session key, they proceed as fol-
lows.

Protocol 3 (BDII[5])

1. Each Pi computes zi = gri for a secretly chosen ri ∈ Z∗p and sends it to its neigh-
bors.

2. Each Pi computes both xl.child(i)=
(zparent(i)

zl.child(i)

)ri
= grpar(i)ri−rirl.child(i) and

xr.child(i)=
(zparent(i)

zr.child(i)

)ri

= grpar(i)ri−rirr.child(i) and multicasts these to its left and right descendants, respectively.
3. Each Pi computes a shared key K = (zparent(i))ri ·Π j∈ancestor(i)xj = gr1r2 .

Theorem 2 ([7]).. Assuming the DDH over G is hard, BDII is a secure group GKE
protocol.

4 Robust GKE with O(log n) complexity

This section presents our GKE with robustness with O(log n) complexity, called Cross-
Help GKE (CH-GKE). We start with intuition on how to make BDII robust, then presents
CH-GKE and its generalization.

4.1 Intuition

Our robust GKE is constructed over BDII in Section 3. Let us discuss why BDII is not
robust in detail. In BDII, a party Pi in level �i makes two auxiliary elements for two
children in level �i + 1. In the key-sharing phase, a party Pi computes a shared key
by using all auxiliary elements sent by ancestors in the path from the parent of Pi to
the root P1 or P2 (see Figure 3.3). Note that the path has been determined uniquely in
BDII. This is why if a party Pi in level �i fails after the 1st round and cannot send any
auxiliary element to descendants, no descendant can compute a shared key. However,
unlike BDI, any ancestor of Pi as well as any party who is not in the same path from the
failed Pi to the root can compute a shared key.

Before showing our strategy, let us start with a primitive construction of robust GKE.
In BDII, an auxiliary element computed by the parent of Pi is necessary for Pi to com-
pute a shared key. Suppose that we add a few extra edges to the graph of BDII and

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 195

two or more parties compute auxiliary elements for Pi, then one of the alive auxiliary
elements enables Pi to compute a shared key. For example, suppose that we add 1 more
edge to Pi from parties in level �i − 1 and add 2 more edges to parties in level �i + 1
from Pi. Then, if either path from level �i − 1 to Pi is alive, 4 parties in level �i + 1 as
well as Pi can compute a shared key. However, in order to let the 2 × 4 path available,
Pi computes and multicasts 2 × 4 auxiliary elements for 4 parties in level �i + 1. Thus,
if both Ii edges from parties in level �i − 1 to Pi and Oi edges from Pi to parties in level
�i + 1 exist4, then the number of auxiliary elements is Ii × Oi. That is, computational
and communicational complexity increases multiplicatively according to the number of
edges coming in and coming out. Our scheme can reduce the multiplicative cost to the
additive cost.

Our scheme, CH-GKE, achieves efficient robust GKE, by realizing a cross-help idea
with additive computational and communicational complexity. In order to realize such
efficient cross-help, we introduce the following ideas.

1. The division and restoration of auxiliary elements
In order to achieve robustness, paths to enable key-sharing need to be increased,
which also increases the number of auxiliary elements. For example, for Ii × Oi

paths, Ii ×Oi auxiliary elements are required. In order to reduce computational and
communicational complexity, we generalize a technique used in [9]: divide Ii ×Oi

auxiliary elements into Ii + Oi parts; divided parts are computed and multicasted;
then, in the key-sharing phase, a necessary auxiliary element is restored from two
parts of Ii and Oi.

2. A new relation between P1 (resp. P2) and descendants of P2 (resp. P1)
Parties P1 and P2 are sisters of each other for those who are descendants of P1 and
P2. That is, P1 (resp. P2) is the aunt for parties Pi who are P2’s (resp. P1’s) children.
See Figure 4.1.

Let us show an overview of CH-GKE briefly. We denote a child, a parent, and ances-
tors in the same notation as in Section 3. In addition to these, the sister of i who has the
same parent as i, the left child and the right child of the sister, and the sister of parent
are denoted by sister(i), l.niece(i) and r.niece(i), and aunt(i), respectively.

The relations among neighbors of party Pi are shown in Figure 4.2. In the basic
construction of CH-GKE, the cross-help is done by sisters: parent and aunt of Pi in
level �i(i ≥ 2) make Pi’s auxiliary elements, and Pi makes auxiliary elements for 4
parties such as children and nieces in level �i + 1. Then, Pi computes and multicasts
2 + 4 = 6 auxiliary elements. In the general construction, the cross-help is generalized
in such a way that Ii parties in level �i − 1 make Pi’s auxiliary elements, and Pi in level
�i makes auxiliary elements for Oi parties in level �i + 1. Then, Pi computes Ii + Oi

auxiliary elements and multicasts them.

4.2 Cross-Help GKE (CH-GKE)

This section presents the basic version of CH-GKE, which tolerates all patterns of party
fault if either sister is alive in a binary tree. Parties P1 and P2 in level 1 can cross-help
each other, and thus, CH-GKE tolerates even if either party fails after the 1st round.

4 Ii edges are input edges to Pi. Oi edges are output edges from Pi.

196 T. Hatano, A. Miyaji, and T. Sato

Level 1

Level 2

Level 3

Level

Level

Fig. 4.1. Party Tree of CH-GKE Fig. 4.2. CH-GKE

Figure 4.2 shows the relations of parties in CH-GKE, where a dotted line represents
a flow of additional auxiliary elements to BDII. For example, additional auxiliary ele-
ments constructed by aunt(i) are sent to i and sister(i).

1 2

3 54 6

987 13121110 14

Fig. 4.3. Example of CH-GKE Fig. 4.4. Generalized CH-GKE

Protocol 4 (CH-GKE)

1. Each party Pi computes zi = gri for a (private) uniformly and randomly chosen
ri ∈ Z∗q and sends it to its neighbors.

2. Let ActiveList1 be the list of indices of all parties who complete the 1st round.
Then, Pi (i ∈ {1, 2}) in level 1 computes 5 auxiliary elements yi[aunt(i), i], yi[i, l.child(i)],
yi[i, r.child(i)], yi[i, l.niece(i)], and yi[i, r.niece(i)], and multicasts them to parties in levels
≥ 2, where

yi[aunt(i), i] =
(zaunt(i)

zi

)ri

= graunt(i)·ri−r2
i ;

yi[i, l.child(i)] =

(
zi

zl.child(i)

)ri

= gr2
i −rl.child(i)·ri ; yi[i, r.child(i)] =

(
zi

zr.child(i)

)ri

= gr2
i −rr.child(i)·ri

yi[i, l.niece(i)] =

(
zi

zl.niece(i)

)ri

= gr2
i −rl.niece(i)·ri ; yi[i, r.niece(i)] =

(
zi

zr.niece(i)

)ri

= gr2
i −rr.niece(i)·ri .

Let Pi be an inner-node party in level �i ≥ 2. Then, Pi computes 6 auxiliary ele-
ments yi[parent(i), i], yi[aunt(i), i], yi[i, l.child(i)], yi[i, r.child(i)], yi[i, l.niece(i)], and

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 197

yi[i, r.niece(i)], and multicasts them to parties in level ≥ �i + 1, where

yi[parent(i), i] =
(zparent(i)

zi

)ri

= grparent(i)·ri−r2
i ; yi[aunt(i), i] =

(zaunt(i)
zi

)ri

= graunt(i)·ri−r2
i ;

yi[i, l.child(i)] =

(
zi

zl.child(i)

)ri

= gr2
i −rl.child(i)·ri ; yi[i, r.child(i)] =

(
zi

zr.child(i)

)ri

= gr2
i −rr.child(i)·ri

yi[i, l.niece(i)] =

(
zi

zl.niece(i)

)ri

= gr2
i −rl.niece(i)·ri ; yi[i, r.niece(i)] =

(
zi

zr.niece(i)

)ri

= gr2
i −rr.niece(i)·ri .

3. Let ActiveList2 be the list of indices of all parties who complete the 2nd round.
Then, Pi (i ∈ {1, 2}) in level 1 computes K = zri

aunt(i). Note that Pi can compute
K even if Paunt(i) � ActiveList2. On the other hand, Pi in level �i ≥ 2 picks
up a set of indices from ActiveList2 whose parties form a path from the (reset)
parent of Pi to P1 or P2, where the set is denoted by ancestor(i): ancestor(i) =
{parent(i), · · · , 1 or 2}. Actually, the set consists of �i − 1 indices of each party
from the level �i − 1 to 1. If either sister is alive in a binary tree, then ancestor(i)
exists. A shared key is given as

K = zri

parent(i) ·Π j∈ancestor(i)Yj = gr1r2 ,

where Yj = yj[parent(j), j]yj[j, child(j)] = grparent(j)rj−r2
j gr2

j−rchild(j)rj = grparent(j)rj−rchild(j)rj

(for j � 1, 2), Yj = yj[aunt(j), j]yj[j, child(j)] = graunt(j)rj−r2
j gr2

j−rchild(j)rj = graunt(j)rj−rchild(j)rj

(for j = 1 or 2), and parent(j) (resp. child(j)) is the (reset) parent (resp. child)
of j in ancestor(i).

Protocol 4 satisfies correctness. Example 1 shows how Party 14 computes a shared key
in CH-GKE among 14 parties. See Figure 4.3, where black or white nodes correspond
to parties alive or dead in the 2nd round, respectively; big nodes correspond to parties
in the path ancestor(14); bold edges correspond to the path ancestor(14) and dotted
lines represent a flow where auxiliary elements have not been sent in the 2nd round.

Example 1 Let n = 14; and ActiveList2 = {1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14}. Then,
Party 14 computes a shared key as follows. In this case, the reset parent of P14 is
P5 and the reset parent of P5 is P1, which becomes the end of the path, and thus,
ancestor(14) = {5, 1}. So, P14 computes Y5 = gr1r5−r2

5 gr2
5−r14r5 = gr1r5−r5r14; Y1 =

gr2r1−r2
1 gr2

1−r1r5 = gr2r1−r1r5 ; and thus, results in K = zr14
5 Y1Y5 = gr1r2 .

Remarks 1. 1. Parties with low computational resources are arranged to nodes in
leaves. Then, they can skip the 2nd round. Those parties executes 1 exponentiation
in the round 1 and the computation of the shared key.
2. Parties with large computational resources are arranged to inner nodes. They need
to execute both the 1st and the 2nd rounds.

4.3 Generalized CH-GKE

We show the generalization of Protocol 4 as Protocol 5. Figure 4.4 shows the rela-
tions of parties in the generalized CH-GKE. In Protocol 5, a concept of children and

198 T. Hatano, A. Miyaji, and T. Sato

parent of a party in level �i are generalized to {G.child(i) j} and {G.parent(i) j}: a
party in level �i makes auxiliary elements for Oi parties in level �i + 1, denoted by
G.child(i)1, · · · , G.child(i)Oi ; and Ii parties in level �i−1, denoted by G.parent(i)1, · · · ,
G.parent(i)Ii , make Pi’s auxiliary elements, respectively. Remark that the number of Ii

is less than that of parties in level �i − 1. The generalized CH-GKE tolerates all patterns
of party faults if one party in {G.parent(i) j}i for each party Pi is alive in a binary tree.
The detailed protocol is given in the below, which is the same as Protocol 4 except using
{G.child(i) j} and {G.parent(i) j}.
Protocol 5 (Generalized CH-GKE)

1. Each party Pi computes zi = gri for a (private) uniformly and randomly chosen
ri ∈ Z∗q and sends it to its neighbors.

2. Let ActiveList1 be the list of indices of all parties who complete the 1st round.
Then, Pi (i ∈ {1, 2}) computes 5 auxiliary elements yi[parent(i), i],
yi[i, l.child(i)], yi[i, r.child(i)], yi[i, l.niece(i)], and yi[i, r.niece(i)], and multi-casts them to
parties in levels ≥ 2. Let Pi be an inner-node party in level �i ≥ 2. Then, Pi com-
putes Ii + Oi auxiliary elements, {yi[G.parent(i) j , i]} j=1,··· ,Ii and {yi[i, G.child(i) j]} j=1,··· ,Oi ,
and multicasts them to parties in levels ≥ �i + 1, where

yi[G.parent(i) j, i] =

(zG.parent(i) j

zi

)ri

= g
rG.parent(i) j

·ri−r2
i ; yi[i, G.child(i) j] =

⎛
⎜⎜⎜⎜⎝

zi

zG.child(i) j

⎞
⎟⎟⎟⎟⎠

ri

= g
r2
i −rG.child(i) j

·ri .

3. Let ActiveList2 be the list of indices of all parties who complete the 2nd round.
Then, Pi (i ∈ {1, 2}) in level 1 computes K = zri

aunt(i). Pi in level �i ≥ 2 picks up a set
of indices from ActiveList2 whose parties form a path from the (reset) parent of
Pi to P0 or P1, where the set is denoted by ancestor(i). If one of {G.parent(i) j}i
is alive in a binary tree, then ancestor(i) exists. A shared key is given as

K = zri

parent(i) ·Π j∈ancestor(i)Yj = gr1r2 ,

where Yj = yj[parent(j), j]yj[j, child(j)] and parent(j) and child(j) are the (reset)
parent and child of j in ancestor(i), respectively.

Remarks 2. 1. For Pi in level �i ≥ 2, the number of generalized parents Ii (resp. chil-
dren Oi) needs to be Ii ≤ 2�i−1 (resp. Oi ≤ 2�i+1) to satisfy correctness.
2. The more auxiliary elements Ii + Oi are generated, the more party faults CH-GKE
tolerates. However, it needs to locate positions where parties have failed.

4.4 Security of CH-GKE

Theorem 3 that a passive adversary breaks CH-GKE (Protocol 4) is used to solve the
Square-DDH Problem.

Theorem 3. Assuming the Square-DDH overG is hard, CH-GKE (basic) (Protocol 4),
denoted simply by Π, is a secure group GKE protocol. Namely,

AdvGKEΠ (t, qex) ≤ AdvSquare−DDH
G

(t′),

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 199

where AdvGKEΠ (t, qex) is an adversary to Π with qexExecute queries and in t time, and
Adv

Square−DDH
G

(t′) is an adversary to Square-DDH in t′ = t + qex(13n − 15)EM time for
the number of parties n.

Proof: Given an algorithmA againstΠ running in time t, we show how to construct an
adversaryB against the Square-DDH.

A tuple (g, y, h) ∈ G × G × G is given to B, where y = gx with unknown x to B
and h = gx2

or a random number in G. Then, B runsA to decide whether h = gx2
or

not. B sets z1 = y. Next, choose c2, · · · , cn ∈ Zp randomly, and set zi = zi−1 · g−ci =

g
x− i∑

j=2
cj

for i ≥ 2. zi can be computed since zi−1 was computed before. Note that B
knows zi but does not know the logarithm ri of zi = gri , where ri = x − i∑

j=2
cj. From

this, B can compute yi[parent(i), i], yi[aunt(i), i], yi[i, l.child(i)], yi[i, r.child(i)], yi[i, l.niece(i)],
and yi[i, r.niece(i)] as follows.

In the case of P1, set

yi[aunt(1), 1] =
(zaunt(1)

z1

)r1

= gr2r1−r2
1 = g(x−c2)x−x2

= y−c2

which is computable since c2 is known to B. Let us discuss the other 4 auxiliary ele-
ments. Set the number of l.child(1) to num.lc(1). Then, num.lc(1) > 2 holds and

y1[1, l.child(1)] =

(
z1

zl.child(1)

)r1

= gr2
1−rl.child(1)r1 = g

x2−(x−
num.lc(1)∑

j=2
cj)x
= g

(
num.lc(1)∑

j=2
cj)x
= y

num.lc(1)∑
j=2

cj

,

which is computable since
num.lc(1)∑

j=2
cj is known to B. The computation of the other 3

auxiliary elements follows the above.
In the case of P2, set

y2[aunt(2), 2] =
(zaunt(2)

z2

)r2

= gr1r2−r2
2 = gx(x−c2)−(x−c2)2

= yc2 g−c2
2 ,

which is computable since c2 is known to B. The other 4 auxiliary elements can be
computed in the same way.

In the case of Pi(i ≥ 3), B can compute 6 auxiliary elements in the same way as
above. Let us discuss two auxiliary elements of yi[parent(i), i] and yi[aunt(i), i]. Set the
number of parent(i) to num.par(i). Then, num.par(i) < i holds and

yi[parent(i), i] =
(zparent(i)

zi

)ri

= grparent(i)ri−r2
i = g

(x−
num.par(i)∑

j=2
cj)(x−

i∑
j=2

cj)−(x− i∑
j=2

cj)2

= y
− i∑

j=num.par(i)+1
cj

g
(

i∑
j=num.par(i)+1

cj)(
i∑

j=2
cj)

which is computable since ∀cj is known to B. yi[aunt(i), i] can be computed in the same
way as above. Let us discuss the other 4 auxiliary elements. Set the number of l.child(i)

200 T. Hatano, A. Miyaji, and T. Sato

to num.lc(i). Then, num.lc(i) > i holds and

yi[i, l.child(i)] =

(
zi

zl.child(i)

)ri

= gr2
i −rl.child(i)ri = g

(x− i∑
j=2

cj)2−(x−
num.lc(i)∑

j=2
cj)(x−

i∑
j=2

cj)

= y
−
num.lc(i)∑

j=i+1
cj

g
(

i∑
j=2

cj)(
num.lc(i)∑

j=i+1
cj)

which is computable since ∀cj is known to B. The computation of the other 3 auxiliary
elements follows the above.

As the ci(i ≥ 2) are distributed uniformly at random, the distribution of zi and yi[i, j]
is identical to that in Π. The transcript consists of

T = {zi, yi[parent(i), i], yi[aunt(i), i], yi[i, l.child(i)], yi[i, r.child(i)], yi[i, l.niece(i)], yi[i, r.niece(i)]},
for each party Pi. Let ActiveList2 be the list of indices of all parties who complete
the 2nd round. Upon the Test request, B issues the shared key K as follows,

K = gr1r2 = gx(x−c2) = gx2
y−c2 = hy−c2 .

If K is the shared group key, then h = gx2
, i.e. (g, y, h) is a valid Square-DDH set.

Therefore, B succeeds with the same advantage as A by (13n − 15)EM additional
computational time to generate T.

We consider the case in whichA makes a single Execute query, since B can easily
generate another set of (gr, yr, hr2

) of the same type as (g, y, h) for a random exponent
r ∈ Zp. Bounding the number n by the total number of parties, the claim follows.

In the same way, we can show that a passive adversary that breaks the generalized
CH-GKE (Protocol 5) is used to solve the Square-DDH Problem, whose proof will be
shown in the final paper.

Theorem 4. Assuming the Square-DDH over G is hard, CH-GKE (general) (Proto-
col 5), denoted simply by Π, is a secure group GKE protocol. Namely,

AdvGKEΠ (t, qex) ≤ AdvSqure−DDH
G

(t′),

where AdvGKEΠ (t, qex) is an adversary to Π with qexExecute queries and in t time;
Adv

Squre−DDH
G

(t′) is an adversary to Square-DDH in t′ = t + qex((2maxΠ + 1)n + 9 −
4maxΠ)EM time for the number of parties n; and maxΠ is the maximum number of
auxiliary elements constructed by a single party.

5 T-Robust GKE with O(log n) Complexity

CH-GKE, shown in Section 4, achieves robustness with O(log n) message size. The
generalized CH-GKE tolerates if one of paths from any alive party to P1 or P2 is alive.
However, it needs to locate positions where parties have failed. In fact, either P1 or P2

need to be alive. On the other hand, JKT tolerates any T-party faults in any position,
however, it needs O(n) computational complexity.

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 201

In this section, we present T-robust GKE with O(log n) communicational and com-
putational complexity. Our idea is to combine both JKT and CH-GKE considering their
advantages: JKT is a symmetric structure and tolerates any T-party fault in any posi-
tion but works in O(n) computational complexity, while CH-GKE is an asymmetric
structure and works in O(log n) communicational and computational complexity. Our
strategies to combine both T-robust JKT and CH-GKE are: from the point of any T-
party fault, the shared key is computed in the procedure of T-robust JKT. Then, auxil-
iary elements for parties not in JKT procedure to compute the shared key are generated
and multicasted in the procedure of CH-GKE. According to this strategy, parties are
arranged to a circle of JKT or trees of CH-GKE; and compute JKT-and-CH-GKE-like
auxiliary elements or CH-GKE-like auxiliary elements, respectively. Figure 5.1 shows
an arrangement of parties, where parties in a circle execute JKT part, parties in trees
execute CH-GKE part, dotted lines in the circle represent a flow that the party 1 com-
putes auxiliary elements in JKT part, and bold lines from the party 1 to nodes in level
1 of trees represent a flow that the party 1 computes auxiliary elements in CH-GKE
part. Let us show how we combine JKT and CH-GKE briefly, then present our T-robust
GKE (Protocol 6):

1. JKT part
T+2 parties are arranged in the circle of JKT5. They compute auxiliary elements to
execute T-robust JKT, which are in total for T + 1 parties. They also compute ones
to execute CH-GKE, which are in total for 2(T + 1) parties, because any party in
level �i of CH-GKE needs to get auxiliary elements sent by T + 1 different parties
in level �i − 1, while the number of parties in level �i is twice as large as one in
level �i − 1. Those auxiliary elements are called JKT-and-CH-GKE-like auxiliary
elements.

2. CH-GKE part
Arrange T + 2 trees of CH-GKE under each party in the circle of JKT. n−(T+2)

T+2
parties are arranged in each tree of CH-GKE, where the height of tree is � =
�log2

n
T+2 + 1	 − 1. They execute CH-GKE and compute auxiliary elements for

2(T + 1) parties in total in the same reason as above.

Protocol 6 (T-robust GKE) T-robust GKE among n parties is a combination of T-
robust JKT among T + 2 parties and T-robust CH-GKE among n − T − 2 parties.
INITIALIZATION: ARRANGE PARTIES TO JKT OR CH-GKE
Set T+ 2 parties in the circle in JKT, where they are numbered from 1 to T+ 2. Arrange
T + 2 trees of CH-GKE by setting each party in the circle of JKT to each root. Finally,
set n−T−2

T+2 parties in each tree.
GROUP KEY EXCHANGE PROTOCOL

1. Each party Pi computes zi = gri for a (private) uniformly and randomly chosen
ri ∈ Z∗q and sends it to its neighbors.

2. Let ActiveListJKT
1 (resp. ActiveListCH

1) be the list of indices of parties in the
circle (resp. trees) who complete the 1st round.

5 This is the smallest number of parties arranged in the circle, which can be set to more than
T + 2.

202 T. Hatano, A. Miyaji, and T. Sato

PARTIES IN THE CIRCLE OF JKT: Let Pi be a party in the circle, who has general-
ized children {G.child(i) j} in trees. Pi computes and broadcasts two types of aux-
iliary elements: auxiliary elements x[k, i] seen in the 2nd round in JKT(Protocol 2)
and those seen in children parts of the 2nd round in CH-GKE between Pi itself and
generalized 2(T+1) children in the tree, PG.child(i) j (see Section 4.3 for G.child(i) j):

x[k, i] =
(zi

zk

)ri

= gr2
i −rkri (ActiveListJKT

1
 k � i)

yi[i, G.child(i) j] =

(
zi

zG.child(i) j

)ri

= gr2
i −rirG.child(i) j (ActiveListCH

1
 G.child(i) j).

PARTIES IN TREES OF CH-GKE: Let Pi be an inner-node party in level �i in a tree,
who has generalized parents {G.parent(i) j} in the circle (resp. trees) if �i = 1 (resp.
�i ≥ 2) and generalized children {G.child(i) j} in trees. Pi computes (T+1)+2(T+1)
auxiliary elements and multi-casts them to parties in level ≥ �i + 1 in the same way
as in Protocol 5:

yi[G.parent(i) j, i] =

(zG.parent(i) j

zi

)ri

= g
rG.parent(i) j

·ri−r2
i ; yi[i, G.child(i) j] =

⎛
⎜⎜⎜⎜⎝

zi

zG.child(i) j

⎞
⎟⎟⎟⎟⎠

ri

= g
r2
i −rG.child(i) j

·ri .

3. Let ActiveListJKT
2 (resp. ActiveListCH

2) be the list of indices of parties in the

circle (resp. trees) who complete the 2nd round. Here we set #ActiveListJKT
2 =

T′. Assume that the alive parties in ActiveListJKT
2 are sorted in the same order

as before and ordered {Pa1 ,Pa2 , · · · ,PaT′ }.
PARTIES IN THE CIRCLE OF JKT: Each Pai in the circle computes a shared key

K = z
rai ·T′
ai−1
· XT′−1

ai
· XT′−2

ai+1
· · ·Xai−2 = gra1 ra2+ra2 ra3+···+raT′ ra1 ,

where Xaj = x[aj−1, aj] · (x[aj+1, aj])
−1 = graj raj+1−raj−1 raj (j ∈ {1, · · · ,T′}).

PARTIES IN TREES OF CH-GKE: Each Pi in level 1 picks up a party Pai ∈
ActiveList

JKT
2 whose corresponding auxiliary element, yai[ai , i], has been sent to

Pi. A shared key is given as follows:

K = (K′)T′ · XT′−1
ai
· XT′−2

ai+1
· · ·Xai−2 ,

where K′ = zri
ai
· yai[ai, i] · (x[ai+1, ai])

−1 = grai rai+1 .
Each Pi in level �i ≥ 2, first, picks up a set of indices from ActiveListCH

2 Pi

whose parties form a path from the (reset) parent of Pi to the (reset) ancestor in
level 1. The set is denoted by ancestor(i) in the same way as Protocols 4 and 5.
We also denote the index of the party in level 1 in ancestor(i) by ancestor(i)[1].
Then, ancestor(i) = {parent(i), · · · , ancestor(i)[1]}. If the number of fault par-
ties is less than or equal to T, then ancestor(i) exists. Next, Pi picks up a party
Pai ∈ ActiveListJKT

2 whose corresponding auxiliary element, yai[ai, ancestor(i)[1]],
has been sent to Pancestor(i)[1]. A shared key is given as follows:

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 203

K = (K′)T′ · XT′−1
ai
· XT′−2

ai+1
· · ·Xai−2 ,

where K′ = zri

parent(i) ·
(
Π j∈ancestor(i)Yj

)
· yai[ai , ancestor(i)[1]] · (x[ai+1, ai])

−1 = grai rai+1

and Yj = grparent(j)rj−rchild(j)rj .

Protocol 6 satisfies correctness. Example 2 shows how Party 28 computes a shared key
in 5-robust GKE among 49 parties. See Figure 5.2, where black or white nodes corre-
spond to parties alive or dead in the 2nd round, respectively; big nodes correspond to
parties in the path ancestor(28); bold edges correspond to the path of ancestor(28)
and Pai ∈ ActiveListJKT

2 ; and bold dotted edges correspond to the path of

ActiveList
JKT
2 , where a shared key is computed.

Example 2 Let S be a set of parties with #S = n = 49, and F be a set of fault par-
ties, where F = {1, 2, 5, 7, 9, 10, 11, 24, 31}. Then ActiveListJKT

2 = {3, 4, 6}, T′ = 3,
and a shared key K is computed to K = gr3r4+r4r6+r6r3 . Party 28 computes the shared
key as follows. The reset parent of P28 is P8 and the reset parent of P8 is P3, which
becomes the end of the path, and thus, ancestor(28) = {8}. P28 picks up a party

P3 ∈ ActiveListJKT
2 , and computes K′ = (zparent(28))r28 · Y8 · y3[3, 8] · x−1

[6, 3] = gr8r28 ·
gr3r8−r8r28 · gr2

3−r3r8 · gr6r3−r2
3 = gr6r3 for Y8 = y8[3, 8] · y8[8, 28] = gr3r8−r8r28 , and thus, results

in K = (K′)3 · X2
3 · X4 = g3(r6r3) · g2(r3r4−r6r3) · gr4r6−r3r4 = gr3r4+r4r6+r6r3 .

Level 1

Level 2

Fig. 5.1. T-robust GKE Fig. 5.2. Example of 5-robust GKE among 49
parties

The security of Protocol 6 is given in Theorem 5, whose proof will be shown in the final
paper

Theorem 5. Assuming the DDH and Square-DDH over G are hard, Protocol 6, de-
noted simply by Π, is a secure group GKE protocol.

204 T. Hatano, A. Miyaji, and T. Sato

Table 1. Sent/received message complexity of several GKEs among n parties

Party Type Sent Messages (Large / Low) Received Message (Large / Low Computational Resources)

BDI b + 2p (n − 1)b + 2p
BDII 2b + 3p / p log2 nb + 3p / log2 nb + p

JKT(cycle) 2(T + 1)b + 2(T + 1)p 2(n − 1)b + 2(T + 1)p
JKT(path) 2Tb + 2Tp 2(n − 2)b + 2Tp
R-TDH1 nb / b 2(n − 1)b / b

ours 3(T + 1)b + 3(T + 1)p / (T + 1)p 2(T + log2 n + 1)b + 3(T + 1)p / 2(T + log2 n + 1)b + (T + 1)p

Table 2. Computational complexity and robustness(max faults) of GKE among n parties

Party Type Large Computational Resources Low Computational Resources Robustness

#EM #I #M #EM #I #M

BDI 3 1 2(n − 1) 3 1 2(n − 1) 0
BDII 4 2 log2 n 2 0 log2 n 0

JKT(cycle) 2(T + 2) 2 6n + 8T − 4 2(T + 2) 2 6n + 8T − 4 T
JKT(path) 2(T + 1) 2 4(3n + T − 6) 2(T + 1) 2 4(3n + T − 6) T
R-TDH1 3(n − 1) 0 0 4 0 0 n − 2

ours 3T + 5 3 18T + 9 2 2 6T + 2 log2 n + 5 T

6 Comparison

This section compares our scheme with previous schemes from the view point of effi-
ciency and robustness. Table 1 (resp. Table 2) summarizes the communicational (resp.
computational) complexity per user and robustness of ours (Section 5), JKT, R-TDH1
(basic)6, BDI, and BDII. Note that, T-robust GKE means GKE tolerates all patterns of
party faults up to T. JKT (cycle) or JKT (path) means Hamilton-cycle JKT or Hamilton-
path JKT, respectively (See Section 3 for the detailed differences). When we do not have
to distinguish JKT (cycle) from JKT (path), JKT is used simply. The notation of p and
b is defined in Section 2.2. In an asymmetric party setting seen in BDII and ours, par-
ties can be in different environment and have different computational resources since
efficiency is different to each party type. In such GKEs, comparison is done by parties
with large or low computational resources. Here after we focus on efficiency of JKT
and our GKE since these are the same paradigm, while neither BDI nor BDII is robust
and R-TDH1 is fully robust. Our GKE has advantages over JKT in the received mes-
sage complexity for any party type and computational complexity for parties with low
computational resources. In fact, the size of our received message is O(T+ log n), while
that of JKT is O(n). As for sent message complexity, ours is slightly worse than that
of JKT. On the other hand, the order of our computational complexity for parties with
low computational resources is O(T + log n), while that of JKT is O(T+ n), due to our
scalable party arrangement.

6 In our comparison, R-TDH1 in [3] is simplified to only key establishment for the estimation
of its basic complexity.

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 205

Fig. 6.1. Received message size (T/n = 0.1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
T�n0

2.�107

4.�107

6.�107

8.�107
Message size ��G��

ours �Low�

ours �Large�

JKT �path�

JKT �cycle�

Fig. 6.2. Received message size (n = 107)

4.0 4.5 5.0 5.5 6.0 6.5 7.0
Group size �log2n�0

1.�107

2.�107

3.�107

4.�107

5.�107
Computational complexity ��M�

ours �Low�

ours �Large�

JKT �path�

JKT �cycle�

Fig. 6.3. Computational complexity (T/n =
0.1)

0.002 0.004 0.006 0.008 0.010
T�n

5.�107

1.�108

1.5�108

2.�108

2.5�108

3.�108

3.5�108

4.�108
Computational complexity ��M�

ours �Low�

ours �Large�

JKT �path�

JKT �cycle�

Fig. 6.4. Computational complexity (n = 107)

Let us compare both our GKE and JKT by using concrete parameter of (n,T). We
firstly demonstrate the received message size comparison in Figures 6.1 and
6.2. Figure 6.1 simulates the case that the ratio of fault parties, T/n, is fixed to 0.1
and group size changes from 104 to 107. In any case, our GKE has better performance
than JKT (path)7. Figure 6.2 simulates the case that the group size is fixed to n = 107,
and T/n changes from 0.1 to 0.8. When T/n < 0.67, received message size of our
GKE for parties with large resources is better than that of JKT. As for parties with low
resources, our GKE is more efficient than JKT in any T/n.

We next compare them in the computational complexity, shown in Figures 6.3 and
6.4. Note that, the computational complexity is estimated with complexity of a sin-
gle multiplication on G (M), where estimation is done by: |G| = 1, 024 bits, EM =
1, 536M, and I = 30M8. Figure 6.3 simulates the case that T/n is fixed to 0.1 and group
size changes from 104 to 107. In any case computational complexity of our GKE for
parties with low resources is smaller than that of JKT. That for parties are larger than
that of JKT. Figure 6.4 simulates the case that the group size n is fixed to n = 107

and T/n changes from 0.002 to 0.01. In the same way as Figure 6.3, the computational
complexity for parties with low resources in our GKE is extremely reduced than that
of JKT. That for parties with large resources is slightly better than JKT in the range of
T/n < 0.004.

7 JKT (path) is slightly better than JKT (cycle) in the received message size, and, thus, only JKT
(path) is simulated.

8 The basic binary method is assumed for an exponentiation in G.

206 T. Hatano, A. Miyaji, and T. Sato

T / n

102 103 104 105 106 107

Group size (n)0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ours

(Large)

JKT

(path)

Fig. 6.5. Optimal protocol (received message
size)

0.004

0.006

0.008

0.01

T / n

0.002

0.001

103 104 105 106 107

Group size (n)

Ours

(Large)

JKT

(path)

Ours

(Large)

Fig. 6.6. Optimal protocol (computational
complexity)

The above evaluations can be summarized as follows: (i) From the view point of
received message complexity, our protocol has an advantage over JKT in received mes-
sage complexity for parties with low computational resources, while JKT has an advan-
tage over ours in sent message complexity (although both are O(T)). (ii) From the view
point of computational complexity, our protocol has an advantage over JKT for parties
with low computational resources, while JKT has an advantage over our GKE for par-
ties with large resources. (iii) Our GKE has very nice scalability in both computational
and communicational complexity and, thus, can be available to parties with relatively
low CPU or battery.

Finally, we show the optimal robust GKE for given parameter (n,T), seen in
Figures 6.5 and 6.6. Note that, our GKE is more efficient than JKT (cycle) in even
received message size in any range of (n,T/n). Thus, our GKE is compared with only
JKT (path) from the point of view of received message size and computational com-
plexity. JKT (path) has smaller received message size and computational complexity
than our GKE for parties with large resources only if T/n is rather high. Note that, in
any range, received message size and computational complexity of our GKE for parties
with low resources is smaller than those of JKT. By using our results, we can choose
the optimal T-robust GKE for given (n,T/n).

7 Conclusions

JKT was developed to achieve a robust GKE based on BDI, and thus, it suffers commu-
nicational and computational complexity O(n) per party for the group size n. Another
robust GKE [3] also suffers communicational complexity O(n2) although it satisfies
fully robustness. Note that, up to now, GKE with communicational and computational
complexity O(log n) does not have any robustness.

We have proposed a new robust GKE, CH-GKE, with communicational and com-
putational complexity O(log n). We have also shown that our robust GKE is secure in
the standard model under the Square-DDH assumption. By combining both CH-GKE
and JKT, we have proposed T-robust GKE with communicational and computational
complexity O(log n), which tolerates any T-party fault in any position.

T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity 207

References

1. Amir, Y., Kim, Y., Nita-Rotaru, C., Schultz, J., Stanton, J., Tsudik, G.: Exploring robustness
in group key agreement. In: ICDCS 2001, pp. 399–409. IEEE CS, Los Alamitos (2001)

2. Abdel-Hafez, A., Miri, A., Orozco-Barbosa, L.: Authenticated group key agreement proto-
cols for ad hoc wireless networks. International Journal of Network Security 4(1), 90–98
(2007)

3. Brecher, T., Bresson, E., Manulis, M.: Fully Robust Tree-Diffie-Hellman Group Key Ex-
change. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 478–497. Springer, Heidelberg (2009)

4. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg
(1995)

5. Burmester, M., Desmedt, Y.: Efficient and secure conference key distribution. In: Lomas, M.
(ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 119–130. Springer, Heidelberg (1997)

6. Cachin, C., Strobl, R.: Asynchronous group key exchange with failures. In: Proceedings of
PODC 2004, pp. 357–366. ACM Press, New York (2004)

7. Desmedt, Y., Lange, T., Burmester, M.: Scalable authenticated tree based group key exchange
for ad-hoc groups. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 104–118. Springer, Heidelberg (2007)

8. Desmedt, Y., Miyaji, A.: Redesigning Group Key Exchange Protocol based on Bilinear
Pairing Suitable for Various Environments. In: Inscrypt 2010. Springer, Heidelberg (2010)
(to appear)

9. Jarecki, S., Kim, J., Tsudik, G.: Robust Group Key Agreement Using Short Broadcast. In:
Proceedings of ACM CCS 2007, pp. 411–420. ACM, New York (2007)

10. Kim, Y., Perrig, A., Tsudik, G.: Group Key Agreement Efficient in Communication. IEEE
Trans. on Comp. 53(7), 905–921 (2004)

11. Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)

12. Konstantinou, E.: Cluster-based group key agreement for wireless ad hoc networks. In: Pro-
ceedings of ARES 2008, pp. 550–557 (2008)

Application-Binding Protocol in the User Centric
Smart Card Ownership Model

Raja Naeem Akram, Konstantinos Markantonakis, and Keith Mayes

Information Security Group Smart card Centre, Royal Holloway,
University of London

Egham, Surrey, United Kingdom
{R.N.Akram,K.Markantonakis,Keith.Mayes}@rhul.ac.uk

Abstract. The control of the application choice is delegated to the
smart card users in the User Centric Smart Card Ownership Model
(UCOM). There is no centralised authority that controls the card en-
vironment, and it is difficult to have implicit trust on applications in-
stalled on a smart card. The application sharing mechanism in smart
cards facilitates corroborative and interrelated applications to co-exist
and augment each other’s functionality. The already established appli-
cation sharing mechanisms (e.g. in Java Card and Multos) do not fully
satisfy the security requirements of the UCOM that require a security
framework that provides runtime authentication, and verification of an
application. Such a framework is the focus of this paper. To support
the framework, we propose a protocol that is verified using CasperFDR.
In addition, we implemented the protocol and provide a performance
comparison with existing protocols.

1 Introduction

On a multi-application smart card, the application sharing mechanism achieves
optimised memory usage, data and service sharing between applications [20]. A
major concern in such a mechanism is the unauthorised inter-application com-
munication. The framework that ensures that the application sharing is secure
and reliable even in adverse conditions (i.e. malicious application, developer’s
mistake, or design oversight) is referred as a smart card firewall [36]. In this
paper, the term firewall or smart card firewall is used interchangeably.

The predominant business model in the smart card based service industry
(e.g. banking, transport, and Telecom, etc.) is referred as the Issuer Centric
Smart Card Ownership Model (ICOM) [13] and in this model card issuers re-
tain the control of smart cards. Applications installed on an ICOM based smart
card requires prior authorisation from the respective card issuer. This estab-
lishes an implicit trust relationship between installed applications as they are
authorised/trusted by the card issuer. Furthermore, card issuers ensure that
their smart card platform, and installed applications are secure, reliable, and
trustworthy. Traditionally, card issuers have a business agreement with an appli-
cation provider before they sanction the application installation. This agreement

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 208–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Application-Binding Protocol in the UCOM 209

dictates the behaviour of an application and sanctioned actions that it may per-
form. Such an assumption is difficult to conclude in the User Centric Smart Card
Ownership Model (UCOM) [14].

In the UCOM, cardholders have the choice to install, or/and delete any appli-
cation from their smart cards for which they are entitled [13]. The entitlement
to install an application is attained once a customer is registered with a Service
Provider (SP). An SP is an organisation that develops a smart card applica-
tion(s) to assist in their service architecture (i.e. bankcards in banking, and SIM
cards in mobile telecom sector, etc.) and issues it to their customers. Customers
can then download the application after their smart cards satisfy the Application
Lease Policy (ALP) of the SP, and utilise it to access sanctioned services [11].
The ALP stipulates the minimum set of security and operational requirements
that a smart card has to satisfy before the SP lease its application(s). Therefore,
if an SP leases its application then it has ascertained a certain level of trustwor-
thiness of the host platform. Furthermore, it does not imply that the SP also
trusts other applications installed on the same smart card.

Firewall mechanisms are well-defined [22, 17, 8, 1] and studied [29, 18, 37, 15]
in the ICOM. However, the ICOM based firewalls do not satisfy the criteria for
the UCOM [14]. This paper illustrates the issue of gaining assurance and vali-
dation between communicating applications that are not satisfied (dynamically
at runtime) by the ICOM based firewall mechanisms. The runtime assurance
and validation of communicating applications, and subsequent generation of a
cryptographic key between them is termed as application-binding. The open and
dynamic nature of the UCOM requires that application sharing should be al-
lowed only after participating applications verify, and validate current-state to
be secure, and authenticate each other’s identity/credentials. The protocol that
achieves these requirements is referred as Application-Binding Protocol (ABP).

In section two, a short introduction to traditional smart card firewall mech-
anisms is provided. The discussion is then extended to the UCOM framework.
Section three emphasises on the threat model, and requirements of the ABP;
ending the section with a description of the proposed protocol. Protocol analysis
is provided in section four that includes model checking (using CasperFDR),
analytical analysis, and practical implementation results. Section five provides
the concluding remarks along with future research directions.

2 Application Sharing Mechanism

In this section, we open the discussion with a short description of the existing
firewall mechanisms. Next, we describe the UCOM and its firewall mechanism
together with the UCOM card architecture.

2.1 Smart Card Firewall Mechanism

The firewall mechanism prohibits any cross application communication; un-
less sanctioned by the communicating applications. As depicted in figure 1,

210 R.N. Akram, K. Markantonakis, and K. Mayes

application A is authorised to access the resources shared by application B,
where depicted application C cannot access application B.

In subsequent sections, we will dis-

Fi
re
w
al
l

Fi
re
w
al
l

Firewall

Application
A

Application
B

Application
C

X

Platform Runtime Environment

Fig. 1. A Generic Application Sharing
Mechanism

cuss the Java Card, and the Multos
firewall mechanisms from a large set
of smart card platforms. The reason
for this is: 1) these two frameworks are
among the most deployed in the smart
card industry and 2) they illustrate
two contrasting approaches of smart
card firewall implementation. We will
not discuss the GlobalPlatform speci-
fication [7] in this paper as “GlobalPlatform Card Security Requirement Spec-
ification” [4, see section 5.9.2] states that the GlobalPlatform relies on the un-
derlying platform’s (e.g. Java Card, and Multos) implementation of the firewall
mechanism.

Java Card. In Java Card, cross application communication is achieved by the
Shareable Interface Objects (SIO), and communication between applications and
platform is controlled by the Java Card Runtime Environment (JCRE) Entry
Point Objects [19], as shown in figure 2. The Entry Point Objects are instances of
Java Card APIs used by applications to access platform services. These objects
provide a secure way for applications to execute privileged commands.

Smart Card Hardware

Java Card Runtime Environment (JCRE)

Java Card Virtual Machine (JCVM) Native Methods

System Classes

Framework Classes (APIs)

Java Card Firewall .

Package A Package B

Applet A1
Applet A2

Applet B1

Applet B2

System
Context

Context A Context B

SIO

JCRE Entry Point
Objects

Fig. 2. Java Card Firewall Architecture

The SIO enables an application to share its data and resources (functionality)
with other authorised applications. To use the SIO functionality a server applica-
tion (Package B in figure 2) should implement the shareable interface. The data
and functionality defined in the shareable interface then becomes available to the
client application (Package A in figure 2). Each application on a smart card has

Application-Binding Protocol in the UCOM 211

an Application Identifier (AID) [5] that in theory is unique to it across all the
smart cards on which it is installed. In Java Card, a client application invokes
the JCSystem.getAppletShareableInterface (Server AID, parameter) to
request sharing with the server application. The client application needs to spec-
ify the AID of the respective server application and a parameter (that can be an
authorisation token encrypted with a pre-shared key) to the firewall. The firewall
then asks the server application whether or not it will allow the sharing request.
This framework is fit for the purpose in the ICOM; however, in an open cardx
scenario [41], a malicious user can masquerade the AID of a client application
and replay the application sharing request message (section 3.2).

Multos. The firewall mechanism on Multos cards is implemented with the as-
sumption that the applications installed on them have prior authorisation from
a centralised authority (i.e. the card issuer or/and Multos Certification Author-
ity) [9]. The security of the firewall mechanism in the Multos is actually managed
by the off-card agreements between different application providers. The firewall
in Multos is based on the concept of Delegation. In the delegation mechanism,
the client application is called the delegator and the server application is called
the delegate. The delegation process is described as below.

1. Application A creates an Application Protocol Data Unit (APDU) [34] in
the public memory that has the AIDs of A and B along with the request.

2. Application A initiates the delegate command, requesting Multos operating
system to invoke application B, which then reads and processes the APDU.

3. On completion; application B generates an APDU in the public memory.
4. The Multos operating system switches back to the execution of the applica-

tion A, which retrieves the results of the request from the public memory.

2.2 User Centric Smart Card Firewall

The firewall mechanism in the UCOM assumes that the smart card may be un-
der the control of a malicious user, or/and there might be malicious applications
on it. However, this does not imply that the underlying card platform is either
compromised or malicious. We assume that card platform is not malicious; its
trustworthy and has necessary functionality to provide tangible and verifiable
evidence of the implemented security mechanisms [12]. The UCOM firewall is
summarised in figure 3 and in subsequent sections, we will discuss critical com-
ponents which are relevant to this paper.
Resource Manager. The request for an application’s shareable resource is han-
dled by its Application Resource Manager (ARM) and the Runtime Resource
Manager (R2M) handles the access to the platform’s resources (APIs): figure 3.

When a client application requests shareable resources, the firewall invokes
the ARM of the server application. The ARM then verifies, and validates the
client application’s credentials, and current state as secure for sanctioning the
application sharing (as part of the ABP). If successful, the ARM issues the
shareable resources to the requesting application.

212 R.N. Akram, K. Markantonakis, and K. Mayes

UCOM Firewall

Trusted Environment Manager (TEM)

Smart Card Hardware

Runtime Environment
Application Programming Interfaces (APIs)
Runtime Environment Entry Point Objects

Runtime Resource Manager (R2M)

Virtual Machine Native Code
U
C
O
M
Fi
re
w
al
l

Package A Package B

Applet A1

Applet A2
Applet B1

Applet B2

SIOs

A
pp
lic
at
io
n
R
es
ou
rc
e

M
an
ag
er
(A
R
M
)

System
Context

Context BContext A

System Classes

ACL: Access Control List. SIO: Shareable Interface Object. ARM: Application Resource Manager

ACLACL

Application Resource Manager
(ARM)

Application
Context

Fig. 3. UCOM Smart Card and Firewall Architecture

Trusted Environment Manager (TEM). The complete architecture and function-
ality of a TEM [10] for smart cards is still under research but for completeness
we discuss those elements of the design that are most relevant to this paper.

The TEM provides assurance and validation of installed applications and the
underlying smart card platform. Each application, and platform can have a se-
curity evaluation performed by a third party; most notably under the Common
Criteria (CC) scheme [6]. In the ICOM, CC certificates are static and offline [42,
12]. However, in the UCOM a CC certificate can be digital that facilitates a
dynamic assurance and validation mechanism [12]. The digital certificate will
have a digest of the secure-evaluated state of the platform/application. During
the ABP, both applications provide their certificates, and the TEM validates the
current state as secure as it was at the time of the CC evaluation. In the UCOM,
the security evaluation is only mandatory for the smart card platform.

When an application is installed onto a smart card, the TEM calculates the
hash of the application and, then establishes a secure relation (shared key) with
the installed application. The TEM does not calculate the hash of an application,
unless it is authorised by the application itself, a cardholder or the application’s
SP. When an application authorises the TEM to generate its hash value; it
generates a message encrypted with the Application-TEM shared symmetric
key (KApp−TEM)1. The authorisation message generated by an application is
referred as an Integrity Verification Authorisation (IVA) message2.

1 The Application-TEM shared Key (KApp−TEM) is generated at the time of the
application installation. Both the TEM and the application have this key, and it is
used to encrypt communication between them.

2 The IVA structure is EAppA−TEM (AppA, AppB, RandomNumberAppA); contents of
the messages are the identity of the authorising application and application for whom
TEM generates the hash value, and a random number [35].

Application-Binding Protocol in the UCOM 213

3 Applications-Binding Protocol (ABP)

In this section, we open the discussion by explaining the concept of application-
binding along with the threat model for the ABP. Next we discuss the application
enrolment process, and finally describe the proposed protocol.

3.1 Application-Binding

The application-binding is a process in which two applications (on the same
smart card) establish trust in each other’s identity, credentials, and current state.
Following from that they generate a cryptographic key that they will use in all
future communications. The generated key binds a client application with the
corresponding server application and acts as an authentication credential.

Why is application-binding required in the UCOM, but not needed in the
ICOM? The obvious reason for not being included in the ICOM is the centralised
control of smart cards. The issuers always know which applications are installed
on their smart cards along with having a trust relationship, so there is an offline
understanding (or agreement) that applications will not be malicious.

Nevertheless, in the UCOM such assumptions are difficult to sustain. In the
absence of a centralised authority an application is unable to verify and authenti-
cate the identity of other applications. Therefore, an application can masquerade
as either a server or client application (section 3.2). Avoiding masquerading is
possible if: a) the AID allocation is centralised, and b) have an AID enforcement
mechanism to forbid the application installation with an unauthorised AID.

Similarly, to the ICOM it might not be necessary to have an ABP in the
UCOM; only if an SP knows what other applications are installed on a smart card
before leasing its application, and there is a secure AID enforcement mechanism
in place. One solution is to scan the smart card to analyse installed applications
but this approach violates the privacy requirement of the UCOM [13].

3.2 Threat Model

The following threat model is mapped to the practical attacks demonstrated
in [16, 47, 32, 37]; that an UCOM firewall also has to deal with.

Application Masquerading. In this scenario, a malicious application can
masquerade as a server or client application. As an example, in Java Card when
a client application sends the request for application sharing it generates the re-
quest that contains the server application’s AID. Now if a malicious application

Smart Card A

Smart Card Runtime Environment

Server
Application

Fake Client
Application

Smart Card B

Smart Card Runtime Environment

Fake Server
Application

Client
Application

Sharing
Request

Sharing
Request

Message transfer
by the malicious user

Fig. 4. Application Masquerading and Relay Attack Scenario

214 R.N. Akram, K. Markantonakis, and K. Mayes

is masquerading as a server application; it only has to inform the firewall that it
accepts the application sharing request without validating that it has the knowl-
edge of the shared secret. Thus the client application thinks that it is accessing
the shared resource of the server application; whereas it is communicating with
a malicious application. Now the fake server application can resend the applica-
tion sharing request message to a genuine server application on another smart
card and gain access to shared resources; this scenario is illustrated in figure 4.

Unresolved Binding Instances. When an application is deleted the appli-
cation sharing with other applications may not be revoked. In this scenario, a
malicious application can masquerade as either a client or a server application
and try to communicate with other applications on the smart card. Obviously,
for such an attack the malicious user requires the knowledge of the object refer-
ence to the shareable resources. Nonetheless, in the UCOM it is necessary that
bindings are revoked when one of the participating applications is deleted. The
deletion of a binding instance is performed by simply deleting the application
binding instance in the participating application’s ACL (figure 3).

Different User’s Applications. Consider a scenario in which we have two
users and two applications. One is a malicious user Mu while the other is an
authorised user Au. The two applications are AppA (server application) and
AppB (client application) that have a client-server relationship.

Both users are authorised to down-

Smart ard of Mu

Smart Card Runtime Environment

Server
Application
(AppA-Mu)

Client
Application
(AppB-Au)

Sharing

Mu

SP of AppA SP of AppB

Request for AppA
Credentials (Mu)

AppA
Credentials (Mu)

Request for AppB
Credentials (Au)

AppB
Credentials (Au)

C

Fig. 5. Application Sharing among Differ-
ent User’s Applications

load application AppA, however Mu is
not authorised to download applica-
tion AppB. Now at some point, the Mu

obtains the AppB’s credentials for the
Au and manages to download AppB

on to his or her smart card. The appli-
cation sharing between the Mu’s AppA

and the Au’s AppB can be established.
This can lead to some financial bene-
fits for the Mu to which he or she was
not entitled.

3.3 Requirements for the Protocol

Based on the threat model described in the previous section and on general
UCOM requirements; the ABP should support the following features:

1. Provide mutual entity authentication.
2. Provide protection against application masquerading and relay attacks.
3. A malicious user should not be able to deduce the binding (share secret) by

eavesdropping on the communication between client and server application.
4. Binding should be between two applications that belong to the same user.
5. Both applications should mutually provide assurance and validation that

their current state is the same as expected (trusted star).

Application-Binding Protocol in the UCOM 215

6. Binding should be unique to a specific instance of applications. If one of
the applications is deleted the binding should be revoked. When the deleted
application is installed again a new binding should be generated.

7. A shared secret key is generated at the successful conclusion of the ABP.
8. Entire protocol should execute on the smart card without using any external

entity.

The requirement four may appear counter intuitive as communication buses
on smart cards are encrypted [34], and it is difficult to monitor the communi-
cation over them if not impossible. However, a configuration similar to the one
illustrated in figure 4 can be used to monitor the communication.

3.4 Enrolment Process

During the enrolment process, SPs of a client and server application agree on
the business and technical terms for sharing their application resources on an
UCOM based smart card.

In this process, an SP of a client ap-

Application Certificate
(Includes User details)

Client Application’s
Service Provider’s

Certificate

Server Application’s
Service Provider’s

certificate

Common Criteria
Certification Authority

Fig. 6. Hierarchy of a Client Applica-
tion’s Certificate

plication provides assurance and valida-
tion from a third party evaluation [6] to
an SP of a server application, and vice
versa. If third party evaluation is not
available then both client and server ap-
plication’s SPs can decide on any other
adequate way to establishing trust in
each other’s application and its func-
tionality. During this process, they de-
cide the details of the ABP, such as:
to perform an on-card verification and
validation of applications; the SP of the
server application issues a certificate to the client application, and vice versa.

The certificate hierarchy in the ABP is illustrated in figure 6. In the absence
of the CC evaluation; the certificate hierarchy shown in figure 6 will not include
"Common Criteria Certification Authority". The client application certificate
has the hash value (generated either by the CC or by the SP of the server
application) of the application and user’s details to which the application is
issued. Similar contents will also be included in the server application certificate.
Basically, the enrolment process defines the restrictions and mechanisms (i.e.
certificates, and cryptographic algorithms, etc.) that a client/server application’s
SPs agree for the ABP.

3.5 Proposed Application-Binding Protocol

The aim of the ABP is to facilitate both the client and server applications to
establish trust in each other’s identity, and current state. Enabling them to
establish a unique binding for future communications. Figure 7 depicts a generic
representation of the proposed ABP and subsequently explanation along with

216 R.N. Akram, K. Markantonakis, and K. Mayes

Server
Application

Client
Application

Trusted Platform
Module

Smart Card
Firewall

1) Binding Request (Server AID)

3) Request Validation (Client AID)

5) Response Binding(Server Validation, Shared Secret,
Resource Manager Reference)

Verify whether the application
exists on smart card or not.

Perform Validation of Client and Server
Application

Verify the Validation
of Client

2) Forwarded Binding Request (Client AIB)

6) Validate Shared Key
Knowledge

4) Response Validation (Validation of Client and Server, Temporary Shared Key)

Verify the Validation
of Server

Deny Request
Request Denied

Request Sharing (Client AID)

Fig. 7. Generic Representation of the Application-Binding Protocol

Table 1. Protocol Notation

Notation Description
S Represents the identity of the server application.
C Represents the identity of the client application.
TEM Represents the identity of a TEM on a smart card.
Firewall Represents the identity of the UCOM firewall on a smart card.
KA−B Long term symmetric key shared between entity A and B.
Kt

S−C Session key generated by TEM.
SA, VA Signature and verification key pair of entity A.
CertA Signature key pair certificate of entity A.
CertA−B Certificate for entity B issued by entity A.
nx Random number generated by an entity X.
nx + num Random number incremented by the value of num is a natural number
A → B Message sent by an entity A to an entity B.
X|Y Represents the concatenation of the data items X, and Y.
X||Y Represents the XOR binary operation on the data items X, Y.
EK(Z) Result of encrypting data Z with the key K using a symmetric algo-

rithm.
SignK(Z) Signature on data Z with the key K using a signature algorithm [23].
Hash(Z) Is the result of generating a hash of data Z.

the description of individual messages is provided. Before we illustrate the ABP,
we first describe the notation in table 1 that is used in the protocol description.

Based on the generic ABP framework in figure 7 a number of different pro-
tocols can be deployed. The proposed protocol is our attempt to provide a se-
cure, and robust implementation of the ABP. In addition, the proposed proto-
col provides the trust assurance and validation; enabling it to be a secure and
trusted secure channel protocol [24]. The rationale for not opting for protocols
like SSL/TLS [21], and Kerberos [38] is twofold; first they have a large set of

Application-Binding Protocol in the UCOM 217

options and lengthy handshake messages that might slow down the performance
on a smart card (see section 4.3), and secondly they do not support trust assur-
ance and validation mechanism for the communicating parties. This is true to
some extent for other protocols that are designed for the internet communica-
tion [24]. Even those protocols that are designed for the smart card environment;
partially run on the smart card and they try to balance the computation load
by performing computational intense processes offcard [7, 33, 43, 39].

The messages listed below have a one-to-one relation with the generic protocol
illustrated in figure 7.

1. C → Firewall : C|S|SignC(C|S|nc|EKC−T EM (C, S, nc))|CertC
The request message contains the identities of the client and server application
together with a random number [35] generated by the client application. In addi-
tion, the client application also creates an IVA message (i.e. EKC−T EM (C, S, nc))
for the TEM (see section 2.2). The client application signs the message and ap-
pends its certificate.

2. Firewall → S : C|S|SignC(C|S|nc|EKC−T EM (C, S, nc))|CertC
The firewall mechanism receives the application-binding request and it will query
the server application. If the server application wants to proceed with the ABP,
it forwards the message; otherwise, it registers an exception.

3. S → TEM : C|S|EKC−T EM (C, S, nc)|EKS−T EM (S, C, ns)
The server application verifies the client’s signature. If successful, it generates
an IVA message for the client application. The server application then sends the
message to the TEM that contains the identities and IVA messages from both
the client and server applications.

4. TEM→S : EKC−T EM (Hash(S), Kt
S−C , nc+1)|EKS−TEM (Hash(C), Kt

S−C ,
ns + 1)
The TEM verifies the IVA messages from both the client and server application.
Then it will calculate the hash value of the server application, encrypt it with
the client-TEM shared key and sends it to the client application, and vice versa.
The encrypted messages also contains a session key generated by the TEM; this
key is valid only during the ABP run.

5. S → C : S|C|EKC−T EM (Hash(S), Kt
S−C , nc+1)|EKt

S−C
(KS−C , nc+2, ns)|

SignS(S|C|ns|EKS−C (AccessPermission, ObjectReference, nc||ns))|CertS
Following the message 4; the server application verifies the hash value of the
client application to be the same as listed either by the server application’s SP
or by the CC evaluation authority. It then generates an application-binding key;
encrypts it with the session key. In addition, the message also contains the object
reference to the server application’s shared resources and access permission. The
client application directly calls the server application’s shared resource in all
subsequent requests, using the binding key for authentication and authorisation.
The access mechanism for shared resource is beyond the scope of this paper.

6. C → S : C|S|EKS−C (AccessPermission|(nc||ns) + 1)

218 R.N. Akram, K. Markantonakis, and K. Mayes

This message gives the assurance to the server application that the client also
has the same key thus achieving mutually key verification.

4 Proposed Protocol Analysis

We open the discussion by analytically reviewing the protocol then the formal
analysis using CasperFDR tool, and finally providing the implementation results.

4.1 Analytical Analysis

In this section, we consider the proposed protocol and analyse it with respect to
the threat model, and the protocol requirements listed in section 3.2 and 3.3.

– Masquerading: A malicious application can be installed with either a server
or a client application’s AID. However, the ABP does not allow a malicious
application to masquerade as a server or client application because to prove
the identity of an application; the ABP does not rely on the AIDs. It has a
dynamic mechanism with bi-directional exchanges of messages that ascertain the
entity and verify its credentials (based on cryptographic certificate and signature
generation/verification). Therefore, for a masquerading application it might be
difficult to match the cryptographic hash (generated by the TEM) and have the
signature key of the genuine application.

– Replay attack: A malicious user can relay the binding request messages,
but when these messages are forwarded to the TEM to generate the hash of the
client and server application. A malicious application’s hash will not match the
certified hash of the client and server application. This problem is equivalent to
violating the 2nd pre-image property of the hash functions [35]. In addition, IVA
messages include random numbers that effectively prevent any replay attacks.

– Mutual Authentication: The server and client applications authenticate one
another. The authentication is achieved through signing the messages along with
communicating the application’s certificate. The authentication gives an assur-
ance to each of the participant applications that the other application is genuine
(effectively avoiding masquerading).

– State Verification: Although an application may have genuine credentials
but its state might be modified since it was last evaluated by respective SP(s)
or the CC evaluation laboratory. To verify whether the state of an application is
secure enough to initiate an application sharing. The ABP requires the TEM to
generate a hash of both applications and encrypt them with the corresponding
keys. The applications have no influence on the outcome of the hash generation;
so they cannot fake their current state. If the current state is considered to have
deviated from the stated secure state in the application certificate [12]. The
recipient can then decide whether to continue the protocol or not.

– Different User Applications: The application certificate contains the user
details to whom the application was issued. Therefore, if a client application tries
to establish an application sharing with a server application, but their customer
credential does not match; the request is denied. This avoids application sharing
between two applications from different users.

Application-Binding Protocol in the UCOM 219

– Unresolved Binding Instances: The binding is based on the application-
binding key that is the outcome of the ABP. If one of the applications (client or
server) is to be deleted by the user. The application deletion process will notify
the other application that simply deletes the instance of the application-binding
key from its ACL.

The ABP provides a framework that facilitates the process; enabling the par-
ticipant applications to establish a trust relationship on an open, and dynamic
environment of the UCOM.

4.2 Protocol Verification by CasperFDR

The CasperFDR approach was adopted to test the soundness of the proposed
protocol under the defined security properties. In this approach, the Casper com-
piler [2] takes a high-level description of the protocol, together with its security
requirements. It then translates the description into the process algebra of Com-
municating Sequential Processes (CSP) [28]. The CSP description of the protocol
can be machine-verified using the Failures-Divergence Refinement (FDR) model
checker [40]. The intruder’s capability modelled in the Casper script (Appendix
A) for the proposed protocol is as below:

1. An intruder can masquerade any application’s identity in the network.
2. An intruder is not allowed to masquerade the identity of any SP or TEM.
3. An intruder application has a trust relationship with the TEM.
4. It can read the messages transmitted by each entity in the network.
5. An intruder cannot influence the internal process of an agent in the network.

The security specification for which the CasperFDR evaluates the network
is as shown below. The listed specifications are defined in the # Specification
section of Appendix A:

1. Session and application-binding keys are not revealed to an unauthorised
entity.

2. The protocol run is fresh and both applications were alive.
3. The key generated by the server application is known only to the client

application.
4. Applications mutually authenticate each other and have mutual key assur-

ance at the conclusion of the protocol.

The protocol description defined in the Casper script (Appendix A) is a sim-
plified representation of the proposed protocol. The off-card agents like SPs of
client and server applications are not model in the Casper script as they do not
play active role in the protocol run. The CasperFDR tool evaluated the protocol
and did not find any feasible attack(s).

4.3 Practical Implementation

The proposed protocol in section 3.5 does not specify actual details of the cryp-
tographic algorithms that are left to the respective SPs. However, in our im-
plementation we used AES 128bit key in Cipher Block Chaining mode with

220 R.N. Akram, K. Markantonakis, and K. Mayes

padding [30]. The signature algorithm was chosen to be RSA with 512bit key [35]
and SHA-256 [3] for generating hash values .

Our implementation model was based on three applets taking the roles of
the TEM, client, and server application on a Java Card (16bit smart card). At
the time of writing the paper; we did not have access to a smart card platform
that will enable us to implement the TEM at the underlying platform level. We
mplement the TEM at the application level and consider that similar or better
performance can be attained if the TEM is implemented as part of the platform
(which we plan to do in future). As the application level implementation of the
TEM cannot have memory access to measure the hash value of the client and
server applications. Therefore, we generated the hash values of a fixed array of
size 556 bytes to represent an application state. The performance of the hash
algorithm is based on the size of the input data and in real deployment of the
protocol scenario it definitively depends on the size of the applications.

The proposed protocol’s raw implementation running on a 16bit Java Card
takes 2484 ms (2.484 seconds approximately) to complete, and we consider that
with adequate code optimisation we can achieve better results.

For the sake of comparison, the Kilobyte SSL [26] (KSSL: is a small footprint
SSL for hand-held devices) running on a 20Mhz Palm CPU with RSA keys of
length 768 and 1024 took 10-13 seconds for only server side authentication [25].
A Kerberos’ implementation on a mobile device as performed by Herbitter et
al. [27] (performance measures were taken from a mobile device with 100MHz
CPU and 16MB of RAM) showed that the best performance was 4.240 seconds;
however, based on a trusted proxy architecture the performance was 10.506 sec-
onds. Kambourakis et al. [31] provided performance measures for the SSL based
AKA mechanism that took 10 seconds to complete the protocol. For above per-
formance measures; in the SSL implementations the server, and for Kerberos
both the Key Distribution Centre (KDC) server and second communication en-
tity, were on desktop computers.

In implementations, where smart cards act as a node in a communication
protocol Pascal Urien [44] showed that a high-end SSL Smart Card establishes
a SSL session in 4.2 seconds , and for smart cards as a TLS-based network
node the performance was in the range of 4.3 seconds (for 32bit smart card)
and 26.8 seconds (for 8bit smart card) [45, 46, 48]. The protocol performance
mentioned in this section either do not rely on smart cards or partially base
their implementation on smart cards. However, if we implement these protocols
with all nodes on a smart card along with trust assurance, there performance
will degrade.

At the time of writing this paper, the authors were not aware of any per-
formance measures of these protocols implemented in full (all communicating
nodes) on a smart card. It can be argued that the above mentioned performance
measures cannot be comparable as the complete protocol were not executing on
a smart card. This is a valid argument but the reason we mention them here is to
augment the rationale based on the computational restrictions that prohibited
us from implementing these protocols as part of the ABP.

Application-Binding Protocol in the UCOM 221

Nevertheless, the proposed protocol performance is considered adequate. The
performance measure is only for the reference of our implementation, as the
actual performance will vary depending upon the size of the client and server
applications (i.e. hash generation), and performance of public key operation,
symmetric encryption, and random number generation.

5 Conclusion and Future Research Direction

In this paper, we discussed the application sharing mechanism from the point of
view of two contrasting smart card ownership models. The firewall mechanism in
the ICOM is fit for the purpose and is designed with the underlying assumption
that the smart card remains under the control of a centralised authority. These
firewall mechanisms and associated frameworks to establish application sharing
can be considered as the state of the art in the ICOM.

Nevertheless, in the UCOM such assumptions are invalid and this requires
a different set of requirements for the application sharing mechanism. We have
discussed these requirements along with the threat model and provided a possi-
ble approach to resolve them. The proposed protocol meets these requirements
under the assumption of the threat model both as a generic model, and then
providing a practical protocol based on the generic model. We have verified the
security properties for the proposed protocol in the Casper/FDR. Furthermore,
an analytical analysis of the protocol is described. Finally, we implemented the
protocol to provide the performance measure for the proposed approach.

As part of the future research directions we will concentrate on the archi-
tecture and functionality of the TEM for smart cards. The TEM on an UCOM
based smart card provides security assurance and validation service to the smart
card platform and installed applications. Furthermore, we also like to extend the
TEM’s capability to not only provide static assurances, but also dynamically en-
sure the runtime security and reliability of the platform.

6 Acknowledgements

We would like to extend our appreciation to the anonymous reviewers for their
valuable time and feedback. Additionally, thanks to Min Chen for patience while
proof reading drafts.

References

1. Multos: The Multos Specification
2. Casper: A Compiler for the Analysis of Security Protocols, Journal of Computer

Security (June 1998)
3. FIPS 180-2: Secure Hash Standard, SHS (2002)
4. GlobalPlatform Card Security Requirement Specification 1.0 (May 2003)

222 R.N. Akram, K. Markantonakis, and K. Mayes

5. ISO/IEC 7816-5, Information Technology - Identification cards - Integrated Cir-
cuit(s) cards with contacts - Part 5: Numbering systems and registration pro-
cedure for application identifiers, International Organization for Standardization
(2004)

6. Common Criteria for Information Technology Security Evaluation, Part 1: In-
troduction and general model, Part 2: Security functional requirements, Part 3:
Security assurance requirements (August 2006)

7. GlobalPlatform: GlobalPlatform Card Specification, Version 2.2 (March 2006)
8. Java Card Platform Specification; Application Programming Interface, Runtime

Environment Specification, Virtual Machine Specification (March 2006)
9. Multos: Guide to Loading and Deleting Applications. Tech. Rep. MAO-DOC-

TEC-008 v2.21, MAOSCO (2006)
10. Trusted Module Specification 1.2: Part 1- Design Principles, Part 2- Structures

of the TPM, Part 3- Commands (July 2007)
11. Akram, R.N., Markantonakis, K., Mayes, K.: Application Management Frame-

work in User Centric Smart Card Ownership Model. In: Youm, H.Y., Yung, M.
(eds.) WISA 2009. LNCS, vol. 5932, pp. 20–35. Springer, Heidelberg (2009)

12. Akram, R.N., Markantonakis, K., Mayes, K.: A Dynamic and Ubiquitous Smart
Card Security Assurance and Validation Mechanism. In: Rannenberg, K., Varad-
harajan, V., Weber, C. (eds.) SEC 2010. IFIP Advances in Information and Com-
munication Technology, vol. 330, pp. 161–172. Springer, Heidelberg (2010)

13. Akram, R.N., Markantonakis, K., Mayes, K.: A Paradigm Shift in Smart Card
Ownership Model. In: Apduhan, B.O., Gervasi, O., Iglesias, A., Taniar, D.,
Gavrilova, M. (eds.) Proceedings of the 2010 International Conference on Compu-
tational Science and Its Applications (ICCSA 2010), pp. 191–200. IEEE Computer
Society, Fukuoka (2010)

14. Akram, R.N., Markantonakis, K., Mayes, K.: Firewall Mechanism in a User Cen-
tric Smart Card Ownership Model. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 118–132. Springer, Heidelberg (2010)

15. Andronick, J., Chetali, B., Ly, O.: Using COQ to Verify Java Card Applet Isola-
tion Properties. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758,
pp. 335–351. Springer, Heidelberg (2003)

16. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining
Fault and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J.
(eds.) CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

17. Bernardeschi, C., Martini, L.: Enforcement of Applet Boundaries in Java
Card Systems. In: IASTED Conf. on Software Engineering and Applications,
pp. 96–101 (2004)

18. Caromel, D., Henrio, L., Serpette, B.P.: Context Inference for Static Analysis of
Java Card Object Sharing. In: Attali, S., Jensen, T. (eds.) E-SMART 2001. LNCS,
vol. 2140, pp. 43–57. Springer, Heidelberg (2001)

19. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

20. Deville, D., Galland, A., Grimaud, G., Jean, S.: Smart Card Operating Systems:
Past, Present and Future. In: Proceedings of the 5th NORDU/USENIX Confer-
ence (2003)

21. Dierks, T., Rescorla, E.: RFC 5246 - The Transport Layer Security (TLS) Protocol
Version 1.2. Tech. rep (August 2008)

22. Éluard, M., Jensen, T., Denne, E.: An Operational Semantics of the Java Card
Firewall. In: Attali, S., Jensen, T. (eds.) E-SMART 2001. LNCS, vol. 2140,
pp. 95–110. Springer, Heidelberg (2001)

Application-Binding Protocol in the UCOM 223

23. Furlani, C.: FIPS 186-3 : Digital Signature Standard (DSS) (June 2009)
24. Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond Secure

Channels. In: STC 2007: Proceedings of the 2007 ACM workshop on Scalable
trusted computing, pp. 30–40. ACM, New York (2007)

25. Gupta, V., Gupta, S.: Securing the Wireless Internet. IEEE Communica-
tions 39(12), 68–74 (2001)

26. Gupta, V., Gupta, S.: KSSL: Experiments in Wireless Internet Security. Tech.
rep., Mountain View, CA, USA (2001)

27. Harbitter, A., Menascé, D.A.: The Performance of Public Key-Enabled Kerberos
Authentication in Mobile Computing Aplications, pp. 78–85 (2001)

28. Hoare, C.A.R.: Communicating Sequential Processes, vol. 21. ACM, New York
(1978)

29. Huisman, M., Gurov, D., Sprenger, C., Chugunov, G.: Checking Absence of Illicit
Applet Interactions: A Case Study. In: Wermelinger, M., Margaria-Steffen, T.
(eds.) FASE 2004. LNCS, vol. 2984, pp. 84–98. Springer, Heidelberg (2004)

30. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Berlin (2002)

31. Kambourakis, G., Rouskas, A., Gritzalis, S.: Experimental Analysis of an SSL-
Based AKA Mechanism in 3G-and-Beyond Wireless Networks. Wirel. Pers. Com-
mun. 29, 303–321 (2004)

32. Lanet, J.L., Iguchi-Cartigny, J.: Developing a Trojan applet in a Smart Card.
Journal in Computer Virology 6(1) (2009)

33. Markantonakis, K., Mayes, K.: A Secure Channel Protocol for Multi-application
Smart Cards based on Public Key Cryptography. In: Chadwick, D., Prennel,
B. (eds.) CMS 2004 - Eight IFIP TC-6-11 Conference on Communications and
Multimedia Security, pp. 79–96. Springer, Heidelberg (2004)

34. Mayes, K., Markantonakis, K.: Smart Cards, Tokens, Security and Applications.
Springer, Heidelberg (2008)

35. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC, Boca Raton (1996)

36. Montgomery, M., Krishna, K.: Secure Object Sharing in Java Card. In: WOST
1999: Proceedings of the USENIX Workshop on Smartcard Technology. USENIX
Association, Berkeley (1999)

37. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008)

38. Neuman, C., Hartman, S., Raeburn, K.: RFC 4120: The Kerberos Network Au-
thentication Service (V5). Tech. rep (July 2005)

39. Rantos, K., Markantonakis, C.: An Asymmetric Cryptography Secure Channel
Protocol for Smart Cards. In: Deswarte, Y., Cuppens, F., Jajodia, S., Wang,
L. (eds.) Security and Protection in Information Processing Systems, IFIP 18th
WorldComputer Congress, TC11 19th International Information Security Confer-
ence, Toulouse, August 22-27, pp. 351–366. Kluwer, Dordrecht (2004)

40. Ryan, P., Schneider, S.: The Modelling and Analysis of Security Protocols: the
CSP Approach. Addison-Wesley Professional, Reading (2000)

41. Sauveron, D.: Multiapplication Smart Card: Towards an Open Smart Card? Inf.
Secur. Tech. Rep. 14(2), 70–78 (2009)

42. Sauveron, D., Dusart, P.: Which Trust Can Be Expected of the Common Cri-
teria Certification at End-User Level? Future Generation Communication and
Networking 2, 423–428 (2007)

224 R.N. Akram, K. Markantonakis, and K. Mayes

43. Sirett, W.G., MacDonald, J.A., Mayes, K., Markantonakis, K.: Design, Installa-
tion and Execution of a Security Agent for Mobile Stations. In: Domingo-Ferrer,
J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 1–15.
Springer, Heidelberg (2006)

44. Urien, P.: Collaboration of SSL Smart Cards within the WEB2 Landscape. In:
International Symposium on Collaborative Technologies and Systems, pp. 187–
194 (2009)

45. Urien, P., Elrharbi, S.: Tandem Smart Cards: Enforcing Trust for TLS-Based
Network Services. In: International Workshop on Applications and Services in
Wireless Networks, pp. 96–104 (2008)

46. Urien, P., Marie, E., Kiennert, C.: An Innovative Solution for Cloud Computing
Authentication: Grids of EAP-TLS Smart Cards. In: International Conference on
Digital Telecommunications, pp. 22–27 (2010)

47. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Goll-
mann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035,
pp. 133–147. Springer, Heidelberg (2010)

48. Yu, D., Chen, N., Tan, C.: Design and Implementation of Mobile Security Access
System (MSAS) Based on SSL VPN. In: International Workshop on Education
Technology and Computer Science, vol. 3, pp. 152–155 (2009)

A Casper/FDR Script

Free variables
S, C, spS, spC : Agent
TEM : Server
nc, ns, nm : Nonce
ksc, abKsc : SessionKey
f : HashFunction
ServerKey : Agent -> ServerKeys
VKey : Agent -> Publickey
SKey : Agent -> SecretKey
realAgent : Server -> Bool
InverseKeys = (ksc, ksc), (abKsc, abKsc), (ServerKey, ServerKey),(VKey, SKey)

#Actual variables
CApp, SApp, MAppl : Agent
TM : Server
Nc, Ns, Nm : Nonce
Ksc, ABKsc : SessionKey
InverseKeys = (Ksc, Ksc), (ABKsc, ABKsc)

#Processes
INITIATOR(C, TEM, S, nc) knows f(S), ServerKey(C), SKey(C), VKey
RESPONDER(S, TEM, C, ns, abKsc) knows f(C), ServerKey(S), SKey(S), VKey
SERVER(TEM, ksc) knows ServerKey

#System
INITIATOR(CApp,TM, SApp, Nc)
RESPONDER(SApp,TM, CApp, Ns, ABKsc)

Application-Binding Protocol in the UCOM 225

SERVER(TM, Ksc)

#Protocol description
0. -> C : S
1. C -> S : C, S, {C, S, nc, {C, S, nc}{ServerKey(C)}% mTEM}{SKey(C)}
2. S -> TEM : S, TEM, C, {S, C, ns}{ServerKey(S)},mTEM % {C,S,nc}{ServerKey(C)}
[realAgent(TEM)]
3. TEM -> S : TEM, S, {f(S), ksc, nc}{ServerKey(C)}%TEMC
[realAgent(TEM)]
3a. TEM -> S : TEM, {f(C), ksc, ns}{ServerKey(S)}
4. S -> C : S, C, TEMC % {f(S), ksc, nc} {ServerKey(C)}
4a. S -> C : {abKsc, nc, ns}{ksc},{S, C, nc(+)ns}{abKsc}
5. C -> S : C, S,{nc(+)ns}{abKsc}

#Specification
StrongSecret(TEM, ksc, [S,C])
StrongSecret(S, abKsc, [C])
Aliveness(S, C)
Aliveness(C, S)
Agreement(S, C, [abKsc])
Agreement(C, S, [abKsc])

#Inline functions
symbolic ServerKey
symbolic VKey, SKey
realAgent(TM)=true
realAgent(_)=false

#Intruder Information
Intruder = MAppl
IntruderKnowledge = {CApp, SApp, MAppl, Nm, ServerKey(MAppl), SKey(MAppl),VKey}

Security in Depth through Smart Space

Cascades

Benjamin W. Long

Defence Science and Technology Organisation,
Edinburgh, South Australia

benjamin.long@dsto.defence.gov.au

Abstract. Security in depth relies on controlled access across a layering
of protective barriers. We introduce smart space cascades, a framework
in which access control is applied to a hierarchy of smart spaces, as a
way of achieving security in depth in the context of highly automated
work environments.

1 Introduction

Security in depth (also known as defence in depth) is a multi-layered approach to
security in which security measures are combined to form a succession of barriers,
all of which must be penetrated for resources (or targets) to be acquired, reducing
the opportunity for unauthorised access [5, 26].

An effective security in depth strategy relies on two factors:

– a suitable layering of barriers, and
– an access control framework capable of supporting it.

A smart space [11–13, 19, 23, 28] is a room (or indeed any area) that pro-
vides automated control over electronic components within the space, simplifying
our technology-enabled environments and empowering users to realise the full
potential of the combined technologies.

By applying access control to a smart space, we can restrict access to such
electronic components, and use those components to protect our critical assets.
For example, access control applied to a ‘room space’ could prevent particular
personnel from opening the door and accessing sensitive materials.

We find then that a hierarchy (or cascade) of smart spaces with access control
applied provides a succession of barriers, forming the multi-layered framework
required to achieve security in depth. For instance, a room might control access
to an electronic safe which controls access to sensitive documents.

However, with the possibility of mobile components, this hierarchy may change
at any time. This is significant because the decision to allow access to a space will
depend on the resources within it (its dependent targets). Ad hoc smart spaces [8]
allow smart space components to establish connections dynamically and interact
with each other to provide functionality specific to the particular combination
of components. We adopt this ad hoc nature in our framework and, in our case,

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 226–240, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Security in Depth through Smart Space Cascades 227

allow components to interact with each other to make the best access decision
given the hierarchy at the particular time of each request.

In this paper, based on related work, we identify desired characteristics for
access control in smart space cascades where dynamic dependencies between tar-
gets demand interaction between their access control components. Subsequently,
we present a framework based on the ISO/IEC 10181-3 access control standard to
support these characteristics, introducing dependency trees as a core element to
the framework. The components of the framework and the relationships between
them are specified using the Z specification language [27] to aid our explanations.
Finally, we describe the potential for a real-time analysis of the layers formed
by a smart space cascade, to assist in determining whether resources within a
cascade are suitably protected.

2 Related Work

Some smart space solutions manage access control centrally [1, 2, 10, 25]. How-
ever, research suggests that future development in access control should be
towards the composition of independent local access control policies [17, 30].
Furthermore, Altunay et al. [3] argue that targets may have policies that are
confidential and should make their own access control decisions too [3]. Decen-
tralisation reduces overhead from round-trip communication to a central server
and enables meaningful enforcement of some access control policies even if there
is a partial disconnection [6], allowing targets to operate autonomously [21].

However, once access control decisions are decentralised, due to dependencies,
targets within a smart space cascade will need to interact with each other in order
to make a decision that suits all of them. Some smart space frameworks allow
targets in one space to interact with targets in another [19, 29]. Access control in
these frameworks is not discussed in depth, although Marsá-Maestre et al. [19]
do allow for the possibility of hierarchy of smart spaces.

McCarthy and Thredgold [20] discuss an approach in which access control
components negotiate positive outcomes for users. For example, when a user
requests to access a room, if a dependent electronic safe is currently open, the
room could interact with the safe to close it automatically, and then grant the
user access when it would otherwise be denied. Altunay et al.’s [3] approach
negotiates positive outcomes for users by searching for targets to replace ones
that will not or cannot participate in the collaborative decision making process.

Chandershekarapuram et al. [9] apply ‘single sign on’ to devices in mobile ad-
hoc networks (MANETs) for a more convenient approach to access control in-
volving multiple targets. Incorporating this kind of functionality in smart spaces
would allow authorised users to initiate a single request for convenient access to
multiple dependent targets across several layers of the security in depth strategy
(although it would be more secure to restrict this feature to a single layer).

