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Abstract We consider model order reduction of integrated circuits with semicon-
ductors modeled by modified nodal analysis and drift-diffusion (DD) equations. The
DD-equations are discretized in space using a mixed finite element method. This
discretization yields a high dimensional, nonlinear system of differential-algebraic
equations. Proper orthogonal decomposition is used to reduce the dimension of this
model. Since the computational complexity of the reduced order model through the
nonlinearity of the DD equations still depends on the number of variables of the full
model we apply the discrete empirical interpolation method to further reduce the
computational complexity. We provide numerical comparisons which demonstrate
the performance of this approach.

1 Introduction

In this article we investigate model order reduction (MOR) based on proper
orthogonal decomposition (POD) for semiconductors in electrical networks using
discrete empirical interpolation method (DEIM) to treat the reduction of nonlinear
components. Electrical networks can be modeled efficiently by a differential-
algebraic equation (DAE) which is obtained from modified nodal analysis. Often
semiconductors themselves are modeled by electrical networks. These models are
stored in a library and are stamped into the surrounding network in order to create
a complete model of the integrated circuit. In [7] POD-based MOR (POD-MOR)
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is proposed to obtain a reduced surrogate model conserving as much of the drift-
diffusion (DD) structure as possible in the reduced order model (ROM). This
approach in [6] is extended to parametrized electrical networks using the greedy
sampling proposed in [9]. Advantages of the POD approach are the higher accuracy
of the model and fewer model parameters. On the other hand, numerical simulations
are more expensive. For a comprehensive overview of the DD equations we refer to
[2, 8, 11].

This paper is organized as follows. We describe the unreduced model in Sect. 2.
In Sect. 3, we present the MOR method based on snapshot POD combined with
DEIM. In Sect. 4 we present numerical experiments, and also discuss advantages
and shortcomings of our approach.

2 Discretized Coupled Model

Using the notation introduced in [5,13] the finite element method (FEM) discretiza-
tion of one semiconductor with domain ˝ � R

d (d D 1; 2; 3) in an electrical
network leads to a nonlinear, fully coupled DAE system of the form

AC
d

dt
qC .A

>
C e.t/; t/C ARg.A

>
Re.t/; t/CALjL.t/CAV jV .t/

CASjS.t/C AI is.t/ D 0; (1)

d

dt
�L.jL.t/; t/ � A>

Le.t/ D 0; (2)

A>
V e.t/ � vs.t/ D 0; (3)

qS.t/ � dg 

dt
.t/ D 0; (4)

jS .t/ � C1Jn.t/ � C2Jp.t/ � C3qS.t/ D 0; (5)
0
BBBBBBBB@

0

�ML
dn
dt
.t/
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0
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p.t/

g .t/

Jn.t/
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1
CCCCCCCA

C F.n.t/; p.t/; g .t// � b.e.t// D 0; (6)

compare Fig. 1, and see [6, 7]. Here, (1)–(3) describe the electrical network with
unknown node potentials e, and branch currents jL of inductive, and jV of voltage
source branches, respectively. Equations (4)–(5) are discretized coupling conditions.
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Fig. 1 Basic test circuit with one diode. The network is described by

AV D �
1; 0

�>

;

AS D ��1; 1
�>

;

AR D �
0; 1

�>

;

g.A>

R e; t/ D 1

R
e2.t/:

The vector-valued function  contains the weights for the ansatz functions 'i in the
Galerkin ansatz

 h.t; x/ D
NX
iD1

 i .t/'i .x/; x 2 ˝; (7)

for the discretized potential of the semiconductor. Here, h denotes the discretization
parameter and N denotes the number of finite elements. The discretized electron
and hole concentrations nh.t; x/ and ph.t; x/, the electric field �gh .t; x/ and the

current densities J hn .t; x/ and J hp .t; x/ are defined likewise. The incidence matrix
A D ŒAR;AC ;AL;AV ;AI ; AS � represents the network topology and is defined as
usual. The matrices AFEM andML are large and sparse. The voltage sources vs and
current sources is are considered as inputs of the network.

