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Abstract This article deals with finite element solution of the full linear Maxwell’s
equations. The focus lies on the transient simulation of slow processes, i.e. of
processes, where wave propagation does not play a role. We employ an implicit
Euler method for time discretization of the A; '-based Galerkin-formulation with
Coulomb-gauge. We propose a novel stabilization technique that makes possible the
use of very large timesteps. This is of supreme importance for efficient simulation
of slow processes in order to keep the number of timesteps reasonably small.
The greatly improved robustness in comparison with a standard formulation is
demonstrated through numerical experiments. As an example we simulate the
lightning impulse test of an industrial dry-type transformer.

1 Motivation

Electromagnetic field simulations of slow processes, i.e. of processes in the so-
called low frequency range, where wave propagation does not play a role, are
normally carried out by using either [8]

• A static model, i.e. electrostatics or magnetostatics, if all variations in time can
be neglected.

• Or a quasi-static model, i.e. electro-quasistatics or magneto-quasistatics.
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The static models are just special cases of the full Maxwell’s equations, whereas
the quasi-static models are approximations that are only valid in special situations
[10,11]. If capacitive effects are dominant and the magnetic field energy is negligible
against the electric field energy, then the electro-quasistatic model can be used,
but induction is neglected. On the contrary, if inductive effects matter and the
electric field energy is negligible versus the magnetic field energy, then the magneto-
quasistatic model (or eddy-current model) can be used. The displacement-current is
neglected in the magneto-quasistatic model.

This zoo of models forces the computational engineer to acquire and learn
several simulation modules to cover the wide range of industrial applications. Some
expertise in electromagnetics is also required in order to select the appropriate
model. This is not desirable, because it limits the possible users of electromagnetic
field simulation to a circle of experts. Moreover, the quasi-static models do not allow
the simulation of configurations with coupled inductive/capacitive effects. For these
reasons, we propose a generally applicable full Maxwell solver that unifies the four
models of the low frequency range. However, standard full Maxwell formulations
lack stability in this range. Therefore we describe a remedy in the form of a
particular stabilization. Through this we achieve a robust Maxwell formulation.

We structured our article like this: first we analyze the reason for the instability
of the standard full Maxwell formulation. Next we add the stabilization. Since this
technique has already been introduced in frequency domain [3], we focus here on
its realization in time domain. We demonstrate the strongly improved robustness by
numerical experiments. At the end we show an industrial application of a transient
simulation.

2 Instability of the Full Maxwell Model

We assume that the bounded computational domain ˝ D ˝c [ ˝n consists
of a conductive domain ˝c and a non-conductive domain ˝n. For completeness
we include possible prescribed solenoidal currents js and prescribed charges
�s WD �divjs�. We assume stationary, i.e. non-moving, and non-deforming ohmic
conductors. Thus the current is j D � � E C js. We use an implicit Euler scheme
for time discretization, because we deal with an essentially dissipative regime. With
these definitions the standard Coulomb gauged A; '-based full Maxwell formulation
that has to be solved in each timestep (k) writes
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Herein 4t is the size of the timestep and �; " and � are material coefficients. The
boundary conditions are chosen such that they model the contacts, see [3, 4]. In [3]
it was explained that in frequency domain this standard formulation lacks stability
in the stationary limit, i.e. for vanishing angular frequency ! ! 0. The same
instability occurs in the time-domain for large timesteps 4t due to the equivalence
of i! in the frequency domain with 1

4t in the time domain. The reason for the
instability is the fact that for 1

4t ! 0 the electric scalar potential ' is not controlled
by (1) and (2) in the non-conducting domain˝n (where � D 0). As a consequence,
' becomes undetermined locally, and the electric field cannot be recovered in ˝n.
Theoretically, this is only the case at 1

4t D 0, but in computations one observes
severe ill-conditioning already for positive but small 1

4t . This is caused by the very
small parameter " in the crucial term "

4t grad'k of (1).
This instability also haunts other standard formulations. If, for example, temporal

gauge is used, where the electric scalar potential is set to zero, then we have to solve
the system

curl
1

�
curl Ak C

� "

4t2 C �

4t
�

Ak (3)

D
�
2"

4t2 C �

4t
�

Ak�1 � "

4t2Ak�2 C jsk C js�k � js�k�1
4t in ˝;

' D 0 in ˝ : (4)

In this formulation we lose uniqueness of Ak in the non-conducting domain for large
timesteps 4t ! 1. In the limit, any gradient may be added to the solution of A in
the non-conducting domain. Consequently the electric field is also poorly controlled
for large 4t in temporal gauge, as is strikingly illustrated in Sect. 4. The same holds
for the equivalent E-based formulation. If the gauge is removed in the ungauged
formulation (i.e. only (1)), then one loses control of both ' and A in ˝n. Again, the
electric field cannot be recovered in ˝n.

