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Abstract We analyse parameter dependent differential-algebraic-equations (DAEs)

Ad 0.x; t; p/ C b.x; t; p/ D 0:

For these systems one is interested in the relation between the numerical solutions
x and some associated parameters p. The standard approach is to discretise the
equations with respect to the parameters and solve the parameter independent
equations afterwards. This approach forces a calculation of the differential equations
multiple times (for a huge number of parameter values p). This may lead to high
computational costs. By using the already computed solutions to calculate the
remaining ones and thus exploiting the smoothness of the solution with respect to
the parameters, it is possible to save the majority of the computational cost.

1 Introduction

Nowadays parameter dependent problems have their applications in various fields.
In the electric circuit simulation a circuit is modeled by a differential-algebraic-
equation obtain via a modified-nodal-analysis (MNA) like in [1]. These DAEs
depend on the parameters of the many electric parts in the circuit. Since these parts
are afflicted with a manufacturing error, one is interested in the relation between
small variation in these parameters and the behavior of the circuit.

In modern medicine the effect of the drugs used during a chemo therapy can be
described by an ordinary-differential-equation (ODE), on of the models is presented
in [2]. To obtain the optimal dosing of the drugs, simulating the therapy many
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times is necessary. Therefore the associated ODE has to be solved for many sets
of parameters.

In meteorology the reliability of a weather forecast suffers because of the huge
amount of the needed data and the chaotic behavior of the weather. These two
problems force the calculation of a big partial-differential-equation(PDE) for many
different parameters during the weather forecast.

These problems can be described mathematically by a parameter dependent
differential-equation and a set of parameters. The general task is to efficiently solve
the equations at all parameters. The main objective of this article is to present a new
approach to accelerate this calculation. We will restrict the analysis to DAEs, even so
the idea can be transferred to PDEs as well. The improvement will be demonstrated
through the comparison of the convergence estimate and an example in the circuit
simulation.

This paper is organized as follows. First we describe parameter dependent DAE
and state the well-known convergence estimate for a Backward Differentiation
Formula Method (BDF). Section 3 is devoted to the presentation of the new solving
approach and its numerical results. In Sect. 4 these results are exemplified by a
numerical example.

2 Parameter Dependent DAEs

In this chapter we want to introduce the problem in a general setup. Therefore we
need to define the structure of the DAE and its properties. Furthermore an associate
set of parameters is needed. To combine these two things define a parameter
dependent DAE:

Definition 1. Define a semi-linear parameter dependent DAE as followed:

Ad 0.x; t; p/ C b.x; t; p/ D 0; (1)

with

A 2 R
n�k; d.x; t; p/ 2 R

k; b.x; t; p/ 2 R
n; x 2 D � R

n; t 2 I � R; p 2 P � R
l :

Recall that .:/0 means the total derivative with respect to time, i.e. d
dt

.:/. Furthermore
d and b with their partial derivatives dy , dx , bx and bt are continuous. We call this
DAE properly stated, if:

• 8p 2 P: ker A and im dx are C 1 � subspaces

• 8p 2 P: ker A ˚ im dx.x; t; p/ D R
n 8 y 2 R

n; x 2 D; t 2 I:

In the following we assume that the DAE is properly stated. The concept of DAEs
with properly stated leading terms is described in detail in [5, 6]. Also the index of
the DAE is limited by two. An DAE index describes the complexity of the structure
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of a DAE. There are many ways to define an index, since in our applications there
is often little smoothness we refer here to the tractability index.

To solve the parameter problem we need to calculate the numerical solution of
the DAE at every single parameter point respectively. For the computation we use
a BDF-method and achieve the well-known convergence estimate for the numerical
solution of the DAE.

Theorem 1. Discretise the DAE at a fixed parameter point p0 with a BDF-method
and achieve the following system:

A.
1

h

KX

iD0

˛i d.xn�i ; tn�i ; p0// C b.xn; tn; p0/ D 0: (2)

Let h be the constant step size in time. Let the initial steps be sufficiently accurate.
Then the error of the numerical solution obtained by solving the BDF-discretised
system can be bounded by:

max
n>�K

jjx.tn/ � xnjj � c.hK C 1

h�
max

0<j <�K
jjın�j jj/ (3)

with K the order of the BDF-method, � C 1 the index DAE and c being a bounded
constant.

The proof can be found in [3, 7]. Notice that the error depends on the index. With
an index bigger than one the computational error ı of the linear solvers must be
guarantied to be small enough in relation to the step size h. The order K of the

Fig. 1 A set of 10000 random parameter points
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BDF-method mostly has to be chosen very small because of the stiffness of the
applications.

