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Preface

This book presents an account of the Scientific Computing in Electrical Engineering
conference, SCEE 2010, which took place in Toulouse, September 2010. The SCEE
series of conferences covers many aspects of mathematics applied to electrical
engineering, including electronics, electrical networks and electromagnetics. It
started as a national meeting in 1997 in Germany and the first two meetings were
organised under the auspices of the Deutscher Mathematiker Vereinigung. The title
SCEE appeared for the first time in 2000 and since then the conference has been
held every other year and in different European countries.

The organisation of the 8th conference was provided by the Toulouse branch of
Onera, the French aerospace laboratory, and the ENSEEIHT, situated in the heart
of Toulouse, was kind enough to make one of its lecture halls available. This 8th
edition of the SCEE conference was further sponsored by

ABB, Switzerland http://www.abb.com
AWR, Finland http://web.awr.com
MunEDA, Germany http://www.muneda.com
CST, Germany http://www.cst.com

Their financial and material support is gratefully acknowledged.
The scientific programme of the conference was organised by the programme

committee, which consisted of:
Dr. Andreas Blaszczyk (ABB Corporate Research, Switzerland)
Prof. Gabriela Ciuprina (Polytehnica University of Bucharest, Romania)
Dr. Georg Denk (Infineon, Germany)
Prof. Michael Günther (University of Wuppertal, Germany)
Dr. Jan ter Maten (NXP Semiconductors, The Netherlands)
Ir. Bastiaan Michielsen (Onera, France)
Prof. Ursula van Rienen (University of Rostock, Germany)
Prof. Vittorio Romano (University of Catania, Italy)
Dr. Janne Roos (Helsinki University of Technology, Finland)
Prof. Wil Schilders (TU/e & NXP Semiconductors, The Netherlands)
Prof. Thomas Weiland (TU Darmstadt & CST, Germany)
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vi Preface

The programme committee attended to the reviewing of the proposed contribu-
tions. This resulted in 41 plenary talks and 34 poster presentations. The programme
committee was also responsible for inviting specialist speakers to introduce the
sessions. We were happy to have the following invited talks (in order of their
appearance at the conference):

– Guillaume Sylvand (EADS IW, France),
“From quasi-static to high frequencies: An overview of numerical simulation at
EADS”

– Tim Davis (University of Florida, USA),
“Sparse matrix methods for circuit simulation problems”

– Heidi Thornquist (Sandia National Laboratories, USA),
“Advances in Parallel Transistor-Level Circuit Simulation”

– Maurizio Repetto (Politecnico Torino, Italy),
“Tonti diagrams and algebraic methods for the solution of coupled problems”

– Patrick Dular (Université de Liège, Belgium),
“Magnetic model refinement via coupling of finite element subproblems”

– Naoufel Ben Abdallah (Université Paul Sabatier), who was our invited speaker
for the device modelling session, passed away in the summer of 2010, just two
months before the conference. His time slot in the conference programme was
left unfilled

– Jörg Ostrowski (ABB, Switzerland),
“Transient Full Maxwell Computation of Slow Processes”

– Helmut Gräb (TU München, Germany),
“From Sizing over Design Centering and Pareto Optimization to Tolerance Pareto
Optimization of Electronic Circuits”

– Joost Rommes (NXP, The Netherlands),
“Challenges in model order reduction for industrial problems”

All authors of papers accepted for presentation at the conference were also invited,
in a second round, to propose a contribution for publication in this post-conference
book. The programme committee organised the final reviewing and you will find the
47 selected papers in the main part of this book.

As editors of this book and members of the local organising committee, we would
like to thank all the authors who contributed to the conference and, later, to this book
for their good work. We thank the reviewers for having gone twice through all the
proposed contributions and for all their constructive remarks. We also thank Onera
and the ENSEEIHT for having made this work possible and the staff of Springer
Verlag for their patience in getting this book to the press.

Toulouse, France Bastiaan Michielsen, Onera
Jean-René Poirier, ENSEEIHT
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Introduction

Electromagnetic interactions are the only fundamental interactions which can be
easily manipulated on the macroscopic scale. As such, electromagnetic interactions
play a major role in modern life. Technological advances in information process-
ing machines, from mobile telephones to car information systems and personal
computers to cash machines, are perhaps the ones that most immediately come to
mind. The advances of electromagnetic technology show no sign of stopping and
will continue to influence not only our daily life but also the way we do research.

The role of applied mathematics in this process is important in two complemen-
tary ways. Firstly, mathematical analysis of the fundamental models from theoretical
physics, as well as the engineering models derived from them, is essential for the
proper understanding of the nature of the phenomena themselves. Understanding
physical phenomena means knowing some abstract, concise, organising model for
them. Secondly, the mathematics of numerical computations with the said models is
essential for the reliability of the conclusions we draw concerning these phenomena.
In a certain way, we always seek to master the physical phenomena we encounter,
first by trying to predict them and then by trying to influence the course of events.

Following this line of reasoning, we can be a bit more precise on the role of
mathematics in industry. Existence and uniqueness results are important to exactly
identify what can be considered as a “consistent model” and what not. Convergence
results are essential for being able to decide whether an obtained conclusion is
reliable or not. In the end, the purpose is to replace time-consuming and costly
real experiments with more time-efficient and cheaper simulated experiments. This
ideal situation has not yet been reached in every domain but scientific computation
is already an indispensable part of industrial design cycles.

As for the vast domain of electromagnetics-related technological development,
one can distinguish different application domains of mathematics. The most obvious
one is the computation of the electromagnetic field itself. The possibility to construct
numerical representations of electromagnetic fields corresponding to given space-
time distributions of electric charge has grown from the construction of elementary
“analytical” solutions of canonical problems in the nineteenth century into an
abundance of discretisation-based algorithms, where, roughly speaking, the concept

xiii



xiv Introduction

of a point-wise converging approximation using global expansions (the analytic
functions) has been replaced by globally converging approximations using local
expansions. This has created a completely new and extremely vast domain of
research where there seems to be no limit to the geometrical complexity for which
solutions can be obtained using modern computers.

Although one may question the applicability of the system of Maxwell equations
as a correct model for physics on the atomic and subatomic scale, there is no doubt
that it is successful as a generic model for macroscopic electromagnetic phenomena.
This however does not mean that all modelling necessarily involves solving the
Maxwell equations. From a certain point of view there is a hierarchy of derived
models. The most often used model derivation method is asymptotic in nature. The
fundamental Maxwellian model is a space-time model, but, more often than not,
in engineering applications one is interested in single frequency states. These have
only an asymptotical meaning but, in fact, the asymptote is rather easily attained and
it pays off to work with the so-called frequency domain Maxwell equations, which
determine the complex valued vectorial amplitudes (phasors) of the time harmonic
fields.

Another extremely useful asymptotic is the “quasi-static” one, which describes
the field behaviour in configurations where propagation delay is negligible. This
asymptotic provides the link between macroscopic electromagnetic field theory and
the models for electronic circuits. Starting from the microscopic point of view,
where one should replace the Maxwell equations by quantum physics models
of matter and interaction, one can also climb up to the macroscopic level by
using different sorts of asymptotics. The constitutive coefficients one uses in
the macroscopic Maxwell equations can be obtained through statistical quantum
physics, though it is also possible to make do with a phenomenological model in
accordance with irreversible thermodynamics.

It should be said that all of these different models, fundamental or derived, have
their own specificities. Even though certain models are derived from for example
the time-domain Maxwell equations, they require a separate mathematical study.
A satisfying unique-existence analysis of a time domain does not necessarily clear
up the situation of the corresponding problem in the time harmonic case, a reduced
two-dimensional version of the problem or a quasi-static problem. All of these
problem classes present their own set of difficulties and solution methods. The same
thing can be said of problems of (statistical) quantum physics and their derived
models. This implies that the different communities, each focussing on one specific
type of model, show a tendency to isolate themselves from the others. This is
unfortunate, because it neglects the fact that we need all the models together to better
understand the way things work and in order to make more reliable predictions about
how new products will behave, once the designs are realised.

The SCEE series of conferences was created to counteract this isolation. The
idea was and is to organise the communication between researchers working on all
the above-mentioned aspects of electromagnetic and electronic phenomena, from
the detailed functioning of electronic devices, where the dynamics of electrically
charged particles in solid state or plasmas are studied, to network theory and
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circuit simulation, to macroscopic electromagnetic field, for which the modelling
of machines requires considering the coupling of mechanical and thermophysical
phenomena with electromagnetic ones, as well as the radiation, propagation and
reception of electromagnetic waves.

Outline of the Book

In this book the readers will find papers on many of the aspects discussed above. The
book is divided into five parts. The first part and the last part are both more or less
generic. This first part is called Mathematical Methods and presents contributions
which, although linked to some application domain, are closer to general applied
mathematics than those in the other parts. The last part is called Model Order
Reduction. Techniques of model order reduction (MOR) can often find use in several
application domains and can be based on an application-independent analysis of
a system of equations. However, some MOR methods depend on a very special
property only appearing in one given class of applications.

The remaining three parts present contributions from applied mathematics, which
are more closely related to their respective application domains. The second part,
Computational Electromagnetics, examines computational methods in macroscopic
electromagnetic field theory. The contributions in the third part, Coupled Problems,
are concerned with multi-physics modelling. The part Circuit and Device Modelling
and Simulation, deals with mathematics applied to circuit simulation, i.e. electro-
magnetic interactions on the scale of electronic systems, as well as with modelling
on the scale of the interior of the electronic devices themselves.

Each part has its own introduction, which serves to situate the various contribu-
tions in the overall context sketched above.



Part I
Mathematical Methods

Introduction

This part is concerned with general mathematical methods of interest for numerical
modelling in electrical engineering. As, in the end, any numerical modelling is
based on finite dimensional models, numerical linear algebra is a common subject
of interest to the whole community. As such, the first four papers show some aspects
of this vast domain of research.

The first contribution in this part was written by T. Davis (an invited speaker at
the conference) and E. Palamadai Natarajan. It is concerned with sparse matrices,
especially those arising with the differential algebraic equations (DAE) used in
circuit simulation problems. Sparse methods based on operations on dense sub-
matrices, such as multi-frontal methods, are not effective in these cases. A software
package named KLU, which was specifically written to exploit the properties of
sparse circuit matrices, is presented as are results comparing it with other packages
for circuit simulation.

In the next contribution, P. Benner and A. Schneider discuss a priori error
estimation for singular value decomposition-based model order reduction methods.
Proven error estimates are a necessary first step before a fully automatic application
of such approaches can be relied on. This work presents steps towards a global a
priori error estimation for this class of algorithms.

The contribution by M. Bollhöfer and S. Lanteri discusses block pre-conditioning
for the solution of large linear systems resulting from the discretisation of the time-
harmonic Maxwell equations. The proposed strategies combine principles from
incomplete factorisation methods with complex shift of the diagonal entries of the
underlying system matrices. Numerical results are presented for electromagnetic
wave propagation problems in homogeneous and heterogeneous media.

The following three contributions present mathematical methods related to
circuit design and analysis. The contribution by Gräb (an invited speaker at the
conference) provides an overview of multi-objective sizing tasks in electronic circuit
design. It is shown how statistically distributed and range-valued parameters can
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be included in yield optimisation and design centering. In addition, accounting for
parameter tolerances by multi-objective Pareto optimisation is presented.

The next contribution by E.J.W. ter Maten et al. studies importance sampling as a
means of achieving efficient Monte Carlo sampling that also properly covers tails of
distributions. An optimal upper bound is derived for the number of samples needed
to efficiently obtain an accurate fail probability. The contribution by L. Jansen and
C. Tischendorf is concerned with the analysis of parameter-dependent differential
algebraic equations. The authors show how to take benefit from the smoothness of
the solution as a function of the parameters, in order to efficiently find the solutions
for a range of parameter values.

The last two contributions in this part present a mathematical analysis of two
specific modelling problems, one from circuit theory and one from electromagnetic
field theory. R. Riaza’s contribution is concerned with a new lumped circuit element,
called a memristor, which is characterised by a nonlinear charge-flux relation.
Some analytical properties of semi-state models of the corresponding memristive
circuits are studied in terms of differential algebraic equations. More specifically,
the geometric index of the DAEs arising in so-called branch-oriented analysis
methods is considered. In the last paper of this part, T. Pollok et al. discuss
scattering problems for the Helmholtz equation in periodic configurations. The
authors develop a general mathematical analysis, valid in any dimension, and
algorithms for the handling of periodic structures with local defects.



Sparse Matrix Methods for Circuit Simulation
Problems

Timothy A. Davis and E. Palamadai Natarajan

Abstract Differential algebraic equations used for circuit simulation give rise to
sequences of sparse linear systems. The matrices have very peculiar characteristics
as compared to sparse matrices arising in other scientific applications. The matrices
are extremely sparse and remain so when factorized. They are permutable to block
triangular form, which breaks the sparse LU factorization problem into many
smaller subproblems. Sparse methods based on operations on dense submatrices
(supernodal and multifrontal methods) are not effective because of the extreme
sparsity. KLU is a software package specifically written to exploit the properties
of sparse circuit matrices. It relies on a permutation to block triangular form
(BTF), several methods for finding a fill-reducing ordering (variants of approximate
minimum degree and nested dissection), and Gilbert/Peierls’ sparse left-looking LU
factorization algorithm to factorize each block. The package is written in C and
includes a MATLAB interface. Performance results comparing KLU with SuperLU,
Sparse 1.3, and UMFPACK on circuit simulation matrices are presented. KLU is the
default sparse direct solver in the XyceTMcircuit simulation package developed by
Sandia National Laboratories.

1 Overview

The KLU software package is specifically designed for solving sequences of unsym-
metric sparse linear systems that arise from the differential-algebraic equations
used to simulate electronic circuits. Two aspects of KLU are essential for these
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problems: (1) a permutation to block upper triangular form [15, 17], and (2) an
asymptotically efficient left looking LU factorization algorithm with partial pivoting
[18]. KLU does not exploit supernodes, since the factors of circuit simulation
matrices are far too sparse as compared to matrices arising in other applications
(such as finite-element methods).

Circuit simulation involves many different tasks for which KLU is useful:

1. DC operating point analysis, where BTF ordering is often helpful. Convergence
in DC analysis is critical in that it is typically the first step of a higher level
analysis such as transient analysis.

2. Transient analysis, which requires a fast and accurate sparse LU factorization.
The sparse linear factorization/solve stages typically dominate the run-time of
transient analyses of post-layout circuits with a large number of parasitic devices.

3. Harmonic balance analysis, which is typically solved using Krylov based
iterative methods, since the Jacobian representing all the harmonics is huge and
cannot be solved with a direct method. KLU is useful in factor/solve stages
involving the pre-conditioner.

Section 2 describes the characteristics of circuit matrices, which motivate the
design of the KLU algorithm. Section 3 gives a brief description of the algorithm.
A more detailed discussion may be found in [24]. Performance results of KLU in
comparison with SuperLU [12], Sparse 1.3 [21, 22], and UMFPACK [4, 6, 7] are
presented in Sect. 4. An extended version of this paper appears in [11].

In this paper, jAj denotes the number of nonzeros in the matrix A.

2 Characteristics of Circuit Matrices

Circuit matrices arise from Newton’s method applied to the differential-algebraic
equations representing the underlying circuit [23]. A modified nodal analysis
is typically used, resulting in a sequence of linear systems with unsymmetric
sparse coefficient matrices with identical nonzero pattern (ignoring numerical
cancellation). Circuit matrices exhibit certain unique characteristics for which KLU
is designed, which are not generally true of matrices from other applications:

1. Circuit matrices are extremely sparse and remain so when factorized. The ratio of
floating-point operation (flop) count over jLCU j is much smaller than matrices
from other applications (even for comparable values of jL C U j). A set of
columns inLwith identical or similar nonzero pattern is called a supernode [12].
Supernodal and multifrontal methods obtain high performance by exploiting
supernodes via dense matrix kernels (the BLAS, [13]). Because their nodal
interconnection is highly dissimilar and their fill-in is so low, the supernodes
in circuit matrices typically have very few columns. Dense matrix kernels are
not effective when used on very small matrices, and thus supernodal/multifrontal
methods are not suitable for circuit matrices.
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Fig. 1 Fill-in factor versus the number of nonzeros in the largest irreducible block

2. Nearly all circuit matrices are permutable to a block triangular form. In DC
operating point analysis, capacitors are open and hence node connectivity is
broken in the circuit. This helps in creating many small strongly connected
components in the corresponding graph, and the resulting permuted matrix
is block triangular with many small blocks. However in transient simulation,
capacitors are not open and hence the nodes of the circuit are mostly reachable
from each other. This often leads to one large diagonal block when permuted
to BTF form, but still a large number of small blocks due to the presence of
independent and controlled sources.

The following experiment illustrates the low fill-in properties of circuit matrices.
As of March 2010, the University of Florida Sparse Matrix Collection [10] contains
491 matrices that are real, square, unsymmetric, and have full structural rank1

(excluding matrices tagged as subsequent matrices in sequences of matrices with
the same size and pattern). Of these 491 matrices, 81 are from circuit or power
network simulation. Figure 1 plots the fill-in factor (jL C U j=jAj versus jAj) for
each matrix, using lu in MATLAB (R2010a). If the matrix is reducible to block
triangular form, only the largest block is factorized for this experiment (found via
dmperm [5]). For comparison, the two lines in Fig. 1 are 2D and 3D square meshes
as ordered by METIS [20], which obtains the asymptotically optimal ordering for
regular meshes.

The fill-in factor for circuit matrices stays remarkably low as compared to
matrices from other applications. Very few circuit matrices experience as much fill-
in as 2D or 3D meshes.

1A matrix has full structural rank if a permutation exists so that the diagonal is zero-free.
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The properties of circuit matrices demonstrated here indicate that they should be
factorized via an asymptotically efficient non-supernodal sparse LU method, which
motivates the KLU algorithm discussed in the next Section.

3 KLU Algorithm

KLU performs the following steps when solving the first linear system in a
sequence.

1. The matrix is permuted into block triangular form (BTF). This consists of
two steps: an unsymmetric permutation to ensure a zero free diagonal using
maximum transversal [14, 15], followed by a symmetric permutation to block
triangular form by finding the strongly connected components of the graph
[16, 17, 26]. A matrix with full rank permuted to block triangular form looks
as follows:

PAQ D

2
66664

A11 A12 � � � A1n
A22

:::

: : :
:::

Ann

3
77775

2. Each block Akk is ordered to reduce fill. The Approximate Minimum Degree
(AMD) ordering [1,2] onAkkCATkk is used by default. The user can alternatively
choose COLAMD [8, 9], an ordering provided by CHOLMOD (such as nested
dissection based on METIS [20]), or any user-defined ordering algorithm that
can be passed as a function pointer to KLU. Alternatively, the user can provide a
permutation to order each block.

3. Each diagonal block is scaled and factorized using our implementation of
Gilbert/ Peierls’ left looking algorithm with partial pivoting [18]. A simpler
version of the same algorithm is used in the LU factorization method in the
CSparse package, cs_lu [5] (but without the pre-scaling and without a BTF
permutation). Pivoting is constrained to within each diagonal block, since the
factorization method factors each block as an independent problem. No pivots
can ever be selected from the off-diagonal blocks.

4. The system is solved using block back substitution.

For subsequent factorizations for matrices with the same nonzero pattern, the first
two steps above are skipped. The third step is replaced with a simpler left-looking
method that does not perform partial pivoting (a refactorization). This allows the
depth-first-search used in Gilbert/Peierls’ method to be skipped, since the nonzero
patterns of L and U are already known.

When the BTF form is exploited, entries outside the diagonal blocks do not need
to be factorized, requiring no work and causing no fill-in. Only the diagonal blocks
need to be factorized.
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The final system of equations to be solved after ordering and factorization with
partial pivoting can be represented as

.PRAQ/QT x D PRb (1)

where P represents the row permutation due to the BTF and fill-reducing ordering
and partial pivoting, and Q represents the column permutation due to just the BTF
and fill-reducing ordering. The matrixR is a diagonal row scaling matrix (discussed
below). Let .PRAQ/ D LU C F where LU represents the factors of all the blocks
collectively and F represents the entire off diagonal region. Equation (1) can now
be written as

x D Q.LU C F /�1.PRb/: (2)

The block back substitution in (2) can be better visualized as follows. Consider a
simple 3-by-3 block system

2
4
L11U11 F12 F13

0 L22U22 F23
0 0 L33U33

3
5
2
4
x1

x2
x3

3
5 D

2
4
b1

b2
b3

3
5 : (3)

The equations corresponding to the above system are

L11U11x1 C F12x2 C F13x3 D b1 (4)

L22U22x2 C F23x3 D b2 (5)

L33U33x3 D b3 (6)

In block back substitution, we first solve (6) for x3, and then eliminate x3 from
(5) and (4) using the off-diagonal entries. Next, we solve (5) for x2 and eliminate x2
from (4). Finally we solve (4) for x1.

The core of the Gilbert/Peierls factorization algorithm used in KLU is solving
a lower triangular system Lx D b with partial pivoting where L, x and b are all
sparse. It consists of a symbolic step to determine the non-zero pattern of x and a
numerical step to compute the values of x. This lower triangular solution is repeated
n times during the entire factorization (where n is the size of the matrix) and each
solution step computes a column of the L and U factors. The importance of this
factorization algorithm is that the time spent in factorization is proportional to the
number of floating point operations performed. The entire left looking algorithm is
described in the algorithm below.

The lower triangular solve is the most expensive step and includes a symbolic
and a numeric factorization step. Let b D A.W; k/, the kth column of A. Let GL be
the directed graph of L with n nodes. The graph GL has an edge j ! i iff lij ¤ 0.
Let B D fi jbi ¤ 0g and X D fi jxi ¤ 0g represent the set of nonzero indices in b
and x respectively. Now the nonzero pattern X is given by
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Algorithm 1 Left-looking LU factorization
L D I

for k D 1 to n do
solve Lx D A.W; k/ for x
do partial pivoting on x
U.1 W k; k/D x.1 W k/
L.k W n; k/D x.k W n/=U.k; k/

end for

X D ReachGL.B/ (7)

ReachG.i/ denotes all nodes in a graph G reachable via paths starting at node i .
Reach.S/ applied to a set S is the union of Reach.i/ for all nodes i 2 S .
Equation (7) states that the nonzero pattern X is computed by the determining
the vertices in GL that are reachable from the vertices of the set B.

The reachability problem is solved using a depth-first search. During the depth-
first search, the Gilbert/ Peierls algorithm computes the topological order of X .
If the nodes of a directed acyclic graph are written out in topological order from
left to right, then all edges in the graph would point to the right. If Lx D b is
solved in topological order, all numerical dependencies are satisfied. The natural
order 1, 2, :::; n is one such ordering (since the matrix L is lower triangular), but
any topological ordering will suffice. That is, xj must be computed before xi if
there is a path from j to i in GL. Since the depth-first graph traversal produces
X in topological order as an intrinsic by-product, the solution of Lx D b can be
computed using the algorithm below. Sorting the nodes in X to obtain the natural
ordering could take more time than the number of floating-point operations, so this
is skipped. The computation of X and x both take time proportional to the floating-
point operation count.

Algorithm 2 Solve Lx D b where L, x and b are sparse
X D ReachGL.B/
x D b

for j 2 X in any topological order do
x.j C 1 W n/ D x.j C 1 W n/� L.j C 1 W n; j /x.j /

end for

4 Performance Comparisons with Other Solvers

Five different sparse LU factorization techniques are compared:

1. KLU with default parameter settings: BTF enabled, the AMD fill-reducing
ordering applied to A C AT , and a strong preference for pivots selected from
the diagonal.
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Table 1 The thirteen test matrices with the highest run times
Matrix Entire matrix Largest block Rows in Singletons

Rows Nonzeros Rows Nonzeros 2nd largest
�103 �103 �103 �103 block �103

Raj1 263.7 1,300.3 263.6 1,299.6 5 0.2
ASIC_680k 682.9 2,639.0 98.8 526.3 2 583.8
rajat24 358.2 1,947.0 354.3 1,923.9 172 3.4
TSOPF_RS_b2383_c1 38.1 16,171.2 4.8 31.8 654 0.0
TSOPF_RS_b2383 38.1 16,171.2 4.8 31.8 654 0.0
rajat25 87.2 606.5 83.5 589.8 57 3.4
rajat28 87.2 606.5 83.5 589.8 57 3.4
rajat20 86.9 604.3 83.0 587.5 57 3.6
ASIC_320k 321.8 1,931.8 320.9 1,314.3 6 0.3
ASIC_320ks 321.7 1,316.1 320.9 1,314.3 6 0.1
rajat30 644.0 6,175.2 632.2 6,148.3 7 11.7
Freescale1 3,428.8 17,052.6 3,408.8 16,976.1 19 0.0

2. KLU with default parameters, except that BTF is disabled. For most matrices,
using BTF is preferred, but in a few cases the BTF pre-ordering can dramatically
increase the fill-in in the LU factors.

3. SuperLU 3.1 [12], using non-default diagonal pivoting preference and ordering
options identical to KLU (but without BTF).2 These options typically give
the best results for circuit matrices. SuperLU is a supernodal variant of the
Gilbert/Peierls’ left-looking algorithm used in KLU.

4. UMFPACK [4,6,7] with default parameters. In this mode, UMFPACK evaluates
the symmetry of the nonzero pattern and selects either the AMD ordering on
ACAT and a strong diagonal preference, or it uses the COLAMD ordering with
no preference for the diagonal. For most circuit simulation matrices, the AMD
ordering is used. UMFPACK is a right-looking multifrontal algorithm that makes
extensive use of BLAS kernels.

5. Sparse 1.3 [21, 22], the sparse solver used in SPICE3f5, the latest version of
SPICE.3

The University of Florida Sparse Matrix Collection [10] includes 81 real square
unsymmetric matrices or matrix sequences (only the first matrix in each sequence is
considered here) arising from the differential algebraic equations used in SPICE-like
circuit simulation problems, or from power network simulation. All five methods
were tested an all 81 matrices, except for two matrices too large for any method
on the computer used for these tests (a single-core 3.2 GHz Pentium 4 with 4 GB
of RAM). The thirteen matrices requiring the most amount of time to analyze,
factorize, and solve (as determined by the fastest method for each matrix) are shown
in Table 1. All of the matrices come from a transient analysis, since the run time

2 Threshold partial pivoting tolerance of 0.001 to give preference to the diagonal, the SuperLU
symmetric mode, and the AMD ordering on AC AT .
3http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/

http://bwrc.eecs.berkeley.edu/Classes/icbook/SPICE/
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for KLU is very low for matrices arising from a DC analysis. The table lists the
matrix name followed by the size of the whole matrix and the largest block in
the BTF form (the dimension and the number of nonzeros). The last two columns
list the dimension of the second-largest block, and the number of 1-by-1 blocks,
respectively.

A performance profile compares the relative run times of multiple methods on a
set of test problems. Let the relative run time of a method on a particular problem be
equal to its run time for that problem divided by the fastest run time of any method
for that problem. A relative run time of 1.0 means that the method is the fastest for
that problem among the methods being compared; 2.0 means that it took twice the
time as the fastest method. The x axis of a performance profile is this relative run
time. The y axis of a performance profile is the number of problems. A point .x; y/
is plotted if a method has a relative run time of x (or less) for y problems in the
test set.

The performance profiles of the four methods are shown in Fig. 2. It excludes
the symbolic ordering and analysis, since this step is done just once for a whole
sequence of matrices. Note that the x axis of Fig. 2 is a log scale. For most matrices,
KLU (with BTF) is the fastest method. In the worst case (the Raj1 matrix) it is 26
times slower than SuperLU, but this is because the permutation to BTF used by
KLU causes fill-in to dramatically increase.

Fig. 2 Performance profile of refactorize+solve time



Sparse Matrix Methods for Circuit Simulation Problems 11

Table 2 AnalyzeCfactorizeCsolve time in seconds, and relative fill-in (jLCU j=jAj)
for KLU. Run times within 25% of the fastest are shown in bold. A dash is shown if the
method ran out of memory
Matrix KLU+BTF KLU no BTF SuperLU Sparse 1.3

Fill Time Fill Time Time Time
Raj1 40.3 111.0 5.5 4.6 4.2 3,038.9
ASIC_680ks 2.6 5.0 2.7 7.2 4.6 818.1
ASIC_680k 2.1 5.8 2.1 7.4 5.8 8,835.1
rajat24 28.7 119.0 3.3 6.0 13.9 –
TSOPF_RS_b2383_c1 1.3 6.5 2.1 71.8 34.9 –
TSOPF_RS_b2383 1.3 6.5 2.1 72.0 34.2 –
rajat25 6.7 8.5 35.2 31.7 37.2 2,675.4
rajat28 6.9 9.1 28.4 25.4 50.0 3,503.0
rajat20 7.0 9.1 35.2 31.3 40.5 4,314.1
ASIC_320k 2.5 30.4 42.9 447.5 18.1 7,908.2
ASIC_320ks 3.2 36.6 3.2 36.4 21.5 684.9
rajat30 5.1 73.0 3.2 23.8 22.5 –
Freescale1 3.9 86.8 3.9 85.6 – –

Table 3 RefactorizeCsolve time in seconds
Matrix KLU+BTF KLU no BTF SuperLU Sparse 1.3

Time Time Time Time
Raj1 94.4 3.0 3.3 127.4
ASIC_680ks 3.9 5.4 3.5 256.7
ASIC_680k 4.6 5.1 4.6 835.8
rajat24 91.2 3.7 12.4 –
TSOPF_RS_b2383_c1 5.2 40.8 10.9 –
TSOPF_RS_b2383 5.1 41.0 10.9 –
rajat25 6.7 27.0 36.8 374.4
rajat28 7.3 21.8 49.6 512.7
rajat20 7.3 26.8 40.2 657.1
ASIC_320k 28.7 429.0 17.1 870.1
ASIC_320ks 35.0 35.0 20.7 182.0
rajat30 60.5 18.6 19.6 –
Freescale1 70.5 70.6 – –

The time for the thirteen largest matrices is shown in Tables 2 and 3. The fastest
run times and run times within 25% of the fastest are shown in bold. A dash is shown
if the method ran out of memory.

For sparse Cholesky factorization, the flops per jLj ratio is an accurate predictor
of the relative performance of a BLAS-based supernodal method versus a non-
supernodal method. If this ratio is 40 or higher, chol in MATLAB (and x=A\b
for sparse symmetric positive definite matrices) automatically selects a supernodal
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Fig. 3 Relative performance of KLU versus UMFPACK as a function of flops/jLC U j
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solver. Otherwise, a non-supernodal solver is used [3]. A similar comparison is
shown in Fig. 3 between KLU and UMFPACK. If the matrix is reducible, only
the largest block is factorized. Figure 4 shows the results for sparse Cholesky
factorization from [3].
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These results are remarkable for three reasons:

1. Circuit matrices tend to have a low flop/jL C U j ratio as compared to other
matrices.

2. Even when the flop/jLCU j ratio is high enough (200 or more) to justify using the
BLAS, the relative performance of a BLAS-based method (UMFPACK) versus
KLU is much less than what would be expected if only non-circuit matrices were
considered. Thus, circuits not only remain sparse when factorized, even large
circuit matrices with higher flops/jL C U j ratios hardly justify the use of the
BLAS.

3. The flops/jL C U j ratio for LU factorization (Fig. 3) is not a very accurate
predictor of the relative performance of BLAS-based sparse methods as com-
pared to non-BLAS-based methods, as it is for sparse Cholesky factorization
(Fig. 4).

5 Summary

KLU has been shown to be an effective solver for the sequences of sparse matrices
that arise when solving differential algebraic equations for circuit simulation
problems. It is the default sparse solver in Xyce, a circuit simulation package
developed by Sandia National Laboratories [19], for which it has been proven to
be a robust and reliable solver [25].
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Some Remarks on A Priori Error Estimation
for ESVDMOR

Peter Benner and André Schneider

Abstract In previous work it is shown how to numerically improve the ESVDMOR
method of Feldmann and Liu to be really applicable to linear, sparse, very large
scale, and continuous-time descriptor systems. Stability and passivity preservation
of this algorithm is also already proven. This work presents some steps towards a
global a priori error estimation for this algorithm, which is necessary for a fully
automatic application of this approach.

1 Motivation

Although model order reduction (MOR) for linear time invariant (LTI) systems is
a well investigated area of research [1], most of the established approaches, e.g.,
Krylov subspace methods or balanced truncation methods [7], are not able to work
on systems with a lot of input and output terminals. They are not easily reducible,
especially really large scale ones. ESVDMOR is, besides other approaches [5], a
MOR approach to reduce linear systems with a large number of terminals [2–4, 6].
Within the algorithm, approximation errors are caused at different steps. The
magnitude of these errors can be influenced with the help of different decisions.
Some of the correlations between these decisions and the influence on the results
are well known, but a closed error analysis for the ESVDMOR approach does
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not yet exist. For efficient reduction which meets the requirements placed on the
reduced order model, the knowledge about this correlations is of essential relevance.
The goal is to get a reduced model which is as small as possible and at the same
time as good as necessary. This knowledge is essential for the industrial usage of
MOR algorithms. In Sect. 2 we briefly repeat required basic knowledge including
the steps of SVDMOR and ESVDMOR. We emphasize those steps which cause an
approximation error in some way. The following section deals with the single errors
and the known theory. We combine all influences, firstly with a lot of assumptions
and for the easy cases and later for more complicated models, to get ideas about a
global error bound for the ESVDMOR approach.

2 (E)SVDMOR Basics Including Error Sources

Starting point is a given (mostly by modeling in circuit simulation but also in
mechanical, biological, and chemical applications) linear time-invariant continuous-
time descriptor system

C Px.t/ D �Gx.t/C Bu.t/; x.0/ D x0;

y.t/ D Lx.t/;

(1)

where C;G 2 R
n�n, B 2 R

n�min , L 2 R
mout�n. Vector x.t/ 2 R

n contains the
descriptor variables, u.t/ 2 R

min is the vector of inputs, y.t/ 2 R
mout is the output

vector, and x0 2 R
n is the initial value. The value n is called order of (1) defined

by the number of descriptor variables and min and mout denote the number of I/O
terminals, respectively. System (1) has the following transfer function in frequency
domain:

H.s/ D L.sC CG/�1B; (2)

which we get from (1) for x0 D 0 by applying the Laplace transform. Like
mentioned in Sect. 1 we want to investigate systems with

min=out � n:

Further on, we define the i -th block moment of (2) as mi D L.�G�1C /iG�1B ,
i D 0; 1; : : : ; in terms of mi as anmout�min matrix. These moments are equal to the
coefficients of the Taylor series expansion of (2) about s0 D 0,H.s/ DP1iD0 mis

i :

For s0 ¤ 0 this leads to frequency shifted moments defined as

mi.s0/ D L.�.s0C CG/�1C /i .s0C CG/�1B; i D 0; 1; : : :
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Thus, the Taylor series expansion including these moments is

H.s/ D
1X
iD0

mi.s � s0/i :

To allow terminal reduction for inputs and outputs separately, w.l.o.g. we use
r different (frequency shifted) block moments forming two moment or ansatz
matrices, the input response matrix MI and the output response matrix MO , as
follows:

MI D

2
6664

m0

m1
:::

mr�1

3
7775 ; MO D

2
6664

m0
T

m1
T

:::

mr�1
T

3
7775 : (3)

It is also possible to use different numbers of block moments to createMI andMO .
The number r is the first possibility to influence the accuracy of the reduced model.
For simplicity, we assume the number of rows in MI and MO of (3) to be larger
than the number of columns, i.e., r �mout � min and r �min � mout. If not, r has to be
increased. Applying the SVD to these matrices, we obtain a low rank approximation

MI � UIri ˙Iri
V T
Iri

and MO � UOro˙Oro
V T
Oro
; (4)

which causes an approximation error. The matrices ˙Iri
and ˙Oro

are ri � ri and
ro� ro diagonal matrices, VIri and VOro aremin� ri andmout� ro isometric matrices
that contain the dominant column subspaces of MI and MO , and UIri and UOro
are r � mout � ri and r � min � ro isometric matrices that are not used any further.
The values ri � min and ro � mout denote the numbers of significant singular
values (SV) as well as the numbers of the virtual input and output terminals of the
terminal reduced order model. Due to the fact that the important information about
the dependencies of the I/O-ports is hidden in the matrices V T

Iri
and V T

Oro
, we use

these matrices to find the searched approximate factorization of B and L. Hence,
B D BI � B.VIri V

C
Iri
/, where I denotes the identity matrix and ./C denotes

the Moore-Penrose pseudoinverse. Using the properties of this pseudoinverse and
.V T
Iri
VIri /

�1 D I leads to B � BVIri .V
T
Iri
VIri /

�1V T
Iri
D BVIri V

T
Iri

. Defining a

matrix Br as Br WD BVIri we finally get the approximationB � BrV T
Iri

. Equivalent

arguments lead to L � VOroLr with Lr D V T
Oro
L. The approximation errors

which appear in these equations are very important, see Sect. 3. Plugging in these
approximations in (2), we consequently get a new internal transfer function Hr.s/

by using the approximation

H.s/ � bH.s/ D VOro Lr.G C sC /�1Br„ ƒ‚ …
WDHr .s/

V T
Iri
:
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This terminal reduced transfer functionHr.s/ can be further reduced to

QHr.s/ D QLr. QG C s QC/�1 QBr � Hr.s/ (5)

by any established MOR method. Balanced truncation approaches are advantageous
as there exists a well known error theory, see Sect. 3. We end up with a very compact
terminal reduced and reduced-order model QHr.s/, i. e.

H.s/ � bH.s/ D VOroHr.s/V
T
Iri
� bHr.s/ D VOro QHr.s/V

T
Iri
: (6)

3 Bounds for Particular Approximation Errors and Global
ESVDMOR Error Bound

In this section we recall known facts about the errors mentioned in Sect. 2. We give
ideas how to connect these errors to a global error bound for ESVDMOR. To get an
appropriate entrance in the subject matter we recall two needed matrix norms.

Definition 1 (Spectral norm). The spectral norm of the transfer function (2) is
induced by the Euclidean vector norm and defined as

jjH.s/jj2 D
p
�max.H.s/HH.s//;

where HH denotes the conjugate transpose of H and �max denotes its largest
eigenvalue.

Another very useful and important norm is based on the Hardy Space theory.

Definition 2 (H1-norm). Let CC be the open right half plane. The H1-norm of
the transfer function (2) is defined as

jjH jjH1
D sup

s2CC

�max.H.s// D sup
s2CC

jjH.s/jj2; (7)

where �max denotes the largest singular value. Because of the maximum modulus
theorem we can express (7) as jjH jjH1

D sup
!2R

�max.H.i!//:

3.1 Particular Error Bounds

Equation (4) describes a truncated singular value decomposition (SVD). We know
the error caused by a SVD of MI is

eMI D
���MI.r/� UIri ˙I

ri
V T
Iri

���
2
D �IriC1;
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where
˙I D diag.�Ii / � ˙I

ri
D diag.�Ij /;

with i D 1; : : : ; min and j D 1; : : : ; ri , and �I1 � : : : � �Iri � �IriC1
� : : : �

�Imin
� 0: The same applies to MO . Here, the notation MI.r/ expresses the

dependency on the number r of used block momentsmi .
Another well known error can be found in (5) if we use a suitable method which
gives the information, e. g., balanced truncation (BT) methods. The use of these
methods leads to a reduction based on the truncation of the so called Hankel SVs.
Provided that G is invertible, we get these values by balancing the controllability
and the observability Gramian of Hr in the following form:

P D Q DW
�
˙1

˙2

�
D diag. O�1; : : : ; O�n/:

Due to storage, efficiency and accuracy reasons usually one computes approximate
low rank factors P � PCPT

C and Q � QCQ
T
C . Using these factors, we compute a

singular value decomposition of the form

QT
CCPC D

�
U1 U2

� �˙1 0

0 ˙2

� �
V T
1

V T
2

�
:

Now we define the balancing transformations

Tl D QCU1˙
�1=2
1 and Tr D PCV1˙�1=21 ;

where ˙�1=21 D diag. 1p O�1 ; : : : ;
1p
O�l
/, such that we are able to compute the reduced

system as
. QC; QG; QBr; QLr/ WD .T Tl CTr; T Tl GTr; T Tl Br ; LrTr/:

The error for this square root variant of balanced truncation is bounded by

��Hr � QHr

��
H1

� 2
nX

kDlC1
O�k D ı; (8)

in case we keep the l largest O�i . A proof can be found, e.g., in [1]. Figure 1 shows
a system with n D 500 states, min D 5 inputs, mout D 10 outputs and it is reduced
to order l D 60. The computed error bound is ı D 9:796 � 10�3. The error does not
even reach the bound.

3.2 Total Error Bound

Due to (6) and the triangle inequality the total ESVDMOR error in spectral norm on
the imaginary axis can be expressed locally as



20 P. Benner and A. Schneider

10−6 10−4 10−2 100 102 104 106
10−12

10−10

10−8

10−6

10−4

10−2

frequency ω (rad / s)

 || 
H

r (
iω

) 
−

 H
r(

iω
) 

|| 2
~

absolute error
error bound

Fig. 1 Absolute error of a BT reduced system

etot D
���H.i!/ � OHr.i!/

���
2
�
���H.i!/ � OH.i!/

���
2„ ƒ‚ …

Deout

C
��� OH.i!/� OHr.i!/

���
2„ ƒ‚ …

ein

:

(9)
The BT part (the error caused by the inner reduction ein) follows from (6), (8), (9)

ein D
���VOroHr.s/V

T
Iri
� VOro QHr.s/V

T
Iri

���
2
D ��Hr.s/ � QHr.s/

��
2
� ı;

due to the fact the spectral norm is invariant under orthogonal transformations. The
terminal reduction part, also called outer reduction error eout, turns out to be more
complicated. To keep things simple we assume dealing with RLC circuits only, i. e.,
min D mout D m,L D BT , and, if s0CCG � 0, consequentlyH.s/ D H.s/T . Due
to symmetry, MI D MO D U˙V T , and also VI D VO D V . Moreover U D V

holds in the SVDMOR case, which means that there is only one mi in the ansatz
matrices (r D 1), e.g.m0 and s D s0 2 R such that

MI DMT
O D m0 D BT .s0C CG/�1B D U˙V T D U˙UT � Ur˙rU

T
r :

The local terminal reduction error eout then is

eout D
���H � OH

���
2
D ��BT .s0C CG/�1B � UrBTr .s0C CG/�1BrV T

r

��
2
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(U=V)D ��BT .s0C CG/�1B � UrU T
r B

T .s0C C G/�1BUrU T
r

��
2

D ��U˙U T � UrU T
r U˙U

TUrU
T
r

��
2
D ��U˙U T � Ur˙rU

T
r

��
2

(SVD)D �
I=O

kC1
;

if we keep k singular values or terminals. The total error in the SVDMOR case in
spectral norm then is

etot � �I=OkC1 C 2
nX

jDlC1
O�j : (10)

In the ESVDMOR case we allow r � 1 (r timesmi within the ansatz matrices), for
simplicity let us assume r D 3 and m0, m1, and m2. Thus,

MI D
0
@
m0

m1

m2

1
A D

0
@
U .1/

U .2/

U .3/

1
A˙V D

0
B@
U
.1/
1 U

.1/
2

U
.2/
1 U

.2/
2

U
.3/
1 U

.3/
2

1
CA
�
˙1 0

0 ˙2

��
V T
1

V T
2

�

DW 	U1 U2

 �˙1 0

0 ˙2

��
V T
1

V T
2

�
;

where the row partitioning in U is as in MI ;MO and the column partitioning refers
to the number of kept singular values, call this number k. We get mj D U .j /˙V T ,
j D 1; 2; 3, (which is not an SVD asU .j / is not orthogonal, but kU .j /k2 � 1 holds.)
Thus we can write

H.s/� OH.s/ D
1X
jD0

.mj � Omj /.s � s0/j

D .m0 � Om0/C .m1 � Om1/.s � s0/C .m2 � Om2/.s � s0/2 C O.s � s0/3:

We are now able to bound the first expressions. We write P1DV1V T
1 , hence I �

P1DV2V T
2 , thus,

mj � Omj D mj � P1mjP1 D U .j/˙V T � P1U .j /˙V T V1V
T
1

D U .j/

 
˙1 0

0 ˙2

! 
V T
1

V T
2

!
� P1U .j /

 
˙1 0

0 ˙2

! 
Ik

0

!
V T
1

D U .j/

 
˙1 0

0 0

! 
V T
1

V T
2

!
C U .j/

 
0 0

0 ˙2

! 
V T
1

V T
2

!
� P1U .j /

 
˙1

0

!
V T
1

„ ƒ‚ …
D

0
@˙1 0

0 0

1
A
0
@V

T
1

V T
2

1
A
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D U .j/

 
0 0

0 ˙2

!
V T C .I � P1/U .j /

 
˙1

0

!
V T
1

D U .j/

 
0 0

0 ˙2

!
V T C V2V T

2 U
.j /

 
˙1

0

!
V T
1 DW ej;1 C ej;2:

We can now express the error as follows:

H.s/ � OH.s/ D e0;1 C e1;1.s � s0/C e2;1.s � s0/2

Ce0;2 C e1;2.s � s0/C e2;2.s � s0/2 CO.s � so/3;

where, when taking norms, and using kU .j /k2 � 1, kV T k2 D 1,

kej;1k2 � �kC1:

Unfortunately, the terms kej;2k2 can not be bounded in a meaningful way. But if
�kC1 were zero, then V2V T

2 projects onto the nullspace of MI , so that if �kC1 is
small enough, V2V T

2 is still an orthoprojector onto the joint approximate nullspace
of the first r moments. That is, the error, up to order r�1, is essentially contained in
the nullspace of the first r moments. Future investigations will focus on exploiting
this fact to get a general a priori error bound.

4 Conclusions

In this rather theoretical work we explain and reveal all important matters to get
an error bound for the ESVDMOR approach. Although, we are not able to find a
universal total error bound in all cases, in (10) we find an expression for the total
error in spectral norm. With the help of the results in [8], which states that for some
linear RLC circuits jjH jjH1

D jjH.0/jj2, our results are interesting and provide a
total a priori SVDMOR error bound in H1-norm, as

���H � bHr

���
H1

D sup
!2R

���H.i!/� bHr.i!/
���
2
D
���H.0/ � bHr.0/

���
2

(10)� �I=O
kC1
C2

nX
jDlC1

O�j ;

for these circuits.
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Block Preconditioning Strategies
for High Order Finite Element Discretization
of the Time-Harmonic Maxwell Equations

Matthias Bollhöfer and Stéphane Lanteri

Abstract We study block preconditioning strategies for the solution of large sparse
complex coefficients linear systems resulting from the discretization of the time-
harmonic Maxwell equations by a high order discontinuous finite element method
formulated on unstructured simplicial meshes. The proposed strategies are based
on principles from incomplete factorization methods. Moreover, a complex shift
is applied to the diagonal entries of the underlying matrices, a technique that has
recently been exploited successfully in similar contexts and in particular for the
multigrid solution of the scalar Helmholtz equation. Numerical results are presented
for 2D and 3D electromagnetic wave propagation problems in homogeneous and
heterogeneous media.

1 Introduction

The present study is concerned with the development of a high-performance
numerical methodology for the computer simulation of time-harmonic electromag-
netic wave propagation problems in irregularly shaped domains and heterogeneous
media. In this context, we are naturally led to consider volume discretization
methods (i.e. finite difference, finite volume or finite element methods) as opposed
to surface discretization methods (i.e. boundary element method). Most of the
related existing works deal with the second-order form of the time-harmonic
Maxwell equations discretized by a conforming finite element method [14]. More

M. Bollhöfer (�)
Institute of Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany
e-mail: m.bollhoefer@tu-bs.de

S. Lanteri
NACHOS project-team, INRIA Sophia Antipolis - Méditerranée research center 2004 Route des
Lucioles, BP 93, F-06902 Sophia Antipolis Cedex, France
e-mail: Stephane.Lanteri@inria.fr

B. Michielsen and J.-R. Poirier (eds.), Scientific Computing in Electrical Engineering
SCEE 2010, Mathematics in Industry 16, DOI 10.1007/978-3-642-22453-9__3,
© Springer-Verlag Berlin Heidelberg 2012

25

m.bollhoefer@tu-bs.de
Stephane.Lanteri@inria.fr


26 M. Bollhöfer and S. Lanteri

recently, discontinuous Galerkin (DG) methods have also been considered for this
purpose (see [4–6]). Here, we concentrate on the first-order form of the time-
harmonic Maxwell equations discretized by a high order DG method formulated on
unstructured simplicial meshes. While it keeps almost all the advantages of the finite
element method (large spectrum of applications, complex geometries, etc.), the DG
method has other nice properties among which, an easy extension to higher order
interpolation, no global mass matrix to invert (when solving time-domain problems
using an explicit time scheme), easy handling of unstructured meshes, natural treat-
ment of discontinuous solutions and coefficient heterogeneities, nice parallelization
properties (the compact nature of a DG scheme is in favor of high computation to
communication ratio especially for high order interpolation methods).

The DG discretization of the first order form of the time-harmonic Maxwell
equations leads to a large sparse complex system of equations that exhibits a block
structure which is linked to the use of a polynomial interpolation method for the
approximation of the electromagnetic field within a mesh element. For moderately
large 2D problems, this system can be efficiently solved by an optimized sparse
solver such as MUMPS [1]. However, for large 2D problems or for 3D problems,
such a solution strategy is simply not feasible. In [8], a hybrid iterative-direct solver
is proposed for the solution of the linear system resulting from the DG discretization
of the 3D time-harmonic Maxwell equations. At the discrete level, this domain
decomposition solver combines an iterative solver acting on a reduced linear system
of equations involving interface unknowns, with a sparse direct solver within each
subdomain. For moderately large 3D problems and for the lowest interpolation
degrees (i.e. 0-th and 1-st order) in the DG method, the resulting hybrid iterative-
direct solver is a viable solution strategy. However, for very large problems and for
high interpolation degrees, the size of the subdomain problems prohibits the use
of a sparse direct solver. Besides, increasing the number of subdomains to reduce
the size of the local problems is generally not a proper approach since this incurs
numerical scalability issues which have not been investigated so far for optimized
Schwarz methods.

In this paper we will discuss an alternative way of solving the discretized
time-harmonic Maxwell equations. Our approach is mainly based on the rela-
tions between the second order Maxwell equations and Helmholtz equations. For
Helmholtz equations, recently numerical methods have been presented that are
based on the shifted Laplacian [2, 9, 12, 13]. I.e., first an artificial damping is intro-
duced into the equations which results in an additional imaginary shift. Then the
numerical approximation is computed for the shifted system instead of the original
system. Finally, the approximation is applied to the original equations. For the first
order time-harmonic Maxwell equations an analogous perturbation is performed
that implicitly shifts the second order systems. The numerical approximation we
apply to the shifted system is based on a multilevel block incomplete factorization
that uses a pivoting strategy to deal with small pivots. Furthermore, our block
factorization approach is designed to deal with large blocks in order to preserve
the natural block structure which is obtained from the DG discretization. Numerical
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experiments confirm that this approach is able to efficiently solve the time-harmonic
Maxwell equations.

2 The Continuous Problem

We consider solving the normalized time-harmonic Maxwell equations in the first
order form:

i!"rE � curl H D �JE ; i!�rHC curl E D 0; (1)

where E and H are the unknown electric and magnetic fields and JE is a known
current source; "r and �r respectively denote the relative electric permittivity and
the relative magnetic permeability and we assume here the case of a linear isotropic
non-magnetic (i.e. �r D 1) media. The relative electric permittivity is linked to
its absolute value through " D "r"0 where "0 is the permittivity of the vacuum.
The angular frequency of the problem is given by !. In the normalization of the
equations, the electric field is unchanged, the magnetic field is given by H D z0H
where z0 D

p
�0="0. With this choice, the electric and magnetic fields have the

same unit i.e. V/m. Besides, ! D !=c0 where c0 D 1=
p
�0"0. Equations (1) are

solved in a bounded domain ˝ . On the boundary @˝ D �a [ �m, the following
boundary conditions are imposed:

- a perfect electric conductor (PEC) condition on �m W n � E D 0;

- a Silver-Müller absorbing condition on �a W L .E;H/ D L .Einc;Hinc/;

(2)

where L .E;H/ D n � E � Zn � .H � n/ with Z D p
�r="r . The vectors

Einc and Hinc represent the components of an incident electromagnetic wave and n
denotes the unit outward normal. Equations (1) and (2) can be further rewritten in the
form: 8̂

ˆ̂̂̂
<
ˆ̂̂̂
:̂

i!G0WCGx@xWCGy@yWCGz@zW D �J in ˝;

.M�m �Gn/W D 0 on �m;

.M�a �Gn/.W�Winc/ D 0 on �a;

(3)

where W D .E;H/T is the new unknown vector, J D .JE; 0/
T and:

G0 D
�
"r I3 03
03 �r I3

�
; Gl D

 
03 Nel

N T
el

03

!
; Nv D

0
@
0 vz �vy
�vz 0 vx
vy �vx 0

1
A ;

with l 2 fx; y; zg while .ex; ey; ez/ is the canonical basis of R
3, and v D

.vx; vy; vz/
T . I3 is the identity matrix, and 03 the null matrix, both of dimension
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3 � 3. The real part of G0 is symmetric positive definite and its imaginary part,
which appears in the case of conductive materials, is symmetric negative. In the
following we denote by Gn the sum Gxnx C Gyny C Gznz and by GCn and G�n its
positive and negative parts.1 We also define jGnjD GCn � G�n . In order to take
into account the boundary conditions, the matrices M�m and M�a are given by

M�m D
�
03 Nn

�NT
n 03

�
and M�a D jGnj.

3 Discretization by a Discontinuous Galerkin Method

Let ˝h denote a discretization of the domain ˝ into a union of conforming simpli-
cial elements K . We look for the approximate solution Wh of (3) in Vh � Vh where
the functional space Vh is defined by VhDfU 2 ŒL2.˝/�3 = 8K 2 ˝h; UjK 2
Pp.K/g, where Pp.K/ denotes a space of vectors with polynomial components of
degree at most p over the element K . The DG discretization of system (3) yields
the formulation of the discrete problem which aims at finding Wh in Vh � Vh such
that:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

Z
˝h

.i!G0Wh/
T VdvC

X
K2˝h

Z
K

0
@ X
l2fx;y;zg

Gl@l .Wh/

1
A
T

Vdv

C
X

F2� m[� a

Z
F

�
1

2
.MF;K � IFKGnF /Wh

�T
Vds

�
X
F2� 0

Z
F

.GnF ŒŒWh��/
T fVgds C

X
F2� 0

Z
F

.SF ŒŒWh��/
T ŒŒV��ds

D
X
F2� a

Z
F

�
1

2
.MF;K � IFKGnF /W

inc

�T
Vds; 8V 2 Vh � Vh;

(4)

where � 0, � a and � m respectively denote the set of interior (triangular) faces, the
set of faces on �a and the set of faces on �m. The unitary normal associated with the
oriented face F is nF and IFK stands for the incidence matrix between oriented
faces and elements whose entries are equal to 0 if the face F does not belong
to element K , 1 if F 2 K and their orientations match, and �1 if F 2 K and
their orientations do not match. For F D @K \ @ QK , we also define ŒŒV��D IFKVjK C

1If T�T�1 is the eigendecomposition of Gn, thenG˙

n D T�˙T�1 where�C (respectively ��)
only gathers the positive (respectively negative) eigenvalues.
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IF QKVj QK and fVgD 1
2

�
VjK C Vj QK

�
. Finally, the matrix SF , which is hermitian

positive semi-definite, permits to penalize the jump of a field or of some components
of this field on the face F , and the matrix MF;K insures the asymptotic consistency
with the boundary conditions of the continuous problem. Problem (4) is often
interpreted in terms of local problems in each element K of ˝h coupled by the
introduction of an element boundary term called numerical flux (see also [11]). We
refer to [7] for all the details on the various terms involved in this DG formula-
tion. Within each mesh element K the electromagnetic field .E;H/T is approxi-
mated as:

.Eh/jK D
dKX
iD1

EKi '
K
i and .Hh/jK D

dKX
iD1

HK
i '

K
i (5)

where EKi and HK
i are the vectors of local degrees of freedom corresponding to

the basis expansion f'Ki giD1;��� ;dK of Pp.K/. In the present study, we adopt the
classical Lagrange nodal basis functions defined on a simplex and we assume that
the interpolation degree is uniform (i.e. the same for all the elements of the mesh).
Then the resulting method is denoted as DG-Pp.

4 Block Preconditioning

The DG discretization of the system of time-harmonic Maxwell equations (3)
leads to a large sparse complex linear system of equations of the form A Wh 	
.i!M C C /Wh D b, where !M refers to the discretization of the term:

Z
˝h

.!G0Wh/
T Vdv

in (4), while C represents the discretization of the curl operators and the boundary
conditions for the remaining integrals on the left hand side of (4). For the numerical
treatment we assume that the sign of the first equation of the time-hamonic Maxwell
equations is flipped to �i!"rEC curl H D CˇE!"rEC J and consistently changed
in G0;Gˇ;Gx;Gy;Gz. Then the matrices M and C become symmetric, thus A is
complex symmetric. The matrix of this system exhibits a block structure which is
linked to the polynomial approximation of the electromagnetic field within a mesh
element (5). Up to a permutation which is induced by first taking the contributions
with respect to E and then the H part we find that:

M D
��M�r 0

0 M�r

�
; C D

��CEE C
T

HE

CHE CHH

�
;

where M�r and M�r are real symmetric positive definite block diagonal matrices
whose block elements are the local mass matrices computed in each element K .
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Computing a preconditioner based on an incomplete factorization of A happens to
be prohibitively expensive. Therefore we shift the initial system by:

!

��ˇEM�r 0

0 ˇHM�r

�
;

where ˇE; ˇH are chosen appropriately. This precisely refers to adding artificially
�ˇE!"rE and �ˇH!�rH to the right-hand side of (1). With respect to E this can
be interpreted as artificial conductivity. We propose three different variants of block
preconditioning. The first version consists of choosing ˇE D ˇH D ˇ and applying
our preconditioner to the shifted system:

P1 D ˇ!M CA :

The second and third variant are best understood as a discrete analogy of eliminating
the magnetic field H from the second equation of the perturbed form of (1) and
inserting it into the first equation of (1). The resulting equation thus reduces to:

1

!.iC ˇH/

�
�.1 � ˇEi/.1 � ˇHi/!2�rEC curl.

1

�r
curl E/

�
D �J:

This is essentially a vector-valued Helmholtz equation, where the operator is shifted
by a multiple of the mass matrix. The discrete analogy can be described by
eliminating the H part from ˇ!M CA by one block elimination step:

��!.iC ˇE/M�r � CEE CT
HE

CHE !.iC ˇH/M�r C CHH

�
!

S D �!.iC ˇE/M�r � CEE � CT
HE

	
!.iC ˇH/M�r C CHH


�1
CHE:

For the second variant block preconditioning we use ˇ D ˇE D ˇH to obtain the
reduced system P2. This can be read as first shifting and then eliminating. Finally
for the third variant we proceed analogously to the second one except that we first
eliminate H from the unshifted system A and then shift the reduced system by
�ˇ!M�r , i.e., we choose ˇ D ˇE and ˇH D 0 in order to obtain the reduced
system P3. According to the work by Magolu [13], Erlangga et al [10], shifting the
operator with a real-valuedˇ significantly improves incomplete LU preconditioning
and multilevel preconditioning. For preconditioning we apply the inverse-based
multilevel block ILU [3], as implemented in ILUPACK.2 Its hallmark is the strategy
of keeping the inverse triangular factors below a given bound 	. In order to deal with
indefinite systems, a block factorization approach is used based on a symmetrized
maximum weight matching (see [2] for details).

2http://ilupack.tu-bs.de.
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Table 1 Direct solver
PARDISO applied to A

Computation time nz.LU /
nz.A/

5:2 � 103 90:4

Table 2 Multilevel block ILU applied to P1 D AC ˇ!M
ˇ ILU[sec] nz.ILU /

nz.A/ Levels SQMR[sec] Steps

1.5 8:8 � 102 11.7 5 3:2 � 103 620
3.0 1:7 � 102 5.4 4 1:7 � 103 387
5.0 1:0 � 102 6.2 2 2:4 � 103 574

10.0 4:6� 101 3.3 1 1:9 � 103 1,035

Table 3 Multilevel block ILU for the reduced system P2 of A C ˇ!M after
eliminating the E part first

ˇ ILU[sec] nz.ILU /
nz.A/ Levels SQMR[sec] Steps

1.5 3:6� 102 9.9 6 1:7� 103 398
3.0 1:4� 102 5.2 2 9:8� 102 302
5.0 8:5� 101 4.3 2 1:9� 103 613

10.0 3:9� 101 1.9 1 1:0� 103 842

Table 4 Multilevel block ILU for the reduced system P3 of A after eliminating
the E part first and then shifting by ˇ!M�r

ˇ ILU[sec] nz.ILU /
nz.A/ Levels SQMR[sec] Steps

1.5 4:9� 102 15.2 8 9:7 � 103 1,773
3.0 3:5 � 102 9.2 5 1:9 � 103 452
5.0 2:6� 102 6.7 4 1:3 � 103 337

10.0 1:6 � 102 6.0 3 1:2 � 103 325

Table 5 Multilevel block ILU applied to P1 D AC ˇ!M with ! D 9:41, ! D 37:64

! D 9:41 ! D 37:64

ˇ ILU[sec] nz.ILU /
nz.A/ Lev. SQMR[sec] Steps ILU[sec] nz.ILU /

nz.A/ Lev. SQMR[sec] Steps

0.75 – 8:6� 102 11.2 5 4:0 � 103 813
1.5 – 1:4� 102 5.4 4 2:4 � 103 607
3.0 9:1 � 102 11.9 5 3:1� 103 613 7:2� 101 4.8 2 4:3 � 103 1,174
5.0 6:5 � 102 6.5 4 1:6� 103 383 4:7� 101 3.2 1 2:8 � 103 1,762

10.0 1:0 � 102 6.3 2 2:1� 103 489 –
20.0 4:6 � 101 3.2 2 2:5� 103 893 –

5 Numerical Results

We now present the impact of shifting the initial system by a multiple of the mass
matrix for a 3D problem discretized by a DG-P1 method. The problem under consid-
eration is the scattering of a plane wave by a perfectly conducting unit sphere. The
frequency of the incident plane wave of frequency fD 900MHz and thus, we have
! D 18:84 (after renormalization of the Maxwell equations). The computational
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domain is defined as the free space between the perfectly conducting sphere and an
outer sphere on which the Silver-Müller absorbing condition is applied. We have
used an unstructured tetrahedral mesh consisting of 46;704 tetrahedral elements.
This yields a complex symmetric system of size n D 1;120;896. The computations
were performed on a workstation equipped with an Intel Xeon E7440 CPU with
frequency 2.4 GHz and 64 GB of memory. For the ILU we use a drop tolerance
of 10�2 but limit the maximum amount of fill per row by 10� the number of
nonzeros per row in A . We use an inverse bound of 	 D 5 for inverse-based
pivoting. As iterative solver we use the simplified QMR method which allows
for the use of (complex) symmetric systems and preconditioners. The iteration is
stopped, whenever the backward error satisfies kAx � bk � 10�6.kAk kxkC kbk/.
As comparison we also add numerical results of the direct solver PARDISO3 (see
Table 1). The numerical results in Tables 2–4 confirm the efficiency of our shifted
multilevel block ILU approach. They illustrate that shifting the initial system is
essential for the ILU. If the shift is too small then the fill would increase drastically
if there were no limit imposed. On the other hand, shifting the system too much turns
the preconditioned system away from the original system. A similar observation is
made in Table 5 when we halve (resp. double) ! but reverse the shifts.
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From Sizing over Design Centering and Pareto
Optimization to Tolerance Pareto Optimization
of Electronic Circuits

Helmut Gräb

Abstract This paper presents an overview of sizing tasks in electronic circuit
design and their corresponding formulations as optimization problems. We will start
with the general multi-objective sizing problem. Then, the inclusion of statistically
distributed parameters and of range-valued parameters into the scalar problems
of yield optimization and design centering will be described. Finally, a problem
formulation for considering these parameter tolerances by multi-objective Pareto
optimization will be presented.

1 Parameters, Performances, Simulation

This paper deals with optimization of electronic circuits which are modeled with
continuous signals in time and value, and which are usually nonlinear. Circuits
of this type are usually described with nonlinear differential algebraic equations
and often called analog circuits. Analog circuits are analyzed based on numerical
integration with one of the many successors of the SPICE simulator [4]. Modern
simulators are capable of handling mixed-signal circuits with digital parts, and of
handling circuits which are described not only with transistor netlists, but with
hardware description languages like VHDL-AMS or Verilog-AMS. It is worth
noticing that not only analog and mixed-signal circuits and systems, but digital
components as well may be described in this way. Hence, simulation-based design
not only refers to analog design but to a general analog design view on any type
of system. It is also worth noticing that numerical simulation provides the most
significant way to abstract the analog design view from the physical level to the
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formal level of a performance function that maps the modeled circuit parameters
x 2 R

nx (simulator input) on the modeled circuit performance features f 2 R
nf

(simulator output, e.g., Gain bandwidth, delay):

x 7! f (1)

Simulation of electronic circuits may take CPU times from seconds to minutes or
hours. The cost for simulation is therefore by far dominating all other computational
steps of an optimization process. This requires specific customized optimization
approaches for electronic design.

We distinguish the following three types of parameters:

• Design parameters (e.g., transistor widths) xd 2 R
nxd

• Statistical parameters (e.g., threshold voltage, oxide thickness) xs 2 R
nxs

• Range parameters (e.g., supply voltage, temperature) xr 2 R
nxr

2 Parameter Tolerances, Performance Specifications

Statistical parameters reflect the manufacturing variations which are transformed
into a Gaussian distribution.

Range parameters reflect the circuit operating conditions. They are interval-
bounded by upper bounds:

xr;i � xr;U;i ; i D 1; : : : ; 2nxr (2)

Lower bounds are transformed into upper bounds, x � xL ! �x � �xL, no bound
refers to xr;U !1.

The explicit performance specifications are given as bounds in the same way:

fi � fU;i ; i D 1; : : : ; 2nf (3)

On the other hand, there are implicit specifications, which refer to conditions on
the transistor channel geometries and transistor operating voltages. These implicit
specifications define the constraint region of design parametersX :

X D fxd jc.xd / � 0 g (4)

They can be computed for each circuit, e.g., by [2].

3 Sizing Tasks

Figure 1 shows the basic sizing tasks. While nominal design aims at finding design
parameter values for optimum performance without considering parameter toler-
ances, tolerance design does include the tolerance ranges of operational parameters
and the distribution of statistical parameters [1].
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Fig. 1 Sizing tasks

Fig. 2 Nominal design and worst-case optimization

4 Nominal Design

Circuit design inherently is a multiobjective optimization problem:

min
xd2X

2
664

:::

fi .xd /
:::

3
775! x�d ; f �i D fi .x�d / ; i D 1; : : : ; nf (5)

An optimal design will always represent a certain trade-off between the competing
design objectives. Nominal design therefore is either approached by a scalar objec-
tive function or by Pareto optimization, as shown in Fig. 2. If Pareto optimization is
solved using deterministic methods, then the basic task consists in defining a set of
search trajectories for scalar optimization problems, which in turn are solved with
nonlinear programming methods like Sequential Quadratic Programming. At the
bottom of this task chain, simulation is called frequently, which makes optimization
cost between minutes, hours or even days.
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Fig. 3 Example circuit:
operational amplifier

Table 1 Nominal design of operational amplifier

Performance Specification Initial Design 1 Design 2

Gain �80 dB 67 dB 100 dB 100 dB
Transit frequ. �10 MHz 5 MHz 20 MHz 18 MHz
Phase margin �60ı 75ı 68ı 72ı

Slew rate �10V=
s 4:1V=
s 12V=
s 12V=
s
DC power �50
W 122
W 38
W 39
W

4.1 Example

For a simple operational amplifier depicted in Fig. 3, Table 1 shows typical results
of a nominal design, in this case obtained with a commercial tool [3]. The circuit
has 14 design parameters and five performances given in the first column of Table 1.
The CPU time for one simulation is in the range of seconds, the CPU time for the
optimization is in the range of minutes.

Column two gives the considered performance features and specifications,
column three typical initial values of nominal design. The last two columns give
the results of two different optimization runs with different weights among the
performance features. We can see that in both cases the specs are fulfilled. While
design 1 has a larger safety margin with respect to the transit frequency, design 2 has
a larger safety margin with respect to the phase margin. The final decision on the
design depends on the application and other aspects like manufacturing variability.
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Importance Sampling for Determining SRAM
Yield and Optimization with Statistical
Constraint

E.J.W. ter Maten, O. Wittich, A. Di Bucchianico, T.S. Doorn,
and T.G.J. Beelen

Abstract Importance Sampling allows for efficient Monte Carlo sampling that also
properly covers tails of distributions. From Large Deviation Theory we derive an
optimal upper bound for the number of samples to efficiently sample for an accurate
fail probability Pfail � 10�10. We apply this to accurately and efficiently minimize
the access time of Static Random Access Memory (SRAM), while guaranteeing a
statistical constraint on the yield target.

1 Introduction

As transistor dimensions of Static Random Access Memory (SRAM) become
smaller with each new technology generation, they become increasingly susceptible
to statistical variations in their parameters. These statistical variations may result
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in failing memory. An SRAM is used as a building block for the construction of
large Integrated Circuits (ICs). To ensure that a digital bit cell in SRAM does not
degrade the yield (fraction of functional devices) of ICs with Megabits of memory,
very small failure probabilities Pfail � 10�10 are necessary. To simulate this, regular
Monte-Carlo (MC) simulations require too much computing time. Importance
Sampling (IS) [1] is a more advanced technique that provides sufficiently accurate
results and is relatively easy to implement. A speed up of several orders can be
achieved when compared to regular Monte Carlo methods.

2 Regular Monte Carlo

Let Y be a real-valued random variable with probability density function f . We
assume that N independent random observations Yi (i D 1; : : : ; N ) of Y are taken.
We define Xi D IA.Yi / for a given set A D .�1; x/ where IA.Yi / D 1 if Yi 2
A and 0 otherwise. Then pMC

f .A/ D 1
N

PN
iD1 Xi estimates p D R x

�1 f .z/d z D
P.Y 2 A/. TheXi are Bernoulli distributed, henceNpMC

f � Bin.N; p/, E.pMC
f / D

1
N
Np D p, and �2.pMC

f / D p.1�p/
N

. Let ˚.x/ D R x
�1 e�z2=2d z and define z˛ by

˚.�z˛/ D ˛. From the Central Limit Theorem (CLT) we derive

P.jpMC
f � pj > "/ D P

 jpMC
f � pj
�.pMC

f /
> z

!
NMC!1�! 2˚.�z/ � 2˚.�z˛=2/ D ˛;

where z D "=pp.1 � p/=NMC and NMC D N . Hence, if z � z˛=2 we deduce

NMC � p.1 � p/
� z˛=2
"

�2 D 1 � p
p

� z˛=2
�

�2
; (1)

for " D �p. We take � D 0:1 and p D 10�10. Now let ˛ D 0:02, then z˛=2 � 2.
Then NMC � 4 1012. If we do not know p, we can use p.1 � p/ � 1=4 yielding
NMC � 1

4

	 z˛=2
"


2 D 1022. And if NMC is not large enough to apply the CLT,
Chebyshev’s inequality even results to NMC � 1024. These general bounds are
much too pessimistic. Large Deviations Theory (LDT) [1,4] results in a sharp upper
bound [6]

P.jpMC
f � pj > �p/ � exp

�
�NMC

2

p

1 � p �
2

�
: (2)

For � D 0:1, p D 10�10 and ˛ D 0:02, as above, we find: NMC � 8 1012 (which is
a sharp result – see at the end of the next proof). Note that an extra k-th decimal in
� increases NMC with a factor k2.
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Proof of (2) [6]. The sequence of the Monte Carlo results PN .A/ WD pMC
f satisfies

a Large-Deviation Principle [1, 4, 5], meaning that there is some ‘rate function’
I W R! R [ f�1;C1g such that

(i) lim supN!1 1
N

lnPN .C / � � infx2C I.x/ for all closed subsets C 
 R,
(ii) lim infN!1 1

N
lnPN .G/ � � infx2G I.x/ for all open subsets G 
 R.

Let X be a Bernoulli variable with success probability p. The logarithmic moment
generating function for X is given by ln

	
E
�
e�X

�
 D ln
	
q C e�p
, where as usual

q D 1 � p. We define the following function [5]

J.x; �/ D �x � ln
	
E
�
e�X

�
 D �x � ln.q C e�p/; (3)

where x; � 2 R. We note that an optimum value �� must satisfy

@J

@�
D x � pe�

�

q C pe��
D 0; hence

�� D ln.
qx

p.1 � x//; and pe�
� D qx

1 � x ; and q C pe�� D q

1 � x : (4)

In our case, the rate function can be shown to be equal to

I.x/ D sup
�2R

J.x; �/ D J.x; ��/ D x ln

�
qx

p.1 � x/
�
� ln

� q

1 � x
�
; (5)

a function which is continuous on the interval .0; 1/. With C D Œp� �p; pC �p� 

.0; 1/ and G D R n C , the Large-Deviation Principle above implies

lim
N!1

1

N
lnP

 ˇ̌
ˇ̌
ˇ
1

N

NX
kD1

Xk � p
ˇ̌
ˇ̌
ˇ � �p

!
D � inf

jx�pj��p
I.x/:

From (5) we can calculate I 0.x/ and I 00.x/ explicitly. For x 2 .0; 1/ we have
I 00.x/ > 0, which implies that I 0 is increasing and that I is convex. Also I.0C/ D
� ln.q/ > 0 and I.1�/ D ln.q=p/ 2 R. Clearly I can be extended continuously at
both x D 0 and x D 1. Furthermore I.p/ D 0 and I 0.p/ D 0. Hence I.p/ D 0 is a
global minimum. This implies that actually the infimum of I on fx W jx �pj > �pg
is assumed at x D p˙�p. This can be analyzed further using Taylor expansion [6].
Thus from part (i) of the Large Deviation Principle, we obtain (2) for all N with a
possible exception of finitely many. Part (ii) implies that the exponential bound in
(2) is also valid from below and thus is sharp. ut
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3 Importance Sampling

With Importance Sampling we sample the Yi according to a different distribution
function g and observe that pf .A/ D

R x
�1 f .z/d z D R x

�1
f .z/
g.z/ g.z/d z. Define

Vi D IA.Yi /f .Yi /=g.Yi/ and V D V.A/ D IA.Y /f .Y /=g.Y /. Let pIS
f .A/ D

1
N

PN
iD1 Vi . Then Eg

�
pIS
f

�
D 1

N

PN
iD1 Eg .Vi / D pf .A/. When f .z/

g.z/ � 1 on A

we have Varg
�
pIS
f

�
� Varf

�
pMC
f

�
(variance reduction, using the same number

of samples). This does not yet imply more efficiency. However, similar to (2), we
derive (in which NIS D N ) [6]

P
�ˇ̌
ˇpIS
f � p

ˇ̌
ˇ > �p

�
� exp

�
� NIS p

2

2Varg.V /
�2
�
: (6)

Assuming the same upper bounds, comparing (2) and (6) gives NIS
NMC

D Varg.V /

p.1�p/ D
Eg.V 2/�p2
p.1�p/ . Suppose f .z/

g.z/ � 	 < 1 on A and p � 	, then, with q D 1 � p,

NIS

NMC

D Eg.V 2/

pq
� p
q
� 	

q
� p
q
� 	.1C �/ (7)

for j.1� 1
	
/pCO.p2/j � �, which for 	 D 0:1 and p D 10�10 means that � � 10�9.

Hence for 	 D 0:1 we can take an order less samples with Importance Sampling to
get the same accuracy as with Monte Carlo. This even becomes better with smaller
	. Efficiency is the main message. Indeed the asymptotic accuracy also improves,

but less: Varg
�
pIS
f

�
� 	 Varf

�
pMC
f

�
� 1�	

N
p2 and thus �g

�
pIS
f

�
� p	 �f

�
pMC
f

�
,

which for 	 D 0:1 means that here not an order is gained, but a factor
p
	 � 0:316.

Proof of (6) [6]. Let Y be distributed according to g, V D I.�1;x/.Y /f .Y /=g.Y /
and v.y/ D I.�1;x/.y/f .y/=g.y/. Then

Eg
�
e�V

�D
Z 1
�1

g.y/ e�I.�1;x/f .y/=g.y/ dy D
Z x

�1
g.y/ e�f .y/=g.y/ dy C 1 �G.x/;

where G.x/ D R t
�1 g.y/ dy. We will restrict ourselves to simple sufficient

conditions and we will not strive for full generality. We assume:

1. There is no y 2 R such that P.Y D y/ D 1 (Y is not supported by a single
point),

2. 0 < Eg
�
e�V

�
<1 for all � 2 R,

3. Introduce the density function �.y/
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�.y/ D e�v.y/g.y/

Eg
�
e�V

� .thus
Z
�.y/ dy D 1/

(which is well-defined for all � 2 R) and let Y� be a random variable distributed
according to �. We assume that for all � 2 R

E�.Y�/ D
Z
y��.y�/ dy� D

Z
y
e�v.y/g.y/

Eg
�
e�V

� dy <1

and
Var� .Y�/ D E

�
Y 2�
� � E2�.Y�/ <1:

Now let '.�/ D ln Eg
�
e�V

�
. Then, '.�/ is a well-defined, two times differentiable,

real function with derivatives

' 0.�/ D EgŒV e�V �
EgŒe�V �

D E�.Y�/; ' 00.�/ D EgŒV 2 e�V �
EgŒe�V �

� E2gŒV e�V �
E2gŒe�V �

D Var� .Y�/:

Clearly, Var.Y�/ > 0 and ' is therefore strictly convex. Let J.x; �/ D �x � '.�/.
As in Sect. 2 we again consider the function I.x/ D sup�2R J.x; �/ [5]. Clearly
I.x/ � J.x; 0/ D �'.0/ D � ln e0 D 0. To compute the supremum in I.x/, we
consider

d

d�
J.x; �/ D x � d

d�
'.�/ D x � Eg

�
Ve�V

�

Eg
�
e�V

� : (8)

We observe that

d

d�
J.x; �/ D 0 H) x D �.�/; where �.�/ D

R
y e� v.y/g.y/ dyR
e� v.y/g.y/ dy

: (9)

Here we note that

� 0.�/ D
R
e� v.y/g.y/ dy

R
y2e� v.y/g.y/ dy � Œ

R
ye� v.y/g.y/ dy�2

Œ
R
e� v.y/g.y/ dy�2

: (10)

At the right-handside we can recognize a weighted inner-product (using weight
function e� v.y/): < 1; y > 	 R

1 � ye�v.y/g.y/ dy. By the Cauchy-Schwarz
inequality,< 1; y >�p< 1; 1 >/p< y; y >we obtain� 0.�/ > 0 because y ¤ 1.
This implies that � is invertible and hence (9) defines � D �.x/ D ��1.x/. Hence

I.x/ D J.x; �.x// (11)
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and we can write x D �.�/ D E� ŒY �. Clearly �D0.y/ D g.y/. Further, to
calculate the first (total) derivative of I.x/, we differentiate (11) with respect to
x and substitute (9) to obtain I 0.x/ D �.x/ and I 00.x/ D �0.x/ D 1=@x

@�
D

1=Var� .V / [6]. By [5, Lemma I.4, p. 8], I.x/ is strictly (proper) convex which
means that the minimizer of I is unique. Now let p be as in Sect. 2. Then I.p/ D 0,
since the Strong Law of Large Numbers implies that the empirical measure of every
neighbourhood of p tends to one. Hence, p is the unique minimizer of I and
I 0.p/ D 0. Since p is also an internal point, we obtain that 0 D I 0.p/ D �.p/.
Hence,

I 00.p/ D 1

Var�.p/ .V /
D 1

Var�D0
.V /
D 1

Varg .V /
: (12)

Finally, by Taylor expansion, I.p ˙ �p/ D 1
2
�2p2I 00.p/ C O.�3p3/ D 1

2

�2p2

Varg .V /
.

