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Abstract This work is devoted to fast and parameter-robust iterative solvers for
frequency domain finite element equations, approximating the eddy current problem
with harmonic excitation. We construct a preconditioned MinRes solver for the
frequency domain equations, that is robust (D parameter-independent) in both the
discretization parameter h and the frequency !.

1 Introduction

In many practical applications, the excitation is time-harmonic. Switching from
the time domain to the frequency domain allows us to replace expensive time-
integration procedures by the solution of a system of partial differential equations
for the amplitudes belonging to the sine- and to the cosine-excitation. Following
this strategy Copeland et al. [7, 8] and Bachinger et al. [5, 6] applied harmonic
and multiharmonic approaches to parabolic initial-boundary value problems and the
eddy current problem, respectively. Indeed, in [7] a MinRes solver for the solution of
parabolic initial-boundary value problems is constructed, that is robust with respect
to both the discretization parameter h and the frequency !. The aim of this work is
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to generalize these ideas to the eddy current problem. Due to the non-trivial kernel
of the curl-operator, the generalization of this solver is not straight forward. In order
to achieve a positive definite reformulation of the frequency domain equations, we
perform a regularization in terms of an additional gauging term. The regularized
problem can be solved in a MinRes setting, applying a preconditioning technique
proposed by Schöberl and Zulehner [19].

2 Frequency Domain FEM

As a model problem we consider the eddy current problem with homogeneous
Dirichlet boundary condition and an inhomogeneous initial condition.
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u.x; t/ D 0 on @˝ � Œ0; T �

(1)

We assume, that ˝ � IR3 is a bounded Lipschitz domain. The reluctivity � D �.x/

is supposed to be independent of jcurl uj, i.e. we assume that the eddy current
problem (1) is linear. The conductivity � is piecewise constant and zero in non-
conducting regions. We assume that the source f is weakly divergence free.
Bachinger et al. [5] provide existence und uniqueness results for linear and non-
linear eddy current problems in appropriate gauged spaces.

Furthermore we assume that f is given by a time-harmonic excitation with
frequency ! > 0 and amplitudes fc and fs, i.e. f.x; t/ D fc.x/ cos.!t/ C
fs.x/ sin.!t/ Therefore the solution u is time-harmonic as well, with the same base
frequency !:

u.x; t/ D uc.x/ cos.!t/ C us.x/ sin.!t/: (2)

In fact, (2) is the real reformulation of a complex time-harmonic approach
u.x; t/ D Ou.x/ei!t with the complex-valued amplitude Ou D uc � ius.
Using the real-valued time-harmonic representation of the solution (2), we
can state the eddy current problem (1) in the frequency domain as fol-
lows:

Find u D .uc; us/ W
�

curl .� curl uc/ C ! � us D fc

curl .� curl us/ � ! � uc D fs;
(3)

with the corresponding boundary conditions from (1).

Remark 1. Having in mind applications to problems with non-linear reluctivity �,
we prefer to use the real reformulation (3) instead of a complex approach (see [3,
Sect. 3.4]).
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The finite element discretization of the variational formulation of (3) with lowest
order edge elements, introduced by Nédélec in [13], yields the following system of
linear equations

�
Ah !M� ;h

�!M� ;h Ah

� �
uc

h
us

h

�

D
�

fc
h

fs
h

�

(4)

with stiffness matrix Ah and mass matrix M� ;h.

3 Exact Regularization

Eddy current problems are essentially different for conducting (� > 0) and non-
conducting regions (� D 0). In order to gain uniqueness in the non-conducting
regions, we persue an exact regularization strategy.

Due to the non-trivial kernel of the curl-operator, the resulting stiffness matrix
Ah is only positive semi-definite. However, for later preconditioning purposes, we
require that the sum of certain blocks of the system matrix (4) is positive definite.
In order to achieve that, we follow a gauging strategy proposed by Kuhn [12]. The
regularized variational problem reads as

Find u D .uc; us/ 2 H0.curl/2 W aQ.u; v/ D hF; vi ; 8v 2 H0.curl/2 (5)

with the regularized bilinear form

aQ.u; v/ WD
X

j 2fc;sg

Z

˝

� curl ujcurl vjC!rPDujrPDvjdxC!

