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Preface

This volume contains the papers presented at the 23rd International Conference
on Automated Deduction (CADE 23), held between July 31 and August 5, 2011
in Wroc�law, Poland. CADE is the major forum for the presentation of research
in all aspects of automated deduction.

The Program Committee decided to accept 28 regular papers and 7 system
descriptions from a total of 80 submissions. Each submission was reviewed by
at least three Program Committee members and external reviewers. We would
like to thank all the members of the Program Committee for their careful and
thoughtful deliberations. Many thanks to Andrei Voronkov for providing the
EasyChair system which greatly facilitated the reviewing process, the electronic
Program Committee meeting, and the preparation of the proceedings. In addi-
tion to the contributed papers, the program included four invited lectures by
Koen Claessen, Byron Cook, Xavier Leroy, and Aarne Ranta. We thank the
invited speakers not only for their presentations, but also for contributing ab-
stracts, extended abstracts, or full papers to the proceedings.

In addition, on the days preceding CADE a diverse range of affiliated events
took place. Six workshops:

– BOOGIE 2011: The First International Workshop on Intermediate Verifica-
tion Languages

– Thedu 11: CTP Components for Educational Software
– PSATTT11: International Workshop on Proof Search in Axiomatic Theories

and Type Theories
– PxTP: Workshop on Proof eXchange for Theorem Proving
– ATE 2011: The First Workshop on Automated Theory Engineering
– UNIF: The International Workshop on Unification

Six tutorials:

– First-Order Theorem Proving and Vampire
– Grammatical Framework: A Hands-On Introduction
– Model Checking Modulo Theories: Theory and Practice
– Practical Computer Formalization of Mathematics Using Mizar
– Practical Reasoning with Quantified Boolean Formulas
– Computational Logic and Human Thinking

The CADE ATP System Competition (CASC) was also held. All this helped to
make the conference a success.

During the conference, the Herbrand Award for Distinguished Contributions
to Automated Reasoning was presented to Nachum Dershowitz in recognition
of his ground-breaking research on the design and use of well-founded order-
ings in term rewriting and automated deduction. The Selection Committee for
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the Herbrand Award consisted of the CADE-23 Program Committee members,
the trustees of CADE Inc., and the Herbrand Award winners of the last ten
years. The Herbrand Award ceremony and the acceptance speech by Nachum
Dershowitz were part of the conference program. In addition, the conference
program also contained a lecture dedicated to the memory of William McCune.

Many people helped to make CADE 23 a success. We are very grateful to Hans
de Nivelle (CADE General Chair), Katarzyna Wodzyńska and Arkadiusz Janicki
(local organization) for the tremendous effort they devoted to the organization of
the conference. We thank Aaron Stump (Workshop Chair), Carsten Schürmann
(Publicity Chair), Geoff Sutcliffe (CASC Chair), all the individual workshop
organizers, and all the tutorial speakers. Last, but not least, we thank all authors
who submitted papers to CADE 23, and all participants of the conference.

CADE 23 received support from the Department of Computer Science at the
University of Wroc�law toward the Woody Bledsoe Awards, the University of
Wroc�law, and Microsoft Research.

May 2011
Nikolaj Bjørner

Viorica Sofronie-Stokkermans
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The Anatomy of Equinox – An Extensible

Automated Reasoning Tool
for First-Order Logic and Beyond

(Talk Abstract)

Koen Claessen

Chalmers University of Technology, Gothenburg, Sweden
koen@chalmers.se

Equinox is an automated reasoning tool for first-order logic. It is also a framework
for building highly targeted automated reasoning tools for specific domains.

The aim behind Equinox is to obtain an automated reasoning tool with a
modular and extensible architecture. SAT modulo theory (SMT) solvers have
the same aim. However, the way in which this aim is realized in Equinox is quite
different from the way this is done traditional SMT solvers.

Fig. 1. Traditional architecture of an SMT-solver

Fig. 1 shows the architecture of a traditional SMT solver. In the middle sits
the SAT-solver, which is the main responsible for all primitive logical (boolean)
reasoning. Around the SAT-solver sit the theories with which the SAT-solver
is extended. They communicate with the SAT-solver in a language which both
understand; namely SAT literals and constraints over those literals. The picture
shows three different commonly used theories: uninterpreted functions (UIF),
arrays, and difference logic. Each theory is supposed to express which situations
they allow and disallow in terms of literals and constraints over these literals.

Equinox employs a different approach, which we call the layered approach. It
is depicted in Fig. 2. The reasoning tool is organized in layers, each of which
implement a full logic of their own. Such a logic consists of syntax, constraints,
and models. The intention is that the logic associated with a certain layer is
more expressive than the logic associated with the layer below. Thus, a layer can
extend a logic’s syntax and constraints, and consequently augment the notion
of model associated with that logic. A layer can express what it allows and

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 K. Claessen

Fig. 2. The layered approach

disallows in terms of the full language of the layer below. By building more and
more layers on top of each other, we can support more and more complex logics.

The bottom layer of Equinox consists of a SAT-solver, with propositional logic
as its associated logic. The layer directly above it implements uninterpreted
functions and equality. The language with which the two layers communicate
with each other is their common language, namely propositional logic. The layers
above that add universal quantification to the logic. (Equinox supports first-
order quantification in two tiers; first a form of guarded quantification is added,
then full quantification is added.) The quantification layer communicates with
the UIF layer in terms of their common language, namely quantifier-free first-
order logic, with finite first-order models.

Fig. 3. Extending with a layer at the top

The advantage of the layered approach becomes clear once we want to aug-
ment the existing logic (in this case full first-order logic) with a more expressive
logic. Fig. 3 shows that we can add a layer implementing transitive closure.
The language that is used to communicate between the top two layers is full
first-order logic. In other words, the top layer can add constraints which are
full first-order logic axioms to the layer below. (Because first-order logic is not
decidable, we have to slightly adapt the concept of model in order for this to
work).
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Fig. 4. Extending with layers sideways

Many imaginable extensions to an exisiting logic do not require adding a layer
at the very top, because those extensions are implementable using simpler layers
that occur lower in the hierarchy. In order to support modularity, Equinox allows
the addition of sideways layers, depicted in Fig. 4. An example of a sideways layer
is adding the concept of “constructor function” to first-order logic. A constructor
function is an injective function, whose results are not equal to the results of
any other constructor function. Constructor functions commonly occur when
modelling algebraic datatypes or functional programs with pattern matching.

Constructor functions are axiomatizable using first-order logic axioms, but
much more efficient is implementing them as a layer that directly talks to the
UIF layer. This poses a problem for modularity, since we change the logic by
adding a layer. What happens to the layer above? A sideways layer allows the
extension of a logic with new features, but it can still mimic the underlying logic,
so any layer extending the underlying logic will not be affected by the extension.

This design allows for a very modular construction of domain-specific reason-
ing tools. In the talk, we will see a number of examples of logics for which we
can build reasoning tools in this way, in particular (1) first-order logic, (2) first-
order logic with transitive closure, (3) constructor functions recursive functional
programs, and (4) separation logic.



Advances in Proving Program Termination and

Liveness

Byron Cook

Microsoft Research and Queen Mary, University of London

Abstract. Because the halting problem is undecidable, many have con-
sidered the dream of automatically proving termination (and other live-
ness properties) to be impossible. While not refuting Turing’s original
result of undecidability, recent research now makes this dream a prac-
tical reality. I will describe this recent work and its application to in-
dustrial software and models of biological systems. I will also describe
recent adaptations of these new technologies to the problem of proving
temporal properties in logics such as CTL and LTL.

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, p. 4, 2011.
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Translating between Language and Logic:
What Is Easy and What Is Difficult

Aarne Ranta

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract. Natural language interfaces make formal systems accessible in infor-
mal language. They have a potential to make systems like theorem provers more
widely used by students, mathematicians, and engineers who are not experts in
logic. This paper shows that simple but still useful interfaces are easy to build with
available technology. They are moreover easy to adapt to different formalisms and
natural languages. The language can be made reasonably nice and stylistically
varied. However, a fully general translation between logic and natural language
also poses difficult, even unsolvable problems. This paper investigates what can
be realistically expected and what problems are hard.

Keywords: Grammatical Framework, natural language interface.

1 Introduction

Mature technology is characterized by invisibility: it never reminds the user of its ex-
istence. Operating systems are a prime example. Still a decade ago, you’d better be a
Unix hacker to do anything useful with a Unix computer. Nowadays Unix is hidden
under a layer of Mac OS or Ubuntu Linux, and it works so well that the layman user
hardly ever notices it is there.

When will formal proof systems mature? Decades of accumulated experience and
improvements have produced many systems that are sophisticated, efficient, and robust.
But using them is often an expert task—if not for the same experts as the ones who
developed the systems, then at least for persons with a special training. One reason (not
always the only one, of course) is that the systems use formalized proof languages,
which have to be learnt. The formalized language, close to the machine language of the
underlying proof engine, constantly reminds the user of the existence of the engine.

Let us focus on one use case: a student who wants to use a proof system as an in-
fatigable teaching assistant, helping her to construct and verify proofs. This case easily
extends to a mathematician who needs help in proving new theorems, and to an engi-
neer who needs to verify software or hardware systems with respect to informal spec-
ifications. Now, the student must constantly perform manual conversions between the
informal mathematical language of her textbooks and the formalism used by the proof
system.

We can imagine this to be otherwise. Computer algebra systems, such as Mathemat-
ica [1], are able to manipulate normal mathematical notations, for instance,

√
x instead

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 5–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



6 A. Ranta

of its formalized representation Sqrt[x]. The support for normal mathematical lan-
guage is one (although not the only one) of the reasons why computer algebras, unlike
formal proof systems, have become main-stream tools in mathematics education.

Now, what is the proof-system counterpart of algebraic formulas in computer alge-
bra? It is mathematical text, which is a mixture of natural language and algebraic for-
mulas. The natural language part cannot be replaced by formulas. Therefore it is only
by allowing input and output in text that proof system can hide their internal technology
and reach the same level of maturity as computer algebras.

The importance of informal language for proof systems has of course been noticed
several times. It has motivated systems like STUDENT [2], Mathematical Vernacular
[3], Mizar [4], OMEGA [5], Isar [6], Vip [7], Theorema [8], MathLang [9], Naproche
[10], and FMathL [11]. These systems permit user interaction in a notation that resem-
bles English more than logical symbolisms do. The notations are of course limited, and
far from a full coverage of the language found in mathematics books. Their develop-
ment and maintenance has required considerable efforts. What we hope to show in this
paper is that such interfaces are now easy to build, that they can be ported to other
languages than English, and that their language can be made fairly sophisticated.

In Section 2, we will give a brief overview of the language of mathematics. In Sec-
tion 3, we will introduce GF, Grammatical Framework [12,13], as a tool that enables
the construction of translation systems with the minimum of effort. Section 4 defines
a simple predicate logic interface, which, while satisfying the grammar rules of natu-
ral language, is easy to build and to port to different notations of formal logic and to
different natural languages. In this interface, the formula

(∀x)(Nat(x) ⊃ Even(x) ∨Odd(x))

gets translated to English, German, French, and Finnish in the following ways:

for all x, if x is a natural number then x is even or x is odd
für alle x, wenn x eine natürliche Zahl ist, dann ist x gerade oder x ist ungerade
pour tour x, si x est un nombre entier alors x est pair ou x est impair
kaikille x, jos x on luonnollinen luku niin x on parillinen tai x on pariton

In Section 5, we will increase the sophistication of the language by well-known tech-
niques from linguistics and compiler construction. For instance, the above formula then
gets the translations

every natural number is even or odd
jede natürliche Zahl ist gerade oder ungerade
tout nombre entier est pair ou impair
jokainen luonnollinen luku on parillinen tai pariton

and the translation still works in both directions between the formula and the sentences.
In Section 6, we will discuss some problems that are either open or positively undecid-
able. Section 7 summarizes some natural language interfaces implemented in GF, and



Translating between Language and Logic 7

Section 8 concludes. The associated web page [14] contains the complete code referred
to in this paper, as well as a live translation demo.

Throughout this paper, we will use the terms easy and difficult in a special way. Easy
problems are ones that can be solved by well-known techniques; this doesn’t mean that
it was easy to develop these techniques in the first place. Thus the easy problems in
natural language interfaces don’t require training in GF or linguistics but can reuse ex-
isting components and libraries. For the difficult problems, no out-of-the-box solution
exists. This relation between easy and difficult has parallels in all areas of technology.
For instance, in automatic theorem proving itself, some classes of formulas are easy
to decide with known techniques; some classes are easy for humans but still impossi-
ble for computers; and some classes will remain difficult forever. An important aspect
of progress in both natural language processing and automatic reasoning has been to
identify and extend the classes of easy problems, instead of getting paralyzed by the
impossibility of the full problem.

2 The Language of Mathematics

What is the ideal language for interaction with proof systems? If we take mathematic
books as the starting point, the answer is clear: it is a natural language, such as English
or Polish or French, containing some mathematical formulas as parts of the text and
structured by headers such as “definition” and “lemma”. There can also be diagrams,
linked to the text in intricate ways; for instance, a diagram showing a triangle may
“bind” the variables used for its sides and angles in the text.

Ignoring the diagrams and the structuring headers for a moment, let us concentrate
on the text parts. Mathematical texts consist of two kinds of elements, verbal (natu-
ral language words) and symbolic (mathematical formulas). The distribution of these
elements is characterized by the following principles:

– Each sentence is a well-formed natural language sentence.
– A sentence may contain symbolic parts in the following roles:

• noun phrases, as in x2 is divisible by
√

x;
• subsentences formed with certain predicates, as in we conclude that x2 >

√
x.

– A symbolic part may not contain verbal parts (with some exceptions, for instance,
the notation for set comprehension).

Of particular interest here is that logical constants are never (at least in traditional style)
expressed by formulas. Also most logically atomic sentences are expressed by informal
text, and so are many noun phrases corresponding to singular terms. The last rule may
mandate the use of verbal expression even when symbolic notation exists. For instance,
the sentence the square of every odd number is odd could not use the symbolic notation
for the square, because it would then contain the verbal expression every odd number
as its part. The conversion to symbolic notation is a complex procedure, as it involves
the introduction of a variable: for every odd number x, x2 is odd. For this example, the
purely verbal expression is probably the better one.
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3 GF in a Nutshell

3.1 Abstract and Concrete Syntax

GF is based on a distinction between abstract syntax and concrete syntax. An abstract
syntax defines a system of trees, and a concrete syntax specifies how the trees are re-
alized as strings. This distinction is only implicit in context-free (BNF, Backus-Naur
Form) grammars. To give an example, the BNF rule for multiplication expressions

Exp ::= Exp "*" Exp

is in GF analysed into a pair of rules,

fun EMul : Exp -> Exp -> Exp
lin EMul x y = x ++ "*" ++ y

The first rule belongs to abstract syntax and defines a function EMul for constructing
trees of the form (EMul x y). The second rule belongs to concrete syntax and de-
fines the linearization of trees of the forms (EMul x y): it is the linearization of x
concatenated (++) with the token * followed by the linearization of y.

GF grammars are reversible: they can be used both for linearizing trees into strings
and for parsing strings into trees. They may be ambiguous: the string x * y * z
results in two trees, (EMul (EMul x y) z) and (EMul x (EMul y z)).

3.2 Parametrization

Avoiding ambiguity may or may not be a goal for the grammar writer. In the rule above,
a natural way to avoid ambiguity is to parametrize the linearization on precedence. Each
expression has a precedence number, which can be compared to an expected number;
parentheses are used if the given number is lower than the expected number. Rather
than showing the low-level GF code for this, we use the GF library function infixl
(left associative infix). Then we get the correct use of parentheses and the precedence
level 2 by writing

lin EMul x y = infixl 2 "*" x y

Since GF is a functional programming language, we can be even more concise by using
partial application,

lin EMul = infixl 2 "*"

This rule is similar to a precedence declaration in languages like Haskell [15],

infixl 2 *

Thus syntactic conventions such as precedences are a special case of GF’s concrete
syntax rules, which also cover parameters used in natural languages (see 3.3). What is
important is that concrete syntax can be parametrized in different ways without chang-
ing the abstract syntax.
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3.3 Multilinguality

The most important property of GF in most applications is its multilinguality: one ab-
stract syntax can be equipped with many concrete syntaxes. Thus the function EMul
can also be given the linearization

lin EMul x y = x ++ y ++ "imul"

which generates the reverse Polish notation of Java Virtual Machine. Now, combining
the parsing of x * y with linearization into x y imul makes GF usable as a com-
piler. Since the number of concrete syntaxes attached to an abstract syntax is unlimited,
and since all grammars are reversible, GF can be seen as a framework for building
multi-source multi-target compiler-decompilers.

Yet another aspect of GF is the expressive power of its concrete syntax, reaching
beyond the context-free: GF is equivalent to Parallel Multiple Context-Free Grammars
(PMCFG, [16]). Therefore GF is capable of dealing with all the complexities of natural
languages. Sometimes this extra power is not needed; for instance, an English rule for
EMul can be simply written

lin EMul x y = "the product of" ++ x ++ "and" ++ y

But in German, the equivalent phrase has to inflect in different cases; in particular, the
operands have to be in the dative case required by the preposition von. This is written

lin EMul x y = \\c => defArt Neutr c ++ Produkt_N ! c ++
"von" ++ x ! Dat ++ "und" ++ y ! Dat

where a case variable c is passed to the definite article (defArt), which in the neuter
form produces das, dem or des as function of the case. The noun Produkt (“product”)
likewise depends on case.

Without going to the details of the notation, let alone German grammar, we notice
that case belongs to the concrete syntax of German without affecting the abstract syntax.
French has a different parameter system, involving gender (le produit vs. la somme) and
article-preposition contractions (le produit du produit), etc. All these variations can be
defined in GF, which enables the use of one and the same abstract syntax for a wide
variety of languages.

3.4 Grammar Engineering

That the expressive power of GF is sufficient for multilingual grammars does not yet
mean that it is easy to write them. The German EMul rule above is really the tip of
an iceberg of the complexity found in natural languages. Writing formal grammars of
natural language from scratch is difficult and laborious. To this end, a considerable
part of the GF effort has gone to the development of libraries of grammars, which
encapsulate the difficulties [17]. The GF Resource Grammar Library, RGL [18] is a
collaborative project, which has produced implementations of 18 languages ranging
from English, German, and French to Finnish, Arabic, and Urdu.



10 A. Ranta

The RGL function app builds noun phrases (NP) as function applications with rela-
tional nouns (N2). It has several overloaded instances, for example,

app : N2 -> NP -> NP -- the successor of x
app : N2 -> NP -> NP -> NP -- the sum of x and y

We use app to write the linearization rules of EMul for English, German, French, and
Finnish as follows (hiding the variables by partial application):

lin EMul = app (mkN2 (mkN "product"))
lin EMul = app (mkN2 (mkN "Produkt" "Produkte" Neutr))
lin EMul = app (mkN2 (mkN "produit"))
lin EMul = app (mkN2 (mkN "tulo"))

In most of these cases, it is enough to write just the dictionary form of the word equiva-
lent to product; the RGL function mkN infers all grammatical properties from this form.
In German, however, the plural form and the gender need to be given separately. The
syntactic construction is the same in all languages, using the function app, which yields
equivalents of the product of x and y.

The RGL enables a division of labour between two kinds of grammar writers: lin-
guists, who write the resource grammar libraries, and application programmers, who
use the libraries for their specific purposes. An application programmer has an access
to the RGL via its API (Application Programmer’s Interface), which hides the linguis-
tic complexity and details such as the passing of parameters. What the application pro-
grammer has to know is the vocabulary of her domain. For instance, the translation of
product as tulo in Finnish is specific to mathematics; in many other contexts the trans-
lation is tuote. This kind of knowledge may be beyond the reach of the linguist, which
shows that also the application programmer’s knowledge makes an essential contribu-
tion to the quality of a translation system.

4 Baseline Translation for the Core Syntax of Logic

Let us start with a simple but complete core syntax of predicate logic, specified by the
following table:

construction symbolic verbal
negation ∼ P it is not the case that P
conjunction P & Q P and Q
disjunction P ∨ Q P or Q
implication P ⊃ Q if P then Q
universal quantification (∀x)P for all x, P
existential quantification (∃x)P there exists an x such that P

How to write the grammar in GF is described below, with full details for the abstract
syntax (4.1) and the concrete syntax of natural language (4.2). The “verbal” column
is generalized from English string templates to RGL structures, which work for all
RGL languages. The formation of atomic sentences is described in 4.3, and Section 4.4
improves the grammar by eliminating the ambiguities of the verbalizations.
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4.1 Abstract Syntax

The abstract syntax of predicate calculus can be written as follows:

cat Prop ; Ind ; Var
fun

And, Or, If : Prop -> Prop -> Prop
Not : Prop -> Prop
Forall, Exist : Var -> Prop -> Prop
IVar : Var -> Ind
VStr : String -> Var

This abstract syntax introduces three categories (types of syntax trees); Prop (proposi-
tion), Ind (individual), and Var (variable); the category String is a built-in category
of GF. It addresses pure predicate calculus. It can be extended with domain-specific
functions. For instance, in arithmetic such functions may include the use of built-in
integers (Int), addition and multiplication, and the predicates natural number, even,
odd, and equal:

fun
IInt : Int -> Ind
Add, Mul : Ind -> Ind -> Ind
Nat, Even, Odd : Ind -> Prop
Equal : Ind -> Ind -> Prop

Now the sentence

for all x, if x is a natural number then x is even or x is odd

can be expected to have the abstract syntax

Forall (VStr "x") (If (Nat (IVar (VStr "x")))
(Or (Even (IVar (VStr "x"))) (Odd (IVar (VStr "x")))))

4.2 Concrete Syntax

When the RGL library is used, the first step in concrete syntax is to define the linguistic
categories used for linearizing the categories of the application grammar. In the case
at hand, propositions come out as sentences (S) and individuals and variables as noun
phrases (NP). Thus we set

lincat Prop = S ; Ind, Var = NP

and can then define

lin
And = mkS and_Conj
Or = mkS or_Conj
If p q = mkS (mkAdv if_Subj p) (mkS then_Adv q)
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Not = negS
Forall x p = mkS (mkAdv for_Prep (mkNP all_Predet x)) p
Exist x p = mkS (existS (mkNP x (mkRS p)))
IVar x = x
VStr s = symb s

We refer to the on-line RGL documentation for the details of the API functions used
here. All of them are general-purpose functions readily available for all RGL languages,
exceptnegS and existS, which are constructed by using the RGL in different ways in
different languages. Thus a straightforward implementation for the negation in English
is it is not the case that P, obtained by

negS p = mkS negative_Pol
(mkCl it_NP (mkNP the_Det (mkCN (mkN "case") p)))

and similarly for German (es ist nicht der Fall, dass P) and French (il n’est pas le cas
que P). This form of negation works for all kinds of propositions, complex and atomic
alike. We will show later how to optimize this for atomic propositions and produce x is
not odd instead of it is not the case that x is odd. Existence can likewise be straightfor-
wardly linearized as there exists x such that P and its equivalents.

At the other end of the translation, we need a grammar for the symbolic notation
of logic. By using precedences in the way shown in Section 3.2, this is straighforward
for some notations; some others, however, may use devices such as lists (many-place
conjunctions rather than binary ones) and domain-restricted quantifiers. We will return
to these variations in Section 5.

4.3 The Lexicon

To extend the concrete syntax to arithmetic constants, we can write

lin
IInt = symb
Add = app (mkN2 (mkN "sum"))
Mul = app (mkN2 (mkN "product"))
Nat = pred (mkCN (mkA "natural") (mkN "number"))
Even = pred (mkA "even")
Odd = pred (mkA "odd")
Equal = pred (mkA "equal")

and similarly in other languages, varying the adjectives and nouns used. A particularly
useful RGL function for this purpose is pred, which is an overloaded function covering
different kinds of predication with adjectives, nouns, and verbs:

pred : A -> NP -> S -- x is even
pred : A -> NP -> NP -> S -- x and y are equal
pred : CN -> NP -> S -- x is a number
pred : V -> NP -> S -- x converges
pred : V2 -> NP -> NP -> S -- x includes y
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Since the main part of work in natural language interfaces has to do with the non-logical
vocabulary, the main devices needed by most programmers will be the functions app
(Section 3.4) and pred, as well as lexical functions such as mkN and mkA.

The lexical work can be further reduced by using a general-purpose multilingual
mathematical lexicon. Such a lexicon was built for six languages within the WebALT
project [19] to cover the content lexicons in the OpenMath project [20]. The WebALT
lexicon is extended and ported to more languages in the MOLTO project [21].

4.4 Ambiguity

The baseline grammar of predicate logic has a narrow coverage and produces clumsy
language. Its worst property, however, is that the language is ambiguous. As there is no
concept of precedence, we have the following ambiguities:

P and Q or R : (P&Q) ∨R vs. P&(Q ∨R)
it is not the case that P and Q : (∼ P )&Q vs. ∼ (P&Q)
for all x, P and Q : ((∀x)P )&Q vs. (∀x)(P&Q)

Introducing a precedence order by stipulation would not solve the problem. For in-
stance, stipulating that and binds stronger than or would simply make P&(Q ∨ R)
inexpressible! Moreover, stipulations like this would cause the language no longer to
be a real fragment of natural language, since the user would have to learn the artificial
precedence rules separately in order really to understand the language.

The ambiguity problem will be revisited in Section 5, using techniques from natural
language generation (NLG) to reduce ambiguities in optimized ways. However, even
in the simple interface we can solve the problem by parametrizing the concrete syntax.
We just need a Boolean parameter that indicates whether a proposition is complex (i.e.
formed by a connective). Such parameters can in GF be attached to expressions by using
records. Thus the linearization type of propositions becomes

lincat Prop = {s : S ; isCompl : Bool}

Following an idea from [22], we can use bulleted lists to structure sentences—a de-
vice that is more natural-language-like than parentheses would be. Thus we have the
following unambiguous variants of P and Q or R:

(P&Q) ∨R | P&(Q ∨R)
either of the following holds: | both of the following hold:
• P and Q | • P
• R | • Q or R

The rule for generating this says that, if none of the operands is complex, the sentence
conjunction can be used; otherwise, the bulleted structure must be used:

lin And p q = case <p.isCompl, q.isCompl> of {
<False,False>

=> {s = mkS and_Conj p.s and q.s ; isCompl = True} ;
_ => {s = bulletS Pl "both" p.s q.s ; isCompl = False}
}
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Unfortunately, it is not decidable whether a GF grammar (or even a context-free gram-
mar) is ambiguous. Working on the high abstraction level of RGL can make it difficult
even to see the effect of individual rules. Therefore, the only certain procedure is to test
with the parser. When generating natural language from logic, the parser test can be
applied to a set of alternative equivalent expressions to select, for instance, the short-
est unambiguous one. The next section will show how such equivalent expressions are
generated.

In general, syntactic disambiguation may be based on semantic considerations, which
makes it difficult (Section 6.1). But one semantic method is easy to implement for frag-
ment at hand: binding analysis. Thus, when parsing the sentence for all x, x is even
or x is odd, the interpretation ((∀x)Even(x)) ∨ Odd(x) can be excluded, because it
contains an unbound variable. A general and powerful approach to semantics-based
disambiguation uses dependent types and higher-order abstract syntax ([13], Chapter
6). For instance, the universal quantifier can be declared

fun Univ : (A : Dom) -> (Var A -> Prop) -> Prop

The body of quantification now depends on a variable, which moreover is typed with re-
spect to a domain. In this way, both binding analysis and the well-typedness of predicate
applications with respect to domains is defined in GF, in a declarative way. However,
this method is difficult (though not impossible) to scale up to the syntax extensions
discussed in the next section.

5 Beyond the Baseline Translations: Easy Improvements

In this section, we will extend the abstract syntax of logic with structures available in
natural language but not in standard predicate logic (Section 5.1). This extended syntax
is still a conservative extension of the core syntax and can easily be translated to it (5.2).
The most challenging part is the reverse: given a core syntax tree, find the best tree in
the extended syntax. In addition to better style, the extended syntax provides new ways
to eliminate ambiguity (5.3). Finally, Section 5.4 will show how to optimally divide the
expressions into verbal and symbolic parts, as specified in Section 2.

For reasons of space and readability, we will no longer give the explicit GF code.
Instead, we use a logical formalism extended with constructs that correspond to the
desired natural language structures. At this point, and certainly with help from GF doc-
umentation, the reader should be able easily to reconstruct the GF code. The full code
is shown on the associated web page [14], including a concrete syntax using RGL, and
the conversions of Sections 5.2 and 5.3.

The core-to-extension conversions of Section 5.3 could not be implemented as lin-
earization rules of core syntax. The reason is compositionality: every linearization rule
is a mapping ∗ such that

(f t1 . . . tn)∗ = h t∗1 . . . t∗n

where the function h operates on the linearizations of the immediate subtrees ti. Thus
it cannot analyse the subtrees ti, as the conversions of Section 5.3 have to do. When
two languages are related by an abstract syntax and compositional linearizations, they
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are in a part-to-part correspondance; this is no longer true for core syntax formulas and
their optimal natural language expressions.

Even though the conversions cannot be defined as linearizations, they could in prin-
ciple be written in GF as semantic actions ([13], Chapter 6). But this would require ad-
vanced GF hackery and therefore be difficult; GF is a special-purpose language designed
for multilingual grammars, and lacks the program constructs and libraries needed for
non-compositional translations, such as list processing, state management, and so on.
The conversions in [14] are therefore written in Haskell. This is an illustration of the
technique of embedded grammars, where a GF grammars can be combined with host
language programs ([13], Chapter 7). Thus the overall system written in Haskell pro-
vides linearization and parsing via the GF grammar, and abstract syntax trees can be
manipulated as Haskell data objects. In particular, the technique of almost composi-
tional functions [23] is available, which makes it easy for Haskell programmers to im-
plement conversions such as the ones in Section 5.3. The same technique is available
for Java as well, and provides the easy way for Java programmers to use GF for building
natural language interfaces to Java programs.

5.1 Extended Abstract Syntax

The core logical language addressed in Section 4 has a minimal set of categories and
one function for each logical constant. The extended language has a more fine-grained
structure. The following table gives the extensions in symbolic logic and English exam-
ples:

construction symbolic verbal (example)
atom negation A x is not even
conjunction of proposition list &[P1, . . . , Pn] P, Q and R
conjunction of predicate list &[F1, . . . , Fn] even and odd
conjunction of term list &[a1, . . . , an] x and y
bounded quantification (∀x1, . . . , xn : K)P for all numbers x and y, P
in-situ quantification F (∀K) every number is even
one-place predication F 1(x) x is even
two-place predication F 2(x, y) x is equal to y
reflexive predication Refl(F 2)(x) x is equal to itself
modified predicate Mod(K,F )(x) x is an even number

All constructs with & also have a variant for ∨, and so have the constructs with ∀ for ∃.
The new forms of expression involve some new categories. Obviously, we need cat-

egories of lists of propositions, predicates, variables, and individual terms. But we also
introduce separate categories of one- and two-place predicates, and it is useful to have
a separate category of atomic propositions.

It is moreover useful to distinguish a category of kind predicates, typically used
for restricting the domain of quantification (the variable K in the table above). For
instance, natural number is a kind predicate, as opposed to odd, which is an “ordinary”
predicate. But we will also allow the use of K in a predication position, to say x is a
natural number. Modified predicates combine a kind predicate with another predicate
into a new kind predicate. Very typically, kind predicates are expressed with nouns and
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other one-place predicates with adjectives (cf. [9]); but this need not be assumed for all
predicates and all languages.

The new syntax is a proper extension of the core syntax of Section 4. It is, in partic-
ular, not necessary to force all concepts into the categories of one- or two-place predi-
cates: they can still be expressed by “raw” propositional functions. But reclassifying the
arithmetic lexicon with the new categories will give opportunities for better language
generation via the extended syntax. Thus Even and Odd can be classified as one-place
predicates, Equal as a two-place predicate, and Nat as a kind predicate. We can then
obtain the sentence

every natural number is even or odd

as a compositional translation of the formula

∨[Even, Odd](∀Nat)

It remains to see how this formula is converted to a core syntax formula (easy), and how
it can be obtained as an optimization of the core formula (more tricky).

5.2 From Extended Syntax to Core Syntax

Mapping the extended syntax into the core syntax can be seen as denotational seman-
tics, where the core syntax works as a model of the extended syntax. The semantics
follows the ideas of Montague [24], which focused particularly on in-situ quantifica-
tion. The question of quantification has indeed been central in linguistic semantics (see
e.g. [25]); what we use here is a small, easy part of the potential, carefully avoiding
usages that lead to ambiguities and other difficult problems.

The crucial rule is in-situ quantification. It requires that trees of type Ind are in-
terpreted, not as individuals but as quantifiers, that is, as functions from propositional
functions to propositions. Thus the type of the interpretation is

(∀K)∗ : (Ind → Prop) → Prop

The interpretation is defined by specifying how this function applies to a propositional
function F (which need not be an atomic predicate):

(∀K)∗F = (∀x : K∗)(F x)

The rule introduces a bound variable x, which must be fresh in the context in which
the rule is applied. Notice that we define the result as a proposition still in the extended
syntax. It can be processed further by moving the kind K to the body, using the rule

((∀x1, . . . , xn : K)P )∗ = (∀x1) · · · (∀xn)((K∗x1) & . . . & (K∗xn) ⊃ P ∗)

But the intermediate stage is useful if the target logic formalism supports domain-
restricted quantifiers. In general, various constructs of the extended syntax are available
in extensions of predicate logic, such as TFF and THF [26].

Conjunctions of individuals are likewise interpreted as functions on propositional
functions,

&[a1, . . . , an]∗ F = &[a∗
1 F, . . . , a∗

n F ]
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The interpretation of predication is “reversed”: now it is the argument that is applied to
the predicate, rather then the other way round (interestingly, this shift of point of view
was already known to Frege [27], §10: “one can conceive Φ(A) as a function of the
argument Φ”!). Two-place predication requires lambda abstraction.

(F (a))∗ = a∗F ∗

(F (a, b))∗ = a∗((λx)b∗((λy)(F ∗x y)))

Atomic predicates, including simple kind predicates, can be interpreted as themselves,
whereas the conjunction of predicates is a propositional function forming a conjunction
of propositions:

&[F1, . . . , Fn]∗ x = &[(F ∗
1 x), . . . , (F ∗

nx)]

Reflexive predicates expand to repeated application, whereas modified kind predicates
are interpreted as conjunctions:

(Refl(F ))∗x = F ∗xx
(Mod(K,F ))∗ x = (K∗x)&(F ∗x)

The elimination of list conjunctions is simple folding with the binary conjunction:

&[P1, . . . , Pn]∗ = P ∗
1 & . . .&P ∗

n

Now we can satisfy one direction of the desired conversion: we can parse every natural
number is even or odd and obtain the formula

∨[Even, Odd](∀Nat)

whose interpretation in the core syntax is

(∀x)(Nat(x) ⊃ Even(x) ∨Odd(x))

whose compositional translation is for all x, if x is a natural number then x is even or x
is odd.

5.3 From Core Syntax to Extended Syntax

Finding extended syntax equivalents for core syntax trees is trickier than the opposite
direction. It is a problem of optimization: find the “best” possible tree to express the
same proposition as the original. Now, the “sameness” of propositions is defined by the
interpretation shown in Section 5.2. But what does the “best” mean? Let us consider
some conversions that clearly improve the proposition.

1. Flattening. Nested binary conjunctions can be flattened to lists, to the effect that P
and Q and R becomes P, Q and R. This has many good effects: a syntactic ambiguity is
eliminated; bullet lists become arbitrarily long and thus more natural; and opportunities
are created for the next operation, aggregation.

2. Aggregation. This is a standard technique from NLG [28]. For the task at hand, its
main usage is to share common parts of predications, for instance, to convert x is even
or x is odd to x is even or odd. Thus the subject-sharing aggregation rule has the effect

&[F1(a), . . . , Fn(a)] =⇒ &[F1, . . . , Fn](a)
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The predicate-sharing aggregation rule is, dually,

&[F (a1), . . . , F (an)] =⇒ F (&[a1, . . . , an])

Aggregation can be further strengthened by sorting the conjuncts by the predicate or
the argument, and then grouping maximally long segments. Notice that aggregation
reduces ambiguity: x is even or x is odd and y is odd is ambiguous, but the two readings
are captured by x is even or odd and y is odd and x is even or x and y are odd.

3. In-situ quantification. The schematic rule is to find an occurrence of the bound
variable in the body of the sentence and replace it with a quantifier phrase:

(∀x : K)P =⇒ P ((∀K)/x)

If the starting point is a formula with domainless quantification, the pattern must first
be found by the rules

(∀x)(K(x) ⊃ P ) =⇒ (∀x : K)P
(∃x)(K(x)&P ) =⇒ (∃x : K)P

The in-situ rule is restricted to cases where P is atomic and has exactly one occurrence
of the variable. Thus aggregation can create an opportunity for in-situ quantification:

for all natural numbers x, x is even or x is odd
=⇒ for all natural numbers x, x is even or odd
=⇒ every natural number is even or odd

This chain of steps shows why in-situ quantification is restricted to propositions with
a single occurrence of the variable: perfoming it before aggregation would form the
sentence every number is even or every number is odd, which has a different meaning.

4. Verb negation
∼ A =⇒ A

This has the effect of transforming it is not the case that x is even to x is not even. Verb
negation is problematic if in-situ quantifiers are present, since for instance every natural
number is not even has two parses, where either the quantifier or the negation has wider
scope. If in-situ quantification is restricted to atomic formulas, the only interpretation is
∼ (∀x : Nat)Even(x). But relying on this is better avoided altogether, to remain on the
safe side—and thus create verb negation only for formulas without in-situ quantifiers.

5. Reflexivization
F (x, x) =⇒ Refl(F )(x)

which has the effect of converting x is equal to x to x is equal to itself. This can again
create an opportunity for in-situ quantification: every natural number is equal to itself.

6. Modification, combining a kind and a modifying predicate into a complex kind pred-
icate

K(x)&F (x) =⇒ Mod(K,F )(x)

which has the effect of converting x is a number and x is even to x is an even number.
As the number of occurrences of x is reduced, there is a new opportunity for in-situ
quantification: some even number is prime.
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5.4 Verbal vs. Symbolic

In Section 2, we suggested that symbolic expressions are preferred in mathematical text,
whenever available. This creates a tension with the conversions of Section 5.3, which
try to minimize the use of symbols. But there is no contradiction here: the conversions
minimize the use of symbols for expressing the logical structure, whereas Section 2
suggests it should be maximized in atomic formulas. The symbols needed for logical
structure are the bound variables, which are replaced by in-situ quantification whenever
possible without introducing ambiguity.

Hence, the strategy is to perform the conversions of 5.3 first, and then express sym-
bolically whatever is possible. Here are two examples of the two-step procedure, leading
to different outcomes:

for all x, if x is a number and x is odd, then x2 is odd
=⇒ (every odd number)2 is odd (incorrect!)
=⇒ the square of every odd number is odd

for all x, if x is a number and x is odd, then the sum of x and the square of x is
even
=⇒ for all odd numbers x, the sum of x and the square of x is even
=⇒ for all odd numbers x, x + x2 is even

The latter could be improved by using pronouns to eliminate the variable: the sum of
every odd number and its square is even. However, the analysis and synthesis of (non-
reflexive) pronouns belongs to the problems we still consider difficult.

The choice between verbal and symbolic expressions is easy to implement, since it
can be performed by linearization. All that is needed is a Boolean parameter saying
whether an expression is symbolic. If all arguments of a function are symbolic, the
application of the function to them can be rendered symbolically; if not, the verbal
expression is chosen. For example, using strings rather than RGL to make the idea
explicit, the square function becomes

lin Square x = {
s = case x.isSymbolic of {

True => x.s ++ "^2" ;
False => "the square of" ++ x.s
} ;

isSymbolic = x.isSymbolic
}

Thus the feature of being symbolic is inherited from the argument. Variables and inte-
gers are symbolic, whereas in-situ quantifiers are not.

6 The Limits of Known Techniques

6.1 The Dynamicity of Language

The Holy Grail of theorem proving in natural language is a system able to formalize any
mathematical text automatically. In one sense, this goal has already been reached. The
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Boxer system [29] is able to parse any English sentence and translate it into a formula
of predicate calculus. Combined with theorem proving and model checking, Boxer can
moreover solve problems in open-domain textual entailment by formal reasoning [30].

The problem that remains with Boxer is that the quality of formalization and rea-
soning is far from perfect. It is useful for information retrieval that goes beyond string
matching, but not for the precision task of checking mathematical proofs. While the
retrieval aspect of reasoning is an important topic, no-one seriously claims that the
technique would reach the precision needed for mathematics. What we have here is the
classical trade-off in natural language processing: we cannot maximize both coverage
and precision at the same time, but have to choose.

Our target in this paper has obviously been to maintain precision while extending the
coverage step by step. What is more, our perspective has mainly been that of genera-
tion: we have started from an abstract syntax of predicate calculus and seen how it is
reflected in natural language. The opposite perspective of analysis is only implicit, via
the reversibility of GF grammars. If our grammar does manage to parse a sentence from
a real text, it happens more as a lucky coincidence than by design. (This is not so bad
as it might sound, since parsing in GF is predictive, which means that the user input is
guided by word suggestions and completions; see [31].)

The task of formalizing real mathematical texts is thoroughly analysed by Gane-
salingam [32]. With samples of real texts as starting point, he shows that mathemati-
cal language is not only complex but also ambiguous and dynamically changing. Even
things like operator precedence can be ambiguous. For instance, addition binds stronger
than equality in formulas like 2 + 2 = 4. But [32] cites the expression

λ + K = S

which in [33] stands for the theory λ enriched with the axiom K = S, and should
hence be parsed λ + (K = S). The solution to this ambiguity is to look at the types
of the expression. The + and = operators are overloaded: they work for different types,
including numbers and theories. Not only does their semantics depend on the type,
which is common in programming languages, but also their syntactic properties.

Because of the intertwining of parsing and type checking, the usual pipe-lined tech-
niques are insufficient for automatically formalizing arbitrary mathematical texts. This
is nothing new for natural language: overload resolution is, basically, just an instance
of word sense disambiguation, which is needed in tasks like information retrieval and
machine translation. One thing shown in [32] is that, despite its believed exactness,
the informal language of mathematics inherits many of the general problems of natural
language processing.

As suggested in Section 4.4, parsing intertwined with type checking can be theoret-
ically understood via the use of dependent types (cf. also [34,35]). It is also supported
by GF. But it is not yet a piece of technology that can be called easy; building a natural
language interface that uses GF’s dependent types is still a research project. [36] and
[37] are pioneering examples. They also use dependent types to deal with pronouns and
definite descriptions, as suggested in [34].
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6.2 The Structure of Proof Texts

Given that the analysis of arbitrary mathematical text is beyond the reach of current
technology, how is it with generation? The task of text generation from formal proofs
has a great potential, for instance, in industry, where theorem provers are used for ver-
ifying large systems. The users are not always happy with just the answer “yes” or
“no”, but want to understand why. [38] was a pioneering work in generating text from
Coq proofs. Even though it worked reasonably for small proofs, the text generated from
larger proofs turned out to be practically unreadable.

The problems in proof generation are analogous to the problems in sentence gener-
ation: the structure has to be changed by techniques such as aggregation (Section 5.3).
Some such techniques, inspired by code generation in compilers, were developed in
[39]. But there is also another aspect: the hiding of uninteresting steps. Natural proofs
typically take much longer steps than formalized proofs. Thus we also have the question
which steps to show. [40] suggests a promising approach, trying to identify the decisive
branching points in proofs as the ones worth showing. This idea resembles the methods
of dataflow analysis in compiler construction [41], in particular the technique of basic
blocks. But, in analogy to the “full employment theorem for compiler writers”, which
Appel [41] attributes to Rice [42], it seems that text generation involves undecidable
optimization problems that have no ultimate automatic solution.

Even though the techniques shown in this paper don’t scale up to proof texts, they do
easily extend beyond individual propositions. [43] shows that texts consisting of defini-
tion and theorem block can be made natural and readable. [36] likewise succeeds with
software specifications where the texts describe invariants and pre- and postconditions.

7 Projects

GF was first released in 1998, in a project entitled "Multilingual Document Authoring"
at Xerox Research Centre Europe in Grenoble [44]. The project built on earlier work
on natural language proof editors in [45,46]. The earlier work had focused on the mul-
tilingual rendering of formal mathematics, based on constructive type theory [47] and
the ALF system [48]. The Xerox project shifted the focus from mathematics to more
“layman” applications such as user manuals, tourist phrasebooks, and spoken dialogue
systems (see [13] for a survey). But the translation between logic and language has been
a recurring theme in GF projects. Here are some of them:

– Alfa, a type-theoretical proof editor was equipped with a GF grammar and a system
of annotations for defining a multilingual mathematical lexicon [43]. The system
was aimed to be portable to different applications, due to the generality of Alfa
itself. As an early design choice, dependent types were not employed in GF, but
type checking was left to Alfa. The lack of resource grammars made it difficult to
define the translations of new concepts.

– KeY, a software verification system [49] was equipped with a translation of spec-
ifications between OCL (Object Constraint Language, [50]), English, and German
[36]. Dependent types were used to guide the author to write meaningful specifica-
tions. This was the first large-scale application of the resource grammar library.
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– FraCaS [51], a test suite of textual entailment in English, was parsed with an ex-
tension of RGL, translated to the TPTP format, and fed to automated reasoning
tools [52].

– WebALT (Web Advanced Learning Technology), a European project aiming to
build a repository of multilingual math exercises [19] using formalizations from
the OpenMath project [20]. The work is continued in the MOLTO project [21], and
the lexicon is used in the web demo of this article [14]

– Attempto (Attempto Controlled English), a natural language fragment used for
knowledge representation and reasoning [53]. The fragment was implemented in
GF and ported to five other languages using the RGL [54].

– OWL (Web Ontology Language, [55]), interfaced with English and Latvian via
Attempto [53], but without a previously existing Latvian RGL [56].

– SUMO (Suggested Upper Merged Ontology, [57]). This large knowledge base and
lexicon was reverse-engineered in GF, with improved natural language generation
for three languages using RGL [37]. The abstract syntax uses dependent types to
express the semantics of SUMO.

– MathNat. An educational proof system implemented in GF and linked to theorem
proving in the TPTP format [58].

– Nomic. A computer game where new rules can be defined by the players in English
[59]. Aimed as a pilot study for a controlled natural language for contracts.

– MOLTO KRI (Knowledge Representation Infrastructure). A query language with
a back end in ontology-based reasoning [60].

8 Conclusion

Accumulated experience, the growth of the resource grammar libraries, and the im-
provement of tools make it easy to build translators between formal and informal lan-
guages in GF. The translators can produce reasonably understandable language and are
portable to all languages available in the grammar library (currently 18). The effort can
be brought down to the level of a few days’ engineering or an undergraduate project;
still some years ago, it was a research project requiring at least a PhD student.

The scope for improvements is endless. Parsing natural language is still restricted to
very small fragments. Increasing the coverage is not just the matter of writing bigger
grammars, but new ideas are needed for disambiguation. Generating natural language,
especially from complex formal proofs, still tends to produce texts that are unreadable
in spite of being grammatically correct. New ideas are needed even here.
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Abstract. We describe asasp, a symbolic reachability procedure for the
analysis of administrative access control policies. The tool represents ac-
cess policies and their administrative actions as formulae of the Bernays-
Shönfinkel-Ramsey class and then uses a symbolic reachability procedure
to solve security analysis problems. Checks for fix-point—reduced to sat-
isfiability problems—are mechanized by Satisfiability Modulo Theories
solving and Automated Theorem Proving. asasp has been successfully
applied to the analysis of benchmark problems arising in (extensions of)
the Role-Based Access Control model. Our tool shows better scalabil-
ity than a state-of-the-art tool on a significant set of instances of these
problems.

1 Introduction

Access control is one of the key ingredients to ensure the security of software
systems where several users may perform actions on shared resources. To guar-
antee flexibility and scalability, access control is managed by several security
officers that may delegate permissions to other users that, in turn, may delegate
others. Indeed, such chains of delegation may give rise to unexpected situations
where, e.g., untrusted users may get access to a sensitive resource. Thus, security
analysis is critical for the design and maintenance of access control policies.

In this paper, we describe the Automated Symbolic Analysis of Security Poli-
cies (asasp) tool, based on the model checking modulo theories approach of [2].
Security analysis is reduced to repeatedly checking the satisfiability of formu-
lae in the Bernays-Schönfinkel-Ramsey class [6] by hierarchical combination of
Satisfiability Modulo Theories (SMT) solving and Automated Theorem Prov-
ing (ATP). The use of an SMT solver allows us for quick and incremental—but
incomplete—satisfiability checks while (refutation) complete and computation-
ally more expensive checks are performed by the theorem prover only when
needed. A divide and conquer heuristics for splitting complex access control
queries into simpler ones is key to the scalability of asasp on a set of bench-
mark problems arising in the security analysis of (extensions of) Administrative
Role-Based Access Control (ARBAC) policies [1].

Theoretically, the techniques underlying asasp are developed in the context
of the model checking modulo theories approach [2]. In practice, it is difficult—
or even impossible—to use the available implementation [3], called mcmt, for
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the security analysis of access control policies. There are two reasons for this.
First, the satisfiability problems for fix-point tests of access control policies seem
easier to solve as they fall in the Bernays-Shönfinkel-Ramsey (BSR) class for
which specialized tools exist. In mcmt instead, ad hoc instantiation techniques
have been designed and implemented [3] to integrate the handling of universal
quantifiers with quantifier-free reasoning in rich background theories. These are
needed to model the data structures manipulated by systems [2]. Second, mcmt
permits only mono-dimensional arrays [3] while access control policies routinely
uses binary relations for which at least bi-dimensional arrays are needed to rep-
resent their characteristic functions. An encoding of multidimensional arrays
by mono-dimensional arrays indexed by tuples is possible, although it makes it
useless some heuristics of mcmt with an unacceptable degradations of its per-
formances. Another limitation of mcmt concerns the number of existentially
quantified variables in formulae representing transitions which is bounded to at
most two (although this is sufficient to specify several different classes of sys-
tems as shown in [2]) while administrative actions usually require many more of
such variables. An extensive discussion of the related work about the techniques
underlying asasp can be found in [1].

2 Background on Administrative Access Control

Although asasp can be used for the automated analysis of a more general class
of administrative access control policies [1], here—for lack of space—we consider
only a sub-class.

Role-Based Access Control (RBAC) regulates access through roles. Roles
in a set R associate permissions in a set P to users in a set U by using the
following two relations: UA ⊆ U × R and PA ⊆ R × P . Roles are structured
hierarchically so as to permit permission inheritance. Formally, a role hierarchy
is a partial order � on R, where r1 � r2 means that r1 is more senior than r2 for
r1, r2 ∈ R. A user u is an explicit member of role r when (u, r) ∈ UA while u is
an implicit member of r if there exists r′ ∈ R such that r′ � r and (u, r′) ∈ UA.
Given UA and PA, a user u has permission p if there exists a role r ∈ R such
that (p, r) ∈ PA and u is a member of r, either explicit or implicit. A RBAC
policy is a tuple (U,R, P, UA, PA,�).

Administrative RBAC (ARBAC). Usually (see, e.g., [10]), administrators
may only update the relation UA while PA is assumed constant; so, a RBAC
policy (U,R, P, UA, PA,�) will be abbreviated by UA. To be able to specify
administrative actions, we need to preliminarily specify the pre-conditions of
such actions. A pre-condition is a finite set of expressions of the forms r or r
(for r ∈ R), called role literals. In a RBAC policy UA, a user u ∈ U satis-
fies a pre-condition C if, for each � ∈ C, u is a member of r when � is r or u
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is not a member of r when � is r for r ∈ R. Permission to assign users to roles is
specified by a ternary relation can assign containing tuples of the form (Ca, C, r).
Permission to revoke users from roles is specified by a binary relation can revoke
containing tuples of the form (Ca, r). We say that Ca is the administrative pre-
condition, a user ua satisfying Ca is the administrator, and C is a (simple) pre-
condition. The relation can revoke is only binary because it has been observed
that simple pre-conditions are useless when revoking roles (see, e.g., [10] for a
discussion on this point). The semantics of the administrative actions in ψ :=
(can assign , can revoke) is given by a transition system whose states are the
RBAC policies and a state change is specified by a binary relation →ψ on pair
of RBAC policies as follows: UA →ψ UA′ iff either (i) there exists (Ca, C, r) ∈
can assign , ua satisfying Ca, u satisfying C, and UA′ = UA ∪ {(u, r)} or (ii)
there exists (Ca, r) ∈ can revoke, ua satisfying Ca, and UA′ = UA \ {(u, r)}.

A simple example. We consider the access control system of a small company

RBAC policy

Q

��

�
�

M FT
Em

B

C

A

HR V

E

PAUA �

PT

Administrative actions
({HR}, {Em,FT},PT) ∈ can assign
({M},FT) ∈ can revoke

Fig. 1. An ARBAC policy

as depicted in Figure 1, where a sim-
ple line between a user u—on the left—
and a role r—in the middle—(resp. per-
mission p—on the right) indicates that
(u, r) ∈ UA (resp. (p, r) ∈ PA) and an ar-
row from a role r1 to a role r2 that r1 � r2.
For example, B is an implicit member of
role Em because M is more senior than
Em and A is an explicit member of role
EM; thus, both A and B have permission
E. Figure 1 also contains two administra-
tive actions: the tuple in can assign says
that a member of role HR (the adminis-
trator) can add the role PT to a user who
is a member of Em and is not member of
FT while the pair in can revoke says that
a member of role M can revoke the role
membership of a user of the role FT. For
instance, it is easy to see that user A sat-
isfies pre-condition {Em,FT} of the triple in can assign and that user C can
be the administrator, so that the application of the action is the RBAC policy
UA′ := UA ∪ {(A,PT)}. In UA′, user A may get permission R besides E.

User-role reachability problem. A pair (ug, Rg) is called an (RBAC) goal
for ug ∈ U and Rg a finite set of roles. The cardinality |Rg| of Rg is the size
of the goal. Given a set S0 of (initial) RBAC policies, a goal (ug, Rg), and
administrative actions ψ = (can assign , can revoke), (an instance of) the user-
role reachability problem [10] consists of establishing if there exist UA0 ∈ S0 and
UAf such that UA0 →∗

ψ UAf and ug is member of each role of Rg in UAf ,
where →∗

ψ denotes the reflexive and transitive closure of →ψ.
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3 ASASP: Architecture, Implementation, and
Experiments

By using standard techniques [1], we can symbolically represent sets of policies
and related administrative actions as BSR formulae and—along the lines of [2]—
a backward reachability procedure may solve the user-role reachability problem.
The binary predicate ua and its primed version ua′ denote an RBAC policy UA
immediately before and after, respectively, of the execution of an administrative
action.

An example of formalization. We briefly sketch how to represent the AR-
BAC policy in Figure 1 with BSR formulae. Let User , Role, and Perm be sort
symbols, ua : User , Role, pa : Role, Perm , and � : Role, Role be predi-
cate symbols (constants symbols will be written in sanserif, as those in Figure 1
and implicitly assumed to be of appropriate sort). The fact that we have only
three permissions E,V, and Q can be axiomatized by the following sentences:
E �= V, E �= Q, V �= Q, and ∀p.(p = E ∨ p = V ∨ p = Q), for p variable
of sort Perm. The fact that there are only five roles can be formalized sim-
ilarly while the role hierarchy of Figure 1 is formalized by adding M � FT,
FT � Em, and PT � Em to the BSR sentences for reflexivity, antisymmetry,
and transitivity of � (constraining it to be a partial order). The (initial) rela-
tion UA of Figure 1 can be specified as the following formula in the BSR class:
∀u, r.(ua(u, r) ⇔ (u = C ∧ r = HR) ∨ (u = B ∧ r = M) ∨ (u = A ∧ r = Em));
and the relation PA as ∀p, r.(pa(r, p) ⇔ ((r = HR ∧ p = V) ∨ (r = Em ∧ p =
E) ∨ (r = PT ∧ p = Q))), where u, p, r are variables of sorts User , Perm, Role,
respectively. The goal (A, {PT}) can be represented by the following formula in
the BSR class: ∃u, r.(u = A ∧ r � PT ∧ ua(u, r)). The administrative action
({HR}, {Em,FT},PT) ∈ can assign of Figure 1 can be represented as

∃ua, u, ra, r1.

⎛
⎝ ra � HR ∧ ua(ua, ra)∧

r1 � Em ∧ ua(u, r1) ∧ ¬∃r2.(r2 � FT ∧ ua(u, r2))∧
∀x, y.(ua′(x, y) ⇔ ((x = u ∧ y = PT) ∨ ua(x, y)))

⎞
⎠ . (1)

The tuple in can revoke can be represented similarly. Notice the presence of the
(implicit) universal quantification in the sub-formula ¬∃r2.(r2 � FT∧ua(u, r2))
of (1). This may be problematic to guarantee closure under pre-image compu-
tation in the backward reachability procedure (see the discussion below). For-
tunately, since there are only five roles (as shown in Figure 1), the universal
quantifier can be replaced by the logically equivalent quantifier-free formula
¬ua(u,FT) ∨ ¬ua(u,M), thereby avoiding problems for pre-image computation.
The core algorithm of asasp1 consists of iteratively computing the sym-
bolic representation R(ua) of the set of backward reachable states as follows:
R0(ua) := G(ua) and Ri+1(ua) := Ri(ua) ∨ Pre(Ri, T ) for i ≥ 0, where G is
the symbolic representation of a RBAC goal, T (ua, ua′) is the symbolic repre-
sentation of ψ, and Pre(Ri, T ) := ∃ua′.(Ri(ua′) ∧ T (ua, ua′)) is the pre-image
1 The sources of the tool, the benchmark problems discussed below, and some related

papers are available at http://st.fbk.eu/ASASP.

http://st.fbk.eu/ASASP
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of Ri. To mechanize this, there are two issues to address. First, it should be
possible to find a BSR formula which is logically equivalent to the second-order
formula Pre(Ri, T ), i.e. we have closure under pre-image computation. Second,
there should exist decidable ways to stop computing formulae in the sequence
R0,R1,R2, ... This is done by performing either a safety check, i.e. test the
satisfiability of Ri(ua) ∧ I(ua) where I(ua) characterizes the set S0 of initial
policies or a fix-point check, i.e. test the validity of Ri+1(ua) ⇒ Ri(ua). Both
logical problems should be decidable. In case the safety check is positive, asasp
concludes that the reachability problem has a solution, i.e. a sequence of ad-
ministrative actions transforming one of the policies in I into one satisfying the
goal G, and returns it. If the safety check is negative and the fix-point check is
positive, asasp returns that there is no solution. Following [2], restrictions on
the shape of I, G, and T can be identified to guarantee the full automation of
the procedure—i.e. the two requirements mentioned above and termination [1].

Architecture and refinements. The following three refinements of the core al-
gorithm described above are crucial for efficiency. First, since Pre(Ri,

∨n
j=1 tj)

is equivalent to
∨n

j=1 Pre(Ri, tj) when tj is of a suitable form (e.g., that ob-
tained when representing the administrative actions of ARBAC), it is possible
to store the formula representing the set of backward reachable states by us-
ing a labelled tree, whose root node is labelled by the goal G, its children by
Pre(G, tj), the edge connecting each child with the root by tj , and so on (re-
cursively) for j = 1, ..., n (see [1] for details). It is easy to see that, by taking
the disjunction of the formulae labelling all the nodes of a tree of depth k, we
obtain a formula which is logically equivalent to Rk above. A key advantage of
this data structure is to allow for an easy computation of the sequence of ad-
ministrative actions leading from an initial policy to one satisfying the goal of a
user-role reachability problem by simply collecting the labels of the edges from a
leaf (whose label denotes a set of states with a non-empty intersection with the
initial states) to the root node. This information is crucial for administrators to
fix bugged policies. Another advantage consists in the possibility, without loss
of precision, of deleting a node that would be labelled by an unsatisfiable pre-
image Pre(Ri, tj), thereby reducing the size of the formula representing the set
of backward reachable states and reducing the burden for SMT solvers and ATPs
when checking for safety or fix-point. A similar approach for the elimination of
redundancies in Ri has already been found extremely useful in mcmt [3,2]. To
furtherly eliminate redundancy, after Pre(Ri, tj) is found satisfiable, we check
if Pre(Ri, tj) ⇒ Ri−1 is valid and if so, Pre(Ri, tj) is discarded. This can be
seen as a simplified, and computationally cheap version, of the fix-point check,
which is performed afterwards. Second, when checking for satisfiability, we first
invoke an SMT solver and if this returns ‘unknown,’ we resort to an ATP (we
call this a hierarchical combination). This is so because SMT solvers natively
support (stack-wise) incrementality but, in many cases, approximate satisfiabil-
ity checks for BSR, while ATPs are refutation complete and perform very well
on formulae belonging to the BSR class but do not support incremental satisfi-
ability checks. This is crucial to obtain a good trade-off between efficiency and
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precision. Third, the size of the goal critically affects the complexity of the secu-
rity analysis problem for RBAC policies (see, e.g., [10]). In order to mitigate the
problem, we incorporated a divide et impera heuristic: we generate a reachability
problem for each role in the set Rg of roles in the goal. If (at least) one of the
k = |Rg| sub-goals is unreachable, asasp concludes that the original goal is also
so. Otherwise, if each sub-goal j = 1, ..., k is reachable with a certain sequence
σj for administrative actions, then asasp tries to solve an additional problem
composed by the original goal with the transitions in

⋃k
j=1 σj (regarding σj as

a set), that is hopefully smaller than the original set of administrative actions.
If the last problem does not admit a solution (because some transitions may
interfere), we can iterate again the process by selecting some other solutions (if
any) to one or more of the k sub-problems and try to solve again the original
problem.

Implementation. asasp is based on a client-server architecture, where the
client (implemented in C) computes pre-images and generates the formulae en-
coding tests for safety and fix-point and the server consists of a hierarchic combi-
nation of the SMT solver Z3 (version 2.11) [12] and two ATPs, the latest versions
of SPASS [9] and iProver [5]. To facilitate the integration of new satisfiability
solving techniques, asasp uses the new version (2.0) of the SMT-LIB format [8]
for the on-line invocation of SMT solvers and the TPTP format [11] when using
ATPs.

Experiments. We evaluated asasp on a set of significant benchmarks and the
results clearly demonstrate its scalability. We consider three classes of problems
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of increasing difficulty: (a) the synthetic bench-
marks described in [10] for the ARBAC model
without role hierarchy, (b) the same problems con-
sidered in (a) augmented with randomly generated
role hierarchies, and (c) a new set of synthetic
benchmarks—derived from (b)—for the adminis-
tration of a simple instance of the policies intro-
duced in [1]. Each class consists of randomly gen-
erated user-role reachability problems which are
classified w.r.t. the size of their goal, that was
shown [7] to be the parameter characterizing the
computational difficulty. All the experiments were
conducted on an Intel(R) Core(TM)2 Duo CPU
T5870, 2 GHz, 3 GB RAM, running Linux Debian 2.6.32. Figure 2 shows the
plots of the median time (logarithmic scale) of asasp and the tool—using back-
ward search—described in [10],2 called Stoller here, to solve the problems in

2 In [10], an algorithm based on forward reachability is also presented, which is evalu-
ated on two classes of benchmarks whose goals are never reachable by construction.
This corresponds to the worst-case choice for a forward search since it requires the
exploration of the whole state space. For our tool—based on backward reachability—
they are too easy and thus not considered here.
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the benchmark class (a) for increasing values of the goal size (for the results on
the other two benchmark classes, see [1]). For small goal sizes, asasp is slower
than Stoller since it incurs in the overhead of invoking general purpose reason-
ing systems for safety and fix-point checks instead of the ad hoc algorithms used
by Stoller. However, the time taken by Stoller grows quickly as the size of the
goal increases and for goal size larger than 6, we do not report the median value
as Stoller solves less than 50% of the instance problems in the given time-out
(set to 1, 800 sec). There is a “cut-off effect” for goal sizes larger than 5 when
problem instances become over-constrained (as it is unlikely that more and more
goal roles are reachable). asasp outperforms Stoller for larger values of the goal
size; the key to obtain such a nice asymptotic behavior for asasp is the third
refinement described above. Similar observations also hold for the behavior of
asasp and Stoller on benchmark class (b). The results on benchmark class (c)
show a similar asymptotic behavior for asasp; a comparison with Stoller on
these problems is impossible given its restrictions in the input format.

4 Conclusions and Future Work

We have presented asasp, a tool for the symbolic analysis of security policies
based on the model checking modulo theories approach of [3,2]. asasp shows
better scalability than the state-of-the-art tool in [10] on a significant set of
instances of benchmarks. An interesting line of future work is to extend our
approach to perform incremental analysis, i.e. incrementally updating the result
of the analysis when the underlying policy changes as it is common in real-world
applications [4].
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Abstract. Trace slicing is a widely used technique for execution trace
analysis that is effectively used in program debugging, analysis and com-
prehension. In this paper, we present a backward trace slicing technique
that can be used for the analysis of Rewriting Logic theories. Our trace
slicing technique allows us to systematically trace back rewrite sequences
modulo equational axioms (such as associativity and commutativity) by
means of an algorithm that dynamically simplifies the traces by detecting
control and data dependencies, and dropping useless data that do not
influence the final result. Our methodology is particularly suitable for
analyzing complex, textually-large system computations such as those
delivered as counter-example traces by Maude model-checkers.

1 Introduction

The analysis of execution traces plays a fundamental role in many program
manipulation techniques. Trace slicing is a technique for reducing the size of
traces by focusing on selected aspects of program execution, which makes it
suitable for trace analysis and monitoring [7].

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [5,17] and Web systems [3,4]). RWL is efficiently
implemented in the high-performance system Maude [9]. Roughly speaking, a
rewriting logic theory seamlessly combines a term rewriting system (TRS) to-
gether with an equational theory that may include sorts, functions, and algebraic
laws (such as commutativity and associativity) so that rewrite steps are applied
modulo the equations. Within this framework, the system states are typically
represented as elements of an algebraic data type that is specified by the equa-
tional theory, while the system computations are modeled via the rewrite rules,
which describe transitions between states.
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Due to the many important applications of RWL, in recent years, the debug-
ging and optimization of RWL theories have received growing attention [2,14,15].
However, the existing tools provide hardly support for execution trace analysis.
The original motivation for our work was to reduce the size of the counterex-
ample traces delivered by Web-TLR, which is a RWL-based model-checking tool
for Web applications proposed in [3,4]. As a matter of fact, the analysis (or even
the simple inspection) of such traces may be unfeasible because of the size and
complexity of the traces under examination. Typical counterexample traces in
Web-TLR are 75 Kb long for a model size of 1.5 Kb, that is, the trace is in a
ratio of 5.000% w.r.t. the model.

To the best of our knowledge, this paper presents the first trace slicing tech-
nique for RWL theories. The basic idea is to take a trace produced by the RWL
engine and traverse and analyze it backwards to filter out events that are irrele-
vant for the rewritten task. The trace slicing technique that we propose is fully
general and can be applied to optimizing any RWL-based tool that manipulates
rewrite logic traces. Our technique relies on a suitable mechanism of backward
tracing that is formalized by means of a procedure that labels the calls (terms)
involved in the rewrite steps. This allows us to infer, from a term t and posi-
tions of interest on it, positions of interest of the term that was rewritten to t.
Our labeling procedure extends the technique in [6], which allows descendants
and origins to be traced in orthogonal (i.e., left-linear and overlap-free) term
rewriting systems in order to deal with rewrite theories that may contain com-
mutativity/associativity axioms, as well as nonleft-linear, collapsing equations
and rules.
Plan of the paper. Section 2 summarizes some preliminary definitions and nota-
tions about term rewriting systems. In Section 3, we recall the essential notions
concerning rewriting modulo equational theories. In Section 4, we formalize our
backward trace slicing technique for elementary rewriting logic theories. Sec-
tion 5 extends the trace slicing technique of Section 4 by considering extended
rewrite theories, i.e., rewrite theories that may include collapsing, nonleft-linear
rules, associative/commutative equational axioms, and built-in operators. Sec-
tion 6 describes a software tool that implements the proposed backward slicing
technique and reports on an experimental evaluation of the tool that allows us
to assess the practical advantages of the trace slicing technique. In Section 7,
we discuss some related work and then we conclude. More details and missing
proofs can be found in [1].

2 Preliminaries

A many-sorted signature (Σ,S) consists of a set of sorts S and a S∗×S-indexed
family of sets Σ = {Σs̄×s}(s̄,s)∈S∗×S , which are sets of function symbols (or
operators) with a given string of argument sorts and result sort. Given an S-
sorted set V = {Vs | s ∈ S} of disjoint sets of variables, TΣ(V)s and TΣs are
the sets of terms and ground terms of sorts s, respectively. We write TΣ(V) and
TΣ for the corresponding term algebras. An equation is a pair of terms of the
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form s = t, with s, t ∈ TΣ(V)s. In order to simplify the presentation, we often
disregard sorts when no confusion can arise.

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term. The empty
sequence Λ denotes the root position. By root(t), we denote the symbol that
occurs at the root position of t. We let Pos(t) denote the set of positions of
t. By notation w1.w2, we denote the concatenation of positions (sequences) w1

and w2. Positions are ordered by the prefix ordering, that is, given the positions
w1, w2, w1 ≤ w2 if there exists a position x such that w1.x = w2. t|u is the
subterm at the position u of t. t[r]u is the term t with the subterm rooted at the
position u replaced by r. A substitution σ is a mapping from variables to terms
{x1/t1, . . . , xn/tn} such that xiσ = ti for i = 1, . . . , n (with xi �= xj if i �= j),
and xσ = x for any other variable x. By ε, we denote the empty substitution.
Given a substitution σ, the domain of σ is the set Dom(σ) = {x|xσ �= x}.
By Var(t) (resp. FSymbols(t)), we denote the set of variables (resp. function
symbols) occurring in the term t.

A context is a term γ ∈ TΣ∪{�}(V) with zero or more holes �1, and � �∈ Σ.
We write γ[ ]u to denote that there is a hole at position u of γ. By notation γ[ ],
we define an arbitrary context (where the number and the positions of the holes
are clarified in situ), while we write γ[t1, . . . tn] to denote the term obtained by
filling the holes appearing in γ[ ] with terms t1, . . . , tn. By notation t�, we denote
the context obtained by applying the substitution σ = {x1/�, . . . , xn/�} to t,
where Var(t) = {x1 . . . , xn} (i.e., t� = tσ).

A term rewriting system (TRS for short) is a pair (Σ,R), where Σ is a sig-
nature and R is a finite set of reduction (or rewrite) rules of the form λ → ρ,
λ, ρ ∈ TΣ(V), λ �∈ V and Var(ρ) ⊆ Var(λ). We often write just R instead of
(Σ,R). A rewrite step is the application of a rewrite rule to an expression. A
term s rewrites to a term t via r ∈ R, s

r→R t (or s
r,σ→R t), if there exists a posi-

tion q in s such that λ matches s|q via a substitution σ (in symbols, s|q = λσ),
and t is obtained from s by replacing the subterm s|q = λσ with the term ρσ, in
symbols t = s[ρσ]q. The rule λ→ ρ (or equation λ = ρ) is collapsing if ρ ∈ V ; it
is left-linear if no variable occurs in λ more than once. We denote the transitive
and reflexive closure of → by →∗.

Let r : λ → ρ be a rule. We call the context λ� (resp. ρ�) redex pat-
tern (resp. contractum pattern) of r. For example, the context f(g(�,�), a)
(resp. d(s(�),�)) is the redex pattern (resp. contractum pattern) of the rule
r : f(g(x, y), a)) → d(s(y), y), where a is a constant symbol.

3 Rewriting Modulo Equational Theories

An equational theory is a pair (Σ,E), where Σ is a signature and E = Δ ∪ B
consists of a set of (oriented) equations Δ together with a collection B of equa-
tional axioms (e.g., associativity and commutativity axioms) that are associated
1 Actually, when considering types, we assume to have a distinct �s symbol for each

sort s ∈ S, and by abuse we simply denote �s by �.



Backward Trace Slicing for Rewriting Logic Theories 37

with some operator of Σ. The equational theory E induces a least congruence
relation on the term algebra TΣ(V), which is usually denoted by =E.

A rewrite theory is a triple R = (Σ,E,R), where (Σ,E) is an equational
theory, and R is a TRS. Examples of rewrite theories can be found in [9].

Rewriting modulo equational theories [14] can be defined by lifting the stan-
dard rewrite relation →R on terms to the E-congruence classes induced by =E .
More precisely, the rewrite relation →R/E for rewriting modulo E is defined as
=E ◦ →R ◦ =E . A computation in R using →R∪Δ,B is a rewriting logic deduc-
tion, in which the equational simplification with Δ (i.e., applying the oriented
equations in Δ to a term t until a canonical form t↓E is reached where no further
equations can be applied) is intermixed with the rewriting computation with the
rules of R, using an algorithm of matching modulo2 B in both cases. Formally,
given a rewrite theory R = (Σ,E,R), where E = Δ ∪B, a rewrite step modulo
E on a term s0 by means of the rule r : λ→ ρ ∈ R (in symbols, s0

r→R∪Δ,B s1)
can be implemented as follows: (i) apply (modulo B) the equations of Δ on s0

to reach a canonical form (s0 ↓E); (ii) rewrite (modulo B) (s0 ↓E) to term v by
using r ∈ R; and (iii), apply (modulo B) the equations of Δ on v again to reach
a canonical form for v, s1 = v ↓E.

Since the equations of Δ are implicitly oriented (from left to right), the equa-
tional simplification can be seen as a sequence of (equational) rewrite steps
(→Δ/B). Therefore, a rewrite step modulo E s0

r→R∪Δ,B s1 can be expanded
into a sequence of rewrite steps as follows:

equational rewrite equational
simplification step/B simplification

s0

︷ ︸︸ ︷
→Δ/B .. →Δ/B s0↓E

︷ ︸︸ ︷
=B u

r→R v
︷ ︸︸ ︷
→Δ/B .. →Δ/B v↓E = s1

Given a finite rewrite sequence S = s0 →R∪Δ,B s1 →R∪Δ,B . . . → sn in the
rewrite theory R, the execution trace of S is the rewrite sequence T obtained
by expanding all the rewrite steps si →R∪Δ,B si+1 of S as is described above.

In this work, a rewrite theory R = (Σ,B ∪ Δ,R) is called elementary if R
does not contain equational axioms (B = ∅) and both rules and equations are
left-linear and not collapsing.

4 Backward Trace Slicing for Elementary Rewrite
Theories

In this section, we formalize a backward trace slicing technique for elementary
rewrite theories that is based on a term labeling procedure that is inspired
by [6]. Since equations in Δ are treated as rewrite rules that are used to simplify
terms, our formulation for the trace slicing technique is purely based on standard
rewriting.

2 A subterm of t matches l (modulo B) via the substitution σ if t =B u and u|q = lσ
for a position q of u.
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4.1 Labeling Procedure for Rewrite Theories

Let us define a labeling procedure for rules similar to [6] that allows us to trace
symbols involved in a rewrite step. First, we provide the notion of labeling for
terms, and then we show how it can be naturally lifted to rules and rewrite steps.

Consider a set A of atomic labels, which are denoted by Greek letters α, β, . . ..
Composite labels (or simply labels) are defined as finite sets of elements of A.
By abuse, we write the label αβγ as a compact denotation for the set {α, β, γ}.

A labeling for a term t ∈ TΣ∪{�}(V) is a map L that assigns a label to (the
symbol occurring at) each position w of t, provided that root(t|w) �= �. If t is a
term, then tL denotes the labeled version of t. Note that, in the case when t is
a context, occurrences of symbol � appearing in the labeled version of t are not
labeled. The codomain of a labeling L is denoted by Cod(L) = {l | (w �→ l) ∈ L}.

An initial labeling for the term t is a labeling for t that assigns distinct fresh
atomic labels to each position of the term. For example, given t = f(g(a, a),�),
then tL = fα(gβ(aγ , aδ),�) is the labeled version of t via the initial labeling
L ={Λ �→ α, 1 �→ β, 1.1 �→ γ, 1.2 �→ δ}. This notion extends to rules and rewrite
steps in a natural way as shown below.

Labeling of Rules. The labeling of a rewriting rule is formalized as follows:

Definition 1. (rule labeling) [6] Given a rule r : λ → ρ, a labeling Lr for r is
defined by means of the following procedure.

r1. The redex pattern λ� is labeled by means of an initial labeling L.
r2. A new label l is formed by joining all the labels that occur in the labeled

redex pattern λ� (say in alphabetical order) of the rule r. Label l is then
associated with each position w of the contractum pattern ρ�, provided that
root(ρ�

|w) �= �.

The labeled version of r w.r.t. Lr is denoted by rLr . Note that the labeling
procedure shown in Definition 1 does not assign labels to variables but only to
the function symbols occurring in the rule.

Labeling of Rewrite Steps. Before giving the definition of labeling for a
rewrite step, we need to formalize the auxiliary notion of substitution labeling.

Definition 2. (substitution labeling) Let σ = {x1/t1, . . . , xn/tn} be a substitu-
tion. A labeling Lσ for the substitution σ is defined by a set of initial labelings
Lσ = {Lx1/t1 , . . . , Lxn/tn

} such that (i) for each binding (xi/ti) in the substitu-
tion σ, ti is labeled using the corresponding initial labeling Lxi/ti

, and (ii) the
sets Cod(Lx1/t1), . . . , Cod(Lxn/tn

) are pairwise disjoint.

By using Definition 2, we can formulate a labeling procedure for rewrite steps
as follows.

Definition 3. (rewrite step labeling) Let r : λ → ρ be a rule, and μ : t
r,σ→ s

be a rewrite step using r such that t = C[λσ]q and s = C[ρσ]q, for a context C
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and position q. Let σ = {x1/t1, . . . , xn/tn}. Let Lr be a labeling for the rule r,
LC be an initial labeling for the context C, and Lσ = {Lx1/t1 , . . . , Lxn/tn

} be a
labeling for the substitution σ such that the sets Cod(LC), Cod(Lr), and Cod(σ)
are pairwise disjoint, where Cod(σ) =

⋃n
i=1 Cod(Lxi/ti

).
The rewrite step labeling Lμ for μ is defined by successively applying the fol-

lowing steps:

s1. First, positions of t or s that belong to the context C are labeled by using the
initial labeling LC.

s2. Then positions of t|q (resp. s|q) that correspond to the redex pattern (resp.
contractum pattern) of the rule r rooted at the position q are labeled according
to the labeling Lr.

s3. Finally, for each term tj, j = {1, . . . , n}, which has been introduced in t
or s via the binding xj/tj ∈ σ, with xj ∈ V ar(λ), tj is labeled using the
corresponding labeling Lxj/tj

∈ Lσ

The labeled version of a rewrite step μ w.r.t. Lμ is denoted by μLμ . Let us
illustrate these definitions by means of a rather intuitive example.

Example 1. Consider the rule r : f(g(x, y), a)) → d(s(y), y). The labeled version
of rule r using the initial labeling L = {(Λ �→ α, 1 �→ β, 2 �→ γ} is as follows:

fα(gβ(x, y), aγ)→ dαβγ(sαβγ(y), y)

Consider a rewrite step μ : C[λσ] r→ C[ρσ] using r, where C[λσ] =
d(f(g(a, h(b)), a), a), C[ρσ] = d(d(s(h(b)), h(b)), a), and σ = {x/a, y/h(b)}. Let
LC = {Λ �→ δ, 2 �→ ε}, Lx/a = {Λ �→ ζ}, and Ly/h(b) = {Λ �→ η, 1 �→ θ} be
the labelings for C and the bindings in σ, respectively. Then, the corresponding
labeled rewrite step μL is as follows

μL : dδ(fα(gβ(aζ , hη(bθ)), aγ), aε)→ dδ(dαβγ(sαβγ(hη(bθ)), hη(bθ)), aε)

4.2 Backward Tracing Relation

Given a rewrite step μ : t
r→ s and the labeling process defined in the previous

section, the backward tracing relation computes the set of positions in t that are
origin for a position w in s. Formally.

Definition 4. (origin positions) Let μ : t
r−→ s be a rewrite step and L be a

labeling for μ where Lt (resp. Ls) is the labeling of t (resp. s). Given a position
w of s, the set of origin positions of w in t w.r.t. μ and L (in symbols, �L

μw) is
defined as follows:

�L
μw ={v ∈ Pos(t) | ∃p ∈ Pos(s), (v �→ lv) ∈ Lt, (p �→ lp) ∈ Ls s.t. p ≤ w and lv ⊆ lp}

Note that Definition 4 considers all positions of s in the path from its root to
w for computing the origin positions of w. Roughly speaking, a position v in t
is an origin of w, if the label of the symbol that occurs in tL at position v is
contained in the label of a symbol that occurs in sL in the path from its root to
the position w.
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Example 2. Consider again the rewrite step μL : tL→sL of Example 1, and let
w be the position 1.2 of sL. The set of labeled symbols occurring in sL in the
path from its root to position w is the set z = {hη, dαβγ , dδ}. Now, the labeled
symbols occurring in tL whose label is contained in the label of one element of
z is the set {hη, fα, gβ, aγ , dδ}. By Definition 4, the set of origin positions of w
in μL is �L

μw = {1.1.2, 1, 1.1, 1.2, Λ}.

4.3 The Backward Trace Slicing Algorithm

First, let us formalize the slicing criterion, which basically represents the infor-
mation we want to trace back across the execution trace in order to find out the
“origins” of the data we observe. Given a term t, we denote by Ot the set of
observed positions of t.

Definition 5. (slicing criterion) Given a rewrite theory R = (Σ,Δ,R) and
an execution trace T : s→∗ t in R, a slicing criterion for T is any set Ot of
positions of the term t.

In the following, we show how backward trace slicing can be performed by ex-
ploiting the backward tracing relation �L

μ that was introduced in Definition 4.
Informally, given a slicing criterion Otn for T : t0 → t2 → . . . → tn, at each
rewrite step ti−1 → ti, i = 1, . . . , n, our technique inductively computes the
backward tracing relation between the relevant positions of ti and those in ti−1.
The algorithm proceeds backwards, from the final term tn to the initial term t0,
and recursively generates at step i the corresponding set of relevant positions,
Ptn−i . Finally, by means of a removal function, a simplified trace is obtained
where each tj is replaced by the corresponding term slice that contains only the
relevant information w.r.t. Ptj .

Definition 6. (sequence of relevant position sets) Let R = (Σ,Δ,R) be a
rewrite theory, and T : t0

r1→ t1 . . .
rn→ tn be an execution trace in R. Let Li

be the labeling for the rewrite step ti → ti+1 with 0 ≤ i < n. The sequence of
relevant position sets in T w.r.t. the slicing criterion Otn is defined as follows:

relevant positions(T ,Otn) = [P0, . . . , Pn]

where

{
Pn = Otn

Pj =
⋃

p∈Pj+1
�Lj

(tj→ tj+1)p, with 0 ≤ j < n

Now, it is straightforward to formalize a procedure that obtains a term slice
from each term t in T and the corresponding set of relevant positions of t. We
introduce the fresh symbol • �∈ Σ to replace any information in the term that is
not relevant, hence does not affect the observed criterion.

Definition 7. (term slice) Let t ∈ TΣ be a term and P be a set of positions of
t. A term slice of t with respect to P is defined as follows:

slice(t, P ) = sl rec(t, P, Λ), where
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sl rec(t, P, p) =

⎧⎨
⎩

f(sl rec(t1, P, p.1), . . . , sl rec(tn, P, p.n))
if t = f(t1, . . . , tn) and there exists w s.t. (p.w) ∈ P

• otherwise

In the following, we use the notation t• to denote a term slice of the term t.
Roughly speaking, the symbol • can be thought of as a variable, and we denote
by [t•] the term that is obtained by replacing all occurrences of • in t• with fresh
variables. Then, we say that t′ is a concretization of t• (in symbols, t• ∝ t′) , if
[t•]σ = t′, for some substitution σ. Let us define a sliced rewrite step between
two term slices as follows.

Definition 8. (sliced rewrite step) Let R = (Σ,Δ,R) be a rewrite theory and
r a rule of R. The term slice s• rewrites to the term slice t• via r (in symbols,
s•

r→ t•) if there exist two terms s and t such that s• is a term slice of s, t• is
a term slice of t, and s

r→ t.

Finally, using Definition 8, backward trace slicing is formalized as follows.

Definition 9. (backward trace slicing) Let R = (Σ,Δ,R) be a rewrite theory,
and T : t0

r1→ t1 . . .
rn→ tn be an execution trace in R. Let Otn be a slicing

criterion for T , and let [P0, . . . , Pn] be the sequence of the relevant position sets
of T w.r.t. Otn . A trace slice T • of T w.r.t. Otn is defined as the sliced rewrite
sequence of term slices t•i = slice(ti, Pi) which is obtained by gluing together the
sliced rewrite steps in the set

K• = {t•k−1
rk→ t•k | 0 < k ≤ n ∧ t•k−1 �= t•k}.

Note that in Definition 9, the sliced rewrite steps that do not affect the relevant
positions (i.e., t•k−1

rk→ t•k with t•k−1 = t•k) are discarded, which further reduces
the size of the trace.

A desirable property of a slicing technique is to ensure that, for any concretiza-
tion of the term slice t•0, the trace slice T • can be reproduced. This property
ensures that the rules involved in T • can be applied again to every concrete
trace T ′ that we can derive by instantiating all the variables in [t•0] with arbi-
trary terms.

Theorem 1. (soundness) Let R be an elementary rewrite theory. Let T be an
execution trace in the rewrite theory R, and let O be a slicing criterion for T .
Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding trace slice w.r.t. O. Then, for

any concretization t′0 of t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is an execution
trace in R, and t•i ∝ t′i, for i = 1, . . . , n.

The proof of Theorem 1 relies on the fact that redex patterns are preserved by
backward trace slicing. Therefore, for i = 1, . . . , n, the rule ri can be applied to
any concretization t′i−1 of term t•i−1 since the redex pattern of ri does appear in
t•i−1, and hence in t′i−1. A detailed proof of Theorem 1 can be found in [1].

Note that our basic framework enjoys neededness of the extracted information
(in the sense of [18]), since the information captured by every sliced rewrite step
in a trace slice is all and only the information that is needed to produce the data
of interest in the reduced term.
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5 Backward Trace Slicing for Extended Rewrite Theories

In this section, we consider an extension of our basic slicing methodology that
allows us to deal with extended rewrite theories R = (Σ,E,R) where the equa-
tional theory (Σ,E) may contain associativity and commutativity axioms, and
R may contain collapsing as well as nonleft-linear rules. Moreover, we also con-
sider the built-in operators, which are not equipped with an explicit functional
definition (e.g., Maude arithmetical operators). It is worth noting that all the
proposed extensions are restricted to the labeling procedure of Section 4.1, keep-
ing the backbone of our slicing technique unchanged.

5.1 Dealing with Collapsing and Nonleft-Linear Rules

Collapsing Rules. The main difficulty with collapsing rules is that they have
a trivial contractum pattern, which consists in the empty context �; hence, it is
not possible to propagate labels from the left-hand side of the rule to its right-
hand side. This makes the rule labeling procedure of Definition 1 completely
unproductive for trace slicing.

In order to overcome this problem, we keep track of the labels in the left-hand
side of the collapsing rule r, whenever a rewrite step involving r takes place. This
amounts to extending the labeling procedure of Definition 3 as follows.

Definition 10. (rewrite step labeling for collapsing rules) Let μ : t
r,σ→ s be a

rewrite step s.t. σ = {x1/t1, . . . , xn/tn}, where r : λ → xi is a collapsing rule.
Let Lr be a labeling for the rule r. In order to label the step μ, we extend the
labeling procedure formalized in Definition 3 as follows:

s4. Let ti be the term introduced in s via the binding xi/ti ∈ σ, for some i ∈
{1, . . . , n}. Then, the label li of the root symbol of ti in s is replaced by a new
composite label lcli, where lc is formed by joining all the labels appearing in
the redex pattern of rLr .

Nonleft-linear Rules. The trace slicing technique we described so far does not
work for nonleft-linear TRS. Consider the rule: r : f(x, y, x) → g(x, y) and the
one-step trace T : f(a, b, a) → g(a, b). If we are interested in tracing back the
symbol g that occurs in the final state g(a, b), we would get the following trace
slice T • : f(•, •, •) → g(•, •). However, f(a, b, b) is a concretization of f(•, •, •)
that cannot be rewritten by using r. In the following, we augment Definition 10
in order to also deal with nonleft-linear rules.

Definition 11. (rewrite step labeling for nonleft-linear rules) Let μ : t
r,σ→ s be

a rewrite step s.t. σ = {x1/t1, .., xn/tn}, where r is a nonleft-linear rule. Let
Lσ = {Lx1/t1 , .., Lxn/tn

} be a labeling for the substitution σ. In order to label the
step μ, we further extend the labeling procedure formalized in Definition 10 as
follows:

s5. For each variable xj that occurs more than once in the left-hand side of the
rule r, the following steps must be followed:
• we form a new label lxj by joining all the labels in Cod(Lxj/t) where

Lxj/t ∈ Lσ;
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• let ls be the label of the root symbol of s. Then, ls is replaced by a new
composite label lxj ls.

Note that, whenever a rewrite step μ involves the application of a rule that is
both collapsing and non left-linear, the labeling for μ is obtained by sequentially
applying step s4 of Definition 10 and step s5 of Definition 11 (over the labeled
rewrite step resulting from s4).

Example 3. Consider the labeled, collapsing and nonleft-linear rule
fβ(x, y, x) → y together with the rewrite step μ : h(f(a, b, a), b)→ h(b, b),
and matching substitution σ = {x/a, y/b}. Let Lh(�,b) = {Λ �→ α, 2 �→ ε} be
the labeling for the context h(�, b). Then, for the labeling Lσ = {Lx/a, Ly/b},
with Lx/a = {Λ �→ γ} and Ly/b = {Λ �→ δ}, the labeled version of μ is
hα(fβ(aγ , bδ, aγ), bε) → hα(bβγδ, bε). Finally, by considering the criterion {1},
we can safely trace back the symbol b of the sliced final state h(b, •) and obtain
the following trace slice

h(f(g(a), b, g(a)), •) → h(b, •).

5.2 Built-in Operators

In practical implementations of RWL (e.g., Maude [9]), several commonly used
operators are pre-defined (e.g., arithmetic operators, if-then-else constructs),
which do not have an explicit specification. To overcome this limitation, we
further extend our labeling process in order to deal with built-in operators.

Definition 12. (rewrite step labeling for built-in operators) For the case of a
rewrite step μ : C[op(t1, . . . , tn)] → C[t′] involving a call to a built-in, n-ary
operator op, we extend Definition 11 by introducing the following additional case:

s6. Given an initial labeling Lop for the term op(t1, . . . , tn),
• each symbol occurrence in t′ is labeled with a new label that is formed by

joining the labels of all the (labeled) arguments t1, . . . , tn of op;
• the remaining symbol occurrences of C[t′] that are not considered in the

previous step inherit all the labels appearing in C[op(t1, . . . , tn)].

For example, by applying Definition 12, the addition of two natural num-
bers implemented through the built-in operator + might be labeled as
+α(7β, 8γ) → 15βγ.

5.3 Associative-Commutative Axioms

Let us finally consider an extended rewrite theory R = (Σ,Δ ∪B,R), where B
is a set of associativity (A) and commutativity (C) axioms that hold for some
function symbols in Σ. Now, since B only contains associativity/commutativity
(AC) axioms, terms can be represented by means of a single representative of
their AC congruence class, called AC canonical form [11]. This representative is
obtained by replacing nested occurrences of the same AC operator by a flattened
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argument list under a variadic symbol, whose elements are sorted by means of
some linear ordering 3. The inverse process to the flat transformation is the unflat
transformation, which is nondeterministic (in the sense that it generates all the
unflattended terms that are equivalent (modulo AC) to the flattened term 4).

For example, consider a binary AC operator f together with the standard lex-
icographic ordering over symbols. Given the B-equivalence f(b, f(f(b, a), c)) =B

f(f(b, c), f(a, b)), we can represent it by using the “internal sequence”
f(b, f(f(b, a), c)) →∗

flatB
f(a, b, b, c) →∗

unflatB
f(f(b, c), f(a, b)), where the first

one corresponds to the flattening transformation sequence that obtains the AC
canonical form, while the second one corresponds to the inverse, unflattening one.

The key idea for extending our labeling procedure in order to cope with B-
equivalence =B is to exploit the flat/unflat transformations mentioned above.
Without loss of generality, we assume that flat/unflat transformations are stable
w.r.t. the lexicographic ordering over positions �5. This assumption allows us
to trace back arguments of commutative operators, since multiple occurrences
of the same symbol can be precisely identified.

Definition 13. (AC Labeling.) Let f be an associative-commutative operator and
B be the AC axioms for f . Consider the B-equivalence t1 =B t2 and the correspond-
ing (internal) flat/unflat transformation T : t1 →∗

flatB
s→∗

unflatB
t2. Let L be an

initial labeling for t1. The labeling procedure for t1 =B t2 is as follows.

1. (flattening) For each flattening transformation step t|v →flatB
t′|v in T for

the symbol f , a new label lf is formed by joining all the labels attached to the
symbol f in any position w of tL s.t. w = v or w ≥ v, and every symbol on
the path from v to w is f ; then, label lf is attached to the root symbol of t′|v.

2. (unflattening) For each unflattening transformation step t|v →unflatB
t′|v in

T for the symbol f , the label of the symbol f in the position v of tL is attached
to the symbol f in any position w of t′ such that w = v or w ≥ v, and every
symbol on the path from v to w is f .

3. The remaining symbol occurrences in t′ that are not considered in cases 1 or
2 above inherit the label of the corresponding symbol occurrence in t.

Example 4. Consider the transformation sequence

f(b, f(b, f(a, c)))→∗
flatB

f(a, b, b, c)→∗
unflatB

f(f(b, c), f(a, b))

by using Definition 13, the associated transformation sequence can be labeled as
follows:
3 Specifically, Maude uses the lexicographic order of symbols.
4 These two processes are typically hidden inside the B-matching algorithms that

are used to implement rewriting modulo B. See [9] (Section 4.8) for an in-depth
discussion on matching and simplification modulo AC in Maude.

5 The lexicographic ordering � is defined as follows: Λ � w for every position w, and
given the positions w1 = i.w′

1 and w2 = j.w′
2, w1 � w2 iff i < j or (i = j and

w′
1 � w′

2). Obviously, in a practical implementation of our technique, the considered
ordering among the terms should be chosen to agree with the ordering considered
by flat/unflat transformations in the RWL infrastructure.
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fα(bβ , fγ(bδ, fε(aζ , cη)))→∗
flatB

fαγε(aζ , bβ, bδ, cη)→∗
unflatB

fαγε(fαγε(bβ, cη), fαγε(aζ , bδ))

Note that the original order between the two occurrences of the constant b is not
changed by the flat/unflat transformations. For example, in the first term, bβ is
in position 1 and bδ is in position 2.1 with 1 � 2.1, whereas, in the last term, bβ

is in position 1.1 and bδ is in position 2.2 with 1.1 � 2.2.

Finally, note that the methodology described in this section can be easily ex-
tended to deal with other equational attributes, e.g., identity (U), by explicitly
encoding the internal transformations performed via suitable rewrite rules.

Soundness of the backward trace slicing algorithm for the extended rewrite
theories is established by the following theorem which properly extends Theo-
rem 1. The proof of such an extension can be found in [1].

Theorem 2. (extended soundness) Let R = (Σ,E,R) be an extended rewrite
theory. Let T be an execution trace in the rewrite theory R, and let O be a slicing
criterion for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n be the corresponding trace slice w.r.t.

O. Then, for any concretization t′0 of t•0, it holds that T ′ : t′0
r1→ t′1 . . .

rn→ t′n is
an execution trace in R, and t•i ∝ t′i, for i = 1, . . . , n.

6 Experimental Evaluation

We have developed a prototype implementation of our slicing methodology that
is publicly available at http://www.dsic.upv.es/~dromero/slicing.html.
The implementation is written in Maude and consists of approximately 800
lines of code. Maude is a high-performance, reflective language that supports
both equational and rewriting logic programming, which is particularly suitable
for developing domain-specific applications [12]. The reflection capabilities of
Maude allow metalevel computations in RWL to be handled at the object-level.
This facility allows us to easily manipulate computation traces of Maude it-
self and eliminate the irrelevant contents by implementing the backward slicing
procedures that we have defined in this paper. Using reflection to implement
the slicing tool has one important additional advantage, namely, the ability to
quickly integrate the tool within the Maude formal tool environment [10], which
is also developed using reflection.

In order to evaluate the usefulness of our approach, we benchmarked our pro-
totype with several examples of Maude applications, namely: War of Souls (WoS),
a role-playing game that is modeled as a nontrivial producer/consumer applica-
tion; Fault-Tolerant Communication Protocol (FTCP), a Maude specification that
models a fault-tolerant, client-server communication protocol; and Web-TLR, a
software tool designed for model-checking real-size Web applications (e.g., Web-
mailers, Electronic forums), which is based on rewriting logic.

We have tested our tool on some execution traces that were generated by
the Maude applications described above by imposing different slicing criteria. For

http://www.dsic.upv.es/~dromero/slicing.html
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Table 1. Summary of the reductions achieved

Example
Example Original Slicing Sliced %

trace trace size criterion trace size reduction

WoS
WoS.T1 776

WoS.T1.O1 201 74.10%
WoS.T1.O2 138 82.22%

WoS.T2 997
WoS.T2.O1 404 58.48%
WoS.T2.O2 174 82.55%

FTCP
FTCP.T1 2445

FTCP.T1.O1 895 63.39%
FTCP.T1.O2 698 71.45%

FTCP.T2 2369
FTCP.T2.O1 364 84.63%
FTCP.T2.O2 707 70.16%

Web-TLR
Web-TLR.T1 31829

Web-TLR.T1.O1 1949 93.88%
Web-TLR.T1.O2 1598 94.97%

Web-TLR.T2 72098
Web-TLR.T2.O1 9090 87.39%
Web-TLR.T2.O2 7119 90.13%

each application, we considered two execution traces that were sliced using two
different criteria. As for the WoS example, we have chosen criteria that allow us to
backtrace both the values produced and the entities in play — e.g., the criterion
WoS.T1.O2 isolates players’ behaviors along the trace T1. Execution traces in
the FTCP example represent client-server interactions. In this case, the chosen
criteria aim at isolating a server and a client in a scenario that involves multiple
servers and clients (FTCP.T2.O1), and tracking the response generated by a server
according to a given client request (FTCP.T1.O1). In the last example, we have
used Web-TLR to verify two LTL(R) properties of a Webmail application. The
considered execution traces are much bigger for this program, and correspond
to the counterexamples produced as outcome by the built-in model-checker of
Web-TLR. In this case, the chosen criteria allow us to monitor the messages
exchanged by the Web browsers and the Webmail server, as well as to focus our
attention on the data structures of the interacting entities (e.g., browser/server
sessions, server database).

