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Abstract We study block preconditioning strategies for the solution of large sparse
complex coefficients linear systems resulting from the discretization of the time-
harmonic Maxwell equations by a high order discontinuous finite element method
formulated on unstructured simplicial meshes. The proposed strategies are based
on principles from incomplete factorization methods. Moreover, a complex shift
is applied to the diagonal entries of the underlying matrices, a technique that has
recently been exploited successfully in similar contexts and in particular for the
multigrid solution of the scalar Helmholtz equation. Numerical results are presented
for 2D and 3D electromagnetic wave propagation problems in homogeneous and
heterogeneous media.

1 Introduction

The present study is concerned with the development of a high-performance
numerical methodology for the computer simulation of time-harmonic electromag-
netic wave propagation problems in irregularly shaped domains and heterogeneous
media. In this context, we are naturally led to consider volume discretization
methods (i.e. finite difference, finite volume or finite element methods) as opposed
to surface discretization methods (i.e. boundary element method). Most of the
related existing works deal with the second-order form of the time-harmonic
Maxwell equations discretized by a conforming finite element method [14]. More
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recently, discontinuous Galerkin (DG) methods have also been considered for this
purpose (see [4–6]). Here, we concentrate on the first-order form of the time-
harmonic Maxwell equations discretized by a high order DG method formulated on
unstructured simplicial meshes. While it keeps almost all the advantages of the finite
element method (large spectrum of applications, complex geometries, etc.), the DG
method has other nice properties among which, an easy extension to higher order
interpolation, no global mass matrix to invert (when solving time-domain problems
using an explicit time scheme), easy handling of unstructured meshes, natural treat-
ment of discontinuous solutions and coefficient heterogeneities, nice parallelization
properties (the compact nature of a DG scheme is in favor of high computation to
communication ratio especially for high order interpolation methods).

The DG discretization of the first order form of the time-harmonic Maxwell
equations leads to a large sparse complex system of equations that exhibits a block
structure which is linked to the use of a polynomial interpolation method for the
approximation of the electromagnetic field within a mesh element. For moderately
large 2D problems, this system can be efficiently solved by an optimized sparse
solver such as MUMPS [1]. However, for large 2D problems or for 3D problems,
such a solution strategy is simply not feasible. In [8], a hybrid iterative-direct solver
is proposed for the solution of the linear system resulting from the DG discretization
of the 3D time-harmonic Maxwell equations. At the discrete level, this domain
decomposition solver combines an iterative solver acting on a reduced linear system
of equations involving interface unknowns, with a sparse direct solver within each
subdomain. For moderately large 3D problems and for the lowest interpolation
degrees (i.e. 0-th and 1-st order) in the DG method, the resulting hybrid iterative-
direct solver is a viable solution strategy. However, for very large problems and for
high interpolation degrees, the size of the subdomain problems prohibits the use
of a sparse direct solver. Besides, increasing the number of subdomains to reduce
the size of the local problems is generally not a proper approach since this incurs
numerical scalability issues which have not been investigated so far for optimized
Schwarz methods.

In this paper we will discuss an alternative way of solving the discretized
time-harmonic Maxwell equations. Our approach is mainly based on the rela-
tions between the second order Maxwell equations and Helmholtz equations. For
Helmholtz equations, recently numerical methods have been presented that are
based on the shifted Laplacian [2, 9, 12, 13]. I.e., first an artificial damping is intro-
duced into the equations which results in an additional imaginary shift. Then the
numerical approximation is computed for the shifted system instead of the original
system. Finally, the approximation is applied to the original equations. For the first
order time-harmonic Maxwell equations an analogous perturbation is performed
that implicitly shifts the second order systems. The numerical approximation we
apply to the shifted system is based on a multilevel block incomplete factorization
that uses a pivoting strategy to deal with small pivots. Furthermore, our block
factorization approach is designed to deal with large blocks in order to preserve
the natural block structure which is obtained from the DG discretization. Numerical
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experiments confirm that this approach is able to efficiently solve the time-harmonic
Maxwell equations.

