A Boundary Conformal DG Approach
for Electro-Quasistatics Problems

A. Frohlcke, E. Gjonaj, and T. Weiland

Abstract A boundary conformal technique for solving three dimensional electro-
quasistatic problems with a high order Discontinuous Galerkin method on Cartesian
grids is proposed. The method is based on a cut-cell approach which is applied
only on elements intersected by curved material boundaries. A particular numerical
quadrature technique is applied which allows for an accurate integration of the
finite element operators taking into account the exact geometry of the cut-cells. Two
numerical examples are presented which demonstrate the optimal convergence rate
of the method for arbitrary geometry.

1 Introduction

Staircase discretization errors for Finite Difference (FD) type discretizations
on Cartesian grids represent a serious limitation on the accuracy of numerical
simulations. Major efforts have been made by several authors to overcome this
difficulty. Among others, the Partially Filled Cell approach for the Finite Integration
Technique [1] and the Dey-Mittra conformal boundary algorithm for the Finite
Difference Time Domain method [2] have been proposed. These techniques can
reduce staircasing errors at curved material boundaries by incorporating explicit
information on the boundary geometry into the numerical scheme. Unfortunately,
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these techniques are designed specifically for low order discretizations. Indeed,
high order FD methods rely on a large spatial stencil which makes the
implementation of conformal boundary conditions cumbersome and numerically
inefficient.

Finite Element Methods (FEM) on unstructured boundary fitted grids, on the
other hand, are free of staircasing errors. These methods do provide an improved
geometrical flexibility compared to FD methods. In addition, compact stencil and
high order accuracy FEM can be easily formulated for a variety of electromagnetic
field problems. The price due for this flexibility is a reduced numerical efficiency
compared to simple FD schemes. This is directly related to the use of unstructured
grids which leads to a more complicated data storage and access pattern in FEM-
based computations. Furthermore, the numerical effort for generating boundary
fitted unstructured grids for complex geometries can be extremely high.

In this paper, we propose a discrete formulation which combines the accuracy of
high order approximations with the simple implementation and numerical efficiency
of Cartesian grids. The basic idea is illustrated in Fig. 1 where a computational
domain containing a single material block is discretized by a regular Cartesian
grid. The material boundary subdivides several grid cells into sub-cells which are
associated with (at least) two different sets of material parameters. In the following,
we will refer to them as cut-cells. The challenge consists in deriving an appropriate
numerical approximation within these cells. Since no general set of basis functions
satisfying continuity conditions can be defined for an arbitrarily shaped cut-cell, the
standard FEM formulation cannot be applied. Instead, we propose a formulation
based on the high order Discontinuous Galerkin (DG) method.

As implied by the figure, the paper refers primarily to electro-quasistatics
problems characterized by material parameters such as the dielectric permittivity €
and the electrical conductivity k. However, the proposed discretization approach can
be easily extended to other types of electromagnetic field problems. The structure
of the paper is as follows. In Sect. 2, the high order DG formulation for the time-
harmonic electro-quasistatics equations is introduced. In Sect.3 the application
of the boundary conformal approach with cut-cells within the framework of DG
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is described. The numerical accuracy and the practicability of the method are
demonstrated is Sect. 4 where a simple validation example as well as the fully 3D
simulation of a low frequency heating module are presented.

2 DG Formulation for Electro-Quasistatics

The time-harmonic Maxwell’s equations for electro-quasistatic fields are written as:

TD(.1) = ~Vp(x.0) 1)
. K (x)
iwV-D(x,t) = -V [@D(X, t)i| , )

where w is the angular frequency, ¢ is the electric potential, D is the electric flux
density; € and k denote the permittivity and electric conductivity, respectively.

Given a partition of the computational domain £2 into Cartesian grid cells £2;,
i =1...N (see,e.g. Fig. 1) we introduce a discrete approximation for (1) and (2)
by employing a mixed DG approach. Denoting the approximations of the electric
potential and flux density by ¢y (x, ¢) and Dy (x, t), respectively, the weak problem
for electro-quasistatics in the DG formulation reads: Find Dy, ¢, such that

1
/Q V’fq : ;Dh dx = _/9 V/fq Vo, d°x, (3)

iw/ ¥ VoD, dx = —/ v V. ['ﬁnh} dx, @)
2 2 €

i

Vi=1...Nand Vg = 1... P, where P is the highest polynomial order used. In
(3) and (4), wf 4 and Wf?q represent two sets of scalar and vectorial polynomial basis
functions for the electric potential and flux density, respectively. Note the index 7
running over all grid cells for every polynomial order ¢g. It indicates the cell-wise
definition of the DG basis functions. Thus, in contrast to the conventional FEM, the
approximations obtained are, generally, discontinuous at grid cell interfaces.