Table 1 summarizes the results we achieved. For each criterion, Table 1 shows
the size of the original trace and of the computed trace slice, both measures
as the length of the corresponding string. The %reduction column shows the
percentage of reduction achieved. These results are very encouraging, and show
an impressive reduction rate (up to ∼ 95%). Actually, sometimes the trace slices
are small enough to be easily inspected by the user, who can restrict her attention
to the part of the computation she wants to observe getting rid of those data
that are useless or even noisy w.r.t. the considered slicing criterion.

7 Conclusion and Related Work

We have presented a backward trace-slicing technique for rewriting logic the-
ories. The key idea consists in tracing back —through the rewrite sequence—
all the relevant symbols of the final state that we are interested in. Preliminary
experiments demonstrate that the system works very satisfactorily on our bench-
marks —e.g., we obtained trace slices that achieved a reduction of up to almost
95% in reasonable time (max. 0.5s on a Linux box equipped with an Intel Core
2 Duo 2.26GHz and 4Gb of RAM memory).



Backward Trace Slicing for Rewriting Logic Theories 47

Tracing techniques have been extensively used in functional programming for
implementing debugging tools [8]. For instance, Hat [8] is an interactive debug-
ging system that enables exploring a computation backwards, starting from the
program output or an error message (with which the computation aborted).
Backward tracing in Hat is carried out by navigating a redex trail (that is,
a graph-like data structure that records dependencies among function calls),
whereas tracing in our approach does not require the construction of any auxil-
iary data structure.

Our backward tracing relation extends a previous tracing relation that was
formalized in [6] for orthogonal TRSs. In [6], a label is formed from atomic la-
bels by using the operations of sequence concatenation and underlining (e.g.,
a, b, ab, abcd, are labels), which are used to keep track of the rule application
order. Collapsing rules are simply avoided by coding them away. This is done by
replacing each collapsing rule λ→ x with the rule λ→ ε(x), where ε is a unary
dummy symbol. Then, in order to lift the rewrite relation to terms containing
ε occurrences, infinitely many new extra-rules are added that are built by sat-
urating all left-hand sides with ε(x). In contrast to [6], we use a simpler notion
of labeling, where composite labels are interpreted as sets of atomic labels, and
in the case of collapsing as well as nonleft-linear rules we label the rewrite steps
themselves so that we can deal with these rules in an effective way.

The work that is most closely related to ours is [13], which formalizes a no-
tion of dynamic dependence among symbols by means of contexts and studies
its application to program slicing of TRSs that may include collapsing as well as
nonleft-linear rules. Both the creating and the created contexts associated with a
reduction (i.e., the minimal subcontext that is needed to match the left-hand side
of a rule and the minimal context that is “constructed” by the right-hand side of
the rule, respectively) are tracked. Intuitively, these concepts are similar to our
notions of redex and contractum patterns. The main differences with respect to
our work are as follows. First, in [13] the slicing is given as a context, while we
consider term slices. Second, the slice is obtained only on the first term of the
sequence by the transitive and reflexive closure of the dependence relation, while
we slice the whole execution trace, step by step. Obviously, their notion of slice
is smaller, but we think that our approach can be more useful for trace analysis
and program debugging. An extension of [6] is described in [18], which provides
a generic definition of labeling that works not only for orthogonal TRSs as is
the case of [6] but for the wider class of all left-linear TRSs. The nonleft-linear
case is not handled by [18]. Specifically, [18] describes a methodology of static
and dynamic tracing that is mainly based on the notion of sample of a traced
proof term —i.e., a pair (μ, P ) that records a rewrite step μ = s → t, and a set
P of reachable positions in t from a set of observed positions in s. The tracing
proceeds forward, while ours employs a backward strategy that is particularly
convenient for error diagnosis and program debugging. Finally, [13] and [18] ap-
ply to TRSs whereas we deal with the richer framework of RWL that considers
equations and equational axioms, namely rewriting modulo equational theories.
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Abstract. Security protocols aim at securing communications over pub-
lic networks. Their design is notoriously difficult and error-prone. Formal
methods have shown their usefulness for providing a careful security anal-
ysis in the case of standard authentication and confidentiality protocols.
However, most current techniques do not apply to protocols that per-
form recursive computation e.g. on a list of messages received from the
network.

While considering general recursive input/output actions very quickly
yields undecidability, we focus on protocols that perform recursive tests
on received messages but output messages that depend on the inputs in
a standard way. This is in particular the case of secured routing proto-
cols, distributed right delegation or PKI certification paths. We provide
NPTIME decision procedures for protocols with recursive tests and for
a bounded number of sessions. We also revisit constraint system solving,
providing a complete symbolic representation of the attacker knowledge.

1 Introduction

Security protocols are communication programs that aim at securing commu-
nications over public channels like the Internet. It has been recognized that
designing a secure protocol is a difficult and error-prone task. Indeed, protocols
are very sensitive to small changes in their description and many protocols have
been shown to be flawed several years after their publication (and deployment).
Formal methods have been successfully applied to the analysis of security pro-
tocols, yielding the discovery of new attacks like the famous man-in-the-middle
attack in the Needham-Schroeder public key protocol [17] or, more recently, a
flaw in Gmail [4]. Many decision procedures have been proposed (e.g. [18,20])
and efficient tools have been designed such as ProVerif [8] and AVISPA [3].

While formal methods have been successful in the treatment of security pro-
tocols using standard primitives like encryption and signatures, there are much
fewer results for protocols with recursive primitives, that is, primitives that in-
volve iterative or recursive operations. For example, in group protocols, the server
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or the leader typically has to process a request that contains the contributions of
each different agent in the group and these contributions are used to compute a
common shared key (see e.g. the Asokan-Ginzboorg group protocol [6]). Secured
versions of routing protocols [9,14,12] also require the nodes (typically the node
originating the request) to check the validity of the route they receive. This is
usually performed by checking that each node has properly signed (or MACed)
some part of the route, the whole incoming message forming a chain where each
component is a contribution from a node in the path. Other examples of proto-
cols performing recursive operations are certification paths for public keys (see
e.g. X.509 certification paths [13]) and right delegation in distributed systems [7].

Recursive operations may yield complex computations. Therefore it is difficult
to check the security of protocols with recursive primitives and very few decision
procedures have been proposed for recursive protocols. One of the first decid-
ability results [16] holds when the recursive operation can be modeled using tree
transducers, which forbids any equality test and also forbids composed keys and
chained lists. In [21] recursive computation is modeled using Horn clauses and
an NEXPTIME procedure is proposed. This is extended in [15] to include the
Exclusive Or operator. This approach however does not allow composed keys
nor list mapping (where the same operation, e.g. signing, is applied to each ele-
ment of the list). To circumvent these restrictions, another procedure has been
proposed [10] to handle list mapping provided that each element of the list is
properly tagged. No complexity bound is provided. All these results hold for
rather limited classes of recursive operations (on lists of terms). This is due to
the fact that even a single input/output step of a protocol may reveal com-
plex information, as soon as it involves a recursive computation. Consequently,
recursive primitives very quickly yield undecidability [16].

Our contributions. The originality of our approach consists in considering proto-
cols that perform standard input/output actions (modeled using usual pattern
matching) but that are allowed to perform recursive tests such as checking the
validity of a route or the validity of a chain of certificates. Indeed, several families
of protocols use recursivity only for performing sanity checks at some steps of the
protocol. This is in particular the case of secured routing protocols, distributed
right delegation, and PKI certification paths.

For checking security of protocols with recursive tests (for a bounded number
of sessions), we reuse the setting of constraint systems [18,11] and add tests of
membership to recursive languages. As a first contribution, we revisit the pro-
cedure of [11] for solving constraint systems and obtain a complete symbolic
representation of the knowledge of the attacker, in the spirit of the characteri-
zation obtained in [1] in the passive case (with no active attacker). This result
holds for general constraint systems and is of independent interest.

Our second contribution is the proposition of (NPTIME) decision procedures
for two classes of recursive languages (used for tests): link-based recursive lan-
guages and mapping-based languages. A link-based recursive language contains
chains of links where consecutive links have to satisfy a given relation. A typical
example is X.509 public key certificates [13] that consist in a chain of signatures of



Deciding Security for Protocols with Recursive Tests 51

the form: [�〈A1, pub(A1)〉�sk(A2); �〈A2, pub(A2)〉�sk(A3); · · · ; �〈An, pub(An)〉�sk(S)].
The purpose of this chain is to authenticate the public key of A1. The chain be-
gins with the certificate �〈A1, pub(A1)〉�sk(A2), and each certificate in the chain
is signed by the entity identified by the next certificate in the chain. The chain
terminates with a certificate signed by a trusted party S.

A mapping-based language contains lists that are based on a list of names
(typically names of agents involved in the protocol session) and are uniquely
defined by it. Typical examples can be found in the context of routing protocols,
when nodes check for the validity of the route. For example, in the SMNDP
protocol [12], a route from the source A0 to the destination An is represented
by a list lroute = [An; . . . ; A1]. This list is accepted by the source node A0 only
if the received message is of the form:

[�〈An, A0, lroute〉�sk(A1); �〈An, A0, lroute〉�sk(A2); . . . ; �〈An, A0, lroute〉�sk(An)].

Note that a link �〈An, A0, lroute〉�sk(Ai) both depends on the list lroute and on its
i-th element.

For each of these two languages, we show that it is possible to bound the size
of a minimal attack (bounding in particular the size of the lists used in member-
ship tests), relying on the new characterization we have obtained for solutions
of constraint systems. As a consequence, we obtained two new NP decision pro-
cedures for two classes of languages that encompass most of the recursive tests
involved in secured routing protocols and chain certificates. We illustrate our
results with several examples of relevant recursive languages. Detailed proofs of
our results can be found in [5].

2 Models for Security Protocols

2.1 Messages

As usual, messages are represented using a term algebra. We consider the sorted
signature F = {senc, aenc, � � , 〈 , 〉, h, ::, [], pub, priv, vk, sk} with corresponding
arities:

– ar(f) = Msg×Msg→ Msg for f ∈ {senc, aenc, � � , 〈 , 〉},
– ar(h) = Msg→ Msg,
– ar(::) = Msg× List→ List, and ar([]) = List,
– ar(f) = Base → Msg for f ∈ Fs = {pub, priv, vk, sk}.

The sort Msg is a supersort of List and Base. The symbol 〈〉 represents the
pairing function, :: is the list constructor, and [] represents the empty list. For
the sake of clarity, we write 〈u1, u2, u3〉 for the term 〈u1, 〈u2, u3〉〉, and [u1; u2; u3]
for u1::(u2::(u3::[])). The terms pub(A) and priv(A) represent respectively the
public and private keys associated to an agent A, whereas the terms sk(A) and
vk(A) represent respectively the signature and verification keys associated to an
agent A. The function symbol senc (resp. aenc) is used to model symmetric (resp.
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asymmetric) encryption whereas the term �m�sk(A) represents the message m
signed by the agent A.

We consider an infinite set of names N = {Rep,Req,N,K,A, S,D, Id . . .}
having Base sort. These names typically represent constants, nonces, symmetric
keys, or agent names. Moreover, we assume that we have three disjoint infinite
sets of variables, one for each sort, denoted XBase, XList, and XMsg respectively.
We write vars(u) for the set of variables occurring in u. A term is ground if it
has no variables.

We write st(u) for the set of subterms of a term u. This notion is extended as
expected to sets of terms. Substitutions are written σ = {x1 �→ t1, . . . , xn �→ tn}
with dom(σ) = {x1, . . . , xn}. They are assumed to be well-sorted substitutions,
that is the sort of each xi is a supersort of the sort of ti. Such a substitution σ
is ground if all the ti are ground terms. The application of a substitution σ to a
term u is written uσ. A most general unifier of terms u1 and u2 is a substitution
(when it exists) denoted by mgu(u1, u2).

2.2 Intruder Capabiblities

The ability of the intruder is modeled by a deduction system described below
and corresponds to the usual rules representing attacker abilities (often called
Dolev-Yao rules).

u1 . . . un
f ∈F�Fs

f(u1, . . . , un)
〈u1, u2〉

i∈{1,2}
ui

u1::u2
i∈{1,2}

ui

senc(u1, u2) u2

u1

aenc(u1, pub(u2)) priv(u2)

u1

�u1�sk(u2) (optional)
u1

The first inference rule describes the composition rules. The remaining infer-
ence rules describe the decomposition rules. Intuitively, these deduction rules
say that an intruder can compose messages by pairing, building lists, encrypt-
ing and signing messages provided he has the corresponding keys. Conversely,
he can retrieve the components of a pair or a list, and he can also decompose
messages by decrypting provided he has the decryption keys. For signatures, the
intruder is also able to verify whether a signature �m�sk(a) and a message m
match (provided he has the verification key vk(a)), but this does not give him
any new message. That is why this capability is not represented in the deduction
system. We also consider an optional rule that expresses that an intruder can
retrieve the whole message from its signature. This property may or may not
hold depending on the signature scheme, and that is why this rule is optional.
Our results hold in both cases (that is, when the deduction relation � is defined
with or without this rule).

A term u is deducible from a set of terms T , denoted by T � u, if there exists
a proof, i.e. a tree such that the root is labelled with u, the leaves are labelled
with v ∈ T and every intermediate node is an instance of one of the rules of the
deduction system.
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2.3 Constraint Systems

Constraint systems are quite common (see e.g. [11,18]) in modeling security
protocols. A constraint system represents in a symbolic and compact way which
trace instances of a protocol are possible once an interleaving of actions has been
fixed. They are used, for instance, to specify secrecy preservation of security
protocols under a particular, finite scenario. Note that, even if the scenario is
fixed, there are still many (actually infinitely many) possible instances of it,
because the intruder may affect the content of the messages by intercepting sent
messages and forging received messages. The behaviour of the attacker is taken
into account relying on the inference system presented in Section 2.2. To enforce
the intruder capabilities, we also assume he knows an infinite set of names I
that he might use at his will to mount attacks.

Definition 1 (constraint system). A constraint system is a pair (C, I) such
that I is a non empty (and possibly infinite) set of names, and C is either ⊥
or a finite conjunction

n∧
i=1

Ti � ui of expressions called deducibility constraints,

where each Ti is a finite set of terms, called the left-hand side of the constraint
and each ui is a term, called the right-hand side of the constraint, such that:

– Ti ⊆ Ti+1 for every i such that 1 ≤ i < n;
– if x ∈ vars(Ti) for some i then there exists j < i such that x ∈ vars(uj).

Moreover, we assume that st(C) ∩ I = ∅.

The second condition in Definition 1 says that each time a new variable is intro-
duced, it first occurs in some right-hand side. The left-hand side of a constraint
system usually represents the messages sent on the network, while the right-hand
side represents the message expected by the party.

Definition 2 (non-confusing solution). Let (C, I) be a constraint system

where C =
n∧

i=1

Ti � ui. A solution of (C, I) is a ground substitution θ whose

domain is vars(C) such that Tiθ ∪ I � uiθ for every i ∈ {1, . . . , n}. The empty
constraint system is always satisfiable whereas (⊥, I) denotes an unsatisfiable
constraint system. Furthermore, we say that θ is non-confusing for (C, I) if
t1 = t2 for any t1, t2 ∈ st(Tn) such that t1θ = t2θ.

In other words, non-confusing solutions do not map two distinct subterms of a
left-hand side of the constraint system to the same term. Later on, we will show
that we can restrict ourselves to consider this particular case of solutions.

Constraint systems model protocols that perform pattern matching only. In
particular, deducibility constraints cannot ensure that some message is a valid
chain of certificates since this cannot be checked using a pattern. Therefore, we
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extend constraint systems with language constraints of the form u � L where L
can be any language, that is, any set of terms. In particular, L will typically be a
recursively defined set of terms. We provide in Sections 4 and 5 several examples
of classes of recursive languages but for the moment L can be left unspecified.

Definition 3 (language constraint). Let L be a language (i.e. a set of terms).
An L-language constraint associated to some constraint system (C, I) is an ex-
pression of the form u1 � L ∧ . . . ∧ uk � L where each ui is a term such that
vars(ui) ⊆ vars(C) and st(ui) ∩ I = ∅.

A solution of a constraint system (C, I) and of an L-language constraint
φ = u1 � L ∧ . . . ∧ uk � L is a ground substitution θ such that θ is a solution
of (C, I) and uiθ ∈ L for any 1 ≤ i ≤ k. We denote st(φ) = {st(ui) | 1 ≤ i ≤ k}.

2.4 Example: the SMNDP Protocol

The aim of the SMNDP protocol [12] is to find a path from a source node S
towards a destination node D. Actually, nodes broadcast the route request to
their neighbors, adding their name to the current path. When the request reaches
the destination, D signs the route and sends the reply back over the network.

More formally, if D receives a request message of the form 〈Req, S,D, Id , l〉,
where Id is a name (the identifier of the request) and l is the path built dur-
ing the request phase, D will compute the signature s0 = �〈D,S,D::l〉�sk(D)

and send back the reply 〈Rep, D, S,D::l, [s0]〉. All nodes along the route then
have to certify the route by adding their own signature. More precisely, dur-
ing the reply phase, an intermediate node Ai receiving a message of the
form 〈Rep, D, S, lroute , [si−1, . . . , s0]〉 would compute si = �〈D,S, lroute〉�sk(Ai)

and send the message 〈Rep, D, S, lroute , [si, . . . , s0]〉. The list of signatures ex-
pected by S built over the list lroute = [D,A1, . . . , An] is the list lsign =
[sn, . . . , s0] where s0 = �〈D,S, lroute〉�sk(D) and si = �〈D,S, lroute〉�sk(Ai) for
1 ≤ i ≤ n. We will denote by LSMNDP the set of messages of the form
〈〈S,D〉, 〈lroute , lsign〉〉.

Consider the following network configuration, where S is the source node, D
is the destination node, X is an intermediate (honest) node, W is a node who
has been compromised (i.e. the intruder knows the secret key sk(W )), and I is
a malicious node, i.e. a node controlled by the intruder.

S

W

X

I D

An execution of the protocol where D is ready to answer a request and the
source is ready to input the final message can be represented by the following
constraint system:
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C =
{

T0 ∪ {u0, u1} � v1

T0 ∪ {u0, u1, u2} � v2

with T0 = {S,D,X, I,W, sk(I), sk(W )} the initial knowledge of the intruder
u0 = 〈Req, S,D, Id , []〉,
u1 = 〈Req, S,D, Id , [X,W ]〉,
u2 = 〈Rep, D, S,D::xl, [�〈D,S,D::xl〉�sk(D)]〉,
v1 = 〈Req, S,D, xid , xl〉,
v2 = 〈Rep, D, S,D::xroute , xsign〉

Let I be a non-empty set of names such that st(C)∩I = ∅. We have that (C, I) is
a constraint system. A solution to (C, I)∧〈〈S,D〉, 〈D::xroute , xsign〉〉 � LSMNDP is
e.g. the substitution θ = {xid �→ Id , xl �→ [I; W ], xroute �→ [I; W ], xsign �→ lsign}
where:

– lroute = [D, I,W ], and
– lsign = [�〈D,S, lroute〉�sk(W ); �〈D,S, lroute〉�sk(I); �〈D,S, lroute〉�sk(D)].

This solution reflects an attack (discovered in [2]) where the attacker sends to the
destination node D the message 〈Req, S,D, Id , l〉 with a false list l = [I,W ]. Then
D answers accordingly by 〈Rep, D, S, lroute , [�〈D,S, lroute〉�sk(D)]〉. The intruder
concludes the attack by sending to S the message 〈Rep, D, S, lroute , lsign〉. This
yields S accepting W, I,D as a route to D, while it is not a valid route.

3 Constraint Solving Procedure

As a first contribution, we provide a complete symbolic representation of the
attacker knowledge, in the spirit of the characterization obtained in [1] in the
passive case (that is, when the intruder only eavesdrops on the messages ex-
changed during the protocol execution). Revisiting the constraint solving pro-
cedure proposed in [11], we show that it is possible to compute a finite set
(C1, I), . . . , (Cn, I) of solved forms whose solutions represent all the solutions of
(C, I). This first result is an easy adaptation of the proof techniques of [11] to our
richer term algebra. More importantly, we show that it is sufficient to consider
the solutions of (Ci, I) that are obtained by applying composition rules only.

3.1 Simplification Rules

Our procedure is based on a set of simplification rules allowing a general con-
straint system to be reduced to some simpler ones, called solved, on which sat-
isfiability can be easily decided. A constraint system (C, I) is said to be solved
if C �= ⊥ and if each of its constraints is of the form T � x, where x is a vari-
able. Note that the empty constraint system is solved. Solved constraint systems
are particularly simple since they always have a solution. Indeed, let N0 ∈ I,
the substitution τ defined by xτ = N0 for every variable x is a solution since
Tτ ∪ I � xτ for any constraint T � x of the solved constraint system.
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The simplification rules we consider are the following ones:

Rax : (C ∧ T � u, I) � (C, I) if T ∪ {x | T ′ � x ∈ C, T ′ � T } � u

Runif : (C ∧ T � u, I) �σ (Cσ ∧ Tσ � uσ, I) if σ = mgu(t1, t2)
where t1 ∈ st(T ), t2 ∈ st(T ∪ {u}), and t1 �= t2

Rfail : (C ∧ T � u, I) � (⊥, I) if vars(T ∪ {u}) = ∅ and T �� u

Rf : (C ∧ T � f(u, v), I) � (C ∧ T � u ∧ T � v, I) for f ∈ F � Fs

All the rules are indexed by a substitution (when there is no index then
the identity substitution is implicitly considered). We write (C, I) �∗

σ (C′, I)
if there are C1, . . . , Cn such that (C, I) �σ0 (C1, I) �σ1 . . . �σn (C′, I) and
σ = σn ◦ · · · ◦ σ1 ◦ σ0. Our rules are similar to those in [11] except for the
rule Runif . We authorize unification with a subterm of u and also with variables.

Soundness and termination are still ensured by [11]. To ensure termination
in polynomial time, we consider the strategy S that consists of applying Rfail

as soon as possible, Runif and then Rf , beginning with the constraint having the
largest right hand side. Lastly, we apply Rax on the remaining constraints. We
show that these rules form a complete decision procedure.

Theorem 1. Let (C, I) be a constraint system. We have that:

– Soundness: If (C, I) �∗
σ (C′, I) for some constraint system (C′, I) and some

substitution σ and if θ is a solution of (C′, I) then θ◦σ is a solution of (C, I).
– Completeness: If θ is a solution of (C, I), then there exist a constraint sys-

tem (C′, I) in solved form and substitutions σ, θ′ such that θ = θ′ ◦ σ,
(C, I) �∗

σ (C′, I) following the strategy S, and θ′ is a non-confusing solution
of (C′, I).

– Termination: If (C, I) �n
σ (C′, I) following the strategy S, then n is polyno-

mially bounded in the size of C. Moreover, the number of subterms of C′ is
smaller than the number of subterms of C.

Example 1. Consider our former example of a constraint system (see Sec-
tion 2.4), we can simplify the constraint system (C, I) following strategy S:
– Runif : (C, I)�σ(C1, I) with C1 = Cσ where σ = {xid �→ Id},
– Rf : (C1, I) �∗ (C2, I) with

C2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T0 ∪ {u0σ, u1σ} � Req ∧ T0 ∪ {u0σ, u1σ, u2σ} � Rep ∧
T0 ∪ {u0σ, u1σ} � S ∧ T0 ∪ {u0σ, u1σ, u2σ} � D ∧
T0 ∪ {u0σ, u1σ} � D ∧ T0 ∪ {u0σ, u1σ, u2σ} � S ∧
T0 ∪ {u0σ, u1σ} � Id ∧ T0 ∪ {u0σ, u1σ, u2σ} � xroute ∧
T0 ∪ {u0σ, u1σ} � xl ∧ T0 ∪ {u0σ, u1σ, u2σ} � xsign

– Rax: (C2, I) �∗ (C′, I) with

C′ =
{

T0 ∪ {u0σ, u1σ} � xl ∧ T0 ∪ {u0σ, u1σ, u2σ} � xroute

∧ T0 ∪ {u0σ, u1σ, u2σ} � xsign

The constraint system (C′, I) is in solved form, and we have that θ = θ′◦σ where
θ′ = {xl �→ [I; W ], xroute �→ [I; W ], xsign �→ lsign} is a non-confusing solution of
(C′, I).
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Compared to [11], we prove in addition that on the resulting solved constraint
systems, we can restrict our attention to non-confusing solutions. Intuitively,
we exploit the transformation rules such that any possible equality between
subterms has already been guessed, thus ensuring that two distinct subterms
do not map to the same term. Interestingly, non-confusing solutions of a solved
constraint system enjoy a nice characterization.

3.2 A Basis for Deducible Terms

We show that, for any non-confusing solution, any term deducible from the
attacker knowledge may be obtained by composition only.

We first associate to each set of terms T the set of subterms of T that may
be deduced from T ∪ vars(T ). Note that on solved constraint systems, these
variables are indeed deducible.

Satv(T ) = {u ∈ st(T ) | T ∪ vars(T ) � u}

Proposition 1. Let (C, I) be a constraint system in solved form, θ be a non-
confusing solution of (C, I), T be a left-hand side of a constraint in C and u be a
term such that Tθ∪I � u. We have that Satv(T )θ ∪I � u by using composition
rules only.

Proposition 1 states that it is possible to compute from a solved constraint sys-
tem, a “basis” Satv(T ) from which all deducible terms can be obtained applying
only composition rules. This follows the spirit of [1] but now in the active case.

This characterization is crucial in the remaining of the paper, when consider-
ing recursive tests. More generally, we believe that this characterization provides
more modularity and could be useful when considering other properties such as
checking the validity of a route or authentication properties.

We will also use the notion of constructive solution on constraint systems in
solved form, which is weaker than the notion of non-confusing solution.

Definition 4 (constructive solution). Let (C, I) be a constraint system in
solved form. A substitution θ is a constructive solution of (C, I) if for every
deducibility constraint T � x in C, we have that Satv(T )θ ∪ I � xθ using com-
position rules only.

A non-confusing solution of a solved system is a constructive solution, while
the converse does not always hold. This notion will be used in proofs as we
will transform solutions, preserving the constructive property but not the non-
confusing property.

4 Link-Based Recursive Languages

A chain of certificates is typically formed by a list of links such that consecutive
links follow a certain relation. For example, the chain of public key certificates
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[�〈A1, pub(A1)〉�sk(A2); �〈A2, pub(A2)〉�sk(A3); �〈A3, pub(A3)〉�sk(S)] is based on the
link �〈x, pub(y)〉�sk(z), and the names occurring in two consecutive links have to
satisfy a certain relation. We provide a generic definition that captures such
link-based recursive language.

Definition 5 (link-based recursive language). Let m be a term built over
variables of sort Base. A link-based recursive language L is defined by three terms
w0, w1, w2 of sort List such that w0 = [mθ1

0; . . . ; mθk0
0 ], wi = mθ1

i :: . . . ::mθki

i ::xm

for i = 1, 2, and w2 is a strict subterm of w1.
Once w0, w1, w2 are given, the language is recursively defined as follows. A

ground term t belongs to the language L if either t = w0σ for some σ, or there
exists σ such that t = w1σ, and w2σ ∈ L.

Intuitively, w0 is the basic valid chain while w1 encodes the desired dependence
between the links and w2 allows for a recursive call.

Example 2. As defined in [13], X.509 public key certificates consist in chains of
signatures of the form:

[�〈A1, pub(A1)〉�sk(A2); �〈A2, pub(A2)〉�sk(A3); · · · ; �〈An, pub(An)〉�sk(S)]

where S is some trusted server and each agent Ai+1 certifies the public key
pub(Ai) of agent Ai. These chained lists are all built from the term m =
�〈x, pub(y)〉�sk(z) with x, y, z ∈ XBase. The set of valid chains of signatures can
be formally expressed as the m-link-based recursive language Lcert defined by:⎧⎨

⎩
w0 = [�〈x, pub(x)〉�sk(S)],
w1 = �〈x, pub(x)〉�sk(y)::�〈y, pub(y)〉�sk(z)::xm,
w2 = �〈y, pub(y)〉�sk(z)::xm.

Similarly, link-based recursive languages can also describe delegation rights
certificates in the context of distributed access-rights management. In [7] for
example, the certificate chains delegating authorization for operation O are of
the form:

[�〈A1, pub(A1), O〉�sk(A2); �〈A2, pub(A2), O〉�sk(A3); . . . ; �〈An, pub(An), O〉�sk(S)]

where S has authority over operation O and each agent Ai+1 delegates the
rights for operation O to agent Ai. These chained lists are all built from the
term m = �〈x, pub(y), O〉�sk(z) with x, y, z ∈ XBase.

Example 3. In the recursive authentication protocol [19], a certificate list con-
sists in a chain of encryptions of the form:

[senc(〈Kab, B,Na〉,Ka); senc(〈Kab, A,Nb〉,Kb);
senc(〈Kbc, C,Nb〉,Kb); senc(〈Kbc, B,Nc〉,Kc); . . . ; senc(〈Kds, S,Nd〉,Kd)]

where S is a trusted server distributing session keys Kab, Kbc, . . . , Kds to each
pair of successive agents via these certificates. These chained lists are all built
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from the term m = senc(〈y1, y2, y3〉, z) with y1, y2, y3, z ∈ XBase. The set of valid
chains of encryptions in this protocol can be formally expressed as the m-link-
based recursive language LRA defined by:

⎧⎨
⎩

w0 = [senc(〈z, S, x〉, xk)],
w1 = senc(〈z, xa, x〉, xkb

)::senc(〈z, xb, y〉, xka)::senc(〈z′, xc, y〉, xka)::xm,
w2 = senc(〈z′, xc, y〉, xka)::xm.

We propose a procedure for checking for secrecy preservation for a protocol with
link-based recursive tests in NP, for a bounded number of sessions.

Theorem 2. Let L be a link-based recursive language. Let (C, I) be a constraint
system and φ be an L-language constraint associated to (C, I). Deciding whether
(C, I) and φ has a solution is in NP.

The proof of Theorem 2 involves three main steps. First, thanks to Theorem 1,
it is sufficient to decide in polynomial (DAG) size whether (C, I) with language
constraint φ has a non-confusing solution when (C, I) is a solved constraint
system. Then, we show that we can (polynomially) bound the size of the lists in
φ. This relies partly on Proposition 1, as it shows that a non-confusing solution
is a constructive solution.

Proposition 2. Let (C, I) be a constraint system in solved form and φ be an
L-language constraint associated to (C, I) where L is a link-based recursive lan-
guage. Let θ be a constructive solution of (C, I) and φ. Then there exists a
constructive solution θ′ of (C, I) and φ such that φθ′ is polynomial in the size
of C, and φ.

Proposition 2 is proved by first showing that there is a solution that uses a
bounded number of distinct names. Thus there is a finite number of instances
of m used in recursive calls, allowing us to cut the lists while preserving the
membership to the recursive language.

The third step of the proof of Theorem 2 consists in showing that we can
restrict our attention to solutions θ such that xθ is either a constant or a subterm
of φθ, by using Lemma 1. This lemma is a generic lemma that shows how any
solution can be transformed by projecting some variables on constants. It will
be reused in the next section.

Lemma 1. Let L be a language, i.e. a set of terms. Let (C, I) be a constraint
system in solved form and φ be an L-language constraint associated to (C, I).
Let θ be a constructive solution of (C, I) and φ. Let N0 be a name of Base sort
in I, and θ′ be a substitution such that:⎧⎨

⎩
xθ′ = xθ if xθ ∈ st(φθ)
xθ′ = [] if x ∈ XList and xθ /∈ st(φθ)
xθ′ = N0 if x �∈ XList and xθ /∈ st(φθ)

The substitution θ′ is a constructive solution of (C, I) and φ.
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5 Routing Protocols

Routing protocols typically perform recursive checks to ensure the validity of a
given route. However, link-based recursive languages do not suffice to express
these checks. Indeed, in routing protocols, nodes aim at establishing and certi-
fying a successful route (i.e. a list of names of nodes) between two given nodes
that wish to communicate. Each node on the route typically contributes to the
routing protocol by certifying that the proposed route is correct, to the best of
its knowledge. Thus each contribution contains a list of names (the route). Then
the final node receives a list of contributions and needs to check that each contri-
bution contains the same list of names, which has also to be consistent with the
whole received message. For example, in the case of the SMNDP protocol [12],
the source node has to check that the received message is of the form:

[�〈D,S, lroute〉�sk(An); . . . ; �〈D,S, lroute〉�sk(A1); �〈D,S, lroute〉�sk(D)]

where lroute = [D; A1; . . . ; An].

5.1 Mapping-Based Languages

An interesting property in the case of routing protocols is that (valid) messages
are uniquely determined by the list of nodes [A1; . . . ; An] in addition to some
parameters (e.g. the source and destination nodes in the case of SMNDP). We
propose a generic definition that captures any such language based on a list of
names.

Definition 6 (mapping-based language). Let b be a term that contains no
name and no :: symbol, and such that:

{w1, w
p
1 , . . . , w

p
m} ⊆ vars(b) ⊆ {w1, w2, w3, w

p
1 , . . . , w

p
m}.

The variables wp
1 , . . . , w

p
m are the parameters of the language, whereas w1, w2,

and w3 are special variables. Let P = 〈P1, . . . , Pm〉 be a tuple of names and
σP = {wp

1 �→ P1, . . . , w
p
m �→ Pm}. Let l = [A1; . . . ; An] be a list of names, the

links are defined over l recursively in the following manner :

mP(i, l) = (bσP ){w1 �→ l, w2 �→ Ai, w3 �→ [mP(i− 1, l); . . . ; mP(1, l)]}

The mapping-based language (defined by b) is the following one:

L = {〈P , 〈l, l′〉〉 | P = 〈P1, . . . , Pm〉 is a tuple of names,
l = [A1; . . . ; An] a list of names, n ∈ N, and l′ = [mP (n, l); . . . ; mP(1, l)]}.

A mapping-based language is defined by a base shape b. The special variables
w2 and w3 are optional and may not occur in b. Each element of the language
is a triple 〈P , 〈l, l′〉〉 where l′ is a list of links entirely determined by the tuple
P = 〈P1, . . . , Pm〉 and the list l of arbitrary length n. In the list l′, each link
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contains the same parameters P1, . . . , Pm (e.g. the source and destination nodes),
the list l of n names [A1; . . . ; An] and possibly the current name Ai and the list
of previous links, following the base shape b.
We illustrate this definition with two examples of routing protocols.

Example 4 (SMNDP protocol [12]). Recall that in SMNDP, the list of signatures
expected by the source node S built over the list l = [A1, . . . , An] is the list
[sn, . . . , s1], where si = �〈D,S, l〉�sk(Ai). This language has two parameters, the
name of the source wp

1 and the name of the destination wp
2 . The language can

be formally described with b = �〈wp
2 , w

p
1 , w1〉�sk(w2).

Example 5 (endairA protocol [9]). The difference between SMNDP and endairA
lies in the fact that during the reply phase, the intermediate nodes compute a sig-
nature over the partial signature list that they receive. In the endairA protocol,
the list of signatures expected by the source node S built over the list of nodes l =
[A1, . . . , An] is the list l′s = [sn, . . . , s1], where si = �〈D,S, l, [si−1; . . . ; s1]〉�sk(Ai).

This language has two parameters, the name of the source wp
1 and the

name of the destination wp
2 . The language can be formally described with

b = �〈wp
2 , w

p
1 , w1, w3〉�sk(w2).

5.2 Decision Procedure

We propose a procedure for checking for secrecy preservation for a protocol with
mapping-based tests in NP, for a bounded number of sessions.

Theorem 3. Let L be a mapping-based language. Let (C, I) be a constraint sys-
tem and φ be an L-language constraint associated to (C, I).
Deciding whether (C, I) ∧ φ has a solution is in NP.

The proof of Theorem 3 involves three main steps. First, thanks to Theorem 1,
it is sufficient to decide in polynomial (DAG) size whether (C, I) with language
constraint φ has a non-confusing solution when (C, I) is a solved constraint
system. Due to Proposition 1, we deduce that it is sufficient to show that deciding
whether (C, I) ∧ φ has a constructive solution is in NP, where (C, I) is a solved
constraint system.

The second and key step of the proof consists in bounding the size of a con-
structive solution. Note that the requirement on the form of φ is not a restriction
since any substitution satisfying φ will necessarily have this shape.

Proposition 3. Let L be a mapping-based language. Let (C, I) be a constraint
system in solved form, φ be an L-language constraint associated to (C, I), and τ
be a constructive solution of (C, I)∧ φ. We further assume that φ is of the form
u1 � L ∧ . . . ∧ uk � L where uj = 〈〈pj

1, . . . , p
j
m〉, 〈lj , l′j〉〉.

There exists a constructive solution τ ′ of (C, I)∧φ such that, for every j, the
length of ljτ

′ is polynomially bounded on the size of C and φ.

For each constraint 〈〈pj
1, . . . , p

j
m〉, 〈lj , l′j〉〉 � L, the list lj provides constraints on

the last elements of the list l′j , while l′j provides constraints on the last elements
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of the list lj . The main idea of the proof of Proposition 3 is to show that it is
possible to cut the middle of the list lj , modifying the list l′j accordingly. This
is however not straightforward as we have to show that the new substitution
is still a solution of the constraint system (C, I). In particular, cutting part of
the list might destroy some interesting equalities, used to deduce terms. Such
cases are actually avoided by considering constructive solutions and by cutting
at some position in the lists such that none of the elements are subterms of the
constraint, which can be ensured by combinatorial arguments.

Proposition 3 allows us to bound the size of ljθ for a minimal solution θ, which
in turn bounds the size of l′jθ. The last step of the proof of Theorem 3 consists
in showing that any xθ is bounded by the size of the lists or can be replaced by
a constant, by applying Lemma 1.

6 Conclusion

We have provided two new NP decision procedures for (automatically) analysing
confidentiality of security protocols with recursive tests, for a bounded number
of sessions. The classes of recursive languages we can consider both encompass
chained-based lists of certificates and most of the recursive tests performed in
the context of routing protocols. These procedures rely on a new characteriza-
tion of the solutions of a constraint system, extending the procedure for solving
constraint systems. We believe that this new characterization is of independent
interest and could be used for other families of protocols.

As further work, we plan to implement our procedure, which will require us to
optimize it. We also plan to consider larger classes of recursive languages in order
to capture e.g. the recursive tests performed in the context of group protocols.
It would also be interesting to see whether our techniques could be extended for
analysing protocols that use such recursive languages not only for performing
tests but also as outputs in protocols.
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Abstract. Matita is an interactive theorem prover being developed by
the Helm team at the University of Bologna. Its stable version 0.5.x may
be downloaded at http://matita.cs.unibo.it. The tool originated in
the European project MoWGLI as a set of XML-based tools aimed to
provide a mathematician-friendly web-interface to repositories of formal
mathematical knoweldge, supporting advanced content-based function-
alities for querying, searching and browsing the library. It has since then
evolved into a fully fledged ITP, specifically designed as a light-weight,
but competitive system, particularly suited for the assessment of innova-
tive ideas, both at foundational and logical level. In this paper, we give an
account of the whole system, its peculiarities and its main applications.

1 The System

Matita is an interactive proof assistant, adopting a dependent type theory - the
Calculus of (Co)Inductive Constructions (CIC) - as its foundational language for
describing proofs. It is thus compatible, at the proof term level, with Coq [27],
and the two systems are able to check each other’s proof objects. Since the two
systems do not share a single line of code, but are akin to each other, it is natural
to take Coq as the main term of comparison, referring to other systems (most
notably, Isabelle and HOL) when some ideas or philosophies characteristic of
these latter tools have been imported into our system.

Similarly to Coq, Matita follows the so called De Bruijn principle, stating
that proofs generated by the system should be verifiable by a small and trusted
component, traditionally called kernel. Unsurprisingly, the kernel has roughly the
same size in the two tools, in spite of a few differences in the encoding of terms: in
particular, Matita’s kernel handles explicit substitutions to mimic Coq’s Section
mechanism, and can cope with existential metavariables, i.e. non-linear place-
holders that are Curry-Howard isomorphic to holes in the proofs. Metavariables
cannot be instantiated by the kernel: they are considered as opaque constants,
with a declared type, only equal to themselves.

While this extension does not make the kernel sensibly more complex or frag-
ile, it has a beneficial effect on the size of the type inference subsystem, here
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called refiner. In particular, the refiner can directly call the kernel to check the
complex and delicate conditions (guardedness, positivity) needed to ensure the
termination of recursive functions and detect erroneous definition of inductive
types leading to logical paradoxes. The Matita refiner implements several ad-
vanced features like coercive subtyping [16] and subset coercions [24], that allow
for some automatic modifications of the user input to fix a type error or annotate
simple programs with proof obligations.

The kernel compares types up to conversion, that is a decidable relation in-
volving β-reduction, constant unfolding and recursive function computation. On
the contrary, the refiner deals with incomplete terms, and compares types with
a higher order unification algorithm in charge of finding an instantiation for
metavariables that makes the two types convertible. Higher order unification is
in general semi-decidable, and is thus usually implemented as an extension of
the usual first order algorithm equipped with some extra heuristics. To avoid
the inherent complexity of combining together many heuristics, Matita enables
the user to extend unification by means of unification hints [4], that give explicit
solutions for the cases not handled by the basic algorithm.

Remarkably, many ad-hoc mechanisms studied in the last years for dealing
with the formalization of algebraic structures, including Canonical Structures,
Type Classes [25,28], and Coercion Pullbacks [21], can be implemented on top
of unification hints.

Library. Besides the aforementioned components, that make up the core of all
theorem provers, the most important aspect of Matita is its document-centric
philosophy. Matita is meant, first of all, as an interface between the user and the
mathematical library, storing definitions, theorems and notation. An important
consequence of this is that once a concept has been defined and added to the
library, it will stay visible unless it is removed or invalidated, with no need for
the user to explicitly reference or include a part of the library.

Objects are stored in the library together with metadata, which are used for
indexing and searching. The searching facility provided by Matita, that is a key
component of the system, has been described in [2].

Disambiguation. A well known, complex problem for interactive provers is that,
at a linguistic level, ordinary mathematical discourse systematically overloads
symbols and abuses notations in ways that make mechanical interpretation dif-
ficult. This originates from various sources, including conflicting parsing rules,
implicit information that a human reader can recover from the context, overload-
ing of operators, and so on. The complexity of the problem is due to the fact
that the comprehension of the text sometimes requires not just knowledge of the
notation and conventions at play but some understanding of the relevant math-
ematical aspects of the discipline (e.g. the fact that a given set can be equipped
by a suitable algebraic structure), requiring the system to dig into its base of
knowledge, in order to correctly parse the statement!

Matita was designed keeping in mind that ambiguous notation is not an un-
fortunate accident, but a powerful tool in the hands of mathematicians. For this
reason, the user is allowed the maximum degree of flexibility in defining notation.
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To manage ambiguous notation, Matita provides an ambiguous parser (described
in [23]) associating to the user input the set of all its possible interpretations
(according to the defined notation). While ambiguous parsing is a potentially
expensive operation, Matita is able to preserve efficiency by means of a sophis-
ticated algorithm, capable of detecting semantic errors as early as possible, in
order to prevent semantic analysis of a multitude of incorrect interpretations. At
the end of the process, it is possible that we are left with more than one inter-
pretation: in this case, Matita asks the user to select the correct interpretation,
then it stores it into the script to avoid interrogating the user again the next
time the script is executed.

2 Proof Authoring

The user interface of Matita was inspired by that of CtCoq [11] and Proof
General [9] and is, in our experience, quite easy to learn for newcomers. The
main language used to write proof scripts is procedural, in the LCF tradition,
and essentially similar to the one used by Coq. In addition to that, Matita
features a declarative language ([13]), in the style usually ascribed to Trybulec
(the so called Mizar-style [19]), and made popular in the ITP community mostly
by the work of Wenzel [29].

Despite many similarities to Coq, Matita departs from it in more than one re-
spect (see [5] for details). The sequent-window is based on a MathML-compliant
GTK-widget providing a sophisticated bidimensional rendering and supporting
hyperlinks. During proof authoring, direct manipulation of terms is available on
the generated MathML markup: the user can follow hyperlinks to library objects,
visually select semantically meaningful subterms using the mouse, and perform
contextual actions on them like copy&paste or tactic application. To textually
represent graphical selections Matita adopts patterns, that are generated on-the-
fly from visual selections and consistently used by all tactics.

Step by step tacticals. LCF-tacticals (operations combining a number of tactics
in complex proof strategies), which are used for a better syntactical structuring of
proof scripts, are also provided by Matita. Tacticals provide syntax for expressing
concepts like branching, mimicking the tree structure of proofs at the script level.
Since branches of proof trees usually corresponds to conceptual parts of pen &
paper proofs, the branching tactical helps improving script readability.

In other systems, the practical use of these constructs is limited by the need
of executing each tactical in a single step, even though it is composed of multiple
tactics. Instead, Matita offers the possibility of interrupting the execution of a
script at intermediate evaluation steps of a tactical, allowing the user to inspect
changes in the status and, if needed, edit the script. This is a notable improve-
ment in the overall user experience. Step by step tacticals – also called tinycals
– are described in [22].

Automation. Automation is a well known weak point of Coq, only partially com-
pensated by powerful reflexive tactics. Matita was intended to fill this gap, with
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a particular attention to support the automation of those small logical trans-
formations (small step automation) needed to match [7] the current goal versus
the knowledge bases of already proved results, and which constitute the under-
lying glue [8] of the actual mathematical discourse. A large part of this glue
can be expressed in form of rewritings, allowing mathematicians to freely move
between different incarnations of the same entity without even mentioning the
transformation (sometimes referred to as Poincaré’s principle). For this reason,
the main component of Matita automation is a powerful paramodulation tool1

able to exploit the whole library of known equational facts (unit equalities) in
order to solve equational goals. Paramodulation is also used to supply matching
up to equational rewriting between a goal and a given statement, and this in turn
is used to support a simple, smooth but effective integration between equational
reasoning and a backward-based, Prolog-like resolution procedure. Again, this
automation tactic exploits the whole library of visible results, adopting a philos-
ophy already advocated and implemented by several successful systems (see e.g.
[18]), and contrasting with the approach of Coq, requiring the user to thoroughly
select a collection of theorems to be used. On the other side, we are not eager to
extend our SLD-approach to a more general resolution technique, since the pro-
log style, being closer to the LCF backward based procedural approach, allows
a better interaction between the user and the application, permitting the user
to drive the automatic search, e.g. by pruning or reordering the search space [6].

3 Formalizations

In the last years, Matita was successfully used in formalizations of considerable
complexity, spanning on the following areas:

Number theory. These formalizations include results about Möbius’s μ, Eu-
ler’s φ and Chebyshev’s ψ and θ functions, up to a fully arithmetical proof
of the property of prime numbers known as Bertrand’s postulate ([1,3]).

Constructive analysis. The main result is Lebesgue’s dominated convergence
theorem in the new, abstract setting of convex uniform spaces [20]. The for-
malization stresses some features peculiar of Matita, like coercions pullback.

Programming languages metatheory. Comprises the formalization of sev-
eral different solutions of part 1A of the POPLmark challenge [10], charac-
terized by a different treatment of binding structures.

Hardware formalization. Matita has been used to provide two realistic and
executable models of microprocessors for the Freescale 8-bit family and the
8051/8052 microprocessors respectively. The formalization also captures the
intensional behaviour, comprising exact execution times.

Software verification. Matita is employed in the FET Open EU Project
CerCo (Certified Complexity)2 [12] for the verification of the first formally

1 Matita paramodulation tool took part in the UEQ category of the 2009 CASC com-
petition ([26]), scoring better than Metis [14], Otter [17], and iProver [15].

2 The project CerCo acknowledges the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.
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certified complexity preserving compiler. The compiler, which targets the
8051 microprocessor, annotates the input program (in C) with the exact
computational cost of every O(1) program slice. The costs, that are depen-
dent on the compilation strategy, are directly computed from the generated
object code. Hence it will be possible to reason on a hard real time pro-
gram at the C level, knowing that the compiled code will have the same
behaviour. The formalization in Matita will include executable formal mod-
els of every intermediate languages, a dependently typed implementation of
the compiler, and the proof of preservation of extensional and intensional
properties.
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Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redundan-
cies in ontologies. The inexpressive Description Logic EL is of particular
interest in this context since, on the one hand, several large biomedical
ontologies are defined using EL. On the other hand, unification in EL has
recently been shown to be NP-complete, and thus of considerably lower
complexity than unification in other DLs of similarly restricted expres-
sive power. However, EL allows the use of the top concept (	), which
represents the whole interpretation domain, whereas the large medical
ontology SNOMED CT makes no use of this feature. Surprisingly, remov-
ing the top concept from EL makes the unification problem considerably
harder. More precisely, we will show in this paper that unification in EL
without the top concept is PSpace-complete.

1 Introduction

Description logics (DLs) [4] are a well-investigated family of logic-based knowl-
edge representation formalisms. They can be used to represent the relevant con-
cepts of an application domain using concept terms, which are built from concept
names and role names using certain concept constructors. The DL EL offers the
constructors conjunction (�), existential restriction (∃r.C), and the top concept
(�). From a semantic point of view, concept names and concept terms represent
sets of individuals, whereas roles represent binary relations between individuals.
The top concept is interpreted as the set of all individuals. For example, using
the concept names Male, Female, Person and the role names child, job, the con-
cept of persons having a son, a daughter, and a job can be represented by the
EL-concept term Person � ∃child.Male � ∃child.Female � ∃job.�.

In this example, the availability of the top concept in EL allows us to state
that the person has some job, without specifying any further to which concept
this job belongs. Knowledge representation systems based on DLs provide their
users with various inference services that allow them to deduce implicit knowl-
edge from the explicitly represented knowledge. For instance, the subsumption
� Supported by DFG under grant BA 1122/14-1.
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algorithm allows one to determine subconcept-superconcept relationships. For
example, the concept term ∃job.� subsumes (i.e., is a superconcept of) the con-
cept term ∃job.Boring since anyone that has a boring job at least has some job.
Two concept terms are called equivalent if they subsume each other, i.e., if they
are always interpreted as the same set of individuals.

The DL EL has recently drawn considerable attention since, on the one hand,
important inference problems such as the subsumption problem are polyno-
mial in EL [1,3]. On the other hand, though quite inexpressive, EL can be
used to define biomedical ontologies. For example, the large medical ontology
SNOMED CT1 can be expressed in EL. Actually, if one takes a closer look at
the concept definitions in SNOMED CT, then one sees that they do not contain
the top concept.

Unification in DLs has been proposed in [8] as a novel inference service that
can, for example, be used to detect redundancies in ontologies. For example,
assume that one knowledge engineer defines the concept of female professors as

Person � Female � ∃job.Professor,

whereas another knowledge engineer represent this notion in a somewhat differ-
ent way, e.g., by using the concept term

Woman � ∃job.(Teacher � Researcher).

These two concept terms are not equivalent, but they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by sub-
stituting the concept name Professor in the first term by the concept term
Teacher � Researcher and the concept name Woman in the second term by the
concept term Person � Female. We call a substitution that makes two concept
terms equivalent a unifier of the two terms. Such a unifier proposes definitions
for the concept names that are used as variables. In our example, we know that,
if we define Woman as Person � Female and Professor as Teacher � Researcher,
then the two concept terms from above are equivalent w.r.t. these definitions.

In [8] it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [5], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. The original unification algorithm for EL introduced in [5] was a brutal
“guess and then test” NP-algorithm, but we have since then also developed
more practical algorithms. On the one hand, in [7] we describe a goal-oriented
unification algorithm for EL, in which non-deterministic decisions are only made
if they are triggered by “unsolved parts” of the unification problem. On the other
hand, in [6], we present an algorithm that is based on a reduction to satisfiability
in propositional logic (SAT), and thus allows us to employ highly optimized
state-of-the-art SAT solvers for implementing an EL-unification algorithm.

As mentioned above, however, SNOMED CT is not formulated in EL, but
rather in its sub-logic EL−	, which differs from EL in that the use of the top
1 See http://www.ihtsdo.org/snomed-ct/
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Table 1. Syntax and semantics of EL and EL−�

Name Syntax Semantics EL EL−�

concept name A AI ⊆ DI x x

role name r rI ⊆ DI ×DI x x

top-concept 	 	I = DI x

conjunction C 
D (C 
D)I = CI ∩DI x x

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI} x x

subsumption C � D CI ⊆ DI x x

equivalence C ≡ D CI = DI x x

concept is disallowed. If we employ EL-unification to detect redundancies in
(extensions of) SNOMED CT, then a unifier may introduce concept terms that
contain the top concept, and thus propose definitions for concept names that are
of a form that is not used in SNOMED CT. Apart from this practical motivation
for investigating unification in EL−	, we also found it interesting to see how such
a small change in the logic influences the unification problem. Surprisingly, it
turned out that the complexity of the problem increases considerably (from NP
to PSpace). In addition, compared to EL-unification, quite different methods
had to be developed to actually solve EL−	-unification problems. In particular,
we will show in this paper, that—similar to the case of FL0-unification—EL−	-
unification can be reduced to solving certain language equations. In contrast to
the case of FL0-unification, these language equations can be solved in PSpace
rather than ExpTime, which we show by a reduction to the emptiness problem
for alternating automata on finite words. Complete proofs of the results presented
in this paper can be found in [2].

2 The Description Logics EL and EL−�

Starting with a set NC of concept names and a set NR of role names, EL-concept
terms are built using the concept constructors top-concept (�), conjunction (C�
D), and existential restriction (∃r.C for every r ∈ NR). The EL-concept term C
is an EL−	-concept term if � does not occur in C. Since EL−	-concept terms
are special EL-concept terms, many definitions and results transfer from EL to
EL−	, and thus we only formulate them for EL. We will explicitly mention it if
this is not the case.

The semantics of EL and EL−	 is defined in the usual way, using the notion of
an interpretation I = (DI , ·I), which consists of a nonempty domain DI and an
interpretation function ·I that assigns binary relations on DI to role names and
subsets of DI to concept terms, as shown in the semantics column of Table 1.
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The concept term C is subsumed by the concept term D (written C � D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C � D and D � C, i.e., iff CI = DI holds for all
interpretations I.

An EL-concept term is called an atom iff it is a concept name A ∈ NC or
an existential restriction ∃r.D. Concept names and existential restrictions ∃r.D,
where D is a concept name or �, are called flat atoms. The set At(C) of atoms
of an EL-concept term C consists of all the subterms of C that are atoms.
For example, C = A � ∃r.(B � ∃r.�) has the atom set At(C) = {A, ∃r.(B �
∃r.�), B, ∃r.�}. Obviously, any EL-concept term C is a conjunction C = C1 �
. . . � Cn of atoms and �. We call the atoms among C1, . . . , Cn the top-level
atoms of C. The EL-concept term C is called flat if all its top-level atoms are
flat. Subsumption in EL and EL−	 can be characterized as follows [7]:

Lemma 1. Let C = A1 � . . . �Ak � ∃r1.C1 � . . . � ∃rm.Cm and D = B1 � . . . �
Bl�∃s1.D1�. . .�∃sn.Dn be two EL-concept terms, where A1, . . . , Ak, B1, . . . , Bl

are concept names. Then C � D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . ,m} such that ri = sj and Ci � Dj.

In particular, this means that C � D iff for every top-level atom D′ of D there
is a top-level atom C′ of C such that C′ � D′.

Modulo equivalence, the subsumption relation is a partial order on concept
terms. In EL, the top concept � is the greatest element w.r.t. this order. In
EL−	, there are many incomparable maximal concept terms. We will see below
that these are exactly the EL−	-concept terms of the form ∃r1. · · · ∃rn.A for
n ≥ 0 role names r1, . . . , rn and a concept name A. We call such concept terms
particles . The set Part(C) of all particles of a given EL−	-concept term C is
defined as

– Part(C) := {C} if C is a concept name,
– Part(C) := {∃r.E | E ∈ Part(D)} if C = ∃r.D,
– Part(C) := Part(C1) ∪ Part(C2) if C = C1 � C2.

For example, the particles of C = A � ∃r.(A � ∃r.B) are A, ∃r.A, ∃r.∃r.B. Such
particles will play an important role in our EL−	-unification algorithm. The
next lemma states that particles are indeed the maximal concept terms w.r.t. to
subsumption in EL−	, and that the particles subsuming an EL−	-concept term
C are exactly the particles of C.

Lemma 2. Let C be an EL−	-concept term and B a particle.

1. If B � C, then B ≡ C.
2. B ∈ Part(C) iff C � B.

3 Unification in EL and EL−�

To define unification in EL and EL−	 simultaneously, let L ∈ {EL, EL−	}.
When defining unification in L, we assume that the set of concepts names is
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partitioned into a set Nv of concept variables (which may be replaced by sub-
stitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). An L-substitution σ is a mapping from Nv into the set of all
L-concept terms. This mapping is extended to concept terms in the usual way,
i.e., by replacing all occurrences of variables in the term by their σ-images. An
L-concept term is called ground if it contains no variables, and an L-substitution
σ is called ground if the concept terms σ(X) are ground for all X ∈ Nv.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution
σ is an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ , i.e., iff
σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called L-unifiable.

In the following, we will use the subsumption C �? D as an abbreviation for the
equation C �D ≡? C. Obviously, σ solves this equation iff σ(C) � σ(D).

Clearly, every EL−	-unification problem Γ is also an EL-unification problem.
Whether Γ is L-unifiable or not may depend, however, on whether L = EL
or L = EL−	. As an example, consider the problem Γ := {A �? X,B �? X},
where A,B are distinct concept constants and X is a concept variable. Obviously,
the substitution that replaces X by � is an EL-unifier of Γ . However, Γ does not
have an EL−	-unifier. In fact, for such a unifier σ, the EL−	-concept term σ(X)
would need to satisfy A � σ(X) and B � σ(X). Since A and B are particles,
Lemma 2 would imply A ≡ σ(X) ≡ B and thus A ≡ B, which is not the case.

It is easy to see that, for both L = EL and L = EL−	, an L-unification
problem Γ has an L-unifier iff it has a ground L-unifier σ that uses only concept
and role names occurring in Γ ,2 i.e., for all variables X , the L-concept term σ(X)
is a ground term that contains only such concept and role names. In addition,
we may without loss of generality restrict our attention to flat L-unification
problems, i.e., unification problems in which the left- and right-hand sides of
equations are flat L-concept terms (see, e.g., [7]).

Given a flat L-unification problem Γ , we denote by At(Γ ) the set of all atoms
of Γ , i.e., the union of all sets of atoms of the concept terms occurring in Γ . By
Var(Γ ) we denote the variables that occur in Γ , and by NV(Γ ) := At(Γ )\Var(Γ )
the set of all non-variable atoms of Γ .

EL-unification by guessing acyclic assignments

The NP-algorithm for EL-unification introduced in [5] guesses, for every vari-
able X occurring in Γ , a set S(X) of non-variable atoms of Γ . Given such an
assignment of sets of non-variable atoms to the variables in Γ , we say that the
variable X directly depends on the variable Y if Y occurs in an atom of S(X).
Let depends on be the transitive closure of directly depends on. If there is no
variable that depends on itself, then we call this assignment acyclic. In case the
guessed assignment is not acyclic, this run of the NP-algorithm returns “fail.”
2 Without loss of generality, we assume that Γ contains at least one concept name.
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Otherwise, there exists a strict linear order > on the variables occurring in Γ
such that X > Y if X depends on Y . One can then define the substitution γS

induced by the assignment S along this linear order:

– If X is the least variable w.r.t. >, then γS(X) is the conjunction of the
elements of S(X), where the empty conjunction is �.

– Assume γS(Y ) is defined for all variables Y < X . If S(X) = {D1, . . . , Dn},
then γS(X) := γS(D1) � . . . � γS(Dn).

The algorithm then tests whether the substitution γS computed this way is a
unifier of Γ . If this is the case, then this run returns γS; otherwise, it returns
“fail.” In [5] it is shown that Γ is unifiable iff there is a run of this algorithm on
input Γ that returns a substitution (which is then an EL-unifier of Γ ).

Why this does not work for EL−�

The EL-unifiers returned by the EL-unification algorithm sketched above need
not be EL−	-unifiers since some of the sets S(X) in the guessed assignment
may be empty, in which case γS(X) = �. This suggests the following simple
modification of the above algorithm: require that the guessed assignment is such
that all sets S(X) are nonempty. If such an assignment S is acyclic, then the
induced substitution γS is actually an EL−	-substitution, and thus the substi-
tutions returned by the modified algorithm are indeed EL−	-unifiers. However,
this modified algorithm does not always detect EL−	-unifiability, i.e., it may
return no substitution although the input problem is EL−	-unifiable.

As an example, consider the EL−	-unification problem

Γ := {A �B ≡? Y, B �C ≡? Z, ∃r.Y �? X, ∃r.Z �? X},

where X,Y, Z are concept variables and A,B,C are distinct concept constants.
We claim that, up to equivalence, the substitution that maps X to ∃r.B, Y to
A�B, and Z to B �C is the only EL−	-unifier of Γ . In fact, any EL−	-unifier
γ of Γ must map Y to A�B and Z to B�C, and thus satisfy ∃r.(A�B) � γ(X)
and ∃r.(B � C) � γ(X). Lemma 1 then yields that the only possible top-level
atom of γ(X) is ∃r.B. However, there is no non-variable atom D ∈ NV(Γ ) such
that γ(D) is equivalent to ∃r.B. This shows that Γ has an EL−	-unifier, but
this unifier cannot be computed by the modified algorithm sketched above.

The main idea underlying the EL−	-unification algorithm introduced in the
next section is that one starts with an EL-unifier, and then conjoins “appro-
priate” particles to the images of the variables that are replaced by � by this
unifier. It is, however, not so easy to decide which particles can be added this
way without turning the EL-unifier into an EL−	-substitution that no longer
solves the unification problem.

4 An EL−�-Unification Algorithm

In the following, let Γ be a flat EL−	-unification problem. Without loss of gen-
erality we assume that Γ consists of subsumptions of the form C1�. . .�Cn �? D
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for atoms C1, . . . , Cn, D. Our decision procedure for EL−	-unifiability proceeds
in four steps.

Step 1. If S is an acyclic assignment guessed by the EL-unification algorithm
sketched above, then D ∈ S(X) implies that the subsumption γS(X) � γS(D)
holds for the substitution γS induced by S. Instead of guessing just subsumptions
between variables and non-variable atoms, our EL−	-unification algorithm starts
with guessing subsumptions between arbitrary atoms of Γ . To be more precise,
it guesses a mapping τ : At(Γ )2 → {0, 1}, which specifies which subsumptions
between atoms of Γ should hold for the EL−	-unifier that it tries to generate: if
τ(D1, D2) = 1 for D1, D2 ∈ At(Γ ), then this means that the search for a unifier
is restricted (in this branch of the search tree) to substitutions γ satisfying
γ(D1) � γ(D2). Obviously, any such mapping τ also yields an assignment

Sτ (X) := {D ∈ NV(Γ ) | τ(X,D) = 1},

and we require that this assignment is acyclic and induces an EL-unifier of Γ .

Definition 2. The mapping τ : At(Γ )2 → {0, 1} is called a subsumption map-
ping for Γ if it satisfies the following three conditions:

1. It respects the properties of subsumption in EL:
(a) τ(D,D) = 1 for each D ∈ At(Γ ).
(b) τ(A1, A2) = 0 for distinct concept constants A1, A2 ∈ At(Γ ).
(c) τ(∃r.C1, ∃s.C2) = 0 for distinct r, s ∈ NR with ∃r.C1, ∃s.C2 ∈ At(Γ ).
(d) τ(A, ∃r.C) = τ(∃r.C,A) = 0 for each constant A ∈ At(Γ ), role name r

and variable or constant C with ∃r.C ∈ At(Γ ).
(e) If ∃r.C1, ∃r.C2 ∈ At(Γ ), then τ(∃r.C1, ∃r.C2) = τ(C1, C2).
(f) For all atoms D1, D2, D3 ∈ At(Γ ), if τ(D1, D2) = τ(D2, D3) = 1, then

τ(D1, D3) = 1.
2. It induces an EL-substitution, i.e., the assignment Sτ is acyclic and thus

induces a substitution γSτ

, which we will simply denote by γτ .
3. It respects the subsumptions of Γ , i.e., it satisfies the following conditions

for each subsumption C1 � . . . � Cn �? D in Γ :
(a) If D is a non-variable atom, then there is at least one Ci such that

τ(Ci, D) = 1.
(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈ NV(Γ ),

then there is at least one Ci with τ(Ci, C) = 1.

Though this is not really necessary for the proof of correctness of our EL−	-
unification algorithm, it can be shown that the substitution γτ induced by a
subsumption mapping τ for Γ is indeed an EL-unifier of Γ . It should be noted
that γτ need not be an EL−	-unifier of Γ . In addition, γτ need not agree with τ
on every subsumption between atoms of Γ . The reason for this is that τ specifies
subsumptions which should hold in the EL−	-unifier of Γ to be constructed. To
turn γτ into such an EL−	-unifier, we may have to add certain particles, and
these additions may invalidate subsumptions that hold for γτ . However, we will
ensure that no subsumption claimed by τ is invalidated.
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Step 2. In this step, we use τ to turn Γ into a unification problem that has only
variables on the right-hand sides of subsumptions. More precisely, we define
ΔΓ,τ := ΔΓ ∪Δτ , where

ΔΓ := {C1 � . . . � Cn �? X ∈ Γ | X is a variable of Γ},
Δτ := {C �? X | X is a variable and C an atom of Γ with τ(C,X) = 1}.

For an arbitrary EL−	-substitution σ, we define

Sσ(X) := {D ∈ NV(Γ ) | σ(X) � σ(D)},

and write Sτ ≤ Sσ if Sτ (X) ⊆ Sσ(X) for every variable X . The following
lemma states the connection between EL−	-unifiability of Γ and of ΔΓ,τ , using
the notation that we have just introduced.

Lemma 3. Let Γ be a flat EL−	-unification problem. Then the following state-
ments are equivalent for any EL−	-substitution σ:

1. σ is an EL−	-unifier of Γ .
2. There is a subsumption mapping τ : At(Γ )2 → {0, 1} for Γ such that σ is

an EL−	-unifier of ΔΓ,τ and Sτ ≤ Sσ.

Step 3. In this step, we characterize which particles can be added in order to
turn γτ into an EL−	-unifier σ of ΔΓ,τ satisfying Sτ ≤ Sσ. Recall that particles
are of the form ∃r1. · · · ∃rn.A for n ≥ 0 role names r1, . . . , rn and a concept name
A. We write such a particle as ∃w.A, where w = r1 · · · rn is viewed as a word
over the alphabet NR of all role names. If n = 0, then w is the empty word ε
and ∃ε.A is just A.

Admissible particles are determined by solutions of a system of linear language
inclusions. These linear inclusions are of the form

Xi ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn, (1)

where X1, . . . , Xn are indeterminates, i ∈ {1, . . . , n}, and each Li (i ∈ {0, . . . , n})
is a subset of NR ∪ {ε}. A solution θ of such an inclusion assigns sets of words
θ(Xi) ⊆ N∗

R to the indeterminates Xi such that θ(Xi) ⊆ L0 ∪ L1θ(X1) ∪ . . . ∪
Lnθ(Xn).

The unification problem ΔΓ,τ induces a finite system IΓ,τ of such inclusions.
The indeterminates of IΓ,τ are of the form XA, where X ∈ Nv and A ∈ Nc. For
each constant A ∈ Nc and each subsumption of the form C1 � . . . � Cn �? X ∈
ΔΓ,τ , we add the following inclusion to IΓ,τ :

XA ⊆ fA(C1) ∪ . . . ∪ fA(Cn), where

fA(C) :=

⎧⎪⎪⎨
⎪⎪⎩
{r}fA(C′) if C = ∃r.C′

YA if C = Y is a variable
{ε} if C = A
∅ if C ∈ Nc \ {A}
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Since ΔΓ,τ contains only flat atoms, these inclusion are indeed of the form (1).
We call a solution θ of IΓ,τ admissible if, for every variable X ∈ Nv, there is

a constant A ∈ Nc such that θ(XA) is nonempty. This condition will ensure that
we can add enough particles to turn γτ into an EL−	-substitution. In order to
obtain a substitution at all, only finitely many particles can be added. Thus, we
are interested in finite solutions of IΓ,τ , i.e., solutions θ such that all the sets
θ(XA) are finite.

Lemma 4. Let Γ be a flat EL−	-unification problem and τ a subsumption map-
ping for Γ . Then ΔΓ,τ has an EL−	-unifier σ with Sτ ≤ Sσ iff IΓ,τ has a finite,
admissible solution.

Proof sketch. Given a ground EL−	-unifier σ of ΔΓ,τ with Sτ ≤ Sσ, we define
for each concept variable X and concept constant A occurring in Γ :

θ(XA) := {w ∈ N∗
R | ∃w.A ∈ Part(σ(X))}.

It can then be shown that θ is a solution of IΓ,τ . This solution is finite since any
concept term has only finitely many particles, and it is admissible since σ is an
EL−	-substitution.

Conversely, let θ be a finite, admissible solution of IΓ,τ . We define the sub-
stitution σ by induction on the dependency order > induced by Sτ as follows.
Let X be a variable of Γ and assume that σ(Y ) has already been defined for all
variables Y with X > Y . Then we set

σ(X) :=
�

D∈Sτ (X)

σ(D) �
�

A∈Nc

�
w∈θ(XA)

∃w.A.

Since θ is finite and admissible, σ is a well-defined EL−	-substitution. It can be
shown that σ(X) is indeed an EL−	-unifier of ΔΓ,τ with Sτ ≤ Sσ. �!

Step 4. In this step we show how to test whether the system IΓ,τ of linear
language inclusions constructed in the previous step has a finite, admissible
solution or not. The main idea is to consider the greatest solution of IΓ,τ .

To be more precise, given a system of linear language inclusions I, we can
order the solutions of I by defining θ1 ⊆ θ2 iff θ1(X) ⊆ θ2(X) for all indeter-
minates X of I. Since θ∅, which assigns the empty set to each indeterminate of
I, is a solution of I and solutions are closed under argument-wise union, the
following clearly defines the (unique) greatest solution θ∗ of I w.r.t. this order:

θ∗(X) :=
⋃

θ solution of I
θ(X).

Lemma 5. Let X be an indeterminate in I and θ∗ the maximal solution of I.
If θ∗(X) is nonempty, then there is a finite solution θ of I such that θ(X) is
nonempty.
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Proof. Let w ∈ θ∗(X). We construct the finite solution θ of I by keeping only
the words of length |w|: for all indeterminates Y occurring in I we define

θ(Y ) := {u ∈ θ∗(Y ) | |u| ≤ |w|}.

By definition, we have w ∈ θ(X). To show that θ is indeed a solution of I,
consider an arbitrary inclusion Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I, and assume
that u ∈ θ(Y ). We must show that u ∈ L0 ∪ L1θ(X1) ∪ . . . ∪ Lnθ(Xn). Since
u ∈ θ∗(Y ) and θ∗ is a solution of I, we have (i) u ∈ L0 or (ii) u ∈ Liθ

∗(Xi) for
some i, 1 ≤ i ≤ n. In the first case, we are done. In the second case, u = αu′

for some α ∈ Li ⊆ NR ∪ {ε} and u′ ∈ θ∗(Xi). Since |u′| ≤ |u| ≤ |w|, we have
u′ ∈ θ(Xi), and thus u ∈ Liθ(Xi). �!

Lemma 6. There is a finite, admissible solution of IΓ,τ iff the maximal solution
θ∗ of IΓ,τ is admissible.

Proof. If IΓ,τ has a finite, admissible solution θ, then the maximal solution of
IΓ,τ contains this solution, and is thus also admissible.

Conversely, if θ∗ is admissible, then (by Lemma 5) for each X ∈ Var(Γ ) there
is a constant A(X) and a finite solution θX of IΓ,τ such that θX(XA(X)) �= ∅.
The union of these solutions θX for X ∈ Var(Γ ) is the desired finite, admissible
solution. �!

Given this lemma, it remains to show how we can test admissibility of the max-
imal solution θ∗ of IΓ,τ . For this purpose, it is obviously sufficient to be able
to test, for each indeterminate XA in IΓ,τ , whether θ∗(XA) is empty or not.
This can be achieved by representing the languages θ∗(XA) using alternating
finite automata with ε-transitions (ε-AFA), which are a special case of two-way
alternating finite automata. In fact, as shown in [11], the emptiness problem for
two-way alternating finite automata (and thus also for ε-AFA) is in PSpace.

Lemma 7. For each indeterminate XA in IΓ,τ , we can construct in polynomial
time in the size of IΓ,τ an ε-AFA A(X,A) such that the language L(A(X,A))
accepted by A(X,A) is equal to θ∗(XA), where θ∗ denotes the maximal solution
of IΓ,τ .

This finishes the description of our EL−	-unification algorithm. It remains to
argue why it is a PSpace decision procedure for EL−	-unifiability.

Theorem 1. The problem of deciding unifiability in EL−	 is in PSpace.

Proof. We show that the problem is in NPSpace, which is equal to PSpace by
Savitch’s theorem [14].

Let Γ be a flat EL−	-unification problem. By Lemma 3, Lemma 4, and
Lemma 6, we know that Γ is EL−	-unifiable iff there is a subsumption mapping
τ for Γ such that the maximal solution θ∗ of IΓ,τ is admissible.

Thus, we first guess a mapping τ : At(Γ )2 → {0, 1} and test whether τ is a
subsumption mapping for Γ . Guessing τ can clearly be done in NPSpace. For
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a given mapping τ , the test whether it is a subsumption mapping for Γ can be
done in polynomial time.

From τ we can first construct ΔΓ,τ and then IΓ,τ in polynomial time. Given
IΓ,τ , we then construct the (polynomially many) ε-AFA A(X,A), and test them
for emptiness. Since the emptiness problem for ε-AFA is in PSpace, this can
be achieved within PSpace. Given the results of these emptiness tests, we can
then check in polynomial time whether, for each concept variable X of Γ there
is a concept constant A of Γ such that θ∗(XA) = L(A(X,A)) �= ∅. If this is the
case, then θ∗ is admissible, and thus Γ is EL−	-unifiable. �!

5 PSpace-Hardness of EL−�-Unification

We show PSpace-hardness of EL−	-unification by reducing the PSpace-hard
intersection emptiness problem for deterministic finite automata (DFA) [12,9]
to the problem of deciding whether a given EL−	-unification problem has an
EL−	-unifier or not.

First, we define a translation from a given DFA A = (Q,Σ, q0, δ, F ) to a set
of subsumptions ΓA. In the following, we only consider automata that accept
a nonempty language. For such DFAs we can assume without loss of generality
that there is no state q ∈ Q that cannot be reached from q0 or from which F
cannot be reached. In fact, such states can be removed from A without changing
the accepted language.

For every state q ∈ Q, we introduce a concept variable Xq. We use only one
concept constant, A, and define NR := Σ. The set ΓA is defined as follows:

ΓA := {Lq �? Xq | q ∈ Q \ F} ∪ {A � Lq �? Xq | q ∈ F}, where

Lq :=
�

α∈Σ
δ(q,α) is defined

∃α.Xδ(q,α).

Note that the left-hand sides of the subsumptions in ΓA are indeed EL−	-concept
terms, i.e., the conjunctions on the left-hand sides are nonempty. In fact, every
state q ∈ Q is either a final state or a final state is reachable by a nonempty
path from q. In the first case, A occurs in the conjunction, and in the second,
there must be an α ∈ Σ such that δ(q, α) is defined, in which case ∃α.Xδ(q,α)

occurs in the conjunction.
The following lemma, which can easily be proved by induction on |w|, connects

particles occurring in EL−	-unifiers of ΓA to words accepted by states of the
DFA A.

Lemma 8. Let q ∈ Q, w ∈ Σ∗, and γ be a ground EL−	-unifier of ΓA with
γ(Xq) � ∃w.A. Then w ∈ L(Aq), where Aq := (Q,Σ, q, δ, F ) is obtained from
A by making q the initial state.

Together with Lemma 2, this lemma implies that, for every ground EL−	-unifier
γ of ΓA, the language {w ∈ Σ∗ | ∃w.A ∈ Part(γ(Xq0))} is contained in L(A).
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Conversely, we will show that for every word w accepted by A we can construct
a unifier γw such that ∃w.A ∈ Part(γw(Xq0)).

For the construction of γw, we first consider every q ∈ Q and try to find a
word uq of minimal length that is accepted by Aq. Such a word always exists
since we have assumed that we can reach F from every state. Taking arbitrary
such words is not sufficient, however. They need to be related in the following
sense.

Lemma 9. There exists a mapping from the states q ∈ Q to words uq ∈ L(Aq)
such that that either q ∈ F and uq = ε or there is a symbol α ∈ Σ such that
δ(q, α) is defined and uq = αuδ(q,α).

Proof. We construct the words uq by induction on the length n of a shortest
word accepted by Aq.

If n = 0, then q must be a final state. In this case, we set uq := ε.
Now, let q be a state such that a shortest word wq accepted by Aq has length

n > 0. Then wq = αw′ for α ∈ Σ and w′ ∈ Σ∗ and the transition δ(q, α) = q′ is
defined. The length of a shortest word accepted by Aq′ must be smaller than n,
since w′ is accepted by Aq′ . By induction, uq′ ∈ L(Aq′) has already been defined
and we have αuq′ ∈ L(Aq). Since αuq′ cannot be shorter than wq = αw′, it must
also be of length n. We now define uq := αuq′ . �!

We can now proceed with the definition of γw for a word w ∈ L(A). The (unique)
accepting run of A on w = w1 . . . wn yields a sequence of states q0, q1, . . . , qn

with qn ∈ F and δ(qi, wi+1) = qi+1 for every i ∈ {0, . . . , n − 1}. We define the
substitution γw as follows:

γw(Xq) := ∃uq.A �
�

i∈Iq

∃wi+1 . . . wn.A,

where Iq := {i ∈ {0, . . . , n − 1} | qi = q}. For every q ∈ Q, we include at least
the conjunct ∃uq.A in γw(Xq), and thus γw is in fact an EL−	-substitution.

Lemma 10. If w ∈ L(A), then γw is an EL−	-unifier of ΓA and γw(Xq0) �
∃w.A.

Proof. Let the unique accepting run of A on w = w1 . . . wn be given by the
sequence q0q1 . . . qn of states with qn ∈ F and δ(qi, wi+1) = qi+1 for every
i ∈ {0, . . . , n− 1}, and let γw be defined as above.

We must show that γw satisfies the subsumption constraints introduced in ΓA
for every state q ∈ Q: Lq �? Xq if q ∈ Q \ F and A � Lq �? Xq if q ∈ F , where

Lq :=
�

α∈Σ
δ(q,α) is defined

∃α.Xδ(q,α).
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To do this, we consider every top-level atom of γw(Xq) and show that it subsumes
the left-hand side of the above subsumption.

– Consider the conjunct ∃uq.A. If uq = ε, then q ∈ F and the left-hand side
contains the conjunct A. In this case, the subsumption is satisfied. Otherwise,
there is a symbol α ∈ Σ such that q′ := δ(q, α) is defined and uq = αuq′ .
Since ∃uq′ .A is a top-level atom of γw(Xq′), we have γ(Xq′) � ∃uq′ .A, and
thus γw(Lq) � ∃α.γw(Xq′) � ∃uq.A.

– Let i ∈ Iq, i.e., qi = q, and consider the conjunct ∃wi+1 . . . wn.A. Since we
have δ(qi, wi+1) = qi+1 and ∃wi+2 . . . wn.A is a conjunct of γw(Xqi+1),3 we
obtain γw(Lq) � ∃wi+1.γw(Xqi+1) � ∃wi+1∃wi+2 . . . wn.A = ∃wi+1 . . . wn.A.

This shows that γw is a ground EL−	-unifier of ΓA. Furthermore, since 0 ∈
Iq0 , the particle ∃w1 . . . wn.A = ∃w.A is a top-level atom of γw(Xq0), and thus
γw(Xq0) � ∃w.A. �!

For the intersection emptiness problem one considers finitely many DFAs
A1, . . . ,Ak, and asks whether L(A1) ∩ . . . ∩ L(Ak) �= ∅. Since this problem
is trivially solvable in polynomial time in case L(Ai) = ∅ for some i, 1 ≤ i ≤ k,
we can assume that the languages L(Ai) are all nonempty. Thus, we can also
assume without loss of generality that the automata Ai = (Qi, Σ, q0,i, δi, Fi)
have pairwise disjoint sets of states Qi and are reduced in the sense introduced
above, i.e., there is no state that cannot be reached from the initial state or from
which no final state can be reached. The flat EL−	-unification problem Γ is now
defined as follows:

Γ :=
⋃

i∈{1,...,k}

(
ΓAi ∪ {Xq0,i �? Y }

)
,

where Y is a new variable not contained in ΓAi for i = 1, . . . , k.

Lemma 11. Γ is unifiable in EL−	 iff L(A1) ∩ . . . ∩ L(Ak) �= ∅.

Proof. If Γ is unifiable in EL−	, then it has a ground EL−	-unifier γ and there
must be a particle ∃w.A with w ∈ Σ∗ and γ(Y ) � ∃w.A. Since γ(Xq0,i) �
γ(Y ) � ∃w.A, Lemma 8 yields w ∈ L(Ai,q0,i ) = L(Ai) for each i ∈ {1, . . . , k}.
Thus, the intersection of the languages L(Ai) is nonempty.

Conversely, let w ∈ Σ∗ be a word with w ∈ L(A1)∩. . .∩L(Ak). By Lemma 10,
we have for each of the unification problems ΓAi an EL−	-unifier γw,i such that
γw,i(Xq0,i) � ∃w.A. Since the automata have disjoint state sets, the unification
problems ΓAi do not share variables. Thus, we can combine the unifiers γw,i into
an EL−	-substitution γ by defining γ(Y ) := ∃w.A and γ(Xq) := γw,i(Xq) for
each i ∈ {1, . . . , k} and q ∈ Qi. Obviously, this is an EL−	-unifier of Γ since it
satisfies the additional subsumptions Xq0,i �? Y . �!

Since the intersection emptiness problem for DFAs is PSpace-hard [12,9], this
lemma immediately yields our final theorem:
3 If i = n− 1, then ∃wi+2 . . . wn.A = A.
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Theorem 2. The problem of deciding unifiability in EL−	 is PSpace-hard.

6 Conclusion

Unification in EL was introduced in [5] as an inference service that can sup-
port the detection of redundancies in large biomedical ontologies, which are
frequently written in this DL. Motivated by the fact that the large medical
ontology SNOMED CT actually does not use the top concept available in EL,
we have in this paper investigated unification in EL−	, which is obtained from
EL by removing the top concept. More precisely, SNOMED CT is a so-called
acyclic EL−	-TBox,4 rather than a collection of EL−	-concept terms. However,
as shown in [7], acyclic TBoxes can be easily handled by a unification algorithm
for concept terms.

Surprisingly, it has turned out that the complexity of unification in EL−	

(PSpace) is considerably higher than of unification in EL (NP). From a theo-
retical point of view, this result is interesting since it provides us with a natural
example where reducing the expressiveness of a given DL (in a rather minor way)
results in a drastic increase of the complexity of the unifiability problem. Regard-
ing the complexity of unification in more expressive DLs, not much is known. If
we add negation to EL, then we obtain the well-known DL ALC, which corre-
sponds to the basic (multi-)modal logic K [15]. Decidability of unification in K
is a long-standing open problem. Recently, undecidability of unification in some
extensions of K (for example, by the universal modality) was shown in [18]. These
undecidability results also imply undecidability of unification in some expressive
DLs (e.g., in SHIQ [10]).

Apart from its theoretical interest, the result of this paper also has practical
implications. Whereas practically rather efficient unification algorithm for EL
can readily be obtained by a translation into SAT [6], it is not so clear how to
turn the PSpace algorithm for EL−	-unification introduced in this paper into
a practically useful algorithm. One possibility could be to use a SAT modulo
theories (SMT) approach [13]. The idea is that the SAT solver is used to generate
all possible subsumption mappings for Γ , and that the theory solver tests the
system IΓ,τ induced by τ for the existence of a finite, admissible solution. How
well this works will mainly depend on whether we can develop such a theory
solver that satisfies well all the requirements imposed by the SMT approach.

Another topic for future research is how to actually compute EL−	-unifiers
for a unifiable EL−	-unification problem. In principle, our decision procedure
is constructive in the sense that, from appropriate successful runs of the ε-AFA
A(X,A), one can construct a finite, admissible solution of IΓ,τ , and from this an
EL−	-unifier of Γ . However, this needs to be made more explicit, and we need
to investigate what kind of EL−	-unifiers can be computed this way.

4 Note that the right-identity rules in SNOMED CT [16] are actually not expressed
using complex role inclusion axioms, but through the SEP-triplet encoding [17].
Thus, complex role inclusion axioms are not relevant here.
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Abstract. Many applications of automated deduction require reasoning modulo
background theories, in particular some form of integer arithmetic. Developing
corresponding automated reasoning systems that are also able to deal with quan-
tified formulas has recently been an active area of research. We contribute to
this line of research and propose a novel instantiation-based method for a large
fragment of first-order logic with equality modulo a given complete background
theory, such as linear integer arithmetic. The new calculus is an extension of the
Model Evolution Calculus with Equality, a first-order logic version of the propo-
sitional DPLL procedure, including its ordering-based redundancy criteria. We
present a basic version of the calculus and prove it sound and (refutationally)
complete under certain conditions1.

1 Introduction

Many applications of automated deduction require reasoning modulo background theo-
ries, in particular some form of integer arithmetic. Developing sophisticated automated
reasoning systems that are also able to deal with quantified formulas has recently been
an active area of research [6,8,10,3,1]. We contribute to this line of research and propose
a novel instantiation-based method for a large fragment of first-order logic with equality
modulo a given complete background theory, such as linear integer arithmetic. The new
calculus, MEE(T), is an extension of the Model Evolution calculus with equality [4],
a first-order logic version of the propositional DPLL procedure, including its ordering-
based redundancy criteria as recently developed in [5]. At the same time, MEE(T) is a
generalization wrt. these features of the earlier ME(LIA) calculus [3].

Instantiation based methods, including Model Evolution, have proven to be a suc-
cessful alternative to classical, saturation-based automated theorem proving methods.
This then justifies attempts to develop theory-reasoning versions of them, even if their
input logic or their associated decidability results are not new. As one of these exten-
sions, we think MEE(T) is relevant in particular for its versatility since it combines pow-
erful techniques for first-order equational logic with equality, based on an adaptation of
the Bachmair-Ganzinger theory of superposition, with a black-box theory reasoner. In
this sense, MEE(T) is similar to the hierarchic superposition calculus [1,2].
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MEE(T) also relates to DPLL(T ) [9], a main approach for theorem proving modulo
theories. DPLL(T ) is essentially limited to the ground case and resorts to incomplete
or ineÆcient heuristics to deal with quantified formulas [7, e.g.]. In fact, addressing
this intrinsic limitation by lifting DPLL(T ) to the first-order level is one of the main
motivations for MEE(T), much like lifting the propositional DPLL procedure to the
first-order level while preserving its good properties was the main motivation for Model
Evolution.

One possible application of MEE(T) is in finite model reasoning. For example, the
three formulas 1 � a � 100, P(a) and �P(x) � 1 � x � x � 100 together are un-
satisfiable, when a is a constant and T is a theory of the integers. Finite model finders,
e.g., need about 100 steps to refute the clause set, one for each possible value of a.
Our calculus, on the other hand, can reason directly with integer intervals and allows
a refutation in O(1) steps. See Section 7 for further discussion of how this is achieved,
variations of the example, and considerations on MEE(T) as a decision procedure.

The most promising applications of MEE(T) could be in software verification. Quite
frequently, proof obligations arise there that require quantified formulas to define data
structures with specific properties, e.g., ordered lists or ordered arrays, and to prove
that these properties are preserved under certain operations, e.g., when an element is
inserted at an appropriate position. In the array case, one could define ordered arrays
with an axiom of the form “for all i� j with 0 � i � j � m, a[i] � a[ j]”, where i and
j are variables and m is a parameter, all integer-valued. Our calculus natively supports
parameters like m and is well suited to reason with bounded quantification like the one
above. In general, parameters like m must be additionally constrained to a finite domain
for the calculus to be e�ective, see again Section 7.

The general idea behind our calculus with respect to theory reasoning is to use
rigid variables to represent individual, but not yet known, elements of the background
domain, and instantiate them as needed to carry the derivation forward. As a sim-
ple example without parameters, consider the clauses f (x) � g(x) � x � 5 and
�( f (y � y) � g(8)). These clauses will be refuted, essentially, by checking satisfia-
bility of the set �v1 � v2 � v2� v1 � 5� v1 � 8� of constraints over rigid variables and
(ordered) paramodulation inferences for reasoning with the equations in these clauses.

2 Preliminaries

We work in the context of standard many-sorted logic with first-order signatures
comprised of sorts and operators (i.e., function symbols and predicate symbols) of
given arities over these sorts. We rely on the usual notions of structure, (well-sorted)
term�formula, satisfiability, and so on. If � is a sorted signature and X a set of sorted
variables we will call �(X)-term (resp. -formula) a well-sorted term (resp. formula)
built with symbols from � and variables from X. The notation �(X1� X2) is a shorthand
for �(X1 � X2).

Syntax. For simplicity, we consider here only signatures with at most two sorts: a back-
ground sort B and a foreground sort F. We assume a background signature �B having
B as the only sort and an at most countable set of operators that includes an (infix)
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equality predicate symbol � of arity B 	 B. We will write s � t as an abbreviation of
�(s � t). We fix an infinite set XB of B-variables, variables of sort B.

We assume a complete first-order background theory T of signature �B all of whose
models interpret � as the identity relation. Since T is complete and we do not extend
�B in any essential way with respect to T , we can specify it with no loss of gener-
ality simply as a �B-structure. We call the set 
B
 that T associates to the sort B the
background domain. We assume, again with no loss of generality, that 
B
 is at most
countably infinite and all of its elements are included in � as B-constant symbols.Our
running example for T will be the theory of linear integer arithmetic (LIA). For that ex-
ample, �B’s operators are ��� and all the integer constants, all with the expected arities,
T is the structure of the integer numbers with those operators, and 
B
 � �0��1��2� � � ��.

We will consider formulas over an expanded signature ��

B and expanded set of vari-
ables XB � V where ��

B is obtained by adding to �B an infinite set � of parameters,
free constants of sort B, and V is a set of B-variables not in XB, which we call rigid
variables. The function and predicate symbols of ��

B are collectively referred to as the
background operators. We call (background) constraint any formula in the closure of
the set of ��

B (XB�V)-atoms under conjunction, negation and existential quantification
of variables.2 A closed constraint is a constraint with no free variables (but possibly
with rigid variables).

Note that rigid variables always occur free in a constraint. We will always in-
terpret distinct rigid variables in a constraint as distinct elements of 
B
. Intuitively,
in the calculus presented here, a rigid variable v will stand for a specific, but un-
specified, background domain element, and will be introduced during proof search
similarly to rigid variables in free-variable tableaux calculi. In contrast, parame-
ters will be free constants in input formulas, standing for arbitrary domain val-
ues.

The full signature � for our calculus is obtained by adding to ��
B the foreground

sort F, function symbols of given arities over B and F, and one infix equality predicate
symbol,�, of arity F	F. The new function symbols and � are the foreground operators.
As usual, we do not consider additional foreground predicate symbols because they can
be encoded as function symbols, e.g., an atom of the form P(t1� � � � � tn) can be encoded
as P(t1� � � � � tn) � tt, where tt is a new, otherwise unused, foreground constant. For
convenience, however, in examples we will often write the former and mean the latter.
Since � will always denote a congruence relation, we will identify s � t with t � s.

Let XF be an infinite set of F-variables, variables of sort F, disjoint from XB and V ,
and let X � XB � XF. When we say just “variable” we will always mean a variable in
X, not a rigid variable.

The calculus takes as input �(X)-formulas of a specific form, defined later, and ma-
nipulate more generally �(X�V) formulas, i.e., formulas possibly containing rigid vari-
ables. We use, possibly with subscripts, the letters �x� y�� �u� v�, �a� b�, and � f � e� to denote
respectively regular variables (those in X), rigid variables, parameters, and foreground
function symbols.

2 The calculus needs a decision procedure only for the validity of the ��-fragment over the class
of constraints used in input formulas. When such formulas contain no parameters, a decision
procedure for the �-fragment is suÆcient.
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To simplify the presentation here, we restrict the return sort of all foreground func-
tion symbols to be F . This is a true restriction for non-constant function symbols (fore-
ground constant symbols of sort B can be supplied as parameters instead). For example,
if � is the signature of lists of integers, with T being again LIA and F being the list
sort, our logic allows formulas like cdr(cons(x� y)) � y but not car(cons(x� y)) � x, as
car would be integer-sorted. To overcome this limitation somewhat, one could turn car
into a predicate symbol and use car(cons(x� y)� x) instead, together with the (univer-
sal) functionality constraint �car(x� y) � �car(x� z) � y � z. This solution is however
approximate as it does not include a totality restriction on the new predicate symbols.

A term is a (well-sorted) �(X�V)-term, a formula is a (well-sorted) �(X�V)-formula.
A foreground term is a term with no operators from ��

B . Foreground atoms, literals, and
formulas are defined analogously. An ordinary foreground clause is a multiset of fore-
ground literals, usually written as a disjunction. A background term is a (well-sorted)
��

B (XB�V)-term. Note that background terms are always B-sorted and vice versa. Fore-
ground terms are made of foreground symbols, variables and rigid variables; they are all
F-sorted unless they are rigid variables. A ground term is a term with no variables and
no rigid variables. A Herbrand term is a ground term whose only background subterms
are background domain elements. Intuitively, Herbrand terms do not contain symbols
that need external evaluation, i.e., they contain no parameters, no variables, and no rigid
variables. For example, f (e� 1) and 1 are Herbrand terms, but f (v� 1) and f (a� 1) are not.

A substitution is a mapping � from variables to terms that is sort respecting, that is,
maps each variable x  X to a term of the same sort. We write substitution application in
postfix form and extend the notation to (multi)sets S of terms or formulas as expected,
that is, S� � �F� 
 F  S �. The domain of a substitution � is the set dom(�) � �x 
 x �
x��. We work with substitutions with finite domains only. A Herbrand substitution is a
substitution that maps every variable to a Herbrand term. We denote by fvar(F) the set
of non-rigid variables that occur free in F, where F is a term or formula.

Semantics. An interpretation I is any �-structure augmented to include an injective,
possibly partial, mapping from the set V of rigid variables to the domain of B in I. We
will be interested primarily in Herbrand interpretations, defined below.

Definition 2.1 (Herbrand interpretations). A (T -based) Herbrand interpretation is
any interpretation I that (i) is identical to T over the symbols of �B, (ii) interprets ev-
ery foreground n-ary function symbol f as itself, i.e., f I(d1� � � � � dn) � f (d1� � � � � dn) for
every tuple (d1� � � � � dn) of domain elements from the proper domain, and (iii) interprets
� as a congruence relation on F-sorted Herbrand terms.3

A (parameter) valuation � is a mapping from � to 
B
. An assignment 	 is an injective
mapping from a (finite or infinite) subset of V to 
B
. The range of 	 is denoted by
ran(	). Since T is fixed, a Herbrand interpretation I is completely characterized by a
congruence relation on the Herbrand terms, a valuation � and an assignment 	.

An assignment 	 is suitable for a formula or set of formulas F if its domain includes
all the rigid variables occurring in F. Since all the elements of 
B
 are constants of �B we
will often treat assignments and valuations similarly to substitutions. For any Herbrand

3 Note that Condition (iii) is well defined because, by Condition (ii), the interpretation of the
sort F is the set of all F-sorted Herbrand terms.
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interpretation I, valuation � and assignment 	, we denote by I[�] the interpretation that
agrees with � on the meaning of the parameters (that is, aI � a� for all a  �) and is
otherwise identical to I; we denote by I[	] the interpretation that agrees with 	 on the
meaning of the rigid variables in 	’s domain and is otherwise identical to I. We write
I[�� 	] as a shorthand for I[�][	].

The symbols I, 	 and � we will always denote respectively Herbrand interpretations,
assignments and valuations. Hence, we will often use the symbols directly, without
further qualification. We will do the same for other selected symbols introduced later.
Also, we will often implicitly assume that 	 is suitable for the formulas in its context.

Definition 2.2 (Satisfaction of constraints). Let c be a closed constraint. For all �
and all 	 suitable for c, the pair (�� 	) satisfies c, written as (�� 	) 
� c, if T 
� c�	 in
the standard sense.4 If 	 is suitable for a set 
 of closed constraints, (�� 	) satisfies 
,
written (�� 	) 
� 
, i� (�� 	) satisfies every c  
.

The set 
 above is satisfiable if (�� 	) 
� 
, for some � and 	. Since constraints contain
no foreground symbols, for any interpretation I[�� 	], I[�� 	] 
� c i� (�� 	) 
� c.

The satisfiability of arbitrary closed constraints, which may contain rigid variables,
reduces in a straightforward way to the satisfiability of �B-constraints without rigid
variables, and so can be decided by any decision procedure for the latter. It requires
only to read parameters and rigid variables as variables in the usual sense, and to conjoin
disequality constraints u � v for all distinct rigid variables u and v that occur in c.

Finally, we assume a reduction ordering � that is total on the Herbrand terms.5 We
also require that � is stable under assignments, i.e., if s � t then s	 � t	, for every
suitable assignment 	 for s and t. The ordering � is extended to literals over Herbrand
terms by identifying a positive literal s � t with the multiset �s� t�, a negative literal
�(s � t) with the multiset �s� s� t� t�, and using the multiset extension of �. Multisets of
literals are compared by the multiset extension of that ordering, also denoted by �.

3 Contexts and Constrained Clauses

Our calculus maintains two data structures for representing Herbrand interpretations: a
foreground context �, a set of foreground literals, for the foreground operators; and a
background context 
, a set of closed constraints, for valuations and assignments. The
elements of � are called context literals. We identify every foreground context� with its
closure under renaming of (regular) variables, and assume it contains a pseudo-literal of
the form �x. A foreground literal K is contradictory with � if K  �, where K denotes
the complement of K. � itself is contradictory if it contains a literal that is contradictory
with �. We will work only with non-contradictory contexts.

For any foreground literals K and L, we write K � L i� L is an instance of K, i.e.,
i� there is a substitution � such that K� � L. We write K � L i� K and L are variants,
equivalently, i� K � L and L � K. We write K � L i� K � L but L � K.

4 Observe that the test T �� c�� is well formed because c�� is closed and contains neither
parameters nor rigid variables.

5 A reduction ordering is a strict, well-founded ordering on terms that is compatible with con-
texts, i.e., s � t implies f [s] � f [t], and stable under substitutions, i.e., s � t implies s� � t�.
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Definition 3.1 (Productivity). Let K� L be foreground literals. We say that K produces
L in � if (i) K � L, and (ii) there is no K�  � such that K � K� � L.

Since foreground contexts contain the pseudo-literal �x, it is not diÆcult to see that �
produces at least one of K and K, for every � and literal K.

The calculus works with constrained clauses, expressions of the form C � R � c
where R is a multiset of foreground literals, the set of context restrictions, C is an
ordinary foreground clause, and c is a (background) constraint with fvar(c) � fvar(C) �
fvar(R). When C is empty we write it as �. When R is empty, we write the constrained
clause more simply as C � c. The calculus takes as input only clauses of the latter
form, hence we call such clauses input constrained clauses. Below we will often speak
of (input) clauses instead of (input) constrained clauses when no confusion can arise.