Ideally, then, a comprehensive framework for access control in the context of
smart spaces cascades will:

228 B.W. Long

– support the handling of decentralised requests,
• allowing targets to exercise access control autonomously and
• allowing interaction between targets for a comprehensive decision,

– negotiate positive outcomes for users, and
– be amenable to single sign on.

3 Access Control for Smart Space Cascades

In this section we present a decentralised framework, based on the ISO/IEC
10181-3 standard, to support the desired characteristics for access control in
smart space cascades, allowing for the required interactions between access con-
trol components associated with targets and their dependents. We use the Z
specification language [27] to specify the components of the framework and the
relationships between them.

3.1 Background: ISO/IEC 10181-3

Part three of the ISO/IEC 10181 standard (ISO/IEC 10181-3) [16] describes an
access control framework suggesting the existence of four components for any
given request for access: the initiator, the target, an access control enforcement
function (AEF) that controls access to the target based on a decision, and an
access control decision function (ADF) that makes a decision for the AEF, as
illustrated by Figure 1.

Initiator AEF Target

ADF

Submit
Access
Request

Present
Access
Request

Decision
Request

Decision

Fig. 1. ISO/IEC 10181 access control

3.2 Targets in Practice

Figure 1 illustrates the intention that every target is to be accessed via an AEF.
However, in practice, the primary targets that we want to protect (such as paper
documents, electronic documents, and munitions) cannot be controlled directly
by an AEF. They must be protected by a target (such as a safe, a file system,
or a secure room) that can be controlled by an AEF. Without this distinction,
those targets for which we are most concerned are not represented within the
framework. Therefore, we introduce:

Security in Depth through Smart Space Cascades 229

– primary targets—targets that do not provide an interface to which an AEF
can communicate; and

– protective targets—targets on which an AEF can invoke operations, control-
ling access to other (primary or protective) targets.

Given the set of all targets, TARGET , a smart space cascade will have dis-
joint sets of primary targets and protective targets, described by the following
Z schema.

SSC1
primTargets : P TARGET
protTargets : PTARGET

primTargets ∩ protTargets = ∅

3.3 Dependent Targets

In smart space cascades, with multiple technologies tightly integrated, access to
one target exposes the next layer of dependent targets. For example, access to
a room could expose an electronic display and a safe, potentially also providing
access to the sensitive materials they contain (or display).

Room

Display Safe

Doc1

Doc2 Doc3

Fig. 2. A room environment

Indeed, ISO/IEC 10181-3 discusses containment in which one target resides
inside another target T and, therefore, depends on T for protection. In general,
a target could depend on multiple targets or circular dependencies could exist;
however, for the purpose of this discussion we are only concerned with depen-
dencies resulting from containment and exclude others from our framework.

Therefore, we say that in any given smart space cascade there is a collection of
directed dependency trees. For example, consider the dependency tree in Figure 3
based on the scenario in Figure 2.

Continuing with the specification (inheriting SSC1), the following schema
describes a partial function dependsOn, allowing each target in a subset of all
targets to depend on another.

230 B.W. Long

Room

Display Safe

Doc1 Doc2 Doc3

depends on

depends on

Fig. 3. Cascade dependencies

SSC2
SSC1
dependsOn : TARGET �→ TARGET

∀ t : TARGET • (t , t) �∈ dependsOn+

dom dependsOn ⊆ primTargets ∪ protTargets
ran dependsOn ⊆ protTargets

The first predicate below the line states that there is no target that depends
on itself within the transitive closure, forming a tree structure among the depen-
dencies. The second predicate restricts the domain of the function to a subset
of those primary and protective targets in the system, and the third predicate
ensures that targets can only depend on protective targets (i.e., targets cannot
depend on primary targets). Note that we consider, for example, a stack of sen-
sitive documents inside a locked cupboard to be a single primary target for the
purpose of our discussion.

In practice, the dependents of any given target in a particular scenario could
be updated dynamically with registration/deregistration protocols using wireless
technologies such as Bluetooth, much like the registration process adopted by
EgoSpaces [17]. Primary targets would be entered in to the system manually or
through the use of a tracking technology such as RFID.

3.4 Access Control Enforcement Functions

The purpose of the AEF is to act as a protective interface between initiators
and targets, enforcing the decision made by the ADF (to grant or deny access)
by controlling access to targets accordingly.

ISO/IEC 10181-3 states that an AEF is placed between each initiator-target
instance so that the initiator can act on a target only through the AEF. We
assume this means each target is associated with a single AEF; this avoids po-
tential inconsistencies in enforcement for a given target. However, we find no
reason to prevent a single AEF from enforcing access for multiple targets.

Security in Depth through Smart Space Cascades 231

Given the set AEF of all AEFs, the following continuation of the specification,
describes a partial function aef associating each target from a subset of all
targets to an AEF. The predicate ensures all protective targets are controlled
by an AEF, and that only protective targets are controlled by AEFs.

SSC3
SSC2
aef : TARGET �→ AEF

protTargets = dom aef

The set of targets controlled by AEFs depends on the level of granularity
desired. In a centralised system, it is sufficient for access to all protective targets
to be controlled by a single enforcement function (#(ran aef) = 1). However, in
order to allow targets to operate autonomously and move dynamically from one
space to another, we can decentralise the enforcement (like Altunay et al. [3]
and Moloney and Weber [21]) by having a single AEF manage access for each
portion of the dependency tree that we want operating autonomously.

3.5 Access Control Decision Functions

An ADF provides a decision to an AEF based on a decision request from the
AEF. The ADF bases its decisions on information such as policy, context, history,
and additional information provided by the initiator.

Figure 1 suggests each AEF interacts with a single ADF. However, we suggest
a single ADF can be used for a particular type of request to access a particular
target. Therefore, given the set ADF of all ADFs and request types REQTYPE ,
we continue with the specification and include a function adf providing a single
(but not necessarily unique) ADF for every combination of protective target and
request type.

SSC4
SSC3
adf : (TARGET × REQTYPE) �→ ADF

protTargets = dom(dom adf)

4 Smart Space Interactions

Within our framework, a smart space encompasses a portion of targets (and
associated access control components) in a dependency tree, and a smart space
cascade (see Figure 4) emerges as a hierarchical collection of smart spaces for a
particular environment.

It is our intention that targets and associated access control components will
change dynamically throughout the life of a smart space cascade. For instance,

232 B.W. Long

when an electronic safe is added to a room, the safe will become a depen-
dent of the room, and associated components will form part of the hierarchy
appropriately.

In Section 2 we identified that a comprehensive framework for access control
in the context of smart spaces will support decentralised requests, negotiate
positive outcomes for users, and be amenable to single sign on. The following
sections describe how the framework introduced in Section 3 supports these,
noting that we leave safe recovery from failure as a topic for future work.

4.1 Decentralised Requests

When an initiator sends an access request to the AEF protecting a set of targets,
its associated ADF might need to consider ADFs belonging to dependent targets
to ensure it does not make a decision that violates any of their policies.

Therefore, the AEF’s ADF becomes an initiator and sends its own cascaded
decision request to the dependents’ AEFs. This starts a decision-making proce-
dure that traverses the entire dependency tree. (We believe scaling will not be
an issue due to the limited number of levels to traverse given the nature of the
environments).

Room

Safe

AEFR

AEFSADFR

ADFS

2.1

Initiator
1

2 3

4

2.2 2.3
2.4

Room Space

Safe Space

Fig. 4. Requesting access to the room

For example, when the room’s AEF, AEFR, receives a request for entry from
an initiator, it will be aware of the dependency of the safe. Subsequently (as
illustrated by Figure 4), in step 2.1 the room’s ADF, ADFR, sends a decision
request to the safe’s AEF, AEFS . In step 2.2 AEFS will seek a decision from the
safe’s ADF, ADFS . In step 2.3 ADFS will send a decision to AEFS . Then, finally,
because it is a cascaded decision request and not an access request, instead of
following the ISO/IEC 10181-3 standard and providing access to the safe, in
step 2.4 AEFS will forward the decision back to ADFR—a necessary extension
to the standard [7]. From here, ADFR makes a final decision in step 3, based
on the results of the cascaded request, and access is granted or denied in step 4.

Security in Depth through Smart Space Cascades 233

For example, if none of the dependent ADFs object to the request, the user is
granted access (and denied otherwise).

Although the scope of our specification is limited to the relationship between
components (but not the interactions between them), we can specify an operation
identifyComponents that determines for a given protective target target?, type
of request req?, and AEF aef ?, the access control components (the ADF and the
set of AEFs based on dependent targets) with which that AEF will interact.

identifyComponents
ΞSSC4
req? : REQTYPE ; target? : TARGET ; aef ? : AEF
adf ! : ADF ; dependentAEFs ! : PAEF

target? ∈ protTargets
(target?, aef ?) ∈ aef
((target?, req?), adf !) ∈ adf
dependentAEFs ! = ran((dom(dependsOn � {target?})) � aef)

Although decision information flows up the hierarchy, context information
will need to flow down the hierarchy to ensure suitable decisions are made when
requests are initiated on targets below the root of the dependency tree.

It is also important to note here that the trustworthiness of components to
provide accurate information is out of the scope of this paper.

4.2 Negotiating Positive Outcomes

Using the same scenario, although the user may be allowed to access the room,
he/she might not be allowed to access the safe which, in this case, is currently
open. In order to negotiate a positive outcome for the user, ADFS will include
preconditions accompanying its decision in step 2.3 (see Figure 4) regarding nec-
essary changes to the safe’s state. These preconditions will be sent back through
steps 2.4 and 3 to be managed by AEFR, assuming all ADFs are satisfied. That
is (in Figure 5), AEFR initiates an access request (step 4.1) with AEFS to close
the safe (which must be successful) before the original request for access to the
room is granted in step 4.6.

4.3 Smart Space Sign on

Single sign on (SSO) allows users to authenticate only once for a set of software
components, although we believe a similar concept will soon become more pop-
ular for hardware components. Indeed, Chandershekarapuram et al. [9] propose
a framework for ‘device single sign on’ in mobile ad-hoc networks. Additionally,
Nishiki and Tanaka [22] hint at the idea of smart space sign on for context-aware
services.

To enable smart space sign on, an attempt for access will involve multiple
requests; for example, one to gain entry to the room, and one to automatically
open the safe. These requests may be set as presets against the user’s profile
(maintained by the room or the initiator’s identity management device).

234 B.W. Long

Safe

AEFR

AEFS

ADFS

4.1

4.2 4.3

4.4

4.5

Room
4.6

ADFR

Initiator

Safe Space

Room Space

Fig. 5. Subsequent request for actions based on preconditions

Again, using the same scenario, the request to access the safe would be in-
cluded as part of the request in step 1 and forwarded to AEFS in step 2.1 (see
Figure 4). To avoid potential conflicts between ADFs, the request for access to
the safe will need to happen after the final decision has been made. Therefore,
ADFR could include the request for access to the safe as a precondition accom-
panying its decision in step 3 (see Figure 4) to be acted upon in step 4.1 (see
Figure 5).

We note that caution must be taken when allowing initiators to sign on to multi-
ple targets through various layers of the cascade in a single request. For example, if
an initiator’s credentials are compromised, an unauthorised user may gain instant
access to multiple layers within the security in depth strategy. Indeed, Price [24]
warns against cascading failure. This threat could be minimised by limiting the
targets to which the initiator can access via SSO and by insisting on stronger
authentication (including multi-factor authentication [18, pp. 235-237]).

5 Protective Layer Analysis

Drawing on elements from the research of Hitchens [14] and Dowell [15], we
provide an example approach to demonstrate how we could ensure in real-time
that targets within a smart space cascade are protected by a suitable layering
of barriers.

The example approach is based on risk analysis, calculated as a function over
consequence and likelihood. In this case, consequence and likelihood refer to
asset criticality and layer vulnerability, respectively.

In the context of access control, we require a single value to reflect an overall
consequence of unauthorised access to targets. We suggest asset criticality to be
an appropriate measure and encourage the use of an asset criticality analysis [4]
for this step.

Guidelines for establishing asset criticality is not in the scope of this paper;
however, for the purpose of our discussion we will assume asset criticality is

Security in Depth through Smart Space Cascades 235

a measure between 0 and 1, where 0 represents no (or negligible) consequence
and higher values indicate more serious consequences as a result of unauthorised
access.

In the context of security in depth, the likelihood of a threat depends on
the vulnerability of the layer. Again, although guidelines for establishing layer
vulnerability is not in our scope, we assume a value between 0 and 1 indicates
the vulnerability of a protective layer in a security in depth strategy, this time
where 0 represents an impenetrable barrier and 1 represents the absence of any
protection. In general, a layer’s vulnerability will be based on factors such as
structural materials, security mechanisms and the presence of guards, security
cameras and motion sensors.

5.1 Applying the Method

Ultimately, primary targets are the critical targets we need to protect. Therefore,
we suggest an asset criticality is determined for each primary target and a layer
vulnerability for each protective target. Criticality values for protective targets
can be derived based on the criticality of their contents and the level of protection
they provide.

Hitchens [14] multiplies layer vulnerabilities to determine an overall vulnera-
bility of the combined independent layers. For example the combined strengths
of two layers with a vulnerability of 0.3 each, result in a combined vulnerability
of 0.09.

Using a similar approach, the asset criticality value for a given protective
target could be calculated by a function over the criticalities of its dependents
and its own layer vulnerability. For example, it might be feasible to suggest
that a safe with no protection (vulnerability = 1) would have a criticality equal
to the most critical target it contains. Then as the vulnerability decreases, the
criticality also decreases. Therefore, a safe with layer vulnerability VS = 0.9
containing two documents with asset criticalities C2 = 0.9 and C3 = 0.8 could
have a derived criticality of max(C2,C3) ∗VS = 0.81. Then the safe’s criticality
CS and the display’s criticality CD would be used to calculate the criticality of
the room CR (see Figure 6).

Given the set LEVEL of all real numbers between 0 and 1, such a scheme
within our framework is specified as follows.

SSC5
SSC4
vulnerability : TARGET �→ LEVEL
criticality : TARGET → LEVEL

dom vulnerability = protTargets
∀ t : TARGET • t ∈ ran dependsOn ⇒ criticality(t) =

max (ran((dom(dependsOn � {t})) � criticality)) ∗ vulnerability(t)

236 B.W. Long

Taking the maximum of the dependent targets’ criticalities is consistent with
current practice in defence environments. However, another option would be to
take the sum of the criticalities, using an unbounded real number for criticality
levels.

Although targets in our dependency tree are dependent on each other for pro-
tection, the example probabilistic approach above assumes that the mechanisms
used by protective targets are independent. Independence can be increased by us-
ing different mechanisms at each layer; for example, users could be prompted for
an RFID swipe card at one layer and a biometric at the next. Nevertheless, future
work involves exploring Bayesian inferencing to cater for such dependencies.

Access by initiators to a smart space can then be restricted based on the
criticality of the targets exposed directly by the space. For instance, a user who
is cleared to be exposed to targets with criticality levels of 0.85 and below, will
be granted access to the room in Figure 6 containing the closed safe (CS < 0.85).

Note that when the safe is open VS = 1 and CS = 0.9, in which case the user
would not be allowed access to the room unless the system negotiates a positive
outcome for the user by closing the safe first.

Room

Display Safe

Doc1 Doc2 Doc3

C2 = 0.9 C3 = 0.8

VR = 0.7
CR = 0.57

C1 = 0.5

VD = 0.8
CD = 0.4

VS = 0.9
CS = 0.81

Fig. 6. Derived asset criticalities over a dependency tree

Continuing with our specification, we specify that each user from the set
USER of all users has a level to which they are cleared, and that users will be
exposed to zero or more targets. The predicate below the line ensures that all
targets to which a user is exposed have a criticality lower than or equal to that
user’s clearance.

SSC6
SSC5
clearedTo : USER → LEVEL
exposedTo : USER ↔ TARGET

∀ u : USER; t : TARGET • (u, t) ∈ exposedTo ⇒
clearedTo(u) ≥ criticality(t)

Security in Depth through Smart Space Cascades 237

In order to prevent the derived criticality for a protective target from
increasing beyond a reasonable limit, a criticality threshold could be associated
with each protective target. However, a target’s threshold could not exceed that
which is bound by its parent’s threshold and its own vulnerability. That is, the
threshold TS of the safe must be less than or equal to the threshold TR of the
room divided by the vulnerability VS of the safe (TS ≤ TR

VS
). This is expressed

in the following schema.

SSC7
SSC6
threshold : TARGET �→ LEVEL

dom threshold = protTargets
∀ s , r : TARGET • (s , r) ∈ dependsOn ∧ s ∈ protTargets ⇒

threshold(s) ≤ threshold(r)
vulnerability(s)

∀ t : TARGET • t ∈ protTargets ⇒ criticality(t) ≤ threshold(t)

For example, the room could be placed in an unprotected environment (layer
vulnerability = 1) with a criticality threshold TE = 0.6, determining the accept-
able risk given the potential threats in that particular environment. The room’s
threshold TR would have to be less than or equal to TE/VR = 0.6/0.7 = 0.86.
And then the safe’s threshold would have to be less than or equal to TR/VS =
0.86/0.9 = 0.96. So the safe would refuse any request to protect documents with
a criticality value greater than 0.96.

Access control mechanisms associated with each target, as discussed in
Sections 3 and 4 can enforce this kind of real-time protection layer analysis,
ensuring that targets are protected suitably.

6 Conclusion

In this paper we presented a framework for security in depth based on a hierarchy
(or cascade) of ad hoc smart spaces with access control applied.

Firstly, we introduced the distinction between primary and protective tar-
gets, and dependency trees to describe the protective layering between targets.
Then we introduced accompanying access control components based on ISO/IEC
10181-3 and, within a Z specification, stated various design restrictions on the re-
lationships between targets and their accompanying access control components.

We described how the components within smart space cascades can interact
with each other to enable: decentralised decisions involving dependent targets;
dependent targets to specify preconditions to negotiate positive outcomes for
users; and single sign on for user convenience.

Finally, we described an approach for a real-time analysis of the series of layers
protecting targets in smart space cascades. Following a risk based approach, we
have suggested adopting asset criticality as a measure of consequence and layer
vulnerability as a measure of likelihood.

238 B.W. Long

In future work we will further investigate open issues we identified in relation
to cascaded interactions, and explore suitable policies within cascaded spaces in
defence environments.

Acknowledgements

I would like to thank Paul Montague and Damian Marriott for reviewing mul-
tiple drafts of this paper and for their support and valuable contributions. Also
Angela Billard, Clare Saddler and David Adie for preliminary discussions, and
the anonymous referees for their comments.

References

1. Al-Muhtadi, J., Ranganathan, A., Campbell, R., Mickunas, M.D.: Cerberus: A
context-aware security scheme for smart spaces. In: Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications,
pp. 489–496. IEEE Computer Society, Los Alamitos (2003)

2. Al-Qutayri, M., Barada, H., Al-Mehairi, S., Nuaimi, J.: A framework for an end-
to-end secure wireless smart home system. In: Proceedings of Annual IEEE In-
ternational Systems Conference, pp. 1–7. IEEE Computer Society, Los Alamitos
(2003)

3. Altunay, M., Brown, D.E., Byrd, G.T., Dean, R.A.: Collaboration policies: Access
control management in decentralized heterogeneous workflows. Journal of Soft-
ware 1(1), 11–22 (2006)

4. Anderson, D., Keleher, P., Smith, P.: Towards and assessment tool for strategic
management of asset criticality. Australian Journal of Mechanical Engineering 5(2),
115–126 (2008)

5. Australian Government: Protective security policy framework (2011)

6. Balasubramanian, M., Bhatnagar, A., Chaturvedi, N., Chowdhury, A.D., Ganesh,
A.: A framework for decentralized access control. In: Proceedings of the 2nd ACM
symposium on Information, Computer and Communications Security (ASIACCS
2007), pp. 93–104. ACM, New York (2007)

7. Billard, A., Long, B.: Dynamic security architectures: Architecture and case stud-
ies. DSTO Technical Report (in review), Defence Science and Technology Organi-
sation (July 2009)

8. Brodt, A., Sathish, S.: Together we are strong—towards ad-hoc smart spaces. In:
Proceedings of IEEE International Conference on Pervasive Computing and Com-
munications (PerCom 2009), pp. 1–4. IEEE Computer, Los Alamitos (2009)

9. Chandershekarapuram, A., Vogiatzis, D., Vassilaras, S., Yovanof, G.S.: Architec-
ture framework for device single sign on in personal area networks. In: Meers-
man, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278,
pp. 1367–1379. Springer, Heidelberg (2006)

10. Corradi, A., Montanari, R., Tibaldi, D., Toninelli, A.: A context-centric security
middleware for service provisioning in pervasive computing. In: Proceedings of the
2005 Symposium on Applications and the Internet, pp. 421–429. IEEE Computer
Society, Los Alamitos (2005)

Security in Depth through Smart Space Cascades 239

11. Das, S.K., Cook, D.J.: Designing and modelling smart environments. In: Proceed-
ings of the 2006 International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM 2006), pp. 490–494. IEEE Computer Society,
Los Alamitos (2006)

12. Dimakis, N., Soldatos, J.K., Polymenakos, L., Fleury, P., Cuř́ın, J., Kleindienst, J.:
Integrated development of context-aware applications in smart spaces. Pervasive
Computing 7(4), 71–79 (2008)

13. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The
Gator Tech Smart House: A programmable pervasive space. Computer 38(3),
50–60 (2005)

14. Hitchins, D.K.: Secure systems—defence in depth. In: Proceedings of the European
Convention on Security and Detection, pp. 34–39. IEEE Computer Society, Los
Alamitos (1995)

15. Dowell III, A.M.: Layer of protection analysis for determining safety integrity level.
ISA Transactions 37, 155–165 (1998)

16. International Standardization Organization: ISO/IEC 10181-3:1996(E): Informa-
tion technology — open systems interconnection — security frameworks for open
systems: Access control framework (1996)

17. Julien, C., Roman, G.C., Payton, J.: Context-sensitive access control for open
mobile agent systems. In: Proceedings of the 3rd International Workshop on Soft-
ware Engineering for Large-Scale Multi-Agent Systems, co-located with ICSE 2004,
pp. 42–48 (2004)

18. Kizza, J.: Computer network security. Springer, Heidelberg (2005)
19. Marsá-Maestre, I., de la Hoz, E., Alarcos, B., Velasco, J.R.: A hierarchical, agent-

based approach to security in smart offices. In: Proceedings of the International
Conference on Ubiquitous Computing: Applications, Technology and Social Issues,
ICUC 2006 (2006)

20. McCarthy, J., Thredgold, J.: Modelling smart security for classified rooms with
DOVE. In: Proceedings of the Conference on Application and Theory of Petri
Nets, pp. 135–144. Australian Computer Society (2002)

21. Moloney, M., Weber, S.: A context-aware trust-based security system for ad hoc
networks. In: Workshop of the 1st International Conference on Security and Privacy
for Emerging Areas in Communication Networks, pp. 153–160. IEEE Computer
Society, Los Alamitos (2005)

22. Nishiki, K., Tanaka, E.: Authentication and access control agent framework for
context-aware services. In: Proceedings of the 2005 Symposium on Applications
and the Internet Workshops, pp. 200–203. IEEE Computer Society, Los Alamitos
(2005)

23. Phillips, M.: Livespaces technical overview. DSTO Technical Report (draft), De-
fence Science and Technology Organisation (2008)

24. Price, S.M.: A defense-in-depth security architecture strategy inspired by antiquity.
Information Systems Security Association 8(3), 10–16 (2010)

25. Sampemane, G., Naldurg, P., Campbell, R.H.: Access control for active spaces.
In: Proceedings of the 18th Annual Computer Security Applications Conference
(ACSAC 2002), pp. 343–352. IEEE Computer Society, Los Alamitos (2002)

26. Smith, C.L.: Understanding concepts in the defence in depth strategy. In: Pro-
ceedings of the 37th Annual 2003 International Carnahan Conference on Security
Technology, pp. 8–16. IEEE Computer Society, Los Alamitos (2003)

27. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International
Series In Computer Science. Prentice Hall, London (1992)

240 B.W. Long

28. Stanford, V., Garofolo, J., Galibert, O., Michel, M., Laprun, C.: The NIST smart
space and meeting room projects: Signals, acquisition, annotation, and metrics.
In: Proceedings of IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP 2003), vol. 4, pp. 736–739. IEEE Computer Society, Los
Alamitos (2003)

29. Suo, Y., Shi, Y.: Towards initiative smart space model. In: Proceedings of the Third
International Conference on Pervasive Computing and Applications, pp. 747–752.
IEEE Computer Society, Los Alamitos (2008)

30. Zhou, W., Meinel, C., Raja, V.H.: A framework for supporting distributed access
control policies. In: Proceedings of the 10th IEEE Symposium on Computers and
Communications (ISCC 2005), pp. 442–447. IEEE Computer Society, Los Alamitos
(2005)

GeoEnc: Geometric Area Based Keys and

Policies in Functional Encryption Systems

Mingwu Zhang1,2 and Tsuyoshi Takagi1

1 Institute of Mathematics for Industry, Kyushu University,
Fukuoka, 819-0395, Japan

2 College of Informatics, South China Agricultural University, 510642, China
{mwzhang,takagi}@imi.kyushu-u.ac.jp

Abstract. Functional encryption provides more sophisticated and flex-
ible expression between the encryption key ek and decryption key dk
by deriving from attribute vectors −→x and policy vector −→v , respectively.
There is a function f(−→x ,−→v) that determines what type of a user with a
secret key dk can decrypt the ciphertext encrypted under ek. This allows
an encryptor to specify a functional formula as a decryptable policy de-
scribing what users can learn from the ciphertext without knowing the
decryptor’s identities or public keys.

In this paper, we explore two geometric-area-based key generation and
functional encryption schemes (GeoEnc), where secret keys are associ-
ated with a point on a planar coordinate system and encrypt policies
are associated with a line (GeoEncLine scheme) or a convex polygon
(GeoEncHull scheme). If the attribute point lies on the line or inside the
convex hull, the decryption key holder can decrypt the ciphertext asso-
ciated with the geometric policy such as the line or the convex polygon.
The proposed schemes have policy hiding as well as payload hiding char-
acteristics. To the best of our knowledge, they are the first functional
encryptions using geometric-area-based keys and policies. We give an
evaluation of key distribution in a practical coordinate system and also
give a security analysis with a hybrid model. The proposed schemes have
many applications as sources for keys generation and policies encryption
such as computer graphics security, network topology protection, secure
routing and mobile networking, secure multiparty computation, secure
GPS/GIS, military area protection, etc.

Keywords: geometric-based key, functional encryption, convex hull.

1 Introduction

Public keys [8], identities [9] and attributes [11] are used in public key cryptog-
raphy. Public key cryptography is a cryptographic approach that involves the
use of asymmetric key algorithms to ensure the confidentiality and integrity of
a message, i.e., by using a public key to encrypt a message that can only be
decrypted using the corresponding secret key. The public key is derived from a
trusted public-key infrastructure.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 241–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

242 M. Zhang and T. Takagi

In identity-based cryptography (IBC) and attribute-based cryptography
(ABC), the identities and attributes might include users’ names and IP ad-
dresses, or biometric data such as fingerprints and iris-scans.

In many situations, however, answers to “where s/he is” questions describe
users’ “what he can” abilities. The positional relationship means the user is able
to get the information from an encrypted ciphertext. The following examples
describe our applications:

1. Someone who must stay in a library may download documents or watch
movies that have been stored on the server. However, under our scheme,
even though s/he has the secret key, s/he is unable to obtain the documents
or movies once s/he goes outside the library.

2. If a combatant wants to attack an enemy’s goal site by using a modern
weapon such as a guided missile, s/he has the weapon to launch, whereby in
our scheme, s/he can launch the weapon only if s/he receives the instruction
while in a ‘safe’ area. His or her location (i.e., longitude, latitude and alti-
tude) can thus be used as an attribute to decrypt the confidential instruction
to launch an attack. The result if that s/he can not launch the weapon when
s/he is outside the safe area even though s/he has the secret key stored in
the weapon.

3. In mobile communication systems, sometimes we can constrain the sorts of
communications that can be made in meeting rooms, classrooms, etc. To
ensure that someone in a meeting room cannot communicate with others by
using his mobile phone. The policy for the meeting room “whether there is
a meeting now” and for the mobile phone “whether the phone is inside the
meeting room” should be associated with the geometric attributes to allow
the phone to communicate.

1.1 Our Results

In this paper, we explore two functional encryption schemes that use geomet-
ric area as an attribute to describe decryption key and encryption policy. Our
contribution provides several benefits:

1. We extend functional encryption to a geometric space. To obtain the consis-
tency of finite fields in the encryption scheme, we use a special finite point
to describe a geometric graph such as a line or a convex polygon. We also
convert the planar coordinate system into a finite field model to describe the
point and line calculations.

2. We give the formal structures and security definitions for a geometric-area-
based encryption scheme using geometric position or area as the attributes
to generate the secret key. The decryption keys are associated with a point
on the planar coordinate system and the encrypting policies are associated
with a geometric graph, i.e., a line or a polygon.

3. We construct two concrete geometric-area encryption schemes: GeoEncLine
and GeoEncHull. In the GeoEncLine scheme, the ciphertext is associated

GeoEnc: Geometric Area Based Keys and Policies 243

with a line equation and the secret key is associated with a point coordinate.
One can decrypt the ciphertext if and only if one carries a valid decryption
key and one’s position is on the line, i.e., (a) the point (decryption role) is
a solution of the line equation; (b) the decryptor’s position is authenticated
if it is confirmed to be on the line. We resolve the physical position authen-
ticity problem by using the position-based cryptography described in [7,26],
which is a building block to provide position attribute authenticity. In the
GeoEncHull scheme, the decryption policy is the relationship of a point
inside a convex polygon.

4. The GeoEnc schemes have the payload hiding property (they guarantee con-
fidentiality of the encrypted message); they also support the attribute hid-
ing (security for the encryption policy) in such a way that the policy of the
point/polygon on a planar coordinate is also confidential.

1.2 Related Work

Chandran et al. [7] introduced the identity (or other credentials and inputs) of a
party are derived from its geographic location, which answers the question “Can
you convince others about where you are?”. They designed two protocols to sup-
port secure positioning and position-based key exchanging. In these protocols,
the key exchange between the verifiers and the devices at position P that is en-
closed within a tetrahedron formed between four verifiers in three-dimensional
space, which is provably secure against any number of (possibly computationally
unbounded) adversaries colluding together.

Sobrado and Birget [24] first proposed a graphical human identification pro-
tocol that utilizes the properties of a convex hull. The main part of the protocol
involves the user mentally forming a convex hull of secret icons in a set of graph-
ical icons and then clicking randomly within this convex hull. A variant of this
protocol was later proposed in [28]. Wiedenbeck et al. [27] presented a detailed
description of the protocol in [24] and a usability analysis employing human
participants. Asghar et al. [1] analyzed the security of this convex hull based
protocol, and gave two probabilistic attacks that reveal the user’s secret key
after observation of only a handful of authentication sessions.

Attribute-based encryption (ABE) was first introduced by Sahai and Waters
[19]. Goyal et al. [11] formulated two complimentary forms of the ABE scheme:
ciphertext-policy ABE (CP-ABE) and key-policy ABE (KP-ABE). ABE schemes
have the desirable functionality, but have one limitation in that the structure of
the ciphertext is revealed to users who cannot be allowed to reveal it to others.
For example, in a CP-ABE system, a user who cannot decrypt the ciphertext
can still learn the formula associated with the ciphertext. This is unacceptable
for applications where the access policy must also be kept secret. Also, in many
of ABE schemes [11, 15, 20], the attributes are described as identity strings, not
geometric areas.

Spatial encryption (SE) was first proposed in [2], which is a new instance of
the generalized identity-based encryption (GIBE) to construct IBE systems with

244 M. Zhang and T. Takagi

different properties. GIBE is close to predicate encryption except that it incor-
porates the delegation property in HIBE. The GIBE scheme allows a sender
to encrypt a message under a certain policy of set P . Users hold secret keys
corresponding to roles. Roles are organized in a partial ordered set R, i.e., a set
endowed with a reflexive, transitive, and antisymmetric relation � that have cer-
tain geometric properties. Given a key SKρ1 which means that ρ1’s affine space
contains ρ2’s space, there is a delegation algorithm that can produce the key
SKρ2, as long as SKρ1 � SKρ2 . GIBE can be derived from spatial encryptions
such as hierarchical IBE [5, 10, 15, 21], broadcast IBE [2], and forward security
scheme [6]. However, the proposed SE schemes are only for payload hiding. They
have not been considered for use in practical geometric coordinate environments.

Predicate encryption (PE) [12] can overcome the limitation of ABE to keep
the secret of the access policy. Predicate encryption provides an ability that
is attribute-hiding (policy confidentiality) for inner-product predicates that is
stronger than the basic security requirement, payload-hiding (message confiden-
tiality). Roughly speaking, attribute-hiding requires that a ciphertext conceal
the associated attribute as well as the plaintext, while payload-hiding only re-
quires that a ciphertext conceal the plaintext. If attributes are identities, i.e.,
PE is IBE [3, 9, 25], attribute-hiding PE implies anonymous IBE [5, 10, 16, 21].
Informally, secret keys in a PE scheme correspond to predicates in some class
F , and a sender associates a ciphertext with attribute in set

∑
; a ciphertext

associated with an attribute I ∈ ∑ can be decrypted using a secret key SKf

corresponding to predicate f ∈ F if and only if f(I) = 1.
Because encryption does not require a secret key, an attacker can encrypt

any plaintext of his choice and evaluate a policy on the resulting ciphertext to
learn whether the plaintext satisfies the predicate associated with the token. To
obtain predicate confidentiality and privacy, Shen et al. [22] proposed a predicate
privacy encryption system based on [12]. Constructions of such schemes are
currently known for relatively few classes of predicates. An important research
direction is to construct functional encryption schemes for function classes F
that are as expressive as possible, with the ultimate goal being to handle all
polynomial-time predicates [23].

Shi and Waters [23] presented a delegation mechanism for a class of PE, but
the admissible predicates are a class of equality tests for HVE (Hidden Vector
Encryption), which are more limited than inner-product predicates. The selective
security proof is given in [23, 17].

A functional encryption (FE) scheme is for a class of functions F on the mes-
sage space. Roughly speaking, functional encryption supports restricted secret
keys that enable a key holder to learn a specific function of encrypted data, but
learn nothing else about the plaintext. IBE, HIBE, PE, SE, and ABE schemes
are the instance of a functional encryption. Lewko et al. [15] presented two fully
secure functional encryption schemes: a fully secure attribute-based encryption
and a fully secure (attribute-hiding) predicate encryption for inner-product pred-
icates. The formal definition of a functional encryption is described by Boneh

GeoEnc: Geometric Area Based Keys and Policies 245

et al. [4]. In particular, O’Neill [18] introduced various security notions for
functional encryption and studied the relationships among them.

1.3 Organization

We present the preliminaries and blocks in Section 2 and construct a line policy
functional encryption scheme and give the scheme’s security model and security
analysis in Section 3. In Section 4, we give a coordinate evaluation of the practical
geometric functional encryption system. In Section 5, we describe a polygon-
based policy encryption scheme wherein a secret key associated with a point
inside the convex polygon may extract the message. We draw our conclusions in
Section 6.

2 Preliminaries and Blocks

Throughout this paper, we shall use the following notation. Let U be a set;
x

R←− U denotes that x is chosen uniformly at random from U . We denote
a finite field of order p by Fp, and Fp \{0} by F×

p . Consider a vector by X̂

the vector. We shall denote the cardinality of X̂ by |X̂|, and X̂[i] the i-th

component of X̂ = (x1, x2, . . . , x|X̂|) ∈ F|X̂|
N . Furthermore, we shall denote inner

product
∑n

i=1 xiyi of two vectors X̂=(x1, x2, . . . , xn) by 〈X̂ , Ŷ 〉=X̂
T · Ŷ and

Ŷ =(y1, y2, . . . , yn) by 〈X̂ , Ŷ 〉=X̂
T · Ŷ . The zero vector is 0̂ = {0, 0, . . . , 0}.

Let f :
∑

e ×
∑

d → {0, 1} be a boolean function where
∑

e and
∑

d denote a
key attribute space and ciphertext policy space. Let P ⊆∑e and W ⊆∑d; we
say that P |= W iff f(P, W) = 1, otherwise P � W iff f(P, W) = 0.

We define P (u, v) as a point in a two-dimensional planar coordinate system
where u, v is the x-coordinate and y-coordinate, respectively. Let the value of

the determinant be denoted as D(P0, P1, P2) =

∣∣∣∣∣∣
u v 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ where P0, P1 and P2

are the pairs of (u, v), (x1, y1) and (x2, y2), respectively. Let P0(u, v), P1(x1, y1),
and P2(x2, y2) be three points in a planar coordinate system, D(P0, P1, P2)=0
means that these points form a line. Additionally, we identify

−−−→
P1P2 as a directed

line segment from P1 to P2, and L=P1P2 as the line L generated by two points
P1 and P2.

2.1 Geometric Polygon

Definition 1. Geometric polygon. A geometric polygon is a piece-wise linear,
closed curve in a coordinate plane. The straight line segments forming the closed
curve are called the sides of the polygon. A point joining two consecutive sides
is called a vertex.

246 M. Zhang and T. Takagi

We say that a geometric polygon is a simple polygon if it does not cross itself,
and a simple polygon is convex if all points on the line segment joining any two
points in its boundary or interior lie in the polygon.

Definition 2. Interior, exterior and boundary of geometric polygon. The set of
points in the planar coordinate system that lies outside a simple polygon is called
the exterior; the set of points lying on the polygon forms its boundary; the set of
points inside the boundary of the polygon is called the interior. If a point P lies
on the boundary or in the interior of a polygon, we say that the polygon contains
P or P is contained in the geometric polygon.

Theorem 1. The intersection of two convex polygons is a convex.

Proof. Let S1, S2 be two convex sets, and denote the intersection of S1 and S2

by S. Let P1 and P2 be two points in S. Obviously, P1 and P2 are also points in
S1 and S2 since S = S1∩S2. For S1 and S2 are convex polygons, then the entire
line segment P1P2 is inside the S. Hence, the intersection two convex polygons
is also a convex polygon.

2.2 Bilinear Maps in Composite Order Group

Definition 3. Bilinear Maps in Composite Order Let G = 〈g〉 and GT be
two cyclic multiplicative groups of composite order N = pqr, i.e., |G| = |GT | =
N . Let ê be an admissible bilinear map from G2 to GT ; i.e., for all u, v ∈ G
and a, b ∈ FN , it holds that ê(ua, vb) = ê(ub, va) = ê(u, vb)a = ê(u, v)ab and ê is
non-trivial, i.e., ê(g, g)
= 1GT .

We use the notation Gp, Gq and Gr to denote the subgroups of order p, q, r of
G, respectively, and we use the notation GT,p, GG,q and GT,r to denote as the
subgroups of GT . Then G = Gp × Gq × Gr, and GT = GT,p × GT,q × GT,r,
respectively.

2.3 Complexity Assumptions

Assumption 1 For a given composite order group generating G, let P (λ) to be

(p, q, r, Gp, Gq, Gr, GT,p, GT,q, GT,r, ê)
R←− G(λ)

G = Gp × Gq × Gr, GT = GT,p × GT,q × GT,r, N = pqr

gp
R←− Gp, gq, Q1, Q2, Q3

R←− Gq, gr, R1, R2, R3
R←− Gr, a, b, s

R←− Fp

Θ ← N, G, GT , ê, gp, gr, gqR1, g
s
p, g

b
p, g

b2

p , gab
p R1, g

bs
p R2

η ← {0, 1}, Tη
R←− Gb2s

p Qη
3R3

We call (Θ, Tη) the challenge pair of Assumption 1. After giving the challenge
pair to an attacker A, A guesses η ∈ {0, 1} in Assumption 1.

GeoEnc: Geometric Area Based Keys and Policies 247

Assumption 2 For a given composite order group generating G, let P (λ) to be

(p, q, r, Gp, Gq, Gr, GT,p, GT,q, GT,r, ê)
R←− G(λ)

G = Gp × Gq × Gr, GT = GT,p × GT,q × GT,r, N = pqr

gp, ω, h
R←− Gp, Q1, Q2

R←− Gq, gr
R←− Gr, s, r

R←− FN

Θ ← N, gp, gq, gr, h, G, GT , ê, gs
p, h

sQ1, g
r
pQ2, ê(gp, h)r

T0 ← ê(gp, ω)rs, T1
R←− GT

We call (Θ, T0, T1) the challenge pair of the Assumption 2, where (Θ, T0, T1)
R←−

P (λ). After giving the challenge pair to attacker A, A distinguishes between T1

and T2 in Assumption 2.

2.4 Framework of GeoEnc Scheme

Here, we shall describe two frameworks of geometric-area-based functional en-
cryption schemes, called GeoEncLine and GeoEncHull, respectively. Let P (x, y) ∈
F2

N be a point in the planar coordinate system. As N = pqr can not be factored, we
will discuss the relationship between the coordinate x, y and integer N in section 5.

GeoEncLine Scheme. In the GeoEncLine scheme, we encrypt a message with a
line equation where the line is described as two different points on the line (because
we use the slope-direct to describe the line equation, we assume that two points
have different x-coordinate values, i.e, the line is not vertical). The secret key is
associated with a point in the planar coordinate system.

One can extract a valid message from a ciphertext encrypted by the GeoEn-
cLine algorithm if and only if one’s current position is on the line and one carries
a valid decryption key. Informally, one can require point secret key queries in a
two-dimensional planar coordinate system by using the PointKeyGen algorithm.
The sender may encrypt a message associated with a line equation. If the point
(hidden in the secret key) is a solution of the line equation, then the receiver can
decrypt the ciphertext. For instance, in Fig.1(a), points P and P ′ require secret
keys, but only P can decrypt the message encrypted by line L (L=P1P2).

Position Authenticity. The decryption attribute point P can be located by us-
ing physical equipment such as sensor networks, global positioning systems (GPS),
or radar systems [26, 7]. In order to keep the physical position authenticable, we
shall use a secure anti-collusion attack positioning protocol [7] that only needs four
verifiers in a three-dimensional space.We shall apply it to a two-dimensional planar
coordinate system with three verifiers. The authentication protocol is as follows.

1. Verifiers V1, V2 and V3 pick keys K1, K2 and K3
R←− {0, 1}m and send them to

the other parties.
2. V1 broadcasts key K1 at time T − t1, while V2 broadcasts X1 at time T − t2

simultaneously also broadcasts K ′
2 = PRG(X1, K1) ⊕ K2, where PRG :

{0, 1}m × {0, 1}m → {0, 1}m is an ε-secure pseudorandom generator.
Similarly, V3 broadcasts (X2, K

′
3 = PRG(X2, K2) ⊕ K3) at time T − t3.

248 M. Zhang and T. Takagi

P1

P2

P

P2

P1

P5

P4 P3

PP

P

(a) (b)

Fig. 1. Geometric area encryption (a)Line policy; (b)Polygon policy

3. At time T , the prover at position P computes messages Ki+1 = PRG(Xi,
Ki) ⊕ K ′

i+1 for i = 1, 2 and returns K3 to all verifiers.
4. The three verifiers check that the string K3 is received at time (T + ti) and

that it equals the K3 of their pre-chosen. If these verifications succeed, the
position claim of the prover is accepted and the prover is assumed to be indeed
at position P . Otherwise, the position claim is rejected.

Because we use this physical position authenticity protocol as a building block to
prove that the point location is convincing, we assume that this block is executed
before the secret key is requested and the ciphertext is decrypted.

GeoEncHull Scheme. We construct another geometric-area-based functional
encryption scheme called GeoEncHull. In the GeoEncHull scheme, the ciphertext
is associated with a convex polygon and the secret key is associated with a point.
If the point that produces the secret key is inside the polygon and the position is
authenticated, it can decrypt the ciphertext. In Fig.1(b), points P and P ′ require
secret keys, but only P can extract the message from the ciphertext by using its se-
cret key. To determine whether a point is inside the convex polygon, we introduce
a new operator in a finite group Ψ (see Section 5).

3 GeoEncLine Scheme

We first construct a line-policy-based functional encryption scheme whereby the
ciphertext CT is generated from a line and the key SK is derived from a point
on the planar coordinate system. The GeoEncLine scheme is comprised of the
SysGen, LineEnc, PointKeyGen, and PointDec algorithms.

3.1 Syntax of GeoEncLine

- SysGen(λ) → (params,msk) The SysGen algorithm generates system pub-
lic parameters, denoted as params, and a corresponding master secret key,
denoted as msk.

GeoEnc: Geometric Area Based Keys and Policies 249

- LineEnc(params, M, L=P1(x1, y1)P2(x2, y2)) → CTL The LineEnc
algorithm takes the public parameters, a message M , and a line L defined by
two points P1(x1, y1), P2(x2, y2) (xi, yi ∈ FN , i = 1, 2 and x1
= x2) as input,
and it produces a ciphertext CTL such that only users whose secret key as-
sociated with this attribute point on the line are able to extract the message
M .

- PointKeyGen(msk, params, P (u, v)) → SKu,v The PointKeyGen algorithm
takes the master secret key msk, public parameters params and a planar coor-
dinate point P (u, v) (u, v ∈ FN) as input, and it outputs a secret keySKP (u,v).

- PointDec(CTL, params, SKP (u,v)) → M |⊥. After being given the input of a
ciphertext CTL, public parameters params, and a geometric point secret key
SKP (u,v), this algorithm outputs the message M if the point position is con-
vincing and P (u, v) satisfies the line equation P |= L; i.e., (u, v) is a root of
the equation: y = y1−y2

x1−x2
(x− x1) + y1 mod N . Otherwise, it returns the dis-

tinguished symbol ⊥.

The GeoEncLine scheme should have the following consistency and correct-
ness properties: for all correctly produced params and SKP (u,v), generate CTL ←
LineEnc(params, M, P1P2) and M ′ = PointDec(params, SKP (u,v), CTL). If P
satisfies the line equation P |= L, then M = M ′. Otherwise, M
= M ′, except for
a negligible probability, i.e.,

Pr

⎡⎢⎢⎢⎢⎣
(params,msk) ← G(λ), P |= P1P2

SKP = PointKey(msk, params, P (u, v))
CTL = LineEnc(params, M, P1P2)
M ′ = PointDec(CTL, params, SKP)
M ′ = M

⎤⎥⎥⎥⎥⎦ > 1 − ε(λ)

where ε(λ) is a negligible function such that there exists an integer k that for every
λ > k satisfies f(λ) < 1/ε(k).

3.2 Security Model of GeoEncLine

We define GeoEncLine security by using a game that captures the strong privacy
property including payload hiding and policy hiding. The GeoEncLine scheme is
semantically secure, as the following game between a challenger C and an attacker
A.

Payload Hiding

1. Init Attacker A commits a line L̂ specified by two distinguished points
P̂1(x̃1, ỹ1), P̂2(x̃2, ỹ2) to the attack.

2. SysGen The challenger C runs the SysGen algorithm to produce the public pa-
rameters params and master secret key, and sends the params to the attacker.

3. Adaptive phase-I Attacker A makes a bounded number of queries to C for se-
cret keys corresponding to the point P1(x1, y1), P2(x2, y2), . . ., Pt(xt, yt), with

250 M. Zhang and T. Takagi

only the restriction being that none of these queried points on line L̂ which sat-
isfies the equation in (1). i.e., xi, yi (1 ≤ i ≤ t) does not satisfy the following
equation

L̂= yi = ỹ1 +
ỹ1 − ỹ2

x̃1 − x̃2
(xi − x̃1) mod N (1)

4. Challenge Once attacker A decides that phase-I is over, it outputs two equal
length messages M0, M1. The challenger C flips a random coin b ∈ {0, 1}, and
encrypts Mb under the line with points P̂1, P̂2. It then sends the ciphertext
CTL̂ to A.

5. Adaptive phase-II A can query the challenger for secret keys corresponding to
point set Pt+1(xt+1, yt+1), . . . , Pk(xk, yk) like in query-I.

6. Guess The attacker A outputs a guess b′ for b.

The advantage of an attacker A in this game is defined as |Pr[b′ = b] − 1
2 |

where the probability is taken over the random bits used by the challenger and
the attacker.

Definition 4. The geometric line policy encryption scheme (GeoEncLine) is se-
mantically secure for payload hiding if all polynomial time attackers have at most
a negligible advantage in above security game of payload hiding.

We denote the queried point set P1, . . . , Pk as
∑

e, and the challenged point set P̂1

and P̂2 as
∑

d. We also define the encryption policy function (formula 1). Attacker

A’s queries satisfy P � L̂ := P̂1P̂2, which means the attacker cannot perform
queries that satisfy the challenged encryption policy function.

Geometric Policy Hiding. The Geometric policy hiding experiment is payload
hiding one, except that the challenge phase is modified as follows.

- Challenge. The attacker A outputs a message M and a line denoted as two
points L̈ := (P ı

1, P
ı
2) by its choice with the restriction that L̈ has not been

queried in phase-I. Then C flips a random coin η and a random ciphertext C
from the ciphertext space. If η = 1 then C encrypts M with CTL̂ ← LineEnc
(params, M, L̈), else if η = 0 he sets CTL̂ ← C as the challenge to attacker
A.

Definition 5. A geometric line policy encryption scheme is secure for policy hid-
ing if all polynomial time attackers have at most a negligible advantage in geometric
policy hiding game.

3.3 Construction of GeoEncLine

We assume that P1(x1, y1), P2(x2, y2) are two points on the line L̂, and point
P (u, v) is a attribute point to generate secret key. We take a vector X̂ = (u, v, 1)
as the encryption point vector, and a vector Ŷ = (y1 − y2, x2 − x1, x1y2 − x2y1)
as the line policy vector. Obviously, P0(u, v) is on the line iff 〈X̂, Ŷ 〉 = 0, i.e.,

GeoEnc: Geometric Area Based Keys and Policies 251

D(P0(u, v), P1(x1, y2), P2(x2, y2))

= x1y2 + x2v + y1u − x2y1 − x1v − y2u = 〈X̂, Ŷ 〉

If the sign of D(P0, P1, P2) is positive then (P0, P1, P2) forms a counterclockwise
cycle, i.e., P0 lies to the left of directed line segment

−−−→
P1P2, and negative if and

only if (P0, P1, P2) forms a clockwise cycle, i.e., P0 lies to the right of
−−−→
P1P2. If

D(P0, P1, P2) = 0, P0 lies in on the line P1P2.

SysGen(1λ): First, given a security parameter λ, this algorithm uses the group
generator G to produce (N = pqr, p, q, r, G, GT , ê) ← G(1λ) with G = Gp ×
Gq × Gr. It randomly picks generators gp, gq, gr ∈ Gp, Gq, Gr, randomly
chooses ω, gi ∈ Gp, h, hi ∈ Gr, and computes Ω = gqh ∈ Gqr, zi = gihi ∈ Gpr

for i = 1, . . . , 6. Then it publishes the parameters params = (N, gp, gr, Ω, zi,
ê(gp, ω)) and keeps the master secret key (gq, ω, hi)(i = 1, . . . , 6).

LineEnc(params, M, L=P1P2): Let P1(x1, y1), P2(x2, y2) be two distinguished
points on line L, and M ∈ GT be a message. This algorithm first computes
l = y1 − y2 (mod N), m = x2 − x1 (mod N), n = x1y2 − x2y1 (mod N).
Then, it randomly picks s, ξ, δ ∈ FN and Ri ∈ Gr(i = 1, . . . , 6), and produces
the ciphertext CTL = (C′, C0, Ci(i=1,...,6)) as follows:

C′ = Mê(gp, ω)s C0 = gs
p

C1 = zs
1Ω

ξlR1 C2 = zs
2Ω

δlR2 C3 = zs
3Ω

ξmR3

C4 = zs
4Ω

δmR4 C5 = zs
5Ω

ξnR5 C6 = zs
6Ω

δnR6

(2)

Obviously, the ciphertext CTL has the same random distribution even though
the CTL is produced from any two different points in L.

PointKeyGen(msk, params, P (u, v)): Let P (u, v) be a point on the planar co-
ordinate system where u, v ∈ FN . This algorithm randomly picks f1, f2, t, ri ∈
FN (i = 1, . . . , 6), and generates the secret key SKP (u,v) = (K0, Ki(i=1,...,6))
as:

K0 = ωgt
q

∏6
i=1 z−ri

i K1 = gr1
p gf1u

q K2 = gr2
p gf2v

q K3 = gr3
p gf1

q

K4 = gr4
p gf2u

q K5 = gr5
p gf1v

q K6 = gr6
p gf2

q

(3)

PointDec(CTL, params, SKP (u,v)): Upon input of the line policy ciphertext
CTL = (C′, C0, Ci|6i=1) and the point secret key SKP (u,v) = (K0, Ki|6i=1), this
algorithm first verifies the validate for the position P (u, v). If the
verification succeeds, it extracts the message by using

M =
C′∏6

i=0 ê{Ci, Ki}
(4)

3.4 Correctness and Consistency

Assume a ciphertext is well-formed for the decryption key, that is, ciphertext
CTL=P1(x1,y1)P2(x2,y2)

and secret key SKP (u,v) produced as above guarantee that

252 M. Zhang and T. Takagi

point P (u, v) is on the line L=P1P2 such that D(P, P1, P2) = 0. The encryp-
tion policy and the decryption role satisfies 〈X̂, Ŷ 〉 = 0 where X̂ = (u, v, 1) and
Ŷ = (l, m, n) = (y1 − y2, x2 − x1, x1y2 − x2y1).

To prove correctness and consistency, first we check the following equation.

ê(C1, K1) = ê(zs
1Ω

ξlR1, g
r1
p gf1u

q) = ê(zs
1Ω

ξl, gr1
p gf1u

q)

= ê(gs
1h

s
1g

ξl
q hξl, gr1

p gf1u
q = ê(gr1

1 , gs
p)ê(g

ξl
q , gf1u

q)

Furthermore, we have the following calculation.

6∏
i=1

e(Ci, Ki) = (
6∏

i=1

ê(gri

i , gs
p)) · ê(gq, gq)ξf1ul+δf2vl+ξf1m+δf2u+ξf1vn+δf2n

= ê(
6∏

i=1

gri

i , gs
p)ê(gq, gq)(ξf1+δf2)〈(u,v,1),(l,m,n)〉

= ê(
6∏

i=1

gri

i , gs
p)ê(gq, gq)(ξf1+δf2)〈X̂,Ŷ 〉 (5)

Therefore, if P is on the line L, i.e., ê(gq, gq)(ξf1+δf2)〈X̂,Ŷ 〉 = 1 for 〈X̂ , Ŷ 〉 = 0.

C′∏6
i=0 ê(Ci, Ki)

= C′ 1
ê(C0, K0)

∏6
i=1 ê(Ci, Ki)

= C′ 1
ê(gs

p, ωgt
q)
∏6

i=1 z−ri

i)ê(
∏6

i=1 gri

i , gs
p)

=
Mê(gp, ω)s

ê(gs
p,

ω)ê(gs
p,
∏6

i=1(gihi)−ri)ê(
∏6

i=1 gri

i , gs
p))

=
Mê(gp, ω)s

ê(gs
p, ω))ê(gs

p,
∏6

i=1(gi)−ri)ê(
∏6

i=1 gri

i , gs
p))

=
Mê(gp, ω)s

ê(gs
p, ω)

= M (6)

Otherwise, if 〈X̂, Ŷ 〉
= 0, the decrypt equation in the PointDec algorithm will
contain a factor ê(gq, gq)ζ where ζ = (ξf1 + σf2)

∏
i X̂iŶ i), which is a uniform

distributed value in GTq . Then C′/
∏6

i=0 ê(Ci, Ki) is a uniform distributed ele-
ment in GT , that is indistinguishable from GTp under Assumption 2.

3.5 Security Analysis

To understand our construction, it would be useful to examine the role of each of
the subgroups Gp, Gq, Gr. The Gp subgroup is used to prevent an attacker from
manipulating components of either a ciphertext CTL or a key SKP and then eval-
uating a query on the improperly formed inputs. The Gp subgroup also encodes a
message in the bilinear subgroup.

GeoEnc: Geometric Area Based Keys and Policies 253

The Gq subgroup is used to encode a cleartext point coordinate vector Ŷ in
C1, . . . , C6 terms of the attribute policy in the ciphertext CTL, and the extended
point coordinate vector X̂ in K1, . . . , K6 terms of the point vector in the secret
key. When a point for X̂ is sure that an encryption of Ŷ is good, the inner product
〈X̂, Ŷ 〉 is evaluated as an identical element in the GTq subgroup.

The Gr subgroup is used to hide factors from other subgroups and ensure the
ciphertext’s confidentiality and privacy.

Our construction consists of two parallel sub-systems. Note that C1, C3, C5 and
C2, C4, C6 in CTL (similarly in keys SKP) play identical roles. Our proof of secu-
rity will rely on having these two parallel subsystems.

To prove that the case when the challenge ciphertext is associated with X̂
(which for X̂ × X̂) is indistinguishable, and the case when the challenge cipher-
text is associated with Ŷ (which corresponds to Ŷ × Ŷ , we will use a sequence of
intermediate hybrid games (X̂ , 0̂), (X̂ , Ŷ), (0̂, Ŷ) and prove indistinguishability
in each intermediate case. That is,

(X̂ , X̂) ↔ (X̂ , 0̂) ↔ (X̂, Ŷ) ↔ (0̂, Ŷ) ↔ (Ŷ , Ŷ)

Theorem 2. Under Assumptions 1 and 2, the GeoEncLine encryption scheme is
attribute hiding for geometric policy security.

proof. The proof is straightforward. Our proof of security is structured as a hybrid
experiment over a sequence of games defined as follows:

– Game-real : The challenge ciphertext is Γ0 : CTL = (C′, C0, C1, C2, C3, C4,
C5, C6), which is the actual GeoEncLine game;

– Game-1 : The challenge ciphertext is generated as a proper encryption using
(X̂, 0̂) such that Γ1 : CTL=(C′, C0, C1, C2 = zs

2R2, C3, C4 = zs
4R2, C5,

C6 = zs
6R6);

– Game-2 : Generate C2, C4, C6 components as if encryption were to be done us-
ing (X̂, Ŷ) such that Γ2 : CTL = (C′, C0, C1, C2 = zs

2R2, C3, C4 = zs
4R2, C5,

C6 = zs
6R6);

– Game-3 : Generate C2, C4, C6 components using the vector (0̂, Ŷ);
– Game-4 : This game Γ4 is defined symmetrically with respect to Game-3. In

Game-4, the C1, C3, C5 components are generated using 0̂.
– Game-5 : This game Γ5 is defined symmetrically with respect to Game-4. In

Game-5, the C1, C3, C5 components are generated using Ŷ .

In Game-5, the challenge ciphertext is a proper encryption with respect to the
vector Ŷ . Thus, the proof of the theorem 2 is conclude by proofs the security with
a hybrid model. We show that the attacker cannot distinguish between Game-i
and Game-(i + 1) for i = 1, . . . , 4.

Intermediate games Game-2 and Game-4 are used to simplify the proof which
helps when part of the ciphertext corresponds to an encryption using 0̂ since this
vector is orthogonal. The main difficulty in proof is to answer queries for decryp-
tion keys while ensuring the the indistinguishability of Game-1/Game-2 and
indistinguishability of Game-4/Game-5.

254 M. Zhang and T. Takagi

Game-c

Game-5 Game-4

Game-3

Game-2Game-1

Game-real
Geometric policy

hiding
Payload hiding

Fig. 2. Hybrid security model for game indistinguishability

We will allow the attacker to have the ability to construct all decryption keys
such that it can distinguish an encryption relative to X̂ from an encryption rela-
tive to Ŷ . We show that even such keys cannot be used to distinguish a well-formed
encryption of X̂ or Ŷ from a badly formed one.

We give the proof of the indistinguishability between Gamei and Gamei+1

(i=1,2,3,4) in the full version of this paper.

Theorem 3. TheGeoEncLine scheme is semantically secure underAssumption 2.

proof. We define the Gamec to be a playload hiding game. The challenge ciphertext
is Γ1 : CTL = (R, C0, C1, C2, C3, C4, C5, C6), which is the difference between C′

and a random R ∈ GTp . This can be considered as a bilinear subgroup decisional
assumption in Assumption 2. According to the Theorem 2, we show that the com-
ponents in Γ0 : CTL = (C′, C0, C1, C2, C3, C4, C5, C6) is indistinguishable from
random components in Γc : CTL = (R′, R′

0, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5, R

′
6), where R′ is a

random element in Gt and R′
i (i = 1, . . . , 6) is a random element in G.

4 Practical Coordination Evaluation

Note that we use a composite order N = pqr with primes p, q, r in 2.2 and as-
sume that it is hard to factor the p, q, r of N of an order of group generator G
with 128-bit AES security [14]. Then |N |=|p|+|q|+|r| is at least 1024-bit1. We
set the numbers p, q and r to be 342-bit, 341-bit and 341-bit, respectively. In a
planar coordinate, the line segment P1P2 vector Ŷ is defined as (y1, y2, y3) =
(y1 − y2, x2 − x1, x1y2 − x2y1) (see equation 2). Since we are considering a point
on the line in the GeoEncLine scheme, < X̂, Ŷ >= 0 holds if the decryption role

1 Kleinjung et al. [13] factored a 768-bit RSA modulus in 2010 and they declared that it
would be prudent to phase out usage of 1024-bit RSA within the next 3-4 years.Thus,
we should also have to expand the size of N in a practical deployment. In this sec-
tion, we discuss the coordination evaluation between the practical coordination and
the theoretical security requirement. Actually, the scope of coordination system will
increase if we deploy a more secure order N , i.e. N = 2048.

GeoEnc: Geometric Area Based Keys and Policies 255

s

s

-s

-s

0 p-1

p-1

2s2=p-1

A A

BC

D
(0,0)

D

B

C

s2

s2

p-1-s2

s2

p-1-s2
p-1-s2

p-1-s

p-1-s2 p-1-s

p-1-s p-1-s

s

s

s

s s2

x>0
y<0

x>0
y>0

x<0
y<0

x<0
y>0

x>0
y>0

x>0
y<0

x<0
y>0

x<0
y<0

xy>0 xy<0

xy<0 xy>0

x1y1+x2y2>0

x1y1+x2y2>0

x1y1+x2y2<0

x1y1+x2y2<0

2s2=p-1

(a) (b)

Fig. 3. Map geometric coordinate system to finite field space

(point P0) satisfies the encryption policy (P1P2). Thus, one need not to consider
the sign of < X̂, Ŷ > in the GeoEncLine scheme.

Next, we estimate the coordinate scope in the GeoEncLine scheme under a finite
field Fp. Assume the point in the GeoEncLine scheme is P (x, y) ∈ F2

	 (i.e., in a
two-dimensional Euclidean space with the maximum x and y coordinate value �).
We use Fp as the planar coordinate points and line calculation scope2. In Figure
3(a), the maximum coordinate values of P (x, y) are such that −� < x < �,
−� < y < �. We extend these coordinate planar (with negative values) to a
finite field F2

p (� < p, and Fp = 1, . . . , p − 1). In Figure 3(b), we takes [1, p
2 − 1]

as being positive and [p
2 + 1, p − 1] as being negative. Considering a vector Ŷ =

(y1 − y2, x2 − x1, x1y2 − x2y1), the maximum value of the third component is
2�2 since the point is in F2

	 (i.e., x1=y2=�, x2=y1=-�). We set 2�2 = p/2, then
� =

√
2340≈ 1.496 × 1051, which is large enough for the practical application to

a two-dimensional coordinate system.

5 Extension to GeoEncHull Scheme

We first define a map f for an input x ∈ [0, N − 1] over FN
3

f(x) =

⎧⎨⎩
� if 0 < x < p/2 (mod p)
� if x = 0 (mod p)
� if p/2 ≤ x < p − 1 (mod p)

(7)

2 (x, y) ∈ F2
�, and two point equation LP1P2

will overflow the F� because it will intro-
duce the addition and multiplication operators to this field, for instance, xy ∈ F�2 .

3 Note that N = pqr where p, q, r are prime numbers such that gcd(p, q)=1,
gcd(p, r)=1, and gcd(q, r)=1.

256 M. Zhang and T. Takagi

We define two operators ⊕,⊗ over group Ψ = (�, �, �) such that

� ⊕ � = �, � ⊕ � = �, � ⊕ � = �,

� ⊕ � = �, � ⊕ � = �, � ⊕ � = �
� ⊗ � = �, � ⊗ � = �, � ⊗ � = �,

� ⊗ � = �, � ⊗ � = �, � ⊗ � = �

Intuitively, the operators⊕,⊗ in group Ψ satisfy the condition of sign operators
+, 0,− in real or integer fields.

Lemma 1. Suppose that Δ is a triangle on the plane with three points P0, P1,
P2. Then the signed area of Δ is half of the determinant D(P0, P1, P2), where the
sign of D is positive if (P0, P1, P2) forms a counterclockwise cycle and negative if
(P0, P1, P2) forms a clockwise cycle. We say that the path from P0 through the line
segment

−−−→
P0P1 to P1 then through the line segment

−−−→
P1P2 to point P2 is a left turn if

D(P0, P1, P2) > 0. Otherwise, we say the path makes a right turn.

Lemma 2. Point inside polygon. If a polygon is convex and a point is always in
the same hemispace with regard to the directed edges, the point is inside the polygon.

Let Σ = (P1, P2, . . . , Pπ) be a convex polygon where Pi(xi, yi) (i = 1, . . . , π) are
the vertexes and

−−−−→
PiPi+1 are the edges of Σ with a counterclockwise cycle. The

convex hull vector is produced as follows. Let Pi = (xi, yi) and Pπ+1 = P1. For
i = 1, . . . , π, compute⎧⎨⎩

vi1 = yi − yi+1 (mod N)
vi2 = xi+1 − xi (mod N)
vi3 = xiyi+1 − xi+1yi (mod N)

For i = 1, . . . , π, j = 1, 2, 3, randomly pick s, ξi, δi ∈ ZN and Ri1j , Ri2j ∈ Gr,
and compute ⎧⎪⎪⎨⎪⎪⎩

C′ = Mê(gp, ω)s

C0 = gs
p

Ci1j = zs
1iΩ

ξivij Ri1j

Ci2j = zs
2iΩ

δivij Ri2j

(8)

Then output the convex-polygon policy based ciphertext CTΣ = (C′, C0, Ci1j ,
Ci2j) (1 ≤ i ≤ π, 1 ≤ j ≤ 3).

6 Concluding Remarks

We proposed two geometric-area-based key generation and policy encryption
schemes. We modeled the geometric graphic functional encryption schemes and

GeoEnc: Geometric Area Based Keys and Policies 257

gave a security analysis under composite order groups. Geometric area cryptog-
raphy can be applied to computer graphics, network topology, secure routing and
mobile networking and the military etc. There remain several open problems for
geometric based cryptosystems: i.e., finding a solution for the geometric graph in a
real number field, encryption using a flexible geometric function, high-dimension
encryption, etc.

Acknowledgment. The authors grateful thank the anonymous reviewers for
their helpful comments. This work is supported by NSFC (60973134), NSF of
Guangdong (1015106420100 0028, 10351806001000000), the Foundation for Dis-
tinguished Young Talents in Higher Education of Guangdong (wym09066), and
supported by Grant-in-Aid for JSPS Fellows of Japan (22·P10045).

References

1. Asghar, H.J., Li, S., Pieprzyk, J., Wang, H.: Cryptanalysis of the convex hull click
human identification protocol. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić,
I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 24–30. Springer, Heidelberg (2011)

2. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

5. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (Without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

6. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

7. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22, 644–654 (1976)

9. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidel-
berg (2006)

10. Gentry, C., Halevi, S.: Hierarchical identity based encryption with polynomially
many levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

11. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. ACM CCS 2006, 89–98 (2006)

12. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

258 M. Zhang and T. Takagi

13. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

14. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathematics,
649–673 (1987)

15. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

16. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

17. Park, J.H.: Inner-product encryption under standard assumption. Des. Codes Cryp-
togr. 58(3), 235–257 (2011)

18. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

20. Sahai, A., Waters, B.: Fuzzy identities and attributed-based encryption. In: Tuyls,
P., Škoric, B., Kevenaar, T. (eds.) Security with noisy data, Springer, Heidelberg
(2007)

21. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical identity-
based encryption with constant size ciphertext. IEICE Trans. on Fundamentals E94-
A(1), 45–56 (2011)

22. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

23. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

24. Sobrado, L., Birget, J.C.: Graphical passwords. The Rutgers Scholar, 4 (2002),
http://rutgersscholar.rutgers.edu/volume04/sobrbirg

25. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE un-
der simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

26. Waters, B., Felten, E.W.: Secure, privacy proof of locations. TR-667-03
27. Wiedenbeck, S., Waters, J., Sobrado, L., Birget, J.C.: Design and evaluation of a

shoulder-surfing resistant graphical password scheme. In: AVI 2006, pp. 177–184.
ACM, New York (2006)

28. Zhao, H., Li, X.: S3PAS: A scalable shoulder-surfing resistant textual-graphical
password authentication scheme. In: AINAW 2007, pp. 467–472. IEEE Computer
Society, Los Alamitos (2007)

http://rutgersscholar.rutgers.edu/volume04/sobrbirg

An Efficient Rational Secret Sharing Scheme

Based on the Chinese Remainder Theorem

Yun Zhang1,2, Christophe Tartary3, and Huaxiong Wang1

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

ZHAN0233@e.ntu.edu.sg
2 School of Mathematical Science, Yangzhou University, Yangzhou, 225002,

People’s Republic of China
ctartary@mail.tsinghua.edu.cn

3 Institute for Interdisciplinary Information Sciences, Institute for Theoretical
Computer Science, Tsinghua University, Beijing, 100084,

People’s Republic of China
hxwang@ntu.edu.sg

Abstract. The design of rational cryptographic protocols is a recently
created research area at the intersection of cryptography and game the-
ory. At TCC’10, Fuchsbauer et al. introduced two equilibrium notions
(computational version of strict Nash equilibrium and stability with re-
spect to trembles) offering a computational relaxation of traditional game
theory equilibria. Using trapdoor permutations, they constructed a ra-
tional t-out-of n sharing technique satisfying these new security models.
Their construction only requires standard communication networks but
the share bitsize is 2n|s|+O(k) for security against a single deviation and
raises to (n−t+1)·(2n|s|+O(k)) to achieve (t−1)-resilience where k is a
security parameter. In this paper, we propose a new protocol for rational
t-out-of n secret sharing scheme based on the Chinese reminder theorem.
Under some computational assumptions related to the discrete logarithm
problem and RSA, this construction leads to a (t− 1)-resilient computa-
tional strict Nash equilibrium that is stable with respect to trembles with
share bitsize O(k). Our protocol does not rely on simultaneous channel.
Instead, it only requires synchronous broadcast channel and synchronous
pairwise private channels.

Keywords: rational cryptography, computational strict Nash equilib-
rium, stability with respect to trembles, Asmuth-Bloom sharing scheme.

1 Introduction

1.1 Preliminaries

In 1979, Shamir [16] and Blakley [4] independently introduced the concept of
secret sharing scheme (SSS) in order to facilitate the distributed storage of
private data in an unreliable environment. Since then, secret sharing has be-
come a major building block for cryptographic primitives in particular in the

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 259–275, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

260 Y. Zhang et al.

area of multiparty computation (MPC). The goal of a (perfect) SSS is to dis-
tribute a secret value s amongst a finite set of participants P = {P1, . . . , Pn}
in such a way that only specific subsets of P can reconstruct s while the others
have no information about this secret element whatsoever.

Traditional cryptographic models assume that some parties are honest (i.e.
they faithfully follow a given protocol) while others are malicious participants
against whom the honest players must be protected. However, in many real-
world applications, a participant will choose to be dishonest if deviating from
the protocol will provide him with some advantage. Game theory can be used
to model such a situation where players are self-interested (i.e. rational). In this
representation, each participant Pi has a utility function Ui and the execution
of the cryptographic protocol is regarded as a game over P where the n players’
strategies σ1, . . . , σn are dictated by their respective utilities U1, . . . , Un.

Halpern and Teague introduced the first general approach for rational secret
sharing in 2004 [9]. This opened new research directions and many results ap-
peared subsequently [6,1,7,12,13,10,14,2]. In game theory, a Nash equilibrium
(NE) captures the idea of stable solution for a given game. Indeed, in a NE,
no single player Pi can individually improve his welfare by deviating from the
strategy σi specified by the equilibrium (σ1, . . . , σn) if all remaining participants
stick to theirs. Most of the rational protocols quoted above focus on achieving
a NE surviving iterated deletion of weakly dominated strategies. However, as
pointed out in [12], some bad strategies still survive this deletion process. As a
remedy, Kol and Naor proposed to use the notion of strict NE requiring that
each player’s strategy is his unique best response to the other players’ strategies.
This notion is more appealing than a NE in that, in a NE, there is no incentive
to deviate while, in a strict NE, there is an incentive not to deviate. However,
it is difficult to achieve a strict NE in many cases since this notion rules out
many cryptographic techniques. In order to balance this tradeoff, Fuchsbauer et
al. [7] proposed a computational version of strict NE (which enables the use of
cryptography) and the notion of NE stable with respect to trembles. They also
provided an efficient construction for standard communication networks achiev-
ing such an equilibrium as long as all the players are computationally bounded.
However, the bitlength of their shares is 2n|s| + O(k) which gets very large es-
pecially when n (number of players) or k (security parameter) is large. While
not a serious issue in its own right, this may be problematic when their rational
SSS is used as a subroutine for rational MPC.

1.2 Our Results

In this paper, we present a protocol for rational t-out-of-n SSS. We only need
a synchronous (but non-simultaneous) broadcast channel along with pairwise
point-to-point channels. We do not assume any on-line dealer nor do we apply
any generic MPC protocol to redistribute the shares of the secret. Instead, we
borrow the idea from Joint Random Secret Sharing to allow every player to form
his ”one-time” share at the beginning of each iteration by interactions among
the group of m(m ≥ t) participants. The main idea is described as follows.

An Efficient Rational Secret Sharing Scheme 261

In the share distribution phase, the dealer use the modified version of Asmuth-
Bloom SSS proposed by Kaya and Selçuk [11] to generate n shares for the secret
s. Suppose there are m players active in the reconstruction phase, say P1, . . . , Pm.
This phase proceeds with several rounds. At the beginning of each iteration, the
”one-time” shares for (s+d) mod m0 are generated (jointly by the active players)
using the technique from Joint Random Secret Sharing, where d = d(1)+· · ·+d(m)

and each d(i) is chosen independently and uniformly at random from the domain
of the secret by Pi. If d ≡ 0 mod m0, then all the ”one-time” shares are valid for
recovering s and, in this sense, the current iteration is called the valid iteration.
Otherwise, the current iteration is invalid, which is designed only for catching
possible cheaters. Each communicated message carries a commitment with per-
fect binding and computational hiding (assuming the hardness of computing
discrete logarithm). Thus, at every point of our protocol, there is a unique legal
message that each player can send (except with negligible probability). This pre-
vents a player from outwardly appearing to follow the protocol while subliminally
communicating with other participants.

Then, all the active players are required to open their ”one-time” shares. After
each player Pi has received the ”one-time” shares from all the other active play-
ers, he is required to open d(i), which provides a unique way for the participants
to jointly identify the valid iteration. If d mod m0
= 0, then the current iteration
is invalid and all the players are asked to restart a new iteration; otherwise, it is
valid, the secret s is recovered and the protocol terminates immediately after this
iteration. In this way, no player can identify the valid iteration before he opens
his ”one-time” share. Furthermore, each player can identify the valid iteration
only after it has occurred, that is, once a player learns that the current iteration
is valid, each player has already got the real secret. Due to this, we do not need
simultaneous channels. Our protocol is efficient in that the round complexity
and computation complexity are both polynomial (in the security parameter k).
It induces a (t−1)-resilient computational strict Nash equilibrium that is stable
with respect to trembles. However, our protocol relies on the assumption that
no player knows auxiliary information about the secret s, which has been proved
to be inherent in the non-simultaneous channels model [2].

1.3 Comparison to Fuchsbauer et al.’s Scheme

The protocol from [7] provides good point of comparison to ours since both
techniques have similar features:

– Both of them induce a (t−1)-resilient computational strict NE that is stable
with respect to trembles.

– Neither of them relies on simultaneous channels.
– Both of them assume that no player knows any auxiliary information about

the secret s. This property has been proved to be inherent to the non-
simultaneous channels model [2].

– Both protocols run in time polynomial in k (security parameter) and they
have almost the same round complexity.

262 Y. Zhang et al.

However, our protocol has smaller share size even when (t − 1)-resilience to
coalitions is required. Our shares are O(k) bits long while those from [7] need
(n− t+1) (2n|s|+O(k)) bits. The latter share length leads to practical efficiency
issues when n− t + 1 is large or when Fuchsbauer et al.’s technique is used as a
building block within more general rational MPC protocols.

2 Definitions and Background

2.1 Secret Sharing

A t-out-of-n SSS with secret domain S is a two-phase protocol (share distribu-
tion and secret reconstruction) executed by the dealer and a subgroup of the n
players P1, . . . , Pn respectively. During the share distribution phase, the dealer
chooses a secret s ∈ S and generates n shares s1, . . . , sn based on a security
parameter k. Each si is given to Pi secretly. In the secret reconstruction phase,
some collection of at least t players jointly reconstruct s from their shares with-
out any interaction with the dealer. We require the following two properties to
hold:

– Correctness. Any collection of t or more players can uniquely determine
the secret by putting their shares together honestly.

– Privacy. Any collection of fewer than t players can not recover the secret s.

In this paper, the security will be guaranteed under some computational assump-
tions related to the discrete logarithm problem and RSA which will be specified
in Sect. 3.3. Thus, the security of our rational SSS will be computational.

2.2 Notions of Game-Theoretic Equilibria

As said in Sect. 1.1, in the rational model, each player is self-interested: he does
what is in his interest. To formalize rationality, each player Pi is associated to a
real-valued utility function Ui modeling the gain that Pi obtains when following
his many strategies. For more details, we refer the reader to [1].

We now present the game theoretic concepts our cryptographic construction
relies on. We are to design a rational SSS with the expectation that, when
rationally played, the secret is revealed to all the players participating in the
reconstruction. In the share distribution phase, all n players are silent and the
dealer is assumed to be honest. The reconstruction process is to be viewed as a
game amongst m ≥ t players. We denote σ = (σ1, . . . , σm) the strategy profile
of these players where σi is P ′

i s strategy for 1 ≤ i ≤ m. As usual, let σ−C denote
the strategy profile of all m players except the players in C and σC denote the
strategy profile constricted to the coalition C ⊆ {1, . . . , m}. Given a strategy
profile σ, it induces the utility value Ui(σ) for each player Pi expressing his
payoff when σ is played by the m players.

In the following, we denote the security parameter by k and it is assumed
that the n utility functions are polynomials in k. The definitions appearing in
this subsection originate from [7].

An Efficient Rational Secret Sharing Scheme 263

Definition 1. Let ε : N → [0,∞) be a function. We say ε is negligible if for
every positive polynomial p(·) there exists an integer Np(·) > 0 such that for all
k > Np(·), it holds that ε(k) < 1

p(k) . We say that ε is noticeable if there exists
a positive polynomial p(·) and an integer Mp(·) such that ε(k) > 1

p(k) for any
k > Mp(·).

Definition 2. A strategy σ induces an r-resilient computational NE if for
any coalition C of at most r players and for any probabilistic polynomial time
strategy profile σ′, it holds:

Ui(k, σ′
C , σ−C) ≤ Ui(k, σC , σ−C) + ε(k) for any i ∈ C,

where ε is a negligible function.

Remark 1. When r = 1, the definition of r-resilient computational NE coincides
with that of the computational NE.

We need to define what it means for two strategies to be equivalent. Although
we could refer the reader to [7] for the details, for completeness of our paper,
we recall the corresponding notions below. As said before, every player is to
be considered as a polynomial-time probabilistic Turning (PPT) machine (as
function of the security parameter k). We assume that m players participate in
the reconstruction phase. As often in MPC, security will be demonstrated by
simulating the views of the different participants [8].

Definition 3. Denote PC := {Pi|i ∈ C}, P−C := {Pi|i /∈ C} and the strategy
vector of the m players by σ. Define the random variable Viewσ

−C as follows:

Let Trans denote the messages sent by PC not including any message sent
by PC after they write to their output tapes. Viewσ

−C includes the informa-
tion given by the dealer to P−C , the random coins of P−C and the (partial)
transcript Trans.

Fix a strategy ρC and an algorithm T . Define the random variable ViewT,ρC

−C as
follows:

When the m players interact, PC follows ρC and P−C follows σ−C . Let Trans
denote the messages sent by PC . Algorithm T , given the entire view of PC ,
outputs an arbitrary truncation Trans′ of Trans (defining a cut-off point and
deleting any messages sent after that point). ViewT,ρC

−C includes the informa-
tion given by the dealer to P−C , the random coins of P−C , and the (partial)
transcript Trans′.

Strategy ρC yields equivalent play with respect to σ, denoted ρC ≈ σ, if there
exists a PPT algorithm T such that for all PPT distinguishers D:∣∣∣Prob[D(1k, ViewT,ρC

−C) = 1] − Prob[D(1k, Viewσ
−C) = 1]

∣∣∣ ≤ ε(k)

where ε(·) is a negligible function.

264 Y. Zhang et al.

Definition 4. A strategy σ is said to be an r-resilient computational strict
NE, if:

1. σ induces an r-resilient computational NE;
2. For any coalition C of at most r players and for any probabilistic polynomial

time strategy σ′
C with σ′

C
≈ σ, there is a positive polynomial p(·) such that for
any i ∈ C, it holds that Ui(k, σC , σ−C) ≥ Ui(k, σ′

C , σ−C)+ 1
p(k) for infinitely

many values of k, namely, Ui(k, σC , σ−C)−Ui(k, σ′
C , σ−C) is non-negligible.

Definition 5. For any coalition C, strategy ρC is δ-close to strategy σC if ρC

is as follows:

ρC : With probability 1 − δ, players in C play according to σC .
With probability δ, players in C follow an arbitrary (possibly correlated)
PPT strategy σ′

C (called the residual strategy of ρC).

Definition 6. σ induces an r-resilient computational NE that is stable
with respect to trembles if:

1. σ induces an r-resilient computational NE;
2. There is a noticeable function δ such that for any coalition C with |C| ≤ r,

and any vector of PPT strategies ρ−C that is δ-close to σ−C , any PPT
strategy ρC , there exists a PPT strategy σ′

C ≈ σ such that Ui(k, ρC , ρ−C) ≤
Ui(k, σ′

C , ρ−C) + ε(k), where ε(·) is negligible.

Remark 2. Intuitively, the strategy vector (σC , σ−C) is stable with respect to
trembles if σC remains a best response even if P−C plays any PPT strategies
other than σ−C with some small but noticeable probability δ.

2.3 Assumptions on the Utility Functions

Following most previous works on this topic, we assume the following properties
of the utility functions:

– each player Pi first prefers outcomes in which he outputs the real secret;
– each player Pi secondly prefers outcomes in which the fewest of the other

players output the real secret.

