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Abstract In previous work it is shown how to numerically improve the ESVDMOR
method of Feldmann and Liu to be really applicable to linear, sparse, very large
scale, and continuous-time descriptor systems. Stability and passivity preservation
of this algorithm is also already proven. This work presents some steps towards a
global a priori error estimation for this algorithm, which is necessary for a fully
automatic application of this approach.

1 Motivation

Although model order reduction (MOR) for linear time invariant (LTI) systems is
a well investigated area of research [1], most of the established approaches, e.g.,
Krylov subspace methods or balanced truncation methods [7], are not able to work
on systems with a lot of input and output terminals. They are not easily reducible,
especially really large scale ones. ESVDMOR is, besides other approaches [5], a
MOR approach to reduce linear systems with a large number of terminals [2–4, 6].
Within the algorithm, approximation errors are caused at different steps. The
magnitude of these errors can be influenced with the help of different decisions.
Some of the correlations between these decisions and the influence on the results
are well known, but a closed error analysis for the ESVDMOR approach does
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not yet exist. For efficient reduction which meets the requirements placed on the
reduced order model, the knowledge about this correlations is of essential relevance.
The goal is to get a reduced model which is as small as possible and at the same
time as good as necessary. This knowledge is essential for the industrial usage of
MOR algorithms. In Sect. 2 we briefly repeat required basic knowledge including
the steps of SVDMOR and ESVDMOR. We emphasize those steps which cause an
approximation error in some way. The following section deals with the single errors
and the known theory. We combine all influences, firstly with a lot of assumptions
and for the easy cases and later for more complicated models, to get ideas about a
global error bound for the ESVDMOR approach.

2 (E)SVDMOR Basics Including Error Sources

Starting point is a given (mostly by modeling in circuit simulation but also in
mechanical, biological, and chemical applications) linear time-invariant continuous-
time descriptor system

C Px.t/ D �Gx.t/ C Bu.t/; x.0/ D x0;

y.t/ D Lx.t/;

(1)

where C; G 2 R
n�n, B 2 R

n�min , L 2 R
mout�n. Vector x.t/ 2 R

n contains the
descriptor variables, u.t/ 2 R

min is the vector of inputs, y.t/ 2 R
mout is the output

vector, and x0 2 R
n is the initial value. The value n is called order of (1) defined

by the number of descriptor variables and min and mout denote the number of I/O
terminals, respectively. System (1) has the following transfer function in frequency
domain:

H.s/ D L.sC C G/�1B; (2)

which we get from (1) for x0 D 0 by applying the Laplace transform. Like
mentioned in Sect. 1 we want to investigate systems with

min=out � n:

Further on, we define the i -th block moment of (2) as mi D L.�G�1C /iG�1B ,
i D 0; 1; : : : ; in terms of mi as an mout �min matrix. These moments are equal to the
coefficients of the Taylor series expansion of (2) about s0 D 0, H.s/ D P1

iD0 mis
i :

For s0 ¤ 0 this leads to frequency shifted moments defined as

mi.s0/ D L.�.s0C C G/�1C /i .s0C C G/�1B; i D 0; 1; : : :
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Thus, the Taylor series expansion including these moments is

H.s/ D
1X

iD0

mi.s � s0/
i :

To allow terminal reduction for inputs and outputs separately, w.l.o.g. we use
r different (frequency shifted) block moments forming two moment or ansatz
matrices, the input response matrix MI and the output response matrix MO , as
follows:

MI D

2

6
6
6
4

m0

m1
:::

mr�1

3

7
7
7
5

; MO D

2

6
6
6
4

m0
T

m1
T

:::

mr�1
T

3

7
7
7
5

: (3)

It is also possible to use different numbers of block moments to create MI and MO .
The number r is the first possibility to influence the accuracy of the reduced model.
For simplicity, we assume the number of rows in MI and MO of (3) to be larger
than the number of columns, i.e., r �mout � min and r �min � mout. If not, r has to be
increased. Applying the SVD to these matrices, we obtain a low rank approximation

MI � UIri
˙Iri

V T
Iri

and MO � UOro
˙Oro

V T
Oro

; (4)

which causes an approximation error. The matrices ˙Iri
and ˙Oro

are ri � ri and
ro � ro diagonal matrices, VIri

and VOro
are min � ri and mout � ro isometric matrices

that contain the dominant column subspaces of MI and MO , and UIri
and UOro

are r � mout � ri and r � min � ro isometric matrices that are not used any further.
The values ri � min and ro � mout denote the numbers of significant singular
values (SV) as well as the numbers of the virtual input and output terminals of the
terminal reduced order model. Due to the fact that the important information about
the dependencies of the I/O-ports is hidden in the matrices V T

Iri
and V T

Oro
, we use

these matrices to find the searched approximate factorization of B and L. Hence,
B D BI � B.VIri

V C
Iri

/, where I denotes the identity matrix and ./C denotes
the Moore-Penrose pseudoinverse. Using the properties of this pseudoinverse and
.V T