2 The Continuous Problem

We consider solving the normalized time-harmonic Maxwell equations in the first
order form:

i!"rE � curl H D �JE ; i!�r H C curl E D 0; (1)

where E and H are the unknown electric and magnetic fields and JE is a known
current source; "r and �r respectively denote the relative electric permittivity and
the relative magnetic permeability and we assume here the case of a linear isotropic
non-magnetic (i.e. �r D 1) media. The relative electric permittivity is linked to
its absolute value through " D "r"0 where "0 is the permittivity of the vacuum.
The angular frequency of the problem is given by !. In the normalization of the
equations, the electric field is unchanged, the magnetic field is given by H D z0H
where z0 D p

�0="0. With this choice, the electric and magnetic fields have the
same unit i.e. V/m. Besides, ! D !=c0 where c0 D 1=

p
�0"0. Equations (1) are

solved in a bounded domain ˝ . On the boundary @˝ D �a [ �m, the following
boundary conditions are imposed:

- a perfect electric conductor (PEC) condition on �m W n � E D 0;

- a Silver-Müller absorbing condition on �a W L .E; H/ D L .Einc; Hinc/;

(2)

where L .E; H/ D n � E � Zn � .H � n/ with Z D p
�r ="r . The vectors

Einc and Hinc represent the components of an incident electromagnetic wave and n
denotes the unit outward normal. Equations (1) and (2) can be further rewritten in the
form: 8

ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

i!G0W C Gx@xW C Gy@yW C Gz@zW D �J in ˝;

.M�m � Gn/W D 0 on �m;

.M�a � Gn/.W � Winc/ D 0 on �a;

(3)

where W D .E; H/T is the new unknown vector, J D .JE; 0/T and:
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�
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with l 2 fx; y; zg while .ex; ey; ez/ is the canonical basis of R
3, and v D

.vx; vy; vz/
T . I3 is the identity matrix, and 03 the null matrix, both of dimension
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3 � 3. The real part of G0 is symmetric positive definite and its imaginary part,
which appears in the case of conductive materials, is symmetric negative. In the
following we denote by Gn the sum Gxnx C Gyny C Gznz and by GC

n and G�
n its

positive and negative parts.1 We also define jGnjD GC
n � G�

n . In order to take
into account the boundary conditions, the matrices M�m and M�a are given by

M�m D
�

03 Nn

�N T
n 03

�
and M�a D jGnj.

3 Discretization by a Discontinuous Galerkin Method

Let ˝h denote a discretization of the domain ˝ into a union of conforming simpli-
cial elements K . We look for the approximate solution Wh of (3) in Vh � Vh where
the functional space Vh is defined by Vh D fU 2 ŒL2.˝/�3 = 8K 2 ˝h; UjK 2
Pp.K/g, where Pp.K/ denotes a space of vectors with polynomial components of
degree at most p over the element K . The DG discretization of system (3) yields
the formulation of the discrete problem which aims at finding Wh in Vh � Vh such
that:

8
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.MF;K � IFKGnF

/Winc

�T

Vds; 8V 2 Vh � Vh;

(4)

where � 0, � a and � m respectively denote the set of interior (triangular) faces, the
set of faces on �a and the set of faces on �m. The unitary normal associated with the
oriented face F is nF and IFK stands for the incidence matrix between oriented
faces and elements whose entries are equal to 0 if the face F does not belong
to element K , 1 if F 2 K and their orientations match, and �1 if F 2 K and
their orientations do not match. For F D @K \ @ QK , we also define ŒŒV�� D IFKVjK C

1If T�T �1 is the eigendecomposition of Gn, then G˙

n D T�˙T �1 where �C (respectively ��)
only gathers the positive (respectively negative) eigenvalues.



