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Abstract Importance Sampling allows for efficient Monte Carlo sampling that also
properly covers tails of distributions. From Large Deviation Theory we derive an
optimal upper bound for the number of samples to efficiently sample for an accurate
fail probability Pfail � 10�10. We apply this to accurately and efficiently minimize
the access time of Static Random Access Memory (SRAM), while guaranteeing a
statistical constraint on the yield target.

1 Introduction

As transistor dimensions of Static Random Access Memory (SRAM) become
smaller with each new technology generation, they become increasingly susceptible
to statistical variations in their parameters. These statistical variations may result
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in failing memory. An SRAM is used as a building block for the construction of
large Integrated Circuits (ICs). To ensure that a digital bit cell in SRAM does not
degrade the yield (fraction of functional devices) of ICs with Megabits of memory,
very small failure probabilities Pfail � 10�10 are necessary. To simulate this, regular
Monte-Carlo (MC) simulations require too much computing time. Importance
Sampling (IS) [1] is a more advanced technique that provides sufficiently accurate
results and is relatively easy to implement. A speed up of several orders can be
achieved when compared to regular Monte Carlo methods.

2 Regular Monte Carlo

Let Y be a real-valued random variable with probability density function f . We
assume that N independent random observations Yi (i D 1; : : : ; N ) of Y are taken.
We define Xi D IA.Yi / for a given set A D .�1; x/ where IA.Yi / D 1 if Yi 2
A and 0 otherwise. Then pMC

f .A/ D 1
N

PN
iD1 Xi estimates p D R x

�1 f .z/d z D
P.Y 2 A/. The Xi are Bernoulli distributed, hence NpMC

f � Bin.N; p/, E.pMC
f / D

1
N

Np D p, and �2.pMC
f / D p.1�p/

N
. Let ˚.x/ D R x

�1 e�z2=2d z and define z˛ by
˚.�z˛/ D ˛. From the Central Limit Theorem (CLT) we derive

P.jpMC
f � pj > "/ D P

 jpMC
f � pj

�.pMC
f /

> z

!
NMC!1�! 2˚.�z/ � 2˚.�z˛=2/ D ˛;

where z D "=
p

p.1 � p/=NMC and NMC D N . Hence, if z � z˛=2 we deduce

NMC � p.1 � p/
� z˛=2

"

�2 D 1 � p

p

� z˛=2

�

�2

; (1)

for " D �p. We take � D 0:1 and p D 10�10. Now let ˛ D 0:02, then z˛=2 � 2.
Then NMC � 4 1012. If we do not know p, we can use p.1 � p/ � 1=4 yielding
NMC � 1

4

� z˛=2

"

�2 D 1022. And if NMC is not large enough to apply the CLT,
Chebyshev’s inequality even results to NMC � 1024. These general bounds are
much too pessimistic. Large Deviations Theory (LDT) [1,4] results in a sharp upper
bound [6]

P.jpMC
f � pj > �p/ � exp

�

�NMC

2

p

1 � p
�2

�

: (2)

For � D 0:1, p D 10�10 and ˛ D 0:02, as above, we find: NMC � 8 1012 (which is
a sharp result – see at the end of the next proof). Note that an extra k-th decimal in
� increases NMC with a factor k2.
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Proof of (2) [6]. The sequence of the Monte Carlo results PN .A/ WD pMC
f satisfies

a Large-Deviation Principle [1, 4, 5], meaning that there is some ‘rate function’
I W R ! R [ f�1; C1g such that

(i) lim supN !1 1
N

ln PN .C / � � infx2C I.x/ for all closed subsets C � R,
(ii) lim infN !1 1

N
ln PN .G/ � � infx2G I.x/ for all open subsets G � R.

Let X be a Bernoulli variable with success probability p. The logarithmic moment
generating function for X is given by ln

�
E
�
e�X

	� D ln
�
q C e�p

�
, where as usual

q D 1 � p. We define the following function [5]

J.x; �/ D �x � ln
�
E
�
e�X

	� D �x � ln.q C e�p/; (3)

where x; � 2 R. We note that an optimum value �� must satisfy

@J

@�
D x � pe��

q C pe��
D 0; hence

�� D ln.
qx

p.1 � x/
/; and pe�� D qx

1 � x
; and q C pe�� D q

1 � x
: (4)

In our case, the rate function can be shown to be equal to

I.x/ D sup
�2R

J.x; �/ D J.x; ��/ D x ln

�
qx

p.1 � x/

�

� ln
� q

1 � x

�
; (5)

a function which is continuous on the interval .0; 1/. With C D Œp � �p; p C �p� �
.0; 1/ and G D R n C , the Large-Deviation Principle above implies

lim
N !1

1

N
ln P

 ˇ
ˇ
ˇ
ˇ
ˇ

1

N

NX

kD1

Xk � p

ˇ
ˇ
ˇ
ˇ
ˇ

� �p

!