3 Model Order Reduction

We use POD-MOR applied to the DD part (6) to construct a dimension-reduced
surrogate model for (1)–(6). For this purpose we run a simulation of the unreduced
system and collect l snapshots  h.tk; �/, nh.tk; �/, ph.tk; �/, gh .tk; �/, J hn .tk; �/,
J hp .tk ; �/ at time instances tk 2 ft1; : : : ; tlg � Œ0; T �. The optimal selection of
the time instances is not considered here. We use the time instances delivered by
the DAE integrator. The snapshot variant of POD introduced in [12] finds a best
approximation of the space spanned by the snapshots w.r.t. to the considered scalar
product.

Since every component of the state vector z WD . ; n; p; g ; Jn; Jp/ has its own
physical meaning we apply POD-MOR to each component separately. Among other
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things this approach has the advantage of yielding a block-dense model and the
approximation quality of each component is adapted individually.

The time-snapshot POD procedure delivers Galerkin ansatz spaces for  , n,
p, g , Jn and Jp and we set  POD.t/ WD U � .t/, nPOD.t/ WD Un�n.t/; : : :.
The injection matrices U 2R

N�s , Un 2R
N�sn ; : : :, contain the (time indepen-

dent) POD basis functions, and the vectors �.�/ the corresponding time-variant
coefficients. The numbers s.�/ denote the respective number of POD basis functions
included. Assembling the POD system yields the ROM

AC
d

dt
qC .A

>
C e.t/; t/C ARg.A

>
Re.t/; t/C ALjL.t/C AV jV .t/

CASjS.t/C AI is.t/ D 0; (8)

d

dt
�L.jL.t/; t/ �A>

Le.t/ D 0; (9)

A>
V e.t/ � vs.t/ D 0;

(10)

qS.t/ � Ug 
dg 

dt
.t/ D 0;

(11)

jS .t/ � C1UJn�Jn.t/ � C2UJp�Jp .t/ � C3qS.t/ D 0;

(12)0
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�U>b.e.t// D 0;

(13)

with APOD D U>AFEMU and U D diag.U ; Un; Up; Ug ; UJn ; UJp /. All matrix-
matrix multiplications are calculated in an offline-phase. The nonlinear function
F has to be evaluated online which means that the computational complexity of
the ROM still depends on the number of unknowns of the unreduced model. The
nonlinearity in (13) is given by

U>F.U�.t// D

0
BBBBBBB@

0
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0
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FJn .Un�n.t/; Ug �g .t//

U>
Jp
FJp .Un�p.t/; Ug �g .t//

1
CCCCCCCA
;
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see e.g. [6]. The subsequent considerations apply for each block component of F .
For the sake of presentation we only consider the second block

U>
n„ƒ‚…

size sn�N
Fn„ƒ‚…

N evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (14)

and its derivative with respect to �p,

U>
n„ƒ‚…

size sn�N

@Fn

@p
.Un�n.t/; Up�p.t//

„ ƒ‚ …
size N�N , sparse

Up„ƒ‚…
size N�sp

:

Here, the matrices U.�/ are dense and the Jacobian of Fn is sparse. The evaluation of
(14) is of computational complexityO.N/. Furthermore, we need to multiply large
dense matrices in the evaluation of the Jacobian. Thus, the POD-MOR may become
inefficient.

To overcome this problem, we apply DEIM, proposed in [3], which we now
describe briefly. The snapshots  h.tk; �/, nh.tk ; �/, ph.tk; �/, gh .tk; �/, J hn .tk; �/,
J hp .tk ; �/ are collected at time instances tk 2 ft1; : : : ; tlg � Œ0; T � as before.
Additionally, we collect snapshots fFn.n.tk/; p.tk//g of the nonlinearity. DEIM
approximates the projected function (14) such that

U>
n Fn.Un�n.t/; Up�p.t// � U>

n Vn.P
>
n Vn/

�1P>
n Fn.Un�n.t/; Up�p.t//;

where Vn 2 R
N��n contains the first �n POD basis functions of the space spanned

by the snapshots fFn.n.tk/; p.tk//g associated with the largest singular values. The
selection matrixPn D �

e�1 ; : : : ; e��n

� 2 R
N��n selects the rows of Fn corresponding

to the so-called DEIM indices �1; : : : ; ��n which are chosen such that the growth of
a global error bound is limited and P>

n Vn is regular, see [3] for details.
The matrix Wn WD U>

n Vn.P
>
n Vn/

�1 2 R
sn��n as well as the whole interpolation

method is calculated in an offline phase. In the simulation of the ROM we instead
of (14) evaluate:

