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Abstract Within this paper we consider scattering problems with periodic exterior
domains, modeled by the Helmholtz equation. Most current works on this subject
make specific assumptions on the geometry of the periodic cell, e.g. special
symmetries or shapes, and cannot be generalized to higher space dimensions in an
easy way. In contrast our goal is the realization of an easy dimension independent
concept which is valid for all kinds of periodic structures with local defects. We
will first give a general analytical formulation and then present an algorithmic
realization. At the end of the paper we will also depict a 1D and 2D example.

1 Introduction and Problem Setting

Periodic structures such as photonic crystals or metamaterials have many applica-
tions in modern optic devices due to their optical properties, as for example the
occurrence of band gaps, i.e. forbidden frequency ranges, or negative refractive
indices. Particularly defects within the periodicity of band gap materials are of
special interest since they can be used to manipulate the flow of light efficiently. By
disturbing a whole line of unit cells for example one can produce a waveguide for
frequencies within the band gap whereas local perturbations yield optical cavities.
For more details see for example [1, 4]. We will confine our considerations to local
defects, i.e., the perturbation is restricted to a bounded region ˝ as illustrated in
Fig. 1. Without loss of generality we will further assume, that ˝ is contained in one
single unit cell C0.

In real applications photonic crystals often consist of a very large number of unit
cells. We will therefore assume that the crystal is of infinite size.
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Fig. 1 2D periodic structure
with a local perturbation

Furthermore we assume a non-conducting and charge-free medium and a time-
harmonic incoming wave and model the scattering problem by the scalar Helmholtz
equation �u.r/C k2.r/u.r/ D f .r/. The material properties thereby are contained
in k2.r/ D ".r/�.r/!2, where ! is the frequency of the incoming wave. The right
hand term f .r/ is the source term, resulting from the incoming wave (see (5)).

One of the most important works on this subject is the work of P. Joly [3] in which
for 2D structures a coupled operator equation system for four operators is derived.
It can be decoupled in the special case of so called double symmetric refractive
indices but is much more involved for the general unsymmetric case. In [2], which
is a second important work in this field, only 2D structures are considered which
consist of cylinders of refractive index ni in an elsewise homogeneous medium of
refractive index ne . In view of the development of an universal tool we are interested
in an easier and general concept which is independent of the spacial dimension.

2 Scattering Problems

Let uin be an incident wave which satisfies the Helmholtz equation in the exterior
domain ˝ext D R

d n˝:

�uin.r/C k2
per.r/uin.r/ D 0; (1)

where kper is an (undisturbed) periodic function with lattice vectors gj for j D
1; : : : ; d , i.e.,

kper.rC gj / D kper.r/ 8r 2 R
d : (2)

Find the scattered wave usc such that for the total field utot D uin C usc,

�utot.r/C k2.r/utot.r/ D 0 in R
d ; (3)

where
k2.r/ D k2

per.r/C k2
�.r/ (4)

for a function k� with support in ˝ . Without loss of generality we assume that ˝

is contained in a unit cell of the periodic structure.



Scattering Problems in Periodic Media with Local Perturbations 71

By inserting (1) and (4) into (3) one obtains

�usc C k2usc D �k2
�uin DW f in R

d ; (5)

with supp f � ˝ .
In order to obtain the physically correct solution we require in addition a radiation

condition that ensures that usc is purely outgoing. For the mathematical formulation
of this radiation condition we will use the limiting absorption principle which is part
of the next section.

For the sake of simplicity we will omit the subscript of the scattered field usc and
denote it in the following as u.

3 Bloch-Floquet Transform and Limiting Absorption Principle

Due to backscattering off the periodic configuration of materials, distinguishing
between incoming and outgoing waves is much more involved than in the homo-
geneous case. The standard approach to overcome this difficulty is to introduce
artificial damping by replacing k ! k.1 C i�/, where � 2 RC is the damping
parameter. The outgoing waves of the damped problem are exponentially decaying
for jrj ! 1 and thus can be distinguished from the exponentially growing
incoming waves. This is known as limiting absorption principle and was first
introduced by Joly [5] and reads:

Find u 2 L2.Rd / such that

�uC k2.1C i�/2u D f: (6)

Next, we introduce the so-called Bloch-Floquet transform, a second standard
technique for the treatment of periodic problems. Its application to the Helmholtz
equation leads to boundary value problems with finite computational domains, as
detailed in the following.

