
Optimized Query Rewriting for OWL 2 QL

Alexandros Chortaras�, Despoina Trivela, and Giorgos Stamou

School of Electrical and Computer Engineering,
National Technical University of Athens,

Zografou 15780, Athens, Greece
{achort,gstam}@cs.ntua.gr, despoina@image.ntua.gr

Abstract. The OWL 2 QL profile has been designed to facilitate query
answering via query rewriting. This paper presents an optimized query
rewriting algorithm which takes advantage of the special characteristics
of the query rewriting problem via first-order resolution in OWL 2 QL
and computes efficiently the rewriting set of a user query, by avoiding
blind and unnecessary inferences, as well as by reducing the need for
extended subsumption checks. The evaluation shows that in several cases
the algorithm achieves a significant improvement and better practical
scalability if compared to other similar approaches.

Keywords: query answering, query rewriting, OWL 2 QL, DL-Lite.

1 Introduction

The use of ontologies in data access allows for semantic query answering, i.e.
for answering user queries expressed in terms of terminologies linked to some
data [4,7]. Queries typically have the form of conjunctive queries (CQ) and
terminologies the form of ontologies. Unfortunately, the problem of answering
CQs in terms of ontologies axiomatized in expressive Description Logics suffers
from high worst-case complexity. The obvious way to overcome this obstacle and
develop practical systems is to reduce the expressivity of the ontology language;
otherwise either soundness or completeness have to be sacrificed.

Late research in description logics has introduced DL-LiteR, a DL ontology
representation language that underpins the OWL 2 QL profile [1]. In DL-LiteR,
the CQ answering problem is tractable from the data point of view. Sound
and complete CQ answering systems for DL-LiteR can follow a strategy that
splits the procedure in two steps [7,1,8]: the query rewriting, in which the CQ
is expanded into a union of CQs (UCQ), and the execution of the UCQ over
the database. Apart from having the advantage of using the mature relational
database technology, rewriting can be based on first order resolution-based rea-
soning algorithms [6], which are widely studied in the literature [2]. The main

� The work of this paper has been partially funded by EuropeanaConnect. Best Prac-
tice Network in the eContentplus Programme of the European Community. (ECP-
2008-DILI-528001) www.europeanaconnect.eu.

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 192–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimized Query Rewriting for OWL 2 QL 193

restriction is that for large terminologies and/or large queries the exponential
complexity in the query size may result in a very large number of rewritings.

Several CQ answering algorithms for DL-LiteR have been proposed in the lit-
erature. In [3,9], the rewriting strategy is based on reformulating the conjuncts of
the query according to the taxonomic information of the ontology. Although the
strategy is effective, some of the ontology axioms must be rewritten in terms of
auxiliary roles, which may increase the ontology size. This restriction is relaxed
in [6], which proposes a resolution-based rewriting strategy, called RQR. How-
ever, the non goal-oriented saturation strategy may get tangled in long inference
paths leading either to unnecessary or non function free rewritings. Such rewrit-
ings are discarded in the end, but their participation in the inference process
and the increased number of required subsumption checks degrades significantly
performance. Another strategy is proposed in [8] which, instead of computing
a set of CQs, builds a non-recursive datalog program, deferring thus the main
source of complexity to the database system. A different approach is used in [5],
which partially materializes the data in order to facilitate the rewriting process.

In this paper we improve on the pure query rewriting approach and introduce a
new query rewriting algorithm called Rapid, which is optimized for queries posed
over DL-LiteR ontologies. Its efficiency is owed to the goal-oriented organization
of the resolution process. Instead of applying exhaustively the resolution rule, it
exploits the query structure and performs a restricted sequence of inferences that
lead directly to rewriting sets with, hopefully, no unnecessary rewritings. In this
way, we avoid a large number of blind inference paths which can be the cause
of scalability issues, as well as the production of many unnecessary rewritings
(that are subsumed by others) and the need to remove them by performing
extended query subsumption checks, i.e. very costly operations. For simplicity,
we restrict our study to user queries in which all body variables are reachable
from a head variable through a role sequence. Although this assumption excludes
some queries, e.g. ‘boolean queries’, it has little impact in practice, since such
queries are not common in a typical semantic query answering system.

The effectiveness of the algorithm is demonstrated in its practical evaluation,
which shows clearly an optimized performance, especially in the most problem-
atic cases of large queries or large terminologies.

2 Preliminaries

A DL-LiteR ontology is a tuple 〈T ,A〉, where T is the terminology and A the
assertional knowledge. Formally, T is a set of axioms of the form C1 � C2 or
R1 � R2, where C1, C2 are concept descriptions and R1, R2 role descriptions,
employing atomic concepts, atomic roles and individuals. A is a finite set of
assertions of the form A(a) or R(a, b), where a, b are individuals, A an atomic
concept and R an atomic role. A DL-LiteR concept can be either atomic or
∃R.�. If it appears in the RHS, we assume that it may also be of the form ∃R.A.
Negations of concepts can be used only in the RHS of subsumption axioms. A
DL-LiteR role is either an atomic role R or its inverse R−.

194 A. Chortaras, D. Trivela, and G. Stamou

A CQ Q has the form A ← {Bi}ni=1 (the sequence is a conjunction), where
atom A is the head and atoms Bi the body of Q. We assume that Bis are distinct
and denote the set of Bis by body Q, and A by headQ. A CQ Q is posed over an
ontology 〈T ,A〉 if the predicates of all atoms B ∈ body Q are entities of T and
have arities 1 or 2, if the entity is a concept or a role, respectively. Hence, B is a
concept atom B(t) or a role atom B(t, s). termsB (vars B, consB) are the sets of
terms (variables, constants) that appear in B. For a set of atoms B we have that
termsB =

⋃
B∈B termsB, for a CQ Q that terms Q = terms ({head Q}∪ body Q),

and similarly for vars Q and consQ. An atom or CQ is function free if it contains
no functional terms. User queries are always function free.