Block Preconditioning Strategies for High Order Finite Element Discretization 29

IF QKVj QK and fVg D 1
2

�
VjK C Vj QK

�
. Finally, the matrix SF , which is hermitian

positive semi-definite, permits to penalize the jump of a field or of some components
of this field on the face F , and the matrix MF;K insures the asymptotic consistency
with the boundary conditions of the continuous problem. Problem (4) is often
interpreted in terms of local problems in each element K of ˝h coupled by the
introduction of an element boundary term called numerical flux (see also [11]). We
refer to [7] for all the details on the various terms involved in this DG formula-
tion. Within each mesh element K the electromagnetic field .E; H/T is approxi-
mated as:

.Eh/jK D
dKX

iD1

EK
i 'K

i and .Hh/jK D
dKX

iD1

HK
i 'K

i (5)

where EK
i and HK

i are the vectors of local degrees of freedom corresponding to
the basis expansion f'K

i giD1;��� ;dK of Pp.K/. In the present study, we adopt the
classical Lagrange nodal basis functions defined on a simplex and we assume that
the interpolation degree is uniform (i.e. the same for all the elements of the mesh).
Then the resulting method is denoted as DG-Pp.

4 Block Preconditioning

The DG discretization of the system of time-harmonic Maxwell equations (3)
leads to a large sparse complex linear system of equations of the form A Wh �
.i!M C C / Wh D b, where !M refers to the discretization of the term:

Z

˝h

.!G0Wh/T Vdv

in (4), while C represents the discretization of the curl operators and the boundary
conditions for the remaining integrals on the left hand side of (4). For the numerical
treatment we assume that the sign of the first equation of the time-hamonic Maxwell
equations is flipped to �i!"r E C curl H D CˇE!"r E C J and consistently changed
in G0; Gˇ; Gx; Gy; Gz. Then the matrices M and C become symmetric, thus A is
complex symmetric. The matrix of this system exhibits a block structure which is
linked to the polynomial approximation of the electromagnetic field within a mesh
element (5). Up to a permutation which is induced by first taking the contributions
with respect to E and then the H part we find that:

M D
��M�r 0

0 M�r

�
; C D

��CEE C T
HE

CHE CHH

�
;

where M�r and M�r are real symmetric positive definite block diagonal matrices
whose block elements are the local mass matrices computed in each element K .
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Computing a preconditioner based on an incomplete factorization of A happens to
be prohibitively expensive. Therefore we shift the initial system by:

!

��ˇEM�r 0

0 ˇHM�r

�
;

where ˇE; ˇH are chosen appropriately. This precisely refers to adding artificially
�ˇE!"r E and �ˇH!�r H to the right-hand side of (1). With respect to E this can
be interpreted as artificial conductivity. We propose three different variants of block
preconditioning. The first version consists of choosing ˇE D ˇH D ˇ and applying
our preconditioner to the shifted system:

P1 D ˇ!M C A :

The second and third variant are best understood as a discrete analogy of eliminating
the magnetic field H from the second equation of the perturbed form of (1) and
inserting it into the first equation of (1). The resulting equation thus reduces to:

1

!.i C ˇH/

�
�.1 � ˇEi/.1 � ˇHi/!2�r E C curl.

1

�r

curl E/

�
D �J:

This is essentially a vector-valued Helmholtz equation, where the operator is shifted
by a multiple of the mass matrix. The discrete analogy can be described by
eliminating the H part from ˇ!M C A by one block elimination step:

��!.i C ˇE/M�r � CEE C T
HE

CHE !.i C ˇH/M�r C CHH

�
!

S D �!.i C ˇE/M�r � CEE � C T
HE

�
!.i C ˇH/M�r C CHH

��1
CHE:

For the second variant block preconditioning we use ˇ D ˇE D ˇH to obtain the
reduced system P2. This can be read as first shifting and then eliminating. Finally
for the third variant we proceed analogously to the second one except that we first
eliminate H from the unshifted system A and then shift the reduced system by
�ˇ!M�r , i.e., we choose ˇ D ˇE and ˇH D 0 in order to obtain the reduced
system P3. According to the work by Magolu [13], Erlangga et al [10], shifting the
operator with a real-valued ˇ significantly improves incomplete LU preconditioning
and multilevel preconditioning. For preconditioning we apply the inverse-based
multilevel block ILU [3], as implemented in ILUPACK.2 Its hallmark is the strategy
of keeping the inverse triangular factors below a given bound �. In order to deal with
indefinite systems, a block factorization approach is used based on a symmetrized
maximum weight matching (see [2] for details).