We can turn any expression of the form C � c where C is an arbitrary ordinary
�-clause and c a constraint into an input clause by abstracting out o�ending subterms
from C, moving them to the constraint side of�, and existentially quantifying variables
in the constraint side that do not occur in the clause side. For example, P(a� v� x � 5) �
x � v becomes P(x1� v� x2) � �x (x � v � x1 � a � x2 � x � 5). As will be clear later,
this transformation preserves the semantics of the original expression.

The variables of input clauses are implicitly universally quantified. Because the back-
ground domain elements (such as, e.g., 0� 1��1� � � �) are also background constants, we
can define the semantics of input clauses in terms of Herbrand interpretations. To do
that, we need one auxiliary definition first.

If � is a Herbrand substitution and C � c an input clause, the clause (C � c)� �

C� � c� is a Herbrand instance of C � c. For example, (P(v� x� y) � x � a)� is
P(v� 1� f (1� e)) � 1 � a if � � �x �� 1� y �� f (1� e)� � � ��. A Herbrand instance C � c
can be evaluated directly by an interpretation I[	], for suitable 	: we say that I[	]
satisfies C � c, written I[	] 
� C � c if I[	] 
� C � �c. For input clauses C � c we
say that I[	] satisfies C � c i� I[	] satisfies every Herbrand instance of C � c.

Definition 3.2 (Satisfaction of sets of formulas). Let  be a set of input clauses and
closed constraints. We say that I[	] satisfies , written as I[	] 
� , if I[	] 
� F, for
every F  .

We say that  is satisfiable if some I[	] satisfies F. Let G be an input clause or closed
constraint. We say that  entails G, written as  
� G, if for every suitable assignment
	 for  and G, every interpretation I[	] that satisfies  also satisfies G.

The definition of satisfaction of general constrained clauses C � R � c, with a non-
empty restriction R, is more complex because in our completeness argument for the
calculus C is evaluated semantically, with respect to Herbrand interpretations induced
by a context, whereas R is evaluated syntactically, with respect to productivity in a
context. Moreover, constrained clause satisfaction is not definable purely at the ground
level but requires a suitable notion of Herbrand closure.

Definition 3.3 (Herbrand closure). Let � be a Herbrand substitution. The pair (C �

R � c� �) is a Herbrand closure (of C � R � c).

Context restrictions are evaluated in terms of productivity by applying an assignment to
the involved rigid variables first. To this end, we will use evaluated contexts �	 � �K	 
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K  ��. By the injectivity of 	, the notions above on contexts apply isomorphically
after evaluation by 	. For instance, K produces L in � i� K	 produces L	 in �	.

Definition 3.4 (Satisfaction of context restrictions). Let R be a set of context re-
strictions and � a Herbrand substitution. The pair (�� 	) satisfies (R� �), written as
(�� 	) 
� (R� �), if

(i) R	� contains no trivial literals, of the form t � t or �(t � t), and for every l � r 
R	�, if l � r then l is not a variable, and

(ii) for every K  R	 there is an L  �	 that produces both K and K� in �	.

Point (i) makes paramodulation into variables unnecessary for completeness in the cal-
culus.

Definition 3.5 (Satisfaction of Herbrand closures). A triple (�� 	� I) satisfies (C �

R � c� �), written as (�� 	� I) 
� (C � R � c� �), i� (�� 	) �
� (R� �) or I 
� (C � c)�.

We will use Definition 3.5 always with I � I[	]. The component � in the previous
definition is irrelevant for input clauses (where R � �), and satisfaction of Herbrand
closures and Herbrand instances coincide then. Formally, (�� 	� I[	]) 
� (C � � � c� �)
if and only if I[	] 
� (C � c)�.

In our soundness arguments for the calculus a constrained clause C � R �c will stand
for the �-formula C � (

�
L�R L) � �c. We call the latter the clause form of C � R � c

and denote it by (C � R � c)c. If � is a set of clauses, �c � �Fc 
 F  ��.

4 Core Inference Rules

The calculus works on sequents of the form � � 
 � �, where � � 
 is a context and
� is a set of constrained clauses. It has five core inference rules: Ref, Para, Pos-Res,
Split and Close. In their description, if S is a set and a is an element, we will write S � a
as an abbreviation of S � �a�.

The first two inference rules perform equality reasoning at the foreground level.

Ref
� � 
 � �

� � 
 � �� (C � R � c)�

if � contains a clause �(s � t) � C � R � c, the selected clause, and � is an mgu of s
and t. The new clause in the conclusion is the derived clause.

The next inference rule is a variant of ordered paramodulation.

Para
� � 
 � �

� � 
 � �� (L[r] � C � (R � �l � r�) � c)�

if l � r  � and � contains a clause L[s] � C � R � c, the selected clause, such that
(i) � is an mgu of l and s, (ii) s is neither a variable nor a rigid variable, (iii) r� � l�,
and (iv) l � r produces (l � r)� in �. The context literal l � r is the selected context
equation, and the new clause in the conclusion is the derived clause.
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We can a�ord to not paramodulate into rigid variables s, as these are B-sorted, and
the resulting unifier with (an F-sorted variable) l would be ill-sorted. The equation l � r
is added to R to preserve soundness.

For example, if � � � f (x� y� e) � x� then the clause P( f (x� e� y))� y � e � � � x � 5
paramodulates into P(x) � e � e � f (x� e� e) � x � x � 5.

Let C � L1 � � � � � Ln be an ordinary foreground clause with n � 0. We say that a
substitution � is a context unifier of C against � if there are literals K1� � � � �Kn  � such
that � is a simultaneous most general unifier of the sets �K1� L1�� � � � � �Kn� Ln�. We say
that � is productive i� Ki produces Li� in �, for all i � 1� � � � � n.

For any ordinary foreground clause, let C � �L 
 L  C�.

Pos-Res
� � 
 � �

� � 
 � �� (�� (R � C) � c)�

if � contains a clause of the form C � R � c, the selected clause, such that (i) C � �

and C consists of positive literals only, and (ii) � is a productive context unifier of C
against �. The new clause in the conclusion is the derived clause.

For example, if � � ��P(e)�, from f (x� y� z) � g(y) � P(x) � � � y � 5 one gets
�� ��( f (e� y� z) � g(y))��P(e)� � y � 5. (Recall that � implicitly contains �x.)

Intuitively, Pos-Res is applied when all literals in the ordinary clause part of a clause
have been suÆciently processed by the equality inference rules Para and Ref and turns
them into context restrictions. Deriving an empty constrained clause this way does not
necessary produce a contradiction, as the clause could be satisfied, in an interpreta-
tion that falsifies its context restriction or falsifies its constraint. The Split rule below
considers this possibility.

The rule has side conditions that treat context literals as constrained clauses. For-
mally, let �(e�n) � �K(e�n) � � 
 K  �� be the clause form of �, where K(e�n) is
the context literal obtained from K by replacing every foreground variable by a fixed
foreground constant e and replacing every background variable by a fixed background
domain element n. We say that (C � R � c)Æ is a domain instance of a clause C � R � c
if Æ moves every B-sorted variable of fvar(c) to a rigid variable and does not move the
other variables of fvar(c).

Split
� � 
 � �

��K � 
� c � � ��K � 
� � �

if there is a domain instance (� � R � c) of some clause in � such that (i) K  R and
neither K nor K is contradictory with �, (ii) for every L  R, � produces L, (iii) 
 � �c�
is satisfiable, and (iv) 
� is any satisfiable background context such that 
 � �c� � 
�

and (� � K)(e�n) � �c � 
� is not satisfiable, if such a 
� exists, or else 
� � 
 � �c�.
The clause �� R � c is the selected clause, and the literal K is the split literal.

For example, if � � ��P(e)� and � contains �� ��( f (e� y� z) � g(y))��P(e) � y � 5,
where y is B-sorted and the sort of z is irrelevant, the domain instance could be � �

��( f (e� v1� z) � g(v1))��P(e)� � v1 � 5, and the split literal then is f (e� v1� z) � g(v1).
The set � can also be seen to implicitly contain with each clause all its domain

instances, and taking one of those as the selected clause for Split.
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While splitting is done in a complementary way, as in earlier ME calculi, background
contexts are global to derivations. Moreover, all constraints added to 
 in the course of
the further derivation of the left branch need to be present in the right branch as well.
This is modeled by Condition (iv). The branch 
� can be obtained in a constructive way
by trying to extend the left branch to a refutation sub-tree, which, if successful, gives
the desired 
�. If not successful, no matter if finite or infinite, the input clause set is
satisfiable, and the derivation need not return to the right branch anyway. We remark
that extending background constraints, as done by Split (and Close and Restrict below)
causes no soundness problems, as our soundness theorem applies relative to derived
background contexts only. See Section 7 for details and how soundness in the usual
sense is recovered.

Close
� � 
 � �

� � 
� c � �� (�� � � �)

if � contains a clause �� R � c such that (i) R � �, and (ii) 
 � �c� is satisfiable. The
clause �� R � c is the selected clause.

5 Model Construction, Redundancy and Static Completeness

In this section we show how to derive from a sequent � � 
 � � an intended inter-
pretation I[�� �� 	] as a canonical candidate model for �. Its components � and 	 will
be determined first by 
, and its congruence relation will be presented by a convergent
ground rewrite system ���� extracted from � and 	. The general technique for defining
���� is borrowed from the completeness proof of the Superposition calculus and the
earlier MEE calculus.

A rewrite rule is an expression of the form l � r where l and r are F-sorted Herbrand
terms. A rewrite system is a set of rewrite rules. The rewrite systems constructed below
will be ordered, that is, consist of rules of the form l � r such that l � r. For a given
� and suitable assignment 	, we define by induction on the term ordering � sets �K and
�K for every ground equation K between F-sorted Herbrand-terms. Assume that �L has
already been defined for all such L with K � L. Let �K �

�
K�L �L, where

�l�r �

�
�l � r� if �	 produces l � r, l � r, and l and r are irreducible wrt �l�r

� otherwise

Finally define ���� �
�

K �K . If �l�r � l � r we say that l � r generates l � r in ����.
For example, if � � �P(x)��P(v)� and 	 � �v �� 1� then ���� contains P(0) � tt,

P(�1) � tt, P(�2) � tt, P(2) � tt, P(�3) � tt, P(3) � tt� � � � but not P(1) � tt, which
is irreducible, but P(1) � tt is not produced by �	.

Definition 5.1 (Induced interpretation). Let � be a context, � a valuation, and 	

a suitable assignment for �. The interpretation induced by �, � and 	, written as
I[�� �� 	], is the Herbrand interpretation I[�� 	] that interprets foreground equality as
��
���

, the congruence closure of ���� (as a set of equations) over the Herbrand terms.
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The rewrite system ���� is fully reduced by construction (no rule in ���� rewrites any
other rule in it). Since � is well-founded on the Herbrand terms, ���� is convergent. It
follows from well-known results that equality of Herbrand terms in ��

���
can be decided

by reduction to normal form using the rules in ����.
The rewrite system ���� will also be used to evaluate evaluated context restrictions:

Definition 5.2 (Satisfaction of variable-free foreground literals). Let R be a set of
literals over Herbrand terms. We say that ���� satisfies R, and write ���� 
� R, i�

(i) for every l � r  R, if l � r then l � r  ����, and
(ii) for every �(l � r)  R, l and r are irreducible wrt. ����.

For example, if � � � f (v) � e2�, 	 � �v �� 1�, and f (1) � e1 � e2 � 1 then ���� �

� f (1) � e2� and ���� �
� ��( f (1) � e1)� e2 � e1� because the left-hand side of �( f (1) �
e1) is reducible wrt. ����, and because e1 � e2 is not in ����.

Our concepts of redundancy require comparing Herbrand closures. To this end, de-
fine (C1 � R1 � c1� �1) � (C2 � R2 � c2� �2) i� C1�1 � C2�2, or else C1�1 � C2�2

and R1�1 � R2�2. Note that even if it ignores constraints, this ordering is not total, as
constrained clauses may contain rigid variables.

Definition 5.3 (Redundant clause). Let � � 
 � � be a sequent, and � and (C �

R �c� �) Herbrand closures. We say that (C � R �c� �) is redundant wrt � and � �
 � �

i� (a) there is a K  R that is contradictory with �, (b) 
 � �c�� is not satisfiable, or
(c) there exist Herbrand closures (Ci � Ri � ci� �i) of clauses in �, such that all of the
following hold:

(i) for every L  Ri there is a K  R such that L � K and L�i � K�,
(ii) 
 � �c�� 
� ci�i,

(iii) � � (Ci � Ri � ci� �i), and
(iv) �C1�1� � � � �Cn�n� 
� C�.

We say that a Herbrand closure (C � R � c� �) is redundant wrt � � 
 � � i� it is
redundant wrt (C � R � c� �) and � � 
 � �, and that a clause C � R � c is redundant
wrt � � 
 � � i� every Herbrand closure of C � R � c is redundant wrt. � � 
 � �.

If case (a) or (b) in the previous definition applies then (C � R�c� �) is trivially satis-
fied by (�� 	� I[	]), for every suitable 	 that satisfies 
 and every I[	]. Case (c) provides
with (ii) and (iv) conditions under which (C � c)� follows from the (Ci � ci)�i’s (in
the sense of Definition 3.2). The context restrictions are taken into account by condition
(i), which makes sure that evaluation of the pairs (Ri� �i) in terms of Definition 3.4 is the
same as for (R� �). In condition (iv), entailment 
� is meant as entailment in equational
clause logic between sets of ordinary ground clauses and an ordinary ground clause.

Given a Pos-Res, Ref or Para inference with premise � � 
 � �, selected clause
C � R � c, selected context equation l � r in case of Para, and a Herbrand substitution
�. If applying � to C � R � c, the derived clause, and l � r satisfies all applicability
conditions of that inference rule, except (C � R � c)�  � and (l � r)�  �, we call the
resulting ground inference a ground instance via � (of the given inference). This is not
always the case, as, e.g., ordering constraints could be unsatisfied after application of �.
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Definition 5.4 (Redundant inference). Let � � 
 � � and �� � 
� � �� be sequents.
An inference with premise � � 
 � � and selected clause C � R � c is redundant wrt
�� � 
� � �� i� for every Herbrand substitution �, (C � R � c� �) is redundant wrt.
�� � 
� � �� or the following holds, depending on the inference rule applied:

Pos-Res, Ref, Para: Applying � to that inference does not result in a ground instance
via �, or (C� � R� � c�� �) is redundant wrt. (C � R � c� �) and �� � 
� � ��, where
C� � R� � c� is the derived clause of that inference.

Split (C � �): (a) there is a literal K  R such that �� does not produce K or (b) the
split literal is contradictory with ��.

Close (C � �): �� � � �  �� .

Definition 5.5 (Saturated sequent). A sequent��
 � � is saturated i� every inference
with a core inference rule and premise � � 
 � � is redundant wrt. � � 
 � �.

We note that actually carrying out an inference makes it redundant wrt. the (all) con-
clusion(s), which already indicates that saturated sequents, although possibly infinite in
each of its components, can be e�ectively computed.

Our first completeness result holds only for saturated sequents with respect to rele-
vant closures. We say that a clause (C � R�c� �) is relevant wrt. � and 	 i����� 
� R	�.
All Herbrand closures of input clauses are always relevant.

Theorem 5.6 (Static completeness). Let ��
 � � be a saturated sequent, � a valuation
and 	 a suitable assignment for��
 � �. If (�� 	) 
� 
, ran(	) � 
B
 and (�� ���) � �
then the induced interpretation I[�� �� 	] satisfies all Herbrand closures of all clauses in
� that are relevant wrt. � and 	. Moreover, I[�� �� 	] 
� C � c, for every C � c  �.

The stronger statement I[�� �� 	] 
� � does in general not follow, as I[�� �� 	] possibly
does not satisfy a non-relevant closure of a clause in �. See [5] for a discussion why.

6 The MEE(T) Calculus

We now turn to the process of deriving saturated sequents. First, we introduce two more
inference rules. The first one, Simp, is a generic simplification rule.

Simp
� � 
 � ��C � R � c

� � 
 � ��C� � R� � c�

if (1) C � R �c is redundant wrt. � �
 � ��C� � R� �c�, and (2) 
 � �(e�n) � (� � �C �

R � c�)c 
� (C� � R� � c�)c. The first condition is needed for completeness, the second for
soundness.

For example, if � contains a ground literal K, then every constrained clause of the
form C � (�K� � R) � c can be deleted, and every constrained clause of the form C �

(�K� � R)�c can be replaced by C � R�c. The Simp rule encompasses various additional
forms of simplification of the literals in C based on rewriting and subsumption, see [5].

Restrict
� � 
 � �

� � 
� c � �
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if c is a closed constraint such that 
 � �c� is satisfiable.
For example, by 10-fold application of restrict one can construct a background con-

text �1 � v1 � 10� � � � � 1 � v10 � 10� that represents the numbers 1� � � � � 10 in a “nonde-
terministic” way. The purpose of Restrict is to construct finitely committed branches,
as formally introduced below.

We are now ready to introduce derivation formally. In the following, we will use �
to denote an at most countably infinite ordinal. Let � be a set of input clauses and 
 a
satisfiable set of closed constraints, both rigid variable-free. A derivation from � and 

is a sequence ((Ni� Ei))0�i�� of trees of sequents (called derivation trees) with nodes Ni

and edges Ei, such that T0 consists of the root-only tree whose sequent is �x � 
 � � ,
and Ti is obtained by one single application of one of the core inference rules, Simp or
Restrict to a leaf of Ti�1, for all 1 � i � �.

A refutation is a derivation that contains a refutation tree, that is, a derivation tree
that contains in each leaf a sequent with �� � � � in its clauses.

Every derivation determines a possibly infinite limit tree T � (
�

i�� Ni�
�

i�� Ei). In
the following, let �i � 
i � �i be the sequent labeling the node i in some branch B with
� nodes of a limit tree T, for all i � �. Let

– 
B �
�

i�� 
i the limit background context,
– �B �

�
i�� �i be the limit foreground context, and

– �B �
�

i��
�

i� j�� �i be the persistent clauses.

The tuple �B � 
B � �B is the limit sequent (of B). To prove a completeness result,
derivations in MEE(T) need to construct limit sequents with certain properties:

Definition 6.1 (Exhausted branch). We say that B is exhausted i� for all i � �:

(i) every Pos-Res, Ref, Para, Split and Close inference with premise �i �
i � �i and
a persistent selected clause is redundant wrt. � j �
 j � � j for some j with i � j � �.

(ii) (�� � � �) � �i .

While the above notion is similar to the one already used in MEE, MEE(T) has addi-
tional requirements on the limit background context 
B, introduced next.

Definition 6.2 (Finitely committed branch). We say that B is finitely committed i�
(a) 
B is finite or (b) for all i � �, there are �i and 	i such that (�i� 	i) 
� 
i, and

(i)
�

i��
�

i� j�� ran(	 j) � 
B
,
(ii) for every n  
B
, the set �v 
 	i(v) � n, for some i � �� is finite,

(iii) for every rigid variable v occuring in 
B, the set �	i(v) 
 v  dom(	i), for some i �
�� is finite, and

(iv) for every parameter a occuring in 
B, the set ��i(a) 
 i � �� is finite.

The set in condition (i) consists of those background domain elements that are repre-
sented by some (not necessarily the same) rigid variable from some point on forever.
The condition requires that this must be the case for all background domain elements.
Condition (ii) says that only finitely many rigid variables can be used for that. Condition
(iii) says that no rigid variable occuring in 
B can be assigned infinitely many values as
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the context evolves. Condition (iv) is similar, but for parameters. (Recall that parameter
valuations are total, hence �i(a) is defined for every parameter a.)

The purpose of Definition 6.2 is to make sure that a valuation � and a suitable as-
signment 	 for 
 always exists, and moreover, that (�� 	) satisfies 
B:

Proposition 6.3 (Compactness of finitely committed branches). If B is finitely com-
mitted then there is a � and an 	 such that ran(	) � 
B
 and (�� 	) 
� 
B.

To see one of the issues that Proposition 6.3 addresses consider 
i �
�

n�i�v1 � n�,
then 
B is not satisfiable, although every finite subset is satisfiable. On the other hand,
condition (iii) in Definition 6.2 is not satisfied.

With enough Restrict applications finitely committed limit branches can be con-
structed in a straightforward way if the input background constraints confine ev-
ery parameter to a finite domain. In the LIA case, e.g., one could “slice” the inte-
gers in intervals of, say, 100 elements and enumerate, with Restrict, declarations like
1 � v1 � 100� � � � � 1 � v100 � 100 before any rigid variable vi is used for the first time
(in Split), and do that for all intervals. In certain cases it is possible to determine a priori
that limit background contexts will be finite, and then Restrict is not required at all, see
Section 7.

Definition 6.4 (Fairness). A derivation is fair i� it is a refutation or its limit tree has
an exhausted and finitely committed branch.

Theorem 6.5 (Completeness). Let � be a set of input clauses and 
 a satisfiable set
of closed constraints, both rigid variable-free. Suppose a fair derivation from � and 

that is not a refutation. Let B be any exhausted and finitely committed branch of its limit
tree, and let �B � 
B � �B be the limit sequent of B.

Then there is a valuation � and a suitable assignment 	 for 
B such that ran(	) � 
B

and (�� 	) 
� 
B, and it holds I[�B� �] 
� 
 � � , where I[�B� �� 	] is the interpretation
induced by �B, �, and 	.

The proof exploits Proposition 6.3 to show that � and 	 exist as claimed. It then proceeds
by showing that �B � 
B � �B is saturated, as a link with Theorem 6.5.

7 Soundness and Special Cases

Theorem 7.1 (Relative refutational soundness). Let � be a set of input clauses and

 a satisfiable set of closed constraints, both rigid variable-free. Suppose a refutation
from� and 
 and let 
B be its limit background context. Then, 
B � 
, 
B is satisfiable,
and 
B � � is not satisfiable.

Here, by the limit background context 
B of a refutation we mean the background
context of the sequent in the leaf of the rightmost branch in its refutation tree.

Suppose the conditions of Theorem 7.1 hold, and let I[�� 	] be such that (�� 	) 
�

B, as claimed. It follows I[�� 	] �
� � and, as � is rigid variable-free, I[�] �
� � . (If
additionally � is parameter-free then 
B and � are independent, and so � alone is not
satisfiable.) For example, if � � �P(x) � x � a� �P(x) � x � 5� and 
 � �a � 2� then
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there is a refutation with, say, 
B � �a � 2� v1 � a� v1 � 5�. Notice that (�� 	) 
� 
B

entails � � �a �� 5� , and, obviously, I[�] �
� � . But of course � � 
 is satisfiable,
take, e.g., � � �a �� 3�. A usual soundness result can thus be not based on single
refutations, and this is why we call the soundness result above “relative”. To fix that,
we work with sequences of refutations whose limit background contexts collectively
cover the initially given 
. In the example, the next derivation starts with (essentially)

 � �a � 2��(a � 5)�, which leads to a derivation that provides the expected model.

Define mods(
) � �� 
 (�� 	) 
� 
, for some suitable 	�. Then, the intuition above
leads to the following general procedure:

1: D � a fair derivation from � and 
 �both � and 
 assumed rigid-variable free�
2: while D is a refutation do
3: 
B � the limit background context of D
4: if mods(
B) � mods(
) then
5: return unsatisfiable
6: else
7: 
� � any background context s.t. mods(
�) � mods(
) � mods(
B)
8: 
 � 
�; D � a fair derivation from � and 

9: return satisfiable

At line 4, mods(
) is the set of parameter valuations under which the unsatisfiability
of � is yet to be established. If the current refutation D from � and 
 does not further
constrain 
, i.e., if mods(
B) � mods(
), then nothing remains to be done. Otherwise
mods(
) � mods(
B) is non-empty, and in the next iteration 
 is taken to stand for
exactly those parameter valuations that are not sanctioned by the current refutation, i.e.,
those that satisfy the current 
 but not 
B. It follows easily with Theorem 7.1 that if the
procedure terminates with “unsatisfiable” on line 5 then � � 
 is indeed unsatisfiable,
the desired standard soundness result. If on the other hand D is not a refutation then the
procedure returns “satisfiable”, which is sanctioned by Theorem 6.5.

Notice that the test in line 4 can be made operational by checking the validity of the
formula (��c�� c) � (��c��B c), where �F denotes the existential quantification over all
rigid variables occurring in F. Similarly, 
� on line 7 can be taken as 
 � ��� �c��B c�.
If the background theory admits quantifier elimination (e.g., LIA extended with divisi-
bility predicates) the existential quantifiers can be removed and further simplifications
may take place. In the example, the background context 
� computed in the first itera-
tion is 
� � �a � 2���v1 (a � 2 � v1 � a � v1 � 5)� � �a � 2��(a � 5)�.

The derivation D might not be finite. In this case the procedure does not terminate,
but this is acceptable as by � � 
 is satisfiable then. Another source of non-termination
comes from growing the sets 
� without bound. This is theoretically acceptable, as
our logic is not even semi-decidable. In practice, one could add to 
 finite domain
declarations for all parameters involved, such as 1 � a � 100. This leads to finitely
many 
� only. Moreover, the sets 
� can then be computed in a conflict-driven way. For
example, if � � �P(x) � x � a� �P(x) � 1 � x � 50� and 
 � �1 � a � 100�,
the procedure will derive in the first iteration a refutation (in O(1) time). The second
iteration will then result in a derivation (a non-refutation) that restricts a to the range
[51� 100] and the procedure will stop with “satisfiable”.
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Another special case is when all clauses are of the form C � R�(c�x1 � t1�� � ��xn �

tn), where �x1� � � � � xn� � fvar(C) � fvar(R), and c and the ti’s are ground. Such clauses,
where initially R � �, are obtained from abstraction of formulas of the form C � c,
where C is an ordinary ground �-clause and c is a ground constraint. (This is the frag-
ment over which MEE(T) overlaps with typical SMT methods.) It is not too diÆcult
to argue that all derivable clauses then have that form as well. As a consequence, (i)
all split literals are variable-free, and hence so are all derivable foreground contexts,
and (ii) there is only one instantiation of the xi’s in Split, since no (satisfiable) back-
ground context can contain v1 � t and v2 � t for di�erent rigid variables v1 and v2. It
follows that the limit background contexts are finite for any input background context,
hence no finite domain declarations for parameters are needed. Moreover, as the set of
(non-rigid variable) background terms ti is fixed a priori, there are only finitely many
non-equivalent background contexts. Therefore, the procedure above cannot grow 


indefinitely. Furthermore, all derivations are guaranteed to be final because context lit-
erals are variable-free and can use only finitely-many rigid variables. As a consequence,
MEE(T) provides a decision procedure for ground problems in the combination of the
background theory and uninterpreted (F-sorted) function symbols with equality.

8 Conclusions

We presented the new MEE(T) calculus, which properly generalizes the essentials of
two earlier Model Evolution calculi, MEE [4], and ME(LIA) [3], one with equational
inference rules but without theory reasoning, and the other with theory reasoning by
without equality over non-theory symbols.

Much remains to be done. Further work includes extending the calculus with “uni-
versal variables” and additional simplification rules. A further extension, which could
be done along the lines of [2], would allow also B-sorted (non-constant) function sym-
bols. Another important question is how to strengthen the model-building capabilities
of the calculus, to guarantee termination in more cases of practical relevance.
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Abstract. Quantified Boolean formulas (QBF) provide a powerful
framework for encoding problems from various application domains, not
least because efficient QBF solvers are available. Despite sophisticated
evaluation techniques, the performance of such a solver usually depends
on the way a problem is represented. However, the translation to process-
able QBF encodings is in general not unique and may either introduce
variables and clauses not relevant for the solving process or blur infor-
mation which could be beneficial for the solving process. To deal with
both of these issues, preprocessors have been introduced which rewrite a
given QBF before it is passed to a solver.

In this paper, we present novel preprocessing methods for QBF based
on blocked clause elimination (BCE), a technique successfully applied in
SAT. Quantified blocked clause elimination (QBCE) allows to simulate
various structural preprocessing techniques as BCE in SAT. We have im-
plemented QBCE and extensions of QBCE in the preprocessor bloqqer.
In our experiments we show that preprocessing with QBCE reduces for-
mulas substantially and allows us to solve considerable more instances
than the previous state-of-the-art.

1 Introduction

Preprocessing in the context of SAT solving refers to techniques applied on a
propositional formula before the actual solving process is started [1,2,6,11]. The
intention behind preprocessing is to simplify the formula in such a way that
solving time spent on the preprocessed formula together with the time spent
on the preprocessing is less than the solving time of the original formula. The
term “simplification” denotes the reduction of the formula in size as well as
modifications extending the formula. On the one hand, state-of-the-art prepro-
cessors apply various techniques which result in safe substitution and removal
of single variable occurrences or even of complete clauses. On the other hand, in
some situations preprocessors are able to identify information which can be used
within the solving process and, consequently, might actually increase formula
size. Especially if only formulas in conjunctive normal form (CNF) are consid-
ered, the goal is to reconstruct structural information which has been blurred
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by the normal form transformation. The extra effort spent on the preprocessing
step is justified by the assumption that the costs of one single application of the
implemented techniques is negligible, whereas a dynamic application within the
solving process would be too expensive.

Preprocessing has been successfully applied to propositional formu-
las [1,2,6,11]. As SAT is the prototypical problem for NP, the problem of evalu-
ating QBF (QSAT) is prototypical for PSPACE, offering a powerful framework
for important application in artificial intelligence, knowledge representation, ver-
ification, and synthesis.

During the last decade, much effort has been spent in the development of
efficient QBF solvers, but despite several success stories, the achievements are
far from the progress which has been made in SAT solving, particularly when
it comes to real applications. Motivated by the impact of preprocessing in SAT,
some preprocessors for QBF have recently been presented which implement var-
ious kinds of preprocessing techniques and which proved to be advantageous for
the evaluation of representative QBF benchmark sets [4,8,15,17,19]. Based on
these experiments, we present the preprocessor bloqqer which incorporates sev-
eral well established preprocessing techniques like (self-subsuming) resolution
and expansion-based variable elimination as well as preprocessing techniques
novel to QBF based on blocked clause elimination.

This paper is structured as follows. First, we introduce the basic terminol-
ogy and the concepts used within this paper in Section 2 and we shortly review
current preprocessing techniques for QBF in Section 3. In Section 4, we present
novel preprocessing techniques based on blocked clause elimination for QBF and
discuss the interrelationship with other approaches. We present our implemen-
tation bloqqer in Section 5 and compare and discuss the results obtained from
various experiments. Finally, we conclude with an outlook to our future work.

2 Preliminaries

A QBF φ in prenex conjunctive normal form (PCNF) defined over the set of
propositional variables V is an expression of the form φ = S1 . . . Skψ where ψ is
called the matrix and S1 . . . Sk is called the quantifier prefix.

The matrix is a propositional formula in conjunctive normal form, i.e., ψ =
C1 ∧ . . . ∧Cn where C1, . . . , Cn are clauses. A clause is a disjunction of literals,
i.e., Ci = l1 ∨ . . . ∨ lm. A literal l is either a variable x or a negated variable ¬x
with x ∈ V . The function var(l) returns x if l is of the form x or ¬x. If l = x
then l = ¬x else l = x. If convenient, we consider the matrix as a set of clauses
and a clause as a set of literals. Consequently, we also write {C1, . . . , Cn} for
ψ and {l1, . . . , lm} for a clause C. A clause C is tautological if l, l̄ ∈ C. If not
stated otherwise, we assume clauses to be non-tautological in the following.

The quantifier prefix S1 . . . Sk is an ordered partition of the variables V into
scopes Si. The size of a quantifier prefix |S1 . . . Sk| is given by |S1|+. . .+|Sk|. The
function quant(S) associates either an existential quantifier (quant(S) = ∃) or a
universal quantifier (quant(S) = ∀) with each scope S. For scopes Si and Si+1,
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quant(Si) �= quant(Si+1). Alternatively, we also write Qx1, . . . , xn for a scope
S = {x1, . . . , xn} with quant(S) = Q,Q ∈ {∀, ∃}. For a clause C, its existential
and its universal literals are defined by LQ(C) = {l ∈ C | quant(l) = Q} with
Q ∈ {∀, ∃}. For a literal l with var(l) ∈ S, quant(l) = quant(S) denotes the type
of l. For literals l, k with var(l) ∈ Si and var(k) ∈ Sj , l ≤ k if i ≤ j. The indices
i and, resp., j are called the level of l and, resp., of k.

Let l be a literal, then φ[l] denotes the QBF which is obtained by deleting
the clauses C with l ∈ C, by removing each occurrence of l, and by substituting
the scope Si with var(l) ∈ Si by Si\{var(l)}. The truth value of a QBF φ is
recursively defined as follows.

– If ψ = ∅ then φ is true, if ∅ ∈ ψ then φ is false.
– If quant(S1) = ∀ (resp., quant(S1) = ∃) and x ∈ S1, then φ is true iff φ[x]

and (resp., or) φ[¬x] is true.

The Q-resolvent C1 ⊗ C2 of two clauses C1 and C2 with l ∈ C1, l ∈ C2, and
quant(l) = ∃ is defined as C′

1\{l} ∪ C′
2\{l} where

C′
i = Ci\{k | k ∈ Ci, quant(k) = ∀, ∀k′ ∈ Ci with quant(k′) = ∃ : k > k′}.

The literal l is called pivot element. The removal of a universally quantified literal
k from a clause which does not contain any existentially quantified variables with
a higher level than k is also referred to as forall reduction. The construction
rule of Q-resolvents enhanced with the forall reduction rule form the quantified
resolution calculus which is sound and complete for QBF [5].

A literal l is called pure in a QBF φ = S1 . . . Snψ if l ∈
⋃

C∈ψ and l �∈
⋃

C∈ψ.
Then φ is equivalent to φ[l] if quant(l) = ∃ and equivalent to φ[l] if quant(l) =
∀. An existentially quantified literal l is called unit in φ if {l, k1, . . . , km} ∈ ψ
with quant(ki) = ∀ and l < ki. If l is unit in φ then φ is equivalent to φ[l]. If φ
contains a non-tautological clause with universally quantified literals only, then
φ is false.

3 Preprocessing Techniques for QBF

Recently, several preprocessors for QBF have been proposed which implement
different techniques to prepare formulas in PCNF for the actual solving process.
Only the preprocessor PReDom [15] operates on a circuit-based representation
with the aim to identify structural dominators. A node n1 of a circuit dominates
a node n2 if every path starting from n1 contains n2. PReDom reduces dominated
subcircuits such that the truth value of the original QBF is preserved.

The preprocessor realized within the logic framework proverbox [4], the pre-
processors sQueezeBF [8] and prequel [19], as well as the approach presented
in [17], all process formulas in PCNF encoded in the QDIMACS format and
implement—among other techniques—unit propagation, forall reduction, and
some kind of equality detection and substitution. The former three systems ad-
ditionally implement pure literal detection and subsumption as well. When these
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basic simplification techniques are not applicable anymore, the preprocessor pre-
sented in [17] performs constant detection. If a literal is implied by the matrix
of the given QBF, then it may be added as unit clause. For testing whether
this implication holds, a SAT solver is applied. The preprocessor prequel [19]
uses hyper binary resolution which—if applicable—resolves a clause of arbitrary
length with binary clauses, until the resolvent is binary or even a unit clause. In
the preprocessor built upon the framework proverbox [4], universally quantified
variables are selectively expanded and consequently eliminated. Furthermore,
Q-resolution is integrated in order to reduce duplications introduced by univer-
sal expansion. The preprocessor sQueezeBF [8] also implements Q-resolution (cf.
[5]), but with the goal to remove existentially quantified variables. Similar to the
approach implemented in the QBF solver Quantor [3], an existentially quantified
variable may be eliminated from a formula, if all possible resolvents over this
variable are added to the formula instead.

All of the previously presented techniques are applied with the intention to
eliminate variables, literals, and/or clauses. Only hyper binary resolution is used
to uncover hidden information beneficial for the solving process. In the prepro-
cessor sQueezeBF [8], which we consider as the previous state-of-the-art, two
rewriting rules have been introduced. These rewrite rules which are applied if
the substitution of an equivalence would negatively affect the size of the QBF
are defined as follows.

Lemma 1 (RW1: Removed Implication, see [8])
Let φ = S1 . . . Sn((l ∨ α) ∧ (l ⇔ γ) ∧ ψ) such that (i) quant(l) = ∃, (ii) l does
occur neither in ψ, α, nor γ, and (iii) k ≤ l forall literals k occurring in γ. Then
φ is equivalent to the formula S1 . . . Sn((l ∨ α) ∧ (l ⇒ γ) ∧ ψ).

This rewriting may be beneficial with respect to two aspects: (i) the formula
becomes smaller, and (ii) when α becomes true, l is pure. In the next section, we
will argue that quantified blocked clause elimination is able to simulate RW1.
In the case that l occurs in two polarities, the following rewrite rule may be
applied.

Lemma 2 (RW2: Splitted Equivalence, see [8])
Let φ = S1 . . . Si . . . Sn((l ∨ α) ∧ (l ∨ β) ∧ (l ⇔ γ) ∧ ψ) such that (i) quant(l) =
∃, var(l) ∈ Si, (ii) l does occur neither in ψ, α, β, nor γ, and (iii) k ≤ l forall
literals k occurring in γ. Then φ is equivalent to the formula

S1 . . . S′
i . . . Sn((l ∨ α) ∧ (l′ ∨ β) ∧ (l ⇒ γ) ∧ (l′ ⇒ γ) ∧ ψ)

where l′ is a fresh variable with quant(l′) = ∃ and the same polarity as l and
S′

i = Si ∪ {var(l′)}.

The application of this rewrite rule does not reduce formula size, but it may
trigger pure literal elimination. If α (resp., β) becomes true, then (l ⇒ γ) (resp.,
(γ ⇒ l′)) may be removed. At first sight, this rewrite rule affects unit literal
propagation adversely, because the original QBF φ reduces to β ∧ γ ∧ ψ if α is
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false and to α∧γ∧ψ if β is false. Having the rewrite rule applied, we only obtain
(l′ ∨ β) ∧ γ ∧ (l′ ⇒ γ) ∧ ψ in the one case and (l ∨ α) ∧ ¬γ ∧ (l ⇒ γ) ∧ ψ in
the other case. To overcome this limitation, the efficiency clause (l ∨ l′) which
is obviously entailed by (l ⇒ γ)∧ (l′ ⇒ γ) has to be added to the formula when
the rewrite rule is applied.

4 Quantified Blocked Clause Elimination

Originally introduced for restricting worst-case upper bounds for SAT-
algorithms [12], blocked clauses have proven to be effective for preprocessing
in SAT [11,16], because blocked clauses may be eliminated while preserving
satisfiability. In the following, we generalize the notion of blocked clauses and
blocked clause elimination (BCE) for QBF. We prove that also in the case of
QBF under certain restrictions blocked clauses may be omitted. Subsequently,
we shortly discuss the integration of quantified BCE (QBCE) with other prepro-
cessing techniques, before we propose extensions for QBCE.

4.1 Definition

Within a resolution proof, blocked clauses of a formula only generate clauses
which are tautological. Consequently, blocked clauses may be removed without
changing the truth value of a formula. In the following we describe the charac-
teristics which allow the syntactical identification of blocked clauses in QBF.

Definition 1 (Quantified Blocking Literal). A literal l with quant(l) = ∃ in
a clause C ∈ ψ of a QBF φ = S1 . . . Snψ is called a quantified blocking literal
if forall C′ ∈ ψ with l̄ ∈ C′, a literal k with k ≤ l exists such that k, k̄ ∈ C ⊗C′.

Definition 2 (Quantified Blocked Clause). A clause is quantified blocked
if it contains a quantified blocking literal.

Example 1. Both clauses in ∀x∃y((x ∨ ¬y) ∧ (¬x ∨ y)) are quantified blocked
clauses, whereas none of the clauses in ∃x∀y((x∨¬y)∧ (¬x∨ y)) is a quantified
blocked clause.
As the following theorem shows, quantified blocked clauses contain redundant
information only, and may therefore be removed from the formula.

Theorem 1 (Quantified Blocked Clause Elimination (QBCE)). Let φ =
S1 . . . Sn(ψ ∪ C) be a QBF and let C be a quantified blocked clause in φ with
blocking literal l. It holds that φ⇔ S1 . . . Snψ.

Proof. Let C be a quantified blocked clause with the quantified blocking literal
l with var(l) ∈ Si, i ≤ n. The direction φ ⇒ S1 . . . Snψ trivially holds. We show
S1 . . . Snψ ⇒ φ by induction over q = |S1 . . . Si−1|. W.l.o.g. assume i = n.

In the base case, we have q = 0, i.e., var(l) ∈ S1 with quant(S1) = ∃. The
same argument as in SAT applies: Let σ be a satisfying assignment for ψ, i.e.,
for each C′ ∈ ψ there exists a literal l′ such that σ(l′) = �. If σ satisfies C,
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the implication S1ψ ⇒ φ holds, otherwise we construct a satisfying assignment
σ′ for ψ ∪ C as follows. Let σ′(l′) = σ(l′) for l′ �= l and σ′(l) = �. σ′ satisfies
not only C but also all other clauses C′ ∈ ψ. If l̄ ∈ C′, there exists a literal
k �= l such that k ∈ C and k̄ ∈ C′, with σ(k) = σ(C) = σ′(k) = ⊥ and thus
σ′(C′) = σ′(k̄) = � [12]. Note that k ∈ S1 due to the restriction k ≤ l.

For the induction step, assume q > 0. Let h be a literal with var(h) = y
and y ∈ S1. Note that var(l) �= y. We show that S1\{y} . . .Snψ[h] ⇒ φ[h].
The rest follows from lifting the implication over the conjunction that defines
the semantics of universal quantification if quant(S1) = ∀ and respectively over
the disjunction that defines the semantics of the existential quantification if
quant(S1) = ∃. Three cases have to be considered for showing that C[h] is a
blocking clause or removed in φ[h].

1. h ∈ C. Then C is removed from φ[h].
2. h �∈ C and h̄ �∈ C. Consequently, C[h] = C. Furthermore, C is still a quan-

tified blocked clause in φ[h], since h was not used to make a resolvent on l
tautological. Then the induction hypothesis is applicable.

3. h̄ ∈ C. Consequently, C[h] = C\{h̄} which is a quantified blocked clause in
φ[h], because each clause C′ with h, h̄ ∈ C ⊗ C′ is removed from φ[h] and
other clauses C′ with k, k̄ ∈ C ⊗C′ and y �= var(k) still produce tautological
resolvents with C on l. Note l ∈ C[h] since l �= h̄.

For a QBF φ in PCNF, quantified blocked clause elimination repeats the removal
of quantified blocked clauses from φ until fixpoint. The resulting QBF is denoted
by QBCE(φ).

Theorem 2. The application of QBCE(φ) on a QBF φ is confluent.

Proof. The argument is similar as for propositional logic (cf. [11]).

Note that for the soundness of quantified blocked clause elimination for QBF as
stated in Theorem 1, the level of the blocking literal must be equal or higher
than the level of the literal making the resolvent tautological as the following
example illustrates.

Example 2. As we have seen in Example 1, the QBF

∃x∀y((x ∨ ¬y) ∧ (¬x ∨ y))

contains no blocking clause. If we loosen the criterion and do not consider the
quantifier levels of the variables, then all clauses become blocking clauses and
according to Theorem 1, they may be removed immediately. Consequently, the
formula evaluates to true, what is in contrast to the formula’s original truth
value. In this formula, a contradiction is directly derivable if forall reduction is
applied. An extended example, where forall reduction is not applicable, is given
by the formula

∃x∀y∃z((x ∨ ¬z) ∧ (¬x ∨ z) ∧ (y ∨ ¬z) ∧ (¬y ∨ z))
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which contains an additional existential variable z which is equivalent to y. The
variable z prohibits the application of the forall reduction rule. Furthermore, the
first two clauses are not quantified blocked on x and ¬x, respectively, because
z < x does not hold. If they are removed, the formula evaluates to true.

4.2 Discussion

Quantified blocked clauses as defined above may be eliminated from a formula
without changing its truth value, because they contain redundant information
only. Hence, quantified blocked clause elimination is applied in order to re-
move clauses from a QBF which may result in a reduction in the number of
variables occurring in the formula too. The following properties established for
SAT [11,12], also hold for QBF. For the sake of compactness, we omit the prefix
“quantified” if no confusion arises.

1. Formulas which are smaller with respect to their number of clauses poten-
tially contain more blocked clauses. If the matrix of a QBF φ1 is a subset of
the matrix of the QBF φ2 then there might be clauses which are blocked in
φ1, but not in φ2. If there is a clause C which is blocked in φ2, but not in
φ1, then C �∈ φ1.

2. From the statement above, it follows immediately that QBCE has a unique
fixpoint. If a clause C is blocked in a QBF φ, then any clause C′ with C �= C′

blocked in φ is also blocked in φ\{C}.
3. If a clause C is subsumed by a blocked clause C′, i.e., C′ ⊆ C, then C is also

a blocked clause. Obviously, the other direction does not hold.
4. Clauses containing a pure literal are blocked. The pure literal is the blocking

literal. In fact, QBCE may be considered as a generalization of pure literal
elimination rule.

5. If the clauses C1 . . . Cn are the only clauses of a QBF φ which contain the
literal l, then a clause C with l̄ ∈ C is blocked if for each clause Ci, the
clause C contains a literal ki with k̄i ∈ Ci and ki < l. In particular, if a QBF
φ contains an equivalence of the form (l, k̄1, . . . , k̄n), (l̄, k1), . . . , (l̄, kn) and l
occurs in no other than these clauses, then the equivalence may be removed
due to QBCE.

The fifth property indicates that QBCE may be used to eliminate equivalences
under certain conditions. In fact, like BCE in SAT [11], QBCE is able to achieve
similar simplifications on a formula in PCNF as other techniques directly applied
on the original encoding with more structural information (e.g., a circuit-based
representation) before the transformation to normal form is performed. There-
fore, we show the close connection between QBCE and the rewriting rules RW1
and RW2 given in Definition 1 and Definition 2. As argued by [8], the appli-
cation of equivalence rewriting together with the application of the pure literal
elimination rule show a similar effect than don’t care propagation performed on
the original, non-CNF formula.
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Theorem 3. QBCE subsumes RW1 given in Definition 1.

Proof. First we argue, that with QBCE the same effect may be obtained as with
RW1, and then we provide a QBF which may be simplified by the application
of QBCE, but not by the application of RW1.

1. Whenever RW1 is applicable, also QBCE is applicable. Recall that RW1
substitutes the matrix of a QBF of the form (l∨α)∧(l ⇔ γ)∧ψ by (l∨α)∧(l ⇒
γ) ∧ ψ with the restriction that l does occur neither in α, γ, nor ψ and that
all literals of γ have a lower level than l. The rule RW1 therefore removes
clauses of the form γ̄ ∨ l. Since l̄ occurs only in the clauses representing the
equivalence, the clauses of γ̄ ∨ l are blocked and may be omitted.

2. In some situations, QBCE is applicable, but not RW1. For example, the QBF

∀y∃x∃z((x ∨ z) ∧ (x̄ ∨ z̄) ∧ (z ∨ ȳ ∨ x) ∧ (z̄ ∨ y ∨ x̄))

is reducible by QBCE, but not by RW1. Only if we had applied subsumption
first, also RW1 would have been applicable.

Consequently, the application of QBCE has at least the same effects as the ap-
plication of RW1:

– The number of clauses is reduced. If γ is a disjunction of n literals then n
binary clauses are blocked, if γ is a conjunction of n literals then a clause of
size n + 1 is blocked.

– The application of QBCE may directly trigger the application of other prun-
ing techniques. For example, if a clause (l ∨ x̄) is removed then x might be-
come pure and, depending on the quantification type of x, either all clauses
containing x or all occurrences of x may be removed immediately.

– Other pruning techniques may become applicable during preprocessing or
even during the solving process. For example, if QBCE has been applied and
α later becomes true, then the literal l becomes pure.

The application of RW1 enables similar optimizations achieved by using the
Plaisted-Greenbaum transformation [18] instead of the Tseitin transforma-
tion [20]. In this case, the subformula which shall be abbreviated by a freshly
introduced variable occurs in one polarity only, therefore one direction of the
implication may be omitted. When the subformula occurs in both polarities,
then it is possible to treat positive and negative occurrences independently and
to introduce two new variables.

The retrospective application of this approach is covered by RW2. The rule
RW2 provides no direct simplifications itself and even introduces an extra vari-
able, but after its application, it becomes more likely that (i) more variables
become pure and (ii) RW1 or QBCE become applicable. In fact, if RW2 is used
during preprocessing, then there exist situations, where the pure literal elimina-
tion rule, which is implemented by most state-of-the-art QBF solvers, performs
reductions. The same effect can be achieved, if QBCE is applied dynamically
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during the solving process without applying RW2. Hence, no new variables have
to be introduced to achieve the same effects. Consider the following formula.
Let ψ = ((l ∨ α) ∧ (l̄ ∨ β) ∧ (l ⇔ γ) ∧ δ) be the matrix of a QBF and let
ψ′ = ((l ∨ α) ∧ (l′ ∨ β) ∧ (l ⇒ γ) ∧ (γ ⇒ l̄′) ∧ δ) be the formula obtained after
the application of RW2. Then the benefits of RW2 in combination with the pure
literal elimination rule identified by [11], can also be obtained by QBCE.

1. If α (resp. β) becomes true in ψ′, then l (resp. l′) becomes pure and ψ′ may
be simplified to ((l′ ∨ β) ∧ (γ ⇒ l̄′) ∧ δ) (resp. ((l ∨ α ∧ (l ⇒ γ)) ∧ δ)). If α
(resp. β) becomes true in ψ then the same reductions may be obtained by
the application of QBCE on ψ.

2. If both α and β become true, then ψ′ may be reduced to δ because l and l′

are pure. Also ψ may be reduced to γ by the application of QBCE if α and
β become true.

When combining RW2 and QBCE, the two techniques potentially influence each
other as follows:

– The application of RW2 preserves existing blocked clauses and might even
uncover new blocked clauses.

– The application of QBCE might limit or even inhibit the application of RW2,
namely when one of the clauses forming the equivalence is removed.

These observations indicate that it might be advantageous to apply RW2 before
QBCE. As we will see in the next section, our experiments confirm this conjecture.

4.3 Extensions

For SAT, several extensions of BCE and related clause elimination procedures
have been proposed. Based on the adoption of BCE for QSAT, also these exten-
sions may be applied for preprocessing QBF. The goal is to add literals to clauses
for making them either tautological or for triggering the application of blocked
clause elimination. For SAT, covered clauses have been introduced in [9,10]. In
the following, we leverage covered clauses from SAT to QBF.

Quantified Blocked Covered Clause Elimination. Covered clauses are
clauses which are blocked or tautological when they are enriched with literals
contained in any resolvent with pivot element l, the covering literal.

Definition 3 (Quantified Covered Literal). Let the set of resolution can-
didates Rφ(C, l) = {C′\{l̄} | C′ ∈ ψ, l̄ ∈ C′, � ∃k : {k, k̄} ⊆ C ⊗ C′} where φ
is a QBF with matrix ψ, C ∈ ψ, l ∈ C. The set of quantified covered literals
Cφ(C, l) with respect to a clause C and a literal l is given by the intersection of
the resolution candidates

Cφ(C, l) =
⋂
{C′′ | C′ ∈ Rφ(C, l), C′′ ⊆ C′, ∀k ∈ C′′ : k ≤ l}.

A literal l is called covering literal if Cφ(C, l) �= ∅, i.e., l covers the literals in
Cφ(C, l).
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Lemma 3. The replacement of a clause C in a QBF φ by C∪Cφ(C, l) preserves
unsatisfiability.

Proof. Analogous to the proof of Theorem 1.

In the following, Cφ(C) denotes the clause C extended with all quantified covered
literals, i.e., for all l ∈ Cφ(C) it holds that Cφ(C, l) ⊆ Cφ(C).

Lemma 4 (Quantified Covered Literal Addition) The replacement of a
clause C in a QBF φ by Cφ(C) preserves unsatisfiability.

Proof Iterative application of Lemma 3.

Definition 4 (Quantified Covered Clause). A clause C in a QBF φ is cov-
ered if Cφ(C) is tautological or blocked w.r.t. φ.

Theorem 4 (Quantified Covered Clause Elimination). The removal of a
covered clause preserves unsatisfiability.

Proof. According to Lemma 4, each clause may be replaced by the clause Cφ(C).
If this clause is blocked, it may be removed according to Theorem 1. If it is
tautological, it may be removed due to standard rewriting rules.

Example 3. In the QBF ∀a, b, c ∃x, y((x∨¬a)∧(¬x∨y∨b)∧(¬x∨y∨c)∧(¬y∨a))
the literal x of the clause (x∨¬a) covers the literal y. We therefore may replace
this clause by (x∨¬a∨y) which is blocked, and, consequently, can be eliminated.

As discussed in [10] covered clause elimination is confluent and more effective
than QBCE.

Quantified Hidden Blocked Clause/Tautology Elimination. Quantified
hidden blocked clauses and quantified hidden tautologies are uncovered by the
addition of literals which are derivable from implications contained within a
QBF. For SAT, these techniques have been presented in [9].

Definition 5 (Quantified Hidden Literal). Let φ be a QBF with matrix ψ.
A literal l is called quantified hidden literal w.r.t. a clause C ∈ ψ if ψ contains
a clause (l1, . . . , ln, l̄) with li ≤ l and l1, . . . , ln ∈ C.

Lemma 5. The replacement of a clause C in a QBF φ with C ∪ {l} preserves
unsatisfiability if l is a quantified hidden literal with respect to C.

Proof. Analogous to the proof of Theorem 1.

Theorem 5. Let C′ be a clause obtained from a clause C ∈ φ by adding hid-
den literals. If C′ is blocked or tautological, the removal of C from φ preserves
unsatisfiability.

Proof. Due to the (iterative) application of Lemma 5, C may be replaced by
C′ in ψ. If C′ is blocked, it may be removed according to Theorem 1. If C′ is
tautological, it may be replaced due to standard rewriting rules.
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Table 1. Impact of preprocessors

Family no preprocessing bloqqer sQueezeBF

V C A %V %C A %V %C A

Abduction 1474 3435 2 -38 -22 -2 -7 -20 -1

Adder 3527 4405 3 -67 266 -1 -26 -37 0

blackbox* 11437 27819 153 -95 -77 -145 4 -81 -145

Blocks 518 6756 2 -44 -47 -1 7 -48 0

BMC 265932 680732 2 -98 -92 -1 -78 -95 0

Chain 3290 19663 2 -100 -100 -2 -100 -100 -2

circuits 1400 1920 2 -61 137 0 0 -40 0

confplan 1285 47890 2 -56 -6 -1 49 -70 0

Connect4 218810 93504 46 -99 -82 -32 -89 -45 -5

Counter 1951 5169 28 -80 -61 -22 1 -1 0

Debug 159502 1036810 2 -3 -15 0 -63 -52 0

evadepursue 7666 74014 9 -40 -54 0 -2 -51 0

FPGA* 65 433 2 332 828 0 1 -5 0

Impl 74 146 36 -100 -100 -36 -100 -100 -36

jmc quant 508 995 4 25 321 0 0 -68 0

mqm 1724 5060 18 -50 10 -2 0 -14 0

pan 1847 10999 32 -91 -87 -31 38 -40 -11

Rintanen 1871 178750 2 -8 -1 0 7 0 0

Sakallah 44526 29282 2 -81 -50 -1 -79 -76 -1

Scholl-Becker 2758 7712 5 -83 -30 1 34 -43 -1

SortNet 1491 4972 2 -70 -10 0 21 -30 0

SzymanskiP 148973 168917 2 -100 -100 -2 -7 -70 0

tipdiam 5397 15428 2 -91 -79 -1 4 -78 0

tipfixpoint 9103 26407 2 -95 -88 -1 7 -71 0

Toilet 365 3129 2 -52 -100 -2 30 -44 -2

VonNeumann 1040116 1523169 2 -100 -100 -2 -100 -100 -2

5 Experimental Evaluation

Together with variable expansion, equivalence replacement, pure and unit literal
elimination as well as with subsumption (cf. Section 3), the previously presented
techniques are implemented in the preprocessor bloqqer1. To test our implemen-
tation, we applied bloqqer on the benchmark set used at the QBF Competition
20102 which consists of 568 formulas. For the sake of compactness, we aggre-
gated the 36 families to 26 sets. All experiments were performed on 2.83 GHz

1 Available at http://fmv.jku.at/bloqqer
2 Available at http://www.qbflib.org

http://fmv.jku.at/bloqqer
http://www.qbflib.org
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Table 2. Experiments with various solvers

# formulas runtime (sec)

preprocessor
SO

LV
E
D

SA
T

U
N
SA

T

U
N
K
N

Σ
(1
0
3 )

AV
G

M
E
D
IA

N

D
ep

Q
B

F

sQueezeBF/bloqqer 482 234 248 86 102 180 5

bloqqer 467 224 243 101 112 198 5

bloqqer/ sQueezeBF 452 213 239 116 147 258 19

sQueezeBF 435 201 234 133 131 231 6

no preprocessing 373 167 206 195 189 332 26

Q
u
B

E

sQueezeBF/bloqqer 454 207 247 114 129 227 7

bloqqer 444 200 244 124 139 246 5

bloqqer/sQueezeBF 421 183 238 147 174 307 27

sQueezeBF 406 181 225 162 177 313 31

no preprocessing 332 135 197 236 242 426 258

N
en

o
fe

x

bloqqer/sQueezeBF 271 134 137 297 273 482 76

sQueezeBF/bloqqer 270 136 134 298 277 488 31

bloqqer 268 132 136 300 276 487 23

sQueezeBF 246 122 124 322 297 524 88

no preprocessing 221 107 114 347 319 561 113

Q
u
an

to
r

bloqqer 288 145 143 280 266 468 34

sQueezeBF/bloqqer 285 147 138 283 268 472 39

bloqqer/sQueezeBF 270 131 139 298 276 486 34

sQueezeBF 222 106 116 346 318 561 49

no preprocessing 206 100 106 362 333 587 38

Intel Core 2 Quad machines each equipped with 8 GB memory and running
Ubuntu 9.04. The time limit and memory limit were set to 900 seconds and 7
GB, respectively. Time spent on the preprocessing is included in the time limit.
If the preprocessor has not terminated after 900 seconds, the preprocessing is
aborted and the formula is considered to be unsolved. In the following evaluation,
sQueezeBF [8] serves as reference preprocessor, because sQueezeBF incorporates
similar features as bloqqer except that bloqqer implements QBCE and sQueezeBF
implements RW1 and RW2. Furthermore, sQueezeBF was shown to be the most
effective state-of-the art preprocessor in [8].

First, we evaluated the impact of bloqqer on the formula size in terms of
number of variables (V ), number of clauses (C), and number of quantifier al-
ternations in the prefix (A). Table 1 shows the concrete results for the different
formula sets. The first column (no preprocessing) contains the average values
for the number of variables, number of clauses, and quantifier alternations of
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Table 3. # formulas (# satisfiable formulas) solved by DepQBF

Family (set size)
sQueezeBF/ bloqqer/

bloqqer sQueezeBF no preproc.
bloqqer sQueezeBF

Abduction (52) 48 (29) 49 (30) 49 (30) 48 (29) 50 (31)

Adder (15) 3 (3) 4 (3) 4 (3) 1 (1) 0 (0)

blackbox∗ (61) 52 (2) 45 (2) 46 (2) 55 (2) 43 (0)

Blocks (5) 4 (2) 5 (2) 5 (2) 5 (2) 4 (1)

BMC (18) 14 (5) 16 (6) 15 (5) 13 (5) 12 (5)

Chain (1) 1 (1) 1 (1) 1 (1) 1 (1) 0 (0)

circuits (3) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)

conf planning (15) 5 (4) 5 (4) 5 (4) 5 (4) 4 (3)

Connect4 (11) 8 (0) 8 (0) 8 (0) 8 (0) 8 (0)

Counter (4) 3 (3) 3 (3) 4 (4) 2 (2) 2 (2)

Debug (5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

evader-pursuer (22) 17 (7) 11 (2) 11 (3) 10 (3) 10 (3)

FPGA∗ (3) 3 (1) 3 (1) 3 (1) 3 (1) 3 (1)

Impl (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

jmc quant (3) 3 (2) 3 (2) 3 (2) 3 (2) 0 (0)

mqm (136) 136 (66) 123 (58) 136 (66) 136 (66) 136 (66)

pan (80) 75 (41) 76 (41) 76 (41) 44 (22) 26 (15)

Rintanen (1) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Sakallah (19) 11 (10) 13 (11) 15 (13) 10 (9) 0 (0)

Scholl-Becker (24) 15 (5) 14 (4) 14 (4) 13 (5) 11 (4)

Sorting networks (6) 3 (1) 3 (1) 2 (1) 3 (1) 6 (4)

SzymanskiP (2) 2 (0) 2 (0) 2 (0) 2 (0) 0 (0)

tipdiam (14) 13 (12) 8 (8) 8 (8) 11 (10) 3 (3)

tipfixpoint (24) 19 (10) 13 (4) 13 (4) 16 (7) 9 (0)

Toilet (41) 41 (27) 41 (27) 41 (27) 40 (26) 40 (26)

VonNeumann (2) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0)

the unpreprocessed formulas. The second column (bloqqer) indicates the effects
of applying bloqqer on these formulas. For the subcolumns V and C the aver-
age increase/decrease in percent w.r.t. the original formulas is shown, whereas
for A the number of additional quantifier alternations is given. The third col-
umn shows how the application of sQueezeBF effects the formula size. bloqqer
decreases the variable number of all but two formula sets by about 70 percent
on average. For 21 formulas sets, we observe a decrease of the clause number
of about 60 percent. For the majority of formula sets also a reduction of the
quantifier prefix is achieved. This decrease of the formula size may be observed
although bloqqer implements preprocessing techniques like variable expansion
which adds new clauses and variables. QBCE is performed during the existential
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variable elimination through resolution. Hidden tautologies and hidden blocked
clauses are found in the backward subsumption phase after variable elimination.
Overall, 116 ∗ 104 blocked clauses, 79 ∗ 104 hidden blocked clauses as well as
196 ∗ 104 hidden tautologies have been detected. The size reduction achieved by
sQueezeBF is more moderate (cf. third column of Table 1). bloqqer is able to
directly evaluate 148 formulas and has no timeouts, sQueezeBF solves only 39
formulas and does not terminate on 14 formulas.

Second, we evaluated the impact of bloqqer on the runtimes of the four state-
of-the-art QBF solvers DepQBF [14], QuBE [7], Nenofex [13], and Quantor [3].
For each solver we considered five preprocessing variants: (1) no preprocessing,
(2) preprocessing with bloqqer only, (3) preprocessing with sQueezeBF only, (4)
preprocessing with the combination bloqqer/sQueezeBF, and (5) preprocessing
with the combination sQueezeBF/bloqqer. The results in Table 2 clearly show
the positive impact of preprocessing on the number of solved formulas as well as
on the runtime. The time values include a penalty of 900 for each unsolved for-
mula. All solvers have in common that the omission of preprocessing negatively
influences the solvers. The experiments also indicate that it might be advan-
tageous not to use sQueezeBF alone, but in combination with bloqqer. Which
variant is preferable seems to be solver dependent. The best results are obtained
with sQueezeBF/bloqqer and the solver DepQBF. In the benchmark set, some
families are represented very prominently compared to other families. Table 3
shows the detailed results when the solver DepQBF is applied. We clearly see
that the accumulated results are also valid for the various sets.

Finally, we were interested in the impact of the different preprocessing tech-
niques implemented in bloqqer and therefore we ran bloqqer with various options
and passed the formals to DepQBF. Recall that with all options enabled, 467 for-
mulas are solved and that with no preprocessing only 373 formulas are solved.
If QBCE only is enabled, then still 403 formulas are solved, if all options except
the extensions of QBCE are enabled, then 454 formulas are solved. Due to space
limitations, we kindly refer to the web page of bloqqer for more details.

6 Conclusion and Future Work

As blocked clause elimination is an effective simplification technique for SAT,
quantified blocked clause elimination is an effective simplification technique
for QSAT. With QBCE similar effects can be achieved as with simplifications
performed on formulas not in PCNF in combination with the polarity-based
Plaisted-Greenbaum transformation. We provide an implementation of QBCE
and extended variants together with well established simplification techniques
in the preprocessor bloqqer. The application of QBCE results in a considerable
reduction of formula size and improved solving time.

For future work, we consider to integrate QBCE and its extensions directly into
a QBF solver. During the solving process clauses may become blocked which then
may be removed immediately. Furthermore, we will investigate if it is possible
to loosen the blocking criterion by taking variable dependencies into account.
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Abstract. Sledgehammer is a component of Isabelle/HOL that employs first-
order automatic theorem provers (ATPs) to discharge goals arising in interactive
proofs. It heuristically selects relevant facts and, if an ATP is successful, produces
a snippet that replays the proof in Isabelle. We extended Sledgehammer to invoke
satisfiability modulo theories (SMT) solvers as well, exploiting its relevance filter
and parallel architecture. Isabelle users are now pleasantly surprised by SMT
proofs for problems beyond the ATPs’ reach. Remarkably, the best SMT solver
performs better than the best ATP on most of our benchmarks.

1 Introduction

It is widely recognized that combining automated reasoning systems of different types
can deliver huge rewards. There have been several attempts to combine interactive the-
orem provers (which are better at formal modeling than at proving theorems) with a
variety of automatic theorem provers (ATPs) [1,7,20,39,42]. One of the most success-
ful such combinations is Sledgehammer [27, 34], which interfaces Isabelle/HOL [31]
with resolution provers for classical first-order logic. Sledgehammer is both effective,
solving approximately one third of nontrivial goals arising in interactive proofs [9], and
easy to use, since it is invoked with a single mouse gesture. It has become indispensable
to Isabelle users and has transformed the way Isabelle is taught to beginners [33].

Given an Isabelle/HOL conjecture, Sledgehammer heuristically selects a few hun-
dred relevant lemmas from Isabelle’s libraries, translates them to unsorted first-order
logic along with the conjecture, and sends the resulting problem to four theorem provers
(Section 2). The provers run in parallel, either locally or remotely via SystemOnTPTP
[40]. Users can keep working during the proof search, although most users find it hard
to think while automatic provers are active in the background and prefer to wait up
to 30 seconds for the responses. Isabelle’s built-in prover Metis [21, 34] reconstructs
resolution proofs in higher-order logic (HOL).

First-order ATPs are powerful and general, but they can usefully be complemented by
other technologies. Satisfiability modulo theories (SMT) is a powerful technology based
on combining a satisfiability solver with decision procedures for first-order theories,
such as equality, integer and real arithmetic, and bit-vector reasoning. SMT solvers
are particularly well suited to discharging large proof obligations arising from program
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verification. Although they are automatic theorem provers in a general sense, they rely
on techniques entirely different from classical resolution. In this paper, we will find it
convenient to reserve the abbreviation ATP for resolution provers.1

There have also been several attempts to combine interactive theorem provers with
SMT solvers, either as oracles [5, 17, 37] or with proof reconstruction [18, 22, 26]. In
previous work, we integrated the SMT solvers CVC3 [4], Yices [16] and Z3 [15] with
Isabelle as oracles and implemented step-by-step proof reconstruction for Z3 [10]. The
resulting smt proof method takes a list of problem-specific facts that are passed to the
SMT solver along with the conjecture (Section 3).

While a motivated user can go a long way with the smt proof method [8], the need
to specify facts and to guess that a conjecture could be solved by SMT makes it hard to
use. As evidence of this, the Isabelle formalizations accepted in the Archive of Formal
Proofs [23] in 2010 and 2011, after smt was introduced in Isabelle, contain 7958 calls
to the simplifier, 928 calls to the internal tableau prover, 219 calls to Metis (virtually all
generated using Sledgehammer), but not even one smt call.

Can typical Isabelle users benefit from SMT solvers? We assumed so and took the
obvious next step, namely to have Sledgehammer run SMT solvers in parallel with
ATPs, reusing the existing relevance filter and parallel architecture (Section 4). This
idea seemed promising for a number of reasons:

• ATPs and SMT solvers have complementary strengths. The former handle quanti-
fiers better, whereas the latter excel on large, mostly ground problems.

• The translation of higher-order constructs and types is done differently for the SMT
solvers than for the ATPs—differences that should result in more proved goals.2

• Users should not have to guess whether a problem is more appropriate for ATPs or
SMT solvers. Both classes of prover should be run concurrently.

Such an integration required extensive refactoring of Sledgehammer, a delicate piece of
engineering developed by eight people in Cambridge and Munich over a period of seven
years. The refactoring seemed worthwhile, especially since it also benefits other provers
that we might want to interface with Sledgehammer, such as higher-order ATPs [3, 6].

The Sledgehammer–SMT integration is, to our knowledge, the first of its kind, and
we had no clear idea of how successful it would be as we started the implementation
work. Would the SMT solvers only prove conjectures already provable using the ATPs,
or would they find original proofs? Would the decision procedures be pertinent to typi-
cal interactive goals? Would the SMT solvers scale in the face of hundreds of quantified
facts translated en masse, as opposed to carefully crafted axiomatizations?

The first results with Z3 were disappointing: Given a few hundred facts, the solver
often ran out of memory or crashed. It took some tweaking and help from the Z3 de-
velopers to obtain decent results. We eventually added support for CVC3 and Yices,
two solvers that, like Z3, support quantifiers via (automatically inferred) “triggers”—
patterns that guide quantifier instantiations. Our evaluation on a large benchmark suite
shows that SMT solvers add considerable power to Sledgehammer (Section 5).

1 Instantiation-based provers such as Equinox [12] and iProver [24] are promising, but in case
of success they currently do not deliver a proof, not even the list of used axioms.

2 There are also many efficiency, readability, and robustness advantages of obtaining several
proofs for the same goal from different sources [41].
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2 Sledgehammer

Sledgehammer is Isabelle’s subsystem for harnessing the power of first-order ATPs.
Its processing steps include relevance filtering, translation to classical first-order logic,
parallel ATP invocation, proof reconstruction, and proof minimization.

Relevance Filtering. Sledgehammer employs a simple relevance filter to extract from
Isabelle’s enormous libraries a few hundred lemmas that appear to be relevant to the
problem at hand. The relevance test is based on how many constants (symbols) are
shared between the conjecture and each candidate lemma [28]. Although crude, this
filter greatly improves Sledgehammer’s success rate, because most ATPs perform badly
in the presence of thousands of axioms.

Translation into Classical First-Order Logic. Isabelle’s formalism, polymorphic
higher-order logic [2, 45], is much richer than the ATPs’ unsorted first-order logic.
Sledgehammer uses various techniques to translate HOL formulas to first-order logic
[27]. Many compromises are necessary here. The translation is unsound; the ATP proofs
can be trusted only after they have been reconstructed. Higher-order features compli-
cate the translation: λ-abstractions are rewritten to combinators, and curried functions
are passed varying numbers of arguments by means of an explicit apply operator.

Parallel ATP Invocation. For a number of years, Isabelle has emphasized parallelism
to exploit modern multi-core architectures [46]. Accordingly, Sledgehammer invokes
several ATPs in parallel, with great success: Running E [38], SPASS [44], and Vam-
pire [36] in parallel for five seconds solves as many problems as running a single the-
orem prover for two minutes [9, §8]. Recent versions of Sledgehammer also invoke
SInE [19], a wrapper around E that is designed to cope with large axiom bases.

Proof Reconstruction. As in other LCF-style theorem provers, Isabelle theorems can
only be generated within a small inference kernel. It is possible to bypass this safety
mechanism, generally if some external tool is to be trusted as an oracle, but all oracle
inferences are tracked. Sledgehammer performs true proof reconstruction by running
Isabelle’s built-in resolution prover, Metis, supplying it with the short list of facts used
in the proof found by the external ATP.

The Metis call with the identified facts is all that Sledgehammer includes in the
Isabelle proof text, which can then be replayed without external provers. Since Metis is
given only a handful of facts, it usually succeeds within milliseconds.

Proof Minimization. Proof reconstruction using Metis loses about 10% of ATP proofs,
partly because some of the proofs are unsound in a typed setting, but also because
Metis times out [9, §3]. Automatic provers frequently use many more facts than are
necessary. Sledgehammer’s minimization tool takes a set of facts returned by a prover
and repeatedly calls it with subsets of the facts to find a minimal set. Depending on the
number of initial facts, it relies on either of these two algorithms:

• The naive linear algorithm attempts to remove one fact at a time. This can require
as many prover invocations as there are facts in the initial set. A refinement is to
inspect the ATP proofs to eliminate more facts at each iteration.
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• The binary algorithm recursively bisects the facts [11, §4.3]. It performs best when
a small fraction of the facts are actually required [9, §7].

Example. In the Isabelle proof below, taken from a formalization of the Robbins con-
jecture [43], four of the five subproofs are discharged by a Metis call generated auto-
matically by Sledgehammer using an ATP:

proof –
let z = “−(x ! −y)” and ky = “y ! k ⊗ (x ! z)”
have “−(x !−ky) = z ” by (simp add: copyp0)
hence “−(−ky ! −(−y ! z)) = z ” by (metis assms sup_comm)
also have “−(z ! −ky) = x ” by (metis assms copyp0 sup_comm)
hence “z =−(−y ! −(−ky ! z))” by (metis sup_comm)
finally show “−(y ! k ⊗ (x ! −(x !−y))) =−y ” by (metis eq_intro)

qed

The example is typical of the way Isabelle users employ the tool: If they understand
the problem well enough to propose some intermediate properties, all they need to do
is state a progression of properties in small enough steps and let Sledgehammer or an
automatic Isabelle tactic prove each one.

3 The SMT Proof Method

SMT solvers are available in Isabelle through the smt proof method. It translates the
conjecture and any user-supplied facts to the SMT solvers’ many-sorted first-order
logic, invokes a solver, and (depending on the solver) either trusts the result or attempts
to reconstruct the proof in Isabelle.

Translation into Many-Sorted First-Order Logic. The translation maps HOL equal-
ity and arithmetic operators to the corresponding SMT-LIB 1.2 [35] concepts. The the-
ories of arrays, bit vectors, and algebraic datatypes are not yet exploited.

Many-sorted first-order logic’s support for sorts would seem to make it more appro-
priate to encode HOL typing information than classical first-order logic, but it does not
support polymorphism. Several solutions have been proposed in the literature [14, 25].
Our current approach is to monomorphize the formulas: Polymorphic formulas are iter-
atively instantiated with relevant ground instances of their polymorphic constants. This
process is iterated a bounded number of times to obtain the monomorphized problem.

Partial applications are translated using an explicit apply operator. In contrast with
the combinator approach used by Sledgehammer when communicating with ATPs, the
smt method lifts λ-abstractions into new rules, thereby introducing fresh constants.

Proof Reconstruction. CVC3 and Z3 provide independently checkable proofs of un-
satisfiability. We have implemented proof reconstruction for Z3 and support CVC3 and
Yices as oracles. Reconstruction relies extensively on standard Isabelle proof methods
such as the simplifier, the classical reasoner, and the arithmetic decision procedures.
Certificates make it possible to store Z3 proofs alongside Isabelle formalizations, al-
lowing SMT proof replay without Z3; only if the formalizations change must the cer-
tificates be regenerated. Using SMT solvers as oracles requires trusting both the solvers
and the smt method’s translation, so it is generally frowned upon.
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Example. The periodic integer recurrence relation xi+2 = |xi+1|− xi has period 9. This
property can be proved in Isabelle using the smt method as follows:

lemma “x3 = |x2|− x1 ∧ x4 = |x3|− x2 ∧ x5 = |x4|− x3 ∧ x6 = |x5|− x4 ∧
x7 = |x6|− x5 ∧ x8 = |x7|− x6 ∧ x9 = |x8|− x7 ∧ x10 = |x9|− x8 ∧
x11 = |x10|− x9 =⇒ x1 = x10 ∧ x2 = (x11 :: int)”

by smt

SMT solvers prove the formula almost instantly, and proof reconstruction (if enabled)
takes a few seconds. In contrast, Isabelle’s arithmetic decision procedure requires sev-
eral minutes to prove the same result. This example does not require any problem-
specific facts, but these would have been supplied as arguments in the smt call just like
for metis in the previous section.

4 Combining Sledgehammer and SMT

Extending Sledgehammer with SMT solvers was to a large extent a matter of connect-
ing existing components: Sledgehammer’s relevance filter and minimizer with the smt
method’s translation and proof reconstruction. Figure 1 depicts the resulting architec-
ture, omitting proof reconstruction and minimization.

Relevance filter

E SPASS SInE Z3 CVC3 Yices

Relevance filter

ATP translation SMT tr. SMT translation

Metis
proof

Metis 
or SMT
proof

Metis 
or SMT
proof

Metis 
or SMT
proof

Metis
proof

Metis
proof

Metis
proof

Vampire

Sledgehammer 

Fig. 1. Sledgehammer’s extended architecture

Two instances of the relevance filter run in parallel, to account for different sets of
built-in constants. The relevant facts and the conjecture are translated to the ATP or
SMT version of first-order logic, and the resulting problems are passed to the provers.
The translation for Z3 is done slightly differently than for CVC3 and Yices to take
advantage of the former’s support for nonlinear arithmetic.
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4.1 Relevance Filtering

In the old architecture, the available lemmas were rewritten to conjunctive normal form
(CNF) using a naive application of distributive laws before the relevance filter was
invoked [28]. To avoid clausifying thousands of lemmas on each Sledgehammer invo-
cation, the CNF clauses were kept in a cache. This design was technically incompatible
with the (cache-unaware) smt method, and it was already unsatisfactory for ATPs, which
include custom polynomial-time clausifiers [32].

We rewrote the relevance filter so that it operates on arbitrary HOL formulas, trying
to simulate the old behavior. To mimic the penalty associated with Skolem constants in
the CNF-based code, we keep track of polarities and detect quantifiers that give rise to
Skolem constants.

The relevance filter gives more precise results if it ignores HOL constants that are
translated to built-in constructs. For ATPs, this concerns equality, connectives, and
quantifiers, as well as let and if –then–else. SMT solvers support a much larger set
of built-in constructs, notably arithmetic operators. It was straightforward to generalize
the filter code so that it performs its task appropriately for SMT solvers.

Observing that some provers cope better with large fact bases than others, we opti-
mized the the maximum number of relevant facts to include in a problem independently
for each prover (from a library of about 10000 facts). The maxima we obtained are 150
for CVC3 and Yices and 250 for Z3. In comparison, the filter currently selects up to
250 facts for E, 150 for SPASS, 450 for Vampire, and 500 for SInE.

4.2 SMT Solver Invocation

In our first experiments, we simply invoked Z3 as an oracle with the monomorphized
relevant facts, using the same translation as for the smt proof method. The results were
disappointing. Several factors were to blame:

• The translation of hundreds of facts took many seconds.
• It took us a while to get the bugs out of our translation code. Syntax errors in many

generated problems caused Z3 to give up immediately.
• Z3 often ran out of memory after a few seconds or, worse, crashed.

Latent issues both in our translation and in Z3 were magnified by the number of facts in-
volved. Our previous experience with SMT solvers had involved only a handful of facts.

The bottleneck in the translation was monomorphization. Iterative expansion of a
few hundred HOL formulas yielded thousands of monomorphic instances. We reduced
the maximum number of iterations from 10 to 4, to great effect.

The syntax errors were typically caused by confusion between formulas and terms or
the use of a partially applied built-in constant (both of which are legal in HOL). These
were bugs in the smt proof method; we gradually eradicated them.

We reported the segmentation faults to the Z3 developers, who released an improved
version. The bug was located in Z3’s proof generation facility, which is disabled by
default and hence not as well tested as the rest of the solver. To handle the frequent out-
of-memory conditions, we modified Sledgehammer to retry aborted solver calls with
half the facts. This simple change was enough to increase the success rate dramatically.
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4.3 Proof Reconstruction

In case of success, Sledgehammer extracts the facts used in the SMT proof—the un-
satisfiable core—and generates an smt proof method call with these facts supplied as
arguments. For example:

by (smt assms copyp0 sup_comm)

The proof method invokes Z3 to re-find the proof, which it replays step by step. The
Z3 proof can also be stored alongside the Isabelle formalization as a certificate to avoid
invoking Z3 each time the proof is rechecked. Proof minimization can be done as for
ATP proofs to reduce the number of facts.

To increase the success rate and reduce the dependency on external solvers or certifi-
cates, Sledgehammer first tries Metis for one second. If Metis succeeds, Sledgehammer
generates a Metis call rather than an smt call. Metis will of course fail if the proof
requires theories other than equality.

One of the less academically rewarding aspects of integrating third-party tools is the
effort spent on solving mundane issues. Obtaining an unsatisfiable core from the SMT
solvers turned out to be surprisingly difficult:

• CVC3 returns a full proof, but somehow the proof refers to all facts, whether they
are actually needed or not, and there is no easy way to find out which facts are actu-
ally needed. We rely on Sledgehammer’s proof minimizer and its binary algorithm
to reduce the facts used to a reasonable number.

• Yices can output a minimal core, but for technical reasons only when its native
input syntax is used rather than the standard SMT-LIB 1.2 format. We tried using
off-the-shelf file format converters to translate SMT-LIB 1.2 to 2 then to Yices, but
this repeatedly crashed. In the end, we settled for the same solution as for CVC3.

• For Z3, we could reuse our existing proof parser, which we need to reconstruct
proofs. The proof format is fairly stable, although new releases often come with
various minor changes.

4.4 Redistribution and Distribution

Our goal with Sledgehammer is to help as many Isabelle users as possible. Third-party
provers should ideally be bundled with Isabelle and ready to be used without requiring
configuration. Today, Isabelle includes E and SPASS executables for Linux, Mac OS X,
and Windows; users can download Vampire (whose license forbids redistribution), but
most simply run Vampire remotely on SystemOnTPTP.

For SMT solvers, the situation is similar. Only CVC3 allows redistribution and use
by noncommercial and commercial users alike, and Z3 executables are not available for
Mac OS X. With the Z3 developers’ express permission, we set up a server in Munich
in the style of SystemOnTPTP for running Z3 (as well as CVC3) remotely.

Remote servers are satisfactory for proof search, at least when they are up and run-
ning and the user has Internet access. They also help distribute the load: Unless the
user’s machine has eight processor cores, it would be reckless to launch four ATPs and
three SMT solvers locally in parallel and expect the user interface to remain snappy.
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4.5 Experiment: Generation of Weights and Triggers

SMT solvers work by incrementally building a model for the quantifier-free part of
the problem. Quantifiers are instantiated at each iteration based on the set of active
terms (ground terms which the current partial model can interpret). These instances are
conjoined with the quantifier-free part of the problem, helping refine the model.

To help guide quantifier instantiation and avert an explosion in the number of in-
stances generated, some SMT solvers support extralogical annotations on their quan-
tifiers. We have done some experiments with weights and triggers, which so far have
been somewhat inconclusive.

Weights. Weights are specific to Z3. The greater the weight of the quantifier, the fewer
instantiations are allowed. The instantiations that are allowed are those by terms that
became active early, because they are more likely to be relevant to the problem at hand.

Intuitively, there is an easy way for Sledgehammer to fill in the weights meaningfully.
The iterative relevance filter yields a list of facts sorted by likely relevance. We can
give a weight of 0 to the most relevant fact included, N to the least relevant fact, and
interpolate in between. If N = 0, we obtain Z3’s default behavior. We currently use
N = 10 with a quadratic interpolation, which seems to help more than it harms.

Triggers. A trigger is a set of patterns that must all match some active term for the in-
stantiation to take place. Patterns are usually subterms of the quantified formula. CVC3,
Yices, and Z3 infer the triggers heuristically, but CVC3 and Z3 also provide a syntax
for user-specified triggers.

We tried to rely on this mechanism to exploit the form of Isabelle/HOL lemmas.
In particular, equations registered for use by the Isabelle simplifier typically define a
function symbol applied to a constructor pattern in terms of a (possibly recursive) right-
hand side. It then makes sense to take the entire left-hand side as the only trigger. When
an instance of the left-hand side is active, the trigger enables the equation’s instantiation.

In stark contrast with the SMT folklore that well chosen triggers are a prerequisite for
success [29], we found that the SMT solvers can be relied on to infer acceptable triggers
and that our scheme for equations is too limited to help much. Perhaps we should try
to add support for other common syntactic forms, such as introduction and elimination
rules, to obtain greater benefits. This remains for future work.

4.6 Example

A gratifying example arose on the Isabelle mailing list [30] barely one week after we
had enabled SMT solvers in the development version of Sledgehammer. A new Isabelle
user was experimenting with a simple arithmetic algebraic datatype:

datatype arith = Z | Succ arith | Pred arith

He had defined an inductive predicate step that takes two arith values and wanted to
prove the following simple property but did not know how to proceed:

lemma “step (Pred Z) m =⇒ m = Z”



124 J.C. Blanchette, S. Böhme, and L.C. Paulson

Our colleague Tobias Nipkow helpfully supplied a structured Isabelle proof:

using assms
proof cases

case s_pred_zero thus “m = Z” by simp
next

case (s_pred m′)
from ‘step Z m′’ have “False” by cases
thus “m = Z” by blast

qed

The proof is fairly simple by interactive proving standards, but it nonetheless represents
a few minutes’ work to a seasoned user (and, as we saw, was too difficult for a novice).
Our colleague then tried the development version of Sledgehammer and found a much
shorter proof due to Z3:

by (smt arith.simps(2,4,5,8) step.simps)

Although it involves no theory reasoning beyond equality, the ATPs failed to find it
within 30 seconds because of the presence of too many extraneous facts.

5 Evaluation

In their “Judgment Day” study, Böhme and Nipkow [9] evaluated Sledgehammer with
E, SPASS, and Vampire on 1240 provable proof goals arising in seven representative
formalizations from the Isabelle distribution and the Archive of Formal Proofs. To evalu-
ate the SMT integration, we ran their benchmark suite with the latest versions of Sledge-
hammer on the same seven formalizations.3 We also added two formalizations (QE and
S2S) that rely heavily on arithmetic to exercise the SMT decision procedures.

The formalizations are listed below. The last two columns give the percentage of the
(now) 1591 proof goals that come from each formalization and the features it contains,
where A means arithmetic, I means induction and recursion, L means λ-abstractions,
and S means sets.

Arrow Arrow’s impossibility theorem L S 6.3%
FFT Fast Fourier transform A L 9.1%
FTA Fundamental theorem of algebra A 26.6%
Hoare Completeness of Hoare logic with procedures A I L 12.8%
Jinja Type soundness of a subset of Java I L 11.4%
NS Needham–Schroeder shared-key protocol I 6.2%
QE DNF-based quantifier elimination A L S 12.0%
S2S Sum of two squares A 8.1%
SN Strong normalization of the typed λ-calculus A I 7.2%

3 Our test data set is available at http://www4.in.tum.de/~blanchet/cade2011-data.tgz .

http://www4.in.tum.de/~blanchet/cade2011-data.tgz
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All Uniq.

E 1.2 24% 15% 60% 42% 31% 31% 25% 39% 60% 40.2% .1%
SPASS 3.7 34% 14% 57% 51% 32% 34% 28% 39% 60% 41.7% .4%
Vampire 1.0 31% 19% 62% 49% 35% 44% 23% 48% 60% 44.2% 1.0%
SInE 0.4 23% 16% 55% 40% 31% 28% 20% 39% 63% 38.3% .3%

CVC3 2.2 36% 18% 53% 51% 37% 29% 21% 57% 55% 41.8% .1%
Yices 1.0.28 29% 18% 51% 51% 37% 31% 23% 59% 59% 41.7% .3%
Z3 2.15 48% 18% 62% 54% 47% 42% 25% 58% 62% 48.5% 2.6%
ATPs 40% 21% 67% 55% 37% 45% 31% 55% 70% 49.9% 6.3%
SMT solvers 50% 23% 66% 65% 48% 42% 27% 66% 63% 52.4% 8.8%

All provers 55% 28% 73% 67% 48% 51% 41% 73% 72% 58.7% –

Fig. 2. Success rates on all goals with proof reconstruction

Arrow FFT FTA Hoare Jinja NS QE S2S SN All Uniq.

E 1.2 21% 11% 34% 26% 26% 19% 12% 9% 44% 23.2% .2%
SPASS 3.7 29% 12% 31% 38% 27% 23% 16% 12% 51% 26.2% .7%
Vampire 1.0 23% 17% 39% 36% 33% 36% 8% 19% 47% 29.0% 1.7%
SInE 0.4 18% 13% 28% 24% 26% 16% 9% 11% 51% 21.4% .4%

CVC3 2.2 23% 13% 28% 36% 31% 18% 7% 25% 37% 24.3% .1%
Yices 1.0.28 11% 13% 30% 40% 33% 19% 7% 26% 44% 25.4% .4%
Z3 2.15 35% 13% 41% 46% 46% 34% 7% 28% 46% 33.0% 4.3%
ATPs 32% 18% 42% 42% 33% 38% 19% 26% 59% 33.8% 6.9%
SMT solvers 37% 17% 43% 54% 46% 34% 8% 33% 47% 35.8% 8.9%

All provers 42% 23% 50% 57% 46% 44% 23% 42% 61% 42.7% –

Fig. 3. Success rates on “nontrivial” goals with proof reconstruction

We ran the provers for 30 seconds, which corresponds to the default time limit in
Sledgehammer. Even though Sledgehammer runs asynchronously, most users prefer to
wait for it to return, hoping to get a proof for free. Böhme and Nipkow [9] considered
timeouts of 60 and 120 seconds, but these had a negligible impact on the success rate.

If a proof is found, proof search is followed by reconstruction with a 30-second time
limit. We allotted an extra 30 seconds to CVC3 and Yices to account for the expensive
black-box proof minimization. This might not be entirely fair, but it reflects a compro-
mise between the real power of these solvers and what Isabelle users currently perceive.
Moreover, users are normally patient when they know that a proof has been found and
has reached the minimizer.

Figure 2 gives the success rates for each prover (or class of prover) on each for-
malization together with the unique contributions of each prover. Sledgehammer now
solves 58.7% of the goals, compared with 49.9% without SMT. Much to our surprise,
the best SMT solver, Z3, beats the best ATP, Vampire, with 48.5% versus 44.2%. Z3
also contributes by far the most unique proofs: 2.6% of the goals are proved only by it,
a figure that climbs to 8.1% if we exclude CVC3 and Yices.

While it might be tempting to see this evaluation as a direct comparison of provers,
recall that even provers of the same class (ATP or SMT solver) are not given the same
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Arrow FFT FTA Hoare Jinja NS QE S2S SN All

Arithmetic 0% 49% 7% 9% 0% 0% 21% 51% 3% 12.9%
Metis 80% 24% 89% 77% 80% 92% 60% 29% 100% 75.9%

Fig. 4. Use of arithmetic in successful Z3 proofs and reconstructibility with Metis

Arrow FFT FTA Hoare Jinja NS QE S2S SN All

CVC3 2.2 0% +2% −1% +3% +2% +1% −9% +12% +4% +.8%
Yices 1.0.28 0% +3% +2% +4% +1% 0% −6% +11% +1% +1.5%
Z3 2.15 −1% −3% +2% −2% +1% 0% −13% +8% +2% −.8%
SMT solvers −1% +1% +3% +2% +1% 0% −12% +12% +3% +.9%

Fig. 5. Absolute success rate differences between SMT solver runs with and without arithmetic
on all goals with proof reconstruction

number of facts or the same options. Sledgehammer is not so much a competition as a
combination of provers.

About one third of the goals from the chosen Isabelle formalizations are “trivial”
in the sense that they can be solved directly by standard Isabelle tactics invoked with
no arguments. If we ignore these and focus on the “nontrivial” goals, which users are
especially keen on seeing solved by Sledgehammer, the success rates are somewhat
lower, as shown in Figure 3: The ATPs solve 33.8% of these harder goals, and SMT
solvers increase the success rate to 42.7%.

We also evaluated the extent to which the SMT decision procedures (other than
equality) contribute to the overall result. To this end, we inspected the successful Z3
proofs to determine the percentage of proofs that involve an arithmetic decision proce-
dure. Theory-specific rewrite rules, which do not rely on any decision procedure, are
not counted. Complementarily, we extracted the relevant facts from the Z3 proofs and
passed them to Metis with a 30-second time limit. Figure 4 summarizes the results.
For the formalizations under study, the vast majority of SMT proofs do not require any
theory reasoning and can be reconstructed by a resolution prover.

These results prompted us to benchmark the SMT solvers with Isabelle’s arithmetic
constants left uninterpreted, effectively disabling theory reasoning. We expected a loss
comparable to the use of arithmetic in Z3 proofs, but the actual loss is much smaller.
For some formalizations, the SMT solvers’ support for arithmetic is actually harmful,
as shown in Figure 5. Tellingly, the formalization that relies the most on Isabelle’s
arithmetic decision procedure, S2S, is also the one for which SMT arithmetic helps the
most, increasing the SMT solvers’ success rate from 55% to 66% (compared with 55%
for the ATPs).

Arithmetic decision procedures are therefore not the main reason why the SMT
solvers collectively outperform the ATPs. A more important reason is that many proofs
found by ATPs are type-unsound in higher-order logic and cannot be replayed; in con-
trast, the SMT translation is designed to be sound by exploiting SMT sorts. Moreover,
Metis sometimes fails to rediscover an ATP proof within a reasonable time, whereas
proof reconstruction for Z3 is typically faster and more reliable.
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Looking at the test data more closely, we also noticed that SMT solvers performed
better on higher-order problems, suggesting that the smt method’s translation of λ-ab-
stractions is better suited to the SMT solvers than combinators are to the ATPs. Re-
markably, previous experiments found combinators superior to λ-lifting for ATPs [27].
We need to carry out new experiments to gain clarity on this point.

6 Conclusion

Sledgehammer has enjoyed considerable success since its inception in 2007 and has
become indispensable to most Isabelle users, both novices and experts. It is possibly
the only interface between interactive and automatic theorem provers to achieve such
popularity. It owes its success to its ease of use: Sledgehammer is integral to Isabelle
and works out of the box, using a combination of locally installed provers and remote
servers. It can even be configured to run automatically on all newly entered conjectures.

To Isabelle users, the addition of SMT solvers as backends means that they now
get more proofs without effort. The SMT solvers, led by Z3, compete advantageously
with the resolution-based ATPs and Metis even on non-arithmetic problems. In our
evaluation, they solved about 36% of the nontrivial goals, increasing Sledgehammer’s
success rate from 34% to 43% on these. Running the SMT solvers in parallel with the
ATPs is entirely appropriate, for how is the user supposed to know which class of prover
will perform best?

To users of SMT solvers, the Sledgehammer–SMT integration eases the transition
from automatic proving in first-order logic to interactive proving in higher-order logic.
Other tools, such as HOL-Boogie [8], assist in specific applications. Isabelle/HOL is
powerful enough for the vast majority of hardware and software verification efforts,
and its LCF-style inference kernel provides a trustworthy foundation.

Even the developers of SMT solvers profit from the integration: It helps them reach
a larger audience, and proof reconstruction brings to light bugs in their tools, including
soundness bugs, which might otherwise go undetected.4

While the evaluation and user feedback show that the integration is a resounding suc-
cess, much can still be improved. Work is under way to reconstruct Z3 proofs involv-
ing arrays, bit vectors, and algebraic datatypes. The heuristics for trigger generation are
simplistic and would probably benefit from more research. The encoding of HOL types,
based on monomorphization, was never meant to cope with hundreds of facts and could
also benefit from new ideas.

With the notable exceptions of triggers and weights, we treated the SMT solvers as
black boxes. A tighter integration might prove beneficial, as has been observed with
other verification tool chains (e.g., VCC/Boogie/Z3 [13] and PVS/SAL/Yices [37]), but
it would also require much more work. Obtaining an unsatisfiable core from CVC3 and
Yices would be a first small step in the right direction.

The main open question is the extent to which the improvements we obtained by
adding support for SMT provers are due to the smt method’s translation and proof re-
construction as opposed to the nature of SMT provers. To clarify this, we plan to carry
out further experiments with SPASS’s support for sorts and Z3’s unsorted input format.

4 Indeed, we discovered a soundness bug in Yices and another in Z3 while preparing this paper.
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Abstract. We present a general automated proof procedure, based upon
cyclic proof, for inductive entailments in separation logic. Our procedure
has been implemented via a deep embedding of cyclic proofs in the HOL
Light theorem prover. Experiments show that our mechanism is able to
prove a number of non-trivial entailments involving inductive predicates.

1 Introduction

Separation logic [19] has recently become a very popular formalism for the ver-
ification of imperative, memory-manipulating programs. Proofs of programs in
separation logic are based on the Hoare triples {P}C{Q} familiar from first-order
approaches to verification. However, the pre- and post-conditions of triples may
contain a special separating conjunction ∗, which allows the disjointness of por-
tions of heap memory to be expressed: The formula F ∗G denotes those heaps
which can be separated into two disjoint parts satisfying F and G, respectively.
This characteristic feature enables one to construct proofs that are highly mod-
ular, and thus separation logic scales well to large programs. Indeed, there are
now several tools based upon separation logic that are capable of verifying code
on an industrial scale [8,23,13].

In this paper, we address the issue of automatically proving entailments
F1 |= F2 between formulas in separation logic. In proof systems and automated
verification tools based on Hoare triples, the obligation to prove such entailments
typically arises via the standard rule of consequence:

{P’}C{Q’}
P |= P ′, Q′ |= Q (Consq)

{P}C{Q}

This rule might be applied during a proof search to remove redundant infor-
mation from the precondition P , or to convert P and Q into a format which
matches a rule for the command C. Other activities in which entailments need
to be proved include abstraction [12] and discharging the guards of conditional
commands during symbolic execution. Thus, effective procedures for establishing
entailments are at the foundation of automatic verification based on separation
logic. Due to the intense use of dynamically-allocated data structure in real-world
software (e.g., system code [23]), in practice, the pre- and postconditions occur-
ring in separation logic proofs typically contain inductively defined predicates.
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Thus any proof-theoretic approach to establishing entailments is essentially a
problem of inductive theorem proving, which is known to present serious diffi-
culties for automated search (see [7] for an overview). Moreover, in the case of
separation logic, the induction hypotheses required for an inductive proof are
often not even expressible in the fragments of the logic handled by automatic
tools since they require unsupported operators like the spatial implication —∗.

Unfortunately, due to the current lack of off-the-shelf general theorem provers,
most of the existing automated verification tools have to appeal to their own
theorem prover for checking the validity of entailments. Because building them
is a difficult and time-consuming activity, these provers tend to be rather ad-
hoc and often do not provide support for inductive methods. Here, we present
a prototype theorem prover for entailments of separation logic that uses cyclic
proof to handle inductive theorems. Cyclic proof has recently been mooted as
an alternative to the default approach of explicit inductive proof that offers
potential advantages for automated proof search [4,6]. Cyclic proofs differ from
explicit induction proofs in two main respects. First, explicit induction rules
are replaced by simple “case split” rules for the inductively defined predicates.
Second, proofs are allowed to contain cycles, and thus can be seen as infinite
derivation trees. To ensure that such structures correspond to sound proofs, a
global soundness condition is imposed on cyclic proofs guaranteeing the well-
foundedness of all reasoning. The main attraction of cyclic proofs is that, unlike
in standard induction proofs, the induction hypotheses are not supplied explicitly
via the application of an induction rule. Instead, they are constructed implicitly
via the discovery of a valid cyclic proof. This allows a much more exploratory
approach to automated proof search.