Iri
VIri

/�1 D I leads to B � BVIri
.V T

Iri
VIri

/�1V T
Iri

D BVIri
V T

Iri
. Defining a

matrix Br as Br WD BVIri
we finally get the approximation B � BrV

T
Iri

. Equivalent

arguments lead to L � VOro
Lr with Lr D V T

Oro
L. The approximation errors

which appear in these equations are very important, see Sect. 3. Plugging in these
approximations in (2), we consequently get a new internal transfer function Hr.s/

by using the approximation

H.s/ � bH.s/ D VOro
Lr.G C sC /�1Br„ ƒ‚ …

WDHr .s/

V T
Iri

:
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This terminal reduced transfer function Hr.s/ can be further reduced to

QHr.s/ D QLr. QG C s QC /�1 QBr � Hr.s/ (5)

by any established MOR method. Balanced truncation approaches are advantageous
as there exists a well known error theory, see Sect. 3. We end up with a very compact
terminal reduced and reduced-order model QHr.s/, i. e.

H.s/ � bH.s/ D VOro
Hr.s/V T

Iri
� bH r.s/ D VOro

QHr.s/V T
Iri

: (6)

3 Bounds for Particular Approximation Errors and Global
ESVDMOR Error Bound

In this section we recall known facts about the errors mentioned in Sect. 2. We give
ideas how to connect these errors to a global error bound for ESVDMOR. To get an
appropriate entrance in the subject matter we recall two needed matrix norms.

Definition 1 (Spectral norm). The spectral norm of the transfer function (2) is
induced by the Euclidean vector norm and defined as

jjH.s/jj2 D
p

�max.H.s/H H.s//;

where H H denotes the conjugate transpose of H and �max denotes its largest
eigenvalue.

Another very useful and important norm is based on the Hardy Space theory.

Definition 2 (H1-norm). Let CC be the open right half plane. The H1-norm of
the transfer function (2) is defined as

jjH jjH1
D sup

s2CC

�max.H.s// D sup
s2CC

jjH.s/jj2; (7)

where �max denotes the largest singular value. Because of the maximum modulus
theorem we can express (7) as jjH jjH1

D sup
!2R

�max.H.i!//:

3.1 Particular Error Bounds

Equation (4) describes a truncated singular value decomposition (SVD). We know
the error caused by a SVD of MI is

eMI D
�
�
�MI .r/ � UIri

˙I
ri

V T
Iri

�
�
�

2
D �I

ri C1;



Some Remarks on A Priori Error Estimation for ESVDMOR 19

where
˙I D diag.�I

i / � ˙I
ri

D diag.�I
j /;

with i D 1; : : : ; min and j D 1; : : : ; ri , and �I
1 � : : : � �I

ri
� �I

riC1
� : : : �

�I
min

� 0: The same applies to MO . Here, the notation MI .r/ expresses the
dependency on the number r of used block moments mi .
Another well known error can be found in (5) if we use a suitable method which
gives the information, e. g., balanced truncation (BT) methods. The use of these
methods leads to a reduction based on the truncation of the so called Hankel SVs.
Provided that G is invertible, we get these values by balancing the controllability
and the observability Gramian of Hr in the following form:

P D Q DW
�

˙1

˙2

�

D diag. O�1; : : : ; O�n/:

Due to storage, efficiency and accuracy reasons usually one computes approximate
low rank factors P � PC P T

C and Q � QC QT
C . Using these factors, we compute a

singular value decomposition of the form

QT
C CPC D �

U1 U2

�
�

˙1 0

0 ˙2

� �
V T

1

V T
2

�

:

Now we define the balancing transformations

Tl D QC U1˙
�1=2
1 and Tr D PC V1˙

�1=2
1 ;

where ˙
�1=2
1 D diag. 1p O�1

; : : : ; 1p
O�l

/, such that we are able to compute the reduced

system as
. QC; QG; QBr; QLr/ WD .T T

l C Tr; T T
l GTr; T T

l Br ; LrTr/:

The error for this square root variant of balanced truncation is bounded by

�
�Hr � QHr

�
�

H1

� 2

nX

kDlC1

O�k D ı; (8)

in case we keep the l largest O�i . A proof can be found, e.g., in [1]. Figure 1 shows
a system with n D 500 states, min D 5 inputs, mout D 10 outputs and it is reduced
to order l D 60. The computed error bound is ı D 9:796 � 10�3. The error does not
even reach the bound.

3.2 Total Error Bound

Due to (6) and the triangle inequality the total ESVDMOR error in spectral norm on
the imaginary axis can be expressed locally as
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Fig. 1 Absolute error of a BT reduced system

etot D
�
�
�H.i!/ � OHr.i!/

�
�
�

2
�
�
�
�H.i!/ � OH.i!/

�
�
�

2„ ƒ‚ …
Deout

C
�
�
� OH.i!/ � OHr.i!/

�
�
�

2„ ƒ‚ …
ein

:

(9)
The BT part (the error caused by the inner reduction ein) follows from (6), (8), (9)

ein D
�
�
�VOro

Hr.s/V T
Iri

� VOro
QHr.s/V T

Iri

�
�
�

2
D �
�Hr.s/ � QHr .s/

�
�

2
� ı;

due to the fact the spectral norm is invariant under orthogonal transformations. The
terminal reduction part, also called outer reduction error eout, turns out to be more
complicated. To keep things simple we assume dealing with RLC circuits only, i. e.,
min D mout D m, L D BT , and, if s0C CG � 0, consequently H.s/ D H.s/T . Due
to symmetry, MI D MO D U˙V T , and also VI D VO D V . Moreover U D V

holds in the SVDMOR case, which means that there is only one mi in the ansatz
matrices (r D 1), e.g. m0 and s D s0 2 R such that

MI D M T
O D m0 D BT .s0C C G/�1B D U˙V T D U˙U T � Ur˙rU

T
r :

The local terminal reduction error eout then is

eout D
�
�
�H � OH

�
�
�

2
D �

�BT .s0C C G/�1B � Ur BT
r .s0C C G/�1BrV

T
r

�
�

2
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(U=V)D �
�BT .s0C C G/�1B � Ur U T

r BT .s0C C G/�1BUr U T
r

�
�

2

D �
�U˙U T � UrU

T
r U˙U T UrU

T
r

�
�

2
D �
�U˙U T � Ur˙r U T

r

�
�

2

(SVD)D �
I=O

kC1
;

if we keep k singular values or terminals. The total error in the SVDMOR case in
spectral norm then is

etot � �
I=O

kC1 C 2

nX

j DlC1

O�j : (10)

In the ESVDMOR case we allow r � 1 (r times mi within the ansatz matrices), for
simplicity let us assume r D 3 and m0, m1, and m2. Thus,

MI D
0

@
m0

m1

m2

1

A D
0

@
U .1/

U .2/

U .3/

1

A˙V D

0

B
@

U
.1/
1 U

.1/
2

U
.2/
1 U

.2/
2

U
.3/
1 U

.3/
2

1

C
A

�
˙1 0

0 ˙2

��
V T

1

V T
2

�

DW 	U1 U2



�

˙1 0

0 ˙2

��
V T

1

V T
2

�

;

where the row partitioning in U is as in MI ; MO and the column partitioning refers
to the number of kept singular values, call this number k. We get mj D U .j /˙V T ,
j D 1; 2; 3, (which is not an SVD as U .j / is not orthogonal, but kU .j /k2 � 1 holds.)
Thus we can write

H.s/ � OH .s/ D
1X

j D0

.mj � Omj /.s � s0/
j

D .m0 � Om0/ C .m1 � Om1/.s � s0/ C .m2 � Om2/.s � s0/
2 C O.s � s0/3:

We are now able to bound the first expressions. We write P1 D V1V
T

1 , hence I �
P1 D V2V T

2 , thus,

mj � Omj D mj � P1mj P1 D U .j /˙V T � P1U .j /˙V T V1V T
1

D U .j /

 
˙1 0

0 ˙2

! 
V T

1

V T
2

!

� P1U
.j /

 
˙1 0

0 ˙2

! 
Ik

0

!

V T
1

D U .j /

 
˙1 0

0 0

! 
V T

1

V T
2

!

C U .j /

 
0 0

0 ˙2

! 
V T

1

V T
2

!

� P1U
.j /

 
˙1

0

!

V T
1

„ ƒ‚ …

D

0

@
˙1 0

0 0

1

A

0

@
V T

1

V T
2

1

A
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D U .j /

 
0 0

0 ˙2

!

V T C .I � P1/U
.j /

 
˙1

0

!

V T
1

D U .j /

 
0 0

0 ˙2

!

V T C V2V T
2 U .j /

 
˙1

0

!

V T
1 DW ej;1 C ej;2:

We can now express the error as follows:

H.s/ � OH .s/ D e0;1 C e1;1.s � s0/ C e2;1.s � s0/2

Ce0;2 C e1;2.s � s0/ C e2;2.s � s0/2 C O.s � so/3;

where, when taking norms, and using kU .j /k2 � 1, kV T k2 D 1,

kej;1k2 � �kC1:

Unfortunately, the terms kej;2k2 can not be bounded in a meaningful way. But if
�kC1 were zero, then V2V

T
2 projects onto the nullspace of MI , so that if �kC1 is

small enough, V2V
T

2 is still an orthoprojector onto the joint approximate nullspace
of the first r moments. That is, the error, up to order r �1, is essentially contained in
the nullspace of the first r moments. Future investigations will focus on exploiting
this fact to get a general a priori error bound.

4 Conclusions

In this rather theoretical work we explain and reveal all important matters to get
an error bound for the ESVDMOR approach. Although, we are not able to find a
universal total error bound in all cases, in (10) we find an expression for the total
error in spectral norm. With the help of the results in [8], which states that for some
linear RLC circuits jjH jjH1

D jjH.0/jj2, our results are interesting and provide a
total a priori SVDMOR error bound in H1-norm, as

�
�
�H � bH r

�
�
�

H1

D sup
!2R

�
�
�H.i!/ � bH r.i!/

�
�
�

2
D
�
�
�H.0/ � bH r.0/

�
�
�

2

(10)� �
I=O

kC1
C2

nX

j DlC1

O�j ;

for these circuits.
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