A term t ∈ terms Q, where Q is a function free CQ is called distinguished if
it appears in head Q, and non distinguished otherwise; bound if it is either a
constant, or a distinguished variable, or a variable that appears at least twice
in body Q, and unbound otherwise; and disconnected if there is a disconnected
subgraph (V ′, E′) of the graph (terms Q, {{t, s} | R(t, s) or R(s, t) ∈ body Q})
such that t ∈ V ′ and set V ′ contains no distinguished term. We denote the set of
bound terms, and distinguished, bound and unbound variables of Q by termsB Q,
varsD Q, varsB Q and varsUB Q, respectively. As noted in the introduction, we will
assume that the user query Q is connected, i.e. it contains no disconnected terms.
For simplicity and wlog we can also assume that Q contains no distinguished
constants and that all its distinguished variables appear also in body Q.

A tuple of constants a is a certain answer of a CQ Q posed over the ontology
O = 〈T ,A〉 iff Ξ(O) ∪ {Q} |= C(a), where C is the predicate of headQ and
Ξ(O) the standard clausification of O into first order clauses. Each axiom of O
adds either one or two clauses as shown in Table 1, and each axiom that contains
an existential quantifier introduces a distinct function. The set that contains all
answers of Q over O is denoted by cert (Q,O). It has been proved [7,1] that for
any CQ Q and DL-LiteR ontology O, there is a set Q of function free CQs (called
query rewritings) such that cert(Q, 〈T ,A〉) =

⋃
Q′∈Q cert(Q′, 〈∅,A〉). The set of

these rewritings may be computed by saturating Q and Ξ(O) using first order
resolution. We denote derivability under the first order resolution rule by �R.

Table 1. Translation of DL-LiteR axioms into clauses of Ξ(O) (reproduced from [6])

Axiom Clause Axiom Clause

A � B B(x)← A(x)

P � S S(x, y)← P (x, y) P � S− S(x, y)← P (y, x)

P− � S− S(x, y)← P (x, y) P− � S S(x, y)← P (y, x)

∃P � A A(x)← P (x, y) ∃P− � A A(x)← P (y, x)

A � ∃P P (x, fA
P (x))← A(x) A � ∃P− P (fA

P−(x), x)← A(x)

A � ∃P.B
P (x, fA

P.B(x))← A(x)
A � ∃P−.B

P (fA
P−.B(x), x)← A(x)

B(fA
P.B(x))← A(x) B(fA

P−.B(x))← A(x)

Formally, a function free CQ Q′ is a rewriting of a CQ Q posed over ontology
O, iff Q and Q′ have the same head predicate and Ξ(O)∪{Q} |= Q′. Nevertheless,
not all possible rewritings are needed for the complete computation of cert (Q,O),

Optimized Query Rewriting for OWL 2 QL 195

since some of them may be equivalent or subsumed by others. We say that a CQ
Q subsumes a CQ Q′ (or Q′ is subsumed by Q) and write Q � Q′, iff there is
a substitution θ such that head (Qθ) = head Q′ and body (Qθ) ⊆ body Q′. If Q
and Q′ are mutually subsumed, they are equivalent. If Q is a set of CQs and for
some CQ Q there is a Q′ ∈ Q equivalent to Q, we write Q ∈̂ Q. We define also
the operation Q ∪̂ {Q} = Q∪{Q} if Q /̂∈ Q, and Q ∪̂ {Q} = Q otherwise. A set
rewr (Q,O) is a rewriting set of the CQ Q over O iff for each rewriting Q′ of Q
over O, either Q′ ∈̂ rewr (Q,O) or there is a Q′′ ∈ rewr (Q,O) such that Q′′�Q′.
Given a CQ Q, let Q′ be the CQ headQ ← {B}B∈B for some B ⊆ body Q. If
B is a minimal subset of body Q such that Q � Q′, Q′ is called condensed or a
condensation of Q, and is denoted by condQ. Since a CQ is equivalent to its
condensation, we can find cert (Q,O) by computing a rewriting set of Q that
contains only condensed rewritings and that contains no two rewritings Q, Q′

such that Q � Q′. Hence, we say that Q′ is a core rewriting of a CQ Q over O,
iff it is a rewriting of Q over O, it is condensed, and there is no (non equivalent)
rewriting Q′′ of Q over O such that Q′′�Q′. The core rewriting set rewrC (Q,O)
of Q over O is the set of all the core rewritings of Q over O.

3 The Rapid Algorithm

Rapid computes rewrC (Q,O) for a user query Q in an efficient way. Its structure
is similar to that of RQR, but it introduces several optimizations and organizes
some tasks differently in order to reduce the inferences that lead to rewritings
that will eventually be discarded because they are not function free or subsumed
by others. The strategy of Rapid is based on the distinguishing property of the
bound variables, namely that whenever a CQ Q is used as the main premise in
a resolution rule in which an atom A ∈ body Q unifies with the head of the side
premise and the mgu θ contains a binding v/t for some variable v ∈ varsB Q, the
application of θ affects several atoms of Q apart from A. This is not the case if
v ∈ varsUB Q, since unbound variables appear only once in Q. The main premise
in the resolution rules in Rapid is always the user query or a rewriting of it.