3 Stabilization

Stabilization, i.e. control of the electric field in the non-conductive˝n, is achieved
according to the recipe of [3] by incorporating the charge neutrality of˝n aside from
prescribed charges (i.e. Gauss’ law). This extra condition is balanced by an extra
unknown that results from the non-direct splitting of the electric scalar potential (')
into two parts, ' D Q' C  , with  D constant in the conducting domain ˝c . The
final stable formulation in Coulomb gauge is then given by

curl
1

�
curl Ak C

� "
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4t
�
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� "

4t C �
�

grad. Q'k C  k/ (5)
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D
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div."Ak/ D 0 in ˝; (6)

div." grad. Q'k C  k// D divjs�k in ˝n: (7)

Note that the additional third equation (7) is independent of the timestep 4t , which
achieves the stabilization. We chose the Coulomb gauge as typical gauge for the low
frequency range, but this is not mandatory.

To cast (5) and (7) into weak form, we have to introduce an appropriate
function space for the extra unknown  k : H1

n WD f 2 H1
0 .˝/W  j˝c � constg. The

function spaces for the other unknowns follow from standard choices, see [2,
Sect. 5] for notations and details. Then the variational formulation reads: seek
Ak 2 H 0.curl;˝/, Q'k 2 H1

0 .˝/,  k 2 H1
n .˝/ such that
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." grad. Q'k C  k// ; grad 0˛ D ˝

divjs�k ;  
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for all A0 2 H 0.curl;˝/, ' 0 2 H1
0 .˝/, and  0 2 H1

n .˝/.

Remark: We point out that the solution cannot be unique, because (10) can be
obtained by testing (8) with A0 WD grad 0,  0 2 H1

n .˝/.

4 Numerical Experiments

We employ a conformal Galerkin finite element discretization of (8)–(10) based on
first order edge elements for the vector potential and first order nodal elements for
the scalar potentials [2, Sect. 3]. This was implemented in an in-house simulation
framework at ABB.

According to the above remark, we face a singular linear system of equations
with consistent right hand side in each timestep. Iterative solvers can tackle this kind
of problem and we used a preconditioned BiCGstab method to solve the system.
We constructed a preconditioner by using the direct solver Pardiso [7] for solving
the regularized system that results from applying a lower conductivity bound of
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Fig. 1 Left: Plate capacitor. Right: Electric field in [V/m] after 100�s in the center between the
capacitor plates (solid red plane) for different timesteps. The upper row shows the solutions of the
system (3)–(4), and the lower row shows the solutions of the stabilized system (8)–(10). Please
note the different color-scales due to the different visualization software. The expected value is
1:05 V/m. A mesh of 200,000 elements was used in both cases

1 (˝m)�1 in (8). Note that this expensive preconditioner is almost identical to a
direct solver, because the regularized system differs only slightly from (8)–(10). An
alternative is probably the cheaper preconditioner that was introduced for frequency
domain in [6], but that has not yet been transferred to time domain.

In order to compare formulations, we used the RF module of the commerical
software COMSOL [1] (with the direct solver Pardiso) for the solution of the
standard non-stabilized formulation in temporal gauge (3) and (4). A simple
rectangular plate capacitor with plate distance of 3 cm and plate diameter of 43 cm
was computed. We switched on a sinusoidal voltage of 1V/50Hz. Figure 1 shows
the greatly improved robustness of the stabilized system.

For the standard system (3) and (4) one encounters a severe stability constraint
on the timestep, despite the use of implicit timestepping, and the electric field is
disturbed for timesteps larger than 1�s. We observed that the disturbance started
even earlier, at timesteps of 0:5 �s for a larger mesh with one Million elements. This
timestep constraint is much more relaxed for the stabilized system (8)–(10), where
we could use three orders of magnitude larger timesteps of 1ms. This is confirmed
by a comparison with a computation in the frequency domain, see Fig. 2.