Thus, after applying the Large-Deviation Principle [1, 4, 5], as in Sect. 2,

P

 ˇ̌
ˇ̌
ˇ
1

N

NX
kD1

Vk � p
ˇ̌
ˇ̌
ˇ > �p

!
� exp

�
�N inf

jx�pj>�p
I.x/

�
� exp

�
� Np2

2Varg.V /
�2
�
;

(13)
for all sufficiently large N . This implies (6), which completes the proof.
We finally note that, if g.x/ 	 1, as in Sect. 2, we have Varg .V / D 1

pq
, see (2). ut

4 Accurate Estimation of SRAM Yield

The threshold voltages Vt of the six transistors in an SRAM cell are the most
important parameters causing variations of the characteristic quantities of an SRAM
cell [2] like Static Noise Margin (SNM) and Read Current (Iread). In [2, 6]
Importance Sampling (IS) was used to accurately and efficiently estimate low failure
probabilities for SNM and Iread. SNM D min.SNMh;SNMl / is a measure for the
read stability of the cell. SNMh and SNMl are identically Gaussian distributed. The
min() function is a non-linear operation by which the distribution of SNM is no
longer Gaussian. Figure 1-left, shows the cumulative distribution function (CDF)
of the SNM, using 50k trials, both for regular MC (solid) and IS (dotted). Regular
MC can only simulate down to Pfail � 10�5. Statistical noise becomes apparent
below Pfail � 10�4. With IS (using a broad uniform distribution g), Pfail � 10�10 is
easily simulated (we checked this with more samples). The correspondence between
regular MC and IS is very good down to Pfail � 10�5. Figure 1-left clearly shows
that using extrapolated MC leads to overestimating the SNM at Pfail D 10�10. The
Read Current Iread is a measure for the speed of the memory cell. It has a non-
Gaussian distribution. Figure 1-right shows that extrapolated MC (dashed) can result
in serious underestimation of Iread. This can lead to over-design of the memory cell.
Also here IS is essentially needed for sampling Iread appropriately.
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Fig. 1 SNM (left) and Iread (right) cumulative distribution function for extrapolated MC (dashed),
regular MC (solid) and IS (dotted). Extrapolation assumes a normal distribution

Fig. 2 Block of SRAMs
(rotated 90ı)

5 Optimization of SRAM Block

The block in Fig. 2 (rotated 90ı) contains a Sense Amplifier (SA), a selector, and
a number of SRAM cells. The selector chooses one “column” of cells. Then the
voltage difference is �Vcell D �Vk. A block B works if mink.�Vk/ � �VSA. With
m blocks B and n cells per block we define Yield Loss by YL D P.#B � 1/ �
mP.B/, where the fail probability P.B/ D Pfail.B/ of one block is (accurately)
approximated by the lower bound P.B/ � YL

m
D nYL

N
, where N D nm. For

YL D 10�3, m D 104 blocks, n D 1000 we find P.B/ � 10�7.
For X D mink.�Vk/, and Y D �VSA we have

P.B/ D P.X < Y / D
Z Z

�1�x<y�1
fX;Y .x; y/dx dy D

Z 1
�1

fY .y/ FX.y/dy:

Thus we need the pdf fY .y/ and the cdf FX.y/ (probability and cumulative
density functions of Y and X ). Note that
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Fig. 3 Left: P.B/ as function of �tcell and �tSA. Right: Delay time t as function of �tSA

FX.y/ D P.X < y/ D P.min
k
�Vk < y/

D 1 � Œ1 � P.�Vk < y/�n � nP.�Vk < y/:
For each simulation of the block we can determine the access times�tcell and�tSA.
We come down to an optimization problem with a statistical constraint:

Minimize �tcell C�tSA such that P.B/ � 10�7.
This has led to the following algorithm. We only give a sketch; for details see [3].

• By Importance Sampling sample �Vk . Collect �Vk at same �tcell.
• By Monte Carlo sample �VSA. Collect �VSA at same �tSA.
• For given�tcell:

– Estimate pdf f�Vk and cdf P.�Vk < y/.
– From this calculate FX.y/ D FX.yI�tcell/. Note that @FX .yI�tcell/

@�tcell
� 0.

• For given�tSA:

– Estimate pdf of �VSA: fY .y/.

• Calculate (numerical integration)

– P.B/ D R1�1 fY .y/ FX.y/dy.

Hence P.B/DG.�tcell; �tSA/ for some function G. For given �tSA G1.�tcellI
�tSA/ D G.�tcell; �tSA/ is monotonically decreasing in�tcell, see Fig. 3. Hence we
Minimize G�11 .10�kI�tSA/C�tSA. The optimization with the statistical constraint
on P.B/ led to a reduction of 6% of the access time of an already optimized SA
while simultaneously reducing the silicon area [3].

6 Conclusions

Large Deviation Theory allows to derive sharp lower and upper bounds for
estimating accuracy of tail probabilities of quantities that have a non-Gaussian
distribution. For Monte Carlo this leads to a realistic number of samples that should
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be taken. We extended this to Importance Sampling (IS). IS was applied to estimate
fail probabilities Pfail � 10�10 of SRAM characteristics like Static Noise Margin
(SNM) and Read Current (Iread). We also applied IS to minimise the access time of
an SRAM block while guaranteeing that the fail probability of one block is small
enough.
In our experiments we used a fixed distribution g in the parameter space. In [6] ideas
with an adaptively determined distribution g can be found.
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Effective Numerical Computation of Parameter
Dependent Problems

Lennart Jansen and Caren Tischendorf

Abstract We analyse parameter dependent differential-algebraic-equations (DAEs)

Ad 0.x; t; p/C b.x; t; p/ D 0:

For these systems one is interested in the relation between the numerical solutions
x and some associated parameters p. The standard approach is to discretise the
equations with respect to the parameters and solve the parameter independent
equations afterwards. This approach forces a calculation of the differential equations
multiple times (for a huge number of parameter values p). This may lead to high
computational costs. By using the already computed solutions to calculate the
remaining ones and thus exploiting the smoothness of the solution with respect to
the parameters, it is possible to save the majority of the computational cost.

1 Introduction

Nowadays parameter dependent problems have their applications in various fields.
In the electric circuit simulation a circuit is modeled by a differential-algebraic-
equation obtain via a modified-nodal-analysis (MNA) like in [1]. These DAEs
depend on the parameters of the many electric parts in the circuit. Since these parts
are afflicted with a manufacturing error, one is interested in the relation between
small variation in these parameters and the behavior of the circuit.

In modern medicine the effect of the drugs used during a chemo therapy can be
described by an ordinary-differential-equation (ODE), on of the models is presented
in [2]. To obtain the optimal dosing of the drugs, simulating the therapy many
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times is necessary. Therefore the associated ODE has to be solved for many sets
of parameters.

In meteorology the reliability of a weather forecast suffers because of the huge
amount of the needed data and the chaotic behavior of the weather. These two
problems force the calculation of a big partial-differential-equation(PDE) for many
different parameters during the weather forecast.

These problems can be described mathematically by a parameter dependent
differential-equation and a set of parameters. The general task is to efficiently solve
the equations at all parameters. The main objective of this article is to present a new
approach to accelerate this calculation. We will restrict the analysis to DAEs, even so
the idea can be transferred to PDEs as well. The improvement will be demonstrated
through the comparison of the convergence estimate and an example in the circuit
simulation.

This paper is organized as follows. First we describe parameter dependent DAE
and state the well-known convergence estimate for a Backward Differentiation
Formula Method (BDF). Section 3 is devoted to the presentation of the new solving
approach and its numerical results. In Sect. 4 these results are exemplified by a
numerical example.

2 Parameter Dependent DAEs

In this chapter we want to introduce the problem in a general setup. Therefore we
need to define the structure of the DAE and its properties. Furthermore an associate
set of parameters is needed. To combine these two things define a parameter
dependent DAE:

Definition 1. Define a semi-linear parameter dependent DAE as followed:

Ad 0.x; t; p/C b.x; t; p/ D 0; (1)

with

A 2 R
n�k; d.x; t; p/ 2 R

k; b.x; t; p/ 2 R
n; x 2 D 
 R

n; t 2 I 
 R; p 2 P 
 R
l :

Recall that .:/0 means the total derivative with respect to time, i.e. d
dt .:/. Furthermore

d and b with their partial derivatives dy , dx , bx and bt are continuous. We call this
DAE properly stated, if:

• 8p 2 P: kerA and im dx are C1 � subspaces
• 8p 2 P: kerA˚ im dx.x; t; p/ D R

n 8 y 2 R
n; x 2 D; t 2 I:

In the following we assume that the DAE is properly stated. The concept of DAEs
with properly stated leading terms is described in detail in [5, 6]. Also the index of
the DAE is limited by two. An DAE index describes the complexity of the structure
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of a DAE. There are many ways to define an index, since in our applications there
is often little smoothness we refer here to the tractability index.

To solve the parameter problem we need to calculate the numerical solution of
the DAE at every single parameter point respectively. For the computation we use
a BDF-method and achieve the well-known convergence estimate for the numerical
solution of the DAE.

Theorem 1. Discretise the DAE at a fixed parameter point p0 with a BDF-method
and achieve the following system:

A.
1

h

KX
iD0

˛i d.xn�i ; tn�i ; p0//C b.xn; tn; p0/ D 0: (2)

Let h be the constant step size in time. Let the initial steps be sufficiently accurate.
Then the error of the numerical solution obtained by solving the BDF-discretised
system can be bounded by:

max
n>�K

jjx.tn/� xnjj � c.hK C 1

h�
max

0<j<�K
jjın�j jj/ (3)

with K the order of the BDF-method, �C 1 the index DAE and c being a bounded
constant.

The proof can be found in [3, 7]. Notice that the error depends on the index. With
an index bigger than one the computational error ı of the linear solvers must be
guarantied to be small enough in relation to the step size h. The order K of the

Fig. 1 A set of 10000 random parameter points
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BDF-method mostly has to be chosen very small because of the stiffness of the
applications.

For better understanding of the next chapter visualize a set of parameter points:
Let for example P 
 R

2 be a set of 10000 random parameter points (Fig. 1).
Due to the applications we are interested in solving the DAE in every of these

points to achieve the sensitivity of the solution with respect to the parameters. This
may lead to high computational cost. So we need an approach that take advantage
of the situation.

3 Parameter-Time-Integrator

This section will be used to present a more efficient approach to calculate the
numerical solutions of the DAE at every point of the parameter set. To accelerate
the computation of the solutions of the parameter dependent equation we want to
take advantage of the solutions which are already calculated. Since the solutions
won’t be similar to other solutions for big enough differences in the parameters, one
has to ensure that the change in the parameters will be sufficiently small. Therefore
split the parameter points in sufficiently small packages and observe every package
separately. The splitting of the points can depend on external data or it can be
implemented in a adaptive way (Fig. 2). Solve the parameter dependent DAE at
some parameter points in every single package to obtain interpolation nodes with
respect to the parameters. With this nodes it is possible to improve the performance

Fig. 2 A set of 10000 random parameter points splitted in parameter packages regarding their
distribution
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Fig. 3 A set of 10000 random parameter points and the associated set of 100 parameter nodes

of the calculation of the numerical solutions. For this reason formulate a modified
system of DAEs involving the parameter interpolation nodes (Fig. 3).

Definition 2. Define a new system of DAEs by modifying the right hand side of a
giving DAE with the help of some solutions xpj :

Ad 0.x; t; p/C b.x; t; p/ �
.mC1/dX
jD1

cj .p/.Ad
0.xpj ; t; pj /C b.xpj ; t; pj // D 0

(4)

with m 2 N the order of the parameter interpolation, pj 2 P the nodes of the
parameter interpolation, xpj 2 R

m the solutions at the interpolation nodes and
cj .p/ 2 R the weighting functions of an multidimensional polynomal interpolation.

Notice that the exact solution xpj fulfills Ad 0.xpj ; t; pj / C b.xpj ; t; pj / D 0,
therefore the modified DAE will be solved by xp and can be called equivalent to
the original formula (1). In praxis one only has the numerical solution xpj ;n at a
given point tn and Ad 0.xpj ; t; pj /C b.xpj ; t; pj / will not be exactly zero. For the
interpolation in the parameter space a polynomial interpolation is used. This will
force the interpolation nodes pj to be on a tensor-product grid in the parameter
space. In praxis this is objectionable and can be avoided by an interpolation with
radial basis functions or other interpolation methods. But assuming interpolation
nodes pj to be on a tensor-product grid and using an multidimensional polynomial
interpolation does make the proofs and formulas much easier. Now again use a BDF-
method to solve the modified system of DAEs.
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Theorem 2. Discretise the modified DAE for a fixed parameter point p0 with a
BDF-method. Discretise the parameter interpolation part as well with the same
BDF-method and achieve:

A
1

h

KX
iD0

˛id.xn�i ; tn�i ; p0/C b.xn; tn; p0/

�
.mC1/dX
jD1

cj .p0/.A
1

h

KX
iD0

˛id.xpj ;n�i ; tn�i ; pj /C b.xpj ;n; tn; pj // D 0 (5)

Let h be the constant step size in time. Let the initial steps be sufficiently accurate.
Then the error of the numerical solution obtained by solving the BDF-discretised
modified system can be bounded by:

max
n>�K

jjx.tn/ � xnjj � c�.d iam.P/mC1.hK C 1

h�
max

0<j<�K
jjın�j jj/C hK0 / (6)

with K the order of the BDF-method, �C 1 the index DAE and c being a bounded
constant. Furthermore P is the parameter domain in one package and h0 is the step
size used in the calculation of the solutions at the interpolation nodes.

Compare this result with [4]. At this point notice the hK0 term in the error estimate,
because of this term the solutions computed with the help of the modified system
cannot be more accurate than the solutions at the parameter nodes. Therefore the
step size h0 must be as small as the step size we would have chosen without
this new approach. The source of the improvement of this error estimation is the
parameter interpolation witch yields to the term diam.P/mC1 in front of the normal
relation of the error to the step size of the BDF-method h. You could say that we
can accelerate the computation of the numerical solution because we have a good
guess of the solution before the calculation itself starts. At this point there are three
different cases to be observed. First the interpolation guess is as accurate as the given
tolerance. In that case we don’t have to calculate a new solution. In this trivial case
we don’t need a Parameter-Time-Integration since the parameter interpolation is
already good enough. Second the interpolation guess is not as accurate as the given
tolerance but accurate enough to accelerate the calculation of the new numerical
solution. That means again that we can chose a bigger step size but still achieve
the given tolerance. And third the accuracy of the guess is to low to improve the
computation, which means we have to solve the original system. With an adaptive
time step solver these three cases can switch on every timestep depending of the
smoothness of the solution at the given time point regarding the parameters.

Think again of the example parameter set, so let P 
 R
2 again be a set of 10000

random parameter points. In this example one has to solve only 100 DAE of the
original system, if the new Parameter-Time-Integrator is be used. The remaining
solutions can be obtained by solving the modified system with the improved
convergence estimate. In the example the parameter point splitting is based on
external information in that case the distribution of the points, therefore we can
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assume that the parameter smoothness is big enough in relation to the size of the
parameter packages.

4 Example

As an example for the applications in the circuit simulation observe the following
circuit (Fig. 4):

The linear time-varying DAE

q01 CG1.t/e1 C jV D 0; q02 CG2.t/e2 C �tjV D 0
e1 D � 1

1 � �t e2; q1 D C1e1; q2 D C2e2

simulates the electric circuit.
HereG1.t/ D .1��t��/ andG2.t/ D . �

1��t ����t/ are the resistor functions
which can be changed by the parameters � and � to simulate the circuit with different
resistors. Let � D �5 be constant and p D � be the variating parameter of our
system. So this is a one-dimensional parameter space.

Furthermore e1, e2 describe the voltages at the nodes 1 and 2 with respect to the
mass node. jV is the current through the voltage source and q1, q2 represent the
charges of the capacitances C1 and C2. For simplicity C1 D C2 D 1 is assumed.
With

x D

0
BBBBB@

q1

q2
e1
e2
jV

1
CCCCCA
; A D

0
BBBBB@

1 0

0 1

0 0

0 0

0 0

1
CCCCCA
; b.x; t; p/ D

0
BBBBB@

.6 � pt/x2 C x4
.5C p

1�pt � pt/x3 C ptx4
x2 C 1

1�pt x3
x0 � x2
x1 � x3

1
CCCCCA

d.x; t; p/ D
�
1 0 0 0 0

0 1 0 0 0

�
x

Fig. 4 The circuit diagram
shows two small separated
circuit whose sources are
being controlled by the
current or the voltage of the
respective subcircuit. Apart
from that the subcircuit
consists of a resistor and a
capacitor only
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The circuit describing DAE can be written as:

Ad 0.x; t; p/C b.x; t; p/ D 0:

The parameter domain is defined through p 2 P WD Œ�20;�19�. Solve the normal
system at two parameter points p1 D �19:15 and p2 D �19:85 with an implicit
Euler method with a constant step size h D 10�4 in a time interval T D Œ0; 1�.
This means 10000 steps have to be calculated with one Newton step each. At each
parameter point a numerical solution xp1 and xp2 with an error jjxpi .tn/� xpi ;njj �
2 � 10�2 is calculated. Choose a random parameter in P, for example p3 D �19:6
and just solve it normally with a constant step size h D 10�3 with an implicit Euler.
Then the third component of the solution jv is calculated with an error jj.jv/p3 .tn/�
.jv/p3;njj � 2 � 10�1 (Fig. 5).

Now again solve the DAE with a constant step size h D 10�3 and with an implicit
Euler at p3 D �19:6, but use the changed system. Again 1000 time and Newton
steps are required, but an error jj.jv/p3.tn/ � .jv/p3;njj � 2:5 � 10�2 is achieved
(Fig. 6).

5 Conclusion

In this paper we have seen a new approach to solve parameter dependent problems.
The main idea was to approximate the solution at a parameter point with the already
calculated solution of other points to have a good guess of the solution before
calculating it. With this guess it is possible to accelerate the computation of the

Fig. 5 Solution jv with time on the x-axis and absolute error or solution values on the y-axis. The
initial system is used
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Fig. 6 Solution jv with time on the x-axis and absolute error or solution values on the y-axis. The
modified system is used

numerical solution. The degree of acceleration depends strongly on the smoothness
of the solution regarding the parameter, since it wont be possible to obtain a good
guess before the calculation, if there is nearly no connection between the parameters
and the solution of our problem. But since we can decide at every single parameter
point whether we use the parameter-time-integration or we solve the equation of the
problem without it, one can exploit the smoothness of the parameter as long as there
is some.
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Analytical Properties of Circuits
with Memristors

Ricardo Riaza

Abstract The memristor is a new lumped circuit element defined by a nonlinear
charge-flux characteristic. The recent design of such a device has motivated a
lot of research on this topic. In this communication we address certain analytical
properties of semistate models of memristive circuits formulated in terms of
differential-algebraic equations (DAEs). Specifically, we focus on the characteriza-
tion of the geometric index of the DAEs arising in so-called branch-oriented analysis
methods, which cover in particular tree-based techniques. Some related results
involving nodal models and non-passive problems are discussed in less detail.

1 Introduction

The recent appearance of a nanometer-scale device displaying a memristive char-
acteristic [24] has had a great impact in the electrical and electronic engineering
communities; cf. [5, 12, 16, 20, 23] and references therein. Although their existence
was already postulated by Chua in 1971 [2], the actual appearance of memristors
in nanoscale electronics, reported in [24], has raised a renewed interest in this
device. The memristor is considered as the fourth basic circuit element (besides
the resistor, the inductor and the capacitor) and is defined by a nonlinear charge-
flux characteristic, which may have either a charge-controlled or a flux-controlled
form. This device is likely to play a relevant role in electronics in the near future,
especially at the nanometer scale. Many applications are already reported (see e.g.
[5, 11, 12, 15]).
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The characteristic of a charge-controlled memristor has the form ' D �.q/; the
incremental memristance being defined as

M.q/ D d�.q/

dq
:

Using the relations v.t/ D .�.q//0.t/, i.t/ D q0.t/ and the chain rule we get
the voltage-current characteristic v.t/ D M.q.t//i.t/. The device behaves as a
resistor in which the resistance depends on q.t/ D R t�1 i.�/d� , hence the memory-
resistor (or memristor) name. In turn, a flux-controlled memristor is governed by
q D �.'/, the current-voltage relation being i.t/ D W.'.t//v.t/ with incremental
memductance

W.'/ D d�.'/

d'
:

A charge-controlled (resp. flux-controlled) memristor is strictly locally passive if
M.q/ > 0 (resp. W.'/ > 0) for all q (resp. '). In the presence of coupling effects,
this requirement should be restated by asking the full memristance or memductance
matrices to be positive definite.

The analysis of memristive circuits involves the use of models based on
differential-algebraic equations (DAEs). This stems from the fact that most circuit
simulation programs set up the circuit equations in DAE form; this is the case in
SPICE and its commercial variants [6, 9, 27]. A major problem in the study of
DAE circuit models is the characterization of their index [1, 17, 19]: in this paper
we characterize, in terms of the circuit topology, the so-called geometric index
of memristive circuits, focusing the attention mainly on branch-oriented and tree-
based models. The geometric index, which supports reduction methods, displays
several advantages in the study of different analytical aspects of DAEs, involving
e.g. stability issues or bifurcations; detailed discussions about this and other related
index notions can be found in the above-mentioned references [1, 17, 19].

2 Memristive Circuit Models, DAEs, and the Geometric Index

So-called branch-oriented circuit models are based on the use of the loop and cutset
matrices B , Q to describe Kirchhoff laws, being closely related to hybrid models
[10, 19, 26]. The entries .bij / (resp. .qij /) of the loop matrix B (resp. cutset matrix
Q) are set to C1 or �1 if branch j belongs to loop i (resp. cutset i ) with the same
or opposite orientation, respectively, being 0 otherwise. Branch-oriented models
avoid the use of the node potentials as circuit variables and are well-suited regarding
analytical aspects such as the state space formulation problem; with respect to this
problem, DAE-reduction methods and the geometric index notion [17, 19] arise
naturally. Branch-oriented models have the form
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C.vc/v
0
c D ic (1a)

L.il /i
0
l D vl (1b)

q0m D im (1c)

' 0w D vw (1d)

0 D vr � �r.ir / (1e)

0 D ig � �g.vg/ (1f)

0 D vm �M.qm/im (1g)

0 D iw �W.'w/vw (1h)

0 D Bcvc C Blvl C Brvr C Bgvg C Bmvm C Bwvw C Buvs.t/CBj vj (1i)

0 D Qcic CQlil CQrir CQgig CQmim CQwiw CQuiu CQj is.t/; (1j)

where we accommodate both current- and voltage-controlled resistors (cf. (1e) and
(1f)) and, analogously, charge- and flux-controlled memristors in (1g) and (1h). For
later use, denote by R and G the incremental resistance and conductance matrices
� 0r .ir /, � 0g.vg/. The subscripts c, l correspond to capacitors and inductors; r , g
to current- and voltage-controlled resistors; m, w to charge- and flux-controlled
memristors and, finally, u, j to voltage and current sources, respectively. Sometimes
it is more convenient to use a so-called proper formulation [13,14,19] and write the
left-hand sides of (1a) and (1b) as .qc.vc//0.t/ and .'l .il//0.t/, respectively. In this
paper we will not make use of this type of models, though.

In particular, when the loop and cutset matrices arise from the choice of a
spanning tree (see e.g. [19]), then (1i) and (1j) take the form

0 D vco CKvtr

0 D itr �KT ico ;

for a certain matrix K; with the subscripts tr and co we refer to tree and cotree
branches, respectively. Proceeding as in [19], it is not difficult to show that the index
is not affected by the specific choice of the matricesB andQ, and therefore we may
assume w.l.o.g. that they arise from the choice of a given spanning tree.

Differential-algebraic equations and the geometric index. If the capacitance
and inductance matrices C.vc/, L.il / are non-singular, (1) defines a semi-explicit
differential-algebraic equation (DAE) [1, 19] of the form

x0 D f .x; y; t/ (2a)

0 D g.x; y; t/; (2b)
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where (2a) comprises (1a)–(1d) and (2b) stands for (1e)–(1j). The DAE is said to
have geometric index one if the matrix of the partial derivatives of g with respect to
y is non-singular. Index one DAEs display many advantageous features from both
analytical and numerical standpoints [1, 17, 19]; in particular, a local reduction of
the form x0 D f .x; h.x; t/; t/ follows from the implicit function theorem.

The definition of DAEs with geometric index two is more involved, and the
reader is referred to [17, 19] for details. The key aspect is that two reduction steps
are now necessary to describe the dynamics of the DAE. In particular, for so-called
Hessenberg DAEs x0 D f .x; y; t/, 0 D g.x; t/, in which g does not depend on y,
the index is two when the product gxfy defines a non-singular matrix.

3 Geometric Index Characterization

Our main result (stated in Theorem 1 below) extends to the geometric index
framework, and in terms of branch-oriented models, previous characterizations of
the tractability index of nodal models [6, 23, 27].

Theorem 1. Assume that the matrices C , L, R,G,M ,W are positive definite. The
model (1) has (I) geometric index one in the absence of VC-loops and IL-cutsets, and
(II) geometric index two in the presence of at least one VC-loop including capacitors
and/or at least one IL-cutset including inductors.

Proof. (I) Let us first assume that the circuit exhibits neither VC-loops nor IL-
cutsets. In this situation there is no loss of generality in assuming that (1) arises
from the choice of a proper tree, including all voltage sources and capacitors
and neither current sources nor inductors. This assumption gives (1i) and (1j)
the form

0
BB@

vmwco

vrgco

vj
vl

1
CCA D �

0
BB@

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

1
CCA

0
BB@

vmw tr

vrg tr

vs.t/
vc

1
CCA

and

0
BB@

imw tr

irg tr

iu
ic

1
CCA D

0
BBBB@

KT
11 K

T
21 K

T
31 K

T
41

KT
12 K

T
22 K

T
32 K

T
42

KT
13 K

T
23 K

T
33 K

T
43

KT
14 K

T
24 K

T
34 K

T
44

1
CCCCA

0
BB@

imwco

irgco

is.t/

il

1
CCA ;

where we have joined together the entries corresponding to charge- and flux-
controlled memristors, on the one hand, and current- and voltage-controlled resis-
tors, on the other.
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Additionally, proceeding as it is done in [19] for RLC circuits one can show that
the positive definiteness assumption on R and G makes it possible to recast the
resistors’ multiport equations (1e)–(1f) in a local hybrid form

vr tr D hr1.ir tr; vrco/

irco D hr2.ir tr; vrco/

vg tr D hg1.ig tr; vgco/

igco D hg2.ig tr; vgco/;

with positive definite Jacobian matrices

Hr D
0
@

@hr1
@ir tr

@hr1
@vrco

@hr2
@ir tr

@hr2
@vrco

1
A D

�
Hr11 Hr12

Hr21 Hr22

�
; Hg D

0
@

@hg1
@ig tr

@hg1
@vgco

@hg2
@ig tr

@hg2
@vgco

1
A D

�
Hg11 Hg12

Hg21 Hg22

�
:

Similarly, the memristors’ characteristics (1g)-(1h) can be rewritten as

�
vm tr

imco

�
D
�
Hm11 Hm12

Hm21 Hm22

��
im tr

vmco

�
;

�
vw tr

iwco

�
D
�
Hw11 Hw12

Hw21 Hw22

��
iw tr

vwco

�
;

being

Hm.qm/ D
�
Hm11.qm/ Hm12.qm/

Hm21.qm/ Hm22.qm/

�
; Hw.'w/ D

�
Hw11 .'w/ Hw12 .'w/

Hw21 .'w/ Hw22 .'w/

�

positive definite.
The index one condition for (1) can be easily checked to rely on the singularity of

the matrix of derivatives of (1e)–(1j) with respect to the variables vmw tr; vrg tr ; imwco;

irgco ; imw tr; irg tr; vmvco and vrgco . This matrix has the form

J D
�
I �H
QK I

�

with

H D

0
BB@

Hmw11 0 Hmw12 0

0 Hrg11 0 Hrg12

Hmw21 0 Hmw22 0

0 Hrg21 0 Hrg22

1
CCA (3)
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and

QK D

0
BBB@

0 0 �KT
11 �KT

21

0 0 �KT
21 �KT

22

K11 K12 0 0

K21 K22 0 0

1
CCCA D

0
BB@

0 0 �I 0

0 0 0 �I
I 0 0 0

0 I 0 0

1
CCA

0
BBB@

K11 K12 0 0

K21 K22 0 0

0 0 KT
11 K

T
21

0 0 KT
21 K

T
22

1
CCCA :

Note that in (3) we have joined together, again, the entries corresponding to charge-
and flux-controlled memristors, and also to current- and voltage-controlled resistors.

Assume that .u; v/ 2 kerJ . It follows that v D � QKu and .I C H QK/u D 0.
Premultiply this relation by uT QKT to derive

uT QKT uC uT QKTH QKu D 0:

The block-structure of QK implies QKT D � QK , so that uT QKT u D 0. From the
resulting relation uT QKTH QKu D 0 and the positive definiteness of H we get
QKu D 0 and, since u verifies .I C H QK/u D 0 we get u D 0 and, in turn,

v D � QKu D 0, proving that the kernel of J is trivial. Hence, in the absence of
VC-loops and IL-cutsets J is non-singular and therefore (1) has geometric index
one. This completes the proof of (I).

(II) The index two analysis associated with the presence of VC-loops and/or IL-
cutsets is more involved. Now we assume that the spanning tree is a normal one,
including all voltage sources, the maximum possible number of capacitors, the
minimum possible number of inductors and no current source. The relations (1i)
and (1j) now take the form

0
BBBBB@

vmwco

vrgco

vj
vlco

vcco

1
CCCCCA
D �

0
BBBBB@

K11 K12 K13 K14 0

K21 K22 K23 K24 0

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

0 0 K53 K54 0

1
CCCCCA

0
BBBBB@

vmw tr

vrg tr

vs.t/
vc tr

vl tr

1
CCCCCA

and

0
BBBBB@

imw tr

irg tr

iu
ic tr

il tr

1
CCCCCA
D

0
BBBBBBB@

KT
11 K

T
21 K

T
31 K

T
41 0

KT
12 K

T
22 K

T
32 K

T
42 0

KT
13 K

T
23 K

T
33 K

T
43 K

T
53

KT
14 K

T
24 K

T
34 K

T
44 K

T
54

0 0 KT
35 K

T
45 0

1
CCCCCCCA

0
BBBBB@

imwco

irgco

is.t/

ilco

icco

1
CCCCCA

whereK51,K52,K55,K15 andK25 do vanish because of the choice of a normal tree.
Now the circuit model can be reduced to a Hessenberg DAE of the form
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C.vc/

�
vc tr

vcco

�0
D
�
˛.qm; 'w; vc tr ; ilco ; icco ; vs.t/; is.t//

icco

�

L.il /

�
il tr
ilco

�0
D
�

vl tr
ˇ.qm; 'w; vc tr ; ilco ; vl tr; vs.t/; is.t//

�

q0m D �.qm; 'w; vc tr ; ilco ; vs.t/; is.t//

' 0w D �.qm; 'w; vc tr ; ilco ; vs.t/; is.t//

vcco D �K53vs.t/ �K54vc tr

il tr D KT
35is.t/CKT

45ilco ;

for suitable functions ˛, ˇ, �, �, with @˛=@icco D KT
54 and @̌ =@vl tr D �K45. The

index two condition for this Hessenberg DAE then relies on the non-singularity of

.K54 I /.C.vc//
�1
�
KT
54

I

�
; .I �KT

45/.L.il //
�1
�

I

�K45

�
:

Simple computations show that their non-singularity follows from the definiteness
assumption on C and L, which implies that of C�1 and L�1; details are left to the
reader. In this setting the geometric index of (1) is two and the proof is complete. �

The geometric index characterization presented in Theorem 1 is a novel result.
Noteworthy, it applies in particular to models constructed from the choice of a
spanning tree, very often used in practice. Below, we survey some related properties
involving other circuit models and other working scenarios.

4 Nodal Models and Non-passive Circuits

Nodal analysis. Most circuit simulation programs, such as SPICE, set up circuit
equations using nodal analysis [6, 9, 19, 27]. Nodal models, which are well-suited
from a computational point of view, are based on the so-called reduced incidence
matrix A and are formulated in terms of the node potentials e and some branch
currents.

After choosing a reference node, the reduced incidence matrix of a connected
circuit is defined as .aij /, where aij isC1 (resp.�1) if branch j leaves (resp. enters)
node i , or 0 otherwise. In terms of the reduced incidence matrix, the nodal equations
can be written in the form

C.vc/v
0
c D ic (4a)

L.il /i
0
l D ATl e (4b)

' 0w D ATwe (4c)
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0 D Ag�.A
T
g e/C Awiw C Acic CAl il C Auiu C Aj is.t/ (4d)

0 D vc � ATc e (4e)

0 D vs.t/ �ATu e (4f)

0 D iw �W.'w/A
T
we: (4g)

Note that Kirchhoff voltage law is now stated in the form v D AT e, making
it possible to eliminate several branch voltages from the model. We assume the
memristors to be flux-controlled, and the resistors to have a voltage-controlled
characteristic ig D �.vg/. As detailed in [23], under strict passivity assumptions
the index characterization stated in Theorem 1 also holds for the tractability index
[13, 14] of the nodal model (4).

Non-passive problems. The positive definiteness assumptions in Theorem 1 are
not met in many practical situations. Using the approach discussed in [22], it is
possible to derive a characterization of index one problems without this passivity
requirement, as shown in [20]. Specifically, assuming that the matrices C , L are
non-singular, and that neither resistors nor memristors exhibit coupling effects, the
models (1) and (4) are still index one if and only if a) the circuit has neither VC-loops
nor IL-cutsets, and b) the sum of conductance-memductanceproducts in proper trees
does not vanish. The proof of this assertion can be found in [20].

5 Concluding Remarks

The memristor and related devices are likely to play a very relevant role in
electronics in the near future. The characterization of analytical properties such as
the index of DAE models is important in the study of dynamical and numerical
properties of circuits with memristive devices. The results here discussed should be
useful in future analyses of nonlinear aspects involving e.g. stability, bifurcations,
oscillations, chaotic effects or impasse phenomena in memristive circuits, extending
to this context related results proved for circuits without memristors [3, 4, 7, 8, 10,
18, 21, 25].
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Scattering Problems in Periodic Media
with Local Perturbations

Therese Pollok, Lin Zschiedrich, and Frank Schmidt

Abstract Within this paper we consider scattering problems with periodic exterior
domains, modeled by the Helmholtz equation. Most current works on this subject
make specific assumptions on the geometry of the periodic cell, e.g. special
symmetries or shapes, and cannot be generalized to higher space dimensions in an
easy way. In contrast our goal is the realization of an easy dimension independent
concept which is valid for all kinds of periodic structures with local defects. We
will first give a general analytical formulation and then present an algorithmic
realization. At the end of the paper we will also depict a 1D and 2D example.

1 Introduction and Problem Setting

Periodic structures such as photonic crystals or metamaterials have many applica-
tions in modern optic devices due to their optical properties, as for example the
occurrence of band gaps, i.e. forbidden frequency ranges, or negative refractive
indices. Particularly defects within the periodicity of band gap materials are of
special interest since they can be used to manipulate the flow of light efficiently. By
disturbing a whole line of unit cells for example one can produce a waveguide for
frequencies within the band gap whereas local perturbations yield optical cavities.
For more details see for example [1, 4]. We will confine our considerations to local
defects, i.e., the perturbation is restricted to a bounded region ˝ as illustrated in
Fig. 1. Without loss of generality we will further assume, that˝ is contained in one
single unit cell C0.

In real applications photonic crystals often consist of a very large number of unit
cells. We will therefore assume that the crystal is of infinite size.
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Fig. 1 2D periodic structure
with a local perturbation

Furthermore we assume a non-conducting and charge-free medium and a time-
harmonic incoming wave and model the scattering problem by the scalar Helmholtz
equation�u.r/C k2.r/u.r/ D f .r/. The material properties thereby are contained
in k2.r/ D ".r/�.r/!2, where ! is the frequency of the incoming wave. The right
hand term f .r/ is the source term, resulting from the incoming wave (see (5)).

One of the most important works on this subject is the work of P. Joly [3] in which
for 2D structures a coupled operator equation system for four operators is derived.
It can be decoupled in the special case of so called double symmetric refractive
indices but is much more involved for the general unsymmetric case. In [2], which
is a second important work in this field, only 2D structures are considered which
consist of cylinders of refractive index ni in an elsewise homogeneous medium of
refractive index ne . In view of the development of an universal tool we are interested
in an easier and general concept which is independent of the spacial dimension.

2 Scattering Problems

Let uin be an incident wave which satisfies the Helmholtz equation in the exterior
domain˝ext D R

d n˝:

�uin.r/C k2per.r/uin.r/ D 0; (1)

where kper is an (undisturbed) periodic function with lattice vectors gj for j D
1; : : : ; d , i.e.,

kper.rC gj / D kper.r/ 8r 2 R
d : (2)

Find the scattered wave usc such that for the total field utot D uin C usc,

�utot.r/C k2.r/utot.r/ D 0 in R
d ; (3)

where
k2.r/ D k2per.r/C k2�.r/ (4)

for a function k� with support in ˝ . Without loss of generality we assume that ˝
is contained in a unit cell of the periodic structure.
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By inserting (1) and (4) into (3) one obtains

�usc C k2usc D �k2�uin DW f in R
d ; (5)

with suppf � ˝ .
In order to obtain the physically correct solution we require in addition a radiation

condition that ensures that usc is purely outgoing. For the mathematical formulation
of this radiation condition we will use the limiting absorption principle which is part
of the next section.

For the sake of simplicity we will omit the subscript of the scattered field usc and
denote it in the following as u.

3 Bloch-Floquet Transform and Limiting Absorption Principle

Due to backscattering off the periodic configuration of materials, distinguishing
between incoming and outgoing waves is much more involved than in the homo-
geneous case. The standard approach to overcome this difficulty is to introduce
artificial damping by replacing k ! k.1 C i�/, where � 2 RC is the damping
parameter. The outgoing waves of the damped problem are exponentially decaying
for jrj ! 1 and thus can be distinguished from the exponentially growing
incoming waves. This is known as limiting absorption principle and was first
introduced by Joly [5] and reads:

Find u 2 L2.Rd / such that

�uC k2.1C i�/2u D f: (6)

Next, we introduce the so-called Bloch-Floquet transform, a second standard
technique for the treatment of periodic problems. Its application to the Helmholtz
equation leads to boundary value problems with finite computational domains, as
detailed in the following.

Let G WD .g1; : : : ; gd / the matrix consisting of the lattice vectors gj (see (2) and
Fig. 1) and

� WD ˚Gnjn 2 Z
d

:

For exponentially decaying u one can define the Bloch-Floquet transform Fl.u/ DW Ou
by

Ou.kB; r/ WD
X
d2�

u.rC d/ exp.�ikB � d/; (7)

where kB 2 R
d is called Bloch vector. (See [6].)

It can easily be shown that Ou is periodic with respect to kB : Let Qg1; : : : ; Qgd the
reciprocal lattice vectors, i.e.

gi � Qgj D 2�ıij :
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Then
Ou.kB C Qgj ; r/ D Ou.kB; r/:

Hence it is sufficient to consider kB 2 BZ, where BZ is the so called first Brillouin
zone which is defined as the primitive unit cell of the reciprocal lattice. The inverse
of the Bloch-Floquet transform reads

u.r/ D 1

jBZj
Z

BZ
Ou.kB; r/dkB: (8)

Let us now apply the Bloch-Floquet transform to the damped Helmholtz equa-
tion (6). It can be easily shown that for the periodic part kper of k,

Fl.k2peru/ D k2per Fl.u/: (9)

Thus, by using (4) and (9), we obtain

�OuC k2per.1C i�/2 OuC Fl
	
k2�.1C i�/2u


 D Fl.f /: (10)

Without loss of generality we can assume ˝ 
 C0, where C0 is a unit cell of the
periodic structure (otherwise define C0 as a sufficient large cell). Then for every
function g with support in ˝ holds Fl.g/.kB; r/ D g.r/ for all r 2 C0. Thus we
may write

�OuC k2per.1C i�/2 OuC k2�.1C i�/2u D f in BZ � C0: (11)

We can obtain an equation for Ou from (10) by applying the inverse transform (8):

�OuC k2per.1C i�/2 OuC k2�.1C i�/2
1

jBZj
Z

BZ
OudkB D f in BZ � C0: (12)

By adding a lattice vector gj of the periodic structure to the space argument r in the
definition (7) of the Bloch-Floquet transform we see that Ou.kB; r/ is quasi-periodic:

Ou.kB; rC gj / D Ou.kB; r/ exp.ikB � gj /: (13)

Equation (13) yields the boundary conditions that enable us to restrict the spacial
computational domain to the unit cell C0. It also tells us how to extend the solution
to R

d .

Remark 1. Since any bounded solution Ou of (12) is extended by (13) it remains
bounded on R

d . Therefore the solution u of (6) which can be obtained by inverting
Ou with (8) is also bounded and thus contains no exponentially growing part. This
means that the obtained solution must be outward radiating as demanded.
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4 Algorithmic Solution

Equation (12) is a 2d -dimensional problem since Ou depends on kB and r. In the case
of k� D 0 (12) would decouple into one d -dimensional boundary value problem

�Ou.kB; �/C k2per.1C i�/2 Ou.kB; �/ D f in C0 (14)

Ou.kB; rC gj / D Ou.kB; r/ exp.ikB � gj /

for each kB 2 BZ, which we can solve with standard methods.
Let us now assume we already knew the solution u of the original problem with

k� ¤ 0. Then we would get from (10)

�Ou.kB; �/C k2per.1C i�/2 Ou.kB; �/ D Qf in C0 (15)

with the new right hand side Qf D f � k2�.1 C i�/2u and we would have
again a problem of the same type as (14). This motivates the following itera-
tion:

un D u0I
for n D 0 W max_iteration_steps do
Ou solve (15) with Qf D f � k2�.1C i�/2unI
unC1 FloquetInvert.Ou/I

end for
As initial value for the iteration we choose u0 D 0. This implies that in the first
iteration step the algorithm solves the unperturbed periodic problem.

To solve (15) for one specific value of kB we use a standard finite element method
with quasi-periodic ansatz functions

�.rC gj / D �.r/ exp.ikB � gj / for j D 1; : : : ; d: (16)

This special choice of ansatz functions eliminates the boundary integral from
the variational formulation of (15). The numerical integration in (8) requires the
evaluation of (15) for several values kB which means computing several finite
element solutions per iteration step. To keep the computational effort low we used
an adaptive integration formula that uses an unstructured grid. The choice of the
damping parameter � influences the effort required for the numerical integration,
since � D 0 would yield a solution with singularities which are smoothed when
increasing � . Therefore the choice of � is a tradeoff between low integration costs
and perturbation of the original problem and its solution.

Remark 2. To get the solution of the undamped case � D 0 one can use extrapola-
tion methods.
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Convergence

The convergence of the iteration depends on the magnitude of the perturbation
function k2�. The more the periodicity is disturbed, the worse is the convergence.
In the case of divergence one may help oneself by applying the following trick: Let
k2� D k2�;1 C k2�;2, where k2�;1 is small enough so that the problem �u C .k2per C
k2�;1/.1 C i�/2u D f leads to a convergent iteration and is thus solvable with the
above algorithm. By shifting the troubling term k2�;2.1C i�/2u to the right hand side
one obtains again an iteration problem:

�unC1 C .k2per C k2�;1/.1C i�/2unC1 D f � k2�;2.1C i�/2un

This way one may reduce the problem recursively to solvable problems.

Perturbation of Multiple Cells

In the case˝ 6
 C0 it is not necessary, to solve (15) on a larger lattice cell, since (13)
and the left hand side of (15) remain unaffected. We only have to take into account
more terms of the Bloch-Floquet transform of the right hand side of (15):

Qf !
X
d2�0

Qf .rC d/ exp.�ikB � d/

where �0 D
n
d 2 � j supp Qf \ .dC C0/ ¤ ;

o
.

5 Examples

We implemented this algorithm for the one- and two-dimensional case. In the
following we present a 1D as well as a 2D example. Figures 2 and 3 show the
geometry of the 1D and 2D media which each consist of two materials with k1 D 6
and k2 D 8. The source term is f .r/ D exp.�25r � r/ in ˝ and f D 0 outside ˝ ,
where˝ D Œ�0:5I 0:5� and˝ D Œ�0:5I 0:5�2, respectively. The damping parameter
is in both cases � D 10�2.

Figure 4 shows the intensity ju.r/j2 of the computed scattered field in the inner
part of the infinite domain for the two-dimensional case.

6 Conclusions

Within the current work we demonstrated a dimensionally independent formulation
for scattering problems with periodic exterior domains, that is valid for all kinds of
infinite periodic structures with local defects. By means of a simple iterative scheme
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Fig. 2 1D geometry consisting of two materials with difference refractive indices

Fig. 3 2D geometry with
square lattice. The red dashed
line marks the domain which
is depicted in Fig. 4

the original problem with local defects is reduced to a series of exact periodic
problems which can be solved efficiently with standard numerical techniques. For
each of the individual exact periodic subproblems the computational domain can
be restricted to a finite region by applying the limiting absorption principle and
the Bloch-Floquet transform. We demonstrated the feasibility of our formulation
by implementing it for the one-dimensional as well as for the two-dimensional
case. For both cases a practical test case has been shown to yield meaningful
results with a good convergence behaviour (Fig. 5). Our investigations indicate
that the convergence behaviour of the iteration depends on the magnitude of the
perturbation. Consequently, for strongly perturbed geometries, the problem might
not converge at all. However, for such cases, convergence can be re-established by
employing a nested iteration.
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Fig. 4 Intensity of the computed 2d-solution for the infinite periodic scattering problem
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Part II
Computational Electromagnetics

Introduction

This second part is concerned with methods for electromagnetic computation. The
first paper by G. Sylvand (an invited speaker at the conference) sets the indus-
trial scene of electromagnetic field computations by showing some examples of
impressive large-scale computations made at the European Aeronautic Defence and
Space company (EADS). Modern implementations of the fast-multipole methods on
parallel computers are presently used to solve frequency domain electromagnetic
scattering problems with boundary integral equation methods with upto forty
million degrees of freedom.

The contribution by J. Ostrowski (an invited speaker at the conference) et al.
deals with a finite element solution of the full linear Maxwell equations for slow
processes. The authors propose a novel stabilisation technique that allows for the use
of very large time steps in an explicit Euler scheme. This is of great importance for
the efficient simulation of slow processes in order to keep the number of time steps
reasonably small. The improved robustness is demonstrated through a numerical
experiment on the lightning impulse test of a transformer.

The contribution by M. Kolmbauer and U. Langer proposes a preconditioned
minimum residue solver for finite element discretisation of the frequency domain
eddy current problem. The method is shown to be robust with regard to both the
mesh size and the frequency. N. Sajjad, A. Khenchaf, and A. Coatanhay study the
depolarisation of electromagnetic waves in scattering at soil surfaces. To include
the effects of surface roughness, the authors add second order scattering effects
at a small scale and develop an improved two-scale method. The performance
of the new method is assessed by comparing backscattering simulation results
with measured data and integral equation computation results. The contribution by
J. Trommler, S. Koch, and T. Weiland, discusses two finite-element approaches
to handle the inclusion of thin sheets in three-dimensional electro-quasistatic
problems. The different methods, i.e. either using a high order approximation in the
direction orthogonal to the surface or using an analytical model for the thin sheet
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jump relations, are then compared to a conventional discretisation method. In the
following contribution, B. Bandlow and R. Schuhmann present new mode selecting
eigensolvers for three-dimensional problems which, upon discretisation, may lead
to unsymmetrical matrices. For the computation of interior eigen functions, one
usually needs an estimate of the eigenvalues and the eigenvectors in order to obtain
good convergence to the desired result. The authors propose an extended selection
strategy for the Ritz pairs appearing in the Jacobi-Davidson eigensolver algorithm.

The following four papers rely on a quasistatic approximation to the Maxwell
equations. The paper by P. Dular (an invited speaker at the conference) et al.
discusses various methods of using model refinement in magnetic circuit com-
putations. Transitions from, for example, one-dimensional to three-dimensional
problems, from statics to dynamics or from perfect to real materials, can all be
treated as model refinements. This paper shows a general method for making
the mentioned transitions (and more) using finite element methods. In the paper
by D. Ioan, G. Ciuprina, and A. Lazar a new modelling approach appropriate
for substrate modelling is proposed. The main idea is to perform a hierarchical
modelling based on an exponential partitioning scheme, which leads to a circuit
model of linear complexity. In the paper by A. Fröhlcke, E. Gjonaj and T. Weiland a
boundary conformal high-order Discontinuous Galerkin method on Cartesian grids
is proposed for solving three-dimensional electro-quasistatic problems. Material
boundary surfaces are handled using an accurate cut-cell approach. Two numerical
examples show the optimal convergence rate of the method for arbitrary geometries.
The paper by F. Muntean et al. analyses optimisation approaches for smoothing
certain edge-effects in electro-deposited layers obtained in electrochemical reactors.

The next two papers study the movement of electrical charges in electromagnetic
fields. The paper by T. Christen et al. introduces procedures for an improved
prediction of streamer paths in complex geometries. Although the method is still
based on the electric background field, it generalizes conventional models and is
able to explain both streamer inception points other than at field maxima as well as
streamer paths deviating from field lines. In the following paper, L. Pebernet et al.
present a Particle-In-Cell (PIC) method based on a Discontinuous Galerkin scheme
for the solution of the Maxwell-Vlasov equations in the time domain. Comparisons
with a two-dimensional finite difference result found in the literature are made in
order to validate the method.

The last two papers are examples of model coupling in which the electromagnetic
field equations are coupled to the charge dynamic equations. This coupling is rather
natural, though, because the charges are already present in the Maxwell equations.
In the next part, we will see more examples of coupled problems, and in some cases
the nature of the coupled problems is rather different.



From Quasi-static to High Frequencies : An
Overview of Numerical Simulation at EADS

Guillaume Sylvand

Abstract EADS IW produces mathematical methods, numerical schemes and
softwares in the field of electromagnetic simulation for the various needs of all
EADS Business Units. Hence, we have produced over the years a wide range of
tools for time domain and frequency domain EM problems. The aim of this talk is
to give an overview of this work, underlining its most remarkable aspects, the recent
developments and future perspectives.

1 Context

Innovation Works is, inside EADS, an entity devoted to research and development
for the usage of EADS Business Units (Airbus, Eurocopter, MBDA, etc.). The
numerical analysis team has been working for now more than 20 years on various
methods for wave propagation simulations, first in electromagnetism, later in
acoustics, both in frequency and time domain. The aim of this talk is to present
the various tools currently developed and used inside EADS (with a focus on BEM,
which is the main field of your author).

2 Boundary Element Method

The boundary element method has been a subject of work at EADS Innovation
Works since the middle of the 1980s. Originally, the application was electromag-
netism and, more specifically, stealth applications. The integral equations, solved
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Fig. 1 Examples of BEM computation in frequency domain : Near field around a structure

with a boundary element method, were chosen because of their high accuracy.
Another advantage of this method is that they only require a surface mesh of the
object to compute, which is much simpler to realize, especially for complex “real
world” (that is to say : not sphere !) objects such as planes or engines (Fig. 1).

2.1 Frequency Domain

Integral equations and BEM require manipulating more complex mathematical
formulae (with singularities coming from the Green kernel), and they lead to dense
symmetric matrices. For solving these linear systems, one can use either direct
solvers (such as those based on an L.D.Lt factorization of the matrix). The cost of
these methods grows like the cube of number of unknowns, which make them very
expensive in CPU time for large problems (with several millions of unknowns).
EADS IW has therefore developed an out-of-core parallel direct solver called
SPIDO to handle the resolution. The other class of solver is iterative solvers, which
can be very efficient when used in conjunction with a multipole method for speeding
up the matrix-vector product.
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Fig. 2 Examples of BEM computation in frequency domain: surfacic currents on an aircraft

Iterative solvers allow solving a linear system by computing matrix-vector
products. These products need O(n2) operations (where n is the number of
unknowns) if they are written classically. The FMM (Fast Multipole Method) allows
to compute them in O(n.log n) operations, hence leading to a much lower overall
computation time. The algorithm is based on recursive decomposition of the object
through a tree-like 3D-structure called octree.

Using this decomposition, one can separate interactions to compute between
close interactions (between domain that touch each others) and distant interactions
(the remaining ones). The latter are then treated in an approximate but faster way by
the FMM algorithm. The FMM can accelerate the resolution of problems that can
already be solved with direct solvers, but it also gives the possibility to handle very
large problems out-of-reach until now (up to forty millions unknowns).

This method has been implemented at EADS IW (through a collaboration with
CERMICS ) since 1997. The software is parallel, out-of-core, and now widely used
among the Business Units of EADS for acoustics (Airbus) or electromagnetism
(Astrium, Airbus, Eurocopter, ...) applications (Fig. 2).

2.2 Time Domain

In time domain, BEM produce sparse matrices, solved with a marching-on-in-time
algorithm. In this case, the numerical scheme is inconditionnaly stable, without any
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CFL-like condition, thus allowing to very wide band computation on a given mesh
(which is a precious advantage, from an industrial point of view).

3 Other Methods

3.1 FDTD

The finite difference time domain is still very widely used. Until the recent
development of time domain BEM, it was the time domain of choice for a very
wide range of computations. On top of that, it allows to represent realistic shapes
and materials, adapted to real life needs. Its (relatively) simple scheme is also well
suited for high performance parallel architectures. All these reasons make FDTD a
very widely used methods in all EADS (Figs. 3 and 4).

Fig. 3 Examples of FDTD
applications : NH90
helicopter mesh

Fig. 4 Examples of FDTD
applications : A380
computation
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Fig. 5 Examples of HF
applications : aircraft case

Fig. 6 Examples of HF
applications : zoom on the
landing gear area

3.2 High Frequency Method

For frequency domain computation, high frequency scheme based on ray launching
techniques produce satisfactory results with very low computation time (Figs. 5
and 6).



Transient Full Maxwell Computation
of Slow Processes

J. Ostrowski, R. Hiptmair, F. Krämer, J. Smajic, and T. Steinmetz

Abstract This article deals with finite element solution of the full linear Maxwell’s
equations. The focus lies on the transient simulation of slow processes, i.e. of
processes, where wave propagation does not play a role. We employ an implicit
Euler method for time discretization of the A; '-based Galerkin-formulation with
Coulomb-gauge. We propose a novel stabilization technique that makes possible the
use of very large timesteps. This is of supreme importance for efficient simulation
of slow processes in order to keep the number of timesteps reasonably small.
The greatly improved robustness in comparison with a standard formulation is
demonstrated through numerical experiments. As an example we simulate the
lightning impulse test of an industrial dry-type transformer.

1 Motivation

Electromagnetic field simulations of slow processes, i.e. of processes in the so-
called low frequency range, where wave propagation does not play a role, are
normally carried out by using either [8]

• A static model, i.e. electrostatics or magnetostatics, if all variations in time can
be neglected.

• Or a quasi-static model, i.e. electro-quasistatics or magneto-quasistatics.
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The static models are just special cases of the full Maxwell’s equations, whereas
the quasi-static models are approximations that are only valid in special situations
[10,11]. If capacitive effects are dominant and the magnetic field energy is negligible
against the electric field energy, then the electro-quasistatic model can be used,
but induction is neglected. On the contrary, if inductive effects matter and the
electric field energy is negligible versus the magnetic field energy, then the magneto-
quasistatic model (or eddy-current model) can be used. The displacement-current is
neglected in the magneto-quasistatic model.

This zoo of models forces the computational engineer to acquire and learn
several simulation modules to cover the wide range of industrial applications. Some
expertise in electromagnetics is also required in order to select the appropriate
model. This is not desirable, because it limits the possible users of electromagnetic
field simulation to a circle of experts. Moreover, the quasi-static models do not allow
the simulation of configurations with coupled inductive/capacitive effects. For these
reasons, we propose a generally applicable full Maxwell solver that unifies the four
models of the low frequency range. However, standard full Maxwell formulations
lack stability in this range. Therefore we describe a remedy in the form of a
particular stabilization. Through this we achieve a robust Maxwell formulation.

We structured our article like this: first we analyze the reason for the instability
of the standard full Maxwell formulation. Next we add the stabilization. Since this
technique has already been introduced in frequency domain [3], we focus here on
its realization in time domain. We demonstrate the strongly improved robustness by
numerical experiments. At the end we show an industrial application of a transient
simulation.

2 Instability of the Full Maxwell Model

We assume that the bounded computational domain ˝ D ˝c [ ˝n consists
of a conductive domain ˝c and a non-conductive domain ˝n. For completeness
we include possible prescribed solenoidal currents js and prescribed charges
s WD �divjs. We assume stationary, i.e. non-moving, and non-deforming ohmic
conductors. Thus the current is j D � � E C js. We use an implicit Euler scheme
for time discretization, because we deal with an essentially dissipative regime. With
these definitions the standard Coulomb gauged A; '-based full Maxwell formulation
that has to be solved in each timestep (k) writes

curl
1

�
curl Ak C

� "

4t2 C
�

4t
�

Ak C
� "

4t C �
�

grad'k (1)

D
�
2"

4t2 C
�

4t
�

Ak�1 � "

4t2Ak�2 C "

4t grad'k�1 C jsk C
jsk � jsk�1
4t in ˝;

div."Ak/ D 0 in ˝ : (2)
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Herein 4t is the size of the timestep and �; " and � are material coefficients. The
boundary conditions are chosen such that they model the contacts, see [3, 4]. In [3]
it was explained that in frequency domain this standard formulation lacks stability
in the stationary limit, i.e. for vanishing angular frequency ! ! 0. The same
instability occurs in the time-domain for large timesteps 4t due to the equivalence
of i! in the frequency domain with 1

4t in the time domain. The reason for the
instability is the fact that for 1

4t ! 0 the electric scalar potential ' is not controlled
by (1) and (2) in the non-conducting domain˝n (where � D 0). As a consequence,
' becomes undetermined locally, and the electric field cannot be recovered in ˝n.
Theoretically, this is only the case at 1

4t D 0, but in computations one observes
severe ill-conditioning already for positive but small 1

4t . This is caused by the very
small parameter " in the crucial term "

4t grad'k of (1).
This instability also haunts other standard formulations. If, for example, temporal

gauge is used, where the electric scalar potential is set to zero, then we have to solve
the system

curl
1

�
curl Ak C

� "

4t2 C
�

4t
�

Ak (3)

D
�
2"

4t2 C
�

4t
�

Ak�1 � "

4t2Ak�2 C jsk C
jsk � jsk�1
4t in ˝;

' D 0 in ˝ : (4)

In this formulation we lose uniqueness of Ak in the non-conducting domain for large
timesteps4t !1. In the limit, any gradient may be added to the solution of A in
the non-conducting domain. Consequently the electric field is also poorly controlled
for large4t in temporal gauge, as is strikingly illustrated in Sect. 4. The same holds
for the equivalent E-based formulation. If the gauge is removed in the ungauged
formulation (i.e. only (1)), then one loses control of both ' and A in ˝n. Again, the
electric field cannot be recovered in ˝n.

3 Stabilization

Stabilization, i.e. control of the electric field in the non-conductive˝n, is achieved
according to the recipe of [3] by incorporating the charge neutrality of˝n aside from
prescribed charges (i.e. Gauss’ law). This extra condition is balanced by an extra
unknown that results from the non-direct splitting of the electric scalar potential (')
into two parts, ' D Q' C  , with  D constant in the conducting domain ˝c . The
final stable formulation in Coulomb gauge is then given by

curl
1

�
curl Ak C

� "

4t2 C
�

4t
�

Ak C
� "

4t C �
�

grad. Q'k C  k/ (5)
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D
�
2"

4t2 C
�

4t
�

Ak�1 � "Ak�2
4t2 C

" grad . Q'k�1C k�1/
4t C jsk C

jsk�jsk�1
4t in ˝;

div."Ak/ D 0 in ˝; (6)

div." grad. Q'k C  k// D divjsk in ˝n: (7)

Note that the additional third equation (7) is independent of the timestep4t , which
achieves the stabilization. We chose the Coulomb gauge as typical gauge for the low
frequency range, but this is not mandatory.

To cast (5) and (7) into weak form, we have to introduce an appropriate
function space for the extra unknown  k : H1

n WD f 2 H1
0 .˝/W  j˝c 	 constg. The

function spaces for the other unknowns follow from standard choices, see [2,
Sect. 5] for notations and details. Then the variational formulation reads: seek
Ak 2 H 0.curl;˝/, Q'k 2 H1

0 .˝/,  k 2 H1
n .˝/ such that

�
1

�
curl Ak; curl A0

�
C
D� "

4t2 C
�

4t
�

Ak; A0
E

(8)

C
D� "

4t C�
�

grad. Q'kC k/; A0
E
D
��

2"

4t2 C
�

4t
�

Ak�1 � "

4t2Ak�2; A0
�

C
D "
4t grad. Q'k�1C k�1/; A0

E
C ˝jsk; A0

˛C
�

jsk � jsk�1
4t ; A0

�
in ˝;

˝
"Ak ; grad Q' 0˛ D 0 in ˝; (9)
˝
." grad. Q'k C  k// ; grad 0

˛ D ˝divjsk ;  
0˛ in ˝n: (10)

for all A0 2 H 0.curl;˝/, ' 0 2 H1
0 .˝/, and  0 2 H1

n .˝/.

Remark: We point out that the solution cannot be unique, because (10) can be
obtained by testing (8) with A0 WD grad 0,  0 2 H1

n .˝/.

4 Numerical Experiments

We employ a conformal Galerkin finite element discretization of (8)–(10) based on
first order edge elements for the vector potential and first order nodal elements for
the scalar potentials [2, Sect. 3]. This was implemented in an in-house simulation
framework at ABB.

According to the above remark, we face a singular linear system of equations
with consistent right hand side in each timestep. Iterative solvers can tackle this kind
of problem and we used a preconditioned BiCGstab method to solve the system.
We constructed a preconditioner by using the direct solver Pardiso [7] for solving
the regularized system that results from applying a lower conductivity bound of
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Fig. 1 Left: Plate capacitor. Right: Electric field in [V/m] after 100�s in the center between the
capacitor plates (solid red plane) for different timesteps. The upper row shows the solutions of the
system (3)–(4), and the lower row shows the solutions of the stabilized system (8)–(10). Please
note the different color-scales due to the different visualization software. The expected value is
1:05 V/m. A mesh of 200,000 elements was used in both cases

1 (˝m)�1 in (8). Note that this expensive preconditioner is almost identical to a
direct solver, because the regularized system differs only slightly from (8)–(10). An
alternative is probably the cheaper preconditioner that was introduced for frequency
domain in [6], but that has not yet been transferred to time domain.

In order to compare formulations, we used the RF module of the commerical
software COMSOL [1] (with the direct solver Pardiso) for the solution of the
standard non-stabilized formulation in temporal gauge (3) and (4). A simple
rectangular plate capacitor with plate distance of 3 cm and plate diameter of 43 cm
was computed. We switched on a sinusoidal voltage of 1V/50Hz. Figure 1 shows
the greatly improved robustness of the stabilized system.

For the standard system (3) and (4) one encounters a severe stability constraint
on the timestep, despite the use of implicit timestepping, and the electric field is
disturbed for timesteps larger than 1�s. We observed that the disturbance started
even earlier, at timesteps of 0:5 �s for a larger mesh with one Million elements. This
timestep constraint is much more relaxed for the stabilized system (8)–(10), where
we could use three orders of magnitude larger timesteps of 1ms. This is confirmed
by a comparison with a computation in the frequency domain, see Fig. 2.

5 Lightning Impulse Test Simulation

As a practical example we simulated the lightning impulse test of an ABB dry-type
transformer.

Power and distribution transformers are not only exposed to the rated voltage
over their life time; occasionally, transformers can experience transient voltage
surges produced by network switching operations or atmospheric overvoltages.
The insulation between the windings has to be very carefully designed to ensure
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Fig. 2 Comparison of the electric field (0� 38V/m) and the magnetic field (0� 0:1 pT) between
the solution in frequency domain, and the solution in time domain for timesteps of 1ms and 100�s.
The fields are shown after a steady oscillation is reached (i.e. here after five periods of 20ms) at
the zero-voltage-intersect after 100ms and at the peak voltage after 105ms. The pictures are in the
dashed black plane of the capacitor in Fig. 1

reliable operation even if a voltage surge occurs. This is tested experimentally by
the lightning impulse test which is precisely defined by the IEC standard [5]. Due
to the lack of insulating oil in dry-type transformers, more sophisticated dielectric
design is required compared to the oil-immersed counterparts. Thus the dielectric
design of dry-type transformers can be strongly supported by electromagnetic field
simulations of the lightning impulse test. An accurate simulation of the electric field
between the winding sections is therefore of paramount importance.

The configuration for the lightning impulse test is shown in Fig. 3. The peak
value of the applied impulse voltage is roughly five times the nominal voltage. The
1:2 �s rise time and 50�s decay time of the voltage in the lightning impulse test
are specified to mimic the real nature of the surge, see [5]. The Fourier spectrum
of the applied signal comprises waves with wavelengths comparable to the size
of the windings. The propagation of the waves along the windings can produce
local field enhancement regions that are caused by both multiple reflections of the
electromagnetic waves and internal resonance effects by the interaction of the capac-
itances and inductances of the windings. Due to the complex winding geometries, it
is practically impossible to predict critical field regions of the windings without
performing transient full Maxwell simulations. Taking into account only static
simulations may strongly falsify the estimation of a possible dielectric breakdown.
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Fig. 3 Dry-Transformer and applied test voltage pulse

Fig. 4 Transformer model showing windings and core (left), its cross-section (center), and the
details of the winding disks (right)

However, the windings in their full complexity cannot be modeled in 3D: Each
disk consists of several tens of turns of conductive foil with a thickness in the range
of some hundred microns. The foils are insulated against each other. The thickness
of the insulation is even smaller than the thickness of the conductive foil. This
yields a huge aspect ratio compared to the height of about 2m of the transformer.
Therefore, the internal structure of the winding sections is simplified. Effective
values of the dielectric permittivity and magnetic permeability are used to model the
internal capacitances and inductances of the real winding sections. The regions of
the effective material parameters are shown in Fig. 4. They are placed in the regions
where the corresponding capacitances (turn-to-turn capacitance of a single winding
disk) and inductances (stray field in the cooling channel) are confined. The effective
material parameters are derived from 2D computations. An alternative treatment of
the windings could be to use the homogenization technique, see [9].
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Fig. 5 Electric field distribution (in kV/mm) over the axial symmetry slice (Fig. 4, center) shown
at different time instants. The propagation and the reflection of the electromagnetic wave is visible.
Note that this oscillation is much faster than the applied voltage pulse of Fig. 3

The transient electric field between the windings as computed by an impulse
lightning simulation is shown in Fig. 5. One recognizes a reflection during the rise
time of 1�s of the voltage. These reflections continue during the first 10�s of the
simulation. This agrees with the measured oscillations of the electric field between
the windings in the experimental lightning impulse test.

6 Conclusion

In this article we introduced a robust full Maxwell formulation in time domain.
This formulation is stable for large timesteps in simulations of slow processes.
We demonstrated the improved stability, compared to standard formulations, by
numerical experiments. A three order of magnitude improvement of the timestep
was achieved. As an example, we simulated a transient industrial application
with coupled capacitive and inductive effects. We conclude that the stabilized
formulation (8)–(10) represents a unified Maxwell model that is robust even with
large timesteps.
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A Frequency-Robust Solver for the
Time-Harmonic Eddy Current Problem

Michael Kolmbauer and Ulrich Langer

Abstract This work is devoted to fast and parameter-robust iterative solvers for
frequency domain finite element equations, approximating the eddy current problem
with harmonic excitation. We construct a preconditioned MinRes solver for the
frequency domain equations, that is robust (D parameter-independent) in both the
discretization parameter h and the frequency !.

1 Introduction

In many practical applications, the excitation is time-harmonic. Switching from
the time domain to the frequency domain allows us to replace expensive time-
integration procedures by the solution of a system of partial differential equations
for the amplitudes belonging to the sine- and to the cosine-excitation. Following
this strategy Copeland et al. [7, 8] and Bachinger et al. [5, 6] applied harmonic
and multiharmonic approaches to parabolic initial-boundary value problems and the
eddy current problem, respectively. Indeed, in [7] a MinRes solver for the solution of
parabolic initial-boundary value problems is constructed, that is robust with respect
to both the discretization parameter h and the frequency !. The aim of this work is
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to generalize these ideas to the eddy current problem. Due to the non-trivial kernel
of the curl-operator, the generalization of this solver is not straight forward. In order
to achieve a positive definite reformulation of the frequency domain equations, we
perform a regularization in terms of an additional gauging term. The regularized
problem can be solved in a MinRes setting, applying a preconditioning technique
proposed by Schöberl and Zulehner [19].

2 Frequency Domain FEM

As a model problem we consider the eddy current problem with homogeneous
Dirichlet boundary condition and an inhomogeneous initial condition.

8̂
<
:̂

�
@u
@t
C curl .� curl u/ D f in ˝ � .0; T �

u.x; 0/ D 0 in N̋
u.x; t/ D 0 on @˝ � Œ0; T �

(1)

We assume, that ˝ 
 IR3 is a bounded Lipschitz domain. The reluctivity � D �.x/
is supposed to be independent of jcurl uj, i.e. we assume that the eddy current
problem (1) is linear. The conductivity � is piecewise constant and zero in non-
conducting regions. We assume that the source f is weakly divergence free.
Bachinger et al. [5] provide existence und uniqueness results for linear and non-
linear eddy current problems in appropriate gauged spaces.

Furthermore we assume that f is given by a time-harmonic excitation with
frequency ! > 0 and amplitudes fc and fs, i.e. f.x; t/ D fc.x/ cos.!t/ C
fs.x/ sin.!t/ Therefore the solution u is time-harmonic as well, with the same base
frequency !:

u.x; t/ D uc.x/ cos.!t/C us.x/ sin.!t/: (2)

In fact, (2) is the real reformulation of a complex time-harmonic approach
u.x; t/ D Ou.x/ei!t with the complex-valued amplitude Ou D uc � ius.
Using the real-valued time-harmonic representation of the solution (2), we
can state the eddy current problem (1) in the frequency domain as fol-
lows:

Find u D .uc;us/ W
�

curl .� curl uc/C ! � us D fc

curl .� curl us/� ! � uc D fs;
(3)

with the corresponding boundary conditions from (1).

Remark 1. Having in mind applications to problems with non-linear reluctivity �,
we prefer to use the real reformulation (3) instead of a complex approach (see [3,
Sect. 3.4]).
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The finite element discretization of the variational formulation of (3) with lowest
order edge elements, introduced by Nédélec in [13], yields the following system of
linear equations �

Ah !M� ;h

�!M� ;h Ah

��
uc

h
us

h

�
D
�

fc
h

fs
h

�
(4)

with stiffness matrix Ah and mass matrix M� ;h.

3 Exact Regularization

Eddy current problems are essentially different for conducting (� > 0) and non-
conducting regions (� D 0). In order to gain uniqueness in the non-conducting
regions, we persue an exact regularization strategy.

Due to the non-trivial kernel of the curl-operator, the resulting stiffness matrix
Ah is only positive semi-definite. However, for later preconditioning purposes, we
require that the sum of certain blocks of the system matrix (4) is positive definite.
In order to achieve that, we follow a gauging strategy proposed by Kuhn [12]. The
regularized variational problem reads as

Find u D .uc;us/ 2 H0.curl/2 W aQ.u; v/ D hF; vi ; 8v 2 H0.curl/2 (5)

with the regularized bilinear form

aQ.u; v/ WD
X

j2fc;sg

Z
˝

� curl ujcurl vjC!rPDujrPDvjdxC!
Z
˝

� Œucvs � usvc� dx:

(6)
Here PD W H0.curl/ ! H1

0 .˝/ is the Helmholtz projection (see e.g. [12]). For
any v 2 H0.curl/, PDv WD p is defined by the unique solution of the variational
problem

.rp;rq/L2.˝/ D .v;rq/L2.˝/; 8q 2 H1
0 .˝/: (7)

Hence we replace Ah by the sum of Ah and a regularization term !Qh,
i.e. Ah C !Qh. Here Qh is the discretization of the operator Q, defined by
.Q u; v/L2.˝/ WD

R
˝
rPDurPDvdx, by Nédélec finite elements of lowest order.

�
Ah C !Qh !M� ;h

�!M� ;h Ah C !Qh

��
uc

h
us

h

�
D
�

fc
h

fs
h

�
: (8)

The operator PD and hence the matrix Qh are chosen in such a way, that on the one
hand it ensures the positive definiteness of the block Ah C !Qh and on the other
hand Qhuc=s

h vanishes at the solution, i.e. the regularized system (8) and the original
system (4) have one and the same solution. The proof of the equivalence of the
original and exact regularized problem (5) follows the same steps as in [12].
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4 MinRes Preconditioner

For preconditioning purpose we have to reformulate the system (8) with a
positive definite but block skew-symmetric system matrix, as a symmetric but
indefinite one. This system can be solved by a preconditioned MinRes method
[14]. The key points for the construction of a parameter robust preconditioner
are the introduction of a non-standard norm in H0.curl/ and the theorem of
Babuška-Aziz [2].

The symmetric and indefinite reformulation of the variational formulation with a
positive definite but skew-symmetric bilinear form (5) is given by:

Find .x; y/ 2 H0.curl/2 W AM..x; y/; .v;w// D
Z
˝

�
1

!
fcvC fsw

�
dx (9)

for all .v;w/ 2 H0.curl/2, with the scaled vectors .x; y/ D .us; 1
!

uc/ and .v;w/ D
.!vc; vs/ and the symmetrised bilinear form AM.�; �/, given by

AM..x; y/; .v;w// D .� x; v/L2.˝/ � !2.� y;w/L2.˝/

C .� curl y; curl v/L2.˝/ C !.rPDy;rPDv/L2.˝/

C .� curl x; curl w/L2.˝/ C !.rPDx;rPDw/L2.˝/:

Hence we can reformulate the block skew-symmetric and positive definite system
(8) as a symmetric but indefinite system (10) with system matrix Dh:

�
M� ;h Ah C !Qh

Ah C !Qh �!2M� ;h

��
us

h
1
!

uc
h

�
D
�

1
!

fc
h

fs
h

�
: (10)

Next we construct a block-diagonal preconditioner according to the preconditioning
technique proposed by Schöberl and Zulehner [19]. We introduce the non-standard
norm k � kVM in H0.curl/

kyk2VM D
1

!

h
.� curl y; curl y/L2.˝/ C !krPDyk2L2.˝/ C !.� y; y/L2.˝/

i
: (11)

Note, that the regularization term ensures, that this norm is well defined even in
non-conducting regions. This definition gives rise to a non-standard norm k � kQM in
the product space H0.curl/2

k.x; y/k2QM
D kxk2VM C !2kyk2VM : (12)
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Lemma 1. We have

1p
2
k.x; y/kQM � sup

0¤.v;w/2H0.curl/2

AM..x; y/; .v;w//
k.v;w/kQM

� k.x; y/kQM : (13)

Proof. Boundedness follows from reapplication of Cauchy’s inequality. The lower
estimate can be attained by choosing v D !yC x and w D 1

!
x � y. ut

Since we are dealing with conforming finite elements, the estimate (13) is also
valid in the Nédélec finite element subspace. Hence, it follows by the theorem of
Babuška-Aziz, that there exists a unique solution of the corresponding variational
problem (9), and that the solution continuously depends on the data, uniformly on
! and � . Hence we conclude that the block-diagonal preconditioner

Ch D 1

!

� QCh 0
0 !2 QCh

�
; (14)

with QCh D !.M� ;h C Qh/ C Ah, is robust with respect to both the discretization
parameter h and the parameters ! and � . Thus the spectral condition number (16)
of the preconditioned system

Ch
�1Dhuh D Ch

�1fh (15)

can be estimated by a constant c that is independent of h, ! and � i.e.

	.Ch
�1Dh/ WD kCh

�1DhkChkDh
�1ChkCh � c ¤ c.!; h; �/: (16)

Therefore the number of MinRes iterations required for reducing the initial error by
some fixed factor " 2 .0; 1/ is independent of the discretization parameter h and the
frequency !.

In practice, the diagonal blocks QCh in (14) are replaced by some appropriate
preconditioners, e.g. by robust multigrid preconditioners as proposed in [1].

Theorem 1 (Entire robust and optimal solver). The MinRes method applied to
the preconditioned system (15) converges. At the m-th iteration, the preconditioned
residual rm

h D Ch
�1fh � Ch

�1Dhum
h is bounded as

��r2m
h

��
Ch
� 2qm

1C q2m
��r0

h

��
Ch

where q D 	.Ch
�1Dh/ � 1

	.Ch
�1Dh/C 1: (17)

If we additionally apply the Arnold/Falk/Winther multigrid preconditioner [1] to the
diagonal blocks, the whole convergence rate q is independent of ! and h.

Proof. The convergencerate of the MinRes method [14] can be found in [10].
Combining this result with the estimate of the condition number (16) and the
multigrid convergence [1], yields the desired result. ut



102 M. Kolmbauer and U. Langer

Table 1 Number of MinRes iterations for reducing the initial residual by 10�6

DOF log10 ! �4 �3 �2 �1 0 1 2 3 4 5 6 7 8 CPU time

1,208 hD 0:25 3 3 3 5 7 14 15 16 14 8 6 4 4 < 0.48 s
8,368 hD 0:125 3 3 3 5 7 13 15 16 16 12 6 4 4 < 2.48 s
62,048 hD 0:0625 3 3 3 5 7 13 15 16 16 14 8 6 4 < 29.79 s
477,376 hD 0:03125 3 3 3 5 7 8 16 16 16 13 12 4 < 477.55 s

Skin depth
p
2�=.!�/ 141.4 44.6 14.1 4.5 1.4 0.4 0.14 0.044 < 0:03125

Table 2 Number of MinRes iterations for reducing the initial residual by 10�6

DOF log10 �2 �4 �3 �2 �1 1 2 3 4 5 6 7 8

196 hD 0:5 7 7 7 7 13 15 14 8 8 8 7 7
1,208 hD 0:25 6 6 6 7 11 15 16 12 8 8 7 7
8,368 hD 0:125 5 5 6 6 11 15 16 16 10 8 7 7
62,048 hD 0:0625 5 5 5 6 9 15 17 18 14 8 8 7

Since � is not constant in general, we loose robustness with respect to � in the
multigrid procedure. Note that for constant � , we additionally get robustness with
respect to � .

5 Numerical Results

Finally, we report two numerical tests for an academic three dimensional eddy
current problem. The numerical results presented in this section were attained
using ParMax [16]. First, we demonstrate the robustness of the block-diagonal
preconditioner with respect to the frequency !. Therefore, for the inversion of the
diagonal blocks we use the exact solver PARDISO [17, 18]. Table 1 provides the
number of MinRes iterations needed for reducing the initial residual by a factor of
10�6 for different ! and h. These numerical experiment was performed for a three-
dimensional linear problem on the unit-cube, discretized by tetrahedra for the case
� D � D 1. These experiment demonstrates the independence of the frequency
and the meshsize as the number of iterations is bounded by 16. Next we repeat the
numerical experiment for piecewise constant conductivity � , i.e.

� D
�
�1 in ˝1 D f.x; y; z/T 2 Œ0; 1�3 W z > 0:5g
�2 in ˝2 D f.x; y; z/T 2 Œ0; 1�3 W z � 0:5g : (18)

In Table 2 we give the number of iterations for fixed !D 1 and �1D 1 and
various �2. We observe, that the number of iterations is bounded by 18. Both
experiments demonstrate the robustness of the block-diagonal preconditioner with
respect to the involved parameters. Moreover, this theory-based parameter-robust
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block-diagonal preconditioner is appropriate to be incorporated in a Newton-based
multiharmonic solver for solving (nonlinear) shielding and welding problems (see
[5, 6]).