Rapid consists of the following steps: (1) The clausification step, in which O
is transformed into Ξ(O). (2) The shrinking step, in which the clauses of Ξ(O)
are selectively used as side premises in resolution rule applications in order to
compute rewritings which differ from the user query Q in that they do not con-
tain one or more variables in varsB Q, because the application of the resolution
rule led to their unification with a functional term which subsequently was elim-
inated. (3) The unfolding step, which uses the results of the previous step to
compute the remaining rewritings of Q, by applying the resolution rule without
that the bound variables of the main premise are affected. In principle, only un-
bound variables are eliminated or introduced at this step. However, some bound
variables of the main premise may also be eliminated, not through the introduc-
tion and subsequent elimination of functional terms, but while condensing the
conclusion. Obviously, the same can also happen at the shrinking step. (4) The
subsumption check step, in which non core rewritings are removed. This step is

196 A. Chortaras, D. Trivela, and G. Stamou

in principle the same as in RQR, but is more efficient in two ways: First, the
previous steps produce much fewer rewritings that are subsumed by others, and
second not every pair of rewritings has to be checked for subsumption, because,
as we will see, some sets of rewritings that are produced at the unfolding step
are guaranteed not to contain rewritings that are subsumed by others.

Notwithstanding this general description, Rapid does not implement the shrink-
ing and unfolding steps by applying directly the resolution rule. Instead, a shrink-
ing and unfolding inference rule are defined, which combine a series of several
successful resolution rule application steps into one. In this way, the resolution
rule is used only if it eventually leads to a function free and hopefully also a core
rewriting, and a large number of unnecessary inferences is avoided.

3.1 Atom Unfolding Sets

The closure of Ξ(O) under the FOL resolution rule contains clauses of the form

A(x)← B(x), A(x)← B(x, y), A(x, y)← B(x, y),
A(x, f(x))← B(x), A(x, f(x))← B(x, y),
A(g(x), f(g(x))) ← B(x), A(g(x), f(g(x)))← B(x, y),
A(g(h(x)), f(g(h(x)))) ← B(x), . . . A(g(h(x)), f(g(h(x)))) ← B(x, y), . . .

as well as the respective clauses with the role atom arguments inverted. We note
that in the clauses of the first two rows, the non functional terms of the head
appear also in the body. Based on this remark, and given that in the unfolding
step we want that the bound variables do not unify with functional terms but
be preserved in the conclusion, we define the unfolding of an atom as follows:

Definition 1. Let A be a function free atom and T a non empty subset of
termsA. Atom Bθ′ is an unfolding of A w.r.t. T iff Ξ(O) �R Aθ ← B for
some substitution θ on a subset of varsA \ T to functional terms, where θ′ is a
renaming of varsB \ T such that for v ∈ varsB \ T we have that vθ′ /∈ varsA.

Essentially, Bθ′ is an unfolding of A w.r.t. T if it is the body of a clause inferrable
from Ξ(O) that has in its head an atom A′ (of the same predicate as A),
and both B and A′ contain unaltered all terms in T (which should contain
the bound terms in A). Since the variable renaming θ′ contains no essential
information, we define the unfolding set of atom A for T w.r.t. Ξ(O) as the
set D(A; T) = {B | Ξ(O) ∪ {A} �J (T) B}, where J (T) are the inference rules
shown in Fig. 1, in the form A C

B . Given T , A (the main premise) and a clause
C ∈ Ξ(O) (the side premise), by applying the respective rule we get atom B
(the conclusion). We also define the set D̂(A; T) = D(A; T) ∪ {A}. By using
Table 2, which lists all possible cases, it is easy to prove that given A and T
= ∅
we have that Ξ(O) �R Aθ ← B iff Bθ′ ∈ D(A; T), for θ, θ′ as defined in Def. 1.

3.2 Atom Function Sets

As we have already seen, the closure of Ξ(O) contains clauses of the form
A(x, f(x)) ← B(x), A(f(x), x) ← B(x) and A(f(x)) ← B(x), as well as of

Optimized Query Rewriting for OWL 2 QL 197

T rule T rule

{t} A(t) A(x)← B(x)

B(t)

{t} A(t) A(x)← P (x, y)

P (t, z)
{t} A(t) A(x)← P (y, x)

P (z, t)

{t} P (t, v) P (x, f(x))← B(x)

B(t)
{t} P (v, t) P (f(x), x)← B(x)

B(t)

{t}, {s} or
P (t, s) P (x, y)← R(x, y)

R(t, s)

{t}, {s} or
P (t, s) P (x, y)← R(y, x)

R(s, t)
{t, s} {t, s}

Fig. 1. The J (T) inference rules

Table 2. All possible cases for A, B, T , θ and θ′ in Def. 1

A T Bθ′ Aθ ← B θ θ′

A(t) {t} B(t) A(t)← B(t) ∅ ∅
A(t) {t} P (t, y) / P (y, t) A(t)← P (t, z) / ← P (z, t) ∅ {z/y}

P (t, v) {t} B(t) P (t, f(t))← B(t) {v/f(t)} ∅
P (t, v) {t} R(t, y) / R(y, t) P (t, f(t))← R(t, z) / ← R(z, t) {v/f(t)} {z/y}
P (t, t′) {t} R(t, t′) / R(t′, t) P (t, t′)← R(t, t′) / ← R(t′, t) ∅ ∅
P (v, t) {t} B(t) P (f(t), t)← B(t) {v/f(t)} ∅
P (v, t) {t} R(t, y) / R(y, t) P (f(t), t)← R(t, z) / ← R(z, t) {v/f(t)} {z/y}
P (t′, t) {t} R(t′, t) / R(t, t′) P (t′, t)← R(t′, t) / ← R(t, t′) ∅ ∅
P (t, s) {t, s} R(t, s) / R(s, t) P (t, s)← R(t, s) / ← R(s, t) ∅ ∅