Z

˝

� Œucvs � usvc� dx:

(6)
Here PD W H0.curl/ ! H 1

0 .˝/ is the Helmholtz projection (see e.g. [12]). For
any v 2 H0.curl/, PDv WD p is defined by the unique solution of the variational
problem

.rp; rq/L2.˝/ D .v; rq/L2.˝/; 8q 2 H 1
0 .˝/: (7)

Hence we replace Ah by the sum of Ah and a regularization term !Qh,
i.e. Ah C !Qh. Here Qh is the discretization of the operator Q, defined by
.Q u; v/L2.˝/ WD R

˝
rPDurPDvdx, by Nédélec finite elements of lowest order.

�
Ah C !Qh !M� ;h

�!M� ;h Ah C !Qh

� �
uc

h
us

h

�

D
�

fc
h

fs
h

�

: (8)

The operator PD and hence the matrix Qh are chosen in such a way, that on the one
hand it ensures the positive definiteness of the block Ah C !Qh and on the other
hand Qhuc=s

h vanishes at the solution, i.e. the regularized system (8) and the original
system (4) have one and the same solution. The proof of the equivalence of the
original and exact regularized problem (5) follows the same steps as in [12].
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4 MinRes Preconditioner

For preconditioning purpose we have to reformulate the system (8) with a
positive definite but block skew-symmetric system matrix, as a symmetric but
indefinite one. This system can be solved by a preconditioned MinRes method
[14]. The key points for the construction of a parameter robust preconditioner
are the introduction of a non-standard norm in H0.curl/ and the theorem of
Babuška-Aziz [2].

The symmetric and indefinite reformulation of the variational formulation with a
positive definite but skew-symmetric bilinear form (5) is given by:

Find .x; y/ 2 H0.curl/2 W AM ..x; y/; .v; w// D
Z

˝

�
1

!
fcv C fsw

�

dx (9)

for all .v; w/ 2 H0.curl/2, with the scaled vectors .x; y/ D .us; 1
!

uc/ and .v; w/ D
.!vc; vs/ and the symmetrised bilinear form AM .�; �/, given by

AM ..x; y/; .v; w// D .� x; v/L2.˝/ � !2.� y; w/L2.˝/

C .� curl y; curl v/L2.˝/ C !.rPDy; rPDv/L2.˝/

C .� curl x; curl w/L2.˝/ C !.rPDx; rPDw/L2.˝/:

Hence we can reformulate the block skew-symmetric and positive definite system
(8) as a symmetric but indefinite system (10) with system matrix Dh:

�
M� ;h Ah C !Qh

Ah C !Qh �!2M� ;h

� �
us

h
1
!

uc
h

�

D
�

1
!

fc
h

fs
h

�

: (10)

Next we construct a block-diagonal preconditioner according to the preconditioning
technique proposed by Schöberl and Zulehner [19]. We introduce the non-standard
norm k � kVM in H0.curl/

kyk2
VM

D 1

!

h
.� curl y; curl y/L2.˝/ C !krPDyk2

L2.˝/ C !.� y; y/L2.˝/

i
: (11)

Note, that the regularization term ensures, that this norm is well defined even in
non-conducting regions. This definition gives rise to a non-standard norm k � kQM in
the product space H0.curl/2

k.x; y/k2
QM

D kxk2
VM

C !2kyk2
VM

: (12)
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Lemma 1. We have

1p
2

k.x; y/kQM � sup
0¤.v;w/2H0.curl/2

AM ..x; y/; .v; w//

k.v; w/kQM

� k.x; y/kQM : (13)

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower
estimate can be attained by choosing v D !y C x and w D 1

!
x � y. ut

Since we are dealing with conforming finite elements, the estimate (13) is also
valid in the Nédélec finite element subspace. Hence, it follows by the theorem of
Babuška-Aziz, that there exists a unique solution of the corresponding variational
problem (9), and that the solution continuously depends on the data, uniformly on
! and � . Hence we conclude that the block-diagonal preconditioner

Ch D 1

!