Due to the discontinuous DG approximation, the evaluation of element integrals
requires special attention. Considering, e.g., (3), the volume integral containing
derivatives of the discontinuous electric potential is transformed as:

1 -
/ Vig JDndx=— | @iV-y d'x+ / ¢,¥ 7, nd’x. (%)
2 € Qi 382;

In (5), ¢;, denotes the numerical flux for the electric potential defined at the cell
interface and n is the outward pointing interface normal. In order to complete the
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DG formulation (3)—(5), a numerically consistent relation for these fluxes must be
provided. Several possibilities exist for defining them (see, e.g., [3] for a complete
review of choices). In the numerical examples presented below, the so called central
flux scheme for the electric potential as well as for the flux density is applied.

Expressing the field approximations ¢, and Dj, by means of the basis functions
w:ﬁ , and Wz'l?q» respectively, and evaluating the integrals (3) and (4) using numerical
fluxes as in (5), yields the set of matrix equations:

MI,,d = —G¢ + f;, (6)
ivG'd = —G'Ied + £, (7)

where G is the discrete gradient operator, M is the mass matrix, I/ and I,/ are
diagonal matrices containing the cell-wise constant material parameters and fy and
f; are vectors of boundary conditions. Equations (6) and (7) can be further reduced
by a Schur complement approach resulting in

— G (iwl + )M 'G¢ = f; — G (iwl, + L) M 'f,. (8)

The above equation can be solved for the potential degrees of freedom ¢ using an
iterative or direct solver for complex symmetric systems. The Schur complement
reduction in (8) can be trivially applied since the mass matrix M in the DG
formulation is block-diagonal. The choice of the basis functions 1//;{5 , and llffq
is, generally, uncritical for DG-type discretizations. In this work, the high-order
hierarchical basis functions proposed in [4] is used. The definition of the electric
potential basis functions in the reference element is identical with that employed
in H'-conforming FEM. Correspondingly, the flux density within each element is
approximated using a set of high order basis functions which coincides with that
used in H(div)-conforming FEM (cf. [4]). The reason for this choice is to maintain
some degree of equivalence with the standard FEM for comparison and (possibly)
hybridization purposes. Note, however, that DG can be neither H!- nor H(div)-
conforming, since the global approximation is generally discontinuous.

3 Cut-Cell Approach

The basic observation is that the above derivation does not depend on cell (element)
geometry. In particular, it can be applied on the cut-cells of a Cartesian grid as shown
in Fig. 1. The latter can be considered as independent grid cells characterized by a
unique material. The weak DG equations for the cut-cells can be formally written as
in (3) and (4) for the standard (Cartesian) cells provided that, for each cut-cell, a set
of independent approximation functions, 1/f(¢ 4 and Y2 s specified. Thus, the cut-

c.q’
cell approach can be interpreted as a modification of the original Cartesian grid to
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include additional cells of arbitrary curved geometry. This modification, however, is
applied only in the vicinity of material boundaries corresponding to the splitting of
the original Cartesian grid cells into several cut-cells with different material content.

In the present implementation, the approximation functions within the cut-cells
are chosen to be identical with those in the parent Cartesian cell. This choice is
independent from the geometry of the cut-cell, since the DG formulation does not
impose conformity constrains on these functions; not even for the regular grid cells
away from material boundaries. The field discontinuity at the boundary surface
between two neighboring cut-cells is treated naturally within the DG framework
by introducing numerical fluxes as in (5).