Our theorem prover is implemented in HOL Light [15] and supports both fully
automatic and interactive proof. The implementation of a cyclic proof system in
HOL Light, or indeed any of the mainstream theorem provers, presents several
non-trivial technical obstacles stemming from the fact that such provers take a
local viewpoint of proofs, whereas cyclic proof is necessarily global. To overcome
this mismatch, we employ a deep embedding of our formal cyclic proof system,
i.e., a HOL Light representation in which cyclic proofs themselves are first-class
objects. The main advantage of a fully explicit representation of this type is that
we can easily impose the correct soundness conditions on proofs. Although we
employ a fairly simple such condition in this paper, we can easily impose more
general conditions in order to improve completeness at the expense of speed.
We have evaluated our implementation on a series of examples, drawn from the
literature. Although our prover is only a prototype, the results are encouraging
for their coverage as well as their performance. Our implementation approach
should also transfer to other, similar cyclic proof systems as described in [2].

The remainder of this paper is structured as follows. Section 2 introduces
our separation logic fragment. Section 3 introduces our cyclic proof machinery.
Section 4 describes the implementation of our proof procedure and evaluates its
performance. Section 5 compares with related work and Section 6 concludes.
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2 Syntax and Semantics

In this section we introduce the separation logic formulas that we shall consider
throughout the paper, and their standard semantics with respect to a fixed heap
model. We assume a fixed, infinite set V of first-order variables and a fixed finite
set of predicate symbols, each with associated arity.

Definition 1 (Formulas). Formulas are given inductively by the grammar:

F ::= � | ⊥ | x = y | x �= y | emp | x �→ y | x 2�→ y, z | F ∨ F | F ∗ F | Px

where x, y range over V , P ranges over predicate symbols and x ranges over tuples
of variables of appropriate length to match the arity of P . We write FV (F ) to
denote the set of variables occurring in formula F . We consider formulas up to
associativity and commutativity of ∗ and ∨.

The fragment of separation logic considered here is relatively simple and does
not include, for example, function symbols, plain conjunction (∧) or spatial
implication (—∗). These features are not typically employed in separation logic
verification tools (in fact even ∨ is often removed as well) because the complexity
rapidly becomes unmanageable. In fact, it has been shown that unrestricted
separation logic is undecidable even in the purely propositional setting [5].

The definitions of our predicate symbols are supplied by “inductive rule sets”
in the style of [3,2], which are based on Martin-Löf’s “productions” [16].

Definition 2 (Inductive rule set). An inductive rule set is a finite set of
inductive rules each of the form F ⇒ Px where F and Px are formulas with P
a predicate symbol.

From now on we assume a fixed inductive rule set Φ.

Semantics. Let L be an infinite set of locations, and V be a set of values. Then
H = L ⇀fin V , the set of all finite partial functions from L to V , is called
the set of heaps. (We sometimes choose to work instead with heaps of the form
H = L ⇀fin V × V , where a pair of values is stored at each location.) We write
dom(h) to denote the domain of the heap h, i.e., the set {l ∈ L | h(l) is defined}.
Composition of heaps, h1 ◦ h2, is defined as the union of h1 and h2 if their
domains are disjoint, and undefined otherwise. The empty heap e is the heap
such that e(l) is undefined for all l ∈ L. It is easy to see that 〈H, ◦, e〉 is a
separation algebra (cf. [9]), i.e., a cancellative partial commutative monoid.

The set of stacks is S = V → L∪V , the set of total functions from first-order
variables to locations or values (which are not necessarily disjoint). Satisfaction
of a formula F by a stack s and heap h is denoted s, h |= F and defined by
structural induction on F in Figure 1. There, �P � is as usual a component of
the least fixed point of a monotone operator constructed from the inductive
definition set Φ; see [3,4] for details. We say the entailment F1 |= F2 holds if, for
all stacks s ∈ S and heaps h ∈ H , we have s, h |= F1 implies s, h |= F2.
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s, h |= 	 ⇔ always
s, h |= ⊥ ⇔ never

s, h |= x = y ⇔ s(x) = s(y)
s, h |= x �= y ⇔ s(x) �= s(y)
s, h |= emp ⇔ h = e

s, h |= x �→ y ⇔ dom(h) = {s(x)} and h(s(x)) = s(y)

s, h |= x
2�→ y, z ⇔ dom(h) = {s(x)} and h(s(x)) = (s(y), s(z))

s, h |= Px ⇔ (s(x), h) ∈ �P �
s, h |= F1 ∨ F2 ⇔ s, h |= F1 or s, h |= F2

s, h |= F1 ∗ F2 ⇔ ∃h1, h2 ∈ H. h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

Fig. 1. Semantics of separation logic formulae. Note that the �→ and
2�→ predicates are

interpreted only in heaps of type L ⇀fin V and L ⇀fin V × V respectively.

3 Cyclic Proofs of Separation Logic Entailments

In this section we define a formal cyclic proof system for a class of separation
logic entailment problems involving inductively defined predicates.

Our proof system employs sequents of the form F � G where F and G are
separation logic formulas as given by Defn. 1. We write F [θ] for the result of
applying a substitution θ : V → V to the formula F , and extend substitution
pointwise to tuples of variables. We give a set of basic proof rules for sequents in
Figure 2. Note that we write a rule with a double-line between premise and con-
clusion to indicate that the premise and conclusion are interchangeable (so that
a “double-line rule” effectively abbreviates two normal rules). We also comment
that our rules have been chosen for simplicity and ease of implementation, rather
than completeness and expressivity. In particular, there is no rule for rewriting
with equalities; such rewriting techniques are out of the scope of the present
paper, which concentrates on inductive techniques.

To the proof rules in Figure 2 we add simple unfolding rules for the inductive
predicates in the definition set Φ. In order to formulate these, it is essential
to know which variables occur free in our inductive rules, so that they can be
instantiated correctly. We write an annotated inductive rule F

z⇒ Px, where z
is a tuple of distinct variables, to indicate that FV (F ) ∪ {x} = {z}.

Definition 3 (Unfolding rules). To any predicate symbol P we associate a
finite number of right-unfolding rules and a single left-unfolding rule, constructed
from its inductive definition in the inductive rule set Φ. First, for each inductive
rule F

z⇒ Px there is a right-unfolding rule for P :

G � H ∗ F [y/z]
(PR)

G � H ∗ Px[y/z]

where y is any tuple of variables of the same length as z. (Note that {x} ⊆ {z}
by definition, so that in Px[y/z] all of the variables in x are uniformly replaced
by arbitrary variables from y.)
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(Id)
F � F

(⊥L)
⊥ ∗ F � G

(	R)
F � 	

(=R)
F � x = x

(=L)
x = y ∗ x �= y ∗ F � G

( �→)
x �→ y ∗ x �→ z ∗ F � G

(
2�→)

x
2�→ y1, y2 ∗ x

2�→ z1, z2 ∗ F � G

F � H H � G
(Cut)

F � G

F � G
========== (empL)
emp ∗ F � G

F � G
========== (empR)
F � G ∗ emp

F1 � G1 F2 � G2

(∗)
F1 ∗ F2 � G1 ∗G2

F1 ∗ F � G F2 ∗ F � G
(∨L)

(F1 ∨ F2) ∗ F � G

F � Gi ∗G
i ∈ {1, 2}(∨R)

F � (G1 ∨G2) ∗G

Fig. 2. Basic proof rules. A rule written with a double-line between premise and con-
clusion indicates that the premise and conclusion are interchangeable.

The left-unfolding, or case-split rule for P has the following general schema:

case premises
(Case P )

G ∗ Pv � H

where, for each inductive rule of the form F
z⇒ Px, there is a case premise:

G[(x[y/z])/v] ∗ F [y/z] � H [(x[y/z])/v]

where the variables y are fresh, i.e. y �∈ FV (G ∗ Pv) ∪ FV (H) for all y ∈ {y}.
We observe that the complicated-seeming variable instantiation here essentially
works in two stages. First, the variables z appearing in the inductive rule F

z⇒ Px
are replaced by the fresh variables y, giving us a “fresh version” of the rule,
F [y/z]

y⇒ Px[y/z]. Second, to obtain the case premise we uniformly replace
the variables v appearing in the formula to be unfolded, Pv, with the freshly
instantiated variables x[y/z] appearing in the conclusion of the inductive rule1.

Example 1 (List segment). Define the inductive predicate ls by:

emp x⇒ lsxx x �→ x′ ∗ lsx′ z
x,x′,z⇒ lsx z

(Note the variable annotations.) The formula lsx y denotes a singly-linked list
segment whose first cell is pointed to by x and whose last cell contains y. The
right-unfolding rules for ls are:

G � H ∗ emp
(lsR1)

G � H ∗ ls y y

G � H ∗ y �→ y′ ∗ ls y′ v
(lsR2)

G � H ∗ ls y v

1 We could write this premise more simply as G ∗ v = x[y/z] ∗ F [y/z] � H . However,
our formulation above allows us to do without rules for equality on the left.
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The case-split rule for ls is:

G[y/v, y/v′] ∗ emp � H [y/v, y/v′]
G[y/v, y′/v′] ∗ y �→ y′′ ∗ ls y′′ y′ � H [y/v, y′/v′]

(Case ls)
G ∗ ls v v′ � H

where y, y′, y′′ are suitably fresh. Note that both v and v′ are replaced by the
same fresh variable y in the first premise, because the corresponding inductive
rule emp x⇒ lsxx only has a single free variable x.

Example 2 (Binary trees). Define the inductive predicate btr by:

emp x⇒ btrx x
2�→ y, z ∗ btr y ∗ btr z

x,y,z⇒ btrx

The formula btrx denotes a binary tree whose first cell is pointed to by x. The
right-unfolding rules for btree are:

G � H ∗ emp
(btrR1)

G � H ∗ btr v

G � H ∗ v
2�→ v1, v2 ∗ btr v1 ∗ btr v2

(btrR2)
G � H ∗ btr v

The case-split rule for btr (where y, y1, y2 are suitably fresh) is:

G[y/v] ∗ emp � H [y/v]
G[y/v] ∗ y

2�→ y1, y2 ∗ btr y1 ∗ btr y2 � H [y/v]
(Case btr)

G ∗ btr v � H

Our proof system allows proofs to be cyclic: that is, our proofs are deriva-
tion trees with “back edges”, subject to a syntactic, global condition ensuring
soundness. The following definitions are adapted from their analogues in [3].

Definition 4 (Pre-proof). A bud in a derivation treeD is a sequent occurrence
in D to which no proof rule has been applied (i.e., it is not the conclusion of any
proof rule instance in D). A companion for a bud B is a sequent occurrence C
in D of which B is a substitution instance, i.e. C = B[θ] for some substitution
θ. A pre-proof of a sequent S is given by (D,R), where D is a derivation tree
whose root is S and R is a function assigning a companion to every bud of D.

A path in a pre-proof is a sequence of sequent occurrences (Fi � Gi)i≥0 such
that, for all i ≥ 0, it holds that either Fi+1 � Gi+1 is a premise of the rule
instance in D with conclusion Fi � Gi, or Fi+1 � Gi+1 = R(Fi � Gi).

Definition 5 (Trace). Let (Fi � Gi)i≥0 be a path in a pre-proof P . A trace
following (Fi � Gi)i≥0 is a sequence (Ai)i≥0 such that, for all i ≥ 0, Ai is a
subformula occurrence of the form Px in the formula Fi, and either:

(i) Ai+1 is the subformula occurrence in Fi+1 corresponding to Ai in Fi (defined
in the obvious way analogous to [3,4]), or
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(ii) Fi � Gi is the conclusion of an instance of a case-split rule (Case P ), Ai is
the formula Pv unfolded by the rule and Ai+1 is a subformula of the formula
F [y/z] obtained by the unfolding, in which case i is said to be a progress
point of the trace.

We remark that, in particular, condition (i) means that formulas can only be
traced through the left-hand premise of an instance of (Cut) and not its right-
hand premise. An infinitely progressing trace is a (necessarily infinite) trace
having infinitely many progress points.

Definition 6 (Cyclic proof). A pre-proof P is a cyclic proof if it satisfies
the global trace condition: for every infinite path (Fi � Gi)i≥0 in P , there is an
infinitely progressing trace following some tail (Fi � Gi)i≥n of the path.

Theorem 7 (Soundness). If there is a cyclic proof of F � G, then F |= G.

Proof. (Sketch) The proof runs along the lines given in [3,6,4]. Briefly, suppose
for contradiction that there is a cyclic proof P of F � G but F �|= G, so that
for some stack s and heap h we have s, h |= F but s, h �|= G. Then, by local
soundness of the proof rules, we would be able to construct an infinite path
(Fi � Gi)i≥0 in P (with F0 � G0 = F � G) such that Fi �|= Gi for all i ≥ 0.
Since P is a cyclic proof, there exists an n ≥ 0 and an infinitely progressing
trace following (Fi � Gi)i≥n. It is a standard fact that the least fixed point
interpretation of the inductive predicates can be generated by an ordinal-indexed
chain of approximants (cf. [1]). The fact, guaranteed by the trace condition, that
some occurrence of an inductive predicate is unfolded infinitely often using the
case-split rules then induces an infinite decreasing chain of the ordinals indexing
this chain of approximants, which contradicts their well-foundedness. �!

Example 3 (cf. [3]). The following is a pre-proof of lsxx′ ∗ lsx′ y � lsx y.

(Id)
ls x y � lsx y

(empL)
emp ∗ lsx y � lsx y

(Id)
x �→ z � x �→ z (†) ls z x′ ∗ lsx′ y � ls z y

(∗)
x �→ z ∗ ls z x′ ∗ lsx′ y � x �→ z ∗ ls z y

(lsR2)
x �→ z ∗ ls z x′ ∗ lsx′ y � lsx y

(Case ls)
(†) lsx x′ ∗ lsx′ y � lsx y

The pairing of a suitable companion with the only bud in this pre-proof is de-
noted by (†). A trace from the companion to the bud is denoted by the underlined
formulas, with a progress point at the displayed application of (Case ls).

We remark that the standard inductive proof of lsxx′ ∗ lsx′ y � lsx y is by
induction on lsxx′ using the induction hypothesis lsx′ y —∗ lsx y, where —∗
is the multiplicative implication of separation logic. Not only is this induction
hypothesis not a subformula of the goal sequent, but it is not even expressible
in our formula language (or that of most available verification tools).
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4 Implementation of the Cyclic Prover

The proof system described in Section 3 has been implemented in HOL Light
as a deep embedding, meaning that proofs as well as sequents are represented
explicitly in our implementation. Thus we provide HOL datatypes for formulas
(with a sequent being represented as a pair of formulas) and pre-proofs, with
the proof rules captured by a HOL relation on sequents.

The main obstacles when implementing a cyclic prover all stem from the fact
that the activities of constructing cycles and verifying the soundness condition
are global operations on proof trees, whereas (like most theorem provers) HOL
Light’s internal view of proofs is inherently local. Thus, while one can typically
implement a proof system simply by encoding each proof rule, we have to explic-
itly represent (portions of) pre-proofs in order to allow us to identify suitable
companions for buds and to ensure that the resulting pre-proof satisfies the
soundness condition that all infinite paths have infinitely progressing traces.

Our solution is to first tag each occurrence of an inductive predicate in our
sequents, in order to assist in the construction of traces. We then augment each
node with information about the current branch and any progress points in
the traces along it. This gives us enough explicit information in a proof tree to
enable the formation of “downlinks” from buds to companions, and to ensure the
soundness condition on cyclic proofs. The next subsections describe the various
components of the implementation.

4.1 Representation of Pre-proofs

As with the proof system in Section 3, the entire implementation is parameterized
by a set of inductive definitions, so an OCaml datatype for inductive definitions
has been designed and a list of such is a parameter to the whole implementation.

The type formula is implemented as a HOL datatype following Defini-
tion 1 except for atomic formulas of the form Px, which have the construc-
tor Ind : num→ inductive→ formula. The datatype inductive is generated
from the input list of inductive definitions and simply has an entry Px for each
inductive predicate. The argument to Ind of type num is a tag used to track
occurrences so that traces can be established; Section 4.2 describes how traces
are constructed using predicate tags. When searching for a cyclic proof, unique
tags are assigned to all inductive predicates of the root node.

In the implemented system, the nodes of the proof tree are “augmented se-
quents” containing extra information about the proof tree, written as

(α, π) : F � G

(where F and G are formulas). The component α is called the ancestry of the
current node. It records the entire branch from the root of the proof tree to
the node, in the form of a (finite) list of entailments F1 � G1, . . . , Fn � Gn,
with Fn � Gn being the root of the tree. We write F � G :: α for the ancestry
obtained by adding F � G to the beginning of the list α, and write αn for the
nth element of α (if it exists). The component π ∈ N, called the progress pointer,
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is the smallest natural number n such that αn is the conclusion of a case-split
rule (denoting the closest progress point below the current node in the sense of
Definition 5). If no such n exists (so that no case-split rules are applied below the
current node), we set π = |α|+ 1, so that π points past the end of the ancestry.

The general transformation from the rules of Figure 2 to rules using aug-
mented sequents in the implemented system is the following:

S1 . . . Sn

S
=⇒

(S :: α, π + 1) : S1 . . . (S :: α, π + 1) : Sn

(α, π) : S

I.e., when applying a rule backwards, the sequent in the conclusion of the rule is
added to the ancestry of each of its premises. The progress pointer is incremented,
because the distance from the current node to the nearest conclusion of a case-
split rule has increased by one (reading the rule from conclusion to premise).

Naturally, the case-split rules are exceptions. When a case-split rule is applied,
the progress pointer is set to 1 in each of its premises. So, for example, the
implemented version of the case-split rule (Case ls) looks like this:

((G ∗ lsi v v′ � H) :: α, 1) : G[y/v, y/v′] ∗ emp � H [y/v, y/v′]
((G ∗ lsi v v′ � H) :: α, 1) : G[y/v, y′/v′] ∗ y �→ y′′ ∗ lsi y

′′ y′ � H [y/v, y′/v′]

(α, π) : G ∗ lsi v v′ � H

where the subscript i on ls denotes the tag assigned to the atomic formula
occurrence; note that the subformula ls y′′ y′ in the second premise, obtained
by unfolding ls v v′ in the conclusion, inherits the tag i, in keeping with the rules
for forming traces in Definition 5.

The axiom rule (Id) is the other exception because, since tags are only relevant
for the purpose of constructing traces, they should be ignored when applying
(Id). We define a binary predicate matches on formulas to implement equality
up to change of tags, whence F matches G holds if F and G are equal when all
their tags are erased. The implemented form of (Id) is then as follows:

F matches F ′

(c Id)
(α, π) : F � F ′

Finally, we need to add a rule that allows us to form cycles. The ancestry
information alone is enough to form cycles, but the progress pointer allows us
to only form cycles which contain at least one progress point: In order to find a
companion for (α, π) : F � G, it suffices to find a substitution θ and an n such
that n > π, αn is defined and αn = (F � G)[θ]. However, because traces only
involve predicates occurring on the left of sequents, it suffices that G and the
right hand side of αn are equal up to predicate tags. Thus, the proof rule for
link formation in the implemented system is

|α| > n > π ∃θ. αn = (F � G′)[θ] G matches G′[θ]
(c downlink)

(α, π) : F � G
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where |α| is the length of the ancestry. This rule ensures that if we can form a
downlink from B to C then there is a progressing trace on the finite path C . . . B
in the proof tree (and this trace has identical values at C and B).

4.2 Soundness of the Implementation

We now describe how the soundness of the implemented system follows from the
soundness of the system in Section 3. First, we observe that there is a map E from
proofs in the implemented system to pre-proofs in the system from Section 3.
That is, for any proof tree T in the implemented system, E(T ) = (D,R), where:

– D is the derivation tree (in the proof system of section 3) obtained by strip-
ping the ancestry, progress pointer and predicate tags from each node of
T and turning every node occurring as the conclusion of an instance of
(c downlink) into a bud of D;

– R is a function from the buds of D to suitable companions, built from the
applications of (c downlink) in the obvious way.

The main theorem of this section is that for every proof P in the implemented
system, the pre-proof E(P ) is actually a cyclic proof:

Theorem 8 (Soundness of the implementation). If there is a proof of
([], 1) : F � G in the implemented system, then F |= G.

Proof. (Sketch) Given a proof P of ([], 1) : F � G, we show that E(P ) = (D,R)
is a cyclic proof. E(P ) is clearly a pre-proof by construction, so it just remains to
show that it satisfies the global soundness condition of Defn. 6. Essentially, the
argument is that our tagging of inductive predicates and the conditions on the
“downlink” rule (c downlink) ensure that there is a “trace manifold” for E(P ),
which implies the global soundness condition (see [2], ch. 7).

Let (Si)i≥0 be an infinite path in E(P ). There must exist a tail (Si)i≥n of
this path that traverses some strongly connected component C of E(P ), which
must be constructed from finite paths of the form R(B) . . . B from companions
to buds. Specifically, there is a non-empty (finite) set B of buds which are visited
infinitely often on (Si)i≥n. Choose B ∈ B such that R(B) is as close as possible
to the root of D. By inspection of the (c downlink) rule, there is some tagged
atomic formula Pix occurring in bothR(B) and B whose case-split rule is applied
on the path R(B) . . . B. There must be an infinitely progressing trace following
(Si)i≥n, with all predicates tagged by i. A trace must exist because all tags on
the left of sequents must be identical to apply (c downlink) and our tagging
discipline for other rules follows the method for constructing traces in Defn. 5.
(In particular, if a tagged predicate is deleted along a path then that tag cannot
be restored further up the tree.) Moreover, this trace is infinitely progressing
because our choice of R(B) to be the lowermost companion in C visited infinitely
often ensures that the path (Si)i≥n passes infinitely often through the case-split
rule that unrolls a predicate tagged by i. �!
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We note that the soundness condition used in the implemented system is much
simpler than the global trace condition of the formal system (Defn. 6), and is
almost certainly incomplete. More sophisticated soundness conditions could be
implemented at the expense of speed. We note also that our implementation, and
its soundness, does not significantly depend on specific features of the fragment
of separation logic considered in this paper, and should adapt to other cyclic
proof systems employing a similar soundness condition (see [2], ch. 5).

4.3 Automated Proof Search

Split entailments. To better manage the sizes of the generated proofs, the entail-
ment relation has been split into two: the augmented entailment (α, π) : P � Q
and a basic one P �basic Q which is not augmented (and so �basic is actually
a subset of �). The idea is to relay all reasoning using the associativity, com-
mutativity and unit of ∗ to �basic. Such rules as (empR) are then found in this
lightweight entailment rather than in the augmented one.

For the augmented entailment to make use of lightweight entailment rules
such as (empR), we provide cut rules to inject �basic-reasoning into our proofs:

P �basic R (α, π) : R � Q
(basicL)

(α, π) : P � Q

(α, π) : P � R R �basic Q
(basicR)

(α, π) : P � Q

It is important that �basic does not interfere with the predicate tags, and so it is
limited to reorganizing terms. Its id-rule, for instance, does not use the matches-
predicate, and there is no cut rule. It can be shown that this careful re-factoring
of the entailment relation does not change the truth of Theorem 8.

Tactics. Our prover is a collection of HOL tactics arranged into layers:

1. There is a tactic for each rule of the implemented proof system, and tac-
tics are generated for the unfolding rules given by the inductive definitions,
as described in section 3. The left rules introduce fresh variables and per-
form the (potentially unifying) substitutions, while the right rules introduce
existential metavariables for any extra exposed variables.

Additionally, a rule for link formation is implemented that searches through
the ancestry for sequents of which the current node is a substitution instance
and if one is found, applies (c downlink).

2. Since a rule might not be directly applicable until some rearrangements
have been performed, specialized tactics are using �basic-reasoning to set up
rule applications. For the right-unfolding rules, this amounts to bringing the
conclusion to the front on the right hand side.

3. “Advancing” rule applications. Right-unfolding rules, for instance, typ-
ically expose new state on the right side. An advancing version of
such a rule will try to match this on the left hand side (resolving ex-
istential metavariables if necessary) and invoke a tactic to eliminate
common state; the entire rule application fails if no state can be disposed of.
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Elimination of common state is implemented using �basic-reasoning to
bring both sides to similar forms and then using the rules (∗) and a version
of (c Id) which resolves existential metavariables.

With these tactics at hand, one can conveniently use the system interactively
or implement an automatic tactic. We implemented a backtracking proof search
which applies any rule it can, from a prioritized list of rule sets:

1. {(c Id), link formation} 2. advancing right rules 3. case-split rules

The other rules are only invoked as part of auxiliary reasoning for the rules in
these groups.

4.4 Experimental Performance

Table 2 presents a list of lemmas that have been proven automatically by our
cyclic prover, while Table 1 shows the definitions of the inductive predicates
appearing in Table 2. The implementation was tested on a MacBook with a 2.4
GHz Intel Core Duo and 2 GB of 667 MHz DDR2 SDRAM running Mac OS
10.5.8. We also proved a more sophisticated lemma interactively, making use of
Lemma 3 from Table 2:

Example 4. The following is a cyclic proof of RListx y � Listx y, where R and
L below abbreviate RList and List from Table 1, respectively.

(Id)
x �→ y � x �→ y

(LR1)
x �→ y � Lxy

(Id)
z �→ y � z �→ y (†) Rxz � Lxz

(∗)
z �→ y ∗Rxz � z �→ y ∗ Lxz

(Lemma 3)
···

z �→ y ∗ Lxz � Lxy
(Cut)

z �→ y ∗ Rxz � Lxy
(Case R)

(†) Rxy � Lxy

It seems certain that our theorem prover would benefit from remembering earlier
proven lemmas and allowing the automatic tactic to use these, as is provided
e.g. by the lemma application mechanism in [17].

Most of the lemmas in Table 2 were proven with a bound of 3 on the depth of
backtracking. Lemmas 10 through 12 required higher bounds, due to the mutual
recursion (5, 7 and 5 respectively), and a few of the tree lemmas required a
bound of 4 (lemmas 13, 14 and 16). The relatively low bound needed to prove
lemmas is due to the split entailment relations.

5 Related Work

There is a substantial body of work in the literature that relates to our own
work in a variety of ways.

Tuerk’s Holfoot [20] is a general framework for separation logic, implemented
in HOL, which has automatically proven properties of several interesting pointer
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Table 1. Definitions of predicates

Predicate Definition

RList (nonempty
list segment)

x �→ y ⇒ RList x y
RList x y * y �→ z ⇒ RList x z

List (nonempty
list segment)

x �→ z ⇒ List x z
List z y * x �→ z ⇒ List x y

ListE / ListO
(nonempty list segment
of even / odd length)

x �→ z ⇒ ListO x z
ListO z y * x �→ z ⇒ ListE x y
ListE z y * x �→ z ⇒ ListO x y

PeList (list segment)
emp⇒ PeList x x

PeList z y * x �→ z ⇒ PeList x y

DLL (doubly linked
list segment)

emp⇒ DLL a a b b

DLL x b c a * a
2�→ x, d ⇒ DLL a b c d

SLL (singly linked list
segment in binary heap)

emp⇒ SLL a a

SLL x b * a
2�→ x, d ⇒ SLL a b

BSLL (reverse SLL)
emp⇒ BSLL c c

BSLL c x * x
2�→ a, d ⇒ BSLL c d

BinTree (binary tree)
emp⇒ BinTree a

BinTree b * BinTree c * a
2�→ b, c ⇒ BinTree a

BinTreeSeg (binary
tree segment)

emp⇒ BinTreeSeg a a

BinTreeSeg c b * BinTree d * a
2�→ c, d ⇒ BinTreeSeg a b

BinTree c * BinTreeSeg d b * a
2�→ c, d ⇒ BinTreeSeg a b

BinListFirst (list in
cell 1 of binary heap)

emp⇒ BinListFirst a

BinListFirst b * a
2�→ b, c ⇒ BinListFirst a

BinListSecond (list in
cell 2 of binary heap)

emp⇒ BinListSecond a

BinListSecond c * a
2�→ b, c ⇒ BinListSecond a

BinPath (path in
binary heap)

emp⇒ BinPath a a

BinPath c b * a
2�→ c, d ⇒ BinPath a b

BinPath c b * a
2�→ d, c⇒ BinPath a b

manipulating programs. However, Holfoot does not currently support cyclic
proof, and we hope that our work may be useful for bringing this technique
into such a general verification framework. Similar remarks apply to jStar [13].

Nguyen and Chin [17] describe an extension of an entailment checking tech-
nique introduced in earlier work [18] employing a fold/unfold mechanism for user
defined inductive predicates. This extension is a mechanism that automatically
proves and applies lemmas provided by the user. This mechanism employs a
simple version of cyclic proof tailored to their specific verification system; when
proving the lemmas, the theorem prover may apply a “smaller” instance of the
lemma itself, with recursive lemma application carried out on the root node of
inductive predicates. While the emphasis of that paper is in the application of
lemmas, the emphasis of our work is rather on the definition and implementa-
tion of cyclic proof as well as in proving the soundness of our system. Here we
have focused on developing a general cyclic entailment checker which could even-
tually become an off-the-shelf prover for verification tools or theorem provers.
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Table 2. Experimental results

Lemma Time (secs) Proven

1 2.37 x �→ y * RList y z � RList x z

2 2.37 RList x z * RList z y � RList x y

3 2.56 z �→ y * List x z � List x y

4 2.45 List z y * List x z � List x y

5 2.78 z �→ y * PeList x z � PeList x y

6 1.96 PeList z y * PeList x z � PeList x y

7 3.54 DLL u v x y � SLL u v

8 3.82 DLL u v x y � BSLL x y

9 8.86 DLL w v x z * DLL u w z y � DLL u v x y

10 5.44 ListO z y * ListO x z � ListE x y

11 11.2 ListE x z * ListE z y � ListE x y

12 5.57 ListO z y * ListE x z � ListO x y

13 4.40 BinListFirst x � BinTree x

14 4.43 BinListSecond x � BinTree x

15 4.21 BinPath z y * BinPath x z � BinPath x y

16 7.00 BinPath x y � BinTreeSeg x y

17 8.78 BinTreeSeg z y * BinTreeSeg x z � BinTreeSeg x y

18 8.61 BinTreeSeg x y * BinTree y � BinTree x

In addition, we have the flexibility to easily tune the expressivity of our prover
w.r.t. speed by implementing a more general soundness condition (which can be
supplied parametrically to the system).

Chang et al. [11,10] propose a shape analysis guided by data structure invari-
ants (provided by the programmer) that describe inductive predicates, called
invariant checkers. While their emphasis is on defining expressive and precise
shape analyses for a large variety of data structures, our emphasis here is on
solving entailment questions which could be used to assist such analyses. We
believe that our automated cyclic proof engine could be used to support or en-
hance various operations performed in their shape analysis (e.g. approximation
testing, proving termination of fixed point computation, widening, etc.)

There are also a number of provers based upon infinite descent / cyclic proof
that are oriented towards proving inductive theorems of arithmetic; we mention
by way of example the Coq implementation of Voicu and Li [21], and the stan-
dalone QUODLIBET system of Wirth [22]. Our system differs from these works
in that it is specialised towards separation logic (and thus aims to assist the
analyses provided by automated program verification tools).

Finally, there is a large body of work on automated theorem proving using
explicit induction; we mention IsaPlanner [14] as one contemporary such tool
that employs Bundy’s rippling technique to remove differences between the hy-
potheses of an induction and its goal. We think it far from unlikely that these
techniques might usefully transfer to the setting of cyclic proof.
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6 Conclusions and Future Work

In this paper we have introduced a sound automatic entailment checker for sepa-
ration logic with inductive predicates based on cyclic proofs, focusing particularly
on the soundness of our method and on the careful description of implementa-
tion details. The entailment checker has been implemented in HOL Light and
has shown significant potential by proving a number of non-trivial lemmas for
a range of inductive predicates corresponding to popular data structures. Thus
our procedure represents a relevant first step towards the construction of off-
the-shelf theorem provers based on separation logic. Our approach also adapts
to other cyclic proof systems employing a similar soundness condition.

The automatic entailment checking procedure introduced in this paper opens
up several avenues for future work, and in the future we plan to enhance its
expressivity and effectiveness in a number of different directions. One direc-
tion is to experiment with weakening the soundness condition in order to admit
more sophisticated cyclic proofs. Such a generalisation will necessitate more so-
phisticated tactics for our automated search procedure. Another direction is to
extend the expressivity of our formulae by adding features such as quantifiers
and arithmetic operations. In doing so it would also be natural to investigate
the possibility of integrating our procedure with SMT solvers and arithmetic
provers. Finally, we plan to explore the integration of our prover with automatic
verification tools such as Holfoot [20] or jStar [13]. In particular, it would be
interesting to see how our tool performs on the entailment questions those sys-
tems generate.
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Abstract. We describe a complete theorem proving procedure for
higher-order logic that uses SAT-solving to do much of the heavy lifting.
The theoretical basis for the procedure is a complete, cut-free, ground
refutation calculus that incorporates a restriction on instantiations. The
refined nature of the calculus makes it conceivable that one can search
in the ground calculus itself, obtaining a complete procedure without
resorting to meta-variables and a higher-order lifting lemma. Once one
commits to searching in a ground calculus, a natural next step is to
consider ground formulas as propositional literals and the rules of the
calculus as propositional clauses relating the literals. With this view in
mind, we describe a theorem proving procedure that primarily generates
relevant formulas along with their corresponding propositional clauses.
The procedure terminates when the set of propositional clauses is un-
satisfiable. We prove soundness and completeness of the procedure. The
procedure has been implemented in a new higher-order theorem prover,
Satallax, which makes use of the SAT-solver MiniSat. We also describe
the implementation and give some experimental results.

Keywords: higher-order logic, simple type theory, higher-order theorem
proving, abstract consistency, SAT solving.

1 Introduction

There are a number of distinct aspects of automated theorem proving. First,
there is the usual combinatorial explosion already associated with search in the
propositional case. Second, there is the problem of finding the correct instanti-
ations for quantifiers. The instantiation problem appears in the first-order case.
A third issue that appears in the higher-order case is how one builds in certain
basic mathematical properties (e.g., extensionality and choice).

In this paper we give a complete theorem proving procedure for higher-order
logic with extensionality and choice. The procedure separates the first issue
from the second and third. We start from a complete ground calculus which
already builds in extensionality and choice as well as certain restrictions on
instantiations. Given a set of formulas to refute, the ground calculus can be used
to suggest a sequence of relevant formulas which may be involved in a refutation.
The procedure generates propositional clauses corresponding to the the meaning
of these relevant formulas. When the set of propositional clauses is unsatisfiable
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(in the propositional sense), then the original set of higher-order formulas is
unsatisfiable (in the higher-order Henkin model sense). Conversely, when the
original set of higher-order formulas is unsatisfiable, then an unsatisfiable set of
propositional clauses will eventually be generated.

Such a procedure has been implemented in the new higher-order theorem
prover Satallax1. The first implementation of Satallax was in Steel Bank Com-
mon Lisp. This earlier version, Satallax 1.4, competed in the higher-order division
of CASC in 2010 [10]. Satallax 1.4 was able to prove 120 out of 200 problems,
coming in second to LEO-II [4] which proved 125 out of 200 problems. The
latest version of Satallax, Satallax 2.0, is implemented in Objective Caml. The
SAT-solver MiniSat [6] (coded in C++) is used to determine propositional un-
satisfiability.

2 Preliminaries

We begin with a brief presentation of Church’s simple type theory with a choice
operator. For more details see a similar presentation in [3]. Simple types (σ, τ)
are given inductively: o|ι|σσ. Types στ correspond to functions from σ to τ .
Terms s, t are generated inductively x|c|st|λx.s where x ranges over variables
and c ranges over the logical constants ⊥, →, ∀σ, =σ, ∗ and εσ. A name is either
a variable or a logical constant. A decomposable name is either a variable or εσ

for some σ. We use δ to range over decomposable names.
Each variable has a corresponding type σ, and for each type there is a count-

ably infinite set of variables of this type. Likewise each logical constant has a
corresponding type: ⊥ : o, →: ooo, ∀σ : (σo)o, =σ: σσo, ∗ : ι and εσ : (σo)σ.
The constant εσ is a choice operator at type σ. The constant ∗ plays the role of
a “default” element of the nonempty type ι. Types can be assigned to (some)
terms in the usual way. From now on we restrict ourselves to typed terms and
let Λσ be the set of terms of type σ. A formula is a term s ∈ Λo.

We adopt common notational conventions: stu means (st)u, s =σ t (or s = t)
means =σ st, s → t means → st, ¬s means s → ⊥, � means ¬⊥, s �=σ t (or
s �= t) means ¬(s =σ t), ∀x.s means ∀σλx.s and εx.s means εσλx.s. Binders
have as large a scope as is consistent with given parenthesis. For example, in
∀x.px → qx the occurrence of x in qx is bound by the ∀. The set Vt of free
variables of t is defined as usual.

An accessibility context (C) is a term with a hole []σ of the form []s1 · · · sn,
¬([]s1 · · · sn), ([]s1 · · · sn) �=ι s or s �=ι ([]s1 · · · sn). We write C[s] for the term one
obtains by putting s into the hole. A term s is accessible in a set A of formulas
iff there is an accessibility context C such that C[s] ∈ A.

Let [s] denote a βη-normal form of s that makes a canonical choice of bound
variables. That is, for any s, t ∈ Λσ, [s] = [t] iff s and t are αβη-equivalent. (In
the implementation, de Bruijn indices are used.) A term s is normal if [s] = s.

A substitution is a type preserving partial function from variables to terms.
If θ is a substitution, x is a variable, and s is a term that has the same type
1 Satallax is available at satallax.com
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as x, we write θx
s for the substitution that agrees everywhere with θ except

θx
sx = s. For each substitution θ let θ̂ be the usual extension of θ to all terms in

a capture-avoiding manner.
A frame D is a typed collection of nonempty sets such that Do = {0, 1} and

Dστ is a set of total functions from Dσ to Dτ . An assignment I into D is a
mapping from variables and logical constants of type σ into Dσ. An assignment
I is logical if it interprets each logical constant to be an element satisfying the
corresponding logical property. For example, if I is logical, then I⊥ = 0. An
assignment I is an interpretation if it can be extended in the usual way to be a
total function Î mapping each Λσ into Dσ. A Henkin model (D, I) is a frame D
and a logical interpretation I into D. We say formula s is satisfied by a Henkin
model (D, I) if Îs = 1. A set A of formulas is satisfied by a Henkin model if
each formula in A is satisfied by the model.

Let A be a set of formulas. A term s is discriminating in A iff there is a term
t such that s �=ι t ∈ A or t �=ι s ∈ A. For each set A of formulas and each type
σ we define a nonempty universe UA

σ ⊆ Λσ as follows.

– Let UA
o = {⊥,¬⊥}.

– Let UA
ι be the set of discriminating terms in A if there is some discriminating

term in A.
– Let UA

ι = {∗} if there are no discriminating terms in A.
– Let UA

στ = {[s]|s ∈ Λστ ,Vs ⊆ VA}.

When the set A is clear in context, we write Uσ.
We call a finite set of normal formulas a branch. A cut-free tableau calculus

for higher-order logic with extensionality is given in [5]. The calculus is complete
with respect to Henkin models without choice. The details of the completeness
proof indicated that one can restrict instantiations for quantifiers on base types
to terms occurring on one side of a disequation. This restriction is shown com-
plete for the first-order case in [5]. The calculus is extended to include choice
in [3] and the restriction on instantiations is proven complete in the higher-order
case. The proof of completeness makes use of abstract consistency. A set Γ of
branches is an abstract consistency class if it satisfies all the conditions in Fig-
ure 1. This definition differs slightly from the one in [3] because we are using →
instead of ¬ and ∨. With obvious modifications to account for this difference,
Theorem 2 in [3] implies that every A ∈ Γ (where Γ is an abstract consistency
class) is satisfiable by a Henkin model. We state this here as the Model Existence
Theorem.

Theorem 1 (Model Existence Theorem). Let Γ be an abstract consistency
class. Each A ∈ Γ is satisfiable by a Henkin model.

3 Mapping into SAT

We next describe a simple mapping from higher-order formulas into propositional
literals and clauses. The essential idea is to abstract away the semantics of all
logical connectives except negation.
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C⊥ ⊥ is not in A.
C¬ If ¬s is in A, then s is not in A.
C �= s �=ι s is not in A.
C→ If s→ t is in A, then A ∪ {¬s} or A ∪ {t} is in Γ .
C¬→ If ¬(s→ t) is in A, then A ∪ {s,¬t} is in Γ .
C∀ If ∀σs is in A, then A ∪ {[st]} is in Γ for every t ∈ UA

σ .
C¬∀ If ¬∀σs is in A, then A ∪ {¬[sx]} is in Γ for some variable x.
Cmat If δs1 . . . sn is in A and ¬δt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si �= ti} is in Γ for some i ∈ {1, . . . , n}.
Cdec If δs1 . . . sn �=ι δt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si �= ti} is in Γ for some i ∈ {1, . . . , n}.
Ccon If s =ι t and u �=ι v are in A,

then either A ∪ {s �= u, t �= u} or A ∪ {s �= v, t �= v} is in Γ .
Cbq If s =o t is in A, then either A ∪ {s, t} or A ∪ {¬s,¬t} is in Γ .
Cbe If s �=o t is in A, then either A ∪ {s,¬t} or A ∪ {¬s, t} is in Γ .
Cfq If s =στ t is in A, then A ∪ {[∀x.sx =τ tx]} is in Γ

for some x ∈ Vσ \ (Vs ∪ Vt).
Cfe If s �=στ t is in A, then A ∪ {¬[∀x.sx =τ tx]} is in Γ

for some x ∈ Vσ \ (Vs ∪ Vt).
Cε If εσs is accessible in A, then either A ∪ {[s(εs)]} is in Γ or

there is some x ∈ Vσ \ Vs such that A ∪ {[∀x.¬(sx)]} is in Γ .

Fig. 1. Abstract consistency conditions (must hold for every A ∈ Γ )

Let Atom be a countably infinite set of propositional atoms. For each atom
a, let a denote a distinct negated atom. A literal is an atom or a negated atom.
Let Lit be the set of all literals. Let a denote a. A clause is a finite set of literals,
which we write as l1 ! · · · ! ln. A propositional assignment is a mapping Φ from
Atom to {0, 1}. We extend any such Φ to literals by taking Φ(a) = 1−Φ(a). We
say an assignment Φ satisfies a clause C if there is some literal l ∈ C such that
Φl = 1. An assignment Φ satisfies a set S of clauses if Φ satisfies C for all C ∈ S.

Let %.& be a function mapping Λo into Lit such that %¬s& = %s&, %s& = %[s]&,
and if %s& = %t&, then Is = It in every Henkin model (D, I).

Remark 1. In the implementation, %s& = %t& whenever s and t are the same up
to βη and the removal of double negations. Under some flag settings, symmetric
equations u = v and v = u are assigned the same literal.

We say Φ is a pseudo-model of A if Φ%s& = 1 for all s ∈ A. We say an assignment
Φ is Henkin consistent if there is a Henkin model (D, I) such that Φ%s& = Îs
for all s ∈ Λo.

4 States and Successors

Definition 1. A quasi-state Σ is a 5-tuple (FΣ
p ,FΣ

a ,UΣ
p ,UΣ

a ,CΣ) where FΣ
p and

FΣ
a are finite sets of normal formulas, UΣ

p and UΣ
a are finite sets of normal
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terms, and CΣ is a finite set of clauses. We call formulas in FΣ
p passive formulas,

formulas in FΣ
a active formulas, terms in UΣ

p passive instantiations and terms
in UΣ

a active instantiations.

Given a quasi-state Σ, we define the following notation:

FΣ := FΣ
p ∪ FΣ

a UΣ := UΣ
p ∪ UΣ

a UΣ
p,σ := UΣ

p ∩ Λσ UΣ
a,σ := UΣ

a ∩ Λσ

During the procedure, we will only consider quasi-states that satisfy certain
invariants. Such a quasi-state will be called a state. Before giving the technical
definition of a state, we consider two simple examples. In these examples we
will refer to the quasi-states as states, as they will always satisfy the relevant
properties.

Each step of the search process will pass from one state to a successor state.
The passive formulas and passive instantiations of a successor state will always
include all the passive formulas and passive instantiations of the previous state.
Likewise, all the clauses of the previous state will be clauses of the successor state.
Often we obtain a successor state by moving an active formula (instantiation)
to the set of passive formulas (instantiations). We will refer to this as processing
the formula (instantiation).

Example 1. Let p, q : o be variables. Suppose we wish to refute the branch
with two formulas: p and ∀q.p → q. We begin with a state Σ0 with FΣ0

p = ∅,
FΣ0

a = {p, ∀q.p → q}, UΣ0
p = {⊥,�}, UΣ0

a = ∅ and CΣ0 contains exactly the
two unit clauses %p& and %∀q.p → q&. We will refute this branch in one step. In
particular, we process the formula ∀q.p → q by moving it from being active to
passive and by applying all the instantiations of type o in UΣ0

p . This results in
a state Σ1 in which FΣ1

p = {∀q.p → q}, FΣ1
a = {p, p → ⊥, p → �}, UΣ1

p = UΣ0
p ,

UΣ1
a = UΣ0

a and CΣ1 contains the two unit clauses from CΣ0 as well as the two
clauses %∀q.p→ q& ! %p → ⊥& and %∀q.p→ q& ! %p → �&. Note that %p → ⊥&
is the same as %p&. Clearly there is no propositional assignment satisfying the
clauses in CΣ1 . This completes the refutation. The two states can be displayed
as in Figure 2.

Fp Fa Up Ua C

Σ0 p, ∀q.p→ q ⊥, 	 �p�
�∀q.p→ q�

Σ1 ∀q.p→ q ����∀q.p→ q �∀q.p→ q� � �p�
p→ ⊥, p→ 	 �∀q.p→ q� � �p→ 	�

Fig. 2. States from Example 1

Example 2. Let p : ιo and x : ι be variables. Suppose we wish to prove the fol-
lowing basic property of the choice operator ει: ∀x.px → p(ειp). The refutation
will proceed in seven steps taking us from an initial state Σ0 (corresponding to
assuming the negation) to a state Σ7 such that CΣ7 is propositionally unsat-
isfiable. The states Σi for i ∈ {0, . . . , 7} are indicated in Figure 3. In the first
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step we process ¬∀x.px→ p(εp) by choosing a fresh variable y : ι and including
the new formula ¬(py → p(εp)) and a clause relating the literals correspond-
ing to the two formulas. The resulting state is Σ1. We obtain Σ2 by processing
¬(py → p(εp)) and obtaining two new formulas py and ¬p(εp) and two new
clauses. We obtain Σ3 by processing py. In general, processing such a formula
involves mating it with all passive formulas of the form ¬pt. Since there are no
such passive formulas (in particular, ¬p(εp) is active), Σ3 only differs from Σ2

in that py has been made passive. We obtain Σ4 by processing ¬p(εp). This
involves mating it with the passive formula py to obtain the formula y �= εp and
adding a new clause. (The reader should note that the new clause in Σ4 will
not be used to show the final set of clauses is propositionally unsatisfiable.) To
obtain Σ5 we process y �= εp. Since y and εp are discriminating terms in the set
of passive formulas of Σ5, we add them to the set of active instantiations. Also,
since εp is accessible in FΣ5

p , we include the formulas ∀x.¬px and p(εp) as well
as a clause corresponding to the meaning of the choice operator ε. We obtain
Σ6 by processing ∀x.¬px. In principle, this means instantiating with all passive
instantiations of type ι, but we have no passive instantiations of this type. Fi-
nally, we obtain Σ7 by processing the instantiation y. Since y has type ι, we will
use it as an instantiation for the passive formula ∀x.¬px. As a consequence, we
add the formula ¬py and a corresponding clause. At this point, the clauses are
propositionally unsatisfiable and we are done.

Fp Fa Up Ua C

Σ0 ¬∀x.px→ p(εp) �∀x.px→ p(εp)�
Σ1 ¬∀x.px→ p(εp) �������¬∀x.px→ p(εp) �∀x.px→ p(εp)� � �py → p(εp)�

¬(py → p(εp))

Σ2 ¬(py → p(εp)) �������¬(py → p(εp)) �py → p(εp)� � �py�
py, ¬p(εp) �py → p(εp)� � �p(εp)�

Σ3 py ��py

Σ4 ¬(p(εp)) ���¬p(εp) �py� � �p(εp)� � �y = εp�
y �= εp

Σ5 y �= εp ���y �= εp y, εp �p(εp)� � �∀x.¬px�
∀x.¬px, p(εp)

Σ6 ∀x.¬px ����∀x.¬px, p(εp)

Σ7 ¬py y �y �∀x.¬px� � �py�

Fig. 3. States from Example 2

Definition 2. A quasi-state Σ = (FΣ
p ,FΣ

a ,UΣ
p ,UΣ

a ,CΣ) is a state if the condi-
tions in Figure 4 hold and for every clause C in CΣ and every literal l ∈ C, either
l = %s& for some s ∈ FΣ or l = %s& for some s ∈ FΣ

p .
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S⊥ If ⊥ is in Fp, then �⊥� is in C.

S �= If s �=ι s is in Fp, then �s = s� is in C.

S→ If s→ t is in Fp and t is not ⊥, then {¬s, t} ⊆ F and �s→ t� � �¬s� � �t�
is in C.

S¬→ If ¬(s→ t) is in Fp, then {s,¬t} ⊆ F, �s→ t� � �s� and �s→ t� � �¬t� are in C.

S∀ If ∀σs is in Fp and t ∈ Up,σ, then [st] ∈ F and �∀σs� � �st� is in C.

S¬∀ If ¬∀σs is in Fp, then there is some variable x of type σ such that

¬[sx] ∈ F and �∀σs� � �sx� is in C.

Smat If δs1 . . . sn and ¬δt1 . . . tn are in Fp where n ≥ 1, then si �= ti is in F for each

i ∈ {1, . . . , n} and �δs1 . . . sn� � �δt1 . . . tn� � �s1 �= t1� � · · · � �sn �= tn� is in C.

Sdec If δs1 . . . sn �=ι δt1 . . . tn is in Fp where n ≥ 1, then si �= ti is in F for each

i ∈ {1, . . . , n} and �δs1 . . . sn = δt1 . . . tn� � �s1 �= t1� � · · · � �sn �= tn� is in C.

Scon If s =ι t and u �=ι v are in Fp, then {s �= u, t �= u, s �= v, t �= v} ⊆ F

and the following four clauses are in C:

�s = t� � �u = v� � �s �= u� � �s �= v�, �s = t� � �u = v� � �s �= u� � �t �= v�
�s = t� � �u = v� � �t �= u� � �s �= v�, �s = t� � �u = v� � �t �= u� � �t �= v�

Sbq If s =o t is in Fp, then {s, t,¬s,¬t} ⊆ F and �s = t� � �s� � �¬t�
and �s = t� � �¬s� � �t� are in C.

Sbe If s �=o t is in Fp, then {s, t,¬s,¬t} ⊆ F and �s = t� � �s� � �t�
and �s = t� � �¬s� � �¬t� are in C.

Sfq If s =στ t is in Fp, then there is some x ∈ Vσ \ (Vs ∪ Vt) such that

[∀x.sx =τ tx] is in F and �s = t� � �∀x.sx = tx� is in C.

Sfe If s �=στ t is in Fp, then there is some x ∈ Vσ \ (Vs ∪ Vt) such that

[¬∀x.sx =τ tx] is in F and �s = t� � �¬∀x.sx = tx� is in C.

Sε If εσs is accessible in Fp, then there is some x ∈ Vσ \ Vs such that

[s(εs)] and [∀x.¬(sx)] are in F and �s(εs)� � [∀x.¬(sx)] is in C.

Fig. 4. Conditions on a quasi-state Σ = (Fp, Fa, Up, Ua, C)

We say a propositional assignment Φ satisfies a state Σ if Φ satisfies CΣ .
We say Σ is propositionally satisfiable if there is a Φ such that Φ satisfies Σ.
Otherwise, we say Σ is propositionally unsatisfiable. Furthermore, we say Σ
is Henkin satisfiable if there is a Henkin consistent propositional assignment
satisfying CΣ. Note that checking whether Σ is propositionally satisfiable is
simply a SAT-problem.

A variable x is fresh for a state Σ if x is not free in any s ∈ FΣ ∪ UΣ.
Given a branch A, an initial state Σ for A is a state with A ⊆ FΣ, and

CΣ = {%s&|s ∈ A}. (We require A ⊆ FΣ rather than A ⊆ FΣ
a to allow for the

possibility that some formulas in A are passive rather than active in an initial
state. In practice, this could result from some preprocessing of formulas in A.)
To see that for any branch A there is an initial state, consider Σ with FΣ

p = ∅,
FΣ

a = A, UΣ
p = ∅, UΣ

a = ∅ and CΣ = {%s&|s ∈ A}.

Definition 3. We say a state Σ′ is a successor of a state Σ (and write Σ → Σ′)
if FΣ

p ⊆ FΣ′
p , FΣ

a ⊆ FΣ′
, UΣ

p ⊆ UΣ′
p , UΣ

a ⊆ UΣ′
, CΣ ⊆ CΣ′

, and if Σ is Henkin
satisfiable, then Σ′ is Henkin satisfiable.
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Note that the successor relation is reflexive and transitive. Also, soundness of
the procedure is built into the definition of the successor relation.

Proposition 1 (Soundness). Let A be a branch. If there is a propositionally
unsatisfiable Σ′ such that ΣA → Σ′, then A is unsatisfiable.

Proof. Assume (D, I) is a Henkin model of A. Choose Φ such that Φ%s& = Îs
for each s ∈ A. Clearly, Φ demonstrates that ΣA is Henkin satisfiable. On the
other hand, since Σ′ is propositionally unsatisfiable, it is Henkin unsatisfiable.
This contradicts the definition of ΣA → Σ′.

A strategy which chooses a successor state for each propositionally satisfiable
state will yield a sound procedure. One such strategy is to interleave two kinds of
actions: (1) process active formulas and instantiations while making the minimal
number of additions of formulas and clauses consistent with the invariants in
Figure 4 and (2) generate new active instantiations. To ensure soundness, when
processing a formula ¬∀σs a procedure should choose a fresh variable x, add
¬[sx] to Fa and add %∀σs& ! %sx& to C.

If a strategy does not lead to a propositionally unsatisfiable state, then it
will give a finite or infinite path of states. If the strategy is fair, this path will
satisfy certain fairness properties. In this case, we can use the path to prove the
original branch is satisfiable. That is, we can conclude that every fair strategy
is complete.

Definition 4. Let α ∈ ω ∪ {ω}. An α-path (or, simply path) is an α-sequence
Σ = (Σi)i<α of propositionally satisfiable states such that Σi → Σi+1 for each i
with i + 1 < α. We say a type σ is a quantified type on the path if there exist
i < α and s such that ∀σs ∈ FΣi . Such a path is fair if the following conditions
hold:

1. For all i < α and s ∈ FΣi
a there is some j ∈ [i, α) such that s ∈ F

Σj
p .

2. If σ is a quantified type, then for all i < α, A ⊆ FΣi and t ∈ UA
σ there is

some j ∈ [i, α) such that t ∈ U
Σj
p .

Given a branch A0, we will start with an initial state Σ0 for A0. Our theorem
proving procedure will construct a sequence of successor states in such a way
that, unless some state is propositionally unsatisfiable, the sequence will be a
fair path. In order to prove completeness of this procedure, it is enough to prove
that if there is a fair path starting from Σ0, then A0 is satisfiable. This result
will be Theorem 2 given at the end of this section.

For the remainder of this section we assume a fixed α and fair α-path Σ.

Definition 5. Let i < α be given. We say a branch A is i-supported if A ⊆ FΣi

and there is a pseudo-model Φ of A satisfying Σi. We say a branch A is i-
consistent if A is j-supported for all j ∈ [i, α).

Lemma 1. Let i < α and j ∈ [i, α) be given. If A is j-supported and A ⊆ FΣi,
then A is i-supported.
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Proof. This follows from CΣi ⊆ CΣj .

Let Γ be the set of all branches A such that A is i-consistent for some i < α.
We will prove Γ is an abstract consistency class.

Lemma 2. Let A be an j-consistent branch. Let A1, . . . , An be branches such
that A ⊆ Al ⊆ FΣj for each l ∈ {1, . . . , n}. Either there is some l ∈ {1, . . . , n}
such that Al is j-consistent or there is some k ∈ [j, α) such that Al is not k-
supported for each l ∈ {1, . . . , n}.

Proof. Assume none of A1, . . . , An is j-consistent. Let k1, · · · , kn ∈ [j, α) be such
that Al is not kl-supported for each l ∈ {1, . . . , n}. Let k be the maximum of
k1, . . . , kn. By Lemma 1 each Al is not k-supported.

Lemma 3. Γ is an abstract consistency class.

Proof. We verify a representative collection of cases.

C⊥ Suppose ⊥ ∈ A and A is i-consistent. By fairness there is some j ∈ [i, α)
such that ⊥ ∈ F

Σj
p . By S⊥ the unit clause %⊥& is in CΣj . This contradicts A

being j-supported.
C¬ Suppose ¬s and s are in A. Since no propositional assignment Φ can have

Φ%¬s& = 1 and Φ%s& = 1, A cannot be i-consistent for any i.
C→ Suppose s → t is in an i-consistent branch A. If t is ⊥, then A ∪ {¬s} is

the same as A and so A ∪ {¬s} is i-consistent. Assume t is not ⊥. Since A
is i-consistent, we know A ⊆ FΣi and so s → t ∈ FΣi. By fairness there is
some j ∈ [i, α) such that s → t ∈ F

Σj
p . By S→ we know {¬s, t} ⊆ FΣj and

%s→ t& ! %s& ! %t& is in CΣj . Note that A ∪ {¬s} ⊆ FΣk and A ∪ {t} ⊆ FΣk

for every k ∈ [j, α). Assume neither A∪ {¬s} nor A∪{t} is j-consistent. By
Lemma 2 there is some k ∈ [j, α) such that neither A ∪ {¬s} nor A ∪ {t} is
k-supported. Since A is i-consistent, A is k-supported and has some pseudo-
model Φ satisfying Σk. Since %s→ t&! %s&! %t& is in CΣk and Φ%s → t& = 1,
we must have Φ%s& = 0 or Φ%t& = 1. Thus Φ witnesses that either A∪{¬s} or
A∪ {t} is k-supported, contradicting our choice of k. Hence either A∪ {¬s}
or A ∪ {t} must be j-consistent.

C¬→ Suppose ¬(s → t) is in an i-consistent branch A. Since A is i-consistent,
we know ¬(s → t) ∈ FΣi . By fairness there is some j ∈ [i, α) such that
¬(s → t) ∈ F

Σj
p . By S¬→ we know {s,¬t} ⊆ FΣj , and both %s → t& ! %s&

and %s→ t&!%t& are in CΣj . We prove A∪{s,¬t} is j-consistent. Let k ∈ [j, α)
be given. Since A is i-consistent, it has some pseudo-model Φ satisfying Σk.
Since Φ%¬(s → t)& = 1, we must have Φ%s& = 1 and Φ%¬t& = 1. Hence Φ is
a pseudo-model of A ∪ {s,¬t} and so A ∪ {s,¬t} is k-supported. Therefore,
A ∪ {s,¬t} is j-consistent.

C∀ Let A be an i-consistent branch such that ∀σs ∈ A and t ∈ UA
σ . Note that

∀σs ∈ A ⊆ FΣi witnesses that σ is a quantified type on the path. By fairness
there is some j ∈ [i, α) such that ∀s ∈ F

Σj
p and t ∈ U

Σj
p . By S∀ [st] ∈ FΣj

and %∀σs& ! %st& is in CΣj . We prove A is j-consistent. Let k ∈ [j, α) be
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given. Since A is i-consistent, it has some pseudo-model Φ satisfying Σk.
Since Φ%∀s& = 1 and %∀σs& ! %st& is in CΣj , we must have Φ%st& = 1 and so
A ∪ {[st]} is k-supported. (We know %[st]& = %st& as a property of %·&.)

C¬∀ Let A be an i-consistent branch such that ¬∀σs ∈ A. By fairness there is
some j ∈ [i, α) such that ¬∀s ∈ F

Σj
p . By S¬∀ there is some variable x such

that ¬[sx] ∈ FΣj and %∀σs& ! %sx& is in CΣj . Let k ∈ [j, α) be given. Let
Φ be a pseudo-model of A satisfying Σk. Since Φ%¬∀s& = 1 we must have
Φ%¬(sx)& = 1 and so A ∪ {¬[sx]} is k-supported.

Ccon Suppose s =ι t and u �=ι v are in an i-consistent branch A. By fairness
there is some j ∈ [i, α) such that s =ι t and u �=ι v are F

Σj
p . By Scon

{s �= u, t �= u, s �= v, t �= v} ⊆ FΣj and the following four clauses are in CΣj :
%s = t& ! %u = v& ! %s �= u& ! %s �= v&, %s = t& ! %u = v& ! %s �= u& ! %t �= v&
%s = t& ! %u = v& ! %t �= u& ! %s �= v&, %s = t& ! %u = v& ! %t �= u& ! %t �= v&
Assume neither A ∪ {s �= u, t �= u} nor A ∪ {s �= v, t �= v} is j-consistent.
By Lemma 2 there is some k ∈ [j, α) such that neither A ∪ {s �= u, t �= u}
nor A ∪ {s �= v, t �= v} is k-supported. Let Φ be a pseudo-model of A
satisfying Σk. Note that Φ%s = t& = 1 and Φ%u = v& = 0. By examining the
four clauses above, it is clear that we must either have Φ%s �= u& = 1 and
Φ%t �= u& = 1 or have Φ%s �= v& = 1 and Φ%t �= v& = 1, a contradiction.

Theorem 2 (Model Existence). Let A0 be a branch and Σ be a fair α-path
such that Σ0 is an initial state for ΣA0 . Then A0 is satisfiable.

Proof. By Theorem 1 it is enough to prove A0 is 0-consistent. Let j ∈ [0, α) be
given. Clearly A0 ⊆ FΣ0 ⊆ FΣj . Let Φ satisfy Σj . For each s ∈ A0, the unit
clause %s& is in CΣj and so Φ%s& = 1.

5 Implementation

A procedure along the lines described above has been implemented in a theorem
prover named Satallax. There are some minor differences from the abstract de-
scription. One difference is that double negations are eliminated during normal-
ization in the implementation (e.g., the normal form of p(λx.¬¬x) is p(λx.x)).
Another difference is that there is no default constant ∗ of type ι. If there are no
discriminating terms of type ι, then either a variable or the term ειx.⊥ is used
as an instantiation of type ι. Also, there may be base types other than ι.

The first version of Satallax was written in Steel Bank Common Lisp. In
this earlier version, MiniSat was restarted and sent all the clauses generated so
far whenever propositional satisfiability was to be tested. The latest version of
Satallax is implemented in Objective Caml. A foreign function interface allows
Satallax to call MiniSat functions (coded in C++) in order to add new clauses
to the current set of clauses and to test for satisfiability of the current set of
clauses. This is a much more efficient way of using MiniSat.

Problems are given to Satallax as a TPTP file in THF format [11]. Such a
file may include axioms and optionally a conjecture. The conjecture, if given,
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is negated and treated as an axiom. Logical constants that occur in axioms are
rewritten in favor of the basic logical constants ⊥, →, =σ, ∀σ and εσ. Also, all
definitions are expanded and the terms are βη-normalized. (De Bruijn indices are
used to deal with α-convertibility.) If the normalized axiom s is of the particular
form ∀px.px → p(ep) or ∀p.(¬∀x.¬px) → p(ep) where e is a constant of type
(σo)σ for some σ, then e is registered as a choice operator of type σ and the
axiom s is omitted from the initial branch. Every other normalized axiom is an
initial assumption. The choice rule can be applied with every name registered as
a choice operator.

There are about a hundred flags that can be set in order to control the order in
which the search space is explored. A collection of flag settings is called a mode.
Currently, there are a few hundred modes in Satallax. A particular mode can
be chosen via a command line option. Otherwise, a default schedule of modes is
used and each of the modes on the schedule is given a certain amount of time
to try to refute the problem.

If the flag Split Global Disjunctions is set to true, then Satallax will
decompose the topmost logical connectives including the topmost disjunctions.
This is likely to result in a set of subgoals which can be solved independently.
This is an especially good idea if, for example, the conjecture is a conjunction.
It is, of course, a bad idea if there are many disjunctive axioms.

Once the initial branch is determined, the state is initialized to include a
unit clause for each member and the set of active formulas is initialized to be
the initial branch. The terms ⊥ and ¬⊥ are added as passive instantiations.
Additionally, if the flag Initial Subterms As Instantiations is set to true,
then all subterms of the initial branch are added as passive instantiations. During
the search, discriminating terms of type ι are added as active instantiations. If
there is a quantifier at a function type στ , a process of enumerating normal terms
of type στ is started. Of course, this enumeration process is the least directed
part of the search procedure.

At each stage of the search there are a number of options for continuing
the search. An example of an option is processing a particular active formula.
Another option might be to work on enumerating instantiations of a given type.
The different search options are put into a priority queue as they are generated.
(The priority queue is modified to ensure every option is eventually considered.)
Many flags control the priority given to different options.

The successor relation on states was defined very generally. In particular, it
does not rule out adding more formulas, instantiations and clauses than the ones
suggested by the invariants on states. These additions may be very useful, but
they are not necessary for completeness. A simple example is that, if the flag
Instantiate With Func Diseqn Sides is set to true, the terms s and t are
added as active instantiations whenever an active formula s �=στ t is processed.

One of the most useful extensions implemented in Satallax is, under cer-
tain flag settings, to generate higher-order clauses with higher-order literals to
be matched against formulas as the formulas are processed. This is the only
time Satallax uses existential variables. Such higher-order clauses are only used
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when every existential variable in the clause has a strict occurrence in some
literal. (A strict occurrence is essentially a pattern occurrence which is not be-
low another existential variable [8].) We also allow for equational literals which
can be used to perform some equational inference. Rather than give a full de-
scription of this extension, we give one example. Suppose we process a formula
∀f∀x∀y.mf(cxy) = c(fx)(mfy) where m : (ιι)ιι, c : ιιι, f : ιι, and x, y : ι. In
addition to processing this in the usual way (applying all passive instantations
of type ιι), we can create a higher-order unit clause mF (cXY ) = c(FX)(mFY )
where F , X and Y are existential variables. The first and last occurrences of
F are strict. The first occurrence of X is strict. Both occurrences of Y are
strict. Now, when processing a new formula s, Satallax uses higher-order pat-
tern matching to check if s is of the form C[mt(cuv)] for some t, u and v. If so,
a propositional clause

%∀f∀x∀y.mf(cxy) = c(fx)(mfy)& ! %C[mt(cuv)]& ! %C[c(tu)(mtv)]&

is added to the set of clauses and the formula [C[c(tu)(mtv)]] is added to the set
of active formulas to be processed later.

6 Results and Examples

TPTP v5.1.0 contains 2798 problems in THF0 format. Among these, 343 are
known to be satisfiable. (Satallax 2.0 terminates on many of these problems,
recognizing them as satisfiable.) For 1790 of the remaining 2455 problems (73%),
there is some mode that Satallax 2.0 can use to prove the theorem (or show the
assumptions are unsatisfiable) within a minute. For one other problem there is
a mode that proves the theorem in 96 seconds. A strategy schedule running 36
modes for just over 10 minutes can solve each of the 1791 problems.

One reason for the success of Satallax is that it can solve some problems by
brute force. An example of this is the first-order theorem SEV106ˆ5 from the
TPTP. This is a Ramsey-style theorem about graphs and cliques. We assume
there are at least six distinct individuals and that there is a symmetric relation
(i.e., an undirected graph) on individuals. There must be three distinct individ-
uals all of whom are related or all of whom are unrelated. Since we are assuming
there are six distinct individuals, we quickly have six corresponding discrimi-
nating terms. Satallax uses all six of these (blindly) as instantiations for the
existential quantifiers, leading to 63 instantiations. Using mode Mode1 Satallax
generates over 8000 propositional clauses which MiniSat can easily recognize as
unsatisfiable. In most examples only a handful of the clauses are the cause of
unsatisfiability. In this example a 284 clauses are used to show unsatisfiability.

Two higher-order examples from the TPTP that Satallax can solve are
SYO378ˆ5 and SYO379ˆ5. These examples were created in Tps to illustrate
the concept of quantificational depth, discussed at the end of [1]. Let c : ι be
a variable and define d0 := λx : ι.x = c, d1 := λy : ιo.y = d0 ∧ ∃x.yx and
d2 := λz : (ιo)o.z = d1 ∧ ∃y.zy (where s ∧ t means ¬(s → ¬t) and ∃x.s means
¬∀x.¬s). One of the examples is ∃y.d1y and the other is ∃z.d2z. A high-level
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proof is simply to note that d0c, d1d0 and d2d1 are all provable. However, if
we expand all definitions, then these instantiations are no longer so easy to see.
Fortunately, if the flag Instantiate With Func Diseqn Sides is set to true,
then d0 and d1 will appear as the side of a disequation and Satallax will include
them as instantiations early. Verifying the instantiations work is not difficult.
There are modes that can solve these problems within a second.

We also discuss two particularly interesting examples that are not yet in the
TPTP. In both examples we use variables f, g : ιι and x, y : ι.

(∀y.∃x.fx = y) → ∃g.∀x.(f(gx)) = x (1)

Formula (1) means every surjective function f has a right inverse g.

(∀x∀y.fx = fy → x = y) → ∃g.∀x.(g(fx)) = x (2)

Formula (2) means every injective function f has a left inverse g.
In both examples (1) and (2) Satallax must enumerate potential instantiations

of type ιι for g. Some of the instantiations (e.g., λx.x, f and λx.f(fx)) are
unhelpful and only serve to make the search space large. In both cases the
instantiation used in the refutation is λy.εx.fx = y. An equivalent instantiation,
λy.εx.y = fx, is also generated. (While it seems likely that such an equivalent
instantiation could be discarded without sacrificing completeness, there is no
currently known meta-theoretic result to justify this intuition.)

Satallax can prove (1) using mode Mode219 in under 6 seconds. In the process
it generates 29 higher-order instantiations (candidates for g) and 17776 proposi-
tional clauses. It turns out that only 6 of these clauses are required to determine
propositional unsatisfiability. Satallax can prove (2) using mode Mode218 in
about a minute. In the process it generates 24 candidates for g and 117650
propositional clauses. Only 10 of the clauses are needed.

7 Related Work

Smullyan introduced the notion of abstract consistency in 1963 [9]. One of
Smullyan’s applications of abstract consistency is to justify reducing first-order
unsatisfiability of a set M to propositional unsatisfiability of an extended set
R∪M . The procedure described in this paper and implemented in Satallax was
developed without Smullyan’s application in mind. Nevertheless, one can con-
sider the procedure to be both an elaboration of Smullyan’s idea as well as an
extension to the higher-order case.

A different instantiation-based method Inst-Gen is described in [7]. Inst-Gen
generates ground instances of first-order clauses and searches by interacting with
a SAT-solver. This method is implemented in the first-order prover iProver [7].
Note that iProver is also coded in Objective Caml and uses MiniSat via a for-
eign function interface. Two differences between the Inst-Gen method and the
method in this paper should be noted. First, Inst-Gen assumes the problem is
in clausal normal form. We do not make this assumption. As is well known, a
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substitution into a higher-order clause may lead to the need for further clause
normalization. Second, Inst-Gen assumes an appropriate ordering on closures
(clauses with substitutions). This ordering leads to important restrictions on in-
ferences that can significantly improve the performance of Inst-Gen. We do not
make use of any such ordering. In fact, a straightforward attempt to find such
an ordering for the higher-order case is doomed to failure. This can be briefly
indicated by an example. Suppose we define a closure to be a pair C · θ of an
atomic formula C and a substitution θ. The basic condition of a closure ordering
' (see [7]) is that C · σ ' D · τ whenever Cσ = Dτ and Cθ = D for some
“proper instantiator” θ. In the higher-order case, we would consider equality of
normal forms instead of strict syntactic equality. Consider two atomic formulas
C := p(λxy.fxy) and D := p(λyx.fxy) where p, f , x and y are variables of
appropriate types. Consider the substitution θp := λfxy.p(λyx.fxy). Clearly
Cθ is β-equivalent to D and Dθ is β-equivalent to C. An appropriate ordering
(assuming θ would be considered a “proper instantiator”) would need to have
C · ∅ ' D · ∅ ' C · ∅ where ∅ plays the identity substitution.

Regarding higher-order theorem provers, two well-known examples are Tps [2]
and LEO-II [4]. Automated search in Tps is based on expansion proofs while
search in LEO-II is based on a resolution calculus. Both Tps and LEO-II make
use of existential variables which are partially instantiated during search. LEO-II
was the first higher-order prover to take a cooperative approach. LEO-II makes
calls to a first-order theorem prover to determine if the current set of higher-order
clauses maps to an unsatisfiable set of first-order clauses.

8 Conclusion

We have given an abstract description of a search procedure for higher-order
theorem proving. The key idea is to start with a notion of abstract consistency
which integrates a restriction on instantiations. We gave a notion of a state
which consists of finite sets of formulas, instantiations and propositional clauses.
The invariants in the definition of a state correspond to the abstract consistency
conditions. We have given a successor relation on states. Any fair strategy for
choosing successors (until the set of propositional clauses is unsatisfiable) will
give a complete theorem prover.

We have also described the implementation of this procedure as a higher-order
theorem prover Satallax. A version of Satallax last year proved to be competitive
in the higher-order division of CASC in 2010 [10]. The latest implementation (a
complete reimplementation in Objective Caml) is more closely integrated with
the SAT-solver MiniSat [6]. The new implementation will compete in the higher-
order division of CASC in 2011.

Satallax is still new and there is a lot of room for improvement and further re-
search. One of the areas where much more research is needed involves generating
useful higher-order instantiations.
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Abstract. Deduction modulo is a generic framework to describe proofs
in a theory better than using raw axioms. This is done by presenting
the theory through rules rewriting terms and propositions. In CSL 2010,
LNCS 6247, p.155–169, we gave theoretical justifications why it is possi-
ble to embed a proof search method based on deduction modulo, namely
Ordered Polarized Resolution Modulo, into an existing prover. Here, we
describe the implementation of these ideas, starting from iProver. We test
it by confronting Ordered Polarized Resolution Modulo and other proof-
search calculi, using benchmarks extracted from the TPTP Library. For
the integration of rewriting, we also compare several implementation
techniques, based for instance on discrimination trees or on compilation.
These results reveal that deduction modulo is a promising approach to
handle proof search in theories in a generic but efficient way.

Since proofs are rarely searched for without context, there is a strong need to
be able to handle theories efficiently in theorem provers. For instance, proofs of
software correction often need some flavor of arithmetic, or theories defining the
data structures of the program such as chained lists. Several approaches exist
to go in this direction. The first one is to design a procedure dedicated to the
theory in which the proof is searched for. This would provide provers that are
really adapted to the theory, but it would have the drawbacks of not exploiting
the fact that theories are often built upon well-understood logics, and of being
difficult to extend. In particular, combination of provers built independently
for different theories would be virtually impossible. On the opposite, a second
approach would be to present the theory using axioms, and to use a general-
purpose theorem prover. While this method is very flexible, it is in most of the
cases not efficient enough to be applied. Therefore, provers searching in theories
use an in-between approach: existing general-purpose provers are combined with
methods specific to the theory. SMT provers are based on this modus operandi:
a prover for propositional logic (a SAT solver) is combined with a procedure
specific to the theory, for instance the simplex method for linear arithmetic.
SMT provers are really efficient, and are used at industrial level. Nevertheless,
they suffer from the following weaknesses: they cannot prove general results,
since they are restricted to ground inputs (some of them use heuristics for non-
ground inputs, and there are attempts to combine first-order prover with decision
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N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 162–176, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ensiie.fr/~guillaume.burel/


Experimenting with Deduction Modulo 163

procedures, but they are often restricted to linear arithmetic); as they handle
each theory in a specific way, it is difficult to combine different theories in them,
although progress has been done in that direction in the latter years, in particular
thanks to the application of the Nelson-Oppen method. A solution to overcome
these drawbacks is to design a framework that can be adapted to any kind of
deductive system, and that handle all theories in a uniform and yet effective way.
Deduction modulo [10] can be seen as such a framework. It consists in presenting
a theory as a congruence over propositions, and in applying the inference rules of
deductive systems modulo this congruence. The congruence is often defined by
means of a rewriting system over terms and propositions. Proof-search methods
derived from deduction modulo consists roughly in adding narrowing (not merely
rewriting) to an existing method such as resolution or tableaux.

The study of deduction modulo has lead to strong theoretical results: any
first-order theory can be presented as a rewriting system [6]; in particular, there
are presentations of Peano’s arithmetic [12] and Zermelo’s set theory [11] with
good proof-theoretical properties; it is also possible to encode higher-order sys-
tems such as Church’s simple type theory or functional pure type systems as
first-order theories modulo a rewriting system [9,7]; arbitrary proof-length re-
ductions can be achieved by working modulo a rewriting system instead of using
an axiomatic presentation [5]. Nevertheless, there was no experimental results
supporting the claim that deduction modulo improves indeed proof search. This
was due to the fact that no implementation of proof-search methods based on
deduction modulo had been developed. In [4], we have shown that integrating
a resolution method based on deduction modulo into an actual prover based
on ordered resolution is sound and complete, and that the given-clause algo-
rithm, which is in most of the cases the main loop of such a prover, can be
used to ease the integration. We have applied the ideas of this paper into the
prover called iProver, developed by Korovin at the University of Manchester [14].
The implementation is available as a patch to iProver v.0.7 on the webpage
http://www.ensiie.fr/~guillaume.burel/empty_tools.html.en. Here, we
give the details of our implementation, and we show that using deduction mod-
ulo improves indeed proof search compared to using axioms. To do so, we choose
as benchmarks problems of the TPTP library [17] that use axiom sets. Since we
have to design by hand a rewriting system with good properties for each of the
axiom sets, this has been done only for five of them. We also compared different
ways of implementing the rewriting system. Since rewriting rules are known in
advance, compiling them proved to be more efficient as soon as big terms needs
to be normalized. An easy but efficient way to compile the rewriting rules is to
translate them as an OCaml program that is dynamically linked to the prover.

In the next section, we present deduction modulo, and in particular the res-
olution calculus that has been integrated into iProver. We then detail all the
technicalities of this integration in Section 2. The results of the benchmarks
used to test the implementation, given in Section 3, show that deduction mod-
ulo improves the search for proofs in theories, and open perspectives given in
the conclusion.

http://www.ensiie.fr/~guillaume.burel/empty_tools.html.en
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1 Deduction Modulo

1.1 Extending Deductive Systems with Rewriting

We use standard definitions for terms, predicates, propositions (with connectives
¬,⇒,∧,∨ and quantifiers ∀, ∃), substitutions, term rewriting rules and term
rewriting. In deduction modulo, term rewriting and narrowing is extended to
propositions by congruence on the proposition structure. In addition, there are
also proposition rewriting rules whose left hand side is an atomic proposition and
whose right hand side can be any proposition. Such rules can also be applied to
non-atomic propositions by congruence on the proposition structure. It can be
useful to distinguish whether a proposition rewriting rule can be applied at a
positive position or a negative one. To this end, proposition rewriting rules are
tagged with a polarity and then called polarized rewriting rules. A proposition
A is rewritten positively into a proposition B (A−→+B) if it is rewritten by a
positive rule at a positive position or by a negative rule at a negative position. It
is rewritten negatively (A−→−B) if it is rewritten by a positive rule at a negative
position or by a negative rule at a positive position. Term rewriting rules are
considered as both positive and negative. ∗−→± is the reflexive transitive closure
of−→±. s

p,σ� t denotes that s can be narrowed to t at position p with substitution
σ, i.e. there exists a rewriting rule l → r such that σ(s|p) = σl and t = σ(s[r]p).

In deduction modulo [10], the inference rules of an existing system such as
the sequent calculus are applied modulo the congruence associated with the
rewriting system (term rewriting rules and proposition rewriting rules). This
leads for instance to the sequent calculus modulo. In polarized deduction modulo,
polarities of rewriting rules are also considered. For instance, the left and right
rules for the implication in the sequent calculus become

Γ − A,Δ Γ,B − Δ
⇒− C

∗−→−A ⇒ B
Γ,C − Δ

Γ,A − B,Δ
−⇒ C

∗−→+A ⇒ B
Γ − C,Δ

Proof-search methods can be derived from deduction modulo. Since variables
may need to be instantiated before being rewritten, we need to perform nar-
rowing instead of merely rewriting. In other words, we need unification instead
of pattern matching. There are basically two families of proof-search methods
based on deduction modulo, one extending the resolution method (ENAR [10],
PRM [8]), and one extending the tableau method (TaMed [3]). In each case, the
idea is to add a narrowing inference rule to the existing method.

1.2 Ordered Polarized Resolution Modulo

In [4], we show that it is easily possible to integrate deduction modulo into a
resolution-based prover. To do so, we designed a calculus, called Ordered Po-
larized Resolution Modulo (OPRM�

R), and recalled in Fig. 1. Note that the
ordering ' does not need to be compatible with the rewriting system R. We
proved that OPRM�

R is complete whenever the rewriting system fulfils a crite-
rion, namely the admissibility of the cut rule in the sequent calculus modulo.
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P ∨ C ¬Q ∨D
Resolution a,b,c

σ(C ∨D)

L ∨K ∨ CFactoring d

σ(L ∨ C)

P ∨ C
Ext. Narr.− a,b, Q →− D

σ(D ∨ C)

¬Q ∨D
Ext. Narr.+ a,c, P →+ ¬C

σ(C ∨D)

L ∨ C
Ext. Narr.t L maximal in L ∨ C, L

p,σ� L′ by a term rewriting rule, L|p �∈ V
σ(L′ ∨ C)

a σ = mgu(P, Q) b P maximal in P ∨ C c ¬Q maximal in ¬Q ∨D
d L and K maximal in L ∨K ∨ C, σ = mgu(L, K)

Fig. 1. Inference rules of the OPRM	
R

We also proved that adding some simplification rules does not break this com-
pleteness. In particular, it is possible to eliminate strict subsumptions, and to
normalize the clauses w.r.t. the term rewriting system. On the contrary, we gave
a counter-example showing that removing tautology clauses can break the com-
pleteness. In the following, we assume that all considered rewriting systems have
this cut-admissibility property. This implies in particular the confluence of the
term rewriting systems.

This calculus can be easily integrated into a prover based on resolution with
selection and on the given-clause algorithm by using the following remark of
Dowek [8]: having a polarized rewriting rule P →− C, where C is in clausal
normal form, is the same as adding a clause ¬P ∨C where ¬P is selected, apart
from the fact that this clause should not be narrowed itself. Similarly, P →+ ¬C
behave the same as P ∨C. These clauses corresponding to the polarized rewriting
rules are called one-way clauses by Dowek. To prevent such clauses to be resolved
one by each other, they can be directly put into the set of active clauses in the
given-clause algorithm.

2 Technical Details

2.1 iProver

iProver [14] is a first-order theorem prover developed by Korovin. It is mainly
based on the Inst-Gen method: to prove that a set of clauses is satisfiable, they
are made ground by instantiating all their variables with a dummy constant
and passed to a SAT-solver. If the SAT-solver answers that the ground clauses
are unsatisfiable, so are the original ones. If not, new instances of clauses are
generated using some inference rule called Inst-Gen. In this paper, we are not
really concerned with this method, although it would be interesting to study
its combination with the deduction modulo framework. However, in iProver, the
Inst-Gen method is combined with a resolution-based prover. We have integrated
the OPRM�

R into this part of iProver.
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Since we do not use the Inst-Gen method, the choice of iProver may seem
rather strange. It results from the following points:
– The most efficient provers today (Vampire [15], E [16], Spass [18], . . . ) are
based on superposition, not only on resolution with selection. Of course, one
may argue that superposition is an extension of ordered resolution with selec-
tion. Designing a calculus combining superposition and deduction modulo should
not be difficult, starting from the OPRM�

R. However, proving the completeness
of such a calculus seems rather difficult. Indeed, as for resolution modulo, this
completeness will not hold without the cut admissibility of the rewriting system.
However, the standard technique to prove the completeness of superposition,
namely by saturation, does not appear to be linked with cut-free proofs. The
question whether one can combine the restriction of superposition with narrow-
ing without losing completeness is therefore still open.

There is also a more technical difficulty concerning superposition-based provers.
The treatment of literals by superposition is not symmetric w.r.t. their polarity:
inference rules for negative literals are not the same as for positive ones, and
selected literals in a clause must contain at least a negative literal if they are
different from the maximal literals of the clause. Implementations of superposi-
tion exploit this asymmetry. However, we want to add one-way clauses into the
prover. In these clauses, a positive literal can be selected, and it needs not to
be the maximal literal w.r.t. some ordering. Just selecting this positive literal
and putting the clause directly into the set of active clauses made the prover
incomplete in the experimentation that we made using E, probably due to the
reasons cited above.
– In the CASC-J5 competition, the first prover not based on superposition is
iProver. Of course, its efficiency is largely due to the Inst-Gen method and the
call to an efficient SAT-solver (namely MiniSat). Nevertheless, the data struc-
tures developed in iProver, for instance its discrimination trees, contribute to
its performance, and these structures are used both by the Inst-Gen and by the
resolution prover.
– iProver is written in a functional language with pattern matching, namely
OCaml. Although some may argue that it can therefore not achieve the same
level of performance as a prover hacked in a low-level language like C, it reveals
itself to be useful in our case. Indeed, it is really easy to reflect rewriting rules
into a language with pattern matching. It is therefore possible to automatically
transform the input rewriting system into a program that normalizes the clauses
w.r.t. it, to compile that program and to load it to normalize clauses. As we will
see thereafter, since rewriting is compiled, this leads to real improvement in the
proofs in which heavy computation is needed.

2.2 Input Files

In practice, we do not want to write a specific parser for the polarized rewriting
rules. Instead, we choose to change the semantics of the TPTP format whenever
the new --modulo command-line argument is set to true. In that case, any
formula whose role is axiom is understood as a rewriting rule. (It is still possible
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to have raw axioms by using e.g. the hypothesis role.) If the clause consists only
of one positive literal whose main symbol is an equality, this is understood as a
term rewriting rule. For instance, cnf(plus_def_o, axiom, plus(X,o) = X).
is interpreted as the term rewriting rule plus(X, o)→ X . If the literal is negative,
or its main symbol is not the equality, or there are more than one literal, the
clause is understood as a one-way clause whose first literal is the selected one.
For example,

cnf(all_m, axiom, ~ e(lappl(all,X)) | e(lappl(X,Y)) ).
cnf(all_p, axiom, e(lappl(all,X)) | ~ e(lappl(X,h(X))) ).

are interpreted as the one-way clauses ¬ε(∀̇@ X) ∨ ε(X @ Y ) and
ε(∀̇@ X) ∨ ¬ε(X @ h(X)) which correspond to the polarized rewriting rules
ε(∀̇@ X) →− ∀Y. ε(X @ Y ) and ε(∀̇@ X) →+ ¬¬ε(X @ h(X)) (see [8]). The
special case of the reflexivity axiom X = X is also treated as a one-way clause
and not as a rewriting rule.

2.3 Clause Generation by Narrowing

To perform the Ext. Narr.− (resp. Ext. Narr.+) inference rule, we add a rewriting
rule P →− C (resp. P →+ ¬C) as a one-way clause ¬P ∨C (resp. P ∨C). To this
end, we need to select ¬P (resp. P ) in the clause, and put the clause directly into
the set of active clauses, before the main loop of the given-clause algorithm is
performed. Then, applying Resolution with one of these one-way clauses simulates
Ext. Narr.±. In iProver, selected literals in a clause are just a list of literals that
is attached to the clause. Selecting a literal in a clause consists therefore simply
in calling assign_res_sel_lits with the singleton list containing the left-hand
side of the rule. Inserting the clause in the active set is done as it would be for
a normal clause: adding the clause into the unification index (using the selected
literal) and tagging the clause as active.

Implementing the Ext. Narr.t in iProver is more difficult. Indeed, iProver does
not have a special inference rule such as paramodulation to handle equality. If
equalities are present, iProver only add the axioms that define equality in the
current signature. Therefore, we need to add a paramodulation inference rule
ourselves. Fortunately, some data structures to do so were already present for
the resolution inference rule. For instance, active clauses are indexed using a non-
perfect discrimination tree [13]. To add narrowing by a term rewriting rule, we
add a new index, rewrite_index_ref. Only term rewriting rules are added into
this index. Given a term t, the index will provide all candidate rewriting rules,
i.e., only rules whose left-hand side can possibly be unified with t. Then, for all
candidates l → r, one tries to unify l with t, and if it is the case, one returns
σ(r) where σ is the substitution computed during the unification. However, this
is not sufficient, since term narrowing should perform at any depth in the term
t. Therefore, we implemented a data structure for contexts, allowing one to go
inside terms, and if a term cannot be narrowed at one position p, narrowing is
tried on all position directly below p. Note that by doing so, all clauses that
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could be generated by Ext. Narr.t are not, since we do not go below a position if
narrowing was successful. However, we generally assume that the term rewriting
system is sufficiently well-formed (in particular, as stated above, it is assumed
to be confluent) so that it does not break the completeness of the prover.

2.4 Simplifications

As recalled before, some simplifications that are compatible with standard or-
dered resolution break the completeness of OPRM�

R. For instance, tautolo-
gies cannot be eliminated. Because they break the completeness, or we do not
know if they preserve it, we have to switch off the following options of iProver:
--instantiation flag, --schedule, --prep prop sim, --ground splitting,
--res to prop solver, --res orphan elimination; --res lit sel is set to
kbo_max. There is no flag in iProver to turn off tautology elimination, so we
changed the source code to prevent their elimination whenever the new --modulo
flag is set to true.

In OPRM�
R, clauses can be narrowed using the term rewriting system, hence

generating new clauses, but we have shown that they can also be normalized, i.e,
replaced by their normal form. Indeed, adding the demodulation simplification
rule (C is simplified to D if C −→D by the term rewriting system) does not
break the completeness, and repeatedly applying this simplification eventually
leads to a normal form of the term, assuming it exists.

There are several way to perform the normalization of the clauses. We com-
pared the following ones, that can be selected using the --normalization_type
parameter:

none. No simplification is performed, clauses have to be rewritten using Ext.
Narr.t, generating new clauses.

interp. Rewriting rules are translated into OCaml closures performing the pat-
tern matching: by structural induction on the left-hand side of the rule, a
function is built that matches its arguments w.r.t. the left-hand side and
returns a substitution:

let rec term_to_subst = function
| Term.Fun(f, f_args, _) -> (function

Term.Fun(g, g_args, _) when f = g ->
List.fold_left2
(fun sub t1 t2 -> merge_subst (term_to_subst t1 t2) sub)
(Subst.create ()) f_args g_args

| _ -> raise No_match)
| Term.Var(var,_) ->

let sub = Subst.create () in
fun t -> Subst.add var t sub

If this function is successful, the obtained substitution is applied to the right-
hand side. If not, one tries another rewriting rule. If no rewriting rules can
be applied at that position, one tries the same method below in the term.
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dtree. Thanks to the implementation of Ext.Narr.t, there is already a data struc-
ture that helps in retrieving rewriting rules whose left-hand side can be uni-
fied with some term. Since pattern-matching is stronger than unification (if
a term matches a pattern, then the term and the pattern can be unified),
the same structure can be used to get candidates for matching. Here also,
one needs to test rewriting deeply in the term.

pipe. Rewriting rules are known statically once the input file is parsed, since
OPRM�

R does not generate new rewriting rules. Therefore, they can be com-
piled to improve their efficiency. A simple way to compile them is to translate
them into a OCaml program using pattern matching. For instance, the rules
f(X, g(X))→ h(X) and f(h(X), Y ) → Y are translated into the code

let match_term = function
Fun("f",[x0; Fun("g",[x1])]) when x0 = x1 -> Fun("h",[x0])

| Fun("f",[Fun("h",[x0]); y0]) -> y0
| _ -> raise No_match

This translation is fully automated. Then, there is no need to implement
an efficient pattern-matching algorithm, since it is the one of OCaml that
will be used. This match_term function is added into an OCaml source file
pipe_iprover.ml. There, it is called by a tree-traversal that tries to ap-
ply it at each position of the term. Note that it is easy for the user to
change the rewriting strategy, since one only has to change the traversal in
pipe_iprover.ml before launching iProver. The file contains a main loop
that does the following: it waits a term on the standard input, normalizes it
and put the result on the standard output. This file is then compiled, and the
resulting program is run. iProver then communicates with it through UNIX
pipes. Terms are expected to be passed using the marshalling function of
OCaml. This implies that the version of OCaml used for compiling iProver
must be the same as the one for compiling pipe_iprover.ml.

plugin. As for pipe, an OCaml program is compiled, but it is loaded using the
dynamic loading library Dynlink of OCaml, which is available for native
compilation since version 3.11 for most platforms: the match_term function
is added into a file plugin_iprover.ml which is compiled as a dynamic
library and loaded. The main function of the compiled plug-in changes only
a reference to a normalization function, pointing it to the function that
does the normalization using match_term. iProver has just to use the new
reference to get the normalization function. Here again, the normalization
strategy can be easily modified by the user by changing plugin_iprover.ml.

size based. Compilation costs time. It is therefore not clear that the two pre-
vious options are more efficient, in particular when only small terms are
rewritten. This last normalization method decides to launch the compilation
(plugin style) only when a term whose size reaches some threshold needs to
be normalized. For smaller term, the dtree method is used. The threshold
can be changed using the --normalization_size command-line parameter.
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3 Benchmarks

3.1 Comparison with Other Calculi

We first test whether OPRM�
R really improves proof search compared to stan-

dard ordered resolution with selection using “normal” axioms. As we need to
switch off some simplifications in order OPRM�

R to be complete, we compare it
to the following calculi:

Ordered resolution, same restrictions as OPRM: in this case, the same
options are given to iProver as when OPRM�

R is tried, the only difference is
that the --modulo flag is switched off, the axioms being therefore considered
as normal clauses instead of rewriting rules.

Ordered resolution, default options of iProver: in this case, the default
options of iProver are used; only the Inst-Gen prover is turned off.

Full iProver: iProver is launched with its default options; in particular, the
Inst-Gen prover is combined with the resolution prover.

We may also have compared it to another prover, in particular a prover based
on superposition such as SPASS or E. Notwithstanding, this seems unfair, since
the resolution prover of iProver is written in OCaml whereas other provers are
written in C, and contain a lot of low-level optimizations, leading to more efficient
executables.

To perform a benchmark, we need a set of problems to test. We therefore need
some theories, and some problems related to these theories. The TPTP library [17]
provides a number of axiom sets, each of them used in several problems. We could
have tried to consider each of these axiom sets as a theory. The main difficulty
is that for each of them, we have to define an equivalent rewriting system for
which cut admissibility holds, in order to guarantee the completeness of OPRM�

R.
There exists a procedure that transforms a set of axioms into a rewriting sys-
tem with this property [6]. However, first, this procedure may not terminate, and
second, it never was implemented, although we did write some prototype which
showed us that the procedure produces systems that are too big to be usable.
We therefore had to design rewriting systems and prove their cut admissibility by
hand. Consequently, we only tried five theories, named after their TPTP v4.0.0
axiom-set files. We tested all the problems of the TPTP library that use these
axiom sets. The rewriting systems we designed to present these theories are given
at http://www.ensiie.fr/~guillaume.burel/empty_tools.html.en. We
considered ANA001, axioms defining the analysis (limits) for continuous func-
tions, BOO001, axioms defining a ternary boolean algebra (boolean algebra with
a ternary multiplication function), FLD001, axioms defining ordered fields,
SET001 and SET002, axioms defining a weak set theory using resp. predicates
or function symbols to define unions, intersections, differences and complements.
We ran each problem with a time-out of 60 s: first using the rewriting system in
OPRM�

R, second using the axiom set of the TPTP in resolution with the same
restriction as OPRM�

R, third in resolution with default options and fourth using
iProver in its whole. All tests were performed under Linux 2.6 on a four-core Intel R©

CoreTM i3 CPU M330 at 2.13GHz.

http://www.ensiie.fr/~guillaume.burel/empty_tools.html.en
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Table 1. Comparison of Different Calculi on Problems Extracted from the TPTP
Library. #: number of solved problems; %: percentage in the problem set corresponding
to the theory; t: average time to find a proof for the solved problems.

ANA001 BOO001 FLD001 SET001 SET002 Total
# ( %) t # ( %) t # ( %) t # ( %) t # ( %) t # (%) t

OPRM 3 (75) 11.41 3 (100) 0.01 40 (29) 0.95 15 (100) 0.01 8 (100) 0.01 69 (42) 1.05
restricted
resolution 0 ( 0) NA 0 ( 0) NA 23 (17) 2.85 15 (100) 4.05 5 ( 63) 8.06 43 (26) 3.88
default

resolution 1 (25) 25.34 1 ( 33) 25.46 40 (29) 13.55 15 (100) 0.96 7 ( 88) 22.99 64 (39) 12.00
full

iProver 1 (25) 0.18 1 ( 33) 0.42 42 (31) 4.69 15 (100) 0.17 7 ( 88) 7.11 66 (40) 3.79

Fig. 2. Comparison of Different Calculi on Problems Extracted from the TPTP Library.
The x-axis gives the time taken by OPRM	

R, the y-axis by the other calculus.

The results are summarized in Table 1 and represented graphically in Figure 2.
The time taken for a given problem by OPRM�

R is compared to the time taken
by the other calculi. Since the scale is logarithmic, for all points above the dashed
line, OPRM�

R is 10 times faster than the other calculus, and for all points above
the dotted line, 100 times faster. As we can see, OPRM�

R is always at least as
efficient as restricted or default resolution, and in most of the cases at least 10
times better. This was expected, because having proved the cut admissibility
for the considered rewriting system implies that the theory is consistent, and
the prover does not try to find a contradiction in the theory. A more surprising
result is that using iProver in its whole is only rarely much better than using
OPRM�

R. This means that the gain of using OPRM�
R relative to using ordered
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resolution is comparable to the gain obtained by combining it with the Inst-Gen
method (including the use of an efficient SAT-solver).