As in [7], the expected utility is also assumed to be a polynomial of the security
parameter k. We distinguish four cases as follows. For each i ∈ {1, . . . , n}, let
Ui(k) (respectively, U+

i (k)) be the minimal (respectively, maximal) payoff of Pi

when he outputs the correct secret and let U−
i (k) be his maximal payoff when

Pi does not output s. As usually assumed, we consider: U+
i (k) > Ui(k) > U−

i (k)
for all i ∈ {1, . . . , n}. As in [7], define

U r
i (k) :=

1
|S| · U

+
i (k) + (1 − 1

|S|) · U
−
i (k)

which is the expected utility of a player outputting a random guess for the
secret (assuming that the other players abort without any outputs, or with

An Efficient Rational Secret Sharing Scheme 265

wrong outputs). It is reasonable to assume that Ui(k) > U r
i (k), since otherwise,

players hardly have any incentive to execute the secret reconstruction phase at
all. Furthermore, it is still reasonable to assume that the difference between Ui(k)
and U r

i (k) is non-negligible for any 1 ≤ i ≤ n, that is, there exists a polynomial
p(·) such that for infinitely many k’s it holds that:

Ui(k) ≥ U r
i (k) +

1
p(k)

.

Note that, this assumption is not restrictive in that without it, it is hard to
guarantee the players have enough motivation to execute the share reconstruc-
tion phase rather than guess the secret locally, especially in the computational
setting, where no player cares about negligible difference in utilities. In this pa-
per, we consider coalitions of at most t − 1 players. We assume for simplicity
that during the whole process of share reconstruction phase, there is at most
one coalition which contains a subset of active players and all the players in this
coalition share all information they jointly have. Thus, all the players in some
coalition are assumed to share a single output.

3 Our Protocol for t-out-of-n Rational Secret Sharing

Our protocol contains two phases: share distribution and secret reconstruction.
The first phase is executed by the dealer only while the second phase is de-
signed for all the active players who want to jointly recover the secret without
the dealer. Our share distribution phase is similar to the revisited version of
the Asmuth-Bloom’s non-interactive verifiable SSS [11,3] except with minor but
necessary modifications for our needs. The dealer is available only in the initial
share distribution phase during which he is assumed to be honest. We assume
the existence of synchronous broadcast channels (but non-simultaneous) for all
participating players and the presence of private channels between any pair of
these players and the dealer.

As said in the previous section, all n players are assumed to be computation-
ally bounded. In the following, let k be a security parameter.

3.1 Initial Share Phase

This is the only phase where the dealer is active. His goal is to distribute s
over P := {P1, . . . , Pn} using the Asmuth-Bloom SSS with threshold t. As men-
tioned above, we adopt the modified version of Asmuth-Bloom SSS proposed by
Kaya and Selçuk [11] and make further modifications (mainly on the parameters
settings) to meet our needs. This initial share phase has two stages.

Remark 3. The value g is the unique integer in ZQ satisfying gi ≡ g mod pi, for
all 1 ≤ i ≤ n. Besides, the order of g in Z∗

QN is at least
∏n

j=1 mj and for each
1 ≤ i ≤ n, we have:

E(y) mod pi = (gy mod QN) mod pi = gy mod pi = gyi

i mod pi

266 Y. Zhang et al.

Hence, during the whole protocol, we use (E(y) mod pi) as a commitment to
yi, which is perfect binding but is computational hiding. That is, the committer
cannot commit himself to two values yi and y′

i by the same commitment value
and, under the assumption that computing discrete logarithm is intractable in
Zpi , no PPT player learns yi from E(y) mod pi except with negligible probability
in k. This allows players to check the consistency of the received data. Since
the dealer is assumed to be honest, E(y) is only used to detect the players’
possible malicious behavior during the reconstruction process described in the
next section.

Initial Share Phase
1. Parameters Setup
To share a secret s, the dealer chooses m0(> s) and publishes it. This value m0

should also be lower bounded by a value depending on players’ utilities and discussed
later in this paper.

1. The dealer chooses and publishes a set of pairwise coprime integers m1, . . . , mn

of bitlength k such that the following requirements are satisfied:
(a) m0 < m1 < . . . < mn ;
(b)

∏t
i=1 mi > (n + 1)m2

0

∏t−1
i=1 mn−i+1;

(c) pj = 2mj + 1 is prime for any 1 ≤ j ≤ n.
2. For any 1 ≤ i ≤ n, let Gi be a subgroup of Z∗

pi
of order mi and denote gi a

generator of Gi. Let Q =
∏n

i=1 pi and g = (
∑n

i=1 gi ·Q′
i · Q

pi
) mod Q and, where

Q′
i is the inverse of Q

pi
in Z∗

pi
, for 1 ≤ i ≤ n. The dealer publishes g.

3. The dealer chooses and publishes an RSA modulus N of length at least k whose
factorization is unknown to any of the n players [15].

2. Share Distribution
To share a secret s ∈ Zm0 among a group of n players {P1, . . . , Pn}, the dealer
executes the following steps.

1. He sets M :=
⌊∏t

i=1 mi

n+1

⌋
. He computes y = s+A0 ·m0 for some positive integer

A0 generated randomly subject to the condition that 0 < y < M , calculates
yi = y mod mi and finally sends the share yi to player Pi secretly, for 1 ≤ i ≤ n.

2. He computes E(y) := gy mod QN and broadcasts E(y).

3.2 Secret Reconstruction Phase

We assume that m(≥ t) players participate in the secret reconstruction phase.
For ease of description, we can assume without loss of generality that those play-
ers are P1, . . . , Pm. The reconstruction phase proceeds in a series of iterations,
each of which consists of multiple communication rounds among those players.
First, we propose two subprotocols to be called upon within the reconstruction
phase.

3.2.1 Share Update Phase. This is done by the players participating in
the secret reconstruction process, namely, by P1, . . . , Pm. In this phase, each
participating Pi (sorted in index increasing order) plays a similar role to the

An Efficient Rational Secret Sharing Scheme 267

dealer’s (initial share phase) to share a random element d(i) ∈ Zm0 and to
finally get his ”one-time” share for (s + d(1) + · · · + d(m)) mod m0.

In [11], in order to prevent the dealer from distributing inconsistent shares,
the range-proof technique proposed from [5] is used to allow the dealer to con-
vince each player that some committed integer lies in a particular interval. This
range proof is statistically zero-knowledge in the random-oracle model. Besides,
provided that computing discrete logarithm problems is intractable, a cheating
dealer can only succeed with negligible probability (in k). We refer to [11,5] for
further details.

Here, in order to prevent a player Pi from distributing inconsistent shares for
his random chosen d(i), we need to apply this range-proof technique. Throughout
this section, we will use RngPrf(E(y), M) to denote the Cao-Liu’s non-interactive
range proof that a secret integer y committed with E(y) is in the interval [0, M)
[5]. In the following share update phase, we will use RngPrf(E(y), M) as a black
box and we refer to [5] for additional information.

Share Update Phase

1. Each Pi selects a random element d(i) ∈ Zm0 uniformly and independently. He
computes y(i) = Ai · m0 + d(i), where Ai is a positive integer chosen randomly
conditioned on 0 < y(i) < M . Then, he computes y

(i)
j = y(i) mod mj along

with E(y(i)) := gy(i)
mod QN , and he finally sends y

(i)
j to player Pj secretly

through a secure channel for each j �= i. In addition, Pi broadcasts E(y(i)) and
RngPrf(E(y(i)), M).

2. If player Pi only receives partial messages (hereinafter, partial messages in-
cluding the case of no message at all), then he outputs a random guess
of the secret and terminates the protocol. Otherwise, he checks whether

g
y
(j)
i

i ≡ E(y(j)) mod pi and he checks the correctness of RngPrf(E(yj), M)
for 1 ≤ j �= i ≤ m. If all the checks are successful, then Pi computes
di =

∑m
l=1 y

(l)
i mod mi. Otherwise, he outputs a random guess of the secret

and stops the protocol.
Let d := d(1) + · · ·+ d(m). Note that {d1, . . . , dm} are the shares for d mod m0.

3. Each Pi computes ỹi := (yi +di) mod mi as his ”one-time” share for the current
iteration. The commitment for ỹi is E(ỹi) := E(y)

∏m
l=1 E(y(l)) mod pi, which

can be locally computed by each player.

Proposition 1. Let Y := y + y(1) + . . . + y(m) = (s + d) + (A0 + · · · + Am) ·
m0. Then after the share update phase, {ỹ1, . . . , ỹm} are valid shares for (s +
d) mod m0 as long as all the players follow the protocol honestly. In addition,
all the commitments are correctly checked.

This proposition means that every subset of at least t players uniquely deter-
mines (s + d) mod m0 (Correctness), while for any subset of t− 1 players, every
candidate for s or for each d(i) is (approximately) equally likely, and so each
candidate for each (s + d) mod m0 is (approximately) equally likely (Privacy).

Proposition 2 ([11]). During the share update phase, any player Pi can not
distribute inconsistent shares for d(i) without being detected except with probabil-
ity negligible in k. In other words, if all checks are successful, then all the shares

268 Y. Zhang et al.

y
(i)
1 , . . . , y

(i)
m are residues of some integer less than M except with negligible prob-

ability which is introduced by the error probability of RngPrf.

Remark 4. Let T := y(1) + · · ·+ y(m). Since the ”one-time” shares {ỹ1, . . . , ỹm}
are the shares for (s + d) mod m0, they are the shares for s if and only if d ≡
0 mod m0. This is equivalent to T ≡ 0 mod m0. In this sense, the iteration in
which T ≡ 0 mod m0 is called a valid iteration. It is called an invalid iteration
otherwise.

Remark 5. The goals of the Share Update Phase are twofold. On one hand, it
makes our protocol proceed with several iterations: all except the last one are
invalid iterations, which are designed to catch possible cheaters. During the valid
iteration, all active players get the real secret. In addition, no one will know in
advance whether the current iteration is going to be the last iteration. On the
other hand, since during each iteration all the ”one-time” shares are revealed, if
the current round is invalid, the players should proceed to the next round with
totally new shares, which are provided by the share updating phase. Hence,
”one-time”shares are shares used only once (i.e. in the current iteration) and
they become meaningless in later iterations.

3.2.2 Combiner Phase. In this phase, each player Pi uses the reconstruction
algorithm from the Asmuth-Bloom SSS to recover (s + d) mod m0.

Combiner Phase
1. Let U be a collection of t shares that player Pi chooses in the reconstruction

phase and let V be the corresponding collection of the indices of the players to
whom those t shares belong. Let MV denote

∏
j∈V mj .

2. Let MV −{j} denote
∏

�∈V,� �=j m� and let M ′
V,j be the multiplicative inverse of

MV −{j} in Z∗
mj

. Player Pi computes Y (i) :=
∑

j∈V ỹj ·M ′
V,j ·MV −{j} mod MV .

Finally, let S(i) := Y (i) mod m0.

3.2.3 Overview of the Reconstruction Phase. In order for the reader to
get an easier understanding of the reconstruction phase, we first give its general
view. The full description is in Sect. 3.2.4.

The reconstruction phase proceeds with a sequence of invalid/valid iterations
such that the last iteration is valid and each iteration has two stages. During the
first stage, players first interact to get their ”one-time” shares for (s+d) mod m0,
where d = d(1) + · · · + d(m) and each d(i) is chosen randomly by Pi. During
the second stage, each player Pi is required to open the value y(i) he chose in
the first stage. Thus, since d(i) = y(i) mod m0, the players can jointly identify
the status of the current iteration: if d mod m0
= 0, then the current iteration
is invalid and all the players are asked to restart a new iteration; otherwise, it
is valid, the secret s is recovered and the protocol terminates immediately after
this iteration.

An Efficient Rational Secret Sharing Scheme 269

The iterations have the following properties:

– invalid iteration: no information about s is revealed since all the revealed
shares are the shares for (s+d) mod m0. At the beginning of the subsequent
iteration, all the shares are updated which guarantees that the ”one-time”
shares revealed in the current iteration are useless for the next iteration.

– valid iteration: every player recovers s on the assumption that every partic-
ipant follows the protocol (which will be demonstrated to be the case since
they are rational).

The key in this process is the fact that nobody knows before the opening of
the ”one-time” shares whether the current iteration will be valid. Furthermore,
when a given player realizes that the valid iteration occurs, each other player can
compute the secret as well. That is why we do not need simultaneous channels.

3.2.4 Secret Reconstruction Phase. We assume that m(≥ t) players par-
ticipate in the secret reconstruction. As before, we can assume that they are
P1, . . . , Pm. Our reconstruction protocol proceeds with multiple iterations, each
of which contains two stages for each of these m players. It is assumed with-
out lost of generality that in each step, each Pi executes his strategy in index
increasing order. For each of these m participants Pi, his strategy σi is as follows.

Secret Reconstruction Phase
Stage 1

1. Player Pi executes the share update phase to get his ”one-time” share ỹi for
the value (s + d) mod m0, where d = d(1) + · · · + d(m) and each d(i) is chosen
independently and uniformly at random by Pi .

2. Player Pi broadcasts his ”one-time” share ỹi obtained at the previous step. If

Pi does not receive m shares (including his own), or if he detects that g
ỹj

j mod
pj �= E(ỹj) mod pj for some j, he outputs a random guess of the secret and
aborts the protocol abruptly.

3. Otherwise, Pi chooses randomly t data from {ỹ1, . . . , ỹm} and executes the
Combiner Phase.

The second stage is used to recover T so that player Pi can identify the status
(valid/invalid) of the current round since {ỹ1, · · · , ỹm} are the shares for s if and
only if T ≡ 0 mod m0.

Stage 2

1. Player Pi broadcasts y(i). If he does not receive m messages (including his own),

or if he detects that gy(j)
mod QN �= E(y(j)) for some j, Pi outputs S(i) he

obtains in the Combiner Phase and aborts the whole protocol.
2. Otherwise, Pi computes T = y(1)+. . .+y(m). If T ≡ 0 mod m0, then he outputs

S(i) and stops the whole protocol; Otherwise, Pi goes back to Stage 1 and starts
another iteration.

270 Y. Zhang et al.

3.3 Security of our Rational SSS

The reconstruction phase is a game amongst the m active players. The strategy
profile is denoted σ = (σ1, . . . , σm) where σi is Pi’s strategy described in the
previous section. Let U∗

i (k) := 1
m0

· U+
i (k) + (1 − 1

m0
) · U r

i (k), 1 ≤ i ≤ n. Based
on the security requirements of [5], we make the following assumption:

A: The discrete logarithm problem over finite fields is intractable.
The RSA modulus N is hard to factor; the resulting RSA encryption
scheme and Schnorr signature is secure.

Theorem 1. Assuming that A holds. σ induces a (t−1)-resilient computational
NE as long as Ui(k) − U∗

i (k) is non-negligible, for 1 ≤ i ≤ n.

Theorem 2. Assuming that A holds. σ induces a (t−1)-resilient computational
strict NE provided that Ui(k) − U∗

i (k) is non-negligible, for 1 ≤ i ≤ n.

Theorem 3. Assuming that A holds. σ induces a computational NE that is
stable with respect to trembles provided that Ui(k) − U∗

i (k) is non-negligible, for
1 ≤ i ≤ n.

Remark 6. The expected number of iterations of our protocol is m0. Note that
the requirements for m0 are that m0 >

2[U+
i (k)−Ur

i (k)]

Ui(k)−Ur
i (k) , for 1 ≤ i ≤ n. Since

all the utility functions are polynomial in k and Ui(k) − U r
i (k) is assumed to

be non-negligible, m0 can be chosen to be a prime less than some polynomial
in k. Since all the computations are based on modular arithmetic, they can be
executed in polynomial time. Besides, RngPrf can also be verified in polynomial
time. All these considerations imply that our protocol is efficient.

4 Conclusion

In this paper, we presented a new protocol for t-out-of-n rational secret sharing
based on the CRT in non-simultaneous channels. Our technique leads to a (t−1)-
resilient computational strict NE that is stable with respect to trembles while
having much smaller share size than the protocol proposed by Fuchsbauer et al.
[7].

Acknowlegments

The authors would like to thanks the reviewers for their suggestions to im-
prove the quality of this paper. Christophe Tartary’s work was funded by the
National Natural Science Foundation of China grants 61033001, 61061130540,
61073174 and 61050110147 (International Young Scientists program) as well
as the National Basic Research Program of China grants 2007CB807900 and
2007CB807901. Christophe Tartary also acknowledges support from the Danish
National Research Foundation and the National Natural Science Foundation of
China (under the grant 61061130540) for the Sino-Danish Center for the The-
ory of Interactive Computation (CTIC) within which part of this work was
performed. Huaxiong Wang’s work was supported by the Singapore National
Research Foundation under Research Grant NRF-CRP2-2007-03.

An Efficient Rational Secret Sharing Scheme 271

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: Robust mechanisms for rational secret sharing and multiparty computation.
In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC
2006), pp. 53–62. ACM Press, New York (2006)

2. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret
sharing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer,
Heidelberg (2009)

3. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transac-
tions on Information Theory IT-29(2), 208–210 (1983)

4. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS 1979 National Com-
puter Conference, pp. 313–317. AFIPS Press (June 1979)

5. Cao, Z., Liu, L.: Boudot’s range-bounded commitment scheme revisited. In: Qing,
S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 230–238. Springer,
Heidelberg (2007)

6. Dov Gordon, S., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg
(2006)

7. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 419–436. Springer, Heidelberg (2010)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: 17th Annual ACM Symposium on Theory of Computing (STOC
1985), pp. 291–304. ACM, New York (1985)

9. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation:
Extended abstract. In: 36th Annual ACM Symposium on Theory of Computing
(STOC 2004), pp. 623–632. ACM Press, New York (2004)

10. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mech-
anism design. In: 46th Annual Symposium on the Foundations of Computer Science
(FOCS 2005), pp. 585–594. IEEE Computer Society, Los Alamitos (2005)

11. Kaya, K., Selçuk, A.A.: Secret sharing extensions based on the Chi-
nese reminder theorem. Cryptology ePrint Archive, Report 2010/096 (2010),
http://eprint.iacr.org/2010/096

12. Kol, G., Naor, M.: Games for exchanging information. In: 40th Annual ACM Sym-
posium on Theory of Computing (STOC 2008), pp. 423–432. ACM Press, New
York (2008)

13. Micali, S., shelat, a.: Purely rational secret sharing (Extended abstract). In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 54–71. Springer, Heidelberg (2009)

14. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minor-
ity and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 36–53. Springer, Heidelberg (2009)

15. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

16. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

http://eprint.iacr.org/2010/096

272 Y. Zhang et al.

A Proof of Theorem 1

By Proposition 1, our protocol is a valid secret sharing scheme. All the active
players will be expected to recover the real secret in 1

Pr[d≡0 mod m0]
= m0 itera-

tions, as long as they stick to σ.
Now, we prove that σ induces a (t− 1)-resilient computational NE. Let C be

any coalition of size at most t − 1. Assume that all the players not in C stick
to their prescribed strategies. We focus on PPT deviations from some players in
C. There are several possible cases: (1) some player Pi in C deviates during the
share update phase; (2) some player Pi in C lies about his ”one-time” share or
only sends partial messages in Stage 1 - Step 2 ; (3) some player Pi in C either
opens a fake y(i) or broadcasts nothing in Stage 2.

Suppose (1) happens. There are two possible deviations. Case 1. Pi only
sends (or broadcasts) partial messages in Stage 2 of share update phase. How-
ever, this will be detected and cause the protocol to terminate. In this case,
the only profitable thing he can do is to output a random guess of the secret,
which will earn him at most U r

i (k). Obviously, it is a worse outcome to Pi,
since U r

i (k) < Ui(k). Hence, Pi will send all data, fake or real, as required.
Case 2. Pi distributes inconsistent shares for his randomly chosen d(i) to some
player Pj not in C. Under assumption A, no cheating Pi can convince any
other Pj to accept RngPrf(E(y(i), M) except with negligible probability ε′(k).
Once RngPrf(E(y(i), M) is rejected, which happens with probability 1 − ε′(k),
the protocol terminates immediately and the best that player Pi can do is to
output a random guess of the secret. Thus, the expected utility Pi can get by
distributing inconsistent shares is at most ε′(k) · U+

i (k) + (1 − ε′(k)) · U r
i (k) =

ε′(k)·(U+
i (k)−U r

i (k))+U r
i (k) < ε(k)+Ui(k), where ε(k) = ε′(k) (U+

i (k)−U r
i (k))

is a negligible function in k, since we assumed that U1, . . . , Un were polynomials
in k. That is, using this type of deviation, Pi can only increase his payoff by a
negligible amount (if at all). Thus, given our computational setting, no rational
player Pi is to deviate by distributing inconsistent shares.

Now, we consider the possible deviations in Step 2 of Stage 1. There are
two possible cases. Case 1. Pi does not broadcast anything at all. Case 2.
Pi cheats about his ”one-time” share. However, either of these deviations will
be detected and cause the protocol to terminate. Hence, we do not distinguish
between these two cases. If (d mod m0) = 0 (i.e., the current iteration is valid
which happens with probability 1

m0
), then all the players in C will output the

real secret and hence Pi will get at most U+
i (k). If (d mod m0)
= 0 (i.e., the

current iteration is invalid which happens with probability 1 − 1
m0

), then the
best thing Pi can do is to output a random guess of the secret earning at most
U r

i (k). Thus, the expected payoff of Pi with this type of deviation is at most
1

m0
·U+

i (k) + (1− 1
m0

) ·U r
i (k) = U∗

i (k). It is less than Ui(k) by our assumption.
Hence, as a rational player, Pi will not deviate in Step 2 of Stage 1.

Finally, we study what happens if some player in C does not broadcast any-
thing at all or broadcast a fake value in Stage 2. Either deviation will be detected
and cause the protocol to terminate abruptly. Since we assume players execute

An Efficient Rational Secret Sharing Scheme 273

every step of the protocol in ascending order, we can assume without loss of
generality that C = {Pm−t+2, . . . , Pm}. Since all the players in C share their
information, for any m− t+2 ≤ i ≤ m, after receives the message from the play-
ers not in C Pi can first compute T := y(1) + · · · + y(m) to identify whether the
current round is valid or not, then determines what to do in this stage. Note that
we have proved that, in the computational and rational setting, any player will
execute the reconstruction phase honestly up to the end of Stage 1. Therefore,
if the current iteration is valid, each S(j) obtained by Pj in the Combiner Phase
is indeed the real secret. In this case, regardless of what Pi will do, each player
will output the real secret, which will earn Ui(k) to Pi. On the other hand, if
the current round is invalid, no one has recovered the real secret yet and either
type of deviations will cause the protocol to terminate abruptly resulting in a
payoff at most U r

i (k) to Pi. Hence, Pi is never better off by this deviations.

B Proof of Theorem 2

Suppose C is any subset of {1, . . . , m} of size at most t−1. Let PC := {Pi|i ∈ C}
and P−C := {Pi|i ∈ {1, . . . , m} − C}. Since all the players in PC acts in unison,
we can regard PC as a whole. By Theorem 1, it is sufficient to prove that for
any PPT strategy ρC
≈ σ, there is a positive polynomial p(·) such that for any
i ∈ C, Ui(k, σ) ≥ Ui(k, ρC , σ−C) + 1

p(k) for infinitely many values of k, that is,
Ui(k, σ) − Ui(k, ρC , σ−C) is positive and non-negligible.

Let Deviate be the event that PC deviates from σC before he can compute his
output, that is, before entering the Stage 2 of the valid iteration. Since ρC
≈ σ,
Prob[Deviate] is non-negligible by definition. Now, consider the interaction of ρC

with σ−C . Let Valid be the event that PC deviates from σC before entering Stage
2 during the valid iteration and let Invalid be the event that PC deviates from σC

during an invalid iteration. Let Caught be the event that PC is caught cheating.
Then, for each i ∈ C, we have:

Ui(k, ρC , σ−C)

≤ U
+
i (k) · Prob[Valid] + U

+
i (k) · Prob[Invalid ∧ Caught]

+U
r
i (k) · Prob[Invalid ∧ Caught] + Ui(k) · Prob[Deviate]

= U
+
i (k) · (Prob[Valid|Deviate] + Prob[Caught|Invalid] · Prob[Invalid|Deviate]) · Prob[Deviate]

+U
r
i (k) · Prob[Caught|Invalid] · Prob[Invalid|Deviate] · Prob[Deviate] + (1− Prob[Deviate])Ui(k)

= U
+
i (k) ·

[
1

m0
+ ε(k)(1−

1

m0
)

]
· Prob[Deviate]

+U
r
i (k) · (1− ε(k)) · (1−

1

m0
) · Prob[Deviate] + Ui(k)− Ui(k) · Prob[Deviate]

= Ui(k) + (U∗
i (k)− Ui(k)) · Prob[Deviate] + η(k)

where η(k) = ε(k) · (1 − 1
m0

) · (U+
i (k) − U r

i (k)) · Prob[Deviate] is negligible. It
follows

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k) − U∗
i (k)) · Prob[Deviate] − η(k).

274 Y. Zhang et al.

Since both Ui(k) − U∗
i (k) and Prob[Deviate] are positive and non-negligible,

Ui(k, σ) − Ui(k, ρC , σ−C) is positive and non-negligible, which completes this
proof.

Remark 7. In this proof, we actually show that, for any PPT strategy ρC , we
have:

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k) − U∗
i (k)) · Prob[Deviate] − η(k)

where η(·) is a negligible function.

C Proof of Theorem 3

This proof is based on [7]. Let δ be a parameter which we will specify at the end
of the proof. Note that δ may depend on k. Since we assumed players execute
every step of the protocol in an index increasing order, we can assume without
loss of generality that C = {m−t+2, . . . , m}. It is sufficient to show that for any
i ∈ C, any vector of PPT strategies ρ−C that is δ-close to σ−C , and any PPT
strategy ρC , there exists a PPT strategy σ′

C ≈ σ such that Ui(k, ρC , ρ−C) ≤
Ui(k, σ′

C , ρ−C) + ε(k), where ε(·) is negligible. Let PC = {Pi|i ∈ C} and P−C =
{Pi|i ∈ ({1, . . . , m} − C)}. First, we construct a strategy σ′

C for the players in
PC as follows.

1. Set Detect:=0.
2. In each iteration:

(a) Receive the messages from P−C in each possible step. If PC detects
that some player Pj in P−C has deviated from σj , set Detect:= 1.

(b) If Detect= 1, execute the remaining steps according to ρC ; otherwise
σC .

3. If Detect= 0, determine the output according to σC , otherwise, output
whatever ρC outputs.

Observe that when σ′
C interacts with σ−C , Detect is never set to be 1. Hence

σ′
C ≈ σ and Ui(k, σ′

C , σ−C) = Ui(k, σC , σ−C) = Ui(k) for any i ∈ C. Now, we
want to show that Ui(k, ρC , ρ−C) ≤ Ui(k, σ′

C , ρ−C) + η(k) for any i ∈ C, where
η(·) is negligible. Let ρ̃−C denote the residual strategy of ρ−C . In an interaction
where PC follows strategy ρC , let Detected be the event that PC is detected
deviating from σC before entering stage 2 of the valid iteration while no player
in P−C is detected cheating so far. Also, let ProbDetected(α) be the probability of
Detected when P−C follows strategy α. Since no player in P−C will be detected
cheating when P−C execute σ−C , ProbDetected(σ−C) equals the probability of PC

being detected deviating from σC before entering Stage 2 of the valid iteration.

Claim 1. Prob[Deviate]=ProbDetected(σ−C) + ε(k) ·Prob[Deviate], for some neg-
ligible function ε.

An Efficient Rational Secret Sharing Scheme 275

Claim 2. For any i ∈ C,

Ui(k, ρC , ρ̃−C) − Ui(k, σ′
C , ρ̃−C) ≤ ProbDetected(ρ̃−C) · (U+

i (k) − Ur
i (k)) + ε(k),

where ε(·) is negligible.

Claim 3. ProbDetected(ρ̃−C) ≤ ProbDetected(σ−C) + ε(k) for some ε(·) negligible.

By Remark 7, we know that for any PPT strategy ρC ,

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k) − U∗
i (k)) · Prob[Deviate] − η(k).

where η(·) is a negligible function. Now, we get:

Ui(k, ρC , ρ−C) = (1 − δ) · Ui(k, ρC , σ−C) + δ · Ui(k, ρC , ρ̃−C)

≤ (1 − δ) · [Ui(k) + (U∗
i (k) − Ui(k)) · Prob[Deviate] + η(k)]

+δ · Ui(k, ρC , ρ̃−C)

Also

Ui(k, σ′
C , ρ−C) = (1 − δ) · Ui(k, σ′

C , σ−C) + δ · Ui(k, σ′
C , ρ̃−C)

= (1 − δ) · Ui(k) + δ · Ui(k, σ′
C , ρ̃−C)

It follows:

Ui(k, ρC , ρ−C)− Ui(k, σ
′
C , ρ−C)

≤ (1− δ) · (U∗
i (k)− Ui(k)) · Prob[Deviate] + δ · [Ui(k, ρi, ρ̃−C)− Ui(k, σ

′
C , ρ̃−C] + η(k)

by Claim 2
≤ (1− δ) · (U∗

i (k)− Ui(k)) · Prob[Deviate]

+δ · ProbDetected(ρ̃−C) · (U
+
i (k)− U

r
i (k)) + δ · ε(k) + η(k)

by Claim 1
= (1− δ) · (U∗

i (k)− Ui(k)) · (ProbDetected(σ−C) + ε
′(k) · Prob[Deviate])

+δ · (U+
i (k)− U

r
i (k)) · ProbDetected(ρ̃−C) + δ · ε(k) + η(k)

by Claim 3
≤ (1− δ) · (U∗

i (k)− Ui(k)) · ProbDetected(ρ̃−C)

+δ · (U+
i (k)− U

r
i (k)) · ProbDetected(ρ̃−C) + η

′(k)

where η′(·) is some negligible function. Hence, there exists δ > 0 (may depend
on k) such that the above expression is negligible in k for each i ∈ C.

DMIPS - Defensive Mechanism against IP

Spoofing

Shashank Lagishetty, Pruthvi Sabbu, and Kannan Srinathan

International Institute of Information and Technology, Hyderabad, India
{shashankl,pruthvireddy.sabbu}@research.iiit.ac.in,

srinathan@iiit.ac.in

Abstract. The usage of internet has increased in all fields of the globe
and its size is increasing at a high rate. The network providers are not
able to afford enough resources like computation power and bandwidth
which are needed to maintain their quality of service. This inability is
exploited by the attackers in the form of Denial of Service attacks (DoS)
and Distributed Denial of Service attacks (DDoS). The systems trying to
mitigate DoS attacks should focus on the technique called IP spoofing. IP
Spoofing refers to the creation of IP packets with forged source address.
IP spoofing aids the DoS attackers in maintaining their anonymity. IP
spoofing is beneficial when the systems use source address for authenti-
cation of the packets. Previously, an anti-spoofing method called HCF
(Hop Count Filtering) was proposed which could effectively filter the
spoofed packets. The HCF works on the basis that the attacker can-
not falsify the Hop count (HC), the number of hops an IP packet takes
to reach the destination. This HC value can be inferred from the TTL
(Time To Live) field in the IP packet. However, the working of HCF has
the following problems: 1) Multiple path possibility is ignored. 2) The
method of building the HC tables must be more secure. 3) Lack of good
renew procedure which can detect network changes. In this paper, we
propose a 2 level filtering scheme called DMIPS, based on HCF. DMIPS
is secure, resolves the multiple path problem and can filter the spoofed
packets effectively. The present scheme can detect the changes in the
network and can update the HC values. DMIPS improve the quality of
service of the network by minimizing the number of false positives. The
network under discussion is of the type server and clients and the server
is the point of attack.

Keywords: anonymity, hop count, ip spoofing, network security.

1 Introduction

The internet has become an integral part of everyday life. Many types of pub-
lic services, social networking and bank transactions are running online. For
most of the times, the information transfer in the internet has server and client
architecture. Thus, the presence and efficient usage of the servers is of utmost
importance. Recently, social networking websites like Twitter and Facebook were
brought down by attackers using DDoS attacks [19,20]. The attackers are using

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 276–291, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

DMIPS - Defensive Mechanism against IP Spoofing 277

DoS attacks, more than any other tool to bring down the systems. The unique-
ness of DoS or DDoS attack is that it does not involve any information theft
or data modification. So, the administrators perceive it as a less of a threat.
However it can cause huge losses in terms of reliability and confidentiality from
their customers.

The DoS attack is made possible by the usage of techniques like IP spoofing
which enables hiding the attacker’s source location and impersonating other
legitimate hosts. When a packet reaches a server, the server checks whether
the source address present in the packet is legitimate for its services. If yes,
it processes the packet otherwise drops it. Due to the advent of IP spoofing,
attackers are able to impersonate other users and are getting their things done.
The attackers are also successful in flooding the resources without being caught.
We could counter attack them by efficient filtering techniques. We propose one
such solution in this paper. We utilize the information contained in the IP header
for filtering the spoofed packets. Our scheme contains 2 levels of filtering, one at
the Border Gateway Routers (BGRs) inside the autonomous system (AS) and
the other at the server. Although, an attacker can forge any field in the IP header,
he cannot falsify the number of hops an IP packet takes to reach its destination.
It is solely determined by the Internet routing infrastructure. The hop-count
information is indirectly reflected in the TTL field of the IP header, since each
intermediate router decrements the TTL value by one before forwarding it to
the next hop. The Hop-count heuristic is used for filtering inside the AS. To
maintain secure communication outside the AS, we ensure the truthfulness of
the advertisements broadcast by various AS during set-up and then filter the
packets based on the tags added into the packets by the BGR of source AS.

In the following sections, we describe our scheme discussing various issues
followed inside the AS and outside the AS separately. Section 2 deals with the
related work, 3.1 and 3.2 deals with set-up and working phase in inside the
AS,outside the AS respectively. Section 4 explores the ways in which the scheme
can be compromised and how good is our scheme. We evaluate our scheme in
terms of CPU usage and accuracy in section 5 and finally end with the conclusion
in section 6.

2 Related Work

IP spoofing has annoyed the internet for many years and is still prevalent today
[6]. It is an important problem to solve. In [6], the authors discussed the current
state of IP spoofing and surveyed various defense schemes. Several schemes have
been proposed to mitigate this IP spoofing problem. They can be categorized
into one of the following types. 1) Traceback schemes. 2) Schemes which filter
in the route. 3) Schemes which filter at the destination.

Traceback schemes are used to trace the real source of the malicious packets
when the attack happens. This is useful in identifying the attacker and stopping
the attack. Traceback can be done in multiple ways. In schemes such as [1,2,12]
the routers add information about the path into the packets. In [21], the routers

278 S. Lagishetty, P. Sabbu, and K. Srinathan

send ICMP messages to the destinations of the packets. The other possibility
of tracing the attackers is to deposit the digests of the packets at the routers,
[11,13] are of this type. The recent DoS or DDoS attacks have originated from
the hosts which are compromised by the attackers. So, the traceback strategy
would lead to bots instead of the real attackers. The traceback schemes do not
work well against spoofing.

Filtering in the route, the second category of anti-spoofing methods is more
effective. Ingress filtering [3,7] and Unicast Reverse Path Forwarding (uRPF)
[18] fall into this category. Ingress filtering works efficiently only when it is de-
ployed on a large scale. Hence stepwise deployment is difficult. The deployment
of ingress/egress filtering inflicts significant costs on the ISP implementing it,
without being assured significant benefit or protection. Thus the incentive for
an ISP to deploy these mechanisms is relatively low. uRPF is based on the idea
that a packet destined to a given AS would always traverse a specific route. It
does not work when asymmetry routes are present. uRPF also does not support
stepwise deployment.

Probabilistic Packet Marking (PPM) [10], Deterministic Packet Marking
(DPM) [4], Pi [16], Hop Count Filtering (HCF) [8] and Spoofing Prevention
Method (SPM) [5] are the important schemes which do filter at the destination.
In PPM, every router marks the packet with partial information. Each router
marks their IP address onto the packet with the probability of P along the way
the packet is traversed. PPM has high computation overhead and is not effective.
DPM unlike PPM marks all the incoming packets at the ingress router interface.
The router sends the Incoming interface address in two packets, each containing
16 bits of that address. When marked packets arrive at end host, end host will
extract the both halves and check if the match of ingress address and the source
address is same. This method has 50% false positive rate. Path Identifier (Pi)
proposed a packet marking algorithm to mark each packet with the value of the
packet’s TTL modulo 16/n before the packet is forwarded (n can be any positive
integer less than 16). Pi works well under the network where all routers deploy
the Pi marking scheme. Unfortunately, it is rather impossible to have all routers
in AS’s from different ISP to deploy Pi. StackPi improved Pi’s performance by
proposing two new marking schemes - Stack-based marking and Write-ahead
marking [17]. This Write-ahead marking increases the performance of StackPi
against legacy routers. In SPM, a packet is tagged with a key at the border of the
source AS, and the key is verified and removed at the border of the destination
AS. The problem with SPM is that the interactions between the AS can easily
become the target to DoS/DDoS attacks.

The authors of [6] recommended Hop count filtering defense over all other
schemes because of its effectiveness against different kinds of spoofing attacks.
HCF uses TTL value as a key for each (source, destination) pair. FLF4DoS [9]
and probabilistic HCF [14], are based on HCF but uses fuzzy logic and proba-
bilistic approaches respectively. HCF is deployed at end host, hence it is easier
to deploy. But, HCF did not consider the case of multiple paths and the IP2HC
table creation is also not secure. Our scheme DMIPS is also based on HCF.

DMIPS - Defensive Mechanism against IP Spoofing 279

We include the multiple path possibility as packets take alternate paths dur-
ing congestion in the network caused by the DoS attacks. By implementing our
improved Hop Count Filtering technique (IHCF) as proposed in section 3.1 in-
side the AS, we filter most of the spoofed packets inside the AS itself. DMIPS
reduces the server overhead in filtering the packets, so that it can provide ser-
vices to legitimate traffic more effectively. Our IHCF method is secure and saves
bandwidth.

3 DMIPS Scheme

The present day internet consists of large ISPs which are Autonomous systems
(AS) owned by different administrative authorities. The autonomous systems
are free to choose an internal routing architecture and protocols. The routers
inside the AS communicate with each other directly and with the outside world,
they transmit the packets through border gateway routers (BGRs). DMIPS is a
two level filtering scheme and we follow different implementations for inside the
AS and outside the AS parts of the network.

3.1 Inside the AS

The improved Hop Count Filtering method (IHCF) is the filtering scheme for
inside of the AS and is implemented at the BGRs. We choose to implement the
scheme on gateway routers because the packets of an AS can reach other do-
mains only through gateway routers. The border gateway routers/ISPs of the AS
initiate IHCF scheme, which considers the case of multiple hop counts. The pre-
vious implementations of variants of Hop-Count filtering assumed a single path
between server and client. But, new communication approaches like Networks on
Chips (NoC) are focused on implementation of multiple path routing. Provision
of multiple paths is useful for load balancing and also when the possibility of
link failures is high.

In this context, we do not discuss on how the routers assign a particular path
to a packet. The multipath routing scheme improves path diversity, thereby
minimizing network congestion and traffic bottlenecks. When there is an attack,
traffic congestion is bound to happen. Since at each time the packets take the
shortest path, the links along this path are continuously used. Sometimes there
is no room for new packets. Hence, we consider the possibility of multiple paths
and multiple Hop counts. This will decrease the number of false positives in
hop count based schemes. False positives are those legitimate packets that are
incorrectly identified as spoofed. False negatives are spoofed packets that go
undetected by the HCF. Both should be minimized in order to achieve good
filtering accuracy.

There are two phases in the implementation of the networks, set-up phase and
working phase. The set up phase is for exchanging necessary information at the
time of implementation so as to decrease the overhead while running. Working
phase refers to the period where the scheme is implemented and is running.

280 S. Lagishetty, P. Sabbu, and K. Srinathan

Offline Set-Up phase

Calculating Hop counts: The HC for a packet is calculated from the TTL value
in its header. The HC is the difference between initial and final TTL values.
TTL is 8-bit field in the packet used to denote the time, the packet can stay in
the network.

Hop Count = Initial TTL value - Final TTL value

The receiver after extracting the final TTL value from the packet estimates
the initial TTL as there are only some selected initial TTL values. If the final
TTL value is 50 then the receiver can assume that the initial TTL value must be
64 since the difference between initial and final TTL values will not be more than
30 which is maximum number of hops between any two nodes in the network.
The initial TTL values for most used operating systems are shown in Table 1.
We assume that there are only finite operating systems and hence limited initial

Table 1. List of possible initial TTL values

Operating System Initial TTL values

Windows 95 32

Windows 98 128

Mac OS X 64

Windows XP, Vista 128

NetBSD 255

RedHat 9 64

HP - UX 30

TTL values and their number does not increase significantly in the future. Most
of the new operating systems are upgrades of already existing and they preserve
the initial TTL value. In our paper, we assume that the hosts do not change
their initial TTL value as they have no incentive to modify the default values.
But, an attacker can modify its initial TTL values according to his strategies.
Attackers intruding into the host system and changing its initial TTL value is
out of the scope of this paper.

Construction of IP2HCS tables: IP2HCS table is the mapping between IP ad-
dresses and the possible hop counts of the host to the BGR. Whenever the
BGR needs the possible HC values to a certain host it initiates RREQ (Route
request) packets with the destination address set to it. The BGRs send these
RREQ packets to its neighbouring routers in the same AS and these routers will
in turn forward it to their neighbours. This process repeats until the packets
reaches destination.

The host on receiving the request sends RREP (Route reply) packet with
route and hop count information. If the route discovery is successful, the BGR

DMIPS - Defensive Mechanism against IP Spoofing 281

gets the route reply packet listing the sequence of network hops through which
the packet can reach the target. The structure of RREQ and RREP packets are
shown in Fig 1 and Fig 2 respectively. The RREP packet traverses the same
path as RREQ packet but in reverse direction. The originator upon receiving
the RREP packet can calculate one of the multiple hop counts possible to that
node. As said already, calculating the accurate, secure hop counts is one of our
major concerns. Using these routing packets has some possible security concerns.

Fig. 1. Route Request packet

Fig. 2. Route Reply packet

Challenge 1: Some malicious node can impersonate BGR and initiate RREQ
message with the aim of polluting IP2HCS table.

Solution: We use Route request and Router reply packets to populate the
IP2HCS table. So, when the attacker initiates forged RREQ message, the re-
ply packets reach the attacker and not the BGR. This is because the route reply
packets retrace the same path as route request packets and in this way the at-
tacker cannot pollute the IP2HCS table in the BGR. Hence, DMIPS is secure
against IP2HCS table modification.

282 S. Lagishetty, P. Sabbu, and K. Srinathan

Challenge2: Some routers can misbehave in some cases in which the hop counts
in the packet before and after processing, by the router does not differ by 1.

Solution: Though compromising the router is difficult, it is possible to alter its
behavior. After receiving the route reply message, the BGR takes the HC value,
keeps it as the initial TTL value and sends a query to the host in the reverse
path. If the reply comes, then store this hop count in the table otherwise invoke
Trace() function as shown in Fig 3.

Fig. 3. Trace function

Using this above function, we can trace the adversary or spoiled router trying
to pollute the hop count table. The function returns the address of the misbe-
having node. If the function returns 1 then the received hop count is not altered
by the intermediate routers and is truthful. The other nodes cannot reply to the
BGR because we are querying in the same path. A very light weight query is
enough for this authentication.

The BGR can now populate its IP2HCS table with the received secure Hop
counts in the region indexed by its source address. The BGRs can store all the
possible HCs or the best K hop counts. Here, K is the security parameter and
each ISP can select its own value. The ISPs can select the best hop counts as
the hop counts of those paths which are reliable or having minimum number of
hops.

Working

1. Filtering: The filtering process is explained in Fig 4. After IP2HCS table
is created, the following algorithm is used to filter the incoming packets.
In addition to filtering, our scheme needs to check for link failures or route
changes also. To monitor these changes in the network, we use another table
called IP2WC.

2. IP2WC: The IP2WC table contains 3 fields, the source IP, wrong HC value
and the frequency. If we assume the absence of multiple attackers then we
can remove the separate wrong HC field. Whenever we receive a packet
which is assumed to be spoofed, the frequency indexed by its address and
hop count values is increased. Here the frequency refers to the number of
times, a packet with wrong hop count has been received from an IP address.

3. Renew procedure: We maintain IP2WC table to keep track of packets from
the hosts with wrong hop counts. It is a mapping from IP address to the

DMIPS - Defensive Mechanism against IP Spoofing 283

Fig. 4. Algorithm for filtering the spoofed packets

number of packets appearing to be coming from it with wrong HC. If any
frequency field in this table becomes sufficiently high, then we assume that
these packets are sent by the actual host. The change in the HC may be due
to some change in the AS network. So, the BGR re-initiates RREQ packet
for the node whose hop counts are conflicting. The basis of this assumption
is that the attacker is smart enough to use his resources effectively. He will
not waste his resources by continuously spoofing a single source even after
knowing that his packets will be filtered. Moreover, by spoofing a single host,
the efficiency of the DoS attacks is lost. In DoS/DDoS attacks, the spoofing is
done randomly. The administrators can easily monitor non-random spoofed
IP addresses.

To make our technique secure against these kinds of attacks (spoofing a
single host) on our defense mechanism, we add the following conditions. The
ISP administrators can define a threshold count (TC) and a threshold time
interval (TTI) so that update is done if and only if the following conditions
are satisfied. If the attacker sends the packets with same spoofed address
every time, our scheme initiate the Renew procedure but only after TTI
time. This decreases the efficiency of the attack. The value of TC depends
on the number of possible malicious users in the subnet, the administrators
have to keep this in mind while defining the threshold. Most of the updates
in the network are made when the network is idle.

– Any frequency field in IP2WC is more than TC and
– Time since last update is more than TTI.

3.2 Outside the AS

The IHCF method implemented at border routers filters most of the spoofed
packets and prevents them from going beyond their AS. But, some of the au-
tonomous systems may not implement our scheme. Though we provide services
for the hosts inside them, we must make sure that DoS or DDoS attacks does
not originate from these autonomous systems.

We provide services, with high priority to the autonomous systems which have
installed our scheme. The requests from non DMIPS installed ASes are processed
only after processing the high priority packets. Hence, the attackers would try to
spoof the hosts which are inside a DMIPS installed AS and the server needs to
filter these types of packets. For this we check the path taken by the packet from

284 S. Lagishetty, P. Sabbu, and K. Srinathan

the source host to the server. If the path taken by the packet is same as what
it should be then it is assumed to be legitimate. Hence, we need to authenticate
the source AS from where the packet is coming.

The Inter-AS routes in the present day internet are based on BGP. Each BGP
route is a chain of autonomous systems, leading to a particular set of destina-
tions. The autonomous system advertises chosen routes to its peer ASes. Upon
receiving its peers’ advertisements, an AS applies its internal policy to select the
best route to every destination and update its route database. To achieve confi-
dentiality on the network, the advertisements of the routers should be truthful
and the packets should maintain the path as advertised. The advertisements are
verified at set-up phase.

Offline Set-Up phase

Route selection policies are meaningful only if the advertisements on which they
are based are truthful. Autonomous systems may have different incentives to
misroute data traffic. There may be a substantial financial benefit for an AS to
advertise a fast route, which is more likely to be selected by its peers and provide
more revenue, but forward data packets using a different, cheaper path. Because
route selection depends on the assumption that the advertised route is the one
that will actually be used, such inconsistencies will affect the performance of the
Internet.

To verify the advertisements, we use a lightweight protocol that enables a
router, acting as the verifier, to verify that its data traffic follows a certain route
through the Internet. The verification protocol should be designed in such a way
that it (i) completely avoids cryptographic operations in the data path, and (ii)
does not require the prover to maintain any long-term flow specific state. The
internet routers potentially process billions of packets per second. Hence, the
method should deliver high performance verification.

The AS which sends the advertisements is called the prover and the other AS
which checks its authenticity is called a verifier. The set-up phase is executed
using a TLS (transport layer security) protected website which enables the prover
and the verifier to share a set of (2l+1) bit random secret tuples (s1,s2,b), where
l is the security parameter, s1,s2 are l bit secrets, and b is a random bit. We
emphasize that the prover and the verifier do not need to maintain a secure
channel outside of this setup. The TLS-protected website shares another 32 bit
key in addition to providing secrets so as to authenticate with the server. This 32
bit key is used for tagging during the working phase. Since, the key distribution
is done using TLS website a malicious AS cannot masquerade as another AS and
set up a secret. We use the techniques proposed in [15] to verify the truthfulness
of the advertisements. The authentication is done based on the shared secret
tuples. Since, the verifier is checking the authenticity of the advertisements sent
by the prover, both the parties need to be involved in the process.

The autonomous systems which install our DMIPS scheme get better services
than others in the attack scenarios. Hence, AS/ISPs would like to install this

DMIPS - Defensive Mechanism against IP Spoofing 285

scheme and so have to prove their authenticity even if it incurs overhead on
them. The secret tuples corresponding to other autonomous systems are stored
at the BGRs of the AS. This information can be added into the forwarding table
by inserting another column to enable faster access.

Working

When the network is running, we need to differentiate the spoofed packet from
legitimate based on the source AS from which it reaches the destination. We
tag each packet with a key associated with source autonomous system and the
destination (server). This key is stored in the packet header and is compared
with the actual key at the destination to check the authenticity of the packet.
The key handling procedures should be light weight as the server receives packets
in high volumes. Distributing key information about the routes as required in
our method is not new. Due to various Border Gateway Protocol (BGP) security
issues such as prefix hijacking there are suggestions to secure BGP by adding
certificate keys to BGP announcements, in order to validate them. We follow a
similar procedure in our scheme.

In order to tag a packet, a lookup on the destination address is required
at source BGR and in order to authenticate a packet, a lookup on the source
address is required at the server. The process of extracting the key can be com-
bined with the regular IP-lookup in the table. The information of the other
autonomous systems and their corresponding keys are stored as additional fields
in the forwarding information table of a BGR. Notice that the cost of tagging
a packet is minimal as it is piggybacked on the IP lookup process. Upon arrival
at the destination network the key in the packet is extracted and verified. The
source autonomous AS is decided based on the global IP address of the source in
the packet. The packets coming from non-DMIPS autonomous networks would
have no tag or some random tag. Thus the method can verify the authenticity
of packets carrying the address s which belongs to AS S. Our scheme works
well even if some of the parts of the network do not install DMIPS. These au-
tonomous systems get lower priority in services at the server and all other AS
are not affected. Hence, the scheme is scalable and incremental.

4 Attack Scenario

4.1 Inside the AS

Our scheme relies on the fact that the spoofed IP packets often have mismatch-
ing IP addresses and hop-counts. The attackers will try to generate spoofed
packets with matching IP addresses and HC. We will see how difficult it is for
the attackers to evade our scheme. To spoof a packet with the correct HC, the
attacker must know the hops between spoofed IP and BGR. Then he must set
appropriate initial TTL value. Fig 5 shows how TTL spoofing needs to be done
in order to overcome the filtering.

286 S. Lagishetty, P. Sabbu, and K. Srinathan

Let Ha, Hl be the Hop counts of attacker and legitimate host respectively.
Assuming attacker and legitimate host maintain same initial TTL value (I), the
attacker can get Ha value, the hop count from BGR to itself very easily using
traceroute. But, due to the random selection of spoofed host it is very difficult
for the attacker to know its Hl (the HC between randomized IP address and the
BGR). To figure out Hl in real time, the attacker has to build a table before
the attack itself. He has to know the HC values for all the IP addresses to spoof
effectively. The attacker cannot build such a table easily because he cannot see
the final TTL values at the BGR. The attacker can use traceroute and can
know Hl only when the host is in the path between itself and the BGR. But,
the traceroute is not effective when the attacker is trying to spoof randomly.
The alternate approach to build IP2HCS table by the attacker is to figure out

Fig. 5. Spoofing the victim

the topological positions of IP addresses. The attacker can get this information
using snapshots of the network at various times. The inter domain routing in
the internet is policy based and the routing policies are not public. So, even
after getting the correct topological mapping, the attacker cannot decide the
correct HC. The HC is based on many factors like policies, algorithms and not
network connectivity alone. So, it is very difficult to construct IP2HCS table for
the attackers.

The attacker instead of building the tables may choose to spoof the IP ad-
dresses from a small set of compromised machines whose HC can be known. But,
this weakens the DDoS attacks. Then the list of spoofed source address will be
very less which makes detecting and blocking the attack packets much simpler.
If the attacker happens to be the same number of hops from the target as the
spoofed source, this method would result in a false negative. The advantage of
using HC metric is that the attacker never knows whether the spoofing attempt
is successful or not because the reply from server goes to the actual host and not
the attacker. He can listen to the reply if and only if the victim is also in the
same location. But this can narrow down the search and the attacker will be in
danger of getting caught.

4.2 Outside the AS

The authenticity of the packets outside the autonomous systems is based on the
tagged keys. The keys are marked at the source BGR and checked at the server.
The server removes the keys after verifying the authentication. So, the attackers
who have access only to edge devices, cannot read or observe the tagging keys.

DMIPS - Defensive Mechanism against IP Spoofing 287

But, if the attacker somehow manages to sniff the backbone network then he
can be dangerous and can initiate more serious attacks than DDoS spoofing
attacks. So, we assume that the backbone the network is secure. To maintain
the freshness of the key, it should be changed periodically using TLS website as
explained in the offline set up phase of outside the AS in section 3.2.

5 Evaluation

In our scheme, the routers need no extra knowledge about the state of the
network, than provided by the standard BGP protocols. Our scheme is incre-
mentally deployable and requires no significant changes to TCP/IP protocols.
We simulated our network and autonomous systems using NetSim tool and the
network structure is based on the mapping produced by the Internet Mapping
project [22].

5.1 Inside the AS

We divide the entire network into ISPs or autonomous systems which contain
thousands of hosts inside it. We analyze the efficiency of the improved hop count
method by extracting the packets received by the border gateway routers.

We took a random ISP and used a packet generator process to simulate normal
internet traffic inside it. This packet generator process sends packets from a
randomly selected user. It is observed that the hop-count values for the hosts
spans over a range of values. The Gaussian distribution is a good approximation
for them. The mean value of the distribution observed is in the range of 13
to 16 with standard deviation of 3 to 5 depending upon the network topology.
Hence, the distribution is diverse enough making the hop count filtering schemes
effective. But during a DDoS attack, a large percentage of packets received by
the BGR will be coming from the attackers. The attackers generate many packets
with the aim that at least some of the many randomly chosen hosts would match
with its HC. Because of the usage of RREQ and RREP packets to populate the
IP2HC table, we are secure against phishing attacks and we get the correct
values of hop count.

We selected a random number of attackers of around 1% of total number
of hosts in that ISP. These attackers send spoofed packets to the BGRs. It is
observed that our improved hop count scheme filters up-to 82% of the spoofed
packets. This is the case when we store the 2 best hop counts for each host at
the BGR. When we increase it to 3, the accuracy decreased to 75%. Though our
scheme’s accuracy is less than that of actual HCF [8] which is 90% accurate, we
show that the number of false positives is less for our scheme in the following
paragraph.

When we increase the number of attackers to 10%, there is heavy congestion
in the AS. This resulted in packets taking alternate paths. If the packets reach
the server with different hop counts, the HCF scheme will drop it. Storing alter-
nate path’s HC in our scheme have increased the Normal Packet Survival Ratio

288 S. Lagishetty, P. Sabbu, and K. Srinathan

Table 2. Comparison of HC based scheme

Hop count table
generation

Accuracy(
Number
of Spoofed
packets
detected)

False
positive
rates(values
depends on
the traffic)

Procedure to
detect network

changes

HCF

Table population is
not secure and main-
tains single HC per
host

90% 20% No

FLF4DoS

Table population is
not secure and main-
tains single HC per
host.

90% 25% No

Probabilistic
HCF

Table population is
not secure and main-
tains single HC per
host.

80 - 85% 25% No

Improved
HCF in
DMIPS

Stores multiple hop
counts for each host
and is more secure.

82% (for
K=2)

5% (for K=2) Yes

(NPSR) of the network. The number of false positives in this scenario for HCF
and other hop count based schemes which ignored multiple paths is around 20%.
In our DMIPS scheme, it is 5% when 2 hop counts are stored and negligible per-
centage (less than 1%) when 3 hop counts are stored at BGR. We blocked some
links to simulate link failures and our Renew technique identified them when the
selected best paths are affected by this change. In the context of this paper, we
compare our scheme with other hop count based schemes (shown in Table 2).

The storage at the BGR is bounded by the size of IP2HCS table. Each row
in the table consists of host identifier (16 bits) and K hop counts (5 bits for
each hop count). Since, the BGR already contains the host ID in the forwarding
table, we just need extra storage for HCs. Thus, an ISP of 1000 hosts with 3 hop
counts selected for each host needs around 1000 * 15 bits = 2 KB approximately.

5.2 Outside the AS

BGRs at the source autonomous systems tag the packet with the shared key.
The key look up and tagging is piggybacked with the IP look up process. Hence,
there is not much overhead at the BGRs. The server on receiving the packets ex-
tracts the key and verifies it with the stored key corresponding to the source AS.
The verification of the key requires a look up operation per packet on its source
AS. We calculate the number of CPU cycles saved by our scheme as follows.

DMIPS - Defensive Mechanism against IP Spoofing 289

CPU Overhead: Assuming a total of ”N” packets are generated in the network
from various autonomous systems in unit time. Out of these, ”p” is the fraction
of spoofed packets and ”q” is the fraction of legitimate packets. During a DDoS
attack, the number of spoofed packets generated in the network will be very
much greater than the legitimate packets. If X is the efficiency of filtering at
BGRs, then (1-X) fraction of these spoofed packets reaches the server and this
number would still be high. Hence, (1 − X)p >> q.

If tS and tL are the processing times of spoofed requests and legitimate re-
quests respectively and T is the processing time per packet of DMIPS at the
server. The number of CPU cycles saved is derived in Fig 6.

Fig. 6. Number of saved CPU cycles

The spoofed packets are designed so as to consume maximum amount of
server’s CPU usage. Hence, the request processing time (tS) of a spoofed packet
will be significantly larger than the processing time (T) comprising of a look up
and a key comparison operation. Hence, tS >> T.

Using the above conditions, the number of CPU cycles saved can be approxi-
mated as pNtS - qNT = pNtS Hence, the savings is proportional to the attack
magnitude or the fraction of spoofed packets received at the server. The addi-
tional storage incurred by our scheme is the mapping between ASes and their
corresponding keys. There are about 216 autonomous systems in the internet
and each AS id is encoded with 2 bytes. Each AS is associated with a 32 bit key
(4 bytes). Hence, additional storage required by our scheme is bounded by 216 *
(6 bytes) = 384 KB. The server can afford this extra storage for the CPU cycles
it is saving.

6 Conclusion

Choosing Hop Count or TTL value as the parameter for filtering the spoofed
packets has several advantages. The HC based filtering techniques does not re-
quire much change in the existing network architecture. Most of the earlier hop
count based schemes are based on the assumptions that

1. When a packet is sent between two hosts, as long as the same route is taken,
the number of hops will be the same.

2. Packets will take the same route to the destination always.
3. Routes change infrequently.

290 S. Lagishetty, P. Sabbu, and K. Srinathan

If these assumptions do not hold, the described methods may result in false
positives, that is, valid packets may appear to be spoofed. For traffic engineering
in the ISPs, provision of multiple paths becomes a critical issue for Quality of
Service (QoS). Hence, our scheme DMIPS is developed by taking multiple paths
into account. This reduces contention and retransmission of packets.

The percentage of erroneous packets to be dropped in our scheme DMIPS
(82%) is less than that of HCF, which is 90% accurate, but the false positive
rate is negligible(less than 1%) in our scheme when compared to 20% in HCF.
The attacker can spoof only the hosts in its AS because of the key based filtering
at the server. Hence, the number of IP addresses an attacker can successfully
spoof is decreased. We have a good Renew procedure through which we can
easily identify any link failures or network changes. The normal packet survival
ratio (NPSR) and network performance of DMIPS is more than that of other hop
count based schemes. In our scheme, most of the spoofed packets are filtered in
the AS itself. It has two advantages. Firstly, it avoids congestion at several points
in the network during the attack. Secondly, it minimizes the server overhead in
filtering.

Our scheme enjoys step-wise deployment also. The autonomous systems which
install DMIPS can get full benefits from the server even if some parts of the
network do not install the scheme. The server provides relatively more benefits
to the DMIPS installed autonomous systems by providing more quality services
and higher availability in attack scenarios. This would attract the administrators
of AS/ISP to install DMIPS.

References

1. Adler, M.: Tradeoffs in probabilistic packet marking for IP traceback. In: Pro-
ceedings of Thirty-Fourth Annual ACM Symposium on Theory of Computing,
pp. 407–418. ACM, New York (2002)

2. Amin, S.O., Kang, M.S., Hong, C.S.: A lightweight IP traceback mechanism on
iPv6. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D.C.,
Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS, vol. 4097,
pp. 671–680. Springer, Heidelberg (2006)

3. Baker, F., Savola, P.: Ingress Filtering for Multihomed Networks. RFC 3704 (2004)
4. Belenky, A., Ansari, N.: IP traceback with deterministic packet marking. Proceed-

ings of IEEE Communication Letters 7(4), 162–164 (2003)
5. Bremler-Barr, A., Levy, H.: Spoofing Prevention Method. In: Proceedings of IEEE

Infocom (2005)
6. Ehrenkranz, T., Li, J.: On the State of IP Spoofing Defense. Proceedings of ACM

Transactions on Internet Technology 9(2) (2009)
7. Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial of Service

attacks which employ IP source address spoofing. RFC 2827 (2000)
8. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: An effective defense against

spoofed DDoS traffic. In: Proceedings of the 10th ACM conference on Computer
and Communications Security, ACM CCS, New York, pp. 30–41 (2003)

9. Rodriguez, J.C., Briones, A.P., Nolazco, J.A.: FLF4DoS. Dynamic DDoS Mitiga-
tion based on TTL field using fuzzy logic. In: Proceedings of 17th International
Conference on Electronics. IEEE computer Society, Washington, DC (2007)

DMIPS - Defensive Mechanism against IP Spoofing 291

10. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Practical network support for
IP traceback. Computer Communication Review 30, 295–306 (2000)

11. Snoeren, A.C., Craig, P., Luis, A.S., Christine, E.J., Fabrice, T., Beverly,
S., Stephen, K., Strayer, W.: Single-packet IP traceback. In: Proceedings of
ACM/IEEE Transactions on Networking (2002)

12. Song, D.X., Perrig, A.: Advanced and authenticated marking schemes for IP trace-
back. In: Proceedings of IEEE Infocom (2001)

13. Strayer, T.W., Christine, E.J., Fabrice, T., Regina, R.H.: SPIE-IPv6: Single IPv6
Packet Traceback. In: Proceedings of 29th Annual IEEE Conference on Local Com-
puter Networks, Washington, pp. 118–125 (2004)

14. Swain, B.R., Sahoo, B.: Mitigating DDoS attack and Saving Computational Time
using a Probabilistic approach and HCF method. In: Proceedings of IEEE Inter-
national Advance Computing Conference (2009)

15. Wong, E.L., Balasubramanian, P., Alvisi, L., Gouda, M.G., Shmatikov, V.: Truth
in Advertising: Lightweight Verification of Route Integrity. In: Proceedings of 26th
Annual ACM symposium on Principles of Distributed Computing, PODC, New
York, pp. 147–156 (2007)

16. Yaar, A., Perrig, A., Song, D.: Pi: A path identification mechanism to defend
against DDoS attacks. In: Proceedings of IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 93–107 (2003)

17. Yaar, A., Perrig, A., Song, D.: StackPi: New packet marking and filtering mecha-
nisms for DDoS and IP spoofing defense. Proceedings of IEEE Journal on Selected
Areas in Communications 24, 1853–1863 (2006)

18. Unicast reverse path forwarding, Cisco IOS (1999),
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

19. Denial-of-Service attack knocks Twitter Offline (updated) (2009),
http://www.wired.com/epicenter/2009/08/twitter-apparently-down/

20. Facebook Confirms Denial-of-Service Attack (updated) (2009),
http://www.wired.com/epicenter/2009/08/

facebook-apparently-attacked-in-addition-to-twitter/

21. Icmp traceback messages (2003),
http://tools.ietf.org/html/draft-ietf-itrace-04

22. Internet Mapping Project, http://www.lumeta.com/research/

http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html
http://www.wired.com/epicenter/2009/08/twitter-apparently-down/
http://www.wired.com/epicenter/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
http://www.wired.com/epicenter/2009/08/facebook-apparently-attacked-in-addition-to-twitter/
http://tools.ietf.org/html/draft-ietf-itrace-04
http://www.lumeta.com/research/

Provably Secure Key Assignment Schemes from

Factoring

Eduarda S.V. Freire� and Kenneth G. Paterson��

Information Security Group,
Royal Holloway, University of London, U.K.

Abstract. We provide constructions for key assignment schemes that
are provably secure under the factoring assumption in the standard
model. Our first construction is for simple “chain” hierarchies, and
achieves security against key recovery attacks with a tight reduction from
the problem of factoring integers of a special form. Our second construc-
tion applies for general hierarchies, achieves the stronger notion of key
indistinguishability, and has security based on the hardness of factoring
Blum integers. We compare our constructions to previous schemes, in
terms of security and efficiency.

Keywords: Key assignment scheme, general poset, provably secure,
factoring, access control.

1 Introduction

A key assignment scheme is a method for implementing access control poli-
cies by assigning encryption keys and private information to each security class
in a hierarchy, with the hierarchy being represented by a partially ordered set
(poset). The encryption key could be used to protect or restrict access to some
information, whereas, the private information will be used to derive the keys of
any descendant class in the hierarchy. The scheme is administered by a trusted
authority, who is responsible for generating and distributing keys and private in-
formation, generating public data, and managing changes to the access control
policies.

Such key assignment schemes can be used to implement access control policies
in many applications where some users have more access rights than others.
These schemes can be useful, for example, for content distribution, management
of databases containing sensitive information, government communications and
broadcast services (such as cable TV).

The use of cryptographic techniques to solve the problem of key management
in hierarchical access control was first suggested by Akl and Taylor [1] in 1983.
Due to its simplicity, the scheme has been widely proposed for use to imple-
ment access control in different areas. Since then, a number of schemes such as
� This author supported by CAPES Foundation/Brazil on grant 0560/09-0 and Royal

Holloway, University of London.
�� This author supported by EPSRC Leadership Fellowship EP/H005455/1.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 292–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Provably Secure Key Assignment Schemes from Factoring 293

those of MacKinnon et al. [2], Harn-Lin [3] and many others (see [4]) have been
proposed to improve existing key assignment schemes. The Akl-Taylor scheme
has also been used as a starting point to enforce the problem of access control
for more general policies, including schemes with time-dependent constraints
[5,6,7]. Despite the large number of publications on this topic, many schemes
lack formal security analysis or are of limited use (hierarchies are limited to
trees, for example) [8,9,10,11]. A recent survey by Crampton et al. [12] defines
five generic key assignment schemes and classifies existing schemes as instances
of these generic schemes. These schemes offer different trade-offs in terms of the
amount of storage required and the complexity of key derivation.

More recently, Crampton et al. [13] proposed a new and intriguing approach
to constructing key assignment schemes for arbitrary posets using chain parti-
tions. In this approach, the poset is partitioned into a collection of chains, and
the scheme is built by combining, in a particular way, separate schemes for each
of the chains. This idea was instantiated using two different cryptographic bases:
collision-resistant hash functions and the RSA primitive. The latter instantia-
tion, called the Multi-key RSA scheme in [13], makes use of multiple RSA moduli,
one modulus for each chain in the partition, leading to the scheme potentially
requiring a substantial amount of public data. Interestingly, these new schemes
do not fit into the taxonomy of generic key assignment schemes proposed in [12].
Unfortunately, none of the schemes in [13] comes with a formal security analysis.

Indeed, despite the long history of research on key assignment schemes, work
to formalise security of such schemes began only recently. Two different notions of
security for key assignment schemes were proposed by Atallah et al. [4]: security
against key recovery attacks (KR-security) and security with respect to key
indistinguishability (KI-security). Informally, KR-security captures the notion
that an adversary is not able to compute a key to which it should not have
access. In the stronger notion of KI-security, the adversary is not able to learn
any information about a key to which it should not have access, that is, the
adversary is not able to distinguish between the real key and a random string of
the same length.

Atallah et al. [4] gave a construction for KR-secure key assignment schemes
for arbitrary posets based on any pseudorandom function. They also gave a
construction for KI-secure key assignment schemes for arbitrary posets based
on any symmetric encryption scheme secure against chosen ciphertext attacks.
Ateniese et al. [5] proposed a key assignment scheme that is KI-secure under
the Bilinear Decisional Diffie-Hellman Assumption and another whose security
relies on the OW-CPA (One-Wayness against Chosen-Plaintext Attacks) secu-
rity of a symmetric encryption scheme. D’Arco et al. [14] proved the Akl and
Taylor [1], MacKinnon et al. [2], and Harn-Lin [3] key assignment schemes to
be secure against key recovery attacks under the RSA assumption. They also
gave a construction yielding KI-secure key assignment schemes using as compo-
nents KR-secure schemes and the Goldreich-Levin hard-core bit (GL bit) [15].
This construction can be used to construct KI-secure schemes for quite general
posets (assuming suitable KR-secure schemes can be obtained). For example,

294 E.S.V. Freire and K.G. Paterson

D’Arco et al. used it to obtain KI-secure schemes based on the RSA assumption
by using their construction with the Akl-Taylor scheme. As another example,
a pseudorandom function with security based on the hardness of factoring can
be obtained (e.g. by converting the BBS pseudorandom generator to a pseudo-
random function using the results of [16]). Thus a key assignment scheme for
general posets having KI-security under the factoring assumption can be ob-
tained by combining the construction of [14] and the construction for KR-secure
schemes based on any pseudorandom function from [4]. However, the construc-
tion of [14] involves a “blow-up” of the poset for the desired KI-secure scheme
by a factor directly related to the security parameter. Moreover, the KR-secure
scheme of [4] involves a large amount of public information (one string per edge
in the graph associated with the hierarchy).

1.1 Our Contributions

We provide two constructions for key assignment schemes with security prov-
ably based on the hardness of factoring integers in the standard model (i.e.
without using random oracles). The first construction yields KR-secure schemes
for posets that are chains (totally ordered hierarchies), and enjoys a tight security
reduction for static adversaries from the factoring problem, albeit for integers of
special form. This construction can be extended to produce KR-secure schemes
for arbitrary posets and via the construction of [14], KI-secure schemes for arbi-
trary posets. We omit the details in order to focus on our second construction,
which we consider to be our main contribution.

Our second construction directly yields KI-secure schemes for arbitrary posets,
with security based on the hardness of factoring Blum integers. In addition,
this construction is relatively efficient, avoiding the blow-up associated with
the construction of [14] and not relying on the Goldreich-Levin method for the
construction of hard-core bits. As we shall see, our construction is obtained
by extending the ideas of [13], using chain partitions in combination with the
Blum-Blum-Shub (BBS) generator. We are then able to apply well-known results
relating the security of the BBS generator to the factoring problem to complete
our security analysis. In contrast to the Multi-key RSA scheme of [13], our
analysis shows that using one RSA modulus suffices, enabling us to shrink the
size of the public data relative to the Multi-key RSA scheme of [13]. The amount
of private information stored for each class is still related to the number of chains
in the partition. By an application of Dilworth’s Theorem [17], this can be as
small as the width w of the poset, that is, the cardinality of the largest antichain
in the poset. Typical posets arising in applications have sufficient structure that
chain partitions containing w chains can be computed efficiently.

Thus our paper provides a formal security analysis of schemes closely related
to those presented in [13], as well as a natural and relatively efficient construction
for key assignment schemes whose KI-security is provably based on the hardness
of factoring, in the standard model.

Provably Secure Key Assignment Schemes from Factoring 295

1.2 Organization

In the next section, Section 2, we define the Factoring Assumption and give
a definition of a key assignment scheme (KAS) and its security with respect
to key indistinguishability and key recovery attacks. In Section 3 we introduce
our first scheme, the Basic Scheme, and prove its security against key recovery
attacks for static adversaries under a tight reduction from factoring. Section 4
presents a description of our second scheme (for the cases of one chain and more
general posets), the FP scheme, along with its security proof with respect to key
indistinguishability. Finally, in Section 5 we make some concluding remarks.

2 Preliminaries

The security of most key assignment schemes depends on the difficulty of solving
a computational problem. In this section, we first recall the cryptographic as-
sumption on which the security of our schemes relies, the factoring assumption.
We then define hierarchical key assignment schemes, following [14], considering
two security notions: security against key recovery and security with respect to
key indistinguishability. We also distinguish static from dynamic adversaries.

In this paper we take the asymptotic approach, which views the running
time of the adversary as well as its success probability as functions of a security
parameter ρ. Then, the notion of efficient algorithms is equivalent to probabilistic
algorithms running in time polynomial in ρ, PPT algorithms. The notion of
small probability of success is substituted by negligible probability of success,
meaning that the probability is smaller than any inverse polynomial in ρ, i.e.,
for every constant c, the adversary’s success probability is smaller than ρ−c for
large enough values of ρ. However, all the results in the paper can be made
concrete in a straightforward manner.

2.1 Factoring Assumption

Let GenF be some polynomial-time algorithm that, on input 1ρ, outputs (N, p, q)
where N = pq, and p and q are ρ-bit primes, possibly with additional constraints.
The factoring assumption relative to GenF states that given N , it is computa-
tionally infeasible to obtain the prime factors p and q, except with negligible
probability in ρ. More formally, following Hofheinz and Kiltz [18], we have:

Definition 1 (Factoring Assumption). For an algorithm AF , we define its
factoring advantage to be

AdvfacGenF ,AF
(ρ) = Pr[(N, p, q) ← GenF (1ρ) : AF (N) = {p, q}].

The factoring assumption (with respect to GenF) states that AdvfacGenF ,AF
(ρ) is

negligible in ρ for every PPT AF .

296 E.S.V. Freire and K.G. Paterson

In what follows, we will consider two instances of GenF : GenBlum , which
outputs N with random ρ-bit factors p, q such that p = q = 3 mod 4, and GenS ,
which outputs N with random ρ-bit factors p = 1 mod 2n and q = 3 mod 4
for some parameter n. Note that the generation of random ρ-bit primes with
the additional constraint p = 1 mod 2n can be achieved by generating values
p = T · 2n +1, where T is some random integer having bitlength ρ−n, and then
testing for primality.

2.2 Key Assignment Schemes

A partially ordered hierarchy is a pair (V,≤) where V is a set of disjoint classes,
called security classes, and ≤ is a binary relation on V . A security class can
represent a person, a department or a user group in an organization. The binary
relation ≤ is defined in accordance with authority for each class in V . For any
two classes u and v we write v ≤ u or u ≥ v to indicate that users in class u can
access the data of users in class v. We say u covers v, denoted v � u or u � v, if
v < u and there does not exist c ∈ V such that v < c < u. V is a total order (or
chain) if for all u, v ∈ V , either v ≤ u or u ≤ v. We say A ⊆ V is an antichain
if for all u, v ⊂ A, v � u and v 	 u. The partially ordered hierarchy (V,≤)
can be represented by the directed acyclic graph G = (V, E), where each class
corresponds to a vertex in the graph and there is an edge from class u to class
v if and only if v ≤ u.

The problem of key management for such hierarchies consists of assigning
symmetric encryption keys and private information to each class in the hierarchy
in such a way that the encryption keys will be used to protect or access data,
whereas the private information will be used to efficiently derive the keys for any
descendant class in the hierarchy.

A partition of a set V is a collection of sets {V1, . . . , Vs} such that (i) Vi ⊆ V
(ii) V1 ∪ · · · ∪ Vs = V , and (iii) Vi ∩ Vj
= ∅ if and only if i = j.

A hierarchical key assignment scheme for a family of graphs Γ corresponding
to partially ordered hierarchies is defined as follows.

Definition 2 (Key Assignment Scheme). A hierarchical key assignment
scheme (KAS) for Γ is a pair of algorithms (Gen, Derive) statisfying the follow-
ing conditions:

1. Gen is a probabilistic polynomial-time algorithm that takes as inputs the se-
curity parameter 1ρ and an access graph G = (V, E) ∈ Γ , and outputs

(a) private information Su and key ku, for any class u ∈ V ;
(b) public information pub.

We denote by (S, k, pub) the output of the algorithm Gen on inputs 1ρ and
G, where S and k denote the sets of private information and keys, respec-
tively. We assume that the size of each key ku can be represented using �(ρ)
bits.

Provably Secure Key Assignment Schemes from Factoring 297

2. Derive is a deterministic polynomial-time algorithm that takes as inputs the
security parameter 1ρ, an access graph G = (V, E) ∈ Γ , two classes u and
v such that v ≤ u, the private information Su assigned to class u, and the
public information pub, and outputs the key kv assigned to class v.

For correctness, for all classes u ∈ V , v ≤ u, it must hold that

Pr[kv = Derive(G, pub, u, v, Su)] = 1. (1)

In order to evaluate the security of key assignment schemes, we consider static
adversaries and use the result in [5] that security against dynamic adversaries is
polynomially equivalent to security against static adversaries to ensure that our
schemes are automatically secure against the corresponding dynamic adversaries
(albeit with a less tight overall security reduction)1. We note that this result is
also implicit in [4].

A static adversary, Astat , first chooses a class u ∈ V to attack, and then
is allowed to access the private information assigned to all classes not allowed
to compute the key ku associated with class u, as well as the public informa-
tion pub. Let Corruptu be an algorithm which, on input the private informa-
tion S generated by the algorithm Gen, outputs the secret values Sv associated
with all classes v ∈ V such that u � v. We denote by corr the output of
Corruptu.

A dynamic (also called adaptive) adversary, Adyn , first gets access to all pub-
lic information generated by Gen, and then chooses, in an adaptive manner, a
number of classes to be corrupted. It is assumed that a challenger provides the
adversary with the private information Sv held by each of the corrupted classes
v. The adversary then chooses a class u ∈ V to attack, such that u
≤ v, for all
classes v in the corrupted set. After this, the adversary is still allowed to corrupt
classes of its choice, subject to the constraint that u � v.

We consider two different security goals: security against key recovery and
security with respect to key indistinguishability.

In the key recovery case, an adversary on input a security parameter ρ, a
directed access graph G, the public information pub generated by Gen(1ρ, G)
and the private information corr, held by corrupted users, outputs a string k′

u

and succeeds if k′
u = ku. Here u is the target class specified by the adversary.

For security, we require that the adversary will succeed with probability only
negligible in the security parameter ρ. More formally, we have the following
definition:

Definition 3 (KR-ST). Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V, E) ∈ Γ be a graph, and let (Gen, Derive) be
a hierarchical key assignment scheme for Γ . Let A be a static adversary which
attacks a class u ∈ V . Consider the following experiment:

1 This result is trivial to prove: in the reduction, the static adversary simply guesses
which class will be the subject of the dynamic adversary’s query, and aborts if it
guesses incorrectly; this reduction succeeds with probability 1/|V |.

298 E.S.V. Freire and K.G. Paterson

Experiment ExpKR−ST
A (1ρ, G) :

u ← A(1ρ, G)
(S, k, pub) ← Gen(1ρ, G)
corr ← Corruptu(S)
k′

u ← A(1ρ, G, pub, corr)
return k′

u

The advantage of A is defined as AdvKR-ST
A (1ρ, G) = Pr[k′

u = ku]. The scheme
is said to be secure in the sense of key recovery with respect to static adversaries
(KR-ST-secure) if, for every graph G = (V, E) ∈ Γ and each class u ∈ V , the
function AdvKR-ST

A (1ρ, G) is negligible for every adversary whose time complexity
is polynomial in ρ.

Note here that we require the KR-ST adversary to output the actual key for
class u in its attack, not merely a key that is consistent with the information
received in corr.

For security in the sense of key indistinguishability, two experiments are con-
sidered. In the first, the adversary is given as a challenge the key ku, where u
is the target class, whereas, in the second, it is given a random string r, having
the same length as ku. It is the adversary’s job to determine whether the value
given corresponds to the real key ku or not.

Definition 4 (KI-ST). Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V, E) ∈ Γ be a graph, and let (Gen, Derive) be
a hierarchical key assignment scheme for Γ . Let A be a static adversary which
attacks a class u ∈ V . Consider the following two experiments:

Experiment ExpKI−ST−1
A (1ρ, G) : Experiment ExpKI−ST−0

A (1ρ, G) :
u ← A(1ρ, G) u ← A(1ρ, G)
(S, k, pub) ← Gen(1ρ, G) (S, k, pub) ← Gen(1ρ, G)
corr ← Corruptu(S) corr ← Corruptu(S)

r ← {0, 1}�(ρ)

d ← A(1ρ, G, pub, corr, ku) d ← A(1ρ, G, pub, corr, r)
return d return d

The advantage of A is defined as

AdvKI-ST
A (1ρ, G) =

∣∣Pr[ExpKI−ST−1
A (1ρ, G) = 1] − Pr[ExpKI−ST−0

A (1ρ, G) = 1]
∣∣ .

The scheme is said to be secure in the sense of key indistinguishability with
respect to static adversaries (KI-ST-secure) if, for each graph G = (V, E) ∈
Γ and each class u ∈ V , the function AdvKI-ST

A (1ρ, G) is negligible for every
adversary A whose time complexity is polynomial in ρ.

It is easy to see that KI-ST-secure scheme is also KR-ST-secure, so KI-ST se-
curity is the stronger notion. Informally, a scheme satisfying this stronger notion

Provably Secure Key Assignment Schemes from Factoring 299

can be securely composed with schemes making use of the encryption keys kv,
which is not the case for schemes possessing only KR-ST security.

3 A Basic Scheme

In this section, we describe a basic scheme and prove it KR-secure under the
factoring assumption. This scheme is limited to hierarchies that are total orders
(chains) on n classes. For this scheme we do not distinguish private information
from encryption keys. That is, Su = ku for all u. The public information, N ,
consists of a product of two large primes p and q, where p = 1 mod 2n and
q = 3 mod 4. Computation of a key lower in the hierarchy is done using repeated
squaring modulo N . A variant of this scheme, which is provably secure in the
sense of key indistinguishability (KI) under the factoring assumption, is given
in the next section.

Let Γ be a family of graphs corresponding to totally ordered hierarchies, let
G = (V, E) ∈ Γ be a graph, where V = {u0, · · · , un−1} and ui+1 < ui for all i,
and consider a security parameter ρ. Our scheme works as follows.

Algorithm Gen(1ρ, G):

1. Run GenS(1ρ) to obtain two ρ-bit primes p and q, where p = 1 mod 2n and
q = 3 mod 4, and compute N = pq;

2. Let pub = N be the public information;
3. Randomly choose a secret value γ from Z∗

N ;
4. For each class ui ∈ V set kui = Sui = γ2i

mod N ;
5. Let S and k be the sets of private information and keys, respectively, com-

puted in the previous step;
6. Output (S, k, pub).

Notice that, except possibly for the first class, the keys associated with the
classes in the chain are quadratic residues modulo N .

Algorithm Derive(G, pub, ui, uj, kui):

1. For j > i, compute kuj = (kui)
2j−i

mod N ;
2. Output kuj .

As we can see, the key derivation is done by exponentiation modulo N . Basi-
cally, each key in the hierarchy is the square of the key immediately above. Due
to the nature of the key derivation, a user who has access to class ui can derive
keys associated with all the descendant classes in the hierarchy, but cannot ob-
tain access to any of its ancestor classes unless he can obtain a particular square
root modulo N of γ2i

, namely γ2i−1
. We will show that as a consequence of this,

the security of the scheme relies on the difficulty of factoring N . Before proving
this, we have the following:

300 E.S.V. Freire and K.G. Paterson

Lemma 1. Let N = pq, where p = 1 mod 2n and q = 3 mod 4 are two primes,
γ a random value in Z∗

N and i an integer with 0 ≤ i < n−1. Then, every element
ζ of the form ζ = γ2i+1

mod N , has exactly two square roots that are themselves
2i-th powers modulo N .