the form A(g(x), f(g(x))) ← B(x) and A(g(x), f(g(x))) ← B(x, y). Unlike in
the unfolding case, now we are interested in the behavior of the functional term
f(x), which appears in the head but not in the body, because if f(x) appears
in the body of some rewriting, it may be possible to eliminate it by using such
clauses. Let funcs Ξ(O) be the set of all functions in Ξ(O). According to Table 1,
each DL-LiteR axiom that has an existential quantifier in the RHS introduces a
distinct function f . Hence, each function f ∈ funcs Ξ(O) is uniquely associated
with the concept A that appears in the LHS of the axiom that introduces f . Let
cn f denote the concept associated with f . We define the set of all functions that
may appear in the place of a bound variable v of an atom A when resolving any
of its unfoldings with a non function free clause in Ξ(O) as follows:

Definition 2. Let A be a function free atom, T a non empty subset of termsA
and v a variable in varsA∩ T . The function set Fv(A; T) of all functions asso-
ciated with A in variable v w.r.t. T is defined as follows:

Fv(A; T) =
{f | B(v) ∈ D̂(A; T) and B(f(x))← (cn f)(x) ∈ Ξ(O)} ∪
{f | B(v, t) ∈ D̂(A; T) and B(f(x), x)← (cn f)(x) ∈ Ξ(O)} ∪
{f | B(t, v) ∈ D̂(A; T) and B(x, f(x))← (cn f)(x) ∈ Ξ(O)}.

It follows that, given a T
= ∅ which represents the set of bound terms in A,
(a) if A ≡ A(v, t) then f ∈ Fv(A; T) iff Ξ(O) �R A(f(t), s) ← (cn f)(t), (b)

198 A. Chortaras, D. Trivela, and G. Stamou

if A ≡ A(t, v) then f ∈ Fv(A; T) iff Ξ(O) �R A(s, f(t)) ← (cn f)(t), where in
both cases s = t if t ∈ T otherwise either s = t, or s = g(f(t)) for some function
g, and (c) if A ≡ A(v) then f ∈ Fv(A; T) iff Ξ(O) �R A(f(t))← (cn f)(t).

Example 1. Define the ontology O = {B � A, ∃R � A, S � R−, C � ∃R.A,
∃T− � C, D � ∃S}, hence Ξ(O) = {A(x) ← B(x), A(x) ← R(x, y), R(x, y) ←
S(y, x), R(x, f1(x)) ← C(x), A(f1(x)) ← C(x), C(x) ← T (y, x), S(x, f2(x)) ←
D(x)}. Below we show the unfolding and function sets for the atoms A(x), C(x),
R(x, y) and S(x, y) and some sets T . E.g. for T = {y}, main premise R(x, y)
and side premise R(x, y)← S(y, x), from Fig. 1 we get S(y, x). Then (given that
x /∈ T), for main premise S(y, x) and side premise S(x, f2(x)) ← D(x) we get
D(y). Because R(x, f1(x))← C(x) ∈ Ξ(O), we get that Fy(R(x, y); {y}) = {f1}.

A; T A(x); {x} C(x); {x} R(x, y); {x} R(x, y); {y} R(x, y); {x, y} S(x, y); {x}

D(A; T)

B(x) T (z3, x) S(y, x) S(y, x) S(y, x) D(x)
R(x, z1) C(x) D(y)
S(z1, x) T (z4, x)
C(x)

T (z2, x)

Fx(A; T) {f1, f2} ∅ {f2} ∅ {f2} ∅
Fy(A; T) − − ∅ {f1} {f1} −

3.3 Query Shrinking

The shrinking step computes rewritings that can be inferred from the user query
Q by eliminating one or more of its bound variables through their unification
with a functional term. Given that the rewritings in rewr (Q,O) are function free,
if a function is introduced in some rewriting during the standard resolution-based
inference process, subsequently it must be eliminated. However, we know that
each function appears in at most two clauses of Ξ(O), both of which have as body
the atom (cn f)(x). Now, f(x) can be introduced in a CQ only if some inference
led to the substitution of a bound variable v by f(x). Hence, in order for f(x)
to be eliminated, all atoms in which f(x) has been introduced must contain f
in their function sets, for the appropriate argument. Moreover, if Q contains
the terms say R(x, v) and R(v, y) and v is eliminated this way by unifying with
f(x), given the form of Ξ(O), variables x and y must be unified. If in place of
x, y there are constants, these should coincide in order for the inference to be
possible. This is the intuition behind the following shrinking inference rule:

Definition 3. Let Q be a CQ and v a non distinguished bound variable of Q.
Write Q in the form A ← B1, . . . ,Bk,C1, . . . ,Cn, where Bi are the atoms in
body Q that contain v, and Ci the remaining atoms. Let also C =

⋃k
i=1 consBi

and X =
⋃k

i=1(vars
B Q ∩ varsBi) \ v. The shrinking rule S on Q is as follows:

A← B1, . . . ,Bk,C1, . . . ,Cn f ∈
⋂k

i=1 Fv(Bi; termsB Q ∩ termsBi) ∧ |C| ≤ 1
cond (Aθ ← (cn f)(t),C1θ, . . . ,Cnθ)

Optimized Query Rewriting for OWL 2 QL 199

where θ =
⋃

x∈X{x/t}, and t = a if C = {a} otherwise t is a variable /∈ vars Q.

The shrinking rule changes the structure of Q, in the sense that it eliminates a
bound variable, and hence the atoms that contained it. Moreover, all variables
in X are also merged into one. It is easy to prove that S is a sound inference
rule, i.e. if Ξ(O) ∪ {Q} �S Q′ then Ξ(O) ∪ {Q} |= Q′, for any CQ Q′.