6 Further Applications

The presented preconditioning technique provides a robust tool for solving linear
eddy current problems with time-harmonic excitation. The theory can be extended
to multiharmonic excitations and even to problems with non-harmonic excitation
of the right-hand side. The theory in this paper is presented for exact regularized
problems. Furthermore we can develop this preconditioning technique also for
inexact regularized problems.

6.1 Non-harmonic Excitation

By approximating any non-harmonic right-hand side by a multiharmonic excitation
in terms of a truncated Fourier series, it follows, that the solution uN has the
structure:

uN.x; t/ D
NX
kD0

uc
k.x/ cos.k!t/C us

k.x/ sin.k!t/: (19)

Using the truncated Fourier approximation (19), the corresponding system matrix
in the frequency domain decouples into a block-diagonal matrix of the form

diag

��
Ah k!M� ;h

�k!M� ;h Ah

��

kD0;:::;N
; (20)

where each block has almost the same structure as the two-by-two system matrix
in (4). Hence we can apply either the exact or the inexact regularization technique
and precondition each block robustly with respect to the frequency !, the mode
k and the meshsize h. By approximating a general right-hand side f by a finite
Fourier series with N summands, we introduce an additional truncation error of
order N�1.

ku � uNkL2..0;T /;H0.curl// D O.N�1/: (21)

6.2 Inexact Regularization (Conductivity Regularization)

Instead of the exact regularization an inexact regularization, as for example in
[5], can also be applied by introducing a regularized conductivity �", defined as
maxf�; "g with the regularization parameter " > 0. In this case the same strategy
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can be used to construct a block diagonal preconditioner, that is robust with respect
to !, h and �", leading to the system matrix Dh and the preconditioner Ch.

Dh D
�

M�";h Ah

Ah �!2M�";h

�
Ch D 1

!

�
!M�";h C Ah 0

0 !2.!M�";h C Ah/

�
(22)

In contrast to the exact regularization, where no additional regularization error is
introduced, in the case of inexact regularization, we have to deal with an additional
error of order O."/ (see [5]).

7 Conclusion and Outlook

The method developed in this work shows great potential for solving both, time-
harmonic and non harmonic eddy current problems in a very efficient and robust
way, in the linear case. Up to now, theory only guarantees robustness in the case of
constant coefficients ! and � , but currently we are working on the extension also
to the piecewise constant case. Indeed, based on the results in [11], we are working
on a domain decomposition preconditioner for the inversion of the diagonal blocks,
that guarantees robustness also for piecewise constant conductivity � .

In the non-linear case, i.e. � D �.x; jcurl uj/, it turns out, that even for harmonic
excitation of the right-hand side, we have to take all frequencies k! into account.
For earlier works see e.g. [4, 9, 15]. Additionally, due to the nonlinearity, we lose
the advantageous block-diagonal structure and therefore have to deal with a fully-
coupled system of non-linear equations in the Fourier coefficients. Since the Fréchet
derivative of the non-linear frequency domain equations is explicitly computable,
the nonlinearity can easily be overcome by applying Newton’s method. Anyhow, at
each step of Newton’s iteration, a huge and fully block-coupled Jacobi system with
sparse blocks has to be solved. The applicableness of the parameter-robust MinRes
solver to the Jacobi system is not clear at the first glance.
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Depolarization of Electromagnetic Waves
from Bare Soil Surfaces

Naheed Sajjad, Ali Khenchaf, and Arnaud Coatanhay

Abstract An improved Two Scale Model (TSM) has been investigated for the
depolarization of electromagnetic waves from bare soil surfaces. Classical TSM
produces depolarized results due to the tilt of reflecting plane. To include the
contribution of actual phenomenon, we add the second order scattering effects at
small scale and develop an improved TSM. The performance of the new TSM is
assessed by comparing the simulation results in backscattering configuration with
the measured data, Advanced Integral Equation Model and Second order Small
Slope Approximation at L-, S-, C- and X-band frequencies for a variety of roughness
conditions. Finally, we use the new TSM to predict the bistatic scattering and
compare the results with classical TSM.

1 Introduction

Depolarization in a radar return results in corruption of the received signal. It is an
undesired effect for a given transmitter, limiting the useful radar coverage distance.
However, the cross-polarization in conjunction with co-polarization information can
be used to retrieve the surface roughness parameters, the geometrical configuration
of scatterers while giving important clues to the electrical properties of surfaces etc.
Hence the study of depolarization cannot be used only to discriminate the unwanted
reflections but it is also used for the identification and optimization purposes since it
permits a deeper insight into physical phenomena. Due to this reason, the cross-
polarized (or depolarized) radar returns are of interest to some EMC engineers,
hydrologists, meteorologists and agriculturists.
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Cross polarization in a radar return from a rough surface has been observed
experimentally [1, 2]. First order Small Perturbation Method (SPM1) [3] and
Kirchhoff Approximation (KA) [4] do not predict this phenomenon. In order
to account for the observed cross polarization, most theoreticians have used the
methods of Advanced Integral Equation Model (AIEM) [5], second order Small
Slope Approximation (SSA2) [6], second order Small Perturbation Method (SPM2)
[1, 2, 7], Two Scale Model (TSM) [8–10] and empirical models [11] etc. In the
classical TSM (TSM1) [9, 10] it is assumed that the short wavelength waves are
riding on the longer waves and thus tilted with respect to the horizontal surface.
It uses SPM1 at small scale i.e. for short wavelength waves and the effect of long
wavelength part is taken into account by averaging over the tilt angles. Hence by
using TSM1 based on first order theory, depolarization is basically due to the tilt of
reflecting plane. Due to this reason, the simple TSM needs to be improved.

Since the mechanism of multi-scattering due to target surface roughness also
causes depolarization [1], this observation motivates us to develop an improved
TSM (TSM2) by taking into account the contribution of higher order scattering
(up to second order) at small scale. The purpose of this paper is to present the
mathematical development of TSM2. In addition, we assume that the bare soil
surface can be modeled as having two average sizes of roughness, this model is
then applied to depolarization case. In backscattering configuration, we assess the
performance of TSM2 by comparing the numerical results with the measured data
[11], AIEM [12] and SSA2. Finally, the simulation results are presented for bistatic
case.

2 Scattering Models

This section contains a brief review of SPM up to second order and TSM1. The
development of TSM2 is then presented.

2.1 Small Perturbation Method (SPM)

The scattering of electromagnetic waves from a slightly rough surface can be studied
by using SPM. In this method it is assumed that the surface variations are much
smaller than the incident wavelength and the slope of the rough surface is relatively
small.

The first and second order bistatic scattering coefficients and correlation products
can be written as [7]

�.1/pq D 4�k2 cos2 �s
ˇ̌
ˇ˛.1/pq

ˇ̌
ˇ
2

W
�
ks? � ki?

�
(1)
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�.1/pqmn D 4�k2 cos2 �s˛
.1/
pq ˛
�.1/
mn W

�
ks? � ki?

�
(2)

�.2/pq D 4�k2 cos2 �s

Z
W
�
ks? � k?

�
W
�
k? � ki?

�
˛.2/pq

h
˛�.2/pq C ˇ�.2/pq

i
dk?

(3)

�.2/pqmn D 4�k2 cos2 �s

Z
W
�
ks? � k?

�
W
�
k? � ki?

�
˛.2/pq

h
˛�.2/mn C ˇ�.2/mn

i
dk?

(4)

where k is the wave number, ˛.1/pq and ˛.2/pq , ˇ.2/pq are the first and second order
polarization-dependent factors respectively, W .:/ is the roughness spectrum and
k? denotes vector kxbx C kyby in x � y plane.

SPM2 can be used for longer correlation lengths and large values of rms height
and has larger domain of validity as compared to SPM1 [13]. In backscattering
direction, using SPM2 one is able to calculate the non-zero cross-polarized (depo-
larized) scattering coefficients (which become zero by SPM1) in conjunction with
co-polarized scattering coefficients. Hence depolarization is a second order effect
in a plane of incidence. Moreover, the expression for the depolarization scattering
cross section is of the form obtained in multiple scattering studies [1]. It is therefore
hypothesized that depolarization is due to multiple scattering and the inclusion of
this effect in all polarizations can be useful for the study of depolarization. This
observation motivates us to include the second order corrections at small scale in
TSM and develop an improved TSM.

2.2 Two-Scale Model

TSM1 [10] approximates the rough surface as a two-scale surface with small-scale
waves riding on the top of large-scale waves. The scattering coefficients are then
estimated in two steps. Firstly, TSM1 uses SPM1 on a small scale waves and then
determine the diffuse component in the global reference by a tilting process.

Assume the incident wave Ei to be Ei DbaE0 with E0 D jE0j exp
˚�jk 	bni :r



,

where ba is the unit polarization vector and bni is the unit vector in the incident
direction. In the local reference frame, the unit polarized incident wave will appear
as a horizontal and a vertical incident wave given by

Ei D Ei
h0
bh0 CEi

v0bv0 D
h�bh0:ba

�bh0 C 	bv0:ba
bv0
i
E0 (5)

and the locally scattered fields due to incident waves are:

Es D Es
h0

s

bh0s C Es
v0

s
bv0s D ŒS�Ei D

�
Sh0

sh
0Ei

h0 C Sh0

sv
0Ei

v0

Sv0

sh
0Ei

h0 C Sv0

sv
0Ei

v0

�
(6)
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where Sp0q0 is the scattered field for unit incident fields. In the global frame of
reference, the scattering matrix is given by

S D
"bhs:bh0s bhs:bv0s
bvs:bh0s bvs:bv0s

#�
Sh0

sh
0 Sh0

sv
0

Sv0

sh
0 Sv0

sv
0

�"bh0:bhbh0:bv
bv0:bh bv0:bv

#
(7)

For the received polarization p (bhs orbvs) and the transmitted polarization q (bh orbv),
the scattered polarized and depolarized fields are obtained from

Es
pqD

h�
p:bh0

s

� n�bh0:q
�
Sh0

sh
0 C 	bv0:q



Sh0

sv
0

o
C 	p:bv0

s


 n�bh0:q
�
Sv0

sh
0 C 	bv0:q



Sv0

sv
0

oi
E0

(8)

The correlation product
D
Es
pqE

s�
pq

E
with respect to the large-scale roughness can

be calculated and rewritten in terms of the scattering coefficients �spq as a function
of the transmitter polarization q and the receiver polarization p [10]. The average
h:i in the scattering coefficients may then be calculated by using any model of the
surface slopes distribution.

2.3 Improved Two-Scale Model

To include the contribution of second order scattering effects, we add the second
order scattered field S.2/pq to S.1/pq , for unit incident field, in local domain. Hence the
local scattering matrix will become

S 0 D
"
S
.1/

h0

sh
0 C S.2/h0

sh
0 S

.1/

h0

sv
0 C S.2/h0

sv
0

S
.1/

v0

sh
0 C S.2/v0

sh
0 S

.1/

v0

sv
0 C S.2/v0

sv
0

#
(9)

and in global frame of reference, the scattering matrix S is given by

S D
"bhs:bh0s bhs:bv0s
bvs :bh0s bvs :bv0s

#"
S
.1/

h0

sh
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0 S
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#
(10)

Now the components of scattered field, in global frame of reference, are given as

Es
pq D
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� n�bh0:q
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S
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E0 (11)

The improved scattering coefficient �spq is given by [14]
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where �.1/p0q0 ,�
.1/

p0q0m0n0 , �
.2/

p0q0 and �.2/p0q0m0n0 are obtained from (1)–(4) and calculated at
local angles.

Note that in (12) we ignore the terms involving the product of first and second
order fields i.e., �.12/

p0q0 and �.12/
p0q0m0n0 for the sake of simplicity.

3 Numerical Results

In this section, initially we illustrate the numerical simulation results of the cross
polarized backscattering coefficient .�hv/. Applications of the developed model for
co-polarization case are discussed in [15]. The bistatic case is represented at the end
of this section.

Figures 1 and 2 show the angular dependence of �hv for a bare soil surface with
rms height (h) of 0:40 cm and correlation length (l) of 8:4 cm. For all three plots,
the values of frequencies and relative dielectric constants are taken as 1:5GHz,15:57
(L1); 4:75GHz, 15:42 (X1) and 9:5GHz, 12:31 (X1), respectively. The simulation
results of TSM2 are compared with SPM2, TSM1 and measured data [11]. It is
observed that the TSM2 give enhanced results which are in good agreement with
the measured data.

We carry on the comparison between TSM1 and TSM2 for a relatively rough
surface with h D 1:12 cm and l D 8:4 cm at L2 (f D 1:5GHz, "r D 15:34),
C2 (f D 4:75GHz, "r D 15:23) and X2 (f D 9:5GHz, "r D 13:14) and found
that the difference between two models increases as the roughness of the surface
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Fig. 1 TSM2 compared to the measured data [11], SPM2 and TSM1 for h D 0:40 cm and l D 8:4

cm at L-band
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Fig. 2 TSM2 compared to the measured data [11], SPM2 and TSM1 for h D 0:40 cm and l D 8:4

cm at (a) C-band, (b) X-band

increases. In Fig. 3 the comparison with measured data is given for a very rough
surface with h D 3:02 cm and l D 8:8 cm at L3 (f D 1:5GHz, "r D 8:92), C3
(f D 4:75GHz, "r D 9:64) and X3 (f D 9:5GHz, "r D 7:57). For L3 we are not
so far from the measured data but for the other two frequencies (i.e., C3 and X3)
TSM2 over-estimates.

Next, to study further the consistency and validity of TSM2, we compare our
results with AIEM and experimental data [12] in Fig. 4a which is plotted at S-band
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Fig. 3 TSM2 compared to the measured data [11], SPM2 and TSM1 for h D 3:02 cm and l D 8:8

cm at (a) L-band, (b) C-band, (c) X-band

30 40 50 60 70 80 90
−35

−30

−25

−20

−15

−10

−5

θi (degrees)

a b

ba
ck

sc
at

te
rin

g 
co

ef
f. 

 σ
hv

 (
dB

)

 

F=4 GHz, h=1.045 cm, l=19.47 cm

AIEM
Classical TSM
Improved TSM
Measured Data

10–2

102

10–1

10110–1

100

100

101

kl

kh

L3

C3
X3

C1

L2

C2 X1

X2

L1 S1

KA−PO

KA−GO

SPM1

SPM1 & SPM2

m = 0.2

m = 0.5

m = 1

Fig. 4 (a) TSM2 compared with AIEM, measured data [12] and TSM1 for h D 3:02 cm and
l D 8:8 cm at S-band; (b) roughness parameters and the qualitative region of validity of SPM1,
SPM2, PO and GO models
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(f D 3GHz) with h D 1:045 cm, l D 19:47 cm and "r D 11:5. Again the
predictions by TSM2 are in better agreement with the measured data and AIEM.

To evaluate the applicability of TSM2, the locations of considered points are
identified in ks � kl space in Fig. 4b along with the qualitative regions of validity
of SPM1, SPM2 [13], PO (Physical Optics) and GO (Geometrical Optics) models.
It is observed that TSM2 predictions are good/reasonable as far as kh � 1 and
it overestimates otherwise. It is quite logical because actual estimation of cross
polarized coefficients are due to the inclusion of second order scattering by SPM2
which is valid till kh < 0:6 [13], for moderate incident angles. On the other hand
TSM2 can be used successfully for longer correlation lengths.

Furthermore, the comparison of TSM2 with SSA2 is also presented in Figs. 5a,b
for kh D 0:5, kl D 3 and kh D 1, kl D 6. TSM2 gives enhanced results as
compared to SSA2 which is due to the fact that TSM also includes the averaging
effects over slope distribution for long scale waves along with the scattering
coefficient calculations by SPM for small scale waves.

Finally, Figs. 6a,b show the angular responses of the hv-polarized bistatic
scattering coefficient .�hv/. The incident angle is fixed at 45ı while the received one
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varies from �90ı to 90ı and received azimuth is set at 45ı.The numerical results
are given for L1, L3, X1 and X3. It can be observed that the difference between two
models increases with the increase in frequency and roughness level.

4 Conclusion

By taking into account the contribution of second order scattering effects at small
scale, the development of an improved two-scale model is presented. Comparisons
of numerical results with measured data and with other scattering models shows
that TSM2 gives better predictions of depolarized components and can be used
adequately as far as the value of kh remains less than or nearly equal to one.
The new model may have promising applications for electromagnetic scattering
from the ocean surface at grazing angles due to the inclusion of actual scattering
mechanism of multiple/higher order scattering, which are under investigation and
will be reported later on.
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Two Finite-Element Thin-Sheet Approaches
in the Electro-Quasistatic Formulation

Jens Trommler, Stephan Koch, and Thomas Weiland

Abstract Two finite-element approaches to cope with thin sheets in the electro-
quasistatic formulation are presented. Both rely on the well-known strategy to
reduce the sheet volume to a surface. In the first approach, polynomials in the lateral
direction are used to allow for a field variation across the sheet. Using the second
method, the presence of the thin sheet is modeled by a modification of the local
discretization. In contrast to the first approach, here, no additional degrees of
freedom are introduced. The different methods are compared to a conventional
solution based on simple test examples.

1 Introduction

In case of models containing objects of very small extension in one direction, the
application of a volume-based discretization, such as the finite element method,
is cumbersome. Often, because of local refinement, this procedure leads to a very
large number of mesh cells, whereas the elements related to the thin sheet exhibit
a bad aspect ratio. This leads to ill-conditioned matrices and, as a consequence,
to a high computational effort when solving the related system of equations using
iterative solvers. In order to avoid these difficulties, an object of thickness ı, where
ı is very small compared to the extension in the remaining directions, is commonly
considered during the mesh generation as a surface layer �s instead of a volume˝s.

This modeling technique was initially introduced for the simulation of air gaps in
transformer cores as well as for eddy-current shielding [1]. It is commonly applied
for applications in the magneto-static and magneto-quasistatic (MQS) regime [2,3].
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In many cases, the field variation across a thin sheet can be neglected, e.g., if the
skin depth is large compared to the thickness ı. As long as this assumption holds,
the method is appropriate as it avoids both meshing difficulties and the deterioration
of the condition number of the system matrix. If this assumption no longer holds, the
field variation can be taken into account by means of a higher-order discretization
inside the sheet as, e.g., in [4, 5]. This approach is based on virtual or degenerated
prismatic elements for the thin sheet [6, 7].

This technique is also applicable for electro-quasistatic (EQS) models as shown,
e.g., in [8] using constant elements across the sheet. However, for specific examples
within this application range, a field variation across the thin sheet can be relevant.
Therefore, in Sect. 2.1, the approach using a higher-order discretization perpendicu-
lar to the sheet surface is transferred from MQS to EQS. While the difficulties during
the mesh generation are avoided, the system matrices resulting from the according
thin-sheet discretization still exhibit a dependence on the thickness ı, even if only
a linear approximation perpendicular to the sheet surface is applied. Moreover,
for many EQS applications, considering a linear discretization perpendicular to
the sheet leads to a sufficient approximation. Thus, a different approach, which
is able to overcome the undesired effect, is introduced in Sect. 2.2. Both methods
are compared in terms of the numerical results as well as regarding the condition
number of the respective system matrices based on simple test cases in Sect. 3.

2 Finite-Element Discretization for Thin Sheets

In the electro-quasistatic limit, the electric field strength E is irrotational. Therefore,
the electric scalar potential ' with E D �r' can be introduced. The resulting
partial differential equation derived from the full set of the Maxwell equations reads

r � .	r'/C j!r � .�r'/ D 0 (1)

in frequency domain. Here 	 denotes the electric conductivity, � the permittivity
and ! D 2�f the angular frequency. Discretizing the weak form of (1) by means
of nodal Whitney basis functions wi .x/ and element-wise constant � and 	 leads to

KX
kD1
.	k C j!�k/

Z
˝k

r'.x/ � rwj .x/ dV D 0 with '.x/ D
NX
iD1

�iwi .x/;

(2)

assuming homogenous Dirichlet boundary conditions for ' at @˝ . The domain ˝
is sub-divided into K elements and N denotes the number of nodes in the mesh.
Based on the volume discretization, the surface elements of the reduced sheet are
included during the assembly of the final system matrices for the two different
methods described in the following.
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2.1 Method 1: Thin-Sheet Bases

The first method is based on prismatic elements as described in [6,7]. Following the
notation in [5], the different sets of basis functions defined on the resulting prisms
are referred to as thin-sheet bases. As in [4], basis functions of arbitrary order can be
considered. During the assembly of the system matrix, the contribution of the thin
sheet is neglected, as its volume is zero at mesh level. Subsequently, it is included
by defining specific thin-sheet bases in order to represent the volumetic nature of
the sheet at the physical level. These modified bases are obtained by multiplying the
triangular basis function defined at the sheet surface by a polynomialp W R! R. As
a consequence, the variation of the fields perpendicular to the surface element can
be considered. A Lagrangian base of order o is chosen for p. This implies the need
of o additional coefficients for each volume-based degree of freedom (DoF) located
at the sheet surface. Considering a three-dimensional domain with ez perpendicular
to the sheet element k, the according thin-sheet base reads

Qwk;i;j .x; y; z/ D wsk;i .x; y/pj .z/ ; (3)

where ws
k;i is the i -th surface basis function of the k-th sheet element and pj .z/

the j -th base of the polynomial p.z/ defined for z 2 Œ�ı=2; ı=2�. For the lowest
order (o D 0, p.z/ D 1), no additional DoFs are required. In this case, the volume
integrals in (2) reduce to the related surface integrals multiplied by the thickness ı,
namely,

ı

Z
�k

rwsk;i .x; y/ � rwsk;j .x; y/ dA : (4)

For linear or higher-order variation the two outermost polynomial degrees of
freedom of p.z/ at z D �ı=2 and z D ı=2 have to be coupled to the domain
above and below the sheet, respectively. All other DoFs are internal DoFs for the
polynomial p as indicated in Fig. 1. The coupling terms between all DoFs of the
sheet element are

Order 3 Order 2 Order 1

Fig. 1 A sheet element is shown in its surrounding mesh for polynomials p of different order.
Geometrically, the sheet is a surface �s connecting the meshes below (˝b) and above (˝a) the
sheet. Black dots denote the additional degrees of freedom (DoFs) used for the polynomial p
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Z
˝k

r Qwk;i;j � r Qwk;g;h dV D
Z ı=2

�ı=2
rpj .z/ � rph.z/ d z

Z
�k

wsk;i .x; y/w
s
k;g.x; y/ dA

C
Z ı=2

�ı=2
pj .z/ph.z/ d z

Z
�k

rwsk;i .x; y/ � rwsk;g.x; y/ dA ;

(5)

where �k is the area of the sheet element. These terms can be evaluated for arbitrary
order of both the polynomial p and the surface basis function ws

k . Each sheet
element can be interpreted as a prismatic element inserted to the tetrahedral mesh at
the position of the thin sheet. The additional DoFs are allocated along the height ı
of the inserted prisms.

2.2 Method 2: Semi-analytic Sheet

In order to avoid the unfavorable dependence of the system matrix entries on
the factor 1=ı, a second method to deal with thin sheets is developed. Moreover,
no additional DoFs are introduced, while providing linear order of approximation
across the sheet. The information about the voltage drop between the domain above
and below the sheet is included in the basis functions of the elements that are
connected to the sheet.

Figure 2 shows one Lagrangian element k which is adjacent to the sheet. Here,
each DoF of its corresponding sheet element s represents the electric scalar potential
at the centerline of the sheet �s. Assuming a linear variation of the scalar potential
across the sheet, which is very often the case in EQS, the related voltage drop
between the centerline and the sheet boundary evaluates to

Z x�

i

xi
Es � d s D � ı

2
r's.xi / � nk ; (6)

where n is the vector normal to the sheet pointing from the connected element
towards the sheet and xi is the position vector corresponding to the node i in the

∇ϕk

∇ϕs

centerline

δ
2

ϕ∗
1 ϕ∗

2

ϕ1 ϕ2

ϕ3

x∗
1 x∗

2

x3

x1 x2

Ωk

Γs

nk

Fig. 2 Element k (in 2D a triangle) is one of the elements connected to the sheet. The black dots at
the bottom denote the DoFs defined at the sheet centerline. The empty circles denote the potential
at the border of �k which is apriori unknown but can be evaluated
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mesh. The gradient of the electric potential within the sheet r's can be obtained
by the evaluation of the continuity equation (1) at the sheet boundary of element k,
namely

.	k C j!�k/r'k.xi / � nk D .	s C j!�s/r's.xi / � nk : (7)

Using (6) and (7), the electric potential ��i at the sheet boundary is given by

��i D �i �
ı

2
˛kr'k.xi / � nk with ˛k D .	k C j!�k/=.	s C j!�s/ ; (8)

where �i is the known potential at the sheet centerline.
The set of all element DoFsNk consists of a set Ck of all DoFs that are connected

to the sheet and a set Uk of all DoFs that are not. The discrete form of the normal
electric field then reads

r'k.xi / � nk D
X
j2Uk

�jrwj .xi / � nk C
X
j2Ck

��j rwj .xi / � nk : (9)

Inserting (9) in (8) for allCk results in a small local system of equations. Solving this
system for all ��i in (8) and replacing the solution in the discrete gradient of element
k leads to a modified gradient Qr'k.x/ of the electric potential in the connected
element k. For first-order elements, this gradient reads

Qr'k.x/ D
X
i2Nk

�i

�
rwi .x/ � ı

2
˛kˇk�krwi � nk

�
(10)

with

ˇk D 1

1C ı
2
˛k
P

j2Ck rwj � nk
and �k D

X
j2Ck
rwj .x/: (11)

and is directly used in the standard FEM matrix assembly (2). As the gradient of the
test functions remains unchanged, the system matrix becomes unsymmetric.

To consider also the tangential variation of the normal component in the sheet,
additionally, the coupling terms of the lowest-order thin-sheet bases (first method
with constant p) are added for each sheet element. This is possible, because the
sheet DoFs are defined at the centerline of the sheet, which is approximately the
mean-value and therefore representative for constant elements.

3 Comparison

A simple example is chosen to show the difference between both methods, in
particular regarding the condition number of the related system matrix A. Here,
the spectral conditioning number cond2.A/ D jjAjj2jjA�1jj2 is chosen in order to
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Fig. 3 Resistor with a thin crack (thickness ı, 	s, �0) at its center. The resistor is completely filled
with one material (	r, �0) except of one quarter which is filled with a different material (	q, �0)
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Fig. 4 Condition number of system matrix A versus the sheet thickness ı for the 1D example

obtain a quantitative statement. The selected test mode is shown in Fig. 3. It consists
of a resistor with a thin crack which is excited harmonically by a voltage source
(U D 2V, ! D 2�50Hz, L D 1mC ı, B D 1m). At the remaining boundaries,
homogeneous Neumann boundary conditions are applied. The comparison in the
following subsections is carried out based on this example geometry.

3.1 1D Example

The example in Fig. 3 reduces to a 1D model for the choice of equal electric
conductivity 	q D 	r D 1;000 Sm�1 in the different parts, while 	s D 1 Sm�1.
In this case, an analytical solution is available. Here, the variation of the electric
scalar potential is piece-wise linear with respect to the only remaining coordinate
direction. As a consequence, two elements are sufficient to resemble the exact
solution. Nevertheless, for verification purpose, a mesh consisting of four equally-
sized elements is selected. For, e.g. ı D 10�4 m, the voltage drop within the sheet

�' D Uı !�0 � j	r

!�0L � j .ı	r C .L� ı/	s/
� 0:18182VC j4:59313 � 10�10 V

is correct for both methods, except for lowest-order thin-sheet bases as the assump-
tion to be constant across the sheet is not valid. However, Fig. 4 shows, that for
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thin-sheet bases with linear or higher-order polynomial p the condition number
of the system matrix, which is a measure for the computational effort, increases
strongly with decreasing thickness ı. In contrast, for the semi-analytic method, it
never exceeds the value for the lowest-order thin-sheet bases (where p is one), even
though the latter method is not suitable in this case. Note that the thin-sheet bases
with linear polynomials are equivalent to a first-order volume-based FEM with the
sheet resolved in the mesh.

3.2 2D Example

For, e.g., the choice of 	r D 20 Sm�1 and 	q D 40 Sm�1, the variation of the
electric potential in the example is no longer linear. The graph for the condition
number of the system matrix with respect to the thickness ı, although not plotted,
is similar to Fig. 4. Figure 5 shows the relative error of the electric losses Pel in
all regions except the sheet for different levels of discretization. Both methods are
compared to the respective values without the application of any thin-sheet modeling
technique. For all methods, the biconjugate gradient method is used to solve the
system of linear equations. The reference value is always the best solution obtained
with the finest mesh (Pel � 47:10083W at about 105 elements). Both methods are
comparable in the convergence order to the standard volume-based, first-order FEM
where the sheet is resolved as a volume in the mesh. For some levels of discretization
also the condition number of the system matrix is compared, shown in Fig. 6. Again,
the condition number in the semi-analytic method never exceeds the condition of
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the method with constant thin-sheet bases. However, the length ratio of the smallest
sheet edge to smallest edge outside the sheet decreases with finer meshes. So, of
course, the advantage regarding the condition number decreases as well.

The benefit of the different thin-sheet modeling techniques depends on the ratio
of the conductivity 	s to 	r. Figure 7 shows the condition number of the system
matrix for a constant sheet thickness of ı D 10�4 m while 	s is varied in the
range 10�6 < 	s < 103. For 	s > 105 the voltage drop within the sheet is
negligible. Therefore, the constant sheet bases are applicable and provide, due to
their simplicity, the best choice.

On the other hand, for 	s < 0:1, the thin sheet has no significant effect on the
matrix condition. As a consequence, no thin-sheet approach is actually required. In
the range 10�1 < 	s < 104 the semi-analytic method is appropriate, as it leads to
condition numbers comparable to the respective values for lowest-order thin-sheet
bases while considering the voltage drop within the sheet.

4 Conclusion

Two finite-element thin-sheet approaches are investigated in EQS. The well-known
method of using higher-order prismatic elements for the discretization of thin sheets
introduces additional degrees of freedom. While difficulties in mesh generation
are avoided, the condition number of the resulting system matrices deteriorates
for higher-order approximations. For many cases, however, allowing for a linear
field variation across the sheet already leads to a sufficient accuracy. In this case,
the proposed method yields superior properties such as the independence of the
condition number of the system matrices from the thickness of the sheet. The new
method is compared to the common approach and is found to deliver identical
results. Furthermore, the concepts can be used in combination with higher-order
finite-element discretizations.
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Mode Selecting Eigensolvers for 3D
Computational Models

Bastian Bandlow and Rolf Schuhmann

Abstract For the computation of interior eigenpairs an educated initial guess on the
eigenvalue is mandatory in general. The convergence behavior of eigensolvers can
be improved by using a starting vector, which should be a reasonable approximation
of the searched eigenvector. However, these two provisions do not lead necessarily
to the searched eigenpair. We propose an extended selection strategy for the Ritz
pairs occurring within the Jacobi-Davidson eigensolver algorithm and compare its
performance with the Rayleigh quotient iteration. A complex unsymmetric standard
eigenvalue problem resulting from a finite integration discretization of a dielectric
disk in free-space serves for numerical experiments.

1 Introduction

The computation of interior eigenvalues of complex unsymmetric matrices arising
in numerical models from engineering problems is still a challenging task. At least
an educated guess on the eigenvalue location within the spectrum has to be available,
in order to succeed. In many cases there is some additional information on the
eigenvector available that can be used as a starting vector for iterative eigensolvers.
However, using a priori knowledge as a starting vector does not necessarily cause
convergence towards the searched eigenvector, if the guessed eigenvalue is too far
away from the actual solution. Inside the Jacobi-Davidson eigensolver algorithm
[9] one of several eigenpair approximations – the most promising one – has to
be selected for the use in subsequent iterations. In this paper we focus on the
extension of that systematic selection process, in order to compute only one single
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Algorithm 3 Jacobi-Davidson-Method
Require: matrix A 2 Cn�n (normalized prop-

erly), target � , initial vector v0 2 Cn,
initial subspace Vm 2 Cn�m, tolerance �

Ensure: Eigenpair .�; x/
1: t v0
2: �  �

3: loop
4: Expand and orthonormalize Vm by t
5: Project A on subspace Vm

6: Solve projected eigenvalue problem
7: Select Ritz pair .�; u/ with � next to �
8: r .A� �I/u
9: Break if krk < �

10: Solve JD correction equation for t
11: end loop
12: � � , x u

Algorithm 4 Rayleigh-Quotient-Iteration
Require: matrix A 2 C

n�n (normalized prop-
erly), initial guess � , initial vector v0 2 C

n,
threshold �, tolerance �

Ensure: Eigenpair .�; x/
1: v0 v0=kv0k
2: for i=1,. . . ,imax do
3: if i < � then
4: v1 .A� �I/�1v0
5: else
6: v1 .A� �I/�1v1
7: end if
8: v1 v1=kv1k
9: �  vH1 Av1

10: Break if k.A� �I/v1k < �
11: end for
12: � � und x v1

eigensolution – especially for the case that some specific features of the eigenvector
are known in advance, but the initial guess on the eigenvalue is still insufficient.

2 Jacobi-Davidson Method

The outline of the Jacobi-Davidson1 method (JD) for a standard eigenvalue problem
Ax D �x, A 2 C

n�n is given in Algorithm 3. The JD is feasible for the computation
of a modest number of interior or exterior eigenvalues � of the spectrum. It is
important to note, that the JD algorithm generates the eigenpairs one by one and
not a whole block of eigenvalues simultaneously. According to Algorithm 3 the
original full-dimensional eigenvalue problem is projected and solved on a low-
dimensional subspace Vm 2 C

n�m;m  n, which is gradually extended by
the solution of a correction equation. An important feature of the JD is that the
correction equation may be solved inexactly. Usually, an end of the spectrum or an
arbitrary interior value of the spectrum can be specified as a so-called target value
� , and the eigenvalues � next to the target value � are computed during the solution
process. See Algorithm 3 and [5, 9] for further details on the single steps.

However, the solution of the low-dimensional, projected eigenvalue problem
does not only yield Ritz values �i , but we can also obtain approximations of
the corresponding eigenvectors (Ritz vectors ui ) by expanding them back to full
dimension. It is important to note that the residual norm of the Ritz vectors krik WD
k.A��i I/uik is rather large during the first JD iterations. The goal is to have a simple
measure beyond the target value � , in order to be able to decide which of the Ritz

1A Matlab implementation of the JD as well as further bibliography on the JD is available from [5].
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vectors ui incorporates suitable information on the eigenvector we are searching for.
Preliminary results for the computation of selected 2D eigenmodes in waveguide
cross-sections have been shown in [2].

2.1 Selection of Appropriate Ritz Pairs

The basis for the selection of the actual Ritz pair is the solution of the projected,
low-dimensional eigenvalue problem. In the JDQR method the standard extraction
of Ritz values leads to a low-dimensional standard eigenvalue problem with matrix
M D VH

mAVm. The harmonic extraction is based on subspaces Vm and Wm and
therefore Ritz values are obtained from the matrix pencil .WH

mAVm,WH
mVm/ with

Wm D AVm � �Vm and some shift � (JDQZ method). Usually, the selection of the
Ritz pair is done by sorting the Ritz values with respect to the target value � [4].

The JDQR solver is based on a Schur decomposition rather than a complete eigen
decomposition of the low-dimensional matrix M D QRQH , since the complete
eigen decomposition is known not to be computationally most efficient [4]. The
Schur decomposition consists of orthonormal Q and upper triangular R which
are extended gradually in every iteration. The diagonal of R contains the Ritz
values �i and the first column of Q (left-multiplied by Vm) together with the first
diagonal entry of R yields a Ritz pair .�1;u1/, while all other columns of Q will
lead only to Ritz vectors, if the strict upper triangular part of R vanishes. Yet for
sufficiently diagonal dominant R all columns of VmQ may be regarded as reasonable
approximations of Ritz vectors ui .

The JDQZ solver leads to a generalized Schur form (QZ decomposition) of
the low-dimensional pencil .WH

mAVm,WH
mVm/. The special choice of search and

test subspace for the harmonic extraction has been found to be beneficial for the
computation of interior eigenpairs [4]. The Ritz values �i can be obtained by
the generalized Schur form but the Ritz vectors are not – besides the first one.
The additional computation of the solution of the low-dimensional generalized
eigenvalue problem yields the Ritz vectors and they can be assigned to the
generalized Schur form by using the Ritz values.

So far we have shown ways to get Ritz vectors (or approximations) from the low-
dimensional eigenvalue problem occurring inside the JDQR and JDQZ algorithms.
Now, the selection process of an appropriate Ritz pair .�;u/ can be extended by a
criterion which uses a scalar product of some weighting vector f, which contains the
a priori knowledge and a specific Ritz vector ui

fHui > ˛: (1)

The weighting vector f may be established from previous calculations or analytical
considerations, and may be restricted to some components of ui . A good Ritz vector
ui for further JD iterations yields a value larger than the predefined threshold ˛. The
selection process finally reads:
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1. Sort Ritz values with respect to target � .
2. Evaluate (1) for all Ritz vectors.
3. If and only if there are Ritz pairs satisfying (1) place them at the top of order.
4. Resume JD iteration with first Ritz pair.

Note that no change in sort order occurs if there is no Ritz vector satisfying (1).

3 Rayleigh Quotient Iteration

The Rayleigh quotient iteration (RQI) of Algorithm 4 is feasible for the fast
computation of a single eigenpair if the occurring linear system can be solved
exactly [7]. Its singularity has to be checked in advance and the RQI may fail
if kv1k D 0 occurs. The RQI shows local cubic convergence behavior for well
chosen initial vectors. In Algorithm 4 we keep the initial vector as a (constant) right
hand side for � � 1 iterations and study the convergence behavior for different
thresholds �. Within the RQI there is no subspace projection and the JD can be
regarded as a subspace accelerated (inexact) RQI. More details on the relationship
of JD and RQI can be found in the literature [1, 6].

4 Numerical Example

For numerical experiments we compute higher-order eigenmodes of a pierced
dielectric disk in free-space, cf. Fig. 1a. We consider a disk having a refractive index
of 3.3, a radius of 1�m and a thickness of 375 nm. In [10] an analytical eigenfre-
quency estimation is proposed, which is applicable when a specific eigenmode has
nearly no interaction with the pierced hole. An example obtained by the analytical
approximation for the Ez electric field of the TM1;12 eigenmode is given in Fig. 1b.
This is an approximation since the behavior of the electric field at the edges is not
properly modeled and it is valid in the z D 0 plane only.

The discrete eigenvalue problem for the electric grid voltages is formulated
using the finite integration technique (FIT) [11]. The FIT is based on a spatial
segmentation of the computational domain by a computational grid pair, the normal
grid G and the dual grid QG. The degrees of freedom of the method are the so-called
integral state variables, defined as integrals of the electric and magnetic field vectors
over edges Li ; QLi of the normal grid G and the dual grid QG, respectively:

_ei D
Z
Li

E � ds;
_

hj D
Z
QLj

H � ds: (2)

Maxwell’s grid equations can be written down in frequency domain, neglecting
sources, as
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y
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a b c

Fig. 1 (a) Structure of a pierced dielectric disk. (b) Analytical approximation in the z D 0 plane
of the TM1;12 eigenmode obtained by the approach of [10]. (c) Mesh (without PML) for the pierced
disk: 1/4 of the computational domain has to be discretized

C_e D �i!M�
_

h; eC_

h D i!M"
_e: (3)

C and eC are the topological curl-operators containing entries f�1I 0I 1g only.
Perfectly matched layers (PML) [12] as an absorbing boundary condition based on
complex metric stretching can be introduced in FIT in a straight-forward manner,
which causes the diagonal material matrices to become complex and frequency
dependent M".!/ and M�.!/. The PML is only theoretically perfectly matched,
since the discretization of the damping conductivities introduces a remaining
reflection error that can be controlled by the number of layers. In frequency domain
we solve the curl-curl eigenmode equation for resonance frequencies !2, which can
be derived from (3) easily as

A_e D !2_e; A D M"�1 .!/C
TM��1 .!/C: (4)

The frequency dependent material matrices are linearized at the estimation fre-
quency and the radiation losses introduced by the PML lead to a complex,
non-symmetrizable system matrix A with complex eigenvalues !2. Its solution can
be computationally expensive, but yields the modal fields as well as their resonance
frequency and quality factor Q D <f!g=2=f!g. Moreover, the spectrum is spoilt
by some undesired modes, which are trapped within the PML and occur at similar
frequencies like the desired modes.

For discretization we use CST MICROWAVE STUDIO [3] and a mesh with 14 lines
per wavelength. Two symmetry conditions reduce the number of unknowns to one
quarter of the original problem (see Fig. 1c). Four PML layers are attached to the
mesh using some laboratory code in Matlab. The final algebraic system matrix has
270,936 complex unknowns. The system matrix is reordered and its spectrum is
shifted and normalized at first. For the JD we opt to solve the correction equation
directly and the tolerance for the residual norm of the Ritz pairs has to drop below
10�9 within at most 50 JD iterations. The estimation frequency obtained from the
analytical approximation is 242.9 THz and is used as target value � within the JD



132 B. Bandlow and R. Schuhmann

Table 1 Results for the original JDQR and the JDQR and JDQZ with extended selection criterion
(1) in dependency on different starting vectors v0 which include between 0 and 7 layers of the
analytical approximation from [10]

Original JDQR from [5] JDQR with selection (1) JDQZ with selection (1)

vana # JD Add. TM1;12 # JD Add. TM1;12 # JD Add. TM1;12

in v0 iterations modes f / THz iterations modes f / THz iterations modes f / THz

0 40 11 253.6 21 – ¤253.6 5 – ¤253.6
1 31 11 253.6 6 0 253.6 4 0 253.6
3 31 12 253.6 4 0 253.6 5 0 253.6
4 31 11 253.6 4 0 253.6 3 0 253.6
7 32 11 253.6 5 0 253.6 4 0 253.6

and RQI. The analytical approximation in the z D 0 plane from Fig. 1b is used as
a weighting vector for the extended selection criterion in (1). Moreover, different
starting vectors v0 can be built from the analytical approximation by plugging it
also into planes with z > 0, since that might be a better choice than random values.

5 Results

In Table 1 the results of the JD solvers with different starting vectors are shown
for TM1;12 eigenmode. The first column denotes the number of mesh planes which
contain the analytical approximation. For the original JDQR solver the required
number of iterations depends on whether the analytical approximation is considered
or not. 31–40 iterations are needed and 11–12 additional eigenmodes are computed
before the TM1;12 eigenmode occurs. The computed part of the eigenfrequencies
is shown with their Q factors in Fig. 2a: The dashed line denotes the estimation
obtained by the analytical approximation, the black square is the final result for the
TM1;12 eigenmode with a resonance frequency of 253.6 THz and the blue circles
and the red diamond are the additional modes, which are also computed by the
JDQR. The upper inset in Fig. 2a shows the Ez field distribution in plane z D 0 of
the TM1;12 eigenmode. The JDQR with selection (columns 5–7 in Table 1) fails as
expected when no analytical aproximation is included in the starting vector v0, since
no extended selection takes place, and (1) is never fulfilled. Better starting vectors
which include the analytical approximation in one or more layers cause convergence
in 4–6 iterations, and no undesired modes are computed. We choose ˛ D 0:2 for
this study. Nearly the same holds for the JDQZ method with extended selection
and ˛ D 0:2 (columns 8–10 in Table 1) with a similar number of JD iterations. In
most cases the JDQZ converges a bit faster than the JDQR to interior eigenvalues as
expected [4].

The influence of the threshold value ˛ in (1) is studied when v0 includes a single
layer of the analytical approximation. It turns out that the JDQR with selection
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Fig. 2 (a) Eigenfrequencies and Q: Real estimation of the analytical approach (dashed line) for
the searched TM1;12 eigenmode (square) and additional modes (ı) of the discrete model. The TM2;8

eigenmode (diamond) can be computed with the JDQR with selection. (b) Number of iterations of
the RQI for different starting vectors v0 and thresholds � when computing the TM1;12 eigenmode

converges after six iterations when ˛ 2 Œ0:2; 0:95�. Criterion (1) can not be satisfied
any more if ˛ D 0:97 or larger and so undesired eigenpairs are retrieved.

The correction equation within the JD may also be solved inexactly e.g. by an
iterative solver. In that case sometimes Ritz vectors may occur which satisfy (1)
but belong to Ritz values that are far away from � . In order to prevent the JD from
hopping through the spectrum we suggest not to use too low values of ˛. Setting
˛ D 0:8 and using bicgstab for the inexact solution of the JD correction equation
leads to convergence after 80 iterations.

When the combination of problem size and available computing or memory
capabilities allow the exact solution of the occurring linear systems, the RQI is an
alternative to the JD. The results of the RQI are given in the diagram of Fig. 2b.
Again the number of layers of the analytical approximation, which is included in v0
is under study. Moreover, the threshold value � defines for how many iterations of
the RQI the right hand side of the equation to be solved is kept fixed. At least the
first solve has to be performed with v0 as right hand side and the smallest number
of iterations are achieved for � D 1; 2; 3. But also for permanent use of v0 as right
hand side (� D 6) the residual norm finally drops below 10�9 as required.

For the TM2;8 eigenmode (red diamond and lower inset in Fig. 2a the electric
field interacts with the disk’s pierced hole. Therefore only a very crude analytical
approximation at 405.1 THz is obtained by the approach from [10]. The RQI does
not converge towards the desired TM2;8 eigenmode for arbitrary starting vectors in
that case. However, for the selection criterion (1) it is possible to use only that part
of the approximate field distribution, which is on the opposite side of the hole (i.e.
x < 0 cf. Fig. 1a. The JDQR with extended selection criterion is reliably able to
calculate TM2;8 eigenmode of the pierced disk at a frequency of 240.5 THz in 7–
10 iterations when the starting vector contains three or more z-planes of analytical
approximation for the region having x < 0.
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The JD and RQI are implemented in Matlab. As linear solver the PARDISO [8]
included in Intel’s MKL is used. The computing node consists of four Intel Xeon
7350 CPUs with in total 16 cores and 128 GByte memory running a Microsoft
OS. Parameter combinations from Table 1 and Fig. 2b which need four iterations to
converge lead to a computation time of 328 s for the JDQR, 328 s for the JDQZ and
334 s for the RQI. The small deviations show that most time is needed by the linear
solver.

6 Conclusions

We have shown how to include a priori known features of searched eigenvectors
in the selection process of the Ritz pair within the Jacobi-Davidson method using
standard or harmonic extraction. The extended selection is based on a reordering of
potential Ritz pairs, which are weighted according to the a priori known features.
It has been shown that the exact choice of the introduced threshold value is not
very critical for the success of the extended selection process. This holds for exact
solutions of JD correction equation as well as for inexact solutions where typically
a larger number of JD iterations is necessary until convergence is reached.

For the possibility of direct solutions of the occurring linear systems the Rayleigh
quotient iteration is a good alternative, when a single eigenpair is searched only.
The number of iterations needed is comparably low as in the JD method. The most
computation time is spent for solving the linear system in both approaches.

Acknowledgements The authors wish to thank Dr. J. Rommes for bringing the potential
application of the RQI to their attention.
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Magnetic Model Refinement via a Coupling
of Finite Element Subproblems

Patrick Dular, Ruth V. Sabariego, Laurent Krähenbühl,
and Christophe Geuzaine

Abstract Model refinements of magnetic circuits are performed via a subdomain
finite element method. A complete problem is split into subproblems with overlap-
ping meshes, to allow a progression from source to reaction fields, ideal to real flux
tubes, 1-D to 3-D models, perfect to real materials, statics to dynamics, with any
coupling of these changes. Its solution is then the sum of the subproblem solutions.
The procedure simplifies both meshing and solving processes, and quantifies the
gain given by each refinement on both local fields and global quantities.

1 Introduction

The perturbation of finite element (FE) solutions provides clear advantages in
repetitive analyses and helps improving the solution accuracy [1–6]. It allows to
benefit from previous computations instead of starting a new complete FE solution
for any geometrical, physical or model variation. It also allows different problem-
adapted meshes and computational efficiency due to the reduced size of each
subproblem.

A general framework allowing a wide variety of refinements is herein developed.
It is defined as a subproblem FE approach based on canonical magnetostatic and
magnetodynamic problems solved in a sequence, with at each step volume sources
(VSs) and surface sources (SSs) originated from previous solutions. VSs express
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changes of material properties. SSs express changes of boundary conditions (BCs)
or interface conditions (ICs). Common and useful changes from source to reaction
fields, ideal to real flux tubes (with leakage flux), 1-D to 3-D models, perfect to real
materials, and statics to dynamics, can all be defined through combinations of VSs
and SSs.

The developments are performed for the magnetic vector potential FE formula-
tion, paying special attention to the proper discretization of the constraints involved
in each subproblem. The method will be illustrated and validated on various
problems.

2 Series of Coupled Subproblems

Instead of solving a complete problem, with all its details, it is proposed to
split it into a sequence of subproblems, some with approximated geometrical or
physical data, including model simplifications, and others performing adequate
corrections. The complete solution is then the sum of the subproblem solutions.
Each subproblem p is defined in a domain ˝p , with boundary @˝p D �p. It
is governed by magnetostatic or magnetodynamic equations and constrained with
VSs and SSs, of which some components originate from previous problems q. The
involved fields are the magnetic field hp, the magnetic flux density bp and the
electric field ep .

Classical VSs fix remnant inductions in magnetic materials and current densities
in stranded inductors. Similar VSs can also express changes of permeability 
 and
conductivity � from a problem q to a problem p [4, 5]. For changes from 
q to 
p
and from �q to �p , the magnetic and electric material relations for problem p are
hp D 
�1p bp C hs;p and jp D �pep C js;p , with VSs hs;p D .
�1p � 
�1q / bq and
js;p D .�p � �q/ eq limited to the modified regions.

The usually homogeneous SSs, i.e. BCs or ICs for the traces n � hpj”p , n � bpj”p
and n � epj”p , with n the unit exterior normal and ”p 
 �p , can be extended to
non-zero constraints. The resulting ICs, i.e. the discontinuities Œn � hp�”p D jf;p ,
Œn � bp�”p D bf;p and Œn � ep�”p D ff;p through an interface ”p , involve SSs
jf;p , bf;p and ff;p obtained from previous problems. Usually, free forced discon-
tinuities in a problem q, allowing some simplifications with idealized thin regions
[2–5], can be removed in a problem p via opposed SSs, i.e. jf;p D �Œn � hq�”p ,
bf;p D �Œn � bq�”p and ff;p D �Œn � eq�”p (”p and ”q only differ at the discrete
level by their meshes). For the weakly defined ICs, a post-treatment of the FE weak
formulation is done to naturally express the SSs via a volume integration limited
to a layer of FEs surrounding the interface [2–5]. VSs and SSs involve previous
solutions in subdomains of the current problem p. At the discrete level, this means
these solutions have to be expressed in portions of the mesh of problem p, while
initially given in the mesh of problem q. This is done via an L2-projection [2–6].
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Fig. 1 Field lines for an inductor alone (b1, left) and for an added core (b2, 
r;core D 100) (right);
distinct meshes are used for problems 1 and 2
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Fig. 2 An electromagnet: field lines in an ideal flux tube (b1, 
r;core D 100), for the inductor
alone (b2), for the leakage flux (b3) and for the total field (b) (left to right)

3 Various Correction Procedures

Various correction schemes, appropriate to practical magnetic system analyses, can
benefit from the developed subproblem approach. These are summarized below and
will be discussed in details.

(1) Change of material properties (Fig. 1) – A typical problem is that of a region
put in an initially calculated source field b1. The associated subproblem 2 is
solved in its proper mesh, with the added core and its surrounding region, and
VSs limited to this core, where 
 and/or � are modified. Such changes can
occur when adding or suppressing materials or portions of those, in, e.g., shape
optimization, non-destructive testing [1, 6], moving systems.

(2) Change from ideal to real flux tubes (Fig. 2) [3, 4] – A problem q can first
consider ideal tubes, i.e. surrounded by perfect flux walls through which n�bq j”q
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is zero and bq and hq outside are zero. The complementary trace n � hq j”q is
unknown and non-zero. Consequently, a change to a permeable flux wall defines
a problem p with SSs opposed to this non-zero trace. This change (2) can be
done simultaneously with change (1), which is the case in Fig. 2: the leakage
flux b3 completes the ideal distribution b1 while knowing the source b2 proper
to the inductor; this allows independent overlapping meshes for both source and
reaction fields.

(3) Change from 1-D to 3-D [5] – Change (2) can be extended to allow a dimension
change, e.g. from 2-D to 3-D: a 2-D solution is first considered as limited to
a certain thickness in the third dimension, with a zero field outside; on the
other side, another independent problem is solved. Changes of ICs on each
side of this portion, via SSs, then allow the calculation of 3-D end effects.

Y
XZ

Y
XZ

Y
XZ

Fig. 3 Series connection of two flux tubes: field lines in ideal flux tubes (b1, left), local correction
at the junction (b2, middle) and complete solution (b, right)
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Fig. 4 A 3-turn inductor over a half plate, with perpendicular flux horizontal symmetry axis
below); low (left) and high (right) plate conductivity; (top) flux lines for b1 with a � ! 1
inductor; (middle) the correction solution b2 and (bottom) the total b and current density modulus
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Series connections of flux tubes use a similar procedure: a violation of ICs
when connecting two flux tubes can be corrected via an opposed SS, e.g. which
allows changes from 1-D to 2-D (Fig. 3).

(4) Change from perfect to real materials (Fig. 4) [2] – A problem q can first
consider perfect conducting (resp. magnetic) materials, with �q ! 1 (resp.

q !1), in which case the trace n � bq j”q (resp. n � hqj”q ) on its boundary is
zero and bq (resp. hq) inside is zero. The complementary trace n � hqj”q (resp.
n � bqj”q ) is unknown and non-zero. Consequently, a change to a finite �p (resp.

p) defines a problem p with SSs opposed to this non-zero trace.
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Substrate Modeling Based on Hierarchical
Sparse Circuits

Daniel Ioan, Gabriela Ciuprina, and Ioan-Alexandru Lazăr

Abstract In this paper, a new modeling approach appropriate for the substrate
modeling is proposed. More generally, this technique can be applied for any homo-
geneous layer for which an exponential decay of the field variation can be assumed.
The main idea is to perform a hierarchical modeling based on an exponential
partitioning scheme conducing to a circuit model of linear complexity which is
extracted with a low computational effort. The model obtained is further coupled
with the models of the other parts in which the integrated circuit is decomposed or
its sparse matrix is used as a boundary condition for field in SiO2 domain.

1 Introduction

With the continuous downscaling of CMOS devices analog, RF and digital circuitry
are integrated on a single chip. However, due to the conducting nature of the
common substrate, noise generated by the digital circuitry can be easily injected
into and propagate through the silicon substrate. Accurate and efficient modeling of
the electromagnetic effects in the semiconductor substrate is an important still open
problem for the EDA community [1, 2].

The IC substrate is a semiconductor body represented by computational domains
of rectangular shapes. It is usually structured in homogeneous layers, with constant
material parameters. The traces of the circuit devices on the top surface of the
substrate are called connectors or contacts. The bottom surface of the substrate is
the backplane contact, usually a grounded or a floating metallic layer [3]. The top
surface of the computational domain and its lateral surfaces have a virtual character,
being conventional cuts in the real semiconductor substrate body. The contacts are
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also conventional surfaces [1, 3]. The number, shapes and sizes of the contacts are
very much dependent on the actual circuit layer as well as on the modeling approach.
Inhomogeneous, high-conductivity layers and structures such as the epi-layer, wells,
diffusion gradients, and buried layers are usually included in the substrate models,
but a simpler solution we will consider in our approach is the one in which the
modeled substrate contains only the homogeneous Silicon bulk. The top contacts
are placed on an orthogonal, regularly structured grid. They can be clustered to
match the actual circuit layers.

The substrate models are based on electromagnetic (EM) field modeling. The
choice of the most appropriate EM field regime for a particular model of the
substrate depends on the values of the material constants and the required operating
frequency range. At low frequencies, the substrate behavior is well described by
static regimes, the most appropriate model being obtained by using, in conjunction,
electrostatics (ES), electric conduction (EC) and magnetostatics (MS), aiming to
model capacitive, conductive losses and inductive effects of the integrated circuit.

Numerical studies in [4] show that the electroquasistatic (EQS) assumptions are
valid for high-resistivity substrates at frequencies below 20 GHz. In the case of low-
resistivity substrates EQS can be used at least for frequencies up to 100 GHz.

Even in the simplest static regimes, the complexity of the extracted model with
n connectors is O(n2), since the number of lumped circuit elements linking the
connectors is given by n.n� 1/=2. For instance, two millions of R, L or C elements
are required to model 2,000 connectors in EC, MS or ES regimes. RC “equivalent”
circuits are extracted from the EQS field solution. Fortunately, not all these elements
have a similar importance in the model, as many of them describe weak interactions.
Typical examples are links between far connectors or connectors screened by other
connectors. That is why, a hierarchical modeling approach for the substrate is
necessary. Several hierarchical approaches are described in [1, 5].

2 Hierarchical Approach

2.1 Main Idea

The substrate modeling approach we propose is valid at frequencies where the EQS
regime may be considered valid. In order to also model the magnetic/inductive
field effects in the substrate, we consider the EQS field in conjunction with the
MS one. Thus, two independent models are extracted, to be connected in the
global model of the IC. For this, we use the domain partitioning (DP) technique
as described in [6]. The IC devices and the substrate interact by means of EM
hooks [6]. The hierarchical sparsification we propose is based on an exponential
partitioning scheme of the substrate (Fig. 1). Virtual contacts (hooks) are buried
in the substrate at different depths (according to their levels), thus realizing a
domain-partitioning of the substrate in horizontal layers structured in rectangular
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Fig. 1 Partitioning of the substrates in macro-cells

super-elements (macro-cells). The cell-walls thus generate an adapted discretization
macro-grid, progressively refined from bottom to top. Unlike the literature, in our
approach, the equivalent contacts have a physical meaning, being the terminals of
the macro-cells in which the domain is partitioned. Thus, sparse hierarchical circuit-
models with a reduced number of lumped elements are generated.

2.2 Theoretical Basis

The main reason which makes our hierarchical modeling approach valid is the
exponential decay of the field variation on deeper horizontal planes. For instance, in
EC, ES and MS field regimes, the scalar potential satisfies in homogeneous media
the Laplace equation�V D 0.

For the sake of simplicity, let’s consider a 2D domain D D Œ0; a� � Œ0; b�, which
represents the homogeneous substrate we want to model, with V.x; 0/ D 0 for
x 2 Œ0; a�, @V=@x.0; y/ D 0 and @V=@x.a; y/ D 0 for y 2 Œ0; b�. The top segment,
corresponding to y D b and x 2 Œ0; a� ensures the link with the upper part, so that
a certain non-zero Dirichlet boundary condition has to be imposed for it: V.x; b/ D
f .x/ for x 2 Œ0; a�. This problem can be solved analytically, the solution obtained
after imposing three out of the four boundary conditions being:

V.x; y/ D C0y C
1X
iD1

Ci cos.�ix/ sinh.�iy/; (1)

where �i D �i=a.
The constants Ci in (1) can be obtained by imposing the Dirichlet condition on

the top horizontal segment y D b.

C0b D F0=2 D 1

a

Z a

0

f .x/ dx;

Ci sinh.�ib/ D Fi D 2

a

Z a

0

f .x/ cos.�ix/ dx: (2)
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The values of the potential on the top segment depend on the device placed on
the substrate. However, any possible variation can be approximated accurately as
a piecewise linear function, which tends to the real variation when the fineness
of the discretization tends to infinity. Such a function can be expressed as a
linear combination of “hat functions". If N is the number of contacts (terminals)
equidistantly placed on the top side and m is the index of the contact that is excited
with a V0 D 1 V potential, then the Fourier coefficients given by (2) are

F0 D 2V0=.N � 1/;

Fi D 2V0.N � 1/
�2i2

�
2 cos

�i.m � 1/
N � 1 � cos

�i.m � 2/
N � 1 � cos

�im

N � 1
�
: (3)

Finally, the coefficients in (1) are C0 D V0=b.N �1/ andCi D Fi= sinh.�ib/where
Fi is given by (3).

The Fourier series can be truncated, but, according to [7], in order to keep a
minimal accuracy on the top segment (given by y D b and also called “level 0”),
the number of retained terms (spatial harmonics along the Ox direction) should be
at least twice the total number of contacts in that direction: n0 D 2N . The error due
to the truncation of the series (1) at the M -th term is

jVM.x; y/ � V.x; yj �
1X

iDMC1
jCi j sinh.�iy/

� 8V0.N � 1/
�2

1X
iDMC1

sinh.�iy/

i2 sinh.�ib/
� A

Z 1
M

sinh.�xy=a/

x2 sinh.�xb=a/
dx

� A
Z 1
M

exp.�.y � b/x=a/
x2

dx

D A
�

exp.�.y � b/M=a/
M

C �.y � b/
a

E1.M/

�

� A
�

exp.�.y � b/M=a/
M

C �.y � b/
a

e�M log.1C 1

M
/

�
; (4)

where A D 8V0.N � 1/=�2 and E1.M/ D R1
M exp.�t/=t dt is the exponential

integral and its margins are well known [8].
It is obvious from Fig. 2 that on deeper levels yk < b, for the same accuracy, only

a lower number of terms need to be retained from the Fourier series given by (1).
For instance, if we would like that level 1 be accurately described by N1 D N=3

contacts, the number of terms that have to be summed is n1 D 2N=3. By imposing
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Fig. 2 Fourier coefficients
for several depths

the condition that the first neglected term at level 1 be equal to the first neglected
term at level 0, it follows that level 1 has to be placed as given by

y1 � b � a

�.2N=3C 1/ log
jF2N=3C1j
jF2NC1j : (5)

For the example above, it follows that y1 � 0:97b. This kind of restriction gives
a guidance about how deep a reduced number of contacts can be buried while
keeping the modeling accuracy. By applying this procedure recursively, the substrate
is partitioned in layers having an exponentially decreasing number of contacts. To
simplify the presentation, we will assume that N is a power of 3, N D 3L. Thus,
in order to decrease the number of degrees of freedom (dofs) by 3 for each level,
we will need L C 1 levels, a level j having Nj D 3L�j contacts. A layer j is
placed between level j and level j � 1 (for j D 1; : : : ; L) and it will have a certain
thickness �yj . We will place the layers according to a geometric progression of
ratio r > 1: �y2 D r�y1, �y3 D r2�y1; : : : ; �yL D rL�1�y1. It follows that
�y1.r

L � 1/=.r � 1/ D b. If we chose r D N0=N1 D 3, the first level has a
thickness of �y1 D 2b=.3L � 1/ and its corresponding position y1 D b � �y1
satisfies relation (5) only if the number of layers L is less than 4. In this case
the cells that are used to discretize the substrate will have the same input-output
behavior. Thus, only one cell, called reference cell has to be solved in order to find
its input-output relationship and thus an equivalent circuit for it (Fig. 3).

Going down in the substrate, the number of dofs necessary to describe the
solution decreases exponentially (level j has 3L�j dofs). A lower number of
dofs means a lower number of hooks (contacts) on deeper layers. Hence, the grid
necessary to describe the field may be coarser, deeper in substrate. This is the main
conclusion of the above study. Going down, the field distribution is smother and
requires a lower number of spatial harmonics (samples) to be represented accurately.
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Fig. 3 Layout of a standard cell and its equivalent circuit

Even if the above explanations were given for the 2D case, they can be
generalized without difficulty for the 3D case.

It is easy to show that the complexity of the equivalent circuit increases linearly.
In 2D, a standard cell will have four terminals, three on the top segment and
one on the bottom. The number of layers is L D ln.N /= ln.3/, the total number
of cells is .3L � 1/=2, and the number of branches of the equivalent circuit is
O.3.N � 1// D O.N /. A model with 13 layers can handle about 1.6 million top-
connectors, using almost 4.8 million lumped elements. In 3D, a standard cell will
have ten terminals, nine on the top face and one on bottom, the number of layers
is L D ln.N /= ln.9/, the total number of cells is .9L � 1/=8, and the complexity
of the equivalent circuit is O.45.N � 1/=8/ D O.N /. A model with seven layers
can handle about 4.8 million top-connectors, about 600,000 cells and, consequently,
using about twenty seven millions lumped elements, each cell having 45 lumped
elements. The linear order of the extracted model is another great advantage of this
approach.

2.3 Algorithm

The algorithm we propose has the following steps:

Step 1: Chose appropriate EMCE formulation for the upper part and simulate it.
This implies the setting of the appropriate shape and position of terminals on the
boundary part that will be connected to the substrate. This setting depends on the
actual configuration of the device.

Step 2: Compute the number N of equidistant terminals necessary for the level 0
of the substrate. This depends on the minimum discretization step used at step 1.
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Step 3: Compute the number of necessary layers in the substrate L and their
heights.

Step 4: Simulate the reference cell (2D case shown in Fig. 3 left), and compute the
geometric permeances (Fig. 3 right).

In this step, by solving the reference cell (e.g. with a BEM or FIT solver), the
nodal permeances matrix is obtained. In 2D this matrix has 3� 3 entries, but due to
reciprocity and geometric symmetry, only four values are different:

�
.n/
ref:cell D

2
64
�
.n/
11 �

.n/
12 �

.n/
13

�
.n/
12 �

.n/
22 �

.n/
12

�
.n/
13 �

.n/
12 �

.n/
11

3
75: (6)

These values are dimensionless and depend solely on the cell and contact sizes. The
values of the permeances of the lumped elements are:

�12 D ��.n/
12 ; �10 D �.n/

11 C�.n/
12 C�.n/

13 ;

�13 D ��.n/
13 ; �20 D �.n/

22 C 2�.n/
12 : (7)

Step 5: Assemble the nodal permeances matrix for the hierarchical sparsified circuit
that models the substrate.

In this step, the nodal permeance matrix �.n/
HSS for the whole hierarchical circuit

(Fig. 4) is derived. This is a sparse, symmetric matrix, having four non-zero elements
on each row (Fig. 5). Its pattern depends on the node numbering. For instance, if
the numbering is carried out from left to right and from bottom to top, the last N
lines and columns correspond to the terminals. It is useful to partition the nodal
permeance matrix of the HSS circuit according to this numbering as:

�n
HSS D

"
�n

HSS;11 �n
HSS;12

�n
HSS;21 �n

HSS;22

#
(8)

Step 6: Compute the terminal admittance matrix of the top level with (9).
By eliminating the internal nodes of the model, the terminal permeance matrix

�T of the sparsified model can be obtained:

�T D �n
HSS;11 ��n

HSS;12

	
�n

HSS;22


�1
�n

HSS;21: (9)

Algebraically, this means the computation of the Schur complement of the lower
right block. The terminal admittance matrix is YHSS D .� C j!"/�T , where � and
" are the conductivity and the permeability of the substrate. The same geometric
permeances are used to compute the magnetic reluctances and, based on them,
the fundamental loop inductances of the circuit placed above the substrate can be
extracted.
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Fig. 4 Hierarchical sparse circuit of the substrate
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Step 7: Clusterise the terminals of the substrate according to the terminals of the
upper part.

Step 8: Couple the models with relation (10).
In the last step, the models are coupled by means of their contacts. Assuming

that the top model has the terminals numbered so that the hooks that are connected
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to the substrate are numbered at the end, its transfer matrix is partitioned as
Ytop D ŒY11Y12IY21Y22� then, by imposing the coupling conditions, the admittance
matrix of the whole model is

Y D Y11 � Y12 .YHSS C Y22/
�1 Y21: (10)

3 Results and Conclusions

In order to verify the proposed approach, a simple study case of a micro-strip
dual conductor line in SiO2 over a lossy Si substrate was considered. The line
admittance was computed by FIT, using DP with conform grids (Fig. 6) and with
the hierarchical modeling for the substrate. The result shown in Fig. 7 validates
the latter approach. The substrate was decomposed into five layers having progres-
sive increasing thicknesses with a constant rate. The CPU time needed to extract the
admittance matrix by hierarchical sparsification was 0.093 s, whereas the same time
when using DP with conform grids was 20 s. This illustrates the important reduction
of the extraction time. The proposed approach allows a fast extraction of parasitic
GLC parameters in complex integrated circuits with over a million of components,
modeling the EM coupling and noise propagation.
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Fig. 6 Computational domain partitioned in three parts. Conform grids are shown
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A Boundary Conformal DG Approach
for Electro-Quasistatics Problems

A. Fröhlcke, E. Gjonaj, and T. Weiland

Abstract A boundary conformal technique for solving three dimensional electro-
quasistatic problems with a high order Discontinuous Galerkin method on Cartesian
grids is proposed. The method is based on a cut-cell approach which is applied
only on elements intersected by curved material boundaries. A particular numerical
quadrature technique is applied which allows for an accurate integration of the
finite element operators taking into account the exact geometry of the cut-cells. Two
numerical examples are presented which demonstrate the optimal convergence rate
of the method for arbitrary geometry.

1 Introduction

Staircase discretization errors for Finite Difference (FD) type discretizations
on Cartesian grids represent a serious limitation on the accuracy of numerical
simulations. Major efforts have been made by several authors to overcome this
difficulty. Among others, the Partially Filled Cell approach for the Finite Integration
Technique [1] and the Dey-Mittra conformal boundary algorithm for the Finite
Difference Time Domain method [2] have been proposed. These techniques can
reduce staircasing errors at curved material boundaries by incorporating explicit
information on the boundary geometry into the numerical scheme. Unfortunately,
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these techniques are designed specifically for low order discretizations. Indeed,
high order FD methods rely on a large spatial stencil which makes the
implementation of conformal boundary conditions cumbersome and numerically
inefficient.

Finite Element Methods (FEM) on unstructured boundary fitted grids, on the
other hand, are free of staircasing errors. These methods do provide an improved
geometrical flexibility compared to FD methods. In addition, compact stencil and
high order accuracy FEM can be easily formulated for a variety of electromagnetic
field problems. The price due for this flexibility is a reduced numerical efficiency
compared to simple FD schemes. This is directly related to the use of unstructured
grids which leads to a more complicated data storage and access pattern in FEM-
based computations. Furthermore, the numerical effort for generating boundary
fitted unstructured grids for complex geometries can be extremely high.

In this paper, we propose a discrete formulation which combines the accuracy of
high order approximations with the simple implementation and numerical efficiency
of Cartesian grids. The basic idea is illustrated in Fig. 1 where a computational
domain containing a single material block is discretized by a regular Cartesian
grid. The material boundary subdivides several grid cells into sub-cells which are
associated with (at least) two different sets of material parameters. In the following,
we will refer to them as cut-cells. The challenge consists in deriving an appropriate
numerical approximation within these cells. Since no general set of basis functions
satisfying continuity conditions can be defined for an arbitrarily shaped cut-cell, the
standard FEM formulation cannot be applied. Instead, we propose a formulation
based on the high order Discontinuous Galerkin (DG) method.

As implied by the figure, the paper refers primarily to electro-quasistatics
problems characterized by material parameters such as the dielectric permittivity �
and the electrical conductivity 	. However, the proposed discretization approach can
be easily extended to other types of electromagnetic field problems. The structure
of the paper is as follows. In Sect. 2, the high order DG formulation for the time-
harmonic electro-quasistatics equations is introduced. In Sect. 3 the application
of the boundary conformal approach with cut-cells within the framework of DG

Fig. 1 Exemplary
Cartesian-grid domain
containing an arbitrarily
shaped material block. The
shaded area represents a
cut-cell intersected by the
material boundary
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is described. The numerical accuracy and the practicability of the method are
demonstrated is Sect. 4 where a simple validation example as well as the fully 3D
simulation of a low frequency heating module are presented.

2 DG Formulation for Electro-Quasistatics

The time-harmonic Maxwell’s equations for electro-quasistatic fields are written as:

1

�
D.x; t/ D �r�.x; t/; (1)

i!r � D.x; t/ D �r �
�
	.x/
�.x/

D.x; t/
�
; (2)

where ! is the angular frequency, � is the electric potential, D is the electric flux
density; � and 	 denote the permittivity and electric conductivity, respectively.

Given a partition of the computational domain ˝ into Cartesian grid cells ˝i ,
i D 1 : : : N (see, e.g. Fig. 1) we introduce a discrete approximation for (1) and (2)
by employing a mixed DG approach. Denoting the approximations of the electric
potential and flux density by �h.x; t/ and Dh.x; t/, respectively, the weak problem
for electro-quasistatics in the DG formulation reads: Find Dh, �h such that

Z
˝i

 D
i;q �

1

�i
Dh d3x D �

Z
˝i

 D
i;q � r�h d3x; (3)

i!
Z
˝i

 
�
i;qr � Dh d3x D �

Z
˝i

 
�
i;qr �

�
	i

�i
Dh

�
d3x; (4)

8i D 1 : : : N and 8q D 1 : : : P , where P is the highest polynomial order used. In
(3) and (4),  �i;q and D

i;q represent two sets of scalar and vectorial polynomial basis
functions for the electric potential and flux density, respectively. Note the index i
running over all grid cells for every polynomial order q. It indicates the cell-wise
definition of the DG basis functions. Thus, in contrast to the conventional FEM, the
approximations obtained are, generally, discontinuous at grid cell interfaces.

Due to the discontinuous DG approximation, the evaluation of element integrals
requires special attention. Considering, e.g., (3), the volume integral containing
derivatives of the discontinuous electric potential is transformed as:

Z
˝i

 D
i;q �

1

�i
Dh d3x D �

Z
˝i

�hr � D
i;q d3xC

Z
@˝i

Q�h D
i;q � n d2x: (5)

In (5), Q�h denotes the numerical flux for the electric potential defined at the cell
interface and n is the outward pointing interface normal. In order to complete the
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DG formulation (3)–(5), a numerically consistent relation for these fluxes must be
provided. Several possibilities exist for defining them (see, e.g., [3] for a complete
review of choices). In the numerical examples presented below, the so called central
flux scheme for the electric potential as well as for the flux density is applied.

Expressing the field approximations �h and Dh by means of the basis functions
 
�
i;q and  D

i;q , respectively, and evaluating the integrals (3) and (4) using numerical
fluxes as in (5), yields the set of matrix equations:

MI1=�d D �G�C f�; (6)

i!GT d D �GT I	=�dC fd ; (7)

where G is the discrete gradient operator, M is the mass matrix, I1=� and I	=� are
diagonal matrices containing the cell-wise constant material parameters and f� and
fd are vectors of boundary conditions. Equations (6) and (7) can be further reduced
by a Schur complement approach resulting in

�GT .i!I� C I	/M�1G� D fd �GT .i!I� C I	/M�1f�: (8)

The above equation can be solved for the potential degrees of freedom � using an
iterative or direct solver for complex symmetric systems. The Schur complement
reduction in (8) can be trivially applied since the mass matrix M in the DG
formulation is block-diagonal. The choice of the basis functions  �i;q and  D

i;q

is, generally, uncritical for DG-type discretizations. In this work, the high-order
hierarchical basis functions proposed in [4] is used. The definition of the electric
potential basis functions in the reference element is identical with that employed
in H1-conforming FEM. Correspondingly, the flux density within each element is
approximated using a set of high order basis functions which coincides with that
used inH.div/-conforming FEM (cf. [4]). The reason for this choice is to maintain
some degree of equivalence with the standard FEM for comparison and (possibly)
hybridization purposes. Note, however, that DG can be neither H1- nor H.div/-
conforming, since the global approximation is generally discontinuous.

3 Cut-Cell Approach

The basic observation is that the above derivation does not depend on cell (element)
geometry. In particular, it can be applied on the cut-cells of a Cartesian grid as shown
in Fig. 1. The latter can be considered as independent grid cells characterized by a
unique material. The weak DG equations for the cut-cells can be formally written as
in (3) and (4) for the standard (Cartesian) cells provided that, for each cut-cell, a set
of independent approximation functions,  �c;q and  D

c;q , is specified. Thus, the cut-
cell approach can be interpreted as a modification of the original Cartesian grid to
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include additional cells of arbitrary curved geometry. This modification, however, is
applied only in the vicinity of material boundaries corresponding to the splitting of
the original Cartesian grid cells into several cut-cells with different material content.

In the present implementation, the approximation functions within the cut-cells
are chosen to be identical with those in the parent Cartesian cell. This choice is
independent from the geometry of the cut-cell, since the DG formulation does not
impose conformity constrains on these functions; not even for the regular grid cells
away from material boundaries. The field discontinuity at the boundary surface
between two neighboring cut-cells is treated naturally within the DG framework
by introducing numerical fluxes as in (5).

The numerical evaluation of the DG integrals, however, needs an appropriate
description for the cut-cell geometry. For this purpose, the Open CASCADE
geometry kernel [5] is used. It enables a geometrical representation of the cut-cells
based on parametrized Bezier and B-Spline surfaces. Furthermore, high order Gauss
quadrature rules for evaluating surface integrals are provided. Internal integral terms
require a separate treatment. Referring again to the weak equation (3) for a cut-cell
volume˝c , the following transformations are performed:

Z
˝c

 D
c;q �

1

�c
Dh d3x D �

Z
˝c

�hr � D
c;q d3xC

Z
@˝c

Q�h D
c;q � n d2x

D
Z
@˝c

�
�SDc;q C Q�h D

c;q

�
� n d2x; (9)

where SDc;q is a primitive function of the integrand in the first integral term defined

by the relation, r � SDc;q D �hr �  D
c;q . Since a polynomial basis approximation is

assumed, SDc;q can be determined analytically for arbitrarily high orders. Thus, the
weak formulation integrals (3) and (4) can be fully reduced to surface integrals along
the cut-cell faces which can be further evaluated by the numerical quadrature rules
provided by the geometry kernel.

4 Numerical Examples

4.1 Validation

The simple model of a cylindrical capacitor filled with an electrically conducting
material is considered (see Fig. 2). For simplicity, a time independent setup is
assumed. It consists in a constant voltage excitation applied between the inner and
outer electrodes of the capacitor. Thus, the problem reduces to a stationary current
flow problem with exact analytical solution which can be used for investigating the
accuracy of the method.
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Fig. 2 Relative error measured in the L2-norm of electric potential vs. mesh parameter for
different DG approximation orders

Figure 2 shows the numerical error for the electric potential vs. grid resolution for
different DG approximation orders. Obviously, the numerical result converges with
the optimal convergence order,P C1, where P is the highest degree of polynomials
used in the approximation. The cut-cell approach is, thus, exact in the sense that, for
arbitrarily curved geometry, it does not introduce additional numerical errors (like
staircasing errors) apart for the usual approximation error of DG. In the simulations,
uniform and comparatively sparse Cartesian grids with 2–30 cells along the side of
the computational domain were used.

4.2 Simulation of a Heating Module

As a real world example, the simulation of a heating module is considered
(see Fig. 3). The device is commonly used in the food processing industry to
improve the shelf life of liquid products such as milk or juice [6]. It consists
of two steel electrodes embedded in a teflon case and operated at 250 kHz. The
model dimensions are 20 � 20 � 20 cm with rectangular electrodes of side length
13:5 cm. The fluid flowing between the electrodes is assumed to be orange juice
with an electrical conductivity of 0:5 S =m and a relative permittivity of 80. The
conductivity and relative permittivity of teflon are assumed to 10�12 S =m and 3,
respectively.
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Fig. 3 Left: Geometry of the heating module. Right: Cross sectional view of the device

The rectangular problem geometry suggests the use of a Cartesian grid. Excep-
tions make the two electrodes having rounded edges to avoid local peaks in the
electric field distribution. The situation can be well handled by the cut-cell approach,
since only a small number of cut-cells along the electrode surfaces needs to be
considered. In the present simulation, a uniform Cartesian grid with 10 � 10 � 10
cells is used. For the numerical field solution the high order cut-cell DG approach
with quadratic basis functions is applied.

Figure 4 shows some of the field distributions obtained by simulation on
several cross-sections of the heating module. Note the high resolution of the
electric potential and current density obtained in the vicinity of the electrodes,
although, an extremely sparse regular grid is used. This accuracy is due to the high
order approximation of the DG formulation combined with the cut-cell approach
presented in the paper. The heating module example demonstrates the capability of
the method to handle practical problems efficiently on simple Cartesian grids by
completely avoiding staircasing errors which are typical for FD based methods.