D � inf
jx�pj��p

I.x/:

From (5) we can calculate I 0.x/ and I 00.x/ explicitly. For x 2 .0; 1/ we have
I 00.x/ > 0, which implies that I 0 is increasing and that I is convex. Also I.0C/ D
� ln.q/ > 0 and I.1�/ D ln.q=p/ 2 R. Clearly I can be extended continuously at
both x D 0 and x D 1. Furthermore I.p/ D 0 and I 0.p/ D 0. Hence I.p/ D 0 is a
global minimum. This implies that actually the infimum of I on fx W jx � pj > �pg
is assumed at x D p ˙�p. This can be analyzed further using Taylor expansion [6].
Thus from part (i) of the Large Deviation Principle, we obtain (2) for all N with a
possible exception of finitely many. Part (ii) implies that the exponential bound in
(2) is also valid from below and thus is sharp. ut
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3 Importance Sampling

With Importance Sampling we sample the Yi according to a different distribution
function g and observe that pf .A/ D R x

�1 f .z/d z D R x

�1
f .z/
g.z/ g.z/d z. Define

Vi D IA.Yi /f .Yi /=g.Yi/ and V D V.A/ D IA.Y /f .Y /=g.Y /. Let pIS
f .A/ D

1
N

PN
iD1 Vi . Then Eg

�
pIS

f

�
D 1

N

PN
iD1 Eg .Vi / D pf .A/. When f .z/

g.z/ � 1 on A

we have Varg

�
pIS

f

�
� Varf

�
pMC

f

�
(variance reduction, using the same number

of samples). This does not yet imply more efficiency. However, similar to (2), we
derive (in which NIS D N ) [6]

P
�ˇ
ˇ
ˇpIS

f � p
ˇ
ˇ
ˇ > �p

�
� exp

�

� NIS p2

2Varg.V /
�2

�

: (6)

Assuming the same upper bounds, comparing (2) and (6) gives NIS

NMC
D Varg.V /

p.1�p/
D

Eg.V 2/�p2

p.1�p/
. Suppose f .z/

g.z/ � � < 1 on A and p � �, then, with q D 1 � p,

NIS

NMC

D Eg.V 2/

pq
� p

q
� �

q
� p

q
� �.1 C �/ (7)

for j.1� 1
�
/pCO.p2/j � �, which for � D 0:1 and p D 10�10 means that � � 10�9.

Hence for � D 0:1 we can take an order less samples with Importance Sampling to
get the same accuracy as with Monte Carlo. This even becomes better with smaller
�. Efficiency is the main message. Indeed the asymptotic accuracy also improves,

but less: Varg

�
pIS

f

�
� � Varf

�
pMC

f

�
� 1��

N
p2 and thus �g

�
pIS

f

�
� p

� �f

�
pMC

f

�
,

which for � D 0:1 means that here not an order is gained, but a factor
p

� � 0:316.

Proof of (6) [6]. Let Y be distributed according to g, V D I.�1;x/.Y /f .Y /=g.Y /

and v.y/ D I.�1;x/.y/f .y/=g.y/. Then

Eg

�
e�V

	D
Z 1

�1
g.y/ e�I.�1;x/f .y/=g.y/ dy D

Z x

�1
g.y/ e�f .y/=g.y/ dy C 1 � G.x/;

where G.x/ D R t

�1 g.y/ dy. We will restrict ourselves to simple sufficient
conditions and we will not strive for full generality. We assume:

1. There is no y 2 R such that P.Y D y/ D 1 (Y is not supported by a single
point),

2. 0 < Eg

�
e�V

	
< 1 for all � 2 R,

3. Introduce the density function ��.y/
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��.y/ D e�v.y/g.y/

Eg

�
e�V

	 .thus
Z

��.y/ dy D 1/

(which is well-defined for all � 2 R) and let Y� be a random variable distributed
according to ��. We assume that for all � 2 R