� QCh 0
0 !2 QCh

�

; (14)

with QCh D !.M� ;h C Qh/ C Ah, is robust with respect to both the discretization
parameter h and the parameters ! and � . Thus the spectral condition number (16)
of the preconditioned system

Ch
�1Dhuh D Ch

�1fh (15)

can be estimated by a constant c that is independent of h, ! and � i.e.

�.Ch
�1Dh/ WD kCh

�1DhkChkDh
�1ChkCh � c ¤ c.!; h; �/: (16)

Therefore the number of MinRes iterations required for reducing the initial error by
some fixed factor " 2 .0; 1/ is independent of the discretization parameter h and the
frequency !.

In practice, the diagonal blocks QCh in (14) are replaced by some appropriate
preconditioners, e.g. by robust multigrid preconditioners as proposed in [1].

Theorem 1 (Entire robust and optimal solver). The MinRes method applied to
the preconditioned system (15) converges. At the m-th iteration, the preconditioned
residual rm

h D Ch
�1fh � Ch

�1Dhum
h is bounded as

�
�r2m

h

�
�

Ch
� 2qm

1 C q2m

�
�r0

h

�
�

Ch
where q D �.Ch

�1Dh/ � 1

�.Ch
�1Dh/ C 1

: (17)

If we additionally apply the Arnold/Falk/Winther multigrid preconditioner [1] to the
diagonal blocks, the whole convergence rate q is independent of ! and h.

Proof. The convergencerate of the MinRes method [14] can be found in [10].
Combining this result with the estimate of the condition number (16) and the
multigrid convergence [1], yields the desired result. ut
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Table 1 Number of MinRes iterations for reducing the initial residual by 10�6

DOF log10 ! �4 �3 �2 �1 0 1 2 3 4 5 6 7 8 CPU time

1,208 h D 0:25 3 3 3 5 7 14 15 16 14 8 6 4 4 < 0.48 s
8,368 h D 0:125 3 3 3 5 7 13 15 16 16 12 6 4 4 < 2.48 s
62,048 h D 0:0625 3 3 3 5 7 13 15 16 16 14 8 6 4 < 29.79 s
477,376 h D 0:03125 3 3 3 5 7 8 16 16 16 13 12 4 < 477.55 s

Skin depth
p

2�=.!�/ 141.4 44.6 14.1 4.5 1.4 0.4 0.14 0.044 < 0:03125

Table 2 Number of MinRes iterations for reducing the initial residual by 10�6

DOF log10 �2 �4 �3 �2 �1 1 2 3 4 5 6 7 8

196 h D 0:5 7 7 7 7 13 15 14 8 8 8 7 7
1,208 h D 0:25 6 6 6 7 11 15 16 12 8 8 7 7
8,368 h D 0:125 5 5 6 6 11 15 16 16 10 8 7 7
62,048 h D 0:0625 5 5 5 6 9 15 17 18 14 8 8 7

Since � is not constant in general, we loose robustness with respect to � in the
multigrid procedure. Note that for constant � , we additionally get robustness with
respect to � .

5 Numerical Results

Finally, we report two numerical tests for an academic three dimensional eddy
current problem. The numerical results presented in this section were attained
using ParMax [16]. First, we demonstrate the robustness of the block-diagonal
preconditioner with respect to the frequency !. Therefore, for the inversion of the
diagonal blocks we use the exact solver PARDISO [17, 18]. Table 1 provides the
number of MinRes iterations needed for reducing the initial residual by a factor of
10�6 for different ! and h. These numerical experiment was performed for a three-
dimensional linear problem on the unit-cube, discretized by tetrahedra for the case
� D � D 1. These experiment demonstrates the independence of the frequency
and the meshsize as the number of iterations is bounded by 16. Next we repeat the
numerical experiment for piecewise constant conductivity � , i.e.