5 Conclusions

A cut-cell approach for the high order DG method is proposed. The method is
derived for the case of time-harmonic electro-quasistatics problems, although, it
can be easily applied for the solution of other types of static or time dependent
electromagnetic field problems. The strength of this approach consists in its
capability to obtain high order accuracy solutions on trivial meshes. The discrete
problem formulation is simple and easy to implement. This is because the cut-
cell approach can be naturally embedded within the DG framework which does not
impose conformity conditions on the approximation spaces. The validation example
presented in the paper shows that this approach converges at optimal rate for any
approximation order.
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Fig. 4 Top: Real and imaginary part of the normalized electric potential on the yz-plane. Middle:
Real and imaginary parts of the normalized electric potential on the xz-plane. Bottom: Magnitude
(left) and imaginary part of the y-component of the current density on the yz-plane
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Optimization of the Current Density
Distribution in Electrochemical Reactors

Florin Muntean, Alexandru Avram, Johan Deconinck, Marius Purcar,
Vasile Topa, Calin Munteanu, Laura Grindei, and Ovidiu Garvasuc

Abstract This paper proposes to investigate, analyze and compare two practical
optimization approaches for smoothing the side effects of electrodeposited layers
in electrochemical reactors. The study case consists in a hydraulic component
protected by a thin chromium (Cr) layer. Both optimization approaches are investi-
gated by using a 3D finite element software for solving the Laplace equation. The
obtained results using these approaches are compared with the numerical results
for an electrodepositing process without any additional thief current systems. The
uniformity of the chromium deposition on the test component is greatly improved.

1 Introduction

The design of an electroplating rack requires many preliminary steps such as the
choice of the electrolyte and the location, the shape and number of electrodes,
masks and currents thieves. These parameters affect deposit thickness and plating
distribution. Preliminary steps taken to optimize a plating process might be very
time consuming if they are performed in a trial-and-error fashion, i.e. plating parts,
measuring thickness, plating again etc. If those trial-and-error steps can be simulated
accurately, large gains can be made in overall plating cost reduction and the time-
to-market of new part designs [1, 2].
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Therefore, effective electrolytic plating thickness simulation helps plating indus-
tries to design the most appropriate rack and tools to produce the best deposit
uniformity.

2 Electrochemical Models

The nature of the involved electrochemical processes is generally very complex.
However, several assumptions and simplifications of limited validity can be made
in order to tackle the main aspects of the problem. For example, if the electrode
reactions take place at low rates, such that the concentration gradients are neglected,
the potential distribution may be found using Laplace’s equation. As a consequence,
the resulting model describes the ohmic effects in the electrolyte [2]. This model is
referred to as the Potential Model (PM). An early interest for modeling these kinds
of topics has been shown in a number of works. Several authors applied the PM to
compute the current density distribution for electroplating applications. Alkire and
Bergh [3] applied the Finite Element Method (FEM) to solve the resulting Laplace
equation, with nonlinear boundary conditions to account for the electrode charge
transfer reactions. Deconinck [4] discretized the equations of the PM using the
Boundary Element Method (BEM), in order to compute the changes of the electrode
profile for nonlinear boundary conditions. In order to deal with concentration
gradients near electrodes, Nernst [5] proposed to decouple the total volume of the
electrochemical cell into the bulk solution, where the convective motion takes place,
and a thin boundary layer called the Nernst or diffusion layer, near the electrode sur-
face(s). This model is referred to as the Nernst’s Model (NM). A more general class
of models is based on a complete description of the dilute solution theory referred
to as the Multi-Ion Transport and electrode Reactions Model (MITReM), [6].

The dilute solution model considers mass transfer diffusion, convection, migra-
tion and homogenous reactions together, with electroneutrality conditions and
nonlinear concentrations, depending on polarization relations at the electrolyte
electrode interface.

Most of the above mentioned papers deal with the mathematical and numerical
formulation of the electrochemical models, but do not treat the aspects of optimiza-
tion of the layer thickness and current density distribution in the electrochemical
reactors.

2.1 The Potential Model

If the electrode reactions take place at low rates, the concentration gradients are
neglected and the potential distribution may be found using Laplace’s equation [2]:

r � .�� � rU / D 0 (1)
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where: U represents the electrolyte’s electric potential in ŒV � and � the electric
conductivity of the solution in [˝�1 � m�1]. The current density J in [A � m�2]
according Ohm’s law is given by:

J D �� � rU (2)

Note that the conductivity � does not need to be constant. Indeed, it is possible
to couple domains with a different conductivity or systems with a local varying
conductivity (e.g. function of the temperature T ). The reactor’s walls, as well as
the gaseous medium in contact with the electrolyte, may be seen as insulators. No
current flows through them and therefore the normal current density is zero [7]:

Jn D J � ln D �� � rU � ln D �� � @U
@n
D 0 (3)

where: the subscript n refers to the normal direction. The same boundary conditions
can be applied to the symmetry planes. Depending on the working conditions,
the current density distribution may be presented using different expressions. One
option is to use a linear relation [4, 7]:

Jn D A � .V � U �E0/C B (4)

with: A [A � m�2 � V�1] and B [A � m�2] the polarization constants, V the metal
potential and E0 the equilibrium potential, all these electric quantities in ŒV �. For
single metal deposition processes, the current density distribution is accurately
described by a Butler-Volmer relation [4, 7]:

Jn D J0 � .e ˛a �F
R�T �� � e ˛c �F

R�T ��/ (5)

where: J0 in ŒA � m�2� is the exchange current density, ˛a and ˛c the anodic and
cathodic charge transfer coefficients for the deposition reaction, � the overpotential
in ŒV�, R the gas constant in [J �mol�1 �K�1], F the Faraday constant in [C �mol�1]
and T the temperature of the electrolyte in ŒK�.

2.2 Numerical Study Case

The PM model was applied for a study case consisting in a hydraulic component.
Being part of a complex mechanical system, this hydraulic part is usually under
stress due to friction and/or other forces. For these reasons some parts of the surface
must be protected and strengthened by a thin Cr layer, of around 10–30 �m.

The numerical computation of the proposed study case, using the PM model,
was done using a 3D FEM simulation tool, specially tailored for electroplating
process [8]. In realistic conditions, the electrochemical process takes place in large
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Fig. 1 CAD of the
electrochemical reactor with a
single hydraulic component

tanks with a lot of pieces (electrochemical reactors). Due to the fact that the purpose
of our study was to optimize the Cr thickness deposition of a single component,
but with two different practical optimization approaches, a small square tank is
considered, as in Fig. 1. In order to obtain a uniform layer, very small currents are
used. The main disadvantage in this case is a very long process time. For this reason,
in the real life, higher currents are used in order to increase the efficiency of the
process, by decreasing the total process time. Unfortunately, this change comes with
some risks. If higher currents are used, side effects like hydrogen evolution, Cr over
burn and porous deposit may appear. In order to overcome these types of problems,
we used two different practical optimization approaches for the optimal design of
the Cr layer thickness, respectively a current robber and a shielding system.

The following phenomena are taken into account during the optimization pro-
cess: the ohmic drop in the electrolyte solution; the anodic polarization; the cathode
shape changes over different time steps; the reactor configuration, including anode
positioning, screens and current thieves; the work piece shape and dimensions; the
selective insulation of work piece surfaces; the total current injected and the anode
work piece contacting method. After the numerical analysis and electroplating
simulations, the obtained results are compared with the first simulation results,
which correspond to the initial study case without any additional optimization
system.

2.3 Dry Run Simulation

The first simulation is the so called “dry run simulation”. The following parameters
are used for the numerical computation in this case, respectively the plating time
30 min, the average current density 4,000 A=m2, the main current 110 A and the
main voltage source 4.50 V. Using the PM mathematical model and the 3D FEM
software [8] with the above mentioned parameters, the gain in the Cr weight is
3.33 g. The thickness of the Cr deposition on the active zone is between 9 �m and
35 �m, while the current density is between 2,300 A=m2 and 6,000 A=m2.
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Fig. 2 Current density
distribution on the hydraulic
component, for the dry run
simulation

Fig. 3 Cr deposition over the plating surface for the “first run” simulation

Figure 2 indicates the risk for the occurrence of Cr burn or other high current
densities related defects. It may easily be seen that, some zones are exposed to risks
and a big grinding effort has to be made in order to obtain a smooth surface.

The corresponding Cr deposition thickness for the whole studied hydraulic
component is given in Fig. 3. The edge effects are obvious.

3 Practical Optimization Approach

3.1 Current Robbers Approach

The current robber system, used by the authors for the optimization of the Cr deposit
layer, consists in one ring robber near the top of the work piece, a lead tape for the
recessed area and a lead tape for the hole’s edges of the part, mounted on a plastic
support, as in Fig. 4. The whole system is short circuited to the mass, through the
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work pieces. The lead tape system is perfectly joined with the plating area, providing
a cylindrical flat surface.

The optimization process consists in three steps by modifying the distance
between the ring current robber and the width of the lead tape as following: 20 mm
width of the lead tape, 2 mm near each edge; 15 mm width of the lead tape, 4 mm
near each edge; 8 mm width of the lead tape, 5 mm near each edge. The following
parameters are used for the numerical computation in this case, respectively the
plating time 30 min, the average current density 4,000 A/m2, the main current 138 A,
the main voltage source 5.15 V. In this situation the gain in Cr weight is 3.37 g. It’s
easy to observe that there are no more ï£¡red zonesï£¡ to indicate problems for the
Cr deposit, as in Fig. 4.

Since the current robbers are part of the electrode system, during the optimization
process the main power source must be changed in order to keep the current density
on the work piece on constant 4,000 A=m2 value. The evolution of the Cr deposition
thickness on the plating surface during the optimization process is given in Fig. 5.

Fig. 4 The current robbers
system and the Cr deposition
thickness
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Fig. 5 Cr deposition over the plating surface for each optimization step
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Table 1 Current densities and Cr thickness during the optimization process (case 1)

Case Current source Min value Max value Average value

Intial case 110 A d[�m] 10 307.3 16.63
J[A/m2] 2,822 4,236 3,948

Step 1 127 A d[�m] 6.65 41.63 15.53
J[A/m2] 2,182 8,159 4,017

Step 2 133 A d[�m] 7.1 28.85 15.22
J[A/m2] 2,287 6,243 3,971

Final step 138 A d[�m] 7.33 23.65 15.07
J[A/m2] 2,336 5,429 3,948

Fig. 6 The shielding system
and the Cr deposition
thickness

The edge effects are significantly reduced and the thickness of the layer deposit is
kept constant (15�m ) on the active zone.

In Table 1 there are given the values of the obtained thickness of the Cr
depositions and the current densities (min, max and average values) for each
optimization step.

3.2 Shielding System Approach

The shielding system, used by the authors for the optimization of the Cr deposit
layer consists in two collar flat screens with 125 mm diameter for the recessed area,
two conical shields for the work piece hole and one L-shape screen with holes on
the top of the piece, as in Fig. 6.

The optimization process consists in three steps, by variating the collar flat
screens diameter, the length of the conical shield from the surface and the L-shaped
distance between the pieces, as following: diameter 70 mm, length 10 mm,
L-shape distance 25 mm; diameter 100 mm, length 20 mm from the surface and the
L-shape distance 12 mm; diameter 125 mm, length 12 mm and the L-shape distance
12 mm, with holes.
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Fig. 7 Cr deposition over the plating surface for each optimization step

Table 2 Current densities and Cr thickness during the optimiza-
tion process (case 2)

Case Min value Max value Average value

Step 1 d[�m] 10.51 46.13 16.25
J[A/m2] 2,928 8,399 3,946

Step 2 d[�m] 11.9 41.47 16.08
J[A/m2] 3,205 7,760 3,946

Final step d[�m] 10.64 24.49 16.08
J[A/m2] 2,954 5,320 3,946

The processed parameters are as following: the plating time 30 min, the average
current density 4,000 A/m2, the main current 110 A and the main voltage source
4.86 V. In this case, the weight gain obtained is 3.21 g.

The evolution of the Cr deposition on the plating surface, during the optimization
process is given in the Fig. 7. The edge effects are once again significantly reduced
and the thickness of the layer deposit is kept constant on the active zone (around
15�m) as in the previous case.

In Table 2 are given the values of the obtained thickness of the Cr depositions
and the current densities (min, max and average values) for each optimization step.

4 Conclusion

A comparison between the obtained results using the two practical optimization
approaches is given in Fig. 8.
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Fig. 8 Cr deposition over the plating surface: current robbers vs. shielding systems

The chosen current robbers system guarantee an uniform Cr layer deposition over
the active plating zone with 1.32% in terms of standard deviation, while the shields
system ensure the layer uniformity with 1.76% in terms of standard deviation.
The current robbers system has better performances in term of the Cr thickness
uniformity, but it is more expensive due to the fact that it consumes more material
from the electrolyte, respectively 3.37 g instead of 3.21 g with the shielding system.
In terms of currents, the first practical optimization approach needs a higher current,
respectively 138 A instead of 110 A. In conclusion, the advantage of the robbers
system in comparison with the shielding system is the higher uniformity of the Cr
thickness depositions, but with a higher average value of the used current and a
higher consumption of material from the electrolyte. The research will be extended
with new practical optimization tools but using as analysis tool the extended finite
element method (XFEM).
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Streamer Line Modeling

Thomas Christen, Helmut Böhme, Atle Pedersen, and Andreas Blaszczyk

Abstract After reviewing some basics of dielectric withstand of air insulation,
we introduce two procedures for an improved prediction of streamer paths in
complex geometries. Although based on the electric background field, we generalize
conventional models that usually consider paths starting at a field maximum and
traveling along field lines. The new approaches are able to explain both streamer
inception points different from field maxima as well as deviations of the streamer
path from field lines, and may help to further optimize dielectric withstand of high
voltage devices.

1 Introduction

Design optimization of air-insulated electrical devices refers to maximization of the
dielectric withstand with respect to detrimental gas discharges. For this, both the
electric field distribution and the critical failure mechanism must be known [1–4].
In practice even the electric field calculation in a real 3-d geometry can be highly
nontrivial because of geometrical complexity, e.g., due to large aspect ratios, and the
presence of charged dielectric interfaces. The electric background field E D �r'
is obtained from the Poisson equation for the electric potential '. Often it reduces to
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the Laplace equation as in most high voltage engineering applications space charges
can be neglected. However, breakdown associated with gas discharges does involve
space charges, which necessitates a self-consistent solution of the Poisson equation
and the equations for the charge carriers. Except for special cases [5–8], such a
complete simulation of gas discharges is infeasible today for real device geometries
because of computational difficulties. Furthermore, besides discharge inception that
can sometimes be evaluated from the Laplacian field, the judgement on withstand
must include propagation and further development of the electric discharge. For
instance, one must know whether a discharge initializing streamer stops after a short
distance or develops further into a destructive electric arc connecting two counter-
electrodes.

The main challenge of this paper concerns the prediction of streamer behavior,
particularly its most likely path, from the knowledge of the Laplacian background
field. We will focus on positive streamers as they are more critical than neg-
ative ones. Because the model behind our consideration is phenomenological,
and because of the intrinsic erratic behavior of streamers, one can only expect
approximate answers with statistical character. However, already those can be of
high value for designing electrical devices.

2 Dielectric Breakdown of Air Insulation

Physical understanding of electrical discharge and spark phenomena in electrical
engineering is based on a vast number of empirical facts, combined with various
more or less sophisticated models [1–4]. Only recently the increase of computational
power jumpstarted a reconsideration of the subject, leading to improved theories
and simulation results (see, e.g., [9]). The basic steps of a dielectric breakdown in
air insulated high voltage equipment are inception, streamer propagation, maybe
streamer-leader transition for sufficiently large electrode separation, and arc forma-
tion after electrodes are connected by the conductive channel. A phenomenological
understanding of withstand voltage Uw as a function of the electrode distance and
for inhomogeneous field is sketched in Fig. 1 and covers the following steps. For
the following, we will assume that E is known in the spatial region of interest, e.g.,
from computation.

2.1 Streamer Inception

After the appearance of an initial electron in a critical high-field volume, an
electron avalanche starts to develop. If a sufficient number Nc of electron gen-
erations are produced due to impact ionization, a self-propagating streamer head
forms. The (streamer) inception criterion is

R
�
˛eff.E/dx D ln.Nc/ where ˛eff

is the E-dependent effective ionization coefficient including ionization, electron
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Fig. 1 Illustration of Uw (thick curve) in normal air as a function of the electrode distance for an
inhomogeneous field configuration (e.g., sphere-plate electrodes (inset a)). Gas breakdown field
EBD; streamer inception voltage USI (	 voltage level at P); streamer head voltage US;0; streamer
propagation field ES (slope indicated by dashed-dotted line); leader inception voltage ULI (	
voltage level at Q); leader head potential UL;0; leader internal field EL (slope indicated by dashed-
double-dotted line). For weakly nonuniform fields, USI limits the withstand voltage (cross-over
at P). The range relevant for streamer line modeling lies between P and Q. (Inset b) Sketch of a
streamer bunch with many branches and connecting a tip electrode with a plate electrode

attachment, and detachment. Here,E Dj E j, and the integration path � starts at the
point with maximum field, follows the field line as long as ˛eff.E/ > 0, and ends
where the critical field value,EBD given by ˛eff.EBD/ D 0, is reached. There exist a
number of empirically determined fit functions for ˛eff.E/ (see for instance, [3,10]).

Typical values are [3, 4, 10]: EBD � 2.5 kV/mm, a few mm for the critical
streamer length � , and ln.Nc/ � 9–21 (higher values correspond to lower fields, and
ln.Nc/ � 18.4 should be used for strongly inhomogeneous fields in typical medium
and high voltage devices). The inception voltage USI is based on the Laplacian
background field and implicitly determined by the inception criterion. If the field is
only weakly nonuniform, the streamer will short the electrodes immediately when
the inception voltage is reached, which defines then withstand. Path selection is
not so critical since its length is typically a few millimeters; it is thus sufficient to
integrate along a field line.

In most literature, electrode inception is discussed because in simple arrange-
ments the maximum field is located there. However, real devices contain usually
additional solid insulation and the highest field values may occur away from
electrodes, leading to electrodeless inception [11]. Then, a streamer dipole forms
where at the same time positive and negative streamer heads are generated and
separate [7]. The underlying physics differs from inception at an electrode. In
particular, initiation is assumed to be related to electron detachment, which occurs
in normal bulk air at about 3.5–4 kV/mm [12]. Detachment from shallow surface
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traps at solid dielectric surfaces may happen at lower fields; the inception criterion
to be applied in this case is not fully clear yet.

2.2 Streamer Propagation

A streamer head will propagate towards the opposite electrode with typical veloc-
ities of 105–107 m/s. The exact value depends on a number of parameters, like the
applied voltage [13], and is correlated to other streamer properties like the diameter
[14]. The propagating streamer can be understood as a self-sustaining ionization
wave, which is driven partially by the recombination-induced light-emission that
leads to photo-electrons that initiate avalanches, and partially by the space-charge
induced high field in front of the streamer head, which leads to the growth of these
avalanches. The streamer can reach the counter electrode only if the applied voltage
is large enough to maintain the propagation process. An estimate of the distance
dS until a streamer stops is given by an equal area rule based on the hypothesis
of constant field (ES � 0:5 kV/mm for air) in the streamer channel; a fact with
reasonable empirical validation for electrode gaps from 5 cm to about 2 m. For
shorter distances (d < 5 cm), the field is typically higher, while for larger gaps
(d > 2 m) leader transition, as explained below, must be taken into account. The
equal area rule (streamer propagation criterion) for the propagation length dS is
given by

R dS
0
E.x/dx � ESdS along a field line. The lowest voltage value Uw (the

withstand voltage) that enables the streamer to connect the electrodes (i.e., dS D d )
in a strongly inhomogeneous field, is given by Uw D US, where approximately
US D US;0CES d . Here d is the length of the streamer path (clearance) connecting
the electrodes, and US;0 � 24 kV characterizes the streamer head [15]. Sometimes,
ES is identified as the streamer propagation field, which is interpreted as the external
field required for streamer propagation [13].

Application of these rules, between points P and Q in Fig. 1, requires knowledge
of the streamer path. The fact that steamer propagation in air is driven by photo-
ionization, which can be seen as a nonlocal effect, has two consequences. First,
the finite absorption length and the finite avalanche size for photo-ionization imply
that the seed for an avalanche is created somewhere on a semi-spherical surface
in a finite distance in front of the streamer head. Hence, the streamer proceeds
not solely straight-forward along a field line, but is with a certain probability
deflected sideways. This erratic behavior might also lead to streamer branching via
creation of two differently directed avalanches at the same time, which leads finally
to streamer bundles (see Fig. 1 inset b). Secondly, in a situation where the field
vector, E, is not collinear with the gradient of the field strength, or with r � E2, the
streamer path will be deflected systematically from the field-line direction, because
the probability of the next streamer step is higher to be directed towards higher field
strength. Even if steamer branching takes place deterministically via a Laplacian
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type of instability [16], this background-field induced effect should be expected to
influence the path direction, as the streamer is not ideally conductive.

2.3 Streamer-Leader Transition and Leader Propagation

Streamer-leader transition (Q in Fig. 1) [1] occurs when the current in the stem
of the streamer bunch is sufficiently high to heat up this channel to more than
5,000 K necessary for a thermal plasma with increased channel conductivity.
Leader transition is strongly influenced by capacitive coupling with the surrounding
electrodes and dielectric bodies, and can be predicted for simple geometries from
empirical rules [17]. A mature leader channel can carry a current of about 1 A at a
field of about 0.1 kV/mm.

One may write for distances larger than about 2 m [1], UL D UL;0 C EL d with
leader head potential UL;0 � 0.6–0.8 MV and a leader channel field EL of about
0.1–0.2 kV/mm. The leader can propagate over longer distances than a streamer, but
with lower velocities of about 104–105 m/s. The leader dynamics is very erratic and
the path almost unpredictable.

The relation Uw D UL is limited to very large voltages. As leaders must be
avoided in practice, Uw D ULI � 1 MV is used for design issues. ULI depends on
the capacitive coupling between the propagating streamer and the environment, and
is usually calculated from empirical rules (cf. [17]). At lower voltage levels and
sizes below 2–3 m, leader transition is restricted to dielectric surfaces.

3 Modeling of Streamer Lines

Once the path of a streamer is known, its transit time can be estimated from
its velocity along this line. Assuming 106 m/s, a typical distance of 10 cm requires a
HV-pulse length of at least 100 ns; so the main issue is the determination of the line.
In the following, we introduce two different and new improvements of streamer
path prediction, which go beyond the usual simple approximation that identifies
the path with the field line starting at the field maximum, from which the discharge
paths observed in experiments often strongly deviate [11].

3.1 Bundle of Field Lines

Even if one assumes that the path can be associated with a field line, it is not obvious
that the starting point, p, is associated necessarily with the maximum field value
at the electrode. Indeed, p can be in a finite vicinity thereof. Relevant streamer
lines (parameterized by p) must certainly fulfill both inception and propagation
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Fig. 2 (a) Streamer lines for parallel plate arrangement with voltage 100 kV and vertical distance
100 mm, (b) inception and streamer voltage distributions around the edge of the HV plate, and
resulting withstand voltage

conditions, i.e., the voltage must be higher than both voltages for inception (USI) and
for propagation (US, with dS equal length of path connecting electrodes). It is then
obvious that the most critical path among them has the starting point p associated
with Uw D Minp Max fUS; USIg. This is illustrated in Fig. 2 for an arrangement
of a flat, 1 mm thick electrode disk placed horizontally a certain distance above a
large grounded plate. Field lines start at the rounded edge with radius of curvature
r D 0:5mm. Figure 2 shows, as a function of p, the streamer inception voltage
and the withstand voltage Uw. The latter is an increasing function of the length of
the field line, while the former has a minimum at the rounded edge. Obviously, the
minimum of the maximum of the two curves occurs at point 2. The critical streamer
line has a length of about 120 mm (line 2). For a perpendicular plate configuration,
where the edge is facing the grounded plate and the field line has the shortest possi-
ble length of 100 mm, the withstand voltage according to the streamer propagation
criterion is slightly below 80 kV. The 10–15% withstand increase by changing
the angle from perpendicular to parallel plates is in accordance with experimental
observations [18], which support to usefulness of the minimax principle.

3.2 Field Gradient based Streamer Deflection

In reality the streamer path does not always follow an electric field line. Besides
the erratic behavior, which may be deterministic or noise induced, as mentioned
above one has to expect a deflection from the field line into regions of higher fields,
if the vectors E and r � E2 are not collinear. For modeling, the deterministic part
of the streamer path x.t/ is assumed to be given by the solution of the ordinary
differential equation, dx=dt D vS.x/, where x may be interpreted as the streamer
head location. We correct the main contribution vS.x/ / E.x/ by an additional term
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Fig. 3 (a) Sketch of an insulation rod with embedded and ring electrodes. (b) Simulation results:
equipotential curves as black solid lines; region withE > ES in blue. Field lines (blue) starting in
the critical high field region; streamer paths (red) according to dx=dt D vS. Inset (c): deflection
of a (positive) streamer path from the field-line direction of the external field. Recombination-
radiation creates photo-electrons on a spherical surface within a certain distance from the streamer
head. These act as first electrons of avalanches; this leads to a (weak) deflection from the field line
direction into regions with higher field values. (Solid: equipotential curves; dashed: constant E;
dotted: creation of photo-electrons (arrows))

/ r �E2, such that vS D k1.E/ECk2r �E2 is the streamer equation of motion. The
factors k1;2 have to be determined either empirically or from a more basic theory. In
any case, they should satisfy two properties. First, k1 must vanish when the external
field drops below the streamer propagation field (cf. [3]), i.e., k1.E � ES/ 	 0 .
Secondly, the term k2r � E2 is typically a small correction (which could be derived
from a perturbation approach). Indeed, if it predominates at large E, the streamer
could propagate into high field regions against field lines, which is not reasonable
in the framework of this deterministic consideration.1 However, only if k1 goes to
zero, the second term will dominate, which keeps the streamer inside the streamer
propagation region. The streamer path according to the streamer equation of motion
is simulated for a special electrode arrangement shown in Fig. 3a. It consists of
an insulating rod with two embedded electrodes and two additional electrode rings
outside. In the following, bulk streamers that connect the rings through the air are
considered. The grounded environment breaks the mirror symmetry at the center
plane of the rod. Figure 3b shows the equipotential curves (black solid) and the

1Note that sparks can propagate partially against field lines of the external field [1], which is due
to other reasons.
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region with E > ES (blue). The result indicates that the streamer path remains
in the region where the field is sufficiently high for propagation, and it is able to
connect the two electrodes. The smallness of k2 implies that a deviation of the path
from the field lines occurs only near the boundary of this region. The final path is
then neither sensitive to the exact streamer inception location, nor to the exact value
of k1. Figure 3c illustrates the deflection mechanism based on enhanced avalanche
formation in the region with higher field near the streamer head.

4 Conclusion and Outlook

Knowledge on the discharge path is crucial for a determination of the withstand
voltage of electrical devices. The traditional estimates based on the background field
use the electric field lines starting from the point of maximum field. For complex
geometries, this can be inappropriate as the critical path is (1) not the one that starts
at maximum field and (2) often systematically deviates from field lines. We have
proposed two phenomenological approaches that are able to improve the two items.
They are still based on the background field and are thus only appropriate if the
effect of space charges involved in the discharge is weak, which can be valid for
streamers. It goes beyond the purpose of this article to combine the two items into a
single algorithm for withstand prediction in arbitrary geometries. This task as well
as elaboration of a deeper physical foundation and the experimental validation are
postponed to future work.
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A Discontinuous Galerkin Formalism to Solve
the Maxwell-Vlasov Equations. Application
to High Power Microwave Sources

Laura Pebernet, Xavier Ferrieres, Vincent Mouysset, François Rogier,
and Pierre Degond

Abstract In this paper, we present a Particle-In-Cell (PIC) method based on a
Discontinuous Galerkin (DG) scheme to solve the Maxwell-Vlasov equations in
time-domain. Comparisons with an other industrial software are given to validate
the method.

1 Introduction

The main objective of this work is to propose an efficient solution for modelling
High Power Microwave (HPM) sources by considering microwave/plasma interac-
tions. For this kind of physical problem, we consider a collisionless and low density
plasma. To describe the plasma dynamics in the presence of an electromagnetic
field, represented by the Maxwell-Vlasovsystem, a Particle In Cell (PIC) method
is adopted. The principle of a PIC method is to couple two solvers: one for
the Maxwell part and another one to treat the displacement of macro-particles.
Concerning this method, there already exist software based on the Finite Difference
Time Domain (FDTD) scheme, which are very much used by the community (e.g.
see [1]). However, the last ten years, a lot of studies on Discontinuous Galerkin
(DG) methods [2] have shown more interest than the FDTD method for solving
the Maxwell equations. In this paper, we are interested in applying a particular
DG approach to solve Maxwell-Vlasov equations. As a first validation of the
pertinence of our DG method, we will focus on the simulation of HPM sources and
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in particular, on rendering the behaviour of a diode device. In Sect. 2, we describe
the DG method proposed to solve the Maxwell-Vlasov system, and in Sect. 3, we
present the simulation results for a diode configuration.

2 Mathematical Formalism

This section describes the mathematical formulation of the Maxwell-Vlasov prob-
lem and the chosen DG approximation to solve it.

2.1 Maxwell-Vlasov System

The kinetic model of a collisionless, weak density plasma is described by the
evolution of a distribution function fs D fs.v; x; t/ for each particle species s. This
function corresponds to the statistical average of the particles distribution in the
phase space. In the non-relativistic case, it satisfies the Vlasov equation:

@fs
@t
C v � @fs

@x
C q

m
.EC v � B/ � @fs

@v
D 0; (1)

where x, v, q and m are respectively, the position, the velocity, the charge and the
mass of s. Equation (1) is coupled to the Maxwell equations which determine the
electromagnetic fields .E;H/, on a bounded computational domain˝:

8̂
ˆ̂̂<
ˆ̂̂̂
:

@B
@t
Cr � E D 0;

@D
@t
� r �HC J D 0;

r � D D ; r � B D 0;

(2)

with H D ��10 B and D D "0E. The constants �0 and "0 are respectively the
magnetic permeability and the electric permittivity of the medium. J and  are
the electric current and charge densities representing the particle motion. They are
defined by:

.x; t/ D
X
s

qs

Z
IR3
fs.x; v; t/dv; (3)

Js.x; t/ D
X
s

qs

Z
IR3

vfs.x; v; t/dv: (4)
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On the boundary @˝ of the domain˝ , to simulate an infinite domain, we impose
a Silver-Muller boundary conditions [3].

2.2 The Particle-In-Cell Method

One can show (see [4]) that the distribution function fs is conserved along particles
trajectories and that the positions x and velocities v of the particles are solutions of
the characteristic equations (equations of motion):

8̂
<
:̂

dx
dt
D v;

dv
dt
D q

m
.EC v � B/ :

(5)

In (5), E and B, are solutions of the Maxwell equations (2), computed on a fixed
mesh in the physical space which does not match with the positions of the particles.
Hence, it is necessary to do interpolations between the positions of the particles
and the fields in order to evaluate the coupling terms. This method of coupling (2)
and (5), is called the Particle-In-Cell method. The main difficulty of this method is
related to charge conservation. Indeed, the constraint on the discrete divergence of
the electric field is not satisfied and to guarantee it, we use a hyperbolic correction
[5]. The modified Maxwell equations are:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

"0
@EK
@t
� r �HK C �r�K C JK D 0;

�0
@HK

@t
Cr � EK D 0;

�0
@�K

@t
� �K

"0
C �r � EK D 0;

(6)

with � 2 IRC and where �K is a scalar function. In the hyperbolic correction, �
is taken as a “penalisation term” to impose the electric divergence equation. In our
simulations, � is chosen around 5. This experimentally found value, allows us to
guarantee the electric divergence relation and a stable numerical method without
having a too small time step.

2.3 Approximation

For the spatial discretisation, we use a set of hexahedral elementsKi such that˝ DSN
iD1 Ki . On each cell K , the Maxwell equations (6) are re-written as follows:
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8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

"0
@EK
@t
� r �HK C �r�K C JK C ˇK@KŒŒH� nK��@K C ˛K@KŒŒnK � .nK � E/��@K

C�K@K�ŒŒnK:E��@KnK C �K@K�ŒŒ���@KnK D 0;

�0
@HK

@t
C r � EK C �K@KŒŒe � nK��@K C ıK@KŒŒnK � .nK �H/��@K D 0;

�0
@�K

@t
� �K

"0
C �r � EK C �K@K�ŒŒE � nK��@K C �K@KŒŒ���@K D 0;

(7)

where ŒŒu�� D u�� � u� defines the jump term on the boundary, @K , of K , and u�
and u�� are respectively the values of the traces from the inside and the outside of
K at the considered surface.

The coefficientsˇK
@K , ˛K@K , �K@K , ıK@K , �K@K , �K@K , �K@K and �K@K are chosen to ensure an

equivalence between (6) and (7). Considering identical coefficients for all the cells,
these values must satisfy:

• 1C ˇ � � D 0, ˛ � 0 and ı � 0
• 1 � � � � D 0, � � 0 and � � 0

To approximate the system (7), for the electromagnetic fields E and H, we define
the approximation Uh [2] such that:

Uh D
n
vh 2

�
L2.˝/

�3 W 8K 2 Th; DF
�
KvhjKoFK 2 ŒQr. OK/�3

o
(8)

where 8r 2 IN,Qr. OK/ is the set of polynomials on OK D Œ0; 1�3 the orders of which
are lower than or equal to r in each variable. Concerning the scalar corrector term
�, we define the following approximation space:

Vh D fvh 2 L2.˝/ W 8K 2 Th; vhjKoFK 2 Qr. OK/g (9)

For each cell K , we denote the transformation between the cell and OK by FK .
The basis functions 'l for the electric and magnetic fields and the current density,
are defined onK by a transformation 'l ıF.Ox/ D DF ��1K O'l.Ox/ of the basis function
O'l given on OK. DFK is the Jacobian matrix of F and Ox a point on OK. For a scalar

functions, like the charge density and �, the basis functions are defined by  l ı
F.Ox/ D O l.Ox/. In OK, for a spatial approximation of order r , we introduce .r C 1/3
Gauss quadrature points, on each quadrature point we have 3 degrees of freedom
for the electric, magnetic and current density terms and 1 degree of freedom for
the charge term and �. In OK, the basis functions O'l are the tensor product of the
Lagrangian polynomials O l associated to the quadrature points Oxl ; l D 1; .r C 1/3.

By considering a Leap-Frog time approximation, the numerical scheme is stable
under the condition:

�t � 2

c0
A1 C 1

c0 �
A2 (10)
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where A1 and A2 are constants depending on the geometry [2,6]. We note that with
this condition the greater the value of � the smaller the time step must be.

2.4 Fields/Particles Interpolation

Consider one particle p with a position xp D .xp; yp; zp/ and a velocity vp D
.vxp; vyp; vzp/, located in the cell K . The electric and magnetic fields .Ep;Hp/ in
xl0 , the point associated to the degree of freedom l0 and closest to xp , are given by
Ep D DF ��1K .Oxl0/

	
Ei
K;l0



iD1;��� ;3 and Hp D DF ��1K .Oxl0 /

	
Hi
K;l0



iD1;��� ;3, where Oxl0 is

the corresponding point in the reference element.
To evaluate the coefficients of the equations relating the electric field and the

corrector term �, we need to know Jp and p , generated by the particle p, at the
degrees of freedom of the fields. These terms are approximated in the spaces Uh and
Vh, as follows:

J ı FK D
3X
iD1

X
l2f1;��� ;rC1g3

J iK;lDF
��1
K
O l lei ;  ı FK D

X
l2f1;��� ;rC1g3

K;l O l l (11)

To evaluate the terms JK;l0 and K;l0 in (11), we state that the particle p is associated
to the nearest degree of freedom l0, in the elementK 2 Th (see [7]).

3 Numerical Experiments

In this section, we show that our DG-PIC method is able to simulate a diode
configuration. It corresponds to a particle device involving a field emission surface
submitted to an large perpendicular electric field. Our numerical tests are done in
two phases: first, we check the simulation of a coaxial line with the DG scheme
(7), and then we introduce the particles to achieve the diode simulation. In all the
simulations, we take a Q2 approximation (order 2 in space) and an averaged spatial
size of the cells equal to 0:01m.

3.1 TEM Mode in a Coaxial Line

We apply our DG scheme to study a coaxial line where the 3D configuration is given
by an inner radius r0, an outer radius r1 and a length L, respectively equal to 0:1m,
0:2m and 0:6m. We impose a voltage generator V.t/ between the anode and the
cathode and we put an absorbing boundary condition located at the extremities of
the geometry to simulate an infinite line. The mathematical expression of the voltage
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Fig. 1 Evaluated voltages at different positions on the coaxial line (at left) and evaluated electric
field in the volume at t D 10�8 s (at right). The colours represent the magnitude of the fields

generator is given by: V.t/ D V0 t

10�9 if t < 10�9 s and V.t/ D V0 if t > 10�9 s, with
V0 D 4 106 V.

For this configuration, an analytical solution exists corresponding to a
TEM mode propagating along the axis of the cylindre cavity (taken to be
parallel to the z-coordinate). The transverse electromagnetic field distribution
is given by E.t; z; r; �/ D .V .t � z=c//=.r Log. r1

r0
// and H.t; z; r; �/ D

.k �E.t; z; r; �//=.Z0/, where t is the time, .z; r; �/ are the cylindre coordinates

and Z0 D
q

�0
"0
' 377˝ is the vacuum impedance.

Figure 1 gives the voltages obtained at different locations on the coaxial line
and the evaluated electric field in the volume at t D 10�8 s. The results are in
agreement with the analytic solution and allow us to validate our DG model on this
configuration.

3.2 Diode Configuration

The diode is modelled by two finite cylinders with the same radii as in the previous
configuration. The length of the inner cylinder is equal to 0:3m whereas the outer
one has radius 0:4m. The source is given by the voltage generator given above. In
the proposed configuration, we allow the inner cylinder (cathode) to emit particles
on a surface, when the electric component field normal to this surface is higher than
a breakdown value taken to be 2:5 � 107 V/m in this example. When a surface is
authorised to emit, in its neighbouring volume, we introduce a random number of
particles. The initial velocity and position of each particle is also taken randomly.
From these positions, by using (5), we evaluate for each particle, its displacement
through the different cells of the mesh to determine the final cell corresponding to its
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Fig. 2 Positions of the
particles obtained with the
DG method at different times.
The colour represents the
energy of the particle
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Fig. 3 Comparison of numerical results obtained for our 3D DG-PIC code (at left) and a 2D FDTD
code (at right) at t D 1:5� 10�8 s. The colour represents the energy of the particle

new position. More detail on the emission mechanism and the propagation process
is given in [7].

Figure 2 shows the positions of the particles emitted from the cathode at the start,
the middle and the end of the simulation. We observe on this figure that, first, the
particles are attracted by the anode, then they are refocusing towards the cathode.
This is the correct physical behaviour. Indeed, during the time, the movement of the
particles generates current densities which decrease the electric field between the
cathode and the anode. Finally, theses fields are not sufficient to allow the particles to
reach the anode. In this 3D simulation, we have approximatively 1:6� 106 particles
at the end of the computation.

In Fig. 3, we compare, at t D 1:5 � 10�8 s, the positions of the particles emitted
from the cathode obtained using our DG method and a 2D FDTD axisymmetric
code, which can be considered as a good reference solution. We observe that,
qualitatively, the shape of the two clouds of particles are similar, and thus that,
our DG approach gives the correct physical behaviour. Now to compare quantitative
results, we are interested in impedances values.

Figure 4 shows the values of input (at 0:03m) and output (at 0:3m) impedances
evaluated with our 3D DG method (in red) and the 2D FDTD code (in black). The
impedance values must be taken at a stable state, that is, when the currents and
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Fig. 4 Comparison of input (at left) and output (at right) impedances obtained with a 2D FDTD
code (in black) and our 3D DG-PIC code (in red)

the voltages are constant in the time. In the figure, the correct impedance values
correspond to the end of the curves. As we can see, the two solutions are very
similar with an input impedance equal to 30˝ and an output impedance equal to
27˝ . Hence, we can consider that our 3D DG approach is satisfactory for this
application.
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4 Conclusion

In this paper, we have proposed a method for solving the Maxwell-Vlasov equations
in the time domain using a DG method. The mathematical formulation and the
approximation of the scheme have been described briefly and a numerical example
illustrates the applicability. Today, the method has proved its efficiency for solving
the Maxwell problem. Concerning the Maxwell-Vlasov system, we have shown that
the method can be applied and gives satisfactory results. Considering its capacity
to evaluate accurate fields with a low cost, we hope to obtain a fast and efficient
method for solving the Maxwell-Vlasov equations, by taking few cells together with
a high order spatial approximation. Currently, studies are in progress to evaluate the
advantages of this method for solving the Maxwell-Vlasov problem in terms of CPU
time, memory storage and accuracy.
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Part III
Coupled Problems

Introduction

The present part is devoted to coupled problems appearing in electrical engineering.
Coupled problems introduce new and complex problems which cannot always be
solved by simply combining existing methods adapted to the subproblems. Most
of the time, a comprehensive dedicated approach is needed to account for the
interactions in the problem. In particular, the various subproblems can have their
own time scale and, as a result, conflicting stability requirements to cope with.
The papers in this part show recent progress in computational methods for solving
multidisciplinary problems of industrial interest.

The first paper by F. Freschi and M. Repetto (an invited speaker at the conference)
presents an overview of Tonti diagrams. These diagrams represent a fundamental
duality between topological boundary relations on the one hand and differential
relations on the other hand. For that reason, Tonti diagrams describe the basic
nature of many different physical models. From a computational point of view,
this underlying common structure makes it possible to establish a corresponding
relation between finite dimensional algebraic topological operators and their duals,
i.e., discretised differential operators. These concepts are illustrated by means of
an induction heating problem including the nonlinear effects of temperature on the
magnetic characteristics beyond the Curie point.

In their contribution, R. Appali et al. investigate soliton collision in biomem-
branes and nerves. Collision of solitons is an interesting phenomenon related to the
stability of soliton solutions of nonlinear differential equations. The authors present
simulations for pairs of solitons moving in opposite directions at the same velocity,
demonstrating that these solitons collide elastically and produce small-amplitude
noise travelling at higher velocity.

The paper by F. Denz, E. Gjonaj, and T. Weiland presents a combined exper-
imental and numerical procedure for modelling zinc-oxide varistor based surge
arresters. In a series of experiments, measurements on single-varistor disks exposed
to two-millisecond current pulses are taken. Subsequently, the measured data is
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used to establish the nonlinear electro-thermal characteristics of the zinc-oxide
under electrical stress. Using this information, an accurate finite element model with
coupled thermal and electric fields can be constructed. This approach is applied to
calculate the transient voltage and temperature distribution within a complete surge
arrester unit.

The paper by M. Zubert et al. offers a new accurate behavioural static model
of SiC Merged PiN Schottky (MPS) diodes. This model is dedicated to static and
quasistatic electro-thermal simulations of MPS diodes for industrial applications.
The model parameters were extracted using the Weighted Least Square (WLS)
method for a few selected commercially available SiC MPS diodes. Additionally,
the PSPICE Analogue Behavioural Model (ABM) implementation, the relevance
of which has been statistically proven, is also presented. The thermal behaviour
of the devices was taken into account using the lumped Cauer canonical networks
extracted from electro-thermal measurements.

In the contribution by G. Alì et al. a dynamic iteration scheme is proposed for a
coupled system of electric circuit and distributed semiconductor (pn-diode) model
equations. The device is modelled using the drift-diffusion (DD) equations and the
circuit by means of modified nodal analysis (MNA) equations. Analytic divergence
and convergence results are verified numerically.

The contribution by S. Schöps, A. Bartel and H. De Gersem adresses multirate
time integration of field/circuit coupled problems using Schur complements. When
using distributed magnetoquasistatic field models as additional elements in electric
circuit simulation, the field equations produce large symmetric linear systems that
have to be solved. The naive coupling and solving (using direct solvers) is not
always efficient, as the electric circuit is only coupled via coils, which are often
only represented by a small subset of the unknowns. As such, the Schur complement
approach is revisited. The method can be given a “physical” interpretation and it is
shown that a heuristic for bypassing Newton iterations makes efficient multirate
time integration for the field/circuit coupled model possible.



Tonti Diagrams and Algebraic Methods
for the Solution of Coupled Problems

Fabio Freschi and Maurizio Repetto

Abstract Tonti diagrams highlight a common structure of several physical laws
describing different phenomena. From a computational viewpoint, this underlying
common structure allows to build topological operators (discrete counterpart of
differential operators) only once, and they can be used to easily assemble the
stiffness matrices and the coupling terms of the various problems. An application of
this concept to the coupled electromagnetic-thermal problem of induction heating is
presented in this work, taking into account the nonlinear effects of temperature on
the magnetic characteristic beyond the Curie point.

1 Introduction

One of the most important ideas in the work of prof. Tonti and his algebraic
formulation of physical theories [1], is the rigorous classification of physical
variables and equations which characterize the mathematical description of a
physical problem. As it will be detailed in the next section, this description is tied
to a discretized space-time structure and this fact makes it suitable for its numerical
implementation. In addition, this theoretical scheme is not specifically related to
one particular physical phenomenon but, as a fundamental issue, highlights the
common space-time structure underlying many physical theories. For this reason
Tonti’s work is a natural framework for developing a multiphysics numerical
technique, where Tonti diagrams are a useful tool to display the functional relations
between quantities which can be directly implemented in a numerical procedure
which will be hereinafter called Cell Method, CM. After highlighting the form of
Tonti diagrams and CM, the paper presents the application of the above mentioned
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computational structure to couple, in a strong way, the electromagnetic and thermal
fields in the case of induction heating of materials where coupling effects and
nonlinearities present in the problem will be addressed by means of CM.

2 Tonti Diagrams and Cell Method

The theoretical work of prof. Tonti [2] is mainly directed to the classification of
physical variables inside different physical theories. His attention has been devoted
not only to the study of the structure, but also to its implementation in a numerical
procedure for field analysis. As a complete description of Tonti’s work, at least for
electromagnetic theory, can be found in [1], here only the main concepts of the
structure will be outlined. It must be remarked that many of the concepts that will
be described are already present inside other numerical techniques for field solution,
like finite volume method [3], finite difference time domain [4], finite integration
technique [5], etc. but without a strict formal definition. As it will be clear in the
next Sections, this rigorous definition of quantities will allow the set-up of a ready-
to-implement numerical formulation of the problem.

2.1 Classification of Variables

A differential treatment of physical equations involves the use of variables which are
defined in a point-wise fashion which enables the use of partial differential operators
like gradient, curl and divergence. For example, the Laplace and Poisson equations
are written in terms of these operators. If an analytical solution of a problem can
not be found and its numerical analysis is needed, the solution equation must be
discretized by some numerical technique, for instance finite element method, which
translates the differential equation in a system of algebraic equations. In a different
way, the use of domain related variables allows a direct expression of problem
equations in algebraic form. Domain related variables, or global variables, GV, are
instead associated to some elements of a space-time discretization. For example, in
this way, there will be no use of point-wise magnetic flux density but of magnetic
flux defined on an oriented surface. Domain variables are naturally associated
to points, lines, surfaces and volumes of a space discretization. Crucial for the
classification is the subdivision of variables in two classes: source variables, usually
the causes of a physical field like heat production, electric charge, electric current,
etc. and configuration variables which describe the state of a field distribution like
temperature, electric potential, magnetic flux, etc.

2.2 Classification of Equations

Problem equations express constraints between the variables. Also these links can
be subdivided in two categories: topological and constitutive equations. Topological
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equations translate in mathematical terms functional relations between variables, for
instance a balance equation relating the production of some physical quantity inside
a volume to what it is transferred to the exterior through the bounding surfaces.
When expressed in terms of global variables on a discretized space-time structure,
these equations do not depend on metric of space, for instance the balance equation
above cited does not change if the volume is big or small, In addition, many physical
theories share the same kind of topological equations.

It must be remarked that orientation of geometrical entities is also important: in
a balance equation, a volume is related to its bounding surfaces, their orientation
and the one of the volume possibly are not in agreement. In this case a sign must
be attached, for instance, to some flux contributions on bounding surfaces. These
orientation information are expressed as ˙1 coefficients. All these factors, called
incidence numbers can be efficiently grouped together in matrices called topological
matrices.

The second kind of equations is related to the specific physical problem and are
linking variables by means of material properties and of metric information, they
are called constitutive equations and link global variables of different kinds [6–8].

2.3 Space Discretization

The presence of two different kinds of GV is naturally coupled with the definition
of two different sets of geometrical entities. The relation between these two sets is
given by duality. In a space ofD dimensions a duality links together a p dimensional
entity of one mesh complex to a D � p one of the other complex. One complex
is called primal and the other dual and this last one is indicated by the � sign.
Topological equations are tied to one cell complex since they link one entity to its
boundary, on the contrary constitutive equations express a connection between GV
of different kinds and thus defined one on primal and the other on the dual complex.
It must be remarked that duality relationship between geometrical objects does not
imply their orthogonality, so that also duality concept on unstructured discretization
can be used.

2.4 Tonti Diagrams

Tonti diagrams constitute an efficient classification tool that can arrange all the
previous concepts: two columns are used for placing different geometrical entities,
one for the primal and one for the dual complex and their associated variables.
Vertical connections are of topological type linking entities to their boundaries,
while horizontal connections link GV defined on primal to those on dual complex
and are thus of constitutive type. While in Fig. 1 the Tonti diagram is making
reference only to spatial entities, its structure can become more complex if also
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Fig. 1 Basic structure of
Tonti diagrams with
topological and constitutive
constraints. G, C, D are
topological matrices on
primal complex as their dual
counterparts QG, QC, QD

time dimension is added. Also in this case discretization of time axis is applied so
time entities become time instants t and time intervals � . This aspect reflects in a
doubling of each vertical column where one is referred to t and the other to � . In
addition, also duality in space discretization can be invoked with horizontal links
connecting quantities defined on instants to ones defined on intervals.

3 Electromagnetic-Thermal Coupling

The problem of electromagnetic and thermal coupling arises in many industrial
applications where induced eddy currents are used to heat up conductive work-
pieces. Different applications are possible from the melting of metals, usually
under controlled conditions, to the local heating of material surface to obtain some
particular surface characteristics like in the case of surface hardening. In this last
case the problem is usually addressed by the analysis is the spatial distribution of
the power transferred to and temperature of the workpiece which should be enough
to cause martensitic transformation in the metallic structure. The analysis of the
problem is difficult for the following reasons:

• There is a strong coupling between the electromagnetic and thermal problems
because material characteristics, mainly electrical conductivity, is temperature
dependent and so sharp changes in its value can be experienced during the heating
up of the piece.

• Due to flux skin effect, the phenomenon is concentrated in a very thin layer of
the material, usually less than some millimeters, and the thickness of this layer is
temperature dependent on material characteristics.

• In case of ferromagnetic materials saturation effects are crucial to the magnetic
flux density distribution, since a saturated material has an apparent magnetic
permeability value lower than the one in the linear zone and this fact allows for a
larger thickness of the flux penetration layer in the workpiece.
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• In addition for ferromagnetic material, temperature is influencing also the mate-
rial magnetic permeability value which decreases continuously with temperature
but which experiences an abrupt change at the Curie point where magnetic
behavior switches from the ferromagnetic to non-magnetic state [9].

Due to the mentioned difficulties, several approximated approaches have been
proposed which neglect part of the phenomenon: one approximation can be
introduced by the decoupling of the two phenomena: in electromagnetic solution
material characteristics are considered to be independent on temperature and only
magnetic nonlinear effects are considered. This approach can be considered valid to
model the very first instants of the heating process [10].

Electromagnetic and thermal problems are coupled by material characteristics
and sources: dependance of material characteristic, electrical and thermal conduc-
tivity and thermal capacity, on temperature; source of the thermal problem is the
volume heat generation due to induced currents. The coupling is strict in the sense
that, during the thermal transient, the variations of material characteristics cannot
be neglected. The diagrams relevant to the two phenomena allows to highlight the
topological and constitutive relations between variables. If the two phenomena are
treated by the same spatial mesh, at least for the region subject to heating, most of
the topological operators are common between them. For instance gradient matrix
G is the same both for the equation relating the electric voltage to electric scalar
potential u D G' and for the thermal equation � D G� relating thermal gradients
to temperature.

Notwithstanding the similarities imposed in the space domain by the common
structure of the equations, the peculiar characteristics of the two phenomena are
different in terms of time-scale and in material behavior. Electromagnetic time-
constants are at least two orders of magnitudes smaller than the thermal ones.
Due to this fact, electromagnetic phenomena can be considered in steady state
with respect to the variation of electrical conductivity versus temperature. At the
same time nonlinear characteristic of the ferromagnetic material heavily influences
the eddy current skin effect. Due to saturation of ferromagnetic material the skin-
depth of eddy currents deviates from the one defined for linear materials and
this aspect is crucial for a correct modeling of the phenomenon. As a matter
of fact some approximations can be used to avoid a thorough nonlinear solution
by means of equivalent material modeling. In this way ferromagnetic material
is replaced by an equivalent linear non-homogeneous one allowing the use of
time-harmonic formulation [10]. Time-decoupling allows thus the use of the
most efficient and accurate formulation for each problem in time: approximated
nonlinear time harmonic formulation for eddy currents [11] and time-stepping for
the thermal conduction. Another physical law that increases difficulties in solving
the nonlinearity, is the dependence of magnetic material properties on temperature:
at the Curie temperature the ferromagnetic behavior of iron disappears and its
magnetic permeability becomes equal to that of vacuum. This abrupt change is
particularly important for the distribution of eddy currents inside iron due to the
dependence of eddy current penetration on the permeability. The increase of skin
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Fig. 2 The Tonti diagram for time-harmonic eddy current problem formulated in terms of
magnetic vector and electric scalar potentials

depth at the Curie point influences also thermal generation because local values of
current densities decrease and so the volume heat generation. This fact is responsible
for a natural stabilization of temperature on the Curie value. With the previous
assumptions, the source coupling term is related to the thermal production due to
Joule losses. By making reference to quantities shown in Figs. 2 and 3, this term is
computed starting by electrical currents i and voltages u evaluated respectively on
dual and primal complex and transferring the resulting electrical energy W on the
dual volume surrounding the primal node. A detailed analysis about this process can
be found in [12].

Tonti diagrams for electromagnetic in time-harmonic formulation and for thermal
flow in transient state are reported respectively in Figs. 2 and 3. The resultant
equations are: �

CTM�CC j!M� M�G
j!GTM� GTM�G

� �
a
'

� �
iS
0

�
(1)

Mc
d�

dt
C GTM�G� DWcoupling (2)



Tonti Diagrams and Algebraic Methods for the Solution of Coupled Problems 201

Fig. 3 The Tonti diagram for time-varying thermal conduction problem

Fig. 4 Time evolution of
eddy currents along the
thickness of a ferromagnetic
material during transient
evolution

whereM�, M� are the constitutive magnetic and electric matrices for the eddy cur-
rent formulation, whereas Mc, M� are the thermal capacity and thermal conductivity
matrices. Unknowns of the problem are the magnetic vector and electric scalar
potentials a and ' (in phasor domain) and the instantaneous temperature � . The
coupling term is the thermal energy generation Wcoupling inside dual volumes due to
eddy currents.

The coupled approach is applied to a three dimensional problem of induction
heating where a coil fed with medium frequency current (8 kHz) is heating up a slab
of ferromagnetic material with Curie temperature value around 1;200K. Details on
geometry can be found in [10]. In Fig. 5, the variation of temperature on a line
orthogonal to the material surface is reported. As it can be seen, the transition of
material properties at the Curie temperature gives a upper limit to the temperature
on the surface.
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Fig. 5 Time evolution of
temperature along the
thickness of a ferromagnetic
material during transient
evolution

4 Conclusions

Multi-physics and coupled problems are nowadays of great interest due to the larger
potentialities offered by computational power. Even if different kinds of coupling
between numerical procedures are possible, the use of a common theoretical
framework for all involved phenomena is of great help in a rigorous computation of
coupling terms. In this viewpoint the work of Tonti has created a framework where
different physical theories can live together on the same space-time discretization.
Tonti diagrams, as a synthesis of the whole space-time discretization, are a valuable
tool for a correct formulation tied to the physical nature of the problems. The
translation of the abstract theoretical work in a computational procedure through
the Cell Method seem thus to be a natural environment where coupled problems can
be studied.
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Soliton Collision in Biomembranes
and Nerves- A Stability Study

Revathi Appali, Benny Lautrup, Thomas Heimburg, and Ursula van Rienen

Abstract Collision of moving solitons is an interesting phenomena which is closely
related to the stability of solitons. We study the head-on collision of solitons in a
recently introduced model for biomembranes and nerves. We conduct simulations
for pairs of solitons moving in opposite directions with the same velocity. It is found
that these stable solitons collide elastically and it results a small amplitude noise
traveling with higher velocity. We have also examined the energy loss of the solitons
after collision.

1 Introduction

The functional success of electrically stimulated brain implants eg. Deep Brain
Stimulation (DBS) depends on the basic understanding of signal propagation in the
nerve cells. Mathematical models of pulse propagation in these cells play a major
role in further investigation of the interaction of these nerve cells with the electrodes.
One such mathematical description of the nerve pulse propagation is “soliton
model”. Soliton model is based on the propagation of a localized density wave in the
axon membrane [1, 3]. The important requirement of the model is the empirically
known lipid phase transitions slightly below the physiological temperatures. Soliton
models predict the exact pulse propagation velocities in myelinated nerves. The
propagation velocities are closely related to the lateral sound velocities in the nerve
membrane [1]. During compression, the appearance of a voltage pulse seems to be
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a consequence of the piezo-electric nature of partially charged and asymmetric cell
membrane [2]. Moreover, the soliton model explains the reversible temperature and
heat exchanges observed in connection with the nerve pulse. Another advantage of a
soliton-based description of pulse propagation in nerves is its predictive power [1].

Lautrup et al. demonstrated that the soliton1 solutions are stable with respect
to small amplitude fluctuations and robust in the presence of dissipation. This
shows that the solitons can propagate under realistic physiological conditions over
the length scales of nerves (upto several meters eg., sciatic nerve in human) even
in the presence of friction and lateral heterogeneities [3]. In this paper, we examined
the stability of the solitons with the help of collision studies, which was not consid-
ered in reference [3]. In the following section, we will discuss the model from [3].

2 Soliton Model

The nerve pulse propagation in a myelinated nerve can be described by (3)

@2
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�A D @
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Here,

• �A is the change in lateral density of the membrane�A D A � A0 .
• A is the lateral density of the membrane.
• A0 is the equilibrium lateral density.
• c0 is the velocity of small amplitude sound.
• p and q are the parameters determined from sound velocity and density depen-

dence.
• h is the parameter to set the linear scale of the propagating pulse.

The empirical equilibrium value of A0 is 4:035 10
�3 g/m2 and the low frequency

sound velocity c0 is 176:6 m/s. The coefficients p and q were fitted to measured
values of the sound velocity as a function of density.

We work with the dimensionless variables u, x and t defined in [3] as

u D �A

A0
x D c0

h
z t D c20p

h
� B1 D 0

c20
p B2 D 20

c20
q (2)

Equation (1) takes the following form with these variables

1We use the term “soliton” synonymous to “solitary wave”. Since the localized solutions pass
through each other and dissipate some energy, which is not the case for genuine solitons.
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Here the parameter values are chosen as B1 D �16:6 , B2 D 79:5 from [3]. We
consider u as a function of � D x � ˇt as in [2].
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Equation (4) is known to have exponentially localized solitonic solutions which
propagate without distortion for a finite range of sub-sonic velocities [3].

2.1 Analytical Solution

Localized solitonic solutions of (5) are given by (as in [3])

u.�/ D 2aCa�
.aC C a�/C .aC � a�/cosh.�

p
1 � ˇ2/ (6)

where u D a˙ are the real roots of the right hand side of the integrated equation, for
the velocity range ˇ0 <j ˇ j< 1 (Fig. 1).

Fig. 1 Soliton profiles for velocities for ˇ D 0:95, 0.85, 0.734671, 0.65 and ˇ0 C 4 � 10�9

respectively from bottom to up. Adapted from [3]
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a˙ D �B1
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ˇ2 � ˇ20
1 � ˇ20
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(7)

• The amplitude of the soliton decreases with the velocity ˇ.
• The width of the soliton diverges for ˇ! ˇ0 and ˇ! 1.
• The soliton has a minimum width at ˇ D 0:734671, shown in dashed line.

2.2 Numerical Analysis

To investigate the questions concerning the stability of the solitons of (6), B. Lautrup
et.al have considered the model numerically in [3]. In this contribution, the stability
of the solitonic solutions for infinitesimal perturbations was carried out along with
the effect of dissipation on the soliton propagation. The model, as a system of two
first order partial differential equations as mentioned in the reference [3] is used for
our numerical consideration (see (8)).

@u

@t
D @v

@x

@v

@t
D @f

@x
(8)

with

f D uC 1

2
B1uC 1

3
B2u

2 � @w

@x
and w D @u

@x
(9)

To realize the soliton propagation, the model in the above form was solved
numerically with Finite Element Method (FEM) in COMSOL Multiphysics 3.5a R�.
The general form in the classical partial differential equation (PDE) mode of
COMSOL Multiphysics R� was employed with periodic boundary conditions. The
analytical solution of ˇ D 0:734671, “minimum width” was chosen as initial
condition. Dispersion was found in the solution. The energy of the soliton was found
to decrease during the propagation. The algorithm in COMSOL does not yield full
numerical stability (Fig. 2).

The stable numerical solution of (7) can be obtained by using a variant of the
two-step Lax-Wendroff method as described in [3]. This was executed in C++ [4]
and Mathematica R� by the authors of [3] and the same is executed here for collision
studies.

3 Collision Studies

We have investigated the head-on collision of two pulses with identical amplitudes
and opposite velocities. It is known that pulses are blocked upon collision [5]. The
FitzHugh-Nagumo model [6, 7], which is a simplified form of the Hodgkin-Huxley
model [8], allows for both the cancellation and penetration of pulses depending
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Fig. 2 Propagation of
minimal width soliton. PDE
solved with time stepping
4t D 0:001 and4x D 0:1.
The shape of the pulse is not
conserved by the numerical
algorithm in FEM based
Comsol Multiphysics 3.5a R�.
Length of the periodic lattice
has been increased here to
depict the change of soliton
shape during the propagation

Fig. 3 Collision of two
solitons before (a) and after
collision (b) shown for
ˇ D 0:8. Small amplitude
noise travelling ahead of the
post-collision pulses for
ˇ D 0:8 that carries a very
small fraction of the overall
energy is obtained. The same
was achieved for solitons of
different velocity and
amplitude

on parameters [9]. Since the soliton model is based on adiabatic and reversible
physics without dissipation [10], here we have investigated collisions in the absence
of friction. Figure 3 shows two identical solitons with ˇ D 0:8 before and after
collision. Small amplitude noise travelled ahead of the post-collision pulses with a
very small energy in the order of 1% compared to that of the solitons . The same
was found for solitary pulses with different velocities and amplitudes.
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The functional dependency of the sound velocity on density was given by (4).
It represents a quadratic approximation to the experimental data and yields a
satisfactory description in the density regime between solid and liquid membrane
state [9]. However, when large amplitude pulses collide, (4) allows the density
transiently to exceed the density of the solid phase (u � 0:25). Considering this
as unphysical, a “soft barrier” at the density of the solid phase is introduced in (4):

B.u/ D .1C B1.u/C B2.u2//.1C e100.x�0:26// (10)

This modification of (4) is only relevant at the moment for the collision of two large
amplitude solitons. The result of such a collision of two solitons with ˇ close to
the minimum velocity ˇ0, given by (7), is shown in Fig.4. The soliton fell apart
to a sequence of solitons and some additional low amplitude noise. This effect
pronounces with the velocity closer to minimum velocity. Such decomposition into
several pulses was not seen in the absence of the soft barrier. We compared the
largest pulse energy after the collision to the energy before collision (Fig. 5).

The energy density of a soliton has both potential and kinetic energy contribu-
tions and can be calculated by using a Lagrangian formalism. (Adapted from [10])

e D c0
2

0A
.4A/2 C p

30A
.4A/3 C q

60A
.4A/4 (11)

Fig. 4 Collision of two
solitons before (a) and after
collision (b) for
ˇ D 0:649850822 (close to
maximum amplitude) and the
additional condition of a
maximum density change of
u D 0:25. The pulse falls
apart into several solitary
pulses with different
amplitude and velocity, and
some small amplitude noise
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Fig. 5 Energy loss of soliton after collision in %. The energy content of the largest pulse after
collision with the pulse before the collision are compared. Only when the pulses reach their
maximum amplitude and minimum velocity, dissipation becomes significant

Even for the near-limiting case the fraction of energy lost into smaller amplitude
solitons and small amplitude noise is<4% for the most extreme case studied. Thus,
we observed most of the energy of the major soliton was conserved in collisions
even after a maximum density was enforced.

4 Conclusion

The soliton model of nerve pulse propagation with the modified Good-Boussinesq
equation [11] is explained. The analytic form of the solitons is given in Sect. 2.1.
We moved on to numerical analysis of the model Sect. 2.2 to realize the solitary
propagation (with periodic boundary conditions) using FEM based software Comsol
Multiphysics R�. Unexpectedly, the numerical solution of the PDE was discrepant
from the analytical solution given in [3]. The pulse amplitude was found to be
decreasing during the propagation. This can be attributed to an inherent problem of
numerical dispersion in the software of Comsol Multiphysics R�. Simulations were
then carried out in C++ and Mathematica R� to self-implement the numerical method
and to obtain energy-loss less soliton propagation. Finally, the stability of the model
is then tested with the aid of collision studies. In the context of our model, pulses
pass through each other “almost undisturbed” with the generation of only small
amounts of small amplitude noise. If a maximum density is introduced, as seems
reasonable for the crystalline lipid matrix, large amplitude solitons can decay into a
series of solitons. However, even under these extreme conditions, the bulk of the
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energy remains in the maximum amplitude soliton. Our model does not offer a
description of the cancellation of pulses as suggested in other models but opens up a
new possibility of passing through almost undisturbed and conserving the maximum
energy even upon maximum density enforcement.
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thoughtful suggestions.
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Nonlinear Characterization and Simulation
of Zinc-Oxide Surge Arresters

Frank Denz, Erion Gjonaj, and Thomas Weiland

Abstract A combined experimental and numerical procedure to model zinc-oxide
varistor based surge arresters is presented. In a series of experiments, measurements
on single varistor disks exposed to two millisecond current pulses are taken.
Thereafter, the measurement data are used to establish the nonlinear electro-thermal
characteristics of the ZnO ceramics under electrical stress. Using this information,
an accurate finite element model with coupled thermal and electric fields can
be constructed. This approach is applied to calculate the transient voltage and
temperature distribution within a complete surge arrester unit.

1 Introduction

Metal-oxide(MO) varistors are commonly used as active components in high-
voltage surge arresters to protect power lines from lightning or switching over-
voltages. The geometry of a high-voltage MO surge arrester is generally simple.
Along a vertical axis a number of varistor disks, which are typically made of zinc-
oxide ceramics, are stacked up, surrounded by a housing of insulating porcelain
or polymer material. The overall behavior of the surge arrester depends mostly
on the dynamic response of these varistors upon electrical stress as well as on the
geometrical layout of the device, which determines the capacitive coupling of the
single varistors to the environment.

Two important criteria are usually considered in the design of MO surge arresters.
The first criterion is the limitation of the non-uniformity of the voltage distribution
along the arrester column. Non-uniform voltage grading is a major concern, as
it affects the physical degradation of the varistor disks inside a surge arrester
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negatively [1,2]. The second criterion is the thermal stability of the arrester. Thermal
stability is largely determined by the heating behavior of the ZnO elements, when
the electric energy of a surge is dissipated. The electrical and thermal phenomena
are not independent from each other. Electric fields and temperature are mutually
connected. The temperature distribution inside of an arrester influences the electric
fields. Equally, the temperature distribution between the individual ZnO elements,
both under normal operation as under transient overvoltages, influences the voltage
profile along the arrester. Therefore, the design process for surge arresters requires
a highly complex analysis, which should imperatively include the mutual coupling
between electrical and thermal phenomena.

The analysis of surge arresters is traditionally based on circuit models with
empirically determined parameters, e.g., [3]. A more accurate approach is the tran-
sient finite element analysis considering the geometry of the complete arrester [4].
This type of analysis, however, suffers in particular from deficient knowledge
about the electro-thermal characteristics of the varistor material. The ZnO ceramics
is characterized by an electrical conductivity which varies by many orders of
magnitude with applied voltage. In addition, the electrical conductivity is very
sensitive to temperature. Another material parameter which has some influence
on the validity of the simulations is the temperature-dependent heat capacity of
ZnO. These data are partially provided by the manufacturers, for example in the
form of UI-characteristics of the varistor, but they are insufficient for reliable
simulations. The numerically calculated voltage data for a single varistor disk
differ largely from measurement data, when manufacturer-provided characteristics
are used. This indicates that a more accurate electro-thermal characterization of
the ZnO material is necessary before large-scale surge arrester simulations can be
performed.

A combined experimental and numerical procedure for the analysis of surge
arresters is proposed. The basic idea is to obtain the temperature-dependent
varistor characteristics from few direct measurements of the residual voltage for
single varistor disks exposed to appropriate current pulses. The approach used for
extracting the nonlinear varistor parameters from measurement data is described
in Sect. 2.2. In Sect. 3.1, the numerical procedure for coupled electro-thermal
simulations incorporating these parameters is introduced. Numerical simulation
results for a single varistor disk as well as for a complete surge arrester unit are
presented in Sects. 3.2 and 3.3, respectively.

2 Characterization of the Varistor

This section is composed of two parts. In the first one, the procedure to obtain
measurement data for recent zinc-oxide varistors is explained. In the second part,
the treatment of the data to derive an estimation of electrical conductivity will be
described.
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impulse and measured
voltage profile for the ZnO
disks at 20ıC

2.1 Measurement Procedure

A series of measurements was done in the impulse current lab of TU Darmstadt,
to characterize the electro-thermal behavior of ZnO varistors. Six of the available
varistors, which had the same type and dimensions (radius� 3 cm, height� 3:5 cm)
and an almost identical rated voltage, were identified. They were heated in an oven
until their temperature reached 300ıC, before they were taken out. At different
temperatures the individual varistors were subjected to a long-duration current
impulse with a virtual peak time of 2ms. The shape of this current impulse and
the corresponding voltage for one of these measurements is shown in Fig. 1. Please
note the temporary decrease of current, while voltage continues to rise, and the
occurrence of different voltages for the same current, which suggests that the rise of
temperature affects conductivity.

The test setup corresponds to the setups used for measurements according to
the international standards by IEEE [5] and IEC [6]. The examined varistors were
placed under pressure between two aluminum electrodes. The bottom electrode
was connected with ground, while an impulse current was injected through the
top electrode. The aluminum electrodes were replaced after each measurement
to guarantee comparable measurement conditions. In this way, problems with the
mechanical degradation of the electrodes were avoided and the temperature of the
contact electrode is known, which would allow a repetition of the experiment.
During the measurements voltage and the electric current flowing through the
varistor were recorded for the estimation of electrical conductivity.

2.2 Extraction of Material Parameters

Four material parameters have an effect on the electro-thermally coupled simula-
tions of surge arresters, which are: electrical conductivity, electrical permittivity,
thermal conductivity and volumetric heat capacity.

Electrical conductivity is the most relevant parameter, since it determines the
behavior of the zinc-oxide varistors. Unfortunately, the uncertainty about its value is
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very large, even though it is essential to know with relative accuracy the conductivity
in the nonlinear region and how temperature affects it to simulate varistor devices
successfully.

The existing and available material curves for electrical conductivity were insuf-
ficient for the planned numerical simulations. First, they provided no information
about the dependence on temperature. However, temperature is critical for any
explanation of the varistor behavior during current impulses, when their temperature
rises significantly. Second, the curves were inaccurate in the nonlinear region.
Such material curves are obtained by interpolation between data points, which are
determined by a variety of methods. For low electric field strengths some data
points are obtained from DC or AC measurements, while different impulse currents
provide data points for high electric field strength. The strongly nonlinear region
in between, which is critical for the numerical simulations, is generally of small or
no interest. In consequence, there are few or no data points and the interpolation is
poor, even though conductivity increases by several orders of magnitude. For these
two reasons, it became necessary to extract the material parameters from our own
measurements.

The other material parameters were set to values obtained from various sources.
For the extraction of electrical conductivity, it is also necessary to know the
volumetric heat capacity. Almost 30 years ago, Lat [7] had shown experimentally
the existence of an approximately quadratic relationship between thermal energy
and temperature for varistors from which heat capacity was derived.

Since no better values for electrical permittivity were available, a value obtained
from low-frequency measurements was used (�r D 800). Fortunately, the results
for the two millisecond-impulse do not vary much with permittivity. For heat
conductivity a value of 26W=Km was assumed.

In the following, the method to establish a functional relationship between elec-
trical conductivity, field strength and temperature is detailed. The measurements,
which were described in the previous section, provided voltage-time and current-
time curves for several different initial temperatures. Assuming that the field and
current were homogeneous inside the varistor, current density and electric field
strength can be obtained for every sampling point by dividing through the surface
area or height of the varistor.

In the next step, it is assumed that the electric conductivity corresponds to the
ratio of current density and field strength for any set of data i .

�i D Ji

Ei
(1)

This is only valid, if the second part in the following equation relating to the
displacement current is small in comparison to the ohmic current.

Ji D �iEi C @

@t
."Ei/ (2)
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Fig. 2 Extracted electrical
conductivity characteristics as
a function of temperature and
field strength of the ZnO
varistor

Except at the very beginning and at the end, this is the case for the given current
impulse.

Besides values for electrical conductivity and field strength, an approximate
value of temperature is needed for every data point. Temperature could not be
measured together with voltage and current, but it is possible to calculate the
temperature at any moment from initial temperature of the individual measurement,
ohmic losses and volumetric heat capacity. The following equation was solved
numerically:

T .t/ D T0 C
Z t

�D0
J.�/E.�/

cv.T .�//
d� (3)

Now, electrical conductivity, field strength and temperature are known approxi-
mately for each sampling point. By multivariate regression an adequate model for
the relationship � D �.E; T / was sought. Estimating the logarithm of conductivity
instead or additionally is certainly preferable to a direct estimation, particularly to
obtain satisfactory estimated values for lower field strengths. In Fig. 2 the selected
nonlinear characteristic of conductivity in the range of interest is shown.

3 Simulations

3.1 Simulation Procedure

Numerical modeling of MO varistors requires the coupled solution of a heat
conduction and of a electroquasistatics (EQS) problem. The relevant equations are:

cv
@T

@t
� r � .�rT / D qv (4)
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r �
�
@

@t
."r˚/

�
Cr � .�r˚/ D 0 (5)

whereby ˚ is a scalar potential, T temperature, " permittivity, � heat conductivity
and qv the heat loss density.

The two differential equations are coupled by the volumetric heat loss density

qv D J � E D �E2 ; (6)

and the dependence of electrical conductivity on temperature � D �.E; T /.
Because of the nonlinearity of the system it is necessary to operate in the time-

domain. Furthermore, the solutions for temperature and electric potential are not
obtained by solving one large system simultaneously, but separately and using the
most recent solution of the other partial problem until convergence is achieved for
any time-step. Thus, a consistent solution is guaranteed.

Electro-quasistatics solver (EQS) and heat flow solver are executed repeatedly
until the solution for potential or temperature has converged below a user-defined
threshold value. After convergence of both partial problems, convergence of
temperature and electric potential combined is examined before advancing in time
(Fig. 3).

Fig. 3 Flowchart of the simulation process
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3.2 Validation of Electrical Conductivity Curve

The validity of the varistor model was investigated by numerical simulations of the
single-disk measurement setup described in Sect. 2.1 using the same parameters as
before. In Fig. 4 it can be seen that the simulated voltage resembles the measured
voltage over the entire time of the impulse. Simultaneously, the considerable
Joulean losses imply that the temperature of the varistor increases significantly.
In slightly less than two milliseconds the temperature of the varistor increases by
approximately 140 K.

3.3 AC Modeling of a Surge Arrester Unit

In this section the extracted material parameters are used to simulate a 50 Hz AC
voltage signal, which constitutes the standard operating mode of a surge arrester. In
that case, however, the peak voltage has to be low enough, so that the heat losses are
not excessively large. This implies that the voltage is mostly below the lower limit
for which the nonlinear conductivity was estimated. For this region the curve was
extrapolated to provide a slowly decreasing conductivity.

The geometry is similar to Fig. 5 with a sequence of zinc oxide varistors and
aluminum disks along the central axis. The dimensions were taken from a 3EP2
arrester by Siemens, which had been modified for measurements of the heat
distribution. Some details had been eliminated, e.g., supporting rods, or simplified,
notably the porcelain housing. Standard values were used for porcelain, air and
metals. The differences in conductivity between copper and iron on the one hand
and air and porcelain on the other were so large, that the metal parts were simulated
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Fig. 5 Cross-section through
a unit of a porcelain-housed
surge arrester [8]

Fig. 6 Electric field strength
at an arrester unit according
to the distribution of effective
electric potential

as so-called floating potentials. Peak voltage was set to a value, at which the
corresponding electric field intensities inside the varistor reach temporarily the
range of the estimated parameters for nonlinear conductivity without generating
major thermal losses. By simulating several periods it is possible to calculate
a distribution of effective voltage. In Fig. 6 the electric field strength, which
corresponds to this voltage distribution is shown.

4 Conclusion

In this paper the parameters to describe the electrical conductivity of zinc-oxide
varistors as function of field strength and temperature were extracted with sufficient
accuracy to reproduce their reaction to current impulses. In principle the method can
be applied to simulate arbitrary impulse shapes or geometries, though nonresistive
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effects become of greater importance for shorter impulses and the restrictions to
the size of time-steps results in large computational costs, particularly for greater
geometries or high current impulses. The simulation of the arrester unit has shown
that it is feasible to simulate practical electro-thermal problems which involve the
nonlinear conductivity of varistor materials.
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Behavioural Electro-Thermal Modelling
of SiC Merged PiN Schottky Diodes

M. Zubert, M. Janicki, M. Napieralska, G. Jablonski, L. Starzak,
and A. Napieralski

Abstract This paper presents a new accurate behavioural static model of SiC
Merged PiN Schottky (MPS) diode. This model is dedicated to static and quasi-static
electro-thermal simulations of MPS diodes for industrial applications. The model
parameters were extracted using the Weighted Least Square (WLS) method for a
few selected commercially available SiC MPS diodes. Additionally, the PSPICE
Analogue Behavioural Model (ABM) model implementation is also given. The
relevance of the model has been statistically proven. The thermal behaviour of
the devices was taken into account using the lumped Cauer canonical networks
extracted from electro-thermal measurements.

1 Introduction

Silicon carbide devices are one of the most promising semi-conductor devices for
power industrial applications. These devices offer, at least theoretically, excellent
thermal properties and high operating frequencies as-well-as high power levels.
Currently, the most frequently used SiC devices are the Merged PiN Schottky
(MPS) diodes. Unfortunately, still there are no available models, which would be
able to predict device characteristics, even the static ones, in a relatively wide range
of operating temperatures. On the other hand, the correct prediction of the device
behaviour is required for the robust design of the state-of-the-art power equipment.
Obviously, there are models provided by manufacturers and the classical SPICE
embedded diode models as-well-as physical models [3], but none of them is able
to produce accurate temperature dependent device characteristics for SiC MPS.
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Here, we propose a new static model for SiC MPS diodes, whose parameters can be
identified from measurements. The reverse and forward diode model as-well-as its
SPICE Analogue Behavioural Modelling (ABM) implementation are presented in
the following sections.