3.4 Query Unfolding

Let S∗(Q) be the closure of condQ under application of the inference rule S,
for any CQ Q. By construction, S∗(Q) contains a ‘representative’ for all query
structures that can result from Q by eliminating one or more variables in varsB Q
by using functional terms. This representative can be considered as a ‘top’ query,
in the sense that in can produce several more CQs with no further structural
changes due to bindings of bound variables with functional terms. Hence, the
remaining rewritings can be obtained by computing, for each Q′ ∈ S∗(Q), all
CQs that can be inferred from Q′ by replacing one or more of its atoms by one
of their unfoldings. In this way we can eventually compute all rewritings of Q.
This can be achieved by applying the following unfolding inference rule:

Definition 4. Let Q be the CQ A ← B1, . . . ,Bn. The unfolding rule U on Q
is defined as follows:

A← B1, . . . ,Bn C ∈ D(Bi; termsB Q ∩ termsBi)
cond (A← B1, . . . ,Bi−1,Cγ,Bi+1, . . . ,Bn)

where γ is a renaming of varsC \ varsB Q such that xγ /∈
⋃n

j=1,j �=i varsBj for all
x ∈ varsC \ varsB Q.

It follows immediately that U is a sound inference rule, i.e. if Ξ(O)∪{Q} �U Q′

then Ξ(O)∪ {Q} |= Q′. Rule U replaces one atom of Q by one of its unfoldings,
and can be applied iteratively on the conclusion in order to produce more rewrit-
ings. In order to facilitate the optimization of such a sequential application of
the U rule on some rewriting, we define the combined unfolding rule W which
can replace in one step more than one atoms of Q by one of their unfoldings. In
this way, any unfolding of Q can be obtained in one step.

Definition 5. An unfolding of CQ Q : A ← B1, . . . ,Bn, is the conclusion of
any application of the following combined unfolding rule W:

A← B1, . . . ,Bn Ci ∈ D̂(Bi; termsB Q ∩ termsBi) for i = 1 . . . n
cond (A← C1γ1, . . . ,Cnγn)

where γi is a renaming of varsCi \ termsB Q such that xγi /∈
⋃n

j=1,j �=i vars (Cjγj)
for all x ∈ varsCi \ termsB Q.

Let W∗(Q) be the closure of condQ under application of the inference rule W ,
for any CQ Q. The strategy by which Rapid computes the core rewriting set of
a user query Q is justified by the following theorem:

200 A. Chortaras, D. Trivela, and G. Stamou

Theorem 1. Let Q be a connected CQ over a DL-LiteR ontology O. We have
that if Q′ ∈

⋃
Q′′∈S∗(Q)W∗(Q′′) then Q′ ∈̂ rewr (Q,O) (soundness), and that if

Q′ ∈ rewrC (Q,O) then Q′ ∈̂
⋃

Q′′∈S∗(Q)W∗(Q′′) (completeness).

Proof (Sketch). Soundness follows from the soundness of the S andW rules. For
completeness, if Q′ is the final conclusion of a sequence of resolutions with main
premises Q, Q1, . . ., Ql−1, we must show that there is a sequence of shrinking rule
applications with main premises Q, Qs

1, . . ., Qs
ls−1 and final conclusion Qs

ls
, and

a sequence of unfolding rule applications with main premises Qs
ls
, Qu

1 , . . ., Qu
lu−1

and final conclusion Q′. Q1, . . . , Ql−1 may contain functional terms of the form
f1(· · · fk(t)) for k > 0 (k is called depth). Since Q and Q′ are both function
free, any functional terms eventually are eliminated. The result can be proved
by induction on the maximum depth d of the intermediate CQs Q1, . . . , Ql−2,
by showing that the sequence of resolutions that led to the introduction of a
functional term of depth d can be rearranged so that only functional terms of
depth 1 are introduced. Because the shrinking rule considers by definition all
functional terms that may be introduced at any step of the resolution process, it
can be applied first, thus giving rise to the shrinking rule application sequence,
on whose final conclusion the unfolding rule is then applied, in order to get Q′.

Note that if we wanted to lift the restriction to connected queries, we should take
into account atoms containing only unbound variables. Such a variable may unify
with a functional term and give its place to a new unbound variable. Hence, we
should allow empty sets T in Def. 1 and include the appropriate rules in J (T),
e.g. rule A(t) A(f(x))←B(x)

B(z) for T = ∅, which ‘replaces’ variable t by z.

4 Implementation

The implementation of Rapid includes additional optimizations at the unfolding
step that reduce the number of non core rewritings that are produced and hence
the need for extended subsumption checks. Rapid (Algorithm 3) uses procedures
Shrink and Unfold (Algorithms 1 and 2). Shrink computes the closure S∗(Q)
by iteratively applying the shrinking rule. Each rewriting produced by Shrink
is processed by Unfold, which computes two disjoint sets of rewritings. We will
now discuss their contents and explain the optimizations that have been used.