3.2 Comparison of Rewriting Implementations

In this section, we want to compare the different techniques that can be used
to perform the normalization of the clauses w.r.t. the term rewriting system. To
have a better control of the required amount of normalization, we do not rely
on “real” problems of the TPTP, but on three families of problems crafted by
hand. We first use tests requiring only normalization. The first one consists of
proving that n + n = 2×n in Peano’s arithmetic, i.e., given n

def= sn(o), we have
to prove n + n = s(s(o)) × n modulo the rewriting system

s(X) + Y → s(X + Y ) o + Y → Y X = X →+ ¬⊥
s(X)× Y → (X × Y ) + Y o× Y → o

The second one consists in proving the same theorems, but using Church’s inte-
gers in a λ-calculus with explicit substitutions. This calculus, similar to λυ [1],
is defined using binary operators for application (·@ ·) and substitution (·[·]),
unary operators for lambda abstraction (λ), unit substitution (/) and substi-
tution lifting (⇑), De Bruijn indexes represented by 1 and sc, and the shifting
substitution ↑. Then, given n

def= λ(λ(sc(1) @(· · · (sc(1) @ 1)))), we have to prove
(+ @ n) @ n = (×@ 2) @ n modulo the rewriting system

λ(A) @ B → A[/B] (A @ B)[S] → A[S] @ B[S] 1[/A] → A

(λ(A))[S] → λ(A[⇑ S]) sc(N)[/A] → N 1[⇑ S] → 1
sc(N)[⇑ S] → N [S][↑] sc(N)[↑] → sc(sc(N)) 1[↑] → sc(1)

X = X →+ ¬⊥ × → λ(λ(sc(1) @ 1))

+ → λ(λ(λ(λ((sc(sc(sc(1))) @(sc(sc(1)) @ sc(1)) @ 1)))))

Arguably, these tests do not reflect reals proofs, since they consists only of
normalization, and no inference is performed. To have a test mixing both nor-
malization and inference, we used an encoding of instances of the Syracuse con-
jecture, i.e., given an n, we tried to prove that by dividing n by 2 if n is even,
and multiplying it by 3 and adding 1 if it is odd, and reiterating the process, 1
is reached eventually. This was encoded by proving syracuse(n) modulo:

syracuse(X)→+ ¬¬syracuse′(X, parity(X)) parity(s(o)) → false

syracuse(s(o)) →+ ¬⊥ parity(o) → true

syracuse′(X, true) →+ ¬¬syracuse(1
2 (X)) 1

2 (s(s(X))) → s(1
2 (X))

syracuse′(X, false)→+ ¬¬syracuse(×3 + 1(X)) 1
2 (s(o)) → o

parity(s(s(X))) → parity(X) 1
2 (o) → o

×3 + 1(s(X)) → s(s(s(×3 + 1(X)))) ×3 + 1(o) → s(o)
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Fig. 3. Comparison of different techniques for implementing normalization: Proving
that n + n = 2× n in Peano’s arithmetic. Values of n from 10 to 4000, and zoom from
10 to 100.
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Fig. 4. Comparison of different techniques for implementing normalization: Proving
that n + n = 2× n with Church’s integers

Fig. 5. Comparison of different techniques for implementing normalization: Instances
of the Syracuse conjecture
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The results are represented in Figures 3 to 5. As expected, compilation of the
rewriting rules leads to much better results when heavy computation is needed.
We also note that using Unix pipes degrades performance for large terms, com-
pared to using a plug-in. The invocation of the OCaml compiler costs time. There
is a threshold of approximately 0.07 s in Peano’s arithmetic and for the Syracuse
problem. Using the size based method seems a fair choice, since it behaves, as
expected, like dtree on small inputs and like plugin on large ones. However, the
term-size threshold for launching compilation depends on the problem: it should
be set greater for Peano’s arithmetic, and smaller for Church’s integers. This is
due to the fact that normalizing a term of a given size requires more applications
of the rewriting system for Church’s integers than in Peano’s arithmetic, so that
the gain obtained by compiling the rules is greater for the formers. The rewriting
systems of these tests are not meant to be good at reasoning about arithmetic,
their purpose is to compare the different normalization techniques; the difference
that were enlightened for these tests should occur for any rewriting system.

4 Conclusion

The benchmarks presented in the previous section demonstrate that using a
rewriting system instead of axioms improves proof search, and that compiling
the rewriting system is efficient as soon as big terms are rewritten. One could
argue that one should not have used raw axioms, but a saturated set of clauses
instead. There are two remarks to be made: A saturated set of clauses, if viewed
as one-way clauses, can be seen as a rewriting system with cut admissibility.
Conversely, the one-way clauses corresponding to a rewriting system with the
cut admissibility does not need to be saturated w.r.t. the inference rules of the
system to guarantee the completeness; they are therefore less numerous, and the
completeness does not depend on the clause ordering.

A point that strongly needs to be studied is the automatic transformation of
an axiomatic presentation into an equivalent rewriting system with cut admis-
sibility. As mentioned above, a procedure exists, but its implementation showed
that it would be impractical. A way to improve it would be to work on the re-
mark above, namely that saturated set of clauses can be seen as cut-admitting
rewriting systems. Note that once the set is saturated w.r.t. some ordering, it
can be used with another ordering without breaking the completeness.

Another issue is to study whether extending superposition with narrowing
preserves completeness. If not, we should search extra criteria that would imply
it. This is crucial since we plan to integrate deduction modulo into today’s most
efficient first-order provers such as Vampire, E, or SPASS.

Last, compiling rewriting rules to improve first-order provers is not a new idea,
but it was put aside because the compilation time is too long when the compiler
needs to be called for each new rewriting rule generated by the system. Here,
such a problem is not present, since rewriting rules are known in advance, i.e.
once the input has been read. Moreover, our approach for the compilation of the
rewriting rules is reminiscent of the normalization by evaluation technique [2].
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To really have NbE, we should translate not only the rewriting rules into OCaml
programs, but also the terms to be normalized themselves. It is not clear whether
this would really improve proof search, but it should be tested.
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Abstract. Software verification is one of the most prominent application areas
for automatic reasoning systems, but their potential improvement is limited by
shortage of good benchmarks. Current benchmarks are usually large but shallow,
require decision procedures, or have soundness problems. In contrast, we pro-
pose a family of benchmarks in first-order logic with equality which is scalable,
relatively simple to understand, yet closely resembles difficult verification condi-
tions stemming from real-world C code. Based on this benchmark, we present a
detailed comparison of different heap encodings using a number of SMT solvers
and ATPs. Our results led to a performance gain of an order of magnitude for the
C code verifier VCC.

1 Introduction

Among the applications of automatic provers, software verification is one of the most
prominent and challenging driving forces [15]. Successful automatic code verifiers trig-
gered and influenced the development of previously unseen improvements in reasoning
systems. Yet, there is ample space for further advances, both in code verifiers and their
underlying reasoning systems.

In practice, the development of automatic provers is usually driven by benchmarks
(see [3,28] for large collections), taken from examples of existing applications. Current
benchmarks stemming from the program verification world, large in size as they may
be, are typically shallow (i.e., their solution touches only a small fraction of the search
space), sometimes have consistency problems in their axiomatizations, and in many
cases do not fall into the domain of an entire class of strong automatic provers. Shal-
lowness is due to the prevalent use of model checkers in program verification, whose
applications rarely cover deep problems. Inconsistencies in axiomatizations remain fre-
quently unnoticed, due to the “reliably” incomplete quantifier reasoning of the applied
provers (interestingly, the provers still correctly discover bugs in programs). Inappli-
cability of provers is caused by the lack of support for specific theories, especially for
integer arithmetic, which is frequently required by benchmarks. Thus, there is a demand
for new and complex benchmarks with the potential to initiate further improvements in
the world of automatic provers and code verifiers.

We consider two classes of automatic provers relevant for verifying complex code.
The first class is that of resolution-based provers such as E [27], SPASS [30] or Vam-
pire [26], which we will refer to as atomatic theorem provers (ATPs). They are powerful
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in logical reasoning, but lack decision procedures for theories such as arithmetic. The
second class is formed by satisifiability modulo theories (SMT) solvers, e.g., CVC3 [4],
Yices [13] and Z3 [11]. They combine SAT solvers with decision procedures for various
theories (e.g., equality and linear arithmetic) and quantifier instantiation heuristics.

1.1 The Quest for Fast Automated Provers

Automatic code verifiers demand an interactive feedback-driven style of verifying code:
The user annotates the code and invokes the verifier, which, in turn, asks the automatic
back-end prover to check the verification condition (VC) corresponding to the annotated
code. In almost all cases, the initial annotation does not comply with the code and the
user has to modify either of them and run the verifier again. Only after typically several
repetitions of this feedback loop, the verifier will be satisfied. Especially for complex
code (in particular in the domain of data structures), annotations are usually extensive
and hence mostly added in small steps, requiring tens or hundreds of iterations.

Clearly, the response time of the code verifier (and, in particular, of the automatic
prover running in the back-end) is of crucial importance to its adoption. In the Hyper-
visor verification project [18], for example, we have found verification times per entity
(VCs corresponding to single C functions in that case) of over 30 seconds to be severely
impeding productivity. Considerably longer return times made it virtually impossible to
progress with verification. In fact, verification turnaround times (followed by fickleness
of quantifier instantiation heuristics guiding the underlying SMT solver and difficulty
in understanding verification errors) were reported as the main limiting factor during
the Hypervisor verification project.

1.2 The Challenge

Verifying dynamic data structures is one of the challenges in code verification. This was
also true for the aforementioned Hypervisor verification project (consisting of about
100,000 lines of C code), which used the VCC [8] verifier. In part, this might be due
to the heavy methodology imposed by the verifier. However, we found some evidence
that Dafny [19], a verifier for a type-safe language, performs much better than VCC
on equivalent benchmarks of complex data structures. We suspected the heap encoding
to be the culprit here. To confirm our guess, we have developed a series of benchmark
programs and tested them against several different heap encodings (Sect. 2), including
versions of VCC’s and Dafny’s heap models. These initial benchmarks have shown
the VCC model to be much less efficient, but have also shown surprising differences
between superficially similar heap encodings. Some of these results carried over to
prototypical re-implementations of the heap encoding in VCC, but others did not.

Consequently, we devised a benchmark family of multiply-linked lists (Sect. 3) as
an archetypical example of a recursive data structure. We implemented and specified
the benchmarks in Boogie [2], a minimal intermediate verification language used by
Dafny and VCC, among other verifiers. The axiomatization required is tiny, giving good
guarantees of soundness, and does not require arithmetic. We have also reimplemented
the multiply-linked list benchmarks, or multi-list benchmarks for short, in VCC and
Dafny (both of which have large background axiomatizations using arithmetic).
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1.3 Contributions

We propose a new family of benchmarks for both automatic code verifiers and auto-
matic provers, named multi-lists (Sect. 3). These benchmarks can be arbitrarily scaled
in two dimensions (showing trends instead of only scattered data-points), chopped into
pieces (one per assertion), and run against any of the six heap encodings we consider
(none of which is novel, but see Sect. 2). This gives a wealth of benchmarks, which,
we believe, will be found useful by the community and will foster improvements of
automatic provers.

Using our benchmarks, we compare several ATPs and SMT solvers (Sect. 4). This is
the first comprehensive comparison of how well different heap encodings perform on
different reasoning systems. The experiments also show that the proposed benchmarks
are relevant in that our results using the rather low-level Boogie system carry over
to VCC and Dafny and, moreover, behave comparable to benchmarks of real-world
data structures. Since the benchmarks respond, under changes of the heap encoding and
options to the back-end prover (Z3 in our case), similarly in all considered code verifiers
(Boogie, VCC and Dafny), we believe that our results also apply to other verification
systems.

2 Heap Encodings

It is customary to represent the heap as a mapping from indices to values and to provide
functions read() and write() for accessing and updating it. Below we summarize the
read-over-write axioms to characterize these functions [7]. Here, as well as in the rest
of the paper, we use the syntax of the Boogie [2] intermediate verification language.
The predicate disjoint() abstracts from the disequality test between two indices.

axiom (∀ H, p, v • read(write(H, p, v), p) = v);
axiom (∀ H, p, q, v • disjoint(p, q) ⇒ read(write(H, p, v), q) = read(H, q));

Throughout this section, we assume a language with a two-tiered heap, i.e., where
heap access and update require a pointer and a field. Note that this assumption is a gen-
eralization of plain pointer-indexed heaps, because a pseudo-field can always artificially
be constructed, if necessary. Moreover, we use (unbounded) integers to represent values
stored on the heap, an over-approximation of real memory. Our assumptions apply to
many languages such as Java, C#, or Dafny, just to name a few. Applying such a model
to C is also possible, but requires additional work (Sect. 2.1).

Two-tiered heaps can be modeled in (at least) the following six logically equivalent
ways (we abbreviate each heap model name by a short Boogie representation and refer
to heap models by their abbreviation later on):

Linear heap H[dot(p,f)] . The heap is addressed by pointers only. It corresponds to the
model sketched above with pointer disequality instantiating the disjointness pred-
icate. Pointer-field pairs are coerced to pointers by means of the free constructor
dot() axiomatized with its projections base() and field():

axiom (∀ p, f • base(dot(p,f)) = p ∧ field(dot(p,f)) = f);
axiom (∀ p • dot(base(p), field(p)) = p);
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State-based linear heap H[dot2(p,f)] . In some language formalizations (see Sect. 2.1
for more details), the above projections base() and field() only exist for certain
pointers in certain states. We model that by making them dependent on the heap:

axiom (∀ H, p, f • base(H, dot2(p, f)) = p ∧ field(H, dot2(p, f)) = f);
axiom (∀ H, p • dot2(base(H, p), field(H, p)) = p);

Synchronous heap H[p,f] . The heap is simultaneously accessed by pointer and field.
Its axiomatization is as follows:

axiom (∀ H, p, f, v • read(write(H, p, f, v), p, f) = v);
axiom (∀ H, p, q, f, g, v • p �= q ∧ f �= g ⇒

read(write(H, p, f, v), q, g) = read(H, q, g));

Two-dimensional heap H[p][f] and H[f][p] . The heap is laid out in two dimensions,
each addressed by either pointer or field. The only difference between H[p][f] and
H[f][p] is the way values are obtained: For H[p][f], the heap is first addressed by a
pointer and then by a field; for H[f][p], this is vice versa. Its axiomatization consists
of two pairs of read-over-write axioms where disjointness is disequality of point-
ers and fields, respectively. For example, the heap model H[p][f] is axiomatized as
follows:

axiom (∀ H, p, h • read(write(H, p, h), p) = h);
axiom (∀ H, p, q, h • p �= q ⇒ read(write(H, p, h), q) = read(H, q));
axiom (∀ h, f, v • read’(write’(h, f, v), f) = v);
axiom (∀ h, f, g, v • f �= g ⇒ read’(write’(h, f, v), g) = read’(h, g));

Field heaps F[p] . Instead of a single heap, there are several distinct heaps, one for each
field. For each such heap, there are distinct functions read() and write(), axiomatized
using read-over-write axioms with pointer disequality as disjointness predicate.

To clarify the description of each of these encodings, let us consider an example
program—a sequence of assignments—and its translation into each of the described
heap encodings. In the translations, the heap, which is only implicit in the program,
gets explicit, which results in ordinary assignments turned into explicit heap assign-
ments. The different instances of the heaps are numbered starting from 0 (the index of
the initial heap).

Program (without explicit heap)

p.f := 3; p.g := p.f;

Linear heap H[dot(p,f)] (similar for H[dot2(p,f)])

H1 := write(H0, dot(p, f), 3); H2 := write(H1, dot(p, g), read(H1, dot(p, f)));

Synchronous heap H[p,f]

H1 := write(H0, p, f, 3); H2 := write(H1, p, g, read(H1, p, f));

Two-dimensional heap H[p][f]

H1 := write(H0, p, write’(read(H0, p), f, 3));
H2 := write(H1, p, write’(read(H1, p), g, read’(read(H1, p), f)));
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Two-dimensional heap H[f][p]

H1 := write(H0, f, write’(read(H0, f), p, 3));
H2 := write(H1, g, write’(read(H1, g), p, read’(read(H1, f), p)));

Field heaps F[p]

F1 := write(F0, p, 3); G1 := write(G0, p, read(F1, p));

2.1 Type-Safe C

In general, C does not comply with our initial assumptions of a two-tiered heap. Instead,
C heap is understood as a linear heap of bytes addressed solely by pointers. Even the
access to structure fields is reduced to plain pointers using address arithmetic. Moreover,
individually addressable entities spanning more than one byte each (e.g., integer values
or floating point numbers) may overlap on the heap. Verifying complex data structure
algorithms in such a setting is out of reach, because complex invariants will be hidden
by layers of pointer arithmetic and numerous disjointness checks.

Fortunately, most C programs are written in a nearly type-safe manner, avoiding
unrestricted casting and pointer arithmetic most of the time. This type-safety intuition
led to the memory model implemented in the current version of VCC [9], which we
will refer to as VCC2 from now on. This model maintains, throughout the execution
of a program, a set of valid pointers and an invariant stating that they do not address
overlapping portions of memory unless required by the type system. For instance, C’s
type system mandates that fields of a structure overlap with the entire structure, but not
with each other. Each valid pointer p has a unique embedding, i.e., another valid pointer
to the structure in which p is directly contained, as well as a unique field that identifies
p within its embedding. The definition of the embedding and the field of a pointer
depend on the current set of valid pointers. Hence, the heap model underlying VCC2
can be approximated by H[dot2(p,f)], although the actual axioms include premises about
p being valid which slows down reasoning.

Along with our experiments (Sect. 4), we created a new memory model for VCC,
dubbed VCC3, which separates the concepts of pointers from that of fields and is
amenable to most of the heap models presented in Sect. 2 (except for F[p]), as it makes
the embedding state-independent. The key idea is to treat C pointers as fat pointers for
specification purposes, i.e., entities consisting of another fat pointer (to the embedding)
and a field. For simple type-safe field accesses, there is just one field object per field of a
source-level structure, corresponding exactly to our assumption about two-tiered heaps.
VCC3 restricts memory accesses to a set of valid pointers, in much the same way as in
the VCC2 model. Valid pointers occupy disjoint memory locations, and thus separate
writes to valid pointers do not interfere. The details, in particular pointer arithmetic,
arrays and casted pointers, are tricky, and will be described in an upcoming paper.

3 Multiply-Linked List Benchmark Family

Algorithms modifying data structures are among the most complex verification chal-
lenges. A simple, yet already sufficiently hard problem is inserting an element into a



182 S. Böhme and M. Moskal

head0 tail0

head1tail1

Fig. 1. An example of a generalized list with degree 2. The labels in the nodes mark the heads
and tails of the two link sequences.

doubly-linked list. We render this problem even harder by generalizing the list datatype
into a multiply-linked list, or multi-list for short. Instead of one bi-directional link (con-
sisting of pointers next and prev per node) between two nodes, we allow n such links
and call n the degree of the multi-list. Consequently, the nodes of a list are not only
connected by one sequence of links, but there are n sequences, each imposing a (poten-
tially different) order on the list nodes. Figure 1 gives an example of a multi-list with
degree 2 and consisting of three nodes.

For specifying multi-lists, we assume that the following types and functions are al-
ready specified. Their exact semantics is given by the choice of the underlying heap
model (Sect. 2). Here, we turned the heap into a global variable to make the specifica-
tion more readable. Moreover, we require a function read ptr() which reads and coerces
heap values into pointers and a function of ptr() which coerces pointers back into inte-
gers.

type heap; type ptr; type field;
var H: heap;
function read(H: heap, p: ptr, f: field): int;
procedure write(p: ptr, f: field, v: int) modifies H;
function read ptr(H: heap, p: ptr, f: field): ptr;
function of ptr(p: ptr): int;

All of the previously described heap models except for F[p] can easily provide semantics
to these declarations. For field heaps, we provide several global heaps (one for each
field) as well as copies of the heap-accessing functions.

A multi-list is characterized by its nodes, represented as a set nodes of pointers, as
well as n head and n tail nodes, one head and tail for each link sequence (e.g., head0

and tail0 for the first link sequence). The predicate is node() tests pointers for member-
ship in a multi-list. We require the following properties (collectively referred to as the
invariant of a multi-list) to be fulfilled for valid multi-lists (with examples for the first
link sequence).

– Heads and tails are nodes of the list.

is node(H, list, read ptr(H, list, head0)) ∧ is node(H, list, read ptr(H, list, tail0))

– Each node’s predecessors and successors are again nodes of the list.

(∀ p: Pointer • is node(H, list, p) ⇒
read ptr(H, list, next0) �= null ∧ is node(H, list, read ptr(H, p, next0)) ∧
read ptr(H, list, prev0) �= null ∧ is node(H, list, read ptr(H, p, prev0)))

– All heads are their own predecessors, tails are their own successors.
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read ptr(H, read ptr(H, list, head0), prev0) = read ptr(H, list, head0) ∧
read ptr(H, read ptr(H, list, tail0), next0) = read ptr(H, list, tail0)

– Each inner node connects bi-directionally with its predecessor and successor. An
inner node’s successor and predecessor is always distinct from the node.

(∀ p: Pointer • is node(H, list, p) ∧ p �= read ptr(H, list, tail0) ⇒
read ptr(H, read ptr(H, p, next0), prev0) = p ∧
read ptr(H, p, next0) �= p) ∧

(∀ p: Pointer • is node(H, list, p) ∧ p �= read ptr(H, list, head0) ⇒
read ptr(H, read ptr(H, p, prev0), next0) = p ∧
read ptr(H, p, prev0) �= p)

– Each node of the list contains m data fields, and every such data field fulfills an
abstract property good val(). We abbreviate this entire condition by the predicate
node valid().

Given a multi-list with these properties, insertion of a new node into the multi-list works
as follows. First, the data fields of the new node are set in such a way that they then ad-
here to the predicate good val(). Second, for each link sequence of the list, the new
node is, based on nondeterministic choice, prepended to the head node or appended
at the tail node. A nondeterministic choice may either be implemented as a random
decision or simply by testing the (arbitrary) value of extra boolean arguments to the
insertion function. Finally, the new node is added to the set nodes of the list. The verifi-
cation condition for this function essentially corresponds to showing that the multi-list
invariant also holds for the extended multi-list.

The purpose of nondeterministic choice is to simulate multiple paths, typical for data
structure operations (e.g., red-black tree rotations have four cases). The number of paths
is exponential in the number of links, but some provers may reuse parts of the proof
between paths. Note that if the VC generator splits the paths before passing them to the
prover, this will result in highly symmetric VCs—exponentially many in the number
of links–being generated. Therefore, we also consider cases without nondeterministic
choice, where we prepend to each list.

To better illustrate the mutual pointer updates, we give here the code which prepends
a new node p in front of the head of the first link sequence (head0) of the multi-list d.

call write(p, next0, read(H, d, head0));
call write(p, prev0, of ptr(p));
assume node valid(H, read ptr(H, d, head0));
call write(read ptr(H, d, head0), prev0, of ptr(p));
call write(d, head0, of ptr(p));
assert node valid(H, read ptr(H, read ptr(heap, d, head0), next0));

The case of n = 1 and m = 1 corresponds to a doubly-linked list with one data item
per node. We consider cases where the degree of a mult-list n≤ 3 and the number of data
fields m ≤ 10 practically relevant, e.g., tree datatypes with several data fields fall well
into this category with respect to the effort needed to verify corresponding functionality.
For studying the impact of the coefficients n and m, we will also consider greater values
in our experiments. It is clear that the burden on automatic provers increases drastically
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Table 1. Automated provers used in the experiments and their configuration. Z3+3p is Z3 (version
2.18), but invoked with the configuration used by Boogie.

Automated prover Configuration
E 1.2 −l5 −tAutoDev
SPASS 3.7 −Auto −PGiven=0 −PProblem=0 −Splits=0 −FullRed=0

−DocProof −VarWeight=3
Vampire 0.6 (r903) −−mode casc

CVC3 2011-01-27
Fx7 r1074 −o:MaxInstRounds=30,MaxQuantIters=2000
Yices 1.0.29
Z3 2.18 AUTO CONFIG=false

Z3+3p 2.18 CASE SPLIT=3 DELAY UNITS=true SORT AND OR=false
QI EAGER THRESHOLD=100 RESTART STRATEGY=0
RESTART FACTOR=1.5 AUTO CONFIG=false

by increasing n. This is far the less the case when increasing m. Hence, scaling n yields a
good coarse-grained criterion, whereas scaling m provides smooth, fine-grained trends.

We use the naming scheme n/m to refer to the multi-list insertion benchmark with
n link sequences and m data fields. Benchmarks without nondeterministic choice are
indicated by a minus superscript (e.g., 3/9−).

4 Experiments

We compare seven different automatic provers as well as all heap models described
in Sect. 2 (our benchmarks and results can be obtained from http://research.
microsoft.com/~moskal/multilist.aspx). We used the ATPs E [27], SPASS [30],
and Vampire [26], and we applied the SMT solvers CVC3 [4], Fx7 [22], Yices [13],
and Z3 [11]. See Table 1 for the exact prover versions and their configurations. The
configurations for the ATPs are the same as used in the most recent version of Is-
abelle/HOL [25], namely Isabelle2011, which was our best guess as to how to configure
them. CVC3 and Yices do not seem to offer options that could be relevant. Fx7 is the
historical entry from SMTCOMP 2007, run with the same options as in the competition.
The results for Z3 should be taken with a grain of salt as its auto-configuration features
fail due to a bug in the current version. This, however, does not affect the Z3+p and
Z3+p3 configurations, which were used in more extensive experiments described later
(starting with Sect. 4.2).

4.1 Comparing ATPs with SMT Solvers

We used benchmarks 1/1− and 2/2−, and generated one proof obligation per assertion.
The check of the multi-list invariant at the end was split into separate assertions, one per
conjunct. This yields 33 proof obligations per model. Table 2 summarizes the results of
this experiment.

http://research.microsoft.com/~moskal/multilist.aspx
http://research.microsoft.com/~moskal/multilist.aspx
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Table 2. Number of assertions solved and, in subscript, the average time of successful proofs in
seconds for multi-list benchmarks 1/1− and 2/2− . The timeout was set to 600 seconds, and the
tests run on a 2.8 GHz Windows 7 PC.

Model CVC3 E Fx7 SPASS Vampire Yices Z3 Z3+p Total
H[dot2(p,f)] 2 .04 4 .09 2 2.04 5112.99 20 2.08 2 .08 3187.68 33 .43 203 9.09

H[p][f] 937.92 5 .15 1644.09 6 35.46 2011.67 27 9.19 2 .03 32 .43 24910.58
H[dot(p,f)] 1227.09 4 .09 2422.64 9 19.47 20 1.64 3152.16 26 20.34 33 .37 29112.33

H[p,f] 11 3.23 9 3.76 2721.59 9 50.67 25 6.31 32 3.80 33 1.58 33 .29 311 5.83
H[f][p] 9 .49 11 .59 33 9.37 10 21.69 22 1.91 33 1.06 33 1.64 33 .12 316 2.45

F[p] 18 .07 1522.03 33 1.02 23 17.83 33 1.21 33 .04 33 .04 33 .04 353 2.43
Total 6111.60 48 7.76 13516.14 62 32.84 140 3.91 15812.80 130 9.23 197 .28 1723 6.68

Among all models, F[p] is the most efficient: Most VCs are proved with this model,
and mostly even in the shortest average time. However, it is unclear how to implement
this model when field names are not known statically, which is the case for virtually
all C programs. Second best in terms of proved VCs is H[f][p] for nearly all systems,
followed by H[p,f] (only for Vampire, the order of these two models is swapped). Note
that both H[f][p] and H[p,f] do not suffer from implementation problems as F[p]. We will
see similar results in more complex benchmarks run by Z3 in Sect. 4.3 below.

The general trend is that SMT solvers are faster and solve more problems than ATPs,
but Vampire is competitive, when presented with fragmented VCs, with the leading
SMT solvers used in their default configurations. As we will see in the next section,
it does not perform so well when one VC per problem is generated. Reasoning with
quantifiers is a field in which ATPs usually excel SMT solvers, but when we manually
supply additional hints on quantified formulas, in the form of patterns, SMT solvers
easily outperform ATPs (see, e.g., Z3+p in the last column of Table 2).

4.2 Guiding SMT Solver with Patterns

A pattern [24] for a quantified formula ∀x.ψ is a set of terms {t0, . . . , tn}, typically
subterms of ψ . The solver can instantiate ψ with the substitution σ by adding a tau-
tology (∀x.ψ)⇒ σ(ψ) to the logical context. It will do so if σ(t0), . . . ,σ(tn) have an
interpretation in the currently considered partial ground model.

Patterns are the standard approach for handling quantifiers in SMT solvers. All
solvers used in our evaluation come with their own inference algorithms to automat-
ically derive patterns. Except for Yices, all considered SMT solvers also provide syntax
to manually add patterns to problems, effectively overriding the solver’s internal pattern
inference and providing direct user control over how solvers perform quantifier instan-
tiations. While patterns are sometimes dismissed as a poor man’s substitute for proper
quantifier reasoning methods, they are often used to effectively program a custom deci-
sion procedure in the SMT solver [10,23]. Moreover, they give SMT solvers significant
edge over ATPs in software verification scenarios.

Table 3 summarizes runs of ATPs as well as different SMT solvers with (indicated
by the suffix +p) or without pattern annotations. As opposed to Table 2, the benchmarks
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Table 3. Number of benchmarks solved by different systems. Systems not mentioned in the table
timeout on all benchmarks. Benchmarks: 1/1− , 1/10− , 2/2−, 2/10− , 3/3−, 1/1, 1/10, 2/2,
2/10, and 3/3.

Model CVC3+p Fx7 Fx7+p Vampire Yices Z3 Z3+p Z3+p3 Total
H[p][f] 2 69.61 0 753.83 0 1 4.92 0 6 3.62 929.52 3426.15

H[dot2(p,f)] 3 34.78 0 569.96 0 0 0 753.66 10 2.04 3524.96
H[dot(p,f)] 6150.85 2153.15 418.89 0 179.26 2294.07 1040.18 10 1.47 4553.06

H[p,f] 3178.28 2 94.47 727.90 0 243.21 6126.86 813.07 10 .60 4839.19
H[f][p] 6 97.21 6180.64 1017.65 0 628.11 6 30.69 612.87 10 .18 6037.95

F[p] 7 11.25 10 29.01 10 9.25 37.65 10 .27 10 13.27 10 .24 10 .10 80 7.80

Total 27 86.87 20 93.46 4329.45 37.65 2017.10 24 69.42 4720.92 595.25 30229.58

Table 4. The first row shows that Z3 can solve 153 benchmarks both with and without patterns in
average time per benchmark of 18.12 seconds and 0.70 seconds, respectively. There are 91 bench-
marks that Z3 timeouts on (labelled T/O), and which Z3+p solves in an average time of 10.25
seconds, and the single benchmark that Z3+p timeouts on is solved by Z3 in 92.67 seconds. If
we add up the three columns for each prover, Z3+p is 35.1 times faster (another approach would
be to ignore timeouts and divide 18.12 by 0.70; this yields results in the same ballpark).

Prover Common Unique T/O Prover Common Unique T/O Ratio
Z3 15318.12 192.67 91600.00 Z3+p 153 .70 9110.25 1600.00 35.1
CVC3 6111.60 0 164600.00 CVC3+p 61 .54 16426.49 0 22.6
Fx7 15526.12 0 86600.00 Fx7+p 1551.81 8615.35 0 34.8
Z3+p 244 4.26 0 13600.00 Z3+p3 244 .28 1319.45 0 27.6

are not split by assertion, but each is given as one VC to the solvers. We see that, when
provided with explicit patterns, Z3 is clearly the most successful and fastest solver.

Boogie runs Z3 with specific options (see Table 1), indicated by the suffix +p3. Sep-
arate experiments showed that among these options, which configure Z3’s SAT solver
and quantifier heuristics, CASE SPLIT=3 is most important. This causes Z3 not to use
the common SAT case-split selection strategy (based on variable activity), but to try to
satisfy the formula from left to right. Our results show that this configuration outper-
forms all provers, even the standard configuration of Z3.

To compare the relative performance impact of patterns and case-split selection we
compared the cumulative run times of solvers when solving the proof obligations of
Table 2 and those of Table 3 in all six heap encodings ((33 + 10)× 6 encodings =
258 benchmarks). When only one solver of the pair could solve the benchmark, we
took the time of the other to be 600 seconds (the timeout value). Table 4 summarizes
the findings. The pattern speedups for Z3, CVC3 and Fx7 are roughly 1.5 order of
magnitude, and would be larger had we decided to penalize timeouts more. Moreover,
Z3+p3 is 27.8 times faster than Z3+p. Thus, a custom case-split selection strategy gives
another 1.5 order of magnitude over just using patterns.
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Fig. 2. Multi-list benchmark using different heap encodings and different programming lan-
guages. The x axis shows the complexity of the benchmark in order 1/1, 1/2, ..., 1/20, 2/1,
..., 2/20, ..., 4/20. The y axis shows the median runtime (in seconds) of Z3 run with 6 different
random seeds.

4.3 Scaling Up

We subsequently compared different heap encodings in different languages using the
fastest solver from the previous section: Z3+p3, i.e., Z3 using patterns and the options
used by Boogie. Plots 1, 2, and 3 in Fig. 2 show run times of our benchmarks in Boogie,
VCC, and Dafny. We were unable to supply some of the pattern annotations to Dafny,
which explains its poor performance relative to VCC. Still, it shows similar trends. We
omitted all timed-out data points. We see similar results in terms of order, in particular
the H[f][p] representation is always the fastest, and collapsing p and f into a single entity,
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especially using VCC2’s dot2() function, performs very badly. This similarity gives us
some confidence that experiments with other models would also carry over from Boogie
to different verification systems.

Plot 4 shows the results of experiments with representations which are not imple-
mented in VCC3, namely the F[p] and H[f][p] with the built-in array theory [12]. The
F[p] representation brings about an order of magnitude speedup over H[f][p]. It is, how-
ever, known to be tricky to handle soundly and modularly: Often the accessed field
is not known statically. Additionally, functions generally need to be allowed to write
freshly allocated objects, which means they potentially write all fields in the heap, and
thus modeling function calls reduces the benefits of F[p]. One can use different splits of
the heap into field components in different functions, and maintain some consistency
invariants between them, which is something we want to explore in the future.

The array decision procedure shows some speedup, but except for the biggest bench-
mark it is small (within 20%). It does so by avoiding certain instantiations of read-
over-write axioms, which can lead to incompleteness when patterns are used to guide
instantiations of user-provided axioms. Thus, in the context of VCC, using it is unlikely
to be a good idea.

4.4 Interpretation of the Results

The two linear models, H[dot2(p,f)] and H[dot(p,f)], perform poorly because the prover
needs to instantiate several axioms to prove disjointness of heap accesses. This is par-
ticularly painful when there are also a lot of other axioms to instantiate (i.e., in VCC
or Dafny), and the prover will often instantiate those other axioms first. Especially the
dot2() axioms are complicated, much more than the dot() axioms.

As for H[f][p] compared with H[p,f] or H[p][f], consider a write to x.a and subsequent
reads of y.b and z.c. To find that writing x.a did not clobber the value of y.b in H[f][p], the
prover can establish a �= b, which is usually immediate, and moreover if b = c then the
value of z.c will be known without further quantifier instantiations. Similar reasoning
holds for H[p][f] and x �= y, but the pointer comparison usually involves complex rea-
soning (e.g., x was valid at some point, whereas y was not). Finally, in H[p,f] the prover
can prove disjointness of either fields or pointers, but there is no reuse of instantiations
for different heap accesses.

Difficult benchmarks typically have many invariants quantifying over pointers. For
example, proving each of the quantified invariants in our artificial benchmark introduces
a new Skolem constant nsk and in turn nsk.previ, nsk.nexti, etc. Thus, difficult benchmarks
are likely to use many more pointers than fields, making the reuse in H[f][p] much more
significant.

The H[p][f] behaves surprisingly poorly. Initially we thought it was a Z3-specific
problem (it seems to be generating very large conflict clauses in this case, which talk
about distinctness of pointers), but it obviously also occurs in other provers.

4.5 Checking Real-World Verification Examples

Table 5 lists results of applying VCC with different heap encodings on verification of
common data structures stemming from the VACID-0 benchmark suite [20]: binomial
heaps, doubly-linked lists, and red-black trees. VCC3 (using the H[f][p] model) shows,
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Table 5. Detailed comparison of different heap models in VCC3 against each other and VCC2.
Times are median for 6 runs with different random seeds, given in seconds.

Testcase VCC2 VCC3 Ratio
Heap.c: Heap adm 0.14 ±0.01 0.10 ±0.00 1.3×
Heap.c: extractMin 15.55 ±4.40 7.95 ±1.63 2.0×
Heap.c: heapSort 7.11 ±3.84 0.27 ±0.01 26.4×
Heap.c: heapSortTestHarness 1.03 ±0.11 0.14 ±0.00 7.6×
Heap.c: init 0.14 ±0.00 0.10 ±0.00 1.4×
List.c: InitializeListHead 0.20 ±0.01 0.14 ±0.00 1.5×
List.c: InsertHeadList 8.12 ±0.64 1.02 ±0.05 8.0×
List.c: InsertTailList 8.45 ±0.69 0.95 ±0.07 8.9×
List.c: IsListEmpty 0.10 ±0.00 0.07 ±0.00 1.4×
List.c: RemoveEntryList 4.64 ±0.23 0.53 ±0.03 8.8×
List.c: RemoveHeadList 4.75 ±0.12 0.49 ±0.03 9.6×
List.c: RemoveTailList 4.12 ±0.12 0.52 ±0.07 8.0×
List.c: LIST MANAGER adm 0.22 ±0.01 0.15 ±0.01 1.5×
RedBlackTrees.c: Tree adm 0.59 ±0.01 0.40 ±0.01 1.5×
RedBlackTrees.c: left rotate 108.40 ±22.74 12.90 ±4.43 8.4×
RedBlackTrees.c: right rotate 97.06 ±14.07 13.44 ±0.77 7.2×
RedBlackTrees.c: tree find 0.14 ±0.00 0.13 ±0.01 1.0×
RedBlackTrees.c: tree init 0.13 ±0.00 0.11 ±0.00 1.2×
RedBlackTrees.c: tree insert 94.17 ±9.53 3.14 ±0.24 30.0×
RedBlackTrees.c: tree lookup 0.12 ±0.00 0.08 ±0.00 1.5×

in comparison with the current model of VCC (VCC2), about an order of magnitude of
speedup on non-trivial functions.

We also conducted comparisons of heap models for the VACID-0 benchmarks. Due
to overheads of the VCC axiomatizations, the differences between the heap encodings
are not as dramatic as with our artificial multi-list benchmarks. Nevertheless, we found
similar trends as in the other experiments, with H[f][p] being the best model. Thus, we
consider the multi-list benchmark to be representative for real-world benchmarks.

5 Related Work

Many existing program verifiers support the selection of automatic back-end provers [2,
14, 17, 16], but so far, none has reported a thorough comparison between the automatic
provers. Notably Jahob [31] uses both ATPs (E and SPASS) and SMT solvers (CVC3
and Z3) as background provers, among others.

None of the presented heap models is novel, and in fact, most of them are standard
in program verifiers. For example, the state-based linear heap is used by VCC [9], the
synchronous heap is underlying Dafny’s memory model [19], and field heaps, due to [6,
5], are used by Jahob [31].

Challenges for program verifiers have been posed before [20], but we know of only
one further proposal [1] of scalable benchmarks to evaluate the behaviour of automatic
provers.
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6 Conclusion

We have proposed a scalable and challenging benchmark taken from the domain of data
structures, and tested it on a number of heap encodings and verification systems (Boo-
gie, VCC and Dafny). The experiments gave similar results in terms of tendency (i.e.,
indicating a clear order of encodings with respect to performance) for the three systems.
Additionally, testing realistic C benchmarks with a subset of the heap encodings yielded
similar results. We thus believe that the multi-list benchmark is a good representative
of benchmarks stemming from modular software verification, while being simple (no
arithmetic required and no soundness problems) and scalable.

We have confirmed the folklore that splitting the heap by fields performs best, but
have also put concrete numbers on that claim. We have also tested the performance
impact of using a dedicated decision procedure for the array theory.

We have found that the performance of ATPs is comparable with that of SMT sys-
tems when software verification problems are provided without any additional hints and
in small fragments. This may be particularly useful for parts of VCs without explicitly
engineered patterns, such as those coming from the user of the verification tool. Pro-
cessing the bigger chunks of the VC at once will likely be needed, if ATPs are to meet
the performance requirements of today’s verification demands.

Pattern annotations give SMT solvers a huge advantage over ATPs (at least 1.5 orders
of magnitude). It would be very desirable for the ATPs to take advantage of these (e.g.,
via hints [29] as implemented in Otter [21]), maybe to guide term ordering heuristics.
Similarly, a custom case split strategy further improves Z3’s performance by 1.5 orders
of magnitude.
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Abstract. The OWL 2 QL profile has been designed to facilitate query
answering via query rewriting. This paper presents an optimized query
rewriting algorithm which takes advantage of the special characteristics
of the query rewriting problem via first-order resolution in OWL 2 QL
and computes efficiently the rewriting set of a user query, by avoiding
blind and unnecessary inferences, as well as by reducing the need for
extended subsumption checks. The evaluation shows that in several cases
the algorithm achieves a significant improvement and better practical
scalability if compared to other similar approaches.

Keywords: query answering, query rewriting, OWL 2 QL, DL-Lite.

1 Introduction

The use of ontologies in data access allows for semantic query answering, i.e.
for answering user queries expressed in terms of terminologies linked to some
data [4,7]. Queries typically have the form of conjunctive queries (CQ) and
terminologies the form of ontologies. Unfortunately, the problem of answering
CQs in terms of ontologies axiomatized in expressive Description Logics suffers
from high worst-case complexity. The obvious way to overcome this obstacle and
develop practical systems is to reduce the expressivity of the ontology language;
otherwise either soundness or completeness have to be sacrificed.

Late research in description logics has introduced DL-LiteR, a DL ontology
representation language that underpins the OWL 2 QL profile [1]. In DL-LiteR,
the CQ answering problem is tractable from the data point of view. Sound
and complete CQ answering systems for DL-LiteR can follow a strategy that
splits the procedure in two steps [7,1,8]: the query rewriting, in which the CQ
is expanded into a union of CQs (UCQ), and the execution of the UCQ over
the database. Apart from having the advantage of using the mature relational
database technology, rewriting can be based on first order resolution-based rea-
soning algorithms [6], which are widely studied in the literature [2]. The main
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restriction is that for large terminologies and/or large queries the exponential
complexity in the query size may result in a very large number of rewritings.

Several CQ answering algorithms for DL-LiteR have been proposed in the lit-
erature. In [3,9], the rewriting strategy is based on reformulating the conjuncts of
the query according to the taxonomic information of the ontology. Although the
strategy is effective, some of the ontology axioms must be rewritten in terms of
auxiliary roles, which may increase the ontology size. This restriction is relaxed
in [6], which proposes a resolution-based rewriting strategy, called RQR. How-
ever, the non goal-oriented saturation strategy may get tangled in long inference
paths leading either to unnecessary or non function free rewritings. Such rewrit-
ings are discarded in the end, but their participation in the inference process
and the increased number of required subsumption checks degrades significantly
performance. Another strategy is proposed in [8] which, instead of computing
a set of CQs, builds a non-recursive datalog program, deferring thus the main
source of complexity to the database system. A different approach is used in [5],
which partially materializes the data in order to facilitate the rewriting process.

In this paper we improve on the pure query rewriting approach and introduce a
new query rewriting algorithm called Rapid, which is optimized for queries posed
over DL-LiteR ontologies. Its efficiency is owed to the goal-oriented organization
of the resolution process. Instead of applying exhaustively the resolution rule, it
exploits the query structure and performs a restricted sequence of inferences that
lead directly to rewriting sets with, hopefully, no unnecessary rewritings. In this
way, we avoid a large number of blind inference paths which can be the cause
of scalability issues, as well as the production of many unnecessary rewritings
(that are subsumed by others) and the need to remove them by performing
extended query subsumption checks, i.e. very costly operations. For simplicity,
we restrict our study to user queries in which all body variables are reachable
from a head variable through a role sequence. Although this assumption excludes
some queries, e.g. ‘boolean queries’, it has little impact in practice, since such
queries are not common in a typical semantic query answering system.

The effectiveness of the algorithm is demonstrated in its practical evaluation,
which shows clearly an optimized performance, especially in the most problem-
atic cases of large queries or large terminologies.

2 Preliminaries

A DL-LiteR ontology is a tuple 〈T ,A〉, where T is the terminology and A the
assertional knowledge. Formally, T is a set of axioms of the form C1 � C2 or
R1 � R2, where C1, C2 are concept descriptions and R1, R2 role descriptions,
employing atomic concepts, atomic roles and individuals. A is a finite set of
assertions of the form A(a) or R(a, b), where a, b are individuals, A an atomic
concept and R an atomic role. A DL-LiteR concept can be either atomic or
∃R.�. If it appears in the RHS, we assume that it may also be of the form ∃R.A.
Negations of concepts can be used only in the RHS of subsumption axioms. A
DL-LiteR role is either an atomic role R or its inverse R−.
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A CQ Q has the form A ← {Bi}n
i=1 (the sequence is a conjunction), where

atom A is the head and atoms Bi the body of Q. We assume that Bis are distinct
and denote the set of Bis by body Q, and A by headQ. A CQ Q is posed over an
ontology 〈T ,A〉 if the predicates of all atoms B ∈ body Q are entities of T and
have arities 1 or 2, if the entity is a concept or a role, respectively. Hence, B is a
concept atom B(t) or a role atom B(t, s). termsB (vars B, consB) are the sets of
terms (variables, constants) that appear in B. For a set of atoms B we have that
termsB =

⋃
B∈B termsB, for a CQ Q that termsQ = terms ({headQ}∪ body Q),

and similarly for varsQ and consQ. An atom or CQ is function free if it contains
no functional terms. User queries are always function free.

A term t ∈ termsQ, where Q is a function free CQ is called distinguished if
it appears in headQ, and non distinguished otherwise; bound if it is either a
constant, or a distinguished variable, or a variable that appears at least twice
in body Q, and unbound otherwise; and disconnected if there is a disconnected
subgraph (V ′, E′) of the graph (termsQ, {{t, s} | R(t, s) or R(s, t) ∈ body Q})
such that t ∈ V ′ and set V ′ contains no distinguished term. We denote the set of
bound terms, and distinguished, bound and unbound variables of Q by termsB Q,
varsD Q, varsB Q and varsUB Q, respectively. As noted in the introduction, we will
assume that the user query Q is connected, i.e. it contains no disconnected terms.
For simplicity and wlog we can also assume that Q contains no distinguished
constants and that all its distinguished variables appear also in body Q.

A tuple of constants a is a certain answer of a CQ Q posed over the ontology
O = 〈T ,A〉 iff Ξ(O) ∪ {Q} |= C(a), where C is the predicate of headQ and
Ξ(O) the standard clausification of O into first order clauses. Each axiom of O
adds either one or two clauses as shown in Table 1, and each axiom that contains
an existential quantifier introduces a distinct function. The set that contains all
answers of Q over O is denoted by cert (Q,O). It has been proved [7,1] that for
any CQ Q and DL-LiteR ontology O, there is a set Q of function free CQs (called
query rewritings) such that cert(Q, 〈T ,A〉) =

⋃
Q′∈Q cert(Q′, 〈∅,A〉). The set of

these rewritings may be computed by saturating Q and Ξ(O) using first order
resolution. We denote derivability under the first order resolution rule by �R.

Table 1. Translation of DL-LiteR axioms into clauses of Ξ(O) (reproduced from [6])

Axiom Clause Axiom Clause

A � B B(x)← A(x)

P � S S(x, y)← P (x, y) P � S− S(x, y)← P (y, x)

P− � S− S(x, y)← P (x, y) P− � S S(x, y)← P (y, x)

∃P � A A(x)← P (x, y) ∃P− � A A(x)← P (y, x)

A � ∃P P (x, fA
P (x))← A(x) A � ∃P− P (fA

P−(x), x)← A(x)

A � ∃P.B
P (x, fA

P.B(x))← A(x)
A � ∃P−.B

P (fA
P−.B(x), x)← A(x)

B(fA
P.B(x))← A(x) B(fA

P−.B(x))← A(x)

Formally, a function free CQ Q′ is a rewriting of a CQ Q posed over ontology
O, iff Q and Q′ have the same head predicate and Ξ(O)∪{Q} |= Q′. Nevertheless,
not all possible rewritings are needed for the complete computation of cert (Q,O),
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since some of them may be equivalent or subsumed by others. We say that a CQ
Q subsumes a CQ Q′ (or Q′ is subsumed by Q) and write Q � Q′, iff there is
a substitution θ such that head (Qθ) = headQ′ and body (Qθ) ⊆ body Q′. If Q
and Q′ are mutually subsumed, they are equivalent. If Q is a set of CQs and for
some CQ Q there is a Q′ ∈ Q equivalent to Q, we write Q ∈̂ Q. We define also
the operation Q ∪̂ {Q} = Q∪{Q} if Q /̂∈ Q, and Q ∪̂ {Q} = Q otherwise. A set
rewr (Q,O) is a rewriting set of the CQ Q over O iff for each rewriting Q′ of Q
over O, either Q′ ∈̂ rewr (Q,O) or there is a Q′′ ∈ rewr (Q,O) such that Q′′�Q′.
Given a CQ Q, let Q′ be the CQ headQ ← {B}B∈B for some B ⊆ body Q. If
B is a minimal subset of body Q such that Q � Q′, Q′ is called condensed or a
condensation of Q, and is denoted by condQ. Since a CQ is equivalent to its
condensation, we can find cert (Q,O) by computing a rewriting set of Q that
contains only condensed rewritings and that contains no two rewritings Q,Q′

such that Q � Q′. Hence, we say that Q′ is a core rewriting of a CQ Q over O,
iff it is a rewriting of Q over O, it is condensed, and there is no (non equivalent)
rewriting Q′′ of Q over O such that Q′′ �Q′. The core rewriting set rewrC (Q,O)
of Q over O is the set of all the core rewritings of Q over O.

3 The Rapid Algorithm

Rapid computes rewrC (Q,O) for a user query Q in an efficient way. Its structure
is similar to that of RQR, but it introduces several optimizations and organizes
some tasks differently in order to reduce the inferences that lead to rewritings
that will eventually be discarded because they are not function free or subsumed
by others. The strategy of Rapid is based on the distinguishing property of the
bound variables, namely that whenever a CQ Q is used as the main premise in
a resolution rule in which an atom A ∈ body Q unifies with the head of the side
premise and the mgu θ contains a binding v/t for some variable v ∈ varsB Q, the
application of θ affects several atoms of Q apart from A. This is not the case if
v ∈ varsUB Q, since unbound variables appear only once in Q. The main premise
in the resolution rules in Rapid is always the user query or a rewriting of it.

Rapid consists of the following steps: (1) The clausification step, in which O
is transformed into Ξ(O). (2) The shrinking step, in which the clauses of Ξ(O)
are selectively used as side premises in resolution rule applications in order to
compute rewritings which differ from the user query Q in that they do not con-
tain one or more variables in varsB Q, because the application of the resolution
rule led to their unification with a functional term which subsequently was elim-
inated. (3) The unfolding step, which uses the results of the previous step to
compute the remaining rewritings of Q, by applying the resolution rule without
that the bound variables of the main premise are affected. In principle, only un-
bound variables are eliminated or introduced at this step. However, some bound
variables of the main premise may also be eliminated, not through the introduc-
tion and subsequent elimination of functional terms, but while condensing the
conclusion. Obviously, the same can also happen at the shrinking step. (4) The
subsumption check step, in which non core rewritings are removed. This step is
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in principle the same as in RQR, but is more efficient in two ways: First, the
previous steps produce much fewer rewritings that are subsumed by others, and
second not every pair of rewritings has to be checked for subsumption, because,
as we will see, some sets of rewritings that are produced at the unfolding step
are guaranteed not to contain rewritings that are subsumed by others.

Notwithstanding this general description, Rapid does not implement the shrink-
ing and unfolding steps by applying directly the resolution rule. Instead, a shrink-
ing and unfolding inference rule are defined, which combine a series of several
successful resolution rule application steps into one. In this way, the resolution
rule is used only if it eventually leads to a function free and hopefully also a core
rewriting, and a large number of unnecessary inferences is avoided.

3.1 Atom Unfolding Sets

The closure of Ξ(O) under the FOL resolution rule contains clauses of the form

A(x) ← B(x), A(x) ← B(x, y), A(x, y) ← B(x, y),
A(x, f(x)) ← B(x), A(x, f(x)) ← B(x, y),
A(g(x), f(g(x))) ← B(x), A(g(x), f(g(x))) ← B(x, y),
A(g(h(x)), f(g(h(x)))) ← B(x), . . . A(g(h(x)), f(g(h(x)))) ← B(x, y), . . .

as well as the respective clauses with the role atom arguments inverted. We note
that in the clauses of the first two rows, the non functional terms of the head
appear also in the body. Based on this remark, and given that in the unfolding
step we want that the bound variables do not unify with functional terms but
be preserved in the conclusion, we define the unfolding of an atom as follows:

Definition 1. Let A be a function free atom and T a non empty subset of
termsA. Atom Bθ′ is an unfolding of A w.r.t. T iff Ξ(O) �R Aθ ← B for
some substitution θ on a subset of varsA \ T to functional terms, where θ′ is a
renaming of varsB \ T such that for v ∈ varsB \ T we have that vθ′ /∈ varsA.

Essentially, Bθ′ is an unfolding of A w.r.t. T if it is the body of a clause inferrable
from Ξ(O) that has in its head an atom A′ (of the same predicate as A),
and both B and A′ contain unaltered all terms in T (which should contain
the bound terms in A). Since the variable renaming θ′ contains no essential
information, we define the unfolding set of atom A for T w.r.t. Ξ(O) as the
set D(A; T ) = {B | Ξ(O) ∪ {A} �J (T ) B}, where J (T ) are the inference rules
shown in Fig. 1, in the form A C

B . Given T , A (the main premise) and a clause
C ∈ Ξ(O) (the side premise), by applying the respective rule we get atom B
(the conclusion). We also define the set D̂(A; T ) = D(A; T ) ∪ {A}. By using
Table 2, which lists all possible cases, it is easy to prove that given A and T �= ∅
we have that Ξ(O) �R Aθ ← B iff Bθ′ ∈ D(A; T ), for θ, θ′ as defined in Def. 1.

3.2 Atom Function Sets

As we have already seen, the closure of Ξ(O) contains clauses of the form
A(x, f(x)) ← B(x), A(f(x), x) ← B(x) and A(f(x)) ← B(x), as well as of
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T rule T rule

{t} A(t) A(x)← B(x)

B(t)

{t} A(t) A(x)← P (x, y)

P (t, z)
{t} A(t) A(x)← P (y, x)

P (z, t)

{t} P (t, v) P (x, f(x))← B(x)

B(t)
{t} P (v, t) P (f(x), x)← B(x)

B(t)

{t}, {s} or
P (t, s) P (x, y)← R(x, y)

R(t, s)

{t}, {s} or
P (t, s) P (x, y)← R(y, x)

R(s, t)
{t, s} {t, s}

Fig. 1. The J (T ) inference rules

Table 2. All possible cases for A, B, T , θ and θ′ in Def. 1

A T Bθ′ Aθ ← B θ θ′

A(t) {t} B(t) A(t)← B(t) ∅ ∅
A(t) {t} P (t, y) / P (y, t) A(t)← P (t, z) / ← P (z, t) ∅ {z/y}

P (t, v) {t} B(t) P (t, f(t))← B(t) {v/f(t)} ∅
P (t, v) {t} R(t, y) / R(y, t) P (t, f(t))← R(t, z) / ← R(z, t) {v/f(t)} {z/y}
P (t, t′) {t} R(t, t′) / R(t′, t) P (t, t′)← R(t, t′) / ← R(t′, t) ∅ ∅
P (v, t) {t} B(t) P (f(t), t)← B(t) {v/f(t)} ∅
P (v, t) {t} R(t, y) / R(y, t) P (f(t), t)← R(t, z) / ← R(z, t) {v/f(t)} {z/y}
P (t′, t) {t} R(t′, t) / R(t, t′) P (t′, t)← R(t′, t) / ← R(t, t′) ∅ ∅
P (t, s) {t, s} R(t, s) / R(s, t) P (t, s)← R(t, s) / ← R(s, t) ∅ ∅

the form A(g(x), f(g(x))) ← B(x) and A(g(x), f(g(x))) ← B(x, y). Unlike in
the unfolding case, now we are interested in the behavior of the functional term
f(x), which appears in the head but not in the body, because if f(x) appears
in the body of some rewriting, it may be possible to eliminate it by using such
clauses. Let funcsΞ(O) be the set of all functions in Ξ(O). According to Table 1,
each DL-LiteR axiom that has an existential quantifier in the RHS introduces a
distinct function f . Hence, each function f ∈ funcsΞ(O) is uniquely associated
with the concept A that appears in the LHS of the axiom that introduces f . Let
cn f denote the concept associated with f . We define the set of all functions that
may appear in the place of a bound variable v of an atom A when resolving any
of its unfoldings with a non function free clause in Ξ(O) as follows:

Definition 2. Let A be a function free atom, T a non empty subset of termsA
and v a variable in varsA∩ T . The function set Fv(A; T ) of all functions asso-
ciated with A in variable v w.r.t. T is defined as follows:

Fv(A; T ) =
{f | B(v) ∈ D̂(A; T ) and B(f(x)) ← (cn f)(x) ∈ Ξ(O)} ∪
{f | B(v, t) ∈ D̂(A; T ) and B(f(x), x) ← (cn f)(x) ∈ Ξ(O)} ∪
{f | B(t, v) ∈ D̂(A; T ) and B(x, f(x)) ← (cn f)(x) ∈ Ξ(O)}.

It follows that, given a T �= ∅ which represents the set of bound terms in A,
(a) if A ≡ A(v, t) then f ∈ Fv(A; T ) iff Ξ(O) �R A(f(t), s) ← (cn f)(t), (b)
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if A ≡ A(t, v) then f ∈ Fv(A; T ) iff Ξ(O) �R A(s, f(t)) ← (cn f)(t), where in
both cases s = t if t ∈ T otherwise either s = t, or s = g(f(t)) for some function
g, and (c) if A ≡ A(v) then f ∈ Fv(A; T ) iff Ξ(O) �R A(f(t)) ← (cn f)(t).

Example 1. Define the ontology O = {B � A, ∃R � A, S � R−, C � ∃R.A,
∃T− � C, D � ∃S}, hence Ξ(O) = {A(x) ← B(x), A(x) ← R(x, y), R(x, y) ←
S(y, x), R(x, f1(x)) ← C(x), A(f1(x)) ← C(x), C(x) ← T (y, x), S(x, f2(x)) ←
D(x)}. Below we show the unfolding and function sets for the atoms A(x), C(x),
R(x, y) and S(x, y) and some sets T . E.g. for T = {y}, main premise R(x, y)
and side premise R(x, y) ← S(y, x), from Fig. 1 we get S(y, x). Then (given that
x /∈ T ), for main premise S(y, x) and side premise S(x, f2(x)) ← D(x) we get
D(y). Because R(x, f1(x)) ← C(x) ∈ Ξ(O), we get that Fy(R(x, y); {y}) = {f1}.

A; T A(x); {x} C(x); {x} R(x, y); {x} R(x, y); {y} R(x, y); {x, y} S(x, y); {x}

D(A; T )

B(x) T (z3, x) S(y, x) S(y, x) S(y, x) D(x)
R(x, z1) C(x) D(y)
S(z1, x) T (z4, x)
C(x)

T (z2, x)

Fx(A; T ) {f1, f2} ∅ {f2} ∅ {f2} ∅
Fy(A; T ) − − ∅ {f1} {f1} −

3.3 Query Shrinking

The shrinking step computes rewritings that can be inferred from the user query
Q by eliminating one or more of its bound variables through their unification
with a functional term. Given that the rewritings in rewr (Q,O) are function free,
if a function is introduced in some rewriting during the standard resolution-based
inference process, subsequently it must be eliminated. However, we know that
each function appears in at most two clauses of Ξ(O), both of which have as body
the atom (cn f)(x). Now, f(x) can be introduced in a CQ only if some inference
led to the substitution of a bound variable v by f(x). Hence, in order for f(x)
to be eliminated, all atoms in which f(x) has been introduced must contain f
in their function sets, for the appropriate argument. Moreover, if Q contains
the terms say R(x, v) and R(v, y) and v is eliminated this way by unifying with
f(x), given the form of Ξ(O), variables x and y must be unified. If in place of
x, y there are constants, these should coincide in order for the inference to be
possible. This is the intuition behind the following shrinking inference rule:

Definition 3. Let Q be a CQ and v a non distinguished bound variable of Q.
Write Q in the form A ← B1, . . . ,Bk,C1, . . . ,Cn, where Bi are the atoms in
body Q that contain v, and Ci the remaining atoms. Let also C =

⋃k
i=1 consBi

and X =
⋃k

i=1(varsB Q ∩ varsBi) \ v. The shrinking rule S on Q is as follows:

A← B1, . . . ,Bk,C1, . . . ,Cn f ∈
⋂k

i=1 Fv(Bi; termsB Q ∩ termsBi) ∧ |C| ≤ 1
cond (Aθ ← (cn f)(t),C1θ, . . . ,Cnθ)
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where θ =
⋃

x∈X{x/t}, and t = a if C = {a} otherwise t is a variable /∈ varsQ.

The shrinking rule changes the structure of Q, in the sense that it eliminates a
bound variable, and hence the atoms that contained it. Moreover, all variables
in X are also merged into one. It is easy to prove that S is a sound inference
rule, i.e. if Ξ(O) ∪ {Q} �S Q′ then Ξ(O) ∪ {Q} |= Q′, for any CQ Q′.

3.4 Query Unfolding

Let S∗(Q) be the closure of condQ under application of the inference rule S,
for any CQ Q. By construction, S∗(Q) contains a ‘representative’ for all query
structures that can result from Q by eliminating one or more variables in varsB Q
by using functional terms. This representative can be considered as a ‘top’ query,
in the sense that in can produce several more CQs with no further structural
changes due to bindings of bound variables with functional terms. Hence, the
remaining rewritings can be obtained by computing, for each Q′ ∈ S∗(Q), all
CQs that can be inferred from Q′ by replacing one or more of its atoms by one
of their unfoldings. In this way we can eventually compute all rewritings of Q.
This can be achieved by applying the following unfolding inference rule:

Definition 4. Let Q be the CQ A ← B1, . . . ,Bn. The unfolding rule U on Q
is defined as follows:

A← B1, . . . ,Bn C ∈ D(Bi; termsB Q ∩ termsBi)
cond (A← B1, . . . ,Bi−1,Cγ,Bi+1, . . . ,Bn)

where γ is a renaming of varsC \ varsB Q such that xγ /∈
⋃n

j=1,j �=i varsBj for all
x ∈ varsC \ varsB Q.

It follows immediately that U is a sound inference rule, i.e. if Ξ(O)∪{Q} �U Q′

then Ξ(O)∪ {Q} |= Q′. Rule U replaces one atom of Q by one of its unfoldings,
and can be applied iteratively on the conclusion in order to produce more rewrit-
ings. In order to facilitate the optimization of such a sequential application of
the U rule on some rewriting, we define the combined unfolding rule W which
can replace in one step more than one atoms of Q by one of their unfoldings. In
this way, any unfolding of Q can be obtained in one step.

Definition 5. An unfolding of CQ Q : A ← B1, . . . ,Bn, is the conclusion of
any application of the following combined unfolding rule W:

A← B1, . . . ,Bn Ci ∈ D̂(Bi; termsB Q ∩ termsBi) for i = 1 . . . n
cond (A← C1γ1, . . . ,Cnγn)

where γi is a renaming of varsCi \ termsB Q such that xγi /∈
⋃n

j=1,j �=i vars (Cjγj)
for all x ∈ varsCi \ termsB Q.

Let W∗(Q) be the closure of condQ under application of the inference rule W ,
for any CQ Q. The strategy by which Rapid computes the core rewriting set of
a user query Q is justified by the following theorem:
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Theorem 1. Let Q be a connected CQ over a DL-LiteR ontology O. We have
that if Q′ ∈

⋃
Q′′∈S∗(Q)W∗(Q′′) then Q′ ∈̂ rewr (Q,O) (soundness), and that if

Q′ ∈ rewrC (Q,O) then Q′ ∈̂
⋃

Q′′∈S∗(Q)W∗(Q′′) (completeness).

Proof (Sketch). Soundness follows from the soundness of the S and W rules. For
completeness, if Q′ is the final conclusion of a sequence of resolutions with main
premises Q, Q1, . . ., Ql−1, we must show that there is a sequence of shrinking rule
applications with main premises Q, Qs

1, . . ., Qs
ls−1 and final conclusion Qs

ls
, and

a sequence of unfolding rule applications with main premises Qs
ls

, Qu
1 , . . ., Qu

lu−1

and final conclusion Q′. Q1, . . . , Ql−1 may contain functional terms of the form
f1(· · · fk(t)) for k > 0 (k is called depth). Since Q and Q′ are both function
free, any functional terms eventually are eliminated. The result can be proved
by induction on the maximum depth d of the intermediate CQs Q1, . . . , Ql−2,
by showing that the sequence of resolutions that led to the introduction of a
functional term of depth d can be rearranged so that only functional terms of
depth 1 are introduced. Because the shrinking rule considers by definition all
functional terms that may be introduced at any step of the resolution process, it
can be applied first, thus giving rise to the shrinking rule application sequence,
on whose final conclusion the unfolding rule is then applied, in order to get Q′.

Note that if we wanted to lift the restriction to connected queries, we should take
into account atoms containing only unbound variables. Such a variable may unify
with a functional term and give its place to a new unbound variable. Hence, we
should allow empty sets T in Def. 1 and include the appropriate rules in J (T ),
e.g. rule A(t) A(f(x))←B(x)

B(z) for T = ∅, which ‘replaces’ variable t by z.

4 Implementation

The implementation of Rapid includes additional optimizations at the unfolding
step that reduce the number of non core rewritings that are produced and hence
the need for extended subsumption checks. Rapid (Algorithm 3) uses procedures
Shrink and Unfold (Algorithms 1 and 2). Shrink computes the closure S∗(Q)
by iteratively applying the shrinking rule. Each rewriting produced by Shrink
is processed by Unfold, which computes two disjoint sets of rewritings. We will
now discuss their contents and explain the optimizations that have been used.

If we apply exhaustively theW rule on a CQ Q in order to getW∗(Q), we may
end up with many rewritings subsumed by others. Since this is undesired, we have
two options: to compute all rewritings and then remove the subsumed ones, or
else try to apply W in a cleverer way, so as to get only non subsumed rewritings,
or at least as few as possible. Because the subsumption check operation is very
costly, we choose the second option, i.e. we have to solve the following problem:
Given a CQ Q of the form A ← B1, . . . ,Bn, find the CQs that are conclusions
of all possible applications of W on Q and are not subsumed by others. For
convenience, define Bi = D̂(Bi; termsB Q∩termsBi), so that we have the sequence
of the possibly non disjoint unfolding sets B1, . . . ,Bn. For simplicity, we can drop
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Algorithm 1 The query shrinking procedure
procedure Shrink(CQ Q, ontology O)
Qr ← {Q}
for all unconsidered Q′ ∈ Qr do

mark Q′ as considered
for all v ∈ varsB Q′ \ varsD Q′ do
F ← funcsΞ(O); X ← ∅; C ← ∅; A← ∅
for all B ∈ body Q′ do

if v ∈ varsB then
F ← F ∩ Fv(B; termsB Q′ ∩ termsB)
X ← X ∪ (varsB Q′ ∩ varsB); C ← C ∪ consB

else
A← A ∪ {B}

end if
end for
if |C| > 1 then

continue
else if |C| = {a} then

t← a
else

t← a new variable not in vars Q′

end if
θ ←

⋃
x∈X{x/t}

Qr ← Qr

⋃̂
f∈F{cond (headQ′θ ← (cf f)(t), {Bθ }B∈A)}

end for
end for
return Qr

end procedure

the substitutions γi that appear in the definition of W by assuming that if a
member of a set Bj has been obtained by an inference that introduced a new
variable, this variable does not appear elsewhere in

⋃n
i=1 Bi. If the sets Bi are

not disjoint, simply taking all possible combinations of their elements so as to
form the unfoldings of Q, will certainly result in rewritings subsumed by others.

For any B ∈
⋃n

i=1 Bi, define the set indB = {j | B ∈ Bj} of the indices of all
the unfolding sets that contain B. We call the set A = {A1, . . . ,Ak} with k ≤ n

a selection for Q iff (a)
⋃k

i=1 indAi = Nn (where Nn
.= {1, . . . , n}), and (b)

indAi \ indAj �= ∅ for all i, j ∈ Nk, i.e. if A contains at least one atom from each
unfolding set and no two sets indAi overlap fully. Clearly, a selection corresponds
to an unfolding of Q, in particular to headQ ← A1, . . . ,Ak. However, we are
interested in minimal selections, which correspond to non subsumed rewritings.
We call a selection A for Q minimal, iff there is no selection A′ for Q such that
A′ ⊂ A, i.e. if in addition to the above we have that indAi\

(⋃k
j=1,j �=i indAj

)
�=

∅ for all i ∈ Nk, i.e. if all the atoms Ai need to be present in A in order for⋃k
i=1 indAi = Nn to hold. If this were not the case for some Ai, we could form the

selection A′ = {A1, . . . ,Aj−1,Aj+1,Ak} ⊂ A, hence A would not be minimal.
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Algorithm 2 The query unfolding procedure
procedure Unfold(CQ Q of the form A← B1, . . . ,Bn, ontology O)
Q ← ∅; Q̂ ← ∅
for i = 1 . . . n do
Bi ← D̂(Bi; termsB Q ∩ termsBi); B̂i ← ∅

end for
for i = 1 . . . n and for all role atoms A ∈ Bi do

for j = 1 . . . n, j �= i and for all role atoms A′ ∈ Bj do
if ∃θ on varsA′ \ varsB Q such that A′θ = A then
B̂j ← B̂j ∪ {A}

end if
end for

end for
for all selections C1, . . . ,Ck from B1 ∪ B̂1, . . . ,Bn ∪ B̂n do

if indCi \
⋃

j=1...k,j �=i indCj �= ∅ for all i then

if ∃j such that Ci ∈ B̂j for some i then
Q̂ ← Q̂ ∪̂ {Q}

else
Q ← Q ∪̂ {Q}

end if
end if

end for
return [Q, Q̂]

end procedure

The unfolding step in Rapid computes efficiently the minimal selections for a
CQ Q by finding the common elements of the unfolding sets Bi and enforcing
the above conditions. Although the set of unfoldings obtained by the minimal
selections for Q contains no subsumed rewrittings, in general, the same will not
hold for the union of the unfoldings of two distinct CQs Q1 and Q2 obtained
at the shrinking step. The need for subsumption checks remains, however their
number is much less, since the unfoldings of Q1 have to be checked only against
the unfoldings of Q2 and vice versa, and not also against the unfoldings of Q1.

The computation of the minimal selections as described above takes into ac-
count the equality between the elements of the unfolding sets, but not sub-
sumption relations. However, an unfolding set Bi may contain an atom with an
unbound variable that unifies with an atom of another set Bj that contains only
bound variables. In order to address this issue we compute all such bindings in
advance and include the respective atoms in the sets B̂i, defined for this purpose.
In particular, if for some i, j ∈ Nn we have that A ∈ Bi, A′ ∈ Bj and there is
a substitution θ on varsA′ \ varsB Q such that A′θ = A, we add A to B̂j. We
call the minimal selections for Q that contain an atom that appears in some B̂j

impure. Their inclusion in the result does not affect soundness, since we have
only replaced an unbound variable of A′ by a bound variable of A. However, an
impure selection may result in an unfolding that subsumes or is subsumed by
an unfolding given by another minimal selection for Q. For this reason, Unfold
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Algorithm 3 The Rapid algorithm
procedure Rapid(connected CQ Q, ontology O)
Qf = ∅
for all Qs ∈ Shrink(Q,O) do

[Q, Q̂]← Unfold(Qs,O); Qt ← ∅
for all Q′ ∈ Q do

if cond Q′ coincides with Q′ then
Qt ← Qt ∪ {Q′}

else
Qf ← Qf ∪ {{cond Q′}}

end if
end for
Qf ← Qf ∪ {Qt} ∪

⋃
Q′∈Q̂{{cond Q′}}

end for
return CheckSubsumption(Qf)

end procedure

distinguishes between the two sets of unfoldings and returns them in the sets Q
and Q̂, which contain the unfoldings resulting from the pure and impure minimal
selections, respectively.

The final step of Rapid is the check for subsumed rewritings within the results
of Unfold. The check is done after first grouping the results into sets that are
known not to contain subsumed rewritings. These are the sets of pure unfoldings
returned by Unfold, excluding the unfoldings that do not coincide with their
condensations. The condensation of each such query, as well as each impure
unfolding forms a separate set. These sets are processed by CheckSubsumption
which checks for subsumption across sets only. We also note that Unfold applies
rule W only on its input Q and not iteratively also on the conclusions. This
does not affect completeness, because at the application of W bound terms may
become unbound or eliminated only at the condensation step; this is the last
step of the W rule, hence no rewriting is lost. However, it may be the case that
an unbound variable v of such a conclusion, which was bound in Q, unifies with
a functional term of a clause in Ξ(O) and hence is eventually eliminated. If this
is the case, variable v would have been eliminated also earlier at an application
of the shrinking rule, hence again completeness is not affected. The algorithm
terminates because when computing the unfolding sets or applying the S rule,
atoms or clauses equivalent to already computed ones are not considered again.

Example 2. Consider the CQ Q(x) ← A(x), R(x, y), A(y), S(x, z) posed over the
ontology of Ex. 1. We have varsD Q = {x}, varsB Q = {x, y} and varsUB Q = {z}.
From Ex. 1 we know that Fy(R(x, y); {x, y}) ∩ Fy(A(y); {y}) = {f1} and given
that cn f1 = C, the Shrink procedures returns the rewritings Q1 : Q(x) ←
A(x), R(x, y), A(y), S(x, z) (the initial CQ) and Q2 : Q(x) ← A(x), C(x), S(x, z),
which are subsequently processed by the Unfold procedure. We have that
varsB Q1 = {x, y} and varsB Q2 = {x}. The sets Bi and B̂i for Q1 and Q2 are
shown below (for convenience unbound variables have been replaced by ∗).
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i 1 2 3 4

Bi

A(x) R(x, y){1,2} A(y) S(x, ∗)
B(x) S(y, x){1,2} B(y) D(x)

R(x, ∗) R(y, ∗)
S(∗, x) S(∗, y)
C(x) C(y)

T (∗, x) T (∗, y)

B̂i
R(x, y){1,2}

S(y, x){1,2}

i 1 2 3

Bi

A(x) C(x){1,2} S(x, ∗)
B(x) T (∗, x){1,2} D(x)

R(x, ∗)
S(∗, x)

C(x){1,2}

T (∗, x){1,2}

B̂i

E.g. we add R(x, y) to B̂1 because B1 contains R(x, ∗) which subsumes R(x, y)
in B2. For the atoms A for which |indA| > 1 the tables show the sets indA in
superscript. Since in both Q1 and Q2, for all atoms A in B2 we have indA =
{1, 2}, Rapid computes no unfoldings with atoms that appear only in B1, because
they are subsumed (e.g. for Q2 the CQ Q(x) ← A(x), C(x), S(x, z) is subsumed
by Q(x) ← C(x), S(x, z)). So, we get 24 (= 2 · 6 · 2) rewritings from Q1 and
4 (= 2·2) from Q2. The unfoldings of Q1 are all impure (they contain atoms in B̂1)
while those of Q2 are all pure. All of them are finally checked for subsumption,
but the check within the set of the unfoldings of Q2 is skipped because we know
that it contains no subsumed rewritings. Finally, we get 28 core rewritings.

5 Evaluation

We evaluated Rapid by comparing it with Requiem, the implementation of RQR.
We used the same datasets as in [6], namely the V, S, U, A, P5, UX, AX, P5X
ontologies. (V models European history, S European financial institutions, and
A information about abilities, disabilities and devices. U is a DL-LiteR version of
the LUBM benchmark ontology. P5 is synthetic and models graphs with paths
of length 5. UX, AX and P5X are obtained by rewriting U, A and P5 without
qualified existential restrictions). The results (for a Java implementation on a
3GHz processor PC) are shown in Table 3. TA is the rewriting computation time
without the final subsumption check step, and TR the total time including this
step. Similarly, RA is the size of the (non core) rewriting set when omitting the
subsumption check step, and RF the size of the core rewriting set. As expected,
both systems compute the same number of core rewritings.

The results show clearly the efficiency of Rapid. It is always faster and in
several cases the improvement is very significant. The efficiency is more evident
if we compare the results before and after the subsumption check step. In most
cases, the number of rewritings discarded as subsumed in this step is small.
Hence, by omitting it we would still get a ‘good’ result, but gain possibly a lot in
time. The subsumption check step is very expensive, although our optimizations
significantly reduced its cost too. The most striking case is ontology AX and
query 5, in which Rapid completes the computation of the 32,921 core rewritings
in less than 1 min, while Requiem needs about 2 hours. Moreover, Rapid needs
only to 2.1 sec to compute a set containing only 35 non core rewritings and
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Table 3. Evaluation results. ∗The greedy modality provided by the Requiem system
applies forward query subsumption, dependency graph pruning and greedy unfolding.

Rapid Requiem (greedy modality∗)
O Q TA TF RA RF TA TF RA RF

V

1 .001 .001 15 15 .001 .001 15 15
2 .001 .001 10 10 .001 .001 10 10
3 .001 .001 72 72 .016 .016 72 72
4 .015 .015 185 185 .031 .062 185 185
5 .016 .016 30 30 .001 .015 30 30

S

1 .001 .001 6 6 .001 .001 6 6
2 .001 .001 2 2 .031 .062 160 2
3 .001 .001 4 4 .187 .515 480 4
4 .001 .001 4 4 .406 1.047 960 4
5 .001 .001 8 8 5.594 17.984 2,880 8

U

1 .001 .001 2 2 .001 .001 2 2
2 .001 .001 1 1 .031 .047 148 1
3 .001 .001 4 4 .047 .109 224 4
4 .001 .001 2 2 .625 2.031 1,628 2
5 .001 .001 10 10 2.187 7.781 2,960 10

A

1 .001 .001 27 27 .031 .047 121 27
2 .001 .001 54 50 .031 .047 78 50
3 .016 .016 104 104 .047 .063 104 104
4 .031 .031 320 224 .078 .156 304 224
5 .062 .078 624 624 .188 .610 624 624

P5

1 .001 .001 6 6 .001 .001 6 6
2 .001 .001 10 10 .015 .015 10 10
3 .001 .001 13 13 .047 .047 13 13
4 .015 .015 15 15 .688 .688 15 15
5 .015 .015 16 16 16.453 16.453 16 16

P5X

1 .001 .001 14 14 .001 .001 14 14
2 .001 .001 25 25 .031 .031 77 25
3 .015 .031 112 58 .125 .297 390 58
4 .062 .109 561 179 2.453 7.375 1,953 179
5 .344 1.313 2,805 718 1:10.141 3:48.690 9,766 718

UX

1 .001 .001 5 5 .001 .001 5 5
2 .001 .001 1 1 .031 .078 240 1
3 .001 .001 12 12 .391 1.125 1,008 12
4 .001 .001 5 5 5.187 19.375 5,000 5
5 .015 .015 25 25 15.125 57.672 8,000 25

AX

1 .001 .001 41 41 .047 .063 132 41
2 .093 .140 1,546 1,431 .703 2.781 1,632 1,431
3 .297 .672 4,466 4,466 6.484 29.109 4,752 4,466
4 .219 .625 4,484 3,159 5.282 23.516 4,960 3,159
5 2.140 43.374 32,956 32,921 27:04.006 1:56:21.585 76,032 32,921

then some 40 seconds to detect them, while Requiem computes 43,111 non core
rewritings and needs 1.5 hours to detect and remove them.

We comment on two cases that illustrate best the efficiency of the shrinking
and unfolding steps in Rapid. In ontology P5, where query i asks for nodes from
which paths of length i start, the performance of Rapid is essentially unaffected
by the query size, unlike Requiem which is not scalable. This is due to the
efficiency of the shrinking inference rule, which fires only if it leads to a useful,
function free rewriting. In RQR, resolution is performed exhaustively, leading
to a large number of non function free rewritings that are eventually discarded.
In ontology U , the superior performance of Rapid is due to the efficiency of the
unfolding step, in particular to the non computation of subsumed unfoldings. In
query 5, at the end of the unfolding step Rapid has computed only 8 rewritings,
which are the final core rewritings. In contrast, Requiem computes 2,880, which
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need to be checked for subsumption. In the general case the superior performance
of Rapid is due to the combined efficiency of the shrinking and unfolding steps.

Before concluding this section we should note, however, that Requiem, being
an EL reasoner, is not optimized for DL-LiteR. Nevertheless, in [6] which com-
pares Requiem with CGLLR, an implementation of the authors of the PerfectRef
algorithm, Requiem shows already a better performance.

6 Conclusions

We have presented Rapid, a new algorithm for the efficient computation of the
core rewriting set of connected queries posed over DL-LiteR ontologies. Rapid
optimizes the inference process by replacing the application of the first order
resolution rule by specialized shrinking and unfolding rules, which save the
algorithm from many unnecessary rewritings, subsumption checks and blind in-
ference paths. The experimental evaluation of Rapid showed a significant perfor-
mance benefit if compared to RQR, which in several practical cases can alleviate
the exponential behavior. The specialized inference rules differentiate Rapid from
pure resolution-based algorithms, however it remains committed to the compu-
tation of set of rewritings (i.e. of a UCQ), unlike recent approaches [8] which
compute non recursive datalog programs, deferring thus the complexity to the
underlying database system. The performance benefit that may result from com-
puting and executing a non recursive datalog program instead of a rewriting set
equivalent to a UCQ largely depends on the way relational engines deal with such
datalog programs and needs to be better explored. Another interesting direction
for future work is to apply the idea to more expressive DLs, like ELHI.
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Abstract. We present a novel analysis for sorted logic, which deter-
mines if a given sort is monotone. The domain of a monotone sort
can always be extended with an extra element. We use this analysis
to significantly improve well-known translations between unsorted and
many-sorted logic, making use of the fact that it is cheaper to trans-
late monotone sorts than non-monotone sorts. Many interesting prob-
lems are more naturally expressed in many-sorted first-order logic than
in unsorted logic, but most existing highly-efficient automated theorem
provers solve problems only in unsorted logic. Conversely, some reasoning
tools, for example model finders, can make good use of sort-information
in a problem, but most problems today are formulated in unsorted logic.
This situation motivates translations in both ways between many-sorted
and unsorted problems. We present the monotonicity analysis and its im-
plementation in our tool Monotonox, and also show experimental results
on the TPTP benchmark library.

1 Introduction

Many problems are more naturally expressed in many-sorted first-order logic
than in unsorted logic, even though their expressive power is equivalent. How-
ever, none of the major automated theorem provers for first-order logic can deal
with sorts. Most problems in first-order logic are therefore expressed in unsorted
logic.1 However, some automated reasoning tools (such as model finders) could
greatly benefit from sort information in problems.

This situation motivates the need for translations between sorted and unsorted
first-order logic: (1) users want to express their problems in sorted logic, whereas
many tools only accept unsorted logic; (2) some tool developers want to work
with sorted logic, whereas the input problems are mostly expressed in unsorted
logic. For example, a model finder for a sorted logic has more freedom than for
an unsorted logic: it can find domains of different sizes for different sorts, and
apply symmetry reduction for each sort separately.

In this paper, we describe automated ways of translating back and forth be-
tween many-sorted and unsorted first-order logic. We use a novel monotonicity
1 Indeed, only recently was a collection of many-sorted first-order problems added to

the TPTP [11].
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analysis to improve on well-known existing translations. In short, a sort is mono-
tone in a problem if, for any model, the domain of that sort can be made larger
without affecting satisfiability. The result of the translation for monotone sorts
turns out to be much simpler than for non-monotone sorts. The monotonicity
analysis and the translations are implemented in a tool called Monotonox.

To explain the problem we solve, and how monotonicity helps us, we will use
the following running example.

Example 1 (monkey village). There exists a village of monkeys, with a supply
of bananas. Every monkey must have at least two bananas to eat. A banana
can not be shared among two monkeys. To model this situation we introduce
two sorts, one of monkeys and one of bananas. We need a predicate owns ∈
monkey × banana→ o that says which monkey owns each banana, and Skolem
functions banana1 and banana2 ∈ monkey → banana to witness the fact that
each monkey has two bananas. We use the following four axioms:

∀M ∈ monkey. owns(M, banana1(M)) (1)
∀M ∈ monkey. owns(M, banana2(M)) (2)
∀M ∈ monkey.banana1(M) �= banana2(M) (3)

∀M1,M2 ∈ monkey,B ∈ banana. (owns(M1, B) ∧ owns(M2, B)
=⇒M1 = M2)

(4)

We use a simple but standard many-sorted first-order logic, in which sorts α
have a non-empty domain D(α), all symbols have exactly one sort, there are no
subsorts, and equality is only allowed between terms of the same sort.

If we want to use a standard reasoning tool for unsorted logic (for example
a model finder) to reason about the monkey village, we need to translate the
problem into unsorted logic. Automated reasoning folklore [12] suggests three
alternatives:

Sort predicates. The most commonly used method is to introduce a new unary
predicate Pα for every sort α that is used in the sorted formula [6]. All quantifi-
cation over a sort α is translated into unsorted quantification bounded by the
predicate Pα. Furthermore, for each function or constant symbol in the problem,
we have to introduce an extra axiom stating the result sort of that symbol. For
example, the first axiom of example 1 translates to

∀M. (Pmonkey(M) → owns(M, banana1(M))

and we have to add axioms like ∀M.Pbanana(banana1(M)) for each function
symbol. Moreover, to rule out the possibility of empty sorts, we sometimes need
to introduce axioms of the form ∃X.Pα(X).

Although conceptually simple, this translation introduces a lot of clutter
which affects most theorem provers negatively: one extra predicate symbol for
each sort, one axiom for each function symbol, and one extra literal for each
variable in each clause.
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Sort functions. An alternative translation introduces a new function symbol fα
for each sort α. The translation applies fα to any subterm of sort α in the sorted
problem. The aim is to have the image of fα in the unsorted problem be the
domain of α in the sorted problem; fα thus maps any arbitrary domain element
into a member of the sort α. For example, using sort functions, the first axiom
of example 1 translates to

∀M. owns(fmonkey(M), fbanana(banana1(fmonkey(M))))

No additional axioms are needed. Thus, this translation introduces a lot less
clutter than the previous translation. Still, the performance of theorem provers is
affected negatively, and it depends on the theorem prover as well as the problem
which translation works best in practice.

Sort erasure. The translation which introduces least clutter of all simply erases
all sort information from a sorted problem, resulting in an unsorted problem.
However, while the two earlier mentioned translations preserve satisfiability of
the problems, sort erasure does not, and is in fact unsound. Let us see what
happens to the monkey village example. Erasing all the sorts, we get

∀M. owns(M, banana1(M))
∀M. owns(M, banana2(M))
∀M. banana1(M) �= banana2(M)

∀M1,M2, B. (owns(M1, B) ∧ owns(M2, B) →M1 = M2)

This new problem has no finite model, even though the sorted problem does! The
reason is that, if the domain we choose has finite size k, we are forced to have
k monkeys and k bananas. But a village of k monkeys must have 2k bananas,
so this is impossible unless the domain is infinite (or empty, which we disallow).
So, sort erasure does not preserve finite satisfiability, as shown by the example.
In fact, it does not even preserve satisfiability.

Related work. The choice seems to be between translations that are sound, but
introduce clutter, and a translation that introduces no clutter but is unsound.
Automated theorem provers for unsorted first-order logic have been used to rea-
son about formulae in Isabelle [8,9]. The tools apply sort erasure, and investigate
the proof to see if it made use of unsound reasoning. If that happens they can
use a sound but inefficient translation as a fall-back. A similar project using
AgdaLight [1] uses sort erasure but, following [12], proposes that the theorem
prover be restricted to not use certain rules (i.e. paramodulation on variables),
leading to a sound (but possibly incomplete) proof procedure.

Monotonicity has been studied for higher-order logic [2] to help with pruning
the search space when model finding. While the intention there is the same as
ours and there are similarities between the approaches, the difference in log-
ics changes the problem dramatically. For example, we infer that any formula
without = is monotone, which is not true in higher-order logic. Monotonicity is
also related to the ideas of stable infiniteness and smoothness [10] in combining
theories in SMT; it would be interesting to investigate this link further.
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This paper. We give an alternative to choosing between clutter and unsoundness.
We propose an analysis that indicates which sorts are safe to erase, leaving ideally
only a few sorts left that need to be translated using one of the first two methods.

The problem with sort erasure is that it forces all sorts to use the same
domain. If the domains all had the same size to start with, there is no problem.
But if the sorted formula only has models where some domains have different
sizes than others, the sort erasure makes the formula unsatisfiable. We formulate
this observation in the following lemma:

Lemma 1. The following statements about a many-sorted first-order formula ϕ
are equivalent:

1. There is an unsorted model with domain D for the sort-erased version of ϕ.
2. There is a model of ϕ where the size of each domain is |D|.

Proof. (sketch) The interesting case relies on the observation that, if there is a
sorted model in which all domains have the same size, then there also is a model
in which all the domains are identical, from which it is trivial to construct an
unsorted model. �!

Our main contribution is a monotonicity inference calculus that identifies the
so-called monotone sorts in a problem. If all sorts in a satisfiable sorted problem
are monotone, then it is guaranteed that there will always be models for which all
domains have the same size, in which case sort erasure is sound. The sorts that
cannot be shown monotone will have to be made monotone first by introducing
sort predicates or functions, but for these sorts only.

2 Monotonicity Calculus for First-Order Logic

Monotonox exploits monotonicity in the formula we are translating to produce
a more efficient translation than the naive one. The purpose of this section is to
explain what monotonicity is and how to infer it in a formula; section 3 explains
how we use this information in Monotonox.

Before tackling monotonicity in a sorted setting, we first describe it in an
unsorted one. We do this just because the notation gets in the way of the ideas
when we have sorts.

2.1 Monotonicity in an Unsorted Setting

We start straight away with the definition of monotonicity. Monotonicity is a
semantic property rather than a syntactic property of the formula.

Definition 1 (monotonicity, unsorted). An unsorted formula ϕ is monotone
if, for all n ∈ N, whenever ϕ is satisfiable over domains of size n, it is also
satisfiable over domains of size n + 1.

An immediate consequence is that if a monotone formula is satisfiable over a
finite domain, it is also satisfiable over all bigger finite domains.
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Remark 1. Several common classes of formulae are monotone:

– Any unsatisfiable formula is monotone because it trivially satisfies our defi-
nition. The same goes for any formula that has no finite models.

– Any valid formula is monotone because it has a model no matter what the
domain is.

– A formula that does not use = is monotone, as we will see later.

What about a non-monotone formula? The simplest example is ∀X,Y.X = Y ,
which is satisfied if the domain contains a single element but not if it contains
two. We will see later that equality is the single source of nonmonotonicity in
formulae.

Monotonicity allows us to take a model of a formula and get from it a model
over a bigger domain. Although it is not obvious from our definition, this is even
the case if we want to get an infinite model.

Lemma 2 (monotonicity extends to infinite domains). ϕ is monotone iff,
for every pair of domains D and D′ such that |D| ≤ |D′|, if ϕ is satisfiable over
D then ϕ is satisfiable over D′.

Proof. (sketch) If ϕ is monotone and has a finite model then it has models of
unbounded size; by compactness it has an infinite model. The lemma follows
from this property and Löwenheim-Skolem. �!

Monotonicity is not decidable. We can see from remark 1 that monotonicity is
related to satisfiability, so we should not expect it to be decidable. Indeed it is
not.2 This does not mean we should give up on inferring monotonicity, just that
we cannot always infer that a formula is monotone. The calculi we present later
only answer “yes” if a formula is monotone but may answer “no” for a monotone
formula too.

2.2 Monotonicity in a Many-Sorted Setting

Everything above generalises to sorted formulae, with the complication that we
now have to talk about a formula being monotone in a particular sort. Informally,
ϕ is monotone in the sort α if, given a model of ϕ, we can add elements to the
domain of α while preserving satisfiability.

We use the notation D(α) for the domain of sort α. The formal definition
mimics the one from the last section:

Definition 2 (monotonicity, sorted). A sorted formula ϕ is monotone in the
sort α if, whenever ϕ is satisfiable over D, and we are given D′ such that
2 The proof works by encoding a given Turing machine by a formula that has a finite

model of size k iff the Turing machine halts in exactly k steps. Thus if the Turing
machine halts then the formula has a finite model at exactly one domain size and
is therefore not monotone; if the Turing machine does not halt then the formula is
finitely unsatisfiable and therefore monotone.
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– |D(α)| is finite, and |D(α)| + 1 = |D′(α)|, and
– D′(β) = D(β) for all β �= α,

then ϕ is satisfiable over D′.

Once again, we only consider taking a finite domain and adding a single element
to it. The lemma from the last section still holds:

Lemma 3 (monotonicity extends to infinite domains (sorted)). ϕ is
monotone in α iff, whenever ϕ is satisfiable over D, and we are given D′ such
that

– |D′(α)| ≥ |D(α)|, and
– D′(β) = D(β) for all β �= α,

then ϕ is satisfiable over D′.

The key insight of Monotonox is that sort erasure is safe if the formula is mono-
tone in all sorts:

Theorem 1 (monotone formulae preserve satisfiability under erasure).
If ϕ is a many-sorted monotone formula, then ϕ and its sort-erasure are equi-
satisfiable.

Proof. By lemma 1, it is enough to show that from a model of ϕ we can construct
a model where all domains are the same size. By lemma 3 we can do this by
extending all the domains to match the size of the biggest domain. �!

Remark 2. Notice that this construction preserves finite satisfiability, which is
important when we are going to use a finite model finder on the problem.

Going back to our monkeys example, the formula is monotone in the sort banana
(you can always add a banana to the model) but not in the sort monkey (if we
have k monkeys and 2k bananas, we may not add another monkey without first
adding two bananas). In section 3.2 we will see that this means we only need to
introduce a sort predicate for the sort monkey.

2.3 A Simple Calculus for Monotonicity Inference

We now present two calculi for inferring monotonicity of a formula. In both
calculi we assume that the formula is in CNF.

Our first calculus is based on the key observation that any formula that does
not use equality is monotone. To see why, suppose we have a model over domain
D of a formula ϕ, and we want to add a new element to D while preserving
satisfiability. We can do this by taking an existing domain element e ∈ D and
making the new element e′ behave identically to e, so that for all unary predicates
P , P (e) is true iff P (e′) is true, and for all unary functions f , f(e) = f(e′), and
similarly for predicates and functions of higher arities. If the formula does not use
equality, e and e′ cannot be distinguished. Thus, the addition of a new domain
element preserves satisfiability of the formula.
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On the other hand, with equality present, the addition of a new element to
the domain may make a previously satisfiable formula unsatisfiable. For example,
∀X,Y.X = Y has a model with domain size 1, but it is not satisfiable for any
larger domain size. We cannot make the new domain element behave the same
as the old domain element because equality can distinguish them.

However, not all occurrences of equality have this problem. The following
examples of equality literals are all monotone:

1. Negative equality (by increasing the size of the domain, more terms may
become unequal but previously unequal terms will not become equal).

2. Equality where neither side is a variable (i.e. both sides are functions or
constants, possibly with variable arguments). This is because, by using the
strategy above for extending the domain with a new element, no function
ever returns the new element, so the new element is never tested for equality.

3. Equality over a sort α is monotone in any sort β different to α. (The satisfi-
ability of t1 = t2, where t1 and t2 have sort α is unaffected by the addition
of new elements to the domain of β).

Thus, the only problematic literal for monotonicity in the sort α is positive
equality over α where either side of the equality is a variable.

Safe terms. We call a term safe in a sort α if, whenever we add a new element to
the domain of α, the term never evaluates to this element. If the terms occurring
on each side of an equality literal are both safe, the satisfiability of the literal is
unaffected by the addition of new domain elements. Since positive equality liter-
als are the only possible sources of nonmonotonicity, we can infer monotonicity
of a formula by showing that all arguments of positive equality literals are safe.
By the examples above, a term is safe in the sort α if it is not a variable, or it has
a sort different to α. The simple calculus exploits these facts with the following
rules:

1. ϕ1 ∨ ϕ2 is monotone in α iff ϕ1 and ϕ2 are monotone in α.
2. ϕ1 ∧ ϕ2 is monotone in α iff ϕ1 and ϕ2 are monotone in α.
3. Any non-equality literal is monotone in any sort α.
4. t1 �= t2 is monotone in any sort α.
5. t1 = t2 is monotone in α if t1 and t2 are safe in α, i.e., are not variables or

are not of sort α.

Let us try out the simple calculus on the hungry monkeys in Example 1. The
formula is monotone in monkey iff all of its clauses are monotone in monkey, and
similarly for banana. Clauses (1) and (2) are monotone in both sorts, because
the clauses do not contain equality. (3) is monotone in both sorts, because the
clause does not contain positive equality. (4) is monotone in banana, because
there is no equality between banana elements. The calculus does not let us infer
monotonicity of monkey in this clause, because of the occurrence of an equality
literal with two variables of sort monkey. Thus, the formula is monotone in
banana, but not in monkey. This is consistent with our previous observation
that we can add more banana elements without affecting satisfiability, but this
is not the case for monkey elements.
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2.4 Improved Calculus

There are many cases when our first calculus is not able to prove monotonicity.
For example, suppose we change the problem so that some monkeys are not
hungry and do not need bananas:

Example 2.

∀M ∈ monkey. (hungry(M) =⇒ owns(M, banana1(M))) (5)
∀M ∈ monkey. (hungry(M) =⇒ owns(M, banana2(M))) (6)
∀M ∈ monkey. (hungry(M) =⇒ banana1(M) �= banana2(M)) (7)

∀M1,M2 ∈ monkey,B ∈ banana.

((hungry(M1) ∧ hungry(M2) ∧ owns(M1, B) ∧ owns(M2, B)
=⇒M1 = M2)

(8)

It is not hard to see that, given a model of the axioms, we can always add an
extra monkey, by making that monkey not be hungry. Thus, the above formula
is monotone in monkey. However, our simple calculus can not infer this, because
of the use of positive equality between two variables of sort monkey in (8). In
this section we remedy the problem by extending the calculus.

In the simple calculus, the strategy for extending a model while preserving
finite satisfiability was to pick an existing element e in the domain, and let
any new domain element “mimic” e. This strategy does not work for clause (8)
in Example 2: if we happen to pick an e such that hungry(e) is true, then this
strategy will add an extra hungry monkey to the domain, which does not preserve
finite satisfiability. In our improved calculus we can make use of alternative
strategies for extending the model, which allows us to infer monotonicity in
cases such as this.

Extension rules. In the improved calculus, we nominate some predicates to be
“true-extended” and some to be “false-extended” in each sort α. If a predicate
is neither true-extended nor false-extended, we say that it is “copy-extended”.
When extending the model with a new domain element e′, if a predicate P
is true-extended, we make P return true whenever any of its arguments is e′;
likewise if it is false-extended we make it return false if any of its arguments is
e′. Copy-extended predicates behave as in the simple calculus.