Proof. Let γ ∈ Z∗
N with N = pq, where p and q are odd prime numbers. We write

γ ↔ (γp, γq) for γp = [γ mod p] and γq = [γ mod q] via the Chinese Remainder
Theorem. Now let ζ ↔ (ζp, ζq) be an element of the form ζ = γ2i+1

mod N .
Notice that γ2i

mod N is a trivial square root of ζ = γ2i+1
mod N , which is

itself a 2i-th power modulo N . Let γ2i

mod N ↔ (αp, αq). Then the four square
roots of ζ can be written as:

(αp, αq), (−αp, αq), (αp,−αq), (−αp,−αq).

We claim that exactly two of these are 2i-th powers modulo N . To see this,
first notice that −1 is not a quadratic residue modulo q and thus is not a 2i-th
power modulo q. Since an element in Z∗

N is a square modulo N if and only if it
is a square modulo p and modulo q, it follows that (αp,−αq) and (−αp,−αq)
cannot be 2i-th powers modulo N . Conversely, for p = 1 mod 2n, −1 is a 2i-
th power modulo p. To see this, let β be a primitive element in Z∗

p . Then,
βp−1 = 1 mod p and β

p−1
2n is a 2n-th root of 1 modulo p, not equal to 1. Hence,

(β
p−1
2n)

2n−1

= −1 mod p. It follows that −1 is a 2n−1-th power of β
p−1
2n and hence

it is a 2i-th power modulo p for all i ≤ n − 1. It is easy to see now that the two
square roots of ζ = γ2i+1

mod N , which are themselves 2i-th powers modulo N ,
are (αp, αq) and (−αp, αq). ��

We now prove the security of our scheme against key recovery attacks. We show
here that breaking the KR security of our basic scheme is computationally equiv-
alent to factoring N . We use the well known result that if factoring is hard so
is the problem of computing square roots modulo N . More formally, we use the
following lemma.

Lemma 2. Let N = pq with p, q distinct, odd primes. Given a, â, such that
a2 = b = â2 mod N but a
= ±â mod N , it is possible to factor N in time
polynomial in log2 N . Indeed, both gcd(N, a + â) and gcd(N, a − â) are equal to
one of the prime factors of N .

Theorem 1 (KR security of the basic scheme). Assume the factoring as-
sumption relative to GenS holds (Definition 1). Then our basic scheme is KR-ST
secure.

Proof. Let Γ be a family of graphs corresponding to totally ordered hierarchies
and let G = (V, E), where V = {u0, · · · , un−1}, be any graph in Γ . Assume there
exists a static adversary A against our basic scheme attacking class ui ∈ V . As-
sume A is able to compute, with non-negligible advantage AdvKR-ST

A , the key kui

associated with the class ui. We construct a polynomial time adversary AF that

Provably Secure Key Assignment Schemes from Factoring 301

uses the adversary A to factor the modulus N with some non-negligible advan-
tage. Algorithm AF simulates the environment of A in a way that A cannot tell
if it is dealing with its own challenge for the attacked class in the basic scheme or
not. The first step in AF ’s simulation consists of setting up the access hierarchy
for graph G in such a way that AF will be able to handle all A’s corrupt queries.
Eventually, A will output its guess k′

ui
for the encryption key corresponding

to class ui and AF will use this output to factor N with non-negligible advan-
tage. More formally, the algorithm AF on input the modulus N works as follows.

Algorithm AF (N):

1. Run A with input (1ρ, G) to get ui ∈ V , A’s choice of target class;
2. Choose random γ ← Z∗

N and compute z = γ2i

mod N ;
3. Run A with inputs (1ρ, G, N, corr), where corr = {γ2i+1

mod N,

γ2i+2
mod N, . . . , γ2n−1

mod N}, to obtain an output k′
ui

;
4. If (k′

ui
)2 = γ2i+1

mod N and k′
ui

= ±γ2i

mod N , then factor N using Lemma
2.

Conditioned on the fact that A has no information about which value γ was
chosen by AF initially, other than the data in corr, the value output by A is
equally likely to be each of the two square roots of γ2i+1

mod N which are also
2i-th powers modulo N (see Lemma 1). However, only one of these outputs,
namely γ2i

mod N , allows A to win the KR-ST security game, while the other
value allows AF to factor the modulus N . Thus, we see that A’s advantage
AdvKR-ST

A is equal to the advantage of AF in factoring N . Since we assumed
that AdvKR-ST

A is non-negligible, then Advfac
GenS ,AF

is also non-negligible, and
the theorem follows. ��
The basic scheme above uses a modulus N which is the product of two primes
p = 1 mod 2n and q = 3 mod 4. This unusual form enabled us to get a tight
reduction to factoring in the KR-ST security model. An alternative would be
to weaken the requirements on p at the cost of introducing a stronger hardness
assumption, namely a higher residuosity assumption modulo N (this being a
generalisation of the quadratic residuosity assumption). Suppose, for example,
p = 1 mod 4 but p
= 1 mod 8. Then γ2i+1

mod N still has 2 square roots which
are quadratic residues modulo N . One of these is the key kui = γ2i

mod N asso-
ciated with the class being attacked, but the other may not be a 2i-th power, and
so in this case would not be output by a correct adversary A that can distinguish
2i-th powers from elements that are not 2i-th powers. Suppose, however, that
an appropriate higher residuosity assumption holds, with the implication that
no efficient adversary can distinguish the 2 distinct square roots of γ2i+1

mod N
that are themselves squares with non-negligible advantage. Then we can argue
that, given A’s view, either square root is (almost) equally likely to be output
by A, and we can go on to construct a factoring algorithm as before. Hence, if
factoring the modulus N of the given form is hard, and the appropriate higher
residuosity assumption holds, then our scheme is KR-secure under these assump-
tions. Because the higher residuosity assumption is stronger than the factoring

302 E.S.V. Freire and K.G. Paterson

assumption, we obtain a proof of security under the higher residuosity assump-
tion. Following the same line of argument, it can be shown that if p = 3 mod 4,
we can obtain a reduction from the standard quadratic residuosity assumption
because then exactly one square root of γ2i+1

mod N will be a square.
The basic scheme presented in this section fails to achieve key indistinguisha-

bility: an adversary will be able to test whether the challenge key it is given is
the real key associated with the challenge class ui or a random value in Z∗

N with
overwhelming probability, simply by squaring it and comparing to the key for
the class ui+1.

4 The FP Scheme

We now show how to construct a key assignment scheme for arbitrary posets with
KI-ST-security based on the hardness of factoring. We call this scheme the FP
scheme for ease of reference. In our scheme N is an arbitrary Blum integer, that
is, N = pq, where p = q = 3 mod 4. For expositional reasons, we first present a
construction for totally ordered hierarchies and then we build on ideas from [13]
to obtain a scheme for arbitrary posets. We begin with some preliminaries.

Definition 5 (BBS pseudorandom number generator). Let N be a Blum
integer (that is, N = pq where p, q are distinct primes both congruent to 3 mod
4). Let x be a quadratic residue mod N . We establish the following notation:
LSBN(x) = x mod 2 (the least significant bit of x). The BBS pseudorandom
number generator applied to x and modulus N is defined to have output:

BBSN (x) = (LSBN(x), LSBN (x2), . . . , LSBN(x2�−1
)) ∈ {0, 1}�,

where the output consists of � bits.

We now recall the definition of the advantage of a distinguisher D in breaking
the BBS pseudorandom number generator.

Definition 6 (Security of BBS generator). Let Gen(1ρ) be a probabilistic
polynomial-time algorithm that on input a security parameter ρ, runs GenBlum

with input 1ρ to generate an integer N of the form N = pq, where p = q =
3 mod 4, and which selects an integer x ∈ QRN (the set of quadratic residues
modulo N). Let D be a distinguisher. Consider the following two experiments:

Experiment ExpBBS−1
D (1ρ) : Experiment ExpBBS−0

D (1ρ) :
x, N ← Gen(1ρ) x, N ← Gen(1ρ)

r ← {0, 1}�(ρ)

d ← D(N, z = x2�

mod N, BBSN (x)) d ← D(N, z = x2�

mod N, r)
return d return d

The advantage of D is defined as

AdvBBS
D (ρ) =

∣∣Pr[ExpBBS−1
D (1ρ) = 1] − Pr[ExpBBS−0

D (1ρ) = 1]
∣∣ .

Provably Secure Key Assignment Schemes from Factoring 303

We say that the BBS pseudorandom number generator is secure if the advantage
of any polynomial time distinguisher D is negligible, that is, if AdvBBS

D (ρ) is
negligible for any algorithm D running in polynomial time in ρ.

The result below, proved in [18] and based on results from [19,20] states that
any BBS-distinguisher can be used to factor Blum integers.

Theorem 2 (BBS-distinguisher ⇒ factoring algorithm). For every PPT
algorithm D that succeeds in breaking the BBS generator with advantage AdvBBS

D

running in time tBBS, there exists a PPT algorithm AF that factors Blum inte-
gers with advantage AdvfacGenBlum,AF

(ρ)/�, where � is the size of the BBS output.

Algorithm AF runs in time tfac ≈ ρ4tBBS/(AdvBBS
D)

2
.

4.1 The FP Scheme for a Single Chain

We now describe our scheme for a single chain. It contains the essential ideas
needed to understand the general version of the FP scheme that follows.

Let Γ be a family of graphs corresponding to totally ordered hierarchies, let
G = (V, E) ∈ Γ be a graph, where V = {u0, · · · , un−1} and ui+1 < ui for all i,
and consider a security parameter ρ. The Gen and Derive algorithms work as
follows.

Algorithm Gen(1ρ, G):

1. Run GenBlum on input 1ρ to obtain two random ρ-bit primes p and q, with
p = q = 3 mod 4, and compute N = pq. Set pub = N ;

2. Choose γ at random from QRN ; (Note that to choose a random quadratic
residue, it is sufficient to choose γ′ uniformly at random from Z∗

N and square
it modulo N .)

3. For each class ui ∈ V , 0 ≤ i ≤ n − 1, set Sui = γ2i�

mod N and kui =
BBSN (Sui);

4. Let S and k be the sets of private information and encryption keys, respec-
tively;

5. Output (S, k, pub).

Algorithm Derive(1ρ, G, ui, uj, Sui , N):

1. For j > i, compute Suj = S2(j−i)�

ui
mod N ;

2. Output kuj = BBSN (Suj).

The security of this scheme follows as a special case of our security analysis
for the more general scheme in the next section.

4.2 The FP Scheme for General Posets

We now build on ideas from [13], specifically, the idea of using chain partitions,
to obtain the FP scheme, a key assignment scheme for arbitrary posets with

304 E.S.V. Freire and K.G. Paterson

KI-security based on the hardness of factoring Blum integers. We begin with an
informal description.

Given a partially ordered hierarchy (V,≤), represented by the directed acyclic
graph P = (V, E), we select a partition of V into chains {C0, . . . , Cw−1}.
Dilworth’s Theorem [17] asserts that every partially ordered set (V,≤) can be
partitioned into w chains, where w is the width of V , that is, the cardinality of
the largest antichain in V . The length of Ci, 0 ≤ i ≤ w−1, is denoted by li . The
maximum class of Ci is regarded as the first class in Ci and the minimum class
as the last class. Since {C0, . . . , Cw−1} is a partition of V , each u ∈ V belongs
to precisely one chain.

Let C = u0 � . . . � um be any chain in V . Then any chain of the form
uj � . . . � um, 0 < j ≤ m is said to be a suffix of C. Now, for any u ∈ V ,
the set ↓ u := {v ∈ V : v ≤ u} has non-empty intersection with one or more
chains C0, . . . , Cw−1. It is proved in [13] that the intersection of ↓ u and the
chain Ci is a suffix of Ci or the empty set. This enables us to define the pri-
vate information that should be given to a user with label u. We explain this
next.

Since {C0, . . . , Cw−1} is a partition of V into chains, {↓ u∩C0, . . ., ↓ u∩Cw−1}
is a disjoint collection of chain suffixes. Additionally, the private information for
each class in V should be chosen so that the private information for the j-th
class of a chain can be used to compute keys for all lower classes in that chain.
Hence, we can see that a user with label u should be given the private informa-
tion for the maximal classes in the non-empty suffixes ↓ u∩C0, . . . , ↓ u∩Cw−1.
Given u ∈ V , let û0, . . . , ûw−1 denote these maximal classes, with the convention
that ûi =⊥ if ↓ u ∩ Ci = ∅. Let ui

j denote the j-th class in the chain Ci, where
0 ≤ j ≤ li − 1.

We now provide a formal description of the FP scheme.

The FP Scheme:
Let Γ be a family of graphs corresponding to partially ordered hierarchies, let

P = (V, E) ∈ Γ be a graph, and consider a security parameter ρ. The Gen and
Derive algorithms of the FP scheme are as follows.

Algorithm Gen(1ρ, P):

1. Run GenBlum to randomly obtain two distinct ρ-bit primes p and q, with
p = q = 3 mod 4, and compute N = pq. Set pub = N ;

2. Select a chain partition of V into w chains C0, . . . , Cw−1, so that Ci contains
classes ui

0, u
i
1, . . . , u

i
li−1;

3. Select w values γ0, . . . , γw−1 at random from QRN , the set of quadratic
residues modulo N ;

4. For each ui
j ∈ V , 0 ≤ j < li, compute Tui

j
= γi

2j�

mod N ;
5. For each u ∈ V , define the private information Su to be {Tûi : ûi
=⊥, 0 ≤

i ≤ w − 1} and the encryption key ku to be BBSN (Tu).

Provably Secure Key Assignment Schemes from Factoring 305

Algorithm Derive(1ρ, P, ui
j , u

g
h, Sui

j
, N):

1. For ui
j ≥ ug

h, find ûg, the maximal class in ↓ ui
j∩Cg . This class is in chain Cg.

We denote it by ug
r , where 0 ≤ r < lg. Note that, by construction, ug

r ≤ ui
j

and Tug
r
∈ Sui

j
;

2. Compute Tug
h

= (Tug
r
)2

(h−r)�

mod N and output kug
h

= BBSN (Tug
h
).

Theorem 3 (KI-ST security of the FP scheme for general posets). As-
sume the factoring assumption relative to GenBlum holds. Then the FP scheme
for general posets is KI-ST secure.

We split the proof of this theorem into two parts. First we recall that the BBS
generator is pseudorandom if factoring Blum integers is hard – see Theorem 2.
In the next theorem, we show that any successful adversary A against the KI-ST
security of the FP scheme implies a successful BBS-distinguisher D. Combining
both parts yields Theorem 3.

Theorem 4 (KI-ST adversary ⇒ BBS-distinguisher). For every KI-ST
adversary A that breaks the FP scheme with advantage AdvKI-ST

A , there exists
a PPT algorithm D that breaks the BBS generator with the same advantage.
Moreover, the running times of A and D are essentially the same.

Proof. Assume we have a KI-ST adversary A against the FP scheme for general
posets that attacks a class ui

j. Assume the adversary is able to distinguish be-
tween the real key kui

j
associated with class ui

j and a random string having the
same length. We describe below how to construct an algorithm D that, using A
as a black box, is able to distinguish between BBSN (x) and a random �-bit string
r. Algorithm D plays the BBS game described in Definition 6, and is thus given
access to an �-bit string R that is either random or the output of the BBS gen-
erator. Algorithm D is also given inputs N and z = x2�

mod N . In order to use
algorithm A, D simulates the environment of A in a way that A’s view is indis-
tinguishable from its view when playing the indistinguishability game described
in Definition 4. More formally, algorithm D on inputs (N, z = x2�

mod N, R)
works as follows.

Algorithm D:
1. Run A with input (1ρ, G) to get A’s choice of target class ui

j (recall that ui
j

is the j-th class in chain Ci);
2. Pick a random value γt ∈ QRN for each chain Ct
= Ci and set Tut

0
= γt,

where ut
0 is the maximal class in Ct;

3. Run A with inputs (1ρ, G, N, corr , R), where corr = {Sug
h

: ug
h 	 ui

j}, to
obtain a bit b. (We will explain below how D can compute the set corr in
this simulation.) Here b is A’s guess as to whether it was given the real key
associated with class ui

j or a random string having the same length;
4. Output b.

306 E.S.V. Freire and K.G. Paterson

Here, algorithm D setups up values Tu and associates them with classes u ∈
V in such a way that the key at class ui

j should be BBSN (x). Note that D
does not know the value Tui

j
, which corresponds to x. However, it does know

z = x2�

mod N , which corresponds to Tui
j+1

and thus D can compute all the
values Tui

h
, j < h < li. Further, A cannnot corrupt any class ui

h ∈ Ci for h ≤ j.
Moreover, by our setup of variables D knows all the other values Tut

h
, with t
= i

and 0 ≤ h < lt. Combining these two observations, it is easy to see that D can
compute all the private information that A can request through its corruption
query, denoted in step 3 by corr.

If A outputs b = 1, guessing that it was given the real key kui
j

associated with
class ui

j, then D will also output b = 1, guessing that it was given the BBSN (x).
Conversely, if A outputs b = 0, guessing that it was given a random �-bit string,
D will also output b = 0, guessing that it was given a random value. It is easy to
see that the advantage of D in breaking the security of the BBS pseudorandom
generator is the same as that of A in winning the KI-ST security game against
the FP scheme. Thus

AdvBBS
D = AdvKI-ST

A .

The theorem now follows. ��
We remind the reader that using the results proven in [5], we can immedi-
ately conclude that the FP scheme for general posets is also secure against
dynamic adversaries in the sense of key indistinguishability, under the factoring
assumption for Blum integers.

4.3 A Scheme with Faster Key Derivation

Our description of the FP scheme involves the extraction of a single bit in each
iteration of the BBS generator; consequently, because of the structure of the
scheme, this means that �(h − r) modular squarings are needed to derive the
private value Tug

h
from the private value Tug

r
during key derivation. However, it

is known that it is possible to extract more than one bit at a time from each
iteration of the BBS generator. For example, the generator which extracts the
O(log log N) least significant bits of each value is known to be secure under the
factoring assumption [21]. This can be used to speed up key derivation in the FP
scheme. For N having 1024 bits (and assuming the implicit constant can be set
to 1), the speed-up is roughly a factor of 10. However, this comes at the cost of
a looser reduction to KI-ST security of the scheme from the factoring problem.

4.4 Efficiency Considerations

Our main construction provides schemes having a trade-off between storage of
private information and efficiency of key derivation. Users associated with a
certain class will have to store a number of private values, with that number
depending on how the poset (V,≤) is partitioned into chains. The maximum

Provably Secure Key Assignment Schemes from Factoring 307

number of values to be stored is equal to the width w of the poset. The overall
efficiency of key derivation in the FP scheme is bounded by the length of the
longest chain in the partition: as many as � times this length of squaring modulo
N operations are needed to derive a key. Thus, we need to find a good choice
of chain partition to balance the efficiency of key derivation and the private
information storage requirements. Aside from the cost of key derivation, the FP
scheme preserves all of the benefits of the Multi-key RSA scheme of [13], but has
reduced public data and benefits from a formal security analysis establishing its
KI security against static and dynamic adversaries. For further discussion and
comparison of the schemes of [13] to other schemes in the literature, we refer to
[13].

D’Arco et al. [14] gave a general construction for KI-secure schemes, using
the Goldreich-Levin hard-core bit and an underlying KR-secure scheme. They
evaluated an instantiation of their construction using the Akl-Taylor scheme
with the MacKinnon et al. assignment to obtain KI-secure schemes under the
RSA assumption. The FP scheme compares favorably to this instantiation. In
particular, the FP scheme is proven to be KI-secure under a weaker assumption,
the factoring assumption, compared to the RSA assumption required in [14].
The construction used to obtain the FP scheme is arguably also more natural,
easier to understand and enjoys a simpler security analysis. Additionally, the FP
scheme has much smaller public information: The instantiation in [14] requires
|V |(1 + �)+ 2 public values, while the FP scheme requires a single value, N . We
also avoid the intrinsic blow-up that is involved in the construction given in [14]:
that construction needs a KR-secure scheme for a poset having � times as many
classes than are in the final KI-secure scheme, where � is the length of keys. On
the other hand, the construction given in [14] is fully generic, relying only on
the existence of KR-secure schemes for certain posets. For reasons of space, we
omit a full comparison with all schemes in the literature known to be KI-secure.

5 Concluding Remarks

In this paper we have described key assignment schemes with provable security
based on the factoring assumption. Our main construction extends ideas from
[13] and achieves schemes for arbitrary posets with shorter public data and
having KI security based on the factoring assumption. These schemes could be
useful in a wide range of applications where access hierarchies arise, including,
for example, management of databases and secure broadcast services. Our main
construction appears to yield the first reasonably efficient schemes with security
provably based on the factoring problem, in the standard model.

Acknowledgements

We thank Jason Crampton for many illuminating discussions and valuable feed-
back on an earlier version of this paper. We also thank the anonymous referees
for their helpful comments.

308 E.S.V. Freire and K.G. Paterson

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Transactions on Computer Systems 1, 239–248 (1983)

2. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Transactions
on Computers 34, 797–802 (1985)

3. Harn, L., Lin, H.Y.: A cryptographic key generation scheme for multilevel data
security. Computers & Security 9, 539–546 (1990)

4. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. In: ACM Conference on Computer and Com-
munications Security, pp. 190–202 (2006)

5. Ateniese, G., Santis, A.D., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. In: ACM Conference on Computer and Com-
munications Security, pp. 288–297 (2006)

6. Tzeng, W.G.: A secure system for data access based on anonymous authentica-
tion and time-dependent hierarchical keys. In: ACM Symposium on Information,
Computer and Communications Security, pp. 223–230 (2006)

7. Wang, S.Y., Laih, C.S.: An efficient solution for a time-bound hierarchical key
assignment scheme. IEEE Transactions on Dependable and Secure Computing 3,
91–100 (2006)

8. Chen, T.S., Chung, Y.F.: Hierarchical access control based on chinese remainder
theorem and symmetric algorithm. Computers & Security 21, 565–570 (2002)

9. Shen, V.R.L., Chen, T.S.: A novel key management scheme based on discrete log-
arithms and polynomial interpolations. Computers & Security 21, 164–171 (2002)

10. Wu, T.C., Chang, C.C.: Cryptographic key assignment scheme for hierarchical
access control. International Journal of Computer Systems Science and Engineer-
ing 16, 25–28 (2001)

11. Yeh, J.-H., Chow, R., Newman, R.: A key assignment for enforcing access control
policy exceptions. In: International Symposium on Internet Technology, pp. 54–59
(1998)

12. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: Computer Security Foundations Workshop, pp. 98–111 (2006)

13. Crampton, J., Daud, R., Martin, K.M.: Constructing key assignment schemes from
chain partitions. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166,
pp. 130–145. Springer, Heidelberg (2010)

14. D’Arco, P., Santis, A.D., Ferrara, A.L., Masucci, B.: Variations on a theme by Akl
and Taylor: Security and tradeoffs. Theoretical Computer Science 411, 213–227
(2010)

15. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
ACM STOC, pp. 25–32 (1989)

16. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33, 792–807 (1986)

17. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51, 161–166 (1950)

18. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

Provably Secure Key Assignment Schemes from Factoring 309

19. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing 15(2), 364–383 (1986)

20. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: Cer-
tain parts are as hard as the whole. SIAM Journal on Computing 17, 194–209
(1988)

21. Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number gen-
eration. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 193–202. Springer, Heidelberg (1985)

Efficient CCA-Secure CDH Based KEM

Balanced between Ciphertext and Key

Yamin Liu, Bao Li, Xianhui Lu, and Dingding Jia

State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences,

No.19A Yuquan Road, 100049 Beijing, China
{ymliu,lb,xhlu,ddjia}@is.ac.cn

Abstract. In this paper we construct an efficient CCA-secure key en-
capsulation scheme in the standard model. The new scheme is based
on the computational Diffie-Hellman assumption and the twinning tech-
nique, which has been widely discussed in recent years. Compared with
previous schemes of the same kind, the new scheme is more generic, and
offers a simple approach for reconciling ciphertext length and key size by
altering a parameter. Choosing a reasonable value for the parameter, a
balance between the ciphertext length and key size could be achieved.

Keywords: computational Diffie-Hellman, twin Diffie-Hellman, key en-
capsulation mechanism, standard model.

1 Introduction

Indistinguishability against adaptive chosen-ciphertext attack (IND-CCA)
[12,13] is the standard rule in public-key encryption, and constructing practical
CCA-secure encryption schemes is one of the most important tasks, especially
based on reasonable intractability assumptions such as the computational Diffie-
Hellman (CDH) assumption in the standard model and without resorting to the
convenient but controversial random oracle model [3,4].

However, recognizing correct solutions to the CDH problem is not an easy
task, thus checking ciphertext validity in the security reduction becomes a hard
nut. As a result, some strong assumptions are used, such as the Strong Diffie-
Hellman (SDH) assumption [1], which allows a decisional oracle for checking the
validity of solutions to the CDH problem.

The twinning technique, which is invented by Cash, Kiltz and Shoup [5] in
2008, provides a convenient approach for basing security of encryption schemes
on the intractability of the standard CDH problem. The twin Diffie-Hellman
(2DH) assumption [5] is proved to be equivalent to CDH, while it still allows
a decisional oracle for recognizing correct answers to the CDH problem, thus
consistency of ciphertexts could be easily checked in the security reduction.

With the twinning technique, Cash, Kiltz and Shoup constructed a CCA-
secure encryption scheme based on the CDH assumption in the standard model
[5]. However, efficiency of the scheme in [5] is not very satisfactory since both

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 310–318, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

CDH Based KEM Balanced between Ciphertext and Key 311

the ciphertext and the key require polynomial group elements. A CCA-secure
key encapsulation mechanism (KEM) under the same assumption proposed by
Haralambiev, Jager, Kiltz and Shoup [9] in 2010, improves greatly in the length of
the ciphertext, which only comprises three group element, while the key size still
remains polynomial. Later, Wee introduced the extractable hash proof system
[14], which encompasses the CDH based CCA-secure schemes of [5,9], and gave
another CDH based CCA-secure KEM. The KEM in [14] costs only four group
elements in the public key and the secret key respectively, while still requires
a linear number of group elements in the ciphertext. However, as Wee pointed
out in [14], such a scheme might be preferable in the circumstance of encrypting
long messages via the hybrid encryption.

Independent of the twinning framework, Hanaoka and Kurosawa constructed a
CDH-based IND-CCA secure encryption scheme in [10] by employing a broadcast
encryption (BE) scheme. Akin to the scheme in [9], the scheme in [10] also
costs only three group elements in ciphertext, but the key size still remains
polynomial.

1.1 Our Contributions

In this paper we construct an efficient CCA-secure encryption schemes in the
standard model, based on the CDH assumption and the twinning technique. The
new scheme can be viewed as a hybrid of the schemes in [9] and [14], since the
scheme in [9] is preferable for short ciphertext, and the scheme in [14] is superior
in short keys.

The new scheme is similar to the schemes in [5,9,14], and it also complies with
the extractable hash proof framework in [14]. The difference is that a parame-
ter for controlling key size and ciphertext length is introduced. By altering the
parameter, the new scheme flexibly switches between ciphertext length and key
size, and by choosing the parameter reasonably, a balance between the cipher-
text length and key size could be achieved. This method especially improves the
ciphertext length and computation efficiency of the scheme in [14].

Organization. The paper is organized as follows. Section 2 provides some no-
tations and definitions. In Section 3 the new scheme and its security proof and
efficiency analysis are elaborated. Finally, section 4 is the conclusion.

2 Preliminaries

For a positive integer n, [n] denotes the set {1, ..., n}. x
$← S means that x

is randomly chosen from the set S. For a randomize algorithm A, x
$← A(·)

means that x is assigned the output of A. An algorithm is efficient if it runs in
polynomial time in its input length. A function f(κ) is negligible if it decreases
faster than any polynomial, and is denoted as f(κ) ≤ ε(κ). PPT is the short
form of probabilistic polynomial time. ⊥ is the error symbol.

312 Y. Liu et al.

2.1 Key Encapsulation Mechanisms

A public-key encapsulation mechanism KEM = (KGen, Enc, Dec) [6,7] con-
sists of three polynomial-time algorithms, wherein KGen generates a public key
and secret key pair (pk, sk), Enc produces a ciphertext C encapsulating a cor-
responding session key K; with sk, Dec recovers K from C. K is the key of a
symmetric encryption scheme called the data encapsulation mechanism (DEM)
[6,7].

The IND-CCA security of KEM is described by the following game.

ExpIND-CCA
KEM,A (κ)

(pk, sk) $← Kg(1κ); K∗
1

$← KeySp(κ); (K∗
0 , C∗) $← Enc(pk)

σ
$← {0, 1}; σ′ $← ADecO(sk,·)(pk, K∗

σ, C∗)

A wins the game if σ = σ
′
. Its advantage is defined as

AdvIND-CCA
KEM, A (1κ) = |Pr[σ = σ

′
] − 1

2
|

Definition 1. (IND-CCA Security) A key encapsulation mechanism KEM =
(KGen, Enc, Dec) is said to be IND-CCA secure if for all PPT adversary A,
AdvIND-CCA

KEM,A (1κ) is negligible.

2.2 Diffie-Hellman Assumptions

Consider a cyclic group G with a generator g. The computational Diffie-Hellman
assumption states that given A = ga, B = gb, computing C = gab for random
A, B ∈ G is intractable for all efficient algorithms. We use notations from pre-
vious literatures such as [5,9], and define C = dh(A, B).

The twin Diffie-Hellman problem is given random A1, A2, B ∈ G and a
decisional oracle 2dhp(A1, A2, ·, ·, ·), computing (dh(A1, B),dh(A2, B)). The or-
acle 2dhp(A1, A2, ·, ·, ·), on input (B′, C′

1, C
′
2), judges whether there is C′

1 =
dh(A1, B

′) and C′
2 = dh(A2, B

′), where B′
= B. The 2DH assumption asserts
the intractability of the 2DH problem for all efficient algorithms, and it is proved
to be equivalent to the CDH assumption in [5].

2.3 Goldreich-Levin Hardcore Function

The Goldreich-Levin hardcore function [8] is a hardcore function for all one-way
functions. Let fgl : G × {0, 1}u �→ {0, 1}v denote a Goldreich-Levin hardcore
function for CDH problem over group G. The following lemma from [5,9] is
needed for security analysis in this paper.

Lemma 1. Let G be a prime-order group generated by g. Let A1, A2, B
$← G

be random group elements, R
$← {0, 1}u, and let K = fgl(dh(A1, B), R). Let

CDH Based KEM Balanced between Ciphertext and Key 313

Uv
$← {0, 1}v be uniformly random. Suppose that there exists a PPT algorithm

B having access to an oracle computing 2dhp(A1 , A2, ·, ·, ·) and distinguishing the
distributions

Δdh = (g, A1, A2, B, K, R) and Δrand = (g, A1, A2, B, Uv, R)

with non-negligible advantage. Then there exists a probabilistic polynomial-time
algorithm computing dh(A, B) on input (A, B) with non-negligible success prob-
ability.

3 The New Scheme

In this section a new method for constructing efficient CCA-secure encryption
schemes based on CDH assumption is proposed.

Let κ be the security parameter, and let G be a group of prime order q. Let
Ts : G �→ Zq be a target collision resistant hash function indexed by s. The
Goldreich-Levin hard-core function is fgl : G×{0, 1}u �→ {0, 1}v. Let N = nv be
the length of the encapsulated session key, where n = n(κ) is a polynomial-sized
integer, and let c be an integer ranging from 1 to n and c|n. Set w = n/c. The
new scheme offers a variable ciphertext length and key size by altering c, and is
defined as follows.
KGen(1κ) Randomly choose a generator g

$← G, a string R
$← {0, 1}u, and a

function index s. Randomly choose integers x, x′, y, y′ $← Zq, and zi
$← Zq for

i ∈ [c], and compute X = gx, X ′ = gx′
, Y = gy, Y ′ = gy′

and Zi = gzi for i ∈ [c].
Set

pk = (X, X ′, Y, Y ′, Z1, ..., Zc, R, s),

sk = (x, x′, y, y′, z1, ..., zc),

and return (pk, sk).

Enc(pk) To encapsulate a key of length N , sample r1, ..., rw
$← Zq. Compute

C0 = (gr1 , ..., grw), t = Ts(C0),

C1 = ((XtX ′)r1 , ..., (XtX ′)rw),

C2 = ((Y tY ′)r1 , ..., (Y tY ′)rw),

ki = (fgl(Zr1
i , R), ..., fgl(Zrw

i , R)), i ∈ [c],

K = k1||...||kc,

and return ((C0, C1, C2), K).
Dec(sk, (C0, C1, C2)) Compute t = Ts(C0). Parse (C0, C1, C2) as w triples
(C0,i, C1,i, C2,i), and check whether C1,i = Cxt+x′

0,i and C2,i = Cyt+y′
0,i for i ∈ [w].

If not then return ⊥. Otherwise compute

ki = (fgl(Czi
0,1, R), ..., fgl(Czi

0,w , R)), i ∈ [c],

K = k1||...||kc

and return K.

314 Y. Liu et al.

3.1 Security Proof

Theorem 1. Let Ts be a target collision-resistant hash function and assume
the intractability of the computational Diffie-Hellman assumption over group G.
Then the above described KEM is IND-CCA secure.

The security proof employs the game sequence technique, all-but-one simulation,
and the twinning technique. These techniques are used in previous literatures
such as [2,11,5,9] and have been concluded by Wee as the extractable hash proofs
[14].

Proof. Let (C∗
0 , C∗

1 , C∗
2) be the challenge ciphertext encapsulating the key K∗

0 , let
K∗

1 be the random key chosen by the IND-CCA challenger, and let t∗ = Ts(C∗
0).

Let Si be the event that the IND-CCA adversary A wins in Game i. Here is
the sequence of games.

Game 0. This is the original IND-CCA game, and there is

Pr[S0] =
1
2

+ AdvIND-CCA
KEM,A (1κ)

by definition.

Game 1. Define Game 1 as identical with Game 0, except that the decap-
sulation mechanism of Game 1 outputs ⊥ on query C = (C0, C1, C2) where
C0 = C∗

0 . The probability that A queries such a ciphertext before receiving
the challenge ciphertext is bounded by Qd/q,where Qd is the total number of
decapsulation queries of A. Thus Qd/q is negligible. If C is queried after the
challenge with C0 = C∗

0 but C
= C∗, then C is an invalid ciphertext and should
be rejected. Hence

|Pr[S1] − Pr[S0]| ≤ ε(κ).

Game 2. Proceed as in Game 1, except that the decapsulation mechanism
outputs ⊥ on query C = (C0, C1, C2) where C0
= C∗

0 while Ts(C0) = t∗. Since
Ts is target collision resistant, there is

|Pr[S2] − Pr[S1]| ≤ ε(κ).

Game 3. Let Game 3 be identical with Game 2 except that K∗
0

$← {0, 1}N is
uniformly chosen at random. Obviously

Pr[S3] =
1
2
,

since now both K∗
0 and K∗

1 are uniformly random and irrelevant to C∗.
Assuming the intractability of the computational Diffie-Hellman problem, we

claim that
|Pr[S3] − Pr[S2]| ≤ ε(κ),

and prove it employing a hybrid argument.

CDH Based KEM Balanced between Ciphertext and Key 315

Define a sequence of hybrid games H0, ..., Hn, where H0 equals Game 2 and
Hn equals Game 3. In Hi the first iv bits of K∗

0 are sampled as independent
random bits, and the rest bits of K∗

0 are computed as in Hi−1.
Denote the event that the adversary A outputs 1 in Hi as Ei. If

|Pr[S3] − Pr[S2]| = 1/p(κ)

for a polynomial p(·), i.e.,

|Pr[E0] − Pr[En]| = 1/p(κ),

then there must exist an index j such that

|Pr[Ej−1] − Pr[Ej]| = 1/p′(k)

for a polynomial p′(·) according to the Pigeonhole Principle. Then we could
construct an algorithm B, giving access to the adversary A and a 2DH oracle,
distinguishing the distributions Δdh and Δrand.

Given a challenge δ = (g, A1, A2, B, L, R) and a twin Diffie-Hellman oracle
2dhp(A1, A2, ·, ·, ·), B guesses the index j ∈ [n] with a probability at least 1/n,
and simulates a hybrid game as follows.

Key Generation and the Challenge. Set a = �j/w� and b = j mod w, if
b = 0 then reset b = w. B generates the public key and the challenge ciphertext
as follows:

1. Randomly pick d, e, f
$← Zq, r∗i

$← Zq for i ∈ [w]\{b}, and zi
$← Zq for

i ∈ [c]\{a}. The hash function Ts is chosen as in Game 0.
2. Compute C∗

0,i = gr∗
i for i ∈ [w]\{b}, set C∗

0,b = B and t∗ = Ts(C∗
0).

3. Set X = Ae
1, X ′ = A−et∗

1 gd, Y = A2, Y
′ = A−t∗

2 gf . Compute Zi = gzi for
i ∈ [c]\{a}, and set Za = A1. Then (X, X ′, Y, Y ′, Z1, ..., Zc, s, R) is sent to
A as the public key.

4. Compute C∗
1,i = (Xt∗X ′)r∗

i , C∗
2,i = (Y t∗Y ′)r∗

i for i ∈ [w]\{b}, and set C∗
1,b =

Bd, C∗
2,b = Bf . (C∗

0 , C∗
1 , C∗

2) is the challenge ciphertext.
5. Compute k∗

i = (fgl(C∗
0,1

zi , R), ..., fgl(C∗
0,w

zi , R)) for i ∈ [c]\{a}. For k∗
a =

(k∗
a,1, ..., k

∗
a,w), compute k∗

a,l = fgl(A
r∗

l
1), l ∈ [w]\{b} and set k∗

a,b = L.
6. Set K∗

0 = k∗
1 ||...||k∗

c .

According to the key generation step, X, X ′, Y, Y ′, Z1, ..., Zc are independent
and distribute uniformly random in G.

Note that
(Xt∗X ′)logg B = ((Ae

1)
t∗A−et∗

1 gd)logg B = Bd,

and similarly (Y t∗Y ′)logg B = Bf , the triple (C∗
0,b, C

∗
1,b, C

∗
2,b) is consistent, thus

C∗ = (C∗
0 , C∗

1 , C∗
2) is a valid ciphertext.

If L = fgl(dh(C∗
0,b, Za), R) = fgl(dh(A1, B), R), then B simulates Hj−1 for A,

otherwise B simulates Hj . Thus B can distinguish δ ∈ Δdh from δ ∈ Δrand if A
distinguishes Hj−1 and Hj .

316 Y. Liu et al.

Decapsulation Simulation. Let C = (C0, C1, C2) be an arbitrary decapsula-
tion query of A. B computes t = Ts(C0). For every triple (C0,i, C1,i, C2,i)i∈[w],
B computes

X̃i = (C1,i/Cd
0,i)

1/(et−et∗), and Ỹi = (C2,i/Cf
0,i)

1/(t−t∗).

If t
= t∗ and C is a valid ciphertext, then

X̃i = ((XtX ′)ri/(gri)d)1/(et−et∗)

= (Ari(et−et∗)
1 grid/grid)1/(et−et∗)

= Ari
1 = dh(A1, C0,i),

similarly there is Ỹi = Ari
2 . Then B checks the consistency of (C0,i, C1,i, C2,i)

by querying 2dhp(A1, A2, C0,i, X̃i, Ỹi).
If all these tests are passed, for ki = (ki,1, ..., ki,w), i ∈ [c]\{a}, B computes

ki,l = fgl(Czi

0,l, R) for l ∈ [w]; B then computes ka,l = fgl(X̃l, R) for l ∈ [w], and
returns K = k1||...||kc.

Obviously B can answer all decapsulation queries correctly if t
= t∗, and the
probability of t = t∗ have been shown to be negligible in Game 2.

Thus, if A has a non-negligible advantage in distinguishing Hj−1 and Hj ,
then B has a non-negligible advantage in distinguishing Δdh and Δrand, and
this contradicts the CDH assumption according to Lemma 1. ��

3.2 Efficiency Analysis

Here is a comparison among the new scheme and some previous CDH-based
schemes constructed with the twinning technique. Some figures are from [9].
Let N = nv be the expected length of the session key. In the comparison of
key size and ciphertext length, we omit R and s and just list the number of
group elements. Similarly, in the comparison of computation efficiency, we just
count the numbers of exponentiations, since the exponentiations are the main
time-consumer.

Table 1. Efficiency comparison of related schemes

key size (pk,sk) ciphertext length efficiency #exp (enc,dec)

[5] CKS08 2n + 2, 2n + 2 n + 2 3n + 1, 2n + 1

[9] HJKS10 n + 4, n + 4 3 n + 5, n + 2

[14] Wee10 4, 4 3n 6n, 3n

Our scheme c + 4, c + 4 3n/c n + 5n/c, n + 2n/c

Note that when c = n, the new method yields exactly the CDH-based en-
cryption scheme in [9]; when c = 1, the resulting scheme is essentially the same
as the CDH-based encryption scheme in [14]. By choosing a reasonable value
for c, the protocol yields an encryption scheme balanced between key size and

CDH Based KEM Balanced between Ciphertext and Key 317

ciphertext length. The value of c can be chosen according to the requirement of
different application circumstances.

Especially, our method significantly improves the efficiency of the scheme in
[14]. For example, when c = 3, the ciphertext length shrinks 2/3 compared to
the scheme in [14], while only 3 group elements are added to the public key and
the secrete key respectively. And as to the computation efficiency, when c = 3,
the number of exponentiations in the encryption and decryption also decreases
5/9 and 4/9 respectively, compared to [14].

4 Conclusion

We propose a new efficient CCA-secure key encapsulation mechanism based on
the CDH assumption and the twinning technique in the standard model. The
new scheme complies with the extractable hash proof framework of [14] and
offers a choice between ciphertext length and key size.

Acknowledgment. We are grateful to anonymous reviewers for their invalu-
able comments. Besides, we thank Kunpeng Wang, Haixia Xu and Qixiang Mei
for helpful discussions. This work is supported by the National Natural Science
Foundation of China (No. 61070171), the National High-Tech Research and De-
velopment Plan of China (863 project, No.2006AA01Z427) and the National
Basic Research Program of China (973 project, No.2007CB311201).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

2. Boneh, D., Boyen, X.: Efficient selective-ID Secure Identity Based Encryption with-
out Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM Press, New York (1993)

4. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

5. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008)

6. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

7. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing 33(1), 167–226 (2004)

318 Y. Liu et al.

8. Goldreich, O., Levin, L.: A Hard-core Predicate for All One-way Functions. In:
21st STOC. ACM, New York (1989)

9. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and Efficient Public-
Key Encryption from Computational Diffie-Hellman in the Standard Model. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18.
Springer, Heidelberg (2010)

10. Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key En-
cryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg
(2008)

11. Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed
Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 282–297. Springer, Heidelberg (2007)

12. Naor, M., Yung, M.: Public-Key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: Proceedings of the 22nd STOC, pp. 427–437. ACM, New
York (1990)

13. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

14. Wee, H.: Chosen-Ciphertext Security via Extractable Hash Proofs. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

Generic Construction of Strongly Secure

Timed-Release Public-Key Encryption

Atsushi Fujioka1, Yoshiaki Okamoto2, and Taiichi Saito2

1 NTT Information Sharing Platform Laboratories
fujioka.atsushi@lab.ntt.co.jp

2 Tokyo Denki University
{okamoto@crypt.,taiichi@}c.dendai.ac.jp

Abstract. This paper provides a sufficient condition to construct timed-
release public-key encryption (TRPKE), where the constructed TRPKE
scheme guarantees strong security against malicious time servers, pro-
posed by Chow et al., and strong security against malicious receivers,
defined by Cathalo et al., in the random oracle model if the compo-
nent IBE scheme is IND-ID-CPA secure, the component PKE scheme is
IND-CPA secure, and the PKE scheme satisfies negligible γ-uniformity for
every public key. Chow et al. proposed a strongly secure TRPKE scheme,
which is concrete in the standard model. To the best of our knowledge,
the proposed construction is the first generic one for TRPKE that guar-
antees strong security even in the random oracle model.

Keywords: timed-release public-key encryption, public-key encryption,
identity-based encryption, random oracle model.

1 Introduction

Timed-Release Public-Key Encryption. Timed-release public-key encryp-
tion (TRPKE) [8] provides a public-key encryption mechanism through which
one cannot decrypt a ciphertext even with one’s own secret key before a spe-
cific time. It has many applications in constructing secure protocols in which
information is revealed to several users after a specific time, e.g., releasing a new
movie, distributing an examination paper, sealed-bit auction, and e-voting.

A TRPKE system consists of three entities: time server, sender, and receiver.
The sender encrypts a plaintext with the receiver’s and the time server’s public
keys, designating a time T after which the receiver is allowed to decrypt the
ciphertext (throughout this paper, we call this time information time period,
according to [6]). The time server periodically broadcasts a time signal sT to
all users including the receiver. At each T , the time server generates an sT

corresponding to T and broadcasts it. Until the designated T comes and the
time server broadcasts the corresponding sT . The receiver cannot decrypt the
ciphertext even with his/her own secret key as he/she does not obtain sT . When
the receiver obtains sT at T , the receiver can decrypt the ciphertext with his/her
own secret key and sT . It is well known that TRPKE can be constructed from
identity-based encryption (IBE) and public-key encryption (PKE) [9,10].

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 319–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

320 A. Fujioka, Y. Okamoto, and T. Saito

Related to TRPKE, a similar primitive is known as certificateless encryption
(CLE) [2,13], which provides a public-key encryption mechanism that overcomes
the drawbacks of both IBE and PKE. The key generation center in IBE has the
power to decrypt every ciphertext, and every public key in PKE needs to be
guaranteed by a certificate authority. CLE also can be constructed by combin-
ing IBE and PKE (see a detailed survey of CLE [13]). In fact, Chow, Roth, and
Rieffel [11] proposed a generic construction that converts any general certificate-
less encryption scheme to a TRPKE scheme.1

1.1 Background

Security of Timed-Release Public-Key Encryption. The security of
timed-release public-key encryption is considered from two aspects: security
against malicious receivers and security against malicious time servers. The
security against malicious receivers means that no receiver can derive any in-
formation of the plaintext from a ciphertext without the corresponding time
signal. A formal definition, called indistinguishability against chosen time period
and ciphertext attacks (IND-CTCA security), was presented by Cathalo, Libert,
and Quisquater [6]. IND-CTCA security is defined in an indistinguishability game
between a challenger and an adversary in which the adversary can send a release
query consisting of a time period to the challenger to obtain the corresponding
time signal and can send a decryption query consisting of a ciphertext, a time
period, and the user public key used in encryption to the challenger to obtain the
plaintext encrypted in the ciphertext. Note that the adversary can ask a decryp-
tion query even if it does not know any user secret key corresponding to the user
public key in the decryption query. Another definition called IND-RTR-CCA2
security was independently given by Cheon, Hopper, Kim, and Osipkov [9], but
is weaker than IND-CTCA security.

The security against malicious time servers means that a time server cannot
derive any information of plaintext from a ciphertext without the receiver’s secret
key. A formal definition of security against malicious time servers was also given
by Cheon et al. [9], and is called IND-CCA2 security. Another definition of security
against time servers was presented by Cathalo et al. [6] and is called IND-CCA
security, which is essentially the same as IND-CCA2 security. We call IND-CCA
security defined by Cathalo et al. indistinguishability against chosen ciphertext
attacks for time server (IND-CCA-TS security).

Recently, Chow et al. defined two security models for general CLE: security
against Type-I attackers and security against Type-II attackers. Based on these
models, they also discussed security models for TRPKE. Type-I attackers are re-
lated to malicious receivers and Type-II attackers are related to malicious time
servers in the context of TRPKE. We should note that both Type-I and Type-II

1 While each identity in CLE is linked with the user’s public key, every public key in
general CLE can be independent from the identity. Therefore, general CLE can be
converted to TRPKE since a time period can be assigned to an identity and need
not be related to any user public key.

Generic Construction of Strongly Secure TRPKE 321

attackers can access a strong decryption oracle, which must answer to a decryption
query encrypted with a public key chosen by the attacker. While security against
Type-I attackers is essentially equivalent to IND-CTCA security, security against
Type-II attackers is stronger than IND-CCA-TS security because the adversary in
the IND-CCA-TS game is not allowed to access the strong decryption oracle.Later,
Chow and Yiu redefined these security notions in the context of TRPKE [7].

In this paper, we call security against malicious time servers with the strong
decryption oracle indistinguishability against strong chosen ciphertext attacks for
time server (IND-SCCA-TS security), and explicitly describe it in the context of
TRPKE. Note that IND-SCCA-TS security is essentially the same as security
against TYPE-II attackers.

Table 1. Security Notions

notion against query

Cheon et al. [9]
IND-RTR-CCA2 receiver (usk , T, c)

IND-CCA2 time server (T, c)

Cathalo et al. [6]
IND-CTCA receiver (upk , T, c)
IND-CCA time server (T, sT , c)

Chow et al. [11]
IND-CTCA receiver (upk , T, c)

IND-SCCA-TS time server (upk , T, c)
c is a ciphertext, usk is a user’s secret key, upk is a user’s public key, T is a
time period, and sT is the time signal at T .

Strong Security Models. IND-CTCA and IND-SCCA-TS security models allow
adversary to send to challenger decryption queries (upk , T, c) consisting of a
ciphertext c, a user’s public key upk and a time period T used in generating c,
and the challenger to return a plaintext encrypted in c.

IND-CTCA and IND-SCCA-TS security might look too strong since it allows
decryption queries (upk , T, c) to vary in a user’s public key upk and adversaries
to ask (upk , T, c) even without knowing a secret key corresponding to the upk .
However, since TRPKE has many applications for constructing secure protocols
that involve multiple receivers, it seems natural to allow upks of not only a fixed
single receiver but also of distinct multiple receivers to appear in (upk , T, c).

IND-CTCA and IND-SCCA-TS security may not represent a realistic attack
scenario. Though, when we consider a real attacker’s abilities, we need to confirm
that they sufficiently reflect a security model. Considering strong models is not
only important in practical sense that it can ensure security beyond realistic
attacks but also interesting in theoretical sense whether there exists a scheme
that archives the strong security. A similar discussion was done in the context
of CLE (see Sec 2.3.1 of [13]).

Note also that in the IND-CTCA and IND-SCCA-TS security models, the
behavior of the challenger for decryption queries (upk , T, c) in the case of in-
valid upk is not defined. Since, in the IND-CTCA secure scheme presented by
Cathalo et al. [6], the upk is a group element in a prime order group and is uni-
formly distributed over the group, all elements are possible and upks are valid.

322 A. Fujioka, Y. Okamoto, and T. Saito

Thus, this scheme does not require a validity check of upk in (upk , T, c). How-
ever, when IND-CTCA or IND-SCCA-TS security is applied to other schemes,
the behavior of the challenger for (upk , T, c) including invalid upk , should be
defined, or the behavior of the adversary should be restricted. We assume that
adversaries are not allowed to ask (upk , T, c) including invalid upks. Although it
is possible to avoid the assumption and adopt the underlying PKE scheme that
allows to check the validity of public keys, this restriction may lose generality of
the construction.

Previous TRPKE Schemes. Chan and Blake [8] proposed the first TRPKE
scheme but did not present a formal security definition for TRPKE. Later,
Cathalo et al. [6], Chalkias et al. [7], and Hristu-Varsakelis et al. [20] proposed
TRPKE schemes and proved IND-CTCA security of their schemes in the ran-
dom oracle model [4]. It should be noted that they all are concrete TRPKE
schemes based on specific number theoretic assumptions and are not generated
by a generic construction of TRPKE. Independently, Cheon et al. [10] proposed a
generic construction of TRPKE and showed that it produces a TRPKE scheme
that is IND-RTR-CCA2 and IND-CCA2 secure in the standard model from an
IND-ID-CCA secure IBE, IND-CCA secure PKE, and SUF-CMA secure one-time
signature schemes. Furthermore, Chow et al. [11] proposed a concrete TRPKE
scheme that satisfies both IND-CTCA and IND-SCCA-TS security in the standard
model.2 Recently, Paterson and Quaglia extended TRPKE to public-key time-
specific encryption, and presented a generic construction secure in the standard
model [24]. However, as well as in IND-CCA-TS security, the security model for
time servers does not allow adversaries to access the strong decryption oracle
and the security model for receivers is considered only in the chosen-plaintext
scenarios (and the security is called IND-CPA-CR security).

To the best of our knowledge, no generic construction of TRPKE has been
proposed satisfying the known strongest security against receivers, IND-CTCA
security, and the known strongest security against time servers, IND-SCCA-TS
security. In other words, a sufficient condition of component primitives for con-
structing a TRPKE scheme that achieves IND-CTCA and IND-SCCA-TS security
has not been found.

1.2 Our Contributions

We propose a generic construction of TRPKE based on an IBE scheme and
a PKE scheme and call it IBE-then-PKE construction because the encryption
algorithm in the resulting TRPKE scheme is constructed as follows:

ċ = IBE.Enc(params , T, m||r; Hh1(pk ||T ||m||r)),
c = PKE.Enc(pk , ċ; Hh2(pk ||T ||ċ)),

where IBE.Enc is the encryption algorithm of the IBE scheme, PKE.Enc is the
encryption algorithm of the PKE scheme, Hh1 , Hh2 are hash functions, m is
2 Chow et al. presented a generic construction of TRPKE from general CLE, which is

different from CLE. They proposed a concrete scheme of general CLE.

Generic Construction of Strongly Secure TRPKE 323

a plaintext, r is a random string, params is a public parameter, and ċ is an
intermediate ciphertext. The final output c is a ciphertext of m in the resulting
TRPKE scheme. A designated time period T is input to the encryption algorithm
of the IBE scheme, instead of identity.

In our IBE-then-PKE construction, the second encryption (PKE.Enc) is pro-
cessed in a deterministic manner; namely, the computation in PKE.Enc depends
only on the output ċ of IBE.Enc and does not use internal randomness. Fujioka,
Okamoto, and Saito used a similar technique, called the bound randomness con-
struction, for multiple encryptions [16], which is based on the Fujisaki-Okamoto
conversion [17]. However, only the bounded randomness construction might not
ensure security in a model allowing the strong decryption oracle since security
of multiple encryption is considered only with public keys generated by a chal-
lenger. Moreover, to prove IND-CTCA security, we input to the hash function
Hhi not only ċ but also upk and T . At this point, our IBE-then-PKE construc-
tion is different from the bound randomness construction.3 On the other hand,
the first encryption (IBE.Enc) has the form similar to the Fujisaki-Okamoto con-
version, and each intermediate ciphertext ċ is generated with upk in addition to
T . This enables us to simulate the strong decryption oracle in the IND-SCCA-TS
game. We prove that the constructed TRPKE scheme satisfies both IND-CTCA
and IND-SCCA-TS security in the random oracle model if the underlying IBE
scheme is IND-ID-CPA secure and the underlying PKE scheme is IND-CPA secure
with a property that is easily satisfied, which is described later.

Our IBE-then-PKE construction is the first generic construction of TRPKE
that achieves both the known strongest security against receivers, IND-CTCA se-
curity, and the known strongest security against time servers, IND-SCCA-TS se-
curity. A sufficient condition for the constructed TRPKE scheme to achieve secu-
rity is that the underlying IBE scheme is IND-ID-CPA secure and the underlying
PKE scheme is IND-CPA secure with a property related to γ-uniformity [17,18]
and defined as negligible γ-uniformity satisfied for every upk.

Security against the Decrypt-then-Encrypt-again Attack. It may be
natural to combine IBE and PKE schemes in the following way to construct a
TRPKE scheme:

c = PKE.Enc(upk , IBE.Enc(params , T, m; r1); r2),

where a ciphertext of a plaintext m is c, r1 and r2 are random strings, and
a designated time period is T , which is inputted to IBE.Enc as identity. How-
ever, under adaptively chosen ciphertext attack environments and against adver-
saries who have the secret key of PKE, this TRPKE scheme would no longer
be secure, even if the underlying IBE and PKE schemes are IND-ID-CCA and
IND-CCA secure, respectively [26,15]. Given the challenge ciphertext c∗ where
c∗ = PKE.Enc(upk , IBE.Enc(params , T ∗, mb; r∗1); r∗2), an adversary can know ċ =
IBE.Enc(params , T ∗, mb; r∗1) by decrypting c∗ with the secret key, and encrypt
3 Similar techniques have appeared in the context of certificateless encryption and

deterministic encryption [21,3].

324 A. Fujioka, Y. Okamoto, and T. Saito

ċ again with another randomness r′2 to obtain a new ciphertext c′ such that
c′ = PKE.Enc(upk , ċ; r′2). Then, the adversary can ask c′ to the decryption or-
acle and obtain a plaintext mb. This means that the TRPKE scheme based
on the above simple construction is insecure in the IND-CTCA model. We call
this specific attack decrypt-then-encrypt-again attack. This scenario describes a
situation where secret key exposure occurs in the chosen-ciphertext attack en-
vironment. It is noted [26,15] that the decrypt-then-encrypt-again attack can
break naive multiple encryption scheme like the above TRPKE scheme in the
scenario.

We outline why our construction produces a TRPKE scheme secure against
the decryption-then-encrypt-again attack. Suppose that an adversary has the
secret key corresponding to upk∗ and is given a challenge ciphertext c∗ that
has the form ċ∗ = IBE.Enc(params , T ∗, mb||r∗; Hh1(upk∗||T ∗||mb||r∗)), c∗ =
PKE.Enc(upk∗, ċ∗; Hh2(upk∗||T ∗||ċ∗)). Note that the adversary in the IND-CTCA
game can partially decrypt c∗ and obtain ċ∗ as it has the secret key.

If the adversary encrypts ċ∗ again in a legitimate manner, the generated ci-
phertext becomes equal to the challenge ciphertext c∗ because the second encryp-
tion is deterministic and does not depend on randomness. Then the generated
ciphertext is not allowed to be inputted into the decryption oracle.

If the adversary encrypts ċ∗ with a different upk, the generated ciphertext
becomes different from the challenge ciphertext c∗, and may be allowed to ask
the decryption oracle. If the final decrypted value is equal to (mb||r∗), it fails
to pass the re-encryption check (Step 7 in TR.Dec) since using a different upk
implies using a different r.

On the other hand, if the adversary does not encrypt ċ∗ in a legitimate
manner (e.g., using some randomness), it obtains another ciphertext c′ dif-
ferent from the challenge ciphertext c∗ and sends it to the decryption oracle.
Then the decryption oracle first decrypts c′ to obtain ċ∗ and checks whether
c′ = PKE.Enc(upk∗, ċ∗; Hh2(upk∗||T ∗||ċ∗)) holds. However, since c′
= c∗, the
check equation does not hold and the decryption oracle returns ⊥.

Consequently, the decrypt-then-encrypt-again attack cannot be applied to the
TRPKE scheme produced from our construction.

γ-pk-Uniformity and Decryption Query. In IND-CTCA and IND-SCCA-TS
security, adversaries are allowed to ask (upk , T, c) including any upk and then
ask special decryption queries including a special upk for which the component
PKE scheme does not has negligible γ-uniformity. In the proof of IND-CTCA and
IND-SCCA-TS security, if a decryption query including such upk is asked, the
simulation for decryption query fails. For avoiding such a problem, we require
that the underlying PKE scheme is negligible γ-uniform for any upk , i.e., it has
negligible γ-pk-uniformity.

Comparison. We compare the existing concrete TRPKE schemes [6,7,20,11]
and TRPKE schemes based on generic constructions [10,23,22] with the TRPKE
scheme that our generic construction produces.

Generic Construction of Strongly Secure TRPKE 325

Table 2. Scheme Comparison

generic or concrete security notion security model

CLQ [6] concrete IND-CTCA & IND-CCA-TS ROM
CHS [7] concrete IND-CTCA & IND-CCA-TS ROM
HCS [20] concrete IND-CTCA & IND-CCA-TS ROM

CHKO [10] generic IND-RTR-CCA2 & IND-CCA-TS SM
NMKM [23] generic IND-TRPC-CPA & IND-CCA-TS SM
MNM1 [22] generic IND-TRPC-CPA & IND-CCA-TS SM
MNM2 [22] generic IND-TRPC-CPA & IND-CCA-TS ROM
CRR [11] concrete IND-CTCA & IND-SCCA-TS SM
PQ [24] generic IND-CPA-CR & IND-CCA-TS SM

ours generic IND-CTCA & IND-SCCA-TS ROM

“concrete” indicates that the paper proposes concrete TRPKE scheme(s),
and “generic” indicates that the paper proposes generic construction of
TRPKE from IBE and PKE schemes. “ROM” indicates that security is
proved in the random oracle model, and “SM” indicates that security is
proved in the standard model.

We note that Nakai et al. [23] and Matsuda et al. [22] also proposed generic
constructions, which produce TRPKE schemes with pre-open capability, however
these schemes archive weak security (IND-TRPC-CPA security), which treats a
case against chosen plaintext attacks, defined by [14]. The pre-open capability
enables the sender to release trapdoor information, called pre-open key, that al-
lows the intended receiver to decrypt the ciphertext even before the time period.

The resulting scheme from our IBE-then-PKE construction does not have pre-
open capability. However, the PKE-then-IBE construction, a variant of our con-
struction, would be expected to have pre-open capability, where the intermediate
ciphertext is given as the pre-open key.

Organization. Section 2 defines TRPKE and related security notions. In Sec-
tion 3, we describe a generic construction of TRPKE and then prove the security
of the constructed scheme. We discuss security in Section 4 and conclude in
Section 5.

2 Definitions

2.1 Components

Public-Key Encryption. Let k be a security parameter. A public-key en-
cryption scheme PKE = (PKE.KGen, PKE.Enc, PKE.Dec) consists of three prob-
abilistic polynomial-time algorithms. The key generation algorithm PKE.KGen
takes 1k as input, and outputs a public key pk and a secret key sk . The en-
cryption algorithm PKE.Enc takes a pk , a message m ∈ {0, 1}∗ and a random
string r ∈ {0, 1}pke.rlen(k) as inputs, and outputs a ciphertext c ∈ {0, 1}∗ where
pke.rlen(k) is a polynomial in k. The decryption algorithm PKE.Dec takes a sk

326 A. Fujioka, Y. Okamoto, and T. Saito

and a ciphertext c′ ∈ {0, 1}∗ as inputs, and outputs the plaintext m′ ∈ {0, 1}∗
or ⊥. These algorithms are assumed to satisfy that if (pk , sk) = PKE.KGen then
PKE.Dec(sk , PKE.Enc(pk , m; r)) = m for any m and r.

Identity-Based Encryption. Let k be a security parameter. An identity-based
encryption scheme IBE = (IBE.Setup, IBE.Extract, IBE.Enc, IBE.Dec) consists of
four probabilistic polynomial-time algorithms. The setup algorithm IBE.Setup
takes 1k as input, and outputs a public parameter params and a master secret key
msk . The extract algorithm IBE.Extract takes a params , msk , and an arbitrary
string (identity) ID ∈ {0, 1}∗ as inputs, and outputs a decryption key dID. The
encryption algorithm IBE.Enc takes a params , ID a message m ∈ {0, 1}∗ and a
random string r ∈ {0, 1}ibe.rlen(k) as inputs, and outputs a ciphertext c ∈ {0, 1}∗
where ibe.rlen(k) is a polynomial in k. The decryption algorithm IBE.Dec takes
as inputs params , a ciphertext c′ ∈ {0, 1}∗ and a decryption key dID and outputs
the plaintext m′ ∈ {0, 1}∗ or ⊥. These algorithms are assumed to satisfy that
if (params ,msk) = IBE.Setup(1k) and dID = IBE.Extract(params ,msk , ID), then
IBE.Dec(params , dID, IBE.Enc(params , ID, m; r)) = m for any m and r.

IND-CPA Security. We describe the IND-CPA security [19] for PKE scheme PKE
based on the following IND-CPA game between a challenger and adversary A:
At beginning of the game, the challenger takes a security parameter k, runs the
key generation algorithm (pk , sk) = PKE.KGen(1k), and gives adversary A the
public key pk . Adversary A gives the challenger two messages x0, x1, such that
|x0| = |x1|. The challenger randomly chooses r ∈ {0, 1}pke.rlen(k) and b ∈ {0, 1}
and gives adversary A a challenge ciphertext c∗ = PKE.Enc(pk , xb; r). Adversary
A finally outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

We define the advantage of A in the IND-CPA game as Adv ind-cpa
PKE,A(1k) =

|2 Pr[b = b′] − 1|, where the probability is taken over the random coins used by
the challenger and A. We say that the PKE scheme PKE is IND-CPA secure if,
for any probabilistic polynomial-time adversary A, the function Adv ind-cpa

PKE,A(1k)
is negligible in k.

IND-ID-CPA Security. We describe the IND-ID-CPA security [5] for IBE scheme
IBE based on the following IND-ID-CPA game between a challenger and adver-
sary A: At beginning of the game, the challenger takes a security parameter k,
runs the setup algorithm (params ,msk) = IBE.Setup(1k), and gives adversary A
the public parameter params . The adversary gives the challenger two messages
x0, x1 such that |x0| = |x1|, an identity to be challenged ID∗. Then the chal-
lenger randomly chooses r ∈ {0, 1}ibe.rlen(k) and b ∈ {0, 1} and gives adversary
A a challenge ciphertext c∗ = IBE.Enc(params , ID∗, xb; r). Adversary A finally
outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

During the game, adversary A can issue extraction queries IDi to the chal-
lenger to obtain the decryption key IBE.Extract(params ,msk , IDi). The extrac-
tion queries IDi must differ from the challenged identity ID∗.

We define the advantage of A in the IND-ID-CPA game as Adv ind-id-cpa
IBE,A (1k) =

|2 Pr[b = b′] − 1|, where the probability is taken over the random coins used by

Generic Construction of Strongly Secure TRPKE 327

the challenger and A. We say that the IBE scheme IBE is IND-ID-CPA secure if,
for any probabilistic polynomial-time adversary A, the function Adv ind-id-cpa

IBE,A (1k)
is negligible in k.

γ-Uniformity. Fujisaki and Okamoto proposed γ-uniformity for evaluating the
probability that a fixed ciphertext is generated in probabilistic encryption of a
fixed message [17,18].

Let k be a security parameter and PKE = (PKE.KGen, PKE.Enc, PKE.Dec)
be a PKE scheme. For given x ∈ {0, 1}∗, y ∈ {0, 1}∗ and pk generated by
PKE.KGen(1k), let g(x, y) denote Pr[r ← {0, 1}pke.rlen(k) : y = PKE.Enc(pk , x; r)].
We say PKE is γ-uniform if g(x, y) ≤ γ for any x ∈ {0, 1}∗, y ∈ {0, 1}∗ and pk
generated by PKE.KGen(1k).

We should note that the probability in this γ-uniformity is also taken over the
coin flips in the key generation, and we define the following stronger property,
γ-pk-uniformity. The definition of γ-pk-uniformity is that the γ-uniformity holds
for any upk. Although an IND-CPA secure encryption does not generally have
γ-pk-uniformity where γ is negligible in k, any IND-CPA secure encryption can
be converted to one that has negligible γ-pk-uniformity [18].

Yang et al. extended γ-uniformity to IBE as follows [25]. Let k be the se-
curity parameter and IBE = (IBE.Setup, IBE.Extract, IBE.Enc, IBE.Dec) be an
IBE scheme. For given x ∈ {0, 1}∗, y ∈ {0, 1}∗, ID ∈ {0, 1}∗ and params gen-
erated by IBE.Setup(1k), let g′(x, y, ID) denote Pr[r ← {0, 1}ibe.rlen(k) : y =
IBE.Enc(params , ID, x; r)]. We say IBE is γ-uniform if g′(x, y, ID) ≤ γ for any
x ∈ {0, 1}∗, y ∈ {0, 1}∗, ID ∈ {0, 1}∗ and params generated by IBE.Setup(1k).
Note that any IND-ID-CPA secure encryption has negligible γ-uniformity in k.

Hash Function. A hash function Hh is a polynomial-time algorithm that is
parameterized by an index h ∈ {0, 1}ilen(k), and on arbitrary long input m
outputs hlen(k) bit string Hh(m), where ilen(k), hlen(k) are polynomials in k.

2.2 Timed-Release Public-Key Encryption

The TRPKE is formally defined as follows: Let k be a security parameter.
A timed-release public-key encryption scheme T RPKE = (TR.Setup, TR.KGen,
TR.Release, TR.Enc, TR.Dec) consists of five probabilistic polynomial-time algo-
rithms. The setup algorithm TR.Setup takes 1k as input, and outputs a time
server’s public key tpk and the corresponding secret key tsk . The user key gen-
eration algorithm TR.KGen takes a tpk as input, and outputs a user’s public
key upk and the corresponding secret key usk . The release algorithm TR.Release
takes a tpk , tsk , and a time period T ∈ {0, 1}∗ as inputs, and outputs a time
signal sT . The encryption algorithm TR.Enc takes a tpk , T , a receiver’s upk ,
a message m ∈ {0, 1}∗ and a random string r ∈ {0, 1}tr .rlen(k) as inputs, and
outputs a ciphertext c ∈ {0, 1}∗, where tr .rlen(k) is a polynomial in k that gives
the upper bound of the length of an r used in TR.Enc. The decryption algorithm
TR.Dec takes a tpk , sT , a receiver’s secret key usk and a ciphertext c′ ∈ {0, 1}∗
as inputs, and outputs the plaintext m′ ∈ {0, 1}∗ or ⊥. These algorithms are

328 A. Fujioka, Y. Okamoto, and T. Saito

assumed to satisfy TR.Dec(tpk , sT , usk , TR.Enc(tpk , T, upk , m; r)) = m for any
m and r if (tpk , tsk) = TR.Setup(1k), (upk , usk) = TR.KGen(tpk), and sT =
TR.Release(tpk , tsk , T) hold.

In a TRPKE system, the time server does not need to bilaterally interact with
users. At the start of the system, the time server generates a tpk with TR.Setup
and publishes it. At each time after the start, all the time server has to do is to
periodically generate a sT with TR.Release and broadcast it. After the start, any
sender need not interact with the server in encryption, and any receiver need
only receive the sT but not have any other interaction with the time server in
decryption.

2.3 IND-CTCA Security

We review the known strongest security against malicious receivers, called in-
distinguishability against chosen time period and ciphertext attacks (IND-CTCA
security) [6].

We formally describe the IND-CTCA security for TRPKE scheme T RPKE
based on the following IND-CTCA game between a challenger and adversary A:
The challenger takes a security parameter k, runs the setup algorithm (tpk , tsk) =
TR.Setup(1k), and gives adversary A the server’s public key tpk . Adversary A
gives the challenger two messages x0, x1 such that |x0| = |x1|, a time period T ∗,
a user’s public key upk∗. The challenger randomly chooses r ∈ {0, 1}tr .rlen(k) and
b ∈ {0, 1}, computes a challenge ciphertext c∗ = TR.Enc(tpk , T ∗, upk∗, xb; r), and
gives it to adversary A. Adversary A finally outputs a guess b′ ∈ {0, 1} and wins
the game if b = b′. During the game, adversary A can issues release queries Ti

to obtain the time signal TR.Release(tpk , tsk , Ti), and also can issue decryption
queries (upk j , Tj , cj) to obtain the decrypted message TR.Dec(tpk , sTj , usk j , cj)
where sTj = TR.Release(tpk , tsk , Tj) and uskj is the secret key corresponding
to upk j . The release queries Ti must differ from the challenged time period T ∗,
and the decryption queries (upk j , Tj, cj) must differ from the tuple (upk∗, T ∗, c∗)
consisting of the challenged user’s public key upk∗, the challenged time period T ∗

and the challenge ciphertext c∗. We define the advantage of A in the IND-CTCA
game as Adv ind-ctca

T RPKE,A(1k) = |2 Pr[b = b′] − 1|, where the probability is taken
over the random coins used by the challenger and A. We say that the TRPKE
scheme T RPKE is IND-CTCA secure if, for any probabilistic polynomial-time
adversary A, the function Adv ind-ctca

T RPKE,A(1k) is negligible in k.

2.4 IND-SCCA-TS Security

We define the security against malicious time servers, indistinguishability against
strong chosen ciphertext attacks for time server (IND-SCCA-TS security).

We formally describe the IND-SCCA-TS security for TRPKE scheme T RPKE
based on the following IND-SCCA-TS game between a challenger and adver-
sary A: The challenger takes a security parameter k, runs the setup algorithm
(tpk , tsk) = TR.Setup(1k) and the user key generation algorithm (upk∗, usk∗) =
TR.KGen(tpk). It gives the user’s public key upk∗ and the server’s public and
secret keys (tpk , tsk) to adversary A. Adversary A finally gives the challenger

Generic Construction of Strongly Secure TRPKE 329

two messages x0, x1 such that |x0| = |x1|, and a time period T ∗. The challenger
randomly chooses r ∈ {0, 1}tr .rlen(k) and b ∈ {0, 1}, computes a challenge cipher-
text c∗ = TR.Enc(tpk , T ∗, upk∗, xb; r), and gives it to adversary A. Adversary A
finally outputs a guess b′ ∈ {0, 1} and wins the game if b = b′. During the game,
adversary A can issue decryption queries (upk j , Tj, cj) to obtain the decrypted
message TR.Dec(tpk , sTj , uskj , cj) where sTj = TR.Release(tpk , tsk , Tj) and usk j

is the secret key corresponding to upk j . The decryption queries (upk j , Tj , cj)
must differ from (upk∗, T ∗, c∗) consisting of the user’s public key upk∗ given
at the beginning of game, the challenged time period T ∗ and the challenge
ciphertext c∗. We define the advantage of A in the IND-SCCA-TS game as
Adv ind-scca-ts

T RPKE,A(1k) = |2 Pr[b = b′] − 1|, where the probability is taken over the
random coins used by the challenger and A. We say that the TRPKE scheme
T RPKE is IND-SCCA-TS secure if, for any probabilistic polynomial-time adver-
sary A, the function Adv ind-cca-ts

T RPKE,A(1k) is negligible in k.

3 Construction of Timed-Release Public-Key Encryption

3.1 IBE-then-PKE Construction

Let PKE = (PKE.KGen, PKE.Enc, PKE.Dec) be a public-key encryption scheme,
and IBE = (IBE.Setup, IBE.Extract, IBE.Enc, IBE.Dec) be an identity-based en-
cryption scheme. Let hlen1(k), hlen2(k), ibe.rlen(k), pke.rlen(k) and tr .rlen(k)
are polynomials in k. Let Hh1 be a hash function from {0, 1}∗ to {0, 1}ibe.rlen(k),
and Hh2 be also a hash function from {0, 1}∗ to {0, 1}pke.rlen(k), such that
hlen1(k) = ibe.rlen(k) and hlen2(k) = pke.rlen(k).

We assume that the PKE scheme, the IBE scheme and the hash function
can handle inputs of arbitrary length. The assumptions for the PKE and IBE
schemes are reasonable because most practical schemes can be transformed into
the ones allowing arbitrary length input, by using the Fujisaki-Okamoto integra-
tion [18,25]. We also assume that k can be derived from pk or params as well as
in most IBE and PKE schemes.

The proposed timed-release public-key encryption scheme T RPKE =
(TR.Setup, TR.KGen, TR.Release, TR.Enc, TR.Dec) is constructed as follows.

Setup TR.Setup: The input is 1k (k is a security parameter).
Step 1: Run IBE.Setup on input 1k to generate (params ,msk).
Step 2: Randomly choose indices h1 ∈ {0, 1}ilen1(k) and h2 ∈ {0, 1}ilen2(k).
Step 3: Set tpk = (params , h1, h2) and tsk = msk .Step 4: Return (tpk , tsk).

The output tpk is a time server’s public key of T RPKE , and the output tsk is
the corresponding time server’s secret key.

User Key Generation TR.KGen: The input is tpk .
Step 1: Parse tpk as (params .h1, h2) and derive the security parameter k from
params .
Step 2: Run PKE.KGen on input 1k to generate (pk , sk).
Step 3: Set upk = pk and usk = (pk , sk).
Step 4: Return (upk , usk).

330 A. Fujioka, Y. Okamoto, and T. Saito

The output upk is a user’s public key of T RPKE , and the output usk is the
corresponding user’s secret key.

Release TR.Release: The inputs are time server’s public and secret keys (tpk , tsk)
and a time period T .

Step 1: Parse tpk as (params , h1, h2).
Step 2: Run IBE.Extract(params , tsk , T) to obtain dT .
Step 3: Set sT = dT and return sT .

The output sT is a time signal at the time period T .

Encryption TR.Enc: The inputs are a time server’s public key tpk , a time
period T , a user’s public key upk(=pk), a message m, and a random string
r ∈ {0, 1}tr .rlen(k).

Step 1: Parse tpk as (params , h1, h2).
Step 2: Compute ċ = IBE.Enc(params , T, m||r; Hh1(pk ||T ||m||r)).
Step 3: Compute c̈ = PKE.Enc(pk , ċ; Hh2(pk ||T ||ċ)).
Step 4: Set c = c̈ and return c.

The output c is a ciphertext of m.

Decryption TR.Dec: The inputs are a time server’s public key tpk , a time signal
sT , a user’s secret key usk and a ciphertext c′.

Step 1: Parse tpk as (params , h1, h2).
Step 2: Parse usk as (pk , sk).
Step 3: Set c̈′ = c′.
Step 4: Compute ċ′ = PKE.Dec(sk , c̈′).
Step 5: Check whether c̈′ = PKE.Enc(pk , ċ′; Hh2(pk ||T ||ċ′)) holds,
and if it does not hold, return ⊥ and stop.
Step 6: Compute m′ = IBE.Dec(params , sT , ċ′).
Step 7: Check whether ċ′ = IBE.Enc(params , T, m′; Hh1(pk ||T ||m′)) holds,
and if it does not hold, return ⊥ and stop.
Step 8: Parse m′ as m′′||r′′.
Step 9: Return m′′.

The output m′′ is a decrypted message.

This completes the description of the proposed construction for TRPKE.

3.2 IND-CTCA Security

The following theorem holds for the security against malicious receivers of the
constructed TRPKE scheme T RPKE .

Theorem 1. Suppose that IBE is an IND-ID-CPA secure IBE scheme and that
PKE is an IND-CPA secure PKE scheme with γpke-pk-uniformity where γpke is
negligible in the security parameter k. Then, the constructed T RPKE is IND-
CTCA secure in the random oracle model.

Let IBE have γibe-uniformity. We note that γibe is negligible in k since IBE is
an IND-ID-CPA secure IBE scheme.

Generic Construction of Strongly Secure TRPKE 331

To prove that the T RPKE is IND-CTCA secure, we need to show that the
advantage Adv ind-ctca

T RPKE,A(1k) is negligible. We assume for contradiction that there
is a polynomial-time IND-CTCA adversary, A, for T RPKE with non-negligible
advantage. Then we show that with adversary A, a polynomial-time IND-ID-CPA
adversary, B, for IBE with non-negligible advantage can be constructed. The
existence of the constructed adversary for IBE contradicts the assumption, and
thus Theorem 1 is proved. We will give the detailed proof in the full paper.

Sketch of Proof.
We construct an IND-ID-CPA adversary, B, which uses A as a blackbox and also
simulates the challenger for adversary A in the IND-CTCA game and the random
oracles Hhi as follows.

Setup: The challenger in the IND-ID-CPA game for IBE runs IBE.Setup(1k),
obtains (params ,msk), and inputs params to B. Then B randomly chooses two
indices of hash functions h1, h2, and gives a time server’s public key tpk (=
(params , h1, h2)) to adversary A in the IND-CTCA game for T RPKE .

Hash queries: B responds to hash queries while maintaining two query-answer
lists Th1 and Th2 in the usual manner, except for the case that an Hh1 hash query
is (upk∗||T ∗||xb||rb). If B receives such an Hh1 query (upk∗||T ∗||xb||rb) for some
b ∈ {0, 1}, B stops A and, without going to Guess, outputs the corresponding
b as an answer in the IND-ID-CPA game.

Release queries: For a release query, B uses the outer extraction oracle in the
IND-ID-CPA game.

Decryption queries: For a decryption query (upk j , Tj, cj), B searches the list
Th2 to find an entry (upk j ||Tj ||σ, τ) ∈ Th2 satisfying cj = PKE.Enc(upk j , σ; τ). If
such an entry is found, B searches the list Th1 to find an entry (upk j ||Tj||m||r, μ)
∈ Th1 satisfying σ = IBE.Enc(params , Tj, m||r; μ). If such an entry is found, B
answers m to A. Otherwise B returns ⊥.

Challenge: For two messages (x0, x1), a time period T ∗ and a user’s public
key upk∗ to be challenged, B randomly chooses r0, r1 and passes two messages
(x0||r0, x1||r1) and the identity T ∗ to the challenger for the IND-ID-CPA game.
The challenger randomly chooses b ∈ {0, 1} and r∗ ∈ {0, 1}ibe.rlen(k), creates a
challenge ciphertext ċ∗ = IBE.Enc(params , T ∗, xb||rb; r∗) and returns ċ∗ to B. B
creates c̈∗ = PKE.Enc(upk∗, ċ∗; Hh2(upk∗||T ∗||ċ∗)) and returns c∗ (= c̈∗) to A as
a challenge ciphertext of T RPKE .

Guess: A outputs b′ as an answer to the challenge in the IND-CTCA game. Then,
B receives b′ and outputs it as B’s answer to the challenge in the IND-ID-CPA
game.

We note that, while B does not know only the correct hash value r∗ for
(upk∗||T ∗||xb||rb) (i.e., r∗ = Hh1(upk∗||T ∗||xb||rb)) in the generation of challenge
ciphertext, B can independently choose hash values for all hash queries except
for the Hh1 hash query (upk∗||T ∗||xb||rb).

332 A. Fujioka, Y. Okamoto, and T. Saito

We observe the simulation for the hash queries in the IND-CTCA game. If
A makes an Hh1 query (upk∗||T ∗||xb||rb) coincident with (upk∗||T ∗||x0||r0) or
(upk∗||T ∗||x1||r1), B stops the simulation and judges the corresponding b to
be equal the random coin flipped by the challenger. Intuitively speaking, this
judgment is correct with high probability because, if the challenger chooses b,
A does not see x′

b
= IBE.Enc(params , T ∗, xb||rb; Hh1(upk∗||T ∗||xb||rb), then A’s

view is independent of the random rb for generating x′
b
. Thus the probability

that A guesses rb ∈ {0, 1}tr .rlen(k) and asks (upk∗||T ∗||xb||rb) as an Hh1 query
is not over 2−tr .rlen(k).

We observe the simulation for the decryption queries in the IND-CTCA game.
We recall that in the IND-CTCA game, the decryption query (upk j , Tj, cj) must
differ from (upk∗, T ∗, c∗).

In the case that there exist entries (upk j ||Tj ||σ, τ) ∈ Th2 , (upk j ||Tj ||m||r, μ) ∈
Th1 such that cj = PKE.Enc(upk j , σ; τ) and σ = IBE.Enc(params , Tj, m||r; μ) for
a decryption query (upk j , Tj, cj), the check equations in Step 5 and Step 7 of
TR.Dec hold. Thus B’s answer m is correct and the simulation is perfect.