If we apply exhaustively theW rule on a CQ Q in order to getW∗(Q), we may
end up with many rewritings subsumed by others. Since this is undesired, we have
two options: to compute all rewritings and then remove the subsumed ones, or
else try to applyW in a cleverer way, so as to get only non subsumed rewritings,
or at least as few as possible. Because the subsumption check operation is very
costly, we choose the second option, i.e. we have to solve the following problem:
Given a CQ Q of the form A← B1, . . . ,Bn, find the CQs that are conclusions
of all possible applications of W on Q and are not subsumed by others. For
convenience, define Bi = D̂(Bi; termsB Q∩termsBi), so that we have the sequence
of the possibly non disjoint unfolding sets B1, . . . ,Bn. For simplicity, we can drop

Optimized Query Rewriting for OWL 2 QL 201

Algorithm 1 The query shrinking procedure
procedure Shrink(CQ Q, ontology O)
Qr ← {Q}
for all unconsidered Q′ ∈ Qr do

mark Q′ as considered
for all v ∈ varsB Q′ \ varsD Q′ do
F ← funcsΞ(O); X ← ∅; C ← ∅; A← ∅
for all B ∈ body Q′ do

if v ∈ varsB then
F ← F ∩ Fv(B; termsB Q′ ∩ termsB)
X ← X ∪ (varsB Q′ ∩ varsB); C ← C ∪ consB

else
A← A ∪ {B}

end if
end for
if |C| > 1 then

continue
else if |C| = {a} then

t← a
else

t← a new variable not in vars Q′

end if
θ ← ⋃

x∈X{x/t}
Qr ← Qr

⋃̂
f∈F{cond (headQ′θ ← (cf f)(t), {Bθ }B∈A)}

end for
end for
return Qr

end procedure

the substitutions γi that appear in the definition of W by assuming that if a
member of a set Bj has been obtained by an inference that introduced a new
variable, this variable does not appear elsewhere in

⋃n
i=1 Bi. If the sets Bi are

not disjoint, simply taking all possible combinations of their elements so as to
form the unfoldings of Q, will certainly result in rewritings subsumed by others.

For any B ∈
⋃n

i=1 Bi, define the set indB = {j | B ∈ Bj} of the indices of all
the unfolding sets that contain B. We call the set A = {A1, . . . ,Ak} with k ≤ n

a selection for Q iff (a)
⋃k

i=1 indAi = Nn (where Nn
.= {1, . . . , n}), and (b)

indAi \ indAj
= ∅ for all i, j ∈ Nk, i.e. if A contains at least one atom from each
unfolding set and no two sets indAi overlap fully. Clearly, a selection corresponds
to an unfolding of Q, in particular to headQ ← A1, . . . ,Ak. However, we are
interested in minimal selections, which correspond to non subsumed rewritings.
We call a selection A for Q minimal, iff there is no selection A′ for Q such that
A′ ⊂ A, i.e. if in addition to the above we have that indAi\

(⋃k
j=1,j �=i indAj

)

=

∅ for all i ∈ Nk, i.e. if all the atoms Ai need to be present in A in order for⋃k
i=1 indAi = Nn to hold. If this were not the case for some Ai, we could form the

selection A′ = {A1, . . . ,Aj−1,Aj+1,Ak} ⊂ A, hence A would not be minimal.

202 A. Chortaras, D. Trivela, and G. Stamou

Algorithm 2 The query unfolding procedure
procedure Unfold(CQ Q of the form A← B1, . . . ,Bn, ontology O)
Q ← ∅; Q̂ ← ∅
for i = 1 . . . n do
Bi ← D̂(Bi; termsB Q ∩ termsBi); B̂i ← ∅

end for
for i = 1 . . . n and for all role atoms A ∈ Bi do

for j = 1 . . . n, j 	= i and for all role atoms A′ ∈ Bj do
if ∃θ on varsA′ \ varsB Q such that A′θ = A then
B̂j ← B̂j ∪ {A}

end if
end for

end for
for all selections C1, . . . ,Ck from B1 ∪ B̂1, . . . ,Bn ∪ B̂n do

if indCi \⋃
j=1...k,j �=i indCj 	= ∅ for all i then

if ∃j such that Ci ∈ B̂j for some i then
Q̂ ← Q̂ ∪̂ {Q}

else
Q ← Q ∪̂ {Q}

end if
end if

end for
return [Q, Q̂]

end procedure

The unfolding step in Rapid computes efficiently the minimal selections for a
CQ Q by finding the common elements of the unfolding sets Bi and enforcing
the above conditions. Although the set of unfoldings obtained by the minimal
selections for Q contains no subsumed rewrittings, in general, the same will not
hold for the union of the unfoldings of two distinct CQs Q1 and Q2 obtained
at the shrinking step. The need for subsumption checks remains, however their
number is much less, since the unfoldings of Q1 have to be checked only against
the unfoldings of Q2 and vice versa, and not also against the unfoldings of Q1.

The computation of the minimal selections as described above takes into ac-
count the equality between the elements of the unfolding sets, but not sub-
sumption relations. However, an unfolding set Bi may contain an atom with an
unbound variable that unifies with an atom of another set Bj that contains only
bound variables. In order to address this issue we compute all such bindings in
advance and include the respective atoms in the sets B̂i, defined for this purpose.
In particular, if for some i, j ∈ Nn we have that A ∈ Bi, A′ ∈ Bj and there is
a substitution θ on varsA′ \ varsB Q such that A′θ = A, we add A to B̂j. We
call the minimal selections for Q that contain an atom that appears in some B̂j

impure. Their inclusion in the result does not affect soundness, since we have
only replaced an unbound variable of A′ by a bound variable of A. However, an
impure selection may result in an unfolding that subsumes or is subsumed by
an unfolding given by another minimal selection for Q. For this reason, Unfold

Optimized Query Rewriting for OWL 2 QL 203

Algorithm 3 The Rapid algorithm
procedure Rapid(connected CQ Q, ontology O)
Qf = ∅
for all Qs ∈ Shrink(Q,O) do

[Q, Q̂]← Unfold(Qs,O); Qt ← ∅
for all Q′ ∈ Q do

if cond Q′ coincides with Q′ then
Qt ← Qt ∪ {Q′}

else
Qf ← Qf ∪ {{cond Q′}}

end if
end for
Qf ← Qf ∪ {Qt} ∪⋃

Q′∈Q̂{{cond Q′}}
end for
return CheckSubsumption(Qf)

end procedure

distinguishes between the two sets of unfoldings and returns them in the sets Q
and Q̂, which contain the unfoldings resulting from the pure and impure minimal
selections, respectively.