Guard literals. We say that a literal P (. . .) in a clause C guards an occurrence
of a variable X ∈ α in C if X is one of the arguments of that literal and
P is true-extended in α. Similarly, a literal ¬P (. . .) in C with X among its
arguments guards occurrences of X in C if P is false-extended in α. We call
the literal P (. . .) or ¬P (. . .) in this case a guard literal. The idea is that when
X is instantiated with the new domain element, the guard literal is true, hence
satisfiability of the clause is preserved. This allows us to infer that a clause
involving positive equality between variables is monotone, if those variables are
guarded. For example, in the clause (8) in Example 2, the two variables M1 and
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M2 occurring in the equality literal are guarded by the predicate hungry, which
we can make false for any new elements of sort monkey that we add.

Furthermore, X �= t guards X if t is not a variable: the clause X �= t ∨ ϕ[X ]
is equivalent to X �= t ∨ ϕ[t], in which X does not appear unsafely.3

Contradictory extensions. When considering formulae, things get more problem-
atic: if we add an axiom

∀M ∈ monkey. hungry(M) (9)

to the formula in Example 2, we cannot add non-hungry monkeys to the domain,
so the problem is no longer monotone in the sort monkey. For the clause (8)
to be monotone, M1 and M2 must be guarded, which means that the predicate
hungry must be false-extended. But extending hungry with false will not preserve
satisfiability of the clause (9).

The new extension rules thus require some caution. If a predicate P is false-
extended, then any occurrence of a variable X in the literal P (. . .) needs guarding
just like it does in an equality literal X = t. Likewise, if P is true-extended,
any occurrence of a variable X in the literal ¬P (. . .) needs guarding. This is
illustrated in Example 3:

Example 3

∀X. (P (X) =⇒ X = t) (10)
∀X. (Q(X) =⇒ P (X)) (11)

(10) requires P to be false-extended, because the occurrence of X in the positive
equality literal needs guarding. But if P (X) is false whenever X is instantiated
with a new domain element, then Q must be false-extended in order to satisfy
(11).

An occurrence of a variable X is problematic if it occurs in a literal of one of
the following forms:

– X = t or t = X
– P (. . . , X, . . .) where P is false-extended
– ¬P (. . . , X, . . .) where P is true-extended

In that case, we need to guard X for the formula to be monotone in X ’s sort.
The improved calculus infers monotonicity of a formula in α iff there is a

consistent extension of predicates that guards all such variable occurrences.

2.5 Monotonicity Inference Rules of the Improved Calculus

Notation. In the following, we shall use the abbreviation K to denote a function
from predicates to the extension methods {true, false, copy}. We call such a K a
context. Furthermore, we use the notation K �α ϕ to mean that ϕ is monotone
in the sort α, given the context K.
3 This even holds if X is a subterm of t.



216 K. Claessen, A. Lillieström, and N. Smallbone

Formulae. A formula ϕ is monotone with context K in the sort α iff all of its
clauses are monotone with K in α:

K �α C1 · · · K �α Cn

K �α C1 ∧ . . . ∧ Cn

Clauses. In the rule for clauses, we must also consider the set Γ of variables
that are guarded in the clause. We write Γ,K �α l if l is monotone with K in α,
given that the variables in Γ are guarded. A clause is monotone with context K
in the sort α if all of its literals are monotone with K in α, given Γ :

Γ =
⋃n

i=1 guarded(K, li) Γ,K �α l1 · · · Γ,K �α ln

K �α l1 ∨ . . . ∨ ln

where guarded(K, l) is defined as

guarded(K,P (t1 . . . tn)) = {X‖X∈{t1 . . . tn}, X is a variable} if K(P ) = true,

guarded(K,¬P (t1 . . . tn)) = {X‖X∈{t1 . . . tn}, X is a variable} if K(P ) = false,

guarded(K,X �= t) = {X} if X is a variable and t is not,
guarded(K, l) = ∅ otherwise.

Literals. We have the following rules for monotonicity inference of literals:

(1)
Γ,K �α t �=β u

β �= α
(2)

Γ,K �α t =β u

safe(Γ, t, α) safe(Γ, u, α)
(3)

Γ,K �α t =α u

safe(Γ, t, α) =

{
t ∈ Γ if t is a variable of sort α,

true otherwise.

(1) Negative equality is always monotone. (2) Equality in a sort β is monotone
in any sort α that is different to β. (3) Equality between two terms is monotone
if the terms are non-variables, or are guarded in the clause.

safe(Γ, t1, α) · · · safe(Γ, tn, α)
(4)

Γ,K �α P (t1, . . . , tn)
safe(Γ, t1, α) · · · safe(Γ, tn, α)

(5)
Γ,K �α ¬P (t1, . . . , tn)

(4,5) A predicate literal is monotone in α if all of its variable arguments of
sort α are guarded in the clause in which the literal occurs.

K(P ) ∈ {true, copy}
(6)

Γ,K �α P (t1, . . . , tn)
K(P ) ∈ {false, copy}

(7)
Γ,K �α ¬P (t1, . . . , tn)

(6) A positive occurrence of a predicate is monotone if the predicate is true-
extended or copy-extended. (7) A negative occurrence of a predicate is monotone
if the predicate is false-extended or copy-extended.
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It is not immediately clear how to implement the above rules, since there is
no obvious way to infer the context K. We see in section 3.1 that we can do this
using a SAT-solver.

2.6 NP-Completeness of the Improved Calculus

The improved calculus allows us to infer monotonicity in more cases. However,
inferring monotonicity with it is NP-complete. We show NP-hardness by reduc-
ing CNF-SAT to a problem of inferring monotonicity in the calculus.

Given any propositional formula ϕSAT in CNF, we construct a formula ϕMON

such that ϕSAT is satisfiable iff ϕMON is monotone. The idea is that a context
that makes ϕSAT monotone corresponds to a satisfying assignment for ϕSAT .

For each positive literal l in ϕSAT , we introduce a unary predicate Pl in
ϕMON . For negative literals ¬l, we define P¬l(X) as ¬Pl(X). We equip ϕMON

with a single constant c. We translate each clause (l1 ∨ ...∨ ln) of ϕSAT into the
following clause in ϕMON :

∀X.Pl1(X) ∨ ... ∨ Pln(X) ∨X = c

Our calculus proves this clause monotone exactly when our context extends at
least one of Pl1 , .., Pln by true. Thus if we find a context that makes ϕMON mono-
tone we may extract a satisfying assignment for ϕSAT by doing the following for
each positive literal l of ϕSAT :

– If Pl is extended by true then let l be true.
– If Pl is extended by false then let l be false.
– If Pl is extended by copy then choose an arbitrary value for l.

The same method takes us from a satisfying assignment of ϕSAT to a context
that makes ϕMON monotone.

3 Monotonox: Sorted to Unsorted Logic and Back Again

We have implemented the monotonicity calculus as part of our tool Monotonox.
This section first shows how the calculus is implemented and then how mono-
tonicity is exploited in translating between sorted and unsorted first-order logic.

3.1 Monotonicity Inference with Monotonox

We show in this section how to use a SAT-solver to implement the monotonic-
ity calculus. The use of a SAT-solver is a reasonable choice, as we have seen
previously that monotonicity inference in our calculus is NP-hard.

We encode the problem of inferring monotonicity of a formula ϕ as a SAT-
problem, where a satisfying assignment corresponds to a context in our calculus.

We construct for each predicate P in ϕ two literals, pT and pF . The idea is
that if pT is assigned true, then P should be true-extended. If pF is assigned true,
then P should be false-extended. If both pT and pF are assigned false, then P
should be copy-extended. Our task is to construct a propositional formula with
these literals, that is satisfiable iff ϕ is monotone according to our calculus.
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Formulae. The SAT-encoding of a formula ϕ is the conjunction of SAT-encodings
of the clauses of ϕ and the constraint that each predicate may not be extended
by both true and false:

monotone((C1 ∧ .. ∧ Cn), α) =
n∧

i=1

monotone(Ci, α) ∧
∧

Pi∈ϕ

¬piF ∨ ¬piT

Clauses. The SAT-encoding of a clause C is the conjunction of SAT-encodings
of the literals of C.

monotone((l1 ∨ .. ∨ ln), α) =
n∧

i=1

monotone((l1 ∨ .. ∨ ln), li, α)

Literals. The SAT-encoding of a literal may depend on the clause in which it
occurs. In a positive equality literal, both of the terms must be safe. A negative
equality literal is trivially monotone. An occurrence of a predicate is monotone
if the predicate is extended in an appropriate way or its arguments are safe.

monotone(C, l, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

safe(C, t1, α) ∧ safe(C, t2, α) if l is t1 = t2,
true if l is t1 �= t2,
¬pF ∨

∧n
i=1 safe(C, ti, α) if l is P (t1, . . . , tn),

¬pT ∨
∧n

i=1 safe(C, ti, α) if l is ¬P (t1, . . . , tn),

A term t is safe in a clause if it is not a variable of the sort considered for
monotonicity, or it is guarded by any of the literals in the clause.

safe((l1 ∨ .. ∨ ln), t, α) =

{∨n
i=1 guards(li, t) if t is a variable of sort α

true otherwise

A literal l guards a variable X according to the rules that we discussed in
section 2.4.

guards(l, X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pT if l is of the form P (. . . , X, . . .),
pF if l is of the form ¬P (. . . , X, . . .),
true if l is of the form X �= f(. . .) or f(. . .) �= X ,
false otherwise.

If there is a satisfying assignment of the SAT-formula monotone(ϕ, α), then
there is a consistent extension of the predicates of ϕ (a context) that makes ϕ
monotone in α, and vice versa. Monotonox uses MiniSat [5] to find out whether
a satisfying assignment exists for each sort.

3.2 Translating Sorted to Unsorted Logic

To translate from a sorted problem to an unsorted problem, we use the principle
that monotone sorts can simply be erased, but non-monotone sorts need to be
encoded using, for example, a sort predicate. Thus our algorithm is as follows:
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1. Analyse the formula to discover which sorts are monotone.
2. For each non-monotone sort, transform the formula by introducing a sort

predicate or a sort function (according to the user’s choice)—but do not
erase the sort yet.

3. Erase all the sorts at once.

It makes no difference which method we use to encode the non-monotone sorts—
predicates, functions or something else. We can in principle use sort predicates
for some sorts and sort functions for others.

We justify the algorithm as follows: by adding sort predicates or functions
for all the non-monotone sorts, we have transformed the input formula into an
equisatisfiable formula which is also monotone.4 Once we have this monotone
formula then erasing all the sorts preserves satisfiability (theorem 1).

An example. Suppose we take the first axiom of our running example, ∀M ∈
monkey. owns(M, banana1(M)). As discussed, we know that the sort banana
is monotone but the sort monkey is not. Thus we need to introduce a sort
predicate or function for only the sort monkey. If we introduce a sort function—
while still keeping the formula sorted—the new formula we obtain is ∀M ∈
monkey. owns(fmonkey(M), banana1(fmonkey(M)).

Having done this, it is enough to erase the sorts from the formula (step 3 of
the algorithm) and we obtain an unsorted formula which is equisatisfiable over
each domain size to the original sorted formula, namely:

∀M. owns(fmonkey(M), banana1(fmonkey(M))

3.3 Translating Unsorted to Sorted Logic

The translation from unsorted to sorted formulae makes use of the same ma-
chinery, only in the reverse direction: given an unsorted problem φ, if we find a
well-sorted problem ψ such that (1) erasing the sorts in ψ gives us back φ, and
(2) all sorts in ψ are monotone, then (theorem 1) φ and ψ are equisatisfiable.

The problem is finding the sorted problem ψ. We can use an existing algo-
rithm [4], that we call sort unerasure here, for this. Sort unerasure computes
the maximal typing of an unsorted problem. It starts by creating unique sorts
for all variable occurrences in the problem, and for all argument positions of
predicate and function symbols, and for all results of function symbols. Then,
it computes equivalence classes of sorts that should be equal to each other in
order for the problem to be well-sorted, in the following way. Everywhere in the
problem, whenever we apply a function symbol or predicate symbol P to a term
t, we force the sort of the corresponding argument position of P to be in the
same equivalence class as the result sort of t. Using a union/find algorithm, we
get an algorithm that is close to linear time in complexity.
4 In the case of sort predicates, our second calculus can infer monotonicity by false-

extending the sort predicate; in the case of sort functions, our first calculus also can
because no variable appears directly as the argument of an equality literal.
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To sum up, the translation goes in three steps:

1. Compute candidate sorts for all symbols occurring in the problem (using
sort unerasure), and create the corresponding sorted problem.

2. Use Monotonox to find out if all sorts in the resulting problem are monotone.
If they are, we are done.

3. If there exists any sort that cannot be shown monotone, then give up. We
simply return the unsorted problem as a sorted problem with one sort.

In practice, there is more we can do in step 3 than giving up. One has to constrain
the sorted formula so that (1) the domains of all non-monotone sorts have the
same size, and (2) no monotone sort’s domain can be bigger than a non-monotone
sort’s domain. A finite model finder can easily implement these constraints; when
theorem-proving, one can enforce size constraints between sorts by adding to the
problem an injective function from the smaller sort to the bigger sort.

4 Results

The TPTP library [11] has recently been extended with many-sorted (so-called
TFF) problems. Unfortunately, only 26 of these problems have more than one
sort.5 They break down as follows: 11 have no non-ground positive equality,
which means that they are trivially monotone. Monotonox proves a further 5
monotone. 4 are monotone only because they have no finite models, a situation
which we cannot detect but plan to in the future. 6 are truly not monotone.

Translating from unsorted to many-sorted logic, we applied sort unerasure to
all 13610 unsorted TPTP problems,6 finding 6380 problems with more than one
sort, to which we applied our monotonicity inference. The results are as follows.

Total Total Monotone Other Affected Monotone
problems sorts sorts sorts7 problems8 problems9

CNF problems
Simple calculus 2598 19908 12317 7591 2446 592
Improved calculus 12545 7363 2521 726
Full first-order problems
Simple calculus 3782 91843 85025 6818 3154 1034
Improved calculus 88645 3198 3715 1532

Running times. None of the tests above took more than a few seconds. Mono-
tonicity inference was not more expensive than the sort unerasure algorithm.

5 TFF adds both sorts and arithmetic to TPTP; the vast majority of the problems so
far only test arithmetic, so only have one sort.

6 Excluding the so-called SYN problems that just test syntax.
7 Sorts that we couldn’t infer monotone (including sorts that are truly not monotone).
8 Problems where at least one sort was inferred monotone.
9 Problems where all sorts were inferred monotone.
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5 Conclusions and Future Work

We have introduced the concept of monotonicity, and applied it to the problem of
translating between many-sorted and unsorted first-order logic. Detecting mono-
tonicity of a sort is not decidable, but we have introduced two algorithms ap-
proximating the answer, one linear in the size of the problem, and one improved
algorithm solving an NP-complete problem using a SAT-solver. Our results show
that the improved algorithm detects many cases of monotonicity, and that the
NP-completeness is not a problem in practice.

For future work, we plan to integrate our previous work on finite unsatisfia-
bility detection [3] with monotonicity detection—any sort which must have an
infinite domain is monotone. We expect this method to improve monotonicity
detection for typical problems that have been translated from higher-order logics
with recursive datatypes, such as lists. Moreover, we are working on generalising
guards to arbitrary literals.

Finally, we plan to use the translation from unsorted to many-sorted logic to
populate the typed section of the TPTP benchmark library.
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Abstract. Methods exploiting problem symmetries have been very
successful in several areas including constraint programming and SAT
solving. We here recast a technique to enhance the performance of SMT-
solvers by detecting symmetries in the input formulas and use them to
prune the search space of the SMT algorithm. This technique is based
on the concept of (syntactic) invariance by permutation of constants.
An algorithm for solving SMT by taking advantage of such symmetries
is presented. The implementation of this algorithm in the SMT-solver
veriT is used to illustrate the practical benefits of this approach. It re-
sults in a significant improvement of veriT’s performances on the SMT-
LIB benchmarks that places it ahead of the winners of the last editions
of the SMT-COMP contest in the QF UF category.

1 Introduction

While the benefit of symmetries has been recognized for the satisfiability problem
of propositional logic [15], for constraint programming [9], and for finite model
finding [4,7,11], SMT solvers (see [3] for a detailed account of techniques used
in SMT solvers) do not yet fully exploit symmetries. Audemard et al. [1] use
symmetries as a simplification technique for SMT-based model-checking, and
the SMT solver HTP [14] uses some symmetry-based heuristics, but current
state-of-the-art solvers do not exploit symmetries to decrease the size of the
search space.

In the context of SMT solving, a frequent source of symmetries is when some
terms take their value in a given finite set of totally symmetric elements. The
idea here is very simple: given a formula G invariant by all permutations of some
uninterpreted constants c0, . . . , cn, for any model M of G, if term t does not
contain these constants and M satisfies t = ci for some i, then there should be a
model in which t equals c0. While checking for unsatisfiability, it is thus sufficient
to look for models assigning t and c0 to the same value. This simple idea is very
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effective, especially for formulas generated by finite instantiations of quantified
problems. We have implemented our technique in a moderately efficient SMT
solver (veriT [5]), and with this addition it outperforms the winners of recent
editions of the SMT-COMP [2] contest in the QF UF category. This indicates
that detecting symmetries, automatically or based on hints in the input, can be
important for provers to reduce the search space that they have to consider, just
as some constraint solvers already take symmetry information into account.

Outline. We first introduce notations, then define symmetries and give the main
theorem that allows us to reduce the search space. We recast an algorithm to
exploit such symmetries in the context of SMT-solvers. Next, the classical pi-
geonhole problem is analyzed from the perspective of symmetries. Finally, some
experimental results, based on the SMT-LIB, are provided and discussed.

2 Notations

A many-sorted first-order language is a tuple L = 〈S,V ,F ,P , d〉 such that S is
a countable non-empty set of disjoint sorts (or types), V is the (countable) union
of disjoint countable sets Vτ of variables of sort τ , F is a countably infinite set of
function symbols, P is a countably infinite set of predicate symbols, and d assigns
a sort in S+ to each function symbol f ∈ F and a sort in S∗ to each predicate
symbol p ∈ P . Nullary predicates are propositions, and nullary functions are
constants. The set of predicate symbols is assumed to contain a binary predicate
=τ for every sort τ ∈ S; since the sort of the equality can be deduced from the
sort of the arguments, the symbol = will be used for equality of all sorts. Terms
and formulas over the language L are defined in the usual way.

An interpretation for a first-order language L is a pair I = 〈D, I〉 where D
assigns a non-empty domain Dτ to each sort τ ∈ S and I assigns a meaning to
each variable, function, and predicate symbol. As usual, the identity is assigned
to the equality symbol. By extension, an interpretation I defines a value I[t] in
Dτ for every term t of sort τ , and a truth value I[ϕ] in {�,⊥} for every formula
ϕ. A model of a formula ϕ is an interpretation I such that I[ϕ] = �. The
notation Is1/r1,...,sn/rn

stands for the interpretation that agrees with I, except
that it associates the elements ri of appropriate sort to the symbols si.

For convenience, we will consider that a theory is a set of interpretations for
a given many-sorted language. The theory corresponding to a set of first-order
axioms is thus naturally the set of models of the axioms. A theory may leave
some predicates and functions uninterpreted: a predicate symbol p (or a function
symbol f) is uninterpreted in a theory T if for every interpretation I in T and
for every predicate q (resp., function g) of suitable sort, Ip/q belongs to T (resp.,
If/g ∈ T ). It is assumed that variables are always uninterpreted in any theory,
with a meaning similar to uninterpreted constants. Given a theory T , a formula
ϕ is T -satisfiable if it has a model in T . Two formulas are T -equisatisfiable if
one formula is T -satisfiable if and only if the other is. A formula ϕ is a logical
consequence of a theory T (noted T |= ϕ) if every interpretation in T is a model
of ϕ. A formula ϕ is a T -logical consequence of a formula ψ, if every model
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M ∈ T of ψ is also a model of ϕ; this is noted ψ |=T ϕ. Two formulas ψ and ϕ
are T -logically equivalent if they have the same models in T .

3 Defining Symmetries

We now formally introduce the concept of formulas invariant w.r.t. permuta-
tions of uninterpreted symbols and study the T -satisfiability problem of such
formulas. Intuitively, the formula ϕ is invariant w.r.t. permutations of uninter-
preted symbols if, modulo some syntactic normalization, it is left unchanged
when the symbols are permuted. Formally, the notion of permutation operators
depends on the theory T for which T -satisfiability is considered, because only
uninterpreted symbols may be permuted.

Definition 1. A permutation operator P on a set R ⊆ F ∪P of uninterpreted
symbols of a language L = 〈S,V ,F ,P , d〉 is a sort-preserving bijective map from
R to R, that is, for each symbol s ∈ R, the sorts of s and P [s] are equal.
A permutation operator homomorphically extends to an operator on terms and
formulas on the language L.

As an example, a permutation operator on a language containing the three con-
stants c0, c1, c2 of identical sort, may map c0 to c1, c1 to c2 and c2 to c0.

To formally define that a formula is invariant by a permutation operator mod-
ulo some rewriting, the concept of T -preserving rewriting operator is introduced.

Definition 2. A T -preserving rewriting operator R is any transformation op-
erator on terms and formulas such that T |= t = R[t] for any term, and
T |= ϕ ⇔ R[ϕ] for any formula ϕ. Moreover, for any permutation operator
P , for any term and any formula, R ◦ P ◦ R and R ◦ P should yield identical
results.

The last condition of Def. 2 will be useful in Lemma 6. Notice that R must
be idempotent, since R ◦ P ◦ R and P ◦ R should be equal for all permutation
operators, including the identity permutation operator.

To better motivate the notion of a T -preserving rewriting operator, consider
a formula containing a clause t = c0 ∨ t = c1. Obviously this clause is symmetric
if t does not contain the constants c0 and c1. However, a permutation operator
on the constants c0 and c1 would rewrite the formula into t = c1 ∨ t = c0,
which is not syntactically equal to the original one. Assuming the existence of
some ordering on terms and formulas, a typical T -preserving rewriting operator
would reorder arguments of all commutative symbols according to this ordering.
With appropriate data structures to represent terms and formulas, it is possible
to build an implementation of this T -preserving rewriting operator that runs
in linear time with respect to the size of the DAG or tree that represents the
formula.

Definition 3. Given a T -preserving rewriting operator R, a permutation oper-
ator P on a language L is a symmetry operator of a formula ϕ (a term t) on the
language L w.r.t. R if R[P [ϕ]] and R[ϕ] (resp., R[P [t]] and R[t]) are identical.
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Notice that, given a permutation operator P and a linear time T -preserving
rewriting operator R satisfying the condition of Def. 3, it is again possible to
check in linear time if P is a symmetry operator of a formula w.r.t. R. In the
following, we will assume a fixed rewriting operator R and say that P is a
symmetry operator if it is a symmetry operator w.r.t. R.

Symmetries could alternatively be defined semantically, stating that a per-
mutation operator P is a symmetry operator if P [ϕ] is T -logically equivalent to
ϕ. The above syntactical symmetry implies of course the semantical symmetry.
But the problem of checking if a permutation operator is a semantical symmetry
operator has the same complexity as the problem of unsatisfiability checking.
Indeed, consider the permutation P such that P [c0] = c1 and P [c1] = c0, and a
formula ψ defined as c = c0 ∧ c �= c1∧ψ′ (where c, c0 and c1 do not occur in ψ′).
To check if the permutation operator P is a semantical symmetry operator of ψ,
it is necessary to check if formulas ψ and P [ψ] are logically equivalent, which is
only the case if ψ′ is unsatisfiable.

Definition 4. A term t (a formula ϕ) is invariant w.r.t. permutations of unin-
terpreted constants c0, . . . , cn if any permutation operator P on c0, . . . , cn is a
symmetry operator of t (resp. ϕ).

The main theorem follows: it allows one to introduce a symmetry breaking as-
sumption in a formula that is invariant w.r.t. permutations of constants. This
assumption will decrease the size of the search space.

Theorem 5. Consider a theory T , uninterpreted constants c0, . . . , cn, a formula
ϕ that is invariant w.r.t. permutations of ci, . . . , cn, and a term t that is invariant
w.r.t. permutations of ci, . . . , cn. If ϕ |=T t = c0 ∨ . . . ∨ t = cn, then ϕ is T -
satisfiable if and only if

ϕ′ =def ϕ ∧ (t = c0 ∨ . . . ∨ t = ci)

is also T -satisfiable. Clearly, ϕ′ is invariant w.r.t. permutations of ci+1, . . . , cn.

Proof : Let us first prove the theorem for i = 0.
Assume that ϕ ∧ t = c0 is T -satisfiable, and that M ∈ T is a model of

ϕ ∧ t = c0; M is also a model of ϕ, and thus ϕ is T -satisfiable.
Assume now that ϕ is T -satisfiable, and that M ∈ T is a model of ϕ. By

assumption there exists some j ∈ {0, . . . , n} such that M |= t = cj , hence
M |= ϕ ∧ t = cj . In the case where j = 0, M is also a model of ϕ ∧ t = c0. If
j �= 0, consider the permutation operator P that swaps c0 and cj . Notice (this
can be proved by structural induction on formulas) that, for any formula ψ,
M |= ψ if and only if Mc0/dj ,cj/d0 |= P [ψ], where d0 and dj are respectively
M[c0] and M[cj ]. Choosing ψ =def ϕ ∧ t = cj , it follows that Mc0/dj ,cj/d0 |=
P [ϕ ∧ t = cj ], and thus Mc0/dj,cj/d0 |= P [ϕ] ∧ t = c0 since t is invariant w.r.t.
permutations of c0, . . . , cn. Furthermore, since ϕ is invariant w.r.t. permutations
of c0, . . . , cn, R[P [ϕ]] is ϕ for the fixed T -preserving rewriting operator. Since
R is T -preserving, Mc0/dj,cj/d0 |= P [ϕ] if and only if Mc0/dj,cj/d0 |= R[P [ϕ]],
that is, if and only if Mc0/dj ,cj/d0 |= ϕ. Finally Mc0/dj,cj/d0 |= ϕ ∧ t = c0,
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and Mc0/dj ,cj/d0 belongs to T since c0 and cj are uninterpreted. The formula
ϕ ∧ t = c0 is thus T -satisfiable.

For the general case, notice that ϕ′′ =def ϕ ∧ ¬(t = c0 ∨ . . . ∨ t = ci−1) is
invariant w.r.t. permutations of ci, . . . , cn, and ϕ′′ |=T t = ci ∨ . . . ∨ t = cn. By
the previous case (applied to the set of constants ci, . . . , cn instead of c0, . . . , cn),
ϕ′′ is T -equisatisfiable to ϕ∧ ¬(t = c0 ∨ . . .∨ t = ci−1)∧ t = ci. Formulas ϕ and(

ϕ ∧ ¬(t = c0 ∨ . . . ∨ t = ci−1)
)
∨
(
ϕ ∧ (t = c0 ∨ . . . ∨ t = ci−1)

)
are T -logically equivalent. Since A∨B and A′∨B are T -equisatisfiable whenever
A and A′ are T -equisatisfiable, ϕ is T -equisatisfiable to(

ϕ ∧ ¬(t = c0 ∨ . . . ∨ t = ci−1) ∧ t = ci

)
∨
(
ϕ ∧ (t = c0 ∨ . . . ∨ t = ci−1)

)
.

This last formula is T -logically equivalent to

ϕ ∧ (t = c0 ∨ . . . ∨ t = ci−1 ∨ t = ci)

and thus the theorem holds. �!

Checking if a permutation is syntactically equal to the original term or formula
can be done in linear time. And checking if a formula is invariant w.r.t. per-
mutations of given constants is also linear: only two permutations have to be
considered instead of the n! possible permutations.

Lemma 6. A formula ϕ is invariant w.r.t. permutations of constants c0, . . . , cn

if both permutation operators

– Pcirc such that Pcirc[ci] = ci−1 for i ∈ {1, . . . , n} and Pcirc[c0] = cn,
– Pswap such that Pswap[c0] = c1 and Pswap[c1] = c0

are symmetry operators for ϕ.

Proof : First notice that any permutation operator on c0, . . . , cn can be written
as a product of Pcirc and Pswap, because the group of permutations of c0, . . . , cn

is generated by the circular permutation and the swapping of c0 and c1. Any
permutation P of c0, . . . , cn can then be rewritten as a product P1◦· · ·◦Pm, where
Pi ∈ {Pcirc, Pswap} for i ∈ {1, . . . ,m}. It remains to prove that any permutation
operator P1 ◦ · · · ◦ Pm is indeed a symmetry operator. This is done inductively.
For m = 1 this is trivially true. For the inductive case, assume P1 ◦ · · · ◦ Pm−1

is a symmetry operator of ϕ, then

R[(P1 ◦ . . . ◦ Pm)[ϕ]] ≡ R[Pm[(P1 ◦ · · · ◦ Pm−1)[ϕ]]]
≡ R[Pm[R[(P1 ◦ · · · ◦ Pm−1)[ϕ]]]]
≡ R[Pm[ϕ]]
≡ R[ϕ]

where ≡ stands for syntactical equality. The first equality simply expands the
definition of the composition operator ◦, the second comes from the definition of
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the T -preserving rewriting operator R, the third uses the inductive hypothesis,
and the last uses the fact that Pm is either Pcirc or Pswap, that is, also a symmetry
operator of ϕ. �!

4 SMT with Symmetries: An Algorithm

Algorithm 1 applies Theorem 5 in order to exhaustively add symmetry break-
ing assumptions on formulas. First, a set of sets of constants is guessed (line 1)
from the formula ϕ by the function guess permutations; each such set of con-
stants {c0, . . . , cn} will be successively considered (line 2), and invariance of ϕ
w.r.t. permutations of {c0, . . . , cn} will be checked (line 3). Notice that function
guess permutations(ϕ) gives an approximate solution to the problem of partition-
ing constants of ϕ into classes {c0, . . . , cn} of constants such that ϕ is invariant
by permutations. If the T -preserving rewriting operator R is given, then this
is a decidable problem. However we have a feeling that, while the problem is
still polynomial (it suffices to check all permutations with pairs of constants),
only providing an approximate solution is tractable. Function guess permutations
should be such that a small number of tentative sets are returned. Every ten-
tative set will be checked in function invariant by permutations (line 3); with
appropriate data structures the test is linear with respect to the size of ϕ (as a
corollary of Lemma 6).

As a concrete implementation of function guess permutations(ϕ), partitioning
the constants in classes that all give the same values to some functions f(ϕ, c)

P := guess permutations(ϕ);1

foreach {c0, . . . , cn} ∈ P do2

if invariant by permutations(ϕ, {c0, . . . , cn}) then3

T := select terms(ϕ, {c0, . . . , cn}) ;4

cts := ∅ ;5

while T �= ∅ ∧ |cts| ≤ n do6

t := select most promising term(T, ϕ) ;7

T := T \ {t} ;8

cts := cts ∪ used in(t, {c0, . . . , cn}) ;9

let c ∈ {c0, . . . , cn} \ cts;10

cts := cts ∪ {c};11

if cts �= {c0, . . . , cn} then12

ϕ := ϕ ∧
(∨

ci∈cts t = ci

)
;13

end14

end15

end16

end17

return ϕ;18

Algorithm 1. A symmetry breaking preprocessor
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works well in practice, where the functions f compute syntactic information that
is unaffected by permutations, i.e. f(ϕ, c) and f(P [ϕ], P [c]) should yield the same
results. Obvious examples of such functions are the number of appearances of c
in ϕ, or the maximal depth of c within an atom of ϕ, etc. The classes of constants
could also take into account the fact that, if ϕ is a large conjunction, with c0 �= c1

as a conjunct (c0 and c1 in the same class), then it should have ci �= cj or cj �= ci

as a conjunct for every pair of different constants ci, cj contained in the class
of c0 and c1. In veriT we use a straightforward detection of clusters c0, . . . , cn

of constants such that there exists an inequality ci �= cj for every i �= j as a
conjunct in the original formula ϕ.

Line 3 checks the invariance of formula ϕ by permutation of c0, . . . , cn. In
veriT, function invariant by permutations(ϕ, {c0, . . . , cn}) simply builds, in linear
time, the result of applying a circular permutation of c0, . . . , cn to ϕ, and the
result of applying a permutation swapping two constants (for instance c0 and c1).
Both obtained formulas, as well as the original one, are normalized by a rewriting
operator sorting arguments of conjunctions, disjunctions, and equality according
to an arbitrary term ordering. The three formulas should be syntactically equal
(this is tested in constant time thanks to the maximal sharing of terms in veriT)
for invariant by permutations(ϕ, {c0, . . . , cn}) to return true.

Lines 4 to 15 concentrate on breaking the symmetry of {c0, . . . , cn}. First a
set of terms

T ⊆
{
t | ϕ |= t = c0 ∨ . . . ∨ t = cn}

is computed. Again, function select terms(ϕ, {c0, . . . , cn}) returns an approxi-
mate solution to the problem of getting all terms t such that t = c0∨ . . .∨t = cn;
an omission in T would simply restrict the choices for a good candidate on line 7,
but would not jeopardize soundness. Again, this is implemented in a straight-
forward way in veriT.

The loop on lines 6 to 15 introduces a symmetry breaking assumption on every
iteration (except perhaps on the last iteration, where a subsumed assumption
would be omitted). A candidate symmetry-breaking term t ∈ T is chosen by the
call select most promising term(T, ϕ). The efficiency of the SMT solver is very
sensitive to this selection function. If the term t is not important for unsatisfia-
bility, then the assumption would simply be useless. In veriT, the selected term
is the most frequent constant-free term (i.e. the one with the highest number of
clauses in which it appears), or, if no constant-free terms remains, the one with
the largest ratio of the number of clauses in which the term appears over the
number of constants that will be required to add to cts on line 11; so actually,
select most promising term also depends on the set cts.

Function used in(t, {c0, . . . , cn}) returns the set of constants in term t. If
the term contains constants in {c0, . . . , cn} \ cts, then only the remaining con-
stants can be used. On line 10, one of the remaining constants c is chosen non-
deterministically: in principle, any of these constants is suitable, but the choice
may take into account accidental features that influence the decision heuristics
of the SMT solver, such as term orderings.
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Finally, if the symmetry breaking assumption
∨

ci∈cts t = ci is not subsumed
(i.e. if cts �= {c0, . . . , cn}), then it is conjoined to the original formula.

Theorem 7. The formula ϕ obtained after running Algorithm 1 is T -satisfiable
if and only if the original formula ϕ0 is T -satisfiable.

Proof : If the obtained ϕ is T -satisfiable then ϕ0 is T -satisfiable since ϕ is a
conjunction of ϕ0 and other formulas (the symmetry breaking assumptions).

Assume that ϕ0 is T -satisfiable, then ϕ is T -satisfiable, as a direct conse-
quence of Theorem 5. In more details, in lines 6 to 15, ϕ is always invariant by
permutation of constants {c0, . . . , cn} \ cts, and more strongly, on line 13, ϕ is
invariant by permutations of constants in cts as defined in line 9. In lines 4 to
15 any term t ∈ T is such that ϕ |=T t = c0 ∨ . . . ∨ t = cn. On lines 10 to
14, t is invariant with respect to permutations of constants in cts as defined in
line 9. The symmetry breaking assumption conjoined to ϕ in line 13 is, up to the
renaming of constants, the symmetry breaking assumption of Theorem 5 and all
conditions of applicability of this theorem are fulfilled. �!

5 SMT with Symmetries: An Example

A classical problem with symmetries is the pigeonhole problem. Most SMT or
SAT solvers require exponential time to solve this problem; these solvers are
strongly linked with the resolution calculus, and an exponential lower bound for
the length of resolution proofs of the pigeon-hole principle was proved in [10].
Polynomial-length proofs are possible in stronger proof systems, as shown by
Buss [6] for Frege proof systems. An extensive survey on the proof complexity
of pigeonhole principles can be found in [13]. Polynomial-length proofs are also
possible if the resolution calculus is extended with symmetry rules (as in [12]
and in [17]).

We here recast the pigeonhole problem in the SMT language and show that
the preprocessing introduced previously transforms the series of problems solved
in exponential time with standard SMT solvers into a series of problems solved
in polynomial time. This toy problem states that it is impossible to place n + 1
pigeons in n holes. We introduce n uninterpreted constants h1, . . . , hn for the n
holes, and n+1 uninterpreted constants p1, . . . , pn+1 for the n+1 pigeons. Each
pigeon is required to occupy one hole:

pi = h1 ∨ . . . ∨ pi = hn

It is also required that distinct pigeons occupy different holes, and this is ex-
pressed by the clauses pi �= pj for 1 ≤ i < j ≤ n + 1. One can also assume that
the holes are distinct, i.e., hi �= hj for 1 ≤ i < j ≤ n, although this is not needed
for the problem to be unsatisfiable.
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Fig. 1. Some SMT solvers and the pigeonhole problem

The generated set of formulas is invariant by permutations of the constants
p1, . . . , pn+1, and also by permutations of constants h1, . . . , hn; very basic heuris-
tics would easily guess this invariance. However, it is not obvious from the pre-
sentation of the problem that hi = p1 ∨ . . . ∨ hi = pn+1 for i ∈ [1..n], so any
standard function select terms in the previous algorithm will fail to return any
selectable term to break the symmetry; this symmetry of p1, . . . , pn+1 is not di-
rectly usable. It is however most direct to notice that pi = h1 ∨ . . . ∨ pi = hn;
select terms in the previous algorithm would return the set of {p1, . . . , pn+1}.
The set of symmetry breaking clauses could be

p1 = h1

p2 = h1 ∨ p2 = h2

p3 = h1 ∨ p3 = h2 ∨ p3 = h3

...
pn−1 = h1 ∨ . . . ∨ pn−1 = hn−1

or any similar set of clauses obtained from these with by applying a permuta-
tion operator on p1, . . . , pn+1 and a permutation operator on h1, . . . , hn. Without
need for any advanced theory propagation techniques1, (n + 1) × n/2 conflict
clauses of the form pi �= hi ∨ pj �= hi ∨ pj �= pi with i < j suffice to transform
the problem into a purely propositional problem. With the symmetry break-
ing clauses, the underlying SAT solver then concludes (in polynomial time) the
unsatisfiability of the problem using only Boolean Constraint Propagation.

Without the symmetry breaking clauses, the SAT solver will have to investi-
gate all n! assignments of n pigeons in n holes, and conclude for each of those
assignments that the pigeon n + 1 cannot find any unoccupied hole.
1 Theory propagation in veriT is quite basic: only equalities deduced from congruence

closure are propagated. pi �= hi would never be propagated from pj = hi and pi �= pj .
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The experimental results, shown in Figure 1, support this analysis: all solvers
(including veriT without symmetry heuristics) time out2 on problems of rela-
tively small size, although CVC3 performs significantly better than the other
solvers. Using the symmetry heuristics allows veriT to solve much larger prob-
lems in insignificant times. In fact, the modified version of veriT solves every
instance of the problem with as many as 30 pigeons in less than 0.15 seconds.

6 Experimental Results

In the previous section we showed that detecting and breaking symmetries can
sometimes decrease the solving time from exponential to polynomial. We now
investigate its use on more realistic problems by evaluating its impact on SMT-
LIB benchmarks.

Consider a problem on a finite domain of a given cardinality n, with a set of
arbitrarily quantified formulas specifying the properties for the elements of this
domain. A trivial way to encode this problem into quantifier-free first-order logic,
is to introduce n constants {c1, . . . , cn}, add constraints ci �= cj for 1 ≤ i < j ≤ n,
Skolemize the axioms and recursively replace in the Skolemized formulas the
remaining quantifiers Qx.ϕ(x) by conjunctions (if Q is ∀) or disjunctions (if Q
is ∃) of all formulas ϕ(ci) (with 1 ≤ i ≤ n). All terms should also be such that
t = c1 ∨ . . . ∨ t = cn. The set of formulas obtained in this way is naturally
invariant w.r.t. permutations of c1, . . . , cn. So the problem in its most natural
encoding contains symmetries that should be exploited in order to decrease the
size of the search space. The QF UF category of the SMT library of benchmarks
actually contains many problems of this kind.

Figure 2 presents a scatter plot of the running time of veriT on each formula
in the QF UF category. The x axis gives the running times of veriT without
the symmetry breaking technique presented in this paper, whereas the times
reported on the y axis are the running times of full veriT. It clearly shows a
global improvement; this improvement is even more striking when one restricts
the comparison to unsatisfiable instances (see Figure 3); no significant trend is
observable on satisfiable instances only. We understand this behavior as follows:
for some (not all) satisfiable instances, adding the symmetry breaking clauses
“randomly” influences the decision heuristics of the SAT solver in such a way
that it sometimes takes more time to reach a satisfiable assignment; in any way,
if there is a satisfiable assignment, then all permutations of the uninterpreted
constants (i.e. the ones for which the formula is invariant) are also satisfiable
assignments, and there is no advantage in trying one rather than an other. For
unsatisfiable instances, if terms breaking the invariance play a role in the un-
satisfiability of the problem, then adding the symmetry breaking clauses always
reduces the number of cases to consider, potentially by a factor of nn/n! (where
n is the number of constants), and have a negligible impact if the symmetry
breaking terms play no role in the unsatisfiability.
2 The timeout was set to 120 seconds, using Linux 64 bits on Intel(R) Xeon(R) CPU

E5520 at 2.27GHz, with 24 GBytes of memory.
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Fig. 2. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on all formulas in the QF UF category. Each point represents a benchmark, and its
horizontal and vertical coordinates represent the time necessary to solve it (in seconds).
Points on the rightmost and topmost edges represent a timeout.

Fig. 3. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on the unsatisfiable instances of the QF UF category
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Table 1. Some SMT solvers on the QF UF category

Nb. of instances Instances within time range (in s) Total time
success timeout 0-20 20-40 40-60 60-80 80-100 100-120 T T ′

veriT 6633 14 6616 9 2 1 3 2 3447 5127
veriT w/o sym. 6570 77 6493 33 14 9 12 9 10148 19388
CVC3 6385 262 6337 20 12 7 5 4 8118 29598
MathSAT 6547 100 6476 49 12 6 3 1 5131 7531
openSMT 6624 23 6559 43 13 6 1 2 5345 8105
Yices 6629 18 6565 32 23 5 1 3 4059 6219
Z3 6621 26 6542 33 23 15 4 4 6847 9967

To compare with the state-of-the-art solvers, we selected all competing solvers
in SMT-COMP 2010, adding also Z3 (for which we took the most recent ver-
sion running on Linux we could find, namely version 2.8), and Yices (which was
competing as the 2009 winner). The results are presented in Table 1. Columns
T and T ′ are the total time, in seconds, on the QF UF library, excluding and in-
cluding timeouts, respectively. It is important to notice that these results include
the whole QF UF library of benchmarks, that is, with the diamond benchmarks.
These benchmarks require some preprocessing heuristic [16] which does not seem
to be implemented in CVC3 and MathSAT. This accounts for 83 timeouts in
CVC3 and 80 in MathSAT. According to this table, with a 120 seconds timeout,
the best solvers on QF UF without the diamond benchmarks are (in decreasing
order) veriT with symmetries, Yices, MathSAT, openSMT, CVC3. Exploiting
symmetries allowed veriT to jump from the second last to the first place of this
ranking. Within 20 seconds, it now solves over 50 benchmarks more than the
next-best solver.

Figure 4 presents another view of the same experiment; it clearly shows that
veriT is always better (in the number of solved instances within a given timeout)
than any other solver except Yices, but it even starts to be more successful that
Yices when the timeout is larger than 3 seconds. Scatter plots of veriT against
the solvers mentioned above give another comparative view; they are available
in Appendix A of the full version of this paper [8].

Table 2 presents a summary of the symmetries found in the QF UF bench-
mark category. Among 6647 problems, 3310 contain symmetries tackled by our
method. For 2698 problems, the symmetry involves 5 constants; for most of
them, 3 symmetry breaking clauses were added.

The technique presented in this paper is a preprocessing technique, and, as
such, it is applicable to the other solvers mentioned here. We conducted an
experiment on the QF UF benchmarks augmented with the symmetry breaking
clauses. We observed the same kind of impressive improvement for all solvers.
The most efficient solvers solve all but very few instances (diamond benchmarks
excluded): within a time limit of 120s and on the whole library, Yices only fails
for one formula, CVC for 36, and the others fails for 3 or 4 formulas. We also
observe a significant decrease in cumulative times, the most impressive being
Yices solving the full QF UF library but one formula in around 10 minutes.
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Fig. 4. Number of solved instances of QF UF within a time limit, for some SMT solvers

Table 2. Symmetries detected for the QF UF category: nsym indicates the number of
constants involved in the symmetry, nc the number of symmetry breaking clauses

�����nc

nsym
2 3 4 5 6 7 8 9 10 11

1 2
2 12 8
3 24 2668
4 22 92 3
5 122 166
6 156
7 17
8 11
9 5

10 2

Total 2 12 24 2698 214 325 17 11 5 2
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Scatter plots exhibiting the improvements are available in Appendix B of the
full version of this paper.

7 Conclusion

Symmetry breaking techniques have been used very successfully in the areas of
constraint programming and SAT solving. We here present a study of symmetry
breaking in SMT. It has been shown that the technique can account for an
exponential decrease of running times on some series of crafted benchmarks, and
that it significantly improves performances in practice, on the QF UF category
of the SMT library, a category for which the same solver performed fastest in
2009 and 2010. It may be argued that the heuristic has only be shown to be
effective on the pigeonhole problem and competition benchmarks in the QF UF
category. However, we believe that in their most natural encoding many concrete
problems contain symmetries; provers in general and SMT solvers in particular
should be aware of those symmetries to avoid unnecessary exponential blowup.
We are particularly interested in proof obligations stemming from verification of
distributed systems; in this context many processes may be symmetric, and this
should translate to symmetries in the corresponding proof obligations.

Although the technique is applicable in the presence of quantifiers and in-
terpreted symbols, it appears that symmetries in the other SMT categories are
somewhat less trivial, and so, require more clever heuristics for guessing invari-
ance, as well as more sophisticated symmetry breaking tools. This is left for fu-
ture work. Also, our technique is inherently non-incremental, that is, symmetry
breaking assumptions should be retrieved, and checked against new assertions
when the SMT solver interacts in an incremental manner with the user. This is
not a major issue, but it certainly requires a finer treatment within the SMT
solver than simple preprocessing.

The veriT solver is open sourced under the BSD license and is available on
http://www.veriT-solver.org.
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Abstract. This paper describes two algorithms for the compression
of propositional resolution proofs. The first algorithm, RecyclePivots-
WithIntersection, performs partial regularization, removing an infer-
ence η when it is redundant in the sense that its pivot literal already
occurs as the pivot of another inference located below in the path from
η to the root of the proof. The second algorithm, LowerUnits, delays
the resolution of (both input and derived) unit clauses, thus removing
(some) inferences having the same pivot but possibly occurring also in
different branches of the proof.

1 Introduction

Propositional satisfiability (SAT) solving has made enormous progress during the
recent decade, and powerful decision procedures are being used in many different
contexts, such as hardware and software verification, knowledge representation,
and diagnostic applications (see [3] for a thorough presentation of techniques
and applications of SAT solving). SAT solving also forms the backbone for au-
tomated reasoning over more expressive logics, such as in SMT (satisfiability
modulo theories) solving (see [2] for a detailed account of techniques used in
SMT solvers). For many applications, it is not enough to just obtain a yes/no
answer to the decision problem, but one is also interested in a justification of the
verdict, that is, a model satisfying the original formula, or a proof showing that
no such model exists. For example, in the context of proof carrying code [7], the
code producer must provide a proof that will be checked by the code consumer.
In the context of SAT solving, it is well understood how decision procedures
can be adapted to construct a resolution proof while performing proof search.
However, proofs output by SAT solvers can be huge (millions of learned clauses
and tens or hundreds of megabytes for typical benchmark cases), and techniques
for obtaining small proofs become of interest. Producing a proof of minimum
size is an NP-hard problem, so it is important to find heuristics of low (prefer-
ably linear) complexity that achieve interesting reductions in practical cases.
Going beyond trivial optimizations, such as eliminating inferences that do not
contribute to the final conclusion, one frequently observes that the same clause
(or the same pivot literal) is used more than once within a proof, and even along
� This work was partly supported by the ANR DeCert project.
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a single branch in a proof. Although it is not a priori the case that multiple uses
of a clause (or pivot) are actually redundant or that their elimination results in a
shorter proof, we concentrate in this work on identifying such cases and on corre-
sponding transformations of proofs. Our algorithms are generalizations of similar
techniques proposed in the literature [1,5,9]. We show that our techniques yield
provably better results than previous algorithms, while their implementation is
no more complex. A more detailed comparison with existing work appears in
Section 7. We have implemented our algorithms and we presented experimental
validations on standard benchmarks in Section 6.

2 The Resolution Calculus

A literal is an atomic formula or a negated atomic formula. A clause is a set of
literals, ⊥ denotes the empty clause. We write � to denote the dual of � and |�|
for the atom underlying the literal � (i.e., p = ¬p, ¬p = p, and |p| = |¬p| = p for
an atomic formula p).

Definition 1. A resolution inference is an instance of the following rule:

Γ1 ∪ {�} Γ2 ∪ {�} |�|
Γ1 ∪ Γ2

The clauses Γ1 ∪ {�} and Γ2 ∪ {�} are the inference’s premises and Γ1 ∪ Γ2 (the
resolvent of the premises) is its conclusion. The literal � (�) is the left (right)
resolved literal, and |�| is the resolved atom or pivot. �
A (resolution) proof of a clause κ from a set of clauses C is a directed acyclic
graph (dag): the input nodes are axiom inferences (without premises) whose
conclusions are elements of C, the resolvent nodes are resolution inferences, and
the proof has a node with conclusion κ. The dag contains an edge from a node
η1 to a node η2 if and only if a premise of η1 is the conclusion of η2. In this case,
η1 is a child of η2, and η2 is a parent of η1. A node with no children is a root.
A (resolution) refutation of C is a resolution proof of ⊥ from C. For the sake
of brevity, given a node η, we say clause η or η’s clause meaning the conclusion
clause of η, and (sub)proof η meaning the (sub)proof having η as its only root.
The resolvent of κ1 and κ2 with pivot p can be denoted as κ1 -p κ2. When
the pivot is uniquely defined or irrelevant, we omit it and write simply κ1 - κ2.
In this way, the set of clauses can be seen as an algebra with a commutative
operator - whose properties have been investigated in [6]; and terms in the
corresponding term algebra denote resolution proofs in a notation style that is
more compact and more convenient for describing resolution proofs than the
usual graph notation.

Example 2. Consider the proof ψ shown below:

η1

η2 : a, c,¬b

η1 : ¬a η3 : a, b
a

η4 : b
bη5 : a, c

aη6 : c

η4 η7 : a,¬b,¬c
bη8 : a,¬c η1

aη9 : ¬c
c

ψ : ⊥
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The node η4 has pivot a, left (right) resolved literal ¬a (a). Its conclusion is
{b} and its premises are the conclusions of its parents: the input nodes η1 ({¬a})
and η3 ({a, b}). It has two children (η5 and η8). ψ can be compactly represented
by the following proof term:

({¬a}︸ ︷︷ ︸
η1

-({a, c,¬b} - (η1 - {a, b})︸ ︷︷ ︸
η4

))- ((η4 - {a,¬b,¬c})- η1).

3 Redundant Proofs

A proof ψ of κ is considered redundant iff there exists another proof ψ′ of κ′

such that κ′ ⊆ κ (i.e. κ′ subsumes κ) and |ψ′| < |ψ| where |ϕ| is the number
of nodes in ϕ. The definition below describes two patterns of local redundancy:
proofs matching them (modulo commutativity of -) can be easily compressed.

Definition 3 (Local Redundancy). A proof containing a subproof of the
shapes (here omitted pivots indicate that the resolvents must be uniquely defined)

(η - η1)- (η - η2) or η - (η1 - (η - η2))
is locally redundant. Indeed, both of these subproofs can be equivalently replaced
by the shorter subproof η - (η1 - η2). �

Example 4. The proofs below are two of the simplest examples of locally redun-
dant proofs.

η : ¬a η1 : a, b
a

b

η η2 : a,¬b
a

¬b
b

ψ1 : ⊥

η : ¬a
η1 : a, b

η η2 : a,¬b
a

¬b
ba

a
ψ2 : ⊥

Both proofs can be rewritten to the shorter proof below:

η : ¬a
η1 : a, b η2 : a,¬b

ba
a

ψ3 : ⊥

Note that, by locally permuting the lowermost inference with pivot a and the
inference with pivot b, the proof ψ2 can be transformed into ψ1. This indicates
that the two patterns given in Def. 3 can be seen as different manifestations of
the same underlying phenomenon. They appear differently in resolution proofs
because the resolution calculus enforces a sequential order of inferences even
when the order actually does not matter. �

In the case of local redundancy, the pairs of redundant inferences having the
same pivot occur close to each other in the proof. However, redundant infer-
ences can also occur far apart in the proof. One could attempt to remove global
redundancies by repeatedly permuting inferences until the redundant inferences
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appear next to each other. However this approach is intrinsically inefficient be-
cause many permutations must be considered and intermediate resolvents must
be recomputed after every permutation.

The following definition generalizes Def. 3 by considering inferences with the
same pivot that occur within different contexts. We write ψ[η] to denote a proof-
context ψ[ ] with a single placeholder replaced by the subproof η.

Definition 5 ((Global) Redundancy). A proof
ψ[ψ1[η -p η1]- ψ2[η -p η2]] or ψ[ψ1[η -p (η1 - ψ2[η -p η2])]]

is potentially (globally) redundant. Furthermore, it is (globally) redundant if it
can be rewritten to one of the following shorter proofs:

ψ[η -p (ψ1[η1]- ψ2[η2])] or η -p ψ[ψ1[η1]- ψ2[η2]] or ψ[ψ1[η1]- ψ2[η2]].

Example 6. Consider the following proof ψ.
η : p, q η1 : ¬p, r

p
q, r η3 : ¬q

q
r

η η2 : ¬p, s,¬r
p

q, s,¬r η3 q
s,¬r

r
ψ : s

It corresponds to the proof term ((η -p η1) - η3) - ((η -p η2) - η3), which
is an instance of the first pattern appearing in Def. 5, hence ψ is potentially
globally redundant. However, ψ is not globally redundant: the replacement terms
according to Def. 5 contain (η1 - η3)- (η2 - η3), which does not correspond to
a proof. In particular, neither η1 nor η2 can be resolved with η3, as they do not
contain the literal q. �

The second pattern of potentially globally redundant proofs appearing in Def. 5 is
related to the well-known notion of regularity [10]. Informally, a proof is irregular
if there is a path from a node to the root of the proof such that a literal is used
more than once as a pivot in this path.

Definition 7 (Irregularity). A proof of the form ψ[η-p (η1-ψ′[η′-p η2])] is
irregular. �

The regular resolution calculus is the resolution calculus restricted so that irreg-
ular proofs are disallowed. Although it is still complete, it does not p-simulate
the unrestricted resolution calculus [10]: there are unsatisfiable formulas whose
shortest regular resolution refutations are exponentially longer than their short-
est unrestricted resolution refutations.

4 Algorithm LowerUnits

A closer inspection of Example 6 shows that it relies on η’s clause containing
two literals: its literal q had to be resolved within the proof-contexts ψ1[ ] and
ψ2[ ], and hence η could not be moved outside the contexts. It is easy to see that
a potentially redundant proof is always redundant in case the redundant node
contains a unit clause.
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Theorem 8. Let ϕ be a potentially redundant proof, and η be the redundant
node. If η’s clause is a unit clause, then ϕ is redundant.

Proof. Consider first a proof of the form ψ[ψ1[η - η1] - ψ2[η - η2]] and let �
be the only literal of η’s clause. Then the clause ψ1[η1] - ψ2[η2] contains the
literal �. Two cases can be distinguished, depending on whether the literal � gets
propagated to the root of ψ[ ]:

1. In all paths from ψ1[η1]-ψ2[η2] to the root of ψ[ ], � gets resolved out: then,
the clause ψ[ψ1[η1]-ψ2[η2]] is equal to the clause ψ[ψ1[η- η1]-ψ2[η- η2]],
and hence the original proof can be rewritten to ψ[ψ1[η1]- ψ2[η2]].

2. In some paths from ψ1[η1]-ψ2[η2] to the root of ψ[ ], � does not get resolved
out: in this case, the clause of ψ[ψ1[η1] - ψ2[η2]] is equal to the clause of
ψ[ψ1[η - η1] - ψ2[η - η2]] with the additional literal �. Consequently, the
clause η-(ψ[ψ1[η1]-ψ2[η2]]) is equal to the clause ψ[ψ1[η-η1]-ψ2[η-η2]],
and hence the original proof can be rewritten to η - (ψ[ψ1[η1]- ψ2[η2]]).

In both cases, since the rewriting to one of the three shorter proofs described in
Definition 5 is possible, the proof is redundant. The case for potentially redun-
dant proofs of the form ψ[ψ1[η -p (η1 - ψ2[η -p η2])]] is analogous. �

The LowerUnits (LU) algorithm targets exactly the class of global redundancy
stemming from multiple resolutions with unit clauses. The algorithm takes its
name from the fact that, when this rewriting is done and the resulting proof is
displayed as a dag, the unit node η appears lower (i.e., closer to the root) than
it used to appear in the original proof.

A naive implementation exploiting Theorem 8 would require the proof to be
traversed and fixed after each unit node is lowered. It is possible, however, to do
better by first collecting and removing all the unit nodes in a single traversal,
and afterwards fixing the whole proof in a single second traversal. Finally, the
collected and fixed unit nodes have to be reinserted at the bottom of the proof
(cf. Algorithms 1 and 2).

Care must be taken with cases when a unit node η′ occurs above in the sub-
proof that derives another unit node η. In such cases, η depends on η′. Let � be
the single literal of the unit clause of η′. Then any occurrence of � in the subproof
above η will not be cancelled by resolution inferences with η′ anymore. Conse-
quently, � will be propagated downwards when the proof is fixed and will appear

input : A proof ψ
output: A proof ψ′ with no global redundancy with unit redundant node

(unitsQueue, ψb) ← collectUnits(ψ);1

ψf ← fix(ψb);2

fixedUnitsQueue ← fix(unitsQueue);3

ψ′ ← reinsertUnits(ψf , fixedUnitsQueue) ;4

return ψ′;5

Algorithm 1. LowerUnits
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input : A proof ψ
output: A pair containing a queue of all unit nodes (unitsQueue) that are used

more than once in ψ and a broken proof ψb

ψb ← ψ;1

traverse ψb bottom-up and foreach node η in ψb do2

if η is unit and η has more than one child then3

add η to unitsQueue;4

remove η from ψb;5

end6

end7

return (unitsQueue, ψb);8

Algorithm 2. CollectUnits

in the clause of η. Difficulties with such dependencies can be easily avoided if
we reinsert the upper unit node η′ after reinserting the unit node η (i.e. after
reinsertion, η′ must appear below η, to cancel the extra literal � from η’s clause).
This can be ensured by collecting the unit nodes in a queue during a bottom-up
traversal of the proof and reinserting them in the order they were queued.

The algorithm for fixing a proof containing many roots performs a top-down
traversal of the proof, recomputing the resolvents and replacing broken nodes
(e.g. nodes having deletedNodeMarker as one of their parents) by their surviving
parents (e.g. the other parent, in case one parent was deletedNodeMarker).

When unit nodes are collected and removed from a proof of a clause κ and the
proof is fixed, the clause κ′ in the root node of the new proof is not equal to κ
anymore, but contains (some of) the duals of the literals of the unit clauses that
have been removed from the proof. The reinsertion of unit nodes at the bottom
of the proof resolves κ′ with the clauses of (some of) the collected unit nodes, in
order to obtain a proof of κ again.

input : A proof ψf (with a single root) and a queue q of root nodes
output: A proof ψ′

ψ′ ← ψf ;1

while q �= ∅ do2

η ← first element of q;3

q ← tail of q;4

if η is resolvable with root of ψ′ then5

ψ′ ← resolvent of η with the root of ψ′ ;6

end7

end8

return ψ′;9

Algorithm 3. ReinsertUnits
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Example 9. When applied to the proof ψ shown in Example 2, the algorithm LU
collects the nodes η4 and η1, and replaces them by deletedNodeMarker (DNM):

DNM
η2 : a, c,¬b

DNM η3 : a, b
a

η4 : DNM
bη5 : a, c

aη6 : c

DNM η7 : a,¬b,¬c
bη8 : a,¬c DNM

aη9 : ¬c
c

ψ : ⊥
Fixing removes the DNMs. The derived unit clause η4 is replaced by η3, since its
other parent was a DNM. And the proof ψ becomes:

η2 : a, c,¬b η7 : a,¬b,¬c
c

ψ : a,¬b

Finally, the collected units η4 (now replaced by η3) and η1 can be reinserted in
the bottom of the proof, resulting in ((η2 - η7)- η3)- η1:

η2 : a, c,¬b η7 : a,¬b,¬c
c

ψ : a,¬b η3(η4) : a, b
b

ψ′ : a η1 : ¬a
a

ψ′′ : ⊥
�

For efficiency reasons, modern SAT solvers tend to use unit clauses eagerly:
once a unit clause is found, it is used to simplify all other clauses. While this is
clearly a good heuristic during proof search, unit resolutions can be delayed once
a proof is found, since the number of resolution steps can then be significantly
reduced. This effect is illustrated by a toy example in the proof of Theorem 10
below. While modern SAT solvers can produce a linear-size proof for this par-
ticular example, it nevertheless illustrates the undesirable effects that eager unit
resolution may have on proof size.

Theorem 10. There is a sequence of unsatisfiable clause sets Sn for which
the shortest refutations ϕn obtained via eager unit resolution grow quadratically
(i.e. |ϕn| ∈ Ω(n2)) while the compressed proofs LU(ϕn) grow only linearly (i.e.
|LU(ϕn)| ∈ O(n)).

Proof. Consider the clause set Sn below:

κ1 = ¬p1 κ2 = p1,¬p2 κ3 = p1, p2,¬p3 . . . κn+1 = p1, p2, p3, . . . , pn

By eager unit resolution, κ1 is firstly resolved with all other n clauses. Then
the unit resolvent of κ1 and κ2 is resolved with all resolvents of κ1 and κi

(3 ≤ i ≤ n + 1) and so on. . . The kth iteration of unit resolution generates
n + 1− k resolvents. One of these is the unit clause κu

k+1 = ¬pk+1 which is then
resolved in the next iteration. It is easy to see that this refutation ϕn has length
n2+n

2 . The compressed proof LU(ϕn), shown below, has length equal to n only.

(κ1 - (. . .- (κn−1 - (κn - κn+1)) . . .))

�
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5 Algorithm RecyclePivotsWithIntersection

Our second algorithm, RecyclePivotsWithIntersection (RPI), aims at com-
pressing irregular proofs. It can be seen as a simple but significant modification
of the RecyclePivots (RP) algorithm described in [1], from which it derives
its name. Although in the worst case full regularization can increase the proof
length exponentially [10], these algorithms show that many irregular proofs can
have their length decreased if a careful partial regularization is performed.

Consider an irregular proof of the form ψ[η -p ψ′[η′ -p η′′]] and assume,
without loss of generality, that p ∈ η and p ∈ η′. Then, if η′ -p η′′ is replaced
by η′′ within the proof-context ψ′[ ], the clause η -p ψ′[η′′] subsumes the clause
η-p ψ′[η′-p η′′], because even though the literal ¬p of η′′ is propagated down, it
gets resolved against the literal p of η later on below in the proof. More precisely,
even though it might be the case that ¬p ∈ ψ′[η′′] while ¬p /∈ ψ′[η′ -p η′′], it is
necessarily the case that ¬p /∈ η -p ψ′[η′ -p η′′] and ¬p /∈ η -p ψ′[η′′].

Although the remarks above suggest that it is safe to replace η′ -p η′′ by η′′

within the proof-context ψ′[ ], this is not always the case. If a node in ψ′[ ] has
a child in ψ[ ], then the literal ¬p might be propagated down to the root of
the proof, and hence, the clause ψ[η -p ψ′[η′′]] might not subsume the clause
ψ[η-p ψ′[η′-p η′′]]. Therefore, it is only safe to do the replacement if the literal
¬p gets resolved in all paths from η′′ to the root or if it already occurs in the
root clause of the original proof ψ[η -p ψ′[η′ -p η′′]].

These observations lead to the idea of traversing the proof in a bottom-up
manner, storing for every node a set of safe literals that get resolved in all paths
below it in the proof (or that already occurred in the root clause of the original
proof). Moreover, if one of the node’s resolved literals belongs to the set of safe
literals, then it is possible to regularize the node by replacing it by one of its
parents (cf. Algorithm 4).

The regularization of a node should replace a node by one of its parents,
and more precisely by the parent whose clause contains the resolved literal that
is safe. After regularization, all nodes below the regularized node may have to

input : A proof ψ
output: A possibly less-irregular proof ψ′

ψ′ ← ψ;1

traverse ψ′ bottom-up and foreach node η in ψ′ do2

if η is a resolvent node then3

setSafeLiterals(η) ;4

regularizeIfPossible(η)5

end6

end7

ψ′ ← fix(ψ′) ;8

return ψ′;9

Algorithm 4. RecyclePivotsWithIntersection
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input : A node η
output: nothing (but the proof containing η may be changed)

if η.rightResolvedLiteral ∈ η.safeLiterals then1

replace left parent of η by deletedNodeMarker ;2

mark η as regularized3

else if η.leftResolvedLiteral ∈ η.safeLiterals then4

replace right parent of η by deletedNodeMarker ;5

mark η as regularized6

end7

Algorithm 5. regularizeIfPossible

be fixed. However, since the regularization is done with a bottom-up traversal,
and only nodes below the regularized node need to be fixed, it is again possible
to postpone fixing and do it with only a single traversal afterwards. Therefore,
instead of replacing the irregular node by one of its parents immediately, its
other parent is replaced by deletedNodeMarker, as shown in Algorithm 5. Only
later during fixing, the irregular node is actually replaced by its surviving parent
(i.e. the parent that is not deletedNodeMarker).

The set of safe literals of a node η can be computed from the set of safe literals
of its children (cf. Algorithm 6). In the case when η has a single child ς, the safe
literals of η are simply the safe literals of ς together with the resolved literal p
of ς belonging to η (p is safe for η, because whenever p is propagated down the
proof through η, p gets resolved in ς). It is important to note, however, that if
ς has been marked as regularized, it will eventually be replaced by η, and hence
p should not be added to the safe literals of η. In this case, the safe literals of η

input : A node η
output: nothing (but the node η gets a set of safe literals)

if η is a root node with no children then1

η.safeLiterals ← η.clause2

else3

foreach η′ ∈ η.children do4

if η′ is marked as regularized then5

safeLiteralsFrom(η′) ← η′.safeLiterals ;6

else if η is left parent of η′ then7

safeLiteralsFrom(η′) ← η′.safeLiterals ∪ { η′.rightResolvedLiteral } ;8

else if η is right parent of η′ then9

safeLiteralsFrom(η′) ← η′.safeLiterals ∪ { η′.leftResolvedLiteral } ;10

end11

end12

η.safeLiterals ←
⋂

η′∈η.children safeLiteralsFrom(η′)13

end14

Algorithm 6. setSafeLiterals
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input : A node η
output: nothing (but the node η gets a set of safe literals)

if η is a root node with no children then1

η.safeLiterals ← ∅2

else3

if η has only one child η′ then4

if η′ is marked as regularized then5

η.safeLiterals ← η′.safeLiterals ;6

else if η is left parent of η′ then7

η.safeLiterals ← η′.safeLiterals ∪ { η′.rightResolvedLiteral } ;8

else if η is right parent of η′ then9

η.safeLiterals ← η′.safeLiterals ∪ { η′.leftResolvedLiteral } ;10

end11

else12

η.safeLiterals ← ∅13

end14

end15

Algorithm 7. setSafeLiterals for RecyclePivots

should be exactly the same as the safe literals of ς. When η has several children,
the safe literals of η w.r.t. a child ςi contain literals that are safe on all paths
that go from η through ςi to the root. For a literal to be safe for all paths from
η to the root, it should therefore be in the intersection of the sets of safe literals
w.r.t. each child.

The RP and the RPI algorithms differ from each other mainly in the compu-
tation of the safe literals of a node that has many children. While RPI returns
the intersection as shown in Algorithm 6, RP returns the empty set (cf. Algo-
rithm 7). Additionally, while in RPI the safe literals of the root node contain all
the literals of the root clause, in RP the root node is always assigned an empty
set of literals. (Of course, this makes a difference only when the proof is not a
refutation.) Note that during a traversal of the proof, the lines from 5 to 10 in
Algorithm 6 are executed as many times as the number of edges in the proof.
Since every node has at most two parents, the number of edges is at most twice
the number of nodes. Therefore, during a traversal of a proof with n nodes, lines
from 5 to 10 are executed at most 2n times, and the algorithm remains linear.
In our prototype implementation, the sets of safe literals are instances of Scala’s
mutable.HashSet class. Being mutable, new elements can be added efficiently.
And being HashSets, membership checking is done in constant time in the av-
erage case, and set intersection (line 12) can be done in O(k.s), where k is the
number of sets and s is the size of the smallest set.

Example 11. When applied to the proof ψ shown in Example 2, the algorithm
RPI assigns {a, c} and {a,¬c} as the safe literals of, respectively, η5 and η8.
The safe literals of η4 w.r.t. its children η5 and η8 are respectively {a, c, b} and
{a,¬c, b}, and hence the safe literals of η4 are {a, b} (the intersection of {a, c, b}
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and {a,¬c, b}). Since the right resolved literal of η4 (a) belongs to η4’s safe
literals, η4 is correctly detected as a redundant node and hence regularized: η4

is replaced by its right parent η3. The resulting proof is shown below:

η1 : ¬a
η2 : a, c,¬b η3 : a, b

η5 : a, c
η6 : c

η3 η7 : a,¬c,¬b
η8 : a,¬c η1

η9 : ¬c

ψ : ⊥

({¬a}︸ ︷︷ ︸
η1

-({a, c,¬b} - {a, b}︸ ︷︷ ︸
η3

))- ((η3 - {¬b,¬c, a})- η1)

RP, on the other hand, assigns ∅ as the set of safe literals for η4. Therefore, it
does not detect that η4 is a redundant irregular node, and then RP(ϕ) = ϕ. �
Theorem 12. For any proof ϕ, |RPI(ϕ)| ≤ |RP(ϕ)|.

Proof. For every node η in ϕ, let Sη
RPI (resp., Sη

RP) be the set of safe literals for η
computed by RPI and RP. It is easy to see that Sη

RPI ⊇ Sη
RP for all η. Therefore,

RPI detects and eliminates more redundancies than RP. �
The better compression of RPI does not come for free, as computing an inter-
section of sets is more costly than assigning the empty set. For a node η with k
children, k sets must be intersected and the size of each set is in the worst case
in O(h), where h is the length of the shortest path from η to a root.

6 Experimental Evaluation

In order to evaluate these algorithms, we implemented prototypes1 of RP, RPI,
and LU in the high-level programming language Scala [8] and applied them, as
well as the two possible sequential compositions of LU and RPI, to 98 refuta-
tions of standard unsatisfiable benchmark problems2. These refutations3 were
generated by the CDCL-based SAT-solver included in veriT [4]. For each proof
ψ and each algorithm α, we measured4 the time t(α, ψ) taken by α to compress
ψ and the lengths of ψ and α(ψ), and we calculated the obtained compression
((|ψ| − |α(ψ)|)/|ψ|) and the compression speed ((|ψ| − |α(ψ)|)/t(α, ψ)).

The scatter plot shown in the left side of Figure 1 confirms that RPI always
compresses more than RP, as predicted by Theorem 12. Furthermore, it shows
that RPI often compressed much more than RP. The comparison becomes even
more favorable when RPI is followed by LU, as shown in the right-hand figure.
1 Source code available at http://code.google.com/p/proof-compression/
2 The benchmarks were: (1) unsatisfiable problems of the SatRace 2010 competition

solved by veriT in less than 30s and stemming from verification of software (“Babic”
and “Nec” benchmarks) and hardware (“IBM” and “Manolios”); (2) smaller prob-
lems of the Sat-Lib DIMACS benchmarks (“AIM”, “Dubois”, “JNH”, “BF”, “Pret”,
“SSA”, described in www.cs.ubc.ca/~hoos/SATLIB/benchm.html)

3 Proofs in www.logic.at/people/bruno/Experiments/2011/LU-RPI/Proofs.zip
4 The raw data of the experiments is available at https://spreadsheets.google.

com/ccc?key=0Al709ihGgKdndG1yWm5kNXIzNHppNXd0ZGQwTE01V0E&hl=en.

http://code.google.com/p/proof-compression/
www.cs.ubc.ca/~hoos/SATLIB/benchm.html
www.logic.at/people/bruno/Experiments/2011/LU-RPI/Proofs.zip
https://spreadsheets.google.com/ccc?key=0Al709ihGgKdndG1yWm5kNXIzNHppNXd0ZGQwTE01V0E&hl=en
https://spreadsheets.google.com/ccc?key=0Al709ihGgKdndG1yWm5kNXIzNHppNXd0ZGQwTE01V0E&hl=en
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Fig. 1. Comparing RP and RPI, resp. RPI followed by LU

Even though our implementations are just prototypes and the experiments
were executed on a modest computer (2.8GHz Intel Core 2 Duo processor with
only 2GB of RAM (1067MHz DDR3) available for the Java Virtual Machine),
we were pleased to see that the algorithms presented an acceptable and scalable
performance. The proofs generated by veriT contained up to millions of derived
clauses and were up to 100MB big (in the size of the text file) in a minimalistic
proof format5. They included all intermediate clauses that had been learned
during the execution of veriT, even those that were not used to derive the final
empty clause. Before applying the compression algorithms, we removed these
unused clauses, but the pruned proofs were still up to more than half a million
clauses long and up to about 20MB big. The execution times of all algorithms
varied between less than 100 miliseconds for the smaller proofs, less than 10
seconds for the majority of the much bigger proofs of the SatRace benchmarks,
and 7.5 minutes in the worst case (for a highly redundant proof with more than
half a million clauses).

Figure 2 shows the compression (top) and compression speed (bottom) for the
examples from the SatRace. The top figure suggests a trend where longer proofs
are more redundant and allow for more compression. This might be due to the
fact that the SAT solver backtracks and restarts more often for harder problems
that generate longer proofs.

The bottom figure shows that compression speeds of the RPI and RP algo-
rithms are very similar, although RPI took significantly more time than RP for
some examples. In cases where the compression rates are comparable, the exe-
cution times are similar as well. When RPI took more time than RP, it achieved
correspondingly better compression. This indicates that computing the inter-
sections is worthwhile in practice. Finally, note that LU is usually the fastest
algorithm in terms of compression speed.

5 This format is closely related to the resolution proof terms used in this paper and is
quite compact: (1) only the parents of a derived clause must be indicated explicitly;
(2) a clause only needs an explicit name/number if it has more than one child.
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Fig. 2. Compression and compression speed for the SatRace examples

The compression achieved by applying both LU and RPI is usually less than
the sum of the compressions achieved by each algorithm alone. This is so because
certain redundancies are eliminated by both algorithms. Moreover, the scatter
plot above shows that the order in which LU and RPI are applied matters.
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7 Related Work and Ideas for Future Work

One of the kinds of local redundancy was considered in our previous work [6],
where we also proposed resolution hypergraphs as a possible non-linear nota-
tion for resolution proofs, making it easier to identify and address non-local
redundancies. Although in principle more general than the techniques described
here, they do not scale to large proofs, because resolution hypergraphs can be
exponentially larger than the proofs they represent.

The same kind of local redundancy was also mentioned by Simone et al. [9],
as the local proof rewriting rule A1′. They address global redundancies by hav-
ing another local proof rewriting rule (A2) that performs inference permutations
when possible. As we have argued before, this approach is inherently inefficient,
since too many permutations would have to be considered in order to eliminate
all global redundancies. They also consider other interesting local proof rewrit-
ing rules that eliminate redundancies not considered in this paper. It would be
worthwhile to generalize these other kinds of local redundancy by defining their
global counterparts too; it might then be possible to adapt the global techniques
described in this paper to these other kinds of redundancy.

Besides RP, Bar-Ilan et al. [1] also defined the RecycleUnits algorithm, which
replaces one of the parents of a resolvent with a resolved literal � by a unit clause
containing �, if such a unit clause exists somewhere else in the proof. Although
this algorithm eliminates some kinds of redundancy, it generates redundancies of
the kind handled by LU. Therefore it would be helpful to always execute LU after
RecycleUnits, or to combine both algorithms more tightly: instead of replacing
a parent by the unit, the resolvent can be replaced by the other parent, and the
unit can be queued to be reinserted at the bottom of the proof.

Cotton [5] proposes to split a refutation ψ into a proof ψp of the unit clause
containing the atom p and a proof ψ¬p of unit clause containing the literal ¬p.
This is done by deleting one of the parents of every resolvent with pivot p. A
new refutation ψ′, possibly shorter than ψ, is then obtained by resolving ψp and
ψ¬p. Since in ψ′ there is now only one resolvent with pivot p, all potential redun-
dancies with pivot p are removed with this splitting technique. Consequently, in
principle this splitting technique could subsume all other techniques previously
described, including the ones in this paper. However, since not all potential re-
dundancies are actual redundancies, ψ′ might actually be longer than ψ. This
problem is atenuated by heuristically choosing a promising literal p to split, and
iterating until the next proof ψ′ becomes longer than the current proof ψ. The
techniques that globally identify precisely which potential redundancies are ac-
tual redundancies, such as those presented in [1] and here should scale better,
since they do not need to iterate an undefined number of times and fix the proof
after every iteration.

While this paper focused on regularization of proofs, trying to compress proofs
by introducing irregularities is also an interesting possibility to be investigated in
future work, since exponential compression might be achieved in the best cases.
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8 Conclusions

The use of proof contexts makes for a clear transition from local to global trans-
formations of proofs, and in particular helped us generalize certain kinds of
local redundancies to global ones. In this way, we designed two algorithms that
eliminate these global redundancies more efficiently than previous ones. Our ex-
periments seem to indicate that we can expect reductions of around 20% for
large proofs, beyond what is possible just by pruning irrelevant inferences. Since
these reductions essentially come for free and proof checking can be costly (for
example when it is performed by the trusted kernel of an interactive proof as-
sistant or when it has to be repeated many times by different proof consumers
such as in a PCC scenario), we believe that it is worthwhile to implement our
techniques when proof size matters.
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Abstract. A number of advances in software security over the past
decade have foundations in the behavior matching problem: given a spec-
ification of software behavior and a concrete execution trace, determine
whether the behavior is exhibited by the execution trace. Despite the
importance of this problem, precise descriptions of algorithms for its
solution, and rigorous analyses of their complexity, are missing in the
literature. In this paper, we formalize the notion of behavior matching
used by the software security community, study the complexity of the
problem, and give several algorithms for its solution, both exact and ap-
proximate. We find that the problem is in general not efficiently solvable,
i.e. behavior matching is NP-Complete. We demonstrate empirically that
our approximation algorithms can be used to efficiently find accurate
solutions to real instances.

1 Introduction

The prevalence of malicious software, and the inability of traditional protec-
tion mechanisms to stop it, has led security researchers and practitioners to
develop behavior-based techniques [2, 3, 6, 11, 12, 13, 15, 16, 17, 18, 19]. Un-
like the syntax-based techniques used for years to detect the presence of known
malicious code, behavior-based techniques observe the actions of potentially-
malicious code, and attempt to match then against pre-defined specifications
of malicious behavior. Conventional thinking suggests that this is a better way
to detect threats, as it is much more difficult for malicious code developers to
obfuscate the behavior of their software than it is to obfuscate its syntax in
memory. Experimental results and practical experience have supported these
claims [2, 12, 13].

This has made the technical problem of matching behavior specifications to
run-time program behavior important. However, when one surveys the literature
in this area [2, 6, 12, 16, 17, 18], one finds that formal descriptions of algorithms
for this operation are largely missing. Furthermore, given the reported perfor-
mance characteristics of existing matching techniques [2, 12, 16, 18], it seems to
be widely assumed that behavior matching can be done efficiently, e.g. accounts
of 3%-5% overhead on baseline program runtime are common. So, when we im-
plemented a behavior matching algorithm for a project last winter [9], we did
not expect to encounter any performance problems. To our surprise, we found

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 252–267, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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that matching simple behavior graphs against pre-recorded traces of short (120
second) executions either exhausted available memory resources, or took several
days to complete.

This led us to examine our algorithm in an effort to determine the cause of its
apparent high complexity. We determined that in order to correctly match our be-
havioral specifications to realistic traces, backtracking on the potential mappings
between specification components and trace entries was needed. Furthermore, we
could not envision a scenario in which the algorithms discussed in the literature
would not need to perform a similar kind of backtracking. This prompted us to
perform the study reported in this paper: a detailed formal examination of the
inherent complexity of the problem posed by matching behavior specifications to
concrete execution traces, and a study of potential algorithms, exact and approx-
imate, for doing so. This paper makes the following contributions:

– We present a general formulation of behavior matching that encompasses
the most prevalent accounts in the literature (Section 2), and use it to show
that behavior matching is an NP-Complete problem under the conservative
assumption that one allows equality dependencies between events in the be-
havior specification (Section 2). Furthermore, our formulation is sufficiently
generic to apply to arbitrary software behaviors, and thus relevant to speci-
fication needs in problems outside of security, such as runtime verification.

– We give two exact algorithms for performing behavior matching: one in
direct terms of our formalism, and one from a reduction to SAT that al-
lows practitioners to benefit from recent advances in SAT-solving technology
(Section 3).

– We also present two approximation algorithms for behavior matching. One
algorithm allows the user to bound the probability of false positives for a
small trade-off in runtime complexity, and the other runs in time linear in
the size of the trace.

The rest of this paper is organized as follows. Section 2 formulates the problem
of behavior matching, and gives our main complexity result. Section 3 presents
several algorithms for solving behavior matching instances. Section 5 discusses
related work, and Section 6 provides concluding remarks.

2 Definitions and Problem Statement

First, we discuss the notion of software behavior that defines the basis of the
matching problem. Any propositions we state have corresponding proofs in the
technical report [8]. All of our formalisms make use of terms [1] T (Σ, V ), which
denotes the set of all terms over the signature Σ of function symbols and V of
variables. We also make use of the projection function πi(·), which takes a tuple
and returns its ith component.

Intuitively, dynamic behavior matching seeks to determine whether an ob-
served execution trace, or sequence of observable facts emitted by a program,
“fits” a pre-defined behavior specification, which can be thought of as a set of
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observable facts together with dependencies that describe necessary relations
between the facts. In previous work, the dependencies generally encode either
equality [11, 17], or some predicate over the data in the facts (e.g. SubStr [9] or
taint [13]). In our work, the “fits” relation is made precise as a mapping between
the facts in the specification and the facts in the trace, that properly accounts
for the dependencies in the specification. This characterization naturally gives
rise to a graphical structure, which is the basis for our notion of specification,
called the behavior graph (Definition 1). This definition is meant to encompass
as many of the relevant notions of behavior from the related work as possible,
without introducing features that would make the matching problem more com-
plex. In other words, it should be possible to translate our specifications into
other formalisms found in the literature.

Definition 1. Behavior Graph. A behavior graph G is a 5-tuple (A,E, a0, α, β),
where

– A is a set of states, and a0 ∈ A is an initial state.
– E ⊆ A × A is a set of directed edges between states such that (A,E) is a

DAG.
– α : A→ T (Σ, V ) is a total mapping from each state to a Σ-terms over V .
– β : E → (V → T (Σ, V )) is a total mapping from each edge to T (Σ, V )-

substitutions.

The signature Σ used in α and β corresponds to a set of observable events
in the system. α maps states in G to observable events, with variables from
V (V ∩ Σ = ∅) allowing variation in the substructure of events. β serves to
constrain the dependencies between the states connected by e ∈ E. For example,
if β((a, b)) = [v1 = v2 + 1], then the behavior graph has the equality constraint
v1 = v2 + 1 on the edge (a, b).

As an example, much of the existing literature is concerned with system calls
and taint tracking. This work can be represented in our framework by treating
each system call as a function symbol in Σ, and introducing a symbol taint(2)

such that taint(x, y) denotes that fact that x matches the taint label of y. Labels
are constant symbols, and represent data provenance, which can correspond to
a number of system entities such as network connections, memory regions, and
files. An example of this is given in Example 1.

Example 1. Download-then-Execute. The behavior graph given by:

– A = {s0, s1}, E = {(s0, s1)}, a0 = s0, β = {(s0, s1) �→ [l2 �→ l1]}
– α = {s0 �→ download(taint(x, l1)), s1 �→ execute(taint(y, l2))}

corresponds to the download-then-execute behavior. It is depicted in the follow-
ing diagram:

s0 : download(taint(x, l1))
[l2 �→l1] �� s1 : execute(taint(y, l2))

In this figure, the label on the edge corresponds to the β-constraint, and the
labels on states to the corresponding α-labels. Note the β-constraint [l2 �→ l1]
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between the two states, which states that the taint label in the second state must
be equal to that in the first, effectively requiring that the data that is executed
have the same taint label as the data that was downloaded.

Now we define an execution trace, the other relevant data in the behavior match-
ing problem. An execution trace is a sequence of ground terms, as there are no
unknowns about events that have already occurred in the execution of a program.

Definition 2. Execution Trace. An execution trace T ∈ T (Σ, ∅)∗ is a finite-
length sequence of ground Σ-terms that may contain repetitions , where we use
Range(T) to denote the set of terms in the sequence and T(i) to the ith element.
Each term in T corresponds to a concrete observation about the execution of
some program, with the interpretation that for i < j, T(i) occurs before T(j) in
the program execution.

The most common type of trace for behavior matching in the security literature
is that obtained by letting Σ denote system calls and their arguments, often
with meta-symbols for additional functionalities such as provenance and taint
tracking, timing information, etc.

We now come to the primary definition of this section – behavior matching.
Behavior matching is a problem defined in terms of a behavior graph and an
execution trace; the goal is to determine whether the execution trace exhibits the
behavior specified in the behavior graph. To simplify notation, in what follows
we write βx,y to denote β(x, y) and ρx

y for πx(ρ(y)).

Definition 3. Behavior Matching. Given a behavior graph G = (A,E, a0, α, β)
and execution trace T, we say that G matches T, written G |= T, iff there exists
a total function ρ : A→ Z+ × (V → T (Σ, V )) such that:

1. ρa0 = (i, σ), where σ(α(a0)) = T(i).
2. For each (a, a′) ∈ E:

ρ2
a′(ρ2

a(βa,a′(α(a′)))) = T(ρ1
a′)

Intuitively,
– βa,a′(α(a′)) is the term associated with the latter state a′, with depen-

dencies instantiated according to βa,a′ .
– Each application of ρ2

a and ρ2
a′ specializes the dependencies according to

the trace terms to which ρ associates a and a′, respectively.
3. If i < j and ρa = (i, σ), ρa′ = (j, σ′), then a must be an ancestor of a′ in

(A,E). Intuitively ρ maps states in G to terms in T that obey the temporal
constraints introduced by the edges in G.

4. For any a, a′ ∈ A, ρ1
a �= ρ1

a′ , i.e. ρ cannot map two states to the same trace
element.

We call ρ a witness of the matching between G and T. Intuitively, ρ maps a path
through G to a sequence of ground terms in T, while satisfying all temporal and
data dependencies stipulated by the edges in G.
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Note that at times we abuse notation slightly by taking substitutions over
terms, even though they are technically defined over variables; this is taken to
mean the extension of the substitution over all free variables in the term. Also
notice that in Definition 3, ρ must be a total mapping over A: all states in G
must map to a term in T for the witness to be valid. Some researchers work
with behavior graphs that have so-called “or-edge sets”, which allow a matching
trace to cover a path over one edge in the set, instead of all of them. This
style of disjunctive behavior graph can be simulated with multiple graphs from
Definition 1, one behavior matching instance per graph.

Example 2. The sequence

download(taint(/tmp/data, l1)), open(taint(/tmp/data, l1)),
execute(taint(/tmp/data, l1))

matches the behavior graph from Example 1, with a witness that unifies the first
and third terms in the trace with the behavior graph:{

s0 �→ (1, [x �→ /tmp/data, l1 �→ l1]), s1 �→ (3, [y �→ /tmp/data, l2 �→ l1])
}

Example 3. The sequence

download(taint(/tmp/data, l1)), open(taint(/tmp/data, l1)),
execute(taint(/bin/bash, l2))

does not match the behavior graph from Example 1. Looking to Definition 3, we
see that the only way to unify α(s0) with a term in the trace is

σ = [x �→ /tmp/data, l1 �→ l1]

So ρ(s0) = (1, [x �→ /tmp/data, l1 �→ l1]). This gives us

ρ1
s0

(βs0,s1(α(s1))) = execute(taint(y, l1))

There is no substitution that can unify this term with execute(taint(/bin/bash,
l2)), because of the mismatched taint labels.

We now move on to define two notions of behavior matching that specify differ-
ent aspects of accuracy. Intuitively, soundness relates to false negatives, or the
ability of an algorithm to correctly identify a matching execution trace when it is
present, and completeness relates to false positives, or the ability of an algorithm
to correctly identify traces that do not match a given graph.

Definition 4. Sound and Complete Matching Algorithm. A matching algorithm
A is a decision procedure for Definition 3. An algorithm A is a sound matching
algorithm iff given a behavior graph G and trace T, G |= T⇒ A(T,G) = True.
It is a complete matching algorithm iff A(G,T) = True ⇒ G |= T.

Next, we discuss one of the central results of this work, which is that the inher-
ent complexity of the behavior matching problem makes it intractable for most
settings. To our knowledge, this is the first result of its kind for the problem.
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Proposition 1. Sound and complete behavior matching, with plain equality con-
straints between states, is NP-complete.

By plain equality constraints, we are referring to dependencies that map a
variable to another variable, without involving additional term structure. The
proof [8] shows that checking a witness against a trace is a polynomial opera-
tion, and reduces instances of sub-DAG isomorphism (previously shown to be
NP-Complete [20]) to behavior matching. The reduction treats nodes and edges
in each of the DAGs as though they are events in Σ. For the larger of the DAGs,
all of the structure is encoded in constant symbols, and the reduction views it as
an execution trace. The reduction encodes the structure of the smaller of the two
DAGs as dependence relations, and produces a corresponding behavior graph.
Notice that the reduction only uses simple equality dependencies in the behavior
graph; this implies that even the most simple dependencies arising in behavior
graphs can lead to intractable instances of the problem. An example reduction
on small graphs is given in Example 4.

Example 4. Consider the subgraph isomorphism problem given in Figure 1(a),
where we would like to determine whether the three-node graph is isomorphic to
a subgraph of the four-node graph. We reduce this to the instance of behavior
matching given in Figure 1(b). Beginning and ending sentinels, s and f respec-
tively, are added to the trace. In the reduction of the smaller graph to a behavior
graph, nodes are represented by states that have corresponding n(x) terms under
α, and edges to states with e(x1, x2) terms. Data dependencies are introduced
to reflect the fact that the arguments of the terms on edge states must match
the arguments of the corresponding node-state endpoints, as shown on the edges
of the behavior graph in Figure 1 (b). The matching problem has a witness:⎧⎪⎪⎨

⎪⎪⎩
ρ(s0) = (1, ∅), ρ(s6) = (10, ∅),
ρ(s1) = (2, [x1 �→ o1]), ρ(s4) = (5, [x6 �→ o2]),
ρ(s5) = (7, [x7 �→ o3]), ρ(s2) = (2, [x2 �→ o1, x3 �→ o2]),
ρ(s3) = (4, [x4 �→ o1, x5 �→ o3])

⎫⎪⎪⎬
⎪⎪⎭

This mapping gives an isomorphism for the original subgraph isomorphism prob-
lem: the top three nodes in each graph map to each other.

3 Algorithms

In this section, we detail several solutions for solving instances of the behavior
matching problem. We begin with an exact algorithm, and conclude our discus-
sion with two sound approximation algorithms.

Preliminaries. All of our algorithms are built from a shared collection of
entities and primitives, which vary in detail among different algorithms:

– F , the frontier set, which represents the current state of the matching oper-
ation. Different algorithms will place different sorts of elements in F , but we
always use Γ to refer to the sort of elements in F . The frontier set is analogous
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(a) Sub-DAG isomorphism instance.

s0 : s
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s1 : n(x1)

[x2 �→x1]
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[x4 �→x1]

�������������

s2 : e(x2, x3)

[x6 �→x3]
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s3 : e(x4, x5)

[x7 �→x5]

��
s4 : n(x6)

�������������
s5 : n(x7)

��											

s6 : f

1 : s

2 : n(o1)

3 : e(o1, o2)

4 : e(o1, o3)

5 : n(o2)

6 : e(o2, o4)

7 : n(o3)

8 : e(o3, o4)

9 : n(o4)

10 : f

(b) Corresponding reduction to behavior matching.

Fig. 1. Sub-DAG isomorphism to behavior matching reduction

to a similar notion used in classic algorithms for matching NFAs [10], which
consists of the set of states that the matching as reached at a given time.

– Test : A×Z+×Γ �→ {True,False}, returns true if and only if the given frontier
element (3rd argument) can be extended by matching the given state (1st
argument) to the trace element at the given index (2nd argument).

– Update : P(Γ ) × A × Z+ × Γ �→ P(Γ ), updates the given frontier set (1st
argument) to reflect an extension to the given frontier element (4th argu-
ment) by a mapping between the state/indexed trace term pair (2nd and
3rd arguments), returning a new frontier.

These primitives are used in Algorithm 1 (explained below), and are later mod-
ified to obtain approximation algorithms.

A Sound and Complete Algorithm. Algorithm 1 presents a sound and
complete behavior matching algorithm. This property is a result of the definitions



Dynamic Behavior Matching 259

Algorithm 1. Exact behavior matching
1: Input: Behavior graph G = (A,E, a0, α, β), execution trace T
2: // Each element in the frontier maps states to trace terms and substitutions
3: Γ = A �→ (Z+, V �→ T (Σ, V ))
4: // Test(·, ·, ·) Applies the dependence requirement for each edge (s′, s) on s
5: Test(s, i, w) ≡ ∃σ.(∀(s′, s) ∈ E.σ(w2

s′)(βs′,s(α(s)))) = T(i))
6: // Update(·, ·, ·, ·) extends witness w with a mapping from s to T(i)
7: Update(F , s, i, w) = F ∪ {w1[s �→ (i, σ)]} where σ matches α(s) to T(i)
8: F ← ∅
9: for 0 ≤ i ≤ |T| do

10: for w ∈ F do
11: for each next matchable state s on frontier element w do
12: // Test dependencies with predecessors in current derivation
13: if Test(s, i, w) = True then
14: // Extend frontier with matching term and updated derivation
15: F ← Update(F , s, i, w)
16: if w is a complete mapping then
17: return (True, w)
18: end if
19: end if
20: end for
21: end for
22: // If current trace term matches the initial state of G, update frontier
23: if Test(s, i, ∅) = True then
24: F ← Update(F , a0, i, ∅)
25: end if
26: end for
27: return False

on lines 2 – 7, which specify the core primitives of the algorithm. The first
definition is of Γ , the sort of element found in F . Γ corresponds to mappings from
states in G to pairs of trace indices and substitutions (e.g. partial witnesses).
The substitution in this pair unifies the term associated with the state with
the trace element indexed by the first component. For example, if γ ∈ Γ , then
T(γ1

a) matches γ2
a(α(a)). By defining Γ in this way, the algorithm can build

a full set of possible partial witnesses as it enumerates a trace, and return a
complete witness if a match exists; no approximation is necessary. Notice the
correspondence between this definition of Γ (and thus F) to the frontier used
in traditional NFA matching: partial witnesses represent possible intermediate
states as G is matched with T.

The second definition is of Test, on line 5. This definition is a formal restate-
ment of the dependence relation stated in Definition 3. When Test(s, i, w) is
applied, all predecessors of s in G are checked, according to the mappings in
the given witness w, for satisfaction of the dependence requirement stated in
Definition 3. The expression is True iff the requirement holds for all predeces-
sors of s. The final definition, Update(F , s, i, w), extends the witness w with a
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mapping from state s to trace element T(i), and the substitution σ that makes it
possible. Notice that this definition of F does not drop or replace elements, but
only adds new elements that are extensions of existing ones. This is equivalent
to allowing the algorithm to backtrack, and is the source of the algorithm’s com-
plexity. If partial witnesses were dropped once their frontiers were all matched,
it would make the algorithm “greedy”, as backtracking would become impossi-
ble. However, it would also make the algorithm unsound, as it would open up
the possibility for a trace to “trick” the algorithm into going down a particular
path, which never leads to a full witness, and then pursuing an alternate match-
ing path from midway through the original path. The corresponding technical
report [8] describes this issue in more depth.

The rest of Algorithm 1 works by scanning the behavior trace T from begin-
ning to end, one element at a time. For each trace element, each frontier element
is enumerated (line 10), and an attempt is made to match the trace term to a
term corresponding to the next matchable states of the frontier element (line
13). When the algorithm starts, the frontier is empty, so the matching on line
23 attempts to pair trace terms with the initial state in G. If the initial-state
matching succeeds, then the frontier is updated (line 24) to reflect this partial
matching. In subsequent iterations, an attempted match between the latest trace
term T(i) and each element in the frontier (line 15) is made, and if successful,
the frontier is extended (line 15). This is continued until a complete witness is
constructed, at which point the algorithm returns True (line 17).

Proposition 2. The worst-case complexity of Definition 1 is O(|A|MD|T|) in
time and O(D|T|) in space, where D is the maximal out-degree for any state in
a given behavior graph G and execution trace T, and M is the maximum time
needed to match terms in T (Σ, V ).

The operation of reference in Proposition 2 is the term matching between terms
on states in G and events in T. Note that because our term alphabet is finite,
there is a hard upper bound on term size, and thus on the complexity of term
matching. The technical report has a proof of soundess and completeness for
Definition 1, as well as a proof of Proposition 2.

Sound Approximation Algorithms. The worst-case time and space com-
plexity of Algorithm 1 make it a poor fit for many applications, particularly those
involving long-running applications. In this section, we discuss approximation al-
gorithms that mitigate this issue. We are only interested in sound approximation
algorithms that never fail to detect a matching trace, but may spuriously decide
that a benign trace matches a behavior graph. This property maintains the cru-
cial guarantee that the algorithm will detect all attacks defined by the behavior
graphs. We view this as the most important property that a behavior matching
algorithm can possess, provided that the false positive rate is not unreasonably
high.

The first approximation algorithm is obtained by re-defining the primitives
F , Test, and Update in Algorithm 1; the formal definitions of the primitives for
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this approximation algorithm are given in the technical report [8]. It performs
matching by maintaining a memory, for each state in G, of terms from T that
may be matched to that particular state. If at any point a substitution exists
that matches a frontier element to a trace element, the algorithm considers each
predecessor s′ of s, and checks the memory for each one to determine whether
previous trace terms satisfy the dependencies needed to match T(i) to α(s). If
so, then the frontier is updated with the new matching between s and T(i), and
the next trace event is considered.