2 Behavioural Model of MPS Diode

The proposed behavioural static model of MPS SiC diodes was created based on a
series of measurements carried out on various commercially available SiC MPS
diodes provided by different manufacturers and rated for voltages ranging from
300V to 600V and currents from 20A to 2A respectively. The measurements in the
thermal static conditions were taken with the Tektronix 576 Curve-Tracer System.
Originally, the model was developed for the SDP04S60 diode (2-nd generation
MPS SiC diodes). The measurements were taken for the following case temperature
values:�2 ıC, 2:5 ıC, 15 ıC, 25 ıC and 35 ıC�120 ıC with the step of 5 ıC. Then,
the model was verified for the SDP10S30, CSD04060, CSD10030 (all 2-nd gen.)
and C3D04060 (3-rd gen.) diodes for the case temperatures ranging from 25 ıC to
150 ıC with the step of 25 ıC. The detailed measurement procedure was described in
[4]. The proposed electro-thermal behavioural static model of MPS diodes, pictured
in Fig. 1, in the electrical domain can be summarized using the following equations
for the reverse and the forward bias respectively:

Irev .Vrev; T / D ˇ .T / � exp .Vrev � ˛ .T // (1)

Ifwd .Vfwd; T / D exp
Vfwd � Vintrsc .T / � RsIfwd .Vfwd; T /

Vr .T /
(2)

where: Irev, Ifwd, Vrev, Vfwd - currents [A] and voltages [V] for reverse and forward
bias (Vrev � 0, Vfwd � 0), see Fig. 5 Rs - internal parasitic resistance [˙]; Vintrsc –

Fig. 1 Simplified analogue behavioural model of MPS SiC diode
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Fig. 2 Comparison of the measured SiC diode rev. characteristics with the proposed model (1)
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Fig. 3 Estimation of ˛ .T / and ˇ .T / for SDP04S60 diode, see (4), (3) and (1)

internal voltage drop [V]; Vr , ˛, ˇ - empiric coefficients [V, V�1, A]; T - case
temperature [ıC].

The parameters in the above expressions can be accurately approximated using
the following formulas (see Fig. 3):

ˇ .T / D ˇ1 � exp .ˇ2 � T / (3)

˛ .T / D ˛0 C ˛1 � T C ˛2 � T 2 (4)

Vintrsc .T / D Vintrsc1 C Vintrsc2 � .T C 273:15/ (5)

Vr .T / D Vref � .1C ˛ref;1 ��T C ˛ref;2 ��T 2/ (6)

�T D T � Tnom (7)

The static model parameters for each device were extracted based on the
measurements. The nominal case temperature Tnom assumed for the extraction of
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parameters given in Table 1 equalled 27 ıC. The proposed model (1–7) is consistent
with all tested MPS diodes, except the reverse characteristic of the CSD04060 diode
(see Fig. 4). For the correct simulation of its behaviour, the following special fitted
model could be applied:

Irev .Vrev; T / D exp

 
aC b � V75 C c � V752
1C d � V75 C e � V752

!
(8)

V75 D Vrev C f C g � T
1C h � T (9)

where V75 – reverse voltage drop at 75 ıC. This equation takes into account the break
down behaviour of MPS diode.

The extracted parameter values for the case temperatures in the range of
25 � 150 ıC are: a D �23:7661, b D �0:0231843, c D 0:0000549752, d D
0:00603505, e D �7:75449E�6, f D �12:438, g D 0:17909, h D 0:000104971.
The second break-down behaviour has not been experimentally observed for the
other tested diodes (see Fig. 2a).

The thermal behaviour has been modelled with the thermal impedance synthe-
sised in the canonical Cauer network, where the MPS diode die, the die attach,
the heat slug and the interface to the heat-sink are represented with Rth1, Cth1 �
Rth3; Cth4 respectively (see Listing 1). The external heat-sink and environment has
been modelled using Rth4, Rth5 and Cth5. For the details on the thermal impedance
measurements, refer to [1].

Fig. 4 (a,b) The currents and voltages direction for fwd. and rev. bias. (c) internal parameters for
reverse and forward bias
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3 Parameter Estimation Procedure

All parameters in this paper were estimated employing the Weighted Least Square
(WLS) method, using the following objective function: J D .�z/T R�1 .�z/, where
�z D z � h .x/ are the estimated measurement residuals. The measurement vector
(z) is constructed as follows:

z D Œ�z��n�1 D
�
Vf wd;1; If wd;1; : : : ; Vf wd;i ; If wd;i ; : : : ; Vf wd;n; If wd;n

�T
(10)

where
	
Vf wd;i ; If wd;i ; Ti



is the i -th measurement triple (voltage, current and

temperature). The h .x/ D Œh�;��.2n/�.nC7/ is the nonlinear function relating
measurements to the system state vector (x), containing the information on the
estimated parameters (p�) and the residuals (�z�)

x D Œx��.nC7/�1 D
�
�z1 : : : �zn p1 : : : p7

�T
(11)

The estimated parameters are associated with (1) written here in a more convenient
form without the explicit exponent function:

Vf wd;i D Œ.p2 � Ti C p1/C p3� � log If wd;i C p4 � Ti
CIf wd;i � p5 �

h
1C p6 � .Ti � Tnom/C p7 � .Ti � Tnom/2

i
(12)

The nonlinearity of (12) is overcome by the Gauss-Newton method applied to the
Taylor series expansion, which leads to the iterative solution of the so-called Normal
Equation (NE): 	

HTR�1H

 ��x D HTR�1�z (13)

xNEW WD x C�x (14)

where the non-vanishing elements of jacobian h .x/

H D ŒH�;��2n�.nC7/ D
�
@h .x/

@x

�
(15)

are calculated using the following rules

Hi;nC1 D @Vf wd;i

@p1
; : : : ; Hi;nC7 D @Vf wd;i

@p7
;H2i;i D 1; H2i�1;1

Œ5pt� D Vf wd;i ; H2i;1 D xi (16)

for i D 1; : : : ; n. The weights (R�1) take into account the accuracy of each
measurement and are computed as the reciprocals of the measurement standard
deviation (ıVfwd;i

2; ıIfwd;i
2):

R D diag
n
ıVfwd;1

2; ıIfwd;1
2; : : : ; ıVf wd;i

2; ıIfwd;i
2; : : :; ıVfwd;n

2; ıIfwd;n
2
o

(17)
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It should be underlined that the applied formulation of the WLS method assures
fast convergence in 6� 7 iteration steps. The other classical formulations of WLS
method (e.g. Hybrid QR, Hatchel) lead to the ill-conditioning and singularity. The
�2-test shows that all the models are consistent with the measurements at the
confidence level (CL) of 0:99 except for one of the devices as shown in Table 1.
The very high consistency of the model with the behaviour of the MPS diodes is
visible also in Figs. 4 and 5 representing the reverse and forward characteristics
respectively.

Fig. 5 Comparision of the measured SiC diode forward characteristics with the proposed model.
Temperatures: 25 ıC (green), 75 ıC (blue), 125 ıC for C3D04060 (black). Y-axis: Vf wd [V];
X-axis: ln

	
If wd



; The measurement deviation is presented using error bars (a) forward bias

C3D04060 for If wd D 335�A
 135mA (b) forward bias C3D04060 for If wd D 49:8mA
 1A
(c) forward bias C3D04060 for If wd D 1A
 4:26A (d) reverse bias C3D04060
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4 Model Implementation

The PSPICE MPS diode model implementation is shown in Listing 1 at the end
of the paper. This listing contains also an additional interpolation block for small
voltages VdLeft � Vrev � 0 and 0 � Vfwd � VdRight forcing zero currents for
unbiased diodes. The proposed model takes into account the full electro-thermal
coupling. The external environment (e.g. heat sinks) should be connected to the
model between the nodes 300 and 0. For the presented simulations, the typical
heat sink and environment thermal impedance has been used. The model has been
proposed for the 2-nd generation of MPS SiC diodes but is also consistent with
3-rd MPS diode (C3D04060). The simulation results obtained for the new model are
compared with the measurements. The diode current Id and he powerPd dissipation
obtained from the manufacturer diode models are not consistent with the real MPS
diode.

5 Conclusions

The proposed behavioural static model of SiC MPS diodes showed a very good
agreement of the simulated forward and reverse characteristics with the measure-
ments of real devices and definitely produced much better results than the models
provided by the device manufacturers. The parameter estimation procedure based on
Weighted Least Square (WLS) method was successfully applied to the reformulated
diode model given in (12). The main advantage of the proposed model is that it
is given in a closed form, which allows its straightforward implementation in the
behavioural extensions of modern simulators, such as Berkeley SPICE and PSPICE,
or as an embedded model (eg. [2]). The main drawback of the proposed approach
is the necessity to force zero current for unbiased devices and the lack of a direct
physical interpretation of model parameters.

Acknowledgements This work was supported partly by the grant of Polish Ministry of Science
and Higher Education 0312/R/T02/2008/04 and the Internal University Grant K25/DZST/1/2010.
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Listing 1

DMCS model presentation: diode C3D04060SS, steady-state

* (c) DMCS 2010
.OPTIONS EXPAND WIDTH=132

* MODEL DEFINITION: A K Thermal
.SUBCKT DMCSC3D04060SS 100 200 300 + PARAMS: Rs=0.0253904 RsThC=7.788199E-5 + RTh1=0.271 CTh1=7.07E-04 +
RTh2=1.69 CTh2=1.64E-03 + RTh3=0.794 CTh3=0.220 + CTh4=13.4 + Alpha2=0.0
Alpha1=-4.127549E-05 Alpha0=0.01778526 + Beta1=1.521115E-12 Beta2=0.03894504 + Vintrsc1=0.948265
Vintrsc2=-1.042935E-3 + Vref=0.0273944 AlphaRef1=2.70945E-3 AlphaRef2=0.0 + VdLeft=100.0 VdRight=0.01

***Forward:
EVDPlus 500 0 VALUE={ IF( V(100,110)>=0, V(100,110), 0.0 ) } EIFwd 600 0 VALUE={
exp((V(500)-(Vintrsc1+ Vintrsc2*V(300)))/ +
(Vref*(1+AlphaRef1*(V(300)-300.15)+AlphaRef2*(V(300)-300.15)*(V(300)-300.15)))) }

* Interpolation: [0,VdRight]
EIFwdInterp 601 0 VALUE={ + V(500)*exp((VdRight-(Vintrsc1+ Vintrsc2*V(300)))/ +
(Vref*(1+AlphaRef1*(V(300)-300.15)+AlphaRef2*(V(300)-300.15)*(V(300)-300.15)))) }

***Reverse:
EVDMinus 510 0 VALUE={ IF( V(100,110)<0, V(110,100), 0.0 ) } EBetaT 810 0
VALUE={Beta1*exp(Beta2*V(310)) } EAlphaT 820 0 VALUE={ Alpha2*V(310)*V(310)+Alpha1*V(310)+Alpha0 }
EIRev 800 0 VALUE={ V(810)*exp(V(820)*V(510)) }

* Interpolation: [VdLeft,0]
EIRevInterp 801 0 VALUE={ (Exp(V(820)*VdLeft)*V(510)*V(810)* + (VdLeft*(2-V(820)*VdLeft) +
V(510)*(V(820)*VdLeft-1)))/VdLeft*VdLeft}

***All:

*Simplest: GIFwdRev 100 110 VALUE={ IF( V(100,110)>=0, V(600), -V(800)) }
GIFwdRev 100 110 VALUE={ IF( V(100,110)>=0, + IF(V(500)>VdRight,V(600),V(601)), +
IF(V(100,110)<VdLeft,-V(800),-V(801)) ) } RRs1 120 110 {0.5*Rs} VIProbe 120 121 0 ERsT 121 130 VALUE={
RsThC*V(310)*(V(120,130)) } RRs2 130 200 {0.5*Rs}

***Thermal domain:
VK2C 300 310 273.15 RTh3 350 310 {RTh3} RTh2 360 350 {RTh2} RTh1 370 360 {RTh1} CTh4 310 0 {CTh4} IC=9.9
CTh3 350 0 {CTh3} IC={0.9+9.0*(Rth2+Rth1)/(Rth3+Rth2+Rth1)} CTh2 360 0 {CTh2}
IC={0.9+9.0*(Rth1)/(Rth3+Rth2+Rth1)} CTh1 370 0 {CTh1} IC={0.9}

* Can be used for steady-state and dynamic:
GTh1 0 370 VALUE={ABS(V(100,200)*I(VIProbe))} .ENDS

* APPLICATION:
VIN 10 0 2.5 VthTemp 20 0 300.0 Rth5 21 20 0.588780 ; air tunell Cth5 21 0 106.849460 Rth4 22 21 0.353
; heat sink XD1 10 0 22 DMCSC3D04060SS

*.DC VIN -850 0 -5 VthTemp LIST 300
.DC VIN 0 2.0 0.01 VthTemp LIST 300 .PROBE .END
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Abstract A dynamic iteration scheme is proposed for a coupled system of electric
circuit and distributed semiconductor (pn-diode) model equations. The device is
modelled by the drift-diffusion (DD) equations and the circuit by MNA-equations.
The dynamic iteration scheme is investigated on the basis of discrete models and
coupling via sources and compact models. The analytic divergence and analytic
convergence results are verified numerically.

1 Introduction

Distributed semiconductor models typically result in partial differential equations
(PDEs). The trend of miniaturization in electronics industry leads to devices of
growing complexity, where – due to smaller signals – parasitic effects become
more and more important. Description of semiconductor devices by compact models
enforces time-consuming parameter fitting and might result in sub-circuits of several
hundred parameters for the description of a single device [5]. Thus the coupling of
PDE-models and circuit simulation becomes desirable.

Efficient techniques to couple the different subsystems are needed. We propose a
simple Gauss-Seidel iteration, where the displacement current is explicitly modeled
by an extracted capacitance.
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In this section the basic models are introduced: for the semiconductor device the
drift-diffusion (DD) equations and for the surrounding circuit the modified nodal
analysis (MNA) equations. In the second section different coupling approaches
are discussed. In the third section a dynamic iteration scheme is developed that
guarantees unconditional convergence. This is confirmed by a simple numerical
example. In the last section we draw some conclusions.

1.1 Device Model

Our np-diode shall be modelled on the domain ˝ 
 IRd for d D 1; 2; 3 with
@˝ D � D �D [ �N . The DD-model equations consist of conservation laws for
the electron and hole densities n; p coupled to the Poisson equation for the electric
potential V ,

@tn � q�1divJn D �R; Jn D �n.UTrn � nrV /; (1a)

@tp C q�1divJp D �R; Jp D ��p.UTrp C prV /; (1b)

"s�V D q.n � p � C.x//; Jtot D
Z
�k

f"s@trV � .Jn C Jp/g ds:
(1c)

Here R D R.n; p/ denotes the generation-recombination term, �n; �p are the
mobility parameters and q is the elementary charge. The permittivity is given by "s ,
C.x/ is the doping concentration and UT the thermal voltage. The total current Jtot

leaving the device at terminal k given by �k 
 �D incorporates the displacement
current "s@trV . Of course, k D 1; 2, and due to charge conservation in the diode,
the current is the same for both terminals �k .

The model equations are supplemented with initial conditions for n; p and
boundary conditions for V; n; p on the Dirichlet boundary �D and for Jn; Jp;rV
on the Neumann boundary�N . For the simulations presented below (see Sect. 3) we
discretized the DD-equations by use of exponentially fitted mixed finite elements as
described in [4,9], since this allows for positivity preservation. Thus on a small time
window the discretized equations can be written in the form

An.V/ dtnC Bn.p;V/ n D fn.p;V/; LV D n � p �CC fV .vD/; (2a)

Ap.V/ dtpC Bp.p;V/ p D fp.n;V/; iD D jD.n;p;V/; (2b)

with regular matrices An;Ap;Bn; Bp;L, where the recombination term typically is
semi-linearized by use of old values of n (in (2a)) or p (in (2b)), see [4] for details.
Here the bold symbols represent the vectors containing the discrete approximations
of the corresponding values. iD is the discrete approximation of Jtot and vD denotes
the applied voltage drop, which is determined by the surrounding circuit. The
boundary conditions are incorporated in the functions fn; fp and fV , respectively.
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We note that standard finite element or finite difference discretization allow for the
same representation.

Alternatively the displacement current can be expressed equivalently in terms of
the time derivative of the applied voltage drop, [1]; this yields

iD D CD
d

dt
vD � iSD with iSD WD jSD.n;p;V/: (2c)

For a cubic diode with length l and cross-section A, where a 1-d model is sufficient,
it holds: CD D "s A

l
.

1.2 Circuit Model

The extended circuit reads in the flux/charge oriented form of the MNA [8]:

AC
d

dt
q C ARgR.A>Ru; t/C ALiL C AViV C AIi.t/C ADiD D 0; (3a)

d

dt
ˆ �A>Lu D 0; A>Vu � v.t/ D 0; (3b)

q � qC.A>Cu; t/ D 0; ˆ �ˆL.iL; t/ D 0; (3c)

with given functions qC.v; t/, gR.v; t/, ˆ.i; t/, vS.t/ and iS.t/ denoting the
constitutive relations for charges, resistances, fluxes, voltage and current sources,
respectively. Matrices A? denote network incidences and iD is the current through
the diode. The unknowns of the network are charges q.t/, fluxes ˆ.t/, node
potentials u.t/, except ground, and currents iL.t/, iV.t/ through inductors and
voltage sources.

1.3 Coupling

The structure of the equations allows two representations of the circuit-device
coupling: (a) coupling by plain sources (source coupling), in which the distributed
device model takes the displacement current into account, i.e., is is defined by
(2b), or, (b) coupling, where the displacement current is described in terms of
circuit variables, i.e., (2c) is treated as an additional circuit equation (coupling
with capacitance), see Fig. 1. In both settings the voltage drop vD in the circuit
is supplied as a boundary condition to the device model. In the case of a monolithic
coupling, where all equations are solved in one system, those two representations
are equivalent, but in the case of a weak coupling by a dynamic iteration scheme,
they exhibit different behavior. – Setting (b) reflects standard compact model design.
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circuit device

(a) Source coupling. (b) Coupling with Capacitance.

VD

iD

circuit device

VD

iSD

Fig. 1 Coupling with displacement current in device (a) and in circuit (b). (a) Source coupling (b)
Coupling with capacitance

1.3.1 Source Coupling

Spatial discretization of the DD-equations (2) yields an index-1 DAE for any
given vD.t/ [4]. Assuming the standard loop and cutset conditions, [7], the circuit
equations (3) are index-1 as well (for given iD.t/). Assuming the overall system to
be of index-1 [10], it can be written in semi-explicit form:

Pyd D fd .yd ; zd /; Pyc D fc.yc; zc ; zd /;

0 D gd .yd ; zd ; zc/; 0 D gc.yc; zc ; zd /;
(4)

with @gd=@zd and @gc=@zc regular. The differential variables of the diode and circuit
are yd WD .n;p/ and yc WD .q; ˆ/, respectively, while the algebraic unknowns are
zd D .V; iD/ and zc WD .u; iL; iV/. The vector V describes the space discrete electric
potential and iD the device current, defined in (1c). Due to spatial discretization the
values of n;p in some discretization nodes may turn into algebraic variables. This
does not pose any problem as long as the index-1 assumptions hold. Thus this case
is not considered in the following.

In this setting all node potentials u are algebraic variables of the circuit and so
is vD D A>Du. Hence only zc enters the algebraic equations of the device gd . The
diode current is also algebraic, but appears, depending on the circuit’s topology, in
the differential fc and in the algebraic equation gc of system (4).

1.3.2 Coupling with Capacitance

Now substituting iD by (2c) in the current balance equation (3a), we end up with a
slightly different system of equations

Pyd D fd .yd ; zd /; Pyc D fc.yc; zc; zd /;

0 D gd .yd ; zd ; yc/; 0 D gc.yc; zc/;
(5)

with differential unknowns yd WD .n;p/ and yc WD .q; ˆ;PDu/ and algebraic
unknowns zd D .V; iSD/ and zc WD .QDu; iL; iV/, where QD is a projector onto the
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kernel of A>D and PD its complement, as typically defined in circuit index analysis,
[7]. In this notation the node potentials are split because the capacitance CD is not
written in charge oriented form. The advantages of the charge/flux oriented MNA,
i.e., charge conservation, are still respected because of the linearity of CD.

Due to the capacitive path between the coupling nodes the voltage drop vD

belongs to the differential variables yc and only this enters the device subsystem gd
and, in turn, the device current iSD enters only the circuit’s differential equation fc .

2 Dynamic Iteration Schemes

To simulate the coupled system of circuit and discretized device equations efficiently
and reliably we propose a dynamic DAE-DAE iteration scheme that ensures stability
and speeds up convergence. The key is the coupling via capacitive branches, [3],
which is ensured here by fitting the capacitance CD D "s A

l
for our 1-d model. For

higher dimensional models see [1].
In a dynamic iteration scheme, the time interval of interest is split into time

windows that are treated sequentially. On these windows, each subsystem is solved
independently by a problem-specific time-integrator. The mutual input from the
subsystems is considered as a known functions, only dependent on time. The
exchange of data between the subsystems is organized in a Gauss-Seidel-like
iteration scheme.

The stability and convergence of the iteration depends on the order in which
the problems are computed, [2]. For both coupling approaches we may start by
computing the diode model or the circuit model first. We will see, that for the
coupling with parallel capacitance the iteration will converge, independent of the
particular order.

2.1 Source Coupling

Let us start with the source coupling for the case, that the device is simulated
first. The circuit solution y.0/c .t/; z(0)

c .t/ is considered as known and from that
the new device solution y(1)

d .t/; z
(1)
d .t/ is obtained. Afterwards the circuit solution

y(1)
c .t/; z

(1)
c .t/ is updated using the new solution of the device.

Py(1)
d D fd .y

(1)
d ; z

(1)
d /; Py(1)

c D fc.y(1)
c ; z

(1)
c ; z

(1)
d /;

0 D gd .y
(1)
d ; z

(1)
d ; z

(0)
c /; 0 D gc.y(1)

c ; z
(1)
c ; z

(1)
d /:

(6)

According to [2] we can find a maximum time step size H0 such that the iteration
scheme is convergent for any time step size H � H0 if
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˛ WD
ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ
�
@g
@z(1)

��1 �
@g
@z(0)

�ˇ̌ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ < 1; where g.�/ WD .gd .�/; gc.�// ; z WD .zd ; zc/ :

(7)
Thus, in (6) the dependence of gd on the old iterate z(0)

c can cause divergence, cf. [2]
and see example below. A similar contractivity condition occurs for the coupling in
reversed order of the subsystems. Clearly the condition vanishes in both orders if
the dependence of gd on zc turns into a differential dependency (for the device-first
approach), or if gc does not depend on the algebraic variable zd (for the circuit-first
approach), [3]. This happens for capacitive paths between the device pins and this
will be exploited next.

2.2 Coupling with Capacitance

In the case of the coupling with parallel capacitances, the contraction factor vanishes
regardless of the order of the subsystems. When starting with the device, i.e,

Py(1)
d D fd .y

(1)
d ; z

(1)
d /; Pyc D fc.y(1)

c ; z
(1)
c ; z

(1)
d /;

0 D gd .y
(1)
d ; z

(1)
d ; y

(0)
c /; 0 D gc.y(1)

c ; z
(1)
c /;

(8)

the only occurrence of an old iterate in an algebraic constraint is the differential
variable y(0)

c in gd . Hence the contraction factor vanishes. On the other hand, when
starting with the circuit subproblem

Py(1)
c D fc.y(1)

c ; z
(1)
c ; z

(0)
d /; Py(1)

d D fd .y
(1)
d ; z

(1)
d /;

0 D gc.y(1)
c ; z

(1)
c /; 0 D gd .y

(1)
d ; z

(1)
d ; y

(1)
c /;

(9)

then there is no dependence on old iterates in algebraic constraints at all; thus again
the convergence is unconditional, according to [2].

3 Numerical Results

Next, we visualize the above results by the simulation of a simple series connection
of a voltage source, a resistor and an amplified silicon pn-diode (1d). The resistance
is given asRD 1˝ , the voltage source is given by v.t/ D sin.!t/V with a frequency
! D 2�1011 Hz. The diode consists of a 50 nm n-region doped with C0 and a 50 nm
p-region doped with �C0. The output current of the diode is amplified by the factor
1,500, since this causes ˛ in (7) to be greater than one. This makes our example on
the one hand rather academic, but on the other hand it illustrates that even in simple
setups divergence occurs. Further parameters of the diode are given in Fig. 2b.
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Fig. 2 Circuit and device parameters (a) Example circuit (b) Physical parameters for a silicon
pn-junction diode

For the following simulations we applied a constant time step size of �t D
0:1 ps and simulate our circuit und until T D 10 ps. On each time window, we
accomplish ten iterations and compare the network variables computed with our
dynamic iteration scheme below, to a monolithic reference solution. – The reference
solution is made to verify the convergence of the dynamic iteration scheme to the
solution of the monolithic systems. Therefore it is computed with the same step size.

In the case of circuit first and a parallel capacitance, the algorithm reads:

0) Initialization. Set first time window to Tn with n WD 0.
1) Guess. Get a circuit solution (y(0)

c ; z
(0)
c ) on Tn.

2) Solve the DAE initial value problems.

a) Time-integration of the network on Tn

Py(1)
c D fc.y(1)

c ; z
(1)
c ; z

(0)
d /; with y(1)

c .tn/ D yc;n

0 D gc.y(1)
c ; z

(1)
c /

b) Time-integration of the circuit on Tn

Py(1)
d D fd .y

(1)
d ; z

(1)
d /; with y(1)

d .tn/ D yd;n

0 D gd .y
(1)
d ; z

(1)
d ; y

(1)
c /;

3) Sweep Control. If e.g. jjy(1)�y(0)jj > tol, then repeat the step, i.e., set (y(0)
c ; y

(0)
d )

:=(y(1)
c ; y

(1)
d ) and go to Step 2), otherwise Step 4)

4) Next window. If tnC1 < T , then set new initial values y?;nC1 WD y(1)
? .tnC1/ and

proceed to the next time window n WD nC 1, go to Step 1).

In the other cases, the algorithms read analogously. For the numerical comparisons
presented below, we replaced the sweep control in the above algorithm by a fix
number of ten iteration per time step. In case of reversed order (diode first) or the
source coupling approach, the algorithm has been adjusted accordingly.
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Fig. 3 Relative error of network components between 2:2–2:3 ps (a) Source coupling (b)
Coupling with capacitance

3.1 Source Coupling

First we use the source coupling approach and simulate the simple circuit accord-
ingly. The dynamic iteration scheme does not converge. In Fig. 3a we depict the
relative error of the network components, i.e. the deviation from the reference
solution, against the number of iterations in the time interval 2:2–2:3 ps. We choose
this interval, since there simulation breaks down. We clearly see, that for both
orders – device or circuit first – the iteration scheme clearly diverges. The different
starting values for the two orders is due to bad convergence in the previous time
windows and is the result of error propagation.

3.2 Coupling with Capacitance

In the second approach we extract the capacitive behavior of the diode and model
this by a parallel linear capacitance CD D 1;500 "sA

l
D 1:5 � 10�14 F. In turn, we

compute the diode current iSD without consideration of the displacement current.
In contrast to the source coupling approach, we observe a convergent algorithm. In
Fig. 3b we depict the relative error (i.e. the relative deviation from the monolithic
reference solution) of the network components against the number of iterations in
the interval 2:2–2:3 ps, where the source coupling algorithm broke down. We clearly
see, that we get convergence with the capacitance in parallel. Moreover, we observed
significantly better convergence on the previous time windows, what we easily can
deduct from the coinciding starting values for both orders.

Circuit first performs slightly better, which can be physically motivated, since the
circuit drives the diode. – Thus the suggested algorithm is coupling with capacitance
and circuit first.
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4 Conclusion

For a PDAE-system consisting of coupled subsystems of circuits and devices,
dynamic iteration schemes are often based on the source coupling approach. We
have shown that for a simple examples this might lead to divergent iteration
schemes. We tackled this problem by a dynamic iteration scheme based on the
modeling of capacitive effects in the semiconductor devices. The capacitive effects
are extracted from the device model and modeled by an additional capacitive path
in the circuit. We have shown that this approach leads – in accordance with the
theory in [2] – to a convergent dynamic iteration scheme independent of the order
of computation of the different subsystems. We note that we do not simply add a
capacitance to the circuit in order to aid convergence, but extract the capacitance
from the device model. Thus, it is ensured that the modification does not change our
coupled system.

The extracted capacitance can also be regarded as a predictor for the capacitive
behavior of the semiconductor device and thus it also can be regarded as a compact
model for this effect. Thus, our approach also fits into the framework of [6].

With the suggested coupling via the extracted capacitance we get convergence
for both orders – circuit first or device first. However, we observe slightly better
convergence for the circuit first approach. We shortly note that this is due to the
dependence of gd on yc . A deeper analysis of this effect is subject to ongoing
research.
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Multirate Time Integration of Field/Circuit
Coupled Problems by Schur Complements

Sebastian Schöps, Andreas Bartel, and Herbert De Gersem

Abstract When using distributed magnetoquasistatic field models as additional
elements in electric circuit simulation, the field equations contribute with large
symmetric linear systems that have to be solved. The naive coupling and solving
(using direct solvers) is not always efficient, since the electric circuit is coupled
only via coils, which are often represented only by a small subset of the unknowns.
We revisit the Schur complement approach, give a physical interpretation and show
that a heuristics for bypassing Newton iterations allow for efficient multirate time-
integration for the field/circuit coupled model.

1 Introduction

Circuit simulators assemble the underlying equations element-wise, usually by
modified nodal analysis (MNA). Each element contributes with an element stamp
that describes the current/voltage relation and possibly internal equations. This
results in a system of Differential Algebraic Equations (DAEs). In our case of the
field/circuit problem, parts of this system stem from Maxwell’s equations.

In the next section, we summarize the mathematical model for coupled electric
circuits with maqnetoquasistatic (MQS) field devices. Our point of view stresses the
usual assembly via stamping during time discretization. In the following section,
we introduce a Schur complement approach for the MQS stamp, cf. [1, 2]. The
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fourth section deals with the corresponding computational cost. Then, in section
five, a bypassing technique of the Jacobian, similar to simplified Newton, and
the bypassing of the right-hand-side are interpreted and employed as a multirate
time-integration scheme. Also bypassing is a common technique in classical circuit
simulation, but here the energy balances of field and circuit are taken into account.
The paper is completed by numerical results and conclusions.

2 Mathematical Model Description and Time Discretization

Common circuit simulators use MNA to assemble the circuit equations element-
wise. Each element contributes with differential and algebraic relations to the
underlying DAE, [3]. To the list of basic elements, the magnetoquasistatic (MQS)
device is added (with subscriptM ), which allows the coupling to field effects while
still using MNA. For each element we have a model fe consisting of current balances
for the network nodes (except ground) and additional constitutive relations for non-
current defining elements, which gives

f .Py; y; t/ WD
X
e

Qefe .Pye; ye; t/CQM fM .PyM ; yM/ D 0 (1)

using for element e: local variables ye and generalized topology matrices Qe that
map local to global variables, such that holds yeDQ>e y. The global unknowns y
consist of the node potentials, whose differences define the respective voltage drop
ve at each element, and of several currents in particular the currents through MQS
devices iM , [4]. All currents contribute to the balances required by Kirchhoff’s
Current Law (KCL), which is included in (1).

The field distribution of the MQS device is described in terms of the degrees of
freedom of the discretized magnetic vector potential (MVP) a D a.t/, e.g. by the
finite integration technique (FIT) or the finite element method (FEM):

M PaCK.a/a D XiM ; (2a)

X> Pa D vM �RiM : (2b)

Equation (2a) stems from the continuous curl-curl equation, where M and K.a/
denote the singular conductivity matrix and the curl-curl matrix with the nonlinear
reluctivity .a/ employed. K.a/ includes gauging (e.g. grad-div) and boundary
conditions, [5], such that a positive definite matrix pencil

	
1
h

M CK



is obtained.
The problem is completed with a initial value a0. The columns of the cou-
pling matrix X D ŒX1; : : : ;Xp� distribute the branch currents iM on the spatial
grid, [6].

The second equation is the coupling equation: it relates the branch voltage vM
to the MVP and to the branch current using linear DC resistance R. All common
conductor types (solid, stranded and foil conductors) can be realized in (2) by the
structure of the conductivity matrix, [6]. Summing up, the field model fM reads:
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fM .PyM ; yM/ WD
2
4

iM
X> Pa � vM C RiM

M PaCK.a/a�XiM

3
5 ; where yM D

2
4

iM
vM
a

3
5 ; (3)

where the first row contains the contribution to the KCL and the last row represent
the curl-curl equation (2a).

Typically, circuit simulators use BDF schemes for time discretization. This gives
for constant step size h a nonlinear system at each discrete time tn for yn � y.tn/,
[7]:

f
�
1

h
yn; yn; tn

�
D 0 with

1

h
yn WD 1

h

kX
iD0

˛iyn�i � Pyn

using coefficients ˛i (k-th order BDF). As usually Newton-Raphson is applied:

J.i/n y.iC1/n D �f.i/n C J.i/n y.i/n with J.i/n WD
@f
@yn

�
1

h
y(i)

n ; y
(i)
n ; tn

�
(4)

f.i/n WD f
�
1

h
y(i)

n ; y
(i)
n ; tn

�
:

Due to the structure of (1), the assembly of the Newton system (4) is performed
by a cycle over all circuit elements (which can be organized in parallel), such
that

J.i/n WD
X
e;M

QeJ.i/e Q>e with J.i/e WD
˛0

h

@f.i/e
@Pye C

@f.i/e
@ye

; f.i/e WD fe

�
1

h
y.i/e ; y

.i/
e ; tn

�

(5)

suppressing the time index n. This resembles the element-wise assembly in FEM.
Each contribution (“stamp”), J.i/e , f.i/e , consists of inner and external variables, i.e.,
variables used only inside the particular element and variables related to other
elements by the simulator, [2].

In the following we want to speed up solving the Newton system by elimination
of the MVP a. Therefore we work out the MQS stamp and revisit the Schur
complement next.

3 MQS Stamp and Schur Complement

For the MQS model (3) in terms of y>M D .i>M ; v>M ; a>/, we obtain the following
Jacobian stamp (for BDF time discretization):
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J.i/M WD
2
4

I 0 0

R �I ˛0
h

X>

�X 0 K.i/

h

3
5 with K.i/

h WD
dK.a/

da

ˇ̌
ˇ̌
aDa.i /„ ƒ‚ …

DWka.a.i //

C˛0
h

M (6)

and differential reluctivity matrix ka.a.i//. The function-evaluation stamp reads:

f.i/M WD
2
4

I 0 0

R �I 0

�X 0 K.a.i//

3
5 y.i/M C

2
4
0

X>
M

3
5 1
h
a.i/:

and the right-hand side contribution is given by:

r.i/M WD �f.i/M C J.i/M y.i/M D
1

h

2
4
0

X>
M

3
5 	̨

0a.i/ � a.i/

C

2
4

0

0

ka.a.i// �K.a.i//

3
5a.i/:

(7)

For the MQS devices, only the current/voltage relation of the series connection
of a (nonlinear) inductor and a resistor needs to be unveiled to the host circuit
simulator. But the inner variables a is not used outside the MQS stamp, it can be
eliminated from the Newton system by the well-known Schur complement, that is,
to indeed reduce the element stamp. – This is especially beneficial for all kinds
elements with rather large stamps, e.g. semiconductors, [2], or MQS device, [1],
since more compact stamps are obtained, which fit better into the overall framework.
– Removing a yields a reduced stamp in terms ofey>M D .i>M ; v>M/. The reduced
Jacobian reads

eJ.i/M WD
"

I 0

RC ˛0
h

L.i/h �I

#
D

"
I 0 0

0 I �˛0
h

X>
�

K.i/

h

��1
#

J.i/M

2
4

I 0

0 I
0 0

3
5 (8)

with generalized inductance matrix

L.i/h WD X>
�

K.i/

h

��1
X (9)

using K.i/

h from (6) and corresponding reduced right-hand side contribution:

er.i/M D
"
0

er.i/M;v

#
where er.i/M;v D

1

h
X>

�
I � ˛0

h

�
K.i/

h

��1
M
�
.˛0a.i/ � a.i//

� ˛0
h

X>
�

K.i/

h

��1 	
ka.a.i// �K.a.i//



a.i/:

We notice that the MVP needs still to be computed to evaluate the reduced right-
hand side (and the nonlinear material curve). Equation (9) corresponds the common
inductance extraction approach, [8], but in addition the Schur complement takes
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eddy current effects into account (due to the conductance matrix). – Moreover, the
dimension of the reduced stamp is independent of the space discretization of the
field problem. Thus the spatial mesh can be refined and coarsened during the time-
integration without restarting the host-simulator. Nevertheless, the reduction comes
with additional cost.

4 Computational Cost for Schur Complement (Direct Solver)

For the Schur complement in the Newton iteration i C 1, we need to compute
L.i/h . Applying a direct solver, the matrix K.i/

h has to be factorized (one LU
decomposition) and forward/backward substitutions for the vector potentials in each
branch:

K.i/

h a.i/M;j D Xj .for j D 1; : : : ; p/; s.t. L.i/h D X>a.i/M (10)

by sparse inner products. Also, the MVP for the right-hand-side voltage must be
computed. To this end, we project onto the MVP defining equation inside the
Newton iteration (derived from Jacobian (6) and right-hand side (7)):

K.i/

h a.iC1/Dr.i/M;a C Xi.iC1/M ; r.i/M;a WD
1

h
M
	
˛0a.i/�a.i/


C	ka.a.i//�K.a.i//


a.i/:

Thus we compute the remaining term a.i/V by forward/backward substitutions from:

K.i/

h a.i/V D r.i/M;a; (11)

and obtain for the MVP

a.iC1/ D a.i/V C a.i/M i.iC1/M :

Moreover, we obtain for the reduced right-hand side the simplification:

er.i/M;v D
1

h
X>

�
˛0a.i/ � a.i/ � a.i/V

�
:

Thus one LU-decomposition and p C 1 forward/backward substitutions are neces-
sary for the Schur complement. The choice of solver for the Schur complement is
independent of the solver used in circuit host simulator. So, for example an iterative
method such as block-PCG could be used. Such a procedure should support multiple
right-hand-sides, as [9], for efficiency. A further advantage of iterative methods
applied to 3D problems is the weak gauging introduced by the iterative solver, [10],
such that further gauging, as employed here, becomes unnecessary.
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5 Bypassing as Multirate Time Integration

The generalized inductance matrix depends on the saturation (BH-curve), but this
effect is rather slow compared to other time rates of the electric circuit, e.g. the
switching frequency of transistors. Saturation depends on the supplied energy

E.tn/ D E0 C
Z tn

0

iM.s/vM.s/ds (12)

with the initial energy level of the device E0. The relevant time scale of the
nonlinearity is given by the integral above, even if the applied voltage is a much
faster signal. We approximate (12) by

En � E0 C h
0
@
n�1X
jD0

iM.tj /vM.tj /C i.i/M v.i/M

1
A

and compare this to the initial energy E0. Consequently, updates of the material are
often superfluous: whenever it behaves (nearly) linearly, only one forward/backward
substitution for the right-hand-side per iteration is necessary. This allows an
interpretation as a simplified Newton algorithm, where the Jacobian (8) is frozen
across several iterations and possibly several time steps if the (relative) change of
energy does not exceed a threshold and if the reluctivity is (nearly) constant.

Furthermore, if the material is rather linear the right-hand-side evaluation can
be bypassed as well: then the vector potential needs no update and the distributed
field problem is decoupled from the circuit, where it is represented by an inductance
matrix, similarly to the co-simulation approach, [8]. The algorithm reads

0) compute a.i/

1) approximate the energy E.i/n
2) if norm.E.i/n � E0/ > tol

then evaluate material curve .i/ WD .a.i//
2a) if jjv.i/ � v.i�1/jj > tol

then compute L.i/h and v.i/M
else bypass matrix update L.i/h WD L.i�1/h and v.i/M WD v.i�1/M

else bypass material update v.i/ WD v.i�1/ and L.i/h WD L.i�1/h , v.i/M WD v.i�1/M

3) return to host simulator.

where the change in the energy level is by measured by a relative norm. This
algorithm unburdens the host simulator from solving unnecessarily large system of
equations, while still having a suitable Jacobian information at hand. The drawback
are additional Newton iterations due to the inferior convergence of simplified
Newton, but solving a sequence of reduced system. If eddy currents included into
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the model, the inductance matrix Lh D L.a; h/ depends on the time step size h and
therefore the matrix must be recomputed or interpolated for any change of h.

6 Computational Results

All presented methods, the standard Newton without Schur complement, and the
ones using the Schur approach, i.e., simplified and bypassed Newton, have been
implemented in the Framework of the CoMSON DP. In Fig. 1a a simple example
circuit is shown, where a pulse width modulated (PWM) voltage source is connected
to the primary side of a transformer. The PWM is switching at 20 kHz, Fig. 1b. The
secondary side is connected by a resistor. This transformer has a highly nonlinear
behavior that is simulated until its saturation phase is reached, Fig. 1c.

In the beginning of the start-up phase, t � 0:03 s, both, the simplified and
bypassed Newton methods detect the linearity in the material and skip the superflu-
ous evaluations and the LU decompositions, Fig. 2b, although the applied voltages
and currents are fast switching due to the PWM. The standard Newton method
employed here follows the rather naive procedure to evaluate the material in every
iteration, see Table 1. In the highly nonlinear saturation phase, 0:03 s < t � 0:06, all
methods require more Newton iterations per step and update the Jacobian almost at
every time step. Bypassing element evaluations implies a linearity assumption and
as a consequence the Newton iteration will require less Jacobian updates, Fig. 2a, but
with the drawback of a larger error. After the saturation level is reached, t > 0:06,
the field problem behaves again rather linearly and the updates of the simplified and
bypassing Newton are clearly reduced.

The performance of this approach depends on the choice of the error norms,
tolerances and device characteristics. We found the heuristic to be insensitive to
changes in the parameters, especially for rather linear or fully saturated models,
because the change in the saturation cause the high computational costs. For
example in an induction machine, where the saturation rotates, we are forced to
recompute the Schur complement more often, but the rotation is still determined
by the energy and not by the frequency of a pulsed input. Especially in those
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Table 1 Transformer: computational costs

Decompositions Forward/ Stamp Time
backward substitutions evaluations

Full Newton 23,371 27,936 27,936 20 h
Simplified Newton 2,531 36,460 31,398 1 h
Bypassed Newton 450 3,171 20,449 25 min

applications one can further optimize the method and interpolate from previous
Schur complements in dependence of the rotor angle and reuse them in the
stationary phase.

When using an adaptive step-size control it should reflect that the recomputation
of the inductance matrix Lh should be avoided if the step size h changes only
insignificantly. On the other hand the application of an adaptive step size control
to problems with pulsed inputs as described here is not recommended due to high
amounts of rejected steps. Thus a fixed step size is here typically no additional
constraint.

7 Conclusion

Applying the Schur complement approach to MQS devices yields small element
stamps that are equivalent to the constitutive relation of the series connection of
inductors and resistors. The additional costs of the complement computation can
be neglected if solvers with multiple right-hand side techniques are available. The
presented heuristics to bypass Newton iterations reduce the computational costs
clearly and they automatically detect when full Newton iterations are necessary.
Due to bypassing, both problems are quasi decoupled and the time-integration of
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the circuit is cheapened because only basic elements are evaluated. This decoupling
exploits the multirate time behavior of the coupled system if present.
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Part IV
Circuit and Device Modelling

and Simulation

Introduction

As stated in the introduction to this book, with regard to the modelling of config-
urations for which propagation delay is negligible, macroscopic electromagnetic
interactions can be modelled using the “quasistatic” asymptotic approximation
to the Maxwell equations. The specific properties of the equations of quasistatic
electromagnetic interactions produce the vast domain of circuit theory. The geo-
metrical size of configurations that can be handled by circuit theory is limited by
the rate of change in the states. The smaller the configuration we have to study,
the faster the changes we can accurately handle. On the other hand, on the scale
of the interior of an elementary electronic device like a transistor, the Maxwell
macroscopic equations themselves are not appropriate and one has to resort to
quantum physical models and statistical physics. This part presents advances in both
types of approaches.

In the analysis of electronic circuits, one has to deal with the nonlinearities of
electronic devices. Therefore, many solution techniques rely on evolution equations
in which the time derivative of the electronic state is computed from the state itself
and its past history. The uniqueness problems and the stability of the algorithms
to advance the (necessarily discretised) states in time represent major challenges in
numerical analysis. Alternative techniques rely on “entire-domain” expansions, in
which the evolution of a system’s state over a given time interval is represented as
a sum of global basis functions over the interval. Such methods bring with them
different mathematical problems of solvability and numerical accuracy. This part
puts forward papers on both techniques.

The first paper in this part, written by H. Thornquist (an invited speaker at the
conference) and E. Keiter, presents recent advances in parallel computation tech-
niques in “full-chip” circuit simulations, including new preconditioning strategies
for the pertaining system matrices.

The following two papers are related to the general problem of “modelling
uncertainty,” which complicates any physical modelling. Even when we solve our
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model equations with great accuracy there is no guarantee that we have a very
precise correspondence with the pertaining physical observations. Computations
are made based on the assumption that the coefficients of the model equations are
representative of the materials and their geometries. However, any simulation result
should be accompanied by an indication of the sensitivity of the essential aspects of
the result to changes in the most pertinent model coefficients.

The paper by F. Veersé, J. Besnard and H. Filiol proposes a method for the ana-
lysis of the sensitivity of steady-state mismatch deviations in a circuit due to device
model parameter deviations. Their method avoids the costly multiple computations
required by, for example, a Monte Carlo-type approach to the problem. The domain
of validity of the method is discussed and illustrated in numerical examples. The
paper by R. Pulch addresses a modelling uncertainty problem by considering it
as a stochastic process problem. The author uses a polynomial chaos method to
compute the propagation of the uncertainty in a model parameter, the period in a
forced oscillation, to the uncertainty in the resulting electronic state. The method is
illustrated in a numerical example.

The following three papers deal with steady-state problems with oscillators.
The paper by M. Hulkkonen et al. proposes improvements in harmonic balance
methods both with regard to the initial estimates of the oscillator frequency and
amplitude and to the convergence. Numerical experiments validate the proposed
methods. The paper by R. Mirzavand et al. presents a new gauge technique for the
Newton Raphson method for finding the periodic steady state (PSS) of free-running
oscillators in the time domain. The method is tested on a benchmark problem and
is shown to perform better than more conventional phase-shift condition methods.
The next paper by M. Gourary et al. puts forward a new general method that
uses frequency-dependent admittance matrices to model the parasitic coupling of
oscillators. The error estimates given for the explicitly computed locking frequency
are confirmed by a revealing SPICE simulation.

The following two papers address problems arising when different time scales
are significant in a single computation. The paper by V. Savcenco et al. proposes a
method for solving power system problems showing different time scales in the
solution of the evolution equations. The partitioning of the system components
according to the maximum allowed time step is done automatically on the basis
of the system’s topology. The paper by K. Bittner and E. Dautbegovic presents a
method in which the time evolution of the state of an electronic circuit is discretised
using a Galerkin method. Their method includes a wavelet-based adaptive refine-
ment that results in a highly accurate solution with a performance comparable to
that of time-stepping methods.

The remaining four papers in this part treat various aspects of device modelling.
The paper by C. de Falco et al. presents a mathematical study of a model for
polymer solar cells in the form of a system of nonlinear diffusion-reaction partial
differential equations. In addition to an existence proof, an algorithm for the solution
is proposed and a numerical example for a photovoltaic cell is discussed. The
paper by G. Mascali and V. Romano presents a detailed analysis of a model for
semiconductors. The authors use the Schrödinger-Poisson-Boltzmann equations and
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show how to obtain appropriate closure relations accounting for various scattering
processes. A numerical solution scheme is illustrated on the example of a nanoscale
silicon diode. The paper by Y. Li and Y.-C. Chen presents a geometric programming
method for the optimisation of doping profiles in MOSFET devices. The paper by
V. Romano and A. Rusakov explores a new way of modelling the heating of a semi-
conductor. The model equations are obtained by means of a maximum entropy
principle. An iterative solution method is used to obtain stationary solutions and
numerical simulations are shown, illustrating the differences to simpler approaches
to the heating problem on a two-dimensional configuration.



Advances in Parallel Transistor-Level
Circuit Simulation

Heidi K. Thornquist and Eric R. Keiter

Abstract Parallel transistor-level circuit simulation has the potential to signifi-
cantly impact the need for reliably determining parasitic effects for modern feature
sizes. Incorporating parallelism into a simulator at both coarse and fine-grained
levels, through the use of message-passing and threading paradigms, is supported
by the advent of inexpensive clusters, as well as multi-core technology. However,
its effectiveness is reliant upon the development of efficient parallel algorithms for
traditional “true SPICE” circuit simulation. In this paper, we will discuss recent
advances in fully parallel transistor-level full-chip circuit simulation, concluding
with scaling results from a newer strategy for the parallel preconditioned iterative
solution of circuit matrices.

1 Introduction

At modern technology nodes (45 nm and below) analog style, SPICE-accurate
simulation can be a significant (and prohibitive) development bottleneck. Traditional
circuit simulation, originally made popular by the Berkeley SPICE program[17],
does not scale well beyond tens of thousands of unknowns, due to reliance on direct
matrix solver methods.

Over the years a number of algorithms for so-called “fastSPICE” tools have
been developed to enable faster, larger-scale circuit simulation. Often based on
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circuit-level partitioning algorithms [1,3,5], such tools can be applied to much larger
problems, but the approximations inherent to such algorithms can break down for
modern feature sizes. In particular, for state-of-the-art modern VLSI design, high
levels of integration between functional modules and interconnects are subject to
prohibitive parasitic effects, rendering such tools unreliable. As a result, the ability
to perform transient simulation of the full-system is desirable for modern feature
sizes.

With the advent of inexpensive computer clusters, as well as multi-core tech-
nology, the potential exists for performing large-scale, SPICE-accurate simulation.
In fact, parallelism can be incorporated into a simulator at both coarse and fine-
grained levels, through the use of message-passing and threading paradigms. The
development of efficient parallel algorithms for circuit simulation is an active area
of research, which has seen some success, but has not reached its full potential.

2 Background

Traditional circuit simulation, such as SPICE [17], is based on the set of nonlinear
differential algebraic equation (DAEs)

f .x.t//C d

dt
q.x.t// � b.t/ D 0 (1)

where x.t/ 2 R
N is the vector of nodal voltages and branch currents, q and f are

functions representing the dynamic and static circuit elements (respectively), and
b.t/ 2 R

M is the input vector. This set of equations, which are more generally
expressed as F.x; x0/ D 0, is solved by numerical integration methods, resulting in
the nested solver loop in Fig. 1.

Transient analysis of these circuit equations (1) employs an implicit time
discretization scheme, such as Backward Euler or the trapezoid rule, that requires
the solution to a sequence of nonlinear equations, F.x/ D 0. Typically, Newton’s
method is used to solve these nonlinear equations, resulting in a sequence of linear
systems

Ax D b
that involve the conductance,G.t/ D df

dx
.x.t//, and capacitance, C.t/ D dq

dx
.x.t//,

matrices. During the DC operating point (DCOP) calculation, the q terms are not
present in (1), so the linear system only involves the conductance matrix.

For transient and DC analysis, the computational expense is in repeatedly solving
linear systems of equations, which are at the center of the nested solver loop
(Fig. 1). Solving these linear systems requires their assembly, which depends upon
device evaluations for the whole circuit. So, normally, the computational expense is
dominated by either the device evaluations or the numerical method used to solve
the linear systems. Techniques for improving the efficiency of device evaluations
are relatively straightforward when compared with the numerical issues encountered
during the linear system solve.
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Fig. 1 Nested solver loop

The linear systems solved during transient and DC analysis are typically
sparse, have heterogeneous non-symmetric structure, and are often ill-conditioned.
As such, iterative matrix solvers have historically not been the first choice for
circuit simulation, and direct sparse solvers [9, 15] have been the industry standard
approach. Direct solvers have the advantage of reliability and ease of use, and for
smaller problems direct methods are usually faster than iterative methods. However,
direct solvers typically scale poorly with problem size and become impractical when
the linear system has hundreds of thousands of unknowns or more.

3 Parallel Transistor-Level Circuit Simulation

Recent development of inexpensive computer clusters, as well as multi-core technol-
ogy, has resulted in significant interest for efficient parallel circuit simulation. Many
commercial tools, like HSPICE [4], have integrated multithreading approaches
to obtain reasonable speedups on a small number of cores. Several numeri-
cal techniques for parallel circuit simulation have been investigated, including
Fröhlich [11], who used a multi-level Newton approach in the TITAN simulator;
Peng et al. [19] used a domain decomposition approach that relied on a combination
of direct and iterative solvers; and Dong et al. [10] emulated hardware pipelining
for time integration by computing circuit solutions at multiple adjacent time points
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in the WavePipe simulator. MAPS [24] provides a framework that runs multiple
simulation strategies in parallel, with synchronization, to ensure more robust
performance. Furthermore, interest has developed recently around parallel SPICE
acceleration using graphical processing units (GPUs) [2, 13].

Parallelism can be integrated into every step of the nested solver loop shown in
Fig. 1. Furthermore, parallelism can be achieved through both coarse-scale (multi-
processor) and fine-scale (multi-threaded) approaches. A composition of these two
approaches will provide circuit simulation with the best performance impact on
the widest variety of parallel platforms. As discussed before, the majority of the
computational time is spent in device evaluations and linear solvers, so this section
will focus on parallelism pertaining to those specific tasks.

3.1 Parallel Load Balance

Circuit problems tend to be heterogeneous, so the optimal parallel load balance for
device load (matrix and residual vector assembly) functions will likely be different
than for the linear solution phase. Device loads and linear solves each happen once
per Newton iteration, so over the course of a long run the combined cost of both will
comprise the bulk of the wall clock simulation time.

For smaller problems, the load phase should dominate run time. As the problem
size increases, the linear solve phase will dominate, and it should scale super-
linearly, while the loads should scale linearly. This is because linear solution
methods are generally communication intensive, while the communication volume
required during the loads is relatively small.

As a result, the device load phase can be balanced by taking into account only the
computational work required, while balancing the matrix structure must minimize
communication volume. How this communication volume is measured or optimized
is an active area of research for many types of numerical simulation problems. Since
the load and solve phases have different load balance requirements, it makes sense
to have completely different parallel load balance for each. The relative amount of
time spent in each phase is problem-dependent.

Figure 2 is a simple illustration of a coarse-scale load balancing approach for
device evaluation and matrix structure that can be used in circuit simulation. For
many circuits of interest, a naive load balance, in which the total number of
devices is evenly divided among the available processors will demonstrate very good
parallel scaling. For circuits that are very heterogeneous, weights can be applied to
different device types to achieve a better balance. Once the appropriate coarse-scale
balancing of the devices across processors is achieved, fine-scale balancing that uses
multi-threading to accelerate each processors computations can be used.

The middle box in Fig. 2 represents the communication necessary to accommo-
date both load balances. This is dependent upon the partitioning of the linear system,
which is a much more difficult and complex issue. Unlike the device evaluation,
a naive partitioning will generally not suffice. In practice, this partitioning of the
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Fig. 2 Parallel load balance for device evaluation and matrix structure

matrix structure is chosen to accelerate the computation of the linear system solution
or make the solution method more robust.

3.2 Parallel Linear Solvers

Iterative matrix solution methods (e.g. GMRES [20]) have been made to scale well
to much larger problem sizes for other types of physical problems. However, the
conventional wisdom has generally held that such methods are not effective for
traditional circuit simulation. There has been some progress on the use of iterative
methods for circuit simulation, notably Basermann [7] and Bomhof [8], both of
whom relied on distributed Schur-complement based preconditioners. Harmonic
Balance simulators commonly use iterative methods to remain matrix-free. Multi-
grid methods have successfully been applied to power-grid simulation by several
authors [18, 23, 25]. Recently, a preconditioning strategy has been developed to
generate an efficient parallel load balance for the matrix structure of Fig. 2 [14].

Direct sparse linear solvers are the industry standard for solving the linear sys-
tems generated during DC or transient analysis, so it would make sense to consider
using parallel direct linear solvers like SuperLU_DIST [16] or PARDISO [21].
However, most of these solvers are designed to be general purpose, which does not
allow them to be efficient on circuit-specific matrix structure. Furthermore, there is
still an issue of scaling with parallel direct solvers that will limit the size of linear
system (and thus size of circuit) for which they will be effective.
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4 Scaling Study Using Xyce

In this section, results from some scaling experiments are presented using Xyce [6].
Xyce is designed from the “ground up” to be a parallel simulator, and is based on a
message-passing implementation (MPI) [12]. This allows the code to run on a wide
variety of parallel platforms, from high-end supercomputers, to large clusters, to
multi-core desktops. Xyce uses a different parallel partition for the matrix load and
solve, as shown in Fig. 2.

The scaling results compare two parallel iterative linear solver strategies that
generate preconditioners for GMRES [20] to KLU, a serial sparse direct linear
solver developed specifically for circuit simulation [22]. Both iterative strategies
initially remove the dense rows (or columns) that correspond to columns (or rows)
with only one non-zero entry, which typically result from power supply or ground
nodes. This step, called singleton removal, is essential for efficient parallel matrix
distribution. The domain decomposition (DD) strategy then uses graph partitioning
on the resulting symmetrized graph to reduce communication and a local fill-
reducing ordering on the block diagonal before performing an incomplete LU (ILU)
factorization.

The block triangular form (BTF) strategy first uses singleton removal, then
performs a block triangular form reordering of the resulting matrix. Hypergraph
partitioning is used on the block graph to reduce communication and a direct
factorization (KLU) is used on the block diagonal, resulting in a block Jacobi
preconditioner. More details regarding the DD and BTF strategies can be found
in [14].

4.1 Experimental Setup

The results presented are obtained from the transient simulation of a large
application-specific integrated circuit (ASIC), with around a half-million devices,
using Xyce. All computations are performed on a cluster with 2.2 GHz AMD
four-socket, quad-core processors with 32 GB DDR2 RAM and an Infiniband
interconnect using the OFED software stack. Each node of the machine has a total
of sixteen cores, and the user can request anywhere from one to sixteen cores per
node. If less than sixteen cores per node are used, the memory is evenly divided
between the cores, and more memory is available for each core.

This comparison also examines the performance of loading values into the
Jacobian matrix and the residual vector, which includes the device evaluation. The
scaling is done relative to the serial simulation performance, where KLU is used as
the linear solver. The simulations were run on 8, 16, 32, and 64 processors (cores)
where four processors per node (ppn) were used. Thus, 2, 4, 8, and 16 nodes were
used to perform this study.
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Fig. 3 Xyce scaling study on large ASIC using four processors per node

4.2 Numerical Results

Figure 3 illustrates the scalability of the DD and BTF linear solver strategies over
an increasing number of processors. The Jacobian and residual load scale about
the same for the two strategies, as one would expect. It should be noticed that the
residual load has the best performance, which supports the conjecture that a naive
distribution of devices to processors is sufficient. However, with respect to the linear
solver strategies, BTF is almost twice as fast as the DD strategy.

For this ASIC, the BTF strategy is a better choice than DD with respect to overall
parallel scaling and robustness. When the DD strategy is used, the total simulation
scaling falls midway between the Jacobian load and linear solve scalings. This
indicates that the linear solve is a bottleneck to overall parallel performance, rep-
resenting a larger fraction of the total runtime. However, with the BTF linear solver
strategy, the total scaling is consistent with the Jacobian load scaling, demonstrating
that the BTF-based linear solve does not impact the overall simulation scaling. On
32 processors, using the DD strategy resulted in a simulation failure, illustrating that
this solver strategy may not be as robust as the BTF strategy for this ASIC.

Finally, Fig. 3 illustrates that past 32 processors, only a moderate speedup in the
simulation is observed. For the BTF strategy, increasing the processors from 32 to
64 only yields an additional speedup of 1.4x. For any fixed problem size, this roll-
off is to be expected beyond a certain number of processors. However, it should be
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noted that the overall runtime on 32 processors is approximately twenty times faster
than the serial case, which is still a substantial improvement.

These numerical results highlight the parallel scalability of the DD and BTF
iterative linear solver strategies on a single large ASIC. These strategies have
been tested previously [14] on a more diverse suite of circuits to illustrate their
limitations. Both are ineffective on circuits with feedback structure or a large
number of parasitics. A different domain decomposition approach [19] that divides
up the circuit into linear and nonlinear domains, will be more effective when a large
number of parasitics are present. The results illustrate that, if an effective precondi-
tioner is available, parallel transistor-level circuit simulation can be scalable.

5 Conclusion

In this paper, advances in parallel techniques for transistor-level circuit simulation
have been discussed. It was argued that efficient parallel circuit simulation requires
integration of large and small scale parallelism into every step of the nested solver
loop. Specific attention was given to parallelism issues in the device evaluation and
linear solver.

While not as robust as direct solvers, iterative solver strategies have the potential
to enable scalable parallel simulation. Scaling results were presented to show that
such strategies can reduce the total simulation time by up to a factor of twenty
compared to the serial solver KLU on 32 processors. Ultimately, a robust and
scalable parallel transistor-level circuit simulator will require a comprehensive
strategy for device evaluation and linear solvers to obtain good performance.
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Sensitivity-Based Steady-State Mismatch
Analysis for RF Circuits

Fabrice Veersé, Joël Besnard, and Hubert Filiol

Abstract Based on the assumption of small parameter variations a sensitivity–
based analysis method is proposed for the computation of the steady–state mismatch
deviations of periodic and quasi-periodic circuits. Unlike classical Monte-Carlo or
worst-case analyses this approach does not require several (time) periodic steady-
state analyses to be performed. In addition it provides detailed information on the
relative contributions of the different device model parameters. Some numerical
examples illustrate the potential and limitations of the approach.

1 Introduction

With the size of process nodes reaching a few (tens of) nanometers, it has become
mandatory to account for the effect induced by device variations (in the range of
10–30%) while verifying the circuit design. This may be done using worst-case
or Monte-Carlo transistor-level simulations, analyzing repeatedly the circuit for
different sets of device model parameters. But the computational resources needed
for simulating the periodic (or quasi–periodic) steady–state of RF circuits and the
number of simulations required to achieve a given accuracy level often make the
Monte-Carlo approach unaffordable in practice. Likewise the worst-case analysis
requires a number of steady–state simulations largely dependent on the number of
device parameters, which according to [1] can exceed 800 for the BSIM4 model
from Berkeley [2].

F. Veersé (�) � J. Besnard � H. Filiol
Mentor Graphics (Ireland) Ltd. French Branch, Immeuble Le Viséo Bât. B, 110 rue Blaise Pascal,
Inovallée Montbonnot, 38334 Saint Ismier Cedex, France
e-mail: Fabrice_Veerse@mentor.com; Joel_Besnard@mentor.com; Hubert_Filiol@mentor.com

B. Michielsen and J.-R. Poirier (eds.), Scientific Computing in Electrical Engineering
SCEE 2010, Mathematics in Industry 16, DOI 10.1007/978-3-642-22453-9__28,
© Springer-Verlag Berlin Heidelberg 2012

267

Fabrice_Veerse@mentor.com
Joel_Besnard@mentor.com
Hubert_Filiol@mentor.com


268 F. Veersé et al.

On the contrary, the method proposed in this paper uses sensitivity information
to avoid such repeated steady-state analyses, making it a method of choice for
predicting the mismatch of RF circuits.

A similar approach was used by Oehm and Schumacher [3] to derive a DC-
voltage mismatch deviation, under the hypothesis of small-magnitude Gaussian
random mismatch. The authors scaled the deviation of each mismatch parameter
by its sensitivity and computed the mismatch deviation as the square root of their
added squared values. The extension of this approach to transient simulations, using
the adjoint method to compute sensitivities [4–6], was studied e.g. in [7–10].

A different approach is proposed in [11] for the analysis of mismatch effects on
transient performance of periodic circuits at steady state: a periodic noise simulation
is performed using some auxiliary noise sources modeling the DC mismatch in
device parameters, and the resulting noise power spectral density is interpreted in
terms of performance variation.

In the spirit of [7–10] the method proposed in this paper extends the approach of
[3] to the steady-state simulations of periodic or quasi-periodic circuits, using the
adjoint method. Unlike the approach in [11] no modification of the circuit (auxiliary
noise source) is needed and the interpretation of the results is as straightforward as
for DC simulations.

In the following section, the method used to compute harmonic–balance steady–
state sensitivities is summarized. It is used in the next section for the derivation of
a method for steady–state mismatch analysis. Finally, some numerical experiments
illustrate the effectiveness and some limitations of the approach.

2 Harmonic–Balance Steady–State Sensitivity Analysis

The computation of the circuit (quasi-)periodic steady-state using the harmonic
balance (HB) method [12] amounts to solving the nonlinear system of equations

F.XHB.p/;p/ D ��Q.��1XHB.p/;p/C �I.��1XHB.p/;p/

CY.p/XHB.p/C B D 0;
(1)

where � and ��1 are the direct and inverse Fourier transforms, � is a diagonal
matrix expressing the equivalent of time-differentiation in frequency domain, Q
and I are vectors gathering the instantaneous charges q.xHB.ti ;p/;p/ and currents
i.xHB.ti ;p/;p/, with xHB.p/ D � �1XHB.p/ being the steady–state unknowns in
time domain. The Y.p/ matrix accounts for the frequency-dependent elements and
B is the vector of harmonic components of independent sources. The vector p is
made of parameters such as transistor widths and lengths.

Partial differentiation of this system with respect to XHB leads to the following
expression of the HB Jacobian matrix:
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J.XHB.p/;p/ D ��C.xHB.p/;p/��1 C �G.xHB.p/;p/��1 C Y.p/ (2)

where C.xHB.p/;p/ and G.xHB.p/;p/ are block-diagonal matrices with entries
@q.xHB.ti ;p/;p/=@x and @i.xHB.ti ;p/;p/=@x respectively.

Differentiating the HB residual (1) with respect to the parameters p, one obtains:

J.XHB.p/;p/
dXHB.p/

dp
C @F.XHB.p/;p/

@p
D 0: (3)

The sensitivity of an output expression g.XHB.p/;p/ with respect to the parameters
p is given by

dg.XHB.p/;p/
dp

D @g.XHB.p/;p/
@XHB

dXHB.p/
dp

C @g.XHB.p/;p/
@p

(4)

Using (3) left-multiplied by w� where the � superscript denotes conjugate transpo-
sition and w is the solution of the adjoint system

ŒJ.XHB;p/�
�w D

�
@g.XHB;p/
@XHB

��
; (5)

to express the first term in the right-hand side of (4), shows that the sensitivity of the
output expression g.XHB.p/;p/ with respect to the parameters p can be computed
from

dg.XHB.p/;p/
dp

D �w�
@F.XHB.p/;p/

@p
C @g.XHB.p/;p/

@p
(6)

3 Steady-State Mismatch Analysis

The proposed mismatch analysis is a special application of the above sensitivity
analysis, based on statistical deviations of device model parameters. Considering
that the output quantity of interest y D g.XHB.p/;p/ usually depends on the device
model parameters p only implicitly through the dependence of the circuit steady–
state vector XHB.p/, we let @g=@p D 0 in the sequel.

Assuming that the parameters p are unbiased . Np D E.p/ D 0/ and given
their covariance matrix †p D E..p � Np/.p � Np/T /, one obtains the first-order
approximation

†y D E
	
.y � Ny/.y � Ny/T 
 �

�
dg

dp

�
†p

�
dg

dp

�T
: (7)



270 F. Veersé et al.

That is, the covariance matrix of the output quantity y D g.XHB.p// may be
estimated from the covariance matrix of the device model parameters p and the
sensitivity of this output with respect to these parameters.

If the parameters stored in the vector p are uncorrelated, the above equation
reduces to

�y D
vuutX

i

�
dg

dpi

�2
�2pi D

vuutX
i

�
dg

dpi
�pi

�2
(8)

where �z indicates the standard deviation of the quantity z and the summation
extends over the number of individual parameters pi .

Let pi be a transistor model parameter (e.g. its width or length), then (6) for
steady–state sensitivity specializes to

dg

dpi
�pi D �w�

@F

@pi
�pi D �w�

�
��

@Q.xHB;p/
@pi

�pi C �
@I.xHB;p/
@pi

�pi

�
(9)

where w is the solution of the adjoint system (5).
The term .@Q=@pi/ �pi in the above equation may be obtained by gathering the

instantaneous deviations of charges

@q.xHB.tj /;p/
@pi

�pi �
�
q.xHB.tj /;pC �pi ei/ � q.xHB.tj /;p/

�
(10)

for all the FFT sampling instants tj . The current deviation term .@I=@pi/ �pi is
treated similarly. This amounts to perturbing the model parameters for each instance
of the corresponding device model by a standard deviation and evaluating the
resulting current and charges variations, for all instants tj .

Besides this evaluation of the device models, the main computational cost of the
proposed approach to compute the mismatch deviation �y consists in solving the
linear adjoint system (5). This is a far smaller effort than that required by either a
Monte–Carlo analysis or a worst–case one, and even less than that required by the
steady–state analysis (i.e. solving the nonlinear system (1)).

But whereas the Monte-Carlo and worst-case analyses properly deal with
deformed output distributions, our perturbation approach is more suited to linear and
weakly nonlinear problems with small Gaussian parameter deviations producing
Gaussian or almost Gaussian output deviations (see also the discussion in Sect. 5).

4 Numerical Experiments

In this section some steady-state mismatch analysis results are reported for a simple
series-RC filter and a nonlinear active-load amplifier, evidencing the usefulness and
some limitations of the approach.
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4.1 An RC Filter

The circuit contains a 1 k˝ resistor connected to a periodic voltage source and a
1 nF grounded capacitor. The voltage source has a 1V DC component surimposed
with a 10 mV sinusoidal component oscillating with a 1 MHz frequency. Gaussian
deviations for the resistor and capacitor values are specified as a percentage of their
respective nominal values, and the 4-� performance variation of the first-harmonic
component of the voltage at the output node connecting the resistor and the capacitor
is computed using a Monte-Carlo analysis with 1000 runs, a worst-case analysis and
the proposed steady-state mismatch analysis.

Results are provided in Table 1 where the first column indicates the values of the
resistor and capacitor standard deviations as a percentage of their nominal values.
The third column reports the standard deviations computed by the Monte-Carlo
method and our harmonic-balance steady-state mismatch analysis (this data is not
available from the worst-case analysis). The next two columns give the maximum
and minimum values of the magnitude of the first-harmonic of the output voltage
computed by the different methods; for the steady-state mismatch analysis these
values are set equal to the nominal value plus-or-minus four times the corresponding
standard deviation. The remaining three columns provide similar information for the
phase of the first-harmonic of the output voltage.

For the 0.3% and 3% Gaussian deviations the steady-state mismatch analysis
computes performance variations in close agreement with the results of the Monte-
Carlo analysis, and closer than those of the worst-case analysis.

A limitation of the steady-state mismatch analysis is evidenced by the 30%-
deviation results: with such large parameter deviations the approximations made
in (7) and (10) are not justified anymore. And although Gaussian distributions are
used for the varying parameters and the circuit is linear, second-order effects arise
from the nonlinearity of the computation of the magnitude and the phase of the first-
harmonic of the output voltage. These second-order effects are clearly noticeable

Table 1 Steady-state mismatch results for first-harmonic component of RC filter
�R , �C Methods First-harmonic magnitude variation First-harmonic phase variation

Nominal value: 1.572E�03 Nominal value: �1.7010EC02

Standard Minimum Maximum Standard Minimum Maximum
deviation value value deviation value value

0.3% Monte Carlo 6.557E�06 1.551E�03 1.591E�03 3.804E�02 �1.711EC02 �1.709EC02
Worst Case 1.536E�03 1.609E�03 �1.712EC02 �1.707EC02
Mismatch 5.865E�06 1.548E�03 1.595E�03 3.776E�02 �1.711EC02 �1.708EC02

3% Monte Carlo 6.575E�05 1.380E�03 1.784E�03 3.815E�01 �1.721EC02 �1.697EC02
Worst Case 1.259E�03 2.013E�03 �1.728EC02 �1.684EC02
Mismatch 5.897E�05 1.336E�03 1.808E�03 3.796E�01 �1.725EC02 �1.694EC02

30% Monte Carlo 1.065E�03 5.692E�04 9.805E�03 7.072EC00 �1.767EC02 �7.866EC01
Worst Case 3.287E�04 9.698E�03 �1.781EC02 �1.041EC02
Mismatch 6.274E�04 �9.376E�04 4.081E�03 4.039EC00 �1.871EC02 �1.548EC02
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from the unsymmetry of the Monte-Carlo minimum and maximum values about the
nominal one, that unravels a non-Gaussian distribution of the output magnitude and
phase. Owing to the linearity of the circuit this limitation and such second-order
effects would not be present if mismatch deviations of the real and imaginary parts
of the output were computed instead of those of its magnitude and phase.

The steady-state mismatch results are consistent with the indication in [9] that
the mismatch analysis based on sensitivities computed via the adjoint method are
generally in good agreement with those of the Monte-Carlo analysis when the
coefficient of variance of the elements is less than 20%.

4.2 An Active-Load Amplifier

To determine whether the steady-state mismatch analysis could be of any value in
practice for a nonlinear circuit, an active-load amplifier using 0.25-micron SPICE
level 3 models is considered. Gaussian mismatch deviations are specified on the
zero-bias threshold voltage and the surface mobility following the approach in [13].
Results are provided in Table 2 for the magnitude of the DC-component of the output
voltage, and in Table 3 for the magnitude and phase of its first-harmonic component.

The steady-state mismatch results are in good agreement with those of the
Monte-Carlo analysis, and in better agreement than those of the worst-case analysis.

The ratio of the computed standard deviation to the corresponding nominal value
are found to be less than 20% and could be used as an indication of the validity of

Table 2 Steady-state mismatch results for DC-component of
active-load amplifier

Methods DC-component magnitude variation
Nominal value: 1.126EC00

Standard Minimum Maximum
deviation value value

Monte Carlo 6.106E�02 9.394E�01 1.344EC00
Worst Case 7.624E�01 1.472EC00
Mismatch 6.140E�02 8.803E�01 1.371EC00

Table 3 Steady-state mismatch results for first-harmonic component of active-load amplifier

Methods First-harmonic magnitude variation First-harmonic phase variation
Nominal value: 4.692E�02 Nominal value: 8.865EC01

Standard Minimum Maximum Standard Minimum Maximum
deviation value value deviation value value

Monte Carlo 7.158E�04 4.457E�02 4.903E�02 5.438E�02 8.843EC01 8.880EC01
Worst Case 4.129E�02 5.142E�02 8.832EC01 8.888EC01
Mismatch 7.169E�04 4.406E�02 4.979E�02 5.311E�02 8.843EC01 8.886EC01
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the results provided by the steady-state mismatch analysis whenever a Monte-Carlo
analysis is not affordable.

5 Discussion

In Sect. 3 the independence of device mismatch parameters pi was assumed.
This hypothesis seems natural since mismatch variations are by definition local to
each device and thus uncorrelated between devices. Unfortunately not all SPICE
device-model formulations are based on physical and independent parameters that
could be used for the described steady-state mismatch analysis. At the same time,
disregarding existing correlations between model parameters is not an option, since
the computed performance variations due to the mismatch effects would likely
be under-estimated or over-estimated, depending on the signs of the sensitivities
(see (7)). One possibility for accounting for correlations is to perform a principal
component analysis (PCA) [14] to identify uncorrelated linear combinations of mis-
match device parameters, and to perform the steady-state mismatch analysis using
these combinations as independent parameters. The global performance variation
computed by the analysis will then account correctly for correlations between the
original mismatch device parameters and it will identify the uncorrelated linear
combinations of parameters that most contribute to this variation. Due to the
presence of correlations between parameters, isolating the relative contribution of
each mismatch device parameter may not be feasible anymore.

In [3], it is assumed also that the random variations of the device-model
parameters are Gaussian and small in amplitude. This is not strictly necessary as
long as there exist a mapping between the original distribution and a Gaussian one
(see e.g. [8] where a similar approach for transient simulations is applied with log-
normal parameter distributions), and the current and charge deviations (10) remain
small enough for the first-order approximation in (7) to be valid. Whenever this
linear pertubation approach is not valid due to nonlinearities, second-order effects
cannot be neglected anymore. One possibility to compute them is to use second-
order adjoint sensitivities [15]. However the absence of second-order derivatives in
device models leads the authors in [15] to compute second-order sensitivities via
perturbations of first-order derivatives (computed by the adjoint model), with a cost
proportional to the number of parameters. With such a cost scaling with the number
of parameters, a more general approach based on interpolation of central moments
[16] constitutes a worthy alternative.

As a cost proportional to the number of parameters is likely to be prohibitive for
the mismatch analysis of RF circuits, the steady-state mismatch analysis proposed
in this paper may prove a valuable tool for a cheap estimation of the performance
variation together with some indication of the parameter variations that are likely
to be responsible for them; as long as its limitations are well-understood and not
overlooked. The coefficient of variance of the elements together with the ratio
between the computed standard deviation and the nominal output value could be
useful indicators of the validity of the results.
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Modelling and Simulation of Forced Oscillators
with Random Periods

Roland Pulch

Abstract In nanoelectronics, the miniaturisation of circuits causes uncertainties
in the components. An uncertainty quantification is achieved by the introduction
of random parameters in corresponding mathematical models. We consider forced
oscillators described by time-dependent differential algebraic equations, where a
random period appears. A corresponding uncertainty quantification results from a
modelling based on a transformation to a unit time interval. We apply the technique
of the generalised polynomial chaos to resolve the stochastic model. Thereby, a
Galerkin approach yields a larger coupled system of differential algebraic equations
satisfied by an approximation of the random process. We present numerical
simulations of an illustrative example.

1 Introduction

Uncertainty quantification becomes important in nanoelectronics, since the down-
scaling of circuits produces undesired but inevitable variations in the components.
In the mathematical models, corresponding physical parameters are substituted
by random variables to describe the uncertainties. We consider the traditional
modelling of electric circuits by differential algebraic equations (DAEs), where the
time-dependent solution becomes a random process now.

On the one hand, forced oscillators with random parameters, where the period
of the input signals is constant and deterministic, have been investigated in [5–8].
On the other hand, autonomous oscillators with random parameters have been
considered in [10]. Thereby, the period depends on the random parameters, since
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no input signals appear. Now we analyse the case of forced oscillators, where the
period of the input signals is assumed to be a random variable modelling an own
uncertainty. This setting represents a mixture of the two previous cases.

Since the period is given by a random variable, the domain of dependence differs
for a single oscillation. We achieve a model for uncertainty quantification by a
transformation to a unit time interval as for autonomous oscillators. The stochastic
model can be resolved by a quasi Monte-Carlo simulation, for example. We use the
technique of the generalised polynomial chaos (gPC), see [1,2,12], in the numerical
simulation to investigate a more sophisticated approach. A Galerkin method results
in a larger coupled system of DAEs, which yields an approximation of the periodic
random process. To illustrate the modelling and the simulation, we apply a transistor
amplifier supplied by an input with random period as test example.

2 Modelling of Uncertainties in Period

The mathematical modelling of electric circuits is based on approaches, which
typically yield systems of DAEs, see [3]. We consider general systems of the form

A.p/x0.t;p/ D f.t; x.t;p/;p/; (1)

where x W Œt0; t1� ! R
n represents unknown node voltages, branch currents and

possibly other quantities. The singular matrix A 2 R
n�n and the right-hand side f

include physical parameters p D .p1; : : : ; pq/
> from some relevant set Q � R

q .
Hence the solution x of (1) depends on time as well as the parameters. If the matrixA
is regular, then the system (1) consists of implicit ordinary differential equations
(ODEs).

We assume that the chosen parameters exhibit some uncertainties. Consequently,
we replace the parameters by independent random variables p W ˝ ! Q according
to some probability space .˝;A ; �/, i.e., a sample space ˝ , a sigma-algebra A
over ˝ and a probability measure �. We use a classical random distribution for
each parameter like Gaussian, uniform, beta, etc. Given a function f 2 L1.˝/

depending on the random parameters, we denote the expected value by

hf .p/i WD
Z
˝

f .p.!// d�.!/ D
Z
Q

f .p/.p/ dp (2)

with the probability density function  W Q ! R. For two functions f; g 2 L2.˝/
depending on the random parameters, the expected value hf .p/g.p/i represents an
inner product according to the Hilbert space L2.˝/. We also apply the expected
value (2) to vector-valued or matrix-valued functions by components.