The final step of Rapid is the check for subsumed rewritings within the results
of Unfold. The check is done after first grouping the results into sets that are
known not to contain subsumed rewritings. These are the sets of pure unfoldings
returned by Unfold, excluding the unfoldings that do not coincide with their
condensations. The condensation of each such query, as well as each impure
unfolding forms a separate set. These sets are processed by CheckSubsumption
which checks for subsumption across sets only. We also note that Unfold applies
rule W only on its input Q and not iteratively also on the conclusions. This
does not affect completeness, because at the application ofW bound terms may
become unbound or eliminated only at the condensation step; this is the last
step of the W rule, hence no rewriting is lost. However, it may be the case that
an unbound variable v of such a conclusion, which was bound in Q, unifies with
a functional term of a clause in Ξ(O) and hence is eventually eliminated. If this
is the case, variable v would have been eliminated also earlier at an application
of the shrinking rule, hence again completeness is not affected. The algorithm
terminates because when computing the unfolding sets or applying the S rule,
atoms or clauses equivalent to already computed ones are not considered again.

Example 2. Consider the CQ Q(x)← A(x), R(x, y), A(y), S(x, z) posed over the
ontology of Ex. 1. We have varsD Q = {x}, varsB Q = {x, y} and varsUB Q = {z}.
From Ex. 1 we know that Fy(R(x, y); {x, y}) ∩ Fy(A(y); {y}) = {f1} and given
that cn f1 = C, the Shrink procedures returns the rewritings Q1 : Q(x) ←
A(x), R(x, y), A(y), S(x, z) (the initial CQ) and Q2 : Q(x)← A(x), C(x), S(x, z),
which are subsequently processed by the Unfold procedure. We have that
varsB Q1 = {x, y} and varsB Q2 = {x}. The sets Bi and B̂i for Q1 and Q2 are
shown below (for convenience unbound variables have been replaced by ∗).

204 A. Chortaras, D. Trivela, and G. Stamou

i 1 2 3 4

Bi

A(x) R(x, y){1,2} A(y) S(x, ∗)
B(x) S(y, x){1,2} B(y) D(x)

R(x, ∗) R(y, ∗)
S(∗, x) S(∗, y)
C(x) C(y)

T (∗, x) T (∗, y)

B̂i
R(x, y){1,2}

S(y, x){1,2}

i 1 2 3

Bi

A(x) C(x){1,2} S(x, ∗)
B(x) T (∗, x){1,2} D(x)

R(x, ∗)
S(∗, x)

C(x){1,2}

T (∗, x){1,2}

B̂i

E.g. we add R(x, y) to B̂1 because B1 contains R(x, ∗) which subsumes R(x, y)
in B2. For the atoms A for which |indA| > 1 the tables show the sets indA in
superscript. Since in both Q1 and Q2, for all atoms A in B2 we have indA =
{1, 2}, Rapid computes no unfoldings with atoms that appear only in B1, because
they are subsumed (e.g. for Q2 the CQ Q(x)← A(x), C(x), S(x, z) is subsumed
by Q(x) ← C(x), S(x, z)). So, we get 24 (= 2 · 6 · 2) rewritings from Q1 and
4 (= 2·2) from Q2. The unfoldings of Q1 are all impure (they contain atoms in B̂1)
while those of Q2 are all pure. All of them are finally checked for subsumption,
but the check within the set of the unfoldings of Q2 is skipped because we know
that it contains no subsumed rewritings. Finally, we get 28 core rewritings.

5 Evaluation

We evaluated Rapid by comparing it with Requiem, the implementation of RQR.
We used the same datasets as in [6], namely the V, S, U, A, P5, UX, AX, P5X
ontologies. (V models European history, S European financial institutions, and
A information about abilities, disabilities and devices. U is a DL-LiteR version of
the LUBM benchmark ontology. P5 is synthetic and models graphs with paths
of length 5. UX, AX and P5X are obtained by rewriting U, A and P5 without
qualified existential restrictions). The results (for a Java implementation on a
3GHz processor PC) are shown in Table 3. TA is the rewriting computation time
without the final subsumption check step, and TR the total time including this
step. Similarly, RA is the size of the (non core) rewriting set when omitting the
subsumption check step, and RF the size of the core rewriting set. As expected,
both systems compute the same number of core rewritings.

The results show clearly the efficiency of Rapid. It is always faster and in
several cases the improvement is very significant. The efficiency is more evident
if we compare the results before and after the subsumption check step. In most
cases, the number of rewritings discarded as subsumed in this step is small.
Hence, by omitting it we would still get a ‘good’ result, but gain possibly a lot in
time. The subsumption check step is very expensive, although our optimizations
significantly reduced its cost too. The most striking case is ontology AX and
query 5, in which Rapid completes the computation of the 32,921 core rewritings
in less than 1 min, while Requiem needs about 2 hours. Moreover, Rapid needs
only to 2.1 sec to compute a set containing only 35 non core rewritings and

Optimized Query Rewriting for OWL 2 QL 205

Table 3. Evaluation results. ∗The greedy modality provided by the Requiem system
applies forward query subsumption, dependency graph pruning and greedy unfolding.