2http://ilupack.tu-bs.de.
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Table 1 Direct solver
PARDISO applied to A

Computation time nz.LU /

nz.A/

5:2 � 103 90:4

Table 2 Multilevel block ILU applied to P1 D A C ˇ!M

ˇ ILU[sec] nz.ILU /

nz.A/
Levels SQMR[sec] Steps

1.5 8:8 � 102 11.7 5 3:2 � 103 620
3.0 1:7 � 102 5.4 4 1:7 � 103 387
5.0 1:0 � 102 6.2 2 2:4 � 103 574

10.0 4:6 � 101 3.3 1 1:9 � 103 1,035

Table 3 Multilevel block ILU for the reduced system P2 of A C ˇ!M after
eliminating the E part first

ˇ ILU[sec] nz.ILU /

nz.A/
Levels SQMR[sec] Steps

1.5 3:6 � 102 9.9 6 1:7 � 103 398
3.0 1:4 � 102 5.2 2 9:8 � 102 302
5.0 8:5 � 101 4.3 2 1:9 � 103 613

10.0 3:9 � 101 1.9 1 1:0 � 103 842

Table 4 Multilevel block ILU for the reduced system P3 of A after eliminating
the E part first and then shifting by ˇ!M�r

ˇ ILU[sec] nz.ILU /

nz.A/
Levels SQMR[sec] Steps

1.5 4:9 � 102 15.2 8 9:7 � 103 1,773
3.0 3:5 � 102 9.2 5 1:9 � 103 452
5.0 2:6 � 102 6.7 4 1:3 � 103 337

10.0 1:6 � 102 6.0 3 1:2 � 103 325

Table 5 Multilevel block ILU applied to P1 D A C ˇ!M with ! D 9:41, ! D 37:64

! D 9:41 ! D 37:64

ˇ ILU[sec] nz.ILU /

nz.A/
Lev. SQMR[sec] Steps ILU[sec] nz.ILU /

nz.A/
Lev. SQMR[sec] Steps

0.75 – 8:6 � 102 11.2 5 4:0 � 103 813
1.5 – 1:4 � 102 5.4 4 2:4 � 103 607
3.0 9:1 � 102 11.9 5 3:1 � 103 613 7:2 � 101 4.8 2 4:3 � 103 1,174
5.0 6:5 � 102 6.5 4 1:6 � 103 383 4:7 � 101 3.2 1 2:8 � 103 1,762

10.0 1:0 � 102 6.3 2 2:1 � 103 489 –
20.0 4:6 � 101 3.2 2 2:5 � 103 893 –

5 Numerical Results

We now present the impact of shifting the initial system by a multiple of the mass
matrix for a 3D problem discretized by a DG-P1 method. The problem under consid-
eration is the scattering of a plane wave by a perfectly conducting unit sphere. The
frequency of the incident plane wave of frequency f D 900 MHz and thus, we have
! D 18:84 (after renormalization of the Maxwell equations). The computational
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domain is defined as the free space between the perfectly conducting sphere and an
outer sphere on which the Silver-Müller absorbing condition is applied. We have
used an unstructured tetrahedral mesh consisting of 46;704 tetrahedral elements.
This yields a complex symmetric system of size n D 1;120;896. The computations
were performed on a workstation equipped with an Intel Xeon E7440 CPU with
frequency 2.4 GHz and 64 GB of memory. For the ILU we use a drop tolerance
of 10�2 but limit the maximum amount of fill per row by 10� the number of
nonzeros per row in A . We use an inverse bound of � D 5 for inverse-based
pivoting. As iterative solver we use the simplified QMR method which allows
for the use of (complex) symmetric systems and preconditioners. The iteration is
stopped, whenever the backward error satisfies kAx � bk � 10�6.kAk kxk C kbk/.
As comparison we also add numerical results of the direct solver PARDISO3 (see
Table 1). The numerical results in Tables 2–4 confirm the efficiency of our shifted
multilevel block ILU approach. They illustrate that shifting the initial system is
essential for the ILU. If the shift is too small then the fill would increase drastically
if there were no limit imposed. On the other hand, shifting the system too much turns
the preconditioned system away from the original system. A similar observation is
made in Table 5 when we halve (resp. double) ! but reverse the shifts.
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