� D
�

�1 in ˝1 D f.x; y; z/T 2 Œ0; 1�3 W z > 0:5g
�2 in ˝2 D f.x; y; z/T 2 Œ0; 1�3 W z � 0:5g : (18)

In Table 2 we give the number of iterations for fixed ! D 1 and �1 D 1 and
various �2. We observe, that the number of iterations is bounded by 18. Both
experiments demonstrate the robustness of the block-diagonal preconditioner with
respect to the involved parameters. Moreover, this theory-based parameter-robust
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block-diagonal preconditioner is appropriate to be incorporated in a Newton-based
multiharmonic solver for solving (nonlinear) shielding and welding problems (see
[5, 6]).

6 Further Applications

The presented preconditioning technique provides a robust tool for solving linear
eddy current problems with time-harmonic excitation. The theory can be extended
to multiharmonic excitations and even to problems with non-harmonic excitation
of the right-hand side. The theory in this paper is presented for exact regularized
problems. Furthermore we can develop this preconditioning technique also for
inexact regularized problems.

6.1 Non-harmonic Excitation

By approximating any non-harmonic right-hand side by a multiharmonic excitation
in terms of a truncated Fourier series, it follows, that the solution uN has the
structure:

uN.x; t/ D
NX

kD0

uc
k.x/ cos.k!t/ C us

k.x/ sin.k!t/: (19)

Using the truncated Fourier approximation (19), the corresponding system matrix
in the frequency domain decouples into a block-diagonal matrix of the form

diag

��
Ah k!M� ;h

�k!M� ;h Ah

��

kD0;:::;N

; (20)

where each block has almost the same structure as the two-by-two system matrix
in (4). Hence we can apply either the exact or the inexact regularization technique
and precondition each block robustly with respect to the frequency !, the mode
k and the meshsize h. By approximating a general right-hand side f by a finite
Fourier series with N summands, we introduce an additional truncation error of
order N �1.

ku � uNkL2..0;T /;H0.curl// D O.N �1/: (21)

6.2 Inexact Regularization (Conductivity Regularization)

Instead of the exact regularization an inexact regularization, as for example in
[5], can also be applied by introducing a regularized conductivity �", defined as
maxf�; "g with the regularization parameter " > 0. In this case the same strategy
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can be used to construct a block diagonal preconditioner, that is robust with respect
to !, h and �", leading to the system matrix Dh and the preconditioner Ch.

Dh D
�

M�";h Ah

Ah �!2M�";h

�

Ch D 1

!

�
!M�";h C Ah 0

0 !2.!M�";h C Ah/

�

(22)

In contrast to the exact regularization, where no additional regularization error is
introduced, in the case of inexact regularization, we have to deal with an additional
error of order O."/ (see [5]).

7 Conclusion and Outlook

The method developed in this work shows great potential for solving both, time-
harmonic and non harmonic eddy current problems in a very efficient and robust
way, in the linear case. Up to now, theory only guarantees robustness in the case of
constant coefficients ! and � , but currently we are working on the extension also
to the piecewise constant case. Indeed, based on the results in [11], we are working
on a domain decomposition preconditioner for the inversion of the diagonal blocks,
that guarantees robustness also for piecewise constant conductivity � .

In the non-linear case, i.e. � D �.x; jcurl uj/, it turns out, that even for harmonic
excitation of the right-hand side, we have to take all frequencies k! into account.
For earlier works see e.g. [4, 9, 15]. Additionally, due to the nonlinearity, we lose
the advantageous block-diagonal structure and therefore have to deal with a fully-
coupled system of non-linear equations in the Fourier coefficients. Since the Fréchet
derivative of the non-linear frequency domain equations is explicitly computable,
the nonlinearity can easily be overcome by applying Newton’s method. Anyhow, at
each step of Newton’s iteration, a huge and fully block-coupled Jacobi system with
sparse blocks has to be solved. The applicableness of the parameter-robust MinRes
solver to the Jacobi system is not clear at the first glance.
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