The numerical evaluation of the DG integrals, however, needs an appropriate
description for the cut-cell geometry. For this purpose, the Open CASCADE
geometry kernel [5] is used. It enables a geometrical representation of the cut-cells
based on parametrized Bezier and B-Spline surfaces. Furthermore, high order Gauss
quadrature rules for evaluating surface integrals are provided. Internal integral terms
require a separate treatment. Referring again to the weak equation (3) for a cut-cell
volume 2., the following transformations are performed:

1 -
Vo —Didx = —/ ¢V -y, dx +/ $1¥0, nd’x
2 ' 66’ 2. 39(

[ (Cots vt on ®

where S£ 4 18 a primitive function of the integrand in the first integral term defined
by the relation, V - qu = ¢V - 1ﬁ£ 4- Since a polynomial basis approximation is
assumed, S , can be determined analytically for arbitrarily high orders. Thus, the
weak formulation integrals (3) and (4) can be fully reduced to surface integrals along
the cut-cell faces which can be further evaluated by the numerical quadrature rules
provided by the geometry kernel.

4 Numerical Examples

4.1 Validation

The simple model of a cylindrical capacitor filled with an electrically conducting
material is considered (see Fig.2). For simplicity, a time independent setup is
assumed. It consists in a constant voltage excitation applied between the inner and
outer electrodes of the capacitor. Thus, the problem reduces to a stationary current
flow problem with exact analytical solution which can be used for investigating the
accuracy of the method.
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Fig. 2 Relative error measured in the L2-norm of electric potential vs. mesh parameter for
different DG approximation orders

Figure 2 shows the numerical error for the electric potential vs. grid resolution for
different DG approximation orders. Obviously, the numerical result converges with
the optimal convergence order, P + 1, where P is the highest degree of polynomials
used in the approximation. The cut-cell approach is, thus, exact in the sense that, for
arbitrarily curved geometry, it does not introduce additional numerical errors (like
staircasing errors) apart for the usual approximation error of DG. In the simulations,
uniform and comparatively sparse Cartesian grids with 2-30 cells along the side of
the computational domain were used.

4.2 Simulation of a Heating Module

As a real world example, the simulation of a heating module is considered
(see Fig.3). The device is commonly used in the food processing industry to
improve the shelf life of liquid products such as milk or juice [6]. It consists
of two steel electrodes embedded in a teflon case and operated at 250 kHz. The
model dimensions are 20 x 20 x 20 cm with rectangular electrodes of side length
13.5cm. The fluid flowing between the electrodes is assumed to be orange juice
with an electrical conductivity of 0.5S /m and a relative permittivity of 80. The
conductivity and relative permittivity of teflon are assumed to 107'>2S /m and 3,
respectively.
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9 liquid electrodes

Fig. 3 Left: Geometry of the heating module. Right: Cross sectional view of the device

The rectangular problem geometry suggests the use of a Cartesian grid. Excep-
tions make the two electrodes having rounded edges to avoid local peaks in the
electric field distribution. The situation can be well handled by the cut-cell approach,
since only a small number of cut-cells along the electrode surfaces needs to be
considered. In the present simulation, a uniform Cartesian grid with 10 x 10 x 10
cells is used. For the numerical field solution the high order cut-cell DG approach
with quadratic basis functions is applied.

Figure 4 shows some of the field distributions obtained by simulation on
several cross-sections of the heating module. Note the high resolution of the
electric potential and current density obtained in the vicinity of the electrodes,
although, an extremely sparse regular grid is used. This accuracy is due to the high
order approximation of the DG formulation combined with the cut-cell approach
presented in the paper. The heating module example demonstrates the capability of
the method to handle practical problems efficiently on simple Cartesian grids by
completely avoiding staircasing errors which are typical for FD based methods.

5 Conclusions

A cut-cell approach for the high order DG method is proposed. The method is
derived for the case of time-harmonic electro-quasistatics problems, although, it
can be easily applied for the solution of other types of static or time dependent
electromagnetic field problems. The strength of this approach consists in its
capability to obtain high order accuracy solutions on trivial meshes. The discrete
problem formulation is simple and easy to implement. This is because the cut-
cell approach can be naturally embedded within the DG framework which does not
impose conformity conditions on the approximation spaces. The validation example
presented in the paper shows that this approach converges at optimal rate for any
approximation order.
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Fig. 4 Top: Real and imaginary part of the normalized electric potential on the yz-plane. Middle:
Real and imaginary parts of the normalized electric potential on the xz-plane. Bottom: Magnitude
(left) and imaginary part of the y-component of the current density on the yz-plane
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