5 Lightning Impulse Test Simulation

As a practical example we simulated the lightning impulse test of an ABB dry-type
transformer.

Power and distribution transformers are not only exposed to the rated voltage
over their life time; occasionally, transformers can experience transient voltage
surges produced by network switching operations or atmospheric overvoltages.
The insulation between the windings has to be very carefully designed to ensure
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Fig. 2 Comparison of the electric field (0� 38V/m) and the magnetic field (0� 0:1 pT) between
the solution in frequency domain, and the solution in time domain for timesteps of 1ms and 100�s.
The fields are shown after a steady oscillation is reached (i.e. here after five periods of 20ms) at
the zero-voltage-intersect after 100ms and at the peak voltage after 105ms. The pictures are in the
dashed black plane of the capacitor in Fig. 1

reliable operation even if a voltage surge occurs. This is tested experimentally by
the lightning impulse test which is precisely defined by the IEC standard [5]. Due
to the lack of insulating oil in dry-type transformers, more sophisticated dielectric
design is required compared to the oil-immersed counterparts. Thus the dielectric
design of dry-type transformers can be strongly supported by electromagnetic field
simulations of the lightning impulse test. An accurate simulation of the electric field
between the winding sections is therefore of paramount importance.

The configuration for the lightning impulse test is shown in Fig. 3. The peak
value of the applied impulse voltage is roughly five times the nominal voltage. The
1:2 �s rise time and 50�s decay time of the voltage in the lightning impulse test
are specified to mimic the real nature of the surge, see [5]. The Fourier spectrum
of the applied signal comprises waves with wavelengths comparable to the size
of the windings. The propagation of the waves along the windings can produce
local field enhancement regions that are caused by both multiple reflections of the
electromagnetic waves and internal resonance effects by the interaction of the capac-
itances and inductances of the windings. Due to the complex winding geometries, it
is practically impossible to predict critical field regions of the windings without
performing transient full Maxwell simulations. Taking into account only static
simulations may strongly falsify the estimation of a possible dielectric breakdown.
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Fig. 3 Dry-Transformer and applied test voltage pulse

Fig. 4 Transformer model showing windings and core (left), its cross-section (center), and the
details of the winding disks (right)

However, the windings in their full complexity cannot be modeled in 3D: Each
disk consists of several tens of turns of conductive foil with a thickness in the range
of some hundred microns. The foils are insulated against each other. The thickness
of the insulation is even smaller than the thickness of the conductive foil. This
yields a huge aspect ratio compared to the height of about 2m of the transformer.
Therefore, the internal structure of the winding sections is simplified. Effective
values of the dielectric permittivity and magnetic permeability are used to model the
internal capacitances and inductances of the real winding sections. The regions of
the effective material parameters are shown in Fig. 4. They are placed in the regions
where the corresponding capacitances (turn-to-turn capacitance of a single winding
disk) and inductances (stray field in the cooling channel) are confined. The effective
material parameters are derived from 2D computations. An alternative treatment of
the windings could be to use the homogenization technique, see [9].
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Fig. 5 Electric field distribution (in kV/mm) over the axial symmetry slice (Fig. 4, center) shown
at different time instants. The propagation and the reflection of the electromagnetic wave is visible.
Note that this oscillation is much faster than the applied voltage pulse of Fig. 3

The transient electric field between the windings as computed by an impulse
lightning simulation is shown in Fig. 5. One recognizes a reflection during the rise
time of 1�s of the voltage. These reflections continue during the first 10�s of the
simulation. This agrees with the measured oscillations of the electric field between
the windings in the experimental lightning impulse test.

6 Conclusion

In this article we introduced a robust full Maxwell formulation in time domain.
This formulation is stable for large timesteps in simulations of slow processes.
We demonstrated the improved stability, compared to standard formulations, by
numerical experiments. A three order of magnitude improvement of the timestep
was achieved. As an example, we simulated a transient industrial application
with coupled capacitive and inductive effects. We conclude that the stabilized
formulation (8)–(10) represents a unified Maxwell model that is robust even with
large timesteps.
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