In the case that there exists no entry (upk j ||Tj ||σ, τ) ∈ Th2 such that cj =
PKE.Enc(upk j , σ; τ) for a decryption query (upk j , Tj, cj), B is designed to an-
swer ⊥. Since PKE has γpke-pk-uniformity and is γpke-uniform for upk j , the
probability that this simulation is incorrect is not over γpke.

In the case that there exist an entry (upk j ||Tj||σ, τ) ∈ Th2 such that cj =
PKE.Enc(upk j , σ; τ), but no entry (upk j ||Tj||m||r, μ) ∈ Th1 such that σ =
IBE.Enc(params , Tj, m||r; μ) for a decryption query (upk j , Tj, cj), B is designed
to answer ⊥. The probability that this simulation is incorrect is not over γibe

where the IBE scheme has γibe-uniformity.
Consequently, since γpke and γibe are negligible, the whole simulation succeeds

with overwhelming probability.
Note that the proof uses the assumption that the PKE scheme has γpke-pk-

uniformity where γpke is negligible but not the IND-CPA security of the PKE
scheme.

3.3 IND-SCCA-TS Security

The following theorem holds for the security against malicious time servers of
the constructed TRPKE scheme T RPKE .

Theorem 2. Suppose that IBE is an IND-ID-CPA secure IBE scheme and that
PKE is an IND-CPA secure PKE scheme with γpke-pk-uniformity where γpke is
negligible in the security parameter k. Then, the constructed T RPKE is IND-
SCCA-TS secure in the random oracle model.

Let IBE have γibe-uniformity. We note that γibe is negligible in k since IBE
is an IND-ID-CPA secure IBE scheme.

To prove that this T RPKE is IND-SCCA-TS secure, we need to show that
the advantage Adv ind-scca-ts

T RPKE,A(1k) is negligible. We assume for contradiction that
there is a polynomial-time IND-SCCA-TS adversary, A, for T RPKE with non-
negligible advantage. Then we show that with adversary A, a polynomial-time

Generic Construction of Strongly Secure TRPKE 333

IND-CPA adversary, C, for PKE with non-negligible advantage can be con-
structed. The existence of the constructed adversary for PKE contradicts the
assumption, an thus Theorem 2 is proved. We will give the detailed proof in
the full paper.

Sketch of Proof.
We construct an IND-CPA adversary, C, which uses A as a blackbox and also
simulates the challenger for adversary A in the IND-SCCA-TS game and the
random oracles Hhi as follows.

Setup: The challenger in the IND-CPA game for PKE runs PKE.KGen(1k) to
obtain (pk , sk), and inputs pk to C. Then C runs IBE.Setup(1k) to obtain
(params ,msk), randomly chooses two indices of hash functions h1, h2, and gives
a time server’s public key tpk (= (params , h1, h2)), a time server’s secret key
tsk(=msk) and a user’s public key upk∗(=pk) to adversary A in the
IND-SCCA-TS game for T RPKE .

Hash Queries: C responds to hash queries while maintaining two query-answer
lists Th1 and Th2 in the usual manner, except for the case that an Hh2 hash
query is (upk∗||T ∗||x′

b). If C receives such an Hh2 query (upk∗||T ∗||x′
b) for some

b ∈ {0, 1}, C stops A and, without going to Guess, outputs the corresponding
b as an answer in the IND-CPA game.

Decryption Queries: For a decryption query (upk j , Tj, cj), C searches the list
Th2 to find an entry (upk j ||Tj ||σ, τ) ∈ Th2 satisfying cj = PKE.Enc(upk j , σ; τ). If
such an entry is found, C searches the list Th1 to find an entry (upk j ||Tj||m||r, μ)
∈ Th1 satisfying σ = IBE.Enc(params , Tj, m||r; μ). If such an entry is found, C
answers m to A. Otherwise C returns ⊥.

Challenge: For two messages (x0, x1) and a time period T ∗ to be challenged
in the IND-SCCA-TS game, C randomly chooses r0 and r1 to compute x′

b =
IBE.Enc(params , T ∗, xb||rb; Hh1(upk∗||T ∗||xb||rb)) (b ∈ {0, 1}), and passes the
two messages (x′

0, x
′
1) to the challenger for the IND-CPA game for PKE . The

challenger randomly chooses b ∈ {0, 1} and r∗ ∈ {0, 1}pke.rlen(k), creates a chal-
lenge ciphertext c̈∗ = PKE.Enc(upk∗, x′

b; r
∗) and returns c̈∗ to C. C returns

c∗ (= c̈∗) to A as a challenge ciphertext of T RPKE .

Guess: A outputs b′ as an answer to the challenge in the IND-SCCA-TS game.
Then, C receives b′ and outputs it as C’s answer to the challenge in the IND-CPA
game.

We note that, while C does not know only the correct hash value r∗ for
(upk∗||T ∗||x′

b) (i.e., r∗ = Hh2(upk∗||T ∗||x′
b)) in the generation of challenge ci-

phertext, C can independently choose hash values for all hash queries except for
the Hh2 hash query (upk∗||T ∗||x′

b).
We observe the simulation for the hash queries in the IND-SCCA-TS game.

If A makes an Hh2 query (upk∗||T ∗||x′
b) coincident with either (upk∗||T ∗||x′

0)
or (upk∗||T ∗||x′

1), C stops the simulation and judges the corresponding b to

334 A. Fujioka, Y. Okamoto, and T. Saito

be equal the random coin flipped by the challenger. Intuitively speaking, this
judgment is correct with high probability because, if the challenger chooses b,
A does not see x′

b
= IBE.Enc(params , T ∗, xb||rb; Hh1(upk∗||T ∗||xb||rb), then A’s

view is independent of the random rb for generating x′
b
. Thus, when we let S =

{y|y = IBE.Enc(params , T ∗, xb||r; Hh1 (upk∗||T ∗||xb||r)), r ∈ {0, 1}tr .rlen(k)}, the
probability that A guesses x′

b
∈ S and asks (upk∗||T ∗||x′

b
) as an Hh2 query is

not over 2−tr .rlen(k).
We observe the simulation for the decryption queries in the IND-SCCA-TS

game. We recall that the decryption query (upk j , Tj, cj) must differ from
(upk∗, T ∗, c∗) in the IND-SCCA-TS game.

In the case that there exist entries (upk j ||Tj ||σ, τ) ∈ Th2 , (upk j ||Tj ||m||r, μ) ∈
Th1 such that cj = PKE.Enc(upk j , σ; τ) and σ = IBE.Enc(params , Tj , m||r; μ)
for a decryption query (upk j , Tj, cj), the check equations in Step 5 and Step 7
of TR.Dec hold. Thus C’s answer m is correct and the simulation is
perfect.

In the case that there exists no entry (upk j ||Tj ||σ, τ) ∈ Th2 such that cj =
PKE.Enc(upk j , σ; τ) for a decryption query (upk j , Tj, cj), C is designed to an-
swer ⊥. Since PKE has γpke-pk-uniformity and is γpke-uniform for upk j , the
probability that this simulation is incorrect is not over γpke.

In the case that there exist an entry (upk j ||Tj||σ, τ) ∈ Th2 such that cj =
PKE.Enc(upk j , σ; τ), but no entry (upk j ||Tj||m||r, μ) ∈ Th1 such that σ =
IBE.Enc(params , Tj, m||r; μ) for a decryption query (upk j , Tj, cj), C is designed
to answer ⊥. The probability that this simulation is incorrect is not over γibe

where the IBE scheme has γibe-uniformity.
Consequently, since γpke and γibe are negligible, the whole simulation succeeds

with overwhelming probability.
Note that the proof uses the assumption that the IBE scheme has γibe-

uniformity where γibe is negligible and this comes from the IND-ID-CPA security
of the IBE scheme.

4 Conclusion

We provided a generic construction of TRPKE, the IBE-then-PKE construction,
based on IBE and PKE schemes. The resulting TRPKE scheme satisfies both
IND-CTCA and IND-SCCA-TS security in the random oracle model if the com-
ponent IBE scheme is IND-ID-CPA secure and the component PKE scheme is
IND-CPA secure with negligible γ-pk-uniformity. The proposed construction is
the first generic one for TRPKE that guarantees strong security, i.e., both IND-
CTCA and IND-SCCA-TS security. We conclude by listing several open problems
for further research:

– Can we have a provably secure construction in the standard model?
– Is it possible to remove the restriction on invalid public keys?4

4 Robustness encryption [1] may solve this problem.

Generic Construction of Strongly Secure TRPKE 335

Acknowledgments. We would like to thank Fumitaka Hoshino for his comment
on the re-encryption attack with a replaced public key and Ryo Kikuchi for his
comment on invalid public keys in preliminary version of this paper. We also
would like to thank anonymous referees for their comments that helped us to
improve this paper.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust Encryption. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: 1st ACM Conference on Computer and Communications
Security, pp. 62–73. ACM, New York (1993)

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Bel-
lare, M. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-Interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

7. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved Anonymous Timed-
Release Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 311–326. Springer, Heidelberg (2007)

8. Chan, A.C.-F., Blake, I.F.: Scalable, Server-Passive, User-Anonymous Timed Re-
lease Public Key Encryption from Bilinear Pairing. In: 25th International Confer-
ence on Distributed Computing Systems, pp. 504–513. IEEE, Los Alamitos (2005),
full version of this paper, http://eprint.iacr.org/2004/211

9. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006), full version of this paper
http://eprint.iacr.org/2004/231

10. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Provably Secure Timed-Release
Public Key Encryption. ACM Trans. Inf. Syst. Secur. 11(2), 1–44 (2008)

11. Chow, S.S.M., Roth, V., Rieffel, E.G.: General Certificateless Encryption and
Timed-Release Encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 126–143. Springer, Heidelberg (2008)

12. Chow, S.S.M., Yiu, S.-M.: Timed-Release Encryption Revisited. In: Baek, J., Bao,
F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 38–51. Springer,
Heidelberg (2008)

13. Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Models.
Int. J. Inf. Sec. 7(5), 349–377 (2008)

14. Dent, A.W., Tang, Q.: Revisiting the Security Model for Timed-Release Encryption
with Pre-open Capability. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)

http://eprint.iacr.org/2004/211
http://eprint.iacr.org/2004/231

336 A. Fujioka, Y. Okamoto, and T. Saito

15. Dodis, Y., Katz, J.: Chosen-Ciphertext Security of Multiple Encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

16. Fujioka, A., Okamoto, Y., Saito, T.: Security of Sequential Multiple Encryption.
In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212,
pp. 20–39. Springer, Heidelberg (2010)

17. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999)

18. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 537–554. Springer, Heidelberg (1999)

19. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

20. Hristu-Varsakelis, D., Chalkias, K., Stephanides, G.: Low-Cost Anonymous Timed-
Release Encryption. In: 3rd International Symposium on Information Assurance
and Security, pp. 77–82. IEEE, Los Alamitos (2007); An extended version of this
paper appears in Journal of Information Assurance and Security 3(1), 80–88 (2008)

21. Libert, B., Quisquater, J.-J.: On Constructing Certificateless Cryptosystems from
Identity Based Encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 474–490. Springer, Heidelberg (2006)

22. Matsuda, T., Nakai, Y., Matsuura, K.: Efficient Generic Constructions of Timed-
Release Encryption with Pre-open Capability. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 225–245. Springer, Heidelberg (2010)

23. Nakai, Y., Matsuda, T., Kitada, W., Matsuura, K.: A Generic Construction of
Timed-Release Encryption with Pre-open Capability. In: Takagi, T., Mambo, M.
(eds.) IWSEC 2009. LNCS, vol. 5824, pp. 53–70. Springer, Heidelberg (2009)

24. Paterson, K.G., Quaglia, E.A.: Time-Specific Encryption. In: Garay, J.A., De
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)

25. Yang, P., Kitagawa, T., Hanaoka, G., Zhang, R., Matsuura, K., Imai, H.: Applying
Fujisaki-Okamoto to Identity-Based Encryption. In: Fossorier, M., Imai, H., Lin, S.,
Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 183–192. Springer, Heidelberg
(2006)

26. Zhang, R., Hanaoka, G., Shikata, J., Imai, H.: On the Security of Multiple En-
cryption or CCA-security+CCA-security=CCA-security? In: Bao, F., Deng, R.H.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 360–374. Springer, Heidelberg
(2004)

Identity-Based Server-Aided Decryption�

Joseph K. Liu, Cheng Kang Chu, and Jianying Zhou

Institute for Infocomm Research
Singapore

{ksliu,ckchu,jyzhou}@i2r.a-star.edu.sg

Abstract. Identity-Based Cryptosystem plays an important role in the
modern cryptography world, due to the elimination of the costly cer-
tificate. However, all practical identity-based encryption schemes require
pairing operation in the decryption stage. Pairing is a heavy mathemat-
ical algorithm, especially for resource-constrained devices such as smart
cards or wireless sensors. In other words, decryption can hardly be done
in these devices if identity-based cryptosystem is employed. We solve this
problem by proposing a new notion called Identity-Based Server-Aided
Decryption. It is similar to normal identity-based encryption scheme, but
it further enables the receiver to decrypt the ciphertext without need-
ing to compute pairing with the assistance of an external server. Secure
mechanisms are provided to detect whether the server has computed
correctly and prevent the server from getting any information about the
plaintext or the user secret key. We give two concrete instantiations of
this notion.

1 Introduction

The Motivation. Since the introduction of Identity-Based Cryptosystem by
Shamir [12] in 1984, people tried to find a practical way to implement Identity-
Based Encryption (IBE) scheme. It was not invented until Boneh and Franklin
[1] proposed a pairing based practical IBE scheme in 2001. Since then, further
IBEs were proposed. They have great improvement over efficiency and security.
However, all existing practical IBEs require pairing, at least in the decryption
stage. Non-pairing based IBEs such as [7,2] are inefficient to be used. They can
only encrypt a single bit at one time. Thus they are only of theoretical interest.

Although pairing can facilitate the implementation of practical IBE, the main
drawback is the heavy computation requirement. Resource-constrained devices
such as wireless sensors or smart cards are inefficient, or even unable to execute
pairing algorithm. That makes them impossible to decrypt a ciphertext if the
underlying infrastructure is Identity-Based Cryptosystem.

The Concept. In this paper, we introduce a new notion called Identity-Based
Server-Aided Decryption (IBSAD). There is no difference between an IBE and
� The work is supported by A*STAR project SEDS-0721330047.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 337–352, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

338 J.K. Liu, C.K. Chu, and J. Zhou

IBSAD in the encryption process. On the other side, there is an additional
server which helps the receiver to decrypt the ciphertext. The receiver delegates
a special key to the server and sends (part of) the ciphertext to the server. It
generates a token after executing all necessary pairing computations and sends
the token back to the receiver. Finally the receiver computes the plaintext from
his own secret key and this token, without needing to compute any pairing.

One may worry that the server will have too much power. The worry may fall
into two sides. First, does the server know any information about the plaintext
or the user secret key? Second, if the server wrongly generates a token (instead
of computing it according to the algorithm), does the receiver be aware of this
cheating behaviour? Our scheme can protect the receiver in both aspects. Al-
though the server gets the delegated secret key, it gives no additional information
about the plaintext or the user secret key. Besides, the receiver can also check
whether the server has computed the token correctly.

Applications. This can be very useful in many applications. For example, in the
case of smart card, the card itself has only very limited resource. It may not be
able to execute heavy computation such as pairing. It may need to rely on some
third parties, such as smart card readers, to assist for any expensive algorithm.
If Identity-Based Cryptosystem is used for the infrastructure, that means the
smart card cannot carry out any decryption of ciphertext by itself. It will widely
limit the applications of smart card. Our IBSAD provides an excellent solution
for this deadlock, by delegating the card reader for some heavy computation
part, yet the smart card itself does not leak any secret information.

The outcome is more conspicuous in the case of a mobile phone SIM card.
Nowadays many people are using smart phones, such as iPhone or Android
phones. These phones are no longer just a mobile phone, but a small computer
with 1GHz CPU and 16G internal storage. On the other side, the SIM card inside
is still a SIM card. Most of the computations are still executed by the phone
instead of the SIM card itself. Previously if it needs to decrypt a ciphertext, the
easiest way is to decrypt the ciphertext within the SIM card. However, the SIM
card has only very limited resource. On the other side, it is impossible to give
the secret key to the mobile phone as the phone is regarded as an untrusted
party. In order to carry out faster decryption, or decryption for large ciphertext
in a secure way, our IBSAD can be a suitable solution.

Another application scenario is wireless sensor network. A wireless sensor
has only very limited resource. A signature generation or encryption process is
just enough to be executed by a sensor. An asymmetric decryption process is
too heavy respectively. It is generally believed that a sensor may not carry out
asymmetric decryption as it is insecure to give its secret key for the surrounding
party for computation. Although sensors can carry out symmetric decryption, it
takes additional key exchange process for both parties to establish a session key.
Moreover, sensors may receive ciphertext from different parties or base stations.
In this way, the symmetric encryption is not suitable, as it may take a number
of key exchange processes. Asymmetric encryption is the only possible solutions
in this scenario. By using our IBSAD, it can facilitate the secure asymmetric

Identity-Based Server-Aided Decryption 339

decryption process by delegating a special key to any third party without leaking
any secret information. This greatly increases the security level and efficiency of
the entire wireless sensor network.

1.1 Related Works

Although there exist some IBEs that can be splitted into online and offline stage
for encryption [9,11,6,5], where the online stage does not require any heavy com-
putation, they do not differ with normal IBEs in the decryption stage. Pairing
is still required. So far there is no practical IBE that does not require pairing
for the decryption stage. However, there exists some pairing delegation protocols
[10,13,4] that allows a third party to compute the pairing part of an algorithm.
We can apply these protocols in any IBE for the decryption part, so that pairing
can be eliminated for the receiver. In terms of functionality and security, they
can achieve the same level as our IBSAD. Nevertheless, these protocols are for
generic purpose. Namely, they can be used in signature verification, IBE de-
cryption, authenticated key exchange etc. Thus the efficiency is far behind our
IBSAD. In order to save 1 pairing, they require to have at least 4 additional ex-
ponentiations. Although exponentiation is not as expensive as pairing in terms
of computation complexity, it is also desirable to be reduced as much as possible.
In contrast, our scheme just requires 1 exponentiation to replace 1 pairing.

1.2 Contribution

In this paper, we propose a new notion called Identity-Based Server-Aided De-
cryption (IBSAD). It is similar to normal IBE, but it further enables the receiver
to decrypt the ciphertext without needing to compute pairing with the assistance
of an external server. We provide secure mechanism to detect whether server has
computed correctly. Furthermore, the server knows nothing about the plaintext
or the user secret key.

We provide two efficient implementations. The first one is based on Gentry’s
IBE [8] which is proven secure in the standard model. The second implementation
is based on Boneh-Franklin’s IBE [1]. It is very efficient in the decryption stage,
while the security can be proven in the random oracle model.

2 Definitions

2.1 Pairings and Related Intractability Assumption

Let G and GT be two multiplicative cyclic groups of prime order q. Let g be a
generator of G. We define e : G × G → GT to be a bilinear pairing if it has the
following properties:

1. Bilinearity: For all u, v ∈ G, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g)
= 1.
3. Computability: It is efficient to compute e(u, v) for all u, v ∈ G.

340 J.K. Liu, C.K. Chu, and J. Zhou

We define the truncated decision q-ABDHE problem [8] as follows:

Definition 1 (Truncated Decision q-Augmented Bilinear Diffie-Hellman
Exponent Assumption (q-ABDHE)). Given a vector of q + 3 elements:(

g̃, g̃(α)q+2
, g, gα, g(α)2 , . . . , g(α)q) ∈ Gq+3

and an element Z ∈ GT as input, output 1 if Z = e(g(α)q+1
, g̃) and output 0

otherwise. We say that the decision (t, ε, q)-ABDHE assumption holds in (G, GT)
if no t-time algorithm has advantage at least ε over random guessing in solving
the decision q-ABDHE problem in (G, GT).

2.2 Building Blocks

We introduce two building blocks used in our schemes:

1. An IND-CCA secure symmetric encryption scheme.

The IND-CCA security of a symmetric encryption scheme SEκ =
(SEnc, SDec) with key length κ is captured by defining the advantage of
an adversary A as

AdvCCA
A,SE(λ) = 2 · Pr[β′ = β : K ∈R {0, 1}κ; β ∈R {0, 1};

β′ ← ASEncK ,SDecK ,ChalK,β (1λ)] − 1.

In the above, ChalK,β(m0, m1) returns SEncK(mβ). Moreover, A is allowed
to issue only one query to the Chal oracle, and is not allowed to query
SDecK on the ciphertext returned by it. The symmetric encryption scheme
is IND-CCA secure if AdvCCA

SE (λ) = maxA{AdvCCA
A,SE(λ)} is negligible for any

adversary A.
2. A secure key derivation function.

A key derivation function D : GT → {0, 1}κ on a random input outputs
a κ-bit string which is computationally indistinguishable from a random
string. We define the advantage of an adversary A in distinguishing two
distributions as

AdvKDF
A,D (λ) = Pr[A(1λ, D(x)) = 1] − Pr[A(1λ, r) = 1]

where x ∈ GT , r ∈R {0, 1}κ and λ is the security parameter determining κ.
So the key derivation function is KDF-secure if AdvKDF

D (λ) =
maxA{AdvKDF

A,D (λ)} is negligible for any adversary A.

2.3 Framework of ID-Based Server-Aided Decryption

An ID-based Server-Aided Decryption (IBSAD) scheme is the same as an ordi-
nary IBE, except with the additional of an (untrusted) server for the processing
of part of the decryption. It consists of the following six probabilistic polynomial
time (PPT) algorithms:

Identity-Based Server-Aided Decryption 341

– (param, msk) ← Setup(1λ) takes a security parameter λ ∈ N and generates
param the global public parameters and msk the master secret key of the
KGC.

– skID ← Extract(1λ, param, msk, ID) takes a security parameter λ, a global
parameters param, a master secret key msk and an identity ID to generate a
user secret key skID corresponding to this identity.

– C ← Encrypt(1λ, param, m, ID) takes a security parameter λ, a global param-
eters param, a message m, an identity ID to generate a ciphertext C.

– (dskID, dpkID) ← DelegatedKeyGen(1λ, param, skID) takes a security parame-
ter λ, a global parameters param and a user secret key skID to generate a
delegated secret key dskID and a delegated public key dpkID. The delegated
secret key should be kept secret together with the user secret key, while the
delegated public key should be given to the server for further processing.

– T ← DelegatedCompute(1λ, param, dpkID, C′) takes a security parameter λ,
a global parameters param, a delegated public key dpkID, and a subset of
ciphertext C′ ⊆ C to generate a delegated token T.

– (m/ ⊥) ← LightDecrypt(1λ, param, C, T, skID, dskID) takes a security param-
eter λ, a global parameters param, a ciphertext C, a delegated token T, a
secret key of the receiver skID and a delegated secret key dskID to generate
a message m or ⊥ which indicates the failure of decryption. Note that the
failure of decryption may due to the malformation of the original plaintext,
or the misbehaviour of the server.1

For simplicity, we omit the notation of 1λ and param from the input arguments
of the above algorithms in the rest of this paper.

2.4 Security of ID-Based Server-Aided Decryption

Next we define the security of IBSAD. It has two kinds of security:

1. The first one is very similar to normal CCA or CPA of normal IBE, except
that the adversary is allowed to have the delegated public key of the chal-
lenged identity. It is to model the untrusted server which tries to distinguish
the plaintext given the delegated public key.

Definition 2 (Chosen Ciphertext Security (CCA)). An IBSAD
scheme is semantically secure against chosen ciphertext insider attack
(IND − ID − CCA) if no PPT adversary has a non-negligible advantage in
the following game:
(a) The challenger C runs Setup and gives the resulting param to adversary

A. It keeps msk secret.
(b) In the first stage, A makes a number of queries to the following oracles

simulated by C. Note that without loss of generality, we assume C per-
forms DelegatedKeyGen for each ID once only and maintains a list of the
form (ID, dskID, dpkID) for consistence.

1 We do not require the receiver to distinguish between these two cases. Yet the receiver
is able to do so, if he computes the token and decrypt the original ciphertext by
himself.

342 J.K. Liu, C.K. Chu, and J. Zhou

i. OExt(·): A submits an identity ID to the extraction oracle for (skID,
dskID, dpkID) where skID ← Extract(msk, ID) and (dskID, dpkID) ←
DelegatedKeyGen(skID).

ii. OEdpk(·): A submits an identity ID to the dpk extraction oracle
for dpkID from the result of DelegatedKeyGen(skID) where skID ←
Extract(msk, ID).

iii. ODec(·, ·, ·): A submits a ciphertext C, a receiver identity ID and a
token T to the decryption oracle for the result of LightDecrypt(C, T,
skID, dskID) where (dskID, dpkID) ← DelegatedKeyGen(skID) and skID

← Extract(msk, ID). The result is made of a message if the decryption
is successful. Otherwise, a symbol ⊥ is returned for rejection.

These queries can be asked adaptively. That is, each query may depend
on the answers of previous ones.

(c) A produces two messages m0, m1 and an identity ID∗ where ID∗ is not
queried to the extraction oracle before. C chooses a random bit b ∈ {0, 1}
and sends an encrypted ciphertext C∗ = Encrypt(mb, ID∗). C∗ to A.

(d) A makes a number of new queries as in the first stage with the restriction
that it cannot query the extraction oracle with ID∗ and the decryption
oracle with (C∗, ID∗, ·).

(e) At the end of the game, A outputs a bit b′ and wins if b′ = b.
An IBSAD scheme is (t, ε, qID, qC) IND − ID − CCA secure if all t-time IND
−ID − CCA adversaries making at most qID extraction oracle queries and at
most qC decryption queries have advantage at most ε in winning the above
game.

There is another weaker version of security, the Chosen Plaintext Security
(CPA). It is the same as CCA, except there is no decryption oracle in the
CPA game.

2. The second is Detectability. It is to make sure that the user can detect if the
server computes wrongly. The definition is given below.

Definition 3. An IBSAD scheme is detectable if no PPT adversary has a
non-negligible advantage in the following game:
(a) The challenger C runs Setup, Extract, Encrypt, DelegatedKeyGen accord-

ing to the algorithm to obtain skID, dskID, dpkID, C.
(b) C gives C′, dpkID to the adversary A where C′ ⊆ C. C also runs

DelegatedCompute(dpkID, C′) to obtain T.
(c) A produces a token T′. A wins if

i. T
= T′, and
ii. ⊥
= LightDecrypt(C, T′, skID, dskID).

A’s advantage is defined as AdvDetect(A) = Pr[A wins].

3 CCA-Secure ID-Based Server-Aided Decryption
scheme from Gentry’s IBE

Our scheme presented in this section is based on Gentry’s IBE [8]. Note that the
Setup and Extract algorithms are the same as Gentry’s.

Identity-Based Server-Aided Decryption 343

3.1 Construction

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. The scheme works as follows.

Setup: The KGC picks random generators g, h1, h2, h3 ∈ G and a random α ∈ Zp.
It sets g1 = gα ∈ G. It chooses a hash function H from a family of universal
one-way hash functions, where H : {0, 1}∗ → Zp, an IND-CCA secure symmetric
encryption scheme SEκ = (SEnc, SDec) with key length κ and a KDF-secure key
derivation function D : GT → {0, 1}κ. The public param and master secret key
msk are given by

param = (g, g1, h1, h2, h3, H, SE, D) msk = α

Extract: To generate a secret key for a user with identity ID ∈ Zp, the KGC
generates random rID,i ∈ Zp for i ∈ {1, 2, 3}, and outputs the user secret key

skID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}, where hID,i =
(
hig

−rID,i
) 1

α−ID

If ID = α, the KGC aborts. We require that the KGC always use the same
random value {rID,i} for ID.

Encrypt: To encrypt a message m ∈ {0, 1}�m for some security length �m using
identity ID ∈ Zp, the sender generates random s ∈ Zp, k ∈ GT and sends the
ciphertext

C =
(
gs
1g

−s·ID , e(g, g)s , k · e(g, h1)−s , e(g, h2)se(g, h3)sβ , SEncD(k)(m)
)

Above, for C = (u, v, w, y, z), we set β = H(u, v, w). Encryption does not require
any pairing computations once e(g, g) and {e(g, hi)} have been pre-computed or
alternatively included in param.

DelegatedKeyGen: To generate a delegated key pair from the secret key skID, the
user randomly generates x̂, x̂′ ∈ Zp and outputs

dskID = {x̂, x̂′} and dpkID = {xID,i : i ∈ {1, 2, 3}}
where

xID,1 = (hID,1)x̂ , xID,2 = (hID,2)x̂
′
, xID,3 = (hID,3)x̂

′

dpkID is sent to the server while dskID is kept secret. We require that the user
always uses the same random value {x̂, x̂′} for dskID.

DelegatedCompute: On upon the recevied ciphertext C′ = (u, v, w) ⊂ C, the
receiver computes β = H(u, v, w) and sends (u, β) to the server for delegated
computation. The server computes

T1 = e(u, xID,2(xID,3)β), T2 = e(u, xID,1)

and outputs T = (T1, T2) to the user.

344 J.K. Liu, C.K. Chu, and J. Zhou

LightDecrypt: To decrypt a ciphertext C = (u, v, w, y, z) using the secret key
skID, delegated secret key dskID and the delegated token T, the user computes
the following steps:

1. Sets β = H(u, v, w).

2. Tests whether y = T
1/x̂′

1 vrID,2+rID,3β . If the check fails, outputs ⊥.

3. Computes k = w · T 1/x̂
2 vrID,1 .

4. Outputs SDecD(k)(z).

Note that SDecD(k)(z) will output ⊥ if a different key K ′
= D(k) is used for the
symmetric encryption of the plaintext.

3.2 Security Analysis

We now prove that our scheme is IND − ID − CCA secure under the truncated
decision q-ABDHE assumption. We follow the approach from [8].

Theorem 1. Assume the truncated decision (t, ε, q)-ABDHE assumption holds
for (G, GT , e). Then the above IBSAD scheme is (t′, ε′, qID, qC) IND − ID − CCA
secure for t′ = t−O(texp · q2), ε′ = ε + 4qC/p and q = qID + 2, where texp is the
time required to compute exponentiation in G.

Proof. Let A be an adversary that (t′, ε′, qID, qC)-breaks the IND − ID − CCA
security. We construct an algorithm B, that solves the truncated decision q-
ABDHE problem. B takes as input a random truncated decision q-ABDHE
challenge (g′, g′q+2, g, g1, . . . , gq, Z), in which Z is either e(gq+1, g

′) or a random

element of GT , where we use gi and g′i to denote g(αi) and g′(α
i). Algorithm B

proceeds as follows.

Setup: B generates random polynomials fi(x) ∈ Zp[x] of degree q for i ∈ {1, 2, 3}.
It sets hi = gfi(x). It also chooses a hash function H , an IND-CCA secure
symmetric encryption scheme SE and a KDF-secure key derivation function
D. It sends the public param (g, g1, h1, h2, h3, H, SE, D) to A. Since g, α and
fi(x) for i ∈ {1, 2, 3} are chosen uniformly at random, h1, h2, h3 are uniformly
random and the public key has a distribution identical to that in the actual
construction.

Oracle Simulation:

1. Extraction Oracle OExt(·): B responds to a query on ID ∈ Zp as follows. If
ID = α, B uses α to solve the truncated decision q-ABDHE immediately.
Otherwise, to generate a pair (rID,i, hID,i) for i ∈ {1, 2, 3} such that hID,i =
(hig

−rID,i)1/(α+ID), B sets rID,i = fi(ID) and computes hID,i = gFID,i(α), where
FID,i(x) denote the (q − 1)-degree polynomial

fi(x) − fi(ID)
x − ID

Identity-Based Server-Aided Decryption 345

This is a valid secret key for ID, since

gFID,i(α) = g(fi(α)−fi(ID))/(α−ID) = (hig
−rID,i)1/(α+ID)

B also generates (dskID, dpkID) according to the algorithm. It maintains a
list for the record of (ID, skID, dskID, dpkID). It outputs (skID, dskID, dpkID) as
the response to the query.

2. dpk Extraction Oracle OEdpk(·): To respond to a dpk extraction oracle query
on ID, B checks the list whether ID has been queried before. If yes, it returns
the value dpkID. Otherwise, it executes the extract oracle and outputs dpkID.

3. Decryption Oracle ODec(·, ·, ·): To respond to a decryption oracle query on
(ID, C, T), B generates the secret key and delegated secret key as above. It
then decrypts C according to the algorithm.

Output: A outputs identities ID∗ and messages m0, m1. Let f ′(x) = xq+2 and
let

F ′
ID∗(x) =

f ′(x) − f ′(ID∗)
x − ID∗

which is a polynomial of degree q + 1. B computes a secret key {(rID∗,i, hID∗,i) :
i ∈ {1, 2, 3}} for ID∗. It randomly generates b ∈ {0, 1}, k ∈ GT and sets

u = g′f
′(α)−f ′(ID∗)

v = Z · e(g′,
q∏

j=0

g(F ′
ID∗,(j))·(αj))

w =
k

e(u, hID∗,1)vrID∗,1

y = e(u, hID∗,2hID∗,3
β)vrID∗,2+rID∗,3β

z = SEncD(k)(mb)

where F ′
ID∗,(j) is the coefficient of xj in F ′

ID∗(x) and β = H(u, v, w). It sends
(u, v, w, y, z) to A as the challenge ciphertext.

Let s = (logg g′)F ′
ID∗(α). If Z = e(gq+1, g

′), then

u = gs(α−ID∗)

v = e(g, g)s

k/w = e(u, hID∗,1)vrID∗,1 = e(g, h)s

Thus (u, v, w, y, z) is a valid ciphertext for mb under randomness s. Since logg g′

is uniformly random, s is uniformly random, and so (u, v, w, y, z) is a valid,
appropriately-distributed challenge to A.

Probability Analysis: If Z = e(gq+1, g
′), the simulation is perfect, and A will

guest the bits b correctly with probability 1/2+ ε′. Else, Z is uniformly random,
and thus (u, v) is uniformly random and independent element of G×GT . In this

346 J.K. Liu, C.K. Chu, and J. Zhou

case, the inequality v
= e(u, g)1/(α−ID∗) holds with probability 1 − 1/p. When
this inequality holds, the value of

e(u, hID∗,1
x̂)1/x̂vrID∗,1

= e(u, (hg−rID∗,1)1/(α−ID∗)vrID∗,1

= e(u, h)α−ID∗(v

e(u, g)1/(α−ID∗)

)rID∗,1

is uniformly random and independent from A’s view (except for the value w),
since rID∗,1 is uniformly random and independent from A’s view (except for the
value w). Thus w is uniformly random and independent, and (u, v, w, y, z) can
impart no information regarding the bit b.

Next, we need to show that the decryption oracle, in the simulation and in the
actual construction, rejects all invalid ciphertexts under identities not queried
by A, except with probability qc/p. This is exactly the proof of Lemma 1 and
Lemma 2 of [8]. We skip here and readers may refer to the proof there.

Time Complexity: In the simulation, B’s overhead is dominated by computing
gFID,i(α) in response to A’s key generation query on ID, where FID,i(x) are poly-
nomials of degree q − 1. Each such computation requires O(q) exponentiations
in G. Since A makes at most q − 1 such queries, t = t′ + O(texp · q2). ��
Theorem 2. The above IBSAD scheme is detectable.

Proof. Assume the adversary A outputs a token T′ = (T ′
1, T

′
2) which is not equal

to T = (T1, T2), the one generated according to the algorithm. There are two
cases, namely T ′

1
= T1 or T ′
2
= T2.

For case 1, we have

T ′
1
= T1

T ′
1
= e(u, xID,2(xID,3)β)

T ′
1
= e(u, (hID,2)x̂

′
(hID,3)x̂

′
β)

T ′
1
1/x̂′

vrID,2+rID,3β
= e(u, hID,2(hID,3)β) · e(g, g)s(rID,2+rID,3β)

T ′
1
1/x̂′

vrID,2+rID,3β
= e
(
gs
1g

−s·ID,
(
h2g

−rID,2
) 1

α−ID
(
h3g

−rID,3
) 1

α−ID ·β) · ·e(g, g)s(rID,2+rID,3β)

T ′
1
1/x̂′

vrID,2+rID,3β
= e
(
gs(α−ID), (h2g

−rID,2)(h3g
−rID,3)β

) 1
α−ID · e(g, g)s(rID,2+rID,3β)

T ′
1
1/x̂′

vrID,2+rID,3β
= e
(
gs, (h2g

−rID,2)(h3g
−rID,3)β

)
· e(g, g)s(rID,2+rID,3β)

T ′
1
1/x̂′

vrID,2+rID,3β
= e(gs, h2h
β
3) · e(gs, g−rID,2−rID,3β) · e(g, g)s(rID,2+rID,3β)

T ′
1
1/x̂′

vrID,2+rID,3β
= e(g, h2)s · e(g, h3)sβ

T ′
1
1/x̂′

vrID,2+rID,3β
= y

Thus LightDecrypt will output ⊥ as it fails the checking in step 2.

Identity-Based Server-Aided Decryption 347

For case 2, we have

T ′
2
= T2

T ′
2
= e(u, xID,1)

T ′
2
= e(u, hID,1

x̂)

w · T ′
2
1/x̂

vrID,1
= k · e(g, h1)−s · e
(
gs
1g

−s·ID,
(
h1g

−rID,1
) 1

α−ID

)
· e(g, g)srID,1

w · T ′
2
1/x̂

vrID,1
= k · e(g, h1)−s · e
(
gs(α−ID), h1g

−rID,1

) 1
α−ID · e(g, g)srID,1

w · T ′
2
1/x̂

vrID,1
= k · e(g, h1)−s · e(gs, h1g
−rID,1) · e(g, g)srID,1

w · T ′
2
1/x̂

vrID,1
= k · e(g, h1)−s · e(gs, h1) · e(gs, g−rID,1) · e(g, g)srID,1

w · T ′
2
1/x̂

vrID,1
= k

D(w · T ′
2
1/x̂

vrID,1)
= D(k)

Thus SDec will output ⊥, as D(w ·T ′
2
1/x̂

vrID,1) is not the key for the encryption.
��

4 CCA-Secure ID-Based Server-Aided Decryption
scheme from Boneh-Franklin’s IBE

Our scheme presented in this section is based on Boneh-Franklin’s IBE [1]. Note
that the Setup, Extract and Encrypt algorithms are the same as Boneh-Franklin’s.

4.1 Construction

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. The scheme works as follows.

Setup: The KGC picks random generators g ∈ G and a random s ∈ Zp. It sets
g1 = gs ∈ G. Let M = {0, 1}n be the message space. It chooses 4 hash functions:

H1 : {0, 1}∗ → G

H2 : GT → {0, 1}n

H3 : {0, 1}n × {0, 1}n → Zp

H4 : {0, 1}n → {0, 1}n

The public param and master secret key msk are given by

param = (g, g1, H1, H2, H3, H4) msk = s

Extract: To generate a secret key for a user with identity ID ∈ {0, 1}∗, the KGC
generates the user secret key

skID = H1(ID)s

348 J.K. Liu, C.K. Chu, and J. Zhou

Encrypt: To encrypt a message m ∈ {0, 1}n using identity ID ∈ Zp, the sender
generates random σ ∈ {0, 1}n, sets r = H3(σ, m) and sends the ciphertext

C =
(

gr , σ ⊕ H2

(
e
(
H1(ID), g1

)r)
, m ⊕ H4(σ)

)
= (u, v, w)

to the receiver.

DelegatedKeyGen: To generate a delegated key pair from the secret key skID, the
user randomly generates x̂ ∈ Zp and outputs

dskID = x̂ and dpkID = (skID)x̂

dpkID is sent to the server while dskID is kept secret. We require that the user
always uses the same random value {x̂} for dskID.

DelegatedCompute: On upon the recevied ciphertext C′ = u ⊂ C, the receiver
sends u to the server for delegated computation. The server computes and out-
puts

T = e(dpkID, u)

to the user.

LightDecrypt: To decrypt a ciphertext C = (u, v, w) using the secret key skID,
delegated secret key dskID and the delegated token T, the user computes the
following steps:

1. Computes σ = v ⊕ H2(T1/x̂)
2. Computes m = w ⊕ H4(σ)
3. Computes r = H3(σ, m)
4. If u = gr, outputs m. Otherwise outputs ⊥.

4.2 Security Analysis

Theorem 3. Assume the Boneh-Franklin IBE is IND − ID − CCA secure, our
scheme is also IND − ID − CCA secure.

Proof. Let A be an adversary that breaks the IND − ID − CCA security of our
scheme. We construct an algorithm B, that breaks the IND − ID − CCA security
of Boneh-Franklin scheme. Algorithm B proceeds as follows.

Setup: B receives the setup environment and parameters from the simulator
of the Boneh-Franklin security game, denoted by SBF . B forwards all these
parameters to A.

Oracle Simulation:

1. Extraction Oracle OExt(·): B responds to a query on ID ∈ Zp as follows. B
asks the extraction oracle from SBF for ID to obtain skID. B also generates
(dskID, dpkID) according to the algorithm. It maintains a list for the record
of (ID, skID, dskID, dpkID). It outputs (skID, dskID, dpkID) as the response to
the query.

Identity-Based Server-Aided Decryption 349

2. dpk Extraction Oracle OEdpk(·): To respond to a dpk extraction oracle query
on ID, B checks the list whether ID has been queried before. If yes, it returns
the value dpkID. Otherwise, it executes the extract oracle and outputs dpkID.
If ID is the challanged identity, B randomly generates X̂ ∈ G and returns it
as dpkID. It stores (ID,⊥,⊥, X̂) to the list.

3. Decryption Oracle ODec(·, ·, ·): To respond to a decryption oracle query on
(ID, C, T), B first queries OEdpk to get dpkID, then it checks whether T =
e(dpkID, u). If not, it outputs ⊥. Otherwise, B asks the decryption oracle
from SBF for (ID, C) to get m or ⊥, and outputs the answer directly.

Output: A outputs identities ID∗ and messages m0, m1. B forwards (ID∗, m0, m1)
to SBF to get a challenged ciphertext C∗. B forwards C∗ to A.

A outputs a bit b and B forwards b to SBF .

Probability Analysis and Time Complexity: The successful probability and time
complexity of B should be the same as A. ��
Theorem 4. The above IBSAD scheme is detectable.

Proof. Assume the adversary A outputs a token T′ which is not equal to T, the
one generated according to the algorithm. We have:

σ′ = v ⊕ H2(T′1/x̂)
m′ = w ⊕ H4(σ′)
r′ = H3(σ′, m′)

∵ T′
= T

∴ σ′
= σ, m′
= m, r′
= r

where v, w, σ, m, r are generated according to the algorithm
∵ r′
= r ∴ Output ⊥

��
5 Comparison

In this section we compare our scheme with some generic pairing delegation
protocols. In order to save 1 pairing, the following computations should be added:

– Computation at decryptor side: Scalar Multiplication (SM), Point Addition
(PA), GT exponentiation (GE) and GT multiplication (GM).

– Computation at server side: Pairing

According to Boyen [3], 1 pairing computation is approximately equal to 10 SM
and GE operations, and more than 100 PA and GM operations. Other compu-
tations such as hashing or symmetric decryption are negligible when compared
to pairing. Thus we only compare SM, PA, GE and GM operations. The com-
parisons are shown in the following tables.

350 J.K. Liu, C.K. Chu, and J. Zhou

Table 1 shows the overall computation done by the decryptor side and the
server side for our scheme 1 (modified from Gentry’s IBE) and different generic
protocols. Table 2 shows the overall computation done by the decryptor side
and the server side for our scheme 2 (modified from Boneh-Franklin’s IBE) and
different generic protocols.

Table 3 shows the extra computation required to compute 1 pairing (on
average).

Table 1. Overall SM, PA, GE, GM operations required for the entire decryption
process for scheme 1

Computation at decryptor Server
(� of

SM PA GE GM pairing)

Kang et al. [10] 7 2 10 5 8

Chevallier et al. [4] 7 2 8 5 4

Tsang et al. [13] 7 2 8 5 4

Our Scheme 1 3 0 4 3 2

Table 2. Overall SM, PA, GE, GM operations required for the entire decryption
process for scheme 2

Computation at decryptor Server
(� of

SM PA GE GM pairing)

Kang et al. [10] 4 1 4 1 4

Chevallier et al. [4] 4 1 3 1 2

Tsang et al. [13] 4 1 3 1 2

Our Scheme 2 1 0 1 0 1

Table 3. Additional SM, PA, GE, GM operations in order to save 1 pairing at the
decryptor side

Computation at decryptor Server
(� of

SM PA GE GM pairing)

Kang et al. [10] 3 1 4 1 4

Chevallier et al. [4] 3 1 3 1 2

Tsang et al. [13] 3 1 3 1 2

Our Scheme 1 1 0 1 0 1

Our Scheme 2 0 0 1 0 1

The computations in Table 3 are measured at the equivalence of having 1
pairing at the decryptor side. Note that for our scheme, the entire decryption
process takes more computations (as shown in Table 1 and 2) than the data

Identity-Based Server-Aided Decryption 351

shown in Table 3. The reason is that: If we use the original decryption algorithm
by Gentry’s IBE, the decryptor needs to compute 2 pairings, 1 SM, 2 GE and
3 GM. The overall computation for our scheme requires 0 pairing, 3 SM, 4 GE
and 3 GM at the decryptor side. We calculate the difference based on saving
1 pairing on average. The result is: (3 − 1)/2 = 1 SM, (4 − 2)/2 = 1 GE and
(3 − 3)/2 = 0 GM. The same calculation is done for Boneh-Franklin’s IBE.

6 Conclusion

In this paper, we have proposed a new notion called Identity-Based Server-Aided
Decryption. It is similar to normal IBE, but it further allows the decryptor to
delegate a third party for computing the heavy pairing operation. As all prac-
tical IBE schemes require pairing for the decryption stage, resource-constrained
devices can hardly handle it. By using our proposed scheme, decryption in the
identity-based cryptosystem for these devices can be realized. Besides efficiency
advantages, it also achieves the highest level of security. Although the pairing
operation is delegated to a third party, it cannot get any information about the
plaintext or the user secret key. This can protect the user intensively. We pro-
vided two concrete implementations of our new notion. One is a modification
from Gentry’s IBE. We proved the security in the standard model. Another one
is a modification from Boneh-Franklin’s IBE. It is very efficient in the decryption
stage and we proved the security in the random oracle model.

We also compared our scheme with some existing pairing delegation protocols,
that can achieve the same function as ours. However, the efficiency is far behind
us. We can achieve at least 3 to 4 times more efficient than any one of them.

References

1. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

2. Boneh, D., Gentry, C., Hamburg, M.: Space-Efficient Identity Based Encryption
Without Pairings. In: FOCS 2007, pp. 647–657. IEEE Computer Soceity, Los
Alamitos (2007)

3. Boyen, X.: A tapestry of identity-based encryption: practical frameworks com-
pared. IJACT 1(1), 3–21 (2008)

4. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010)

5. Chow, S.S.M., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation
and encryption. In: ASIACCS 2011 (to Appear, 2011)

6. Chu, C.-K., Liu, J.K., Zhou, J., Bao, F., Deng, R.H.: Practical ID-based Encryption
for Wireless Sensor Network. In: ASIACCS 2010, pp. 337–340. ACM, New York
(2010)

7. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

352 J.K. Liu, C.K. Chu, and J. Zhou

8. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

9. Guo, F., Mu, Y., Chen, Z.: Identity-based online/Offline encryption. In: Tsudik,
G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

10. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation.
Cryptology ePrint Archive, Report 2005/259 (2005), http://eprint.iacr.org/

11. Liu, J.K., Zhou, J.: An efficient identity-based online/Offline encryption scheme.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)

12. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

13. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A.,
Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90.
Springer, Heidelberg (2007)

http://eprint.iacr.org/

A Generic Variant of NIST’s KAS2 Key

Agreement Protocol

Sanjit Chatterjee1, Alfred Menezes2, and Berkant Ustaoglu3

1 Indian Institute of Science, India
sanjit@csa.iisc.ernet.in

2 University of Waterloo, Canada
ajmeneze@uwaterloo.ca

3 Sabanci University, Turkey
bustaoglu@cryptolounge.net

Abstract. We propose a generic three-pass key agreement protocol that
is based on a certain kind of trapdoor one-way function family. When
specialized to the RSA setting, the generic protocol yields the so-called
KAS2 scheme that has recently been standardized by NIST. On the other
hand, when specialized to the discrete log setting, we obtain a new proto-
col which we call DH2. An interesting feature of DH2 is that parties can
use different groups (e.g., different elliptic curves). The generic protocol
also has a hybrid implementation, where one party has an RSA key pair
and the other party has a discrete log key pair. The security of KAS2
and DH2 is analyzed in an appropriate modification of the extended
Canetti-Krawczyk security model.

1 Introduction

In 2009, the U.S. government’s National Institute of Standards and Technology
(NIST) published SP 800-56B [17], a standard that specifies several RSA-based
key establishment schemes. SP 800-56B mirrors the earlier SP 800-56A standard
[16] which described discrete log-based key establishment mechanisms.

SP 800-56B refines the schemes described in ANSI X9.44 [1] and introduces
some new ones. Two key agreements protocols, KAS1 and KAS2, are presented
in [17], as well as two key transport protocols. The KAS2 scheme, called ‘KAS2-
bilateral-confirmation’ in [17], is a three-pass protocol that offers key confirma-
tion. Three variants of KAS2 are described: a two-pass protocol called ‘KAS2-
basic’ which does not offer key confirmation, ‘KAS2-responder-confirmation’
which provides unilateral key confirmation of the responder to the initiator, and
‘KAS2-initiator-confirmation’ which provides unilateral key confirmation of the
initiator to the responder. SP 800-56B also specifies a two-pass protocol KAS1
(called ‘KAS1-responder-confirmation’ in [17]) that provides unilateral authen-
tication and key confirmation of the responder to the initiator, and a variant of
KAS1 (called ‘KAS1-basic’ in [17]) without responder key confirmation.

We have chosen to present and analyze the KAS2-bilateral-confirmation pro-
tocol because it offers the most security attributes of the four KAS2 variants
and is most likely to be deployed in applications that wish to be compliant with

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 353–370, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

354 S. Chatterjee, A. Menezes, and B. Ustaoglu

SP 800-56B. We begin in §2 by introducing a generic three-pass key agreement
protocol based on a certain kind of trapdoor one-way function family. We present
in §3 a variant of the extended Canetti-Krawczyk security model for key agree-
ment [5,12] that we believe captures all the essential security properties of the
generic protocol. The security of the generic protocol can be argued under ap-
propriate assumptions on the trapdoor one-way function family. For the sake of
concreteness, we omit the reductionist security proof of the generic protocol and
focus instead on two specific instantiations.

When specialized to the RSA setting, the generic protocol yields the KAS2
scheme which is presented and analyzed in §4. When specialized to the discrete
log setting, we obtain a new protocol which we call DH2 and analyze in §5. DH2
is similar to the KEA+ protocol studied in [13]. An interesting feature of DH2 is
that parties can use different groups (e.g., different elliptic curves) provided, of
course, that each party is capable of performing operations in the other party’s
group. The generic protocol also has a hybrid implementation, where one party
has an RSA key pair and the other party has a discrete log key pair. The hybrid
protocol, the KAS1 protocol, and some concerns with reusing static key pairs in
more than one protocol are briefly discussed in §6.

2 A Generic Protocol

The generic protocol utilizes a family of trapdoor one-way functions which we
informally define next. Each function f : Z → Z from the family is bijective
and has the following properties: (i) there is an efficient algorithm that outputs
(X, f(X)) with X ∈R Z;1 (ii) given f(X) for X ∈R Z, it is infeasible to deter-
mine X ; (iii) there exists some trapdoor data Tf , knowledge of which allows one
to efficiently compute X given f(X) for X ∈R Z.

An example of such a trapdoor one-way function is fN,e : ZN → ZN defined
by fN,e(m) = me mod N , where (N, e) is an RSA public key. The trapdoor data
is the corresponding RSA private key d.

Another example comes from discrete log cryptography. Let G = 〈g〉 be a
cyclic group of prime order q, let a ∈R [1, q− 1], and let A = ga. Then fA : G →
G defined by f(gx) = Ax is such a trapdoor one-way function with trapdoor
data a. Inversion of f without knowledge of a is infeasible provided that the
following Diffie-Hellman division (DHD) problem is intractable: given g, Ax, A ∈
G, determine gx [2].

In the generic protocol, depicted in Figure 1, party Â’s static public key is
a trapdoor function fA : ZA → ZA, and the corresponding trapdoor data TA

is her static private key. Similarly, party B̂’s static public key is the trapdoor
function fB : ZB → ZB and the corresponding trapdoor data TB is his static
public key. We let MAC denote a secure message authentication code algorithm
such as HMAC, and denote by I and R the constant strings “KC 2 U” and
“KC 2 V” [17].
1 Requirement (i) is different than the usual notion of one-wayness, which is the exis-

tence of an efficient algorithm for computing f(X) given X ∈R Z.

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 355

YA = fA(Y), tagB = MACκm (R, B̂, Â, YA, XB)

XB = fB(X)

tagA = MACκm (I, Â, B̂, XB , YA)

(κm, κ) = H(X, Y, Â, B̂, XB , YA)

TA, X
Â

(κm, κ) = H(X, Y, Â, B̂, XB , YA)

TB, Y
B̂

Fig. 1. A generic three-pass protocol

Definition 1 (generic protocol). The generic protocol proceeds as follows:

1. Upon receiving (Â, B̂), party Â (the initiator) does the following:
(a) Select (X, XB = fB(X)) with X ∈R ZB; X is Â’s ephemeral private key

and fB(X) is the corresponding ephemeral public key.
(b) Initialize the session identifier to (Â, B̂, I, XB).
(c) Send (B̂, Â,R, XB) to B̂.

2. Upon receiving (B̂, Â,R, XB), party B̂ (the responder) does the following:
(a) Verify that XB ∈ ZB.
(b) Select (Y, YA = fA(Y)) with Y ∈R ZA; Y is B̂’s ephemeral private key

and fA(Y) is the corresponding ephemeral public key.
(c) Compute X = f−1

B (XB) using trapdoor data TB.
(d) Compute (κm, κ) = H(X, Y, Â, B̂, XB, YA).
(e) Compute tagB = MACκm(R, B̂, Â, YA, XB).
(f) Compute tagA = MACκm(I, Â, B̂, XB, YA) and store it.
(g) Destroy X , Y and κm.
(h) Send (Â, B̂, I, XB, YA, tagB) to Â.
(i) Set the session identifier to (B̂, Â,R, YA, XB).

3. Upon receiving (Â, B̂, I, XB, YA, tagB), party Â does the following:
(a) Verify that an active session (Â, B̂, I, XB) exists and YA ∈ ZA.
(b) Compute Y = f−1

A (YA) using trapdoor data TA.
(c) Compute (κm, κ) = H(X, Y, Â, B̂, XB, YA).
(d) Verify that tagB = MACκm(R, B̂, Â, YA, XB).
(e) Compute tagA = MACκm(I, Â, B̂, XB, YA).
(f) Destroy X , Y and κm.
(g) Send (B̂, Â,R, YA, XB, tagA) to B̂.
(h) Update the session identifier to (Â, B̂, I, XB, YA) and complete the ses-

sion by accepting κ as the session key.
4. Upon receiving (B̂, Â,R, YA, XB, tagA), party B̂ does the following:

(a) Verify that an active session (B̂, Â,R, YA, XB) exists.
(b) Verify that the received tagA is equal to the one stored.
(c) Complete session (B̂, Â,R, YA, XB) by accepting κ as the session key.

3 Security Model

This section describes a security model and associated security definition that
aims to capture the essential security assurances provided by the generic key

356 S. Chatterjee, A. Menezes, and B. Ustaoglu

agreement protocol presented in §2. A characteristic feature of this protocol is
that the session key is computed by hashing individual ephemeral private keys
and some public information. In particular, the session key does not depend
on the static keys of the participating parties. (Static private keys are used as
trapdoors to extract the other party’s ephemeral private key from its ephemeral
public key.) We follow the eCK model [5,12], but the definition of a fresh session
deviates from the standard definition and is specifically crafted keeping the above
characteristic in mind (cf. Remarks 1, 2 and 3).

Session creation. A party Â can be activated via an incoming message to create
a session. The incoming message has one of the following forms: (i) (Â, B̂) or
(ii) (Â, B̂,R, In). If Â was activated with (Â, B̂) then Â is the session initiator ;
otherwise Â is the session responder.

Session initiator. If Â is the session initiator then Â creates a separate session
state where session-specific short-lived data is stored, and prepares a reply Out =
(fB(X), OtherInfo), where fB is B̂’s static public key, X is Â’s ephemeral private
key, and OtherInfo is additional data that the protocol may specify. The session is
labeled active and identified via a (temporary and incomplete) session identifier
s = (Â, B̂, I, fB(X)). The outgoing message is (B̂, Â,R, Out).

Session responder. If Â is the session responder then Â creates a separate
session state and prepares a reply Out that includes fB(X) where fB is B̂’s
static public key and X is Â’s ephemeral private key. The session is labeled
active and identified via a session identifier s = (Â, B̂,R, fB(X), fA(Y)), where
fA(Y) is the ephemeral public key in the incoming message In. The outgoing
message is (B̂, Â, I, fA(Y), Out).

Session update. A party Â can be activated to update a session via an incoming
message of the form (Â, B̂, role, fB(X), fA(Y), In), where role ∈ {I,R}. Upon
receipt of this message, Â checks that she owns an active session with identifier
s = (Â, B̂, role, fB(X), fA(Y)). Since ephemeral keys are chosen uniformly at
random from the appropriate domain, except with negligible probability Â can
own at most one such session. If no such session exists then the message is
rejected; otherwise Â follows the protocol specifications. Initiator Â can also be
activated to update a session with incomplete session identifier (Â, B̂, I, fB(X))
with an incoming message of the form (Â, B̂, I, fB(X), fA(Y), In) where In is
any message specified by the protocol. In this case Â performs the required
validations before updating the session identifier to (Â, B̂, I, fB(X), fA(Y)).

Completed sessions. If the protocol stipulates that no further messages are to
be received then the session owner accepts a session key and marks the session
as completed.

Aborted sessions. A protocol may require parties to perform some checks on
incoming messages. For example, a party may be required to perform some form
of public key validation or verify a message authentication tag. If a party is
activated to create a session with an incoming message that does not meet the
protocol specifications, then that message is rejected and no session is created. If

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 357

a party is activated to update an active session with an incoming message that
does not meet the protocol specifications, then the party deletes all information
specific to that session (including the session state and the session key if it
has been computed) and aborts the session. Abortion occurs before the session
identifier is updated.

Matching sessions. Since ephemeral keys are selected at random on a per-
session basis, session identifiers are unique except with negligible probability.
Party Â is said to be the owner of a session (Â, B̂, role, ∗, ∗), where role ∈ {I,R}.
For a session (Â, B̂, role, ∗, ∗) we call B̂ the session peer ; together Â and B̂ are
referred to as the communicating parties. Let s be a session with complete session
identifier (Â, B̂, roleA, fB(X), fA(Y)) where roleA ∈ {I,R}. A session s∗ with
session identifier (Ĉ, D̂, roleC , fD(U), fC(V)), where roleC ∈ {I,R}, is said to
be matching to s if Â = D̂, B̂ = Ĉ, roleA
= roleC , fB(X) = fC(V) and
fA(Y) = fD(U). A session s with incomplete session identifier (Â, B̂, I, fB(X))
is matching to any session s∗ = (Ĉ, D̂,R, fD(U), fC(V)) with Â = D̂, B̂ = Ĉ
and fB(X) = fC(V); s∗ is also matching to s. Since ephemeral keys are selected
at random on a per-session basis, only sessions with incomplete session identifiers
can have more than one matching session.

Adversary. The adversary M is modeled as a probabilistic Turing machine
and controls all communications. Parties submit outgoing messages to M, who
makes decisions about their delivery. The adversary presents parties with incom-
ing messages via Send(message), thereby controlling the activation of parties.
The adversary does not have immediate access to a party’s private information,
however in order to capture possible leakage of private information M is allowed
to make the following queries:

– StaticKeyReveal(Â): M obtains Â’s static private key.
– Expire(s): The owner of s deletes the session key associated with s if one

exists, and labels the session expired. We henceforth assume that M issues
this query only to completed sessions. At any point in time a session is in
exactly one of the following states: active, completed, aborted, expired.

– EphemeralKeyReveal(s): M obtains the ephemeral private key held by ses-
sion s. We will henceforth assume that M issues this query only to sessions
that hold an ephemeral private key.

– SessionKeyReveal(s): If s has completed and has not been expired, M ob-
tains the session key held by s. We will henceforth assume that M issues
this query only to sessions that have completed and have not been expired.

– EstablishParty(Â, A): This query allows M to register an identifier Â and a
static public key A on behalf of a party. The adversary totally controls that
party, thus permitting the modeling of attacks by malicious insiders. Parties
that were established by M using EstablishParty are called corrupted or
adversary controlled. If a party is not corrupted it is said to be honest.

Adversary’s goal. To capture indistinguishability M is allowed to make a
special query Test(s) to a ‘fresh’ session s. In response, M is given with equal

358 S. Chatterjee, A. Menezes, and B. Ustaoglu

probability either the session key held by s or a random key. If M guesses
correctly whether the key is random or not, then the adversary is said to be
successful and meets its goal. Note that M can continue interacting with the
parties after issuing the Test query, but must ensure that the test session remains
fresh throughout M’s experiment.

Definition 2 (fresh session). Let s be the identifier of a completed session,
owned by an honest party Â with peer B̂, who is also honest. Let s∗ be the
identifier of the matching session of s, if the matching session exists. Define s to
be fresh if none of the following conditions hold:

1. M issued SessionKeyReveal(s) or SessionKeyReveal(s∗) (if s∗ exists).
2. s∗ exists and M issued one of the following:

(a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(s).
(b) Both StaticKeyReveal(B̂) and EphemeralKeyReveal(s∗).
(c) Both StaticKeyReveal(Â) and StaticKeyReveal(B̂).
(d) Both EphemeralKeyReveal(s) and EphemeralKeyReveal(s∗).

3. s∗ does not exist and M issued one of the following:
(a) EphemeralKeyReveal(s).
(b) StaticKeyReveal(B̂) before Expire(s).

Definition 3 (secure key agreement protocol). A key agreement protocol
is said to be secure in the above model if the following conditions hold:

1. If two honest parties complete matching sessions then, except with negligible
probability, they both compute the same session key.

2. No polynomially bounded adversary M can distinguish the session key of
a fresh session from a randomly chosen session key with probability greater
than 1

2 plus a negligible fraction.

Remark 1. (comparing Definition 2 with the notion of freshness in [12]) Our
definition of fresh session is more restrictive than the corresponding definition
of fresh session in the eCK model [12]. We have added two more sub-conditions,
namely 2(c) and 2(d) and also made condition 3(a) more restrictive. Conditions
2(c) and 2(d) are needed because of the nature of the generic protocol wherein
the only secret inputs to the key derivation function are the ephemeral private
keys, and the static keys are only used to extract the ephemeral private keys
from the ephemeral public keys that are exchanged. Condition 3(a) is defined
this way because an active adversary who learns the ephemeral private key of a
party for a particular session can impersonate others to the party in that session.

Remark 2. (comparing Definition 2 with the notion of freshness in [5]) Our
model is stronger than the CK model [5] in that it incorporates resistance to
key-compromise impersonation (KCI) attacks [10]; that is, an adversary who
learns a party’s static private key is unable to impersonate other entities to that
party. The model also covers half-forward secrecy, wherein the security of a ses-
sion key is preserved even if an adversary subsequently learns the static private
keys of one (but not both) of the communicating parties.

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 359

Remark 3. (EphemeralKeyReveal vs. SessionStateReveal) Unlike the CK model,
our model is not equipped with a SessionStateReveal query with which the ad-
versary can learn all the secret information contained in an active session. This
deficiency is partly mitigated by inclusion of the EphemeralKeyReveal query
and by considering the session state to consist of the ephemeral private key
of the session’s owner. Observe also that if our model were to incorporate a
SessionStateReveal query, then the protocol must specify that the session state
cannot include the peer’s ephemeral private key. Otherwise, the adversary could
compute the session key of the Test session (thereby breaking the protocol) by
replaying the ephemeral public keys to the relevant parties, and subsequently
learning the ephemeral private keys with SessionStateReveal queries; the adver-
sary would then have all elements needed to compute the session key of the Test
session.

4 The RSA Setting

Let λ be a security parameter. On input 1λ, a party selects an RSA static public
key (N, e) by randomly selecting two primes p and q of the same bitlength
(determined by λ) and choosing an arbitrary integer e ∈ [3, N − 2] relatively
prime to φ(N); the party’s corresponding static private key is d = e−1 mod φ(N).
Party Â’s static key pair is denoted by (NA, eA) and dA. Similarly, party B̂’s
static key pair is denoted by (NB, eB) and dB . A certifying authority issues
certificates that binds a party’s identifier to its static public key. The protocol
description will omit the exchange of certificates.

(κm, κ) = H(m1, m2, Â, B̂, c1, c2)

dB , m2dA, m1

(κm, κ) = H(m1, m2, Â, B̂, c1, c2)

B̂Â c2 = m
eA
2 mod NA, tagB = MACκm (R, B̂, Â, c2, c1)

c1 = m
eB
1 mod NB

tagA = MACκm (I, Â, B̂, c1, c2)

Fig. 2. The KAS2 protocol

Definition 4 (KAS2 protocol [17]). The KAS2 protocol proceeds as follows:

1. Upon receiving (Â, B̂), party Â (the initiator) does the following:
(a) Select an ephemeral private key m1 ∈R [2, NB − 2] and compute the

ephemeral public key c1 = meB
1 mod NB.

(b) Initialize the session identifier to (Â, B̂, I, c1).
(c) Send (B̂, Â,R, c1) to B̂.

2. Upon receiving (B̂, Â,R, c1), party B̂ (the responder) does the following:
(a) Verify that c1 ∈ [2, NB − 2] and compute m1 = cdB

1 mod NB.
(b) Select an ephemeral private key m2 ∈R [2, NA − 2] and compute the

ephemeral public key c2 = meA
2 mod NA.

(c) Compute (κm, κ) = H(m1, m2, Â, B̂, c1, c2).

360 S. Chatterjee, A. Menezes, and B. Ustaoglu

(d) Compute tagB = MACκm(R, B̂, Â, c2, c1).
(e) Compute tagA = MACκm(I, Â, B̂, c1, c2) and store it.
(f) Destroy m1, m2 and κm.
(g) Send (Â, B̂, I, c1, c2, tagB) to Â.
(h) Set the session identifier to (B̂, Â,R, c2, c1).

3. Upon receiving (Â, B̂, I, c1, c2, tagB), party Â does the following:
(a) Verify that an active session (Â, B̂, I, c1) exists.
(b) Verify that c2 ∈ [2, NA − 2] and compute m2 = cdA

2 mod NA.
(c) Compute (κm, κ) = H(m1, m2, Â, B̂, c1, c2).
(d) Verify that tagB = MACκm(R, B̂, Â, c2, c1).
(e) Compute tagA = MACκm(I, Â, B̂, c1, c2).
(f) Destroy m1, m2 and κm.
(g) Send (B̂, Â,R, c2, c1, tagA) to B̂.
(h) Update the session identifier to (Â, B̂, I, c1, c2) and complete the session

by accepting κ as the session key.
4. Upon receiving (B̂, Â,R, c2, c1, tagA), party B̂ does the following:

(a) Verify that an active session (B̂, Â,R, c2, c1) exists.
(b) Verify that the received tagA is equal to the one stored.
(c) Complete session (B̂, Â,R, c2, c1) by accepting κ as the session key.

4.1 Comparisons

We note that the key derivation function H in [17] also includes an integer
keydatalen that indicates the bitlength of the secret keying material to be gen-
erated, a bit string AlgorithmID that indicates how the derived keying mate-
rial will be parsed and for which algorithm it will be used, and two optional
strings SuppPubInfo and SuppPrivInfo. We have chosen to include (c1, c2) in the
SuppPubInfo field as it simplifies the security reduction. The strings keydatalen,
AlgorithmID and SuppPrivInfo are omitted because they are not relevant to our
security analysis.

An important difference between KAS2 and KAS2-basic (the two-pass variant
of KAS2 without the key confirmation messages tagA and tagB) is that KAS2-
basic provides a weaker notion of half-forward secrecy than KAS2. Namely, if
the adversary learns the static private key of one of the communicating parties
of a KAS2-basic session after the session key has been established, then security
of the session key is only guaranteed if the session was ‘clean’, i.e., was free from
active adversarial intrusion.

4.2 Security Argument

The RSA problem is to determine the integer m ∈ [2, N − 2] such that c ≡ me

(mod N) given an RSA public key (N, e) and an integer c ∈R [2, N − 2]. The
RSA assumption is that no polynomially-bounded algorithm exists that solves
the RSA problem with non-negligible probability of success.

Theorem 1. Suppose that (i) the RSA assumption holds; (ii) the MAC scheme
is secure; and (iii) H is a random oracle. Then the KAS2 key agreement protocol
is secure.

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 361

Proof. It is easy to see that matching sessions produce the same session key. We
will verify that for a security parameter λ, no polynomially-bounded adversary
M can distinguish the session key of a fresh session from a randomly chosen
session key with probability 1

2 + p(λ) for some non-negligible function p(λ).
Let M denote the event that M succeeds in the distinguishing game, and

suppose that Pr(M) = 1
2 + p(λ) where p(λ) is non-negligible. We assume that

M operates in an environment with n parties, and where each party is activated
at most t times to create a new session. We will show how M can be used to
construct a polynomial-time algorithm S that, with non-negligible probability
of success, either solves an instance of the RSA problem or produces a MAC
forgery.

Since H is modeled as a random function, M has only two strategies for
winning the distinguishing game with probability significantly greater than 1

2 :

(i) induce two non-matching sessions to establish the same session key, set one
as the test session, and thereafter issue a SessionKeyReveal query to the
other; or

(ii) query oracle H with (cdB
1 mod NB, cdA

2 mod NA, Â, B̂, c1, c2) where the test
session is either (Â, B̂, I, c1, c2) or (B̂, Â,R, c2, c1).

Since the input to the key derivation function includes the identities of the
communicating parties and the exchanged ephemeral public keys, non-matching
completed sessions produce different session keys except with negligible proba-
bility of H collisions. This rules out strategy (i).

Now, let H∗ denote the event that M queries H with (cdB
1 mod NB, cdA

2 mod
NA, Â, B̂, c1, c2) where the test session is either (Â, B̂, I, c1, c2) or (B̂, Â,R, c2, c1).
Since H is a random function, we have Pr(M |H∗) = 1

2 where negligible terms are
ignored. Hence

Pr(M) = Pr(M ∧ H∗) + Pr(M |H∗) Pr(H∗) ≤ Pr(M ∧ H∗) +
1
2
,

so Pr(M ∧ H∗) ≥ p(λ). The event M ∧ H∗ will henceforth be denoted by M∗.
Let st denote the test session selected by M, and let sm denote its matching

session (if it exists). Consider the following complementary events:

1. Event E1: sm exists and M issues neither StaticKeyReveal(Â) nor
EphemeralKeyReveal(sm).

2. Event E2: either sm does not exist, or sm exists and M issues
StaticKeyReveal(Â) or EphemeralKeyReveal(sm).

We have M∗ = (M∗ ∧E1) ∨ (M∗ ∧E2). Since Pr(M∗) is non-negligible, it must
be the case that either p1 = Pr(M∗∧E1) or p2 = Pr(M∗∧E2) is non-negligible.
The events E1 and E2 are analyzed separately.

We will show how to construct a solver S that takes as input an RSA challenge
(NV , eV , cV), has access to a MAC oracle with unknown key κ̃m and to an
adversary M, and produces a solution to the RSA challenge or a MAC forgery.

Setup. Algorithm S begins by establishing n parties. One of these parties, de-
noted V̂ , is selected at random and assigned the static public key (NV , eV).

362 S. Chatterjee, A. Menezes, and B. Ustaoglu

The remaining parties are assigned static key pairs as specified by the protocol.
Furthermore, S selects an integer u ∈R [1, nt]. The u’th session created will be
called su. For this session, S deviates from the protocol description as follows:
if the peer of su is V̂ then cV is chosen as the outgoing ephemeral public key;
otherwise, S aborts with failure. For all other sessions, S selects ephemeral key
pairs as specified by the protocol.

χ-function. During the simulation, S constructs a secret function χ : [2, NV −
2] → [2, NV − 2]. At the beginning of the simulation, χ(c) is undefined for all
c ∈ [2, NV − 2]. At any stage of the simulation, if S selects m ∈ [2, NV − 2] and
computes c = meV mod NV as an outgoing ephemeral public key with intended
recipient V̂ , then χ(c) is defined to be m. If χ is ever invoked by S for its value at
an input c, and χ(c) is undefined, then χ(c) is set equal to a randomly selected
integer in [2, NV −2]; in this case χ(c) is said to ‘represent’ c1/eV mod NV . Except
with negligible probability, M will not detect that χ is being used.

Event E1. The simulation of M’s environment proceeds as follows:

1. Send(Â, B̂). S answers the query faithfully with the following exception. If
the session activated is su then S proceeds as stipulated in the Setup (and
aborts if B̂
= V̂).

2. Send(B̂, Â,R, c1). S answers the query faithfully with the following excep-
tions. (a) If B̂ = V̂ then S sets m1 = χ(c1). (b) If the session activated is su

then S proceeds as stipulated in the Setup and sets m2 = χ(cV) (and aborts
if Â
= V̂).

3. Send(Â, B̂, I, c1, c2, tagB). S answers the query faithfully with the following
exceptions. (a) If Â = V̂ then S sets m2 = χ(c2). (b) If the session activated
is su then S sets m1 = χ(cV).

4. Send(B̂, Â,R, c2, c1, tagA). S answers the query faithfully.
5. H(m1, m2, Â, B̂, c1, c2).

(a) If (i) Â = V̂ , c2 = cV , and meV
2 ≡ cV (mod NV), or (ii) B̂ = V̂ , c1 =

cV , and meV
1 ≡ cV (mod NV), then S terminates M and successfully

completes by outputting m2 or m1, respectively.
(b) If Â = V̂ , m2
= χ(c2), and meV

2 ≡ c2 (mod NV), then S responds with
H(m1, χ(c2), Â, B̂, c1, c2); otherwise, S simulates a random oracle in the
usual way2.

(c) If B̂ = V̂ , m1
= χ(c1), and meV
1 ≡ c1 (mod NV), then S responds with

H(χ(c1), m2, Â, B̂, c1, c2); otherwise, S simulates a random oracle in the
usual way.

(d) S simulates a random oracle in the usual way.
6. SessionKeyReveal(s). S answers the query faithfully.
7. StaticKeyReveal(Â). If Â = V̂ then S aborts with failure; otherwise, S

answers the query faithfully.
8. EphemeralKeyReveal(s). If s = su then S aborts with failure; otherwise, S

answers the query faithfully.
2 i.e., S returns random values for new queries and replays answers if the queries were

previously made.

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 363

9. Expire(s). S answers the query faithfully.
10. EstablishParty. S answers the query faithfully.
11. Test(st). If st is not owned by V̂ or if st is not matching to su, then S aborts

with failure; otherwise, S answers the query faithfully.
12. M outputs a guess γ. S aborts with failure.

Event E1 analysis. The simulation of M’s environment can be seen to be
perfect except with negligible probability. The probability that M selects a test
session owned by V̂ with matching session su is at least 1/n2t. Suppose that this
is indeed the case and suppose that event M∗ ∧E1 occurs. Since the test session
owner is V̂ and the matching session is su, M does not abort as in Steps 1, 2
and 11. Furthermore, under event E1 the adversary M does not query for the
static private key of the test session owner or for the ephemeral private key of the
matching session. Therefore, abortions as in Steps 7 and 8 do not occur. Under
event M∗, the adversary M queries H with c

1/eV

V mod NV before outputting a
guess γ and hence S is successful in Step 5a before a failure in Step 12 occurs.
The probability that S successfully outputs a solution to the RSA challenge is
thus bounded by

Pr(S) ≥ p1

n2t
. (1)

Event E2. The Setup and the definition of the χ-function are the same as for
Event E1. During the simulation, S also accesses a MAC oracle with key κ̃m

that is unknown to S. The simulation of M’s environment proceeds as follows:

1. Send(Â, B̂). S answers the query faithfully with the following exception. If
the session activated is su then S proceeds as stipulated in the Setup (and
aborts if B̂
= V̂).

2. Send(B̂, Â,R, c1). S answers the query faithfully with the following excep-
tions. (a) If B̂ = V̂ then S sets m1 = χ(c1). (b) If the session activated
is su then S proceeds as stipulated in the Setup (and aborts if Â
= V̂);
furthermore, instead of querying the key derivation function H to generate
a MAC key and a session key, S selects a random session key κ, sets the
MAC key κm equal to the (unknown) key κ̃m of the MAC oracle, queries
the MAC oracle with (R, B̂, Â, c2, c1), and sets tagB equal to the oracle’s
response; tagA is not computed.

3. Send(Â, B̂, I, c1, c2, tagB). S answers the query faithfully with the following
exceptions. (a) If Â = V̂ then S sets m2 = χ(c2). (b) If the session activated
is su then S selects a random session key κ, sets the MAC key κm equal
to the (unknown) key κ̃m of the MAC oracle, queries the MAC oracle with
(I, Â, B̂, c1, c2), and sets tagA equal to the oracle’s response, and completes
without verifying tagB.

4. Send(B̂, Â,R, c2, c1, tagA). S answers the query faithfully. However, if the
session activated is su then S completes without verifying tagA.

5. H(m1, m2, Â, B̂, c1, c2).
(a) If (i) Â = V̂ , c2 = cV , and meV

2 ≡ cV (mod NV), or (ii) B̂ = V̂ , c1 =
cV , and meV

1 ≡ cV (mod NV), then S terminates M and successfully
completes by outputting m2 or m1, respectively.

364 S. Chatterjee, A. Menezes, and B. Ustaoglu

(b) If Â = V̂ , m2
= χ(c2), and meV
2 ≡ c2 (mod NV), then S responds with

H(m1, χ(c2), Â, B̂, c1, c2); otherwise, S simulates a random oracle in the
usual way.

(c) If B̂ = V̂ , m1
= χ(c1), and meV
1 ≡ c1 (mod NV), then S responds with

H(χ(c1), m2, Â, B̂, c1, c2); otherwise, S simulates a random oracle in the
usual way.

(d) S simulates a random oracle in the usual way.

6. SessionKeyReveal(s). S answers the query faithfully.
7. StaticKeyReveal(Â). If Â = V̂ then S aborts with failure; otherwise, S

answers the query faithfully.
8. EphemeralKeyReveal(s). If s = su then S aborts with failure; otherwise, S

answers the query faithfully.
9. Expire(s). S answers the query faithfully. However, if s = su and su has no

matching session, then S aborts with success and outputs as its MAC forgery
the key confirmation tag received by su and the associated message.

10. EstablishParty. S answers the query faithfully.
11. Test(st). If st is not su with peer V̂ , then S aborts with failure; otherwise, S

answers the query faithfully.
12. M outputs a guess γ. S aborts with failure.

Event E2 analysis. The simulation of M’s environment can be seen to be
perfect except with negligible probability. The probability that M selects su as
the test session and su has peer V̂ is at least 1/n2t. Suppose that this is indeed
the case and suppose that event M∗ ∧ E2 occurs. Since the test session is su

and the session peer is V̂ , M does not abort as in Steps 1, 2 and 11. Now, by
definition of a fresh session and of event E2, the adversary M does not query for
the ephemeral private key of the test session and so abortion as in Step 8 does not
occur. Furthermore, M is allowed to query for the static private key of the test
session peer only after expiring the test session; therefore, before an abortion can
occur in Step 7, S will be successful in Step 9. Under event M∗, the adversary
M queries H with c

1/eV

V mod NV before outputting a guess γ and hence S is
successful in Step 5a before a failure in Step 12 occurs. The probability that S
successfully outputs a solution to the RSA challenge or a valid MAC forgery is
thus bounded by

Pr(S) ≥ p2

n2t
. (2)

Overall analysis. By combining (1) and (2), we see that the success probability
of S is bounded by

Pr(S) ≥ max(p1, p2)
n2t

. (3)

During the simulation, S performs modular exponentiations and simulates a
random oracle. All operations take polynomial time and hence S’s running time
is bounded by

TS ≤ (4T mod N + 3TH) TM, (4)

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 365

where T mod N , TH , TM, respectively, denote the time to perform a modular
exponentiation, the time to respond to an H query, and the running time of
M. Together (3) and (4) show that S is a polynomially-bounded algorithm that
succeeds with non-negligible probability in either solving the RSA instance or
in forging a MAC tag. This contradicts the assumptions of the theorem, thereby
completing the argument. �

5 The Discrete Log Setting

Let λ be a security parameter. We let G be a cyclic group with security pa-
rameter λ; that is, G has prime order q with 22λ ≤ q < 22λ+1, and the fastest
algorithm known for solving the discrete logarithm problem in G has running
time approximately 2λ. Examples of such groups include the group of points on
carefully-chosen elliptic curves. Let Gλ = {G}k be a set of cyclic groups with
security parameter λ and indexed by k ∈ Sλ ⊂ N. We assume that DH2 users
select a group G ∈ Gλ uniformly at random, and subsequently select a generator
g ∈R G. For example, Gλ could consist of all cryptographically strong prime-
order elliptic curves defined over prime fields Fp where p has bitlength 2λ; this
corresponds to the case where users randomly generate their own elliptic curve
parameters.

On input 1λ, party Â selects a cyclic group G1 = 〈g1〉 ∈R Gλ of order q1.
Her static private key is a ∈R [1, q1 − 1] and her static public key is A = ga

1 .
Similarly, party B̂ selects a cyclic group G2 = 〈g2〉 ∈R Gλ of order q2. His static
private key is b ∈R [1, q2 − 1] and his static public key is B = gb

2. A certifying
authority issues certificates that binds a party’s identifier to its static public key
(and also the group parameters if these are not clear from context). The protocol
description will omit the exchange of certificates.

Definition 5 (DH2 protocol). The DH2 protocol proceeds as follows:

1. Upon receiving (Â, B̂), party Â (the initiator) does the following:
(a) Select x ∈R [1, q2 − 1] and compute the ephemeral private key X = gx

2

and the ephemeral public key XB = Bx.
(b) Destroy x.
(c) Initialize the session identifier to (Â, B̂, I, XB).
(d) Send (B̂, Â,R, XB) to B̂.

2. Upon receiving (B̂, Â,R, XB), party B̂ (the responder) does the following:
(a) Verify that XB ∈ G∗

2.
(b) Select y ∈R [1, q1 − 1] and compute the ephemeral private key Y = gy

1

and the ephemeral public key YA = Ay .
(c) Compute X = (XB)(1/b).
(d) Compute (κm, κ) = H(X, Y, Â, B̂, XB, YA).
(e) Compute tagB = MACκm(R, B̂, Â, YA, XB).
(f) Compute tagA = MACκm(I, Â, B̂, XB, YA) and store it.
(g) Destroy y, X , Y and κm.
(h) Send (Â, B̂, I, XB, YA, tagB) to Â.
(i) Set the session identifier to (B̂, Â,R, YA, XB).