E��
.Y�/ D

Z

y���.y�/ dy� D
Z

y
e�v.y/g.y/

Eg

�
e�V

	 dy < 1

and
Var��

.Y�/ D E
�
Y 2

�

	 � E2
��

.Y�/ < 1:

Now let '.�/ D ln Eg

�
e�V

	
. Then, '.�/ is a well-defined, two times differentiable,

real function with derivatives

' 0.�/ D EgŒV e�V �
EgŒe�V �

D E��
.Y�/; ' 00.�/ D EgŒV 2 e�V �

EgŒe�V �
� E2

gŒV e�V �
E2

gŒe�V �
D Var��

.Y�/:

Clearly, Var.Y�/ > 0 and ' is therefore strictly convex. Let J.x; �/ D �x � '.�/.
As in Sect. 2 we again consider the function I.x/ D sup�2R J.x; �/ [5]. Clearly
I.x/ � J.x; 0/ D �'.0/ D � ln e0 D 0. To compute the supremum in I.x/, we
consider

d

d�
J.x; �/ D x � d

d�
'.�/ D x � Eg

�
Ve�V

	

Eg

�
e�V

	 : (8)

We observe that

d

d�
J.x; �/ D 0 H) x D 	.�/; where 	.�/ D

R
y e� v.y/g.y/ dy
R

e� v.y/g.y/ dy
: (9)

Here we note that

	 0.�/ D
R

e� v.y/g.y/ dy
R

y2e� v.y/g.y/ dy � Œ
R

ye� v.y/g.y/ dy�2

Œ
R

e� v.y/g.y/ dy�2
: (10)

At the right-handside we can recognize a weighted inner-product (using weight
function e� v.y/): < 1; y > � R

1 	 ye�v.y/g.y/ dy. By the Cauchy-Schwarz
inequality, < 1; y >� p

< 1; 1 >/
p

< y; y > we obtain 	 0.�/ > 0 because y ¤ 1.
This implies that 	 is invertible and hence (9) defines � D �.x/ D 	 �1.x/. Hence

I.x/ D J.x; �.x// (11)
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and we can write x D 	.�/ D E��
ŒY �. Clearly ��D0.y/ D g.y/. Further, to

calculate the first (total) derivative of I.x/, we differentiate (11) with respect to
x and substitute (9) to obtain I 0.x/ D �.x/ and I 00.x/ D �0.x/ D 1= @x

@�
D

1=Var��
.V / [6]. By [5, Lemma I.4, p. 8], I.x/ is strictly (proper) convex which

means that the minimizer of I is unique. Now let p be as in Sect. 2. Then I.p/ D 0,
since the Strong Law of Large Numbers implies that the empirical measure of every
neighbourhood of p tends to one. Hence, p is the unique minimizer of I and
I 0.p/ D 0. Since p is also an internal point, we obtain that 0 D I 0.p/ D �.p/.
Hence,

I 00.p/ D 1

Var��.p/
.V /

D 1

Var��D0
.V /

D 1

Varg .V /
: (12)

Finally, by Taylor expansion, I.p ˙ �p/ D 1
2
�2p2I 00.p/ C O.�3p3/ D 1

2

�2p2

Varg .V /
.

Thus, after applying the Large-Deviation Principle [1, 4, 5], as in Sect. 2,

P

 ˇ
ˇ
ˇ
ˇ
ˇ

1

N

NX

kD1

Vk � p

ˇ
ˇ
ˇ
ˇ
ˇ

> �p

!

� exp

�

�N inf
jx�pj>�p

I.x/

�

� exp

�

� Np2

2Varg.V /
�2

�

;

(13)
for all sufficiently large N . This implies (6), which completes the proof.
We finally note that, if g.x/ � 1, as in Sect. 2, we have Varg .V / D 1