We investigate forced oscillators, i.e., the right-hand side of (1) includes periodic
input signals with the period T . Now let the period T also be a random variable.
Two cases imply the same model:
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(i) Although the period corresponds to the input signals, it is chosen in dependence
on the selected parameters, i.e., T DT .p/. In contrast to the case of autonomous
oscillators, see [10], we assume that the period can be evaluated directly for a
given tuple of parameters. Hence the period inherits some uncertainties from
the random parameters.

(ii) The period is considered as an additional independent random parameter due
to an own uncertainty. Thus we introduce the period to the set of parameters.
Without loss of generality, we can write T D T .p/ as in the scenario (i), where
the special case T .p/ D p1 is given, for example.

Consequently, let f.t C T .p/; �;p/ D f.t; �;p/ for all t 2 R and each p 2 Q in (1).
We assume that the solution of the dynamical system (1) inherits the periodicity, i.e,

x.t C T .p/;p/ D x.t;p/ for all t and each p 2 Q: (3)

We restrict our attention to a single cycle of each periodic solution. Since a single
cycle is given in a time interval Œ0; T .p/�, the domain of dependence differs in case
of random parameters. We want to compare the periodic solutions, which represent
realisations for different random parameters. In particular, an expected value and
a corresponding variance describe a kind of comparison of the realisations with
respect to the underlying random distribution. However, a direct definition of an
expected value or a variance corresponding to the single cycles of the random
process is not feasible, because the domains of dependence differ.

As for autonomous oscillators, see [10], we transform the given time intervals
t 2 Œ0; T .p/� into the unit interval � 2 Œ0; 1�. The transformed solution reads

Qx.�;p/ WD x.�T .p/;p/ for each p 2 Q (4)

with the independent variable � . It follows the periodicity

Qx.� C 1;p/ D Qx.�;p/ for all � and each p 2 Q: (5)

The same relations are given for the input signals in the right-hand side of (1).
The transformation (4) changes the DAEs (1) into the equivalent system

A.p/Qx0.�;p/ D T .p/ f.�T .p/; Qx.�;p/;p/: (6)

Due to (5), the corresponding periodic boundary conditions read

Qx.0;p/ D Qx.1;p/ for each p 2 Q: (7)

We apply the stochastic model (6), (7) in case of random periods, where the solution
is the periodic random process Qx. The original random process x satisfying (1)
is obtained via the transformation (4). The expected value of Qx can be seen as a
reference shape of the oscillations in the standardised time interval Œ0; 1�, where
the locations are relative to the input signals. The variance of Qx characterises the
discrepancies with respect to the reference shape.



278 R. Pulch

3 Numerical Simulation

The stochastic model (6), (7) can be resolved by a quasi Monte-Carlo simulation, for
example. Common numerical techniques yield the solutions of the resulting periodic
boundary value problems like multiple shooting methods, finite difference methods
or harmonic balance. Typically, a large number of samples is required to achieve
sufficiently accurate approximations.

Alternatively, we derive a technique based on the gPC, see [1,2,12]. The gPC has
already been applied to forced oscillators with constant periods in [5–8]. Assuming
finite second moments, the random process satisfying (6) can be represented via

Qx.�;p.!// D
1X
iD0

vi .�/˚i .p.!//: (8)

A complete set of basis polynomials ˚i W Q ! R is involved, where we consider
an orthonormal system, i.e., h˚i˚j i D ıij with the Kronecker delta. Each
random distribution implies a corresponding polynomial basis. The multivariate
polynomials are just products of the orthogonal univariate polynomials. Hence the
basis polynomials are known explicitly. The time-dependent coefficient functions
satisfy the equation

vi .�/ D hQx.�;p/˚i .p/i: (9)

The series (8) converges point-wise for each � in L2.˝/. The coefficient func-
tions (9) inherit the smoothness of the random process under certain assumptions.

The unknown coefficient functions can be determined by either a stochastic
collocation or the stochastic Galerkin approach, see [11, 12]. In a stochastic
collocation method, approximations of the probabilistic integrals (9) are computed.
We apply the stochastic Galerkin method in the following. A truncation of the
series (8) at the mth term yields an approximation of the random process. Inserting
this finite approximation in the DAEs (6) causes the residual

r.�;p/ WD A.p/
 

mX
iD0

v0i .�/˚i .p/
!
� T .p/ f

 
�T .p/;

mX
iD0

vi .�/˚i .p/;p

!
:

The Galerkin approach demands that the residual is orthogonal with respect to the
space spanned by the applied basis functions, i.e.,

hr.�;p/˚l.p/i D 0 for each � and l D 0; 1; : : : ; m:

It follows the larger coupled system of DAEs

mX
iD0
h˚l.p/˚i .p/A.p/iv0i .�/ D

*
˚l.p/ T .p/ f

 
�T .p/;

mX
iD0

vi .�/˚i .p/;p

!+
(10)
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for l D 0; 1; : : : ; m. A constant matrix appears in the left-hand side of the complete
system. The coefficient functions inherit the periodicity of the random process due
to (9). Hence we arrange the boundary conditions

vl .0/ D vl .1/ for l D 0; 1; : : : ; m: (11)

The periodic boundary value problem (10), (11) can be solved by common
numerical techniques again. Often the probabilistic integral in the right-hand side
of (10) cannot be calculated explicitly. Gaussian quadrature yields an approximation
of the right-hand side evaluations.

A special case appears in case of a constant matrix, i.e., A.p/ D A0. Due to the
orthogonality of the basis polynomials, the coupled system (10) simplifies to

A0v0l .�/ D
*
˚l.p/ T .p/ f

 
�T .p/;

mX
iD0

vi .�/˚i .p/;p

!+
(12)

for l D 0; 1; : : : ; m. Hence the constant matrix corresponding to the left-hand side
of the complete system becomes block-diagonal.

In contrast to a Monte-Carlo simulation, the gPC problem (10), (11) has to
be solved just once. A simulation based on the larger coupled system from the
stochastic Galerkin method is often more efficient than a quasi Monte-Carlo
simulation in case of linear systems of differential equations (ODEs, DAEs or
PDEs). The above approach is also feasible for linear systems (1) with time-
dependent inputs. However, autonomous oscillators are described by nonlinear
systems of ODEs or DAEs in most instances. In the nonlinear case, the efficiency of
the stochastic Galerkin approach requires further investigations.

The solution of boundary value problems of dynamical systems with random
parameters via the gPC using either a stochastic collocation or the stochastic
Galerkin approach is analysed more detailed in [9].

4 Illustrative Example

We apply a transistor amplifier shown in Fig. 1(left). A mathematical modelling
yields a nonlinear system of DAEs for the unknown five node voltages, see [4]. The
differential index of the DAEs is one. We arrange the input signal

Uin.t/ D 0:4 sin
	
2�
T
t



with period T . A corresponding periodic solution for T D 0:01 is depicted in
Fig. 1(right). The voltages U1; U2; U3 exhibit the form of sine waves. In contrast,
the voltage U4 and the output voltage U5 behave nonlinearly due to the transistor.
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Fig. 1 Circuit of transistor amplifier (left) and deterministic periodic solution for T D 0:01 (right)

Now we consider a random period

T .p/ D 0:01.1C 0:1p/;

where p represents a standardised random variable with a beta distribution accord-
ing to the probability density function

.p/ D C.˛; ˇ/.1 � p/˛.1C p/ˇ for � 1 � p � 1

with a constant C.˛; ˇ/. Hence the random period itself is distributed of beta type.
We choose ˛ D ˇ D 2. It follows the expected value hT .p/i D 0:01, the standard
deviation �.T .p//

:D 3:8 � 10�4 and the range of the random period includes
variations up to 10%. Although the modelling as well as the numerical simulations
can include more random parameters, the other physical parameters are chosen
deterministic for simplicity in this example.

The gPC expansion (8) includes the Jacobi polynomials. We apply polynomials
up to degree mD 3. The larger coupled system exhibits the structure (12). The
periodic boundary value problem (11), (12) is solved by a finite difference method
using asymmetric formulas of second order (BDF2). Figure 2 illustrates the resulting
approximations of the expected values (degree 0) and the standard deviations
corresponding to the five node voltages. The expected values are similar to the
deterministic solution shown in Fig. 1(right). The standard deviation of the voltages
U1; U2; U3 is relatively low. In contrast, the voltages U4 and U5 feature a subdomain
in time (near � D 0:7), where a relatively high standard deviation appears. The
standard deviation of U4 and U5 is nearly the same, since the shape of the
oscillations agrees. Furthermore, Fig. 3 illustrates the coefficient functions (9) of
the output voltage U5. The magnitude of the coefficient functions decreases rapidly
for increasing degree, which reflects the convergence of the gPC representation (8).



Modelling and Simulation of Forced Oscillators with Random Periods 281

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

standardised time

ex
pe

ct
ed

 v
al

ue
s

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

standardised time

st
an

da
rd

 d
ev

ia
tio

ns
Fig. 2 Expected values (left) and standard deviations (right) for node voltages with random period
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Fig. 3 Coefficient functions of output voltage in gPC

For comparison, we compute a reference solution via a quasi Monte-Carlo
simulation usingK D 1000 samples. The periodic boundary value problems (6), (7)
are resolved by a finite difference method of second order again. Alternatively, we
solve the periodic boundary value problems (11), (12) for different orders m now.
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Table 1 Maximum differences between approximations from gPC for different order m and
approximations from quasi Monte-Carlo simulation using K D 1000 samples corresponding to
output voltage U5

m D 1 m D 2 m D 3 m D 4 m D 5

expected value 2:6 � 10�3 8:4 � 10�5 5:1 � 10�6 4:3 � 10�6 4:5 � 10�6

variance 4:5 � 10�3 2:2 � 10�4 5:3 � 10�5 3:6 � 10�5 3:7 � 10�5

The maximum absolute differences between the approximations of the expected
values and the variances corresponding to the output voltage are shown in Table 1.
The differences corresponding to the other node voltages have the same or a smaller
magnitude. As hoped for, the accuracy of the gPC approximations improves for
increasing orderm. In particular, a linear approximation (m D 1) is not sufficiently
accurate, whereas nonlinear polynomials of a low order yield an adequate numerical
solution. The differences do not decrease for m � 4 any more. To achieve a better
agreement for large orders m, the number K of samples has to be increased in the
Monte-Carlo simulation and a higher accuracy has to be demanded in all involved
finite difference methods.

5 Conclusions

A modelling of forced oscillators with random periods has been introduced,
which defines a corresponding random process. We have constructed a numerical
technique based on the generalised polynomial chaos for solving the stochastic
model. A Galerkin approach changes the underlying system of differential algebraic
equations into a larger coupled system of differential algebraic equations. We
presented numerical simulations of a test example, which confirm that the stochastic
Galerkin approach is feasible in this application. Further investigations are required
for statements on the efficiency of the technique in comparison to stochastic
collocation methods or quasi Monte-Carlo simulations. In particular, more test
examples have to be considered for a discussion of the efficiency.
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Initialization of HB Oscillator Analysis
from Transient Data

Mikko Hulkkonen, Mikko Honkala, Jarmo Virtanen, and Martti Valtonen

Abstract Oscillation frequency and amplitude of a free-running oscillator are
commonly solved with harmonic balance (HB) method using an oscillator probe.
This usually requires optimization. Poor initial values of oscillation may lead to
unsuccessful optimization or will at least require a great number of optimization
cycles. Therefore, two methods to initialize HB oscillator analysis from transient
data are presented. These methods improve the initial estimates of oscillator
frequency and amplitude. In addition, techniques to improve convergence of the
analysis by initializing HB voltages from transient data and using an oscillator probe
pulse are discussed. The efficiency of the methods is examined and verified through
numerical experiments.

1 Introduction

Applying the harmonic balance (HB) method to free-running oscillators is difficult
since the oscillation frequency is not known beforehand. Different approaches to
oscillator analysis have been studied in [1] and [2]. One common way to solve free-
running oscillator problems with the HB method is to use single, multiple, or multi-
harmonic probes [3].

In the APLAC circuit simulator [4], the HB oscillator problem is solved
by optimization. The optimization variables are the probe voltage Vosc and the
oscillation frequency fosc, which are optimized to make the probe voltage Vosc equal
to the HB voltage across the probe element at the fundamental oscillation frequency
fosc.
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The user is required to set initial values for Vosc and fosc. A poor initial frequency
or amplitude value can lead to unsuccessful optimization or will at least require a
great number of optimization cycles to succeed [5]. Therefore, algorithms have been
developed to improve the user-defined initial values of oscillation frequency and
amplitude before optimization. Also, initialization of HB voltages for optimization
are presented.

2 Initialization of HB Analysis

Two separate methods were developed to enhance the initialization of HB analysis,
namely, an FFT-based method and a zero crossing method. Each method can be
used to initialize both the oscillation frequency and the oscillation amplitude of
the probe element [3]. In this section, the functionality and the algorithms used by
these methods are presented. Also, the use of initial oscillation probe pulse and
initialization of HB voltages to speed up the analysis and improve the convergence
are introduced.

2.1 Transient Analysis Set-Up

Both methods use data obtained from the transient analysis. The length of the
transient analysis is determined by two parameters: the initial oscillation frequency
fosc set by the user and its minimum value foscmin. The transient analysis is run by
default up to

tend D coeff

foscmin
C t0; (1)

where the default values of coeff and t0 are 1 and 5=fosc, respectively. These values
are the same that are used by default in the APLAC simulator when user requests
transient assisted HB simulation, that is a valid request also for other circuits than
oscillators. Both the zero crossing and the FFT methods use the data of transient
analysis when t0 � t � tend. The collected data is the transient voltage over the
probe element.

2.2 FFT-Based Oscillation Frequency Detection

After the transient analysis is run for the oscillator circuit to obtain the oscillation
waveform, a Fourier transform is utilized to get the frequency-domain spectrum of
the oscillator. A spectral line having the largest magnitude gives an approximation
of the oscillation frequency. Depending on the sampling rate, the accurate oscillation
frequency may be situated between the sampled frequency points. Therefore,
parabolic interpolation with three frequency points (at the location of the maximum
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Fig. 1 Example of parabolic interpolation of frequency. Fosc indicates the correct oscillation
frequency. Fapprox is the frequency estimated by the interpolation

and at two neighboring points) is used to determine a more accurate estimate for the
oscillation frequency

fosc D imax C d
�t �NFFT

; (2)

where �t is the time between analyzed points, NFFT is the number of FFT points,
imax is the index of the spectral line having the largest magnitude, and d specifies
how far the accurate maximum is from imax. The value of d is interpolated as follows

d D 1

2
� Vmax�1 � VmaxC1
Vmax�1 � 2 � Vmax C VmaxC1

; (3)

where Vmax and Vmax˙1 are the spectrum values nearest to the detected maximum.
Figure 1 presents an example of the interpolation. The vertical line is the

correct oscillation frequency (10.01MHz in Fig. 1), and the parabolic interpolation
estimates 9.88MHz.

2.3 Oscillation Frequency Detection From Transient Zero Level
Crossings

Similar to the FFT-based frequency detection, this method uses data obtained from
the transient simulation. The DC voltage level is found from the time-domain
response as the average of analyzed points starting from t0. Next, the DC value is
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Fig. 2 Example of linear interpolation. The points used for interpolation are indicated by the
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removed from the response and the period is determined from the zero crossings
in the waveform. Accuracy of the zero crossings is improved by using linear
interpolation.

An example of the linear interpolation is in Fig. 2. The horizontal line is the DC
level, the x-markers connected with lines show the points used for interpolation.

2.4 Estimation of the Voltage Probe Amplitude

The amplitude of the voltage probe Vosc can be estimated from the transient analysis.
When the FFT-based method is used, the new value for the probe voltage Vosc is

the spectrum peak value. From the transient waveform, the voltage can be computed
as follows: Vosc D .Vmax � Vmin/=2, where Vmax and Vmin are the minimum and
maximum values, respectively, of the transient waveform.

For some oscillators, the time interval of the transient analysis may not be
long enough to start the oscillator properly. Therefore, the oscillation amplitude
is typically only a fraction of the correct one. Because of this, both algorithms can
optionally use an adaptive Vosc estimation. In this case, the amplitude from transient
analysis Vamp is compared to Vosc;init, the initial value of Vosc given by user. If the
amplitude obtained from the transient analysis is too small, the analysis is continued
until it is large enough. The condition Vamp > ��Vosc;init, where � is a predefined limit,
determines this. If the required amplitude is not reached in a reasonable amount of
transient analysis time, the user-specified Vosc;init is used.
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2.5 Initialization of HB Voltages

In order to improve the convergence of the HB analysis at the first point of
optimization, the spectral voltages of every node can be initialized from the transient
data to correspond to the estimated oscillation frequency fosc. In this case, the
transient analysis is continued by one period of fosc and the voltage waveforms
for each node are stored. From these voltages, FFT is used to calculate the spectral
voltages which are then written to a separate file called guess file. If this optional
guess file is omitted, the HB voltages are initialized to DC voltages.

2.6 Oscillator Probe Element Pulse

As stated before, some oscillators may start oscillating rather slowly. In order to
accelerate the start-up of the oscillator, the oscillator probe element can inject a
smooth and short sinusoidal pulse to the oscillator in the beginning of the transient
analysis. The pulse was selected so that its value at t D 0 and t D t2 (end of the
pulse) is zero. The value of this voltage pulse is

v D

8̂
<̂
ˆ̂:

Vosc � .t=t1/ cos.2�fosct/; when t � t1
Vosc cos.2�fosct/; when t1 < t � t2
0; when t > t2;

where t1 D 1=.4fosc/ and t2 D 3=.4fosc/. The variables fosc and Vosc have the user-
defined initial values. As the shape of the pulse is determined by the user-specified
value of fosc, the transient simulation response would be too deterministic if the
shape of the pulse would have been pure sinusoidal. The waveform of the pulse is
presented in Fig. 3 when fosc D 1GHz and Vosc D 1V.

3 Implementation

The algorithms have been implemented in the APLAC simulator. Two different
frequency estimation methods, FFT and zero crossing (ZeroC), can be chosen, and
four different initialization modes presented in Table 1 have been implemented.

The user has to insert the voltage probe element into the circuit and has to specify
the initial value for its amplitude. Also, the oscillation frequency and optionally its
lower and upper boundaries have to be defined. The length of the transient analysis is
determined from the boundaries. The optimization method used can be chosen from
APLAC’s existing optimization methods [4], the most common being MinMax,
NelderMead and Gradient methods.
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Fig. 3 Oscillator probe element pulse waveform

4 Results

Both methods have been tested with four oscillator circuits, namely, colpitts,
VCO, pierce, and VHF oscillators. Several test setups were used in the testing.
Characteristic results for the number of HB iterations and speedups compared to
the default oscillator analyzing method are presented in Figs. 4 and 5. These tests
were done with initialization mode 2 of Table 1. The corresponding test setups are
in Table 2.

5 Conclusion

In general, both methods, the FFT method and the zero-crossing method, provide
estimated initial values that improve the performance of the oscillator optimization
analysis. Optimization methods are, however, quite sensitive to the initial values,
and depending on the values of analysis and/or optimization parameters, the
optimization algorithm does not always benefit for the improved initial values. There
is also large variation in the behaviour between optimization methods MinMax
and NelderMead, partly due to the internal differences of these methods. In some
cases, regardless of good initial values, the optimization may end up in some
local minimum or, for some algorithm-specific reason, get driven in completely
wrong direction. This results in smaller speedups and a greater occurrence of poor
convergence when selecting the unfit method.
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Fig. 4 HB iterations compared to the default oscillator method. Pulse indicates the use of the
initial pulse

Fig. 5 Speedups compared to the default oscillator method. Pulse indicates the use of the initial
pulse
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Table 1 Initialization modes. ‘gfile’ indicates the usage
of the guess file

HBOSCGUESS Variables initalized

0 fosc

1 fosc, gfile
2 fosc, Vosc, gfile
3 fosc, Vosc

Table 2 Test setups for Figs. 4 and 5

Circuit fosc Vosc Vosc Optimization t0 FFT
Initial Initial Limits method points

Colpitts 16 MHz 1.0 [0.01, 100] MinMax 5/fosc 128
VCO 1 GHz 1.0 [0.01, 100] MinMax 5/fosc 128
Pierce 300 kHz 1.0 [0.01, 100] MinMax 5/fosc 128
VHF 100 MHz 0.1 [0.01, 100] MinMax 5/fosc 128

As a result of the several simulations used for testing these methods, it can be
stated that the methods do not necessarily reduce the total simulation time. The
more important outcome is that they improve convergence and simulator robustness,
which greatly improves the quality of the HB based oscillator analysis and makes it
possible for the designer to obtain good results with less accurate initial values.

In conclusion, two methods to initialize the HB oscillator analysis, i.e., the esti-
mation of the oscillation frequency and voltage, were developed and implemented
into the APLAC simulator. The methods were tested on four real-life oscillator
circuits and the results were good. Further research and development of the methods
is also possible after more feedback based on real design problems is received.
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Robust Periodic Steady State Analysis
of Autonomous Oscillators Based on
Generalized Eigenvalues
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and A. Abdipour

Abstract In this paper, we present a new gauge technique for the Newton Raphson
method to solve the periodic steady state (PSS) analysis of free-running oscillators
in the time domain. To find the frequency a new equation is added to the system
of equations. Our equation combines a generalized eigenvector with the time
derivative of the solution. It is dynamically updated within each Newton–Raphson
iteration. The method is applied to an analytic benchmark problem and to an LC
oscillator. It provides better convergence properties than when using the popular
phase-shift condition. It also does not need additional information about the
solution. The method can also easily be implemented within the Harmonic Balance
framework.
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1 Introduction

Designing an oscillator requires a Periodic-Steady State (PSS) analysis. The PSS
solution can be found by long time integration, starting from perturbing the DC-
solution. It is needed for phase noise analysis [2]. Time integration is robust (it
always works: the DC-solution is an unstable PSS solution), but the convergence can
be very slow. Therefore dedicated solution methods have been presented based in
time-domain, frequency-domain or by hybrid circuit-state representations [1,7,11].
In these methods the period T or the frequency f is an additional unknown. To
make the solution unique an additional equation, like a phase-shift condition, is
added [3, 5, 8]. The overall system of equations is solved by a Newton–Raphson
method that needs initial estimates for the solution as well as for T (or f ).
This paper presents a Newton–Raphson based method with a dynamic additional
condition to find the PSS solution of a free-running oscillator in the time domain.
Here generalized eigenvectors of the linearized circuit equations and the time
derivative at each time step provide a new robust gauge equation for the Newton–
Raphson equations. The method is applied to an analytic benchmark problem and
to an LC oscillator. The efficiency of the method is verified through numerical
experiments. It provides better convergence properties than when using the popular
phase-shift condition. It also does not need additional information about the
solution.

2 The Autonomous Oscillator Problem

The PSS problem for autonomous circuits on one overall period T is defined as a
system of Differential-Algebraic Equations (DAEs) in the following form,

dq.x/
dt
C j.x/ D 0 2 R

n; (1)

x.0/ D x.T /; (2)

where x D x.t/ 2 R
n and T are unknown; q and j are known functions of x.

In the above autonomous circuit, there is a non-trivial PSS solution in the absence
of sources. Here the period T (or the frequency f D 1=T ) is unknown and is
determined by the system. By transforming the simulation time interval Œ0; T � to the
standard interval Œ0; 1�, f enters the above equations as a parameter

f
dq.x/

dt
C j.x/ D 0: (3)

Taking f as extra unknown, we need an extra equation to complete the system.
Usually one requires the additional constraint condition

cT x.tc/ � c D 0; (4)
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to provide a non-zero value for some vector c which makes the phase-shift unique.
For instance, one provides the value of a particular coordinate of x at some time tc .

3 Newton Procedure

We discretize Œ0; 1� using equidistant time points ti D i �t for i D 0; : : : ; N

with N �t D 1. Thus, t0 D 0, tN D 1. Let xi approximate x.ti / and X D�
x0 � � � xN�1

�T
. We discretize (3) by applying Simpson’s Rule on the (overlapping)

sub-intervals Œti�1; tiC1�, for i D 1; : : : ; N , yielding

Fi .X; f / D f q.xiC1/� q.xi�1/
2�t

C j.xi�1/C 4 j.xi /C j.xiC1/
6

; i D 1; : : : ; N:
(5)

For i D N � 1 and i D N we apply the periodicity constraint xN D x0 and
xNC1 D x1. Let tc D tk0 for some k0 and redefine c to apply to X. We write
qi D q.xi / and similarly for ji . The Newton–Raphson method to solve the discrete
systems becomes

Mk

�
XkC1 �Xk

f kC1 � f k

�
D �

�
F.Xk; f k/

cTXk � c
�
; (6)

in which Xk D �xk0 � � � xkN�1
�T

and

F.X; f / D

2
6664

f q2�q0
2�t
C j0C4 j1Cj2

6
:::

f q0�qN�2

2�t
C jN�2C4 jN�1Cj0

6

f q1�qN�1

2�t
C jN�1C4 jNCj1

6

3
7775; Mk D

�
Ak bk

cT ı

�
: (7)

Here

Ak D @F
@x

ˇ̌
ˇ̌
Xk;f k

D f k � Ck CGk; bk D @F
@f

ˇ̌
ˇ̌
Xk ;f k

; (8)

for suitable matrices C and G, that are composed by the local Jacobians Ci D
@q
@x

ˇ̌
ˇ
xDxi

and Gi D @j
@x

ˇ̌
ˇ
xDxi

and the discretization step size,

C D 1

2�t

2
6666664

�C0 0 C2 � � � 0
0 �C1 0 C3 � � � 0
:
:
:

: : :
: : :

: : :
:
:
:

C0 � � � 0 �CN�2 0
0 C1 � � � 0 0 �CN�1

3
7777775
; G D 1

6

2
6666664

G0 4G1 G2 0 � � � 0
0 G1 4G2 G3 � � � 0
:
:
:

: : :
: : :

: : :
:
:
:

G0 � � � 0 GN�2 4GN�1

4G0 G1 � � � 0 0 GN�1

3
7777775
:

(9)
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Usually ı D 0 in (7). The matrix A becomes badly conditioned when the Newton
iterands converge. This is due to the fact that the time derivative of the PSS solution
solves the linearized homogeneous circuit equations when linearized at the PSS
solution. Hence when the discretization is exact this time derivative of the ultimate
PSS is in the kernel of A. Due to this conditioning problem the vectors b and c and
(scalar) value ı are really needed to make the matrix M non-singular (otherwise one
could use a Schur complement approach). b must have non-trivial components in
Ker.A/ and in Ker.AT /, both. A similar statement holds for c. Hence Ker.A/ 6?
Ker.AT /.

4 Bordered Matrices

Theorem 1. Let AC be the Moore–Penrose inverse of A [6]. Define g, h, u, v, ˛ by

g D ACb; h D c�AC (least squares approximations),

u D .I �A AC/b; v D c�.I �ACA/ (projection errors) ;

˛ D ı � c�ACb:

Then g, h, u and v satisfy

AC u D 0; v AC D 0;

uC A D 0; A vC D 0; Œ.uC/T 2 Ker.AT /; vC 2 Ker.A/�;

h AC v D c�; A gC u D b;

v g D 0; h u D 0;

h A AC D h; ACA g D g; h A g D ı � ˛:

We are now able to derive more detailed expressions for the generalized inverse of
a bordered matrix. See also [2, 3] and [4, 9] for cases where u D 0 or v D 0.

Theorem 2. Let

M D
�

A b
c� ı

�
; QM D

�
A u
v ˛

�
: (10)

Assume u ¤ 0 and v ¤ 0, then

MC D
�

AC � g uC � vC h� ı vCuC vC
uC 0

�
; QMC D

�
AC � ˛ vCuC vC

uC 0

�
:

(11)

The expression for QMC follows by checking the Moore-Penrose conditions [6]. For
MC we note that, when ı D ˛ C c�g,
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M D
�

I 0
h 1

�
QM
�

I g
0 1

�
:

Hence

MC D
�

I �g
0 1

�
QMC

�
I 0

�h 1

�
:

Let Ker.A/ D hai, Ker.AT / D haT i (a and aT unit vectors) and let b 2 haT i and
c 2 hai. Then the most simple expressions appear because g D 0, h D 0, u D b,
v D c�. Furthermore, there also is robustness in the sense that if we have other
choices then the bordered matrix may still be non-singular. Note that the lower right
entries in MC and QMC are zero (which may not happen for M or QM).
For the bordered matrix Mk in (7) the choice of bk comes from the partial
differentiation with respect to the chosen additional unknown f . The choice of c
depends on the “gauge” equation that we add to the system. The matrix A is a
matrix pencil, hence a choice for a generalized (kernel) eigenvector is best here.
As equation we prefer the bi-orthogonality equation. This prevents all problems
with determining the location of the oscillation and the range of values of the PSS
solution.

5 Using Generalized Eigenvalue Methods

A proper dynamic expression within the loops for the vector c can increase the
convergence rate of the Newton method. Generalized eigenvalue methods for matrix
pencils are good candidates for obtaining a dynamic vector c to make M non-
singular. Applying these methods in each Newton iteration gives the eigentriples
.v;w; �/ such that Œ�f CCG�v D 0 and wT Œ�f CCG� D 0. Generalized eigenvalue
methods are provided by the DPA (Dominant Pole Algorithm) and RQI (Raleigh
Quotient Iteration) [10]. Here a combination of these methods (SARQI) is used to
obtain a good accuracy and convergence rate.
The v and w have a bi-orthogonality relation with the matrix C, wTCv D 1. In
Sect. 3 we observed that in the limit when the Newton approximations are close to
the exact solution, the right-hand side eigenvector v for the � closest to 1 is close to
dX=dt (up to a normalisation factor). Hence by approximating the bi-orthogonality
relation by

wT � C � dX
dt

ˇ̌
ˇ̌
XDXk

� 1 D 0: (12)

we obtain a good choice for a dynamic gauge equation within each iteration of the
Newton method. To write (12) even in the form cT X � c D 0, we express dX=dt
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into X. Spectral differentiation [12] provides dX=dt D D � X with good accuracy
using some matrix D. This results in a choice cT D wT � C � D and c D 1.
We observe that we always can compare v with dX=dt for convergence. We may
even consider cT D vT . Additionally we can compare �fold with f . We finally note
that spectral differentiation easily fits Harmonic Balance implementations.

6 Analytic Benchmark Oscillator

As an example, consider the analytic benchmark problem [7],

dy

dt
D zC "

�
1 �py2 C z2

�
y;

dz

dt
D �y C "

�
1 �py2 C z2

�
z:

(13)

The fact that we can tune convergence speed with " makes this particular problem
a suitable benchmark problem. For all " the exact PSS solution of this problem is
y.t/ D sin.t � tc/, z.t/ D cos.t � tc/, where tc is some constant phase shift. The
period T D 2� . By defining r2 D y2 C z2, the system of equations (13) can be
written in the form of (1),

x D
�
y.t/

z.t/

�
; q D

�
y.t/

z.t/

�
; and j D

��" .1 � r/ y � z
�" .1 � r/ zC y

�
:

Starting with initial conditionsT0 D 2:2� , y0.t/ D 1:5 sin.tC�=4/, z0.t/ D cos.t/,
and N D 101 (100 actual time grid points), the PSS solution is obtained
using the old phase-shift condition method and the new eigenvector condition
method. Figure 1 shows the initial guess and the PSS solution of y.t/ for
both methods when " D 0:1. For both methods we determine the maximum
of the normalized correction of the solution and the normalized frequency
correction

�Xk
ˇ̌
Normalized D jjXkC1�Xkjj1=jjXkjj1; �f k

ˇ̌
Normalized D jf kC1�f kj=jf kj

during each k-th Newton–Raphson iteration; the results are presented in Fig. 2.
The better convergence behaviour of the new method is clearly observed. Although
the simulation time and memory usage of the old method with a good phase-shift
condition are smaller than that of the new method, the former method does not
converge without enough information about x (see the curves with a � mark).
Because of the observed robustness on the non-singularity of Mk (Sect. 4), one
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may stop the dynamic update of the gauge equation when the process starts
converging.

7 LC Oscillator

For many applications the free running oscillator can be modeled as an LC tank
with a nonlinear resistor that is governed by the following differential equations for
the unknowns v as the nodal voltage and i as the inductor current.

�
C 0

0 L

� �
v.t/
i.t/

�
C
�
1
R
1

0 �1
� �

v.t/
i.t/

�
C
�
S tanh.Gnv.t/

S
/

0

�
D 0 (14)

v.0/ D v0; i.0/ D i0: (15)

where C , L and R are the capacitance, inductance and resistance, respectively.
The voltage controlled nonlinear resistor is defined by the S and Gn parameters.
For example, consider an oscillator designed for a frequency of 6 GH z with
L D 0:53 nH , C D 1:33 pF ,R D 250 ˝ , S D 1=R , andGn D �1:1=R. Starting
with initial conditions T0 D 2:2� , v0.t/ D sin.t/, i0.t/ D 0:2 sin.t/, and N D 101
(100 actual grid points), the PSS solutions are obtained using the old phase-shift
condition method and with the new eigenvector gauge method. The comparisons of
the methods using the maximum of the normalized correction and the normalized
frequency correction with respect to the iteration number k are presented in Fig. 3
showing similar improvement as in the previous example.
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Fig. 1 Initial guess and PSS solution of y.t/ for different methods when " D 0:1
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Fig. 2 Maximum of the normalized correction and normalized frequency correction for each
iteration when " D 0:1 for different methods

8 Conclusion

A new time-domain technique for the Newton–Raphson simulation of a free-running
oscillator was presented. The generalized eigenvectors for the eigenvalue closest to
1 and the time derivative of the solution provide a robust gauge equation that is
dynamically updated within each Newton–Raphson iteration. It was verified that
the new method has better convergence properties compared to the popular phase-
shift condition method and does not need additional information about the solution.
The gauge equation also easily fits a Harmonic Balance environment.
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Mutual Injection Locking of Oscillators
under Parasitic Couplings

M.M. Gourary, S.G. Rusakov, S.L. Ulyanov, and M.M. Zharov

Abstract The method to analyze the mutual injection locking of weakly coupled
arbitrary oscillators is proposed. The couplings are defined by frequency-dependent
admittance matrices. The algebraic system with respect to phases and common
locking frequency is derived. For two oscillators the system is transformed to
the single phase equation and explicit expression for the locking frequency. The
accuracy comparison with SPICE simulation is presented.

1 Introduction

The analysis of coupled oscillators by SPICE simulation requires too high com-
putational efforts, so some approaches based on the phase macromodels were
proposed. In particular, the time-domain simulation with nonlinear phase macro-
model [1, 2] provides the evaluation of locking, pulling and transient effects in
coupled oscillators and PLLs. The more effective analysis of pure locking effects
can be performed using steady-state phase equations of locked oscillators. These
methods were applied both to the case when locked oscillators provide required
functional properties of the design [3,4] and to the analysis of the undesirable mutual
injection locking due to parasitic couplings in integrated circuits [5, 6]. However,
proposed methods suffer from the lack of generality that is especially important for
the analysis of parasitic locking. The following shortcoming can be pointed out:

– The published methods are directed to sinusoidal and/or weakly nonlinear
oscillators but parasitic locking can occur between any types of oscillators.

– The interactions are usually defined by constant transfer factors from the output
voltage of one oscillator to the injected current of another one. This allows
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to describe resistive couplings [6] but cannot capture couplings represented
by linear networks with frequency-dependent transfer functions (e.g., induc-
tances/capacitances or ground/supply couplings).

In this paper we propose a new method that eliminates the above mentioned
limitations.

2 Injection Locking of the Oscillator under
External Excitation

The analysis is based on the phase equation derived in [7,8] for an arbitrary oscillator
under small excitation. The oscillator fundamental !0 is assumed to be close to the
excitation frequency ! D !0 C�!. The equation is represented in the form [7]

.! � !0/=!0 D W.B; �/ : (1)

where � is the locking phase, B is the harmonic balance (HB) excitation vector,

W.B; �/ 	 1

2

KX
kD�K

LX
lD1

BklVkl exp.�jk�/ ; (2)

V is the perturbation projection vector (PPV) [1, 2] of the oscillator, l is a nodal
index, k is a harmonic index. Because double-sided Fourier series is used the factor
1/2 appears in (2).
W.B; �/ is a 2� periodic function and its maximal (Wmax) and minimal (Wmin)

values for 0 � � < 2� define the oscillator locking range

Wmin � .! � !0/=!0 � Wmax : (3)

For excitation frequencies within the locking range (3) there are at least two solu-
tions (Fig. 1a). The stable solution corresponds to the phase with d

d�
W.B; �/ < 0

[9]. The locking region in the plane injection magnitude (jBj) vs. frequency offset
(�!) is known as Arnold’s tongue (Fig. 1b).

In integrated circuits injection currents B can be induced by periodic nodal
voltages of some circuit device if there exists a parasitic interconnection between the
oscillator nodes and the excitation nodes. We assume that the interconnection can
be represented by a linear network with admittance matrix Y.!/. The entries of the
matrix are sufficiently small to provide the small-signal assumption in the derivation
of (1) and to neglect input impedances of the oscillator. Hence the excitation vector
B presented as a function of ! is defined as

Bkl .!/ DPM
mD1 Ylm.k!/Xkm or B.!/ D QY.!/X ; (4)
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Fig. 1 Locking range and solutions of phase equation (a); Arnold’s tongue (b), computed by (3)
(theoretical) and by SPICE simulation (simulated)

where X is the HB vector of the nodal voltages, m are indexes of the excitation
nodes, QY.!/ is the HB block-diagonal matrix with blocks Y.k!/.

Equation (1) is obtained by the linearization of full oscillator equations, and its
error is evaluated as the second order value:

�!=!0 �W.B; �/ D O.jjBjj2/ D O.�!2/ : (5)

Therefore we can perform transformations of (1) within the accuracy order (5).
Particularly the denominator !0 in the left hand side of (1) can be replaced by ! C
O.�!/ because

�!=.!0 CO.�!// D �!=!0 CO.�!2/ : (6)

Similarly injection currents (4) can be evaluated under frequency !0 C O.�!/
instead of ! due to

B.! CO.�!// � B.!/ D . QY.! CO.�!// � QY.!//X � d

d!
QY.!/ � X ��!

D O. QY.!/ � X ��!// D O.jjB.!/�!jj/ D O.�!2/ ; (7)

and the linearity of W.B; �/ (2) with respect to B. The derivation of (7) is based on
the following estimations: O.jj d

d!
QY.!/jj/ D O.jj QY.!/jj/ is obtained by assuming

Y.!/ to satisfy Lipschitz condition;O.jjB.!/jj/ D O.�!/ is resulted from (1).
Known methods based on steady-state phase equations [3–5] use the Adler

equation representing a special case of (1) for weakly-nonlinear LC oscillators [9].
Methods [1, 2, 6] use the nonlinear phase equation [10] which is based on Floquet
theory for the linearized ODE system and also provides the accuracy order similar
to (5). Thus using (1) allows us to develop the approach that provides for arbitrary
oscillators the same accuracy as the methods [3–6] meant for sinusoidal oscillators
only.
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One can apply (4), (7) to obtain a new value !self
0 of the fundamental after

connecting small admittances Yself to the oscillator. Such a circuit can also be
considered as the initial oscillator excited by its own periodic steady-state (PSS)
harmonics X0. The ambiguous phase of the self-locking oscillator can be fixed by
setting � D 0. Then the substitution (4) into (1) results in the nonlinear equation
for !self

0

.!self
0 � !0/=!0 D W. QYself.!self

0 /X0; 0/ : (8)

Due to (7) !self
0 in the right hand side of (8) can be replaced by!0 within the error

order (5), and the obtained linear equation can be explicitly solved. The self-locking
deviation of the fundamental (�!self D !self

0 � !0) is represented by the expression

�!self D !0W. QYself.!0/X0; 0/ D !0VT QYself.!0/X0 ; (9)

where the superscript T denotes vector transpose.

3 Phase Equations for Mutually Locked Oscillators

Here we consider n oscillators with close fundamentals !i and known PPV Vi . The
effect of the waveforms Xj of j th oscillator on the excitation currents of the i th
one is defined by the admittance matrix Yij .!/. If all oscillators are locked with the
common frequency ! and phases �i then we write (1) for i th oscillator as follows

! � !i
!i

D
nX

jD1
W i . QYij .!/Xj ; �i � �j / : (10)

Here W i is the function (2) with PPV Vi . The set of locked oscillators produces
free-running oscillations with arbitrary phase that can be fixed by setting �n D 0.
Thus (10) defines the system of nth order with n variables: !, �1,..., �n�1.

Diagonal terms (j D i ) in (10) W i. QYi i .!/Xi ; 0/ define the self-locking devi-
ation of the fundamental and can be excluded from (10) by substituting !i D
N!i � �!self

i into the numerator of the left hand side. Here �!self
i is defined by (9)

with !0 D !i , QYself D QYii. Then (10) is transformed to

.! � N!i /=!i DPj¤iW i . QYij .!/Xj ; �i � �j / : (11)

Taking into account accuracy considerations (5), (6) all denominators of the left
hand sides in (11) can be replaced by a common value assumed to be !1 for all i .
Due to (7) the same value can replace ! as the argument of admittance matrix. Then
denoting Bij D QYij .!1/Xj we obtain the system

.! � N!i /=!1 DPj¤iW i .Bij ; �i � �j / : (12)

Equation (12) is linear with respect to the locking frequency. Hence we can
eliminate ! and derive the system with respect to n � 1 phases �i .
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Specifically for two oscillators the system (12) contains equations

.! � N!1/=!1 D W 1.B1;2; �1/ ; .! � N!2/=!1 D W 2.B2;1;��1/ ; (13)

which yield the single phase equation (for � D �1)

. N!2 � N!1/=!1 D W 1.B1;2; �/�W 2.B2;1;��/ : (14)

Equation (14) can be numerically solved by sweeping 0 � � < 2� . After that
the locking frequency is obtained from (13) as

! D N!1 C !1W 1.B1;2; �/ : (15)

4 Dependencies on Coupling Factor

The interaction intensity of the oscillators can be characterized by the coupling
factor c which is defined as admittance multiplier: Y.!/ D c � y.!/, where y.!/ is
the admittance matrix under unit value of the coupling factor. Then functionsW i in
(13) are also linearly dependent on the factor:

W i.Bij ; �/ D c � wij .�/ ; (16)

where wij .�/ D W.Qyij .!1/ � X; �/.
Thus we can obtain the linear dependence of the self-coupling frequency

deviation (9) on the coupling factor

�!self
0 D c � ı!self

0 , where ı!self
0 D !0VT Qyself.!0/X0 : (17)

For two oscillators phase (14) can be transformed to

.!2 � !1/=!1 D c � wdiff.�/ ; (18)

where wdiff.�/ D w1;1.0/C w1;2.�/ � w2;1.�/ � w2;2.0/.
From (18) we can obtain the expression for the locking range with linear

dependence on the coupling factor

c � wdiff
min.�/ � .!2 � !1/=!1 � c � wdiff

max.�/ : (19)

The condition (19) is similar to (3), and the locking region in the plane coupling
factor vs. frequency offset (�!) has the form of Arnold’s tongue (Fig. 1b).

If (19) is satisfied then the solution of (18) at d
d�

wdiff.�/ < 0 defines an implicit
phase dependence on the coupling factor �.�!=c/, where �! D !2 � !1. This
dependence can be easily numerically evaluated. Then the dependence of locking
frequency on the coupling factor c and the discrepancy of fundamentals �! is
defined by the expression derived from (15)
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�!lock D c � .!1 � w1;2.�.�!=c//C ı!self
1 / ; (20)

where�!lock D !�!1 is the deviation of locking frequency from the fundamental
for the first oscillator.

Expressions (17), (19), (20) can be applied to analyze arbitrary oscillators after
PSS and PPV harmonics of each oscillator are obtained.

5 Experimental Results

We performed experiments for 3- and 5-stages CMOS ring oscillators (RO-3, RO-5).
Ring oscillators were used to illustrate the applicability of the proposed method to
nonsinusoidal oscillators. The oscillators PSSs were obtained by HB simulations,
and PPVs were determined by the method [10].

Locking frequencies evaluated by (17), (20) were compared with the results of
SPICE simulations. We suppose SPICE simulations results to be accurate ones
because we performed a number of simulations with decreasing tolerances until
the varying of results ceased. Thus the difference between computed and simulated
results is the error of (17), (20) due to neglecting of high order terms in (5)–(7).

Dependence (17) for self-coupled oscillator was verified by connecting grounded
capacitance C to the output node of RO-3. In this case the scalar admittance is
defined as Y self.!/ D �j! � C , where the minus sign is resulted from the inverse
direction of excitation current assumed in the derivation of (1) in [7]. Thus from
(17) we obtain the linear dependence of the self-coupling fundamental deviation on
the capacitance value. The comparison with simulated results is presented in Fig. 2

Fig. 2 Relative fundamental deviation (�f self D f self
0 �f0

f0
� 100%) of 3-stages ring oscillator due

to attached capacitance. Theoretical dependence is obtained by (17)
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Fig. 3 Mutually locked ring oscillators: RO-3 and RO-3 (a), RO-5 and RO-3 (b). Theoretical

dependencies of locking frequencies deviations (�f lock D f lock�f1
f1

� 100%) on the coupling

capacitance (C12) for various discrepancies of fundamentals (�f D f2�f1
f1
� 100%). The

dependencies are evaluated by (20)

where one can see the approximately squared relationship between the error and the
fundamental deviation in accordance with (5).

Dependencies (20) of locking frequencies were examined for two 3-stages
CMOS ring oscillators coupled by the capacitance C12 between output nodes
(Fig. 3a). Mutual admittances are: Y 1;1.!/ D Y 2;2.!/ D �Y 1;2.!/ D �Y 2;1.!/ D
�j!C12. Similar dependencies for coupled 3- and 5-stages CMOS ring oscillators
are presented in Fig. 3b.

The comparisons with SPICE simulations for both cases are shown in Figs. 4, 5.
It is seen that the errors of computed curves increase under the growth of the
fundamentals deviation.
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Fig. 4 Two 3-stages CMOS ring oscillators. Theoretical and simulated dependencies of locking
frequency on the coupling capacitance (C12) for �f D 5% (a) and �f D 8% (b)

Our experiments also showed the decrease of the computational efforts (CPU
time) due to the proposed approach. SPICE simulation (one point in Figs. 4, 5)
requires about 20 s. The proposed approach requires two HB simulations to obtain
PSS and PPV for each oscillator (4 s). After that the evaluation of 20 parameterized
curves like in Fig. 3 (2000 points per curve) is performed within 1 s.

6 Conclusion

This paper has presented a method to evaluate the locking frequencies for arbitrary
oscillators weakly coupled by any linear interconnect networks. The method
provides the same accuracy order as known methods meant for sinusoidal oscillators
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Fig. 5 3- and 5- stages CMOS ring oscillators. Theoretical and simulated dependencies of locking
frequency on the coupling capacitance (C12) for �f D 3% (a) and �f D 5% (b)

only. For two oscillators the evaluation algorithm includes the solution of the first
order phase equation and the computation of explicit analytical expressions.
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Time Domain Simulation of Power Systems
with Different Time Scales

Valeriu Savcenco, Bertrand Haut, E. Jan W. ter Maten,
and Robert M.M. Mattheij

Abstract The time evolution of power systems is modeled by a system of differ-
ential and algebraic equations. The variables involved in the system may exhibit
different time scales. In standard numerical time integration methods the most active
variables impose the time step for the whole system. We present a strategy, which
allows the use of different, local time steps over the variables. The partitioning of the
components of the system in different classes of activity is performed automatically
and is based on the topology of the power system.

1 Introduction

Modeling of power systems results in large differential-algebraic systems. These
systems are built from the equations describing the network, the generators, the
voltage regulators, the speed governors and the dynamic shunt loads. All together
they form a non-linear system in semi-explicit form

y0 D f .t; y; z/ ; (1)

0 D g.t; y; z/ ;
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with initial values y.0/ D y0 and z.0/ D z0, such that g.t0; y0; z0/ D 0. It is
assumed that the matrix @g

@z is non singular and therefore system (1) has index
one.

Time domain simulation is an important application for the dynamic security
assessment of power systems [6]. The components involved in the systems are
known to exhibit a wide range of time scales. A voltage wave propagation due
to lightning lasts a few microseconds to milliseconds but a secondary frequency
control may have a time duration of several minutes. A particular situation requiring
numerical simulation is that a damaging event which occurs in one of the European
countries should not affect other countries. For such problems, the multirate time
stepping strategies can automatically detect strong local temporal activity and lead
to large speed-ups in the simulation time [2, 5, 7]. With such methods different
solution components can be integrated with different time steps.

2 Multirate Time Stepping

In this paper it will be assumed that the variables of the system (1) can be partitioned
into fast and slow

y D Œyfast ; yslow� and z D Œzfast ; zslow� : (2)

Our multirate time stepping strategy can be described as follows. For a given global
time step � D tn � tn�1, we first compute a tentative approximation at the time level
tn for the both fast and slow variables. We accept the computed numerical solution
for the slow components, while for the fast components the computation is redone
with smaller time steps. During this refinement computation the subsystem

y0fast D ffast .t; yfast ; zfast ; !/ ; (3)

0 D gfast .t; yfast ; zfast ; !/

is solved, where ! denotes the already computed values of the slow variables.
During the refinement stage, values at the intermediate time levels of the slow
components might be needed. These values can be obtained by interpolation.

The intervals Œtn�1; tn� are called time slabs. After each completed time slab
the solutions are synchronized. In our approach, these time slabs are automatically
generated, similar as in the single-rate approach, but without imposing temporal
accuracy constraints on all components.

An important issue in our strategy is to determine the size of the time slabs. These
could be taken large with a large multirate factor, or small with a lower multirate
factor. A decision can be made based on an estimate of the number of components
at which the solution needs to be calculated, including the overhead due to
coupling.



Time Domain Simulation of Power Systems with Different Time Scales 315

In this paper we consider two levels of activity: slow variables and fast variables.
One can also allow for more levels of activity. In this case, the desired accuracy
does not necessary have to be achieved during the first refinement. The refinement
can be continued until the error estimator is below a prescribed tolerance for all
components.

3 Mixed Adams-BDF Time Integration Method

As the basic time integration method we use the mixed Adams-BDF method
presented in [1]. The second-order Adams method is applied to the differential state
variables and provides a reliable detection of unstable situations. It is symmetrically
A-stable (the domain of stability coincides with the left complex half-plane) and
thus does not suffer from the hyper stability. The second-order BDF method is
used for the algebraic state variables, since it less sensitive to the variations in
the algebraic equations than the Adams method. Detailed description and the
coefficients for both methods can be found in [3].

3.1 Interpolation

For given approximations wn�1 � w.tn�1/ and wn � w.tn/ for the solution vector
w D Œy; z�, the multirate schemes can require an intermediate value wI .tn�1C� / �
w.tn�1 C ��/ for 0 < � < 1. This can be calculated by using linear or quadratic
interpolation.

For the linear interpolation we use the values of wn�1 and wn

wI .tn�1C� / D .1 � �/wn�1 C �wn : (4)

For the quadratic interpolation we use the values of wn�1, wn, w0n�1 and w0n

wI .tn�1C� / D ˛1wn�1 C ˛2wn C �.ˇ1w0n�1 C ˇ2w0n/ (5)

with

˛1 D 1 � �2 C 2; ˛2 D �2 � 2; ˇ1 D � � �2 C ; ˇ2 D  ; (6)

where  is a free parameter satisfying the condition � 1
2
�  � 1

2
�2 � 0.

Particular cases are forward quadratic interpolation ( D 0) and backward quadratic
interpolation ( D �2 � �).
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4 Partitioning Strategy

Partitioning of the variables in slow and fast can be fixed and given in advance, or it
can vary in time and should be performed automatically during the time integration
process.

In this section we present a strategy for automatic partitioning of the differential
and algebraic variables. This strategy is based on the local time variation of the
numerical solution of the system and on the topology of the power system.

A power system can be usually decomposed in two parts:

• A large network which consists of a set of nodes (each node introducing two
variables) connected by a set of branches (lines, cables and transformers)

• A set of components (synchronous machines, motors, loads. . . ) which are usually
connected to a particular node.

This particular structure can be used to derive a dedicated partitioning strategy.
We first perform a single step with step size � and using an error estimator we

determine the variables which do not satisfy the criterion

ei < Tol; (7)

where ei is the estimated local error for the variable i and Tol is a given tolerance.
These variables will be called fast. The local error vector e is computed as the
difference between the corrected solution and the predicted solution.

To allow for accurate computation of the fast variables, during the refinement
stage, we also recompute the slow variables which are strongly coupled to the fast
ones. The propagation of the fast status is performed as follows:

1. All the components which contain at least one fast variable are classified as fast.
2. All the nodes which contain at least one fast variable are classified as fast.
3. The connection node of a fast component is classified as fast.
4. The fast status of the nodes is then propagated through the network:

(a) The graph G is defined as follows:

• A node in G is defined for each electrical node;
• An edge is defined between two nodes of G if there exists at least one

branch linking the two corresponding electrical nodes;
• A weight representing an “electrical distance” will be associated to each

edge of G. Let us denote by C1 and C2 the two 2 � 2 sub-matrices of the
admittance matrix coupling the pairs of variables associated nodes 1 and
2. The weight between node 1 and 2 is defined as

l12 D min

�
1

kC1k1 ;
1

kC2k1
�

(8)
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where
kCk1 D max jCij j:

(b) Each node at a distance less than a given parameter tolG from a fast node is
classified as fast.

5. All the variables belonging to a fast node or a fast component are classified as
fast and will therefore be updated during the refining phase.

The creation of a table containing, for each node, the list of strongly connected
nodes can be efficiently (through a modified Dijkstra algorithm and a parallel
implementation) performed off-line before the start of the simulation. With this off-
line preparation, the cost of the above partitioning is almost negligible during the
simulation.

5 Numerical Experiments

In this section we present numerical results for two test problems. For the results
reported here we used quadratic interpolation to obtain missing component values.
Linear interpolation was also tried and the results were nearly identical; this simply
indicates that the interpolation errors are not significant in these tests.

The computational costs are presented in terms of number of function evalua-
tions, number of Jacobian evaluations and number of Newton iterations. We estimate
the total computation cost by means of formula

C D 1:2 � 10�7NFuncEval C 7:2 � 10�7NJacEval

C5 � 10�7NLUFactor C 5 � 10�8NNewton :

Here the coefficients represent the reference costs and are based on the benchmarks
in a particular software package.

5.1 A Chain Test Problem

For our first test problem we consider a power system composed of a chain of
100 small subsystems connected by very long lines. Each subsystem comprises a
generator and the corresponding controllers modeled by 30 equations, a step-up
transformer and an impedant load. A schematic illustration of the chain is presented
in Fig. 1. The resulting system contains 4970 variables, 3089 of which are algebraic.

A short-circuit of 100 ms is performed at the first high voltage busbar. During
the very first second, this event strongly affects the beginning of the chain while
the rest of the system remains more or less constant. The impact of the short-circuit
propagates to the neighboring subsystems while being progressively damped.
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GEN01 GEN02 GEN03

Fig. 1 Chain of 100 subsystems

Table 1 Errors and computational costs for the chain problem

Single-rate Multirate

jjerrorjj1 7:64 � 10�2 5:28 � 10�2

jjerrorjj2 4:22 � 10�5 4:22 � 10�5

NFuncEval 184326 47102

NJacEval 11892 15355

NNewton 184326 47102

C 0:045 0:026

Table 1 shows the number of function evaluations, number of Jacobian eval-
uations, number of Newton iterations, estimated costs and the weighted L2- and
infinity-norm errors for the single-rate and multirate methods. From these results
it is seen that a substantial improvement in number of function evaluations is
obtained. For the single-rate method, the number of function evaluations is four
times larger. Moreover, the error behavior of the multirate scheme is very good.
The speed up in terms of estimated costs is smaller than the one based on the
number of function evaluations. This reduction in speed up is due to large number
of Jacobian evaluations. This is again visible from the results presented in the table.
An improvement of the local Jacobian evaluation within multirate time stepping is
needed.

Figure 2 shows the time points in which the solution for two variables, one fast
and one slow, were computed. It is seen that the time steps used for the fast variable
are much smaller than the ones used for the slow variable. The solution of the fast
variable on this interval is computed by 26 time steps, whereas only 5 time steps are
needed for the slow variable. In this simulation 70 fast variables were observed.

5.2 PEGASE Problem

As the second test we consider the PEGASE problem. This problem is a dedicated
test case constructed by the PEGASE consortium [4]. The system modeled is loosely
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Fig. 2 Solution for two components
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Fig. 3 Time evolution of one fast and one slow variable

inspired from the European transmission grid in terms of size (number of branches,
nodes, generators, loads), topology and type of units (nuclear, hydro, TGV). The
problem is modeled by a DAE system with 123463 variables, of which 50235 are
algebraic.

We solve this problem on the time interval 0 < t < T D 10:1. A short-circuit is
performed in the southern Italy during the last 0.1 s of simulation time. We expect
that this event will only have a local impact and hence, multirate method will be
able to exploit this difference in the time scales.

Figure 3 shows the time points in which the solution for two variables, one fast
located in Italy and one slow located in Luxembourg, were computed during the
time interval when the short-circuit occurred. It is seen that the time steps used for
the fast variable are much smaller than the ones used for the slow variable. The
solution for the fast variable on this interval is computed by 15 time steps, whereas
only 2 time steps are needed for the slow variable.

Table 2 shows the number of function evaluations, number of Jacobian eval-
uations, number of Newton iterations, estimated costs and the weighted L2- and
infinity-norm errors (measured with respect to an accurate reference solution) for
the single-rate and multirate methods. From these results it is seen that a substantial
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Table 2 Errors and computational costs for the
PEGASE problem

Single-rate Multirate

jjerrorjj1 4:6 � 10�2 5:3 � 10�2

jjerrorjj2 1:3 � 10�4 1:3 � 10�4

NFuncEval 4938600 1363740

NJacEval 2592765 585950

NNewton 4938600 1363740

C 4:00 0:94

improvement in cost is obtained. For the single-rate method the estimated costs are
four times larger. Moreover, the error behavior of the multirate scheme is very good.

6 Conclusions

In this paper we presented a multirate time stepping strategy for systems of
differential and algebraic equations resulting from modeling of power systems.
The algorithm for dynamic partitioning of the components into slow and fast was
described. Numerical experiments confirmed that the efficiency of time integration
methods can be significantly improved by using large time steps for inactive
components, without sacrificing accuracy.
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Adaptive Wavelet-Based Method for Simulation
of Electronic Circuits

Kai Bittner and Emira Dautbegovic

Abstract In this paper we present an algorithm for analog simulation of electronic
circuits involving a spline Galerkin method with wavelet-based adaptive refinement.
Numerical tests show that a first algorithm prototype, build within a productively
used in-house circuit simulator, is completely able to meet and even surpass
the accuracy requirements and has a performance close to classical time-domain
simulation methods, with high potential for further improvement.

1 Introduction

Wavelet theory emerged during the twentieth century from the study of Calderon-
Zygmund operators in mathematics, the study of the theory of subband coding in
engineering and the study of renormalization group theory in physics. The common
foundation for the wavelet theory was laid down at the end of the 1980s and begin-
ning of the 1990s by work of Daubechies [1, 2], Morlet and Grossman [3], Donoho
[4], Coifman [5], Meyer [6], Mallat [7] and others. Today wavelet-based algorithms
are already in productive use in a broad range of applications [6–13], such as
image and signal compression (JPEG2000 standard, FBI fingerprints database),
speech recognition, numerical analysis (solving operator equations, boundary value
problems), stochastics, smoothing/denoising data, physics (molecular dynamics,
geophysics, turbulence), medicine (heart-rate and ECG analysis, DNA analysis) to
name just a few. Recent approaches [14–18] to the problem of multirate envelope
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simulation indicate that wavelets could also be used to address the qualitative
challenge by a development of novel wavelet-based circuit simulation techniques
capable of an efficient simulation of mixed analog-digital circuits [19].

The wavelet expansion of a function f is given as

f D
X
k2I

ck �k C
1X
jD0

X
k2�j

djk  jk: (1)

Here, j refers to a level of resolution, while k describes the localization in time
or space, i.e.,  jk is essentially supported in the neighborhood of a point xjk . The
wavelet expansion can be seen as coarse scale approximation

P
k2I ck �k by the

scaling functions �k complemented by detail information of increasing resolution j
in terms of the wavelets  jk .

In the classical theory wavelets are generated as translation and dilations of a
mother wavelet , i.e., jk.x/ D  .2�j x�k/. However, more general approaches
are often used, e.g., for the construction of wavelets on the interval [20] or wavelets
for finite element spaces [21]. In particular, non-uniform spline wavelets [22] will
be used in our wavelet-based circuit simulation technique.

Since a wavelet basis consist of an infinite number of wavelets, in practical
computations one has to consider approximations of f by partial sums of the
wavelet expansion (1). A simple approach is to fix a maximal wavelet level J and
approximate f by

fJ D
X
k2I

ck �k C
JX
jD0

X
k2�j

djk  jk: (2)

This approach is called linear approximation, since the approximation is determined
in the linear space of wavelets with level less or equal J . For wavelets of sufficient
regularity, one obtains error estimates of the form

kf � fJ kL2 � C 2�Js kf kW s
2
; (3)

with the Sobolev space W s
2 . However, approximation results as (3) hold also for

other approximation methods, e.g., for Fourier sums (see [23]).
The real approximation power of wavelets is due to their locality, which implies

that (3) holds also for small subintervals. Thus, a piecewise smooth function can be
essentially approximated by some coarse scale approximation with wavelets added
only at non-smooth parts to achieve a required accuracy. Doing this adaptively
for any given signal leads to the notion of best n-term approximation, where the
approximation is determined as linear combination of n arbitrarily chosen wavelets.
This results in an essentially improved approximation for a wide class of functions,
e.g., piecewise smooth function with isolated singularities. For details about this
adaptive, nonlinear approximation methods we refer to [23, 24]. Usually it is not
obvious which wavelets have to be chosen for optimal approximation results. In
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practice optimal wavelet representations can be determined by one of the two
complementary strategies: coarsening or refinement.

Coarsening is used if one has already a fine, highly accurate but expensive
approximation, e.g., from measurements. The goal is to throw away as much
information as possible, while introducing only a small error. For a wavelet
representation this can be achieved quite easily by thresholding, which means that
wavelets with small expansion coefficients are removed from the representations.
Inherent stability properties of wavelets ensure that this elimination of terms with
small coefficients does not add up to a significant error of the wavelet expansion. For
wavelets with good localization and approximation properties, one has many small
wavelet coefficients for piecewise smooth signals with few local singularities (e.g.,
sharp transients), which will result in an essential reduction of data for the coarsened
signal. A disadvantage of coarsening is that it might be too costly to acquire the fine
representation. In particular, for solving operator equations, as in circuit simulation,
the reason for using adaptive wavelet techniques is the reduction of computational
cost, which is thwarted by computing a non-adaptive solution in advance.

In contrast, the strategy of refinement is to start with coarse approximation
and introduce successively more and more degrees of freedom (e.g., wavelets) in
order to improve the approximation. However, since it is not known in advance,
where refinements are necessary, one has to rely on rough estimates. Therefore
it is reasonable to do the refinement in several steps. This allows to check the
previous steps, while acquiring more information for later steps. This approach is in
particular interesting for iterative methods, where the approximation is improved
in each iteration step and the number of degrees of freedom can be increased
accordingly.

2 An Adaptive Wavelet Galerkin Method

We consider circuit equations in the charge/flux oriented modified nodal analysis
(MNA) formulation, which yields a mathematical model in the form of an initial-
value problem of differential-algebraic equations (DAEs):

d

dt
q
	
x.t/


C f
	
x.t/


 � s.t/ D 0: (4)

Here x is the vector of node potentials and specific branch currents and q is the
vector of charges and fluxes. Vector f comprises static contributions, while s contains
the contributions of independent sources.

In our adaptive wavelet approach we first discretize the MNA equation (4) in
terms of the wavelet basis functions, by expanding x as a linear combination of
wavelets or related functions, i.e., x D Pn

kD0 ck 'k . For such x we integrate the
circuit equations against test functions
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Z T

0

� d
dt

q
	
x.t/


C f
	
x.t/


 � s.t/
�
�` dt D 0; (5)

for ` D 1; : : : ; n. Together with the initial conditions x.0/ D x0, we have now nC1
vector valued equations, which determine the coefficients ci provided that the test
functions �` are chosen suitably with respect to the basis functions 'i .

Due to the intrinsic properties of wavelets [19] nonlinear wavelet approximation
can provide an efficient representation of functions with steep transients, which
often appear in a mixed analog/digital electronic circuit. However, for an efficient
circuit simulation we have to take into account further properties of a wavelet
system. We consider spline wavelets to be the optimal choice since spline wavelets
are the only wavelets with an explicit formulation. This permits the fast computation
of function values, derivatives and integrals, which is essential for the efficient
numerical solution of a nonlinear problem as given in (4) (see also [25, 26]). Spline
wavelets have been already used for circuit simulation [27]. However, here we use
a completely new approach based on spline wavelets from [22].

With a good initial guess, Newton’s method is known to converge quadratically.
However, a good initial guess is usually not available. In practice we can often
obtain convergence only with a slow converging initial phase of damped Newton
steps, which will mainly contribute to the computational cost of the problem. On
the other hand, to get a good approximation of the solution of (4), the space
X D spanf'k W kD 0; : : : ; ng has to be sufficiently large and the computational
cost of each step depends on nD dimX . Our approach is to use adaptive wavelet
refinement during the Newton iteration, which leads to an efficient adaptive
representation and essentially reduced computation time.

3 Interval Splitting Method

A prototype of the proposed adaptive wavelet algorithm is implemented within the
framework of a productively used circuit simulator and tested on a variety of circuits.
In tests on some typical RF circuits (amplifier, mixer, oscillator), we were able to
reproduce the results from the transient analysis of the same circuit simulator up
to high accuracy (see [28]). For all these examples, the wavelet method used a
considerable smaller grid (i.e., larger stepsize) than the transient analysis, while the
computation time was higher but still close to the standard method. This shows that
there is a potential for wavelet methods in circuit simulation, if further optimization
can be achieved.

However, in further tests with a Schmitt trigger circuit (Fig. 1, [29]) convergence
could only be achieved with a highly accurate initial guess. This is of limited
practical value, since we can usually not provide an initial guess of such quality. We
identified inherit hysteresis of the Schmitt trigger as the main cause for this problem.
In circuits exhibiting hysteresis, certain input voltages can result in different output,
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Fig. 1 Schematics of
Schmitt trigger from [29]

depending on the previous behaviour of the input signal. With an insufficient
initial guess Newton’s method may approach locally the wrong result. This effect
was observed in a Harmonic Balance simulation too, where the solution is also
represented by a basis expansion over an entire period.

This convergence problem was successfully addressed by a further improvement
of the basic wavelet method based on an interval splitting mechanism. Basically the
wavelet method is applied to a series of smaller intervals when no convergence
is detected. This is an analogous approach to the reduction of the step size in
transient analysis if no convergence is encountered in the current time step. In order
to preserve continuity, the initial value for each interval is obtained from the wavelet
expansion of the solution on the previous interval. Furthermore, the interval size is
adapted after each successful step, aiming to keep the problem size for the wavelet
method in a nearly optimal range.

4 Numerical Tests

The interval splitting method was implemented as an enhancement to the basic
wavelet algorithm and tested on a variety of circuits. For all examples we have
compared the CPU time and the grid size (i.e., the number of spline knots or
time steps) with the corresponding results from transient analysis of the underlying
circuit simulator.

The error is estimated by comparison with well established high accuracy
transient analysis. The estimate shown in the signal is the maximal absolute
difference over all transient grid points, which gives a good approximation of the
maximal error. That is, if we can obtain a small error for the wavelet analysis, this
proves good agreement with the standard transient method. In particular, since we
compare the solutions of two independent methods we have very good evidence that
we approximate the solution of underlying DAE’s with the estimated error.
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Fig. 2 Input and output signal for the Schmitt trigger from wavelet analysis
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Fig. 3 Simulation results for the Schmitt trigger. Computation time versus error (left), and grid
size versus error (right) for transient analysis and adaptive wavelet analysis

Schmitt trigger. The first test circuit is the Schmitt trigger [29]. As can be seen
in Fig. 2 the output of the Schmitt trigger circuit signal jumps to a higher level if
the input exceeds an upper threshold and jumps back to low if the input falls below
a lower threshold. However, due to capacitances present in the transistor model the
jumps are slightly smoothed and delayed.

Inverter chain. A further test circuit was an inverter chain consisting of 9
inverters. Therefore, the output signal represents the 9-times inverted digital input
signal. However, we can observe a delay and a modification in the transition between
high and low signal due to intrinsic properties of used technology. Similar to the
hysteresis effect in the previous problem, the output depends strongly on the earlier
behaviour of the input signal, which again requires the use of the interval splitting
wavelet method to obtain the correct results (Fig. 4).

In both examples, the interval splitting wavelet method could produce the
correct results and thus we have achieved robustness for the wavelet-based
approach. The performance is comparable to transient analysis, although the current
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Fig. 5 Simulation results for the inverter chain. Computation time versus error (left), and grid size
versus error (right) for transient analysis and adaptive wavelet analysis

implementation is not faster than the reference method (Figs. 3 and 5). However,
we see a big potential for the improvement of the implemented method.

5 Conclusion

The results of the simulations indicate that the wavelet-based method is able to
fulfill all accuracy requirements and may achieve the performance of the standard
transient analysis. Since the relatively new wavelet approach has a large potential
for optimization, we are optimistic that wavelet analysis will be a valuable tool for
circuit simulation in the future. Therefore our activities on optimization and further
development of the wavelet-based algorithm are continuing.
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Modeling and Simulation of Organic Solar Cells

Carlo de Falco, Antonio Iacchetti, Maddalena Binda, Dario Natali,
Riccardo Sacco, and Maurizio Verri

Abstract A model for polymer Solar Cells is presented consisting of a system of
nonlinear diffusion-reaction PDEs with electrostatic convection, coupled to a kinetic
ODE. A proof of the existence of both stationary and transient solutions is given
and an algorithm for computing them is proposed and numerically validated by
comparison with experimentally measured data for a photovoltaic cell.

1 Organic Solar Cells

Third Generation solar cells [12] have recently received a lot of interest as a
viable choice for a low cost renewable energy source. Roughly speaking, 3G
photovoltaic devices can be divided into two main classes: electrochemical cells [11]
and organic cells (OSC) [15]. While the latter are the main topic of the present
contribution, some of the proposed analytical and numerical techniques can be
showed to be of use when dealing with the former as well. The simplest possible
structure for an organic-polymer based solar cell consists of a binary blend of
two materials, giving rise to a bulk heterojunction (BHJ), sandwiched between
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one transparent (e.g. indium-tin-oxide or fluorinated tin oxide) and one reflecting
metal contact (usually aluminum or silver). Absorbed photons produce electron-
hole pairs which, in contrast to what is usually the case in standard inorganic
semiconductors, have strong binding energy (0.1–0.4 eV typically) and a distance
in the sub-nanometer range. The two materials are chosen in order to display at
their interface an offset in energy levels suitable to exploit photoinduced electron
transfer phenomenon [21]: for pairs able to diffuse to the heterojunction before
recombination, electron(hole) transfer can spontaneously occur from the excited
donor(acceptor) molecule to an adjacent acceptor(donor) molecule provided that
this latter has suitably high(low) electron affinity (ionization potential). Thanks to
the built-in electrical field originating from the difference in metal Fermi levels, the
separated charges are driven to the contacts where they are harvested producing a
current. Model parameters of BHJs are difficult to characterize based on constituent
material properties only, therefore mathematical modeling and analysis as well
as numerical simulations can help fit their values by comparison to experimental
measurements.

The Mathematical Model

The blend is modeled by a homogeneous material filling a bounded domain ˝ 

R
d , d � 1, with a Lipschitz boundary� 	 @˝ divided into two disjoint subregions,

�D and�N , representing the interface between metal and polymer blend and interior
artificial boundaries, respectively. We assume that meas .�D/ > 0 and �D \ �N D
;, and denote by � the outward unit normal vector along � . Charge transport in the
device is governed by the set of continuity equations

( Pn �div .Dnrn � �nnr'/ D Gn � Rn n
Pp �div

	
Dprp C �p p r'
 D Gp � Rp p;

(1a)

to be solved in ˝T 	 ˝ � .0; T /. Using, from now on, the symbol � to indicate
either of n or p, G� are the carrier generation rates and R� � are the recombination
rates.D� being the charge carrier diffusion coefficients and�� the carrier mobilities.
The electrostatic potential ' satisfies the Poisson equation

� div."r'/ D q.p � n/ in ˝T : (1b)

We denote by X the volume density of geminate pairs and we express its rate of
change as

PX D g � r in ˝T : (1c)
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The geminate-pair generation and recombination rates in (1c) can be both split into
two contributions as

g D G.x; t/„ƒ‚…
(a)

C � p n„ƒ‚…
(b)

; r D kdissX„ƒ‚…
(c)

C krecX„ƒ‚…
(d)

; (2)

(a) accounting for the photo-generation rate, (b) accounting for the rate at which free
electrons and holes are attracted to each other and recombine, (c) accounting for the
rate at which free electrons and holes are produced by separation of a bound pair
and (d) accounting for the rate at which geminate pairs that are not split recombine.
The generation rates satisfy Gn D Gp D kdissX while for the recombination rates
Rnn D Rpp D �pn holds. Boundary conditions for carriers at the contacts can be
given the following Robin-type form

	� J� � � D ˇ� � ˛� � on �D � .0; T /; (3)

where J� are the (particle) current densities, 	� are non negative parameters while
ˇ� are the rates at which charges are injected into the device and ˛�� are the rates
at which electrons and holes recombine with their image charges at the contacts,
respectively. A physically sound characterization of the injection rates ˛� and ˇ� is
carried out in [7] where the classical theory of thermionic current flow at Schottky
contacts is extended to the case of a metal-organic interface. Reliable models for
the above parameters are, though, still subject of on-going debate and investigation
(see, e.g., [3]).

2 Analysis of the Model

We introduce the following (physically plausible) simplifying assumptions:

(H1) � , kdiss , krec and G are all positive constant quantities in ˝T ;
(H2) D� D Vth��, Vth being the thermal voltage and �� � ��0 > 0 a.e. in ˝T ;
(H3) vn; vp � vmax < C1 where v� WD ��jEj;
(H4) 	� D 0 and ˛�; ˇ� are functions of position only in (3).

Stationary Regime

Setting PX D 0 in (1c), we can eliminate the dependent variable X in favor of n, p
and of the input function G, so that the model unknowns are n, p and ' only. We
can then prove the following (see [9].)
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Theorem 1. Let assumptions (H1)–(H4) be satisfied and let .'D; nD; pD/ 2
.L1.�D//3 be the values of the electric potential and carrier concentrations on
�D . Then the model equations admit a weak solution .'�; n�; p�/ 2 .H1.˝/ \
L1.˝//3 and there exist positive constants M , M , K , K such that

M � n�; p� �M ; K � '� � K a.e. in ˝: (4)

Transient Regime

By approximating the integral form of (1c) as in [9], we can again eliminate the
dependent variable X in favor of n, p and of the given forcing term G and initial
conditionX0 so that the resulting model takes the form

8̂
<
:̂

�div."r'/ D q.p � n/
Pn � div .Dnrn � �nnr'/ D eGn � eRnn
Pp � div

	
Dprp C �p p r'
 D eGp � eRpp;

in ˝T (5)

Theorem 2. Let assumptions (H1)–(H4) be satisfied, and the initial data U WD
.n0; p0/, X0 and the function � (representing a lifting of the electric potential
boundary conditions) be such that U2 .H1.˝T / \ L1.˝T //

2, with U> 0, X0 2
L1.˝/ with X0 � 0, and � 2 H1.˝T / \ L1.˝T /. Then, setting u WD .n; p/,
system (5) admits a weak solution .';u/ such that:

1. u > 0 a.e. in ˝T ;
2. u.x; 0/ D U.x; 0/ and u �U 2 L2 .0; T IH0/

2;
3. u 2 	C.0; T IL2.˝//\ L1.˝T /


2
;

4.
@u
@t
2 L2.0; T IH 00/2;

5. ' � � 2 L2.0; T IH0/ with ' 2 L1.˝T /.

Numerical Discretization

To design an effective simulation algorithm, appropriate for accurately estimating
the OSC photocurrent in both stationary and transient regimes, we make use
of reliable numerical methods traditionally used for the spatial discretization of
inorganic semiconductor devices (see, e.g., [18] Chap. 6, Sect. 4) combined with
efficient time-step adaptation methods (see, e.g., [1, 13]). To this end, we first
carry out a temporal semi-discretization using an implicit multistep method where
the selection of the time increment is performed adaptively in such a way to
minimize the time discretization error while minimizing the total number of time
steps via the DAE solver software library DASPK [6, 19]. Then, the resulting
sequence of differential subproblems is linearized using the Newton–Raphson
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method with inexact evaluation of the Jacobian. Finally, we use exponentially fitted
finite elements for the spatial discretization, to ensure a stable approximation of the
internal and boundary layers arising in the distribution profile of the photogenerated
carriers [2,10,14,20]. The adopted formulation provides a natural multidimensional
extension of the classical Scharfetter-Gummel difference scheme [5,17] and ensures
that the computed carrier concentration is strictly positive under the condition that
the triangulation of the domain ˝ is of Delaunay type.

3 Experimental Setting and Numerical Validation

In this section, we describe the real device used for numerically validating the
simulation tool implementing the method described above, and then we illustrate
the obtained results by comparison with available measured data.

3.1 Description of the Device

The device chosen, schematically depicted in Fig. 1, is based on the bulk het-
erojunction of a squaraine molecule, acting as donor, and Phenyl-C61-Butyric-
Acid-Methyl-Ester (PCBM) acting as acceptor. We chose squaraine because they
are able to absorb also radiation in the 600–800 nm region: extension of the
absorption spectrum towards red region for organic light harvesting devices is
currently a subject of intense research. In particular, we exploited a hydrazone
end-capped symmetric squaraine provided with glycolic functionalization chains,
since this specific substitution pattern had been previously demonstrated to provide
the appropriate phase separation between the squaraine compound and PCBM

Vbias

Fig. 1 Schematic
representation of the vertical
BHJ simulated in Sect. 3
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when blended together. As far as the blend composition is concerned, we chose
a squaraine:PCBM 1:3 by weight ratio in order to get a reasonable balance between
hole and electron mobilities [4]. The chosen device geometry was vertical, with
the active material sandwiched between a bottom transparent ITO electrode coated
with PEDOT:PSS (Clevios P VP AI 4083) and a top evaporated aluminum one;
device area was about 4 mm2. PEDOT:PSS was deposited by spin-coating (from
aqueous solution) at 2000 rpm onto glass-ITO substrates pre-treated with oxygen
plasma and annealed at 100ıC for 15 min under nitrogen. The blend was dissolved
in chloroform (19.2 mg/ml) and deposited in a glovebox (water and oxygen content
below 1 ppm) by spincoating at 100 rpm for 1 min (followed by 1 min at 1000 rpm),
giving a 220 nm thick film. Electrical characterization was performed in vacuum
(P < 10�5mbar).

3.2 Numerical Results

Figures 2a and b display the comparison between experimentally measured and
numerically computed current-voltage characteristics of the device previously
described, while the model parameters used for the simulation are shown in Table 1.

Figure 2a refers to the case where the device is not illuminated (dark condition)
while Fig. 2b refers to the case where an incident monocromatc light source of
wavelength 700 nm is applied with a power of 0.63 mW cm�2.

We notice that measured and simulated data are in good agreement especially as
far as the dark condition is considered. As for the results in the illuminated regime,
the simulation correctly predicts the open circuit voltage Voc ' 0:4 V within a
tolerance of 3%, and also the short circuit current is well approximated although
with slightly lesser precision. The discrepancies under illumination are likely due
to the simplifications introduced in the model, in particular having disregarded the
dependency of the carrier mobilities on the electric field and on the charge density,
which is far higher in this regime. The former effect is already taken into account
in our simulator, but was neglected due to lack of experimental data to fit the model
parameters, on the other hand the latter would require extensions to the numerical
algorithm (see, e.g., [16]) that are the subject of our ongoing work.