Rapid Requiem (greedy modality∗)
O Q TA TF RA RF TA TF RA RF

V

1 .001 .001 15 15 .001 .001 15 15
2 .001 .001 10 10 .001 .001 10 10
3 .001 .001 72 72 .016 .016 72 72
4 .015 .015 185 185 .031 .062 185 185
5 .016 .016 30 30 .001 .015 30 30

S

1 .001 .001 6 6 .001 .001 6 6
2 .001 .001 2 2 .031 .062 160 2
3 .001 .001 4 4 .187 .515 480 4
4 .001 .001 4 4 .406 1.047 960 4
5 .001 .001 8 8 5.594 17.984 2,880 8

U

1 .001 .001 2 2 .001 .001 2 2
2 .001 .001 1 1 .031 .047 148 1
3 .001 .001 4 4 .047 .109 224 4
4 .001 .001 2 2 .625 2.031 1,628 2
5 .001 .001 10 10 2.187 7.781 2,960 10

A

1 .001 .001 27 27 .031 .047 121 27
2 .001 .001 54 50 .031 .047 78 50
3 .016 .016 104 104 .047 .063 104 104
4 .031 .031 320 224 .078 .156 304 224
5 .062 .078 624 624 .188 .610 624 624

P5

1 .001 .001 6 6 .001 .001 6 6
2 .001 .001 10 10 .015 .015 10 10
3 .001 .001 13 13 .047 .047 13 13
4 .015 .015 15 15 .688 .688 15 15
5 .015 .015 16 16 16.453 16.453 16 16

P5X

1 .001 .001 14 14 .001 .001 14 14
2 .001 .001 25 25 .031 .031 77 25
3 .015 .031 112 58 .125 .297 390 58
4 .062 .109 561 179 2.453 7.375 1,953 179
5 .344 1.313 2,805 718 1:10.141 3:48.690 9,766 718

UX

1 .001 .001 5 5 .001 .001 5 5
2 .001 .001 1 1 .031 .078 240 1
3 .001 .001 12 12 .391 1.125 1,008 12
4 .001 .001 5 5 5.187 19.375 5,000 5
5 .015 .015 25 25 15.125 57.672 8,000 25

AX

1 .001 .001 41 41 .047 .063 132 41
2 .093 .140 1,546 1,431 .703 2.781 1,632 1,431
3 .297 .672 4,466 4,466 6.484 29.109 4,752 4,466
4 .219 .625 4,484 3,159 5.282 23.516 4,960 3,159
5 2.140 43.374 32,956 32,921 27:04.006 1:56:21.585 76,032 32,921

then some 40 seconds to detect them, while Requiem computes 43,111 non core
rewritings and needs 1.5 hours to detect and remove them.

We comment on two cases that illustrate best the efficiency of the shrinking
and unfolding steps in Rapid. In ontology P5, where query i asks for nodes from
which paths of length i start, the performance of Rapid is essentially unaffected
by the query size, unlike Requiem which is not scalable. This is due to the
efficiency of the shrinking inference rule, which fires only if it leads to a useful,
function free rewriting. In RQR, resolution is performed exhaustively, leading
to a large number of non function free rewritings that are eventually discarded.
In ontology U , the superior performance of Rapid is due to the efficiency of the
unfolding step, in particular to the non computation of subsumed unfoldings. In
query 5, at the end of the unfolding step Rapid has computed only 8 rewritings,
which are the final core rewritings. In contrast, Requiem computes 2,880, which

206 A. Chortaras, D. Trivela, and G. Stamou

need to be checked for subsumption. In the general case the superior performance
of Rapid is due to the combined efficiency of the shrinking and unfolding steps.

Before concluding this section we should note, however, that Requiem, being
an EL reasoner, is not optimized for DL-LiteR. Nevertheless, in [6] which com-
pares Requiem with CGLLR, an implementation of the authors of the PerfectRef
algorithm, Requiem shows already a better performance.

6 Conclusions

We have presented Rapid, a new algorithm for the efficient computation of the
core rewriting set of connected queries posed over DL-LiteR ontologies. Rapid
optimizes the inference process by replacing the application of the first order
resolution rule by specialized shrinking and unfolding rules, which save the
algorithm from many unnecessary rewritings, subsumption checks and blind in-
ference paths. The experimental evaluation of Rapid showed a significant perfor-
mance benefit if compared to RQR, which in several practical cases can alleviate
the exponential behavior. The specialized inference rules differentiate Rapid from
pure resolution-based algorithms, however it remains committed to the compu-
tation of set of rewritings (i.e. of a UCQ), unlike recent approaches [8] which
compute non recursive datalog programs, deferring thus the complexity to the
underlying database system. The performance benefit that may result from com-
puting and executing a non recursive datalog program instead of a rewriting set
equivalent to a UCQ largely depends on the way relational engines deal with such
datalog programs and needs to be better explored. Another interesting direction
for future work is to apply the idea to more expressive DLs, like ELHI.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning (in 2 volumes), vol. 1, pp. 19–99. Elsevier, MIT Press (2001)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J.
of Automated Reasoning 39, 385–429 (2007)

4. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. J. of Artificial Intelligence Research 31, 157–204 (2008)

5. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined
approach to query answering in DL-Lite. In: Procs. of KR 2010, pp. 247–357 (2010)

6. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer,
Heidelberg (2009)

7. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. on Data Semantics 10, 133–173 (2008)

8. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Procs. of KR 2010, pp. 290–300 (2010)

9. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: Procs. of OWLED
2008. CEUR-WS.org, vol. 432 (2008)

	Optimized Query Rewriting for OWL 2 QL

	Introduction
	Preliminaries
	The Rapid Algorithm
	Atom Unfolding Sets
	Atom Function Sets
	Query Shrinking
	Query Unfolding

	Implementation
	Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