pq
, see (2). ut

4 Accurate Estimation of SRAM Yield

The threshold voltages Vt of the six transistors in an SRAM cell are the most
important parameters causing variations of the characteristic quantities of an SRAM
cell [2] like Static Noise Margin (SNM) and Read Current (Iread). In [2, 6]
Importance Sampling (IS) was used to accurately and efficiently estimate low failure
probabilities for SNM and Iread. SNM D min.SNMh; SNMl / is a measure for the
read stability of the cell. SNMh and SNMl are identically Gaussian distributed. The
min() function is a non-linear operation by which the distribution of SNM is no
longer Gaussian. Figure 1-left, shows the cumulative distribution function (CDF)
of the SNM, using 50k trials, both for regular MC (solid) and IS (dotted). Regular
MC can only simulate down to Pfail � 10�5. Statistical noise becomes apparent
below Pfail � 10�4. With IS (using a broad uniform distribution g), Pfail � 10�10 is
easily simulated (we checked this with more samples). The correspondence between
regular MC and IS is very good down to Pfail � 10�5. Figure 1-left clearly shows
that using extrapolated MC leads to overestimating the SNM at Pfail D 10�10. The
Read Current Iread is a measure for the speed of the memory cell. It has a non-
Gaussian distribution. Figure 1-right shows that extrapolated MC (dashed) can result
in serious underestimation of Iread. This can lead to over-design of the memory cell.
Also here IS is essentially needed for sampling Iread appropriately.
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Fig. 1 SNM (left) and Iread (right) cumulative distribution function for extrapolated MC (dashed),
regular MC (solid) and IS (dotted). Extrapolation assumes a normal distribution

Fig. 2 Block of SRAMs
(rotated 90ı)

5 Optimization of SRAM Block

The block in Fig. 2 (rotated 90ı) contains a Sense Amplifier (SA), a selector, and
a number of SRAM cells. The selector chooses one “column” of cells. Then the
voltage difference is 
Vcell D 
Vk. A block B works if mink.
Vk/ � 
VSA. With
m blocks B and n cells per block we define Yield Loss by YL D P.#B � 1/ �
m P.B/, where the fail probability P.B/ D Pfail.B/ of one block is (accurately)
approximated by the lower bound P.B/ � YL

m
D n YL

N
, where N D n m. For

YL D 10�3, m D 104 blocks, n D 1000 we find P.B/ � 10�7.
For X D mink.
Vk/, and Y D 
VSA we have

P.B/ D P.X < Y / D
Z Z

�1�x<y�1
fX;Y .x; y/dx dy D

Z 1

�1
fY .y/ FX .y/dy:

Thus we need the pdf fY .y/ and the cdf FX .y/ (probability and cumulative
density functions of Y and X ). Note that
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Fig. 3 Left: P.B/ as function of 
tcell and 
tSA. Right: Delay time t as function of 
tSA

FX .y/ D P.X < y/ D P.min
k


Vk < y/

D 1 � Œ1 � P.
Vk < y/�n � n P.
Vk < y/:

For each simulation of the block we can determine the access times 
tcell and 
tSA.
We come down to an optimization problem with a statistical constraint:

Minimize 
tcell C 
tSA such that P.B/ � 10�7.

This has led to the following algorithm. We only give a sketch; for details see [3].

• By Importance Sampling sample 
Vk . Collect 
Vk at same 
tcell.
• By Monte Carlo sample 
VSA. Collect 
VSA at same 
tSA.
• For given 
tcell:

– Estimate pdf f
Vk
and cdf P.
Vk < y/.

– From this calculate FX .y/ D FX .yI 
tcell/. Note that @FX .yI
tcell/

@
tcell
� 0.

• For given 
tSA:

– Estimate pdf of 
VSA: fY .y/.

• Calculate (numerical integration)

– P.B/ D R1
�1 fY .y/ FX .y/dy.

Hence P.B/ D G.
tcell; 
tSA/ for some function G. For given 
tSA G1.
tcellI

tSA/ D G.
tcell; 
tSA/ is monotonically decreasing in 
tcell, see Fig. 3. Hence we
Minimize G�1

1 .10�kI 
tSA/ C 
tSA. The optimization with the statistical constraint
on P.B/ led to a reduction of 6% of the access time of an already optimized SA
while simultaneously reducing the silicon area [3].

6 Conclusions

Large Deviation Theory allows to derive sharp lower and upper bounds for
estimating accuracy of tail probabilities of quantities that have a non-Gaussian
distribution. For Monte Carlo this leads to a realistic number of samples that should



Importance Sampling for Determining SRAM Yield and Optimization 47

be taken. We extended this to Importance Sampling (IS). IS was applied to estimate
fail probabilities Pfail � 10�10 of SRAM characteristics like Static Noise Margin
(SNM) and Read Current (Iread). We also applied IS to minimise the access time of
an SRAM block while guaranteeing that the fail probability of one block is small
enough.
In our experiments we used a fixed distribution g in the parameter space. In [6] ideas
with an adaptively determined distribution g can be found.
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