For better understanding of the next chapter visualize a set of parameter points:
Let for example P � R

2 be a set of 10000 random parameter points (Fig. 1).
Due to the applications we are interested in solving the DAE in every of these

points to achieve the sensitivity of the solution with respect to the parameters. This
may lead to high computational cost. So we need an approach that take advantage
of the situation.

3 Parameter-Time-Integrator

This section will be used to present a more efficient approach to calculate the
numerical solutions of the DAE at every point of the parameter set. To accelerate
the computation of the solutions of the parameter dependent equation we want to
take advantage of the solutions which are already calculated. Since the solutions
won’t be similar to other solutions for big enough differences in the parameters, one
has to ensure that the change in the parameters will be sufficiently small. Therefore
split the parameter points in sufficiently small packages and observe every package
separately. The splitting of the points can depend on external data or it can be
implemented in a adaptive way (Fig. 2). Solve the parameter dependent DAE at
some parameter points in every single package to obtain interpolation nodes with
respect to the parameters. With this nodes it is possible to improve the performance

Fig. 2 A set of 10000 random parameter points splitted in parameter packages regarding their
distribution
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Fig. 3 A set of 10000 random parameter points and the associated set of 100 parameter nodes

of the calculation of the numerical solutions. For this reason formulate a modified
system of DAEs involving the parameter interpolation nodes (Fig. 3).

Definition 2. Define a new system of DAEs by modifying the right hand side of a
giving DAE with the help of some solutions xpj :

Ad 0.x; t; p/ C b.x; t; p/ �
.mC1/dX

j D1

cj .p/.Ad 0.xpj ; t; pj / C b.xpj ; t; pj // D 0

(4)

with m 2 N the order of the parameter interpolation, pj 2 P the nodes of the
parameter interpolation, xpj 2 R

m the solutions at the interpolation nodes and
cj .p/ 2 R the weighting functions of an multidimensional polynomal interpolation.

Notice that the exact solution xpj fulfills Ad 0.xpj ; t; pj / C b.xpj ; t; pj / D 0,
therefore the modified DAE will be solved by xp and can be called equivalent to
the original formula (1). In praxis one only has the numerical solution xpj ;n at a
given point tn and Ad 0.xpj ; t; pj / C b.xpj ; t; pj / will not be exactly zero. For the
interpolation in the parameter space a polynomial interpolation is used. This will
force the interpolation nodes pj to be on a tensor-product grid in the parameter
space. In praxis this is objectionable and can be avoided by an interpolation with
radial basis functions or other interpolation methods. But assuming interpolation
nodes pj to be on a tensor-product grid and using an multidimensional polynomial
interpolation does make the proofs and formulas much easier. Now again use a BDF-
method to solve the modified system of DAEs.
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Theorem 2. Discretise the modified DAE for a fixed parameter point p0 with a
BDF-method. Discretise the parameter interpolation part as well with the same
BDF-method and achieve:

A
1

h

KX

iD0

˛i d.xn�i ; tn�i ; p0/ C b.xn; tn; p0/

�
.mC1/dX

j D1

cj .p0/.A
1

h

KX

iD0

˛i d.xpj ;n�i ; tn�i ; pj / C b.xpj ;n; tn; pj // D 0 (5)

Let h be the constant step size in time. Let the initial steps be sufficiently accurate.
Then the error of the numerical solution obtained by solving the BDF-discretised
modified system can be bounded by:

max
n>�K

jjx.tn/ � xnjj � c�.d iam.P/mC1.hK C 1

h�
max

0<j <�K
jjın�j jj/ C hK

0 / (6)

with K the order of the BDF-method, � C 1 the index DAE and c being a bounded
constant. Furthermore P is the parameter domain in one package and h0 is the step
size used in the calculation of the solutions at the interpolation nodes.

Compare this result with [4]. At this point notice the hK
0 term in the error estimate,

because of this term the solutions computed with the help of the modified system
cannot be more accurate than the solutions at the parameter nodes. Therefore the
step size h0 must be as small as the step size we would have chosen without
this new approach. The source of the improvement of this error estimation is the
parameter interpolation witch yields to the term diam.P/mC1 in front of the normal
relation of the error to the step size of the BDF-method h. You could say that we
can accelerate the computation of the numerical solution because we have a good
guess of the solution before the calculation itself starts. At this point there are three
different cases to be observed. First the interpolation guess is as accurate as the given
tolerance. In that case we don’t have to calculate a new solution. In this trivial case
we don’t need a Parameter-Time-Integration since the parameter interpolation is
already good enough. Second the interpolation guess is not as accurate as the given
tolerance but accurate enough to accelerate the calculation of the new numerical
solution. That means again that we can chose a bigger step size but still achieve
the given tolerance. And third the accuracy of the guess is to low to improve the
computation, which means we have to solve the original system. With an adaptive
time step solver these three cases can switch on every timestep depending of the
smoothness of the solution at the given time point regarding the parameters.