366 S. Chatterjee, A. Menezes, and B. Ustaoglu

3. Upon receiving (Â, B̂, I, XB, YA, tagB), party Â does the following:
(a) Verify that an active session (Â, B̂, I, XB) exists and YA ∈ G∗

1.
(b) Compute Y = (YA)1/a.
(c) Compute (κm, κ) = H(X, Y, Â, B̂, XB, YA).
(d) Verify that tagB = MACκm(R, B̂, Â, YA, XB).
(e) Compute tagA = MACκm(I, Â, B̂, XB, YA).
(f) Destroy X , Y and κm.
(g) Send (B̂, Â,R, YA, XB, tagA) to B̂.
(h) Update the session identifier to (Â, B̂, I, XB, YA) and complete the ses-

sion by accepting κ as the session key.
4. Upon receiving (B̂, Â,R, YA, XB, tagA), party B̂ does the following:

(a) Verify that an active session (B̂, Â,R, YA, XB) exists.
(b) Verify that the received tagA is equal to the one stored.
(c) Complete session (B̂, Â,R, YA, XB) by accepting κ as the session key.

5.1 Comparisons

The DH2 protocol, or more precisely its two-pass variant (called DH2-basic)
without the key confirmation tags, is similar to the MTI/C0 protocol [14,11]. In
both protocols, the messages exchanged are Ay and Bx. However, in MTI/C0
the shared secret is gxy, whereas in DH2-basic it is (gx, gy). The MTI/C0 pro-
tocol is more efficient – each party performs two exponentiations compared to
three exponentiations in DH2-basic. However, one notable advantage of DH2-
basic over MTI/C0 is that the communicating parties can use different groups.
Moreover, DH2-basic can be used in a hybrid fashion with the RSA-based KAS2
protocol (cf. §6.1).

DH2-basic is also similar to the two-pass KEA+ protocol [13] where the mes-
sages exchanged are X and Y and the session key is H(gay, gbx, Â, B̂). Unlike the
case of DH2-basic, in KEA+ the initiator does not need to know the responder’s
static public key when it initiates a session of the protocol. Thus, in the situa-
tion where all parties use the same group and where certificates have not already
been exchanged, DH2-basic is in fact a three-pass protocol (an extra round is
needed in which the initiator obtains the responder’s certificate) whereas KEA+
is a two-pass protocol. Our analysis of DH2 complements the analysis of KEA+
in [13] by considering the case where parties can select their own groups. Addi-
tionally, in contrast with [13], our security model allows the adversary to learn
the ephemeral private key of either the Test session or its matching session.

5.2 Security Argument

Recall that the DHD problem in a cyclic group G of prime order q is the prob-
lem of determining gu/v, given g, gu, gv ∈R G. Our reductionist security proof for
DH2 relies on the gap DHD (GDHD) assumption which asserts that the DHD
problem is intractable even when the solver is given a Decision DHD (DDHD)
oracle which, on input a quadruple (h, ha, hb, hc), determines whether c ≡ a/b
(mod q). The following lemma establishes that the GDHD assumption is equiv-
alent to the more familiar gap Diffie-Hellman (GDH) assumption [15] which

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 367

asserts that computing guv from g, gu, gv ∈R G is intractable even when the
solver is given a Decision DH (DDH) oracle which, on input a quadruple
(h, ha, hb, hc), determines whether c ≡ ab (mod q).

Lemma 1. The GDHD and GDH assumptions are equivalent.

Proof. We show that the GDH problem reduces to the GDHD problem, i.e., given
a GDHD solver A we construct an algorithm B that solves GDH. The reduction
from GDHD to GDH is similar.

Given a CDH instance (g, gu, gv), we construct the DHD instance (gu, gv, g)
and give it to the GDHD solver A. When A queries its DDHD oracle with
(h, ha, hb, hc), we construct a DDH instance (hb, h, ha, hc) and give it to the
DDH oracle that is provided with the CDH instance. We return to A whatever
the DDH oracle returns. Finally, when A outputs its solution, B outputs the
same as the solution of the given CDH instance.

Let k = gu. Then (gu, gv, g) = (k, kv/u, k1/u), so A returns k(v/u)u = guv

as required. Similarly, letting � = hb, we can write the DDHD oracle query
(h, ha, hb, hc) made by A as (�1/b, �a/b, �, �c/b), and the corresponding DDH query
made by B as (hb, h, ha, hc) = (�, �1/b, �a/b, �c/b). One can check that the latter
is a valid DH quadruple if and only if c ≡ a/b (mod q). Hence, B’s simulation
of A’s DDHD oracle is perfect. �
The GDHD problem for Gλ is to determine gv/u, given g, gu, gv ∈R G and a
DDHD oracle for G, where G ∈R Gλ. The GDHD assumption for Gλ is that no
polynomially-bound algorithm exists that solves the GDHD problem for Gλ with
non-negligible probability of success.

Theorem 2. Suppose that (i) the GDHD assumption for Gλ holds; (ii) the MAC
scheme is secure; and (iii) H is a random oracle. Then the DH2 key agreement
protocol is secure.

The proof of Theorem 2 is deferred to the full version of this paper [8]. While
the proof is similar to that of Theorem 1, a significant difference is that a DHD
oracle is needed in order to provide consistent answers to H-oracle queries. Thus,
unlike the case of KAS2, the reductionist security proof for DH2 relies on a gap
assumption.

Remark 4. (fixed generators vs. random generators) In the description of DH2,
each party selects its own group and generator. Another scenario worthy of
consideration is where each group G has a fixed generator g. For example, Gλ

could consist of a single elliptic curve (and corresponding generator) from the
list specified by NIST [9], which corresponds to the case where all parties use
the same elliptic curve. In the remainder of the paper, we will consider the
case where generators of each group G are selected uniformly at random. We
note that Theorem 2 and its proof can be easily modified to the case of fixed
generators. However, it is worth pointing out that the GDHD assumption with
fixed generators is not known to be equivalent to the GDH assumption with
fixed generators.

368 S. Chatterjee, A. Menezes, and B. Ustaoglu

6 Miscellaneous Notes

6.1 Hybrid Protocol

The KAS2-DH2 hybrid protocol is depicted in Figure 3. Party Â has a DH2
key pair (A = ga

1 , a) where G1 = 〈g1〉, whereas party B̂ has a KAS2 key pair
((NB, eB), dB). The protocol can be useful is scenarios where one communicating

(κm, κ) = H(m1, Y, Â, B̂, c1, YA)

dB, Y =gy
1a, m1

(κm, κ) = H(m1, Y, Â, B̂, c1, YA)

B̂Â YA = Ay , tagB = MACκm (R, B̂, Â, YA, c1)

c1 = m
eB
1 mod NB

tagA = MACκm (I, Â, B̂, c1, YA)

Fig. 3. The KAS2-DH2 hybrid protocol

party only has an RSA certificate, whereas the other communicating party only
has a discrete log certificate. The security of KAS2-DH2 can be established by
combining the proofs of Theorems 1 and 2.

We note that Boyd et al. [3,4] designed a generic two-pass protocol using
key encapsulation mechanisms (KEMs). The protocol allows users to employ
different primitives to implement the KEM, and even permits identity-based
primitives. In contrast to our protocol, the analysis of their protocol is in the
standard model.

6.2 KAS1

The KAS1 protocol [17] is depicted in Figure 4. In this protocol, the initiator
Â contributes only an ephemeral key pair whereas the responder B̂ contributes
only a static key pair and a nonce. KAS1 provides unilateral authentication
and key confirmation of B̂ to Â. In KAS1, the constant string R is “KC 1 V”,
which is different from the string “KC 2 V” used in KAS2. The KAS1 protocol
is suitable in applications such as SSL/TLS where the initiator typically does
not have a static key pair.

As stated in [17], only the KAS1 initiator has assurances that third parties
cannot recover the session key. The KAS1 responder obtains no cryptographic

NonceB , tagB = MACκm (R, B̂, Â, NonceB , c1)

c1 = m
eB
1 mod NB

Â

m1

(κm, κ) = H(m1, Â, B̂, NonceB , c1)

B̂

dB

(κm, κ) = H(m1, Â, B̂, NonceB , c1)

Fig. 4. The KAS1 protocol

A Generic Variant of NIST’s KAS2 Key Agreement Protocol 369

assurances about the true identity of its peer. If the responder’s static private key
is compromised, then previously-established session keys are easily recoverable.
Similarly, if the initiator’s ephemeral private key is exposed, then the secrecy
of the session key is compromised. Inclusion of the nonce assures the responder
that the session key is fresh.

Since the session initiator does not contribute a static key pair to the key
establishment, and since the responder obtains no assurances about the identity
of its peer, some security attributes such as key-compromise impersonation re-
silience are not applicable to KAS1. Consequently, the model proposed in §3 is
not suitable for analyzing KAS1.

6.3 Key Reusage

Contrary to conventional wisdom, SP 800-56B explicitly permits a party to use
its static key pair in more than one of the key establishment schemes specified
in [17]. This is a little surprising since the KAS1 and KAS2 protocols have no-
ticeably different security attributes and, as observed in [6], interference attacks
on the runs of two protocols can render one of the protocols insecure. Following
[7], it would be worthwhile to specify a shared security model that incorporates
the individual security attributes of KAS1 and KAS2, and formally verify that
the protocols are secure even when static key pairs are reused.

Acknowledgements. We thank the anonymous referees for their valuable com-
ments.

References

1. ANSI X9.44, Public Key Cryptography for the Financial Services Industry: Key
Establishment Using Integer Factorization Cryptography, American National Stan-
dards Institute (2007)

2. Bao, F., Deng, R., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

3. Boyd, C., Cliff, Y., Nieto, J., Paterson, K.: Efficient one-round key exchange in
the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

4. Boyd, C., Cliff, Y., Nieto, J., Paterson, K.: One-round key exchange in the standard
model. International Journal of Applied Cryptography 1, 181–199 (2009)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and
their use for building secure channels. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg
(2001), http://eprint.iacr.org/2001/040

6. Chatterjee, S., Menezes, A., Ustaoglu, B.: Reusing static keys in key agreement
protocols. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,
pp. 39–56. Springer, Heidelberg (2009),
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-36.pdf

7. Chatterjee, S., Menezes, A., Ustaoglu, B.: Combined security analysis of the one-
and three-pass unified model key agreement protocols. In: Gong, G., Gupta, K.C.
(eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 49–68. Springer, Heidelberg (2010)

http://eprint.iacr.org/2001/040
http://www.cacr.math.uwaterloo.ca/techreports/2009/cacr2009-36.pdf

370 S. Chatterjee, A. Menezes, and B. Ustaoglu

8. Chatterjee, S., Menezes, A., Ustaoglu, B.: A generic variant of NIST’s
KAS2 key agreement protocol, full version, Technical Report CACR 2011-09,
http://www.cacr.math.uwaterloo.ca/techreports/2011/cacr2011-09.pdf

9. FIPS 186-3, Digital Signature Standard (DSS), Federal Information Processing
Standards Publication 186-3, National Institute of Standards and Technology
(2009)

10. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.-c.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,
Heidelberg (1996)

11. Kunz-Jacques, S., Pointcheval, D.: About the security of MTI/C0 and MQV. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 156–172. Springer,
Heidelberg (2006)

12. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

13. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 378–394. Springer, Heidelberg (2006)

14. Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key distribution
systems. The Transactions of the IECE of Japan E69, 99–106 (1986)

15. Okamoto, T., Pointcheval, D.: The gap-problem: a new class of problems for the
security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

16. SP 800-56A, Special Publication 800-56A, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography (Revised), National
Institute of Standards and Technology (March 2007)

17. SP 800-56B, Special Publication 800-56B, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Integer Factorization Cryptography, National Institute
of Standards and Technology (August 2009)

http://www.cacr.math.uwaterloo.ca/techreports/2011/cacr2011-09.pdf

A Single Key Pair is Adequate for the Zheng

Signcryption

Jia Fan1,2, Yuliang Zheng2, and Xiaohu Tang1

1 Southwest Jiaotong University, 610031, P.R.China
2 University of North Carolina at Charlotte, NC 28223, USA

fanjia@mars.swjtu.edu.cn, yzheng@uncc.edu, xhutang@ieee.org

Abstract. We prove that the original Zheng signcryption scheme pub-
lished at Crypto’97, with a couple of minor tweaks, requires only a single
public/private key pair for each user. That is the user can employ the
same public/private key pair for both signcryption and unsigncryption
in a provably secure manner. We also prove that the Zheng signcryption
scheme allows a user to securely signcrypt a message to himself. Our first
result confirms a long-held belief that signcryption reduces the overhead
associated with public keys, while our second result foretells potential
applications in cloud storage where one with a relatively less resourceful
storage device may wish to off-load data to an untrusted remote storage
network in a secure and unforgeable way.

Keywords: Public key, Security proof, Signcryption, Single key pair.

1 Introduction

The concept and first instantiation of signcryption were proposed by Zheng in
1997 [9]. As a cryptographic primitive, signcryption combines both the functions
of public key encryption and those of digital signature, in such a way that its
overhead is far less than that required by performing encryption and signature
separately. At PKC’02, Baek, Steinfeld and Zheng [2] successfully established a
security model for signcryption, and proved that with a couple of minor tweaks,
the original Zheng signcryption scheme was indeed provably secure under com-
monly accepted computational assumptions. In the journal version [3] of the
same paper, their security model was further enhanced and security proofs were
made more rigorous. Their papers, however, still leave two interesting questions
unanswered.

The first question has to do with the number of public/private key pairs a
user has to keep in order to apply the Zheng signcryption in a provably secure
manner. The security models and proofs presented in [2,3] all assume that a user
holds two separate public/private key pairs. One of the two key pairs serves as
a sender signcryption key pair for signcrypting messages originated from that
user to other users, while the other key pair serves as a receiver unsigncryption

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 371–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

372 J. Fan, Y. Zheng, and X. Tang

key pair for unsigncrypting ciphertexts received by that user from other users.
A natural question is whether the requirement of two separate public/private
key pairs can be relaxed to a single key pair. An obvious benefit of the use of
a single key pair is that it will minimize the cost associated with the creation
and maintenance of public/private key pairs, especially the cost of public key
verification prior to the execution of signcryption and unsigncryption.

The second question is whether the signcryption scheme can be employed by
a user to securely signcrypt a message to the user himself. An ability to do so
would have applications in emerging computing and communicating platforms
such as cloud storage. Cloud storage is a model of networked data storage where
data is stored on multiple virtual servers, generally hosted by third parties,
rather than being hosted on dedicated servers. In practice, users with limited
storage may wish to store data on a not always trusted cloud in a secure and
unforgeable manner. In such a scenario, the user could signcrypt the data to
himself first, then store the signcryptext to the cloud. When this user downloads
the signcryptext from the cloud, it may check whether the signcryptext is valid,
and decrypt the signcryptext if it is.

It turns out that the security models in [2, 3] in their original forms do not
appear to be capable to address the two open questions. This calls for new
ideas in security proofs, especially new security models that capture a real-world
scenario where a single public/private key pair is used by each user as well as
scenario where one wishes to signcrypt messages to oneself.

Our main contributions are to give affirmative answers to both questions
outlined above. To this end we define a strengthened security model for sign-
cryption allowing a user to have only a single public/private key pair and also
allowing a user to signcrypt a message to himself. We then prove that the Zheng
signcryption scheme, with a minor tweak, is indeed secure in that model, un-
der commonly accepted assumptions including the Gap Diffie-Hellman, the Gap
Discrete Logarithm and the random oracle assumptions.

2 Overview of the Zheng Signcryption Scheme

We focus our discussions on the SDSS-1 signcryption scheme proposed by Zheng
[9]. Our security proofs apply to other schemes in the same family, including
SDSS-2 and counterparts of SDSS-1 and SDSS-2 in other groups such as groups
of points on an elliptic curve over a finite field [10].

We follow [3] in describing the Zheng scheme. A minor technical difference be-
tween our version and the version in [3] is that we add both sender and receiver’s
public keys as input to the G hash function. This minor tweak is useful during
proof reductions which will become clear later in our description of proofs.

The signcryption scheme with the tweak is described in Tables 1 and 2. We
use k to indicate a security parameter that determines other parameters such as
the size of a key, the output length of a hash function and ultimately, the level
of security of a concrete instantiation of a signcryption scheme in practice.

A Single Key Pair is Adequate for the Zheng Signcryption 373

Table 1. Setup & KeyGen Algorithms

Setup(1k) by Trusted Authority TA:
1. Choose a random prime q of lq bits.
2. Choose a random prime p of lp bits such that q|(p − 1).
3. Choose an element g ∈ Z∗

p such that OrdZ∗
p
(g) = q.

4. Choose a one-way hash function G : {0, 1}∗ → {0, 1}lG .
5. Choose a one-way hash function H : {0, 1}∗ → Zq.
6. Choose a symmetric key encryption scheme SKE = (E, D).
7. Let cp = (k, p, q, g,G, H,SKE) be the common parameter.

KeyGen(cp) by User U :
1. Choose xU ∈ Z∗

q uniformly at random.
2. Compute yU ← gxU mod p.
3. Let the public key pkU be yU and the private key skU be (xU , yU).

In this table, lp : N → N , lq : N → N and lG : N → N are functions of k determining
the lengths in bits of p, q and an output of G respectively. OrdZ∗

p
(g) = q means

that the order of g in the multiplicative group of Z∗
p is q, and SKE = (E, D) is a

one-time symmetric key encryption scheme with message, key and ciphertext spaces
being SPm, {0, 1}lG and SPc respectively.

Table 2. Signcryption & Unsigncryption Algorithms

Signcryption(cp,m, skS, pkR)
by Sender S:
1. Parse skS as (xS, yS), pkR as yR.
2. Choose x ∈ Z∗

q uniformly at random.
3. Compute K ← yR

x mod p.
4. Compute τ ← G(yS , yR, K).
5. Compute c ← Eτ (m).
6. Compute r ← H(m,yS, yR, K).
7. If r + xS = 0 mod q, return to Step 2.
8. Compute s ← x/(r + xS) mod q.
9. Output σ ← (c, r, s) as the signcryptext.

Unsigncryption(cp, σ, pkS, skR)
by Receiver R:
1. Parse skR as (xR, yR), pkS as yS.
2. Parse σ as (c, r, s).
3. Compute w ← (yS · gr)s mod p.
4. Compute K ← wxR mod p.
5. Compute τ ← G(yS, yR, K).
6. Compute m ← Dτ (c).
7. If H(m,yS, yR, K) = r, return m;
otherwise return Reject.

We assume m ∈ SPm in the signcryption algorithm, and σ ∈ SPc × Zq × Z∗
q in

the unsigncryption algorithm. In practice appropriate tests are carried out first to
ensure that these conditions are met. With the unsigncryption algorithm, Reject is
interpreted as a special symbol indicating that the signcryptext is invalid.

3 Security Model

We now introduce a stronger security model that is extended from the model
proposed by Baek et al. [3]. Major differences between the two security models
are outlined below.

First, our new model allows the use of a single public/private key pair by a
user. This is achieved by permitting a target user (with a single public/private

374 J. Fan, Y. Zheng, and X. Tang

key pair) in an attack game to be both a sender and a receiver. This modification
makes it possible for an adversary to make signcryption queries with any target
user as a sender and unsigncryption queries with any target user as a receiver.
We note that in the original security model by Baek et al, a target user always
has a fixed role, being either a sender or a receiver.

Second, our model adds a security consideration for the case where one sign-
crypts a message to oneself. In an attack game for confidentiality, an adver-
sary is given two target users, A and B. We allow the adversary to attack on
(S∗, R∗) ∈ {(A, B), (A, A), (B, A), (B, B)}, where S∗ is the sender and R∗ is the
receiver. By contrast, the model by Baek et al. allows only (S∗, R∗) = (A, B).
And in an attack game for unforgeability, an adversary is given one target user
A. We allow the adversary to attack on (S∗, R∗) where S∗ = A and R∗ can be
an arbitrary user including R∗ = A, while the model by Baek et al. does not
allow R∗ = A.

According to the adversary’s capability, An et al. [1] divide the security model
into two classes, called the insider setting and the outsider setting respectively.
In the outsider setting, an adversary has access to neither skS∗ nor skR∗ . In
comparison, the only restriction on an adversary in the insider setting is that it
is not allowed to have access to skR∗ . Since our main goal in this paper is to
prove the Zheng signcryption scheme is secure in the “outsider” setting for confi-
dentiality, we will define unforgeability in the insider setting, and confidentiality
in the outsider setting.

Throughout this paper we will use the term of a negligible function to indicate
any function in an appropriate security parameter k that vanishes faster than
the inverse of any integer-valued polynomial in the same parameter k when k is
sufficiently large.

3.1 Syntax of Signcryption

A generic signcryption system SC consists of four algorithms as follows:

– Setup(1k): It takes as input a security parameter 1k and generates a common
parameter cp for an entire system under consideration. It is run by a trusted
authority.

– KeyGen(cp): It takes as input a system-wide common parameter cp, outputs
a pair of public/private keys (pkU , skU) for a user U . This algorithm is run
by users within the system, independently of one another.

– Signcryption(cp, m, skS, pkR): When a sender S plans to communicate a
message m ∈ SPm to a receiver R, where SPm is the message space, he runs
this algorithm to generate a signcryptext σ from m, a common parameter
cp, his private key skS and the receiver R’s public key pkR.

– Unsigncryption(cp, σ, pkS, skR): When a receiver R receives a signcryptext
σ from a sender S, he runs this algorithm with σ, the public parameter
cp, the sender S’s public key pkS , and his private key skR as input. The
algorithm outputs a message m if σ is valid, or a special symbol Reject
otherwise.

A Single Key Pair is Adequate for the Zheng Signcryption 375

For a signcryption scheme to be useful in practice, we further require that for
any plaintext m, any sender S and any receiver R, we have

m = Unsigncryption(cp, Signcryption(cp, m, skS, pkR), pkS , skR).

3.2 Definition of Confidentiality

We follow an established definition, called indistinguishability under chosen ci-
phertext attack (IND-CCA) to define confidentiality for signcryption as indistin-
guishability under chosen signcryptext and plaintext attack (IND-CSPA). This
is done by defining an attack game, called an IND-CSPA game.

Let k be the security parameter of the scheme, A and B be two target users.
The IND-CSPA game is played between an IND-CSPA adversary and its envi-
ronment Σ which contains an IND-CSPA challenger and two oracles, namely
a signcryption oracle and an unsigncryption oracle. Specifically, the IND-CSPA
game proceeds as follows:

– Stage 1: The challenger computes cp ← Setup(1k); (pkA, skA)←KeyGen(cp);
(pkB, skB) ← KeyGen(cp). It then equips the signcryption and unsigncryp-
tion oracles with (skA, skB) and gives (cp, pkA, pkB) to the adversary.

– Stage 2: The adversary makes a sequence of adaptive queries. Each query is
one of two types:
1. Signcryption query: the adversary submits (m, pkS , pkR) to the chal-

lenger, where m ∈ SPm, pkS ∈ {pkA, pkB} and pkR can be an arbitrary
public key in the system including pkR ∈ {pkA, pkB}. The challenger for-
wards
(m, pkS , pkR) to the signcryption oracle which then returns to the chal-
lenger with an outcome of Signcryption(cp, m, skS, pkR). Finally, the
challenger passes this answer to the adversary.

2. Unsigncryption query: the adversary submits (σ, pkS , pkR) to the chal-
lenger, where σ is a signcryptext, pkR ∈ {pkA, pkB}, and pkS can be
an arbitrary public key in the system including pkS ∈ {pkA, pkB}. The
challenger forwards (σ, pkS , pkR) to the unsigncryption oracle which then
returns to the challenger with an outcome of Unsigncryption
(cp, σ, pkS , skR). Finally, the challenger passes this answer to the ad-
versary.

– Stage 3: The adversary submits (m0, m1, pkS∗ , pkR∗) to the challenger where
m0, m1 ∈ SPm are of equal length, and pkS∗ , pkR∗ ∈ {pkA, pkB}. The chal-
lenger chooses a random bit β ∈ {0, 1}. Then it forwards (mβ , pkS∗ , pkR∗)
to the signcryption oracle which then returns to the challenger with a sign-
cryptext σ∗ which is an outcome of Signcryption(cp, mβ, skS∗ , pkR∗). The
challenger then passes σ∗ to the adversary as a challenge signcryptext.

– Stage 4: This is identical to Stage 2, except that the adversary can not query
an unsigncryption with (σ∗, pkS∗ , pkR∗).

– Stage 5: The adversary outputs a bit β′ as his guess for β and pass it over
to the challenger. The challenger then checks whether β = β′. If it is, the
adversary wins the challenge.

376 J. Fan, Y. Zheng, and X. Tang

For an IND-CSPA adversary A running in time t, making at most js sign-
cryption queries and ju unsigncryption queries, we define the advantage of A
in winning the challenge as Advind−cspa

SC,A (t, js, ju) = |Pr[β = β′] − 1/2|. And
we define εind−cspa

t,js,ju
to be the maximum value of Advind−cspa

SC,A (t, js, ju) over all
IND-CSPA adversaries with the same resources parameter (t, js, ju).

Definition 1. We say that a signcryption scheme SC is IND-CSPA secure if
for any IND-CSPA adversary that runs in time t, makes at most js signcryp-
tion queries and ju unsigncryption queries, the maximum advantage εind−cspa

t,js,ju
is

negligible in k, where t, js and ju are all polynomials in k.

3.3 Definition of Unforgeability

Unforgeability is defined as existential unforgeability against chosen signcryptext
and plaintext attack (EUF-CSPA), which follows the established definition of
existential unforgeability against chosen message attack (EUF-CMA). This is
done by defining an attack game, called an EUF-CSPA game.

Let k be the security parameter of the scheme, A be a target user. The EUF-
CSPA game is played between an EUF-CSPA adversary and its environment
Σ which contains an EUF-CSPA challenger and two oracles, one being a sign-
cryption oracle and the other an unsigncryption oracle. The EUF-CSPA game
proceeds as follows:

– Stage 1: The challenger computes cp←Setup(1k); (pkA, skA)←KeyGen(cp).
It then equips the signcryption and unsigncryption oracles with skA and
gives (cp, pkA) to the adversary.

– Stage 2: It is mostly the same as Stage 2 in the IND-CSPA game described
above, except that in this case there is no pkB .

– Stage 3: The adversary passes (σ∗, pkS∗ , pkR∗ , skR∗) to the challenger, where
σ∗ is a signcryptext, pkS∗ = yA, pkR∗ can be an arbitrary public key in the
system including pkR∗ = pkA, and skR∗ is the corresponding private key of
pkR∗ . The challenger then checks whether the outcome of Unsigncryption(cp,
σ∗, pkS∗ , skR∗) is a special symbol Reject or a message m∗ ∈ SPm. If the
outcome is m∗ and the adversary has never made a signcryption query on
(m∗, pkS∗ , pkR∗), then the adversary wins the challenge.

For an adversary A running in time t, making at most js signcryption queries
and ju unsigncryption queries, we define the advantage of A in winning the
challenge as Adveuf−cspa

SC,A (t, js, ju) = Pr[A wins], where “A wins” denotes an
event that adversary A wins the challenge in the above attack game. And we
define εeuf−cspa

t,js,ju
to be the maximum of Adveuf−cspa

SC,A (t, js, ju) over all EUF-CSPA
adversaries with the same resource parameter (t, js, ju).

Definition 2. We say that a signcryption scheme SC is EUF-CSPA secure if for
any EUF-CSPA adversary running in time t, and making at most js signcryption
queries and at most ju unsigncryption queries, the maximum advantage εeuf−cspa

t,js,ju

is negligible in k, where t, js and ju are all polynomials in k.

A Single Key Pair is Adequate for the Zheng Signcryption 377

4 Assumptions and Primitives

4.1 Problems and Assumptions

Let G be a finite multiplicative group with g being a generator of the group. The
Discrete Logarithm (DL) problem is one where an attacker is given (g, y) ∈ G2,
asked to find an x such that y = gx in G. The well-known Diffie-Hellman (DH)
problem has two different flavors: a computational one and a decisional one.
With the Computational Diffie-Hellman (CDH) problem, an attacker is given
three elements (g, ga, gb) ∈ G3 for unknown a and b, and asked to compute gab.
In contrast, with the Decisional Diffie-Hellman (DDH) problem an attacker is
given four elements (g, ga, gb, z) ∈ G4, for unknown a and b, and asked to tell
whether z = gab.

The CDH problem has a gap based version in which an attacker is granted
access to a powerful oracle, named DDH oracle, that solves the DDH problem [7].
This new problem is called the Gap Diffie-Hellman (GDH) problem. A gap based
version of the DL problem can be obtained in a similar way. In this paper, we
follow [3] to define the Gap Discrete Logarithm (GDL) problem as one in which
an attacker has access to a restricted oracle for the DDH problem. Similar to the
DDH oracle, a restricted DDH oracle also answers whether a given quadruple is
a DH quadruple or not. However, the restricted DDH oracle only accepts queries
on (g, y, ., .) ∈ G4 where (g, y) is the input of the adversary.

The CDH problem has a number of interesting variants. In one variant, an
attacker is given (g, ga) ∈ G2 with an unknown a and asked to compute y = ga2

.
It turns out that this variant is equivalent to the CDH problem [4].

In our proofs we will employ a new variant of the CDH problem in which
an attacker is given (g, ga, gb) ∈ G3 for unknown a and b, and attempts to
output one of (ga2

, gb2 , gab). The attacker is considered successful as long as its
output is one of the three possible values. We call this new problem the extended
Computational Diffie-Hellman problem or the eCDH problem for short. Clearly
the eCDH problem is computationally equivalent to the CDH problem. A gap
based version of the eCDH problem is defined by allowing an attacker to have
access to a DDH oracle. Let us call it the extended GDH problem or the eGDH
problem for short. Naturally, the equivalence of the CDH and eCDH problems
is carried over to their gap based versions. That is, the following lemma is true.

Lemma 1. The GDH problem and the eGDH problem are equivalent.

Assumptions related to the above mentioned problems are defined by stating
that no attacker that runs in polynomial time in the size of the group can suc-
cessfully solve the respective problem with a non-negligibly success probability.
In particular, according to Lemma 1, we claim that the eGDH assumption are
equivalent to the GDH assumption.

4.2 One-Time Symmetric Key Encryption

A one-time symmetric key encryption system SKE [6] consists of two bijective
and deterministic algorithms E and D.

378 J. Fan, Y. Zheng, and X. Tang

– Eτ (m): On input a key τ , a plaintext m, it outputs a ciphertext c ← Eτ (m).
– Dτ (c): On input a key τ , a ciphertext c, it outputs a plaintext m ← Dτ (c).

In the above, τ ∈ SPτ , m ∈ SPm and c ∈ SPc, where the sizes of spaces SPτ ,
SPm and SPc are all determined by a security parameter k. And it is required
that for all m ∈ SPm and τ ∈ SPτ , m = Dτ (Eτ (m)).

We will use a one-time symmetric key encryption with the security of passive
indistinguishability of SKE (PI-SKE). In a PI-SKE attack game, a passive at-
tacker is given (k,SKE), and then submits two equal length messages (m0, m1)
to get a ciphertext c where c ← Eτ (mβ), β is a random bit. PI-SKE security
states that, any passive attacker running in polynomial time cannot determine
which of the two messages was chosen.

4.3 One-Way Hash Functions

Our proofs rely on the random oracle methodology [5]. In other words we assume
that each one-way hash function used in the Zheng signcryption scheme behaves
like a random oracle, a mathematical function mapping every possible query to
a random response from its output domain.

5 Security Proofs

Our proofs for confidentiality and unforgeability apply the game based technique.
For each proof, we describe a sequence of n+1 games, from Game 0 to Game n (n
is a constant). Game 0 is the normal attack game in the security definition. We
use a sequence of simulators (from Game 1 to Game n) to replace the challenger.
Game i + 1 and Game i (0 ≤ i ≤ n − 1) are mostly the same, except that the
simulator’s behavior in Game i + 1 is a little bit different from the simulator’s
(or the challenger’s when i = 0) behavior in Game i.

Define Si to be an event that the adversary wins the challenge in Game i. To
analyze the relation between Pr[Si] and Pr[Si+1], we make use of two techniques
introduced by Shoup [8], namely bridging step and transition based on a failure
event.

1. Bridging Step: The change from Game i to Game i + 1 is a bridging step
means that the change is only conceptual. From the adversary’s point of
view, these two games proceed identically. Therefore, in this case we have
Pr[Si] = Pr[Si+1].

2. Transition Based on a Failure Event: The change from Game i to Game i+1
is a transition based on a failure event means that from the adversary’s point
of view, these two games proceed identically unless a certain “failure event”
occurs. We can then apply a so-called Difference Lemma [8]:

Lemma 2. (Difference Lemma): Let S1, S2 and F be events defined on
some probability spaces. Suppose that the event S1 ∧ ¬F occurs if and only
if S2 ∧ ¬F occurs. Then | Pr[S1] − Pr[S2] |≤ Pr[F].

A Single Key Pair is Adequate for the Zheng Signcryption 379

We have in this case |Pr[Si+1] − Pr[Si]| ≤ Pr[Failure Event Occurs].

In each proof, we make sure that for all i (0 ≤ i ≤ n − 1), the change from
Game i to Game i + 1 is either a bridging step or a transition based on a failure
event which occurs with at most a negligible probability in k. In Game n, we
show that the adversary’s advantage in winning the challenge is negligible in k.
Finally, from the results in all the games, we can arrive at our desired conclusion
that the adversary’s advantage in winning Game 0 (the normal attack game) is
also negligible in k.

We define 〈g〉 be a group generated by g. The security proofs of unforgeability
and confidentiality for the Zheng signcryption are as follows.

5.1 Proof of Unforgeability

Theorem 1. Let H and G be two hash functions modeled as random oracles.
Then under the GDL assumption in 〈g〉, the Zheng signcryption scheme is EUF-
CSPA secure. Specifically, let k be a security parameter of signcryption, A be an
EUF-CSPA adversary that runs in time t, and makes at most js signcryption
queries, ju unsigncryption queries, jg hash queries to G and jh hash queries
to H, where t, js, ju, jg and jh are all polynomials in k. Then the maximum
advantage εeuf−cspa

t,js,ju
of the adversary satisfies the following condition:

εeuf−cspa
t,js,ju

≤ js(jg + jh + 3ju + 2js) + 2jh + ju + 1
q

+ 2 ·
√

jh · εgdl
tgdl,jgdl

where εgdl
tgdl,jgdl

is negligible in k for all sufficiently large k.

Before diving into details of the proof of Theorem 1, we review in Table 3 an
assumption introduced in [3], which is renamed as the Random Beacon GDL
assumption (or rbGDL assumption for short). The following Lemma 3 is also
from [3] which shows an equivalence relationship between the rbGDL assumption
and the GDL assumption.

Lemma 3. Any algorithm Arbgdl attacking the rbGDL assumption with run-
time trbgdl, jrbgdl restricted DDH queries, jr Random Beacon queries, and suc-
cess probability Advrbgdl

RBGDL,Arbgdl
(trbgdl, jrbgdl, jr) ≥ 2jr/q can be converted into

an algorithm Agdl attacking the GDL assumption with run-time tgdl = 2trbgdl +
O(q2), jgdl = 2jrbgdl restricted DDH queries, and success probability

Advgdl
GDL,Agdl

(tgdl, jgdl) ≥ 1
jr

(
Advrbgdl

RBGDL,Arbgdl
(trbgdl, jrbgdl, jr)

2
− jr

q
)2.

Proof of Theorem 1. We describe our proof in a sequence of seven games,
from Game 0 to Game 6 as follows. We define Si (1 ≤ i ≤ 6) to be the simulator
in Game i.

380 J. Fan, Y. Zheng, and X. Tang

Table 3. The rbGDL Assumption

Random Beacon Gap Discrete Logarithm (rbGDL) Assumption [3]
Given a pair of elements (g, ga) in G, g is a generator of G, OrdG(g) = q,
a ∈ {0, ..., q − 1}. With the help of a Restricted DDH Oracle and a Random
Beacon,

A Random Beacon takes as input a pair of elements (y[i], K[i]) ∈ G2

(y[i] �= 1), outputs uniformly a random independent number r[i] ∈ {0, ..., q−1}.
i ∈ {1, ..., jr} where jr is total number of Random Beacon queries been made.

it is computationally intractable to compute the value of (r[i∗], s∗, i∗),
satisfying K[i∗] = y[i∗]s

∗(r[i∗]+a).

The difference between a random beacon and a random oracle is that a random beacon
returns a random and independent response even for the same input.

Game 0 (EUF-CSPA Game in the Random Oracle Model): This game
is the EUF-CSPA game defined in Section 3.3 in the random oracle model.
Therefore, we have

Adveuf−cspa
SC,A (t, js, ju) = Pr[S0]. (1)

Game 1 (Apply Gsim to Simulate the G Random Oracle): In this game,
S1 behaves mostly the same as C, except that S1 additionally runs an algorithm
Gsim to simulate the G random oracle. In order to simulate the G random oracle,
S1 holds two lists, called Glist1 and Glist2 respectively, which are both initially
empty. Records on Glist1 are generated by Gsim, while records on Glist2 are
generated by Signcryptionsim and Unsigncryptionsim which will be applied in
later games. The ν-th record on Glist1 is in form of (ySν , yRν , Kν , τν), and the
μ-th record on Glist2 is in form of (rμ, sμ, ySμ , yRμ , τμ). lGlist1 and lGlist2 denote
the total number of records on Glist1 and Glist2 respectively.

– When the i-th hash query is made on (yS , yR, K) to the G random oracle,
Gsim runs the following steps:
1. If Glist1 is not empty, then from ν = 1 to ν = lGlist1 do

(a) take the value of (ySν , yRν , Kν , τν) which is the ν-th record on Glist1;
(b) if (ySν , yRν , Kν) = (yS , yR, K), return τν ;
(c) ν = ν + 1.

2. If Glist2 is not empty, then from μ = 1 to μ = lGlist2do
(a) take the value of (rμ, sμ, ySμ , yRμ , τμ) which is the μ-th record on

Glist2;
(b) if yS = yA and (yS , yR) = (ySμ , yRμ), check whether a quadruple

(g, yS , yR
sμ , K

yR
sμ·rμ) is a DH quadruple in 〈g〉; if it is, return τμ;

(c) if yR = yA and (yS , yR) = (ySμ , yRμ), check whether a quadruple
(g, yR, (ySgrμ)sμ , K) is a DH quadruple in 〈g〉; if it is, return τμ;

(d) μ = μ + 1.
3. Choose τ ∈ {0, 1}lG uniformly at random, add (yS , yR, K, τ) to the end

of Glist1 and return τ .

A Single Key Pair is Adequate for the Zheng Signcryption 381

It is easy to check that the change from Game 0 to Game 1 is a bridging step,
therefore,

Pr[S1] = Pr[S0]. (2)

Game 2 (Apply Hsim to Simulate the H Random Oracle): In this game,
S2 behaves mostly the same as S1, except that S2 additionally runs an algorithm
Hsim to simulate the H random oracle. In order to simulate the H random oracle,
S2 holds another two lists, called Hlist1 and Hlist2 respectively, which are both
initially empty. Records on Hlist1 are generated by Hsim, while records on
Hlist2 are generated by Signcryptionsim which will be applied in later games.
lHlist1 and lHlist2 denote the total number of records on Hlist1 and Hlist2
respectively. The ν-th record on Hlist1 is in form of (mν , ySν , yRν , Kν , rν), and
the μ-th record on Glist2 is in form of (rμ, sμ, mμ, ySμ , yRμ , r′μ).

– When the i-th hash query is made on (m, yS , yR, K) to the H random oracle,
Hsim runs the following steps:
1. If Hlist1 is not empty, then from ν = 1 to ν = lHlist1 do

(a) take the value of (mν , ySν , yRν , Kν , rν) which is the ν-th record on
Hlist1;

(b) if (mν , ySν , yRν , Kν) = (m, yS , yR, K), then return rν ;
(c) ν = ν + 1.

2. If Hlist2 is not empty, then from μ = 1 to μ = lHlist2do
(a) take the value of (rμ, sμ, mμ, ySμ , yRμ , r′μ) which is the μ-th record

on Hlist2 ;
(b) if yS = yA and (m, yS, yR) = (mμ, ySμ , yRμ), check whether a quadru-

ple (g, yS, yR
sμ , K

yR
sμ·rμ) is a DH quadruple in 〈g〉; if it is, return r′μ;

(c) if yR = yA and (m, yS , yR) = (mμ, ySμ , yRμ), check whether a quadru-
ple (g, yR, (ySgrμ)sμ , K) is a DH quadruple in 〈g〉; if it is, return r′μ;

(d) μ = μ + 1.
3. If yS = yA, it computes r ← R′(yR, K), otherwise it chooses r ∈ Zq

uniformly at random; add (m, yS , yR, K, r) to the end of Hlist1 and
return r.
Here, R′ is an algorithm that has the same output distribution as a
random beacon R. For any input (even with the same input as before),
R′ chooses r ∈ Zq uniformly at random, and outputs r.

It is also easy to check that the change from Game 1 to Game 2 is a bridging
step, therefore,

Pr[S2] = Pr[S1]. (3)

Game 3 (Apply Signcryptionsim to Simulate the Signcryption Oracle):
In this game S3 behaves mostly the same as S2, except that S3 additionally runs
an algorithm Signcryptionsim to simulate the signcryption oracle.

382 J. Fan, Y. Zheng, and X. Tang

– When the i-th signcryption query is made on (m, pkS , pkR) to the signcryp-
tion oracle, Signcryptionsim runs as follows:
1. Parse pkS as yS , pkR as yR.
2. Choose r ∈ Zq, s ∈ Z∗

q , τ ∈ {0, 1}lG uniformly at random.
3. If gryS = 1 mod p, jump to Step 2.
4. If Glist2 is not empty, then from μ = 1 to μ = lGlist2 do

(a) take the value of (rμ, sμ, ySμ , yRμ , τμ) which is the μ-th record on
Glist2;

(b) if (ySμ , yRμ) = (yS , yR), (ySgr)s = (ySgrμ)sμ and τμ
= τ , then return
Reject;

(c) μ ← μ + 1.
5. If Hlist2 is not empty, then from μ = 1 to μ = lHlist2 do

(a) take the value of (rμ, sμ, mμ, ySμ , yRμ , r′μ) which is the μ-th record
on Hlist2 ;

(b) if (mμ, ySμ , yRμ) = (m, yS , yR), (ySgr)s = (ySgrμ)sμ and r′μ
= r,
then return Reject;

(c) μ = μ + 1.
6. Add (r, s, yS , yR, τ) to the end of Glist2, (r, s, m, yS, yR, r) to the end of

Hlist2;
7. Compute c ← Eτ (m);
8. Return σ = (c, r, s).

If the following four conditions are all satisfied, then it is easy to check that
Signcryptionsim has the same output distribution as the signcryption oracle:

– Signcryptionsim does not change the output distribution of Gsim and Hsim.
– Signcryptionsim does not return Reject.
– τ = Gsim(yS , yR, K) with K = g(xS+r)·s·xR when Signcryptionsim does not

return Reject.
– r = Hsim(m, yS , yR, K) with K = g(xS+r)·s·xR when Signcryptionsim does

not return Reject.

In the following, we analyze all the above conditions one by one.

1. Adding (r, s, yS , yR, τ) to Glist2, (r, s, m, yS , yR, r) to Hlist2 does not change
the output distribution of Gsim and Hsim, since τ ∈ {0, 1}lG which may be
used as an output for Gsim and r ∈ Zq which may be used as an output for
Hsim are all chosen uniformly at random. Therefore, Signcryptionsim does
not change the output distribution of Gsim and Hsim.

2. For the i-th signcryption query, the probability that it returns Reject at
Step 4 is at most js+ju

q , since (ySgr)s is uniformly and randomly distributed
in 〈g〉 and lGlist2 ≤ js + ju. Similarly, we have for the i-th signcryption
query, the probability that it returns Reject at Step 5 is also at most js

q
since lHlist2 ≤ js. Therefore, for the i-th signcryption query, the probability
Signcryptionsim does not return Reject is at most 2js+ju

q . Then, the prob-
ability that the second condition is not satisfied during some signcryption
query is at most js(2js+ju)

q .

A Single Key Pair is Adequate for the Zheng Signcryption 383

3. For the i-th signcryption query in which Signcryptionsim does not return
Reject, τ
= Gsim(yS , yR, K) if and only if Gsim has been run on (yS , yR, K)
before the i-th signcryption query and the corresponding output does not
equal to τ . The probability that Gsim has been run on (yS , yR, K) before the
i-th signcryption query is at most ju+jg

q , since K is randomly and uniformly
distributed in 〈g〉 and Gsim must have been run for at most ju + jg times
(ju times called by the unsigncryption oracle, jg times called directly by
the challenger) before the i-th signcryption query. Therefore, the probability
that the third condition is not satisfied during some signcryption query is at
most js(ju+jg)

q .
4. Following a very similar analysis as for the third condition, we have the

probability that the fourth condition is not satisfied during some signcryption
query is at most js(ju+jh)

q .

We define a certain event F1 to be that at least one of the above conditions
is not satisfied. From the above analysis, we have

Pr[F1] ≤ js(jg + jh + 3ju + 2js)
q

. (4)

Now it is clear that the signcryption oracle and Signcryptionsim has the
same output distribution unless F1 occurs. Moreover, Signcryptionsim does not
change the output distribution of Gsim and Hsim. Thus, the change from Game
2 and Game 3 is a transition based on a failure event F1. We have

|Pr[S3] − Pr[S2]| ≤ Pr[F1], (5)

Game 4 (Apply Unsigncryptionsim to Simulate the Unsigncryption Ora-
cle): In this game S4 behaves mostly the same as S3, except that S4 additionally
runs an algorithm Unsigncryptionsim to simulate the unsigncryption oracle as
follows:

– When the i-th unsigncryption query is made on (σ, pkS , pkR) to the unsign-
cryption oracle, Unsigncryptionsim runs as follows:
1. Parse pkS as yS , pkR as yR.
2. Parse σ as (c, r, s).
3. Compute w ← (ySgr)s mod p.
4. If Glist1 is not empty, then from ν = 1 to ν = lGlist1 do

(a) take the value of (ySν , yRν , Kν , τν) which is the ν-th record on Glist1;
(b) if (ySν , yRν) = (yS , yR) and (g, yR, w, Kν) is a DH tuple in 〈g〉, com-

pute τ̂ ← τν and jump to Step 7;
(c) ν ← ν + 1.

5. If Glist2 is not empty, then from μ = 1 to μ = lGlist2 do
(a) take the value of (rμ, sμ, ySμ , yRμ , τμ) which is the μ-th record on

Glist2;
(b) if (ySμ , yRμ) = (yS , yR) and (ySgrμ)sμ = (ySgr)s, then compute τ̂ ←

τμ and jump to Step 7;

384 J. Fan, Y. Zheng, and X. Tang

(c) μ ← μ + 1.
6. Choose τ ∈ {0, 1}lG uniformly at random, add (r, s, yS , yR, τ) to the end

of Glist2, and compute τ̂ ← τ .
7. Compute m ← Dτ̂ (c).
8. If Hlist1 is not empty, then from ν = 1 to ν = lHlist1 do

(a) take the value of (mν , ySν , yRν , Kν , rν) which is the ν-th record on
Hlist1;

(b) if (mν , ySν , yRν) = (m, yS , yR) and (g, yR, w, Kν) is a DH tuple in
〈g〉, then compute r̂ ← rν and jump to Step 11;

(c) ν ← ν + 1.
9. If Hlist2 is not empty, then from μ = 1 to μ = lHlist2 do

(a) take the value of (rμ, sμ, mμ, ySμ , yRμ , r′μ) which is the μ-th record
on Hlist2;

(b) if (mμ, ySμ , yRμ) = (m, yS , yR) and (ySgrμ)sμ = (ySgr)s, then com-
pute r̂ ← r′μ and jump to Step 11;

(c) μ ← μ + 1;
10. Return Reject;
11. Check whether r = r̂; if it is, return m, otherwise return Reject.

We define a certain event F2 to be that for some unsigncryption query,
Unigncryptionsim(σ, pkS , pkR) = Reject and Hsim(m, yS , yR, K) = r where
σ = (c, r, s), m = Dτ (c), τ = Gsim(yS , yR, K), and K = wxR .

It is easy verify that the unsigncryption oracle and Unsigncryptionsim has
the output distribution unless F2 occurs. Therefore, the change from Game 3 to
Game 4 is a transition based on a failure event F2. We have

|Pr[S4] − Pr[S3]| ≤ Pr[F2]. (6)

In this proof, F2 occurs if and only if Unsigncryptionsim returns Reject
at Step 10, while Hsim(m, yS , yR, K) = r. According to the description of
Unsigncryptionsim, in this case Hsim has never been run on (m, yS , yR, K)
before this unsigncryption query and there is no record on Hlist2 satisfies the
output condition. According to the Hsim algorithm, Hsim will generate and
return a random value at Step 3. For each unsigncryption query, the probabil-
ity that r equals to that random value is 1

q . Considering all ju unsigncryption
queries, the probability that Unsigncryptionsim returns Reject at Step 10, while
Hsim(m, yS , yR, K) = r in that case is ju

q . Therefore, we have

Pr[F2] =
ju

q
. (7)

Game 5 (Replace Hsim with H ′ at Stage 3): In this game S5 behaves mostly
the same as S4, except that S5 replaces Hsim with another algorithm H ′ at Stage
3. On input (m∗, yS∗ , yR∗ , K∗), H ′ chooses r̄∗ ∈ Zq uniformly at random and
outputs r̄∗.

Since r̄∗ is chosen uniformly at random from Zq, the probability that r∗ = r̄∗

is 1
q . Therefore, we have

Pr[S5] =
1
q
. (8)

A Single Key Pair is Adequate for the Zheng Signcryption 385

We define a certain event F3 to be that at Stage 2, Hsim is run on input
(m∗, yS∗ , yR∗ , K∗) where K∗ = yR∗s∗(r∗+xS∗).

If F3 does not occur, then from A’s point of view, Game 5 and Game 4
proceeds identically. Therefore, the change from Game 4 to Game 5 is a transition
based on a failure event F3. Then, we have

|Pr[S5] − Pr[S4]| ≤ Pr[F3] (9)

Game 6 (Change the Way to Generate an Input to A): In this game
S6 behaves mostly the same as S5, except that S6 runs in a different way at
Stage 1, and at Stage 2 it calls for a restricted DDH oracle to check whether a
quadruple is a DH quadruple and makes use of a random beacon R to replace
the R′ algorithm, where both the restricted DDH oracle and the random beacon
R are provided by the rbGDL problem. In this game S6 (which can also be
regarded as an adversary Arbgdl) prepares to take up the challenge of attacking
the rbGDL problem in a group 〈g〉 with an input (g, ga). Particularly, at Stage
1, S6 runs as follows:

1. Set (p, q, g) as the same as in the rbGDL problem.
2. Set G, H,SKE according to the Setup algorithm.
3. Set yA ← ga.
4. Give (cp, pkA) to A, where cp = (p, q, g, G, H,SKE), pkA = yA.

It is obvious that the changes are only conceptual. In other words, from A’s
point of view, Game 6 and Game 5 proceeds identically. Therefore, F3 in Game
6 and Game 5 occurs with the same probability.

Now we analyze the probability that F3 occurs. In this proof, records on
Hlist2 are only be generated by Signcryptionsim and according to the rule of
the game, A is not allowed to make a signcryption query on (m∗, pkS∗ , pkR∗)
which implies there will be no such a record (mμ, rμ, sμ, ySμ , yRμ , r′μ) on Hlist2
satisfying (mμ, ySμ , yRμ) = (m∗, yS∗ , yR∗). Therefore, when Hsim is queried on
(m∗, yS∗ , yR∗ , K∗), the output value will never be returned at Step 2. That is,
the output value of Hsim(m∗, yS∗ , yR∗ , K∗) is generated at Step 3 when it is
first queried. In this case, according to the Hsim algorithm, r∗ = R(yR∗ , K∗).
Therefore, S6 can solve the rbGDL problem by outputting (r∗, s∗, i∗) where i∗

denotes R runs on input (yR∗ , K∗) at the i-th time. From the above analysis, we
have

Pr[F3] ≤ Advrbgdl
Arbgdl

(trbgdl, jrbgdl, jr) (10)

where Advegdh
EGDH,Aegdh

(tegdh, jegdh) is the advantage of Arbgdl running in time
trbgdl and making at most jrbgdl restricted DDH queries, and at most jr random
beacon queries. According to the execution of S6 in Game 6, we can compute
that trbgdl = t + t′c where t′c = O((js + ju)2 + jh

2 + jg
2) is the simulation time

of S6, jrbgdl = O((jg + jh)(js + ju)) and jr ≤ jh. Therefore, trbgdl, jrbgdl, and jr

are all polynomials in k.

386 J. Fan, Y. Zheng, and X. Tang

By Lemma 3, we can construct an algorithm Agdl to attack the GDL assump-
tion that runs in time tgdl = 2trbgdl + O(q2) and makes jgdl = 2jrbgdl restricted
DDH queries, with a success probability

Advgdl
GDL,Agdl

(tgdl, jgdl) ≥ 1
jr

(
Advrbgdl

RBGDL,Arbgdl
(trbgdl, jrbgdl, jr)

2
− jr

q
)2. (11)

Here tgdl and jgdl are also polynomials in k, since trbgdl and jrbgdl are polynomials
in k. Recall that in Lemma 3, we have

Advrbgdl
RBGDL,Arbgdl

(trbgdl, jrbgdl, jr) ≥ 2jr

q
,

as a result, (11) can be expressed as

Advrbgdl
RBGDL,Arbgdl

(trbgdl, jrbgdl, jr) ≤ 2(
√

jr · Advgdl
GDL,Agdl

(tgdl, jgdl) +
jr

q
).(12)

Combining (10) and (11), with jr ≤ jh, the probability for F3 to occur is

Pr[F3] ≤ 2jh

q
+ 2 ·

√
jh · Advgdl

GDL,Agdl
(tgdl, jgdl). (13)

Arrive at our conclusion: Combining the formulas from (1) to (9), and for-
mula (13), we have

Adveuf−cspa
SC,A (t, js, ju) (14)

≤ js(jg + jh + 3ju + 2js) + 2jh + ju + 1
q

+2
√

jh · Advgdl
GDL,Agdl

(tgdl, jgdl). (15)

Let εgdl
tgdl,jgdl

be the maximum of Advgdl
GDL,Agdl

(tgdl, jgdl) over all algorithms
attacking the GDL problem that runs in time tgdl and makes at most jgdl re-
stricted DDH queries to a DDH oracle. From the analysis of Game 6, we get
that tgdl and jgdl are polynomials in k. Therefore, under the GDL assumption,
εgdl
tgdl,jgdl

must be negligible in k.
Taking a maximum over all EUF-CSPA adversaries with appropriate resource

parameters, we get our conclusion that

εeuf−cspa
t,js,ju

≤ js(jg + jh + 3ju + 2js) + 2jh + ju + 1
q

+ 2 ·
√

jh · εgdl
tgdl,jgdl

. (16)

Finally, we remark that the minor tweak we made is useful in Step 4(b) of
Signcryptionsim, and Step 5(b) of Unsigncryptionsim. This tweak takes yS and
yR as part of the input to the G hash function. Therefore, in these two cases we
are sure that (ySμ , yRμ) = (yS , yR).

A Single Key Pair is Adequate for the Zheng Signcryption 387

5.2 Proof of Confidentiality

Theorem 2. Let H and G be two hash functions modeled as random oracles.
Then under the GDH assumption in 〈g〉 which is a subgroup of Z∗

p generated by
g, and the assumption that the SKE is PI-SKE secure, the Zheng signcryption
scheme is IND-CSPA secure.

Specifically, let k be a security parameter of the Zheng signcryption, A be an
IND-CSPA adversary that runs in time t, and makes at most js signcryption
queries, ju unsigncryption queries, jg hash queries to G and jh hash queries to
H, where t, js, ju, jg, jh are all polynomials in k. Then the maximum advantage
εind−cspa
t,js,ju

of the adversary satisfies the following condition:

εind−cspa
t,js,ju

≤ εegdh
tegdh,jegdh

+ εpi−ske
tske

+
js(jg + jh + 6ju + 3js + 2)

q

where εegdh
tegdh,jegdh

, εpi−ske
tske

are negligible in k for all sufficiently large k.

The proof for this theorem follows a similar path to that for Theorem 1. We
leave details of the proof to a full version of this paper.

6 Relationships with Proofs by Baek, Steinfeld and
Zheng

The proof of confidentiality by Baek, Steinfeld and Zheng can be naturally ex-
tended to the single key pair setting, with the exception that in the new model,
more cases need to be considered. As a result, all the games in the proof should
be properly described and probabilities for all the events need to be carefully
analyzed by taking into account all the added cases throughout the whole proof.

The proof of unforgeability in the new model can not be naturally derived
from the proof by Baek, Steinfeld and Zheng. For example, in Game 3 of the
proof by Baek, Steinfeld and Zheng, when (m∗, yS

∗, yR
∗, K∗) is presented to

HSim, it is the same as that R (the random beacon) has been run on (yR
∗, K∗)

which implies the rbGDL problem has been resolved. When it is extended to the
single key pair setting, there should be unsigncryption queries which (accord-
ing to their proof for confidentiality) may add records to Hlist2. In this case
(m∗, yS

∗, yR
∗, K∗) is presented to HSim which can be different from R being

run on (yR
∗, K∗), since the result of HSim(m∗, yS

∗, yR
∗, K∗) may come from

Hlist2. To ensure that unforgeability can be reduced to the GDL assumption
under the new model, we had to resolve a number of technical issues, includ-
ing the use of a random beacon, the way to add records to Hlist2, and the
way to simulate the unsigncryption oracle among many other minor technical
issues.

Acknowledgment. We thank Joonsang Baek and Ron Steinfeld for thoroughly
reading the early version of this paper and providing helpful comments. We also
thank the anonymous reviewers of ACISP 2011 for their valuable comments.

388 J. Fan, Y. Zheng, and X. Tang

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
J. Cryptology 20(2), 203–235 (2007)

4. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of the First ACM Conference on Computer and
Communications Security, New York, pp. 62–73. The Association for Computing
Machinery (November 1993)

6. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2003)

7. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

8. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs
(2004), http://eprint.iacr.org/2004/332

9. Zheng, Y.: Digital signcryption or how to achieve cost (Signature & encryption)
<< cost(Signature) + cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

10. Zheng, Y., Imai, H.: Efficient signcryption schemes on elliptic curves. In: IFIP/SEC
1998: Proceedings of the IFIP 14th International Information Security Conference,
New York, pp. 75–84. Chapman and Hall, Boca Raton (1998)

http://eprint.iacr.org/2004/332

Towards Public Key Encryption Scheme

Supporting Equality Test with Fine-Grained
Authorization

Qiang Tang

DIES, Faculty of EEMCS
University of Twente, the Netherlands

q.tang@utwente.nl

Abstract. In this paper we investigate a new category of public key en-
cryption schemes which supports equality test between ciphertexts. With
this primitive, two users, who possess their own public/private key pairs,
can issue token(s) to a proxy to authorize it to perform equality test be-
tween their ciphertexts. We provide a formulation and a corresponding
construction for this primitive, and our formulation provides fine-grained
authorization policy enforcements for users. With the increasing popular-
ity of outsourcing data and computations to third-party service providers,
this primitive will be an important building block in designing privacy pro-
tection solutions supporting operations on encrypted data.

1 Introduction

Today, more and more IT applications outsource the storage and business trans-
actions of corporate/personal database to third-party service providers. For such
applications, it is a big challenge to design mechanisms, which simultaneously
achieve the intended business objectives and provide a maximal level of privacy
guarantee on the sensitive data. Within the information security community,
a lot of research efforts have been dedicated to cryptographic techniques sup-
porting operations on encrypted data. In this paper, we are interested in Public
Key Encryption schemes which support Equality Test between ciphertexts. This
primitive is formally referred to as PKEET, and an informal functional descrip-
tion is as follows.

Given a public key encryption scheme (KeyGen, Enc, Dec), suppose that two
users possess their public/private key pairs (PK, SK) and (PK ′, SK ′) respec-
tively. If this public key encryption scheme belongs to the category of PKEET,
then the two users can authorize a third-party proxy to perform the following
test: Given Enc(M, PK) and Enc(M ′, PK ′) for any M and M ′, test whether
M = M ′ without knowing M or M ′.

As mentioned in [20], PKEET is a useful building block in construct privacy-
preserving applications, such as outsourced databases. Besides, we can foresee
more applications in the emerging computing scenarios. For example, in an

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 389–406, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

390 Q. Tang

Internet-based PHR application [17], a PKEET cryptosystem can achieve the
following: (1) patients can encrypt their attributes (2) a semi-trusted proxy can
match patients’ encrypted attributes and recommend them to each other, with-
out knowing the plaintext attributes.

1.1 Related Work

The concept of PKEET cryptosystem was proposed by Yang et al. [20]. However,
their formulation lacks an authorization mechanism for users to specify who
can perform equality test between their ciphertexts, and in fact any entity can
perform the equality test. The consequence is that standard semantic security or
IND-CPA security cannot be achieved against any entity, when considering the
fact that ciphertexts are public information. In addition, if the message space
is polynomial size or the min-entropy of the message distribution is much lower
than the security parameter, then any entity can potentially mount an offline
message recovery attack. This attack is similar to the offline keyword guessing
attack in the case of PEKS (or searchable encryption) [11,18].

The concepts of PKEET has a close nature to that of Public key encryption
with keyword search (PEKS) [8] and public key encryption with registered key-
word search (PERKS) [18]. With a PEKS or PERKS scheme, a user can enable
a server to perform equality test between the keywords embedding in a tag and
a ciphertext, and the user enforces her authorization by issuing a token to the
server. The difference is that, instead of keywords, PKEET is concerned with
the equality test of plaintexts which are encrypted under different public keys.
Another related concept is order preserving encryption (OPE) scheme, which is
a primitive firstly proposed by Agrawal et al. [1] and then further investigated
by Boldyreva et al. [6]. With an OPE scheme, the order of ciphertexts always re-
mains the same as that of the corresponding plaintexts. Therefore, given a set of
ciphertexts, any entity can directly compare the plaintexts. The order-preserving
property of an OPE scheme holds only for the ciphertexts generated under the
same public key, which differs from the purpose of PKEET.

1.2 Our Contribution

To mitigate the potential vulnerabilities of PKEET, we integrate a fine-grained
authorization policy enforcement mechanism into PKEET and propose an en-
hanced primitive, namely FG-PKEET. With an FG-PKEET cryptosystem, two
users, say Alice and Bob, need to run the authorization algorithm together to
issue a token to a semi-trusted proxy, which will then be authorized to per-
form equality test between their ciphertexts. Without the token, the equality
test cannot be performed. With this primitive, users gain more control over the
operations on their encrypted data.

– A user has tight control over who can perform equality test on her cipher-
texts, by choosing the semi-trusted proxies.

– A user has tight control over with whose ciphertexts that her ciphertexts
can be tested with, by choosing with which user to run the authorization
algorithm.

Towards Public Key Encryption Scheme Supporting Equality Test 391

For FG-PKEET, we consider two types of adversaries: Type-I adversary which
represents the semi-trusted proxies, and Type-II adversary which represents all
malicious entities. With respect to a Type-I adversary, we provide OW-CCA (i.e.
one-way CCA) and OW-CPA (i.e. one-way CPA) security definitions; while with
respect to a Type-II adversary, we provide standard IND-CCA and IND-CPA
security definitions. Furthermore, a fine-grained authorization property is defined
for FG-PKEET. Informally, this property means that a proxy cannot perform
equality test between two users’ ciphertexts unless it receives a token assigned by
these two users together. For example, a proxy cannot compare the ciphertexts
of Bob and Charlie, even if it has received a token to compare the ciphertexts of
Alice and Bob together with another token to compare the ciphertexts of Alice
and Charlie. We propose an FG-PKEET cryptosystem, which achieves all the
security properties defined in our security model.

In the extreme situation, when the message space is polynomial size or the
min-entropy of the message distribution is much lower than the security pa-
rameter, for FG-PKEET, only a Type-I adversary is capable of mounting an
offline message recovery attack which is unavoidable due to the desired equality
test functionality. However, compared with the formulation in [20], where any
adversary can mount the attack, our formulation achieves a significant secu-
rity improvement. Furthermore, based on computational client puzzles [14], we
propose an enhancement to mitigate this type of attack.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we formulate the
concept of FG-PKEET. In Section 3, we propose an FG-PKEET cryptosystem.
In Section 4, we analyse the proposed cryptosystem and provide an enhancement.
In Section 5, we conclude the paper.

2 Formulation of FG-PKEET

In this section, we first provide a formal description for FG-PKEET, and then
present the security model. Throughout the paper, we use “||” to denote the
concatenation operator and use x ∈R X to denote that x is chosen from X
uniformly at random.

2.1 Description of FG-PKEET

An FG-PKEET cryptosystem consists of algorithms (KeyGen, Enc, Dec, Aut,
Com), where (KeyGen, Enc, Dec) define a standard public key encryption
scheme while (Aut, Com) define the equality test functionality.

– KeyGen(�): This algorithm takes a security parameter � as input, and outputs
a public/private key pair (PK, SK). Let M denote the message space.

– Enc(M, PK): This algorithm takes a message M ∈ M and the public key
PK as input, and outputs a ciphertext C.

392 Q. Tang

– Dec(C, SK): This algorithm takes a ciphertext C and the private key SK as
input, and outputs the plaintext M or an error message ⊥.

Let all the potential users be denoted as Ui (1 ≤ i ≤ N), where N is an integer,
and they adopt the above public key encryption scheme. For any i, suppose that
Ui’s key pair is denoted as (PKi, SKi). Suppose that Ui and Uj want to enable
a proxy to perform equality test between their ciphertexts, the Aut and Com
algorithms are defined as follows.

– Aut(SKi; SKj; ·): This algorithm is interactively run among Ui, Uj and the
proxy, and the two users use their private keys as their secret inputs. At
the end of the algorithm execution, the proxy receives a token Ti,j as the
output, while Ui and Uj receive no explicit output. We assume that the
communication channels among the participants are confidential.

– Com(Ci, Cj , Ti,j): This algorithm takes two ciphertexts Ci, Cj and the token
Ti,j as input, and outputs 1 if Mi = Mj or 0 otherwise. Note that Ci, Cj are
two ciphertexts encrypted under PKi and PKj respectively.

In the algorithm definitions, besides the explicitly specified parameters, other
public parameters could also be specified and be implicitly part of the input.
We omit those parameters for the simplicity of description. Note that, under our
definition of Aut, Ti,j and Tj,i are exactly the same thing.

It is worth noting that the Aut algorithm is supposed to run interactively
among two users and the proxy. The interactive nature of this algorithm may
seem to be a drawback, but it in fact reflects the process that the two users to-
gether authorize the semi-trusted proxy to perform equality test between their
ciphertexts. Moreover, this algorithm only needs to be run once for any selected
proxy, which will then be able to compare all ciphertexts of the two users. There-
fore, the interactive nature of the the Aut algorithm will not be a performance
bottleneck in practice.

Similar to other cryptographic primitives, the basic requirement for FG-PKEET
is soundness. Informally, this property means that the algorithms Dec and Com
work properly with valid inputs. Formally, it is defined as follows.

Definition 1. An FG-PKEET cryptosystem achieves (unconditional) sound-
ness if the following two equalities hold for any i, j ≥ 1 and M, M ′ ∈ M. Let
(PKi, SKi) = KeyGen(�) and (PKj , SKj) = KeyGen(�).

1. Dec(Enc(M, PKi), SKi) = M and Dec(Enc(M ′, PKj), SKj) = M ′.
2. Com(Enc(M, PKi), Enc(M ′, PKj), Aut(SKi; SKj; ·)) is equal to 1 if M =

M ′, and 0 otherwise.

As a remark, in the definitions of Aut and Com, we implicitly assume that i
= j
because we are only interested in testing the equality of the ciphertexts of two
different users.

Towards Public Key Encryption Scheme Supporting Equality Test 393

2.2 The Security Model

To facilitate our formal discussions, we make the following assumptions.

1. First of all, all users honestly generate their public/private key pairs and the
execution of the Aut algorithm will be carried out through secure channels
between the involved entities.

2. Secondly, the proxies are semi-trusted (or, honest-but-curious) to the users
who have chosen them. They will faithfully follow the protocol specifications,
but will try to deduce some information from the acquired data. In addition,
one proxy can serve multiple pairs of users to perform equality test.

3. Thirdly, there is no overlap between the user set and the proxy set, namely
no user will be allowed to act as a proxy for another two users. This will
greatly simplify our discussion. Yet, we leave it as a future work to investigate
FG-PKEET in the case where this assumption is not true.

With respect to an FG-PKEET cryptosystem, for an honest user Ut, where
1 ≤ t ≤ N , we consider two categories of adversaries, namely Type-I and Type-II
adversaries as illustrated in Fig. 1.

1. Type-I adversary represents the semi-trusted proxies with which Ut has run
the algorithm Aut with. Referring to Fig. 1, Proxy I and Proxy L are Type-I
adversary.

2. Type-II adversary represents all possibly malicious entities in the system
from the perspective of Ut, namely Ui (1 ≤ i ≤ N, i
= t). In fact, all proxies
with which Ut has not run the algorithm Aut should also be regarded as a
malicious adversary, because Ut do not even semi-trust them. For example,
Proxy T in Fig. 1 is such an entity. However, taking them into account will
not give the Type-II adversary extra power, so that we simply ignore them.

As to a Type-I adversary, it is involved in the executions of the Aut algo-
rithm as the proxy with Ut, and obtains the tokens, and it may also obtain some

Fig. 1. An Illustration of Adversaries for FG-PKEET

394 Q. Tang

information about Ut’s plaintexts through accessing Ut’s decryption oracle.
Clearly, in the presence of a Type-I adversary, standard indistinguishability no-
tions, such as IND-CCA and IND-CPA, cannot be achieved. Against a Type-I
adversary, we consider the following two security properties.

1. OW-CCA (i.e. one-wayness under a chosen ciphertext attack), which im-
plies that an adversary cannot recover the plaintext from a ciphertext C∗

t =
Enc(Mt, PKt) even if it is allowed to query the decryption oracle with any
ciphertext except for C∗

t . This is the best achievable security guarantee con-
sidering the desired equality test functionality.

2. Fine-grained authorization property, which means that if two users have not
authorized a proxy to perform equality test between their ciphertexts then
the proxy should not be able to do so. Referring to Fig. 1, Ut and Un have
not authorized Proxy L to perform equality test between their ciphertexts,
so that it should not be able to do so even if Ut has authorized it to perform
equality test between her ciphertexts and those of Uj and Uk. It is worth
noting this is an analog to the collusion resistance property in the attribute-
based encryption schemes [15].

As to the power of a Type-II adversary, it is involved in the executions of the
Aut algorithm as the other user with Ut, so that it may learn some information
about Ut’s private key. Moreover, it may also obtain some information about
Ut’s plaintexts through accessing Ut’s decryption oracle. In the presence of a
Type-II adversary, we define the standard IND-CCA security.

2.3 OW-CCA Security against a Type-I Adversary

Definition 2. An FG-PKEET cryptosystem achieves OW-CCA security against
a Type-I adversary, if, for any 1 ≤ t ≤ N , any polynomial-time adversary has
only a negligible advantage in the attack game shown in Fig. 2, where the ad-
vantage is defined to be Pr[M ′

t = Mt].

It is worth noting that, strictly speaking, the notion of OW-CCA is neither
weaker nor stronger than IND-CPA [3]. One one hand, an IND-CPA secure
scheme may not be OW-CCA. For instance, many homomorphic encryption
schemes, such as Elgamal [12] and Paillier scheme [13], are IND-CPA but they
are clearly not OW-CCA. On the other hand, an OW-CCA secure scheme may
not be IND-CPA. For instance, the scheme proposed in Section 3 is OW-CCA
but it is not IND-CPA.

2.4 Fine-Grained Authorization Property

Definition 3. An FG-PKEET cryptosystem achieves the fine-grained autho-
rization property against a Type-I adversary, if, for any 1 ≤ t ≤ N , any
polynomial-time adversary has only a negligible advantage in the attack game
shown in Fig. 3, where the advantage is defined to be |Pr[b′ = b] − 1

2 |.

Towards Public Key Encryption Scheme Supporting Equality Test 395

1. The challenger runs KeyGen to generate public/private key pairs (PKi, SKi) for
all 1 ≤ i ≤ N .

2. Phase 1: The adversary is allowed to issue the following types of oracle queries.

(a) Dec query with data C as input for the index i: the challenger returns
Dec(C,SKi).

(b) Aut query with two integer indexes i, j as input: the challenger runs the Aut
algorithm with the adversary which plays the role of the proxy.

At some point, the adversary asks the challenger for a challenge for an index t.
3. Challenge phase: The challenger chooses a message Mt ∈R M and sends C∗

t =
Enc(Mt, PKt) to the adversary.

4. Phase 2: The adversary is allowed to issue the same types of oracle queries as in
Phase 1. In this phase, the adversary’s activities should adhere to the following
restriction: The Dec oracle should not have been queried with the data C∗

t for the
index t. At some point, the adversary terminates by outputting a guess M ′

t.

Fig. 2. The Game for OW-CCA

1. The challenger runs KeyGen to generate public/private key pairs (PKi, SKi) for
all 1 ≤ t ≤ N .

2. Phase 1: The adversary is allowed to issue the following types of oracle queries.

(a) Dec query with data C as input for the index i: the challenger returns
Dec(C,SKi).

(b) Aut query with two integer indexes i, j as input: the challenger runs the Aut
algorithm with the adversary which plays the role of the proxy.

At some point, the adversary sends two integer indexes t, w to the challenger for
a challenge. In this phase, the Aut oracle should not have been queried with two
integer indexes t, w.

3. Challenge phase: The challenger randomly chooses two different messages M0, M1

from M and a random bit b. If b = 0, send C∗
t = Enc(M0, PKt) and C∗

w =
Enc(M0, PKw) to the adversary, otherwise send C∗

t = Enc(M0, PKt) and C∗
w =

Enc(M1, PKw).
4. Phase 2: The adversary is allowed to issue the same types of oracle queries as in

Phase 1. In this phase, the adversary’s activities should adhere to the restriction
described in Phase 1, together with the following one: The Dec oracle should not
have been queried with the data C∗

t and index t or with the data C∗
w and index w.

At some point, the adversary terminates by outputting a guess b′.

Fig. 3. The Game for the Fine-grained Authorization Property

In the attack game, it is clear that b = 0 (b = 1) implies the challenge ciphertexts
do (not) contain the same plaintext. As a result, the adversary’s ability of deter-
mining b is equivalent to determining the equality of ciphertexts of Ut and Uw.
The adversary is not allowed to access Tt,w because we assume the adversary is
not authorized by Ut and Uw to perform the equality test.

Note the fact that a FG-PKEET cryptosystem can only achieve OW-CCA
but not IND-CPA or IND-CCA. If the adversary is allowed to choose M0, M1 in
the game, then it can trivially win the game. Therefore, different from a typical

396 Q. Tang

IND (indistinguishability) security definition, where the adversary is allowed to
choose M0, M1, in this game the challenger chooses both messages.

2.5 IND-CCA Security against a Type-II Adversary

Definition 4. An FG-PKEET cryptosystem achieves IND-CCA security against
a Type-II adversary, if, for any 1 ≤ t ≤ N , any polynomial-time adversary has
only a negligible advantage in the attack game shown in Fig. 4, where the ad-
vantage is defined to be |Pr[b′ = b] − 1

2 |.

1. The challenger runs KeyGen to generate public/private key pairs (PKi, SKi) for
all 1 ≤ t ≤ N .

2. Phase 1: The adversary is allowed to issue the following types of oracle queries.

(a) KeyRetrieve query with an integer index i as input: the challenger returns SKi

to the adversary.
(b) Dec query with data C as input for the index i: the challenger returns

Dec(C,SKi).
(c) Aut query, defined as below.

At some point, the adversary sends an integer index t and two messages M0, M1

from M to the challenger for a challenge. In this phase, the adversary’s activities
should adhere to the following criteria.

(a) The KeyRetrieve oracle should not have been queried with the index t.
(b) For any i �= t, the adversary is allowed to issue Aut oracle queries with indexes

i, t as input, for any i �= t, where the adversary plays the role of Ui.

3. Challenge phase: The challenger selects b ∈R {0, 1} and sends C∗
t = Enc(Mb, PKt)

to the adversary.
4. Phase 2: The adversary is allowed to issue the same types of oracle queries as in

Phase 1. In this phase, the adversary’s activities are subject to the restrictions
described in Phase 1, together with the following one: The Dec oracle should not
have been queried with the data C∗

t and index t. At some point, the adversary
terminates by outputting a guess b′.

Fig. 4. The Game for IND-CCA

In this game, the challenger generates all key pairs while the adversary is allowed
to adaptively retrieve all private keys except SKt. This formulation faithfully
describe the power of a Type-II adversary in our security model, as defined in
Section 2.2. In particular, the adversary is allowed to issue Aut oracle queries,
which reflects the fact that Ut may interactively run the Aut algorithm with a
Type-II adversary. A PKEET is IND-CCA secure against a Type-II adversary
implies that, for Ut, the execution of the Aut algorithm leaks no information to
other users.

3 A New FG-PKEET Cryptosystem

The proposed cryptosystem has (�, G, g, p, H1, ê, G1, G2, g1, g2, GT , q, H2, H3) as
the global parameters which are defined as follows.

Towards Public Key Encryption Scheme Supporting Equality Test 397

1. � is the security parameter, G is a multiplicative group of prime order p,
g is a generator of G, and H1 : {0, 1}∗ → {0, 1}� is a cryptographic hash
function.

2. ê : G1 × G2 → GT is a bilinear map, where G1 and G2 are multiplicative
groups of prime order q, and they have g1 and g2 as their generators respec-
tively. H2 : {0, 1}∗ → {0, 1}m+d1, H3 : {0, 1}∗ → G1 are two cryptographic
hash functions, where m is a polynomial in �, {0, 1}m is the message space
and d1 is the bit-length of p.

Note the fact that, in a PKEET cryptosystem, a ciphertext allows the re-
ceiver to decrypt and also allows a proxy to perform equality test. Hence, the
intuition behind our construction is to integrate some extra components into a
standard public key encryption scheme, so that these components will facilitate
the equality test functionality. Specifically, in the encryption algorithm of the
proposed scheme described in next subsection, the extra components are C(2)

and C(4).

3.1 The Public Key Encryption Scheme

With the above global parameters defined, we first define the public key encryp-
tion algorithms (KeyGen, Enc, Dec).

– KeyGen(�): This algorithm outputs a private key SK = (x, y), where x ∈R Zp

and y ∈R Zq, and the corresponding public key is PK = (gx, gy
1). Note that

the message space is M = {0, 1}m.
– Enc(M, PK): This algorithm outputs C = (C(1), C(2), C(3), C(4), C(5)), where

u ∈R Zp, C(1) = gu, C(3) = H2(gux) ⊕ M ||u, v ∈R Zq,

C(2) = gv
1 , C(4) = gvy

1 · H3(M), C(5) = H1(C(1)||C(2)||C(3)||C(4)||M ||u).

– Dec(C, SK): This algorithm first computes M ′||u′ = C(3)⊕H2((C(1))x), and
then check that gu′

= C(1) and H1(C(1)||C(2)||C(3)||C(4)||M ′||u′) = C(5)

hold. If all checks pass, output M ′, otherwise output an error message ⊥.

Suppose that every user Ui, for 1 ≤ t ≤ N , adopts the above public key
encryption scheme. To facilitate our description, we use the index i for all
the variables in defining Ui’s data. For example, Ui’s key pair is denoted as
(PKi, SKi), where SK = (xi, yi) and PK = (gxi , gyi

1), and Ui’s ciphertext
Ci = (C(1)

i , C
(2)
i , C

(3)
i , C

(4)
i , C

(5)
i) is written in the following form.

ui ∈R Zp, C
(1)
i = gui , C

(3)
i = H2(guixi) ⊕ Mi||ui, vi ∈R Zq,

C
(2)
i = gvi

1 , C
(4)
i = gviyi

1 · H3(Mi), C
(5)
i = H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui).

398 Q. Tang

3.2 The Token Generation Algorithm

Suppose that Ui and Uj want a proxy to perform equality test between their
ciphertexts, then they run the following Aut algorithm to generate the token Ti,j

for the proxy.

– Aut(SKi, SKj, ·): This algorithm results in a token Ti,j = (gri,j

2 , g
yiri,j

2 , g
yjri,j

2)
for the proxy. In more details, the token is interactively generated as follows.
1. Ui and Uj generate ri,j ∈R Zq together.
2. Ui sends g

ri,j

2 , g
yiri,j

2 to the proxy, and Uj sends g
yjri,j

2 to the proxy.

Note that, there can be many different ways for Ui and Uj to generate ri,j

in implementing this algorithm. For instance, they can use a interactive coin
flipping protocol, such as that of Blum [5]. Or, simply they can exchanges two
nonces and set ri,j to be the hash value of them. In addition, the security prop-
erties will not be affected if Uj is required to send g

ri,j

2 to the proxy.

3.3 The Equality Test Algorithm

Suppose a proxy has received the token Ti,j , then it can run the following Com
algorithm to perform equality test between the ciphetexts Ci and Cj , which are
encrypted under PKi and PKj respectively.

– Com(Ci, Cj , Ti,j): This algorithm outputs 1 if xi = xj or 0 otherwise, where

xi =
ê(C

(4)
i , g

ri,j

2)

ê(C
(2)
i , g

yiri,j

2)

=
ê(gviyi

1 · H3(Mi), g
ri,j

2)

ê(gvi
1 , g

yiri,j

2)

= ê(H3(Mi), g2)
ri,j

xj =
ê(C

(4)
j , g

ri,j

2)

ê(C
(2)
j , g

yjri,j

2)

=
ê(g

vjyj

1 · H3(Mj), g
ri,j

2)

ê(g
vj

1 , g
yjri,j

2)

= ê(H3(Mj), g2)
ri,j

In this construction, the group G can be any multiplicative group which holds
the CDH assumption. In face, it can be set to be G1 or G2, in which case p = q.
We keep it the present way for a general construction.

4 Comprehensive Security Analysis

In this section, we first prove that the proposed cryptosystem in Section 3 is
secure in our security model. Then, we show how to improve its security against
a Type-I adversary.

4.1 Preliminary

Following the work by Bellare and Rogaway [4], we use random oracle to model
hash functions in our security analysis. A function P (k) : Z → R is said to be
negligible with respect to k if, for every polynomial f(k), there exists an integer
Nf such that P (k) < 1

f(k) for all k ≥ Nf . We say that the CDH (computational

Towards Public Key Encryption Scheme Supporting Equality Test 399

Diffie-Hellman) assumption holds in G of prime order p if, given ga, gb where g is
a group generator and a, b ∈R Zp, an adversary has only a negligible advantage
in computing gab. We say that the DDH (decisional Diffie-Hellman) assumption
holds in G1 of prime order q, if an adversary has only a negligible advantage
in distinguishing (ga

1 , gb
1, g

ab
1) from (ga

1 , gb
1, g

c
1) where g1 is a group generator and

a1, b1, c1 ∈R Zq. In the pairing setting, namely there is an efficient and non-
degenerate bilinear map ê : G1 × G2 → GT , the DDH assumption in G1 is also
referred to as the XDH (external Diffie-Hellman) assumption [7].

In order to prove the fine-grained authorization property, we need a new
assumption, referred to as extended DBDH (decisional bilinear Diffie-Hellman)
assumption. Let a pairing setting be ê : G1 × G2 → GT , where the order of
groups is a prime q. The extended DBDH problem is formulated as follows.