4 Conclusions

In this article, we have proposed and investigated a computational model for the
study of bulk heterojunction organic polymer solar cells. The model consists of
a system of drift-diffusion equations for photogenerated charge transport plus an
ordinary differential equation governing the time rate of change of photoinduced
excitons. Linearization of the fully coupled problem supported by suitable adaptive
time stepping and stable exponentially-fitted finite elements allows to end up
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Fig. 2 (a) Comparison of computed and measured current-voltage characteristics, dark working
conditions (b) Comparison of computed and measured current-voltage characteristics, illuminated
working conditions

with a robust and efficient simulation tool, whose validation is carried out on the
comparison with experimental data of a solar cell. The same computational model
and algorithm have been applied successfully to investigate other classes of solar
cells, namely, Electrochemical cells or Bilayer OSCs [8].

Acknowledgements The authors thank Professor M. Sampietro of Politecnico di Milano for
stimulating and fruitful discussions.
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Table 1 Parameters used for the simulations

parameter name symbol units value

Electron mobility �n cm2 V�1 s�1 6� 10�6

Hole mobility �p cm2 V�1 s�1 2� 10�6

˛n cm3 2:69 � 10�13

ˇn 1:93� 10�22
Electron B.C. parameters
(PEDOT contact)

	n A�1 cm2 0

˛n cm3 2:69 � 10�13

ˇn 1:456 � 10�6
Electron B.C. parameters
(Al contact)

	n A�1 cm2 0

˛p cm3 2:69 � 10�13

ˇp 1:32 � 103Hole B.C. parameters
(PEDOT contact)

	p A�1 cm2 0

˛p cm3 2:69 � 10�13

ˇp 5:47� 10�14
Hole B.C. parameters
(Al contact)

	p A�1 cm2 0

Bi-molecular recombination rate � s�1 cm3 4:28 � 10�11

Exciton recombination rate krec s�1 1:0 � 109
Exciton dissociation rate kdiss s�1 1:576 � 108
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Numerical Simulation of a Hydrodynamic
Subband Model for Semiconductors Based
on the Maximum Entropy Principle

G. Mascali and V. Romano

Abstract A hydrodynamic subband model for semiconductors has been formulated
in (Mascali and Romano, IL NUOVO CIMENTO 33C:155163, 2010) by closing the
moment system derived from the Schrödinger-Poisson-Boltzmann equations on
the basis of the maximum entropy principle (MEP). Explicit closure relations for
the fluxes and the production terms are obtained taking into account scattering of
electrons with acoustic and non-polar optical phonons, as well as surface scattering.
Here a suitable numerical scheme is presented for the above model together with
simulations of a nanoscale silicon diode.

1 MEP Model for Subbands

By shrinking the dimensions of electronic devices, effects of quantum confinement
are observed [2, 3], e.g. in MOSFETs at the Si-SiO2 interface, in double gate
MOSFETs, in hetero-structures like AlGa-Ga.

If electrons are quantized in the z direction and free to move in the x-y plane,
one assumes the following ansatz for the electron wave function

 .r/ D  .x; y; z/ D 1p
A
'.z/eikjj

�r
jj ;
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with kjj D .kx; ky/ and rjj D .x; y/ denoting the longitudinal components of the
wave-vector k and of the position vector r, respectively, and A symbolizing the
area of the x-y cross-section.

The Schrödinger equation in the effective mass approximation gives the follow-
ing equation for '

�
� „

2

2m�
d2

d z2
C EC

�
'.z/ D

�
E � „

2

2m�
jkjjj2

�
'.z/ D " '.z/; 0 � z � L;

where „ is the reduced Planck constant, m� is the effective electron mass, " is
the energy associated with the confinement in the z-direction, and L is the device
extension in the z-direction. One finds a countable set of eigen-pairs (subbands)
.'�; "�/; � D 1; 2:::. The conduction band minimum EC is given by EC D
�q.VC C V /, where VC is the confining potential and V is the self-consistent
electrostatic potential obtained from the Poisson equation

r � .�d rV / D �q.C.r/� n/; (1)

where q is the absolute value of the electron charge, �d is the dielectric constant,
C.r/ is the doping concentration, and n is the electron density given by n.r; t/ DPC1

�D1 �.x; y; t/j'�.z; t/j2; with � the areal density of electrons of the �-subband.
The description of the electron transport along the longitudinal direction is

included by adding a system of coupled semiclassical Boltzmann equations for the
distributions f�.x;y; kx;ky; t/ of electrons in the subbands

@f�

@t
C 1

„rk
jj
E� � rr

jj
f� � q„Eeff� � rk

jj
f� D

1X
�D1

C�;�Œf�; f��; � D 1; 2; : : : (2)

where E� D "� C „2
2m�
jkjjj2, and Eeff� D 1

q
rr

jj
"�.rjj/. � is expressed in terms of

f� by � D
R
B2
f�.rjj;kjj; t/d 2kjj; with B2 indicating the 2D Brillouin zone.

The relevant 2D scattering mechanisms in Si are acoustic phonon scattering,
non-polar optical phonon scattering, and surface scattering, and they are taken into
account by the right-hand side of (2).

The direct numerical simulation of the Schrödinger-Poisson-Boltzmann system
is a daunting computational task (see for example [4–6]). Simpler macroscopic
models are needed for CAD purposes. These can be obtained as moment equations
of the transport Boltzmann equations under suitable closure relations. The moment
of the �-subband distribution with respect to a weight function a.kjj/ reads M�

a DR
B2
a.kjj/f�.rjj;kjj; t/d 2kjj.

In particular we take as basic moments:

The areal density � D
Z
B2

f�.rjj;kjj; t/d 2kjj;
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The longitudinal mean velocity V� D 1

�

Z
B2

„kjj
m�

f�.rjj;kjj; t/d 2kjj;

The longitudinal mean energy W � D 1

�

Z
B2

„2k2jj
2m�

f�.rjj;kjj; t/d 2kjj;

The longitudinal mean energy-flux S� D 1

�

Z
B2

„kjj
m�
„2k2jj
2m�

f�.rjj;kjj; t/d 2kjj:

The corresponding moment system reads
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@t
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�
jj/ f� � S.k�jj;k�jj / f�

i
d2kjj;

�
C
�;�
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�;�
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�
D
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 „k
jj

m�

„3k2
jj

2.m�/2
kjj

!h
S.k�jj ;k

�
jj/ f� � S.k�jj;k�jj / f�

i
d2kjj;

S.k�jj ;k
�
jj/ being the transition rate from the longitudinal state with wave-vector

k�jj to that with wave-vector k�jj. The moment system is not closed because
there are more unknowns than equations. Therefore closure relations are needed.
The maximum entropy principle (MEP) leads to a systematic way for obtaining
constitutive relations on the basis of information theory [7–11]. We define the
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entropy of the system as

S D �kB
C1X
�D1
j'�.z; t/j2

Z
B2

.f� log f� � f�/ d2kjj;

and, according to MEP, we estimate the f�’s as the distributions f MEP
� ’s that

maximize S under the constraints

M�
aA
D
Z
B2

aA.kjj/f MEP
� d2 kjj;

whereM�
aA

are the basic moments we have previously considered.
For the sake of brevity we omit the details. The interested reader is referred to [1]

for the explicit expressions of the closure relations for fluxes and production terms in
the case of scattering between electrons and acoustic phonons and non-polar optical
phonons, along with surface scattering.

The moment system of the subbands augmented with the MEP closure relations
forms a quasilinear hyperbolic system in the time direction, providedW � > 0.

2 Numerical Simulations

The numerical method adopted for the transport part is a generalization of the
Nessyahu-Tadmor (NT) scheme developed in [13] for the moment system and
already adopted in [14, 15] for the semiclassical MEP hydrodynamical model. As
a preliminary result, a quantum silicon diode is simulated (see Fig. 1) since in the
present article the main emphasis is on the feasibility of the model rather than on
the numerical issues. More complex 2d cases, like MOSFET and double gate, are
under current investigation and will be presented elsewhere. We assume that the
oxide gives rise to an infinitely deep potential barrier and use as bottom energies
and envelope functions the analytical expressions

"� D �2�2„2
2L2m�

; '�.z/ D
r
2

L
sin

��

L
z; z 2 Œ0; L�; � D 1; 2; : : :

Moreover we consider as driving potential the mean electrostatic potential

�.x/ D 1

L

Z L

0

�.x; z/ d z:

By taking homogeneous Neumann conditions at the Si/Si-O2 interfaces, �.x/
satisfies the 1D Poisson equation
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Fig. 1 Simulated diode

L� �.x/xx D �q
 
ND.x/ �

X
�

�.x/

!

where

ND.x/ D
Z L

0

ND.x; z/ d z

with ND donor doping profile.
Six equivalent valleys are considered with a single effective massm� D 0:32me,

with me the free electron mass. A possible generalization could include both
longitudinal and transverse masses.

Due to the symmetries of the problem and the boundary conditions, the transverse
component of the electric field is 0. As a consequence the surface scattering
vanishes and only scattering of electrons with acoustic phonons and non-polar
optical phonons will be retained.

The doping in the nC regions is ND.x/ D 1020 cm�3 and in the n region is
ND.x/ D 1016 cm�3, with a regularization at the two junctions by a hyperbolic
tangent. The width of the diode is L D 10 n�. A bias voltage Vb D 0:1 Volt
between source and drain is considered.

The following initial data

�.x; 0/ D e�"�=kBTLP
� e
�"�=kBTL ND; W �.x; 0/ D kBTL; V �.x; 0/ D S�.x; 0/ D 0
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are taken, where TL is the lattice temperature and V and S are the longitudinal
components of V� and V� .

Homogeneous Neumann boundary conditions at the source and drain are
assumed

@

@x
� D @

@x
V � D @

@x
W � D @

@x
S� D 0:

We note that imposing Dirichlet boundary conditions for the energy at source and
drain leads to an inconsistency with MC simulations in the semiclassical case [16].
The numerical experiments indicate that it is sufficient to take into account only the
first three subbands since the other ones are very scarcely populated. The steady
state is reached after about 5 ps.

In order to establish the number of grid points to use, we compare the numerical
steady state solution obtained with a mesh of 64, 128 and 256 spatial nodes. In Fig. 2
the velocity in the subband 1 is plotted. It is evident that error has a good behavior
since the difference between the result with 128 and 256 grid points is about 25% of
that between the results with 64 and 128 grid points. Note that the negative velocity
across the first junction, present in the lower resolution case, disappears with the
smaller mesh sizes. In the other figures, the results obtained with 256 nodes will be
shown.

In Fig. 3 we plot the reconstruction of the electron density from the surface
density and the envelope function. In Fig. 4 the densities, velocities and energies
measured from the subband bottom in the first three subbands are shown. The
surface density in the third subband is about 2% of the total surface density as a
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Fig. 2 Velocity in the first subband obtained with 64 (*), 128 (o) and 256 (+) grid points



Numerical Simulation of a Hydrodynamic Subband Model for Semiconductors 345

0
2

4
6

8
10

0
10

20
30

40
0

500

1000

1500

2000

nm

Vb = 0.1 Volt

nm

de
ns

ity
 (

10
17

 c
m

−
3 )

Fig. 3 Steady state density
reconstruction

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

nm

su
rf

ac
e 

de
ns

ity
 (

10
17

 c
m

−
2 )

subband 1

subband 2

subband 3

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

nm

ve
lo

ci
ty

 (
10

7  
cm

/s
ec

)

subband 1

subband 2

subband 3

0 5 10 15 20 25 30 35 40
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

nm

en
er

gy
 (

eV
)

subband 3

subband 2

subband 1

Fig. 4 Steady state densities, velocities and energies in the first three subbands

confirmation that the inclusion of further subbands has a negligible effect. It is worth
to mention that the energy has an evidently different value between source and drain
as happens in the semiclassical case. The use of Dirichlet conditions for the energy
at the contacts misses such an effect.
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3 Conclusion

A numerical integration of a hydrodynamical subband model formulated with the
use of the Maximum Entropy Principle has been performed. The simulations of a
quantum diode, under some simplifying assumptions, give results which capture the
main confining effects. More realistic simulations require the set up of a numerical
code for the solution of the moment equations coupled to the Schrödinger-Poisson
block. This issue is under current investigation by the authors and will be the subject
of a forthcoming article.

Acknowledgements G. M. and V. R. acknowledge the financial support by P.R.A., University of
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Inverse Doping Profile of MOSFETs
via Geometric Programming

Yiming Li and Ying-Chieh Chen

Abstract In this study, we optimize one-dimensional doping profiles between the
interface of semiconductor and oxide to the substrate in metal-oxide-semiconductor
field-effect transistors (MOSFETs). For a set of given current-voltage curves, the
problem is modelled as a geometric programming (GP) problem. The MOSFET’s
DC characteristics including the on- and off-state currents are simultaneously
derived as functions of the doping profile in the GP problem.

1 Introduction

The channel doping profile of semiconductor devices plays an important role in
determining the electrical characteristic of metal-oxide-semiconductor field-effect
transistors (MOSFETs) [1]. The default engineering approach in determining a
proper doping profile for specified current-voltage (I-V) curves is time-consuming
and a complicated work [2]. Various computational approaches have been proposed
to obtain the doping profile of MOSFETs, such as the simulation-based evolutionary
technique [3], the level set method [4], and the mainfold mapping [5]. A geometric
programming (GP) problem is a type of mathematical optimization problem,
which is characterized by objective and constraint functions with a certain special
mathematical form [6]. Recently, the optimal design of semiconductor devices and
electronic circuits was found to be equivalent to a solution of a GP problem. An
interior-point algorithm also was proposed to solve large-scale GP problems [7].

In this paper, we solve the inverse channel doping profile from the interface of
silicon and oxide to the maximum depletion width by minimizing the subthreshold
swing (SS) of MOSFETs subject to various constraints of DC characteristics
including the on- and off-state currents. For extracting the corresponded doping
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profile of the MOSFETs, we integrate a one-dimensional (1-D) Poisson equation
[1] and derive the objective function SS in terms of the doping profile. Furthermore,
the on- and off-state currents are reformulated as GP’s inequalities in GP compatible
constraints. The nonlinear doping profile optimization problem is transformed to a
GP problem. The GP problem is transformed into a form of convex optimization
problem [6, 8] and solved by using the interior-point algorithm in a global sense.

In Sect. 2, we formulate the problem. In Sect. 3, we show the numerical results.
Finally, we draw the conclusions.

2 Problem Formulation and Solution Method

A GP problem can be characterized by objective and constraint functions with a
certain special mathematical form [6, 8]:

min
x
f0.x/ D

u0X
tD1

c0t

nY
jD1

x
a0tj
j

s.t fi .x/ D
uiX
tD1

cit

nY
jD1

x
aitj
j � 1; i D 1; 2; :::; m

gi .x/ D
nY

jD1
x
bij
j D 1; i D 1; 2; :::; q

xj � 0; j D 1; 2; :::; n

; (1)

where the posynomial f0.x/, containing u0 terms, is the objective function, and the
posynomials fi .x/ for i = 1, 2, . . . , m, containing ui terms, represent m inequality
constraints. By the definition of posynomial, all the coefficients cit for i = 0, 1, . . . ,
m and t = 1, 2, . . . , um are positive, and the aitj for i = 0, 1, . . . , m, t = 1, 2, . . . ,
um and j = 1, . . . , n are real numbers. The gi .x/ are monomial functions, where
the bij for i = 0, 1, . . . , q and j = 1, . . . , n are real numbers. In the following
subsections, we first write down the inverse doping profile problem and derive the
object function as well as constraints in terms of the doping profile between the
interface of semiconductor and oxide to the substrate. We next formulate the GP
problem of 1-D doping profile for a MOSFET.

2.1 The Inverse Doping Profile Problem

For a set of given I-V specifications, the inverse doping profile problem can be
modelled as
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minSS

s.t. Nmin � NA(x) � Nmax; 0 � x � Wdm

Ion � Ion�set

Ioff � Ioff�set

; (2)

where the NA.x/ is the 1-D non-uniform p-typed doping profile of n-typed
MOSFETs, which is a positive function of space x ranging from the silicon/oxide
interface to the maximum depletion width Wdm. The range of NA.x/ has its lower
bound of background doping level Nmin and its upper bound of the maximum
manufacturing doping concentration Nmax. In the constraints of DC characteristics,
Ion denotes the on-state current, Ioff is the off-state current, and Ion�set and Ioff�set

are the targeted specifications of Ion and Ioff . For deriving the doping profile
problem (2), by directly integrating the 1-D Poission equation [1], we have

2 B D q

"si

Z Wdm

0

xNA.x/dx; (3)

where "si > 0 is the silicon permittivity and  B > 0 is the voltage difference
between Fermi level and intrinsic level [1]. To obtain the maximum depletion width,
we discretize (3) for the maximum depletion width withK uniformly spaced points,
xj = jWdm / K , j = 0; 1,. . . , K. The doping profile is then sampled at these points;
we define dj D NA.xj /, j = 0; 1,. . . , K. The maximum depletion width Wdm can
be further expressed as:

Wdm D K
vuuuut

"si 2 B

q
KP
jD0

jdj

; (4)

which is a function of the discrete doping profile dj .

2.2 The Subthreshold Swing

The subthreshold swing is calculated by the subthreshold current (Isub) which is
changed by the gate voltage (Vgs) variation of one-order magnitude [1]

SS 	
�
d.log10 Isub/

dVgs

��1
D 2:3mkT

q
D 2:3kT

q

�
1C 3tox

Wdm

�
; (5)
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where tox is the oxide thickness and m is the body-effect coefficient. Substituting
the maximum depletion width Wdm of (4) into (5), then we can rewrite SS as:

SS D 2:3kT
q

0
BBBBB@
1C 3tox

K

vuuuut
q

KP
jD0

jdj

2"si B

1
CCCCCA
: (6)

The expression in (6) for SS satisfies the form of a posynomial since the coefficients
of all the optimal variables dj are positive.

2.3 The Constraint for the On-State Current

We assume the saturation current to be larger than the specification of the on-state
current (Ion�set) when Vdd D Vds (in this work, the on-state current is defined as the
targeted saturation current when the applied drain voltage Vds is equal to the applied
Vdd/ and Vds D Vgs�Vt , where Vgs is the applied gate voltage and Vt is the threshold
voltage of device, we have [1]

Ion D W

2mL
�effCox

	
Vgs � Vt


2

D W

2mL
�effCox

�
Vgs � Vf b � 2 B C Qd

Cox

�2
� Ion�set

(7)

where L and W are device channel length and width, Cox is the oxide capacitance
per unit area, �eff is effective electron mobility, the Vf b is the flat-band voltage, and
the depletion chargeQd can be calculated by

Qd D �q
Z Wdm

0

NA.x/dx: (8)

Using a similar procedure of discretization in deriving (4), we find that

Qd D �qWdm

K

KX
jD0

dj : (9)
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We substitute (9) into (7) and have the following estimation

p
2q B"si

KP
jD0

dj

Cox

 
Vgs �

s
2mIon�set	
W
L



�effCox

� Vf b � 2 B
! �

vuut
KX
jD0

jdj : (10)

Unfortunately, this inequality is not a GP compatible constraint. Because of the
right-hand side of a posynomial inequality should be a constant or monomial and
the body-effect coefficient is also a function of doping profile. For the body-
effect coefficient m, we substitute the maximum of the manufacturing doping
concentration Nmax into the doping concentration dj . Then m can be recalculated
as mmax and then substituted into (10). Thus, we can ensure that for the minimum
of Ion (according to (7), as m goes large, the Ids will become small) � Ion�set, and
the left-hand side of (10) will become a positive constant multiples a posynomial
KP
jD0

dj . For
KP
jD0

jdj , we use the arithmetic-geometric mean inequality to form a GP

compatible approximation. Since the arithmetic mean is larger than geometric mean,
we try

p
2q B"si

KP
jD0

dj

Cox

 
Vgs �

s
2mmaxIon�set	
W
L



�effCox

� Vf b � 2 B
! �

vuuut.K C 1/
0
@

KY
jD0

jdj

1
A

1
KC1

: (11)

Therefore, if the inequality (11) holds, then the inequality (10) must also be satisfied.
The inequality (11) is a GP compatible constraint, since the right-hand side is a
monomial function with variables dj .

2.4 The Constraint for the Off-State Current

The off-state current Ioff is a special case of the subthreshold current Isub when
Vgs D 0 and Vds D Vdd . We assume the off-state current Ioff � Ioff�set, then [1]

Ioff D �effCox
W

L
.m � 1/

�
kT

q

�2
exp

2
4q

�
�Vf b � 2 B C Qd

Cox

�

mkT

3
5 � Ioff�set:

(12)

We keep the exponential term at the left-hand side of (12), and replace m by
mmax > 1 to obtain the maximum Ioff (according to (12), when m increase, the Ioff
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may consequently raise), and we can guarantee that for the maximum Ioff � Ioff�set.
Therefore, (12) is expressed as

exp

2
4q

�
�Vf b � 2 B C Qd

Cox

�

mmaxkT

3
5 � Ioff�set

�effCox
W
L
.mmax � 1/

�
kT
q

�2 : (13)

The inequality (13) is not a GP compatible constraint because the posynomial
function Qd is in the exponential term. Therefore, we take the logarithm at both
sides of (13) and rearrange the terms

Qd � Cox
*
mmaxkT

q
ln

8̂
<
:̂
�effCox

W
L
.mmax � 1/

�
kT
q

�2

Ioff �set

9>=
>;
� Vf � 2 B

+
: (14)

Substituting (9) into (14), we have

Cox

vuuuut
q"si2 B
KP
jD0

jdj

*
mmaxkT

q
ln

8̂
<
:̂
�effCox

W
L
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�
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Ioff �set

9>=
>;
� Vf � 2 B

+

�
KX
jD0

dj

: (15)

For obtaining the posynomial inequality, we again use the arithmetic-geometric

mean inequality to transform the summation
KP
jD0

dj at the right-hand side of (15).

We come down to the following estimation

Cox

vuuuut
q"si2 B
KP
jD0

jdj

*
mmaxkT

q
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8̂
<
:̂
�effCox
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L
.mmax � 1/
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>;
� Vf � 2 B

+

� (KC 1)
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@

KY
jD0

dj

1
A

1
KC1

: (16)

Thus, if the inequality (16) holds, then the inequality (15) is also achieved. The
inequality (16) is a posynomial inequality, since the right-hand side is a monomial
function and the left-hand side is a posynomial function with the variables dj .
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2.5 The Formulated GP Problem

Based on the above estimations, the 1-D optimal inverse doping profile problem in
the n-type MOSFETs is expressed as

min
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jD0
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1
A

1
KC1

;

(17)

which is a nonlinear constrained optimization problem and is also a GP with
variables dj ;8j D 0; 1 ; :::; K . Next we transfer the GP problem into a convex
optimization problem. Also the corresponding dual problem can be formulated [8].
After obtaining the prime and dual problems of the GP problem in the convex
form [8], we apply the logarithmic barrier function transformation to convert the
constrained optimization problem into an unconstrained one [7]. Finally we employ
a general search algorithm such as gradient or a Newton-method to solve this
unconstrained optimization and the original solution can be inversely obtained.

3 Results and Discussion

We now test a numerical example for the optimal doping profile problem (17)
for the MOSFET with a 0.35 �m device channel length and 1 �m device width.
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For low-standby power (LSP) devices, the high threshold voltage to suppress the
standby-power consumption due to leakage current is necessary, and therefore,
we set the specification of on- and off-state currents as: (Ioff�set; Ion�set)D
.5 � 10�13 A; 1 � 10�4A): For high performance (HP) devices, it requires low
threshold voltage to increase switching speed, and the specification of HP devices
is taken as: (Ioff�set; Ion�set) D (1 � 10�9 A; 3 � 10�4A). The optimized doping
profiles for the HP (solid line) and LSP (dash line) MOSFETs are shown in Fig. 1.
The corresponding I-V curves for the HP and LSP devices are shown in Fig. 2. For
the LSP device, the threshold voltage is about 0.44 V, and the off-state current is
about 1 � 10�13 A, which is smaller than 5 � 10�13 A; on the other hand, the HP
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device has a low subthreshold swing, and the threshold voltage is equal to 0.13 V,
which has a high switching speed as we expected. As shown in Fig. 1, the higher
doping concentration near the surface contributes to a higher threshold voltage, and
decrease the off-state current for the LSP device.

4 Conclusions

The 1-D inverse doping profile problem for MOSFETs was formulated and trans-
formed into a GP problem. This study can be extended into 2-D and 3-D optimiza-
tion problems. For application to deep submicron devices, channel doping profile
optimization with considering the short channel and quantum mechanical effects is
necessary.
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Numerical Simulation of Semiconductor
Devices by the MEP Energy-Transport
Model with Crystal Heating

Vittorio Romano and Alexander Rusakov

Abstract A new numerical model of semiconductors including crystal heating
effect is presented. The model equations have been obtained with the use of the
maximum entropy principle. In the numerical model the iterative scheme is used for
obtaining stationary solution of electro-thermal problems. Numerical simulations of
a 2D nanoscale MOSFET with the self-heating effect are presented. The difference
between MEP and simpler thermal expressions is analyzed.

1 Introduction

In today semiconductor technology, the miniaturization of devices is more and more
progressing. As a consequence, the simulation of the modern nanoscale semicon-
ductor devices requires advanced transport models that take into account heating
effects. The analysis of device self-heating becomes more and more important
for the design and validation of devices and circuits. In this paper a numerical
integration of a new coupled electro-thermal model for semiconductors, developed
recently in [1], is performed. At macroscopic level, several different heuristic
models of lattice heating have been proposed. They are represented by the lattice
energy balance equation and differ from the proposed form of thermal conductivity
and energy production, e.g. [2, 3]. In [1] a macroscopic model which has been
formulated starting from the semiclassical description based on the Boltzmann
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equations describing the electron-phonon system. The closure relations have been
obtained with the maximum entropy principle (hereafter MEP). Explicit constitutive
relations have been obtained with coefficients depending on the electron energy W
and crystal temperature TL and related to the scattering parameters (see [1, 4, 7]
for more details). The case of varying lattice temperature has been numerically
integrated for 1D problems in [4, 5] and for the 1D model obtained with MEP in
the [6]. Here we present 2D numerical model, without radiative term which does
not have clear physical meaning especially in 2D case. In comparison to [7,8] in our
work we enhance our numerical model with a new iterative scheme for the efficient
solution of the stationary problem. In the numerical experiment section we present
and analyze solutions for a nanoscale semiconductor device with the heating source
term described by the MEP and by the Joule expressions.

2 Mathematical Model

The model is represented by the system of the equations

@n

@t
C div .nV/ D �R; (1)

@p

@t
C div

	
pVp


 D �R; (2)

@ .nW /

@t
C div .nS/C nqV � r� D nCW ; (3)

cV
@TL

@t
� div ŒK.TL/rTL� D H; (4)

E D �r�; "�� D �q.ND �NA � nC p/: (5)

n and p are the electron and hole density respectively,W is the electron energy, TL
the lattice temperature, � the electrostatic potential and E D �r� the electric field.
ND and NA are the donor and acceptor density respectively. q is the elementary
charge,  the silicon density, cV the specific heat, CW the energy production term,

which is in a relaxation form CW D �W �W0

�W
, with W D 3=2kBTL and �W .W /

the energy relaxation time. kB is the Boltzmann constant and " is the dielectric
constant. R is the generation-recombination term.

The closure relations for the electron velocity V, the energy flux S, the thermal
conductivityK.TL/ and the crystal energy production termH have been obtained in
[1] by employing MEP. The holes are described by a standard drift-diffusion model
with constant mobility. Vp is the hole velocity. The expressions of the electron
velocity V and the energy flux S are given in [1]
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The phonon energy production is given by

H D �.1C PS/ nCW C PS J � E; (6)

where PS D �c2 �R c.p/12 plays the role of a thermopower coefficient. On source
and drain contacts the Robin boundary condition �kL @TL@n D R�1th .TL � Tenv/ is
assumed, Rth being the thermal resistivity of the contact and Tenv the environment
temperature. We use no-flux condition for temperature on the lateral boundary and
oxide silicon interface and Dirichlet condition on the bulk contact. The electron
energy on the source, drain and bulk contact is set equal to the lattice energy. Other
boundary conditions in the MOSFET model are described in detail in [9].

3 The Numerical Method

Direct integration of the numerical model for the temperature relaxation period
becomes very expensive procedure as the time step of integration scheme is limited
by the properties of the electrical part of the system of equations. To make our
numerical simulation feasible we apply a variant of the iterative scheme. At each
iteration we first integrate only the electron part of the model until it achieves
stationary solution and then integrate the crystal lattice temperature diffusion
equation with known source for the period needed to achieve its stationary solution.
By using different integration scheme for the thermal and electron part of the model
with different time steps, we achieve a significant speed-up in the computation. The
iterative scheme can be written as follows:

1. do while jj.U ; T /k � .U ; T /k�1jj < "
2. Integrate the balance equations for electrons and holes, with the crystal lattice

energy, frozen at the previous time step, obtaining the electron and hole density,
electrical field and energy at the next time step. Schematically this step can be
written as

@U k

@t
C F.U k; T k�1L / D 0; (7)

with U D .n; p;W; �/, where k D 1; : : : ; N is the index of the iteration, t 2
Œ0; tk �, tk integration period.

3. Integrate the lattice energy balance equation with n and W given by the step 1
until convergence is reached:

cV
@T kL
@t
� div

�
K.T kL/rTL

� D H.U k; T kL /: (8)

4. set k D k C 1
5. end do
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We observed that in our numerical experiments usually only 3–5 iterations are
required to obtain steady-state solution. Typically the time step for integration of (8)
we can use is 100 times larger than the time step for (7). Thus the total cost of the
solution of the steady state electro-thermal system is only 3-5 times larger than solu-
tion of electron part only. If we use direct integration of the (1)–(5) till the stationary
solution we have to choose an integration period approximately 100–500 times
larger than for electron part only. In our numerical experiment a convergence of the
electron-phonon model is reached after 1500 and 5 ps for electron part only. Thus
the stationary solution can be computed with the iterative scheme in 50 times faster.

For the transient analysis of the model system of equations the multi-rate
integration technique has been used [8] which similar to approach presented in [11].

The numerical scheme for solution of electrical part is based on an exponential
fitting like that employed in the Scharfetter-Gummel scheme for the drift-diffusion
model of semiconductors. The basic idea is to split the particle and energy density
currents as the difference of two terms. Each of them is written by introducing
suitable mean mobilities in order to get expressions of the currents similar to those
arising in other energy-transport models known in literature. A simple explicit
discretization in time with constant time step proves satisfactorily efficient avoiding
the problem related to the high nonlinear coupling of the discretized equations.
The model equations are spatially discretized on a regular grid. The details of the
numerical scheme can be found in [9].

To solve a lattice energy equation (8) a coordinate splitting technique [12] is used.
For the space approximation in every direction an implicit time scheme with the
three points stencil is chosen. The obtained linear system can be solved efficiently
with tridiagonal matrix factorization procedure. We remark that usage of the implicit
time scheme for lattice energy operator significantly improves the overall simulation
time. In 1D diode model usage of implicit integration scheme gives a speed up of
100x of the total simulation time and we expect the similar effect in the MOSFET
model.

4 Numerical Experiments

In the numerical experiments we consider the simulation of a 50 nm channel length
MOSFET (Fig. 1). The gate length is 45 nm, source and drain are 25 nm long. The
source and drain depths are 0.1 �m. The gate oxide is 5 nm thick. The substrate
thickness is 0.4 �m. The environment temperature Tenv is 300 K. In our numerical
experiments we take the thermal resistivity Rth D 10�8 K m2 /W as in [5]. The
doping concentration is

ND.x/ �NA.x/ D
(
1017cm�3 in the nC regions

�1014cm�3in the p region
(9)

with abrupt junctions. The gate voltage is VDG D 0:8 V.
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In Fig. 2 the crystal lattice temperature obtained with MEP model for the MOS-
FET with is shown. In Fig. 3 electron energy is reported. The lattice temperature
raises by more than 100 K in the area near the gate where there is the maximum for
the electron energy. Such a strong heating effect could damage the device or change
dramatically its performance.

For comparison, the simulation with only the Joule term H D J � E gives us
much lower temperature raise, about 4ı, as it shown in Fig. 4. The relevance of the
Joule term in the MEP model is accounted for by the coefficient PS in (6) behind
the scalar product of the current and electrical field. In the pure Joule model it is
about 20 times smaller than the value of PS obtained by the MEP. Usually in the
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simulations this coefficient is chosen using empirical approaches but MEP gives us
a way to obtain an explicit expression for this coefficient which is crucial for the
electro-thermal analysis of the semiconductor devices.
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Part V
Model Order Reduction

Introduction

In spite of the impressive data processing capacities of today’s computers, it remains
worthwhile to limit the number of degrees of freedom in the numerical models
we use, and for a number of reasons. Of course, making models with a reduced
number of unknowns allows one to handle problems of even greater complexity
at the same cost. Reducing the computation time to the minimum also opens the
possibility to analyse many different complex configurations in a reasonable time
and thus to perform optimisations or sensitivity and statistical analysis on complex
configurations.

Model order reduction (MOR) methods are designed to reduce the computational
complexity of the numerical representation of a model while maintaining the
accuracy needed in a given class of applications. The methods presented in this part
are partly inspired by problems arising from the development of electronic circuits
with a large amount of components. However, the techniques presented for coping
with the huge number of degrees of freedom found in this context are also of interest
in other situations. Of course, model order reduction can also be directly adapted to
discretisations of a system of partial differential equations and examples of this are
also presented in this part.

The sequence of the papers in this part shows a gradual evolution from circuit
problems to field computation problems. Along the way we find efficient input-
output modelling techniques, numerical algebra-inspired reduction techniques and
network problems in macroscopic electromagnetics, where subdomain decompo-
sitions on an intermediate level (i.e., not down to the finite element level) require
efficient models of extended domains considered as a “black box.”

The first paper was written by J. Rommes (an invited speaker at the conference)
and pesents an overview of some of the challenging problems in applied mathemat-
ics arising in the electronics industry. It lists the essential techniques of Model Order
Reduction (MOR) but also shows directions of research that should be explored to
solve the difficulties yet to be overcome.
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The following three papers consider MOR methods for network problems. The
paper by M. Ugryumova, J. Rommes and W. Schilders presents a method for dealing
with large resistor networks representing interconnect systems including parasitic
effects. This paper, continuing previous work by the same research group, describes
a significant improvement in the model reduction while at the same time maintaining
good accuracy. The paper by P. Miettinen et al. presents a method for ensuring
that the model order reduction of networks with resistors, inductors and capacitors
(RLC networks) does not result in a singular system matrix by excluding from the
reduction the parts of the network identified beforehand as being responsible for
such singularities. Their method is applicable to any netlist-in/netlist-out type of
MOR method. The next paper, by the same authors, shows how their method can
be extended to networks that also have mutual inductances (RLCM networks) such
that the resulting reduced model is also an RLCM network.

Instead of reducing the order of a detailed model, one may also want to reduce
the model to a black box model. The paper by M. Striebel and J. Rommes presents
such a method for nonlinear systems. Although the starting point is again a network
problem, the model order reduction now eliminates all “internal” state variables and
only retains an efficient and accurate representation of the input-output relations.
The paper by F. Yetkin and H. Dağ arrives at an efficient representation of a system’s
input-output relation by using some cleverly chosen points in the Fourier spectral
representation of the system’s transfer function. The equations one has to solve
for finding the appropriate spectral information are provided and the method is
shown to compare well with known methods both with regard to accuracy and to
computational efficiency.

M. Hinze and M. Kunkel’s paper examines the model order reduction of a
network problem of the internals of an integrated circuit coupled to the partial
differential equations for drift diffusion of charges in the device. The paper by
A. Lutowska, M. Hochstenbach and W. Schilders presents a general method
concerned with the modelling of a configuration of interconnected sub-systems.
The sub-systems including the interconnection system all get their own reduced
representation. In this way, the original block structure corresponding to the
decomposition in sub-systems is preserved, including the zero blocks.

In the final paper of this part, K. Stavrakakis et al. put forward an MOR
method to make efficient models for configurations in which parametric studies
of three-dimensional configurations are of interest. The particular case of a filter
configuration in which the electromagnetic field problem is discretised using the
Finite Integration Technique is examined. The analysis of the filter impedance’s
sensitivity to geometrical design parameters is made practicable by using MOR in
the underlying electromagnetic field problem.



Challenges in Model Order Reduction
for Industrial Problems

Joost Rommes

Abstract Mathematical challenges arise in many applications in the electronics
industry. Device and circuit simulation are well-known examples, and in industry
these are typically crucial for circuit and layout optimization. Model order reduction
is one of the available tools, and we show when and how, and when not, to use this.
We will give an overview of the challenges we are facing, explain how we try to
conquer these, discuss the requirements we have to deal with, and indicate where
improvements are needed.

1 Introduction

The increasing demand for smaller, faster, and multi-functional electronic devices
such as smart phones is one of the driving forces in semiconductor industry. Com-
bined with requirements on power usage (low power), sustainability, and wireless
functionality (RF) this is generating many challenges on several domains. There are
not only many electrical design challenges; especially the increased complexity of
electronic designs, under pressure by reduced time-to-market (vital to survive over
your competitors), leads to mathematical challenges. These challenges arise at all
levels in the design flow: at device and circuit level very large systems have to be
simulated, while at system level one has to guarantee a certain overall performance,
also taking into account external electro-magnetic effects [3]. Furthermore, testing
final products requires state-of-the-art statistical methods [9].

In the following sections some mathematical challenges arising in the electronics
industry will be described, together with the typical industrial requirements that
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Fig. 1 The challenge in RF integrated circuit design: how to close the gap between schematic and
layout simulations?

make solutions less straightforward in general. Model order reduction (MOR) [2,16]
is illustrated as one of the possible solutions, but we also show that this is not always
the ideal solution. We conclude with mentioning some open challenges.

2 Challenges

Many challenges in RF-analog mixed-signal design are related to the gap between
simulation at schematic level and simulation at layout level, as depicted in Fig. 1.
Whereas the schematic is a high level description of the design, typically assuming
ideal elements and devices, the layout is a representation of the design in shapes in
the physical layers (silicon, oxide, metal). Simulation of the latter is more accurate,
but also more complex, due to the inclusion of several physical effects, and as
a result designers will observe a gap between schematic and layout simulation.
Closing this gap, by making changes to the layout, is a laborious task. As an example
two related challenges are described in more detail.

2.1 Extracted Parasitics

Although big parts of modern chips are digital, still a crucial part is analog (hence
analog mixed-signal). The analog part is for instance responsible for the conversion
of an analog RF signal into a digital signal [11]. In terms of devices (e.g., transis-
tors), the analog part may not be large, especially not when compared to the digital
part (hundreds of devices vs. millions of gates). From a simulation perspective,
however, the analog part is much more challenging. Simulating thousands or even
millions of devices is possible, at schematic level, but eventually one has to verify
the physical layout, which requires simulation including device and interconnect
parasitics. Depending on the amount of interconnect and the type of extraction
(translation of the layout into a form that can be simulated by a circuit simulator),
thousands to millions of RLC elements and nodes can be added to the original
network. Although the parasitics are linear elements in general, they do not only
put a heavy demand on CPU and memory requirements, they may also influence
convergence of typical RF simulations such as periodic steady-state (PSS).
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Fig. 2 Floor plan with relocation option that was considered after nonlinear phase noise analysis
showed an intolerable pulling due to unintended coupling. See [6] for more details

2.2 Layout Optimization

While circuit design is usually done top-down, verification is done bottom-up.
Components in the circuit, such as low-noise amplifiers and mixers are first verified
individually, and at a level higher one has to verify the combined operation of these
components. Again, increased complexity makes simulation a major challenge,
not only due to parasitics but also due to unintended coupling of for instance
oscillators [6]. What is needed in this case are models that accurately predict the
phase-noise behavior of the coupled oscillators, so that, as shown in Fig. 2, an
improved floor plan can be made. In practice, however, this is not always sufficient.
As described above, parasitics can influence circuit performance considerably, and
since parasitic effects are hard to predict, typically many layout iterations and
simulations are needed. Hence, efficient ways to deal with (repeated) parasitic
extraction, a mathematical challenge itself, are required.

3 Solutions

3.1 Model Order Reduction

Although electric circuits contain nonlinear devices such as transistors and hence
are modeled by nonlinear dynamical systems (differential-algebraic equations) [3],
at the core of many simulation types, such as transient and PSS, large-scale linear
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systems have to be solved. Furthermore, parasitics are usually modeled by linear
RLC elements, resulting in linear dynamical subsystems. These linear subsystems
can be separated from the nonlinear subsystems by advanced graph algorithms
and reduced by MOR methods [16]. One approach (for resistor-only circuits) is
to eliminate selected internal unknowns from a linear system by using the Schur
complement [15]:

�
G11 G12

GT
12 G22

� �
v
u

�
D
�
B

0

�
i, .G11 �G12G�122 GT

12/v D Bi;

where G 2RN�N , v; i2Rn, u2Rm, B 2Rn�n, N D nCm, and Gij; 0 have appro-
priate dimensions. The effectiveness depends on which nodes are eliminated —
we use graph and node reordering algorithms [1] for this selection. An example is
shown in Fig. 3, where the preservation of five additional internal nodes reduces the
number of resistors in the reduced network by 50%. The original network has 59
terminals, 2,300 internal nodes and 3,683 resistors. Full elimination of all internal
nodes results in 1,711 resistors, keeping five internal nodes leaves just 721 resistors.
For more details see [15].

An important aspect here is that if accurate reduction of parasitic extracted
networks is possible, one would actually expect that the extraction itself could
already have been more efficient. Furthermore, one might wonder why, with the
availability of many sparse direct and iterative solvers, reduction is needed anyway.
One reason is that industrial software may be affected by historical choices for
datastructures and algorithms, and that limited capacity is available for software
reengineering.
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Fig. 3 The left spy-plot shows the fill-in generated when eliminating all internal unknowns. The
right plot shows the result when five additional internal unknowns are kept. By preserving these
unknowns the number of resistors is reduced by more than 50%
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3.2 Exploit the Structure of the System

If one has knowledge of the underlying system structures, one may benefit from
this. Consider the system

(
E Px.t/ D Ax.t/C Bu.t/

y.t/ D CT x.t/CDu.t/

where x.t/ 2 R
n is the state vector, u.t/ 2 R

m the input vector and y.t/ 2 R
p

the output vector; E;A 2 R
n�n are the descriptor and state matrix, and B 2 R

n�m,
C 2 R

n�p and D 2 R
p�m are system matrices.

The controllability gramian P 2 R
n�n [2] of state-space system .E D I; A;

B;C;D/ can be found by solving the Lyapunov equation

AP C PAT D �BBT :

The alternating direction implicit (ADI) method is a well known way to solve
Lyapunov equations, and in the past decades efficient schemes [8,10,19] have been
developed that exploit the fact that P D PT > 0. However, applicability to large
scale systems is still a challenge, because the main operation in the ADI process is
the solution of linear systems

.AC �i I /Xi D Yi ;

where it must be noted that the possibly complex shifts �i and the right hand sides
change per iteration. If A is large and sparse, one can use fill-in minimizing matrix
reordering algorithms such as approximate minimum degree (AMD) [1] to limit the
costs for these solves. Matters become more complicated if the original system is
in descriptor form .E ¤ I; A;B; C;D/, since then one has to solve the generalized
Lyapunov equation

APET C EPAT D �PlBBTP T
l ;

where Pl 2 R
n�n are spectral projectors onto the deflating subspaces. There are

methods that can solve this equation, see e.g., [17]. However, these require the
computation of Pl and this may be unfeasible for large-scale systems. Fortunately,
for systems with a certain structure, one can circumvent the computation of the
spectral projectors. Suppose the structure of the descriptor system matrices is as
follows

8̂
<
:̂

Px.t/ D J1x.t/C J2z.t/C B1u.t/
0 D J3x.t/C J4z.t/C B2u.t/

y.t/ D CT
1 x.t/C CT

2 z.t/CDau.t/
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where x.t/ 2 R
n, z.t/ 2 R

nz and J1, J2, J3, J4, B1, B2, C1, C2,Da have appropriate
dimensions. Clearly, the state-space and descriptor representations are related via

A D J1 � J2J�14 J3; B D B1 � J2J�14 B2;

C T D CT
1 � CT

2 J
�1
4 J3; D D Da � CT

2 J
�1
4 B2:

So one could consider transforming the descriptor system into a state-space system
and apply the standard ADI scheme. The problem here is that A will be dense
in general and hence solves .As C �I /X D Y will be very expensive. Now, for
implicitly solving systems of the form .As C �I /x D b with As D J1 � J2J�14 J3
(As is the Schur complement of J4 in A) we note that [4, 7]

�
J1 C �I J2
J3 J4

� �
X

�
�
D
�
Y

0

�
” .As C �I /X D Y

Hence we can solve the linear equations for the state-space formulation implicitly
by solving the sparse equations in terms of descriptor matrices. This is beneficial
for two reasons. First, solves with the sparse descriptor matrices are in general
much cheaper than (construction of and) solves with the dense state space matrices.
Secondly, the ADI low-rank approximations of P , are still constructed in state
space. In other words, we do not have to compute the deflating subspaces since
we work in state space — implicitly when solving linear systems, and explicitly
when constructing low rank approximations.

This approach has been applied successfully to MOR problems in fluid dynamics
[7] and power systems [4]. Furthermore, this insight can be used in any process that
needs the solution of linear systems, such as transient simulation and eigenvalue
computations.

3.3 Eigenvalues and Model Order Reduction

A problem that often occurs when reducing linear systems with Krylov based
projection methods such as the Arnoldi method [5], is that certain peaks in the
frequency response plot of H.s/ D CT .sE � A/�1B C D are not matched, see
Fig. 4. The problem is caused by the convergence behavior of the Arnoldi method:
the eigenvalue approximations, or Ritz values, tend to approximate the eigenvalues
at the outside of the spectrum [18] (and even worse, may not have converged
to eigenvalues of the original system and hence cause wrong peaks). This can
also be seen in Fig. 4 (right, circles), where the circles denote the poles of the
moment matching model (note the inverses of the poles are shown): they match
the eigenvalues at the outside. The eigenvalues that cause the peaks, also known
as dominant poles [12], however, may be located anywhere in the spectrum, as can
also be seen in Fig. 4 (right, squares). This explains why the Arnoldi model fails to
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Fig. 4 Left: Original frequency response and reduced order models constructed by keeping
six dominant modes (SADPA) and by preserving thirty moments (dual Arnoldi). The modal
approximant matches peaks but is less accurate in between, while the Arnoldi model misses peaks.
Right: corresponding eigenvalue spectra (zoom). Since Arnoldi approximates exterior eigenvalues,
it may miss some of the dominant poles that cause the peaks

capture the peaks. In practice, it turns out that combining both methods may lead
to better results: first one computes the dominant poles of the system, and based
on these poles on chooses shifts for the (rational) Krylov subspace based reduction
method. See [5, 14] for more details.

Also for parameterized MOR eigenvalues play an important role: by preserving
the eigenvalues that are most sensitive to parameter changes one can make compact
reduced order models that are valid for limited parameter ranges [13].
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3.4 Reuse of Results

During layout optimization, many manual or automatic layout updates, parasitic
extractions, and simulations have to be done. Often, per iteration the changes to
a layout are minor and typically restricted to a part of the layout. An obvious
idea is to reuse results from previous iterations as much as possible. For instance,
by performing a partial and/or hierarchical extraction for the change part of the
layout, one can gain considerably over doing a full extraction every iteration.
Furthermore, one can use the generated simulation results to construct macromodels
and sensitivity models, which can help to predict effective layout updates and so
reduce the number of needed layout iterations. In practice this has lead to speedups
of layout iterations, and increase of layout verifications, of factors 10 and more.
However, since the various steps in layout simulation are typically approached
individually, and solved by individual software packages, even more can be gained
if steps are combined.

4 Open Challenges and Concluding Remarks

There are many open challenges. For MOR, robust methods for accurate extraction
and reduction of parasitic RCLk networks with many inputs and outputs and
macro modeling of large-scale nonlinear networks are only partially available.
Such methods would help in circuit and layout optimization, which, however, also
requires algorithms for automatically placing and routing components on a chip.
Finally, there is need for methods that can deal with systems that depend on several
parameters.

Even when mathematical challenges in industry are well understood, and solu-
tions are available, practical implementation may still be a major task. Combination
of several expertises — electrical engineering, mathematics, computer science — is
required to successfully conquer these challenges.

Acknowledgements Part of this work was supported by EU Project O-MOORE-NICE!
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On Approximate Reduction of Multi-Port
Resistor Networks

M.V. Ugryumova, J. Rommes, and W.H.A. Schilders

Abstract Simulation of the influence of interconnect structures and substrates
is essential for a good understanding of modern chip behavior. Sometimes such
simulations are not feasible with current circuit simulators. We propose an approach
to reduce the large resistor networks obtained from extraction of the parasitic effects
that builds upon the work in (Rommes and Schilders, IEEE Trans. CAD Circ. Syst.
29:28–39, 2010) The novelty in our approach is that we obtain improved reductions,
by developing error estimations which enable to delete superfluous resistors and
to control accuracy. An industrial test case demonstrates the potential of the new
method.

1 Introduction

Interconnect and substrate parasitic extraction typically lead to large resistor
networks. Such networks may contain up to millions of resistors, hundreds of
thousands of internal nodes and thousands of external nodes [4]. Simulations of
such networks may be very time consuming or unfeasible. Model order reduction
is aimed at finding smaller networks which accurately or exactly describe the port
behavior of the original resistor networks.

Classical Krylov based model order reduction methods and structure preserving
methods often lead to dense reduced matrices. This becomes the problem when
dealing with networks with many terminals: synthesized reduced networks may
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have more resistors than the original networks [3]. In [4], an exact reduction
technique, ReduceR, for resistor networks has been suggested. This approach is
based on finding a special order in which internal nodes are eliminated. This allows
to maximize sparsity of conductance matrix, and, therefore, the number of resistors
in the reduced model. However, as it will be shown further, ReduceR does not always
deliver a good reduction in terms of the number of resistors in the final circuit.

Therefore, in this paper, we consider an approach, called simplification, for
reduction of resistor networks based on deleting resistors which do not affect
behavior of the circuit significantly. Since such reduction is not exact, we are
interested in controlling the error due to approximation. We expect that together with
an existing approach for reduction, ReduceR, our approach will lead to improved
final reduction.

This paper is organized as follows. In Sect. 2, we discuss circuit equations and
goals of exact reduction for resistor networks. Also a challenging network for
exact reduction is demonstrated. In Sect. 3 we suggest two independent criteria for
improved reduction. For each criterion we derive error estimation which allow to
control accuracy of approximation. In Sect. 4 we provide numerical examples and
discuss the performance of the suggested estimations. Section 5 concludes.

2 Challenge in Exact Reduction of Resistor Networks

An n-port resistor network can be described by the Modified Nodal Analysis
equation in a block form

�
G11 G12
GT
12 G22

�

„ ƒ‚ …
G

�
ve
vi

�
D
�
B

0

�
ie

„ ƒ‚ …
i

; (1)

where ve 2 R
ne and vi 2 R

ni are the voltages at external and internal nodes,
respectively, ie 2 Rne are the currents injected in external nodes,B 2 f�1; 0; 1gne�ne
is the incidence matrix, and G11 D GT

11 2 R
ne�ne , G12 2 R

ne�ni and G22 D
GT
22 2 R

ni�ni . Note that n D ne C ni . System (1) must be grounded, i.e. equations
corresponding to the ground nodes must be removed from the system.

In [4], the problem of reduction of large resistor networks is defined as follows:
given a very large resistor network with conductance matrix G, find an equivalent
network that: (a) has the same terminals; (b) has exactly the same path resistances
between terminals; (c) has Oni  ni internal nodes; (d) has ON  N resistors;
(e) realizable as a netlist. The existing algorithm, ReduceR [4], finds a subset of
nodes which after being eliminated leads to a sparse conductance matrix. This is
done by the use of the three strategies: graph algorithms, a reordering strategy
(Approximate Minimum Degree algorithm) and a node elimination strategy. These
strategies together guarantee that the reduced network is exact, i.e. no approximation
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Fig. 1 Network with 16
external nodes (black dots),
16 internal nodes and 64
resistors (edges)

error is made. However the algorithm does not always deliver a good reduction.
For example, networks which are obtained from substrate extraction based on Finite
Element Method usually have a specific quadrilateral structure with large and sparse
conductance matrices [5]. The exact reduction of such networks is challenging
because elimination of internal nodes may not lead to efficient reduction. An
example of such network is shown in Fig.1. Note that elimination of internal nodes
in corners (they have the smallest degree) decreases the number of nodes however
the number of resistors will stay unchanged.

3 Improved Approach

In order to improve the reduction of the number of resistors, we suggest a new
approach that is based on finding and deleting some resistors which do not
contribute to the behavior of the circuit significantly. We will call it simplification.
Simplification does not deliver exact reduction and hence we would like to control
error due to approximation. Further we suggest two types of error which can be used
for controlling the quality of our approximation.

First we consider the relative error between voltages at nodes. Given a tolerance
ı, the goal is to delete resistors in the network such that

Errv D jjv� Qvjjjjvjj D
jjG�1i � QG�1ijj
jjG�1ijj < ı; (2)

where v is the vector of voltages at the nodes in the original network, Qv is the vector
of voltages at the nodes after simplification, i.e. when some resistors have been
deleted, G and QG are conductance matrices of the original and simplified networks.
The error (2) is the most natural way of measuring the quality of approximation,
because it tells us how close the output voltage of the reduced system and of the
original system will be, when applying the same input currents. Since the current
ie is unknown in general, (2) requires knowledge of an error estimation which is
independent of ie . In Sects. 3.1 and 3.2 we will derive estimations for Errv and give
recommendations on their use.
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Secondly we consider the relative error between total path resistances. Given a
tolerance ı, the goal is to delete resistors in the network such that

Errtp D jRtot �
QRtot j

jRtot j < ı; (3)

where Rtot is a total path resistance in original network (G) and QRtot is a total path
resistance in simplified network ( QG). The total path resistance is defined as [1]

Rtot D
X
i<j

Rij D n
n�1X
iD1

1

�i
; (4)

where Rij is path resistance between nodes i and j , and �1 � � � � � �n D 0

are eigenvalues of G. Note that close values of total path resistances do not
imply that the networks have similar behavior. However, if networks have similar
behavior, then corresponding total path resistances are similar. Since, in our case,
the simplified network is obtained from the original one by deleting some resistors,
we can expect (3) to be a measure that indicates, how well the reduced network
approximates the original one. In Sect. 4 we show this fact via a numerical experi-
ment, and indeed, the smaller ı in (3), the better the approximation to the original
network. Simplification based on (3), of course, requires an efficient estimation with
less computational cost than the direct computation of Errtp. Derivation of such
estimation will be done in Sect. 3.3.

3.1 Error Estimation for Errv (First Version)

First approach is based on [8]. By neglecting, for instance, the smallest conductances
(biggest resistors) in G, the criteria for simplification can be described as

jj�Gjj � tol � jjGjj; (5)

where�G D G � QG. According to [8] the error (2) can be bounded as

Errv D jjv � Qvjjjjvjj � jj.GC�G/
�1jj � jj�Gjj � 	.G/ jj�GjjjjGjj D 	.G/ � tol 	 Errvc

(6)

where 	.G/ is the condition-number of G. Thus Errvc is a bound of the relative
error Errv.

Based on (5)–(6), a cheap and fast simplification procedure can be defined. For
a given G and tolerance ı, one needs to compute 	.G/ and choose parameter tol
such that it is less than ı=	.G/. After deleting a resistor (group of resistors), the
condition (5) is checked. If it holds true, then the deleted resistor is confirmed and
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the next resistor is tried to be deleted, otherwise deleting is not confirmed and the
next resistor is considered. In Sect. 3.4 we suggest an approach for deleting resistors
by groups with the use of Errvc.

In practice, however, the condition number, k.G/, is usually in the range from
105 till 108, therefore for the required accuracy, e.g. " D 5%, parameter tol must
be small. As a result, condition (5) may become too strict for deleting a big amount
of resistors which makes estimation not sharp enough. We remind that grounding
of the network is required here in order to prevent G from being singular. If the
network is not grounded one can ground an arbitrary external node and then perform
simplification according to (5)–(6). After that the deleted external node is added to
the network.

3.2 Error Estimation for Errv (Second Version)

In this section we suggest an error estimation for the maximum relative error of
vector of voltages which is sharper than the error estimation based on the condition
number (6):

Errv D jjv� Qvjj2jjvjj2 � max
i2Rn;i¤0

jjv � Qvjj2
jjvjj2 D max

i2Rn;i¤0
jj.I � QG�1G/fjj2

jjfjj2 D �1 	 Errvs;

(7)

where �1 denotes the maximum singular value of .I � QG�1G/, f D G�1i, and
Errvs is estimation of the error Errv. Computation of maximum singular value
can be performed, for instance, by Jacobi-Davidson type SVD method [2], or by
Krylov-Schur method [7], which is used for numerical examples in Sect. 4. Note
that QG has to be nonsingular, i.e. the network has to be grounded. If the network
is not grounded, one can temporarily ground an arbitrary external node and after
simplification unground it, i.e., to insert back the corresponding row and column in
G. In Sect. 3.4 we suggest an approach for deleting resistors by groups with the use
of Errvs.

3.3 Error Estimation for Errtp

In order to derive an estimation for (3), we consider the following theorem about
perturbation of a Hermitian matrix [6]:

Theorem 1. Let A be a Hermitian matrix with eigenvalues �1 � �1 � : : : �n and
�A D A C E is a Hermitian perturbation of A with eigenvalues Q�1 � Q�2 : : : Q�n.

Matrix E has eigenvalues e1 � e2 � : : : en. Then, max
�
j Q�i � �i j

�
� jjEjj2, for

i D 1; : : : ; n.
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We set up �A D QG and A D G, where QG is a conductance matrix after
simplification. By doing some algebra, (3), with Rtot and QRtot defined as in (4),
we obtain the estimation, Errtpa, such that

Errtp D j
QRtot � Rtot j
jRtot j � max fj"1j; j"njg

�n�1
	 Errtpa; (8)

where "1, "n are the largest and the smallest eigenvalues of ��G, and �n�1 is the
second smallest eigenvalue ofG. Thus deleting some resistors, one has to recompute
only the largest magnitude eigenvalue of ��G, while �n�1 has to be computed
once. This makes Errtpa more attractive from computational point of view than a
direct computing of Errtp. In Sect. 3.4 we suggest an approach for deleting resistors
by groups with the use of Errtpa.

3.4 Deleting Resistors by Groups

For convenience we will use Err for denoting a generic error estimate, i.e. Errvc,
Errvs or Errtpa. Now the question is as follows. Which resistors should we delete
from G and in which order should they be deleted to obtain QG, such that Err <
ı? First we give some physical intuition. The larger resistor, the less current flows
through it. Thus if a resistor is large, then almost no current goes through it and,
therefore, such resistor can be neglected. This principle can be used in our case.

Further before deleting resistors we suggest to sort them in decreasing order.
Since deleting resistors one by one and checking Err < ı is not efficient, we
suggest to delete resistors by groups. To do that, choose k, which is less than the
number of all resistors. (For example, k can be chosen as 10% from the whole
amount of resistors.) Try to delete k resistors at once and check whether network
becomes disconnected, i.e. corresponding undirected graph of the network is not
connected [4]. If the network is still connected, then compute Err. If Err < ı,
then try to delete the next 2k resistors, otherwise try to delete k=2 resistors. If the
network is disconnected, then try to delete k=2 resistors. If k D 1 and the network
is disconnected, then skip the first resistor and continue the procedure from the
beginning. As soon asErr > ı and k D 1, the procedure is stopped. This algorithm
is just a way to select resistors that are candidates to be eliminated.

4 Numerical Results

We will show how the suggested approach for simplification with the use of
error estimations and reduction by ReduceR work for networks from industry. The
networks I,II and IV come from realistic designs of very-large-scale integration
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Table 1 Results of reduction by ReduceR (R) and simplification (S1 - using estimation Errvc, S2 -
using estimation Errvs, S3 - using estimation Errtpa). ı D 0:05

Network I Original R RC S1 RC S2 RC S3
#ports 160 160 160 160 160
#resistors 23222 3315 2393 1187 1909
CPU time(s.) – 23.8 23.9 28 24.9

Network II Original R RC S1 RC S2 RC S3
#ports 39 39 39 39 39
#resistors 2476 702 641 510 622
CPU time(s.) – 1 1.01 1.9 1.7

Network III Original R RC S1 RC S2 RC S3
#ports 55 55 55 55 55
#resistors 70006 1485 1485 455 1480
CPU time(s.) – 62.4 62.4 73 62.9

Network IV Original R RC S1 RC S2 RC S3
#ports 76 76 76 76 76
#resistors 1936 1397 1385 1264 1312
CPU time(s.) – 1.1 1.2 2.6 1.8

chips [4] and the network III comes from substrate extraction which has a specific
structure similar to the one in the Fig. 1. The simplification procedures have been
implemented in Matlab 7.5 and have been tested on a Core 2 Duo 1.6 GHz PC.

In this paper we apply simplification after reduction by ReduceR. From the
Table 1 it can be seen that simplification by Errvc is faster than simplification
by Errvs. As was mentioned in Sect. 3.1, Errvc depends on condition number
of G which makes it less sharp than Errvs. Noticeable reduction by Errvs has
been achieved for the networks I and III, where the number of resistors has been
decreased by 65% and 70% respectively. Thus, estimation, Errvc, can be considered
for fast improvements in the amount of resistors, while Errvs can be used for
obtaining more advanced reduction. To compare the overall CPU simulation time,
we measured time required to compute the path resistances. We first applied
ReduceR, and then simplification by Errvs to obtain the reduced network. The usage
of simplification after ReduceR provides a further reduction in simulation time of
30% for the network I , and similarly, for the networks II, III, and IV the CPU time
was reduced at 4%, 2%, and 4% respectively. Figure 2 demonstrates that the higher
tolerance ı, the more resistors can be deleted. With ı D 20%, computational time
is increased by 10% maximum.
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Fig. 2 Tolerance ı versus number of resistors in the networks (I-left, III-right) after simplification
(S1 – by estimation Errvc, S2 – by Errvs, S3 – by Errtpa) applied after reduction by ReduceR

Table 2 The smaller ı, the close simplified network to the original
one

ı 5% 15% 25%

Errp 4:38e�5 1:64e�4 5:79e�4

In order to show that Errtpa in fact indicates how close the original and the
simplified networks are, we performed the following experiment. We applied
simplification by Errtpa to the reduced network obtained by ReduceR from the
network I. Then, we computed the maximum relative error, Errp, between path
resistances of the original and simplified network. From Table 2 it can be seen that
smaller values of ı (with Errtpa � ı) correspond to smaller values of Errp, which
implies that the network with smaller Errtpa is closer to the original network. The
same tendency was observed for all other networks, and therefore we do not include
these results.

5 Conclusion

By using insights from linear algebra, simplification improves the reduction of
resistor networks, regarding the amount of resistors. Derived error estimations allow
to keep a strict control on the accuracy of the reduced networks. Simplification,
applied after reduction by ReduceR, improved total reduction by 70%. Since the
success of simplification depends on the values of conductances, simplification can
be considered as a complementary procedure to existing exact reduction techniques.

Acknowledgements The authors would like to thank M. Hochstenbach for sharing the Krylov-
SVD code. The first author wants to thank P.I. Rosen Esquivel for the useful discussions.
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Improving Model-Order Reduction Methods
by Singularity Exclusion

Pekka Miettinen, Mikko Honkala, Janne Roos, and Martti Valtonen

Abstract This paper presents a novel stand-alone method for overcoming a
singular system matrix in Model-Order Reduction (MOR) algorithms, which would
otherwise foil successful algorithm operation and thus reduction. The basic idea of
the method is to locate and identify the circuit areas that generate the singularities to
the system matrix prior to MOR, and exclude these from the reduction. The method
is applicable to any netlist-in–netlist-out type MOR method.

1 Introduction

In order to accurately simulate transistor-level interconnect behavior, also the
various non-ideal parasitic layout effects appearing at microchip and interconnect
level need to be modeled. However, including these complex characteristics on top
of the original circuit design often poses significant run-time and memory problems
for the analysis and simulation tools. One avenue to speed up the simulations is to
apply model-order reduction (MOR) algorithms (e.g., [1–6]) to the circuits, which
attempt to approximate the system with a reduced-size representation.

One problem arising occasionally when using MOR methods is the singularity of
the system matrices [7]. Depending on the method, the system matrices are typically
derived from the y [1, 4, 5] or z-parameter [2, 3] circuit equations (see Sect. 2). The
basic idea of moment-matching MOR approaches is to expand the circuit equation
unknowns and the known input sources to Taylor series at some expansion point and
match some of these series coefficients, i.e., moments. Since the explicit matching
is numerically unstable for high number of moments, implicit moment-matching
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can be done via projecting the original system onto a smaller Krylov subspace.
However, if the circuit equations can not be well defined at the expansion point,
the MOR methods typically inherently fail. This occurs, e.g., with certain circuit
structures (see Sect. 3), which cause the system matrix to become singular.

The idea of the proposed singularity exclusion method is to analyze the original
netlist as a preprocessing step to the actual MOR, and exclude those parts of the
circuit from the MOR that would generate the singularities to the system matrices
(see Sect. 4). After reducing the remaining circuit, the excluded parts can be
reconnected with the reduced circuit, to obtain the final, (partially) reduced-order
model for the complete circuit. The presented method is further encouraged by the
characteristic that often the problematic circuit parts that generate the singularities
are located between interconnect segments, and/or consist of few elements in total.
Thus, by removing the singularity-generating structures, good reduction efficiency
can still be typically achieved.

It should be noted that the additional analysis required for the singularity
exclusion may notably slow down a typical MOR reduction process, especially in
the case of large circuits. As a trade-off, however, the method offers an automated
approach of dealing with singularity-generating structures, significantly improving
MOR algorithm reliability, with no loss in reduction accuracy.

2 System Matrices

Time-domain modified nodal analysis (MNA) circuit equations are commonly used
to describe a circuit system. Depending on what excitation is used on the system,
either y or z-parameters can then be determined: for voltage excitation at the ports,
y-parameters, and for current excitation, z-parameters. In MOR methods, the y or
z-parameters describing the circuit are then used to obtain a reduced model of the
original circuit in terms of reduced y or z-parameters.

Using voltage sources at the ports, the MNA circuit equations for a linearN -port
can be expressed as [1]

8<
:

C
dxn.t/

dt
D �Gxn.t/C BuN .t/;

iN .t/ D LTxn.t/;
(1)

where C and G are the susceptance and conductance matrices, respectively, and
xn, uN , and iN denote the MNA variables (nodal voltages, and branch currents
of inductances and voltage sources), port voltages, and port currents, respectively.
Here, B D L is a selector matrix consisting of ones, minus ones, and zeros.

The y-parameters can be determined by taking Laplace transformation of (1) and
solving for port currents, which results in

Y.s/ D LT.GC sC/�1B: (2)
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If current sources are used as excitation instead of voltage sources, the MNA
equations for the system are given by (using the same notation for simplicity)

8̂
<
:̂

C
dxn.t/

dt
D �Gxn.t/C BiN .t/;

uN .t/ D LTxn.t/:

(3)

where C and G are the susceptance and conductance matrices, respectively; xn,
uN , and iN denote the MNA variables (nodal voltages, and branch currents of
inductances), port voltages, and port currents, respectively; matrix B D L is a
selector matrix consisting of ones, minus ones, and zeros.

Taking the Laplace transformation of (3) and solving for the port voltages, the
z-parameter matrix is given as

Z.s/ D LT.GC sC/�1B: (4)

3 Matrix Singularity

A square matrix that does not have a matrix inverse is called singular. For a system
of linear equations, Ax D b, the system matrix A is invertible if, and only if, the
number of linearly independent equations is the same as the number of unknowns
in vector x, i.e., A has full rank. Thus, if A has less linearly independent equations
than unknowns, it is singular. If a system matrix is singular, the unknown vector x
can not be solved exactly, and most numerical simulations become difficult.

Moment-matching MOR methods, such as [1–5], need to calculate .GC sC/�1
of (2) or (4) (where often s D 0) either to explicitly match the moments, or, e.g.,
as a part of an iterative Arnoldi process to implicitly match the moments. Here, if
GCsC is singular at the expansion point s D s0, the moments can not be generated,
and the MOR fails.

For circuit equations, singular matrices are often the result of violating some of
the standing assumptions for allowable circuits [8]; e.g., a circuit may not contain
a loop made of independent voltage sources, only, (an E loop) or a cutset made
of independent current sources, only (a J cutset). Thus, the singularity-generating
structures are not very common in typical RLC circuits, but do occur occasionally,
especially with MOR of automatically generated circuits and/or when huge (such)
circuits need to be partitioned into manageable subcircuits, and new ports are
generated. Partitioning can also be used as a processing step in MOR as a powerful
tool to obtain more efficient and robust reduction result [4–6], where the need to
tackle the occasional singular circuit partition is emphasized. In any case, for a
general RLC MOR algorithm to be reliably effective, these potentially fatal special
cases need to be handled in some way.
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Fig. 1 Structures causing singularities for y-parameters (Y1, Y2, and Y3) and z-parameters
(Z1, Z2, and Z3) at DC. The voltage and current source excitations are not included in the figure

In Fig. 1, five different circuit-topological cases are presented, which cause
GC sC to become singular at s D s0 D 0 for RLC circuits. The expansion point
s0 D 0 (i.e., DC) is an important and typical expansion point, since low frequencies
are often of major interest in a circuit application (especially so the DC). Further-
more, most interconnect circuit structures are of low-pass-filter type, and in these
cases, using an expansion point near low frequencies typically gives better reduction
results. However, at DC, capacitances and inductances become open and short
circuits, respectively, and may more easily generate a situation where the standing
assumptions for allowable circuits are violated, resulting in singular matrices.

Due to different excitations of the circuit equations (1) and (3), GCsC calculated
for the y or z-parameters become singular in slightly different cases. In Fig. 1,
the circuit structures generating a singular matrix for y-parameters are noted Y1,
Y2, and Y3, whereas for z-parameters, the singularities are generated by Z1, Z2,
and Z3. Note that even a single occurrence of one of these structures makes the
corresponding system matrix singular.

Y1 The node v5 is connected to capacitances, only, which become open circuits at
DC. In GC sC of (2), this translates to a row of zeros, meaning the voltage of
the node, and the vector xn, is no longer well-defined.

Y2 A port (voltage source) is short-circuited to the ground at DC, forming an E
loop. This makes the current of inductance L3 dependent to the current of the
port at v7, reducing the rank of GC sC in (2) by one.

Y3 At DC, the inductances between the two ports are reduced to a short circuit,
creating an E loop. For G C sC in (2) this translates to a linearly dependent
row, and the rank of the matrix is decreased by one.

Z1 Similarly as with y-parameters and Y1, the node v5 is connected only to
capacitances, making the system rank-deficient at DC also for z-parameters.

Z2 The port node v8 is connected to capacitances, only, which for z-parameters
makes the system rank-deficient at DC similar to Y1 and Z1. (Note that for
y-parameters, this is not a problem due to additional port current MNA stamps
in the row.)

Z3 A branch between two ports has no path to ground at DC, creating a J cutset
for z-parameters. This means that the current excitations at the two ports are
forced the same, (e.g., i1 D i2) and thus linearly dependent. For GC sC in (4),
this means that the matrix is again rank-deficient.
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Although the above circuit cases present only the s0 D 0 case, analogous
situations occur at other expansion points, if the inductances and capacitances in
Fig. 1 are replaced with other reactive elements: If the capacitances and inductances
are replaced with inductances and capacitances, respectively, the singularities occur
at s0 D 1. If the inductances and capacitances are replaced with series and parallel
LC-resonators, the singularities occur when the expansion point is the same as
complex resonant frequency of the resonators.

The list of singularity-generating cases presented in this section is not exhaustive,
and other structures generating singularities in the system matrices exist, although
they seem to be more rare for typical RLC circuits. The purpose of presenting the
cases Y1, . . . , Z3 is to show that the singularities are often generated by a small
number of elements (except Z3) compared to the total circuit, and thus excluding
them from the MOR should not generally hamper the MOR results considerably.

On the other hand, Z3 is a common structure in (partitioned) interconnects. This
makes the use of z-parameters more difficult with s0 D 0 in MOR approaches,
especially if the many advantages of partitioning in MOR [5] are to be exploited.

4 Singularity Exclusion

A possible method of overcoming the singular system matrices is to introduce new
small parasitic elements to the circuit [8]. This means adding a small conductive
element in parallel and a small resistive element in series to each original reactive
element in the circuit. This prevents the formation of any possible E loops,
J cutsets, or nodes with no connection to other parts of the circuit. However, it is
obvious that if thus processed, the original system may increase considerably in size.
Furthermore, in case of large systems, even if the newly introduced parasitics are
small in value, the cumulative impact of the generated error may become substantial,
and worsen the reduction accuracy. In the following, a more sophisticated method
for dealing with singular system matrices in MOR is presented.

The basic idea of the singularity exclusion method is to locate and isolate
the areas in the original circuit that render the system matrices singular. Once the
singularity-generating regions are found, the algorithm removes these parts of the
circuit from the MOR process, and after all such regions are removed, MOR is
performed on the non-singular part of the circuit. As a final step, the singularity-
generating portion is combined to the reduced circuit.

The singularity of a matrix can be monitored, e.g., by calculating the condition
number of the matrix. This measures the sensitivity of the solution of a linear
equations to errors in the data, and gives an indication of the accuracy of the
results from matrix inversion. In this paper, a MATLAB reciprocal condition number
estimate rcond was used, which gives the reciprocal of the condition of the matrix
in 1-norm [9]. If the matrix is near singular, rcond returns a value close to 0, and a
value near 1 for a well-conditioned matrix. Even if the system is not strictly singular,
it may be ill-conditioned. For example, a nearby singularity-generating region in the
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complex plane may still result in numerical unstability and poor accuracy for MOR,
making it a valid target for further processing to avoid the numerical problems.

The proposed method can be divided into the following steps:

1. The condition number of the current system matrix is estimated using rcond.
2. If the rcond value is lower than a preset threshold, the matrix is partitioned into

two submatrices .
3. The two new submatrices are analyzed again as in step 1. If either of the

submatrices has a low rcond value that matrix is partitioned again into two
new submatrices, and the steps 1–2 are repeated in a recursive manner.

This partitioning process is continued until the size of a new submatrix
decreases below the threshold for minimum submatrix (or corresponding sub-
circuit) size. At this point, the singularity-generating subcircuit is removed from
the original circuit netlist to be reduced.

4. After all singularity-generating subcircuits have been localized and removed, the
remaining subcircuits (i.e., partitions with acceptable rcond) are recombined.

5. The recombined circuit (without the singularity generating subcircuits) is
reduced with the MOR method of choice.

6. Lastly, the previously excluded circuit parts are added to the reduced circuit.

If the MOR method uses partitioning as a natural part of the MOR algorithm
(e.g., partitioning-based MOR methods, [4–6]), the singularity exclusion may be
included in the MOR process. Here, the analysis and possible recursive partitioning
described above may be done for each (MOR) partition at a time, in tandem
with the MOR method. Furthermore, if the initial partition size is small (equal
to the minimum subcircuit size in step 3), no recursive partitioning needs to be
done, and the condition number calculations for the whole circuit become notably
faster. For faster condition number calculations, the fast reciprocal condition number
estimation klu_rcond provided by the KLU algorithm package [10] can also be
used.

It should be noted that the singularity-generating structures described in Sect. 3
are mainly a problem for the MOR process; e.g., in transient analysis, z or
y-parameters are not typically needed.

5 Simulations

The singularity exclusion method presented in this paper was implemented in C
and MATLAB, using the hMETIS [11] algorithm-package for partitioning. Table 1
shows the transient analysis results of circuit tree3, first as original circuit, then
the reduced circuit using PRIMA (s0 D 0 and order of the reduced model, q D 20)
and Matsumoto realization [12], with and without the singularity exclusion.

In the partitioning and rcond-based analysis, two singularity-generating areas
(Y1) were located and removed. The threshold for rcond was 1 � 10�12 and the
threshold for the minimum partition size was 10 circuit elements (i.e., 20 elements
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Table 1 Comparison of MOR results for circuit tree3 with and without singularity exclusion,
showing the speedup in transient simulation results (s0 D 0)

Method R L C VCCS Error/% Speedup

Original circuit (no reduction) 363 360 375 0 0 1.00
Reduced — no singularity exclusion Singular matrix; MOR algorithm stopped, no results
Reduced — singularity exclusion 27 7 43 160 0.07 4.72

Table 2 Transient analysis for reduced tree3 with different expansion points s0

s0 / rad/s R L C VCCS Error/% Speedup

Original circuit 363 360 375 0 0 1.00
f100; 104; 106g 20 0 25 120 � 103 NaN
107 20 0 27 120 0.80 8.05
109 20 0 27 120 0.06 8.05

in total were excluded from the MOR). If the singularities were not removed, the
MOR process could not continue, and no results could be obtained. As can be seen
from the results, by using the singularity exclusion method, accurate and efficient
reduction was still possible even with the singularity-generating structures in the
original circuit.

One alternative approach to the singularity exclusion method is to change the
expansion point of the MOR. However, .G C sC/�1 may be inaccurate for nearby
expansion points that are close to a singularity-generating point in the complex
plane, depending on the sensitivity of the system. Table 2 shows the transient
analysis results for the circuit tree3, before and after MOR, with different
expansion points. Here, the singularity at s D 0 caused numerical inaccuracies for
MOR attempts in a wide frequency range, and shows that the choosing of a new s0
may be non-trivial without further analysis.

It should be noted that the complete singularity exclusion algorithm with the
recursive partitioning is relatively time-consuming, especially in the case of large
circuits. Thus, although usable by any netlist-in–netlist-out MOR algorithm, the
presented method is best suited to be used with partitioning-based MOR, where
the partitioning step of the singularity exclusion method may be obtained at low
computational cost alongside the MOR partitioning process.

6 Conclusions

In this paper, a method for overcoming singularity-generating circuit structures
in MOR was presented. If a circuit contains areas that produce singularities to
the system matrices, the MOR may inherently fail if additional precautions are
not taken. By locating and excluding these areas from the MOR with automated
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processing, high reduction ratio can still be ensured, with no loss in accuracy.
Alternative approaches to dealing with the singularities, such as introducing new
small parasitics or switching the expansion point, may easily generate additional
error to the reduction and/or require non-trivial heuristics of their own to be of
similar use.

On the downside, the additional analysis needed may slow down the MOR
considerably. Thus, the method is best suited to be used with partitioning-based
MOR algorithms, where the computational cost of the partitioning step becomes
small. If the reduction speed is not of vital interest, the presented method offers any
netlist-in–netlist-out MOR algorithm notably improved method reliability.
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Partitioning-Based Reduction of Circuits
with Mutual Inductances

Pekka Miettinen, Mikko Honkala, Janne Roos, and Martti Valtonen

Abstract This paper describes a novel model-order reduction (MOR) method to
reduce the number of mutual inductances in conjunction with a recently proposed
MOR algorithm, PartMOR. As the method produces passive mutual inductances
as a reduction realization, it extends the existing RLC-in–RLC-out PartMOR to a
RLCM-in–RLCM-out MOR method. The method is verified and compared to a
well-known MOR method with test simulations and is shown to produce good
reduction results in terms of CPU speed-up and generated error.

1 Introduction

In order to accurately simulate transistor-level interconnect behavior, also the
various non-ideal parasitic layout effects appearing at microchip and interconnect
level need to be modeled. However, including these complex characteristics on top
of the original circuit design often poses significant run-time and memory problems
for the analysis and simulation tools. One avenue to speed up the simulations is to
apply model-order reduction (MOR) algorithms (e.g., [1–6]) to the circuits, which
attempt to approximate the system with a reduced-size representation.