The imprecision in this algorithm comes from the fact that the frontier does
not record partial witnesses, but instead only local history with respect to each
states in G. This means that Test might consult substitutions that would belong
to multiple distinct partial witnesses in the exact algorithm, thus incorrectly
concluding that all dependence constraints are satisfied when a single witness
that satisfies all constraints does not exist. While this can lead to false positives,
note that if a true witness does exist, then Test will effectively find it, so there can
be no false negatives. This is related to existential abstraction, which describes
the relationship between these approximate primitives, and the exact ones listed
in Algorithm 1.

The next proposition guarantees that the amount of work required by the
algorithm on receiving a new trace element is at most linear in the size of the
behavior graph, length of the execution trace,and maximum term size of Σ.

Proposition 3. When the approximate primitives are used in Algorithm 1, each
iteration of the main loop is O(iM |A|), where i is the current index into T and
M is the maximum time needed to match terms in T (Σ, V ).

Note that Proposition 3 implies that the algorithm has a worst-case time com-
plexity that is linear in |T||A|. The worst-case space complexity is O(|T|), as
the frontier requires exactly one entry for each trace term.

We now present an approximation algorithm that uses Bloom filters [4] to
record possible matchings between states in G and terms in T. Intuitively, a set
of Bloom filters is kept for each argument of each term in the image of α. As trace
terms are matched to states, the corresponding substitutions for arguments are
added to the filters, and later consulted when dependencies are matched. This
algorithm has linear complexity with a very low coefficient (see Proposition 4),
but at the cost of increased false positives due to the overapproximation of the
Bloom filters. We represent the domain of Bloom filters by the symbol B. The
algorithm is obtained by substituting the following primitives in Algorithm 1:
– Γ = (A �→ (Z+ �→ P(B)), A). The first component of an element in Γ is a

mapping from states to a different set of mappings, that contain an over-
approximation for each term argument previously bound to the state. Note
that the structure used for this overapproximation (the range of the mapping
Z+ �→ P(B)) is a set of Bloom filters, rather than a single Bloom filter. We
override the default Bloom filter union operation to add a new filter to this
set when the probability of encountering a false positive in the filter exceeds
φ. Similarly, the membership query operation must be overridden to check
all filters in the set to maintain soundness.
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– Test(s, i, w) returns True whenever:

∀(s′, s) ∈ E. ∀0 ≤ j ≤ arity(α(s′)).∃f ∈ w1
s′(j).

[args(α(s′), j) �→ f ](βs′,s(α(s))) matches T(i)

In other words, the Bloom filters associated with all predecessors of s are
checked for elements that satisfy the needed dependencies.

– Update,

Update(F , s, i, w) = F − {w}∪
(w1[s �→ δs], w2 ∪ {a : (a, s) ∈ E})

where
δs(k) = w1

k ∪ args(α(s), k)

In other words, all of the Bloom filters associated with s are updated to
reflect the arguments of T(i), and the old w is removed from F .

We note that it is not strictly necessary to use a set of Bloom filters for each
argument, particularly when the length of the inputs are known in advance, and
the parameters of the Bloom filter can be configured to avoid false positives.
This has the benefit of producing a constant-time algorithm in the size of the
input trace. In many cases, however, it is not possible to determine a bound on
trace length in advance. By using an unbounded set of Bloom filters to represent
each argument, the algorithm overcomes the risk of encountering an explosion of
false positives when the trace length exceeds the parameters of each individual
Bloom filter. This is accomplished by overriding the union and membership query
operations over filters in the definition of Test and Update, essentially tracking
the number of entries inserted into each filter, and creating a new one when the
probability of encountering a false positive rises above a user-specified value φ.
When the history is consulted to establish a dependence, each of these filters
must be checked to maintain soundness, and the number of the filters is a linear
function of |T|, thus the linear complexity in trace length.

Proposition 4. The number of Bloom filters needed to maintain a false positive
rate of at most φ is O

(
−2|T|k/2(b− 1)ln(1− φ1/k) + k

)
, where k is the number

of hash functions used in the Bloom filters, and b is the number of bits.

Proposition 4 tells us that the complexity of the algorithm grows very slowly
in the length of T. Recall that the algorithm’s complexity depends on |T| only
insofar as the number of Bloom filters needed to maintain a false positive rate of
no more than φ must be checked each time a new trace element is encountered.
Proposition 4 tells us that this dependence is linear, with the given coefficient.
Because the logarithm function has an asymptote at zero towards negative in-
finity, −k/(b − 1)ln(1 − φ

1
k ) shrinks rather well in b and k, leaving the linear

coefficient quite small. For example, devoting one megabyte of memory to the
Bloom filter (b = 8, 388, 608) and using k = 100 hash functions, the coefficient
is approximately 2× 10−6 for a false positive rate of no more than 1%. Needless
to say, this is an impressive performance characteristic for a small amount of
memory and imprecision.
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4 Experimental Results

We performed experiments to determine the run-time characteristics of each of
the algorithms presented in Section 3, in addition to the false positive rates
of the approximation algorithms. We also implemented a reduction of behavior
matching to SAT constraints (details in the technical report [8]), in order to
evaluate the feasibility of using an off-the-shelf solver [7] for real instances of the
problem. Our results are encouraging:

– The approximation algorithms perform significantly better than the exact
algorithm; on our set, they performed 17.3 and 21.6 times faster (for the first
and second approximation algorithms discussed, respectively), on average.

– The false positive rate of the approximation algorithms is not excessive: 7.3%
and 9.1%.

– The SAT constraints corresponding to our data set are quickly solved by
modern solvers, requiring 0.18 seconds to solve an instance, on average. How-
ever, generating the constraints generally requires a substantial amount of
time and space: we observed on average 65.6 seconds and approximately 106

constraints for 120 second execution traces.

These results demonstrate the practical value of our algorithms.
We collected behavior traces from 70 applications (both known malware and

common desktop applications), and matched them against ten behavior graphs
mined from a repository of behavior data using simulated annealing [9]. The
behavior traces are composed of system call events, along with detailed data
and annotations about the arguments of each event; for an in-depth account of
our behavior collection mechanism, consult our previous work [9, 13]. We ran all
experiments on a quad-core workstation, with 8 gigabytes of main memory. For
experiments involving Bloom filters, we utilized the pybloom library, with a low
false positive probability (φ = 1%) and a moderate number of bits (b = 4, 000).

The first noteworthy result we obtained is that the exact behavior matching
algorithm presented in Definition 1 is significantly slower than both approxi-
mation algorithms, as well as the reduction to SAT constraints. On average,
the precise algorithm required 31.35 seconds to complete, compared to 1.84 and
1.47 for the first and second algorithms discussed, respectively. The runtime
overhead, which in this case corresponds to the amount of time taken by the al-
gorithm taken as a percentage of the trace execution time,of the exact algorithm
amounts to 26%, compared 1.5% and 1.2% for the approximation algorithms.
Furthermore, 2% of the instances given to the precise algorithm timed out after
45 minutes. This confirms our suggestion that existing algorithms for behav-
ior matching, which are purported to resemble Algorithm 1, have much higher
complexity than previously thought.

Of the reduction to SAT, we found that while the instances can generally be
solved quickly (more quickly than all of our algorithms, in fact), the constraint
systems for an instance also grow quickly, and take a non-trivial amount of time
to generate. In other words, the reduction to SAT is not yet suitable for run-
time behavior matching, but may be ideally suited to off-line forensic analysis
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where exact solutions are required. We solved instances of SAT constraints using
Minisat [7], which required on average 0.18 seconds to complete. We take this
result as indication that it is common to encounter behavior matching instances
that are “easy” in some sense. The running time of constraint generation on
our dataset is distributed bimodally, with means at 16.6 seconds (87% of sam-
ples) and 883.7 seconds (6% of samples), and 7% timing out after 1 hour. This
means that for the “easy” cases, the runtime overhead of constraint genera-
tion is approximately 14%, but for the “hard” cases, it is approximately 733%.
The number of clauses in the constraint system has a similar bimodal distribu-
tion, with means at 6.7 × 105 (89% of samples) and 1.1 × 107 (4% of samples)
clauses. If we assume that each clause takes 5 bytes of memory (a conservative
underapproximation), then this means that on average, running an application
for 120 seconds generates 3 megabytes of constraint data for easy cases, and
52 megabytes for hard cases; clearly, even for easy cases this does not scale to
long-running applications.

Finally, we studied the false positive rates of the approximation algorithms,
using the results of our precise algorithms (both Algorithm 1 and the SAT re-
duction) as ground truth. We found the rates to be reasonable: 7.36%, 9.13%
for the first and second algorithms discussed, respectively. For the exceptionally
low overhead produced by these methods (1.5% and 1.2%), we assert that this
is an acceptable trade-off.

5 Related Work

Several abstractions with similarities to behavior graphs have been previously
studied. Neven et al. studied both register and pebble automata [14] (RA and
PA, respectively), which are two generalizations of traditional FSA to infinite
alphabets. They conclude that PA is a more natural extension of FSA to infinite
alphabets, but we do not see a way to encode a behavior graph as either formal-
ism. The main issue is the bounded number of pebbles (or registers), which must
be used to calculate dependencies; because a graph state may need to be tem-
porarily matched to an unbounded number of trace events, the bounded number
of pebbles (or registers) will cause the matching algorithm to drop history.

Another related formalism that has recieved attention is tree automata [5],
which operate over ranked alphabets. Behavior graphs cannot be reduced to tra-
ditional finite-state tree automata for two reasons: dependencies between sub-
terms cannot be represented, and the set of initial states in the automaton must
be finite, whereas the execution traces that serve as inputs are unbounded, and
would therefore require an infinite set of possible initial states. Extensions of tree
automata involving dependence relations between subterms have been studied
([5] Chapter 4), but not their extension to infinite-state automata, which would
be required for direct application to the problem of behavior matching.

Behavior matching has seen mention in the system security literature frequently
in recent years. Perhaps the most compelling account is due to Kolbitsch et al. [12].
In this work, the authors describe behavior specifications that are nearly
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identical to those formalized in this paper, with nearly arbitrary data dependen-
cies between events. An algorithm for matching execution traces to these specifi-
cations is alluded to, but a precise description of this algorithm is not given, much
less an analysis of its complexity. The same notion of behavior and matching seems
to be operative in other work by the same authors [2, 6]. However, the technique is
pitched as efficient throughout the work, and reported overheads typically range
around 5%. Given the strong connection between our notion of behavior matching
and that presented by Kolbitsch et al., these results diverge significantly from the
theoretical results presented in this paper, as well as the observed performance
characteristics of the sound and complete algorithm.

Sekar and Uppuluri [17] discuss the use of extended finite-state automata
(EFSA) in intrusion detection. EFSA bear resemblance to the behavior graphs
discussed in this paper insofar as they allow general data dependencies (includ-
ing equality), but the authors do not attempt to formalize the computational
model that these dependences may adopt. An algorithm for run-time matching
of EFSA is given, and the authors claim that the amount of work on receiving an
event is O(N), where N is the number of states in the EFSA. This conflicts with
our results. However, this claim is given without proof, and seems to be pred-
icated on the assumption that the algorithm needs only remember a bounded
number of possible matching configurations (the authors state this assumption
in the description of their algorithm). This indicates that their algorithm is a
greedy version of Definition 1, and therefore unsound; this conclusion is backed
by the complexity results presented in Section 3.

Tokhtabayev et al. describe a behavior matching scheme based on colored
Petri nets [18]. The formalism used to describe behaviors shares nearly all of
its salient features with our notion of behavior, including complex data depen-
dencies. The performance overheads they report fall below 5%, but the com-
plexity of their matching algorithm is not discussed, and a formal description
of the algorithm is not given due to “limitations.” There are several other ac-
counts of behavior matching involving data dependencies in the security litera-
ture [9, 11, 13, 15, 16, 21] that use notions of behavior for various ends. There
is also work that formalizes software behaviors in terms of events without ac-
counting for data dependencies [3]; this work is interesting in contrast to ours,
the simpler notion of behavior may be more suitable for certain applications.

6 Conclusion

In this paper, we presented a formulation of behavior matching that encom-
passes most of those seen in the literature, and demonstrated the problem is
NP-Complete. We proceeded to give two exact algorithms for solving the prob-
lem, presented two approximation algorithms, and demonstrated that they can
be used to find accurate solutions to real instances of behavior matching. In the
future, it will be important to determine whether real applications of behavior
matching can be made to fit into a tractable subclass of the general problem
presented here.
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Abstract. We give a connection-based characterization of validity in
propositional bi-intuitionistic logic in terms of specific directed graphs
called R-graphs. Such a characterization is well-suited for deriving la-
belled proof-systems with counter-model construction facilities. We first
define the notion of bi-intuitionistic R-graph from which we then obtain
a connection-based characterization of propositional bi-intuitionistic va-
lidity and derive a sound and complete free-variable labelled sequent
calculus that admits cut-elimination and also variable splitting.

1 Introduction

Bi-intuitionistic logic BiInt is a conservative extension of intuitionistic logic that
introduces a new connective �, called exclusion (also called co-implication or
subtraction), which is dual to the implication connective �. It was first studied
by Rauszer that gives a Hilbert calculus with Kripke and algebraic semantics [11]
and more recently by Crolard from the perspective of bicartesian closed cate-
gories with coexponents and the underlying type system with applications to
type theory [2,3]. An interesting aspect of BiInt lies in the duality between impli-
cation and exclusion which motivates the definition of proof systems that work as
programming languages in which values and continuations are handled in a sym-
metric way. From a proof-theoretic point of view, a strong focus has been put on
the achievement of cut-free proof-systems since cut-elimination in Gentzen-style
(shallow) sequent calculi is particularly difficult to obtain. In this perspective
some cut-free calculi for BiInt have been proposed from sequent structures like
nested sequents [6] or display inference rules [10]. Another solution makes use
of Negri’s general methodology for designing labelled sequent calculi in modal
logics [7] in order to provide a cut-free labelled sequent calculus where labels
correspond to worlds in Kripke structures [9].

In this paper we give the first connection-based characterization of propo-
sitional bi-intuitionistic validity in terms of bi-intuitionistic R-graphs. Let us
note that similar structures have been defined in the case of BI or separation
logics [5,4] in order to characterize validity. Our characterization is well-suited
for deriving labelled proof-systems with counter-model construction facilities
which, compared with the existing labelled proof-systems [9], easily integrate
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free-variables and variable splitting [1]. The main contributions of this work are:
the definition of bi-intuitionistic R-graphs; a connection-based characterization
of validity in propositional BiInt; a new sound and complete free-variable labelled
sequent calculus that includes variable splitting and has the cut-elimination
property; an algorithm for solving admissibility constraints and thus deriving
a connection-based method.

2 Bi-intuitionistic Propositional Logic

The language of BiInt consists of a countable set V of propositional letters P, Q . . .
and the logical symbols ⊥, ∨, ∧, � and �. Formulas are inductively built from
propositional letters as follows:

A ::= P | ⊥ | A ∨A | A ∧A | A � A | A � A.

We write F to denote the set of all formulas of BiInt. Negation ¬A is defined
as syntactic sugar for A � ⊥ and is therefore not considered as primitive in our
setting. Similarly, the conjunctive unit � is defined as a shorthand for P � P.
Bi-intuitionistic logic Kripke semantics is a straightforward extension of that of
intuitionistic logic.

Definition 1. A Kripke model is a triple M = 〈M,�, �·�〉, where M is a set
of worlds, � is a partial order on M and �·� is a function from worlds to sets
of propositional letters satisfying the following Kripke monotonicity condition:
if P ∈ �m� and m � n then P ∈ �n�.
The Kripke forcing relation |= is defined as the least relation between worlds and
formulas such that:

– m |= ⊥ never;
– m |= P iff P ∈ �m�;
– m |= A ∨B iff m |= A or m |= B;
– m |= A ∧B iff m |= A and m |= B;
– m |= A � B iff for all n ∈M such that m � n, n �|= A or n |= B;
– m |= A � B iff for some n ∈M such that n � m, n |= A and n �|= B.

Kripke monotonicity lifts from propositional letters to formulas as in intu-
itionistic logic. As usual, a formula A is satisfied in M iff m |= A for all worlds
m in M , satisfiable if it is satisfied in some Kripke model M, and valid if it
is satisfied in all Kripke models. Figure 1 depicts the standard (Dragalin-style)
multi-conclusioned sequent calculus for BiInt which can be found in [9]. We ob-
serve that the rules for the exclusion connective � simply behave as duals for the
ones dealing with the inclusion �. However, the price to pay for the easy dual
formulation is that the calculus does not admit cut-elimination.

3 Indexing Formulas

In this section, we recall some basic terminology of connection-based character-
izations of validity as we shall heavily rely on it in the forthcoming sections.
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Γ,⊥ � Δ

Γ � Δ
⊥R

Γ � ⊥, Δ

ax
Γ, A � A, Δ

Γ � A, Δ Γ, A � Δ
cut

Γ � Δ

Γ, A, B � Δ
∧L

Γ, A ∧ B � Δ

Γ � A, Δ Γ � B, Δ
∧R

Γ � A ∧ B, Δ

Γ, A � Δ Γ, B � Δ
∨L

Γ, A ∨ B � Δ

Γ � A, B, Δ
∨R

Γ � A ∨ B, Δ

Γ, A � B � A, Δ Γ, B � Δ
�L

Γ, A � B � Δ

Γ, A � B
�R

Γ � A � B, Δ

Γ � A, Δ Γ, B � A � B, Δ
�R

Γ � A � B, Δ

A � B, Δ
�L

Γ, A � B � Δ

Fig. 1. Dragalin-style sequent calculus for BiInt

A signed formula is a pair (C, S), written CS, where C is a BiInt formula and
S ∈ {+,−} is a sign. Depending on its principal connective and sign, a signed
formula is given a principal type (ptype) α or β. If α (respectively β) is the
principal type of a signed formula C, then, its left subformula A is of secondary
type (stype) α1 (respectively β1) and its right subformula B is of secondary type
α2 (respectively β2). Signed formulas the principal connective of which belongs
to the set {�,�} also admit an additional intuitionistic type (itype) φ, φ, ψ or ψ.
The following tables describe how signs, principal, secondary and intuitionistic
types are inductively determined.

α α1 α2 β β1 β2

(A ∧ B)+ A+ B+ (A ∧ B)− A− B−

(A ∨ B)− A− B− (A ∨ B)+ A+ B+

(A � B)− A+ B− (A � B)+ A− B+

(A � B)+ A+ B− (A � B)− A− B+

itype

(A � B)+ φ
(A � B)− ψ

(A � B)+ ψ

(A � B)− φ

For readability, we often simply speak of the type of a signed formula each time
the context makes it clear what type (ptype, stype or itype) is actually intended;
we also write “t-formula“ as a shorthand for “formula of type t”. Moreover, given
a (plain) formula C and a subformula A in C, the (principal, secondary or
intuitionistic) type of A in C is defined as the type of the signed formula AS in
C− that (syntactically) corresponds to A.

Let Φ and Ψ be two disjoint and denumerable sets of symbols respectively
called variable and constant symbols. We shall use the letters ranging from a
to d (possibly subscripted) to denote constant symbols. Similarly, we shall use
the letters from x to z to denote variable symbols. For convenience, let us also
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�−
a

∧+
0

�+
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∨+
1

R+
2 P+

3

Q−
4

¬+
x

P−
5

�−
x

�−
b

P+
6 R−

7

Q+
8

Fig. 2. Indexed formula tree

assume that Ψ always contains the particular symbol ε and that if s is a constant
(respectively variable) symbol, then so is s.

Given a formula C, an indexed formula can be obtained from C by assigning
a unique index (often called “position” in the matrix terminology) to each sub-
formula encountered along a depth first exploration of C− (w.r.t. the syntactic
structure of C) in such a way that ψ- and ψ-subformulas are indexed with con-
stant symbols in Ψ, φ- and φ-subformulas are indexed with variable symbols in
Φ, all other subformulas being indexed with natural numbers.

Assuming strict total orders <Φ, <Ψ, <N on Φ, Ψ, N, assignments can be made
deterministic so as to obtain a one-to-one correspondence between formulas and
indexed formulas. We interpret <Φ and <Ψ as lexicographic orders and <N

as the usual strict order on natural numbers; therefore, each time we have to
choose an index for a (sub)formula, we always pick the first symbol in Φ, Ψ or
N (w.r.t. <Φ, <Ψ, <N) that has not already been used as an index. We write
F(C, i) (respectively Sf(C, i)) to denote the unique subformula (respectively
signed subformula) associated to the index i in a formula C (or signed formula
CS depending on the context).

For example, indexing C = (((R ∨ P) � Q) ∧ ¬P) � ((P � R) � Q) we get the
indexed (signed) formula

(((R+
2 ∨+

1 P+
3 ) �+

a Q−
4 ) ∧+

0 ¬−
x P−

5 ) �−
a ((P+

6 �−
b R−

7 ) �−
x Q+

8 ).

Since indexes are in a one-to-one correspondence with (signed) formulas, we
shall sometimes use indexes in places where (signed) formulas would normally
be expected (and vice-versa).

A formula tree for a formula C is a representation of its corresponding indexed
formula as a syntax tree. A formula tree induces a strict partial ordering / on
indexes, called the domination ordering, which is such that the index of the
root is the least element and if i / j then i is encountered before j on a
path from the root to j. If i is a non-atomic index in C (i.e., if F(C, i) is
a non-atomic formula) then the two indexes j and k such that F(C, j) and
F(C, k) are the immediate (left and right) subformulas of F(C, i) are called
dual and we write j 0 k = i. Figure 2 shows the formula tree associated with
(((R ∨ P) � Q) ∧ ¬P) � ((P � R) � Q).
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In the standard sequent calculus of Figure 1, contraction is internalized by
the repetition of the principal formula A � B (respectively A � B) in the left
(respectively right) premiss of the �L (respectively �R) rule so that there is no
need for an explicit contraction rule. In a connection-based setting contraction
is usually handled via the notion of multiplicity. Given a formula C of BiInt, a
multiplicity for C is a function μ() which assigns a natural number to each φ- or
φ-subformula A in C. The formula μ(C) is then defined as the formula obtained
from C by replacing every subformula A in C such that μ(A) = n with the
subformula A ∧A ∧ . . .∧A, where the connective ∧ occurs exactly n times. For
example, if C = (P � Q) � (R � S), μ(P � Q) = 1 and μ(R � S) = 2, then
μ(C) = ((P � Q) ∧ (P � Q)) � ((R � S) ∧ (R � S) ∧ (R � S)). Intuitively, a
multiplicity function encodes the number of copies that would be allowed (via
contraction) for each φ- or φ-formula in a sequent-style derivation.

For convenience, when dealing with indexed formulas, we use superscripted
indexes to distinguish between the copies of φ- and φ-formulas. For the previous
example, if we assume that x is the index of R � S in C, then μ(R � S) = 2
implies that x1 and x2 should respectively be the indexes of the first and sec-
ond additional copies of R � S in μ(C). The previous notions are fairly common
to most connection-based characterizations of validity. If we were to follow the
standard recipe for such characterizations, the next step would be the introduc-
tion of the key notions of (atomic) matrix paths, connections and spanning sets
together with admissible substitutions leading to irreflexive reduction orderings.
However, we shall not follow the standard approach for the upcoming sections
and rather introduce the concept of R-graphs since it allows us to reformulate
all the standard notions on the same graphical structure. Moreover, R-graphs
can easily be turned into Kripke models when dealing with non valid formulas.

4 Bi-intuitionistic R-Graphs

From a very general point of view, R-graphs for a given logic are directed graphs
in which vertices are meant to represent worlds in the underlying Kripke se-
mantics of the logic [5]. Let us first define the general notion of R-graph before
restricting it to match the bi-intuitionistic case.

Definition 2 (R-graph). A R-graph (RG) is a directed graph G(V,E) with
vertices V and edges E. The vertices are named with elements of Ψ ∪Φ. More-
over, V is required to contain a distinguished vertex ε called the ε-vertex, every
vertex u is associated with a set F(G, u) of signed formulas the elements of which
are referred to as the tags of u, and every edge e is tagged with a letter T (G, e)
from the set T = {ψ, φ, ψ̄, φ̄, σ, κ} of edge-tags.

A vertex named with a constant symbol (respectively variable symbol) is called
a ψ-vertex (respectively φ-vertex). The set of ψ-vertices (respectively φ-vertices)
is written V Ψ (respectively V Φ). We use the letters u, v and w to range over
arbitrary vertices and we write u[τ ]v to denote the edge, tagged with the letter
τ ∈ T , that goes from u to v; we then call this edge a τ -edge and say that u
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κ

κ

P− Q−P+ Q+

G4

Fig. 3. Bi-intuitionistic R-graphs

and v respectively are its source and target. Given a subset T ⊆ T , the set of all
τ -edges such that τ ∈ T is written ET .

Definition 3 (Bi-intuitionistic RG). A R-graph G(V,E) is a bi-intuitionistic
R-graph (biRG) if it satisfies the following structural conditions:

– every ψ-edge has a ψ-vertex as its target;
– every ψ̄-edge has a ψ-vertex as its source;
– every φ-edge has a φ-vertex as its target;
– every φ̄-edge has a φ-vertex as its source;
– every σ-edge induces a “bidirectional” link between a φ-vertex and a ψ-vertex,

more formally, u[σ]v ∈ E iff v[σ]u ∈ E, with either u ∈ V Ψ and v ∈ V Φ, or
u ∈ V Φ and v ∈ V Ψ;

– every κ-edge u[κ]v is a link between two (arbitrary) vertices such that there
exists at least one formula occurring positively (with a “+” sign) in F(G, u)
and negatively (with a “−” sign) in F(G, v).

Figure 3 gives some examples of bi-intuitionistic R-graphs. We shall explain in
the next section how such graphs can be associated with formulas and discuss
them in more details.

5 R-Graph Reductions

Standard matrix characterizations heavily rely on the notion of (atomic) matrix
paths through a given formula C. In our setting, such atomic matrix paths are
replaced with the notion of irreducible R-graphs.
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a (resp. a, x, x) is the index of the αψ- (resp. αψ-, βφ-, βφ-) formula under reduction.

Fig. 4. Reduction rules

Given a BiInt formula A, a (biRG-)reduction through A is a sequence R =
R0ρ1 . . . ρi−1ρi . . . in which R0 is a collection (of biRGs) containing the single
biRG G0(V0, E0), where V0 = {ε}, E0 = ∅ and F(G0, ε) = {A−}, and each ρi is
a reduction step that transforms the collection Ri−1 inherited from the previous
reduction step into a new collection Ri by applying one of the reduction rules
given in Fig. 4.

In order to apply a reduction rule to a biRG G(V,E), one first needs to choose
a vertex u in V and a signed formula AS in F(G, u).

– If AS has principal type α and has no intuitionistic type, G(V,E) is reduced
to the new biRG G1(V1, E1) such that V1 = V , E1 = E, F(G1, v) = F(G, v)
for all v �= u and F(G1, u) = F(G, u)∪{α1(AS), α2(AS)}, where α1(AS) and
α2(AS) respectively are the first and second signed subformulas of AS (of
secondary type α1 and α2).

– If AS has principal type β and has no intuitionistic type, G(V,E) is reduced
to two new biRGs G1(V1, E1), G2(V2, E2) such that for i ∈ {1, 2}, Vi = V ,
Ei = E, F(Gi, v) = F(G, v) for all v �= u and F(Gi, u) = F(G, u)∪{βi(AS)}.

The previous reduction rules are the reformulation of the standard α and β
matrix-path reduction rules. The next two reduction rules are specific to BiInt
and depend on the index (a, a, x or x) and intuitionistic type of the signed
formula under reduction (principal formula).

– If AS has principal type α and has intuitionistic type ψ (respectively ψ),
G(V,E) is reduced to the new biRG G1(V1, E1) such that V1 = V ∪ {a} and
E1 = E ∪ {u[ψ]a} (respectively V1 = V ∪ {a} and E1 = E ∪ {a[ψ̄]u}).
Moreover, F(G1, v) = F(G, v) for all v �= a (respectively v �= a), and
F(G1, a) = {α1(AS), α2(AS)} (respectively F(G1, a) = {α1(AS), α2(AS)}).
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– If AS has principal type β and has intuitionistic type φ (respectively φ),
G(V,E) is reduced to two new biRGs G1(V1, E1), G2(V2, E2) such that for
i ∈ {1, 2}, Vi = V ∪{x} and Ei = E∪{u[φ]x} (respectively Vi = V ∪{x} and
Ei = E ∪ {x[φ̄]u}). Moreover, F(Gi, v) = F(G, v) for all v �= x (respectively
v �= x) and F(Gi, x) (respectively F(Gi, x)) = {AS} ∪ {βi(AS)}.

Let us remark that we have chosen to prevent the reduction rules from discarding
their principal formula from the tags of u (although we shall forget about them
in graphical representations to increase readability). This is not a strict require-
ment but it makes the counter-model construction process (e.g., the saturation
relation) easier to define.

Definition 4 (irreducibility). A biRG is irreducible if it is stable under the
reduction rules; it is reducible otherwise. Accordingly, a collection R of biRGs
is irreducible if and only if all biRGs in R are irreducible.

Let R be a reduction through A, we say that R is finished if and only if for
some natural number n, the collection Rn in R is irreducible and for all Rm in
R such that m < n, Rm is not irreducible. We then say that n is the length of
the reduction R. Since we consider formulas indexed w.r.t. a given multiplicity,
an inspection of the reduction rules of Figure 4 shows that all finished reduc-
tions through A lead to the same irreducible biRG-collection denoted Rf and
called the final biRG-collection through A. Every biRG in Rf is then called an
irreducible biRG through A.

If one forgets about the σ- and κ-edges, Figure 3 gives examples of irreducible
biRGs1 through (((R+

2 ∨+
1 P+

3 ) �+
a Q−

4 ) ∧+
0 ¬−

x P−
5 ) �−

a ((P+
6 �−

b R−
7 ) �−

x Q+
8 ).

6 Validity through R-Graphs

Before stating our connection-based characterization of BiInt validity, we need
to define the notions of slice, concrete path and admissible R-graphs.

Definition 5 (slice). Let G(V,E) be a biRG and S be a subset of V , the S-slice
of G is defined as the smallest (w.r.t. the number of vertices and edges) biRG
GS(V S , ES) such that S ⊆ V S and for all vertices u ∈ V S and v ∈ V ,

– if v[τ ]u ∈ E and τ ∈ {ψ, φ, σ}, then v ∈ V S and v[τ ]u ∈ ES;
– if u[τ ]v ∈ E and τ ∈ {ψ̄, φ̄, σ}, then v ∈ V S and u[τ ]v ∈ ES.

The purpose of a slice is to capture only the essential information, i.e., the
minimal portion of a biRG, that is necessary to establish the validity of a BiInt
formula. Let us remark that in the construction of a slice ψ̄- and φ̄-edges are
traversed forward, from their source to their target, while ψ- and φ-edges are
traversed backward, from their target to their source.

1 For readability, non-atomic signed formulas are not mentioned in the vertex tags.
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Definition 6 (path). Given two vertices u, v in a biRG G(V,E), a path in G
from u to v is a sequence u0τ1u1 . . . up−1τpup such that u0 = u, up = v and for
all 1 � i � p, ui is a vertex in V , τi is an edge-tag in T and there exists a τi-edge
ui−1[τi]ui in E. A cycle is a path such that the initial and terminal vertices are
the same, i.e., u0 = up.

Given a subset T of T , a T -path is a path P = u0τ1u1 . . . up−1τpup such that
for all 1 � i � p, τi ∈ T . In particular, when T = {ψ, ψ̄, σ}, P is called a
concrete path (in the graphical representation, a path using only solid edges).
T -cycles and concrete cycles are defined accordingly. Using the previous notions,
we define the relation (__ � _) such that Gu � v holds if and only if u = v or
there exists at least one concrete path from u to v in G.

Definition 7 (admissibility). A biRG G(V,E) is admissible if and only if

– all concrete cycles in G are σ-cycles that contain at most one ψ-vertex and
– for all τ-edges u[τ ]v in E such that τ ∈ {φ, φ̄}, Gu � v (in other words,

there is a concrete path in G from u to v).

Definition 8 (consistency). A biRG G(V,E) is inconsistent if and only if
(∃u ∈ V )(⊥+ ∈ F(G, u)); it is consistent otherwise.

Definition 9 (complementarity). A biRG G(V,E) is complementary if and
only if there is at least one κ-edge u[κ]v in E such that the slice G{u,v} is ad-
missible and G{u,v}u � v (there is a concrete path in the slice from u to v).

A collection of biRGs is inconsistent (respectively admissible) if it contains at
least one biRG which is inconsistent (respectively admissible). On the contrary,
a collection is complementary if all of its biRGs are complementary.

6.1 Characterization of Validity

Starting with the final biRG-collection Rf through a BiInt formula A, we define
the notions of σ- and κ-bindings.

A local σ-binding for a biRG G(V,E) is a function σ that extends G(V,E)
by inserting σ-links (bidirectional σ-edges) in E. More formally, σ(G(V,E)) =
Gσ(Vσ, Eσ) such that Vσ = σ(V ) = V and Eσ = σ(E) = E ∪ Σ, where σ is a
set of σ-links between vertices of V Φ and vertices of V Ψ. Let us remark that a
local σ-binding is completely determined by Σ.

Given two collections R = {G1, . . . , Gn} and S = {σ1, . . . , σn} such that for
all 1 � i � n, σi is a local σ-binding for the biRG Gi, the global σ-binding σ
for R (induced by S) is defined as σ(Gi) = σi(Gi) for all 1 � i � n. A global
σ-binding induces a relation � on Ψ × Φ such that a � x if there is a σ-link
a[σ]x in σ(Gi) for some 1 � i � n. A local σ-binding σ is admissible for a biRG
G if σ(G) is admissible. A global σ-binding σ is admissible for a biRG-collection
R if for all G in R, σ(G) is admissible. Local and global κ-bindings are defined
accordingly w.r.t. the structural conditions required for κ-edges in Definition 3.



A Connection-Based Characterization of Bi-intuitionistic Validity 277

Definition 10 (bi-intuitionistic validity). A BiInt formula A is biRG-valid if
and only if there exists some multiplicity μ, a (global) σ-binding σ and a (global)
κ-binding κ for the final biRG-collection Rf of irreducible biRGs through μ(A)
such that:

1. For all (not necessarily distinct) biRGs G1(V1, E1), G2(V2, E2) in σ ◦ κ(Rf )
and all φ-vertices x in V1 ∩ V2, if x[σ]u ∈ E1 and x[σ]v ∈ E2 then u = v.

2. For all consistent biRGs G(V,E) in σ ◦ κ(Rf ), G(V,E) is complementary.
3. The reduction ordering �= (/ ∪ �)+ induced by σ, where (·)+ stands for

transitive closure, is irreflexive.

Using the previous definition and the irreducible biRGs of Figure 3, it is easy to
see that (((R2 ∨1 P3) �a Q4) ∧0 ¬xP5) �a ((P6 �b R7) �x Q8) is biRG-valid. Let
us now discuss the soundness and completeness of the characterization.

6.2 Soundness and Completeness of the Characterization

Definition 10 can be used to extract a labelled calculus the rules of which generate
bi-intuitionistic R-graphs. Such a calculus is depicted in Fig. 5 and generates one
biRG per branch in a derivation, which is induced by the edges (written as side
conditions) introduced along that branch by the inference rules �L, �R, �L

and �R. A labelled formula A[v] on the left- (respectively right-) hand side of a
labelled sequent simply means that A+ (respectively A−) appears in the tags of
the vertex u.

Moreover, the notion of global σ-binding gives rise to the more standard notion
of global substitution, i.e., σ(x) = a iff there is a σ-link between x and a in some
irreducible biRG associated with some irreducible initial sequent2 of a derivation.
Similarly, there is a κ-edge from u and v in the irreducible biRG associated with
an irreducible initial sequent s of a derivation iff there are some labelled formulas
A[u] and A[v] occurring on the left-hand and right-hand side of s respectively.
An example of a derivation in that labelled calculus is given in Sect. 8, where
variable splitting is discussed.

Theorem 1. Let A be a BiInt formula. A is biRG-valid iff A is valid in the
Kripke semantics.

Proof. The soundness and completeness proofs rely on the labelled calculus given
in Fig. 5. The soundness proof follows the standard pattern of proving that every
inference rule of the calculus preserves a standard notion of realizability in BiInt
Kripke models. The completeness proof proceeds by counter-model construction
from any admissible, consistent and saturated R-graph in the final collection of
a finished reduction through A.

2 A sequent that contains only atomic formulas.
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ax
Γ, A[u] � A[u], Δ

⊥L
Γ,⊥[u] � Δ

Γ, A[u], B[u] � Δ
∧L

Γ, (A ∧ B)[u] � Δ

Γ � A[u], Δ Γ � B[u], Δ
∧R

Γ � (A ∧ B)[u], Δ

Γ, A[u] � Δ Γ, B[u] � Δ
∨L

Γ, (A ∨ B)[u] � Δ

Γ � A[u], B[u], Δ
∨R

Γ � (A ∨ B)[u], Δ

Γ � A[x], Δ Γ, B[x] � Δ
u[φ]x

Γ, (A � B)[u] � Δ

Γ, A[a] � B[a], Δ
u[ψ]a

Γ � (A � B)[u], Δ

Γ � A[x], Δ Γ, B[x] � Δ
x[φ̄]u

Γ � (A � B)[u], Δ

Γ, A[a] � B[a], Δ
a[ψ̄]u

Γ, (A � B)[u] � Δ

Fig. 5. Labelled calculus for BiInt

6.3 Counter-Model Construction

We first need to define a saturation relation which plays the same role for biRGs
as Hintikka collections for sets of formulas in intuitionistic logic.

Definition 11 (saturation). Let G(V,E) be a biRG. The saturation relation
(on G(V,E)) is defined as the smallest relation between vertices and signed for-
mulas such that:

– Base case: for all A in {⊥} ∪ V,

• Gu � A+ iff (∃v ∈ V )(Gv � u and A+ ∈ F(G, v));
• Gu � A− iff (∃v ∈ V )(Gu � v and A− ∈ F(G, v));

– Induction:

• Gu � (A ∧ B)+ iff Gu � A+ and Gu � B+;
• Gu � (A ∧ B)− iff Gu � A− or Gu � B−;
• Gu � (A ∨ B)+ iff Gu � A+ or Gu � B+;
• Gu � (A ∨ B)− iff Gu � A− and Gu � B−;
• Gu � (A � B)+ iff (∀v ∈ V )(if Gu � v and Gv � A+ then Gv � B+);
• Gu � (A � B)− iff (∃v ∈ V )(Gu � v and Gv � A+ and Gv � B−);
• Gu � (A � B)+ iff (∃v ∈ V )(Gv � u and Gv � A+ and Gv � B−);
• Gu � (A � B)− iff (∀v ∈ V )(if Gv � u and Gv � A+ then Gv � B+).

G(V,E) is saturated if and only if (∀u ∈ V )(∀CS ∈ F(G, u))(Gu � CS).

Let us illustrate how to extract counter-models from saturated biRGs with a
short example, the formula D = Q � ((¬(P�Q)�P)∨P). Up to σ- and κ-edges,
the collection of irreducible biRGs through D is as follows:
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ε a x b aψ φ̄ ψ ψ̄

κ

σ
Q+ Q−P+

G00

ε a xψ φ̄

κ

σ
P−Q+

P+

G01

Both biRGs G00 and G01 are admissible and consistent, but only G00 is not
complementary. Moreover, it happens that G00 is also saturated. In order to
turn G00 into a counter-model of D, we first calculate the quotient of G00 by
the equivalence generated by the σ-edges which leads to the following set of
vertex-classes: V = {ε̇, ȧ, ḃ, ȧ | ε̇ = {ε}, ȧ = ẋ = {a, x}, ḃ = {b}, ȧ = {a}}. Then,
we consider V as a set of worlds and define an accessibility relation � between
worlds of V as follows: (∀m,n ∈ V )(m � n iff (∃m′ ∈ m)(∃n′ ∈ n)(Gm′ � n′)).
Finally, we define the forcing relation by setting the following interpretation:
(∀P ∈ V)(∀m ∈ V )(P ∈ m iff (∃m′ ∈ m)(P+ ∈ F(G,m′))), which leads to
following bi-intuitionistic Kripke model:

ε̇ ȧ ḃ ȧ

Q P

It is not difficult to generalize the previous example so as to extract a counter-
model from any consistent, admissible and saturated biRG that cannot be made
complementary in any way (under any σ- and κ-bindings).

7 Solving Admissibility Constraints

In plain intuitionistic logic, we could use prefixes instead of labels and resort to
T-string (prefix) unification to solve prefix constraints [8]. However we cannot do
that in the case of BiInt because a prefix essentially is a way to encode the path
to a given node in a Kripke tree. Since the Kripke semantics of BiInt deals with
graphs instead of trees, there can be several distinct paths to a given node and
taking care of that using prefixes (by encoding both successors and predecessors)
would break the T-string property of such prefixes, which in turns prevents the
use of T-string unification.

Given an admissible σ-binding, it is not difficult to check whether κ-edges
are covered by a concrete path or not, the problem is to find such σ-bindings.
A trivial but particularly inefficient solution would be to enumerate all possible
σ-bindings and check whether they are admissible or not. As a first step toward
more efficient solutions, we now sketch an algorithm that only enumerates ad-
missible σ-bindings for a given biRG (which is a slice determined by a κ-edge)
that also preserves the acyclicity of the underlying reduction ordering �. For
that, we first need the notion of walk through a biRG which is similar to the
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notion of path described in Definition 6 except that in a walk φ̄- and ψ̄-edges
must be crossed backward from their target to their source and σ-edges can only
be crossed from their ψ-vertex to their φ-vertex. T -walks are defined accordingly
as walks that only cross τ -edges such that τ ∈ T and, whenever T = {ψ, ψ̄, σ},
a T -walk is called a concrete walk.

Let u be an arbitrary vertex in a biRG, we define An
T (u) (resp. Bn

T (u)) as
the set of all ψ-vertices that can be reached from u (resp. from which u can be
reached) by a T -walk of length n. The two sets Sn

T (u) and Pn
T (u) are defined

analogously using the notion T -path instead of T -walk. In particular, for all F ∈
{S, P,A,B}, F 0

T (u) = {u} if u is a ψ-vertex and ∅ otherwise. For readability, we
forget the T subscript whenever T = {φ, φ̄, ψ, ψ̄}. Finally, let F (u) =

⋃
i∈N

F i(u)
and let t ∈ {φ, φ} denote an intuitionistic type and u, v be two vertices, we then
define the set Mt(u, v) as Mt(u)−A(v) with Mφ = S and Mφ = P .

Our solving algorithm relies on two particular objects R(u) and D(u) that are
computed for all φ-vertices u in the biRG G(V,E) under consideration. In the
initial step, R(u) = B1

t (u) and D(u) = Mt(R(u), u) for all u ∈ V Φ. Intuitively,
D(u) (called the domain of u) is meant to represent all suitables instantiations
for u (i.e., ψ-vertices that would be suitable targets for a σ-link the source of
which is u) and R(u) (called the root of u) initially is the vertex responsible for
the introduction of u in the biRG reduction process. In a second step, all φ-edges
are partially ordered in a list X = x1, . . . , xn so that if i < j and xi ∝ xj then
xj ∝ xi, where ∝ is the following notion of variable dependency: let x and y
be two φ-vertices, we say that x depends on y, and we write x ∝ y, if and only
if x ∈ D(y). Intuitively, if x depends on y then y should be bound before x
because some ψ-vertices may only become admissible for x after y gets bound to
some specific ψ-vertex. The third step finally consists of the actual enumeration:
for each φ-vertex u=xi in X , select a ψ-vertex c in D(u) (then assuming the
addition of a σ-link u[σ]c) and apply the corresponding rule of Figure 6, more
precisely perform

applyRule := selectRule(u, c,v) ; R(v), D(v) := applyRule(u, c,v)

on all v = xj in X such that j > i. If all φ-vertices in X can be bound then
we have an admissible σ-binding and we just check whether the κ-edge we are
interested in (i.e., the one that determines the slice which corresponds to the
biRG we are working on) is covered by a concrete path. If so, we are done,
otherwise, we must backtrack and perform a distinct selection of ψ-vertices until
a solution is found or all possible choices have been exhausted.

8 Variable Splitting

In this section we briefly discuss how the technique of variable splitting recently
developed for prefixes [1] can be adapted to our R-graph based setting. Let
us illustrate the main ideas with a short example. With a multiplicity μ(x) =
μ((P � P) � P) = 0, it is not possible to prove the validity of the formula for
which a derivation in the labelled calculus of Figure 5 is given below (indexes
are indicated as subscripts).



A Connection-Based Characterization of Bi-intuitionistic Validity 281

Rule selectRule(u,c,v) applyRule(u,c,v)

Bind R(v) = u c, D(v) ∪Mt(c, v)

Narrow c ∈ A(v) R(v), D(v)− A(u)

Widen c = R(v) ∧ (c �= R(u) ∨ itype(u) = itype(v) R(v), D(v) ∪Mt(u, v)

Fig. 6. Solving rules given that v �= u and itype(v) = t

ax
P2[d] � P3[d]

x[ψ]d
� (P2 � P3)d[x]

P4[x], Q6[b] � P7[b]
a[ψ]b

P4[x] � (Q6 � P7)b[a]

P4[x], R8[c] � P9[c]
a[ψ]c

P4[x] � (R8 � P9)c[a]
∧R

P4[x] � ((Q6 � P7)b ∧ (R8 � P9)c)5[a]
a[φ]x

((P2 � P3)d � P4)x[a] � ((Q6 � P7)b ∧ (R8 � P9)c)5[a]
ε[ψ]a

(((P2 � P3)d � P4)x � ((Q6 � P7)b ∧ (R8 � P9)c)5)a[ε]

The first initial sequent3 requires σ1 = {x/c} while the second one requires
σ2 = {x/b}. The conflict on x thus makes it impossible to compute a global
substitution from the two local substitutions σ1 and σ2. A first solution would
be to increase multiplicity in order to have one copy x1 of the variable x so as
to set σ1 = {x/c} and σ2 = {x1/b}. The price to pay for this solution is an
unnecessary longer derivation because, in this example, assigning two distinct
values to the variable x would not harm soundness. The problem actually lies in
the fact that the labelled calculus is variable sharing: the same φ- or φ-formula
occurring in distinct branches leads to the introduction of the same variable in
all branches since we use the index of that formula as the introduced variable.

Variable sharing leads to full permutability of the rules, but also results in
potentially longer derivations. Had we allowed the �L and �R rules to introduce
a fresh copy of the variable associated to its principal φ- or φ-formula for each
of its occurrences in distinct branches of a derivation, expanding the β-formula
(Q � P) ∧ (R � P) before the φ-formula (P � P) � P in our example would
have resulted in the introduction of the variable x in the branch corresponding to
the first premiss of ∧L and of a fresh copy x1 in the branch corresponding to the
second premiss of ∧R. However, such a variable pure formulation of our labelled
calculus would break full permutability: β-formulas need to be expanded before
φ- and φ-formulas to enable as many copies of each variable as possible.

Variable splitting is a technique developed for variable sharing calculi that
allows a (shared) variable to be assigned a specific value in each distinct branch
it occurs in, which enables the computation of local substitutions and helps
keeping derivations shorter. Let A be a BiInt formula. A splitting set for A is
a set of dual-free indexes of secondary type β1 or β2 which is downward closed
w.r.t. the tree ordering /. In order to enable variable splitting for our labelled
calculus, we replace variables with colored variables, i.e., pairs xX where x is a
variable occurring as an index in A and X is a splitting set for A. Substitutions
3 Indexing initial sequents of the derivation from right to left.
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are replaced with colored substitutions accordingly. A colored substitution σ
induces a splitting ordering which is the least relation between β- and φ- or
φ-indexes such that if σ(xX) �= σ(xY ), then there are dual indexes i ∈ X and
j ∈ Y such that (i 0 j) ≺ x. Intuitively, a splitting ordering encodes the fact
that β-formulas should be expanded before φ- or φ-formulas (in a variable pure
setting).

The last thing to do is to take into account the new splitting ordering in the
characterization of biRG-validity of Definition 10, which is done by redefining
the reduction ordering so that �= (/ ∪ � ∪ ≺)+. The sets {c} and {b} are
splitting sets for the derivation given previously. Accordingly, the two initial
sequents can now give rise to two distinct colored substitutions σ1 = {x{c}/c}
and σ2 = {x{b}/b} from which we get (b0 c) = 5, 5 ≺ x, b � x and c � x. The
induced reduction ordering �= (/ ∪ � ∪ ≺)+ is easily checked irreflexive.
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Abstract. Reasoning techniques for qualified number restrictions (QNRs) in De-
scription Logics (DLs) have been investigated in the past but they mostly do not
make use of the arithmetic knowledge implied by QNRs. In this paper we pro-
pose and investigate a novel approach for concept satisfiability in acyclic ALCQ
ontologies. It is based on the idea of encoding an ALCQ ontology into a for-
mula in Satisfiability Modulo the Theory of Costs (SMT(C)), which is a specific
and computationally much cheaper subcase of Linear Arithmetic under the Inte-
gers, and to exploit the power of modern SMT solvers to compute every concept-
satisfiability query on a given ontology. We implemented and tested our approach,
which includes a very effective individuals-partitioning technique, on a wide set
of synthesized benchmark formulas, comparing the approach with the main state-
of-the-art DL reasoners available. Our empirical evaluation confirms the potential
of the approach.

1 Introduction

Description logics (DLs) form one of the major foundations of the semantic web and
its web ontology language (OWL). In fact, OWL 2, a recent W3C recommendation, is a
syntactic variant of a very expressive DL that supports reasoning with so-called quali-
fied number restrictions (QNRs). A sound and complete calculus for reasoning with the
DLALCQ that adds QNRs to the basic DLALC was first proposed in [9]. For example,
this calculus decides the satisfiability of anALCQ concept (≥5 s.C�≥5 s.D�≤2 s.E)
by trying to find a model with fillers for the role s such that at least 5 fillers are instances
of C, at least 5 fillers are instances of D, and at most 2 fillers are instances of E. It sat-
isfies the at-least restrictions by creating 10 fillers for S, 5 of which are instances of
C and 5 are instances of D. A concept choose rule non-deterministically assigns E or
¬E to these fillers. In case the at-most restriction (≤2 s.E) is violated a merge rule
non-deterministically merges pairs of fillers for s that are instances of E [9]. Searching
for a model in such an arithmetically uninformed way can become very inefficient es-
pecially when bigger numbers occur in QNRs or several QNRs interact. To the best of
our knowledge this calculus still serves as reference in most tableau-based OWL rea-
soners (e.g., Pellet [15], FaCT++ [16]) for implementing reasoning about QNRs. The
only exception is Racer [7] where conceptual QNR reasoning is based on an algebraic
approach [8] that integrates integer linear programming with DL tableau methods.

The work presented in this paper was inspired by two recent novel approaches, com-
bined with the progress in satisfiability modulo theory (SMT) solving techniques. First,

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 283–298, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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⊥I = ∅, 	I = ΔI , (¬C)I = ΔI \ CI , (C 
 D)I = CI ∩ DI , (C � D)I = CI ∪ DI ,
(∃r.C)I = {x ∈ ΔI | there exists y ∈ ΔI s.t. (x, y) ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ΔI | for all y ∈ ΔI s.t. (x, y) ∈ rI then y ∈ CI},
(≥nr.C)I = {x ∈ ΔI | |FIL(r, x) ∩ CI | ≥ n},
(≤mr.C)I = {x ∈ ΔI | |FIL(r, x) ∩ CI | ≤ m}, C � D is satisfied iff CI ⊆ DI

Fig. 1. Syntax and semantics of ALCQ (n ≥ 1 and m ≥ 0)

[13,14] explored the idea of performing automated reasoning tasks in DLs by encoding
problems into Boolean formulas and by exploiting the power of modern SAT tech-
niques. In particular, the experiments in [13] showed that, in practice and despite the
theoretical worst-case complexity limits, this approach could handle most or all the
ALC satisfiablity problems which also the other approaches could handle, with per-
formances which were comparable with, and often better than, those of state-of-the-art
tools. Second, a revised and extended algebraic approach was presented for SHQ [6]
and SHOQ [4]. These approaches represent knowledge about interacting QNRs as sys-
tems of linear inequations where numerical variables represent cardinalities of sets of
domain elements (e.g., role fillers) divided into mutually disjoint decompositions. On a
set of synthetic QNR benchmarks these algebraic approaches demonstrated a superior
performance for most test cases [6,5].

The main idea of this paper is thus to encode an ALCQ ontology into a formula in
Satisfiability Modulo the Theory of Costs (SMT(C)) [3], which is a specific and compu-
tationally much cheaper subcase of Linear Arithmetic under the Integers (LA(Z)), and
to exploit the power of modern SMT solvers to compute every concept-satisfiability
query on a given ontology. We have implemented and tested our approach (called
ALCQ2SMTC) that includes a very effective individuals-partitioning technique on a
wide set of synthesized benchmark formulas and compared it with main state-of-the-art
OWL reasoners. Our empirical evaluation demonstrates the potential of our approach
and, compared with the tested OWL reasoners, demonstrates a significantly better per-
formance in the case of benchmarks having multiple/balanced sources of complexity.

2 Background

2.1 The Description Logic ALCQ
The logic ALCQ extends the well-known logic ALC by adding qualified number
restrictions (QNRs). In more details, the concept descriptions in ALCQ (namely
Ĉ, D̂, . . .) are inductively defined through the constructors listed in Figure 1, start-
ing from the non-empty and pair-wise disjoint sets of concept names NC (denoted by
the letters A,B,C, . . .) and role names NR (denoted by the letters r, s, . . .). It allows
for negations, conjunctions/disjunctions, existential/universal restrictions and, indeed,
QNRs. An ALCQ TBox (or ontology) is a finite set of general concept inclusion (GCI)
axioms as defined in Figure 1.

Given a TBox T , we denote with BCT the set of the basic concepts for T , i.e. the
smallest set of concepts containing: (i) the top and the bottom concepts� and⊥; (ii) all
the concepts of T in the form C and ¬C where C is a concept name in NC . We denote
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the basic concepts in BCT with the letters C,D, . . . (thus, C may represent a concept
¬C′ with C′ ∈ BCT ), whilst we use Ĉ, D̂, . . . for complex concepts, i.e. Ĉ, D̂ �∈ BCT .
Our approach is currently restricted to acyclic (or unfoldable) TBoxes. We call a TBox
T acyclic if there exist no cyclic dependencies between its concept names, i.e., named
concepts are neither defined directly or indirectly in terms of themselves through the
axioms in T .

Semantics. The semantics of ALCQ is defined in terms of interpretations. An inter-
pretation I is a couple I = (ΔI , ·I), where ΔI is the domain (i.e. a non-empty set
of individuals), and ·I is the interpretation function which maps each concept name
(atomic concept) A ∈ NC to a set AI ⊆ ΔI and maps each role name (atomic role)
r to a binary relation rI ⊆ ΔI × ΔI . In Figure 1 the inductive extensions of ·I to
arbitrary concept descriptions are defined, where n and m are positive integer values
and FIL(r, x) is the set of the r-fillers of the individual x ∈ ΔI for the role r ∈ NR

and is defined as FIL(r, x) = {y ∈ ΔI |(x, y) ∈ rI}. An interpretation I is a model
of a given TBox T if and only if the conditions given in Figure 1 are respected for every
axiom in T ; when this is the case, the TBox T is said to be consistent. A concept Ĉ is
said to be satisfiable wrt. T if and only if there exists a model I of T with ĈI �= ∅, i.e.
there exists an individual x ∈ ΔI as an instance of Ĉ, i.e. such that x ∈ ĈI .

Normal Form. We assume wlog. that all ALCQ concept descriptions are in negative
normal form (NNF), i.e. negation signs only occurs in front of concept names (see [17]
for details). Then, for the sake of an easier exposition, we restrict our attention to those
ALCQ TBoxes in which all axioms are in the following normal form:

C � D �iCi � D C � �iDi 2r.C � D C � 2r.D (1)

with 2 ∈ {∀,≥n,≤m} s.t. n,m ≥ 1, and C,Ci, D,Di ∈ BCT .1 Every given TBox
T can be turned into a normalized TBox T ′ (where all concept description in T ′ are
in NNF) that is a conservative extension of T by introducing new concept names. The
transformation of a TBox T into T ′ can be done in linear time, and the size of T ′ is
linear wrt. the size of T . We call every non-conjunctive and non-disjunctive concept
description occurring in the concept inclusions of T ′ a normal concept of a normalized
TBox T ′; we call NCT ′ the set of all the normal concepts of T ′. For more details we
refer the reader to [17].

2.2 Satisfiablity Modulo Theory with Cost Functions

Satisfiability Modulo (the) Theory T , SMT(T ), is the problem of deciding the satisfia-
bility of a (typically) ground formula under a background theory T . Most state-of-the
art SMT solvers are based on the lazy SMT schema: in a nutshell, a SAT solver is used to
search for a truth assignment μ to the atomic subformulas of the input ground formula
ϕ, s.t. μ tautologically entails ϕ and μ is found consistent in T by the T -solver. (We
refer the reader to, e.g., [12] for details and further references.)

1 In particular, we avoid redundant existential and at-most restrictions that are replaced by their
following equivalents: ∃r.C =⇒ ≥1r.C and ≤0r.C =⇒ ∀r.nnf(¬C).
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The work in [3] addresses the problem of the satisfiability in some theory T of a
formula ϕ augmented with a set of cost functions {cost1, ..., costN} s.t., for every i:

costi =
∑Ni

j=1 if-then-else(Aij , cij , 0), lbi < costi ≤ ubi, (2)

Aij being Boolean atoms occurring in ϕ, and Ni, lbi, ubi, cij being integer values ≥ 0.
(Intuitively, in (2) costi =

∑
j Aijcij s.t. Aij ∈ {0, 1}.) The problem can be encoded

into SMT(T ∪LA(Z)). However, [3] remarked the inefficiency of such solution, which
does not fully exploit the fact that the values of costi derive deterministically from the
truth values of all the Aij ’s. They proposed instead a specific theory of costs C, which is
much simpler and computationally much cheaper thanLA(Z), and developed a specific
very-fast T -solver for C. In a nutshell, C consists of: (i) a collection of integer variables
cost1, . . . , costN , that we call cost variables, denoting the output of the cost functions
in (2); (ii) an interpreted predicate BC “bound cost” s.t. BC(costi, c) is true iff costi is
upper-bounded by the integer value c; (i.e., iff costi ≤ c); (iii) an interpreted predicate
IC “incur cost” s.t. IC(costi, cij , j) is true if the j-th element of sum (2) is cij , false if
it is 0. Thus, ϕ is satisfiable in T under the cost constraints (2) iff the formula

ϕ ∧
∧N

i=1(BC(costi, ubi) ∧ ¬BC(costi, lbi) ∧
∧Ni

j=1(Aij ↔ IC(costi, cij , j))) (3)

is satisfiable in T ∪ C. A specific T -solver for C works simply by adding the value cij

[resp. 0] to the current minimum value of costi and 0 [resp. cij] to its current maximum
when IC(costi, cij , j) (i.e. Aij) is assigned to true [resp. false], and by checking if such
minimum [resp. maximum] value of costi is smaller or equal than ubi [resp. greater or
equal than lbi]. We refer the reader to [3] for details and further references.

3 Concept Satisfiability via SMT with Costs

3.1 Encoding ALCQ into SMT(C)

The encoding we propose simulates the construction of an interpretation I by intro-
ducing new individuals, assigning individuals to the interpretations of concepts in T ,
and counting their occurrences in the interpretations. We represent uniquely individuals
in ΔI by means of labels σ, represented as non-empty sequences of positive integer
values and role names in NR. A label σ can be either the label 1 or in the form σ′.r.n,
with σ′ another label, r ∈ NR and n ≥ 1. With a small abuse of notation, hereafter we
may say “the individual σ” meaning “the individual labeled by σ”. Moreover, we call
instantiated concept a pair 〈σ,C〉, s.t. σ ∈ ΔI and C is anALCQ normal concept of T ,
representing the fact that the σ is an instance of C in the interpretation I, i.e. σ ∈ CI .

We define A〈 , 〉 an injective function which maps one instantiated concept 〈σ,C〉
s.t. C is not in the form ¬C′, into a Boolean variable A〈σ, C〉 that we call concept vari-
able. The so-called concept literal L〈σ, C〉, denotes ¬A〈σ, C′〉 if C is in the form ¬C′,
A〈σ, C〉 otherwise. The truth value of L〈σ, C〉 states whether the instantiation relation
between σ and C [resp. ¬C] holds, i.e. if 〈σ,C〉 [resp. 〈σ,¬C〉 ] is an existing instanti-
ated concept in I. We conventionally assume that A〈σ, ⊥〉 is ⊥. Notice also that 〈σ,�〉
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means σ ∈ ΔI , i.e. that if A〈σ, 	〉 is assigned to true then σ exists in ΔI . We infor-
mally say that σ (meaning 〈σ,�〉) or 〈σ,C〉 is “enabled” when the respective literal is
assigned to true.

We define indiv a function which maps one instantiated concept 〈σ,2r.C〉, such that
2 ∈ {≥n,≤m} and C is a basic concept (since we are considering concepts in normal
form), into a cost variable indivC

σ.r in the Theory of Costs, that we call individuals
cost variable. Notice that indiv is not injective since the same cost variable indivC

σ.r

is “shared” among all the instantiated concepts which refer both to the same σ and to
QNRs involving the same r and C. However, notice also that 〈σ,2r.C〉 and 〈σ,2r.¬C〉
are mapped to different cost variables. The final value of the individuals cost variable
indivC

σ.r represents the number of individuals which are in relation with the individual σ
via the role r and are in the interpretation of C, in other words the final value of indivC

σ.r

exactly represents the cardinality of FIL(r, σ) ∩ CI .
Our encoding works by means of the following principles:

– GCIs are represented via Boolean implications between instantiated concepts.
– Every at-least restriction 〈σ,≥nr.C〉 is handled by introducing exactly n individ-

uals σ.r.i associated to C. The existence of individuals is forced by binding each
of them to an incur cost of value 1 for indivC

σ.r, and then fixing a lower-bound for
indivC

σ.r.
– When both at-least and at-most restrictions coexist wrt. σ, the encoding allows for

sharing individuals separately introduced by distinct at-least restrictions. At-most
restrictions are handled by fixing upper-bounds for the respective cost variables.

– It mimics the construction of a labeled tableaux with the difference of the above
exposed sharing of individuals which generalizes the merging of pairs of fillers to
satisfy at-most QNR.

Definition 1 (ALCQ2SMTC(T ) encoding). Let T be an acyclicALCQ TBox in nor-
mal form. Wlog., we represent every axiom Ĉ � D̂ of T as �iĈi � !jD̂j where
i, j ≥ 1 and i = 1 (resp. j = 1), with Ĉ1 (resp. D̂1) a normal concept, for every
normal form (1) except for the second (resp. the third) one. The SMT(C) encoding
ALCQ2SMTC(T ) for T is defined as the sextuple 〈ΣT , IT− , IT+ , A〈 , 〉, indiv, ϕT 〉,
where:

– ΣT is the set of all the possible individuals introduced;
– IT− , IT+ represent respectively the set of the implicant (i.e. left-side) and implied

(i.e. right-side) instantiated concepts that must be encoded accordingly to their
side;

– A〈 , 〉 and indiv are the functions defined above;
– ϕT is a CNF formula on propositional- and C-literals encoding T into SMT(C).

We represent ϕT as the set of its clauses.2

The sets ΣT , IT− , IT+ and ϕT are incrementally defined as the minimum sets s.t.:

1. Initialization. 1 ∈ ΣT , 〈1,�〉 ∈ IT− , 〈1,�〉 ∈ IT+ and (A〈1, 	〉) ∈ ϕT .

2. Axioms initialization. If Ĉ � D̂ ∈ T , then {〈1, Ci〉 | Ĉ = �iCi } ⊆ IT− .

2 For better readability we often represent the clauses of ϕT as implications.
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3. Axioms expansion. If σ ∈ ΣT , �iCi � !jDj ∈ T , {〈σ,Ci〉 | Ĉ = �iCi } ⊆
IT− ∪ IT+ , then

{ 〈σ,Dj〉 | D̂ = !jDj } ⊆ IT+ ,

(
∧
i

L〈σ, Ci〉) → (
∨
j

L〈σ, Dj〉) ∈ ϕT . (4)

4. Handle left-side QNRs. If σ ∈ ΣT , 〈σ,2′.r.C′〉 ∈ IT+ with 2′ ∈ {≥n′,≤m′, ∀},
then

{ 〈σ,2r.C〉 | 2r.C � D̂ ∈ T } ⊆ IT− ,2 ∈ {≥n,≤m, ∀}.
5. At-least restrictions: introduce individuals. If σ ∈ ΣT , 〈σ,≥nr.C〉 ∈ IT+ then

{ σ.r.kC
i | i = 1, . . . , n } ⊂ ΣT ,

{ 〈σ.r.kC
i , C〉 | i = 1, . . . , n } ∪ { 〈σ.r.kC

i ,�〉 | i = 1, . . . , n } ⊂ IT− ,

{ IC(indivC
σ.r, 1, kC

i ) → L〈σ.r.kC
i , C〉 | i = 1, . . . , n } ⊂ ϕT , (5)

{ IC(indivC
σ.r, 1, kC

i ) → A〈σ.r.kC
i , 	〉 | i = 1, . . . , n } ⊂ ϕT , (6)

where kC
1 ≥ 1, kC

i+1 = kC
i + 1 and kC

i �= kD
j for every 〈σ,≥n′r.D〉 ∈ IT+ with

C �= D and i = 1, ..., n, j = 1, ..., n′. We assume consecutive values for all the
σ.r.j.3

6. At-least restrictions: fix lower bounds. If σ ∈ ΣT , 〈σ,≥nr.C〉 ∈ IT+ , then

((A〈σ, ≥nr.C〉 ∧A〈σ, 	〉) → ¬BC(indivC
σ.r, n− 1)) ∈ ϕT , (7)

if σ ∈ ΣT , 〈σ,≥nr.C〉 ∈ IT− , then

((¬BC(indivC
σ.r, n− 1) ∧A〈σ, 	〉) → A〈σ, ≥nr.C〉) ∈ ϕT . (8)

7. Coexisting at-least/at-most: sharing individuals. If σ ∈ ΣT , 〈σ,≤mr.E〉 ∈ IT+ ,
〈σ,≥nr.C〉 ∈ IT+ , 〈σ,≥n′r.D〉 ∈ IT+ , with C �= D, then

{ 〈σ.r.kC
i , D〉 | i = 1, . . . , n } ∪ { 〈σ.r.kD

i , C〉 | i = 1, . . . , n′ } ⊂ IT− ,

{ IC(indivD
σ.r, 1, kC

i ) → L〈σ.r.kC
i , D〉 | i = 1, . . . , n } ∪

{ IC(indivC
σ.r, 1, kD

i ) → L〈σ.r.kD
i , C〉 | i = 1, . . . , n′ } ⊂ ϕT , (9)

{ IC(indivD
σ.r, 1, kC

i ) → A〈σ.r.kC
i , 	〉 | i = 1, . . . , n } ∪

{ IC(indivC
σ.r, 1, kD

i ) → A〈σ.r.kD
i , 	〉 | i = 1, . . . , n′ } ⊂ ϕT . (10)

8. At-most restrictions: count individuals. If σ ∈ ΣT , 〈σ,≤mr.C〉 ∈ IT+ then

{ 〈σ.r.j, C〉 | σ.r.j ∈ ΣT } ⊂ IT− ,

{ (L〈σ.r.j, C〉 ∧A〈σ.r.j, 	〉) → IC(indivC
σ.r, 1, j) | σ.r.j ∈ ΣT } ⊂ ϕT . (11)

3 Hence, either kC
1 =1 or kC

1 =kD
n′ +1 for some 〈σ,≥n′r.D〉 ∈ IT+
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9. At-most restrictions: fix upper bounds. If σ ∈ ΣT , 〈σ,≤mr.C〉 ∈ IT+ , then

((A〈σ, ≤mr.C〉 ∧A〈σ, 	〉) → BC(indivC
σ.r,m)) ∈ ϕT , (12)

if σ ∈ ΣT , 〈σ,≤mr.C〉 ∈ IT− , then

((BC(indivC
σ.r,m) ∧A〈σ, 	〉) → A〈σ, ≤mr.C〉) ∈ ϕT . (13)

10. Universal restrictions. if σ ∈ ΣT , 〈σ, ∀r.C〉 ∈ IT+ , then

{ 〈σ.r.j, C〉 | σ.r.j ∈ ΣT } ⊂ IT−
{ ((A〈σ, ∀r.C〉 ∧A〈σ.r.j, 	〉) → L〈σ.r.j, C〉) | σ.r.j ∈ ΣT } ⊂ ϕT , (14)

if σ ∈ ΣT , 〈σ, ∀r.C〉 ∈ IT− , then

((BC(indiv¬C
σ.r , 0) ∧A〈σ, 	〉) → A〈σ, ∀r.C〉) ∈ ϕT . (15)

Importantly, at the effect of the encoding, left-side at-most (and universal) restric-
tions behave as right-side at-least restrictions, and vice versa. Thus, for instance, the

instantiated concept 〈σ,≤n− 1r.C〉 ∈ IT− [resp. 〈σ, ∀r.¬C〉 ∈ IT− , n
def
= 1] must

be handled by the encoding as if it were the instantiated concept 〈σ,≥nr.C〉 ∈ IT+ .
In order to simplify the exposition, in Definition 1 and afterwards, we generically re-
fer to at-least/at-most restrictions (respectively to the instantiated concepts 〈σ,≥nr.C〉/
〈σ,≤mr.C〉) meaning the right-side ones, but implicitly including left-side at-most (or
universal)/at-least restrictions, respectively. The interested reader can find in [17] the
completeALCQ2SMTC encoding and some encoding examples.

The following facts concerningALCQ2SMTC hold. (We refer the reader to [17] for
the formal proofs.)

Theorem 1. An ALCQ acyclic TBox T in normal form is consistent if and only if the
SMT(C)-formula ϕT of ALCQ2SMTC(T ) (Definition 1) is satisfiable.

Theorem 2. Given an ALCQ acyclic TBox T in normal form and the encoding
ALCQ2SMTC(T ) = 〈ΣT , IT− , IT+ , A〈 , 〉, indiv, ϕT 〉 of Definition 1, every C ∈ BCT
is satisfiable wrt. T iff ϕT ∧ L〈1, C〉 is satisfiable.

We remark on some facts about the encoding of Definition 1:

– Point 4. is necessary to force the encoding of axioms having on the left-hand side
restrictions wrt. the role r, when other restrictions wrt. r are involved. Such kind of
axioms can create cycles in TBoxes (we remark that our encoding ensures termina-
tion for acyclic TBoxes).

– In all the clauses of type (5), (6), (9), (10) and (5), (11), every IC-literal has cost
value 1 and the same index of the bound individual. This ensures that IC-literals
referring to distinct individuals/cost variables are represented by distinct atoms.

– Due to the theory C clauses (7) and (12), are those concretely ensuring the numeri-
cal satisfiability of both at-least and at-most restrictions. In order to be satisfied: (i)
a clause of type (7) forces some IC-literals to be assigned to true (thus (5), (9) work
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in only one direction); (ii) a clause of type (12), instead, bounds the number of IC-
literals that can be enabled (motivating the opposite direction of (11)). Clauses (8)
and (13) instead enforce the application of an axiom having a left-side QNRs if it
is numerically satisfied.

Notice that if, for the same σ, r and C, more than one restriction satisfies the conditions
of point 5. with different values of n (being n∗ the highest of these values), then only
exactly n∗ new individuals and n∗ clauses (5) and (6) are in ϕT . In contrast, one distinct
clause (7) is in ϕT for every different value of n (the same holds for the clauses (12) in
case of different values of m wrt. the same σ, r and C).
ALCQ with general TBoxes has the finite tree model property [11], thus every sat-

isfiable ALCQ concept is satisfiable in a finite interpretation (in this case of worst-case
exponential size) which has the shape of a tree. Intuitively the individuals in ΣT form
a super-tree of all such models. Let N represent the sum of the values occurring in the
QNRs of T : a very coarse upper bound to the cardinality of ΣT is Θ(|T |N ), in fact
the number of nested restrictions is bounded by the number of axioms of T while N
bounds the number of branches in the tree for every nesting level. The size of ϕT is,
instead, bounded by Θ(|T |2N ) because for every individual and every concept of T
a fixed number of clauses can be introduced. In [17] we define a terminating queue-
based algorithm building ALCQ2SMTC by means of expansion rules which mimic
Definition 1. Since we are restricted to acyclic TBoxes it is ensured that our encoding
algorithm terminates even without introducing blocking techniques [1], in particular,
the proposed algorithm is polynomial in the size of the SMT(C) formula produced.

4 Partitioning Individuals

One potential drawback of the basic ALCQ2SMTC is the high number of individuals
introduced, that is linear wrt. the values occurring in the at-least restrictions. This num-
ber can increase exponentially when nested restrictions must be encoded, significantly
impacting on the size and on the hardness of the resulting SMT(C) formula. However,
similarly to the hybrid approach of [6,4], we can cope with this problem by encoding
groups of individuals having identical properties (instead of using single ones) and by
using only one “proxy” individual as representative of the group. We aim at partitioning
the individuals introduced in Definition 1 on the basis of the following considerations:4

– Individuals are naturally pre-partitioned in groups wrt. r and the predecessor σ.
– If, given σ, r, no at-most restriction exists, all the fillers σ.r.kC

i referring to one
at-least restriction can be represented by one single proxy individual.

– Otherwise, the
∑

j nj distinct individuals introduced by some 〈σ,≥njr.Cj〉 can
still be partitioned, but the partitioning must allow for representing possible inter-
sections between the CI

j .

4 Notice that here we present a different partitioning that avoids the a-priori exponential number
of partitions in [6,4] (wrt. the number of coexisting QNRs). In our case, we consider the whole
set of individuals necessary to trivially satisfy all the coexisting at-least restrictions, then, only
on the basis of the numbers involved in QNRs, we compute a partitioning of such a set, where
the target of our approach is to decide which partitions of individuals belong to a concept
interpretation.
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In the latter case not all possible cardinalities of the intersections must be considered.
Instead, it is sufficient to distinguish between the empty intersection and some “limit”
cases depending on the values occurring in the QNRs. To sum up, given σ, r, we can
compute a partitioning of the individuals referring to σ and r by taking into account the
values of the restrictions which concern σ and r.

Example 1. Suppose that it is necessary to encode the restrictions: 〈σ,≥10r.C〉 and
〈σ,≥1000r.D〉. The basic ALCQ2SMTC encoding would introduce 1010 distinct in-
dividuals. Applying the idea explained above, instead, we could divide these 1010 in-
dividuals in, e.g., three partitions of respectively 10, 990 and again 10 individuals. If,
for example, also 〈σ,≤1005r.�〉must be encoded, then the last 10 individuals could be
further divided into two distinct partitions. This partitioning allows for representing the
cases in which 0, 5, 10, 15, 20, 990, 995, 1000, 1005 or 1010 of these individuals exist
in ΔI (being part or not of CI and/or DI ). Even if not exhaustive these combinations
are enough to represent the significant cases concerning satisfiability.

4.1 Smart Partitioning

In order to handle partitions of individuals we extend ALCQ2SMTC with cumulative
labels and proxy individuals. Given a normal/cumulative label σ′ and a role r, a
cumulative label σ′.r.(i→ j) represents a group of consecutive individuals by means
of the range of integer values i→ j, with i≤ j, thus it represents a set of individuals
whose cardinality is j − i + 1. When i = j we can both write σ′.r.(i → i) and
σ′.r.i. With a small abuse of notation, in the following we call proxy individual any
σ.r.(i→ j), meaning both: (i) the cumulative label representing the set of individuals
σ.r.i, σ.r.i+1, . . . , σ.r.j and (ii) that σ.r.(i→ j) can be one/any of these individuals
acting as proxy for all the other individuals of the set.

The idea is to compute a “smart” partitioning of the individuals to be encoded into
ALCQ2SMTC. With “smart” we mean a “safe but as small as possible” partitioning,
i.e. with “a small” number of partitions but “safely” preserving the semantics of the
problem, so that the cardinality of the computed partitions allow for representing every
relevant case wrt. satisfiability. We formally define our smart partitioning:

Definition 2. Let T being an acyclic ALCQ TBox in normal form. Given
ALCQ2SMTC(T ) (Definition 1), σ ∈ ΣT and r ∈ NR we define the arrays:5

N≥
σ.r

def
= { ni | 〈σ,≥nir.Ci〉 ∈ IT+ }i

6 and

N≤
σ.r

def
= {mj | 〈σ,≤mjr.Dj〉 ∈ IT+ }j .

From N≥
σ.r andN≤

σ.r, respectively, we define the integer values:

N≥
σ.r

def
= Σ

ni∈N≥
σ.r

ni and N≤
σ.r

def
= Σ

mj∈N≤
σ.r

mj .

5 With array we mean that equal ni [resp. mj] values repeat inN≥
σ.r [resp.N≤

σ.r ] as many times
as they occur in the involved QNRs.

6 〈σ,∀r.Ci〉 ∈ IT− must be considered like 〈σ,≤0r.¬Ci〉 ∈ IT− , while 〈σ,≤ni−1r.Ci〉 ∈ IT−
must be considered like 〈σ,≥nir.Ci〉 ∈ IT+ and vice versa.
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We define the set Pσ.r
def
= P≥

σ.r ∪P≤
σ.r as the smart partitioning for the N≥

σ.r individuals
of ΣT in the form σ.r.k, where:

P≥
σ.r

def
= { nS | S ∈ 2N

≥
σ.r , nS = Σnk∈S nk } and

P≤
σ.r

def
= {mS | S ∈ 2N

≤
σ.r , mS = Σmk∈S mk }.7

Finally, we define pi ∈ Pσ.r the i-th sorted element of Pσ.r, so that pi < pi+1. We have
in particular: p1 = 0 and p|Pσ.r| = max{N≥

σ.r, N
≤
σ.r}.

As P≥
σ.r,P≤

σ.r,Pσ.r are sets, equal values are uniquely represented in them. Given
σ, r, and assuming to include in each partition consecutive individuals among
σ.r.1, ..., σ.r.N≥

σ.r , then Pσ.r is the set containing the indexes of the last individual
of all the partitions. Hence, partitions can be represented by the proxy individuals
σ.r.(pj−1 +1 → pj), with j > 1. For instance, notice that the partitionings shown in
Example 1 are computed in accordance with Definition 2. We remark that Definition 2
defines a safe 8 partitioning, in fact:

– it takes into account all the values in QNRs for σ, r;
– it considers all the possible sums of the values ni [resp. mj] for all the at-least [resp.

at-most] restrictions, which allows for representing all the possible lower-bounds
[resp. upper-bounds] in case of disjoint concept interpretations;

– the union of P≥
σ.r,P≤

σ.r represents the combination of lower- and upper-bounds;
– by sorting all the possible sums and by using the distance between these values (a

partition ranges from pj−1 + 1 to pj) as the cardinality of the partitions, it allows
for representing all the possible intersecting concept interpretations.

We remark that partitioning makes our approach independent from the magnitude/offset
of the values occurring in QNRs.

4.2 Exploit Smart Partitioning in ALCQ2SMTC

Using partitions and proxy individuals does not affect the ALCQ2SMTC encoding,
because the Theory of Costs allows for arbitrary incur costs. We can enhance Defini-
tion 1 by taking advantage of smart partitioning as follows. First we assume that the
sets ΣT , IT− , IT− and the functions A〈 , 〉, indiv are defined consistently with the use of
proxy individuals. Second, assuming to compute the partitioning Pσ.r of Definition 2
for every σ, r, we modifyALCQ2SMTC as follows:

– The n clauses of the types (5) and (6) at point 5. are replaced by the following:

{ IC(indivC
σ.r, costj , idxj) → L〈σproxyj

, C〉 | pj ∈ Pσ.r, 0<pj≤n } ⊂ ϕT ,

{ IC(indivC
σ.r, costj , idxj) → A〈σproxyj

, 	〉 | pj ∈ Pσ.r, 0<pj≤n } ⊂ ϕT ,

costj =pj−p(j−1), idxj =kC
1 +p(j−1), σproxyj =σ.r.kC

1 +p(j−1) → kC
1 +pj−1.

7 Being 2X the power set for the set/array X.
8 I.e. it preserves the semantics of the problem wrt. satisfiability.
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– Clauses (9), (10) at point 7. are modified accordingly.
– The clauses (11) defined at point 8. must take into account the use of proxy indi-

viduals and of incur costs potentially bigger than 1. Hence they are replaced by:

{(L〈σ.r.(i→ j), C〉∧A〈σ.r.(i→ j), 	〉) → IC(indivC
σ.r, j−i+1, i) | σ.r.(i→j)∈ΣT }.

– Clauses (14) at point 10. are modified in the same way, handling proxy individuals.

We make the following observations:

– If, for σ, r, the conditions of point 7. of Definition 1 do not hold (e.g. no at-most re-
striction exists), then an even more efficient partitioning requires only the following
two clauses for every 〈σ,≥nr.C〉:

IC(indivC
σ.r, n, kC

1 ) → L〈σ.r.(kC
1→kC

1 +n−1), C〉,∈ ϕT ,

IC(indivC
σ.r, n, kC

1 ) → A〈σ.r.(kC
1→kC

1+n−1), 	〉 ∈ ϕT .

– Otherwise, if the conditions of point 7. hold, then ϕT contains all the clauses:

{ IC(indivC
σ.r, pj−pj−1, pj−1+1)→ L〈σ.r.(pj−1+1→pj), C〉 | pj ∈ Pσ.r, j>1} ∪

{ IC(indivC
σ.r, pj−pj−1, pj−1+1)→ A〈σ.r.(pj−1+1→pj), 	〉 | pj ∈ Pσ.r, j>1}

for every 〈σ,≥nr.C〉, as consequence of point 5. and of the sharing of (proxy)
individuals performed at point 7.

An exponential-time algorithm computing the smart partitioning Pσ.r (Definition 2)
for every given individual σ and the role r is presented in [17]. Taken as input
the arrays N≥

σ.r and N≤
σ.r, the algorithm is shown to have worst-case complexity

O(2 max |N≥
σ.r|,|N

≤
σ.r|).

5 Empirical Evaluation

We have implemented the encoder ALCQ2SMT in C++; smart partitioning (§4) can
be enabled optionally (denoted with S.P. hereafter). In combination withALCQ2SMT,
we have used MATHSAT (v. 3.4.1) [2] that is the SMT-solver including the Theory of
Costs [3]. We have evaluated the effectiveness of our novel approach by performing
an empirical test session on about 700 synthesized9 and parameterizedALCQ-concept
satisfiability problems adapted from [6], plus more. In order to compare with the avail-
able state-of-the-art reasoners we have executed the following tools on every test case:
FACT++ (v. v1.4.0) [16], PELLET (v. 2.1.1) [15], and RACER (RacerPro 1-9-0) [7].

All the results presented in this section have been obtained on a 64bit biprocessor
dual-core IntelXeon2.66GHz machine, with 16GB of RAM. We set a 1000 seconds
timeout for every concept satisfiability query. We also fixed a bound of 1GB of disk
space for the SMT(C) encoding output fromALCQ2SMT. When reporting the results

9 Due to lack of space we refer the reader to Section 6.1 in [6] for a discussion on why real-world
ontologies are not yet available as suitable QNR benchmarks.
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for one ALCQ2SMT+MATHSAT configuration (either including S.P. or not), every
CPU time reported is the sum of both the ALCQ2SMT encoding and the MATHSAT

solving time (both including the loading and parsing of the respective input problem).10

Importantly, with all test problems, all tools under examination (including both the
variants of ALCQ2SMT+MATHSAT) agreed on the expected un/satisfiability results
when terminating within the timeout, with the exception of PELLET which incorrectly
returned “sat” on some nested_restr_unsat problems.

Test Description. For our empirical evaluation, we have made use of synthesized test
cases adapted from those in [6].The benchmark problems of [6] focus on concept ex-
pressions containing only QNRs and define different sets of indexed problems, increas-
ingly stressing on different sources of complexity at the increase of the index i. Since
the values occurring in QNRs are one of the sources of complexity which can strongly
affect the performance of reasoning for some tools, wrt. the original test cases of [6] we
further parameterized such values making them depend on a parameter n. Below we list
the sources of complexity of the reasoning in ALCQconsidered in [6] with the relative
test set names, the ranges of the indexes i and the values chosen for n in our empirical
evaluation:11

1. the size of the values occurring in QNRs (test cases: incr_lin_sat/unsati with
i=1–100; incr_exp_sat/unsati with i=1–6, satisfiable/unsatisfiable);

2. the number of QNRs (test cases: restr_numi(n) with i =1–100, n = 1, 5, 50,
satisfiable);

3. effect of backtracking (number of disjoint concepts) (test cases:
backtrackingi(n) with i=1–20, n=1, 2, 3, 10, unsatisfiable);

4. the ratio between the number of at-least restrictions and the number of at-most
restrictions (test cases: restr_ratioi(n) with i=0–14, n=1, 5, satisfiable);

5. the satisfiability versus the unsatisfiability of the input concept expression (test
cases: sat_unsati(n) with i=1, 2, 4, 6, . . . , 24, n=1, 10, half-and-half).

For the sake of fairness of the comparison, we introduced two novel groups of problems
which we believe can stress the main limitations of our approach wrt. the competitors.
These groups stress two sources of complexity which were not considered in [6]:

6. the variability of the values occurring in QNRs, i.e. in every restriction occurs a
unique value (test cases: var_restr_numi(n) with i=1–100, n=100, satisfiable);

7. the number of nested QNRs (test cases: nested_restr_sat/unsati(n), with
i=1–20, n=5, 50, satisfiable/unsatisfiable).

For a much more detailed description and the exact TBoxes we refer the reader to [6,17].

Results. We compare ALCQ2SMT+MATHSAT against the other state-of-the-art rea-
soners RACER, FACT++ and PELLET. In Figures 2 and 3 we plot, as representative,
the results in the most challenging test cases for every benchmark category. (More plots
and all the detailed results can be found in [17].) We notice the following facts about
ALCQ2SMT+MATHSAT S.P.:
10 To make the experiments reproducible, all the plots in full size, the tools, the problems, and the

results are available at http://disi.unitn.it/~rseba/cade11/tests.tar.gz.
11 The benchmark of [6] are defined for SHQ but we have adapted them toALCQ by flattening

all the role hierarchies to the only role r. The value of n originally used in [6] is underlined.

http://disi.unitn.it/~rseba/cade11/tests.tar.gz
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Fig. 2. Tools comparison. From left to right: sat, unsat problems; 1st row: incr_lin; 2nd row:
incr_exp; 3rd row: nested_restr, n=5. X axis: test case index; Y axis: CPU time (sec).
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Fig. 3. Tools comparison. From let to right: 1st row: restr_numi(5), restr_numi(50); 2nd row:
restr_ratioi(5), var_restr_numi(100). 3rd row: sat_unsati(10), backtrackingi(10).
X axis: test case index; Y axis: CPU time (sec).
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– in all tests, it performs uniformly much better than plainALCQ2SMT+MATHSAT;
– with RACER it is the best performer in the incr_lin and incr_exp (sat/unsat)

categories (Fig. 2 rows 1,2), solving all problems in negligible time;
– in the nested_restr_sat it is the worst performer, but in nested_restr_unsat

it performs better than FACT++ and PELLET (Fig. 2 row 3); 12

– with FACT++ it is the best performer in the restr_numi(5) and restr_ratioi(5)
categories (Fig. 3 rows 1,2 left), solving all problems in negligible time;

– it is the absolute best scorer in restr_numi(50) test set (Fig. 3 row 1 right);
– in the var_restr_num category it performs worse than FACT++ and PELLET, but

better than RACER13 (Fig. 3 row 2 right);
– with RACER it is the best performer in the sat_unsat category (Fig. 3 row 3 left),

solving all problems in negligible time;
– it is the worst performer on the backtracking problems (Fig. 3 row 3 right).

Looking into the data we notice a few more facts. First, the size of the encoded pro-
blems of ALCQ2SMT –for both the basic and the S.P. variants– never exceed the
1GB-file-size limit, except for the nested_restr test cases with i ≥ 5 and i ≥ 7,
respectively. (In fact, nested QNRs exponentially affect the size of our encoding.) In
general, the encoded problems present a very low number of cost variables, which de-
pends on the number of the QNRs in the input problem, and a possibly huge number
of Boolean variables and clauses, which depend on the number of (proxy-) individ-
uals introduced. Second, in the vast majority of the input problems the encoding re-
quired by ALCQ2SMT is negligible (≤ 10−2s); with S.P. it is significant only with
the nested_restr and var_restr_num benchmarks (still ≤ 4s for the hardest pro-
blems).

Discussion. The performances of ALCQ2SMT+MATHSAT S.P. wrt. other state-of-
the-art reasoners range from some cases where it is much less efficient (backtracking,
nested_restr_sat and var_restr_num) up to problems in which it significantly out-
performs other tools (incr, sat_unsat and restr_num). Notice that we have specif-
ically designed the nested_restr and var_restr_num problems in order to enforce
the exponentiality of the encoding and to maximally inhibit smart partitioning, re-
spectively. The backtracking problems, instead, have been designed in [6] to test
the capability of performing dependency-directed backtracking [10]. Since the en-
coding is decoupled from the search, our approach cannot benefit of this optimiza-
tion.
ALCQ2SMT+MATHSAT S.P. instead performs extremely well in those bench-

marks presenting multiple/balanced sources of complexity. Moreover, the size of the
encoding is not the main complexity issue for our approach, which is very effective also
on large or really complex problems (e.g., MATHSAT scales up to problems with more
than 105 Boolean variables and clauses, and 104 cost variables, in the nested_restr
benchmarks). Finally, smart partitioning is extremely effective, being able to drasti-
cally (and exponentially) reduce the size of the output SMT(C) problems, up to three

12 Notice that that PELLET gave wrong “sat” results on nested_restr_unsat problems.
13 RACER’s implementation of the algebraic approach [8] is best-case exponential wrt. the num-

ber of QNRs.
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orders of magnitude in the extreme rest_num and nested_restr cases wrt. basic
ALCQ2SMT (it exponentially impacts also in the number of cost variables in case of
nested QNRs). The empirical evaluation clearly confirms that partitioning makes our
approach independent from the magnitude/offset of the values occurring in QNRs.
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Sine Qua Non for Large Theory Reasoning

Kryštof Hoder and Andrei Voronkov�
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Abstract. One possible way to deal with large theories is to have a good selec-
tion method for relevant axioms. This is confirmed by the fact that the largest
available first-order knowledge base (the Open CYC) contains over 3 million ax-
ioms, while answering queries to it usually requires not more than a few dozen
axioms. A method for axiom selection has been proposed by the first author in the
Sumo INference Engine (SInE) system. SInE has won the large theory division of
CASC in 2008. The method turned out to be so successful that the next two years
it was used by the winner as well as by several other competing systems. This
paper contains the presentation of the method and describes experiments with it
in the theorem prover Vampire.

1 Introduction

First-order theorem provers traditionally were designed for working with relatively
small collections of input formulas, for example, those based on a small axiomatisa-
tion of a class of algebras, or some axiomatisation of a set theory. Recently, several
very large first-order axiomatisations and problems using these axiomatisations have
become available. Problems of this kind usually come either from knowledge-base rea-
soning over large ontologies (such as SUMO [6] and CYC [4]) or from reasoning over
large mathematical libraries (such as MIZAR [9]). Solving these problems usually in-
volves reasoning in theories that contain thousands to millions of axioms, of which only
a few are going to be used in proofs we are looking for.

Reasoning with very large theories expressed in first-order logic requires radical re-
design of theorem provers. For example, a quadratic time preprocessing algorithm (such
algorithms were routinely used in the past) may become prohibitively expensive when
the input contains a million formulas.

The first-order problems we will discuss in this paper consist of a very large (thou-
sands to millions) set Ax of axioms, plus a small number of additional assumptions
A1, . . . , An and a conjecture G, sometimes also called a goal. We have to prove the
conjecture from the axioms and assumptions. Since the set of additional assumptions is
normally small (and often empty), it will be convenient for us to assume that we have
a large set of axioms and a single goal A1 ∧ . . . ∧ An → G. When we discuss com-
plexity of algorithms in this paper, we assume that all axioms and the goal are small,
for example, have a size (number of symbols, connectives and quantifiers) bound by a
constant.

If the conjecture is provable from the axioms, then it is normally provable from a
very small subset of these axioms. For example, some of the CYC problems mentioned

� This work and the second author are partially supported by an EPSRC grant.

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 299–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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above contain over 3,000,000 axioms, and all of these problems have proofs involving
only less than 20 axioms. If we only use the axioms occurring in such a proof instead of
all axioms, a proof will be found by any modern theorem prover in essentially no time.

Provided that only a tiny subset T of axioms is sufficient for finding a proof, one can
try to select a small subset S ⊆ Ax of axioms, which is likely to contain T , and search
for a proof using a standard first-order theorem prover on the subset S instead of Ax. It
is common that the subset S we are trying to select consists of the axioms most relevant
to the goal. This paper describes an algorithm for axiom selection. The first version
of the algorithm was originally introduced by the first author and implemented in the
system SInE. The version and options described here are implemented in the theorem
prover Vampire [3].

This paper is structured as follows. In Section 2 we discuss the problem of select-
ing axioms relevant to a goal and the natural idea of symbol-based selection. Based on
this discussion, in Subsection 2.2 we introduce a definition of trigger-based selection,
which captures a special case of symbol-based selection. In Section 3 we present the
Sine selection algorithm as a trigger-based selection algorithm. In Section 4 we discuss
possible variations of this algorithm obtained by changing the trigger relation to over-
come potential shortcomings of Sine selection. We also describe the Vampire parameters
that can be used to invoke these variations.

Section 5 presents experimental results carried out over TPTP problems with large
axiomatisations. It shows the effect of various parameter values on the size of the se-
lected set of axioms, the number of iterations of the algorithm, and on the ability to
solve hard TPTP problems. Section 6 describes the use of our selection method in the
recent CASC competitions. In Section 7 we briefly overview other algorithms used for
selection of relevant axioms and other related work.

2 Symbol-Based Selection

2.1 Idea: Relevance

When one thinks of selecting axioms relevant to a goal, perhaps the most natural idea is
to use symbol-based selection. By a symbol we mean any predicate or function symbol
(including constants) apart from equality =. Symbol-based selection means that axioms
are selected based on symbols occurring in them. Let us call two symbols neighbours
if either they occur in the same axiom. Let us also call two symbols s1, s2 relevant if
(s1, s2) belongs to the reflexive and transitive closure of the neighbour relation. We
will say that a symbol is relevant (to the goal) if it is relevant to a symbol occurring in
the goal. Likewise, we say that an axiom is relevant if it contains at least one relevant
symbol. Note that in an axiom containing at least one relevant symbol, all symbols will
be relevant too.

One possible way of axiom selection is to use all relevant axioms. However, for
all benchmark suites available to us, the set of relevant symbols is usually the set of
all or nearly all axioms. This is mostly due to the use of very general relations having
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occurrences in many axioms: as soon as any such relation is relevant, all axioms con-
taining this relation become relevant. We will refer to symbols having occurrences
in many axioms as to common symbols. Typical examples of common symbols are
“instance-of” and “subclass” relations in ontologies: many ontologies consists almost
exclusively of axioms using these two relations (or similar relations, such as “sub-
sumes”). Therefore, any selection procedure that tries to avoid selecting nearly all ax-
ioms should solve the problem of common symbols.

Another idea for selecting fewer axioms is not to use the full reflexive and transitive
closure of the neighbour relation but only a subset thereof, for example by only allowing
to make n steps of the computation of the transitive closure, for some (small) positive
integer n. Let us formalise the relevancy relation, so that we can refine it later. More
precisely, we will deal with two relevancy relations, one for symbols and another for
axioms.

1. If s is a symbol occurring in the goal, then s is 0-step relevant.
2. If s is k-step relevant and occurs in an axiom A, then A is k + 1-step relevant.
3. A is k-step relevant and s occurs in A, then s is k-step relevant, too.

Clearly, a symbol or an axiom is relevant, if it is k-relevant for some k ≥ 0. This
definition implies also that a k-relevant symbol or axiom is m-relevant for every m ≥ k.

One can use this inductive definition to select either the set of all k-relevant, for some
fixed k, axioms, or the set of all relevant axioms. To compute the latter, we can mark all
relevant axioms until the inductive step does not select any new axiom. Moreover, it is
easy to implement this algorithm in the time linear in the size of the set of all axioms.

Even better, assuming that the set of all axioms is fixed (which is a natural assump-
tion for applications), by preprocessing the set of axioms one can compute the set of
relevant (or k-step relevant) axioms in the time linear in the size of the computed set.
To this end, it is sufficient to index the set of all pairs (s,A) such that s is a symbol
occurring in an axiom A (of course, A can be represented as a reference in the index).
This index can be implemented by storing for every symbol the set of axioms in which
it occurs. Let us show that such an algorithm is indeed linear in the size of the computed
set. To this end, let us consider the set of pairs (s,A) inspected by this algorithm. Note
that for every such pair, A will be included in the output. We use an assumption that the
size of every axiom is bound by a constant; therefore the number of symbols occurring
in a single axiom is also bound by a constant c. This implies that, for a given axiom A,
pairs of the form (s,A) can be inspected at most c times. This shows that if axioms of
the total size n were selected, the runtime of the algorithm is in the worst case O(c ·n),
where c is the maximal number of symbols occurring in an axiom.

Note that using k-step relevance instead of relevance does not solve the problem of
common relations, since they can already become relevant for very small values of k.

2.2 General Scheme

We will introduce a class of symbol-based selection algorithms that generalise and re-
fine the idea of symbol-based selection. The only deviation from the previous definition
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is to add extra conditions for an axiom to be relevant. We will achieve this by introduc-
ing a trigger relation as follows. Suppose that we have a relation trigger (s,A) between
symbols and axioms, such that this relation holds only if s occurs in A. If this relation
holds, we will also say that s triggers A.

Definition 1 (trigger-based selection)

1. If s is a symbol occurring in the goal, then s is 0-step triggered.
2. If s is k-step triggered and s triggers A, then A is k + 1-step triggered.
3. A is k-step triggered and s occurs in A, then s is k-step triggered, too.

An axiom or a symbol is called triggered if it is k-triggered for some k ≥ 0.

It is easy to see that the introduction of the trigger relation can solve the problem of
common symbols. One can simply postulate that s triggers A only if s is not a common
symbol. Or, to be on a safe side, one can say that a common symbol s triggers A only
if all symbols of A are common. This would avoid excluding axioms like

subclass(x, y) ∧ subclass(y, z)→ subclass(x, z)

(transitivity of the subclass relation) or

instanceof (x, y) ∧ subclass(y, z) → instanceof (x, z).

It is not hard to argue that if the set of all symbols s such that s triggers axiom A can
be computed in the time linear in the size of A, then the set T of all triggered (as well
as all k-step triggered) axioms can be computed in time linear in the size of T . This is
achieved by keeping a mapping from symbols to the sets of axioms which they trigger.