Wn„ƒ‚…
size sn��n

P>
n Fn„ƒ‚…

�n evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (15)

with derivative

W >
n„ƒ‚…

size sn��n

@P>
n Fn

@p
.Un�n.t/; Up�p.t//

„ ƒ‚ …
size �n�N , sparse

Up„ƒ‚…
sizeN�sp

:
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In the applied FEM a single functional component of Fn only depends on a
small constant number c 2 N components of Un�n.t/. Thus, the matrix-matrix
multiplication in the derivative does not really depend on N since the number of
entries per row in the Jacobian is at most c.

But there is still a dependence on N , namely the calculation of Un�n.t/. To
overcome this dependency we identify the required components of the vector
Un�n.t/ for the evaluation of P>

n Fn. This is done by defining selection matrices
Qn;n 2 R

c�n�sn , Qn;p 2 R
c�p�sp such that

P>
n Fn.Un�n.t/; Up�p.t// D OFn.Qn;nUn�n.t/;Qn;pUp�p.t//;

where OFn denotes the functional components of Fn selected by Pn restricted to the
arguments selected by Qn;n and Qn;p.

Supposed that �n � sn � N we obtain a ROM which does not depend onN any
more.

4 Numerical Investigation

The discussed method is implemented in CCC based on the FEM library
deal.II [1]. The high dimensional DAE is integrated using the DASPK software
package [10]. The derivative of the nonlinear functional is hard to compute and thus
we calculate the Jacobians by automatic differentiation with the package ADOL-
C [14]. The Newton systems which arise from the BDF method are solved with the
direct sparse solver SuperLU [4].

A basic test circuit with a single 1-dimensional diode is depicted in Fig. 1. The
parameters of the diode are summarized in [6]. The input vs.t/ is chosen to be
sinusoidal with amplitude 5 V. In the sequel the frequency of the voltage source
will be considered as a model parameter.

We first validate the ROM at a fixed reference frequency of 5 � 109 Hz. Figure 2
shows the development of the relative error between the POD reduced, the POD-
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DEIM reduced and the unreduced numerical solutions, plotted over the lack of infor-
mation� of the POD basis functions with respect to the space spanned by the snap-
shots. The figure shows that the approximation quality of the POD-DEIM reduced
model is comparable with the more expensive POD reduced model. The number of
POD basis functions s.�/ for each variable is chosen such that the indicated approx-
imation quality is reached, i.e. � WD � ' �n ' �p ' �g ' �Jn ' �Jp . The
numbers �.�/ of POD-DEIM basis functions are chosen likewise.

In Fig. 3 the simulation times are plotted versus the lack of information �.
The POD ROM does not reduce the simulation times significantly for the chosen
parameters. The reason for this is the dependency on the number of variables of
the unreduced system. Here, the unreduced system contains 1000 finite elements
which yields 12012 unknowns. The POD-DEIM ROM behaves very well and leads
to a reduction in simulation time of about 90% without reducing the accuracy of the
ROM. However, we have to report a minor drawback; not all tested ROMs converge
for large �.s/ � 3 � 10�5. This is indicated in the figures by missing squares.

In Fig. 4 we plot the corresponding total number of required POD basis functions.
It can be seen that with the number of POD basis functions increasing linearly, the
lack of information tends to zero exponentially. Furthermore, the number of DEIM
interpolation indices behaves in the same way.

In Fig. 5 we investigate the dependence of the ROMs on the number of finite
elements N . One sees that the simulation times of the unreduced model depends
linearly on N . The POD ROM still depends on N linearly with a smaller constant.
The dependence on N of our POD-DEIM implementation is negligible.
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Fig. 3 Time consumption for
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Finally, we in Fig. 6 analyze the behaviour of the models with respect to
parameter changes. We consider the frequency of the sinusoidal input voltage as
model parameter. The ROMs are created based on snapshots gathered in a full
simulation at a frequency of 5 � 109 Hz. We see that the POD model and the
POD-DEIM model behave very similarly. The adaptive refinement of the ROM is
discussed in [6].

Summarizing all numerical results we conclude that the significantly faster POD-
DEIM reduction method yields a ROM with the same qualitative behaviour as the
ROM obtained by classical POD-MOR.
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