Let G WD .g1; : : : ; gd / the matrix consisting of the lattice vectors gj (see (2) and
Fig. 1) and

� WD ˚
Gnjn 2 Z

d
�

:

For exponentially decaying u one can define the Bloch-Floquet transform Fl.u/ DW Ou
by

Ou.kB; r/ WD
X

d2�

u.rC d/ exp.�ikB � d/; (7)

where kB 2 R
d is called Bloch vector. (See [6].)

It can easily be shown that Ou is periodic with respect to kB : Let Qg1; : : : ; Qgd the
reciprocal lattice vectors, i.e.

gi � Qgj D 2�ıij :
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Then
Ou.kB C Qgj ; r/ D Ou.kB; r/:

Hence it is sufficient to consider kB 2 BZ, where BZ is the so called first Brillouin
zone which is defined as the primitive unit cell of the reciprocal lattice. The inverse
of the Bloch-Floquet transform reads

u.r/ D 1

jBZj
Z

BZ
Ou.kB; r/dkB: (8)

Let us now apply the Bloch-Floquet transform to the damped Helmholtz equa-
tion (6). It can be easily shown that for the periodic part kper of k,

Fl.k2
peru/ D k2

per Fl.u/: (9)

Thus, by using (4) and (9), we obtain

�OuC k2
per.1C i�/2 OuC Fl

�
k2

�.1C i�/2u
� D Fl.f /: (10)

Without loss of generality we can assume ˝ � C0, where C0 is a unit cell of the
periodic structure (otherwise define C0 as a sufficient large cell). Then for every
function g with support in ˝ holds Fl.g/.kB; r/ D g.r/ for all r 2 C0. Thus we
may write

�OuC k2
per.1C i�/2 OuC k2

�.1C i�/2u D f in BZ � C0: (11)

We can obtain an equation for Ou from (10) by applying the inverse transform (8):

�OuC k2
per.1C i�/2 OuC k2

�.1C i�/2 1

jBZj
Z

BZ
OudkB D f in BZ � C0: (12)

By adding a lattice vector gj of the periodic structure to the space argument r in the
definition (7) of the Bloch-Floquet transform we see that Ou.kB; r/ is quasi-periodic:

Ou.kB; rC gj / D Ou.kB; r/ exp.ikB � gj /: (13)

Equation (13) yields the boundary conditions that enable us to restrict the spacial
computational domain to the unit cell C0. It also tells us how to extend the solution
to R

d .

Remark 1. Since any bounded solution Ou of (12) is extended by (13) it remains
bounded on R

d . Therefore the solution u of (6) which can be obtained by inverting
Ou with (8) is also bounded and thus contains no exponentially growing part. This
means that the obtained solution must be outward radiating as demanded.
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4 Algorithmic Solution

Equation (12) is a 2d -dimensional problem since Ou depends on kB and r. In the case
of k� D 0 (12) would decouple into one d -dimensional boundary value problem

�Ou.kB; �/C k2
per.1C i�/2 Ou.kB; �/ D f in C0 (14)

Ou.kB; rC gj / D Ou.kB; r/ exp.ikB � gj /

for each kB 2 BZ, which we can solve with standard methods.
Let us now assume we already knew the solution u of the original problem with

k� ¤ 0. Then we would get from (10)

�Ou.kB; �/C k2
per.1C i�/2 Ou.kB; �/ D Qf in C0 (15)

with the new right hand side Qf D f � k2
�.1 C i�/2u and we would have

again a problem of the same type as (14). This motivates the following itera-
tion:

un D u0I
for n D 0 W max_iteration_steps do
Ou solve (15) with Qf D f � k2

�.1C i�/2unI
unC1  FloquetInvert.Ou/I

end for
As initial value for the iteration we choose u0 D 0. This implies that in the first
iteration step the algorithm solves the unperturbed periodic problem.