Crosstalk and other coupling phenomena between neighboring interconnect lines
can be divided into three types of coupling – parallel coupling, forward mutual
coupling, and forward self coupling – which are typically modeled with induc-
tances and/or capacitances [7]. Parallel coupling describes capacitive or inductive
coupling oriented mostly orthogonal to two interconnect segments. Forward mutual
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coupling describes a coupling effect that is not orthogonal to the interconnects,
e.g., a coupling between interconnect segments that are further apart. Finally,
forward self coupling is between two segments of the same interconnect line.

Capacitive coupling is a short-range effect, and the coupling terms are typically
small in relative magnitude between long interconnect lines. Thus, in typical
applications, capacitive coupling beyond the immediate neighboring capacitors
can be discarded as negligible [7]. However, unlike capacitive coupling, inductive
coupling has a wide-ranging area of effect. As a result, the mutual inductances can
easily generate a dense mesh of elements between the interconnect lines.

This paper presents a novel method to reduce the number of mutual inductances
in an RLCM interconnect circuit as a part of a recently proposed partitioning-based
RLC-in–RLC-out MOR method, PartMOR [1] or the RL-in–RL-out MOR proposed
in [5], in case of RLM circuits. The basic idea is that the RLCM (RLM) circuit is
first treated for the RLC (RL) interconnects separately, and after the interconnects
are reduced, the mutual inductive coupling between the reduced interconnect lines
can be added in the same proportions as in the original interconnects.

2 PartMOR

PartMOR is a partitioning-based RLC-in–RLC-out MOR method that generates
passive reduced-order circuits with positive-valued RLC elements [1]. The method
first divides the original circuit into small partitions, which can then be approx-
imated with low-order RLC macromodels. The approximation is performed by
generating the y-parameter moment series at DC and infinity,

Y.s/ D M0 CM1s CM2s
2 C � � � ; (1)

Y.s/ D N0 C N1

1

s
C N2

1

s2
C � � � ; (2)

and matching the first few moments from both of the series with one of the presented
RLC macromodels. Since the method matches moments at both DC and infinity,
good approximation can be achieved over a wide frequency band.

Using partitioning in MOR provides the method numerous beneficial assets,
such as (block-level) sparsity, economical memory use, natural parallel processing,
and facilitated port reduction. In PartMOR, specifically, the main advantage of
partitioning is that small enough RLC interconnect circuit partitions can be typically
approximated using few moments with still sufficient accuracy. The use of few
moments, only, enables using numerically stable explicit matching with low-order
macromodels. As the macromodels in turn can be relatively simple, it is possible to
generate them using positive-valued RLC elements, only.

Regardless whether positive-valued RLC elements are specifically required by
the design flow, PartMOR achieves excellent reduction results for various types of
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a

b

Fig. 1 (a) A typical
interconnect section, (b)
reduced interconnect section
after PartMOR. Note that Iin

and Iout should remain
approximately the same
before and after reduction

RLC, RC and RL circuits, outperforming an alternative RLC-in–RLC-out MOR
method, SPRIM [3] using RLCSYN [8], for the cases shown in [1].

A typical PartMOR reduction of an interconnect partition is shown in Fig. 1.

3 Reducing Mutual Inductances

Reducing circuits containing mutual inductances presents partitioning-based MOR
methods (such as PartMOR) several problems. Since a mutual inductance between
two self inductances essentially generates a 4-port out of two 2-ports, in case of
a dense mesh of inductances between interconnects, a partitioning may generate
a huge number of port nodes, and lead to poor reduction efficiency. Dealing with
circuits with dense meshes of elements is, thus, often difficult for partitioning-based
approaches in general [1].

For low-order approximations, mutual inductances are also tricky, since it
appears (as shown by preliminary simulations) that the dynamic behavior of even a
small mesh of mutual inductances may be relatively complex, and thus it can not be
always reliably approximated using low-order approximations.

In, e.g., [6] the reduction of mutual inductances is achieved by converting each
pair of mutual inductances into a mesh of self inductances, some of which are of
negative value. However, this approach has certain shortcomings, such as that the
conversion model is highly inaccurate at DC, and in practice generates new 4-ports,
which are difficult to partition efficiently. The method presented here relies on the
physical characteristics of a transmission line, is accurate at DC, and is efficient
for reducing even a dense mesh of mutual inductances using partitioning-based
MOR.

Consider a typical transmission line discretization presented in Fig. 1a. If the
currents Ig1; : : : ; Ign are small compared to Iout, it can be approximated that
Iin � Iout. This holds for most interconnect models, especially when n is small.
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Fig. 2 Two interconnect lines, with negligible currents to ground: I1 	 I2, I3 	 I4

If the currents to the ground are negligible, the voltages over the two branches,
U A and U B (see Fig. 2), where the branches haveK mutual inductances,N andM
self inductances, and P and Q resistances, respectively, are given by

U A D LA
1 I1s CRA

1 I1 CM1I3s C � � � C LA
N I1s CRA

P I1 CMKI3s

D
XN

iD1 L
A
i I1s C

XP

iD1 R
A
i I1 C

XK

iD1 MiI3s

	 LA
˙I1s CRA

˙I1 CM˙I3s; (3)

U B D LB
1 I3s CRB

1 I3 CM1I1s C � � � C LB
MI3s CRB

QI3 CMKI1s

D
XM

iD1 L
B
i I3s C

XQ

iD1 R
B
i I3 C

XK

iD1 MiI1s

	 LB
˙I3s CRB

˙I3 CM˙I1s: (4)

Here, the mutual inductance between each pair of inductances, LA and LB, is

M D k
p
LALB; (5)

where k is the coupling coefficient. Note that the mutual inductive coupling may as
well be of parallel (M1 in Fig. 2) or forward mutual coupling (M2 in Fig. 2). In case
of forward self coupling, the mutual inductance can be treated as a self inductance,
since Iin � Iout.

Now, consider that two transmission line partitions, named A and B (as shown for
one line in Fig. 1a), have mutual inductances. The RLCM partitions are first reduced
similarly as RLC partitions (into Fig. 1b). Since the current Iin � Iout should be
approximately the same before and after reduction (depending on the accuracy of
the MOR), the mutual coupling of the currents between the two lines, described
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with M˙ , is also the same after MOR. In case of, e.g., SPICE K elements are used
to realize the mutual inductive coupling, the new coupling coefficient between the
inductances of the reduced partitions can be calculated with

kred D M˙q
LA

redL
B
red

; (6)

where LA
red and LB

red are the reduced inductances of the two partitions, respectively,
after MOR.

The general MOR algorithm flow can be summarized as follows:

1. By first ignoring the mutual inductance elements M , a partitioning is generated
for the remaining RLC interconnect circuit.

2. For eachM in the original circuit, the inductances connected byM (LA and LB)
and the partition they belong to, are noted.

3. Using the information from step 2,M.i;j /
˙ is calculated using (3) and (5) between

each pair of partitions, .i; j /, that have connecting mutual coupling.
4. The RLC circuit is reduced using PartMOR (or [5], in case of RLM circuits).
5. The original mutual couplings M.i;j /

˙ are re-introduced to the circuit and new
elements are generated between the reduced partitions .i; j / (using, e.g., (6)).

In step 1, the partitioning should be done such that the partitions generated are
2-ports. If a partition ends up with more than two ports, the approximation Iin � Iout

may become highly erroneous. Here, recursive partitioning similar to, e.g., [1], can
be applied to reduce the size of the partition, and hopefully the number of ports.
If obtaining a 2-port partitioning is not feasible, a partitioning with more than two
ports may be left out from the MOR after a certain treshold for minimum partition
size in order to avoid error. In practise, for typical interconnect discretizations, this
should not become a problem.

Since the reduction relies on the approximation Iin � Iout, it is important that
the currents to the ground remain small compared to the current in the main branch.
In general, this applies to interconnect applications with large risetimes and small
propagation delays [7]. For typical situations, it is important that the partitions are
small enough to ensure that the difference between Iin and Iout – and the error
generated by the approximation – remains small.

4 Passivity and Stability

A linear RLC circuit is passive and thus stable, if all element values in the circuit
are non-negative [4] – this is a sufficient (but not necessary) condition for passivity.
Reduced RLC circuits generated by PartMOR contain only positive valued RLC
elements and are thus passive and stable.
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A mutual inductanceM between two self inductancesL1 andL2 is passive, if [9]

M2 � L1L2: (7)

However, in a general case, a self inductance may have multiple mutual inductances
connected to several other self inductances (see, e.g., L1 in Fig. 2). If the single
self inductance L2 in (7) is replaced with n self inductances, L2 	 L21C
L22 C : : : C L2n, and similarly, the mutual inductance M is divided between L1
and L21; L22; : : : ; L2n, respectively, such that M 	 M21 C : : : CM2n, from (7) it
follows

.M21 CM22 C : : :CM2n/
2 � L1.L21 C L22 C : : :CL2n/; (8)

1 � L1L21 C L1L22 C : : :C L1L2n
.M21 CM22 C : : :CM2n/2

: (9)

Thus, if (9) applies to the mutual inductances of the reduced circuit, and all other
elements are passive, the whole circuit is passive and stable.

The passivity criterion (9) can be easily checked in the presented MOR algorithm
flow step 5 (see Sect. 3). Typically, if the original circuit is passive, the reduction
produces a passive circuit without problems. In a rare case, e.g., if M2 D L1L2,
the numerical noise generated by the MOR might produce a reduced circuit where
M2 > L1L2 by a slight margin, and the reduced circuit would lose passivity (and
stability). To prevent this, if a violation of (9) is observed in step 5, the total mutual
inductive coupling from one partition, i , can be forced to M D pL1L2, i.e.,

nX
jD1

M
.i;j /
˙ D

vuut
nX

jD1
LiredL

j
red; (10)

where n is the number ofM˙ connected to partition i . Using (10), the generated new
mutual inductance elements (using, e.g., (6)) can be scaled down to ensure passivity.

5 Simulations

The reduction method presented in this paper was verified and simulated with
several RLCM circuits, of which RLCMbuses3 and RLCMbuses5 are shown as
representative samples. The circuit RLCMbuses3 is shown in Fig. 3 and consist of
11 varying interconnect segments, of which five have parallel mutual coupling. The
circuit RLCMbuses5 consist of two parallel interconnects, with heavy parallel and
forward coupling, and is shown as a case with a relatively dense mesh of mutual
inductances. For both circuits, the output voltage is read from a victim line.

The circuits were first reduced with PartMOR as RLC circuits and then fur-
ther processed for mutual inductances with the method described in this paper.
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Fig. 3 Circuit RLCMbuses3. The inductive coupling between the interconnects is parallel
coupling (with a coupling coefficient k) between neighboring interconnects. Each interconnect
consist of 200–500 RLC elements

Table 1 Transient simulation results for original and reduced RLCMbuses3. For PartMORCM,
the partition size was 200 elements, and for PRIMACMatsumoto q D 40 and s0 D 0

MOR method Nodes R L C K VCCS Error/% CPU/s Speed-up

Original circuit 4,510 1,507 1,502 1,507 400 0 – 30.65 1.00
PartMORCM 74 37 24 25 18 0 0.90 0.24 127.71
PRIMACMatsumoto 43 40 0 57 0 160 0.84 0.28 109.46

Table 2 Transient simulation results for original and reduced RLCMbuses5. For PartMORCM,
the partition size was 75 elements, and for PRIMACMatsumoto q D 20 and s0 D 0

MOR method Nodes R L C K VCCS Error/% CPU/s Speed-up

Original circuit 606 205 201 203 1,910 0 – 14.21 1.00
PartMORCM 27 14 8 10 10 0 0.48 0.13 109.31
PRIMACMatsumoto 23 20 0 29 0 80 0.51 0.18 78.94

Transient-analysis simulations were then performed on the original and reduced
circuits, and are shown in Tables 1 and 2 (where the reduction results are noted
as PartMORCM) and in Fig. 4. Here, the mutual inductances were realized using
SPICE K elements. In the simulations, a short iteration (2–5 steps) was done to
obtain a suitable partition size for the partitioning. The error is calculated as in [1].
As can be seen from the tables and the figure, the simulations showed good reduction
results.

For comparison purposes, the two circuits were also reduced with PRIMA [2]
using an efficient Matsumoto’s realization method [10]. The results of the transient
simulations for the PRIMACMatsumoto reduced circuits are also shown in Tables 1
and 2. Similarly as for PartMORCM, a short experimentation with parameter values
was done to obtain a suitable order of the reduced model, q, and expansion point, s0.
By comparing the two MOR approaches, it seems that the presented method is
equal to or even slightly better than PRIMACMatsumoto in terms of reduction
results.
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Fig. 4 Transient simulations of original and reduced RLCMbuses3 using PartMOR and the
method presented in this paper. The relative error is shown with a dashed line

6 Conclusions

In this paper, a method to reduce the number of mutual inductances in conjunction
with a recently proposed MOR method, PartMOR, was presented. The method
produces new passive mutual inductances as a reduction realization, thus extending
the existing RLC-in–RLC-out PartMOR to a RLCM-in–RLCM-out MOR method.
Additionally, since the mutual inductances are not mapped to, e.g., MNA matrices
prior to MOR, even dense meshes of mutual inductances can be processed with
good results. The method was verified and compared to PRIMACMatsumoto with
test simulations, and was shown to produce good reduction results. However,
PRIMACMatsumoto needs controlled sources (VCCS ’s) in reduction realization,
which may cause problems for some analysis tools. As the presented method uses
only standard RLCM elements, it is readily usable in any typical design flow using
mutual inductances.
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Model Order Reduction of Parameterized
Nonlinear Systems by Interpolating
Input-Output Behavior

Michael Striebel and Joost Rommes

Abstract In this paper we propose a new approach for model order reduction
of parameterized nonlinear systems. Instead of projecting onto the dominant
state space, an analog macromodel is constructed for the dominant input-output
behavior. This macromodel is suitable for (re)use in analog circuit simulators. The
performance of the approach is illustrated for a benchmark nonlinear system.

1 Introduction

Simulation of VLSI chips is becoming CPU and memory intensive, or even
infeasible, due to the increasing amount of layout parasitics and devices in analog
designs. A popular method for speeding up and/or enabling simulation of large-scale
dynamical systems is model order reduction [1]. For linear systems, several methods
[2, 4, 5] have been developed that are now used in industrial circuit simulators.

Well-known methods for nonlinear systems in circuit simulation are Proper
Orthogonal Decomposition (POD) based methods [6] and piecewise-linearization
(PWL) methods [7]. Both approaches try to obtain reduction by projection on the
dominant dynamics. However, both approaches may suffer from difficulties that
may limit their practical use [8]. Robust and efficient resimulation of POD models
is still a challenge, while PWL based approaches require application-dependent
selections strategies for linearization points and weights.
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We present a new method for the reduction of large nonlinear systems. The most
significant difference with respect to existing methods is that instead of focusing
on the dominant state dynamics, the proposed method tries to capture the dominant
input-output behavior. Another novelty is that the resulting analog model behaves
like a circuit element and can easily be used by circuit simulators. Table models
have been used before, for instance for device modelling [3]; in this paper, however,
we use table models for complete circuit blocks.

2 Circuit Modeling

Complex electrical systems are designed in a modular way.To enable communica-
tion with other circuit blocks, some nodes of each unit act as terminals, or pins.
At these, say nP pins, information in terms of pin voltages and pin currents,
vpin; ipin 2 R

nP , respectively, is exchanged. Applying Modified Nodal Analysis
(MNA), a block is described by

0 DAC

d

dt
qC .AT

C e/C ARr.AT
Re/C ALjL C AV jV C AI i.t/ �Apinipin; (1a)

0 D d
dt
˚L.jV /� AT

Le; (1b)

0 Dv.t/ �AT
V e; (1c)

0 Dvpin �AT
pine; (1d)

where e.t/ 2 R
ne , jL.t/ 2 R

nL , jV .t/ 2 R
nV denote the unknown node voltages

and currents through inductors and voltage sources, respectively. The incidence
matrices A˝ 2 f0;˙1gne�n˝ , describe the placement of the basic network elements
resistor (˝ D R), capacitor (C), inductor (L), voltage (V) and current (I) source,
respectively. The, in general nonlinear, characteristics of the network elements are
represented by qC .�/,˚.�/, r.�/, i.�/, v.t/. The incidence matrix Apin 2 f0;˙1gne�nP
addresses the circuit nodes acting as pins. Injecting, i.e., prescribing the pin voltages
vpin, the pin currents jpin become additional unknowns, meant to be passed back to
the system the block is embedded in, or vice versa. By this, a circuit unit turns into
an input-output system, represented in the compact form

0 D d

dt
q.x/C j.x/C s.t/C BuI y D BT x; (2)

where u.t/; y.t/ 2 R
nP represent the input and output of the system and x.t/ 2 R

n

(n D ne C nV C nL C nP ) denotes the internal states. Note, that in the following
we will omit the excitation s.t/.

Frequently, design parameters, e.g., width and length of transistor channels, are
kept variable, in order to optimize them in the design process. We take this into
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account by including a parameter vector � 2 R
npar in the element functions, i.e., by

extending q.xI�/ and j.xI�/ 2 R
n in (2).

2.1 Model Order Reduction

A compound of subsystems, described by (2), arises e.g., in full system verification
and post-layout simulation. The arising overall system usually is very large.

Focusing on the interaction in a compound of systems one is often not interested
in the individual internal states x.t/ but merely in the way a subsystem translates
u.t/ to y.t/. Classically, Model Order Reduction (MOR) aims at replacing (2) by a
dynamical system of reduced dimension r  n. The idea is, that, given the same
input u.t/, the substitute dynamical system with internal states z.t/ 2 R

r produces
(almost) the same output y.t/ as the full system (2). Hence, replacing individual
blocks by models of reduced order, the dimension of the compound system is kept
small, enabling the overall system to be simulated at reasonable computational costs.

MOR for linear systems, arising from parasitic extraction, used in post-layout
simulation, reached a high level of maturity. Several methods are now used in
industrial circuit simulators. For an overview we refer to [1, 9]. MOR for linear
problems bases upon the transfer function, i.e., the representation of the dynamical
system under consideration in the frequency domain and is usually combined with
projecting (2) onto a lower dimensional subspace.

For nonlinear problems the situation is somewhat different. Here, in general
no transfer function can be specified and also projection to a lower dimensional
subspace may reduce the dimension of the system but not the computational costs
evaluating the system since still (dense) right-hand side and jacobian evaluations are
needed. We propose an approach to reproduce the input-output mapping, starting
from time-domain considerations.

2.2 Numerical Time Integration

Systems of type (2) usually can not be solved analytically for x.t/; y.t/. Numerical
integration is carried out instead. Both onestep and multistep methods discretize the
system. For the backward Euler as a showcase this amounts to

0 D 1

h
Œq.xn/� q.xn�1/�C j.xn/C BunI yn D BT xn: (3)

Given un and xn�1, (3) defines xn and yn, i.e., approximations to x.tn/ and y.tn/
at tn D tn�1 C h. Applying a Newton–Raphson technique to solve this problem, a
series of linear equations have to be solved. The main ingredients for setting up the
corresponding linear system are

˛C.Nx/CG.Nx/I ˛q.Nx/C j.Nx/I q.xn�1/; (4)
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Table 1 Macromodel using tabulated data: mapping �˝
and derivative evaluated at inputs u.i/.

u u.1/ � � � u.k/

�˝ �
.1/
˝ � � � �

.k/
˝

T˝ T.1/˝ � � � T.k/˝

with C.�/ D d
dx

q.�/, G.�/ D d
dx

j.�/, evaluated at some intermediate points Nx. For
the backward Euler we have ˛ D h�1. The term q.xn�1/ reflects the history of the
dynamic elements.

Note, that for didactic reasons only we stick to the Euler discretisation during the
rest of this paper. For an overview of schemes applicable to DAEs we refer to [10].

3 Input-Output Behavior Macromodeling

Being interested in the translation of the input to the output reads, in terms of the
discretised problem (3): we are interested in yn and xn as an auxiliary quantity only.
Hence, ideally we are able to replace the system (3) by an input-output mapping

� W RnP ! R
nP ; un 7! yn D �.un/: (5a)

At first glance it seems that this is not realizable. From (4), not only a combined
evaluation of fq; jg and fC;Gg is needed but also the dynamics’ history q.xn�1/.

However, for homogeneous structures, i.e., blocks comprising only resistive (R),
capacitive (C) or inductive (L) elements, the mapping �˝ (˝ D R;C;L), can be
derived. Still, in general, no analytic expression can be specified. The idea is to
replace function evaluation with interpolation from tabulated data (see Table 1).

This table includes also the derivative of � w.r.t. the input, i.e.,

T W RnP ! R
nP�nP W un 7! T.un/ D @�.u/

@u

ˇ̌
ˇ̌
uDun

: (5b)

The basic concept is to replace homogeneous structures by a macromodel or
macroelement with the same characteristics. Resistors turn voltages to currents,
capacitors answer with charges when a voltage is applied and inductors show a
current-flux relation. These facts are to be preserved by the macromodel.

In the following we give some details for purely resistive and purely capacitive
structures, i.e., for static and dynamic blocks.

3.1 Models for Resistive Structures

A circuit block consisting of resistors only is described by

0 D ARr.AT
Re/�Apinjpin;

0 D vpin �AT
pine:

(6a)
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We choose the pin voltages vpin as input parameters. Assuming sufficient
regularity of the conductance matrix Gr .w/ WD @

@w r.w/, (6a) implicitly defines the
node voltages and pin currents as functions of the pin voltages, i.e., e D e.vpin/ and
j D j.vpin/, respectively. We differentiate (6a) with respect to vpin to get:

0 D ARGr .AT
Re/AT

R

@e
@vpin

�Apin
@jpin

@vpin
;

0 D InP � AT
pin

@e
@vpin

(6b)

where InP is the nP � nP identity matrix.
For purely resistive structures we construct Table 1, describing the mapping “pin

voltages” to “pin currents” in the following way:

1. Choose a discrete set of k 2 N terminal voltages vp;1; : : : ; vp;k with vp;i 2 R
nP

2. For each i 2 f1; : : : ; kg
a. compute ei D e.vp;i / and jp;i D jpin.vp;i / by solving (6a) for vpin D vp;i
b. Solve the linear system (6b) for @e

@vpin
jvp;i and @jpin

@vpin
jvp;i DW Jp;i . Here, Gr .�/ is

evaluated at AT
Rei . This amounts to computing the Schur complement

Jp;i D @jpin

@vpin
D
�

AT
pin

	
ARGr .AT

Rei /AT
R


�1
Apin

��1
: (6c)

3. The parameters for the resistive macromodel from Table 1 are

u.i/ D vp;i ; �
.i/
R D jp;i ; T.i/R D Jp;i

for i D 1; : : : ; k where vp;i 2 R
nP , jp;i 2 R

nP , Jp;i 2 R
nP�nP

3.2 Models for Capacitive Structures

The distribution of charges and voltages in a network of capacitors is described by

0 D ACq.AT
C e/ �Apinqpin;

0 D vpin � AT
pine;

(7a)

where qpin are point charges at the structure’s pins. In other words: we map a large
number of charges q.�/ to nP point charges qpin. Here the voltage vpin 2 R

nP is
prescribed at the pins.

Analog to the procedure for resistive structures (Sect. 3.1) we construct Table 1
for purely capacitive structures. For different voltages vpin 2 fvp;1; : : : ; vp;kg we
solve the nonlinear system (7a) for qpin.vp;i / DW qp;i and e.vp;i /.
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The column in Table 1 reflecting the charge replies is made up of fqp;1; : : : ;qp;kg.
Items for the column in Table 1 describing the Jacobians TC are found by solving

0 D ACCq.AT
C e/AT

C

@e
@vpin

�Apin
@qpin

@vpin
;

0 D InP �AT
pin

@e
@vpin

(7b)

for @e
@vpin
jvp;i and @qpin

@vpin
jvp;i DW Qp;i DW T.i/C , i.e., from the Schur complement

Qp;i D T.i/C D
�

AT
pin

	
ACCq.AT

C ei /AT
C


�1
Apin

��1
: (7c)

3.3 Parameterized Structures

A purely resistive structure that contains parameterized elements is modeled by

0 D ARr.AT
ReI�/� Apinjpin;

0 D vpin � AT
pine;

(8)

with the vector � 2 R
npar of parameters. The task is now to not only cover a range

of terminal voltages vpin but also a parameters � in a reasonable range.
Therefore, the procedure from Sect. 3.1 has to be adapted: besides sweeping

over a range of pin voltages vpin 2 fvp;1; : : : ; vp;kg we also scan the input-output
behavior for different parameters � 2 f�1; : : : ;�lg. This leads to an extended
macromodel

� W RnP � R
npar ! R

nP ; .un;�/ 7! yn D �.un;�/; (9)

realized by a table with datapoints
�
.�.�/;u.�//; .�.�;�/;T.�;�//

�
for � D 1; : : : ; l

and � D 1; : : : ; k.

3.4 Using the Macromodels

A system containing purely resistive and capacitive subblocks can be modeled by

0 D d

dt
q.x/C j.x/C s.t/C BR�R.BTRx/C BC

d

dt
�C .BTC x/; (10)
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with incidence matrices BR;BC describing the interfaces. In this way, we accommo-
date the characteristics of a subblock being reactive or nonreactive. Macromodels
of inductive nature can be added to (10) in a similar way.

Applying any numerical time integration technique to (10), we see, that the basic
ingredients for the systems to be solved in this process are (cf. (4))

˛
�
CCeTC

�
.Nxn/C

�
GCeTR

�
.Nxn/ and ˛ ŒqCe�C � .Nxn/C Œ jCe�R� .Nxn/I

q.xn�1/ and e�C .xn�1/;
(11)

where e�˝.�/ D B˝�˝.BT˝ �/ and eT ˝.�/ D B˝T ˝.BT˝ �/ for ˝ 2 fR;C g. We
clearly see that the Jacobians (5b) are necessary as well.

Recall, that evaluation of the macromodel-functions and the corresponding
Jacobians are realized by interpolation from the corresponding Table 1.

4 Numerical Experiments

The proposed approach has been implemented in matlab with interpolation done
using the interpn-functions. The integrator used is an ROW-scheme. Although
one may expect a large dependence on the quality of interpolation of the derivatives,
in several testcases we neither recognized an increase in iterations done for
calculating the DC-solution nor in timesteps rejected during simulation.

An extended, parameterized version of the transmission line [7] serves as a test
example. This circuit, displayed in Fig. 1, consists of a series of N blocks, each
containing M pairs of resistor and diode (modeled by id .u/ D exp. � u/ � 1) in
parallel. This leads to a system of dimension N �M C 1. For the nonlinear resistor-
diode block (with M D 100) a compact model is derived by sweeping vpin D
f0:0;˙0:01;˙0:02g and  D f35; 55g, i.e., by solving (6a), (6b) 5 � 2 D 10 times
for each combination of .vpin; /. For testing, the block was instantiated N D 10

times and a current source i.t/ D 0:5.cos.2� � 0:1 � t/ C 1/ was chosen. To test
the accuracy of the reduced model, each of the N D 10 blocks was replaced by a
tablemodel. Hence, the full system of dimensionN �MC1 D 1001 is replaced by a
model of dimensionN C 1 D 11. From Fig. 2 a speedup of about 6 for each choice
of the parameter  and an almost perfect match with full system simulation can be
observed.

N+1

block Nblock 1

N21

Fig. 1 Transmission line
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Fig. 2 Parameterized
transmission line: Results for
 D 40 in comparison with
TPWL, node 1

Resimulation with a TPWL-reduced model of similar size, replacing all the
elements apart from the current source, was faster (about 1.5 s with 80 s for training)
but less accurate. Furthermore TPWL depends on several heuristics and may be
sensitive to the choice of the initial value as we see in Fig. 2. For details see [8].

5 Conclusion

We have presented a method that directly approximates the input-output behavior of
large parameterized nonlinear circuits by interpolating precomputed contributions
to the network equations. Numerical results confirm that significant speedups can
be obtained while maintaining accuracy and not requiring heursitic model tuning.
Extensions to mixed static/dynamic circuits and advanced interpolation methods
that can deal with large numbers of inputs and outputs are subject to future research.
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On the Selection of Interpolation Points
for Rational Krylov Methods

E. Fatih Yetkin and Hasan Dağ

Abstract We suggest a simple and an efficient way of selecting a suitable set of
interpolation points for the well-known rational Krylov based model order reduction
techniques. To do this, some sampling points from the frequency response of the
transfer function are taken. These points correspond to the places where the sign
of the numerical derivation of transfer function changes. The suggested method
requires a set of linear system’s solutions several times. But, they can be computed
concurrently by different processors in a parallel computing environment. Serial
performance of the method is compared to the well-known H2 optimal method
for several benchmark examples. The method achieves acceptable accuracies (the
same order of magnitude) compared to that of H2 optimal methods and has a better
performance than the common selection procedures such as linearly distributed
points.

1 Introduction

Model order reduction (MOR) techniques are getting more important in large scale
computational tasks, such as large scale electronic circuit simulations. Models of
the interconnect structure of the very large scale integrated (VLSI) circuits can be
given in general as a linear state space system:

E Px.t/ D Ax.t/C Bu.t/; y.t/ D CT x.t/CDu.t/ (1)
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where A; E 2 <nxn, B 2 <nxm, C 2 <nxm, D 2 <mxm, and n is the order of the
system at hand.

If a system quadraple is given as ˙ D .E;A;B;C /, one can produce the
projection matrices V 2 C

nxk and W 2Ckxn to obtain a kth order reduced system
Ȯ D . OE; OA; OB; OC/. These projection matrices have to satisfy the conditionW �V D
Ik where Ik is the kth order identity matrix. In this work we assume that we work
on a standard single input single output (SISO) system, and thus E D I . In SISO
systems, B and C become vectors, b and c respectively. Thus, the reduced order
system matrix and vectors are given below [1].

OA D W �AV; Ob D W �b; Oc D cV (2)

Basically rational Krylov based methods match the transfer function at the
selected different interpolation points [2].

Assume that k distinct points in complex plane are selected for interpolation.
Then the interpolation matrices, OV and OW , can be built as below.

OV D Œ.s1I � A/�1b .s2I � A/�1b : : : .skI � A/�1b�
OW D Œ.s1I � A/�T cT .s2I �A/�T cT : : : .skI � A/�T cT � (3)

Assuming that det. OW �V / ¤ 0, then the projected reduced system can be built as,
OA D W TAV , Ob D W T b, Oc D cV , OD D D where V D OV and W D OW . OV �W /�1

to ensure W �V D Ik . The basic problem is then to find a strategy to select the
interpolation points. There are several studies for the selection of interpolation
points in the literature [3].

In this work, a new approach is suggested for the selection of interpolation points.
In the suggested method, the frequency response of the transfer function is sampled
at some selected points. Then, numerical derivative of the sample array of these
points, is computed. Obviously, the peaks of the transfer function can be determined
by the sign changes of the derivative. These peaks correspond to the dominant
poles of the system at hand. There are quite a few ways to find the dominant
poles of a system [4, 5]. In literature there are also some ways of using these
dominant pole approximation methods with spectral zeros of a system [6]. If these
peaks are determined then the corresponding frequency values can be used as the
interpolation points for producing the rational Krylov projectors. Finally, a reduced
order model can be formed by using the projectors given in (3). Unfortunately, the
reduced model may loose its stability in most cases. Therefore, one can employ
the sign function based spectral projectors to neglect the unstable poles of the
reduced system. Although the suggested method requires several factorizations
to compute .si I � A/�1b, these factorizations can be computed on different
processors concurrently. Also the matrix-matrix and matrix-vector multiplications
in the algorithm are amenable to parallel processing [7]. The selection procedure of
the method is completely based on the information from the transfer function itself
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and the reduction order is automatically determined. This is the main difference
from the methods given in [3].

Remainder of the paper is organized as follows. In the second part, the method
is introduced. Some numerical results are given in the third section. In the last part,
the conclusions and the future work are given.

2 Method and Algorithm

To produce the projectors given in (3) one has to select a suitable set of interpolation
points. The common selection procedure for the interpolation points is to select
either logarithmically or linearly distributed points from the working frequency.
Then these initial selections can be used either in an iterative scheme or by a direct
method to produce a reduced model. Our suggestion for the selection is based on
the knowledge of the frequency behaviour of the system at hand. To obtain this
knowledge one can select sufficient number of frequency points and compute the
frequency response of the system in distinct points. Let a single input single output
transfer function of the system in (1) with E D I and D D 0 be given as,
H.s/ D cT .sI �A/�1b:

If N points are selected from the working frequency Œwmin;wmax�, the sampled
frequency response of the transfer function can be obtained as

Hi.si / D cT .si I � A/�1b i D 1; 2; : : : ; N: (4)

Selection of the number of the points depends on a-priori knowledge about the
frequency behaviour of the system if available. After obtaining the array, one can
compute the numerical derivation of these data. The sign changes of the derivative
means that there is a negative or positive peak on the Bode diagram. Then one can
use these frequency points as the interpolation points.

The idea is illustrated in Fig.1. Frequency response of the building example given
in [9] is computed for 20 different sample frequency points and sign changes of the
numerical derivation of the frequency response are computed. It can be easily seen
from the Fig. 1 that there are only three peak points for this example. If the number
of frequency points is increased the frequency response curve will get more accurate
and the number of peaks will also be increased until it achieves its exact value. But,
we observed that it is not necessary to take all peak points of the frequency response
to obtain accurate reduced models.

After the number of the peaks is determined, it can be used as the order of the
reduced model and the frequencies corresponding to these peaks can be used as
the interpolation points. Unfortunately, there is no guarantee for the stability of the
reduced system obtained. Moreover, most of the time, the reduced model is unstable.
Therefore, the unstable poles of the reduced system have to be eliminated. For this
reason, spectral projectors can be employed [8]. On the other hand, accuracy of the
reduced model decreases when the unstable poles eliminated.
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Fig. 1 Frequency response of the building example given in [9] for 20 different sample frequency
points. There are only three peak points for this example

Computational cost of the rational Krylov methods is given as O.kn3/ for dense
problems where k is the number of interpolation points. Iterative rational Krylov
methods are used iteratively and the computational complexity has to be multiplied
by the iteration number r [1]. In the suggested method, the main computational
cost is the LU decomposition for the computation of frequency response of the
transfer function in each sample point. This decomposition can also be used to
form the projectors given in (3). On the other hand, to eliminate the unstable poles
spectral projectors are used and a Sylvester equation is built and solved. Although
these tools are computationally expensive, they are implemented on the reduced
system. Therefore, the computational cost of them is negligible. As a result, the
computational cost of the suggested method can be said to be comparable to that
of the rational Krylov methods. The algorithm of the suggested method is given in
Alg. 5.

3 Numerical Results

To test our algorithm, we used some well-known benchmark examples from the
SLICOT suite [9]. We compare our algorithm with the H2 optimal method given
in [10]. The error is defined as err D jjH.j!/ � Hk.j!/jj=jjH.j!/jj where
jjH.j!/jj, jjHk.j!/jj are 2-norm of the frequency response of the original and
the reduced system respectively. In the first experiment, relationship between the
number of frequency points and the number of the peaks captured is investigated.
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Algorithm 5 SUGGESTED METHOD

Require: System matrix A and the vectors b, c.
Ensure: Reduced system matrix OA, and the vectors Ob, Oc.

1: Select N points from Œwmin;wmax�.
2: Compute Hi.si / D cT .si I � A/�1b with appropriate linear solver for i D 1 : : :N .
3: Compute the numerical derivation of theHi .si / data to obtain the k peak frequencies.
4: Add the wmin and wmax to the peak frequencies and obtain the k C 2 interpolation points.
5: Compute OW and OV using (3).
6: Compute W D OW . OV �W /�1 and assign V D OV in order to ensure W �V D Ik .
7: Compute OA1 D W �AV , Ob1 D W �b, Oc1 D cV .
8: Compute the matrix sign function S D sign . OA1/ and the rank revealing QR decomposition of

T D 1

2
.In � S/

matrix which is the spectral projector onto the stable part of the OA1 as T D QR˘ .
9: Compute

QT OA1Q D
" OA11 OA12
0 OA22

#
; QT Ob1 D

" Ob11Ob12

#
; Oc1Q D

� Oc11
Oc12
�

10: Solve the Sylvester equation

. OA11 � ˇIk/Y � Y. OA22 � ˇIn�k/C OA12 D 0

where ˇ � max�2�. OA22/
.Re.�//

11: The reduced order model is, OAD OA11, Ob D Ob11 � Y Ob12 and Oc D Oc11.

The change of the number of peaks and relative error according to the number of
sample frequency point are given in Table 1.

In all the test cases, there is a limit for sample frequency points. After that value,
there is no change in either the number of peak points or in the relative error for the
reduced model. On the other hand, for small number of sample frequency points it
is also possible to obtain satisfactory results with the method.

The suggested method has a comparable accuracy with iterative rational Krylov
method with the same reduction order. Main problem of the method is, there is no
guarantee for producing a stable and a passive reduced system with it. On the other
hand, spectral projectors can be used as a post-processor to eliminate the unstable
poles from the reduced system. Some comparisons of the error and computational
cost for various methods can be found in Table 2.

Here, we only consider the full size linear equation solutions for computational
comparison. In Fig. 2, Bode amplitude plots of the original and the reduced systems
of transmission line benchmark example are given.

As the last example, we use a ladder RLC network given in [11]. Minimal
realization of the circuit is given in Fig. 3. For this circuit order of the system n D 5.
On the other hand, system matrices of this circuit can easily be extended. The order
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Table 1 The change of the number of peaks and relative error accord-
ing to the number of sample frequency points

# of sample points Case # of peaks captured relative error

50
Beam 9 3:2� 10�3

build 5 0.234
CDplayer 11 0.173

100
Beam 15 6:4� 10�4

build 7 0.196
CDplayer 19 7� 10�3

200
Beam 19 2:1� 10�4

build 17 9� 10�3

CDplayer 25 3� 10�3

500
Beam 25 1:9� 10�4

build 23 4:2� 10�4

CDplayer 37 3� 10�3

1000
Beam 29 4� 10�4

build 25 5:9� 10�4

CDplayer 37 3� 10�3

5000
Beam 29 4� 10�4

build 25 5:9� 10�4

CDplayer 37 3� 10�3

Table 2 Comparison of the
test results of the suggested
and those of H2 method

Case n k Method Error # of LU

sugg. 7:03 � 10�3 100
CDplayer 120 21 H2 opt. 3:9� 10�3 9� 42

linear 0:11 42

sugg. 9:0� 10�3 200
Build 48 6

H2 opt. 8:2� 10�2 10 � 12
linear 6:6� 10�3 18

Fig. 2 Bode amplitude plots for transmission line system from [9]
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Fig. 3 Fifth order minimal
realization of the RLC circuit
used in experiments

Fig. 4 Bode amplitude plots for error systems related to H2 optimal and the suggested method

of the system n is taken as 301 in experiments. The number of frequency points is
selected as 500 and the suggested method produces a 27th order reduced system.
Hence, we select the number of interpolation points in H2 optimal reduction as
28. The sigma plots of the error system for both reduction process are given in
Fig. 4.

3.1 Discussions

In the suggested method, while projector matrices (V and W) are computed in
step 5 of algorithm, one can use the results already computed in step 2 of the
same algorithm. So there is no need for any extra computational effort to build
the projection matrices. Moreover, from Table 1, we can say that satisfactory
results can be achieved by relatively small number of sampling points. On the
other hand, building blocks of the algorithm are based on well known procedures
like matrix multiplications, linear system solutions and QR decomposition. So all
these computations can be done efficiently on several type of architectures (multi-
processor, multi-core or GPU systems).
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4 Conclusion and Future Work

In this work, we suggest a new approach for the selection of the interpolation points
for rational Krylov method. The method is based on the idea of determining the
frequency response peaks of the transfer function. The frequencies of the peak points
are selected as the interpolation points. The reduced order model size is determined
automatically via the suggested algorithm. In the cases tested, it is observed that
the method finds suitable set for using in rational Krylov method without iteration.
The method needs linear equation solutions several times and this is the main
computational cost of the suggested method. But these computations are completely
independent from each other and the method can be easily run on multi processor
systems. In MIMO cases, the method can be implemented for every input/output
pairs independently and the reduced system can be determined with same approach
for each input/output pair. In our future work, we plan to implement and test the
suggested algorithm on parallel environments with more realistic multiple input
multiple output examples.
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Discrete Empirical Interpolation in POD Model
Order Reduction of Drift-Diffusion Equations
in Electrical Networks

Michael Hinze and Martin Kunkel

Abstract We consider model order reduction of integrated circuits with semicon-
ductors modeled by modified nodal analysis and drift-diffusion (DD) equations. The
DD-equations are discretized in space using a mixed finite element method. This
discretization yields a high dimensional, nonlinear system of differential-algebraic
equations. Proper orthogonal decomposition is used to reduce the dimension of this
model. Since the computational complexity of the reduced order model through the
nonlinearity of the DD equations still depends on the number of variables of the full
model we apply the discrete empirical interpolation method to further reduce the
computational complexity. We provide numerical comparisons which demonstrate
the performance of this approach.

1 Introduction

In this article we investigate model order reduction (MOR) based on proper
orthogonal decomposition (POD) for semiconductors in electrical networks using
discrete empirical interpolation method (DEIM) to treat the reduction of nonlinear
components. Electrical networks can be modeled efficiently by a differential-
algebraic equation (DAE) which is obtained from modified nodal analysis. Often
semiconductors themselves are modeled by electrical networks. These models are
stored in a library and are stamped into the surrounding network in order to create
a complete model of the integrated circuit. In [7] POD-based MOR (POD-MOR)
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is proposed to obtain a reduced surrogate model conserving as much of the drift-
diffusion (DD) structure as possible in the reduced order model (ROM). This
approach in [6] is extended to parametrized electrical networks using the greedy
sampling proposed in [9]. Advantages of the POD approach are the higher accuracy
of the model and fewer model parameters. On the other hand, numerical simulations
are more expensive. For a comprehensive overview of the DD equations we refer to
[2, 8, 11].

This paper is organized as follows. We describe the unreduced model in Sect. 2.
In Sect. 3, we present the MOR method based on snapshot POD combined with
DEIM. In Sect. 4 we present numerical experiments, and also discuss advantages
and shortcomings of our approach.

2 Discretized Coupled Model

Using the notation introduced in [5,13] the finite element method (FEM) discretiza-
tion of one semiconductor with domain ˝ 
 R

d (d D 1; 2; 3) in an electrical
network leads to a nonlinear, fully coupled DAE system of the form

AC
d

dt
qC .A

>
C e.t/; t/C ARg.A>Re.t/; t/CALjL.t/CAV jV .t/

CASjS.t/C AI is.t/ D 0; (1)

d

dt
�L.jL.t/; t/ � A>Le.t/ D 0; (2)

A>V e.t/ � vs.t/ D 0; (3)

qS.t/ � dg 
dt
.t/ D 0; (4)

jS .t/ � C1Jn.t/ � C2Jp.t/ � C3qS.t/ D 0; (5)
0
BBBBBBBB@

0

�ML
dn
dt
.t/

ML
dp

dt
.t/

0

0

0

1
CCCCCCCCA
C AFEM

0
BBBBBBB@

 .t/

n.t/

p.t/

g .t/

Jn.t/

Jp.t/

1
CCCCCCCA
C F.n.t/; p.t/; g .t// � b.e.t// D 0; (6)

compare Fig. 1, and see [6, 7]. Here, (1)–(3) describe the electrical network with
unknown node potentials e, and branch currents jL of inductive, and jV of voltage
source branches, respectively. Equations (4)–(5) are discretized coupling conditions.
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Fig. 1 Basic test circuit with one diode. The network is described by

AV D 	
1; 0


>
;

AS D
	�1; 1



>

;

AR D
	
0; 1



>

;

g.A>

R e; t/D 1

R
e2.t/:

The vector-valued function  contains the weights for the ansatz functions 'i in the
Galerkin ansatz

 h.t; x/ D
NX
iD1

 i .t/'i .x/; x 2 ˝; (7)

for the discretized potential of the semiconductor. Here, h denotes the discretization
parameter and N denotes the number of finite elements. The discretized electron
and hole concentrations nh.t; x/ and ph.t; x/, the electric field �gh .t; x/ and the

current densities J hn .t; x/ and J hp .t; x/ are defined likewise. The incidence matrix
A D ŒAR;AC ;AL;AV ;AI ; AS � represents the network topology and is defined as
usual. The matrices AFEM andML are large and sparse. The voltage sources vs and
current sources is are considered as inputs of the network.

3 Model Order Reduction

We use POD-MOR applied to the DD part (6) to construct a dimension-reduced
surrogate model for (1)–(6). For this purpose we run a simulation of the unreduced
system and collect l snapshots  h.tk; �/, nh.tk; �/, ph.tk; �/, gh .tk; �/, J hn .tk; �/,
J hp .tk ; �/ at time instances tk 2 ft1; : : : ; tlg 
 Œ0; T �. The optimal selection of
the time instances is not considered here. We use the time instances delivered by
the DAE integrator. The snapshot variant of POD introduced in [12] finds a best
approximation of the space spanned by the snapshots w.r.t. to the considered scalar
product.

Since every component of the state vector z WD . ; n; p; g ; Jn; Jp/ has its own
physical meaning we apply POD-MOR to each component separately. Among other
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things this approach has the advantage of yielding a block-dense model and the
approximation quality of each component is adapted individually.

The time-snapshot POD procedure delivers Galerkin ansatz spaces for  , n,
p, g , Jn and Jp and we set  POD.t/ WD U � .t/, nPOD.t/ WD Un�n.t/; : : :.
The injection matrices U 2RN�s , Un 2RN�sn ; : : :, contain the (time indepen-
dent) POD basis functions, and the vectors �.�/ the corresponding time-variant
coefficients. The numbers s.�/ denote the respective number of POD basis functions
included. Assembling the POD system yields the ROM

AC
d

dt
qC .A

>
C e.t/; t/C ARg.A>Re.t/; t/C ALjL.t/C AV jV .t/

CASjS.t/C AI is.t/ D 0; (8)

d

dt
�L.jL.t/; t/ �A>Le.t/ D 0; (9)

A>V e.t/ � vs.t/ D 0;
(10)

qS.t/ � Ug 
dg 

dt
.t/ D 0;

(11)

jS .t/ � C1UJn�Jn.t/� C2UJp�Jp .t/ � C3qS.t/ D 0;
(12)0

BBBBBBB@

0

� d�n
dt
.t/

d�p
dt
.t/

0

0

0

1
CCCCCCCA
C APOD

0
BBBBBBB@

� .t/

�n.t/

�p.t/

�g .t/

�Jn.t/

�Jp .t/

1
CCCCCCCA
C U>F.Un�n.t/; Up�p.t/; Ug �g .t//

�U>b.e.t// D 0;
(13)

with APOD D U>AFEMU and U D diag.U ; Un; Up; Ug ; UJn ; UJp /. All matrix-
matrix multiplications are calculated in an offline-phase. The nonlinear function
F has to be evaluated online which means that the computational complexity of
the ROM still depends on the number of unknowns of the unreduced model. The
nonlinearity in (13) is given by

U>F.U�.t// D

0
BBBBBBB@

0

U>n Fn.Un�n.t/; Up�p.t//
U>p Fp.Un�n.t/; Up�p.t//

0

U>JnFJn .Un�n.t/; Ug �g .t//
U>JpFJp .Un�p.t/; Ug �g .t//

1
CCCCCCCA
;



DEIM in POD Model Order Reduction of DD-equations 427

see e.g. [6]. The subsequent considerations apply for each block component of F .
For the sake of presentation we only consider the second block

U>n„ƒ‚…
size sn�N

Fn„ƒ‚…
N evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (14)

and its derivative with respect to �p,

U>n„ƒ‚…
size sn�N

@Fn

@p
.Un�n.t/; Up�p.t//

„ ƒ‚ …
size N�N , sparse

Up„ƒ‚…
size N�sp

:

Here, the matrices U.�/ are dense and the Jacobian of Fn is sparse. The evaluation of
(14) is of computational complexityO.N/. Furthermore, we need to multiply large
dense matrices in the evaluation of the Jacobian. Thus, the POD-MOR may become
inefficient.

To overcome this problem, we apply DEIM, proposed in [3], which we now
describe briefly. The snapshots  h.tk; �/, nh.tk ; �/, ph.tk; �/, gh .tk; �/, J hn .tk; �/,
J hp .tk ; �/ are collected at time instances tk 2 ft1; : : : ; tlg 
 Œ0; T � as before.
Additionally, we collect snapshots fFn.n.tk/; p.tk//g of the nonlinearity. DEIM
approximates the projected function (14) such that

U>n Fn.Un�n.t/; Up�p.t// � U>n Vn.P>n Vn/�1P>n Fn.Un�n.t/; Up�p.t//;

where Vn 2 R
N��n contains the first �n POD basis functions of the space spanned

by the snapshots fFn.n.tk/; p.tk//g associated with the largest singular values. The
selection matrixPn D

	
e1 ; : : : ; e�n


 2 R
N��n selects the rows of Fn corresponding

to the so-called DEIM indices 1; : : : ; �n which are chosen such that the growth of
a global error bound is limited and P>n Vn is regular, see [3] for details.

The matrix Wn WD U>n Vn.P>n Vn/�1 2 R
sn��n as well as the whole interpolation

method is calculated in an offline phase. In the simulation of the ROM we instead
of (14) evaluate:

Wn„ƒ‚…
size sn��n

P>n Fn„ƒ‚…
�n evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (15)

with derivative

W >n„ƒ‚…
size sn��n

@P>n Fn
@p

.Un�n.t/; Up�p.t//

„ ƒ‚ …
size �n�N , sparse

Up„ƒ‚…
sizeN�sp

:
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In the applied FEM a single functional component of Fn only depends on a
small constant number c 2 N components of Un�n.t/. Thus, the matrix-matrix
multiplication in the derivative does not really depend on N since the number of
entries per row in the Jacobian is at most c.

But there is still a dependence on N , namely the calculation of Un�n.t/. To
overcome this dependency we identify the required components of the vector
Un�n.t/ for the evaluation of P>n Fn. This is done by defining selection matrices
Qn;n 2 R

c�n�sn , Qn;p 2 R
c�p�sp such that

P>n Fn.Un�n.t/; Up�p.t// D OFn.Qn;nUn�n.t/;Qn;pUp�p.t//;

where OFn denotes the functional components of Fn selected by Pn restricted to the
arguments selected by Qn;n and Qn;p.

Supposed that �n � sn  N we obtain a ROM which does not depend onN any
more.

4 Numerical Investigation

The discussed method is implemented in CCC based on the FEM library
deal.II [1]. The high dimensional DAE is integrated using the DASPK software
package [10]. The derivative of the nonlinear functional is hard to compute and thus
we calculate the Jacobians by automatic differentiation with the package ADOL-
C [14]. The Newton systems which arise from the BDF method are solved with the
direct sparse solver SuperLU [4].

A basic test circuit with a single 1-dimensional diode is depicted in Fig. 1. The
parameters of the diode are summarized in [6]. The input vs.t/ is chosen to be
sinusoidal with amplitude 5 V. In the sequel the frequency of the voltage source
will be considered as a model parameter.

We first validate the ROM at a fixed reference frequency of 5 � 109 Hz. Figure 2
shows the development of the relative error between the POD reduced, the POD-
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DEIM reduced and the unreduced numerical solutions, plotted over the lack of infor-
mation� of the POD basis functions with respect to the space spanned by the snap-
shots. The figure shows that the approximation quality of the POD-DEIM reduced
model is comparable with the more expensive POD reduced model. The number of
POD basis functions s.�/ for each variable is chosen such that the indicated approx-
imation quality is reached, i.e. � WD � ' �n ' �p ' �g ' �Jn ' �Jp . The
numbers �.�/ of POD-DEIM basis functions are chosen likewise.

In Fig. 3 the simulation times are plotted versus the lack of information �.
The POD ROM does not reduce the simulation times significantly for the chosen
parameters. The reason for this is the dependency on the number of variables of
the unreduced system. Here, the unreduced system contains 1000 finite elements
which yields 12012 unknowns. The POD-DEIM ROM behaves very well and leads
to a reduction in simulation time of about 90% without reducing the accuracy of the
ROM. However, we have to report a minor drawback; not all tested ROMs converge
for large �.s/ � 3 � 10�5. This is indicated in the figures by missing squares.

In Fig. 4 we plot the corresponding total number of required POD basis functions.
It can be seen that with the number of POD basis functions increasing linearly, the
lack of information tends to zero exponentially. Furthermore, the number of DEIM
interpolation indices behaves in the same way.

In Fig. 5 we investigate the dependence of the ROMs on the number of finite
elements N . One sees that the simulation times of the unreduced model depends
linearly on N . The POD ROM still depends on N linearly with a smaller constant.
The dependence on N of our POD-DEIM implementation is negligible.
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Finally, we in Fig. 6 analyze the behaviour of the models with respect to
parameter changes. We consider the frequency of the sinusoidal input voltage as
model parameter. The ROMs are created based on snapshots gathered in a full
simulation at a frequency of 5 � 109 Hz. We see that the POD model and the
POD-DEIM model behave very similarly. The adaptive refinement of the ROM is
discussed in [6].

Summarizing all numerical results we conclude that the significantly faster POD-
DEIM reduction method yields a ROM with the same qualitative behaviour as the
ROM obtained by classical POD-MOR.
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Model Order Reduction for Complex High-Tech
Systems

Agnieszka Lutowska, Michiel E. Hochstenbach, and Wil H.A. Schilders

Abstract This paper presents a computationally efficient model order reduction
(MOR) technique for interconnected systems. This MOR technique preserves
block structures and zero blocks and exploits separate MOR approximations for
the individual sub-systems in combination with low rank approximations for the
interconnection blocks. The reduction is demonstrated to be accurate and efficient
for a beam-controller system.

1 Introduction

Modeling and simulation of the behavior of complex multi-physical high-tech
systems is an important and widely used part of production processes. Accurate sim-
ulations with many degrees of freedom are possible but can be inadmissibly time-
and memory-consuming: A simulation of all of the electromagnetic, mechanical and
acoustic effects of a magnetic resonance imaging (MRI) scanner (see Fig. 1) may
take up to a few days. A manner to reduce the required time and computer resources
is model order reduction which considerably reduces the size of the system –
the amount of degrees of freedom – but preserves the model’s characteristics and
required accuracy.

MOR techniques for generic systems are well developed and widely used, see for
instance [1] for an overview. Specialized MOR techniques for specifically structured
systems – such as coupled or interconnected systems – recently receive more and
more attention, for instance [2–4] present MOR techniques for block-structured
systems which reduce the systems but keep the block structure and the location
of the zero blocks.
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Fig. 1 A vibration analysis
MRI scanner model (courtesy
of Bert Roozen)

Fig. 2 Schematic
representation of the
considered systems

In this paper, the authors present a new technique which preserves the block
structure of the system matrices and which in addition is computationally more
efficient than the previously mentioned methods. The technique is based on the
use of MOR approximations for the coupled systems’ different sub-systems in
combination with singular value decomposition based lower rank approximations
for the coupling blocks.

2 Coupled Systems

For the sake of simplicity we focus on a system of two sub-systems where one sub-
system’s output is used as part of another sub-system’s input and vice versa (see for
instance Fig. 2). The time domain behavior of the each of the sub-systems S1 and S2
is modeled by a system of first order differential-algebraic equations after which the
frequency domain behavior is obtained via a Laplace transformation. For the two
sub-system example in Fig. 2, along with N 2 N being the number of degrees of
freedom of each sub-system, m 2 N – the amount of inputs/outputs of each sub-
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system, A11; A22 2 R
N�N , Bu; Bv; Bw; Cv; Cw; Cz 2 R

N�m; u; v; w; z 2 R
m;

and x1; x2 2 R
N ; this procedure leads to the frequency domain systems:

S1 W
8<
:
sIx1 D A11x1 C BuuC Bww;

z D CT
z x1;

v D CT
v x1;

(1)

S2 W
�
sIx2 D A22x2 CBvv;

w D CT
w x2:

(2)

When the output w of S2 is used as a part of the input of S1 and the output v of S1 is
used as a part of the input of S2, (1) and (2) reduce to an interconnected frequency
domain system:

Sc W

8̂
<̂
ˆ̂:

sI

�
x1
x2

�
D
�
A11 BwC

T
w

BvC
T
v A22

� �
x1
x2

�
C
�
Bu

0

�
u;

z D ŒC T
z 0�

�
x1
x2

�
;

(3)

where the sub-systems’ matricesA11 andA22 form the block-diagonal of the system
matrix of Sc: We assume that the off-diagonal blocks A12 D BwC

T
w and A21 D

BvC
T
v are of low rank and show how this property can be exploited in a MOR

context. The off-diagonal blocks need not to be sparse. In this paper, the v and w are
of the same dimension, but this assumption is not necessary. Different dimensions
of these vectors will only influence the rank of the off-diagonal blocks BwC

T
w and

BvC
T
v and not their size, and they would not limit the methods proposed in this

paper.
We assume

Ac D
�
A11 BwC

T
w

BvC
T
v A22

�
; Bc D

�
Bu

0

�
; Cc D ŒC T

z 0�: (4)

Let x D Œx1 x2�T and V;W 2 RN�n and recall that

OAcx D OBcu; z D OCcx; (5)

where
OAc D W T .sI �Ac/V; OBc D W TBc; OCc D CT

c V; (6)

is the reduced system related to (3).

3 The Separate Bases Reduction Approach

For the reduction of the linear system (3), i.e., the determination of V andW in (5),
one can use any of the generic MOR methods referred to in Sect. 1. Our method
reduces each of the sub-systems bases separately and therefore is called separate
bases reduction (SBR). We start to show how it differs from the SPRIM approach.
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Define the Krylov subspace Kn.E; v/ D ŒŒv; Ev; E2v; : : : ; En�1v��. The SPRIM
block-structure Krylov subspace technique [4] constructs for Kn..sI � Ac/�1;
.sI �Ac/�1Bc/ an orthonormal basis of vectors which constitute the columns of

�
V1

V2

�
2 R

2N�n (7)

and thereafter uses the related block-diagonal matrices

V;W D
�
V1 0

0 V2

�
2 R

2N�2n (8)

in order to obtain the reduced system in (5). We propose for the individual systems
S1 in (1) and S2 in (2) to independently construct orthonormal bases of vectors
which constitute the columns of V1; V2 2 R

N�n related to respectively

Kn..sI�A11/�1.sI�A11/�1ŒBuBw�/ and Kn..sI�A22/�1.sI�A22/�1Bv/ (9)

and thereafter to use the SBR matrices

V;W D
�
V1 0

0 V2

�
2 R

2N�2n (10)

in order to obtain the reduced system in (5). This method preserves the block
structure of the coupled system as well as the zero blocks and can be applied also to
the case of more than two coupled sub-systems.

The application of the components of the block-diagonal matrix V; namely V1
and V2; to each of the corresponding sub-systems separately, would result in the
MOR procedure that exhibits the moment matching property. However, in case of
the separate bases reduction, the moment matching property of the reduced coupled
system has not been proved. Further studies on the relation between moment
expansion coefficients of the sub-systems and those of the coupled system are in
the scope of the future work.

4 SBR in Combination with Low-Rank Approximation

In this section, we show how to construct low-rank approximations for the A12 and
A21 blocks which can used for an efficient calculation of the inverse in (5) – based
on the Sherman–Morrison formula (see [5, (2.1.4)]).

For the sake of simplicity assume that A11 and A22 are scaled, i.e., that for
instance jjA11jj2 D 1 and jjA22jj2 D 1 (a pre- and post-multiplication of Ac with
a suitable diagonal matrix leads to the desired result). If the blocks are not of low
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rank by nature (i.e., if it does not hold that m << N ) one can construct a low rank
approximation with the use of generalized singular value decomposition (GSVD) –
see [5, Theorem 8.7.4] for details – as follows.

We use GSVD to factor the two block-column matrices

�
A11
A21

�
D
�
U1S1X

0
1

V1C1X
0
1

�
;

�
A22
A12

�
D
�
U2S2X

0
2

V2C2X
0
2

�
(11)

where Si and Ci are diagonal matrices. We approximate ViCiX 0i by a low(er)-rank
blocks OVi OCi OX 0i where OVi and OXi consist of the first ki < m columns of Vi and Xi;
respectively, and OCi is the top-left ki �ki sub-matrix of the matrix Ci . This provides
us with a low-rank approximation

� OA21
OA12
�
WD
� OV1 OC1 OX 01OV2 OC2 OX 02

�

„ ƒ‚ …
OBi OCTi

�
�
V1C1X

0
1

V2C2X
0
2

�

„ ƒ‚ …
BiC

T
i

D
�
A21
A12

�
:

The low-rank property of the coupling blocks of the matrixAc may be advantageous,
e.g., while calculating the transfer function of the system (3), which is given by

H.s/ D
h
CT

z 0
i �
sI �A11 �BwC

T
w

�BvC
T
v sI �A22

��1 �
Bu

0

�
: (12)

If the products BvC
T
v and BwC

T
w are approximated by lower-rank ones, OBv OCT

v and
OBw OCT

w ; respectively, one can evaluate the inverse in a computationally cheaper way.
This can be done by applying a generalized Sherman-Morrison formula (see [5,
(2.1.4)]), which for an arbitrary nonsingular matrix M expressed as a sum of a
nonsingular matrix Z and its low-rank update UV T reads

M�1 D .Z C UV T /�1 D Z�1 �Z�1U.I C V TZ�1U /�1V TZ�1: (13)

In our case, the matrix to be inverted in the transfer function (12) can be decom-
posed into

�
sI � A11 �BwC

T
w

�BvC
T
v sI � A22

�
D
�
sI � A11 0

0 sI � A22
�
�
� OBw

0

�
Œ0 OCT

w ��
�
0
OBv

�
Œ OCT

v 0�

(14)
and the Sherman-Morrison formula will have to be applied twice. With this
procedure, the calculation of the inverse of the full size matrix is replaced by
calculation of the inverses of the smaller sub-blocks, making it computationally
more efficient.



438 A. Lutowska et al.

5 Numerical Results

As benchmark we use two models of a coupled beam-controller system, one with
120 and the other one with 80 degrees of freedom. Each model consists of two sub-
systems, the first sub-system S1 is a linear beam subjected to mechanical vibrations.
As outputs, its displacement is measured at certain points and is used as input for
the second system S2, the controller. Part of the output of the controller is the input
of the beam.

The first system consists of 120 degrees of freedom, 60 of them correspond to
the beam and 60 to the controller. The reduced systems, after applying SPRIM and,
on the other hand, SBR with reduced-rank approximation, have 30 and 31 degrees
of freedom, respectively. In both cases, the multi point based projection space was
built, with the same sample frequency values used to create the bases for the beam,
the controller, and the coupled system. Figure 3 shows three plots of the magnitudes
of the transfer functions of the coupled systems as the function of the frequency. The
three transfer functions are calculated for the original system, the system reduced
after applying SPRIM method, and the one reduced using the uncoupled bases
approach. The vertical dashed lines mark the frequency values that were used as
sampling frequency points. We can conclude that the reduced and the unreduced
transfer functions match well in the region of interest. We independently reduce the
sub-systems which is more efficient than in case of SPRIM algorithm.

Table 1 presents the accumulated computational times in seconds needed to
construct the reduction bases a 1000 subsequent times. Column 1 shows the time

|G
C

L|

10–5

10–6

10–7

10–8

10–9

10–10

10–11

area of
interest

original system
SPRIM

uncoupled reduction

101 102 103 104 105

omega [rad/s]

Fig. 3 Comparison of the transfer functions reduced by SPRIM and SBR
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Table 1 The reduction basis construction time (in Œs�)

SPRIM V1 and V2 V1 V2

0.034 0.183 0.103 0.095
64.003 62.135 37.224 30.965

required to construct the reduction bases (8). Next, column 2 shows the time
required to, serially, calculate the reduction bases (9) and (10) (first V1; next V2).
Finally, columns 3 and 4 show the time expected for the calculation of same bases,
(9) and (10), parallel. In column 3 only V1 is calculated (and the computation of V2
is assumed to be equally fast) and in column 4 vice versa. From the results it can
be observed, that building the reduction bases V1 or V2 is much faster that building
the basis in the way suggested by SPRIM algorithm. It should be noted, that the
considered system is of a relatively small size. For higher- dimensional systems,
even larger advantage (with respect to the computational cost) of using the SBR
algorithm is expected. It is caused by the fact, that the computational cost of the
SPRIM and SBR methods is mainly influenced by the cost of computing the matrix
inverse.

Figure 4 compares the magnitude of the unreduced transfer function of the
second system with 80 degrees of freedom (40 for beam and 40 for the controller),
as a function of the frequency, to the magnitude of the transfer function obtained
after calculating a low-rank approximation of the coupling blocks. Originally, the
coupling blocks are of rank 10 and, after application of our algorithm, they can be
well approximated by a rank 6 matrix for the sub-block A12 and rank 4 matrix for
the sub-block A21: In this example, no reduction in size of the system matrices of
Sc in (3) is done.

Table 2 shows the accumulated computational times of calculating the inverse of
the matrix QAc being the low-rank approximation of matrix Ac (negative of the left
hand side of (14) for s D 0) 10000 subsequent times. Four cases are considered,
each in therein related column

1. QAc�1 W The matrix inverse is based on the MATLAB “n” operator.
2. S-M .1/ W The Sherman -Morrison formula is applied to the matrix QAc and the

MATLAB “n” operator is used to calculate the inverse of the corresponding
block-diagonal matrix on the right hand side of (14) .

3. S-M .2/ W same as S-M .1/; except that the inverse of the block-diagonal matrix
on the right hand side of (14) is calculated by applying the MATLAB “n”
operator to each diagonal block individually.

4. S-M .3/ same as S-M .2/; except that to simulate parallelism, only the inverse of
the diagonal sub-block A11 is calculated by the MATLAB “n” operator.

The first and the last approach give similar results. This can be again explained by
the small size of the studied system. For larger systems, the last approach is expected
to have much smaller computational cost than the first one.
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Fig. 4 Transfer function after applying a low-rank approximation

Table 2 The time to compute the inverse of the matrix QAc in Œs�

QAc�1
S-M .1/ S-M .2/ S-M .3/

0:0005 0:0008 0:0010 0:0012

3:878 5:319 4:581 3:583

6 Conclusion

Tables 1 and 2 show that the presented SBR algorithm in combination with low
rank approximation of the off-diagonal blocks is promising and can serve as a fast
alternative to the existing MOR methods.
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Parametric Model Order Reduction
by Neighbouring Subspaces

Kynthia Stavrakakis, Tilmann Wittig, Wolfgang Ackermann,
and Thomas Weiland

Abstract Electrodynamic field simulations in the frequency domain typically
require the solution of large linear systems. Model Order Reduction (MOR)
techniques offer a fast approach to approximate the system impedance with respect
to the frequency parameter. Most commonly, MOR via projection is applied
associated with certain Krylov projection matrices. During the design process it
is desirable to vary specified parameters like the frequency, geometry details as
well as material parameters, giving rise to multivariate dynamical systems. In this
work, a multivariate MOR method is presented for parameterized systems based
on the Finite Integration Technique (FIT). It utilizes the observation, that for small
parameter variations the matrices associated with the univariate MOR differ only
slightly. Thus, the multivariate MOR method is deduced from the usage of specified
univariate subspaces.

1 Introduction to Model Order Reduction for Large
Dynamical Systems

In electrodynamic field computations the continuous Maxwell equations are typi-
cally discretized in the space variables, i.e the continuous space is mapped to a finite
set of discrete elements leading to a system of differential equations constituting the
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Maxwell Grid Equations. On the basis of these equations, in this work we consider
dynamical systems, denoted by†, where in- and output vectors i and u respectively
and an auxiliary vector x are defined. For a thorough introduction to mathematical
systems see [1]. As the size of this system can be very large, due to limited
computational, accuracy and storage capabilities, simplified models which capture
the main features of the original model are needed. The simplified models are then
used instead of the original models. In the past years, methods of Model Order
Reduction (MOR) have been developed to determine an approximate dynamical
system O† by appropriately reducing the number of equations describing the initial
system. The approximation error should be small, important system properties as
stability and passivity should be preserved and the procedure should be stable and
efficient.

In order to show the basic idea of MOR, let † be a linear, time-invariant (LTI)
system consisting, for simplicity, of first-order ODEs, i.e let † be in the classical
state-space form. Then, in the frequency domain, with the complex frequency
parameter s, it is:

† W
�
sx.s/ D Ax.s/C Bi.s/;
u.s/ D Cx.s/C Du.s/;

(1)

with i and u the in- and output vectors and x the state vector of the system. A is the
system matrix and the B and C are matrices related to the in- and the output vector,
respectively. The MOR-step consists in approximating† by a system O†

O† W
(
s Ox.s/ D OAOx.s/C OBi.s/;
u.s/ D OCOx.s/C ODi.s/;

(2)

by an appropriate reduction of the number of equations of†. Details about the sense
of this reduction will be given in the next sections. As s is the only variable in this
case, we refer to the univariate case. The most common MOR methods are based on
projection in an appropriate subspace, as explained in the following.

2 Univariate Moment-Matching MOR via Projection

MOR methods by projection correspond to truncation in an appropriate subspace.
Let x live in R

n�1 and consider the change of basis T 2 R
n�n in the state space

Nx D Tx. The quantities x;T and T�1 are partitioned as follows

Nx D
� Ox
Qx
�
; T�1 D �V T1

�
; T D

�
W�
T�2

�
; (3)

where Ox 2 R
m; Qx 2 R

n�m;V;W 2 R
n�m. Substituting for x in (1) and retention of

only the first m differential equations leads to
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s Ox DW�A.VOxC T1 Qx/CW�Bi;

u D C.VOxC T1 Qx/C Di;
(4)

The approximation occurs by neglecting the term T1 Qx. The resulting approximant is
defined by the following matrices:

OA DW�AV; OB DW�B; OC D CV: (5)

The determination of V and W depends on the system requirements. In [2] a detailed
description of univariate projection methods is given. As the systems treated in
this work are uniquely determined by their transfer function Z, which is defined
by u D Zi, and are rational functions, [2], one way to approximate the original
system is to approximate its transfer function by a rational function of lower degree.
Consider the Laurent series expansion of Z around s0:

Z.s/ D
1X
kD0

C.�.AC s0I//�kB„ ƒ‚ …
Mk

.s � s0/k; (6)

where Mk is the kth moment of the system. The approximation of Z can be
achieved by matching some of the moments of the series expansion with the transfer
function of the reduced system OZ. As the direct calculation of the moments is an ill-
conditioned problem, implicit methods are recommended which iteratively build
up the matrices V and W. In general, V and W can be different, but, by choosing
V DW, stability and passivity are preserved in the reduced model, [3]. The iteration
is accomplished by means of the Arnoldi algorithm, which produces V, such that
colspfVg k Kq.A; x/, where colspfVg denotes the column space of V and Kq.A; x/
is the Krylov subspace related to A with dimension q. In this way, the original
system † is reduced to the system O†.

3 Multivariate Parameterized Systems Resulting from the
Maxwell Grid Equations in the Finite Integration Theory

Often, it is desirable to vary specified model parameters, for example the frequency,
geometry details or material parameters. Let � D .�1; �2; : : : ; �r / be the vector
containing the variable parameters, excluding the frequency parameter s. The
multivariate dynamical system is described by:

†param W
�
sx.s/ D A.�/x.s/C B.�/i.s/;
u.s/ D C.�/x.s/C D.�/i.s/;

(7)
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Σ :

A (x)

C (x) D

B
 (

ξξ)

⇒ Â (x)

B̂
 (

ξξ)

Ĉ (x) D̂

: Σ̂

Fig. 1 Model Order
Reduction of a multivariate
parameterized system

Analogously to the one-parameter case, a multivariate MOR method consists in
developing a system O† by appropriately reducing the number of initial differential
equations. We require that the dependence on the parameter-vector � remains also
in the reduced system, as visualized in Fig. 1. Notice, that to each parameter vector
� corresponds one system, which will denoted by †� in the following.

In this work, the Maxwell Grid Equations are obtained from the continuous
Maxwell equations with the help of the Finite Integration Technique (FIT) [4, 5]:

CFIT
_e D � d

dt M�
_

h; SM�
_

h D 0;
eCFIT

_

h D . d
dt M" CM†/

_e C __

j s; eSM"
_e D 0: (8)

Here, M";M† and M� are diagonal matrices, which express the mesh geometry
and the material property of each meshcell. The matrices S and CFIT (as well aseS
and eCFIT) are topology matrices representing the divergence and the curl operator,
respectively. In the following, losses are discarded (M† D 0).

We apply a Laplace transformation and consider the system in the Laplace-
domain with the complex frequency parameter s. One way to obtain a dynamical
system that relates input to output is to eliminate one of the vectors _e or

_

h. For
example, elimination of

_

h leads to the discrete Helmholtz Equation

M"s
2_e C CFIT

TM�1� CFIT
_e D sBi;
u D C_e;

(9)

where the matrices B and C have been introduced. If the considered structure is
excited at m ports, we can define the input at the ports in terms of the matrix
B and the generalized current i, i.e. �__j s D Bi. Analogously, we can define the
output voltages in terms of the vector _e and the matrix C. Notice, that (9) does
not correspond to a first-order differential equation, nevertheless the same MOR
methods as for first-order differential equations can be applied, as every higher-
order differential equation can be transformed in a first-order one, [3]. Also in [3], a
detailed description about univariate MOR methods using the FIT can be found.

When parameter variations, such as material or geometry parameters, come into
play, the matrices M";M� are affected and (9) becomes:

M".�/s
2_e C CFIT

TM�1� .�/CFIT
_e D sB.�/i;
u D C.�/_e:

(10)
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4 MOR-Techniques for Multivariate Dynamical Systems

In this section, a multivariate MOR method is presented that assigns a reduced
order system O†� to the system †� described by (10), that keeps the parameter
dependence on the parameter-vector �. According to the projection framework, for
the multivariate case, this is achieved by assigning a common projection matrix V
to all multivariate systems†� such that OZ� approximates Z� .

Among the several approaches existing to calculate V, we point out [6] and [7],
in which multivariate moment matching techniques have been developed that not
only match some of the first moments with respect to s, but also with respect
to the parameter-vector �. Their application requires an explicit dependence on
the parameters, which is not given in (10). There, only the frequency parameter
s appears explicitly. Other parameters, e.g. the material parameters " and �, or
geometry parameters are implicitly included in the matrices M" and M� in a
nonlinear dependence. In [9], a linearization method is presented for FIT-systems
depending on frequency and rectilinear length variation, which results in an
explicit specification of the parameters. A three-dimensional version of this method
has been also implemented. This intermediate step, besides being calculational
demanding and adding further error to the subsequent order reduction, can only
be accomplished when the topology of the mesh remains the same for all parameter
changes. Obviously, this is a strong limiting factor for geometrical variations, as the
systems often result from FIT-models with automatically created meshes, which are
not necessarily the same. Nevertheless, for material parameters these methods form
a powerful tool for MOR.

In this work, an approach is presented which circumvents the topology preserva-
tion, by using univariate MOR methods on several expansion points in the parameter
range. We start by observing, that in case of small geometry variations around an
expansion point �0, the matrices V� related to each †� in the neighbourhood of
�0 differ only slightly. Therefore, without introducing large error, we could use
V0 for projection for the neighbouring subspaces corresponding to the systems
†� , instead of V� . This context is illustrated by the model of Fig. 2, where the
varied parameters are the length l , the width w and the depth d , in x-, y- and z-
direction, respectively. The variation ranges are also indicated in the figure. We
define � D .l;w; d /. In Fig. 3a, the matrix V0 related to the middlepoint of the
variation range, �0 D .9; 10:5; 1:05/, has been used for all systems†� quoted in the
figure. The absolute logarithmic error of the S-Parameter S11 compared to a solution
of full FIT-calculations lies in the range of 10�4, which is satisfactory in practical
applications.

In order to increase the geometry variation range, we can pick several expansion
points �i ; i D 1 : : : N; and build up the matrix ŒV1 V2 : : :VN �. Let mi be the
number of columns of each Vi . In most of the subspaces corresponding to Vi ,
common directions appear. In order to set up V, the directions are sorted by
relative importance with the aid of the singular value decomposition (SVD) [2],
i.e. ŒV1 V2 : : :Vi � D U†N�, where U and N are n � n and

PN
iD1 mi �PN

iD1 mi
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l
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w

d
Parameter Range

frequency s 0. . .5 GHz
length l 8. . .10 mm
width w 10. . .11 mm
depth d 1. . .1.1 mm

Fig. 2 Testmodel: Microstrip line discretized with 5,491 unknowns
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Fig. 3 Error of the S-Parameter S11 in a logarithmic scale for the Microstrip example of Fig. 2
(left) The subspace corresponding to the expansion point �0 D .9; 10:5; 1:05/ has been used for all
systems †� quoted here (right) Five expansion points have been chosen and the first ten columns
of each V1 : : :V5 have been taken to set up V

unitary matrices and † is an n �PN
iD1 mi matrix containing the singular values of

ŒV1 V2 : : :VN �. Choosing for V the first k columns of U, guarantees to capture the
k most important directions of ŒV1 V2 : : :VN �. Apparently, besides the number of
expansion points, also the number of columns of each Vi , as well as the number
of directions k kept in V can be chosen freely. Two examples will illustrate these
aspects.

For the testmodel of Fig. 2, five expansion points, randomly spread in the
parameter range, have been chosen. Each Vi ; i D 1 : : : N D 5; has 10 columns,
which is a typical value for univariate MOR, and k D 50, that is, all directions of
the corresponding U have been used in order to set-up V. The results are shown in
Fig. 3b.

Many possible choices of expansion points exist. For geometry variations it
makes sense to include the edge points of the parameter range and then successively
take further intermediate points. Let S0 � S1 � � � � R

3 be the sets of points which
are build up in this way. In Fig. 4 the geometrical variation range of the model
is shown. S0 contains only point �0, S1 contains �0 and the three edge points
(red dots) of the parameter set and S2 contains the points of S1 as well as one
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Fig. 4 Choice of expansion points, from left to right: S0;S1 and S2

widt
h +ξ 1

ξ2

ξ2

offset +ξ3

Parameter Range

frequency s 0.58 . . . 0. 63GHz
width ξ1 0 . . . 6mm
coupling ξ2 0 . . . 4mm
iris ξ3 0 . . . 4mm

Fig. 5 Filter serving as a testmodel. Besides the frequency, the variable parameters are the width
.�1/, the coupling .�2/ and the iris .�3/

intermediate point in each direction (red dots). This choice allows an automated
construction of the expansion points. Formally, the qth set is defined by the
following expression [6]:

Sq D f.�; q � j�j; j�j � q/g; q � 0; (11)

in which � D .�1; �2/ � 0 are multiindices of dimension 2, [10].
This set of points has been used for the filter in Fig. 5. Figure 6 shows the

logarithmic error of the S-Parameter S11 for different numbers of expansion points
N . Obviously, here, one expansion point is not sufficient. The number mi of
columns of each Vi ; i D 1 : : : N , is chosen as 16. Again, all columns of Ui have
been used for Vi , but e.g. for N D 10 (black curve in Fig. 6), without large
accuracy loss, half of the singular vectors in UND10 can be omitted when setting
up VND10 (80 vectors instead of 160). The average calculation time t calc of each Vi

was approximately 1 s, so that the calculation time for V was less than 10 s. For a
parameter sweep ofM parameter sets �, usage of the common V would be M

N
faster

than taking for each � its own projection matrix V. Consider that multivariate MOR
methods are recommended for large parameter sweeps .M � N/.
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Fig. 6 Results for the Filter
depicted in Fig. 5

5 Conclusion

Subject of investigation in this work were large dynamical systems obtained on
the basis of the FIT which are parameterized with several variables, in particular
geometrical variables. A MOR method has been proposed, which is based on the
fact that for small geometrical variations, as this is the case e.g. in filter optimization,
the system matrices differ only slightly, thus also the respective Krylov subspaces.
The method uses the univariate MOR algorithms to calculate the projection matrix
at several expansion points in the parameter domain. These matrices are put together
and a SVD is applied. The resulting matrix composes the projection matrix for the
multivariate problem. The method is applied to two numerical examples and the
S-Parameters agree well with the comparison results of full FIT-calculations.
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