1. The challenger selects g1, g4, g5 ∈R G1, and g2, g3 ∈R G2, and x1, y1,∈R Zp,
and α, β ∈R G1. The challenger flips a coin b ∈R {0, 1} and sends Xb to the
adversary, where

X0 = (gx1
1 , gx1

2 , gx1
4 ·α, gy1

1 , gy1
3 , gy1

5 ·α), X1 = (gx1
1 , gx1

2 , gx1
4 ·α, gy1

1 , gy1
3 , gy1

5 ·β).

2. The adversary’s outputs a guess b′. The adversary’s advantage is |Pr[b =
b′] − 1

2 |.
The extended DBDH problem is at most as hard as the XDH problem in a

Type-3 pairing setting [10]. In other words, if there is an algorithm to solve the
XDH problem then there must be an algorithm to solve the extended DBDH
problem, but it is not clear whether the vise-versa is true. Nonetheless, similar
to the proof of the implicit XDH assumption in [2], we can show the extended
DBDH assumption is hard in the generic group model. We leave the details to
the full paper.

4.2 Proof Results

It is straightforward to verify that the soundness property is achieved, namely
the Dec and Com work properly. We skip the details here. The following security
proofs are done through a sequence of games [16].

Theorem 1. The proposed FG-PKEET cryptosystem is OW-CCA secure against
a Type-I adversary in the random oracle model based on the CDH assumption in
G.

Proof sketch. Suppose an adversary has the advantage ε in the attack game
shown in Fig. 2.

Game0: In this game, the challenger faithfully simulates the protocol execution
and answers the oracle queries from the adversary, and all hash functions are
treated as random oracles. Let ε0 = Pr[M ′

t = Mt]. Clearly, ε0 = ε holds.
Game1: In this game, the challenger performs identically to that in Game0

except that the following. For any index i, if the adversary queries the decryption
oracle Dec with Ci, the challenger computes Mi||ui = H2(guixi) ⊕ C

(3)
i and

400 Q. Tang

verifies gui = C
(1)
i . If the verification fails, return ⊥. Then, the challenger checks

whether there exists an input query C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) to H1, which
outputs C

(5)
i . If such an input query exists, return Mi; otherwise return ⊥. Let

the event Ent1 be that, for some Ci, a fresh input C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui

to H1 results in C
(5)
i . Clearly, This game is identical to Game0 unless the event

Ent1 occurs. It is straightforward that Pr[Ent1] is negligible if H1 is modeled
as a random oracle. Let ε1 = Pr[M ′

t = Mt] in this game. From the Difference
Lemma in [16], we have |ε1 − ε0| ≤ Pr[Ent1].

Game2: In this game, the challenger performs identically to that in Game1

except that, for any index i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to obtain the query to the oracle
H1 with the input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕C
(3)
i , gui = C

(1)
i , H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise, return Mi. This game is
indeed identical to Game1. Let ε2 = Pr[M ′

t = Mt], then we have ε2 = ε1.
Game3: In this game, the challenger performs identically to that in Game2

except that the challenge C∗
t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δ ∈R {0, 1}m+d1, C
(3)
t = δ,

C
(4)
t = gvtyt

1 · H3(Mt), C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

This game is identical to Game2 unless the event Ent2 occurs, namely gutxt is
queried to the random oracle H2. Note that the private key xt is never used to
answer the adversary’s queries. Therefore, Pr[Ent2] is negligible based on the
CDH assumption in G. Let ε3 = Pr[M ′

t = Mt] in this game. From the Difference
Lemma in [16], we have |ε3 − ε2| ≤ Pr[Ent2].

Since H1 and H3 are modeled as random oracles, it is clear that ε3 is negligible.
From the above analysis, we have that ε ≤ Pr[Ent1] + Pr[Ent2] + ε3, which is
negligible in the random oracle model based on the CDH assumption in G. The
theorem now follows. ��
Theorem 2. The proposed FG-PKEET cryptosystem achieves fine-grained au-
thorization property against a Type-I adversary in the random oracle model based
on the CDH assumption in G and the extended DBDH assumption.

Proof sketch. Suppose an adversary has the advantage ε in the attack game
shown in Fig. 3.

Game0: In this game, the challenger faithfully simulates the protocol execution
and answers the oracle queries from the adversary, and all hash functions are
treated as random oracles. Let ε0 = Pr[b′ = b]. Clearly, ε0 = ε holds.

Game1: In this game, the challenger performs identically to that in Game0

except that the following. For any index i, if the adversary queries the decryption
oracle Dec with Ci, the challenger computes Mi||ui = H2(guixi) ⊕ C

(3)
i and

Towards Public Key Encryption Scheme Supporting Equality Test 401

verifies gui = C
(1)
i . If the verification fails, return ⊥. Then, the challenger checks

whether there exists an input query C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1, which
outputs C

(5)
i . If such an input query exists, return Mi; otherwise return ⊥. Let

the event Ent1 be that, for some Ci, a fresh input C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui

to H1 results in C
(5)
i . Clearly, This game is identical to Game0 unless the event

Ent1 occurs. it is straightforward that Pr[Ent1] is negligible if H1 is modeled as
a random oracle. Let ε1 = Pr[b′ = b] in this game. From the Difference Lemma
in [16], we have |ε1 − ε0| ≤ Pr[Ent1].

Game2: In this game, the challenger performs identically to that in Game1

except that, for any index i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to obtain the query to the oracle
H1 with the input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕C
(3)
i , gui = C

(1)
i , H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise, return Mi. This game is
indeed identical to Game1. Let ε2 = Pr[b′ = b], then we have ε2 = ε1.

Game3: In this game, the challenger performs identically to that as in Game2

except the following. The challenge C∗
t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δt ∈R {0, 1}m+d1, C
(3)
t = δt,

C
(4)
t = gvtyt

1 · H3(M0), C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

The challenge C∗
w is generated as follows.

C(1)
w = guw , C(2)

w = gvw
1 , δw ∈R {0, 1}m+d1, C(3)

w = δw,

C(4)
w = gvwyw

1 · H3(Mb), C(5)
w = H1(C(1)

w ||C(2)
w ||C(3)

w ||C(4)
w ||Mb||uw).

This game is identical to Game2 unless the event Ent2 occurs, namely gutxt or
guwxw is queried to the random oracle H2. Note that the private keys xt, xw are
never used to answer the adversary’s queries. Therefore, Pr[Ent2] is negligible
based on the CDH assumption in G. Let ε3 = Pr[b′ = b] in this game. From the
Difference Lemma in [16], we have |ε3 − ε2| ≤ Pr[Ent2].

Game4: In this game, the challenger performs identically to that as in Game2

except for answering the Aut queries. For Ut and Uw, the challenger chooses
hi, hw ∈R Zq at the beginning of the game. On receiving an Aut query with the
inputs i, t, the challenger returns (ghir

2 , ghiyir
2 , g

hiyjr
2), where r ∈R Zq, and does

something similar to answering the query with the input i, w. Let ε4 = Pr[b′ = b]
in this game. It is clear that this game is identical to Game3, therefore ε4 = ε3
holds.

Game5: In this game, the challenger performs identically to that in Game4

except the following. The challenge C∗
t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δt ∈R {0, 1}m+d1, C
(3)
t = δt,

402 Q. Tang

kt ∈R Zq, C
(4)
t = gvtytkt

1 , C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

The challenge C∗
w is generated as follows.

C(1)
w = guw , C(2)

w = gvw
1 , δw ∈R {0, 1}m+d1, C(3)

w = δw,

C(4)
w = gvwywX

1 , C(5)
w = H1(C(1)

w ||C(2)
w ||C(3)

w ||C(4)
w ||Mb||uw).

The value of X is set to be kt if b = 0, and otherwise kw is randomly chosen
from Zq. Let ε5 = Pr[b′ = b] in this game. It is clear that this game is identical
to Game4, therefore ε5 = ε4 holds. Let C0 = (C∗

t , C∗
w) when b = 0, and C1 =

(C∗
t , C∗

w) when b = 1. Distinguishing C0 and C1 is equivalent to distinguishing
the following tuples.

(gyt

1 , gvt

1 , gytvtkt

1 , ght

2 , ghtyt

2 , gyw

1 , gvw

1 , gywvwkt

1 , ghw

2 , ghwyw

2)

(gyt

1 , gvt
1 , gytvtkt

1 , ght
2 , ghtyt

2 , gyw

1 , gvw
1 , gywvwkw

1 , ghw
2 , ghwyw

2)

It is straightforward to prove that to distinguish the above tuples is equiva-
lent to distinguishing the extended DBDH tuples. Therefore, similar to proving
semantic security of ElGamal scheme [16], it is straightforward to verify that
ε5 − 1

2 is negligible based on the extended DBDH assumption.
From the above analysis, we have that |ε0 − ε5| ≤ Pr[Ent1] +Pr[Ent2], which

is negligible in the random oracle model based on the CDH assumption in G and
the extended DBDH assumption. Note that ε = |ε0− 1

2 | and |ε5− 1
2 | is negligible,

then ε is negligible. The theorem now follows. ��
Theorem 3. The proposed FG-PKEET cryptosystem is IND-CCA secure against
a Type-II adversary in the random oracle model based on the CDH assumption in
G and the DDH assumption in G1.

Proof sketch Suppose that an adversary has the advantage ε in the attack
game shown in Fig. 4.

Game0 and Game1: They are the same as in the proof of Theorem 2.
Game2: In this game, the challenger performs identically to that in Game1

except that, for any index i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to obtain the query to the oracle
H1 with the input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕C
(3)
i , gui = C

(1)
i , H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise, return Mi. This game is
indeed identical to Game1. Let ε2 = Pr[b′ = b], then we have ε2 = ε1.

Game3: In this game, the challenger performs identically to that in Game2

except that the challenge C∗
t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δ ∈R {0, 1}m+d1, C
(3)
t = δ,

C
(4)
t = gvtyt

1 · H3(Mb), C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mb||ut).

Towards Public Key Encryption Scheme Supporting Equality Test 403

This game is identical to Game2 unless the event Ent2 occurs, namely gutxt is
queried to the random oracle H2. Note that the private key xt is never used to
answer the adversary’s queries. Therefore, Pr[Ent2] is negligible based on the
CDH assumption in G. Let ε3 = Pr[b′ = b] in this game. From the Difference
Lemma in [16], we have |ε3 − ε2| ≤ Pr[Ent2].

Game4: In this game, the challenger performs identically to that in Game3

except that the challenge C∗
t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δ ∈R {0, 1}m+d1, C
(3)
t = δ,

C
(4)
t = gvtyt

1 · H3(Mb), γ ∈R {0, 1}�, C
(5)
t = γ.

This game is identical to Game3 unless C
(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mb||ut is queried
to the random oracle H1, referred to as the event Ent3. Let ε4 = Pr[b′ = b] in
this game. Based on the CDH in G, we have |ε4 − ε3| ≤ Pr[Ent3] is negligible.

Just the same as in proving the semantic security of ElGamal scheme [16], it is
straightforward to verify that ε4 − 1

2 is negligible based on the DDH assumption
in G1. From the above analysis, we have that |ε0 − ε4| ≤ Pr[Ent1] + Pr[Ent2] +
Pr[Ent3], which is negligible in the random oracle model based on the CDH
assumption in G and the DDH assumption in G1. Note that ε = |ε0 − 1

2 | and
|ε4 − 1

2 | is negligible, then ε is negligible. The theorem now follows. ��

4.3 Potential Vulnerability and Enhancement

Note that since a Type-I adversary has access to a token Ti,t, then given a cipher-
text Enc(M, PKt) it can test whether M ′ = M holds for any M ′ by checking the
following equality Com(Enc(M ′, PKi), Enc(M, PKt), Ti,t) = 1. Therefore, in the
extreme situation when the actual message space M is polynomial size or the
min-entropy of the message distribution is much lower than the security param-
eter, for FG-PKEET, a Type-I adversary (or, semi-trusted proxies) is capable of
mounting an offline message recovery attack by checking every M ′ ∈ M.

This type of attack is unavoidable due to the desired plaintext equality test
functionality, similar to the offline keyword guessing attack in the case of PEKS
(or searchable encryption) [11,18]. However, compared with the formulation in
[20], where any adversary can mount the attack, our formulation achieves a signif-
icant security improvement because a Type-II adversary is unable to mount the
attack. Although an offline message recovery attack is theoretically unavoidable
in the presence of a Type-I adversary, but, depending on the specific cryptosys-
tem, certain countermeasure can be employed to mitigate such an attack. One
possible countermeasure is shown as below.

As in the original cryptosystem proposed in Section 3, the enhanced cryp-
tosystem requires the same global parameters, namely

(�, G, g, p, H1, ê, G1, G2, g1, g2, GT , q, H2, H3).

In addition, Q · T , a puzzle hardness parameter L (detailed below), and a hash
function UH : {0, 1}∗ → Z∗

Q·T are also published, where Q, T are two large

404 Q. Tang

primes. These additional parameters are required by the computational client
puzzle scheme [14], which is employed because it is deterministic and immune
to parallel attacks [19]. Note that the generation of Q ·T could be bootstrapped
by a party trusted by all users in the system, and threshold techniques (e.g. [9])
can be used to improve the security. Nevertheless, this trust assumption is not
required for achieving the existing security properties.

The algorithm KeyGen is identical to that in the original scheme, while the
algorithms Enc and Dec are redefined as follows.

– Enc(M, PK): This algorithm outputs a ciphertext C = (C(1), C(2), C(3), C(4),
C(5)), where

u ∈R Zp, C(1) = gu, C(3) = H2(gux) ⊕ M ||u, v ∈R Zq, C(2) = gv
1 ,

C(4) =gvy
1 ·H3((UH(M))2

L

mod Q·T)), C(5) =H1(C(1)||C(2)||C(3)||C(4)||M ||u).
– Dec(C, SK): This algorithm first computes M ′||u′ = C(3)⊕H2((C(1))x), and

then check that gu′
= C(1) and H1(C(1)||C(2)||C(3)||C(4)||M ′||u′) = C(5)

hold. If all checks pass, output M ′, otherwise output an error message ⊥.

Compared with the original encryption and decryption algorithms, the main
difference is in computing C(4), where the encryptor needs to perform L multi-
plications in Z∗

Q·T in order to compute (UH(M))2
L

mod Q ·T to form C(4). Let
every user Ui, for i ≥ 1, adopt the above public key encryption scheme, and Ui’s
key pair be denoted as (PKi, SKi). The algorithms Aut is identical to that in
the original cryptosystem, but the Com algorithm is defined as follows.

– Com(Ci, Cj , Ti,j): This algorithm outputs 1 if xi = xj or 0 otherwise, where

xi =
ê(C(4)

i
, g

ri, j

2
)

ê(C(2)

i
, g

yiri, j

2)

=
ê(g

viyi

1
· H3((UH(Mi))

2L
mod Q · T)), g

ri, j

2
)

ê(g
vi

1
, g

yiri, j

2
)

= ê(H3((UH(Mi))
2L

mod Q · T)), g2)ri, j

xj =
ê(C(4)

j
, g

ri, j

2)

ê(C(2)

j
, g

yjri, j

2
)

=
ê(g

vj yj

1
· H3((UH(Mj))

2L
mod Q · T)), g

ri, j

2
)

ê(g
vj

1
, g

yjri, j

2
)

= ê(H3((UH(Mj))
2L

mod Q · T)), g2)ri, j

As to this enhanced cryptosystem, the existing properties still hold, and their
security proofs remain exactly the same. If a proxy is given Ut’s ciphertext
Enc(M, PKt) and token Ti,t, then it can obtain H3((UH(M))2

L

mod Q · T). To
test any M ′, the most efficient approach for the proxy is to compute (UH(M ′))2

L

mod Q · T and perform a comparison based on its hash value. Since every test
will cost L multiplications, then by setting an appropriate L the offline message
recovery attack will be made computationally very expensive.

It is worth noting that, in this enhanced cryptosystem, the encryptor needs
to perform L multiplications to mask the message in the encryption. This may
be a computational bottleneck for some application scenarios. How to overcome
this drawback while still mitigating the attack is an interesting future work.

Towards Public Key Encryption Scheme Supporting Equality Test 405

5 Conclusion

In this paper, we have proposed a new formulation for PKEET, namely FG-
PKEET. Compared with the formulation in [20], we have introduced a fine-
grained authorization mechanism for users to specify who can perform equality
test between their ciphertexts and successfully mitigate the possible drawbacks.
We believe that the new formulation suits theoretical and practical security re-
quirements better, and will be an important building block in designing privacy
protection solutions supporting operations on encrypted data. Beyond this work,
there are many interesting future research directions. One is to investigate the
security implications when the user set and the proxy set overlap in the case of
FG-PKEET. Our feeling is that in that case OW-CCA is the strongest security
we can achieve. Another line of research is to investigate the practical coun-
termeasures against offline message recovery attacks in the extreme situation,
when the message space is polynomial size or the min-entropy of the message
distribution is much lower than the security parameter.

Acknowledgement. The author would like to thank Dr. Liqun Chen for her
help on clarifying the pairing assumptions, and thank the anonymous reviewers
for their valuable comments.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: SIGMOD 2004: Proceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 563–574. ACM, New York (2004)

2. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant stor-
age via keyword-searchable encryption. Technical Report Report 2005/417, IACR
(2005), http://eprint.iacr.org/2005/417

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM Press, New York (1993)

5. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-Preserving Symmetric
Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M.K.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

9. Boneh, D., Franklin, M.K.: Efficient generation of shared rsa keys (extended ab-
stract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439.
Springer, Heidelberg (1997)

http://eprint.iacr.org/2005/417

406 Q. Tang

10. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

11. Byun, J.W., Rhee, H.S., Park, H., Lee, D.H.: Off-Line Keyword Guessing Attacks
on Recent Keyword Search Schemes over Encrypted Data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006)

12. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

14. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technol-
ogy (1996)

15. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

16. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs
(2006), http://shoup.net/papers/

17. Sittig, D.F.: Personal health records on the internet: a snapshot of the pioneers at
the end of the 20th century. I. J. Medical Informatics 65(1), 1–6 (2002)

18. Tang, Q., Chen, L.: Public-key encryption with registered keyword search. In:
Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 163–178.
Springer, Heidelberg (2010)

19. Tang, Q., Jeckmans, A.: On non-parallelizable deterministic client puzzle scheme
with batch verification modes. Technical Report TR-CTIT-10-02, CTIT, University
of Twente (2010), http://eprints.eemcs.utwente.nl/17107/

20. Yang, G., Tan, C., Huang, Q., Wong, D.S.: Probabilistic public key encryption with
equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131.
Springer, Heidelberg (2010)

http://shoup.net/papers/
http://eprints.eemcs.utwente.nl/17107/

Lattice-Based Completely Non-malleable PKE

in the Standard Model (Poster)

Reza Sepahi, Ron Steinfeld, and Josef Pieprzyk

Department of Computing, Macquarie University,
Sydney, Australia

Abstract. This paper presents ongoing work toward constructing effi-
cient completely non-malleable public-key encryption scheme based on
lattices in the standard (common reference string) model. An encryption
scheme is completely non-malleable if it requires attackers to have negligi-
ble advantage, even if they are allowed to transform the public key under
which the related message is encrypted. Ventre and Visconti proposed
two inefficient constructions of completely non-malleable schemes, one in
the common reference string model using non-interactive zero-knowledge
proofs, and another using interactive encryption schemes. Recently, two
efficient public-key encryption schemes have been proposed, both of them
are based on pairing identity-based encryption.

1 Introduction

The notion of complete non-malleability in the context of public-key encryp-
tion [Fis05] ensures that an adversary who knows both the public key pk and
the ciphertext c is unable to find another ciphertext c′ = Encryptpk′(m′) in such
a way that there is a polynomially computable relation R between m, m′, pk
and pk′. In the work [VV08], Ventre and Visconti introduced two (quite ineffi-
cient) constructions of complete non-malleable encryptions. Recently, Libert and
Yung [LY10] and Barbosa and Farshim [BF10] proposed two efficient completely
non-malleable encryptions in the standard model based on pairing.

The initial motivation for complete non-malleability relied on constructing
higher level protocols using asymmetric encryption schemes as building blocks
(e.g., non-malleable commitment on top of public-key encryption). Also, im-
possibility results of Fischlin [Fis05] and inefficient constructions of Ventre and
Visconti [VV08] is another motivation for constructing efficient completely non-
malleable encryption schemes in standard model with possibly some relaxations
(i.e., not in plain model).

Libert and Young [LY10] mentioned briefly (without a security proof) a
scheme based on lossy trapdoor functions, which may be instantiated based
on lattice problems as shown by Peikert et al [PW08].

1.1 Contributions of the Paper

In this paper, we propose the first concrete scheme that efficiently achieves com-
plete non-malleability based on lattices. The security proof for our scheme is

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 407–411, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

408 R. Sepahi, R. Steinfeld, and J. Pieprzyk

in standard model (without random oracles). What distinguishes this paper
from previous ones is that it is the first lattice-based scheme with a full secu-
rity proof and based on a novel combination of techniques used in lattice-based
identity-based encryption (IBE) schemes, and not on lossy trapdoor functions.
So, as there are currently no known quantum algorithms for solving lattice prob-
lems that perform significantly better than the best known classical (i.e., non-
quantum) algorithms, it will remain secure even for post-quantum world.

2 Background and Definitions

Throughout the paper, when S is a set, x ← S denotes the action of choosing
x uniformly at random in S. By a ∈ poly(λ), we mean that a is a polynomial
in λ while b ∈ negl(λ) says that b is a negligible function of λ (i.e., a function
that decreases faster than the inverse of any a ∈ poly(λ)). When A is a possibly
probabilistic algorithm, b ← A(x) denotes the event that A outputs the value b
when fed with the input x. Column vectors are named by lower-case bold letters
(e.g., x) and matrices by upper-case letters (e.g., X). We identify a matrix
X with the ordered set {xj} of its column vectors, and let X |X ′ denote the
(ordered) concatenation of the sets X and X ′. For a set X of real vectors, we
define ‖X‖ = maxj ‖xj‖, where ‖ · ‖ denotes the Euclidean norm.

NOTE: we refer the reader to [ABB10] for more background and notational
materials. Functions TrapGen, ExtendBasis, and SamplePre have been described
in [ABB10] as well.

3 A Construction Based on LWE Problem

Our scheme can be obtained using a somewhat(see next paragraph for differ-
ences) analogous methodology of Libert-Yung’s [LY10] in the lattice setting.
More specifically, it starts from the CCA2-secure cryptosystems constructed
by the CHK methodology [CHK04] from selective-id IBE schemes proposed by
Agrawal, Boneh and Boyen [ABB10] (we call it ABB-CHK scheme from now
on). To turn the output of ABB-CHK method into a completely non-malleable
scheme, we assume that all parties have access to a common reference string CRS
comprising the description of three random matrices A0, A1, B, and a strongly
unforgeable one-time signature. Now, we must also sign the receiver’s public key
along with other ciphertext components when generating the one-time signa-
ture. The one-time signature acts as a ”checksum” binding all the pieces of the
ciphertext together.

Construction. The system uses parameters q, n, m, δ, α specified below. Also,
the function H refers to the FRD map H : Zn

q → Zn×n
q defined in [ABB10].

The system also makes use of a strongly unforgeable one-time signature scheme
Sig = (Gen, Sign, Verify).

Lattice-Based Completely Non-malleable PKE in the Standard Model 409

CRSGen(λ): given a security parameter λ ∈ N , do the following steps:

1. Set the parameters m, q, δ, α as follows:

m = O (n log n) ; δ = O
(√

n log n
)
· √m · ω (log m) ;

q = O (ncq) ; α =
(
m2 · O

(√
n log n

)
· ω (log1.5 m

))−1

2. Select A0, A1, B, three uniformly random matrices in Zn×m
q .

The common reference string is Σ = {λ, q, n, m, δ, α, A0, A1, B}.

KeyGen(Σ): given the common reference string Σ, do the following steps:

1. Select a uniformly random n-vector u
$←− Zn

q

2. Set (A2, TA2) ← TrapGen(q, n).
3. Secret key is TA2 and public key is (u, A2).

Encrypt(pk, Σ, b): given the public key pk = (u, A2) and the common reference
string Σ, to encrypt a single bit b ∈ {0, 1}, do the following steps:

1. Set the one-time signature key pair (SK, VK) ← Sig.Gen(λ).
2. Set AVK ← A1 + H(VK) · B
3. Set FVK ← [A0 | AVK | A2] ∈ Zn×3m

q .

4. Choose a uniformly random vector s
$←− Zn

q .

5. Choose a uniformly random matrix R
$←− {−1, 1}m×m.

6. Choose noise vectors x
Ψα←− Zq , y

Ψ
m
α←− Zm

q and w
Ψ

m
α←− Zm

q and set z ←
RTy ∈ Zm

q . If the magnitude of x or any coordinate of y or w exceeds
αq · ω(

√
log m), or if ‖z‖ exceeds αqm · ω(log m), then restart this step.

7. Set the ciphertext components as follow:

c0 ← uTs + x + b
⌊q

2

⌋
(1)

c1 ← FT
VK · s +

⎡⎣ y
z
w

⎤⎦ (2)

8. Sign the ciphertext components c0, c1 along with the corresponding public
key pk as σ = Sig.Sign(SK, 〈c0, c1, pk〉).

9. Output the ciphertext c := (VK, c0, c1, σ).

Decrypt(sk, Σ, c): given the secret key sk = TA2 and the common reference
string Σ, to decrypt the ciphertext c = (VK, c0, c1, σ), do the following steps:

1. if Sig.VerifyVK(σ, 〈c0, c1, pk〉)
= 1, return ⊥.
2. otherwise, do the following steps:
3. Set AVK ← A1 + H(VK) · B
4. Set FVK ← [A0 | AVK | A2] ∈ Zn×3m

q .
5. Run ExtendBasis(TA2 , FVK) to obtain trapdoor basis TFVK for Λ⊥

q (FVK).

410 R. Sepahi, R. Steinfeld, and J. Pieprzyk

6. Set eVK ← SamplePre(FVK, TFVK , u, δ).
7. Set Δc ← c0 − eT

VKc1.
8. output the plaintext

b =

{
1 if

∣∣Δc −
⌊

q
2

⌋∣∣ < ⌊ q
4

⌋
in Z,

0 otherwise.

4 Correctness and Security

Given a valid ciphertext output by Encrypt, Step 7 of decryption procedure
computes Δc as follows:

Δc = b
⌊q

2

⌋
+ x − eT

VK

⎡⎣ y
z
w

⎤⎦
︸ ︷︷ ︸

error term

.

Hence, decryption succeeds (i.e. correctness holds) if the magnitude of the error
term above is less than q/5.

Lemma 1 (Correctness). If δ ≥ √
n log q ·ω(

√
log m) and αδm1.5 ·ω(

√
log m)

< 1, then correctness holds, except with negligible probability.

The security of our scheme is based on hardness of LWE problem and the strong
unforgeability of the one-time signature:

Theorem 1 (Security). Assume that α < (
√

n log q · m1.5 · ω(log1.5 m))−1,
δ ≥ √

n log q · ω(
√

log m) and m ≥ 6n log q. The public-key scheme PKE derived
in Section 3 is NM*-CCA2 assuming the hardness of the LWE problem and the
strong unforgeability of the one-time signature. More precisely, the advantage of
any NM*-CCA2 adversary A is bounded by

Advnm∗-cca2
A,PKE (λ) ≤ 2 ·

(
AdvOTS(λ) + AdvLWE(λ)

)
.

The following corollary is the direct result of applying [Reg05, Theorem 1.1] and
Theorem 1:

Corollary 1. Let α < (
√

n log q ·m1.5 ·ω(log1.5 m))−1, δ ≥ √
n log q ·ω(

√
log m),

m ≥ 6n log q and q > 2
√

n/α. Assuming the strong unforgeability of the one-time
signature and worst-case hardness of the Õ(n/α)-SIVP problem, the public-key
scheme PKE derived in Section 3 is NM*-CCA2.

5 Conclusion and Open Problems

We constructed a completely non-malleable public-key encryption scheme. The
construction is based on lattices and its security proof is in the standard model
from the LWE assumption.

Lattice-Based Completely Non-malleable PKE in the Standard Model 411

One interesting open problem is to generalize both our and LY’s construction
to find general conditions on an IBE scheme to allow it to be modified into
NM*-CCA (i.e. to formulate an NM* version of the general CHK transform).
Another open problem is to improve the efficiency of our scheme by constructing
a scheme based on the worst-case hardness of shortest vector problem (SVP) in
ideal lattices.

Acknowledgement. Reza Sepahi was supported by a Macquarie University
MQRES scholarship and Josef Pieprzyk and Ron Steinfeld were supported by the
Australian Research Council grant DP0987734. Ron Steinfeld was also supported
by ARC grant DP110100628

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the stan-
dard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 553–572. Springer, Heidelberg (2010)

[BF10] Barbosa, M., Farshim, P.: Relations among notions of complete non-
malleability: Indistinguishability characterisation and efficient construction
without random oracles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 145–163. Springer, Heidelberg (2010)

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

[Fis05] Fischlin, M.: Completely non-malleable schemes. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 779–790. Springer, Heidelberg (2005)

[LY10] Libert, B., Yung, M.: Efficient completely non-malleable public key encryp-
tion. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 127–139. Springer,
Heidelberg (2010)

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In:
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, STOC 2008, pp. 187–196. ACM, New York (2008)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing, STOC 2005, pp. 84–93. ACM, New York (2005)

[VV08] Ventre, C., Visconti, I.: Completely non-malleable encryption revisited. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg
(2008)

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 412–416, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Compliance or Security, What Cost? (Poster)

Craig Wright

Springer-Verlag, Computer Science Editorial, Tiergartenstr. 17,
69121 Heidelberg, Germany

{cwrigh20}@postoffice.csu.edu.au

Abstract. This paper presents ongoing work toward measuring the effectiveness
of audit and assessment as an information security control. The trend towards the
application of security control measures which are employed to demonstrate
compliance with legislation or regulations, rather than to actually detect or
prevent breaches occurring is demonstrated to result in a misallocation of funds.
Information security is a risk function. Paying for too much security can be more
damaging in economic terms than not buying enough. This research reveals
several major misconceptions among businesses about what security really
means and that compliance is pursued to the detriment of security. In this paper,
we look at some of the causes of compliance based audit failures and why these
occur. It is easier to measure compliance than it is to measure security and
spending money to demonstrate compliance does not in itself provide security.
When the money spent on achieving compliance reduces the funding available
for control measures that may actually improve security problems may arise.

Keywords: Audit, Economics, Incentives, Risk, Security, Compliance.

1 Introduction

Information security is a risk function [1]. Paying for too much security can be more
damaging in economic terms than not buying enough. This paper presents ongoing
work toward measuring the effectiveness of audit and assessment as an information
security control. In this paper, we demonstrate that the trend towards the application
of security control measures which are employed to express compliance with
legislation or regulations, rather than to actually detect or prevent breaches occurring
results in a misallocation of funds. Information security is a risk function. Paying for
too much security can be more damaging in economic terms than not buying enough.
This research reveals several major misconceptions among businesses about what
security really means and that compliance is pursued to the detriment of security. In
this paper, we look at some of the causes of compliance based audit failures and why
these occur. The major point of the paper is that it is easier to measure compliance
than it is to measure security, and that spending money to demonstrate compliance
does not in itself provide security.

This extends to include a look at the misalignment of audit to security. This
misalignment is demonstrated to result from the drawing of funds from security in

 Compliance or Security, What Cost? 413

order to provide compliance with little true economic gain. Funds are moved to
alternate uses with no further funds allocated.

This paper presents the early research into an empirical study of data collected by
the authors from 2,361 information systems audits in the period 1998 to 2010. These
audit reports were collected from 894 Australian and US organizations in the Finance,
Gaming, Media, FMCG, and Mining sectors as well as both Federal and State
Government departments. Reports from Chartered audit firms, security companies
and internal audit contractors are included. The composition of Australian
organizations varies greatly. All US organizations consist of medium or larger listed
companies with requirements under the Sarbanes Oxley Act (Sect 3.2 & 404). The
audit reports from Australian organizations include PCI-DSS, APRA, BASELII,
AML-CTF and those required for listed company financial reporting. This research
incorporated the financial data for 451 of the organizations. An analysis of 210
incidents that resulted in a compromise will be analyzed in a forthcoming
examination.

2 Misaligned Incentives: Audit and the Failure to Determine Risk

The existing audit industry provides compliance services under the guise of security.
These services provide little if any increase in security and yet consumers purchase
them. In addition, it is demonstrable that these services are extremely inelastic for
large organizations1. There are several reasons for this. First, government2 or
commercial groups (e.g. PCI-DSS) mandate many compliance regimes. Next,
negligence rules and the governance functions of companies require that boards and
senior management take action to protect the value of the company. Unfortunately,
this also means using reports that demonstrate compliance from audit companies in
place of a real effort to ensure that data protection occurs.

In a review of 1,878 audit and risk reports collected by the authors on Australian
firms by the top 8 international audit and accounting firms, 29.8% of tests evaluated
the effectiveness of the control process. The security of systems were validated to any
level in only 6.5% of reports. Of these, the process rarely tested for effectiveness, but
instead tested that the controls met the documented process. Audit practice in US and
UK based audit firms does not differ significantly.

Installation guidelines provided by the Centre for Internet Security (CIS)3 openly
provide system benchmarks and scoring tools that contain the “consensus minimum
due care security configuration recommendations” for the most widely deployed
operating systems and applications in use. The baseline templates will not themselves
stop a determined attacker, but can to demonstrate minimum due care and diligence.
Only 32 of 542 organizations analyzed in this paper deploy this form of
implementation standards.

1 Although these services may remain highly elastic for many smaller organizations

who may choose not to control risk when budgets are tight.
2 This includes SOX, APRA, FISMA, and many other compliance regimes.
3 CIS benchmark and scoring tools are available from http://www.cisecurity.org/

414 C. Wright

The information systems employees within an organization also have a misaligned
set of incentives. A large component of any audit involves discussions with the
employees and management at the examined organization. The term auditor
essentially derives from the act of listening as 'one who listens'. Listening to the
assertions of employees remains a large component of any information systems audit.
Those interviewed in this process include the employees who are responsible for the
maintenance of the system audited. These same employees commonly have incentives
that align with the audit results. For instance, in 1,325 of the audits review that
directly include firewalls, 798 (60.2%) of these audits involved direct interviews with
firewall administrators who either had bonuses tied to the outcome of the audit or
whose employment was in some manner conditional on the outcome of the audit.

1. The employee has no knowledge of
extra testing by the auditor and no extra
tests are to be conducted
2. The client has knowledge of testing
(from prior experience) conducted by the
auditor.
3. Prior tests have occurred, but new
auditors have done the testing.
Audit with no employee incentives
4. The employee has no knowledge of
extra testing by the auditor and no extra
tests are to be conducted
5. The client has knowledge of testing
(from prior experience) conducted by the
auditor.
6. Prior tests have occurred, but new
auditors have done the testing.

Fig. 1. Misaligned incentives and a lack of accuracy delivered to the auditor (%) in an audit
with employee incentives

The consequence of these misaligned incentives is obvious, misinformation. Fig. 1
displays the results of the audit when the employee has incentives and knowledge or
neither. Further analysis associated to the assignment of a new auditor followed. The
differences between the audits of a known tested system known and of a system
excluded from testing were statistically significant at the 5%α = level. At this level,
we have a confidence interval of (77, 83) with a corresponding confidence interval of
(20, 26) when the employee has incentives and knows that the statements they offer
will be tested. The distinction from an employee with incentives who has been
audited and had their assertions validated (42, 48) when a new auditor is assigned do
not differ significantly from the employee with no incentives (42, 49).

2.1 Patching and Validation

Patching is a common test for compliance. Auditors assert that this compliance test
aligns to good security practice [5]. A correctly patched system is less likely to

 Compliance or Security, What Cost? 415

experience issues and be more secure [2]. This is agreed. The question is what is
"correctly patched" and “have the patches been applied correctly”? Audits generally
test for the application of patches. The problem is that this is generally limited to
testing the existence of operating system that has all required patches applied.
Application patches are another matter.

Tests of the patching processes for Windows Servers, clients, applications, routers,
switches and firewalls are reported in Table 1. The 95% confidence intervals for
patching times for each of these systems have been recorded. The patch date is
determined as the difference in time between when the software vendor has released
the patch to the installation of the patch on the system. In a few instances, this result is
statistically censored due to the lack of patching. This can take place where the
system is installed and left running without the application of updates. In this case, the
difference between the installation date of the device and the date of the patch or
update that should be applied is used to determine the interval. This situation was
found to be most common in network equipment (with several routers and switches
never having been patched or updated) as well as with selected examples of user
application software.

Table 1. Patching Analysis of Audited Systems

 No.

Analyzed

95% Confidence Interval of

days between patching (Mean)

Average Policy

Patch time (CI)

% Prior Reports

noting patching

Windows Server 1571 41.1, 122.4 (86.2) 55.5, 87.9 98.4%

Windows Client 13,951 22.8, 69.3 (48.1) 29.6, 49.4 96.6%

Other Windows Applications 30,290 58.1, 181.8 (125.2) 68.1% NA 18.15%

Internet Facing Routers 515 58.2, 164.1 (114.2) 58.1% NA 8.7%

Internal Routers 1,323 129.3, 384.6 (267.8) 73.2 NA 3.99%

Internal Switches 452 139.9, 483.9 (341.2) 87.5 NA 1.2%

Firewalls 1,562 21.5, 65.7 (45.4) 24.5, 108.2 70.7%

A further analysis of prior audit reports was conducted to note how many of these
had included patch levels for each of the various hosts and systems deployed at the
audited client. Nearly all audit reports note the inclusion or exclusion of operating
system patches (98.4% and 96.6% for server and client systems respectively). The
majority of these reports included no testing of the network devices and little tests of
the application software in use by a client. Network switches were the least analyzed
device. The mean time between patching on these devices was recorded at 341.2 days.
It was uncommon for organizations to have a policy requiring the patching of network
devices. The majority of organizations have policies in place for the patching of
Servers (with a range of 55.5 to 87.9 days) and Client operating systems (with a range
of 29.6 to 49.4 days). All results and Confidence intervals are reported at a 95% CI.

Operating system patches for client systems and firewalls are generally applied and
tested within 60 days. The patching rates for network equipment vary significantly.
Again, it is clear that the incentives to ensure compliance result in insecure systems.
The audit process checked policy statements against a sample of systems, but did
nothing to validate those systems not included in the policy. The result is an
overwhelming focus on selected systems that are incorporated within a checklist at
the expense of excluding many essential systems.

416 C. Wright

The patching of client applications was problematic with a mean of 125.2 days
between patching of these applications and a 95% confidence interval of (58.1, 181.8)
days. This varied widely not only across hosts and organizations, but also within the
same host. Only 2.18% of hosts have patched at least 95% of applications within 120
days. The development systems analyzed exhibited the worst results. Compilers and
IDE (integrated development software) were patched at a rate of between (82.0,
217.3) days. These systems were also generally not included within the audit report.
The consequence being that there is little incentive for the organization to ensure that
they are maintained sufficiently.

4 Conclusion

Compliance is easier than security. It would seem costs of normal compliance
auditing do not benefit the bottom line financial posture of organizations seeking to be
both secure and compliant. An appropriate view would be to seek to be secure in
place of appearing secure. This leads to an endless cycle of continual audit satisfying
the needs of compliance and the bottom lines of financial firms, but with few other
true paybacks. So we are led to ask, at what cost?

The practice of implementing monitoring controls that do not report on breaches,
but which do satisfy the compliance needs of an organization can cost far more in the
long term [1,3]. Businesses need to demand more thorough audits and results that are
more than simply meeting a compliance checklist. These must include not only
patching for all levels of software (both system and applications) as well as the
hardware these run on. This failure of audits to "think outside the box" and only act as
a watchdog could ultimately be perceived as negligence for all parties.

Compliance at the expense of security in the global economy is a practice that is
difficult to overcome, but a challenge that we have to meet. It may be easier to
measure compliance than it is to measure security, but spending money to
demonstrate compliance does not in itself provide security. When the money spent on
achieving compliance reduces the funding available for control measures that may
actually improve security problems may arise.

References

1. Anderson, R.: Why information security is hard – an economic perspective. In: 17th Annual
Computer Security Applications Conference, pp. 358–365 (2001)

2. Halderman, J.: To Strengthen Security, Change Developers’ Incentives. IEEE Security and
Privacy 8(2), 79–82 (2010)

3. Katz, M.L., Shapiro, C.: Network externalities, competition, and compatibility. The
American Economic Review 75, 424 (1985)

4. Roese, N.J., Olson, J.M.: Better, stronger, faster: Self-serving judgment, affect regulation,
and the optimal vigilance hypothesis. Perspectives on Psychological Science 2, 124–141
(2007)

5. Turcato, L.M.: Use of COBIT as a Risk Management & Audit Framework for Access
Compliance, San Francisco ISACA Fall Conference (2004)

Preimage Attacks on Full-ARIRANG (Poster)

Chiaki Ohtahara1, Keita Okada1, Yu Sasaki2, and Takeshi Shimoyama3

1 Chuo-University
{cohtahara,kokada}@chao.ise.chuo-u.ac.jp

2 NTT Corporation
sasaki.yu@lab.ntt.co.jp

3 Fujitsu Laboratories LTD.
shimo@labs.fujitsu.com

Abstract. This paper presents ongoing work toward the first preimage
attacks on hash function ARIRANG, which is one of the first round
candidates in the SHA-3 competition. ARIRANG has an unique design
where the feed-forward operation is computed not only after the last step
but also in a middle step. In fact, this design prevents previous preimage
attacks. We apply a meet-in-the-middle preimage attacks to ARIRANG.
Specifically, we propose a new initial-structure optimized for ARIRANG
and overcome the middle feed-forward.

Keywords: ARIRANG, SHA-3, preimage, meet-in-the-middle.

1 Introduction

ARIRANG [1] is a hash function submitted to the SHA-3 competition. Although
ARIRANG could not go into the second round, its security is not broken yet.

The designers claim that the middle feed-forward, which is an unique design
for ARIRANG, raises the resistance against preimage attacks [1, Sect. 6.6].

Hong et al. proposed preimage attacks on reduced steps [2,3] by applying
the meet-in-the-middle preimage attack [4]. In this attack, how to separate the
computation into two independent parts (called chunks) is the most important.
In both of [2,3], there is one strong limitation; the first step and the step where
the middle feed-forward is computed must be included in the same chunk. Due
to this limitation, previous work principally cannot attack full steps.

In this paper, we propose preimage attacks on full ARIRANG-256 and -512.
We introduce an improved matching technique which checks the match of linear
relations among several variables. The attack results are shown in Table 1.

2 Description of ARIRANG

ARIRANG is a family of hash functions. In this paper, we deal with ARIRANG-
256 and ARIRANG-512. ARIRANG uses a narrow-pipe Merkle-Damg̊ard struc-
ture and its compression function uses a modified Davies-Meyer construction.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 417–422, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

418 C. Ohtahara et al.

Previous work

Hn-1

Hn

Mn-1

1st chunk

1st chunk

1st chunk

2nd chunk

Ours

Hn-1

Hn

1st chunk

initial structure

2nd chunk

Mn-1

match

match

start start

initial structure

step 0-19

step 20-x

step 0-19

step 20-39

(linear-relation)

Fig. 1. Compression function and strategies to attack middle feed-forward

an

wn
L

G
Xn

<<<s1

<<<s2

bn cn dn en fn gn hn

wn
R

G <<<s3

<<<s4
Zn

an+1 bn+1 cn+1 dn+1 en+1 fn+1 gn+1 hn+1

ARIRANG-256: s1 = 13 s2 = 23 s3 = 29 s4 = 7
ARIRANG-512: s1 = 29 s2 = 41 s3 = 53 s4 = 13

Fig. 2. Step function of ARIRANG Fig. 3. Function G of ARIRANG-
256

Table 1. Summary of attack results

Target Attack Steps Comp. for each output size (Time, Mem.) Ref.
224-bit 256-bit 384-bit 512-bit

CF Free-start coll 40 (full) (224, Neg) (1, Neg) [5]
CF Free-start near-coll 40 (full) (1, Neg) (1, Neg) [5]

CF Collision 26 (1, Neg) (1, Neg) [5]
Hash Preimage 33 (2241, 232) (2481, 264) [2]
Hash Preimage 35 (2240.94, 232) (2480.94, 264) [3]
Hash Preimage 40 (full) (2254, 26) (2505, 216) Ours

The step function updates eight working variables an, bn, cn, dn, en, fn, gn and
hn on n-th step as shown in Fig. 2. The function G is composed of the S-box
and a linear mapping MDS for AES. Fig. 3 shows the function G.

The message schedule of ARIRANG generates 16 extra words wi(16 ≤ i ≤ 31)
from the 16 input message words wi(0 ≤ i ≤ 15). Refer to [1], for the whole
description.

3 Preimage Attacks on Full ARIRANG-256/-512

3.1 Chunk Separation

We first separate the target into two independent chunks. We coded the neutral-
word-search algorithm, and determined to use (w0, w4) and (w5, w11) with a
condition w0 = w4 and w5 = w11. The chunk separation is shown in Fig. 4.

Preimage Attacks on Full-ARIRANG (Poster) 419

�
�
��
��
���
�
	

�
�

	
�

�
�
��
��
���
�
	

�
�

	
�

Step L R

0 16 17

1 0 1

2 2 3

3 4 5

4 6 7

5 18 19

6 8 9

7 10 11

8 12 13

9 14 15

Step L R

10 20 21

11 3 6

12 9 12

13 15 2

14 5 8

15 22 23

16 11 14

17 1 4

18 7 10

19 13 0

Step L R

20 24 25

21 12 5

22 14 7

23 0 9

24 2 11

25 26 27

26 4 13

27 6 15

28 8 1

29 10 3

Step L R

30 28 29

31 7 2

32 13 8

33 3 14

34 9 4

35 30 31

36 15 10

37 5 0

38 11 6

39 1 12
��������	
��� ���	
���

����

Fig. 4. Chunk separation for full ARIRANG

�����

�
�

� �
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
��

�
�

�
�

�
��

�

�
��

�
�

�

�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

������

������

�����	

����

�����

�����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

movement

movement

�
� �

�
�
� �

�
�
�

�
�

�
�

�
�

feed-
forward

Fig. 5. Overview of initial structure

�
����

����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
����

����

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
����

����

�
�

�
����

���

�
�

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

	
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�
�

����
���

�
�	

�

�����

���	��

�
�

����
���

�
�

����
���

�
�

�����

���	��

�
�

����
���

��

	
��

��

���
�����

�����

���

�����

�����

�����

����

step38

step39

step37

�����

�����

���

���	

Fig. 6. Details of initial-structure for steps 37–39

G
w24 G

w25

G
w13 G

w0

G
w7 G

w10

G
w1 G

w4

a0 b0 c0 d0 e0 f0 g0 h0

a17 b17 c17 d17 e17 f17 g17 h17

step17

step18

step19

feedforward

2nd chunk

a25 b25 c25 d25 e25 f25 g25 h25

G
w2 G

w11

G
w0 G

w9

G
w14 G

w7

G
w12 G

w5

G G
step20

step21

step22

step23

step24

1st chunk

Fig. 7. Skipping 8 steps

3.2 Preimage Attacks on ARIRANG-256

Initial Structure. The overview of the initial structure is shown in Fig. 5. We
only activate a part of bits so that the impact from two chunks never reach the
same bit positions. Assume that the first chunk impacts to the lower 2 bytes
of the input variable to G in step 39 (represented by x39,0 and x39,1) and the
second chunk impacts to the higher 2 bytes (x39,2 and x39,3). Then, the impacts
from the first and second chunks are written as MDS(S(x39,0)‖S(x39,1)‖0‖0)
and MDS(0‖0‖S(x39,2)‖S(x39,3)), respectively, which can be computed inde-
pendently.

First chunk (Backward). We choose the values of neutral words w0 and w4

so that only the lower 2 bytes and the lower 3 bytes of the input variable to
G in steps 39 and 38 are influenced, respectively. Therefore, we only activate
the lower 2 bytes of w4. Furthermore, we need to ensure that the impacts
never goes to the highest byte through the G function in step 39. The impacts

420 C. Ohtahara et al.

G <<29
<<7

w4

d17 e17 f17 g17 h17

e18 g18 h18

G <<29
<<7

w10

f19 g19 h19

G <<29
<<7

g20 h20

g0 h0

g* h*

f18

z18

z19

Fig. 8. Indirect partial-matching

IV

IV

ARIRANG RIPEMD-family

1st
chunk

2nd
chunk

match
1st

chunk
2nd

chunk

match

Fig. 9. Another look of middle feed-forward

to z39,3 from MDS(y39,0‖y39,1‖0‖0) is computed as z39,3 = (03·y39,0)⊕y39,1.
Therefore, every time we choose y39,0, we set y39,1 to (03 · y39,0). We stress
that the freedom degree for the first chunk is 8 bits.

Second Chunk (Forward). We fix a37 and a38 to be identical. We activate
bit positions 3 to 8 of z37. This will impact to bits 26 to 31 of the input
of G in step 38 and bits 16 to 21 of the input of G in step 39. We then
compute x37 and compute w5 by x37 ⊕ a37. In step 38, because w11 = w5

and a37 = a38, x38 = x37 is always satisfied and thus z38 = z37. Namely, only
bits 3–8 of z38 are influenced. This will impact to bits 26 to 31 of the input
of G in step 38. We stress that the freedom degree for the second chunk is 6
bits.

Partial-match. Steps 17–24 cannot be fully computed. Hence, we can only
partially match the results. Fig. 7 shows the partial computations. We denote
variables just before the middle feed-forward by a20, b20, . . . , h20 and immediately
after the middle feed-forward by a∗, b∗, . . . , h∗. In the backward computation
from step 24, after we compute the inverse of the step function in step 20, we
know the values of 4 right most variables (e∗, f∗, g∗, and h∗). Then, initial value
p0 is added by the middle feed-forward operation. From Fig. 5, two variables f0

and h0 are influenced by the first chunk and all variables are influenced by the
second chunk. Hence, more independent computations are impossible.

We similarly consider the forward computation as shown in Fig 7. We then
consider the match of a linear-relation among several variables. The indirect
partial-matching technique [6] can be applied to perform this match.

We denote the impact on h0 from the first and second chunks by h1st
0 and

h2nd
0 , respectively. Then, the equations to compute the values of g∗ and h∗ can

be written as Eq. (1), and then Eq. (2). Note that notations V 1 and V 2 represent
that a variable V is computed in the first and second chunks, respectively.

g∗1
= f192

⊕ z19 ⊕ g02
, h∗1

= z182
⊕ e172

⊕ w41
⊕ (z19)≪29 ⊕ h2nd

0 2
⊕ h1st

0 1

(1)

f≪29
19 2

⊕ g≪29
0 2

⊕ z182
⊕ e172

⊕ h2nd
0 2

= g≪29
∗ 1

⊕ w41
⊕ h1st

0 1
⊕ h∗1

. (2)

Preimage Attacks on Full-ARIRANG (Poster) 421

By computing each side of Eq. 2 in each chunk independently, we can
efficiently match the 32-bit linear relations of the results.

The Attack Procedure

1. In the second chunk, for all 26 choices of bit positions 3 to 8 of z37, compute
the initial structure and then compute the step function from step 0 to 16.

2. For the match, calculate the left side of Eq. 2 and store them in a table T .
3. In the first chunk, for all 28 choices of y39,0 compute the initial structure,

and then compute the step function from step 39 to 25.
4. Calculate the right side of Eq. 2 and check if that value is stored in T .
5. If the match is found, check the match of other bits.

Finally, pseudo-preimages are converted to preimages with 2
256+250

2 +1 = 2254

operations with a generic conversion.

3.3 Preimage Attacks on ARIRANG-512

The strategy for attacking ARIRANG-512 is almost the same as that of
ARIRANG-256. Due to the page limitation, we omit the details. Pseudo-
preimages of ARIRANG-512 can be obtained with 2496 complexity and
216 memory, and preimages can be obtained with 2505 complexity and 216

memory.

4 Concluding Remarks

Our strategy can be regarded to be the same as the one for the double-branch
structure (e.g. RIPEMD-family), which is illustrated in Fig. 9. Specifically, it is
the same as [7, Approach 1] and the attacks on RIPEMD-128/-160 [8]. Assume
that a hash function using the modified DM-mode with the middle feed-forward
like ARIRANG consists of r steps. Then, the number of steps from the first step
to the middle and the last step to the middle are both r

2 . Finally, we can say
that the security of the r-step DM-mode with the middle feed-forward is almost
the same as the r

2 -step double-branch structure.

References

1. Chang, D., Hong, S., Kang, C., Kang, J., Kim, J., Lee, C., Lee, J., Lee, J., Lee, S.,
Lee, Y., Lim, J., Sung, J.: Arirang: Sha-3 proposal (2008)

2. Hong, D., Kim, W.H., Koo, B.: Preimage attack on ARIRANG. Cryptology ePrint
Archive, Report 2009/147 (2009)

3. Hong, D., Koo, B., Kim, W.H., Kwon, D.: Preimage attacks on reduced steps of ARI-
RANG and PKC98-hash. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984,
pp. 315–331. Springer, Heidelberg (2010)

422 C. Ohtahara et al.

4. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–
119. Springer, Heidelberg (2009)

5. Guo, J., Matusiewicz, K., Knudsen, L.R., Ling, S., Wang, H.: Practical pseudo-
collisions for hash functions ARIRANG-224/384. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 141–156. Springer, Hei-
delberg (2009)

6. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 578–597. Springer, Heidelberg (2009)

7. Sasaki, Y., Aoki, K.: Meet-in-the-middle preimage attacks on double-branch hash
functions: Application to RIPEMD and others. In: Boyd, C., González Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 214–231. Springer, Heidelberg (2009)

8. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage attacks on step-reduced
RIPEMD-128 and RIPEMD-160. In: Preproceedings of INSCRYPT 2010,
pp. 191–208 (2010)

Finding Collisions for Reduced Luffa-256 v2

(Poster)

Bart Preneel2,3, Hirotaka Yoshida1,2,3, and Dai Watanabe1

1 Yokohama Research Laboratory, Hitachi, Ltd,
292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa-ken, 244-0817 Japan

2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium

3 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

Abstract. This paper presents ongoing work toward analysis of a sec-
ond round SHA-3 candidate Luffa. This article analyses the collision
resistance of reduced-round versions of Luffa-256 v2 which is the 256-
bit hash function in the Luffa family. This paper focuses on the hash
function security. To the best of our knowledge, this is the first collision
analysis for fixed initial vector of Luffa. We show that collisions for 4
out of 8 steps of Luffa-256 v2 can be found with complexity 290 using
sophisticated message modification techniques.

Keywords: Hash functions, collision attack, message modification.

1 Introduction

Recent cryptanalytic results focus on the collision resistance of hash functions.
In response to the collision attack [9] on SHA-1 [6], NIST launched the SHA-3
competition [7] to find an alternative to the SHA-2 family. NIST received more
than 60 candidate hash functions and it currently focuses on the 5 final round
candidates.

Luffa is a family of cryptographic hash functions that has been selected as
one of the 14 second round SHA-3 candidate. The hash function Luffa adopts
the structure of a sponge function and a wide-pipe strategy. In the previous re-
sults on Luffa, its building blocks have been extensively analyzed: the designers
found a differential path for the internal permutation of Luffa. Aumasson and
Meier [1] constructed an algebraic zero-sum distinguisher for the same compo-
nent. Watanabe et. al [8] constructed a higher order distinguisher for 7-steps of
the compression function of Luffa v1. Khovratovich et. al [5] found a semi-free
start collision for 7 steps of the compression function of Luffa-256 v2.

This article analyses the collision resistance of reduced-round versions of Luffa
which is the 256-bit hash function in the Luffa family. We show how collision
attacks, using sophisticated message modification techniques, can be mounted on
reduced variants of Luffa-256 v2. We present an attack on Luffa-256 v2 reduced
from 8 to 4 steps with a complexity of 290.

The outline of this paper is as follows. In Sect. 2, we give a short description
of Luffa-256 v2. In Sect. 3, the results of the collision attacks on 4-step variant
of Luffa-256 v2 are presented. Section 4 concludes the paper.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 423–427, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

424 B. Preneel, H. Yoshida, and D. Watanabe

2 Specification of Luffa-256 v2

In this section, we introduce a part of the specification of Luffa to describe the
attack. The reader is referred to [4] for the details of the specification.

2.1 Chaining and Round Function

The chaining of Luffa is a variant of a sponge function [2], that processes 256
message bits in each iteration. The message is padded with 10...0 to ensure
that the padded message has a length divisible by 256.

The round function is a composition of a message injection function MI and
three permutations Qj of 256 bits input. Let the input of the i-th round be
(H(i−1)

0 , H
(i−1)
1 , H

(i−1)
2), then the output of the i-th round is given by

H
(i)
j = Qj(Xj), 0 ≤ j < 3,

X0||X1||X2 = MI(H(i−1)
0 , H

(i−1)
1 , H

(i−1)
2 , M (i)) ,

where H
(0)
j = Vj . The MI function is linear over GF(28) and can be represented

by a matrix over the ring GF(28)32. The map from an 8-word value (a0, . . . , a7)
to an element of the ring is defined by (

∑
0≤k<8 ak,lx

k)0≤l<32.

2.2 Non-linear Permutation

At the beginning of the step function process in the permutation Qj , 256 bits
of data are stored in 8 32-bit registers denoted by a

(r)
k for 0 ≤ k < 8. The

permutation Qj is defined as the composition of an input tweak and iterations
of a step function Step. which consists of the following three functions: SubCrumb,
MixWord, AddConstant. The number of iterations of a step function is 8.

In permutation Qj, the input tweak rotates the least significant four words to
the left by j bits. SubCrumb substitutes the bits of a0, a1, a2, a3 (or a4, a5, a6, a7)
by a 4-bit S-box S. Let the output of SubCrumb be x0, x1, x2, x3 (or x4, x5, x6, x7).
Then SubCrumb is given by x3,l||x2,l||x1,l||x0,l = S[a3,l||a2,l||a1,l||a0,l] and

x4,l||x7,l||x6,l||x5,l = S[a4,l||a7,l||a6,l||a5,l], (0 ≤ l < 32).
MixWord is a linear permutation of two words. Let the output words be yk

and yk+4 where 0 ≤ k < 4. Then MixWord is given by the following equations:

yk+4 = xk+4 ⊕ xk, yk = xk ≪ 2, yk = yk ⊕ yk+4, yk+4 = yk+4 ≪ 14,

yk+4 = yk+4 ⊕ yk, yk = yk ≪ 10, yk = yk ⊕ yk+4, yk+4 = yk+4 ≪ 1.

3 The Collision Attack on 4-Step Luffa-256 v2

We here present a collision attack on 4-step Luffa-256 v2. We give a general
idea of how the attack works: there are three round function calls, meaning that
the attack uses three message blocks which are used in the following manner:
the attack uses the first message block M (1) with no difference for finding a good

Finding Collisions for Reduced Luffa-256 v2 425

value for the second round function input (H(1)
0 , H

(1)
1 , H

(1)
2), the second message

block pair (M (2), M (2)⊕Δ) introduces the differences conforming the differential
path for each permutation and those differences are erased with the third message
block pairs (M (3), M (3) ⊕ Δ′). The attack first constructs a differential path
producing a collision and then applies the message modification [9] to reduce
the complexity. We adopt the attacking principle in [5] in the following sense:

1. We apply the modification technique on S-box level.
2. We store the degrees of freedom as the information on the set of message

inputs which give the right input for the active S-boxes.

On the other hand, the techniques used in the rebound attack such as match-in-
the middle and multi-path are difficult to apply in our attack because we consider
the hash function security where IV is fixed. We apply the basic modification
using single message bundle for each active S-box and advanced modification [9]
using multiple message bundles for each active S-box respectively. In order to
reduce the attack complexity, we attempt to take the following ideas:

1. Maximize the number of applications of basic modification.
2. Minimize the number of involved message bundles for advanced modification.

For this optimization purpose, we took some heuristic approach where message
bundles which have been used before have higher priorities to be used in the
following step than the others.

As for preliminary, we view the 256-bit message block as 32 8-bit bundles
and consider their positions t (0 ≤ t < 32), to which we will refer as message
bundle and message bundle position respectively. In other words, We handle the
message on 8-bit level. Each of these bundles is obtained in a bit-slice manner
as adopted in Luffa-256 v2: one bit of a bundle is taken from one 32-bit word
of in the message block. For the same reason, we will view the 256-bit chaining
variable input of the permutation Qj as 64 4-bit bundles, each of which is taken
as input to S-box, and consider their positions u (0 ≤ u < 64), to which we will
refer as S-box position.

3.1 The Differential Path

Our attack first constructs a good differential path for the second round. The
overview of how we derive our differential path is that first, we find a good
truncated differential path on the permutation Qj by considering the linear
function MixWord and the Tweak function and then, we determine the best input
output differences of the active Sboxes when the constraint due to the message
injection function MI is taken into account. We performed experiments to find a
good truncated differential path for the permutation Qj . The best one we found
has 49 active S-boxes shown in Table 1. From this truncated path, we derive our
differential path where differential probabilities are 2−7, 2−7, and 2−6 for the
first step, the second step, and the third step, respectively.

426 B. Preneel, H. Yoshida, and D. Watanabe

Table 1. The truncated differential path for Qj

Step Weight 0 1 2 3 4 5 6
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123

0 07 0000000100 0100000001 0101010000 0100000000 0000000000 0000000000 0000
1 08 0100000100 0000010001 0100000101 0000000000 0000000000 0000000000 0010
2 19 0001010100 0100011100 1001000100 1100000000 0000000110 1010000000 1110
3 15 0000010000 0001010100 0101000100 0010110010 0010000000 0000000010 1010
4 (42) 0011011000 1110110001 0110011010 1111101110 1111110111 1110011110 0111

3.2 Message Modification

As for the first step, after applying the basic message modification to 7 active
S-boxes, the remaining degrees of freedom in the second message block is 221
bits out of 256 bits. We face more difficult situations at the second and the
third steps due to the effect of the MixWord which ensures that the input to an
S-box depends on multiple message bundles and that one message bundle may
affect multiple active S-boxes. It follows that, even if a condition on the input
of an active S-box is fulfilled by means of a modification with some message
bundle at some step, this fulfillment can be afterwards destroyed by means of
a modification with the same message bundle at the following step. Hence the
important problem we have to solve is:

For each active S-box, from which message bundles we assign their degrees of
freedom to it in order to optimize the attack complexity?

Our strategy to find an optimal (or nearly optimal) solution to this problem
is to search for correspondences between active S-boxes and message bundles
where each modification per active S-box performed uses message bundles in
such a way that the total number of used message bundles including the ones
which previous modifications have already used is as small as possible, instead
of exhaustively searching for correspondences. Our search considers not only
the degrees of freedom left step by step but also the orders in which active S-
boxes are dealt with: the earlier modifications deal with the active S-boxes which
are more restricted than the others in terms of the total degrees of freedom of
the corresponding message bundles. Our strategy allows us to perform some
message modifications independently of the others. This helps to optimize the
complexity of the message modification performed in total. After applying the
message modification to 8 active S-boxes and 19 active S-boxes, the degrees of
freedom in the second message block is 165 bits (out of 256 bits) remaining after
the second step and 51 bits remaining after the third step. Table 2 indicates the
position correspondence between the active S-boxes and the message bundles.

As for the fourth step, there are 15 active S-boxes and the product of dif-
ferential probabilities for S-boxes in the same (S-box) position over Qj is 2−6.
Hence, in this step, we would need to control 90 bits in the message block.
Since the degrees of freedom in the second message block is 51 bits in this step,
our random attempt uses the first message block with a complexity of 290−51.
As a result, we expect to find a collision for 4-step Luffa-256 v2 with a total

Finding Collisions for Reduced Luffa-256 v2 427

Table 2. Position correspondence between active S-boxes and message bundles

Second S-box pos. 27 7 62 21 29 1 15 19

step Mes. bundle pos. 7,19,21 1,19,31 15 1,15 9,23 25,27 9,27 11, 13

Third S-box pos. 27 62 3 30 5 17 52 20 7 11
step Mes. bundle pos. 2 2,13 9,24 3,24,26 26 29 29,30 3,30 10 10,12

S-box pos. 47 31 15 16 23 61 48 50 60
Mes. bundle pos. 5,12 3,5 28 0,28 0,4 4 6 8 14

complexity of 290 	 239(214 + 216 + 241 + 251) where 214, 216, 241, and 251 are
the complexities for the message modifications at the first, second, third, and
fourth steps respectively.

4 Conclusion

By taking a simple and effective approach of applying message modification, we
show that collisions for 4 steps of Luffa-256 v2 can be found with complexity
290. This is the first analysis of Luffa regarding the hash function security.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi (2009)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability
of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

3. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Supporting Docu-
ment. Submission to NIST SHA-3 Competition (2008)

4. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Specification. Sub-
mission to NIST SHA-3 Competition (2008)

5. Khovratovich, D., Plasencia, M.N., Roeck, A., Schlaeffer, M.: Cryptanalysis of Luffa
v2 components. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 388–409. Springer, Heidelberg (2011)

6. National Institute of Standards and Technology, Secure hash standard, Fed-
eral Information Processing Standards Publication 180-2 (August 2002),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

7. National Institute of Standards and Technology, Announcing request for candi-
date algorithm nominations for a new cryptographic hash algorithm (SHA-3) family
(November 2007), http://csrc.nist.gov/groups/ST/hash/documents/

8. Watanabe, D., Hatano, Y., Yamada, T., Kaneko, T.: Higher Order Differential At-
tack on Step-Reduced Variants of Luffa v1. In: Hong, S., Iwata, T. (eds.) FSE 2010.
LNCS, vol. 6147, pp. 270–285. Springer, Heidelberg (2010)

9. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/groups/ST/hash/documents/

Improved Security Analysis of Fugue-256

(Poster)�

Praveen Gauravaram1,��, Lars R. Knudsen1,
Nasour Bagheri2, and Lei Wei3,���

1 Department of Mathematics, Technical University of Denmark, Denmark
2 Shahid Rajaee Teacher Training University, Iran

3 Nanyang Technological University (NTU), Singapore

Abstract. We present some improved analytical results as part of the
ongoing work on the analysis of Fugue-256 hash function, a second round
candidate in the NIST’s SHA3 competition. First we improve Aumasson
and Phans’ integral distinguisher on the 5.5 rounds of the final trans-
formation of Fugue-256 to 16.5 rounds. Next we improve the designers’
meet-in-the-middle preimage attack on Fugue-256 from 2480 time and
memory to 2416. Finally, we comment on possible methods to obtain
free-start distinguishers and free-start collisions for Fugue-256.

1 Fugue-256 Hash Function

Fugue-256, denoted F-256, parses the 256-bit initial value (IV) as eight 4-byte
words IV0, . . . , IV7. It initializes a state S of 30 4-byte words Si for i = 0, . . . , 29,
as a 4 × 30 matrix by assigning Sj = 0 for j ∈ [0, 21] and Sj = IVj−22 for
j ∈ [22, 29]. This state is called initial state. Hereafter, we denote by Si∼j the
consecutive words of a state S from the index i to j. Streams of 4-byte message
words are processed from this state using round transformation R. If the input
message is not a multiple of 32 then it is padded with sufficient 0 bits and it is
appended with two 4-byte words that represent the binary encoding of the length
of the unpadded message in big-endian notation. Then the final transformation
G is applied to the internal state to obtain an output state of 30 words, of which
the eight words S1∼4,S15∼18 are used as the digest. The transforms R and G
are discussed below where the operation + is the same as 32-bit exclusive-or.
Round transformation R: It takes a state S and a 4-byte message word m as
inputs and outputs a new thirty column state. R calls a sequence of functions:
TIX(m), ROR3, CMIX, SMIX, ROR3, CMIX, SMIX.

– TIX(m): S10+ = S0; S0 = m; S8+ = S0; S1+ = S24

� This work has been supported in part by the European Commission through the
ICT programme under contract ICT-2007-216676 ECRYPT II.

�� Author has been sponsored by the Danish Council for Independent Research: Tech-
nology and Production Sciences (FTP) grant 09-066486/FTP.

��� Author is supported under the Singapore National Research Foundation under
Research Grant NRF-CRP2-2007-03.

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 428–432, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Improved Security Analysis of Fugue-256 429

– ROR3 is defined by Si = Si−3 mod 30.
– CMIX: S0+ = S4; S1+ = S5; S2+ = S6;S15+ = S4; S16+ = S5; S17+ = S6

– SMIX transformation combines the non-linear SBox with a Super-Mix lin-
ear transformation SMIX-T. SMIX operates only on the first four columns
S0∼3 of the state S that are viewed as a 4×4 matrix of 16 words. Each byte of
these columns first undergoes an SBox transform as in AES and the result-
ing matrix undergoes an SMIX-T transform denoted by a 16 × 16 matrix
N of 256 bytes. That is, S′

0∼3 = N.(S0∼3) where N is multiplied (.) with a
16-byte 4× 1 column matrix output of SBox. Similarly, (S0∼3) = N.(S′

0∼3)
where (S′

0∼3) is a 16-byte 4 × 1 column matrix. The inverse operations of
SBox and SMIX are denoted by SBox and SMIX respectively.

Final transformation G: It takes the output S of the R transform and produces
a final state of 30 words. The function G consists of 5 rounds of G1, 13 rounds
of G2 and a binary addition of two state words.

– G1: ROR3, CMIX, SMIX, ROR3, CMIX, SMIX.
– G2: S4+ = S0; S15+ = S0;ROR15;SMIX;S4+ = S0; S16+ = S0;

ROR14;SMIX
– S4+ = S0; S15+ = S0

The resultant state is called final state from which S1∼4 and S15∼18 are used
as digest. In any round i of R, the internal state is denoted by State-i and its
words are denoted by Si

0, S
i
1, . . . , S

i
29, i.e, Si

1∼29. The internal state words after
the first SMIX in a round i are denoted by Si.5

0 , . . . , Si.5
29 , i.e, Si.5

0∼29. In any
round i of R, the internal state words after the first ROR3, CMIX and SBox
transformations are denoted by x′i

0 , . . . , x′i
29, xi

0, . . . , x
i
29 and x̂i

0, . . . , x̂
i
29 respec-

tively and those after the second ROR3, CMIX and SBox transformations are
denoted by y′i

0 , . . . , y′i
29, yi

0, . . . , y
i
29 and ŷi

0, . . . , ŷ
i
29 respectively. A message word

inserted in the ith round of R is denoted by mi.

2 Integral Distinguisher for 16.5 Rounds of G

Our integral attack is a first order integral attack. We follow the notation of [4] for
the bytes included in the integral as follows: The symbol C (for Constant) in the
ith byte means that the values of all ith bytes in the attack are equal. The symbol
A (for All) means that all bytes in the attack are different, and the symbol S
(for Sum) means that the sum of all ith bytes is predictable and we write ? when
the sum of the bytes is not predictable. We count the rounds of the G transform
from 0 to 17 and a state in any round i where i = 0, 0.5, 1, . . . , 16, 16.5, 17 is
denoted by Si and the words of Si by Si

0∼29.
Aumasson and Phan [1] presented an integral distinguisher for 5.5 rounds of

the G function. Their distinguisher fixes all the bytes of the state S0 except
for the first byte of S0

2 at the start of the G transform. All possible values are
assigned to the first byte of S0

2 . They have shown that for S0
2 = A‖C‖C‖C one

would receive S5.5
0 =?‖?‖?‖?, S5.5

1 = A‖?‖?‖?, S5.5
2 = S‖?‖?‖?, S5.5

3 = S‖?‖?‖?
which presumably shows a non-randomness property in the first 5.5 rounds of
the G function. We improve their attack to 16.5 rounds out of 18 rounds of G.

430 P. Gauravaram et al.

Improved attack. A closer analysis of integrals reveals that the values of the
integral before the ROR functions of G2 play a crucial role on the success
of the distinguisher. It turns out that this word remains unchanged through
many rounds of G2 before being affected by other words. However, for the given
integral, all bytes of S5.5

0 are unknown (’?’) and out of control of the adversary.
Hence, the integral of Aumasson and Phan does not seem to extend to more
rounds of the G transform. Our analysis revealed an integral that runs for more
rounds. Note that values with notation A and C in our integral are unchanged
through SBox, but values with notation S are unknown (?) after SBox.

In our integral, we fix whole state bytes of S0, except for the second byte
of S0

4 where we consider all possible values. The word S0
4 propagates to S5

28

with probability 1. Hence, the ROR3 transform in the 5th round of G1 (i.e
4th round of G) shifts this word as one of the inputs to the SMIX. Hence, we
obtain S5.5

0 =?‖?‖S‖?. It means that we know the sum of the values (S) for this
word. On the other hand, this word is propagated to S16

4 with probability 1.
In the next step, we have S16

4 + = S16
0 which destroys our integral. However,

after the ROR15 function in the 16th round of G, S16
0 and S16

4 are propagated
to S16

15 and S16
19 respectively. Now if we assume that the adversary has also access

to S16
19 then he can combine S16

15 and S16
19 and retrieve the integral values as

S16.5
4 = S16.5

15 ⊕ S16.5
19 .

Hence, we have an integral which applies to 16.5 out of 18 rounds of the G
transform. The complexity of attack is 256 evaluations of 16.5 rounds of the
G transform and memory is 256 bytes. The probability of receiving an S byte
at S16.5

4 for G is 1 whereas this probability for a random permutation is 2−8.
Hence the success probability to distinguish 16.5 rounds of the G function from
a random permutation is 1 − 2−8. Our findings illustrate the weak diffusion of
the G transform.

3 Improved Meet-in-the-Middle Preimage Attack on
F-256

The designers of Fugue noted the application of a generic meet-in-the-middle
(MIM) preimage attack on any t-bit instance of Fugue [3, p.77] with n-bit internal
state in 2n/2 time and memory complexity [3, p.77].
Improved generic MIM preimage attack on Fugue. Let State-i’ be the
internal state in any round i of R after the step Si

10 = Si
0 ⊕ Si

10. This is a
(n − 32)/32-word internal state without the word Si

0 and except for the word
Si

10 in the State-i’ all other words are the same as in the n/32-word State-i .
Instead of looking for a collision match at State-i as in the generic MIM attack,
if we look for it at State-i’ , we can improve the generic attack complexity by
a factor of 216. Briefly, in the Backward process of the attack we first establish
the required length-padding words in the last two rounds of R and then gen-
erate required number of messages with that length-padding and corresponding
internal states. We use freedom in the words S0 and S10 to accomplish this task.
These states are matched with the states generated in the Forward process of the

Improved Security Analysis of Fugue-256 431

attack till State-i’ which is called middle state. We omit details of the attack and
refer to the full version of the paper [2]. As an illustration, the improved attack
finds a preimage of size at least 29 (resp. 35) message words with a complexity
of 2464 (resp.2560) time and memory for F-256 (resp. F-512).
Improved MIM preimage attack on F-256. We further improve the preim-
age attack on F-256 by exerting control over 3 words of the 29-word middle state.
This technique allows us to use a birthday attack to match only 26 words of the
middle state, thereby reducing the complexity of the attack to 2416 from 2464.
Let 0 be the round of the R transform at which we aim for a collision match.
Let −1,−2,−3, . . . and 1, 2, 3, . . . be the respective rounds of the R transforms
from the 0th round in the Forward process and Backward process of the attack.
The attack is outlined below:

We show that the wordsS0
17, S

0
23 and S0

27 in the middle state (i.e State-0’) can be
controlled such that the internal states evolving from the initial state and the final
state of F-256 can be matched in these words deterministically with a probability
of 1 by solving a simple system of equations. We do this by first assigning fixed
values (could be distinct) to the words S0

17, S
0
23 and S0

27 that are controlled by using
the R transforms −3, −2 and −1 in the Forward process and the R transforms 3,
2 and 1 in the Backward process. In the Forward process, the desired value for the
words S0

27, S0
23 and S0

17 is obtained consecutively by using the freedom available in
the message words m−3, m−2 and m−1 in the R transforms of the rounds −3, −2
and−1 respectively. In the Backward process, the desired values for the words S0

17,
S0

23 and S0
27 are obtained consecutively by using the freedom available in the words

S3
0 , S2

0 and S1
0 in the R transforms of the rounds 3, 2 and 1 respectively. Below we

explain how the word S0
17 can be controlled and a similar explanation follows for

controlling the words S0
23 and S0

27.
Controlling the word S0

17: Below we will show how we can obtain the desired
word S0

17 of the middle state from the final state and initial state of F-256
through the Backward process and Forward process respectively.
Backward process: The word S0

17 in the middle state of the 0th round R trans-
form will be the word S2

29 in the State-2’ of the 2nd round R transform. Now
x′2

2 = S170 , x2
2 = x′2

2 ⊕ x′2
6 . Now x̂2

2 = SBox(x2
2). Note that (S2.5

1 , S2.5
2 , S2.5

3) =
(S3

4 , S3
5 , S3

6). For the final state of F-256 inverted till the R transform in round
3, the State-3’ of the 3rd round R transform is fixed. Therefore, we can only
use S2.5

0 input to N to obtain the desired x̂2
2 and therefore, we can obtain the

desired S0
17. The matrix N has a property that by controlling one of the input

words, we can obtain one desired output word by solving a system of 4 equations
in 4 unknowns for a negligible complexity. This property is also applicable for
N. Hence, we can find a S2.5

0 such that N.(S2.5
0 , S2.5

1 , S2.5
2 , S2.5

3) produces the
desired word x̂2

2. This process also determines the message word m2 which is
SBox(x̂2

3) = x2
3 = x′2

3 . Note that S2.5
0 = y′2

3 = y2
3 , ŷ2

3 = SBox(y2
3) and the state

words S3
1∼29 of the state State-3’ are determined by the final state of F-256.

Now we vary S3
0 such that N.(S3

0 , S3
1 , S3

2 , S3
3) produces the desired ŷ2

3 . Once we
have found the candidate S3

0 , we can determine S3
10 = S3

0 ⊕ x′3
13 of the state

State-3.

432 P. Gauravaram et al.

Forward process: For an initial state of F-256 processed till the end of the −2nd

R transform by using Forward process, the State-(-1) of the −1th round R
transform is fixed. This implies that y′−1

17 has already been fixed. To obtain
the desired value of S0

17, we need to control y′−1
6 which is y′−1

17 ⊕ S0
17. The word

y′−1
6 is the same as S−1.5

3 . Note that the words S−1
1∼29 had already been fixed.

Hence, we can determine the words (x̂−1
0 , x̂−1

1 , x̂−1
2), the first three word input

to N, as follows: x̂−1
0 = SBox(S−1

27 ⊕ S−1
1 ⊕ S−1

24); x̂−1
1 = SBox(S−1

28 ⊕ S−1
2);

x̂−1
2 = SBox(S−1

29 ⊕ S−1
3). Having determined the words x̂−1

0 , x̂−1
1 and x̂−1

2 ,
we can use the freedom available in the message word m−1 to determine the
candidate x̂−1

3 such that we obtain the desired S−1.5
3 = y−1

6 and therefore, we
obtain the desired word S0

17 = y−1
6 ⊕ y′−1

17 in the middle state.
Similarly, we can use the freedom available in the words S2

0 (resp. S1
0) and m−2

(resp. m−3) to obtain the desired word S0
23 (resp. S0

27). This attack produces a
preimage of size at least 32 words excluding length-padding words.

4 Concluding Remarks

In this paper we have developed a further understanding of the design of F-256.
In addition to the above results on F-256, we also considered the differential
characteristic of the G transform proposed by the designers in the PRF analysis
of F-256 [3, §12.4.2] and improved it by exploiting the differential properties
of the inverse SMIX such that it produces sparse input state differences for
G transform. Our improved differential path can be used to mount an inside-
out distinguisher for G similar to of [1]. This distinguisher produces a free-start
distinguisher for F-256 which appears to produce a sparser state differences when
it is extended to a few rounds of R compared to the similar extension of the
distinguisher for G of [1]. Both these results also produce free-start collisions for
F-256. We remark that a closer analysis of the design revealed that free-start
collisions for the length-padded F-256 are possible without even inverting the
final transformation G. For details we refer to [2].

Acknowledgments. We thank Charanjit Jutla, Shai Halevi, Søren Thomsen,
JP Aumasson, Raphael Phan and Christian Rechberger for comments.

References

1. Aumasson, J.-P., Phan, R.C.-W.: On the Cryptanalysis of the Hash Function Fugue:
Partitioning and Inside-Out Distinguishers. To appear in IPL Journal (2011)

2. Gauravaram, P., Knudsen, L.R., Bagheri, N., Wei, L.: Improved security analysis of
Fugue-256 (Extended version) (2011), To be available as a MAT, DTU Technical
report, http://www2.mat.dtu.dk/pg-projects/

3. Halevi, S., Hall, W.E., Jutla, C.S.: The Hash Function Fugue. Submission to NIST
(2009) (updated)

4. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

http://www2.mat.dtu.dk/pg-projects/

Improved Meet-in-the-Middle Cryptanalysis of

KTANTAN (Poster)�

Lei Wei1, Christian Rechberger2, Jian Guo3, Hongjun Wu1,
Huaxiong Wang1, and San Ling1

1 Nanyang Technological University, Singapore
{weil0005,wuhj,hxwang,lingsan}@ntu.edu.sg

2 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium
christian.rechberger@groestl.info

3 Institute for Infocomm Research, A∗STAR, Singapore.
ntu.guo@gmail.com

Abstract. This paper presents ongoing work towards extensions of meet-
in-the-middle (MITM) attacks on block ciphers. Exploring developments
in MITM attacks in hash analysis such as: (i) the splice-and-cut technique;
(ii) the indirect-partial-matching technique. Our first contribution is that
we show corrections to previous cryptanalysis and point out that the key
schedule is more vulnerable to MITM attacks than previously reported.
Secondlywe further improve the time complexities of previous attackswith
(i) and (ii), now the 80-bit secret key of the full rounds KTANTAN-{32, 48,
64} can be recovered at time complexity of 272.9, 273.8 and 274.4 respec-
tively, each requiring 4 chosen-plaintexts.

1 Introduction

We study the KTANTAN family [3] on resistance to MITM attacks. In the
attack due to Bogdanov and Rechberger [2], the key schedule was reported to
be weak and the key of full KTANTAN-32 can be recovered slightly faster than
brute force. In this paper, we first point out that the previous analysis was not
correct (as it was found based on a wrong key schedule), the actual key schedule
is even weaker than reported. Based on the corrections, we further examine
how developements on MITM preimage attacks in hash analysis can improve
the attack. Indeed, with splice-and-cut and indirect-partial-matching, we find
chosen-plaintext key recovery attacks with improved time complexities, faster
than brute force by 27.1, 26.2 and 25.6 for block size 32, 48 and 64.

The paper is organized as follows: techniques in MITM attacks are discussed
in Section 2, the previous attack versus our experiment results are discussed in
Section 3, our improve attacks to KTANTAN family with hash analysis tech-
niques are shown in Section 4 and we conclude in Section 5.

2 Developments in MITM Attacks

MITM attacks were originally developed from cryptanalysis of block ciphers. In
2008, Sasaki and Aoki noticed that the MITM attacks could be applied to hash
� Full version at http://www1.spms.ntu.edu.sg/~weil0005/mitm2.pdf

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 433–438, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www1.spms.ntu.edu.sg/~weil0005/mitm2.pdf

434 L. Wei et al.

LOOKUP

P C
IS PM

H1 G H2

Fig. 1. A general setup for MITM attacks

functions, to find (second) preimages faster than brute-force [4]. The attacks and
further developments have successfully broken the one-wayness of many designs.
We briefly introduce the techniques relevant to our attacks with Fig. 1.