Think again of the example parameter set, so let P � R
2 again be a set of 10000

random parameter points. In this example one has to solve only 100 DAE of the
original system, if the new Parameter-Time-Integrator is be used. The remaining
solutions can be obtained by solving the modified system with the improved
convergence estimate. In the example the parameter point splitting is based on
external information in that case the distribution of the points, therefore we can
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assume that the parameter smoothness is big enough in relation to the size of the
parameter packages.

4 Example

As an example for the applications in the circuit simulation observe the following
circuit (Fig. 4):

The linear time-varying DAE

q0
1 C G1.t/e1 C jV D 0; q0

2 C G2.t/e2 C �tjV D 0

e1 D � 1

1 � �t
e2; q1 D C1e1; q2 D C2e2

simulates the electric circuit.
Here G1.t/ D .1��t ��/ and G2.t/ D .

�

1��t
����t/ are the resistor functions

which can be changed by the parameters � and � to simulate the circuit with different
resistors. Let � D �5 be constant and p D � be the variating parameter of our
system. So this is a one-dimensional parameter space.

Furthermore e1, e2 describe the voltages at the nodes 1 and 2 with respect to the
mass node. jV is the current through the voltage source and q1, q2 represent the
charges of the capacitances C1 and C2. For simplicity C1 D C2 D 1 is assumed.
With

x D

0
BBBBB@

q1

q2

e1

e2

jV

1
CCCCCA

; A D

0
BBBBB@

1 0

0 1

0 0

0 0

0 0

1
CCCCCA

; b.x; t; p/ D

0
BBBBB@

.6 � pt/x2 C x4

.5 C p

1�pt
� pt/x3 C ptx4

x2 C 1
1�pt

x3

x0 � x2

x1 � x3

1
CCCCCA

d.x; t; p/ D
�

1 0 0 0 0

0 1 0 0 0

�
x

Fig. 4 The circuit diagram
shows two small separated
circuit whose sources are
being controlled by the
current or the voltage of the
respective subcircuit. Apart
from that the subcircuit
consists of a resistor and a
capacitor only
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The circuit describing DAE can be written as:

Ad 0.x; t; p/ C b.x; t; p/ D 0:

The parameter domain is defined through p 2 P WD Œ�20; �19�. Solve the normal
system at two parameter points p1 D �19:15 and p2 D �19:85 with an implicit
Euler method with a constant step size h D 10�4 in a time interval T D Œ0; 1�.
This means 10000 steps have to be calculated with one Newton step each. At each
parameter point a numerical solution xp1 and xp2 with an error jjxpi .tn/ � xpi ;njj �
2 � 10�2 is calculated. Choose a random parameter in P, for example p3 D �19:6

and just solve it normally with a constant step size h D 10�3 with an implicit Euler.
Then the third component of the solution jv is calculated with an error jj.jv/p3 .tn/�
.jv/p3;njj � 2 � 10�1 (Fig. 5).

Now again solve the DAE with a constant step size h D 10�3 and with an implicit
Euler at p3 D �19:6, but use the changed system. Again 1000 time and Newton
steps are required, but an error jj.jv/p3.tn/ � .jv/p3;njj � 2:5 � 10�2 is achieved
(Fig. 6).

5 Conclusion

In this paper we have seen a new approach to solve parameter dependent problems.
The main idea was to approximate the solution at a parameter point with the already
calculated solution of other points to have a good guess of the solution before
calculating it. With this guess it is possible to accelerate the computation of the

Fig. 5 Solution jv with time on the x-axis and absolute error or solution values on the y-axis. The
initial system is used
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Fig. 6 Solution jv with time on the x-axis and absolute error or solution values on the y-axis. The
modified system is used

numerical solution. The degree of acceleration depends strongly on the smoothness
of the solution regarding the parameter, since it wont be possible to obtain a good
guess before the calculation, if there is nearly no connection between the parameters
and the solution of our problem. But since we can decide at every single parameter
point whether we use the parameter-time-integration or we solve the equation of the
problem without it, one can exploit the smoothness of the parameter as long as there
is some.
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