To solve (15) for one specific value of kB we use a standard finite element method
with quasi-periodic ansatz functions

�.rC gj / D �.r/ exp.ikB � gj / for j D 1; : : : ; d: (16)

This special choice of ansatz functions eliminates the boundary integral from
the variational formulation of (15). The numerical integration in (8) requires the
evaluation of (15) for several values kB which means computing several finite
element solutions per iteration step. To keep the computational effort low we used
an adaptive integration formula that uses an unstructured grid. The choice of the
damping parameter � influences the effort required for the numerical integration,
since � D 0 would yield a solution with singularities which are smoothed when
increasing � . Therefore the choice of � is a tradeoff between low integration costs
and perturbation of the original problem and its solution.

Remark 2. To get the solution of the undamped case � D 0 one can use extrapola-
tion methods.
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Convergence

The convergence of the iteration depends on the magnitude of the perturbation
function k2

�. The more the periodicity is disturbed, the worse is the convergence.
In the case of divergence one may help oneself by applying the following trick: Let
k2

� D k2
�;1 C k2

�;2, where k2
�;1 is small enough so that the problem �u C .k2

per C
k2

�;1/.1 C i�/2u D f leads to a convergent iteration and is thus solvable with the
above algorithm. By shifting the troubling term k2

�;2.1C i�/2u to the right hand side
one obtains again an iteration problem:

�unC1 C .k2
per C k2

�;1/.1C i�/2unC1 D f � k2
�;2.1C i�/2un

This way one may reduce the problem recursively to solvable problems.

Perturbation of Multiple Cells

In the case ˝ 6� C0 it is not necessary, to solve (15) on a larger lattice cell, since (13)
and the left hand side of (15) remain unaffected. We only have to take into account
more terms of the Bloch-Floquet transform of the right hand side of (15):

Qf !
X

d2�0

Qf .rC d/ exp.�ikB � d/

where �0 D
n
d 2 � j supp Qf \ .dC C0/ ¤ ;

o
.

5 Examples

We implemented this algorithm for the one- and two-dimensional case. In the
following we present a 1D as well as a 2D example. Figures 2 and 3 show the
geometry of the 1D and 2D media which each consist of two materials with k1 D 6

and k2 D 8. The source term is f .r/ D exp.�25r � r/ in ˝ and f D 0 outside ˝ ,
where ˝ D Œ�0:5I 0:5� and ˝ D Œ�0:5I 0:5�2, respectively. The damping parameter
is in both cases � D 10�2.

Figure 4 shows the intensity ju.r/j2 of the computed scattered field in the inner
part of the infinite domain for the two-dimensional case.

6 Conclusions

Within the current work we demonstrated a dimensionally independent formulation
for scattering problems with periodic exterior domains, that is valid for all kinds of
infinite periodic structures with local defects. By means of a simple iterative scheme
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Fig. 2 1D geometry consisting of two materials with difference refractive indices

Fig. 3 2D geometry with
square lattice. The red dashed
line marks the domain which
is depicted in Fig. 4

the original problem with local defects is reduced to a series of exact periodic
problems which can be solved efficiently with standard numerical techniques. For
each of the individual exact periodic subproblems the computational domain can
be restricted to a finite region by applying the limiting absorption principle and
the Bloch-Floquet transform. We demonstrated the feasibility of our formulation
by implementing it for the one-dimensional as well as for the two-dimensional
case. For both cases a practical test case has been shown to yield meaningful
results with a good convergence behaviour (Fig. 5). Our investigations indicate
that the convergence behaviour of the iteration depends on the magnitude of the
perturbation. Consequently, for strongly perturbed geometries, the problem might
not converge at all. However, for such cases, convergence can be re-established by
employing a nested iteration.
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Fig. 4 Intensity of the computed 2d-solution for the infinite periodic scattering problem
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Fig. 5 Convergence of the iteration
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