In a Davies-Meyer construction from a block cipher E keyed by message m,
the feedforward ⊕h is used to compute h′ as Em(h)⊕h. To splice-and-cut, E(h) is
written as three sub-ciphers as E(h) = H2 ◦G◦H1(h) (without IS and PM). Let
hinter = H1(h), we have H−1

2 (H−1
1 (hinter)⊕h′) = G(hinter). The output of E is

computed as h⊕h′, this is the splice that connects the input and output of E. The
attack starts at position hinter and cut E into G(·) and H−1

2 (H−1
1 (·)⊕h′). For a

block cipher attack, a lookup table LOOKUP is used as a virtual feedforward.
For initial-structure (IS), neighbouring key bits around hinter may be swapped
for more neutral key bits. Let Kc := K1∩K2, we compute M := GK1(hinter) and
M ′ := H−1

K2
(hinter). A partial-matching (PM) of m bits of M and M ′ is sufficient

for filtering wrong keys at a ratio of 2−m. After this the PM portion is repeated
to filter more wrong keys, and it does not dominate the overall complexity if
(|K1| + |K2| − 2|Kc| − m) + log2(α) < max(|K1| − |Kc|, |K2| − |Kc|), where α
is the percentage of PM steps. Indirect-partial-matching (IPM) extends PM for
more steps. PM usually starts when key bits in K2 \ Kc appear after the end
of G (otherwise, one can extend G for more steps). Similarly for the other side,
i.e., key bits in K1 \ Kc appear just before H2. IPM aims to find, from the PM
steps, state bits that can be computed by both GK1 +φK2 and HK2 +μK1 from
hinter , such that the matching can be checked between GK1−μK1 and HK2−φK2

instead. φ and μ are linear in their key materials.

3 Meet-in-the-Middle Cryptanalysis of KTANTAN

The KTANTAN family of block ciphers, with block sizes of 32, 48 and 64, was
proposed at CHES’09 [3]. They accept 80-bit key and share a key schedule for
254 rounds.

3.1 The Previous Meet-in-the-Middle Attack

The attacks reported in [2] work with a few known plaintexts at around the unic-
ity distance. The attack to full KTANTAN32 works in 279 encryptions. Although
arguably marginal, it is the first key-recovery attack to the full 254 rounds faster

Improved Meet-in-the-Middle Cryptanalysis of KTANTAN 435

than brute force. For block size b of 48 and 64, the attack manages to break 251
and 248 rounds respectively 1.

The attack cuts the R-round KTANTAN-b cipher (b for block size) into
three parts for some α, β < R. Let K := k79k78 . . . k1k0 be the key and A :=
{k0, k1, . . . , k78, k79}. Let xi be the state after round i, for 0 ≤ i ≤ 254. Let ϕi,j

be the transformation from round i to round j (inclusive), key bits in A1 :=
{k15, k79} are neutral to H := ϕ254−β+1,254 (the backward phase) and A2 :=
{k5, k37, k69} neutral to G := ϕ1,α (the forward phase). Let A0 := A\ (A1

⋃
A2).

The attack to KTANTAN32 proceeds with a text pair (P, C), for each guess of
key bits in A0, compute 3-bit of x128 for independent guesses of A1 and A2, from
respectively M := G(P) = ϕ1,105(P) and M ′ := H−1(C) = ϕ−1

137,254(C). For a
key guess that passes this 3-bit filter, try current and additional pairs of (P, C)
one by one. For �80/b� pairs tested, the correct key can be recovered with proba-
bility close to 1. The claimed complexity is at around 2|A0|(2|A1|+2|A2|)+280−3 =
279 encryptions. A more accurate calculation showes that it works at a time com-
plexity of 2|A0|(2|A1| · α/R + 2|A2| · β/R + 2|A1|+|A2|−m(R − α − β)/R) .= 277.6.

3.2 New Experimental Observations on the Attack

We reimplement the family of KTANTAN from its design paper [3] and examine
the key schedule according to the attack in [2], different sets of neutral key bits
are found and it suggests that the key schedule is much weaker than reported.
Under this observation, the MITM approach brings non-marginal attacks for
the full ciphers of the entire family. The previous results and our attacks (*) are
summarized in Table 1.

Table 1. The B-R attack and our results

b R α β A1 A2 m Time Data

32 254 105 118 15, 79 5, 37, 69 3 279.0 3 KP [2]
48 251 107 112 11, 15, 75, 79 5, 69 1 279.7 2 KP [2]
64 248 107 112 9, 73 5, 69 2 279.58 2 KP [2]

32 254 111 122 3, 20, 41, 47, 63, 74 32, 39, 44, 61, 66, 75 12 273.88 3 KP *
32 254 110 122 3, 20, 41, 47, 63, 74 27, 32, 39, 44, 59, 61, 66, 75 4 273.88 3 KP *
32 254 109 122 3, 20, 41, 47, 63, 74 13, 27, 32, 39, 44, 59, 61, 66, 75 3 274.33 3 KP *
48 254 123 122 3, 20, 41, 47, 63, 74 32, 44, 61, 66, 75 37 274.53 2 KP *
48 254 111 121 3, 20, 41, 47, 63, 74 32, 39, 44, 61, 66, 75 4 273.97 2 KP *
64 254 123 122 3, 20, 41, 47, 63, 74 32, 44, 61, 66, 75 44 274.53 2 KP *

3.3 Low Complexity Implementation of the Attack

In the cases that the secret keys are not derived with full 80-bit entropy, the
attack may become a real threat when the time is 26 to 27 times less due to the
attack of this paper. For example, it is not hard to eavesdrop a small amount of
ciphertext corresponding to known protocol headers and it is feasible to launch

1 The authors later updated in http://eprint.iacr.org/2010/532.pdf and [1].

http://eprint.iacr.org/2010/532.pdf

436 L. Wei et al.

an attack. We implement a low complexity version of an attack to KTANTAN32
in Table 1. We assume 40 bits of A0 are known by the attacker, the attack has
α = 111, β = 122, A1 = {3, 20, 41, 47, 63, 74}, A2 = {32, 39, 44, 61, 66, 75} and 12
bits match. The attack successfully recovers the 40-bits in 5 hours 34 seconds
on a Quad-core HP xw4600 workstation at 2.40GHz. With 40 bits known, the
estimated complexity 274 is reduced to 234. The experiment confirms roughly a
reduction of 26 as encrypting 226 plaintexts takes 45 seconds. As a comparison,
recovering 40 bits by exhaustive search would take roughly half a month if using
the same workstation.

4 More General MITM Attacks on KTANTAN Family

The effeciency of the attacks discussed in Section 3 depends crucially on the
number of neutral key bits in the forward phase and backward phases. Hence
a natural question is, can we improve the attack by finding more neutral key
bits or more bits for matching? We show how splice-and-cut and indirect-partial-
matching address this question.

4.1 The Observations and Search

In round r the computations for fr,a and fr,b are repeated 1, 2 or 3 times for 3
respective block sizes. For each evaluation2 of fa(L1) or fb(L2), a single round
key bit is mixed XOR-linearly into the LSB of L1 or L2, hence affecting the
lowest 1 to 3 bits considering the shift(s). In the round that follows, only a few
bits of the state get involved in the nonlinear part in computing fr,a and fr,b. We
observe that the round key bits remain linear in the state bits for some rounds,
hence expecting more bits to be matched by IPM.

Let xi be the state after round i for 1 ≤ i ≤ 254 then x254 is the ciphertext and
denote the plaintext x0. For ϕb0,b1 as the backward phase and ϕf0,f1 as forward,
the rounds between (exclusive) b0 and f0 are used for the initial structure. We
search exhaustively for all feasible combinations of (f0, f1, b0, b1) and compute
the complexities. IS is applicable and we set f0 − b0 − 1 to up to 20. The search
shows that IS is not contributing to a better attack, hence f0 = b0 + 1. We list
the best attacks in Table 2. The IPM checks between two fully determined states
M := xf1 (after round f1) and M ′ := xb1−1 (before round b1).

LOOKUP

P C
f0b0b1IPMf1

H G1G2 M M ′

Fig. 2. Illustration of MITM attack with splice-and-cut and IPM

2 Notations follow from [3].

Improved Meet-in-the-Middle Cryptanalysis of KTANTAN 437

4.2 The Attack with Splice-and-Cut and Indirect-Partial-Matching

First we construct the table LOOKUP to splice two ends of cipher. Select a
random value for xb0 and compute C := G1(xb0) for all 4 possible outputs of
G1 := ϕf0,254. Add the chosen-ciphertext pair (C, P) to the table. Let A1 be
the key bits neutral to H−1 := ϕ−1

b1,b0
and A2 for G := G2 ◦ LOOKUP ◦ G1 =

ϕ1,f1 ◦ LOOKUP ◦ ϕf0,254.
The attack goes as follows: for each guess of A0 we try parallel guesses for A1

and A2, computing M := G(xb0) and M ′ := H−1(xb0). m-bit partial matching
signature s can be computed from both M and M ′, it is used as a filter of
ratio 2−m and the matching is done in a table. A survival key is then tested on
whether M ′ = ϕf1+1,b1−1(M) for K, and on other pairs of (P, C). The right key
is the one that survices all �80/b� pairs.

The m-bit partial matching signature is computed from the matching position,
as Section 2 on IPM. The signature includes state bits independent or linearly de-
pendent with the active (non-neutral) key bits in the IPM phase. The technique
significantly improves the number of bits that can be matched, the matching can
be extended for more rounds to have more neutral bits. For KTANTAN32, the
matching position is at x115. Denote x115 as x and let x[i] be the i-th bit of x,
for 0 ≤ i ≤ 31. For the forward part of IPM, the following key bits are linear in
the corresponding state bits, k27 in x[0], k13 in x[1], k39 in x[3], k59 in x[4] and
k39 in x[22]. For the backward part, we have k74 in x[26], k74 in x[21], k74 in x[3]
and k20 in x[2]. Hence the matching signature is (x[26]− k74, x[22]− k39, x[21]−
k74, x[7], x[6], x[5], x[4]−k59, x[3]−k39−k74, x[2]−k20, x[1]−k13, x[0]−k27) which
can be computed from both sides without knowing the value for the active key
bits from that side.

Table 2. MITM attack with splice-and-cut and indirect-partial-matching

b R b1 b0 f0 f1 A1 A2 m Time Data

32 254 148 253 254 109 13, 27, 32, 39, 44, 59, 61, 66, 75 3, 20, 41, 47, 63, 74 11 272.93 4 CC
48 254 150 253 254 111 32, 39, 44, 61, 66, 75 3, 20, 41, 47, 63, 74 15 273.77 4 CC
64 254 151 253 254 112 32, 44, 61, 66, 75 3, 20, 41, 47, 63, 74 54 274.38 4 CC

5 Conclusions

We have shown corrected results for the KTANTAN key schedule for MITM
attacks, and have confirmed the attack with an experiment. Moreover, we have
shown some techniques from hash function MITM preimage attacks effective for
improving the results on KTANTAN. In particular, splice-and-cut gives more
neutral bits and indirect-partial-matching improves over partial-matching with
much better matching. It is open to examine if better enhancements can be
discovered for MITM attacks and dedicated techniques to be found for particular
ciphers.

Acknowledgments. This work was supported in part by the Singapore Na-
tional Research Foundation under Research Grant NRF-CRP2-2007-03.

438 L. Wei et al.

References

1. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanaly-
sis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

2. Bogdanov, A., Rechberger, C.: Generalized Meet-in-the-Middle Attacks: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Preproceedings of SAC (2010),
http://homes.esat.kuleuven.be/~abogdano/talks/ktantan_sac10.pdf

3. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A Family
of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

4. Sasaki, Y., Aoki, K.: Preimage Attacks on 3, 4, and 5-Pass HAVAL. In: Pieprzyk, J.
(ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 253–271. Springer, Heidelberg (2008)

http://homes.esat.kuleuven.be/~abogdano/talks/ktantan_sac10.pdf

Toward Dynamic Attribute-Based Signcryption

(Poster)

Keita Emura1, Atsuko Miyaji2, and Mohammad Shahriar Rahman2

1 Center for Highly Dependable Embedded Systems Technology
2 School of Information Science

Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa,
923-1292, Japan

{k-emura,miyaji,mohammad}@jaist.ac.jp

Abstract. This paper presents an ongoing work toward the proposal
of the new concept of the attribute-based cryptosystem. In SCN2010,
Gagné, Narayan, and Safavi-Naini proposed attribute-based signcryption
(ABSC) with threshold structure. As in ciphertext-policy attribute-based
encryption (CP-ABE), an encryptor can specify the access structure of
decryptors, and as in attribute-based signature (ABS), each decryptor
can verify the encryptor’s attributes. On the contrary to the access struc-
ture of decryptors, the access structure of the encryptor needs to be fixed
in the setup phase. In this paper, we investigate ABSC with dynamic
property, called dynamic ABSC (DABSC), where access structures of
encryptor can be updated flexibly without re-issuing secret keys of users.

1 Introduction

1.1 Attribute-Based Signcryption (ABSC)

Recently, Gagné,Narayan, and Safavi-Naini proposedABSC with threshold struc-
ture [3] to achieve Cost(ABS & CP-ABE) < Cost(ABS)+Cost(CP-ABE). That is,
their ABSC scheme is efficient compared with encrypt-then-sign paradigm. As in
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [1], an encryptor can
specify the access structure of decryptors, and as in Attribute-Based Signature
(ABS) [4], each decryptor can verify the encryptor’s attributes. Note that, in the
Gagné et al. definition, a decryptor can verify the encryptor’s attribute explicitly.
This property is preferable for the following encrypted storage system usage.

1.2 Encrypted Storage System

Encrypted storage system is a well-known application of CP-ABE. To indicate
the set of common attributes of decryptors (such as affiliation, post, and so on),
CP-ABE schemes can achieve a fine-grained access control without increasing
the number of keys. On the contrary to the decryptor’s attributes, there is no
way to verify the set of attributes of encryptor if CP-ABE is applied only. To
check the source of storage files, attributes of encryptor is important information.
By applying the Gagné et al. ABSC, both CP-ABE and ABS properties can be

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 439–443, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

440 K. Emura, A. Miyaji, and M.S. Rahman

handled for encrypted storage system usage, simultaneously. So, a decryptor
can check the encryptor’s attribute explicitly. However, the threshold structure
(which is supported by the Gagné et al. ABSC) is not suitable for encrypted
storage system usage, although it is useful for fault tolerance usage. In addition,
the access structure of the encryptor is specified only once, and it cannot be
changed. More precisely, the threshold value is decided in the key generation
phase, and it cannot be updated without re-issuing the new key.

2 Our Approach: Dynamic ABSC

In this paper, we investigate the new concept “ABSC with dynamic property”,
called Dynamic ABSC (DABSC), where access structures of encryptor can be
changed without re-issuing secret keys of users. As an application of DABSC,
we consider authenticated fine-grained storage systems.

For example, let a teaching assistant of a lecture “Applied Cryptography”
would like to store an encrypted examination data for students (who take Ap-
plied Cryptography) only. In addition, students would like to check whether a
stored file was made by a teaching assistant of Applied Cryptography. Then
an encryptor makes a ciphertext part associated with attributes of a decryptor
(Student ∧ Applied Cryptography), and also makes a signature part associated
with attributes of the encryptor (Teaching Assistant ∧ Applied Cryptography).

The dynamic property is suitable for the following example. We assume that
the encryptor (who is a teaching assistant of Applied Cryptography) becomes a
teaching assistant of a lecture “Discrete Mathematics”, and the encryptor has
obtained the secret key for attributes Teaching Assistant and Applied Cryptogra-
phy. If the dynamic property is not handled, then key generation center (KGC)
needs to re-issue the secret key of both Applied Cryptography and Teaching
Assistant for handling the updated access structure of encryptor. It is quite
inefficient and impractical (See Table 1).

Table 1. Computational complexity of changing predicate

KGC User

Non-dynamic scheme O(N · ne) O(ne)

Dynamic scheme O(ne) None

N : the number of users
ne : the maximum number of attributes having each user

Under the dynamic property, KGC has only to issue the secret key of Dis-
crete Mathematics, and no computation that the encryptor is required. While
the above example describes the case of small number of predicates, we be-
lieve that the dynamic property gives us a very efficient and practical solution
when the number of predicates grows large. Actually, the number of attributes
is polynomial-size (of the security parameter k, i.e., O(poly(k))) and the corre-
sponding predicates can grow exponentially (i.e., O(2poly(k))) in large systems.
That is, as an expectation, the opportunity of updating predicates also increases

Toward Dynamic Attribute-Based Signcryption 441

in such large systems. Under the dynamic property, even if the current predicate
is updated, users do not have to be involved the updating procedure. This is the
most benefit point of our proposal.

3 System Operations of DABSC

In the following, values are subscripted by e for encryptors, and values are sub-
scripted by d for decryptors. Let Ae = (att1, att2, . . . , attne) be the universe of
possible attributes of encryptors, Ad = (att1, att2, . . . , attnd

) be the universe of
possible attributes of decryptors, and Υe (resp. Υd) be a claim-predicate over
Ae (resp. Ad) of encryptors (resp. decryptors). We say that an attribute set
Γe ⊆ Ae (resp. Γd ⊆ Ad) satisfies a claim-predicate Υe (resp. Υd) if Υe(Γe) = 1
(resp. Υd(Γd) = 1). In the following definition, an encryptor can select an ac-
cess structure of decryptor Υd for each signcryption ciphertext (which follows
the ciphertext-policy property of ABE). On the contrary, an access structure of
encryptor Υe is a publicly opened. This means that legitimated encryptor who
have attributes satisfying Υe can make a signcryption ciphertext.

Next, we modify the definitions of the Gagné et al. ABSC [3] to handle the
dynamic property.

Definition 1 (Dynamic Attribute-Based Signcryption (DABSC)).

Setup: This algorithm takes as inputs a security parameter k ∈ N, and returns
public parameters params and a master key msk.

sExtract: This algorithm takes as inputs params, msk, and a set of attributes
of an encryptor Γe ⊆ Ae, and returns signing keys {ske,i}atti∈Γe .

uExtract: This algorithm takes as inputs params, msk, and a set of attributes
of an decryptor Γd ⊆ Ad, and returns decryption keys {skd,i}atti∈Γd

.
BuildPredicate: This algorithm takes as inputs params, msk, and the �-th access

tree T�, and returns the public value of �-th access tree Υ �
e .

Signcrypt: This algorithm takes as inputs params, Υ �
e , {ske,i}atti∈Γe , where

Υ �
e (Γe) = 1, an access structure Υd, and a plaintext M , and returns a ci-

phertext C on M . We assume that Γe and Υd are included into C.
Unsigncrypt: This algorithm takes as inputs params, Υ �

e , {skd,i}atti∈Γd
, where

Υd(Γd) = 1, and C, and verifies whether the encryptor’s attributes satisfy Υ �
e

or not, along with Γe and Υ �
e . If not, then output ⊥, and M otherwise.

The above algorithms follow the correctness requirement: for all (params, msk)
← Setup(1k), {ske,i}atti∈Γe ← sExtract(params, msk, Γe), {skd,i}atti∈Γd

← uExtract(params, msk, Γd), Υ �
e ← BuildPredicate(params, msk, T�), and C ←

Signcrypt(params, Υ �
e , {ske,i}atti∈Γe , Υd, M) with Υ �

e (Γe) = 1,
M ← Unsigncrypt(params, Υ �

e , {skd,i}atti∈Γd
, C) holds when Υd(Γd) = 1.

442 K. Emura, A. Miyaji, and M.S. Rahman

Table 2. DABSC Experiments
S-IND-DABSC-CCA2

AdvS-IND-DABSC-CCA2
A (k) =

|Pr
[
(Υ ∗

d , T0, State) ← A(k); (params,msk) ← Setup(1k);
Set O := {sExtract(params,msk, ·), uExtract(params,msk, ·),
Unsigncrypt(params, ·, ·), BuildPredicate(params,msk, ·)};
(M∗

0 , M∗
1 , Γ ∗

e , State) ← AO(params,State); b
$← {0, 1};

C∗ ← Signcrypt(params, Υ �
e , {ske,i}atti∈Γ∗

e
, Υ ∗

d , M∗
b); b′ ← AO(C∗, State); b = b′

]− 1
2
|

S-EUF-DABSC-CMA

AdvS-EUF-DABSC-CMA
A (k) =

Pr
[
(T ∗

e , T0, State) ← A(k); (params,msk) ← Setup(1k);
Set O := {sExtract(params,msk, ·), uExtract(params,msk, ·),
BuildPredicate(params,msk, ·), Signcrypt(params, ·, ·, ·)}; (C∗, Γ ∗

d) ← AO(params,State);
Unsigncrypt(params, Υ ∗

e , {skd,i}atti∈Γ∗
d
, C∗) = M∗ �= ⊥;

(For Γe where Υ ∗
e (Γe) = 1, A did not query either (M, Γe, Υ

∗
d) to the

Signcrypt oracle or Γe to the sExtract oracle, where Υ ∗
e (Γe) = 1) ∨ (Υ ∗

e (Γ ∗
e) �= 1)

]

Next, we define indistinguishability against adaptive chosen-ciphertext at-
tack property under selective attribute model (S-IND-DABSC-CCA2), existen-
tial unforgeability against chosen-message attack in the selective attribute model
(S-EUF-DABSC-CMA). In the following, T (and the initial access tree T0 also)
must follow the condition that leaves of trees are appeared in Ae. S-IND-DABSC-
CCA2 guarantees that no PPT adversary A (which is essentially the same as the
CCA adversary of CP-ABE [1]) can guess whether the actual plaintext is M∗

0 or
M∗

1 , namely, no plaintext information is revealed from the ciphertext. Note that
S-IND-DABSC-CCA2 captures collusion resistance (i.e., A is allowed to issue Γd

and Γ ′
d to the uExtract oracle such that Υ ∗

d (Γd) �= 1, Υ ∗
d (Γ ′

d) �= 1, Γd ∪ Γ ′
d = Γ ∗

d ,
and Υ ∗

d (Γ ∗
d) = 1) as in the conventional CP-ABE definition.

Definition 2 (S-IND-DABSC-CCA2). A DABSC scheme is said to be S-
IND-DABSC-CCA2 secure if the advantage AdvS-IND-DABSC-CCA2

A (k) is negligi-
ble for any PPT adversary A in the S-IND-DABSC-CCA2 experiment (defined
in Table 2).

Note that we require Υ �
e (Γ ∗

e) = 1, where Υ �
e is the public predicate in the chal-

lenge phase. In addition, for (C, Γd) which is an input of the unsigncryption
oracle Unsigncrypt, if C = C∗ and Υ ∗

d (Γd) = 1, then the oracle returns ⊥. Oth-
erwise, it returns the result of Unsigncrypt(params, Υ i

e , {skd,i}atti∈Γd
, C), where

Υ i
e is the current predicate when A issues the unsigncryption query.
Next, we define S-EUF-DABSC-CMA. In the definition of S-EUF-DABSC-

CMA, we consider two types adversaries. S-EUF-DABSC-CMA guarantees that
no (type 1) adversary A can make a forged ciphertext which is correctly de-
crypted (i.e., the Unsigncrypt algorithm outputs M �= ⊥) even though A did not
issue either Γe to the sExtract oracle such that Υ ∗

e (Γe) = 1 or (M, Γe, Υ
∗
d) to the

Signcrypt oracle such that Υ ∗
e (Γe) = 1, and no (type 2) A (who can obtain all

{ske,i}atti∈Γe) can make a forged ciphertext which is correctly decrypted even
though Υ ∗

e (Γe) �= 1. Type 1 adversary (which is the same as the unforgeability
adversary of ABS [4]) captures collusion resistance (i.e., A is allowed to issue Γe

Toward Dynamic Attribute-Based Signcryption 443

and Γ ′
e to the sExtract oracle such that Υ ∗

e (Γe) �= 1, Υ ∗
e (Γ ′

e) �= 1, Γe ∪ Γ ′
e = Γ ∗

e ,
and Υ ∗

e (Γ ∗
e) = 1). Type 2 adversary captures that the Unsigncrypt algorithm does

not accept the ciphertext made by Γe such that Υ ∗
e (Γe) �= 1 with overwhelming

probability.

Definition 3 (S-EUF-DABSC-CMA). A DABSC scheme is said to be wS-
EUF-DABSC-CMA secure if the advantage AdvS-EUF-DABSC-CMA

A (k) is negligi-
ble for any PPT adversary A in the S-EUF-DABSC-CMA experiment (defined
in Table 2).

Note that, let Υ ∗
e ← BuildPredicate(params, msk, T ∗

e) be the predicate when A
outputs the forged ciphertext.

4 Conclusion and toward the Concrete Construction of
DABSC Scheme

This paper has presented an ongoing work toward the new concept, called
DABSC. We define the system operations and the security requirements of
DABSC. Toward the concrete construction of DABSC scheme, our methodol-
ogy is described as follows. The dynamic property is achieved by applying a
bottom-up approach construction [2], where first all secret values (assigned with
leaves) are chosen, and then each parents secret is computed from bottom up. It
seems that DABSC can be implemented based on appropriate CP-ABE and ABS
with the bottom-up approach. It is particularly worth noting that the bottom-up
approach construction itself does not require the random oracle, although the
eventual dynamic ABGS [2] requires the random oracle. That is, DABSC secure
in the standard model is expected.

It might be the case that the actual complexity of Signcrypt/Unsigncrypt algo-
rithms in the dynamic scheme is worse as compared to the non-dynamic schemes
since certain dynamic-property-related values may have to be included in the ci-
phertext. As for small system the dynamic property may not be very effective. It
remains to be seen how large the number of attributes should be set as threshold
between the dynamic and non-dynamic schemes.

References

1. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: Ning, P., di
Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Com-
munications Security, pp. 456–465. ACM, New York (2007)

2. Emura, K., Miyaji, A., Omote, K.: A dynamic attribute-based group signature
scheme and its application in an anonymous survey for the collection of attribute
statistics. IPSJ Journal 50(9), 1968–1983 (2009)

3. Gagné, M., Narayan, S., Safavi-Naini, R.: Threshold attribute-based signcryption.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 154–171.
Springer, Heidelberg (2010)

4. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS, pp. 13–16 (2010)

A Verifiable Distributed Oblivious Transfer

Protocol

Christian L.F. Corniaux and Hossein Ghodosi

James Cook University, Townsville QLD 4811, Australia
chris.corniaux@my.jcu.edu.au, hossein.ghodosi@jcu.edu.au

Abstract. In the various distributed oblivious transfer (DOT) protocols
designed in an unconditionally secure environment, a receiver contacts k
out of m servers to obtain one of the n secrets held by a sender. After a
protocol has been executed, the sender has no information on the choice
of the receiver and the receiver has no information on the secrets she did
not obtain.

These protocols are based on a semi-honest model: no mechanism
prevents a group of malicious servers from disrupting the protocol such
that the secret obtained by the receiver does not correspond to the chosen
secret.

This paper presents ongoing work towards the definition of the first
unconditionally secure verifiable DOT protocol in the presence of an
active adversary who may corrupt up to k − 1 servers. In addition to
the active adversary, we also assume that the sender may (passively)
corrupt up to k − 1 servers to learn the choice of the receiver. Similarly,
the receiver may (passively) corrupt up to k − 1 servers to learn more
than the chosen secret.

Our DOT protocol allows the receiver to contact 4k − 3 servers to
obtain one secret, while the required security is maintained.

Keywords: Cryptographic Protocol, Privacy and Security, Distributed
Oblivious Transfer, Verifiable Oblivious Transfer.

1 Introduction

In the unconditionally secure distributed oblivious transfer (DOT) schemes pre-
sented in [7,2,8,3], a sender S holds n secrets and a receiver R wishes to obtain
one of them. The model encompasses a distributed environment including m
servers. The sender distributes shares of the secrets to the servers and does not
intervene in the rest of the protocol. The receiver selects the index of a secret,
sends shares of this index to k servers and receives back k shares allowing her to
reconstruct the chosen secret. The security of these protocols may be assessed
thanks to the following four security conditions defined by Blundo, D’Arco, De
Santis and Stinson [2,3]: correctness (C1), receiver’s privacy (C2), sender’s pri-
vacy with respect to k − 1 servers (C3) and sender’s privacy with respect to a
“greedy” receiver colluding with k − 1 corrupted servers (C4).

In these protocols, security condition C1 is satisfied in a semi-honest model;
No mechanism prevents a set of up to k − 1 malicious servers from disrupting a

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 444–450, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Verifiable Distributed Oblivious Transfer Protocol 445

protocol such that the secret obtained by the receiver does not correspond to the
chosen secret. We introduce this kind of mechanism in one of the (k, m)-DOT-

(
n
1

)
protocols presented by Blundo et als. [2,3].

The two key ideas of our protocol are (1) to let the receiver distribute her re-
quests to the servers thanks to a verifiable secret sharing scheme (VSSS) instead
of a secret sharing scheme (SSS), which allows the contacted servers to verify
the consistency of the shares and (2) to let the receiver collect enough shares to
determine the chosen secret thanks to an error-correcting code decoding scheme.

Our protocol guarantees security conditions C1, C2 and C3, despite the pres-
ence of up to k − 1 malicious servers among the m servers participating to the
protocol. Like in Blundo et al.’ one-round DOT protocols, condition C4 is not
satisfied.

This paper is organised as follows. The next section shortly describes the
main three components of our protocol. Then, in Sect. 3, we describe our model.
Sect. 4 is devoted to the detailed description of the protocol. Finally, in Sect. 5,
the security of the protocol is briefly analysed.

2 Background

Although there have been a few DOT protocols studied in the past 15 years,
e.g. [7,2,8,11,12,3], the verifiability of distributed shares in such protocols was
rarely tackled. The main contribution to the subject was made by Zhong and
Yang [11,12], but the setting of their proposed scheme is conditionally secure
(difficulty to compute a discrete logarithm).

We present the first unconditionally secure verifiable DOT combining the
DOT protocol introduced by Blundo et al. [2,3], the VSSS introduced by Gen-
naro, Ishai, Kushilevitz and Rabin [6] and the Reed-Solomon error-correcting
code decoding scheme introduced by Gao [5].

2.1 Distributed Oblivious Transfer Protocol

The basic principles underlying DOT protocols are conceptually similar. In the
original DOT protocol [7] introduced by Naor and Pinkas, as well as in its gener-
alization [2,3] presented by Blundo et al., a sender distributes some information
amongst m servers so that, by contacting k servers, a receiver is able to learn only
one of the secrets held by the sender. A simplified overview of the (k, m)-DOT-(
n
1

)
protocol [2,3] we adapt in this paper may be described as follows (operations

are executed in a finite field IFp, where p is a prime number):

– In the setup phase, the sender, who holds n secrets ω0, . . . , ωn−1 generates a
sparse n-variate polynomial function Q (x, y1, . . . , yn−1) = ω0 +

∑k−1
i=1 aix

i +∑n−1
i=1 (ωi − ω0)× yi, where the coefficients ai (1 ≤ i ≤ k − 1) are num-

bers randomly selected in IFp. Then, to each server Sj (1 ≤ j ≤ m), the
sender transmits the (n−1)-variate polynomial function Fj (y1, . . . , yn−1) =
Q (j, y1, . . . , yn−1).

– In the transfer phase, the receiver chooses the identifier � of one secret and
generates univariate polynomial functions Zi (1 ≤ i ≤ n − 1) of degree at

446 C.L.F. Corniaux and H. Ghodosi

most k − 1 such that (Z1(0), . . . , Zn−1(0)) is an (n− 1)-tuple of zeros if the
receiver is interested in ω0 (i.e., � = 0), or an (n − 1)-tuple of zeros and a
single one in position �, where � ∈ {1, . . . , n−1}, if the receiver is interested in
ω�. Then, the receiver selects a subset Ik ⊂ {1, . . . , m} of k indices and sends
to each server Si (i ∈ Ik) a request (i, Z1(i), . . . , Zn−1(i)). When a server
Si receives such a request, it replies with the share Fi (Z1(i), . . . , Zn−1(i)).
After receiving k responses, the receiver interpolates a univariate polynomial
R from the k points (i, Fi (Z1(i), . . . , Zn−1(i))) and calculates the chosen
secret: ω� = R (0).

Moreover, the secrets are masked and the protocol is executed twice: the first
run allows the receiver to obtain a masked secret and the second run allows her
to obtain the corresponding mask.

2.2 Verifiable Secret Sharing Scheme

A component common to most unconditionally secure DOT protocols is the
threshold SSS introduced by Shamir [10] in 1979. In this scheme, the dealer
who shares a secret is honest: the m pieces he generates are built in compliance
with the protocol and so, the k pieces used by the players to reconstruct the
secret are genuine. In 1985, Chor, Goldwasser, Micali and Awerbuch [4] assumed
that the dealer could be cheating and transmit some invalid shares to some
players. They introduced the concept of VSSS to detect any deviation of the
dealer from the sharing protocol. Moreover, during the reconstruction phase,
some malicious players could provide honest players with incorrect shares to
make honest players reconstruct an incorrect secret while they, the dishonest
players, would reconstruct the original secret.

Following Chor et al.’s scheme, there have been a considerable research on
VSSS. To replace Shamir’s SSS, we have chosen the VSSS introduced by Gen-
naro, Ishai, Kushilevitz and Rabin [6] because its correctness is guaranteed, no
shares are made public along its execution and its complexity is polynomial.

The setting of Gennaro et al.’s VSSS encompasses a dealer who holds a secret
ω, m players, each of them receiving a (k, m)-threshold share of ω and a combiner
collecting the shares from � (1 < k ≤ � < m) players. Up to t < k participants
(dealer or players) may cheat during the execution of the protocol. In particular,
cheating players may provide incorrect shares to the combiner. The protocol
allows the combiner and each player to determine three sets of players: Hω,
the honest players, Dω, the players with some incorrect shares which may be
corrected by a majority of honest players and Cω , the players with incorrect
shares which cannot be corrected. Thanks to these three sets, provided that
� ≥ 4t + 1, the combiner is able to collect enough correct shares to determine ω.

2.3 Error-correcting Code Decoding Scheme

In Shamir’s (k, m)-threshold SSS, the combiner is able to check if the � collected
shares (k ≤ � ≤ m) were generating from a same sharing polynomial. To perform
this task, the combiner applies Lagrange interpolation formula on the first k

A Verifiable Distributed Oblivious Transfer Protocol 447

collected shares and obtains a polynomial f of degree at most k − 1. Then the
combiner checks that the � − k remaining shares agree with f . If no incorrect
shares are detected, the combiner calculates the secret s = f(0).

If incorrect shares are detected, they could be identified and corrected, for
example, by the Berlekamp-Massey algorithm [1]. However, if the main objective
of error-correcting codes is to restore original codes from corrupted codes, our
goal is to reconstruct the polynomial which was used to generates the codes
and to evaluate this polynomial at zero. In other words, the combiner does
not need to identify the incorrect shares, but needs to interpolate the sharing
polynomial from the received shares. This is why a Reed-Solomon codes [9]
decoding algorithm like the algorithm introduced by Gao [5] is preferred. This
algorithm allows the combiner to reconstruct the sharing polynomial, in spite of
up to t ≤ �−k

2 incorrect shares.

3 Our Model

The setting of our model encompasses a sender S who owns n secrets ω0, . . . , ωn−1

(n > 1) of IFp (p prime), a receiver R who wishes to obtain a secret ωσ (σ ∈
{0, . . . n−1}), m servers S1, . . . , Sm and an active adversary. The communication
model and the adversary model are described below.

3.1 Communication Model

Our protocol requires the availability of private secure communication channels
between the sender and the servers, the receiver and the servers and among the
servers. It also requires a broadcast channel, allowing all participants to receive
simultaneously information sent by one participant through this channel.

3.2 Adversary Model

Three parties may try to breach the security of our protocol:

– The sender S, with possibly a coalition of up to k−1 corrupt servers, plotting
against the receiver to obtain the receiver’s choice σ. Servers of the coalition
are passive, i.e. follow the protocol, and because they are corrupted by S,
they make any information they hold available to the sender. In addition,
S distributes correct shares of the secrets he holds to the servers. For this
part, we will consider him as honest.

– The receiver R, colluding with up to k−1 corrupt servers to obtain informa-
tion not only about the chosen secret ωσ, but about other secrets too. Here
too, the servers of the coalition are passive and so, follow the protocol. On
the contrary,R may not follow the protocol to obtain additional information
on the secrets held by S.

– An active adversary, with the help of a group of up to k − 1 malicious
servers, who intends to disrupt the protocol such that the secret obtained
by the receiver does not correspond to the chosen secret. In particular, when

448 C.L.F. Corniaux and H. Ghodosi

Let S1, . . . , Sm be m servers.
Input The sender S , contributes with n secrets ω0, . . . , ωn−1 ∈ IK = IFp (p

prime)
The receiver R, chooses an index σ ∈ {0, . . . , n − 1}, and contributes
with n − 1 private values δσ1, . . . , δσ(n−1) ∈ {0, 1} (δij = 1 if i = j and
0 otherwise)

Output R is either detected as a cheater and the protocol stops. Otherwise, if
she follows the protocol, R receives ωσ, while S receives nothing.

Phase 1 – Sharing of the Sender’s Secrets

1. S generates an n-variate polynomial function Q(x, y1, . . . , yn−1) = P (x) +∑n−1
i=1 (ωi − ω0)yi where P ∈ IK[X] is a polynomial of degree at most k − 1 whose

constant term is ω0 and other coefficients are randomly selected in IK.
2. S transmits to the server S� (� ∈ Im = {1, . . . , m}) the (n− 1)-variate polynomial

function F�(y1, . . . , yn−1) = Q(�, y1, . . . , yn−1).

Phase 2 – Sharing of the Receiver’s Secret Inputs

1. R chooses σ ∈ {0, . . . , n − 1} and Ic ⊂ Im, a set of c ≥ 4k − 3 servers to contact.
2. R generates a vector Θ = (G1, . . . , Gn−1) of n − 1 bivariate polynomials Gs ∈

IK[X, Y] of degree at most k − 1 in X and of degree at most k − 1 in Y , where
the constant term of Gs is δσs and other coefficients are randomly selected in IK.
The polynomial function Gs(x, i) (i ∈ Ic) is denoted fs,i(x) and the polynomial
function Gs(i, y) (i ∈ Ic) is denoted gs,i(y).

3. R builds c vectors Vi = (f1,i, . . . , fn−1,i) (i ∈ Ic) from the polynomials generated
in the previous step. Similarly, R generates c vectors Wi = (g1,i, . . . , gn−1,i) of
polynomials (i ∈ Ic).

4. R transmits to Si (i ∈ Ic) the pair of vectors (Vi , Wi).
5. For s = 1, . . . , n − 1, Si (i ∈ Ic) sends to the server Sj (j ∈ Ic) a random element

rs,i,j ∈ IK.

Phase 3 – Detection of Cheaters

1. Si (i ∈ Ic) broadcasts fs,i(j) + rs,i,j and gs,i(j) + rs,j,i, for s = 1, . . . , n − 1. From
the broadcast values and for s = 1, . . . , n − 1, Si builds three sets of servers Hs,
Ds and Cs (See Sect. 2.2). If |Cs| > k − 1, then R has cheated and the protocol
stops.

2. Si (i ∈ Ic) determines H =
⋂n−1

s=1 (Hs ∪ Ds). If c − |H| ≥ k, then R has cheated
and the protocol stops. Otherwise, the set of indices corresponding to the servers
in H is denoted IH.

3. Si (i ∈ IH) calculates Φi = (Z1(i), . . . , Zn−1(i)). The share Zs(i) (1 ≤ s ≤ n − 1)
is calculated from the values gs(i) (i ∈ IH) thanks to an error-correcting codes
decoding scheme (See Sect. 2.3).

Phase 4 – Computation of the Shares of the Chosen Secret

Each server Si (i ∈ IH) calculates the share μi = Fi(Φi) and sends it to R.

Phase 5 – Reconstruction of the Chosen Secret

R interpolates a polynomial R of degree at most k − 1, thanks to an error-correcting
codes decoding scheme (See Sect. 2.3) and calculates ωσ = R(0).

Fig. 1. A verifiable (4k − 3, m)-DOT-
(

n
1

)
protocol

A Verifiable Distributed Oblivious Transfer Protocol 449

they are requested to provide a share, these malicious servers may not reply
or replace the requested share with any value, designated in this case as an
incorrect share.

We assume that both the sender S and the receiver R wish to complete the
protocol to allow R to obtain the chosen secret. The adversary collaborates
neither with the sender S nor with the receiver R. Therefore, we assume that
the set of malicious servers, the set of servers colluding with S and the set of
servers colluding with R are disjoint.

In this paper, we consider static parties only; the sets of malicious and corrupt
servers are in place before the protocol is executed and their contents do not
change during the execution of the protocol.

In addition, along the protocol, some servers may be disqualified. We assume
that a mechanism prevents the disqualified servers from keeping on participating
in the protocol.

4 Proposed Protocol

In this section we present our verifiable DOT protocol (See Fig. 1), composed of
five phases.

5 Security of the Protocol

To take into account the coalition of malicious servers, we replace the security
condition C1 with the following one:

C′
1. Correctness – If the receiver is not detected as cheating, she is able to de-

termine the chosen secret once she receives information from the contacted
servers, in spite of k − 1 malicious servers.

It remains to be seen that the proposed protocol satisfies all desirable condi-
tions C′

1, C2 and C3.

Acknowledgments. We would like to thank Huaxiong Wang and the anony-
mous reviewers of ACISP 2011 for their helpful comments.

References

1. Berlekamp, E.: Algebraic coding theory revised 1984 edition. Aegean Park Press,
Laguna Hills (1984)

2. Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: New results on unconditionally
secure distributed oblivious transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002.
LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)

3. Blundo, C., D’Arco, P., Santis, A.D., Stinson, D.R.: On unconditionally secure
distributed oblivious transfer. Journal of Cryptology 20(3), 323–373 (2007)

450 C.L.F. Corniaux and H. Ghodosi

4. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: SFCS 1985: Proceedings of the
26th Annual Symposium on Foundations of Computer Science, pp. 383–395. IEEE
Computer Society, Los Alamitos (1985)

5. Gao, S.: A new algorithm for decoding Reed-Solomon codes, vol. 712. Springer,
Heidelberg (2003)

6. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of ver-
ifiable secret sharing and secure multicast. In: Proceedings of the Thirty-Third
Annual ACM Symposium on Theory of Computing, pp. 580–589. ACM, New York
(2001)

7. Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)

8. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure dis-
tributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002.
LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)

9. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)

10. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

11. Zhong, S., Richard Yang, Y.: Verifiable distributed oblivious transfer and mobile
agent security. In: International Conference on Mobile Computing and Networking:
Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing.
ACM, New York (2003)

12. Zhong, S., Richard Yang, Y.: Verifiable distributed oblivious transfer and mobile
agent security. Mobile Networks and Applications 11(2), 201–210 (2006)

Impracticality of Efficient PVSS in Real Life

Security Standard (Poster)

Kun Peng

Institue for Infocomm Research, Singapore
dr.kun.peng@gmail.com

Abstract. This paper presents ongoing work toward employment of
RSA encryption in PVSS. Two PVSS schemes are shown to be efficient
only when very small RSA public keys like 3 are employed to encrypt
the shares. However, too small RSA public keys like 3 are insecure in the
PVSS schemes as they cannot apply padding to the encrypted messages.
When practical larger RSA public keys are employed, the two PVSS
schemes have to process extremely large integers and become intolerably
inefficient.

1 Introduction

Secret sharing is an important cryptographic tool used in various secure appli-
cations. A dealer can employ it to share a secret among multiple share holders
such that only certain subsets of them can cooperate to reconstruct the secret.
The most popular secret sharing mechanism is t-out-of-n threshold secret shar-
ing [10], where a dealer shares a secret s among n share holders P1, P2, . . . , Pn

and allows any t of them to reconstruct it. It is widely employed in applications
like secure computation, e-commerce and e-voting, where trust must be shared
among multiple parties to strengthen security. For example, very often a private
key must be shared among multiple parties such that decryption is under more
strict control. As many such applications require public verifiability, very often
secret sharing must be publicly verifiable. Namely, it must be publicly verified
that all the shares are consistently generated from a unique secret and can be
used to reconstruct it. Publicly verifiable secret sharing is usually called PVSS.
The idea was firstly proposed by Feldman [5] and them developed into concrete
schemes in [11,7,9,2,8]. There are two important requirements in PVSS: high effi-
ciency and generality. Generality of PVSS requires that any secret can be shared
and reconstructed efficiently no matter how it is generated or which source it is
from, so that the PVSS technique can be employed in various applications.

Among the existing PVSS schemes [11,7,9,2,8], only two of them [7,2] are
general and efficient. As the first PVSS solution, the PVSS scheme in [11] is not
efficient and is the only one to claim a computational cost significantly higher
than O(tn). The dealer in [9] must know the discrete logarithm of the secret to
share. So the PVSS scheme in [9] is not general and its application is limited
due to hardness of the famous discrete logarithm problem. For example, when a

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 451–455, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

452 K. Peng

random password is chosen and shared it cannot work. Only the PVSS schemes
in [7] and [2] do not limit the secret to share in any way and claim higher
efficiency.

Unfortunately, high efficiency in [7] and [2] depends on a special condition:
the share holders employ RSA encryption and use very small public keys like
3. As explained in Section 3, such small RSA public keys are often impractical
in real life applications, especially in those applications unable to use appropri-
ate padding of information like PVSS. As illustrated in Section 4, when larger
practical RSA keys are employed, efficiency of the PVSS schemes in [7] and [2]
decline to an intolerable level in real life as extremely large integers must be
stored and used in computation.

2 Specification of an Important Proof in the Two PVSS
Schemes

The most important operation in PVSS is to prove and verify that the same
share is encrypted in a ciphertext and committed to in a commitment. In Step
4 of the PVSS protocol (in Page 9 of [7]), the dealer needs to prove

PROOF [Bi = BC(b,ni)(si) ∧Di(si) = 0 mod ni] (1)

where the parameter setting is as follows.

– N = PQ, P = 2p + 1 and Q = 2q + 1 where p and q primes. Although
not explicitly stated in [7], P and Q should be large secret primes (or at
least product of large secret primes), otherwise polynomial factorization of
N makes calculation of the vth-root polynomial and breaks bindingness1 of
the commitment function BC(b,v)(s, r) = bsrv mod N .

– b is a generator of the cyclic subgroup with order pq in Z∗
N . Although not

explicitly stated in [7], p and q should be secret to guarantee hardness in
factorizing N as implied by citation of [6] in [7].

– si is a secret share.
– ni is an RSA modulus.

According to the definition of BC() and Di() in [7], this proof in the form
PROOF [] is actually a proof of knowledge of secret integers si and r to satisfy

Bi = bsirni mod N (2)
sei

i = Ci mod ni (3)

where Ci is an RSA ciphertext. The proof primitive PROOF [] is defined in
Page 6 of [7] and implementation of the proof is given in the so-called Example
1 in the same page. Applying the proof method in Example 1 to proof of (2) and
(3) in [7] is as follows.
1 Bindingness here refers to the security property “......opening the commitment with

different representations is equivalent to breaking RSA” in [7].

Impracticality of Efficient PVSS in Real Life Security Standard 453

1. ei is set to be 3.
2. The dealer publishes c′ = BC(s2

i) and c′′ = BC(s3
i).

3. The dealer runs two proof primitives SQR(b,ni)(Bi : c′) andMUL(b,ni)(Bi, c
′ :

c′′) defined earlier in Page 6 of [7].
4. The dealer opens (c′′b−Ci)1/ni .

In Section 4.1 of [2], its first PVSS protocol with fast recovery includes an
operation, Step 2: “For i = 1, ..., l, Alice computes Ei = s3

i mod ni and exe-
cutes Proof6(si, Si = gsi mod p ∧ Ei = s3

i mod ni ∧ abs(si) < (ni − 1)/2)” to
show that the same share si is committed to in Si and encrypted in Ei where
Proof6(x, G = gx mod p ∧ E = x3 mod n1 ∧ abs(x) < (n1 − 1)/2) is realized in
its Section 3.6 as follows.

1. Alice computes α = E−x3

n1
, G1 = g−x mod N , G2 = g−x2

mod N , G3 =

g−x3
mod N and Z = g−αn1 mod N .

2. Alice proves knowledge of x such that G = gx mod p, G1 = g−x mod N ,
G2 = Gx

1 mod N , G3 = Gx
2 mod N and abs(x) < λ(N)/2) and knowledge of

α such that Z = (g−n1)α mod N .
3. The verifier checks the proofs, computes T = g−E mod N and checks that

G3 = T/Z mod N .

In Section 4.2 of [2], its second PVSS protocol with fast recovery includes an
operation, Step 3: “For i = 1, ..., l, Alice computes Ei = s3

i mod ni and executes
Proof6(si, Si = gsi mod p ∧ Ei = s3

i mod ni ∧ abs(si) < (ni − 1)/2)” to show
that the same share si is committed to in Si and encrypted in Ei.

So the PVSS schemes in [7] and [2] are only specified in the case where the
share holders use 3 as their RSA public keys. Their high efficiency is also achieved
in this case.

3 RSA Key in Real-Life Cryptographic Protocols

It has been shown in [7] and [2] how their PVSS schemes work when RSA public
key of the share holders is 3. However, a too small RSA public key like 3 or 5 is
usually impractical in real-life cryptographic protocols. It is widely believed in
the cryptographic community that smaller public keys make RSA cipher more
vulnerable to attacks, especially when proper padding of message is absent. A
famous example is that in a broadcasting protocol an attack can be launched if
multiple receivers use the same small public key e (e.g. 3) and employ different
RSA moduli N1, N2, N3, When a message m is broadcast, it is in the form
me mod N1, me mod N2, me mod N3 When multiple such ciphertexts are
put together and the product of their multiplicative moduli in encryption is
larger than me in Z, Chinese Remainder Theorem can be employed to obtain
me in Z and then m can be extracted. The smaller e is, the fewer ciphertext
is needed and the attack is easier. For example, when e = 3, three ciphertexts
me mod N1, me mod N2 and me mod N3 are enough for the attack.

A more formal and detailed analysis of vulnerability of very small RSA public
keys is given in [4], which shows that RSA cipher with a too small public key

454 K. Peng

like 3 fails “if the opponent knows two-thirds of the message, or if two messages
agree over eight-ninths of their length; and we can find the factors of N = PQ
if we are given the high order bits of P”. Even those cryptographic schemes
aiming at improving efficiency of RSA cipher like [3] agree that “RSA as usually
deployed uses a larger public exponent (e = 65537)”. So, in authoritative security
standards like the NIST standard [1], it is required that public key of RSA cipher
must be no smaller than 65537.

In PVSS, as publicly verifiable encryption is necessary, secure padding of
message is impossible (or at least very difficult). So the attacks exploiting small
RSA public keys are serious in PVSS and the public keys of RSA cipher in PVSS
should be more cautiously chosen. Therefore, in practical PVSS applications in
real life, not only too small public keys like 3 or 5 should be avoided but also
more strict security standard should be followed and larger RSA public keys
should be adopted.

4 Intolerable Cost of the General Specification, Making
the PVSS Scheme Impractical in Real Life

The specification of proof of validity of shares for general RSA keys seems to work
in theory. However, in practice, it includes a very costly operation, especially
when ei is large. The operation is calculation of s2

i , s
4
i , . . . , s

2L−1

i where L is the
bit length of ei. In theory, they can be calculated using L− 1 square operations
S1 = s2

i , S2 = S2
1 , . . . , SL−1 = S2

L−2 and then used in SQR() and MUL() as
the secret logarithms to be proved knowledge of where Sk = s2k

i . In practice,
the size of Sk increases rapidly and becomes intolerably large very quickly. In
[7], si = (f(i) mod v) + (2m− δi)v where f() is the share-generating polynomial
proposed by Shamir [10] and employed by most threshold PVSS schemes, m =
O(|N |), v is an integer decided by the dealer or a verifier and δi ∈ {0, 1}. So 2m

and thus si should be hundreds of bits long in a practical secure setting. When
ei is large (e.g. no smaller than 65537), s2L−1

i is millions or even billions of bits
long. So large integers are difficult to store or process (e.g. use them to calculate
Sk and c′′), not to mention s2

i , s
4
i , . . . , s

2L−1

i are used in SQR() and MUL() as
secret logarithms to be proved knowledge of.

Some reader may ask: cannot we calculate Sk = S2
k−1 with a multiplicative

modulus instead in Z so that Sk will not be too large? The key point is what
modulus to use. As s2

i , s
4
i , . . . , s

2L−1

i are in the form of exponents to the base
b, the multiplicative modulus must be a multiple of the order of b. However,
the order of b and its multiples are secret since factorization of N must be
hard as we have explained in Section 2. If the dealer knows the order of b,
he can open his commitment in many different ways and commitment of the
secret fails. So, the dealer cannot know the order of b or any of its multiples.
Therefore, s2

i , s
4
i , . . . , s

2L−1

i must be calculated in Z and become extremely large
when a large enough secure public key is employed in RSA cipher. In summary,
intolerably high cost is inevitable in [7] if secure RSA public keys are employed.
The same problem exists in [2] as well.

Impracticality of Efficient PVSS in Real Life Security Standard 455

5 Conclusion

A proof technique in the only general and efficient PVSS schemes [7,2] is not a
general soultion. They fail to achieve high efficiency in practical applications as
desired.

References

1. The NIST special publication on computer security (2007),
http://csrc.nist.gov/publications/nistpubs/ (sp 800-78 rev August 1, 2007)

2. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with
fast or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS,
vol. 1726, pp. 87–102. Springer, Heidelberg (1999)

3. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
4. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent

RSA Vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)
5. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:

FOCS 1987, pp. 427–437 (1987)
6. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular

polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

7. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)

8. Peng, K., Bao, F.: Efficient publicly verifiable secret sharing with correctness,
soundness and ZK privacy. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS,
vol. 5932, pp. 118–132. Springer, Heidelberg (2009)

9. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 149–164. Springer, Heidelberg (1999)

10. Shamir, A.: How to share a secret. Communication of the ACM 22(11), 612–613
(1979)

11. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

http://csrc.nist.gov/publications/nistpubs/

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 456–461, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Electromagnetic Analysis Enhancement with Signal
Processing Techniques (Poster)

Hongying Liu1, Yukiyasu Tsunoo2, and Satoshi Goto1

1 Graduate School of Information, Production and Systems,
Waseda University, 8080135, Japan

2 Information and Media Processing Laboratories, NEC Corp.,
Kawasaki, 2118666, Japan

liuhongying@fuji.waseda.jp, tsunoo@BL.jp.nec.com,
goto@waseda.jp

Abstract. This paper presents ongoing work toward Electromagnetic Analysis
(EMA) with signal processing techniques. Electromagnetic emission leaks
confidential data of cryptographic devices. EMA exploits such information and
reveals secret keys. It has been actively studied. We present three signal
processing techniques: bandpass filtering, signal companding and independent
component analysis (ICA), and apply them to EMA. The effectiveness is
demonstrated through the analyses of encryption algorithms on synthesized
application-specific integrated circuit (ASIC). Experiments show that the
performance of EMA is greatly enhanced. The number of signals needed to
reveal keys has been dramatically reduced.

1 Introduction

Electromagnetic analysis (EMA) is performed with low-cost sensors to extract the
secret keys from cryptographic devices. The accuracy of key detection largely
depends on the quality of the EM signal, namely signal to noise ratio (SNR). In
general, there are two types of noise that prevent a fast key exposure. One is the non-
algorithm noise, which originates from external, intrinsic, sampling and quantization
noise unintentionally, and the other is algorithm noise [1], which results from the
countermeasures added intentionally. For example, signals may be displaced due to
random delays inserted into the encryption algorithm, or multiple encryption
algorithms may run simultaneously, referred as simultaneous algorithm noise. Several
approaches have been investigated to reduce these noises. Le. et al.[2] adopt the
fourth-order cumulant to decrease the non-algorithm noise. Homma et al.[3] apply the
method of phase-based waveform matching to overcome signal displacement.
However, because of the complexity and variations of the algorithm noise, there is
few works deal with simultaneous algorithm noise.

In order to improve the quality of EM signals, unlike the previous work, we
explore three signal processing techniques. Addressing the reduction of non-algorithm
noise, we adopt the conventional bandpass filtering to attenuate unrelated frequency

 EMA Enhancement with Signal Processing Techniques 457

components existed in EM signals. Aimed at enhancing the SNR of signal directly,
signal companding is used to enlarge the exploitable part of the signal for EMA.
Additionally in view of the simultaneous algorithm noise, we propose the approach of
difference ICA to separate the uncorrelated encryption from mixed encryptions. The
aim of the above techniques is to enhance the performance of EMA.

The remainder of this paper is organized as follows. Section 2 describes some
related preliminaries. Section 3 presents the application of three signal processing
techniques in detail. Section 4 draws conclusions and suggests future work.

2 Preliminaries

The effectiveness of EMA is assessed by the number of signal needed to perform a
successful attack. A more specific metric is success rate, which expresses the number
of correct key guess among all the key bytes. In our work, we test the proposed three
techniques against implementations of AES and Camellia on Side-channel Attack
Standard Evaluation Board-R (SASEBO-R) [4]. Experimental environment is shown
in Fig.1.The cryptographic cores use 0.13μm TSMC standard library of CMOS
process technology. From AES1 to AES4, the S-boxes are based on Look-up table,
(Positive Polarity Reed Muler 1-stage) PPRM1, PPRM3 and the multiplicative
inverse circuit with a composite field respectively.AES0 is similar to AES4 but with
support of decryption.

oscilloscop
preamplifie

baseplate

PC

EM sensor

sustentation

PCB

0 25 50 75 100 125 (ns)
-0.02

0

0.02

0 25 50 75 100 125 (ns)
-0.02

0

0.02
(a)

(b)

Fig. 1. Illustration of experimental environment Fig.2. (a)EM signal without bandpss filtering
(b)EM signal with bandpass filtering

Output of the encryption function “add round key” in the final round of AES is

chosen as a target to analyze. Encryption proceeds with 10000 random plaintexts and
a fixed but random 16-byte key (the final round): 28 AF CE 9F 5A FF C8 F1 E0 54
B3 52 B0 CE 43 0E. Each measurement is repeated for 30 times. Then after signal
processing, which is presented in the following section, EMA based on Hamming
Distance model [5] is performed.

458 H. Liu, Y. Tsunoo, and S. Goto

3 EMA with Signal Processing

Bandpass filtering. This is a technique that passes frequencies within a certain range
and rejects frequencies outside that range. It is described by Eq.1.

0

[] []
N

i
i

Y t b X t i
=

= −∑ (1)

where X[t] is the input signal, Y[t] is the output signal, bi are the coefficients of a
filter, N is the order of filter. The encryption runs at 24MHz.The pass band of the
filter is set from 0Hz to 40MHz. Signals with filtering and without filtering are shown
in Fig.2. The signals become smoother, which leads to an enhanced success rate. All
the key bytes are revealed at 2905 signals with filtering, while 3614 signals are
needed without filtering. Through extensive experiments on setting of the pass bands,
we find that low pass filtering is effective for implementations at various frequencies,
such as 12MHz, 20MHz, 28MHz, etc. This indicates that the low frequency
components play significant role for key detection. Further work is still under way.

Signal companding. It is a non-linear transform that includes the compressing
function and expanding function, which is widely used in digital communication
systems. The expanding function of μ-law algorithm is given by Eq.2, where V is the
maximum value of input signal X, U is an adjustable parameter.

log(1) /
(1) sgn()

+= −X U V V
Y X

Ue

(2)

EM signals processed with μ-law expanding function is shown in Fig.3. The
amplitudes with high peaks are enlarged and the amplitudes with low peaks are
remained almost unchanged, which yields a higher SNR. Thereby the performance of
EMA is enhanced. The number of signals needed to recover all the key bytes is listed
and compared in Table 1. The slowest key guess is the 10th key, of which the number
of needed signals has been decreased from 3614 to 2981.

0 25 50 75 100 125(ns)
-0.02

-0.01

0

0.01

0.02

0.03

signal with µ-law expanding-law expanding

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

Number of signals

S
uc

ce
ss

 r
at

e

Resulted AES0
Mixed signals
Difference AES0

Fig.3. Signals processed with μ-law
expanding

Fig.4. Success rates with three groups of signals

 EMA Enhancement with Signal Processing Techniques 459

Table 1. The number of needed signals for revealing each key byte of AES0

No. K1 K 2 K 3 K 4 K 5 K 6 K 7 K 8
original 3,258 2,075 2,614 1,607 2,621 3,012 2,893 2,153
expanding 2,103 2,043 2,421 1,562 2,218 3,007 2,899 2,156
No. K 9 K 10 K 11 K 12 K 13 K 14 K 15 K16
original 1,531 3,614 3,009 3,325 2,736 2,134 2,618 2,748
expanding 1,507 2,981 2,914 2,819 2,041 1,892 2,807 2,533

Difference ICA. Multiple encryption modules may run simultaneously. This results
in a slower key detection. Aimed at separating each encryption signal from mixed
signals, FastICA[6] which has good performance for blind source separation (BSS), is
used as basic algorithm in our work. Based on it, we propose so-called difference ICA
approach, which is computing the difference between the mixed signals and the
separated signal, to process various cases of mixed encryptions.

 Experiment1: a mixture with 2 encryption sources.
AES0 and Camellia on the ASIC execute simultaneously. Two mixed signals which
are shown in Fig.5 (a)(b), with different plaintext and same key are input to FastICA
algorithm. This leads to two resulted signals shown in Fig.5(d)(f) respectively. The
individual executions of AES0 and Camellia are supposed to be the source signals,
which are plotted in Fig.5(c)(e) respectively.

-0.02

0

0.02

-0.02

0

0.02

0 0.25 0.50 0.75 1.00 1.25 1.5 (us)
-0.02

0

0.02

(e)

(c)

(a) Mixed signal 1

Source AES0

Source Camellia

-0.02

0

0.02

-0.02

0

0.02

0 0.25 0.50 0.75 1.00 1.25 1.5 (us)
-0.02

0

0.02

(b)

(d)

(f)

Mixed signal 2

Resulted AES0

Resulted Camellia

Fig. 5. The signals of two encryption source: AES0 and Camellia

Then we perform EMA with (1) mixed signals; (2) resulted AES0; (3) difference
AES0, which is the signal difference of mixed signal and resulted Camellia. Success
rates are compared and shown in Fig.4. The fastest key detection is with the
difference AES0. All the key bytes are revealed within 4845 signals. It indicates the
effectiveness of difference ICA approach.

 Experiment2: a mixture with 3 encryption sources.
In this case, only Camellia is separated with FastICA algorithm. Because any one of
the AES executions on ASIC has a linear relation with Hamming Distance, the
relation between different AES is not independent. Then according to difference ICA
approach, we substrate the resulted Camellia from the mixed signals and conduct
EMA. The number of signals to reveal all the key bytes and the maximal correlation

460 H. Liu, Y. Tsunoo, and S. Goto

coefficient are listed in Table 2. The number of signals has been reduced 41.1% at
least with the separation of Camellia in all the above cases.

 Experiment3: a mixture with more than 3 encryption sources.
Five encryptions, namely AES1-AES4 and Camellia are processed by difference ICA.
The number of signals used to reveal all the key bytes has been reduced 47.8%, which
is listed in the last line of Table 2. The evolution of the second key byte “AF” is
shown in Fig.6. Only 4327 signals are needed for the appearing of correct key with
the differential signals.

2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.10

0.12

Number of signals

correct key

2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Number of signals

correct key

(a) (b)

Fig.6. Correct key evolution for the second key byte: “AF”. (a)with mixed signals,(b)with
differential signal.

All the above three groups of experiments demonstrate the successful application
of the proposed difference ICA approach.

Table 2. Number of needed signals and correlations for each mixed encryption

Mixed type Mixed signal Differential signal Reduction
rate No. Corr. No. Corr.

AES1,2, C Fails 0.0422 5,371 0.0996 46.3%
AES1,3, C 7,012 0.0627 4,126 0.1098 41.1%
AES1,4, C 6,411 0.0703 3,679 0.1327 42.6%
AES2,3, C Fails 0.0419 5,301 0.0921 47.0%
AES2,4, C 9,835 0.0580 5,527 0.0908 43.8%
AES3,4, C 7,164 0.0695 4,175 0.1162 41.7%
AES1-4, C 8,291 0.0613 4,327 0.1204 47.8%

4 Conclusions

The main contribution of this work is that we propose three signal processing
techniques and successfully apply them in EMA: bandpass filtering, signal
companding and difference ICA. This is confirmed by the experiments of EMA
against the implementations of AES and Camellia on ASIC. Several conclusions are
elicited. Bandpass filtering is a general processing technique, which attenuates the

 EMA Enhancement with Signal Processing Techniques 461

inference from multiple frequency components. Signal companding is useful for
improving the SNR of the signals directly. Difference ICA is particularly effective to
separate uncorrelated signals, which is fit for the mixed algorithm implementations.
With difference ICA, the countermeasure of simultaneous algorithm noise is greatly
weakened. These results may also provide enlightment for the design of
countermeasures.

In the future, more advanced signal processing techniques will be investigated and
studied. They will be applied to the evaluation of other countermeasures in order to
improve the security of cryptographic devices.

Acknowledgments. This work was supported by Waseda University “Global COE
program” of MEXT in Japan.

References

1. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-card security under the
Threat of Power Analysis Attacks. IEEE Transactions on Computer 51(5), 541–552 (2002)

2. Le, T.H., Servière, C., Cledière, J., Lacoume, J.-L.: Noise reduction in the side channel
attack using fourth order cumulants. IEEE Trans. Inf. Forensic Security 2(4), 710–720
(2007)

3. Homma, N., Nagashima, S., Imai, Y., et al.: A high-resolution phase-based waveform
matching and its application to side-channel attacks. IEICE Transactions on
Fundamentals E91-A(1) (2008)

4. Research Center for Information Security (RCIS) of AIST: Side-channel Attack Standard
Evaluation Board (SASEBO),
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer,
Heidelberg (2004)

6. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis.
IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

Erratum: Compliance or Security, What Cost? (Poster)

Craig Wright

Springer-Verlag, Computer Science Editorial, Tiergartenstr. 17,
69121 Heidelberg, Germany

{cwrigh20}@postoffice.csu.edu.au

U. Parampalli and P. Hawkes (Eds.): ACISP 2011, LNCS 6812, pp. 412–416, 2011.
© Springer-Verlag Berlin Heidelberg 2011

––

DOI 10.1007/978-3-642-22497-3_36

In the original version the author affiliation was wrongly added in this paper. It should
read as: Charles Sturt University, Australia

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-22497-3_27

Author Index

Akram, Raja Naeem 208
Al-Hamdan, Ali 75
Au, Man Ho 172

Bagheri, Nasour 428
Bartlett, Harry 75
Bogdanov, Andrey 106

Carlet, Claude 1
Chatterjee, Sanjit 353
Chen, Jiazhe 16
Chu, Cheng Kang 337
Corniaux, Christian L.F. 444

Dawson, Ed 75
Du, Yusong 47

Emura, Keita 439

Fan, Jia 371
Freire, Eduarda S.V. 292
Fujioka, Atsushi 319

Gauravaram, Praveen 428
Ghodosi, Hossein 444
Goto, Satoshi 456
Guo, Jian 433

Hatano, Tetsuya 189

Jia, Dingding 310
Jia, Keting 16

Knudsen, Lars R. 428

Lagishetty, Shashank 276
Li, Bao 310
Lin, Dongdai 34
Ling, San 433
Liu, Hongying 456
Liu, Joseph K. 337
Liu, Meicheng 34
Liu, Yamin 310
Long, Benjamin W. 226
Lu, Xianhui 310

Markantonakis, Konstantinos 208
Mayes, Keith 208
Menezes, Alfred 353
Minematsu, Kazuhiko 89
Miyaji, Atsuko 189, 439
Mouha, Nicky 120
Mu, Yi 172

Nguyen, Phuong Ha 61

Ohtahara, Chiaki 417
Okada, Keita 417
Okamoto, Yoshiaki 319

Paterson, Kenneth G. 292
Pei, Dingyi 34
Peng, Kun 451
Pieprzyk, Josef 407
Preneel, Bart 120, 423

Rahman, Mohammad Shahriar 439
Rechberger, Christian 433

Sabbu, Pruthvi 276
Saito, Taiichi 319
Šarinay, Juraj 142
Sasaki, Yu 417
Sato, Takashi 189
Sepahi, Reza 407
Shibutani, Kyoji 106
Shigeri, Maki 89
Shimoyama, Takeshi 417
Simpson, Leonie 75
Srinathan, Kannan 276
Steinfeld, Ron 407
Sun, Yue 120
Susilo, Willy 172
Suzaki, Tomoyasu 89

Takagi, Tsuyoshi 241
Tang, Qiang 389
Tang, Xiaohu 371
Tartary, Christophe 259
Teo, Sui-Guan 75
Tsunoo, Yukiyasu 456

Ustaoglu, Berkant 353

464 Author Index

Wang, Huaxiong 61, 259, 433
Wang, Meiqin 120
Wang, Xiaoyun 16, 157
Watanabe, Dai 423
Wei, Lei 428, 433
Wong, Kenneth Koon-Ho 75
Wright, Craig 412, E1
Wu, Hongjun 61, 433

Yoshida, Hirotaka 423
Yu, Hongbo 16, 157

Zhang, Fangguo 47
Zhang, Mingwu 241
Zhang, Yun 259
Zheng, Yuliang 371
Zhou, Jianying 337

	6812
	Preface
	Organization
	Table of Contents
	Invited Talks
	On Known and New Differentially Uniform Functions
	Introduction
	The Know AB, APN and Differentially 4-Uniform Functions and Their Respective Drawbacks
	AB and APN Functions

	A Way of Constructing Differentially Uniform Permutations
	Reference

	Symmetric Key Cryptography
	New Impossible Differential Attacks of Reduced-Round Camellia-192 and Camellia-256
	Introduction
	Preliminaries
	Notations
	The Camellia Algorithm

	Properties and 6-Round Impossible Differentials of Camellia with FL/FL-1 Functions
	Impossible Differential Attacks on Camellia with FL/FL-1 Functions and Whitening
	Impossible Differential Attack on 11-Round Camellia-256
	Impossible Differential Attack on 10-Round Camellia-192

	Impossible Differential Cryptanalysis of 15-Round Camellia-256 without FL/FL-1 Layers and Whitening
	Conclusion
	References

	Results on the Immunity of Boolean Functions against Probabilistic Algebraic Attacks�
	Introduction
	Preliminary
	Probabilistic Algebraic Attacks
	Time Complexity
	Data Complexity
	Validity

	Algebraic Immunity Distance
	Bounds on Algebraic Immunity Distance

	k-Error Algebraic Immunity
	Conclusion
	References

	Finding More Boolean Functions with Maximum Algebraic Immunity Based on Univariate Polynomial Representation�
	Introduction
	Preliminaries
	Deciding Boolean Functions Having Maximum AI under Univariate Polynomial Representation
	Finding MAI Boolean Functions under Univariate Polynomial Representation
	Analysis of Algebraic Degree and Nonlinearity
	Conclusion
	References

	Improving the Algorithm 2 in Multidimensional Linear Cryptanalysis
	Introduction
	Notations and Background
	Algorithm 2 of Multidimensional Linear Cryptanalysis
	Construction of Multidimensional Probability Distribution
	Brief Analysis on Algorithm 2 of the Full Biryukov's Model and Hermelin's Model

	Efficient Computation of Distillation Phase of Extended Algorithm 2 of Matsui
	Case 1 and Method 1
	Case 2 and Method 2

	Results on Cryptanalysis of Serpent
	Experimental Results on 5-Round Serpent
	Cryptanalysis of 11-Round and 12-Round Reduced Serpent

	Conclusion
	References

	State Convergence in the Initialisation of Stream Ciphers
	Introduction
	Background and Notation
	Case Studies
	A5/1 Stream Cipher
	Mixer

	Discussion
	Conclusion
	References

	On Maximum Differential Probability of Generalized Feistel
	Introduction
	Preliminaries
	Type-2 GFS and Its Generalization
	Maximum Differential Probability

	MDP Bounding Algorithm
	Overview
	Ordered Sum
	Details of Bounding Algorithm
	Optimized Version

	Experimental Results
	Results for Type-2
	Results for Type-2i

	Conclusion
	References

	Double SP-Functions: Enhanced Generalized Feistel Networks�
	Introduction
	Background
	Contributions and Outline

	Equivalence of Differential and Linear Truncated Trails
	Truncated Differential Trails and Constraints
	Truncated Linear Trails and Constraints
	Active Functions and Equivalence for Type-I GFNs
	Active Functions and Equivalence for Type-II GFNs

	Bounds for Active Functions
	Some Truncated Differential Trails
	Differentially Active Functions of Type-I GFNs
	Differentially Active Functions in Type-II GFNs

	Comparative Efficiency of GFNs
	Converting Active Functions to Active S-Boxes
	GFNs: Double SP-Functions vs Single SP-Functions

	Conclusions
	References

	Algebraic Techniques in Differential Cryptanalysis Revisited
	Introduction
	Description of Albrecht’s Differential-Algebraic Attack
	Inapplicability of Albrecht et al.’s Attacks
	Inapplicability of Attack C
	Inapplicability of Attack B to PRESENT

	New Differential-Algebraic Attacks
	Attack 1 for the PRESENT Block Cipher
	Attack 2 for the PRESENT Block Cipher

	Conclusion
	References

	Hash Functions
	Faster and Smoother – VSH Revisited
	Introduction
	Very Smooth Hash Algorithm
	Security

	A Variant without Modular Squaring
	The k-Sum Problem and the Tree Algorithm
	Security of Faster VSH

	A Variant without Modular Reduction
	Experimental Results
	Choice of the List Elements
	Minimal Distance of Colliding Inputs

	On Provable Security
	Conclusions
	References

	Cryptanalysis of the Compression Function ofSIMD
	Introduction
	Notations and Description of SIMD
	Notations
	Description of SIMD

	The Free-Start Near Collision Attack on the Reduced SIMD-256
	Constructing the Specific Differential Path for 20-Step SIMD-256
	Message/IV Modification

	Free-Start Near Collision and Distinguishing Attack on SIMD-512
	Free-Start Near Collision Attack for the Compression Function of 24-Step SIMD-512
	A Differential Distinguisher for the Compression Function of Full SIMD-512

	Conclusions
	References

	Protocols
	Electronic Cash with Anonymous User Suspension
	Introduction
	Preliminaries
	Security Definition
	Syntax
	Security Requirements

	Our System
	High Level Description
	Construction Details
	Efficiency Analysis

	Discussions
	Incorporating Tracing Authority and Open Authority
	Managing the Size of SUL and the Bank's Database

	Conclusion
	References

	T-Robust Scalable Group Key Exchange Protocol with O(log n) Complexity
	Introduction
	Preliminary
	The Security Assumptions, and Model of GKE
	Notation and Assumptions on GKE

	Background
	Robust GKE with O(log n) complexity
	Intuition
	Cross-Help GKE (CH-GKE)
	Generalized CH-GKE
	Security of CH-GKE

	T-Robust GKE with O(log n) Complexity
	Comparison
	Conclusions
	References

	Application-Binding Protocol in the User Centric Smart Card Ownership Model
	Introduction
	Application Sharing Mechanism
	Smart Card Firewall Mechanism
	User Centric Smart Card Firewall

	Applications-Binding Protocol (ABP)
	Application-Binding
	Threat Model
	Requirements for the Protocol
	Enrolment Process
	Proposed Application-Binding Protocol

	Proposed Protocol Analysis
	Analytical Analysis
	Protocol Verification by CasperFDR
	Practical Implementation

	Conclusion and Future Research Direction
	Acknowledgements
	References

	Access Control and Security
	Security in Depth through Smart Space Cascades
	Introduction
	Related Work
	Access Control for Smart Space Cascades
	Background: ISO/IEC 10181-3
	Targets in Practice
	Dependent Targets
	Access Control Enforcement Functions
	Access Control Decision Functions

	Smart Space Interactions
	Decentralised Requests
	Negotiating Positive Outcomes
	Smart Space Sign on

	Protective Layer Analysis
	Applying the Method

	Conclusion
	References

	GeoEnc: Geometric Area Based Keys andPolicies in Functional Encryption Systems
	Introduction
	Our Results
	Related Work
	Organization

	Preliminaries and Blocks
	Geometric Polygon
	Bilinear Maps in Composite Order Group
	Complexity Assumptions
	Framework of GeoEnc Scheme

	GeoEncLine Scheme
	Syntax of GeoEncLine
	Security Model of GeoEncLine
	Construction of GeoEncLine
	Correctness and Consistency
	Security Analysis

	Practical Coordination Evaluation
	Extension to GeoEncHull Scheme
	Concluding Remarks
	References

	An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem
	Introduction
	Preliminaries
	Our Results
	Comparison to Fuchsbauer et al.'s Scheme

	Definitions and Background
	Secret Sharing
	Notions of Game-Theoretic Equilibria
	Assumptions on the Utility Functions

	Our Protocol for t-out-of-n Rational Secret Sharing
	Initial Share Phase
	Secret Reconstruction Phase
	Security of our Rational SSS

	Conclusion
	References

	DMIPS - Defensive Mechanism against IP Spoofing
	Introduction
	Related Work
	DMIPS Scheme
	Inside the AS
	Outside the AS

	Attack Scenario
	Inside the AS
	Outside the AS

	Evaluation
	Inside the AS
	Outside the AS

	Conclusion
	References

	Public Key Cryptography
	Provably Secure Key Assignment Schemes from Factoring
	Introduction
	Our Contributions
	Organization

	Preliminaries
	Factoring Assumption
	Key Assignment Schemes

	A Basic Scheme
	The FP Scheme
	The FP Scheme for a Single Chain
	The FP Scheme for General Posets
	A Scheme with Faster Key Derivation
	Efficiency Considerations

	Concluding Remarks
	References

	Efficient CCA-Secure CDH Based KEM Balanced between Ciphertext and Key
	Introduction
	Our Contributions

	Preliminaries
	Key Encapsulation Mechanisms
	Diffie-Hellman Assumptions
	Goldreich-Levin Hardcore Function

	The New Scheme
	Security Proof
	Efficiency Analysis

	Conclusion
	References

	Generic Construction of Strongly Secure Timed-Release Public-Key Encryption
	Introduction
	Background
	Our Contributions

	Definitions
	Components
	Timed-Release Public-Key Encryption
	IND-CTCA Security
	IND-SCCA-TS Security

	Construction of Timed-Release Public-Key Encryption
	IBE-then-PKE Construction
	IND-CTCA Security
	IND-SCCA-TS Security

	Conclusion
	References

	Identity-Based Server-Aided Decryption�
	Introduction
	Related Works
	Contribution

	Definitions
	Pairings and Related Intractability Assumption
	Building Blocks
	Framework of ID-Based Server-Aided Decryption
	Security of ID-Based Server-Aided Decryption

	CCA-Secure ID-Based Server-Aided Decryption scheme from Gentry's IBE
	Construction
	Security Analysis

	CCA-Secure ID-Based Server-Aided Decryption scheme from Boneh-Franklin's IBE
	Construction
	Security Analysis

	Comparison
	Conclusion
	References

	A Generic Variant of NIST’s KAS2 Key Agreement Protocol
	Introduction
	A Generic Protocol
	Security Model
	The RSA Setting
	Comparisons
	Security Argument

	The Discrete Log Setting
	Comparisons
	Security Argument

	Miscellaneous Notes
	Hybrid Protocol
	KAS1
	Key Reusage

	References

	A Single Key Pair is Adequate for the Zheng Signcryption
	Introduction
	Overview of the Zheng Signcryption Scheme
	Security Model
	Syntax of Signcryption
	Definition of Confidentiality
	Definition of Unforgeability

	Assumptions and Primitives
	Problems and Assumptions
	One-Time Symmetric Key Encryption
	One-Way Hash Functions

	Security Proofs
	Proof of Unforgeability
	Proof of Confidentiality

	Relationships with Proofs by Baek, Steinfeld and Zheng
	References

	Towards Public Key Encryption Scheme Supporting Equality Test with Fine-Grained Authorization
	Introduction
	Related Work
	Our Contribution
	Organization

	Formulation of FG-PKEET
	Description of FG-PKEET
	The Security Model
	OW-CCA Security against a Type-I Adversary
	Fine-Grained Authorization Property
	IND-CCA Security against a Type-II Adversary

	A New FG-PKEET Cryptosystem
	The Public Key Encryption Scheme
	The Token Generation Algorithm
	The Equality Test Algorithm

	Comprehensive Security Analysis
	Preliminary
	Proof Results
	Potential Vulnerability and Enhancement

	Conclusion
	References

	Posters
	Lattice-Based Completely Non-malleable PKE in the Standard Model (Poster)
	Introduction
	Contributions of the Paper

	Background and Definitions
	A Construction Based on LWE Problem
	Correctness and Security
	Conclusion and Open Problems
	References

	Compliance or Security, What Cost? (Poster)
	Introduction
	Misaligned Incentives: Audit and the Failure to Determine Risk
	Patching and Validation

	Conclusion
	References

	Preimage Attacks on Full-ARIRANG (Poster)
	Introduction
	Description of ARIRANG
	Preimage Attacks on Full ARIRANG-256/-512
	Chunk Separation
	Preimage Attacks on ARIRANG-256
	Preimage Attacks on ARIRANG-512

	Concluding Remarks
	References

	Finding Collisions for Reduced Luffa-256 v2 (Poster)
	Introduction
	Specification of Luffa-256 v2
	Chaining and Round Function
	Non-linear Permutation

	The Collision Attack on 4-Step Luffa-256 v2
	The Differential Path
	Message Modification

	Conclusion
	References

	Improved Security Analysis of Fugue-256 (Poster)�
	Fugue-256 Hash Function
	Integral Distinguisher for 16.5 Rounds of G
	Improved Meet-in-the-Middle Preimage Attack on F-256
	Concluding Remarks
	References

	Improved Meet-in-the-Middle Cryptanalysis ofKTANTAN (Poster)�
	Introduction
	Developments in MITM Attacks
	Meet-in-the-Middle Cryptanalysis of KTANTAN
	The Previous Meet-in-the-Middle Attack
	New Experimental Observations on the Attack
	Low Complexity Implementation of the Attack

	More General MITM Attacks on KTANTAN Family
	The Observations and Search
	The Attack with Splice-and-Cut and Indirect-Partial-Matching

	Conclusions
	References

	Toward Dynamic Attribute-Based Signcryption (Poster)
	Introduction
	Attribute-Based Signcryption (ABSC)
	Encrypted Storage System

	Our Approach: Dynamic ABSC
	System Operations of DABSC
	Conclusion and toward the Concrete Construction of DABSC Scheme
	References

	A Verifiable Distributed Oblivious Transfer Protocol
	Introduction
	Background
	Distributed Oblivious Transfer Protocol
	Verifiable Secret Sharing Scheme
	Error-correcting Code Decoding Scheme

	Our Model
	Communication Model
	Adversary Model

	Proposed Protocol
	Security of the Protocol
	References

	Impracticality of Efficient PVSS in Real Life Security Standard (Poster)
	Introduction
	Specification of an Important Proof in the Two PVSS Schemes
	RSA Key in Real-Life Cryptographic Protocols
	Intolerable Cost of the General Specification, Making the PVSS Scheme Impractical in Real Life
	Conclusion
	References

	Electromagnetic Analysis Enhancement with Signal Processing Techniques (Poster)
	Introduction
	Preliminaries
	EMA with Signal Processing
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