3 The Sine Selection

3.1 Idea

The Sine selection algorithm is a special case of trigger-based selection. It uses a trigger
relation that tries to reflect, in a certain way, the hard-to-formalise notions “s2 is defined
using s1” or “s1 is more general than s2” on symbols.

It is not unreasonable to assume that large knowledge bases contain large hierarchi-
cal collections of definitions, where more general terms are defined using less general
terms. It is not easy to extract such definitions, since they can take various forms. It is
also not easy to formalise the relation “more general”. As a simple approximation to
“more general” one can consider the relation “more common”: a symbol s2 is consid-
ered more common than s1 if s1 occurs in more axioms than s2. Then, as a potential
approximation to “s2 is defined in terms of s1” we can consider the relation “s1, s2

occur in the same axiom A and s2 is a least common symbol in A.” This is, essentially,
the definition of the trigger function for the Sine selection.
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Definition 2 (Trigger relation for the Sine selection). Let us denote by occ(s) the
number of axioms in which the symbol s appears. Then we define the relation trigger
as follows: trigger (s,A) iff for all symbols s′ occurring in A we have occ(s) ≤ occ(s′).
In other words, an axiom is only triggered by the least common symbols occurring in it.

3.2 Examples

Example 3 (Sine selection). In this example we will denote variables by capital letters.
The example illustrates the Sine selection and also a typical reason why it is, in general,
incomplete. Consider the following set of axioms:

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)
subclass(petrol,liquid)
¬subclass(stone,liquid)
subclass(beverage,liquid)
subclass(beer,beverage)
subclass(guinness,beer)
subclass(pilsner,beer)

The following table gives, for every symbol s, the number of axioms in which it occurs.

s occ(s)

subclass 7
liquid 3
beer 3
beverage 2
petrol 1
stone 1
guinness 1
pilsner 1

Using the occurrence table, we can compute the trigger relation as follows:

axiom symbols
subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z) subclass
subclass(petrol,liquid) petrol
¬subclass(stone,liquid) stone
subclass(beverage,liquid) beverage
subclass(beer,beverage) beverage
subclass(guinness,beer) guinness
subclass(pilsner,beer) pilsner

Consider the goal subclass(beer,liquid). This goal is a logical consequence
of these axioms. However, the symbols from the goal subclass, beer, and liquid
only trigger the first axiom. The selection will terminate with only the first axiom se-
lected, which is insufficient to prove the goal. �

Consider another example. This example illustrates how (small) changes in the input
set of axioms can influence selection.
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Example 4. Let us remove the last axiom from the axioms of Example 3. This changes
the function occ as follows:

s occ(s)

subclass 6
liquid 3
beer 2
beverage 2
petrol 1
stone 1
guinness 1

This also changes the trigger relation as follows:

axiom symbols
subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z) subclass
subclass(petrol,liquid) petrol
¬subclass(stone,liquid) stone
subclass(beverage,liquid) beverage
subclass(beer,beverage) beverage,beer
subclass(guinness,beer) guinness

Consider the same goal subclass(beer,liquid) as in Example 3. Now the sym-
bols from the goal subclass, beer, and liquid trigger the first axiom as before
plus the axiom subclass(beer,beverage). This results in adding beverage
to the list of triggered symbols. As a consequence, this addition triggers the axiom
subclass(beverage,liquid). This triggers no new symbols (since beverage
was already triggered before), and so selection terminates with the following subset of
selected axioms

subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)
subclass(beverage,liquid)
subclass(beer,beverage)

This collection of axioms is sufficient to prove the goal, contrary to Example 3. More-
over, it is the minimal set of axioms sufficient to prove this goal. �

This example also illustrates that removing some axioms from the input set can result
in selecting more axioms than before the removal.

3.3 The Selection Algorithm in More Detail

The algorithm runs in two phases. The first phase is goal-independent and only prepro-
cesses the set of all axioms. In this phase we do the following:

1. count, for each symbol, the number of axioms in which it occurs;
2. store the set of pairs (s,A) such that s triggers A.

Note that this phase can be implemented in the time linear in the size of the set of
axioms. It can be done by two traversals of the axioms (computing the trigger relation
needs the number of occurrences).
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In the second phase (which depends on the goal) we build the set of all triggered (or
k-triggered, if k is given) axioms using the stored trigger relation. If the trigger relation
is indexed on the first argument, the time complexity of the second phase is linear in
the size of the resulting set of selected axioms and independent of the overall number
of theory axioms. After the selection, the goal and the selected axioms are passed to a
first-order theorem prover.

Separating the two steps of the algorithm provides an efficient way to treat collections
of problems that share a large number of theory axioms. After preprocessing the shared
theory axiomatisation, only the second phase is run on each of the problems, which
allows us to avoid repeated execution of the first phase.

4 Variations

To turn the Sine selection on, one uses Vampire with the option

--sine selection on

(the default value of this option is off). In the previous versions of Vampire we had two
values: axioms and included instead of on. The value axioms considered as ax-
ioms the formulas marked as such in the TPTP language. The value included consid-
ered as axioms formulas coming from included files.1 However, the value included
is fragile since simple preprocessing of the input can change which formulas are in-
cluded. In addition it turned out not to be good in practice, so in the current version we
replaced these two values by a single one.

In the rest of this section we consider several variations of Sine selection. Each of
these variations is implemented in Vampire as a parameter whose value can be set by
the user. We present experimental evaluation of these parameters in Section 5.

4.1 Tolerance

Since our selection algorithm is incomplete, we introduced parameters changing the
trigger function in various ways. One obvious problem with the selection is that it is
very fragile with the respect to the number of axioms in which a symbol occurs, as
already illustrated in Examples 3 and 4. Indeed, suppose a symbol s1 occurs in (say)
7 axioms while s2 occurs in 8 axioms. One can argue that s1 and s2 are, essentially,
equally common. However, s1 can trigger an axiom in which both s1 and s2 occur,
while s2 cannot trigger it.

To cope with this problem, we introduced a parameter called tolerance. The value of
this parameter is a real number t ≥ 1. It changes the trigger relation as follows.

Definition 5 (Trigger relation with tolerance). Given the tolerance t ≥ 1, define the
relation trigger as follows: trigger (s,A) iff for all symbols s′ occurring in A we have
occ(s) ≤ t · occ(s′).

Compare this definition with Definition 2.

1 The TPTP language classifies the input formulas into axioms, additional assumptions (hy-
potheses) and conjectures. Formulas can also be included from files using the TPTP directive
include().
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Example 6 (Sine selection with tolerance). Consider the set of axioms and the goal
of Example 3. Assume the tolerance value is 1.5. This changes the trigger relation for
two of the axioms as follows:

axiom symbols
subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z) subclass
subclass(petrol,liquid) petrol
¬subclass(stone,liquid) stone
subclass(beverage,liquid) beverage,liquid
subclass(beer,beverage) beer,beverage
subclass(guinness,beer) guinness
subclass(pilsner,beer) pilsner

For the same goal subclass(beer,liquid), the set of selected axioms becomes
subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)
subclass(beverage,liquid)
subclass(beer,beverage)

This set is sufficient to prove the goal. �

Note that the set of selected axioms is monotonic with regard to the value of tolerance:
if we increase the value, all previously selected axioms will also be selected. For large
enough values of tolerance, the set of selected axioms is simply the set of all relevant
axioms in the sense of Section 2.1, because axioms become triggered by all the symbols
that occur in them. For example, in Example 3 all axioms become selected when t ≥ 3
and each symbol triggers all axioms in which it occurs when t ≥ 7.

Having a fixed value of the tolerance parameter, we may perform axiom selection
using the two-phase algorithm described in section 3.3. However, a likely scenario is
that we will want to run several proof attempts with different values of the tolerance
parameter. Using the basic two-phase algorithm, we would have to run the first phase of
the algorithm for each value of the tolerance parameter. At the cost of a slight increase
in the complexity, the algorithm may be modified, so that the first phase is run only
once, allowing selection with arbitrary tolerance values. During the first phase, instead
of storing a mapping from every symbol s to the set of axioms triggered by s, we store
a mapping from s to the list of all pairs (A1, t1), . . . , (Am, tm) such that s triggers Ai

if t ≥ ti. This list is ordered by the values of the ti’s. Ordering such lists can take
n · log(n) time, so the complexity of the first phase slightly increases. However, the
complexity of the second phase does not change: it is still linear in the size of selected
axioms, since we only inspect the sublist of (A1, t1), . . . , (Am, tm) corresponding to
the trigger relation.

To change the value of tolerance from the default value 1 to t, one uses Vampire with
the option

--sine tolerance t

4.2 Depth Limit

One can restrict the number of steps in computing the set of selected axioms so that it
computes the set of all d-step triggered axioms. To this end, one can run Vampire with
the option
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--sine depth d

The default value of sine depth in Vampire is ∞. Evidently, the set of selected
axioms is monotonic with regard to d: if we increase the value, all previously selected
axioms will be selected, too.

4.3 Generality Threshold

The last modification of Vampire is based on the following idea: if a symbol s occurs
in few axioms, then it triggers any axiom in which it occurs, even if the axiom contains
symbols with fewer occurrences. To implement this, we fix some positive integer value
g ≥ 1 (called generality threshold) and modify the trigger relation as follows.

Definition 7 (Trigger relation with generality threshold). Given the generality
threshold g ≥ 1, define the relation trigger as follows: trigger (s,A) iff either
occ(s) ≤ g or for all symbols s′ occurring in A we have occ(s) ≤ occ(s′).

To turn the generality threshold in Vampire on, one can run Vampire with the option

--sine generality threshold g

The default value is 0 and the set of selected axioms is, evidently, monotonic with regard
to g. If we set g to a large enough number, for example, the number of all axioms, then
(similarly to setting a large value of the tolerance parameter) all the relevant axioms
will be selected.

To use both a tolerance value t and a generality threshold value g, one should de-
fine the trigger relation as the union of the corresponding trigger relations. Namely,
trigger(s,A) iff either occ(s) ≤ g or for all symbols s′ occurring in A we have
occ(s) ≤ t · occ(s′).

5 Experiments

All experiments described in this section were carried out using a cluster of 64-bit quad
core Dell servers having 12 GB RAM each.2 Each of the runs used only one core and we
never ran more than 3 tests in parallel on one computer to achieve the best performance.

The experiments were run on three benchmark suites taken from the TPTP library
[11]. The library contains three different classes of very large problems:3

1. problems from the SUMO ontology [6]: CSR075 to CSR109.
2. problems from the CYC knowledge base [4]; CSR025 to CSR074.
3. problems from the Mizar library [9]: ALG214 to ALG234, CAT021 to CAT037,

GRP618 to GRP653, LAT282 to LAT380, SEU406 to SEU451, and TOP023 to
TOP048.

2 The cluster was donated to our group by the Royal Society.
3 These classes correspond to categories of the LTB division in the CASC competition [12].
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Table 1. Average problem size information

problems axioms atoms predicates functions
SUMO 298,420 323,170 20 24,430
CYC 3,341,990 5,328,216 204,678 1,050,014
Mizar 44,925 332,143 2,328 6,115

Table 2. Selected formulas of CYC problems depending on the depth, tolerance and generality
threshold

t = 1.0 t = 1.2 t = 1.5 t = 2.0 t = 3.0 t = 5.0

d = 1 29 1.17 35 1.09 41 1.05 47 1.02 60 1.02 72 1.01
d = 2 142 1.25 287 1.07 442 1.03 607 1.01 1027 1.00 1476 1.00
d = 3 505 1.32 937 1.13 1451 1.07 2484 1.02 5311 1.01 10482 1.01
d = 4 1784 1.41 3232 1.20 5716 1.10 11603 1.02 29963 1.01 69015 1.01
d = 5 4432 1.57 8870 1.27 16806 1.13 37599 1.03 110186 1.02 249192 1.04
d = 7 10698 2.16 25607 1.50 56337 1.21 150277 1.06 431875 1.09 832935 1.10
d =∞ 36356 28.37 495360 3.33 1310965 1.34 1562064 1.20 1822427 1.12 2057597 1.07

Each of these classes contains several different axiomatisations. To evaluate the size of
the set of selected axioms and the number of iterations we only considered the largest
axiomatisations in each class (that is, SUMO problems with the suffix +3, CYC prob-
lems with the suffix +6, and Mizar problems with the suffix +4. Table 1 contains infor-
mation about sizes of these problems.

5.1 Generality Threshold

Table 2 shows how the number of selected formulas depends on the generality thresh-
old. We considered the smallest possible value g = 0 and a sufficiently large value
g = 16. In every column of the table we show on the left the number of axioms selected
when g = 0 and on the right the number of axioms selected when g = 16 divided by
the value on the left. The numbers are average over all CYC problems. One can see
from the table that the largest increase (by the factor of 28.37) was achieved when the
depth was unlimited and tolerance equal to 1. Predictably, when the tolerance grows,
the percentage of additional axioms selected by the generality threshold value becomes
smaller, since some axioms selected due to the large value of generality threshold be-
come selected due to the high tolerance.

Our results have also shown that all the problems Vampire could solve, could also be
solved with the value g = 0, so for the rest of this section we will focus on the remain-
ing two options (depth and tolerance) and only consider the results obtained when the
generality threshold was not used, that is, when g = 0. Therefore, the conclusion we
can draw is that, although the generality threshold parameter is intended to cope with
the problem of common relations, in practice it can be replaced by other parameters.

5.2 Selected Formulas

Table 2 shows the average numbers of selected axioms for the CYC problems, and ta-
ble 3 shows these numbers for the Mizar and SUMO problems. Note that the numbers
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Table 3. The number of selected formulas for the Mizar (left) and SUMO (right) problems

d\t 1.0 1.2 1.5 2.0 3.0 5.0

1 4903 4911 4921 4936 4973 5038
2 5296 5395 5553 5823 6427 7743
3 6118 6451 7068 8280 10841 16337
4 6893 7556 9001 12176 18300 28878
5 7432 8517 11165 16945 26842 37284
7 7897 9991 15788 26203 36507 41443
∞ 8047 15987 28353 35345 39389 41762

d\t 1.0 1.2 1.5 2.0 3.0 5.0

1 12 13 14 16 21 28
2 70 82 115 158 272 654
3 188 230 372 762 1950 5980
4 316 470 942 3021 8720 23440
5 540 979 2417 8179 22644 52241
7 1027 2708 8517 24445 54958 97481
∞ 1116 8361 26959 57322 82379 107926

Table 4. The minimal, average and maximal number of steps required to build the set of all
triggered axioms as a function of tolerance

suite t = 1.0 t = 1.2 t = 1.5 t = 2.0 t = 3.0 t = 5.0

min 4 7 36 25 29 23
CYC avg 19.3 102.7 44.3 29.9 33.0 25.1

max 47 135 60 41 37 27

min 6 7 19 15 14 10
Mizar avg 9.5 27.5 25.4 19.7 15.0 12.3

max 15 61 33 23 18 14

min 3 5 4 6 13 11
SUMO avg 7.3 15.3 20.8 19.8 16.6 12.6

max 17 35 39 25 23 15

for the Mizar problems are essentially different from the SUMO and CYC problems.
The number of selected Mizar axioms is large (over 4,000) even when the depth limit
is set to 1, while it is relatively small for the CYC and SUMO problems. This is re-
lated to the fact that the Mizar problems usually have complex goals containing several
assumptions and many symbols, while for the CYC and SUMO problems the goal is
simple and usually is just an atomic formula with very few symbols. This is also one
of the reasons why Mizar problems are much harder for all theorem provers using the
Sine selection.

5.3 Number of Iterations

The next question we are interested in is the number of steps required by Sine selec-
tion to compute the set of all triggered relations. Table 4 contains statistics about the
number of iterations. To our surprise, in some cases this number is very large (135 for
CYC problems, 61 for Mizar problems, and 39 for SUMO problems). There is also no
obvious pattern on how this parameter depends on the value of tolerance.

5.4 Essential Parameters

For experiments described in this subsection we considered all (not only largest)
SUMO, CYC and Mizar problems.

Since our main aim is to automatically prove (hard) theorems, the most important
questions related to the use of Sine selection are the following:
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Table 5. Problems solved with and without Sine selection

atoms only with Sine only without Sine together
10,000 243 64 721
20,000 217 10 542
40,000 208 7 464
80,000 187 3 373

160,000 138 1 243
320,000 80 1 168
640,000 50 0 100

1,280,000 50 0 50
rating 1 232 25 402

1. How powerful is the selection method?
2. Which of the parameters (and ranges of values for these parameters) are essential

in practice?

The first question cannot be answered in a simple way. On the one hand, we have strong
evidence that the method is very powerful. To support this, consider Table 5. It shows
the number of all the TPTP 4.0.1 CYC, Mizar, and SUMO problems solved with some
Sine selection and without it, depending on the size of the problem measured as the
number of atoms in it. The last row shows these numbers for the problems having TPTP
rating 1. A problem has TPTP rating 1 if it was previously unsolved by all provers,
including the previous versions of Vampire. For example, among the problems having
80,000 or more atoms, 373 problems were solved by Vampire all together. 138 problems
could only be solved with the help of Sine selection, while only 3 problems out of 373
could not be solved with Sine selection.

When a problem is not solved, we do not know why Vampire (or any other prover)
fails to prove it. This can be for at least the following three reasons, of which two are
directly related to the power of our selection method:

1. the set of selected axioms can be insufficient to prove the goal;
2. the set of selected axioms is too large, which prevents theorem provers from suc-

cess;
3. the problem is very hard even for small sets of axioms sufficient to prove the goal.

Let us now investigate which parameters and their values are essential for Vampire. As
we pointed out, it turned out that the generality threshold parameter can be dropped
without any effect on the set of problems solved by Vampire. It turned out that both
the tolerance and depth limit are very essential. To show this, we used our database
of proofs found by Vampire, which was generated using about 70 CPU years of run
time and now contains about 575,000 results, of which over 43,000 are related to the
mentioned benchmark suite.

We selected problems having less than 10 solutions in the database. The reason to
use the number of solutions as a criterion was that problems with few solutions are
believed to be harder. Also, such problems can be solved only with a small subset of
possible values for the various Vampire parameters.
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Table 6. The sine depth range for solved
hard problems

range CYC Mizar SUMO
1− 1 16
1− 2 10
1− 3 5
1− 4 3
1− 5 2
1− 10 1
1−∞ 15 107 6
2− 2 21
2− 3 12
2− 4 3
2− 5 6
2− 7 1
2− 10 1
2−∞ 21 39 4
3− 3 1
3− 4 1
3−∞ 6 1 1
4− 4 1
4−∞ 6
5−∞ 3
10−∞ 3 1

total 51 231 12

Table 7. The sine tolerance range for solved
hard problems

range CYC Mizar SUMO
1.0− 1.0 3
1.0− 1.2 4
1.0− 1.5 12 1
1.0− 2.0 17
1.0− 3.0 19
1.0− 5.0 49 155 11
1.2− 1.5 2
1.2− 2.0 1
1.2− 3.0 1
1.2− 5.0 2 1
1.5− 5.0 1
2.0− 2.0 1
2.0− 3.0 7
2.0− 5.0 1
3.0− 5.0 3
5.0− 5.0 2

total 51 231 12

This selection resulted in 51 CYC problems, 231 Mizar problems and 12 SUMO
problems. For each of these problems we checked which parameter values solve these
problems. More precisely, we took their known solutions, changed the depth and toler-
ance parameters and checked which of the changes still solve the problem. The results
are summarised in Tables 6 and 7. The table cells show the number of problems which
can be solved by the given range of values. We do a projection on the possible values
of the parameter that is not present in the table (tolerance in the case of Table 6 and
depth limit in Table 7). For example, the third row in Table 7 means that there were 12
selected Mizar problems and 1 selected SUMO problem that could be solved with some
values of the depth limit and only with the values of tolerance between 1.0 and 1.5.

Let us first analyse the depth limit in Table 6. For the evaluation we used the fol-
lowing values of depth limit: 1, 2, 3, 4, 5, 7, 10 and ∞. The first observation is that
this parameter is, indeed, very important. For example, there were 39 Mizar problems
that could be solved with only one value of this parameter (1, 2, 3 or 4). For both CYC
and SUMO collections setting the depth to ∞ is always a good strategy. On the con-
trary, only 147 out of 231 solved Mizar problems (and only 30 of 64 the largest Mizar
problems) could be solved with this setting.

Next, let us analyse the tolerance in Table 7. For the evaluation we used the following
values of tolerance: 1.0, 1.2, 1.5, 2.0, 3.0, 4.0, and 5.0. It turned out that this parameter
is also very important. However, the behaviour of solutions depending on this parameter
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is more stable than for the depth parameter: only 6 Mizar problems could be solved with
exactly one value of the tolerance and 155 Mizar problems out of 231 were solved with
all the values we tried. Among the largest hard Mizar problems, only 36 out of 64 were
solved with all the tried values of tolerance. 11 out of 12 SUMO problems and 49 out
of 51 CYC problems could be solved with any value of the tolerance and all CYC
problems could be solved with the value 1.2 or higher.

6 Competition Performance

Our axiom selection algorithm was used by several systems participating in the Large
Theory (LTB) division of recent CASC competitions.

The Sine selection was introduced in 2008, at the CASC-J4 [10] competition. The
only participant that used our algorithm was the SInE theorem prover. It has won the
division by solving 88 out of 150 problems, which was 12 problems ahead of the second
best participant.

In 2009, at the CASC-22 [12] competition, four out of seven participants were using
our selection algorithm, and these four participants ended up at the first four positions,
solving 69 to 35 problems out of 100, while the best participant not using our algorithm
solved only 18 problems.

In 2010, at the CASC-J5 competition, five out of seven systems were using our al-
gorithm as the only axiom selection algorithm, including the winner (Vampire). The
second best ranked system (Currahee) used our selection algorithm as one of possible
selection algorithms.

7 Related Work

In our algorithm we maintain the set of selected axioms (starting from goal), and select
new axioms that are relevant to the goal step by step. The lightweight relevance filtering
algorithm [5] shares this approach, but instead of a trigger relation, which is used by
our algorithm, it selects an axiom if certain percentage of its symbols appears in the
already selected axioms. This method also penalizes common symbols—the more often
a symbol appears in the problem, the less impact its appearance in an axiom has.

Several other algorithms use some measure of distance in a graph of axioms, in order
to determine which axioms are relevant to the goal. The contextual relevance filtering
[1] and the syntactic relevance measure [13] compute the weighted graph between ax-
ioms with weights based on the number of shared symbols (taking into account their
commonness). The latter does not use the distance from conjecture to select relevant
axioms, but to order them for further (semantic) processing. The relevance restriction
strategy described in [7] connects two clauses in the graph if they have unifiable literals.
The paper also examines the suitability of different graph distance measures.

Semantic algorithms are another group of axiom selection algorithms that use a
model of currently selected axioms to guide the selection of new ones. To this group
belong the Semantic Relevance Axiom Selection System [13] and the algorithm for
semantic selection of premises [8].

Yet another approach is taken in the latent semantic analysis [1], which uses a tech-
nique for analysing relationships between documents. Each formula is considered to be
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a document, and formulas with strong relationship toward the goal are selected. The
MaLARea system [16] uses machine learning on previous proofs in the theory to esti-
mate which theory axioms are likely to contribute to proofs of new problems.

In [15] the benefit of our axiom selection algorithm for reasoning on the Mizar Math-
ematical Library [14] is examined.

8 Conclusion

We defined the Sine selection used in the theorem prover Vampire and several other
theorem provers to select axioms potentially relevant to the goal. We formalised the
Sine selection as a family of trigger-based selection algorithms. We showed that all the
existing axiom selection parameters in Vampire can be formalised as a special case of
such algorithms.

We also discussed, using extensive experiments over all TPTP problems with large
axiomatisations, the effect of various parameter values on the size of the selected set of
axioms, the number of iterations of the algorithm, and solutions of hard TPTP problems.

We also added a new mode to Vampire to make others able to experiment with our
axiom selection. If Vampire is run in a new axiom selection mode, it does not try to prove
the problem but only selects axioms according to the user-given options and outputs the
selected axioms and the goal in the TPTP format. This mode can be invoked by using
vampire --mode axiom selection.
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Abstract. The standard semantics of a logical program described by a
set of predicative Horn clauses is minimal model semantics. To reason
about negation in this context, Clark proposed to enrich the description
in such a way that all Herbrand models but the minimal one are excluded.
This predicate completion is used in explicit negation as failure, and also
for example by Comon and Nieuwenhuis in inductive theorem proving.

In this article, I extend predicate completion to a class of non-Horn
clause sets. These may have several minimal models and I show how
predicate completion with respect to a ground total reduction order-
ing singles out the same model as the model construction procedure by
Bachmair and Ganzinger.

1 Introduction

In logic programs given by predicative Horn clauses, usually mainly positive
information is explicitly encoded, e.g. in the form → P (a) and P (a) → Q(b).
Negative information, in this case that the ground atoms P (b) and Q(a) are
supposed not to hold, is implicit: They do not hold because any attempt at
deriving them from the program fails. This negation as failure is the standard
semantics of negation for logic programs. To capture it explicitly, Clark [3] in-
troduced the idea of predicate completion, i.e. of enriching the program with a
formula containing explicit information on which ground atoms should not hold.
For the example above and the predicate Q, this could be done using the formula
∀x.(Q(x) ⇔ (x = b ∧ P (a))), which can be derived locally from P (a) → Q(b),
i.e. using only the clause that directly describes Q. From a semantic perspective,
the goal of predicate completion is to distinguish the unique minimal model of
the program, thereby identifying negation as failure and first-order negation.

Clark’s idea was later cast by Comon and Nieuwenhuis [6] into an algorithm
that expresses the completion not by a formula (which may contain both existen-
tial and universal quantifiers) but by additional Horn clauses, i.e. an extended
logic program. The precondition for this algorithm is that the original clauses are
universally reductive, i.e. the head of each clause must contain all its variables.

Apart from the obvious application in logic programming [18], predicate com-
pletion has long been in use in several areas of artificial intelligence, including
knowledge representation [14], default reasoning [16] and planning [8]. Comon
and Nieuwenhuis [6] shifted the focus towards automated deduction by using
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predicate completion to harvest the power of first-order reasoners for minimal
model reasoning in a more general context.

In spite of an abundance of possible applications for example in non-Horn
databases and non-Horn logic programming [15], extensions of predicate com-
pletion (in the sense of a completion taking the form of first-order clauses) be-
yond universally reductive predicative Horn clauses are scarce. Reiter [17] and
later Togashi et al. [19] proved that predicate completion is possible for non-Horn
clauses where every predicate occurs only positively or only negatively and where
no two positive atom occurrences in the same clause are unifiable. I showed [9]
how to extend predicate completion in a different direction by for the first time
allowing non-predicative elements, namely ultimate periodicity equations of the
form sn(x)5sm(x), which includes reasoning about quotients of the naturals.
The general problem of predicate completion for arbitrary (even predicative)
clauses is not solvable because minimal model validity is undecidable.

In this article, I will present a predicate completion algorithm for clause sets
consisting of (i) universally reductive predicative clauses that need not be Horn,
and of (ii) ultimate periodicity equations. I will prove that the algorithm does
indeed compute a completion, i.e. a clause set with a unique Herbrand model.
Where predicate completion for Horn clause sets describes the unique minimal
model, I will show that predicate completion can be used to distinguish the dif-
ferent minimal models of a non-Horn set. Indeed, given a ground total reduction
ordering, predicate completion singles out the same model as the classical model
construction procedure by Bachmair and Ganzinger [1].

2 Preliminaries

I build on the notions of [1, 4] and shortly recall the most important concepts.

Terms, Formulas and Clauses. Let X be an infinite set of variables. A sig-
nature Σ = (S,P ,F , τ) consists of three finite sets S, P , F of sorts, predicate
symbols and function symbols such that S and F are non-empty and X , P and
F are disjoint, and a mapping τ that assigns to every variable in X a sort, to
every symbol in P a tuple of sorts and to every symbol in F a non-empty tuple
of sorts. Assignments τ(P ) = (S1, . . . , Sn) and τ(f) = (S1, . . . , Sn, S) for P ∈ P ,
f ∈ F and n ≥ 0 are written as P : S1, . . . , Sn and f : S1, . . . , Sn → S. I assume
that there are infinitely many variables and at least one term of each sort.

Let T (F , X) be the set of all well-sorted terms over F and X defined as usual.
Let T (F) be the set of all ground terms over F . To improve readability, a list
t1, . . . , tn of terms is often written as "t, and the n-fold application f(. . . (f(t)) . . .)
of a unary function symbol f to a term t is written as fn(t).

A predicative atom over Σ is a well-sorted expression P (t1, . . . , tn), where
P : S1, . . . , Sn is a predicate symbol and t1 : S1, . . . , tn : Sn are terms of the cor-
responding sorts. An equation (or disequation, respectively) is a multiset of two
terms of the same sort, written as t5t′ (or t �5t′). An atom is either a predicative
atom or an equation or one of the symbols �,⊥ (true and false). A literal is an
atom or a disequation or a negated predicative atom. Formulas are constructed
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from atoms by the constructors ∃x., ∀x.,∧,∨ and ¬. The notation ∃"x.φ is a
shorthand notation for ∃x1. · · · ∃xn.φ, and analogously for ∀"x.φ. In both cases, "x
may be empty. Equational formulas are formulas that do not contain predicative
atoms. A formula is in negation normal form if the symbol ¬ appears only in
literals. By pushing down all negations and eliminating double negations, each
formula can be transformed into an equivalent negation normal form.

The set of variables occurring freely in a formula φ is denoted by var(φ). The
expression φ|p denotes the subformula at position p, and φ[ψ]p denotes the result
of replacing φ|p by ψ. For terms t, var(t), t|p and t[t′]p are defined analogously.

A clause is a pair of multisets of predicative or equational atoms, written
Γ → Δ, interpreted as the conjunction of all atoms in the antecedent Γ implying
the disjunction of all atoms in the succedent Δ. A clause is Horn if Δ contains
at most one atom. It is predicative if all atoms in Γ and Δ are predicative.
Rewrite Systems. A rewrite rule is a pair (l, r) of two terms of the same sort
or of two formulas, written l → r, such that all variables in r also occur in l. A
set of rewrite rules is called a rewrite system. For a given rewrite system R, a
term (or formula) t rewrites to a term (or formula) t′, written t→R t′, if t|p = lσ
and t′ = t[rσ]p, for some rule l → r in R, position p in t, and substitution σ. A
term (or formula) t is called irreducible or a normal form if there is no term (or
formula) t′ such that t→R t′.

A rewrite system R is terminating if there is no infinite chain t1 →R t2 →R . . .;
it is convergent if it is terminating and every term rewrites to a unique normal
form.
Substitutions. A substitution σ is a map from X to T (F , X) that maps each
variable to a term of the same sort and acts as the identity map on all but
a finite number of variables. A substitution is identified with its homomorphic
extensions to terms and atoms, and with its capture-free extension to formulas.
The application to a term t (or a formula φ) of a substitution σ mapping variables
"x = x1, . . . , xn to terms "t = t1, . . . , tn is written as tσ or t{"x �→ "t} (or as φσ or
φ{"x �→ "t}).
Orderings. A (strict) partial ordering ' on a set T is a binary relation that is
antisymmetric (t1 ' t2 implies t2 �' t1) and transitive (t1 ' t2 and t2 ' t3 implies
t1 ' t3). A partial ordering ' on a set T can be extended to a partial ordering
'mul on multisets over T , i.e. maps from T into the non-negative integers, as
follows: M 'mul N if M �= N and whenever there is a t ∈ T such that N(t) '
M(t) then M(t′) ' N(t′) for some t′ ' t. It can be extended to a partial
ordering 'lex on n-tuples over T as follows: (t1, . . . , tn) 'lex (t′1, . . . , t

′
n) if there

is an index 1 ≤ i ≤ n such that tj = t′j for all 1 ≤ j < i and ti ' t′i.
Any ordering ' on terms over Σ lifts to equational atoms over a signature

as its multiset extension. As usual, a predicative atom P ("t) can be regarded as
an equational atom fP ("t)5ctrue over a suitably adapted signature where ctrue

is '-minimal. By abuse of notation, I will usually not discriminate between an
ordering on atoms and the underlying ordering on terms.

A reduction ordering is a partial ordering on terms (or atoms) that is well-
founded (i.e. there is no infinite chain t1 ' t2 ' . . .), has the subterm property



318 M. Horbach

(t1 ' t2 whenever t2 is a strict subterm of t1) and is stable under substitutions
(t1 ' t2 implies t1σ ' t2σ for all t1, t2 and all substitutions σ).

Any partial ordering ' on atoms is extended to clauses in the following way:
Consider clauses as multisets of occurrences of atoms. The occurrence of an atom
A in the antecedent is identified with the multiset {A,A}; the occurrence of an
atom A in the succedent is identified with the multiset {A}. Now ' is lifted
to atom occurrences as its multiset extension, and to clauses as the multiset
extension of this ordering on atom occurrences.

An occurrence of an atom A is maximal in a clause C if there is no occurrence
of an atom in C that is strictly greater with respect to ' than the occurrence
of A. It is strictly maximal in C if there is no other occurrence of an atom in C
that is equal to or greater than the occurrence of A with respect to '. A clause
C = Γ → Δ,A is universally reductive if A is a strictly maximal occurrence in
C and all variables that occur in C also occur in A.

Inferences, Redundancy and Derivations. An inference rule is a relation
on clauses. An inference calculus is a set of inference rules.

A ground clause C is called redundant with respect to a set N of clauses if
there are ground instances C1, . . . , Ck of clauses in N such that C ' Ci for all i
and C1, . . . , Ck |= C. A non-ground clause is redundant if all its ground instances
are redundant.

Given an inference calculus, a ground inference (C′
1, . . . , C

′
n, C) is redundant

with respect to N if some C′
i is redundant, or if the conclusion is redundant

with respect to ground instances smaller than the maximal C′
i. A non-ground

inference is redundant if all its ground instances are redundant. A clause set N
is saturated with respect to a calculus if every inference with premises in N is
redundant with respect to N . An inference calculus is (refutationally) complete
if every unsatisfiable saturated clause set contains the empty clause.

Herbrand Interpretations and Perfect Models. A Herbrand interpretation
I over the signature Σ is a set of ground atoms over Σ that is closed under
rewriting with the rewrite system consisting of all rules t → t′ and t′ → t
such that t5t′ ∈ I (i.e. 5 is interpreted as a congruence in I). A Herbrand
interpretation I is a model of a set N of clauses if for every ground instance
Γ → Δ of a clause in N it holds that Γ ⊆ I implies Δ ∩ I �= ∅.

The unique minimal model with respect to set inclusion of a satisfiable set
N of Horn clauses is denoted by IN . For non-Horn clause sets, there may be
more than one minimal model. Let ' be a well-founded reduction ordering that
is total on ground terms and let 'I be the multiset extension of the inverse
relation of '. Among the minimal models of a clause set N (with respect to set
inclusion), there is a unique one that is minimal with respect to 'I . This model
is called the perfect model of N with respect to ' and denoted by I�N .

Bachmair and Ganzinger [1] introduced the construction of a special Herbrand
interpretation that under certain conditions yields the perfect model:

Definition 1. Let N be a clause set and ' a well-founded ordering on ground
clauses. By induction over ', define atom sets Prod(C), R(C) as follows:



Predicate Completion for non-Horn Clause Sets 319

Let Prod(C) = {A}, if C = Γ → Δ,A is a ground instance of a clause
C′ ∈ N such that (i) A is a strictly maximal occurrence of an atom in C,
(ii) A is not an element of R(C) and not reducible1 by any equation in R(C),
(iii) Γ ⊆ R(C), and (iv) Δ ∩R(C) = ∅. Otherwise Prod(C) = ∅. In both cases,
R(C) =

⋃
C�C′ Prod(C′).

Finally define an interpretation IN,� by IN,� =
⋃

C Prod(C).

Lemma 2. If N is consistent and saturated with respect to a complete inference
system and ' is a well-founded reduction ordering that is total on ground terms,
then IN,� coincides with the perfect model I�N .

3 Predicate Completion

When an interpretation is given as a minimal model IN of a clause set N , it is
often of interest to enrich N to a set N ′ in such a way that N ′ does not have
any Herbrand models other than IN , for example to derive negative facts for
IN . The key to this enrichment is the so-called completion of predicates [3]: For
each predicate P , the set N ′ must describe for which arguments P does not hold
in IN .

Example 3. If NEven = {Even(0); Even(x) → Even(s(s(x)))} describes the even
numbers over the single-sorted signature ΣEven = ({Even}, {s, 0}), with Even :
Nat, s : Nat → Nat and 0 : Nat, then Even(sn(0)) holds in the minimal model
INEven if, and only if, n is an even number. Let N ′

Even contain NEven and the
additional clauses Even(s(0)) → and Even(s(s(x))) → Even(x). Then INEven is
the only Herbrand model of N ′

Even over ΣEven, because Even holds for every even
number, the first new clause makes it not hold on 1, and repeated inferences with
the second new clause show that Even does not hold for any odd number.

In the predicative Horn case, the completion N ′ of a clause set N is supposed
to satisfy N ′ |= A ⇔ N |= A and N ′ |= ¬A ⇔ N �|= A for every ground atom
A, according to the idea of negation as failure. In terms of the unique minimal
model IN , this means that IN is the only Herbrand model of N ′. Using this
semantic approach if N is not Horn, it is natural to call N ′ a completion if one
of the minimal models of N is the only Herbrand model of N ′.

3.1 The Predicate Completion Algorithm PC

For predicative clause sets N ,5 is interpreted as syntactic equality in IN . Comon
and Nieuwenhuis [6, Section 7.3] used this fact to develop a predicate completion
procedure for predicative and universally reductive Horn clause sets. In [9] (and
not in [6]), the correctness of the procedure was proved and the procedure was
enhanced to also encompass equations of the form sl(x)5sk(x).

I will now present an extension of this algorithm that can deal with predicative
non-Horn clauses that are universally reductive.
1 A ground term t is reducible by an equation u!u′ where u′ �" u if u is unifiable with

any subterm of t. A ground equation t!t′ where t′ �" t is reducible if t is reducible;
a predicative atom P (t1, . . . , tn) is reducible if one of the ti is.
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Definition 4 (Ultimately Periodic Interpretation). Let Σ=(S,P ,F ,X , τ)
be a signature. Let S1, . . . , Sn be n different sorts such that all ground terms of
sort Si are of the form sm

i (0i) for two function symbols si, 0i. A finite set E =
{sl1

1 (x)5sk1
1 (x), . . . , sln

n (x)5skn
n (x)} of equations between terms in S1, . . . , Sn with

li > ki for all i is called a set of ultimate periodicity equations. Each sort Si is
called ultimately periodic of type (ki, li). All other sorts are called free.

Let ' be a well-founded reduction ordering that is total on ground terms and
let N be a finite set of predicative and universally reductive clauses such that
N ∪E is satisfiable. The perfect model I�N∪E of N ∪E with respect to ' is called
an ultimately periodic interpretation.

Definition 5 (Predicate Completion). Let Σ = (S,P ,F ,X , τ) be a signa-
ture and I�N∪E an ultimately periodic interpretation over Σ as in Definition 4.
The predicate completion algorithm PC for N ∪ E and ' works as follows:

(i) For every P ∈ P, let NP ⊆ N be the set of clauses in N of the form
Γ → Δ,P ("t), where P ("t) is a strictly maximal literal occurrence. Combine
all these clauses into the single formula ∀"x.(φP → P ("x)) where

φP = ∃"y.
∨

Γ→Δ,P (�t)∈NP

(x15t1 ∧ . . . ∧ xn5tn ∧
∧

A∈Γ

A ∧
∧

B∈Δ

¬B) ,

the yi are the variables appearing in NP , and the xj are fresh variables.
(ii) Transform ¬φP into an equivalent formula φ′

P that does not contain any
universal quantifiers.

(iii) Write the formula ∀"x.(φ′
P → ¬P ("x)) as a finite set N ′

P of clauses.
(iv) Let N ′ be the union of N ∪ E and all sets N ′

P , P ∈ P.

The idea of the algorithm was already introduced by Clark [3], who considered
only pure predicative Horn clauses. He executed steps (ii) and (iii) by hand and
did not discuss the question if they can be automatized. Steps (i) and (iv) are
only finite syntactic transformations, and step (i) can be executed because all
clauses in N with non-empty succedent have a unique strictly maximal positive
literal occurrence. So the critical steps are (ii) and (iii): It is neither obvious
that the universal quantifiers can be eliminated from ¬φP , nor is it obvious
that, once the universal quantifiers are gone, the result can be written as a finite
set of clauses.

3.2 Disunification-Based Quantifier Elimination

The transformation of ¬φP into an equivalent formula without universal quan-
tifiers in step (ii) can be performed using a quantifier elimination procedure
given by a set of rewrite rules. A basic version of this procedure was introduced
by Comon and Lescanne [5] under the name disunification and I stick to this
terminology.

The disunification procedure DisU that I will employ is given in Figures 1–
3. It is terminating [9, Theorem 18] and correct in the sense that rewrite steps
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Formulae are always kept normalized with respect to these rules.

Propagation of Negation:
¬	 � ⊥
¬⊥ � 	

¬(φ ∨ φ′) � ¬φ ∧ ¬φ′

¬(φ ∧ φ′) � ¬φ ∨ ¬φ′
¬(∃x.φ) � ∀x.¬φ
¬(∀x.φ) � ∃x.¬φ

¬¬φ � φ

Propagation of Truth and Falsity:
	 ∧ φ � φ
⊥ ∧ φ � ⊥
φ ∧ 	 � φ
φ ∧ ⊥ � ⊥

	 ∨ φ � 	
⊥ ∨ φ � φ
φ ∨ 	 � 	
φ ∨ ⊥ � ⊥

∃x.	 � 	
∃x.⊥ � ⊥
∀x.	 � 	
∀x.⊥ � ⊥

Quantifier Accumulation:
P1: ∀�x.φ[∀�y.φ′]p → ∀�x, �y.φ[φ′]p
P2: ∃�x.φ[∃�y.φ′]p → ∃�x, �y.φ[φ′]p
if �x and �y are not empty in P1,P2 and there is none of the symbols ¬, ∀,∃ between
the two melted quantifiers; if a variable of �y occurs in φ[	]p, it is renamed to
avoid capturing.

Fig. 1. DisU: Normalization Rules

preserve the set of satisfying variable assignments with respect to every Herbrand
interpretation I that interprets 5 as E-equality, i.e. I |= t5t′ if, and only if,
t=Et′ [9, Theorem 6].

To prove that the universal quantifiers can in fact be eliminated from ¬φP ,
I will examine an invariant that holds for ¬φP (Lemma 7), is preserved during
the application of DisU (Lemma 8), and holds only for such normal forms that
do not contain universal quantifiers (Lemma 9).

In this section, I always implicitly assume a set E of ultimate periodicity
equations to be given.

Invariant 6. Let φ↓ be the normal form of a formula φ under the Normalization
rules, Decomposition, Periodic Decomposition and Distribution of Figures 1–3.
Consider the following properties of φ:

(1) No subformula of φ↓ of the form ∀"x.φ′, where the top symbol of φ′ is not a
universal quantifier, contains a quantifier.

(2) Universally quantified variables occur in φ↓ only in predicative literals or in
disequations t[x]�5t′ where all variables in t′ are free or existentially quanti-
fied.
For every predicative literal occurrence Ax in φ↓ containing a universally
quantified variable x, there is a subformula of φ↓ of the form Ax ∨ Bx ∨ φx

where Bx is a disequation containing x.

This invariant was introduced for the Horn case in [9]. The proofs of Lemmas 8
and 9 are identical to those in [9].

Lemma 7 (Invariant Holds Initially). Let N be a set of universally reductive
clauses and let φP be defined as in Definition 5. Then Invariant 6 holds for ¬φP .
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Decomposition, Clash, and Occurrence Check:
D1: f(u1, . . . , un)!f(u′

1, . . . , u
′
n) → u1!u′

1 ∧ . . . ∧ un!u′
n

D2: f(u1, . . . , un) �!f(u′
1, . . . , u

′
n) → u1 �!u′

1 ∨ . . . ∨ un �!u′
n

C1: f(u1, . . . , um)!g(u′
1, . . . , u

′
n) → ⊥ if f �= g

C2: f(u1, . . . , um) �!g(u′
1, . . . , u

′
n) → 	 if f �= g

O1: t!u[t] → ⊥ if u[t] �= t
O2: t �!u[t] → 	 if u[t] �= t
if f(u1, . . . , un), t and u[t] belong to a free sort

Quantifier Elimination:
Q1: ∃�x.φ1 ∨ φ2 → (∃�x.φ1) ∨ (∃�x.φ2) if �x ∩ var(φ1, φ2) �= ∅
Q2: ∀�x.φ1 ∧ φ2 → (∀�x.φ1) ∧ (∀�x.φ2) if �x ∩ var(φ1, φ2) �= ∅
Q3: ∃�x, x.φ → ∃�x.φ if x �∈ var(φ)
Q4: ∀�x, x.φ → ∀�x.φ if x �∈ var(φ)
Q5: ∀�x, x.x �!t ∨ φ → ∀�x.φ{x �→ t} if x �∈ var(t)
Q6: ∃�x, x.x!t ∧ φ → ∃�x.φ{x �→ t} if x �∈ var(t)
Q7: ∀�z, �x.y1!t1 ∨ . . . ∨ yn!tn ∨ φ → ∀�z.φ
Q8: ∃�z, �x.y1 �!t1 ∧ . . . ∧ yn �!tn ∧ φ → ∃�z.φ
if in Q7 and Q8 yi �= ti and var(yi, ti)∩�x �= ∅ for all i and var(φ)∩�x = ∅ and the
sorts of all variables in �x contain infinitely many ground terms (in particular, all
ti are of a free sort).
Q1 and Q2 also require that no redex for P1 or P2 is created.

Finite Sort Reduction:
S1: ∀�x, x.φ → ∀�x.φ{x �→ t1} ∧ . . . ∧ φ{x �→ tn}
S2: ∃�x, x.φ → ∃�x.φ{x �→ t1} ∨ . . . ∨ φ{x �→ tn}
if the sort S of x is free and finite and t1, . . . , tn are the finitely many ground
terms in S.

Distribution:
N1: ∀�x.φ[φ0 ∨ (φ1 ∧ φ2)]p → ∀�x.φ[(φ0 ∨ φ1) ∧ (φ0 ∨ φ2)]p
N2: ∃�x.φ[φ0 ∧ (φ1 ∨ φ2)]p → ∃�x.φ[(φ0 ∧ φ1) ∨ (φ0 ∧ φ2)]p
if φ0, φ1, φ2 are quantifier-free, var(φ1)∩�x �= ∅, φ1 is not a conjunction in N1 and
not a disjunction in N2 and does not contain a redex for N1 or N2, and there is
no negation and no quantifier in φ along the path p.

Explosion:
Ex1: ∃�x.φ →

∨
f∈F′ ∃�x, �xf .y!f(�xf ) ∧ φ{y �→ f(�xf )}

if y is free in φ and ∀�x′.φ′, respectively, no other rule except Ex2 can be applied,
there is in φ a literal y!t or y �!t where t contains a universally quantified variable,
and �x is non-empty or φ = ∀�x′.φ′. If y is of sort S, then F ′ ⊆ F is the set of
function symbols of sort S1, . . . , Sn → S.
Ex2: ∀�x.φ →

∧
f∈F′ ∀�x, �xf .y �!f(�xf ) ∨ φ{y �→ f(�xf )}

if y is free in φ, no other rule can be applied, there is in φ a literal y!t or y �!t
where t contains an existentially quantified variable, and �x is non-empty. If y is
of sort S, then F ′ ⊆ F is the set of function symbols of sort S1, . . . , Sn → S.

Fig. 2. DisU: Rules for both Free and Ultimately Periodic Sorts



Predicate Completion for non-Horn Clause Sets 323

Periodic Reduction:
PR: A[sl(t)]p → A[sk(t)]p

if A is an atom and sl(t) belongs to an ultimately periodic sort of type (k, l).
Periodic Decomposition:

PD1: s(t)!s(t′) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t!t′ if t and t′ are ground

t!sk−1(0) ∨ t!sl−1(0) if t is not ground

and s(t′) = sk(0)
t!t′ if t is not ground

and t′ is ground

and s(t′) �= sk(0)

t!t′ ∨ (t!sk−1(0) ∧ t′!sl−1(0))
∨ (t!sl−1(0) ∧ t′!sk−1(0)) if t, t′ are not ground

PD2: s(t) �!s(t′) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t �!t′ if t and t′ are ground
t �!sk−1(0) ∧ t �!sl−1(0) if t is not ground

and s(t′) = sk(0)
t �!t′ if t is not ground

and t′ is ground

and s(t′) �= sk(0)
t �!t′ ∧ (t �!sk−1(0) ∨ t′ �!sl−1(0))

∧ (t �!sl−1(0) ∨ t′ �!sk−1(0)) if t, t′ are not ground

if s(t) belongs to an ultimately periodic sort of type (k, l) and s(t)!s(t′) (or
s(t) �!s(t′)) is irreducible by PR. For k = 0, the atom ⊥ replaces t!sk−1(0) and
	 replaces t �!sk−1(0).

Periodic Clash Test:

PC1: s(t)!0 →
{

t!sl−1(0) if k = 0 and t is not ground
⊥ if k > 0 or t is ground

PC2: s(t) �!0 →
{

t �!sl−1(0) if k = 0 and t is not ground
	 if k > 0 or t is ground

if s(t) belongs to an ultimately periodic sort of type (k, l) and s(t)!0 (or s(t) �!0)
is irreducible by PR.

Periodic Occurrence:

PO1: x!sn(x) →
{

x!sk(0) ∨ . . . ∨ x!sl−1(0) if l − k divides n
⊥ if l − k does not divide n

PO2: x �!sn(x) →
{

x �!sk(0) ∧ . . . ∧ x �!sl−1(0) if l − k divides n
	 if l − k does not divide n

if x and sn(x) belong to an ultimately periodic sort of type (k, l) and n > 0.
Periodic Sort Reduction:

PS1: ∀�x, x.φ → ∀�x.φ{x �→ 0} ∧ . . . ∧ φ{x �→ sl−1(0)}
PS2: ∃�x.x.φ → ∃�x.φ{x �→ 0} ∨ . . . ∨ φ{x �→ sl−1(0)}
if x belongs to an ultimately periodic sort of type (k, l) and x occurs in φ.

Fig. 3. DisU: Rules for Ultimately Periodic Sorts
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Proof. The normal form (¬φP )↓ of ¬φP is

(¬φP )↓ = ∀"y.
∧

Γ→Δ,P (�t)∈NP

(x1 �5t1 ∨ . . . ∨ xn �5tn ∨
∨

A∈Γ

¬A ∨
∨

B∈Δ

B) .

Part (1) of the invariant holds because there are no nested quantifiers in (¬φP )↓.
Part (2) holds because all clauses in N are universally reductive, and so every
variable that occurs in a predicative literal ¬A or B also occurs in one of the
disequations xi �5ti in the same conjunct of (¬φP )↓.

Lemma 8 (Invariant is Preserved). Let φ �DisU φ′. If φ satisfies Invariant 6
then so does φ′.

Lemma 9 (Normal Forms Without Universal Quantifiers). Every nor-
mal form φ with respect to DisU that fulfills Invariant 6 is free of universal
quantifiers.

Corollary 10 (Universal Quantifier Elimination). Let N be universally
reductive, let φP be defined as in Definition 5 and let φ′

P be a normal form of
¬φP with respect to DisU. Then φ′

P does not contain any universal quantifiers.

Proof. Straightforward combination of the preceding Lemmas 7, 8, and 9.

3.3 Solved Form Computation

To address the second issue of transforming the formula ∀"x.(φ′
P → ¬P ("x)) into a

set of clauses, I will make use of the fact that certain normal forms with respect
to DisU can be transformed into a particularly simple form:

Definition 11 (Solved Forms). Let I be an ultimately periodic interpretation.
A formula φ is a solved form with respect to I if φ = �, φ = ⊥, or φ is a
disjunction φ = φ1 ∨ . . . ∨ φm and each φj is of the shape

φj = ∃"y.xi15t1∧. . .∧xin5tn∧A1∧. . .∧Ak∧¬B1∧. . .∧¬Bk′∧z1 �5t′1∧. . .∧zl �5t′l ,

where xi1 , . . . , xin occur only once in φj , the Ai and Bi are predicative atoms,
the zi are variables and zi �= t′i, and φj is irreducible by Periodic Reduction.

The motivation for choosing this particular form is that, if the formula φ′
P ap-

pearing in the predicate completion procedure (Definition 5) can be transformed
into a solved form, the formula ∀"x.(φ′

P → ¬P ("x)) is equivalent to a finite clause
set: Either the formula is equivalent to

– �, i.e. to the empty clause set (for φ′
P = ⊥), or to

– ∀x.¬P ("x), i.e. to the singleton clause set {P ("x) →} (for φ′
P = �), or to

– ∀"x.
∧

j(φ′
j → ¬P ("x)), and each conjunct can equivalently be written as a

clause of the form
A1, . . . , Ak, P ("x){xi1 �→ t1, . . . , xin �→ tn} → B1, . . . , Bk, z15t′1, . . . , zl5t′l .
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Quantifier Elimination:
Q1: ∃�x.φ1 ∨ φ2 � (∃�x.φ1) ∨ (∃�x.φ2) if �x ∩ var(φ1, φ2) �= ∅
Q6: ∃�x, x.x!t ∧ φ � ∃�x.φ{x �→ t} if x �∈ var(t)
All formulas are kept normalized with respect to Q1.

Distribution:
N2’: φ0 ∧ (φ1 ∨ φ2) � (φ0 ∧ φ1) ∨ (φ0 ∧ φ2)

Replacement and Merging:
R : ∃�x.x!t ∧ φ � ∃�x.x!t ∧ φ{x �→ t} if x is free and x �∈ var(t)

and if t ∈ X then t ∈ var(φ)
M: x!t1 ∧ x!t2 � x!t1 ∧ t1!t2 if t1 is not a variable

and |t1| ≤ |t2|

Fig. 4. Solved Form Conversion Rules

The transformation into a solved form is again performed using a rewrite system:

Definition 12 (SF). Let E be a set of ultimate periodicity equations. The Solved
Form Transformation Algorithm SF for E consists of the Normalization rules of
Figure 1, the (regular and periodic) Decomposition, Clash and Occurrence rules
as well as Periodic Reduction from Figures 2 and 3 and the rules of Figure 4.

This calculus is an extension of a corresponding calculus used by Comon and
Delor [4, Section 6.3] for the predicative Horn case.

Lemma 13 (SF Produces Solved Forms). Let φ =
∨

i∈I ∃"xi.φi be a formula
where the φi are quantifier-free conjunctions. If φ is a normal form with respect
to SF, then φ is a solved form.

Proof. Because of the Decomposition and Clash rules, each equational literal
must be of the form x5t or x�5t. So each disjunct is of the form

∃"y.xi15t1 ∧ . . . ∧ xin5tn ∧A1∧ . . . ∧Ak ∧ ¬B1∧ . . . ∧¬Bk′ ∧ z1 �5t′1 ∧ . . . ∧ zl �5t′l

where the xi, yi and zi are variables and the Ai and Bi are predicative atoms.
Because of Q6, the xi must be free variables. Moreover, each xi occurs only once:
Either ti is not a free variable and x occurs only once because of R and O1, or
ti is a free variable, in which case R guarantees that one of xi and ti occurs only
once; by symmetry, this variable is without loss of generality xi. Finally, zi �= t′i
is guaranteed by O2.

Lemma 14 (Termination of SF). Let φ =
∨

i∈I ∃"xi.φi be a formula where the
φi are quantifier-free conjunctions. Then SF terminates on φ.

Proof. SF terminates because it is decreasing for a well-founded strict ordering
'SF on formulas of the given form. To define this ordering, let ISF(

∨
i∈I ∃"xi.φi),

where φi is quantifier-free, be the multiset

{(I1(∃"xi.φi), I2(∃"xi.φi), I3(∃"xi.φi), I4(∃"xi.φi), I5(∃"xi.φi)) | i ∈ I} ,
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where the five components of each tuple are defined as follows:

(i) I1(∃"xi.φi) is the number of variables in "xi.
(ii) I2(∃"xi.φi) is the number of variables in φi that are not solved; a variable x

in φi is solved if φi = x5t ∧ φ′
i and x occurs only once in φi.

(iii) I3(∃"xi.φi) is a term over the setF3 = {∨,∧, g, f, a,�,⊥} of function symbols,
inductively defined by
– I3(∃"xi.φi) = I3(φi)
– I3(ψ1 ∨ ψ3) = I3(ψ1) ∨ I3(ψ3)
– I3(ψ1 ∧ ψ3) = I3(ψ1) ∧ I3(ψ3)
– I3(t15t3) = I3(t1 �5t3) = g(fmax{|t1|,|t3|}(a)) if t1 and t3 are not ground

I3(t15t3) = I3(t1 �5t3) = fmax{|t1|,|t3|}(a) if t1 and t3 are ground,
I3(t15t3) = I3(t1 �5t3) = g(f |t1|(a)) if t1 is not ground and t3 is ground

– I3(P ("t)) = I3(¬P ("t)) = a if P is a predicate symbol.
– I3(�) = � and I3(⊥) = ⊥

(iv) I4(∃"xi.φi) is the number of redexes for PR in ∃"xi.φi.
(v) I5(∃"xi.φi) is the number of redexes for M in ∃"xi.φi.

Terms over F3 are ordered by the associative path ordering '3 (cf. [2]) extending
the strict ordering g ' f ' a ' ∧ ' ∨ ' � ' ⊥. Every rule application reduces
the formula with respect to this ordering.

Proposition 15 (Equivalence to Solved Forms). Let I�N∪E be an ultimately
periodic interpretation and let φ be a formula in negation normal form that
does not contain any universal quantifiers. Then φ can be transformed into an
equivalent solved form.

Proof. Using Q1, N2’ and the rule (∃x.ψ1) ∧ ψ2 � ∃x.(ψ1 ∧ ψ2), where x is
renamed if it occurs in ψ2 to avoid capturing (this rule is well-known to be correct
for any interpretation), φ can be transformed into a disjunction of formulas of
the form ∃"x.

∧
Li with literals Li.

By the preceding Lemmas 13 and 14, the calculus SF transforms this formula
into a solved form. The algorithm preserves the solutions of a formula with re-
spect to every interpretation where equality is interpreted as E-equality: The
correctness of the all rules except Replacement and Merging follows from the
correctness of DisU (the correctness of N2 is independent of the constraint on
the context) and the correctness of the remaining two rules is obvious because
they replace equals by equals. If φ is irreducible by DisU, then it is in particu-
lar irreducible by Finite and Periodic Sort Reduction and does not contain any
bound variables of a finite free or ultimately periodic sort. Since the transfor-
mation algorithm does not introduce any new quantifier symbols, this invariant
is preserved throughout the transformation.

Corollary 16. Let I�N∪E be an ultimately periodic interpretation. Then the for-
mula ∀"x.(¬φP → ¬P ("x)) from Definition 5 corresponds to a finite set of clauses
that can be computed using the algorithm PC.
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This property is only true because of the special form that φP takes for ultimately
periodic models. For example, the clause set N = {Q(y) → P} yields φP =
∃y.Q(y), and the resulting formula (∀y.¬Q(y)) → ¬P cannot be written as an
equivalent finite clause set if y is of an infinite sort.

Example 17 (Completion of the Even Predicate). As a simple example assume
that the Even predicate is not given as in Example 3 but by the non-Horn
clause set N = {Even(0); Even(x) → Even(s(x)), Even(s(s(x)))}. Because the
last literal is maximal in the second clause with respect to any reduction ordering,
φEven is given by φEven = x50 ∨ ∃y.(y5s(s(x)) ∧ Even(y) ∧ ¬Even(s(y))).

If no equation is present, the above algorithms lead to the completion N ′ =
N ∪ {Even(s(0)) →; Even(s(s(x))) → Even(x); Even(s(x)), Even(s(s(x))) →}.
With respect to the equation E = {s(s(0))50}, the computed completion is
N ′ = N ∪ {Even(s(0)), Even(0) →; Even(s(0)) → Even(0)}.

3.4 Predicate Completion and Unique Herbrand Models

Comon and Nieuwenhuis showed that the minimal model of a satisfiable univer-
sally reductive and predicative Horn clause set is the unique Herbrand model of
its completion [6, Lemma 47]. In the presence of equality, this means:

Lemma 18 (Completions of Horn Clause Sets). Let N be a satisfiable
universally reductive predicative Horn clause set over Σ and let N ′ be the result of
applying predicate completion to N . Then the minimal model of N (with respect
to set inclusion) is the unique Herbrand model of N ′ over Σ in which 5 is
interpreted as syntactic equality (i.e. t15t2 holds if, and only if, t1=t2).

I will now show that this result also extends to ultimately periodic interpreta-
tions. Non-Horn clause sets may have more than one minimal model, a simple
example being {→ P,Q} with minimal models {P} and {Q}. If the model con-
struction by Bachmair and Ganzinger (Definition 1) is applicable, one of them
can be distinguished using this construction (Lemma 2). Completion singles out
exactly the same interpretation:

Theorem 19 (Completions of Universally Reductive Saturated Clause
Sets). Let ' be a well-founded strict reduction ordering that is total on ground
terms. Let N ∪E as in Definition 4 be saturated with respect to a refutationally
complete calculus and let M be a Herbrand model of the completion N ′ of N∪E.
If 5 is interpreted in M as E-equality (i.e. M |= t15t2 if, and only if, t1=Et2),
then M equals I�N∪E.

Proof. Because N ∪ E is saturated, I�N∪E is a minimal model of N ∪ E with
respect to set inclusion (Lemma 2) and M cannot be a strict subset of I�N∪E.

Assume, contrary to the proposition, that M \ I�N∪E �= ∅ and let P ("s) ∈
M\I�N∪E be minimal with respect to '. BecauseM is a model of the completion
and the algorithms DisU and SF are correct, the formula ∀"x.P ("x) → φP holds
in M. In particular, M |= φP {"x �→ "s}. This formula has the following shape:
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φP {"x �→ "s} = ∃"y.
∨

Γ→Δ,P (�t)∈NP
(s15t1 ∧ . . . ∧ sn5tn ∧

∧
A∈Γ A ∧

∧
B∈Δ ¬B)

Because the equality predicate is interpreted as E-equality, each of the disjuncts
can only hold in M if "s =E "t. The remaining literals are by definition strictly
smaller (with respect to ') than P ("t) and hence also strictly smaller than P ("s).
By minimality of P ("s), they all hold in M if, and only if, they hold in I�N∪E .
Because 5 is interpreted as E-equality on non-predicative terms in I�N∪E as
well, it follows that I�N∪E |= φP {"x �→ "s}. Because I�N∪E |= N , the formula
∀"x.φP → P ("x) also holds in I�N∪E . This implies I�N∪E |= P ("s), which contradicts
the choice of P ("s). Hence M⊆ I�N , i.e. M = I�N .

Note that this means that I�N∪E agrees with all Herbrand models of N ′ over Σ
on the validity of predicative atoms (and formulas), i.e. validity in the minimal
model and in all Herbrand models coincide:

Corollary 20. Let Σ be a signature and let ' be a well-founded strict reduction
ordering that is total on ground terms. Moreover, let N ∪ E as in Definition 4
be saturated with respect to a refutationally complete calculus and let φ be a
predicative formula. Then I�N∪E |= φ if, and only if, M |= φ for every Herbrand
model M of N ∪E.

So PC indeed computes a completion. This is especially interesting because it is
in many cases easier to prove properties of all Herbrand models of a clause set
than to prove properties of a unique model (cf. [7, 6, 12]).

4 Conclusion

I have presented the disunification-based predicate completion algorithm PC for
ultimately periodic interpretations, i.e. for the minimal models of sets of uni-
versally reductive clauses and equations sn(x)5sm(x), and generalized a unique
model result for predicate completion to saturated non-Horn clause sets. This
extends work by Comon et al. [5, 4, 6] on disunification and predicate comple-
tion for Horn clauses and work of Ludwig and Hustadt [13] and myself [9] on
ultimately periodic interpretations and provides the first predicate completion
for a reasonably large class of non-Horn problems.

Predicate completion yields a detailed description of the perfect model, which
is interesting for all superposition-based reasoning. Immediately possible con-
crete applications of predicate completion for ultimately periodic interpretations
include saturation-based theorem proving for distinguished models: Ultimately
periodic interpretations appear naturally as minimal models of formula sets in
propositional linear time temporal logic [13], and recently developed algorithms
for inductive theorem proving [12, 11] also rely on predicate completion for the
examined models. In all these cases, first-order provers can now be employed for
minimal model reasoning.

The presented algorithms have been implemented in the tool Spass-FD [10].
Both the implementation and a collection of examples are available online at
cs.unm.edu/~horbach/software/.

cs.unm.edu/~horbach/software/
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Next research steps will include a further inspection of in how far more ex-
pressive equational theories can be incorporated. The restriction to universally
reductive clauses will not vanish in the foreseeable future, because it is inherent
to all algorithms that complete each predicate separately.
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Abstract. Using a constrained superposition calculus and a disunifica-
tion procedure, it is possible to employ superposition-based first-order
reasoners for reasoning not only about all models of a first-order the-
ory, but also about all models over a specific finite domain and often
as well about the perfect models of the theory (or the unique minimal
model in case of a Horn theory). Both of these problems are second-order
problems.

In this paper, I describe the tool Spass-FD, an extension of the first-
order prover Spass that equips Spass with disunification as well as with
fixed domain and minimal model theorem proving capabilities.

1 Introduction

Saturation-based calculi such as superposition [11] can be instantiated to de-
cision procedures for many decidable fragments of first-order logic. Superposi-
tion provers are state of the art in first-order theorem proving, i.e. in deciding
whether a given set of clauses has a model. Often however, any model is not
good enough: When describing real-world systems, the domain of the admissible
models is usually predefined as the Herbrand universe over the symbols appear-
ing in the description. Moreover, the system description will mostly state what
the system can do, leaving what it cannot do implicit: The intended semantics
of the description is a minimal model (or closed world) semantics. For formal
reasoning about the system, the implicit information about the minimal model
has to be recovered.

Originally, this line of thought was developed to handle negation in logic
programming [2]. In automated theorem proving, it can be used for example to
reason about the so-called contexts in the model evolution calculus [1], or about
models described by sets of atoms with exceptions [5], about rewrite systems, or
in general for any kind of inductive problems.

Aiming at the long-standing goal to harvest the power of first-order reasoning
for this setting [4], Horbach and Weidenbach [10,8] developed a superposition-
based algorithm that allows for fixed domain reasoning with a saturation-based
first-order prover. Later, this was extended using predicate completion [2,4,6] to
systems for minimal model reasoning that decide, e.g., validity of queries with
one quantifier alternation for the above-mentioned contexts [9,8,6].

The tool Spass-FD is an implementation on top of the automated theorem
prover Spass [15] of (i) the calculi for saturation-based reasoning with respect

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 331–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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to fixed domains and minimal models as described in [8] (including the decision
procedure for contexts), and (ii) the underlying disunification procedure from
[6]. Spass provides a powerful superposition-based saturation machinery, which
makes this prover well-suited as a basis for the implementation. Spass-FD can
be downloaded from cs.unm.edu/~horbach/software/.

2 Theoretical Background

Disunification and Predicate Completion. Disunification [3,6] is an exten-
sion of the idea of unification from equations to arbitrary equational formulas.
Technically, it is a rewrite system for quantifier elimination in the empty theory.

The most obvious use of disunification is as a decision procedure for satis-
fiability of equational formulas. A second and for the current application even
more important one is predicate completion [2,7], where a set N of clauses is
extended to a set N ′ such that N ′ has only one Herbrand model, namely one of
the minimal models of N . Predicate completion is one of the main tools to con-
nect first-order, fixed domain and minimal model reasoning [4,6]. It is restricted
to so-called universally reductive clauses, which are either purely negative or
contain a unique maximal positive literal (with respect to a given ordering) that
is not equational and contains all variables of the clause.

Fixed Domain and Minimal Model Reasoning. Superposition is an estab-
lished decision procedure for a variety of first-order logic theories represented by
sets of clauses. A satisfiable theory, saturated by superposition, implicitly defines
a minimal term-generated model for the theory. Unfortunately, checking consis-
tency of existential properties with respect to a saturated theory directly leads to
a modification of the Herbrand domain, as new Skolem functions are introduced.
At the core of the fixed domain reasoning algorithm of Spass-FD thus lies a
superposition calculus that avoids Skolemization by using an explicit representa-
tion of existential variables [10]. To this end, clauses are extended by constraints
that restrict the instantiations of the existential variables for a clause. For ex-
ample, a formula ∃u.∀y.P (u, y) ∧ ¬P (a, a) corresponds to constrained clauses
u5x ‖ → P (x, y) and u5x ‖P (a, a) →. Resolving these two clauses and unify-
ing their constraints leads to an empty clause with constraint u5a, signifying
that u �→ a does not satisfy the initial clauses. In this setting, a contradiction is
formed by a set of constrained empty clauses that together exclude all possible
ground instantiations of the existential variables. This property, called coverage,
can be expressed as unsatisfiability of an equational formula over the empty
theory and can hence be decided by disunification.

Analogous to the first-order case, a saturated clause set is not covering iff it
has a Herbrand model [10]. When the initial clause set is completed, the only
remaining Herbrand model is the minimal model. Hence techniques for reasoning
about fixed domain properties can be also used for minimal model reasoning.
This turns the previously mentioned constrained superposition calculus into a
decision procedure for several classes of minimal model problems [8,9,6].

cs.unm.edu/~horbach/software/
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Reasoning about Equational Literals. Predicate completion as well as min-
imal model reasoning quickly becomes undecidable in the presence of an equa-
tional theory. An important exception are equations of the form sn(x)5sm(x).
Interpretations where such equations hold are called ultimately periodic. They
occur e.g. as the models of predicative linear time linear logic. An extension of
the aforementioned algorithms to encompass ultimate periodicity equations [6]
is also integrated in Spass-FD.

It is furthermore possible to allow arbitrary disequations in constraints. This
makes it possible to write completions in such a way that the non-constraint
part of every clause is predicative [8].

3 Implementation

Fig. 1. Structure of Spass-FD

The tool Spass-FD is an implemen-
tation of the aforementioned algo-
rithms on top of Spass [15] and,
as Spass, is written in plain C.
The main advantage of using Spass
as a basis is that this reasoner is
specialized on saturation-based the-
orem proving and already places ef-
ficiently implemented data types at
the disposal for its modules. The
additions made by Spass-FD are
mostly orthogonal to the other Spass
modules and can be used in con-
junction with them. They are ac-
tivated by specifying the command
line option -PComp=1. Because the
current version of Spass does not
yet support constraints, constraints
are represented by antecedent liter-
als with the special predicate sym-
bols ExVars (signifying instantiations
of the existential variables) and CDis
(for constraint disequations), i.e. a constrained clause v15t1, . . . , vn5tn,
s1 �5s′1, . . . , sm �5s′m ‖Γ → Δ is modeled internally by a regular clause of the
form ExVars(t1, . . . , tn), CDis(s1, s

′
1), . . . , CDis(sm, s′m), Γ → Δ.

For easy reference, a graphical overview of the general structure of Spass-FD
is presented in Figure 1.

Preprocessing. Spass-FD takes as its input a file in dfg syntax or tptp syntax
containing a problem description and a query of the form ∃∗∀∗φ. The input
(except the query) is as usual processed by Flotter, the clause normal form
generator of Spass, and the ultimate periodicity information is extracted. The
input clauses, which must all be universally reductive, are then partitioned with
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respect to the predicate of their maximal positive atom. For each such predicate
P , a formula φP is created that describes which ground instances of P hold.
Disunification is then used to compute a normalization of ¬φP , from which the
completion clauses are extracted in a straightforward way and added to the
input.

In parallel, existential variables in the query formula are replaced by ExVars
literals and the resulting query is also processed by Flotter. The input clauses,
their completion, and the transformed query are then handed on to saturation.

As an example, consider the following input file, a problem taken from [8]:

begin_problem(X).

list_of_descriptions.

name({*Atom with Exceptions*}).

author({*Matthias Horbach*}).

status(satisfiable).

description({*Simple Example*}).

end_of_list.

list_of_symbols.

functions[(s,1),(0,0)].

predicates[(P,2), (Pp,2), (Pn,2)].

end_of_list.

list_of_formulae(axioms).

formula(forall([x,y],Pp(x,s(y)))).

formula(forall([x],Pn(s(x),s(x)))).

formula(forall([x,y],implies(

Pp(x,y),or(Pn(x,y),P(x,y))))).

end_of_list.

list_of_formulae(conjectures).

formula(exists([x],P(s(x),x))).

end_of_list.

list_of_settings(SPASS).

{*

set_flag(PComp,1).

set_flag(Select,0).

set_flag(Sorts,0).

set_precedence(P,Pp,Pn).

set_DomPred(P,Pn,Pp).

*}

end_of_list.

end_problem.

This input is transformed by the Spass-FD preprocessing step into the follow-
ing clause set, consisting of a representation of the problem description (clauses
1–3), the converted query (clause 4), and the computed completion (clauses 5–
10):1

Input Problem:

1 -> Pp(U,s(V))*.

2 -> Pn(s(U),s(U))*.

3 Pp(U,V) -> P(U,V)* Pn(U,V).

4 ExVars(U) -> P(s(U),U)*.

5 P(U,V)* -> Pp(U,V).

6 P(U,V)* Pn(U,V) -> .

7 Pn(s(U),V)* CDis(V,s(U)) -> .

8 Pn(0,U)* -> .

9 Pp(U,0)* -> .

10 CDis(U,U)* -> .

Saturation. The actual saturation relies completely on the given machinery of
Spass. To deter literals with the predicates ExVars and CDis from interfering
with the saturation process, they are artificially kept minimal in the superposi-
tion ordering. To avoid the accumulation of multiple ExVars literals, the code of
1 This presentation is condensed. The actual output by Spass-FD is slightly more

verbose.
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resolution inferences in Spass has been changed such that, on top of the unifica-
tion of the resolved literals, ExVars literals are also unified during each inference
step. This is the only change to the actual saturation machinery of Spass.

In the example, Spass derives the following clauses, where, e.g., Res:4.1,5.0
indicates that the clause is the result of a resolution inference between clauses 4
and 5:

11[Res:4.1,5.0] ExVars(U) -> Pp(s(U),U)*.

12[Res:11.1,9.0] ExVars(0)* -> .

13[Res:4.1,6.1] ExVars(U) Pn(s(U),U)* -> .

Postprocessing. If saturation terminates, then the resulting constrained empty
clauses are checked for coverage, again using disunification. If they are covering,
the query ∃∗∀∗φ does not hold in the minimal model of the input; otherwise a
representation of those instances witnessing that it does hold is returned.

In the example, the only constrained empty clause that was derived is clause
12: u50 ‖�. Consequently, the final coverage check yields that the conjecture
holds for all other instantiations of the existential variable:

Conjecture holds in the minimal model of the axioms

for the following instances: (not (equal U (0)))

4 Testing and Optimizations

In the superposition component of Spass-FD, mainly straightforward optimiza-
tions have been implemented, like the addition of a clause CDis(x, x) → (corre-
sponding to x�5x ‖ false) that directly makes all clauses with unsatisfiable con-
straints redundant. On the other hand, two strong optimizations in Spass must
be deactivated: Splitting changes the minimal model and the especially efficient
algorithms for reasoning about sort theories [14] interferes with the semantics
of constrained clauses containing ExVars and CDis literals. The latter can be
remedied by an explicit integration of constraints into Spass, which is planned
for future releases.

I represent ultimate periodicity equations sk(0)5sl(0) using a globally acces-
sible data structure that provides constant-time access to the values k and l−k,
the constructors s and 0 and the regularly needed terms sk−1(0) and sl−1(0).

Formulas are represented using the term module of Spass. I adapted the data
structures to grant instant access to regularly needed information like parent
links and normalization markers that make the non-local changes during nor-
malization (e.g. by replacements like x5t ∧ φ � x5t ∧ φ[x �→ t]) tractable.
For disunification, which is both code-wise the biggest and computation-wise
the most expensive part of the implementation, the nondeterminism of the used
algorithm allows for a wide variety of normalization strategies. Motivated by per-
formance increases on the tested examples, I made the following design decisions:
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Formulas are traversed in a depth search pattern to allow for fast propagation
of occurrences of the atoms true or false, which often considerably reduces the
size of the formula. Formulas are not kept locally in conjunctive normal form,
a prerequisite of previous algorithms. Rules that tend to increase formula size
(e.g. Sort Reduction, Distribution and Explosion) are only applied to otherwise
normalized subformulas.

To the best of my knowledge, there has so far only been one publicly avail-
able implementation of disunification [12], which relies on an early inefficient
variant of the algorithm and is not maintained any more. It also only works for
Horn clauses, a restriction that does not apply for Spass-FD. The algorithms
for disunification and predicate completion over ultimately periodic models and
non-Horn clauses and the algorithm for fixed domain reasoning have not been
implemented before. In particular, no benchmarks for these problems exist. In-
stead, Spass-FD was tested in the following ways:
– The implementation of the disunification and predicate completion proce-

dures has been tested on and optimized with the help of problems in the
TPTP library [13].

– The extension for ultimately periodic interpretations and the overall minimal
model reasoning has been tested on hand-crafted problems.

– The decision procedure for contexts has been tested on randomly generated
examples.

Collections of the respective problem files are available from the system’s home-
page.

5 Conclusion

Spass-FD enriches Spass by predicate completion and a constrained superpo-
sition calculus for existential variables. It is thus the first implementation of
saturation-based minimal model reasoning and in particular of all decision pro-
cedures from [8] and [6] for queries with a quantifier alternation. Until recently,
these procedures only existed for Horn clause sets. However, a newly developed
extension of predicate completion to universally reductive non-Horn clause sets
[7] is also implemented in Spass-FD.

Currently, an extension of constrained superposition to arbitrary equational
clauses [10] is under construction, as are more involved decision procedures based
thereon [9]. A version using proper constraints for full modularity will appear
once those are officially supported by Spass, and the same holds for real multi-
sorting.

Acknowledgments. This work was supported by the German Transregional
Collaborative Research Center SFB/TR 14 AVACS and by the German Aca-
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Abstract. We describe a new algorithm for solving linear integer pro-
gramming problems. The algorithm performs a DPLL style search for a
feasible assignment, while using a novel cut procedure to guide the search
away from the conflicting states.

1 Introduction

One of the most impressive success stories of computer science in industrial
applications was the advent of linear programming algorithms. Linear program-
ming (lp) became feasible with the introduction of Dantzig simplex algorithm.
Although the original simplex algorithm targets problems over the rational num-
bers, in 1958 Gomory [12] introduced an elegant extension to the integer case
(ilp). He noticed that, whenever the simplex algorithm encounters a non-integer
solution, one can eliminate this solution by deriving a plane, that is implied by
the original problem, but does not satisfy the current assignment. Incrementally
adding these cutting planes, until an integer solution is found, yields an algo-
rithm for solving linear programs over the integers. Cutting planes have been
studied thoroughly both as an abstract proof system [4], and as a practical pre-
processing step for hard structured problems. For such problems, one can exploit
the structure by adding cuts tailored for the problem, such as the clique cuts,
or the covering cuts [20], which can reduce the search space dramatically.

The main idea behind the algorithm of Gomory, i.e to combine a model search-
ing procedure, with a conflict resolution procedure – a procedure that can derive
new facts in order to eliminate a conflicting candidate solution – is in fact quite
general. Somewhat later, for example, in the field of automated reasoning, there
was a similar development with equally impressive end results. Solvers for the
Boolean satisfiability problem (sat), although a canonical NP-complete prob-
lem, have seen a steady improvement over the years, culminating in thrilling
advances in the last 10 years. It has become a matter of routine to use a sat
solver on problems with millions of variables and constraints. Of course, there
are many ingredients that make a modern sat solver efficient, but one of the
most appealing ones, is the combination of two different approaches to solving a
problem. One is a backtracking search for a satisfying assignment, in the style of
dpll [7]. The other, is a search for a resolution refutation of the problem, as in
the dp algorithm [8]. To combine these two [19] first noticed that, once a conflict

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 338–353, 2011.
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has been encountered, we can derive a clause that explains the conflict, i.e. the
search is guiding the resolution. As with the Gomory cuts, the explanation clause
eliminates the current assignment, forcing a backtrack, and eliminating an (often
substantial) part of the search tree. In the other direction, [17] introduced the
so called vsids heuristic that adjusts the variable selection heuristic so that it
prefers the variables involved in the resolution of conflicts, i.e. the resolution is
guiding the search. This approach to solving sat problems is commonly called
Conflict-Directed Clause Learning (cdcl) and is employed by most modern sat
solvers. Apart from cdcl, there are many other important techniques that have
become standard such as fast restarts[17], and fast indexing schemes for unit
propagation [17].

In this paper, we propose a new cdcl-like procedure for solving arbitrary
ilp problems. Our procedure, inspired by recent algorithms for solving linear
real arithmetic [16,14,6], has all the important theoretical and practical ingre-
dients that have made cdcl based sat solvers so successful, including: model
search complemented with the generation of resolvents explaining the conflicts;
propagation rules enabling reduction of the search space and early detection of
conflicts; resolvents learned during analysis of conflicts enable non-chronological
backtracking; all resolvents generated during the search are valid, i.e. implied by
the input formula, and not conditioned by any decisions; decisions (case-splits)
are not based on a fixed variable order, thus enabling dynamic reordering heuris-
tics; and cutting-plane inequalities (resolvents) learned during the search can be
removed, allowing for flexible memory management by keeping the constraint
database limited.

Another contribution of our paper is a that our procedure guarantees termi-
nation. We describe two arguments that imply termination. First, we propose a
simple heuristic for deciding when a cutting-planes based approach does not ter-
minate, recognizing variables contributing to the divergence. Then, we show that,
in such a case, one can isolate a finite number of small cores that are inconsis-
tent with the corresponding current partial models. These cores comprise of two
inequalities and at most one divisibility constraint. Finally, we apply Cooper’s
quantifier elimination procedure to derive a resolvent that will block a particular
core from ever happening again, which in turn implies termination. And, as a
matter of practical importance, our resolvents do not involve disjunctions and
are expressed only with valid inequalities and divisibility constraints.

2 Preliminaries

As usual, we denote the set of integers as Z. We assume a finite set of variables
X ranging over Z. We use x, y, z, k to denote variables in X , a, b, c, d to
denote coefficients in Z, and p, q, r and s for linear polynomials over X with
coefficients in Z. In the work that follows, all polynomials are assumed to be
in sum-of-monomials normal form a1x1 + · · · + anxn + c. Given a polynomial
p = a1x1 + . . .+anxn +c, and a coefficient b, we use bp to denote the polynomial
(a1b)x1 + . . . + (anb)xn + (bc).
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Inequalities. We use I and J to denote inequalities anxn + · · · + a1x1 + c ≤ 0.
We rewrite p < 0 as p + 1 ≤ 0, and p = 0 as p ≤ 0 ∧ −p ≤ 0. We use coeff(p, x)
(coeff(I, x)) to denote the coefficient of x in the linear polynomial p (inequality
I), where coeff(p, x) = 0 if x does not occur in p (I). We say an inequality I is
tightly-propagating for a variable x if coeff(I, x) ∈ {−1, 1}.

Divisibility Constraints. In addition to inequalities, we also consider divisibility
constraints of the form d | a1x1 + · · ·+anxn +c , where d is a non-zero integer
constant. We denote divisibility constraints with the (possibly subscripted) letter
D.

Finally, given a set of constraints C and a constraint I, we use C �Z I to
denote that I is implied by C in the theory of linear integer arithmetic.

3 The Abstract Search Procedure

We describe our procedure as an abstract transition system in the spirit of
Abstract DPLL [18,15]. The states are pairs of the form 〈M,C〉, where M is
a sequence of bound refinements, and C is a set of constraints. We use �� to
denote the empty sequence. In this section we assume that all constraints in C
are inequalities. Bound refinements can be either decisions or implied bounds.
Decided lower and upper bounds are decisions we make during the search, and
we represent them in M as x ≥ b and x ≤ b. On the other hand, lower and upper
bounds that are implied in the current state by an inequality I, are represented as
x ≥I b and x ≤I b. We say a sequence M is non-redundant if, for all variables x,
the bound refinements in M are monotone, i.e. all the lower (upper) bounds are
increasing (decreasing), and M does not contain the same bound for x, decided
or implied.

Let lower(x,M) and upper(x,M) denote the best, either decided or implied,
lower and upper bounds for x in M , where we assume the usual values of −∞
and ∞, when the corresponding bounds do not exist. A sequence M is con-
sistent if there is no x such that lower(x,M) > upper(x,M). We lift the best
lower and upper bound functions to linear polynomials using identities such as:
lower(p+q,M) is lower(p,M)+lower(q,M) when variables in p and q are disjoint1,
lower(b,M) = b, and lower(ax,M) is a(lower(x,M)) if a > 0, and a(upper(x,M))
otherwise.

Definition 1. We say a sequence M is well-formed (wf) with respect to a set of
constraints C when M is non-redundant, consistent and M is either an empty
sequence or it starts with a wf prefix M ′, i.e. M = �M ′, γ�, where the bound
refinement γ is either

– x ≥I b, with I ≡ (−x + q ≤ 0), C �Z I, and b ≤ lower(q,M ′); or

1 In general, when estimating bounds of polynomials, for a consistent sequence M
it holds that, if lower(p,M) and lower(q, M) are defined, then lower(p + q, M) ≥
lower(p, M) + lower(q, M).
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– x ≤I b, with I ≡ (x− q ≤ 0), C �Z I, and b ≥ upper(q,M ′); or
– x ≥ b, where M ′ contains x ≤I b for some I; or
– x ≤ b, where M ′ contains x ≥I b for some I.

Intuitively, in a well-formed sequence, every decision x ≥ b (x ≤ b) amounts to
deciding a value for x that is equal to the best upper (lower) bound. We say
that a state 〈M,C〉 is well-formed if M is well-formed with respect to C. Note
that, when refining a bound, we allow a bound b that is not necessarily the most
precise one with respect to I. Although going against intuition, the reason for
this flexibility will become apparent later.

Given an implied lower (upper) bound refinement x ≥I b (x ≤I b) and an
inequality ax + p ≤ 0, the function resolve combines (if possible) the tight in-
equality I ≡ ±x + q ≤ 0 with ax + p ≤ 0. If the combination is not applicable,
resolve just returns p ≤ 0. It is defined as

resolve(x ≥I b, ax + p ≤ 0)
resolve(x ≤I b, ax + p ≤ 0) =

{
|a|q + p ≤ 0 if a× coeff(I, x) < 0 ,

ax + p ≤ 0 otherwise .

We also define the function bound(I, x,M) that, given an inequality I and a
sequence M returns the bound that I implies on x, with respect to M , i.e

bound(ax + p ≤ 0, x,M) =

{
−6 lower(p,M)

a 7 if a > 0 ,

−% lower(p,M)
a & if a < 0 .

Lemma 1. Given2 a well-formed state 〈M,C〉, with M = �M ′, γ�, such that γ
is an implied bound, p ≤ 0 an inequality, and q ≤ 0 ≡ resolve(γ, p ≤ 0) then

C �Z (p ≤ 0) implies C �Z (q ≤ 0) ,

lower(q,M ′) ≥ lower(p,M) .

Example 1. In the statement of Lemma 1, we only get to keep lower(q,M ′) ≥
lower(p,M) because all of the implied bounds were justified by tightly-
propagating inequalities. If we would allow non-tight justifications, this might
not hold. Consider, for example, a state 〈M,C〉 where

C = {
I︷ ︸︸ ︷

−x ≤ 0,

J︷ ︸︸ ︷
−3y + x + 2 ≤ 0} , M = �x ≥I 0, y ≥J 1� ,

and the inequality 1 + 6y ≤ 0. Then, we have that

lower(1 + 6y,M) = 7 and resolve(y ≥J 1, 1 + 6y ≤ 0) = 2x + 5 ≤ 0 .

So, after performing resolution on y using a non-tight inequality J , the inequality
became weaker since i.e lower(2x + 5, �x ≥I 0�) = 5 �≥ 7.

2 The proofs of all lemmas and theorems are included in a separate technical report.
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The predicate improves(I, x,M) is true if the inequality I ≡ ax+p ≤ 0 implies
a better bound for x in M , but does not make M inconsistent. It is defined as

improves(I, x,M) =

⎧⎪⎨
⎪⎩

lower(x,M) < bound(I, x,M) ≤ upper(x,M), if a < 0,
lower(x,M) ≤ bound(I, x,M) < upper(x,M), if a > 0,
false, otherwise.

3.1 Deriving Tight Inequalities

Since we require that all the implied bound refinements in M are justified by
tightly propagating inequalities, we now show, given an inequality ±ax + p ≤ 0
such that improves(±ax+p ≤ 0, x,M) holds, how to deduce a tightly propagating
inequality that can justify the bound implied by ±ax + p ≤ 0.

The deduction is described using an auxiliary transition system. The states
of this system are tuples of the form

〈M ′,±ax + as⊕ r〉 ,

where a > 0, s and r are polynomials, M ′ is a prefix of the initial M , and we
keep the invariant that

C �Z ±ax + as + r ≤ 0, lower(as + r,M) ≥ lower(p,M) .

The initial state for tightening ±ax + p ≤ 0 is 〈M,±ax⊕ p〉 and the transition
rules are as follows.

Consume
〈M,±ax + as⊕ aky + r〉 =⇒ 〈M,±ax + as + aky ⊕ r〉
where x �= y.

Resolve-Implied
〈�M,γ�,±ax + as⊕ p〉 =⇒ 〈M,±ax + as⊕ q〉
where γ is an implied bound and q ≤ 0 ≡ resolve(γ, p ≤ 0)

Decided-Lower
〈�M, y ≥ b�,±ax + as⊕ cy + r〉 =⇒ 〈M,±ax + as + aky ⊕ r + (ak − c)q〉
where y ≤I b in M , with I ≡ y + q ≤ 0, and k = 6c/a7.

Decided-Lower-Neg
〈�M, y ≥ b�,±ax + as⊕ cy + r〉 =⇒ 〈M,±ax + as⊕ cq + r〉
where y ≤I b in M , with I ≡ y − q ≤ 0, and c < 0.

Decided-Upper
〈�M, y ≤ b�,±ax + as⊕ cy + r〉 =⇒ 〈M,±ax + as + aky ⊕ r + (c− ak)q〉
where y ≥I b in M , with I ≡ −y + q ≤ 0, and k = %c/a&.

Decided-Upper-Pos
〈�M, y ≤ b�,±ax + as⊕ cy + r〉 =⇒ 〈M,±ax + as⊕ cq + r〉
where y ≥I b in M , with I ≡ −y + q ≤ 0, and c > 0.

Round (and terminate)
〈M,±ax + as⊕ b〉 =⇒ ±x + s + 6b/a7 ≤ 0
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We use tight(I, x,M) to denote the tightly propagating inequalities derived using
some strategy for applying the transition rules above.

Example 2. Given a well-formed state 〈M4, C〉, where

C = {−y ≤ 0︸ ︷︷ ︸
I1

,−x + 2 ≤ 0︸ ︷︷ ︸
I2

,−y + 7 + x ≤ 0︸ ︷︷ ︸
I3

,−3z + 2y − 5x ≤ 0︸ ︷︷ ︸
I4

}

M4 = � y ≥I1 0, x ≥I2 2, y ≥I3 9, x ≤ 2 �
We denote with M1,M2,M3 the prefixes of M4. In M4, we have that
bound(I4, z,M4) = 3, that is, I4 is implying a lower bound of z in the current
state. We now derive a tight inequality that justifies this lower bound.

〈M4,−3z ⊕ 2y − 5x〉
=⇒ Decided-Upper-Pos

x ≤ 2 is a decided bound, M contains implied bound x ≥I2 2.
We make the coefficient of x divisible by 3 by adding −x + 2 ≤ 0.

〈M3,−3z − 6x⊕ 2y + 2〉
=⇒ Resolve-Implied

We eliminate y by adding two times −y + 7 + x ≤ 0.
〈M2,−3z − 6x⊕ 2x + 16〉
=⇒ Resolve-Implied

We eliminate x in 2x + 16 by adding two times −x + 2 ≤ 0.
〈M1,−3z − 6x⊕ 20〉
=⇒ Round
−z − 2x + 7 ≤ 0

The tightly propagating inequality −z−2x+7 ≤ 0 implies the same lower bound
bound(−z − 2x + 7 ≤ 0, z,M) = 3 for z.

Lemma 2. Given a well-formed state 〈M,C〉 and an implied inequality I, i.e.
such that 〈M,C〉 �Z I, and improves(I, x,M) the procedure for deriving tightly-
propagating inequalities terminates with a tight-inequality J such that 〈M,C〉 �Z

J and

– if I improves the lower bound on x, then bound(I, x,M) ≤ bound(J, x,M),
– if I improves the upper bound on x, then bound(I, x,M) ≥ bound(J, x,M).

Note that in the statement above, it is does not necessarily hold that
improves(J, x,M), as the improves predicate requires the new bound to be con-
sistent, and the derived inequality might in fact imply a stronger bound.

3.2 Main Procedure

We are now ready to define our main transition system: Cutting to the Chase.
In the following system of rules, if a propagation rule can derive a new implied
bound x ≥I b or x ≤I b, the tightly propagating inequality I is computed
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eagerly. This simplification clarifies the presentation but, due to the allowance
of Definition 1, we can use them as just placeholders and compute them on
demand, which is what we do in our implementation.

Decide
〈M,C〉 =⇒ 〈�M,x ≥ b�, C〉 if lower(x,M) < b = upper(x,M)
〈M,C〉 =⇒ 〈�M,x ≤ b�, C〉 if lower(x,M) = b < upper(x,M)

Propagate

〈M,C ∪ {J}〉=⇒ 〈�M,x ≥I b�, C ∪ {J}〉 if
⎧⎨
⎩

improves(J, x,M),
I = tight(J, x,M),
b = bound(J, x,M).

〈M,C ∪ {J}〉=⇒ 〈�M,x ≤I b�, C ∪ {J}〉 if
⎧⎨
⎩

improves(J, x,M),
I = tight(J, x,M),
b = bound(J, x,M).

Forget
〈M,C ∪ {J}〉=⇒ 〈M,C〉 if C �Z J , and J �∈ C

Conflict
〈M,C〉 =⇒ 〈M,C〉 � p ≤ 0 if p ≤ 0 ∈ C, lower(p,M) > 0

Learn
〈M,C〉 � I =⇒ 〈M,C ∪ I〉 � I if I �∈ C

Resolve
〈�M,γ�, C〉 � I =⇒ 〈M,C〉 � resolve(γ, I) if γ is an implied bound.

Unsat
〈�M,γ�, C〉 � b ≤ 0 =⇒ unsat if b > 0

Backjump

〈�M,γ,M ′�, C〉 � J =⇒ 〈�M,x ≥I b�, C〉 if

⎧⎪⎪⎨
⎪⎪⎩

γ is a decided bound
improves(J, x,M),
I = tight(J, x,M),
b = bound(J, x,M).

〈�M,γ,M ′�, C〉 � J =⇒ 〈�M,x ≤I b�, C〉 if

⎧⎪⎪⎨
⎪⎪⎩

γ is a decided bound
improves(J, x,M),
I = tight(J, x,M),
b = bound(J, x,M).

Theorem 1 (Soundness). For any derivation sequence 〈��, C0〉 =⇒ S1 =⇒
· · · =⇒ Sn, If Sn is of the form 〈Mn, Cn〉, then C0 and Cn are equisatisfiable.
If Sn is of the form 〈Mn, Cn〉 � I, then C0 implies I, and C0 and Cn are
equisatisfiable. Moreover, 〈Mn, Cn〉 is well-formed.

Example 3. Consider the set of inequalities C

{−x ≤ 0︸ ︷︷ ︸
I1

, 6x− 3y − 2 ≤ 0︸ ︷︷ ︸
I2

, −6x + 3y + 1 ≤ 0︸ ︷︷ ︸
I3

}

Now we show C to be unsatisfiable using our abstract transition system.
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〈��, C〉
=⇒ Propagate x using I1

〈�x ≥I1 0�, C〉
=⇒ Decide x
〈�x ≥I1 0, x ≤ 0�, C〉
=⇒ Propagate y using I3

〈�x ≥I1 0, x ≤ 0, y ≤J −1�, C〉, where J = tight(I3, y, �x ≥I1 0, x ≤ 0�)
〈�x ≥I1 0, x ≤ 0�, 3y ⊕−6x + 1〉
=⇒ Consume
〈�x ≥I1 0, x ≤ 0�, 3y − 6x⊕ 1〉
=⇒ Round
J ≡ y − 2x + 1 ≤ 0

=⇒ Conflict using I2

〈�x ≥I1 0, x ≤ 0, y ≤J −1�, C〉 � 6x− 3y − 2 ≤ 0
=⇒ Resolve resolve(y ≤J −1, 6x− 3y − 2 ≤ 0) = (3(−2x + 1) + 6x− 2 ≤ 0)
〈�M,x ≤ 0�, C〉 � 1 ≤ 0
=⇒ Unsat
unsat

Slack Introduction. Given a state S = 〈M,C〉, we say variable x is unbounded
at S if lower(x,M) = −∞, upper(x,M) = ∞. We also say x is stuck at S if it is
unbounded and Propagate cannot be used to deduce a lower or upper bound for
x. A state S is stuck if all unbounded variables in S are stuck, and no inequality
in C is false in M . That is, there is no possible transition for a stuck state S.
Before we describe how we avoid stuck states, we make the observation that for
every finite set of inequalities C, there is an equisatisfiable set C′ such that every
variable x in C′, (−x ≤ 0) ∈ C′. The idea is to replace every occurrence of x in
C with x+ − x−, and add the inequalities −x+ ≤ 0 and −x− ≤ 0. Instead of
using this eager preprocessing step, we use a lazy approach, where slack variables
are dynamically introduced. Suppose, we are in a stuck state 〈M,C〉, then we
simply select an unbounded variable x, add a fresh slack variable xs ≥ 0, and
add new inequalities to C that “bound” x in the interval [−xs, xs]. This idea is
captured by the following rule:

Slack-Intro

〈M,C〉 =⇒ 〈M,C ∪ {x− xs ≤ 0,−x− xs ≤ 0,−xs ≤ 0}〉 if
{
〈M,C〉 is stuck
xs is fresh

Note that it is sound to reuse a slack variable xs used for “bounding” x, to
bound y, and we actually do that in our implementation.

3.3 Termination

We say a set of inequalities C is a finite problem if for every variable x in C,
there are two integer constants a and b such that {x− a ≤ 0,−x + b ≤ 0} ⊆ C.
We say a set of inequalities C is an infinite problem if it is not finite. That
is, there is a variable x in C such that there are no values a and b such that
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{x− a ≤ 0,−x + b ≤ 0} ⊆ C. We say an inequality is simple if it is of the form
x− a ≤ 0 or −x + b ≤ 0. Let Propagate-Simple be a rule such as Propagate, but
with an extra condition requiring J to be a simple inequality. We say a strategy
for applying the Cutting to the Chase rules is reasonable if a rule R different from
Propagate-Simple is applied only if Propagate-Simple is not applicable. Informally,
a reasonable strategy is preventing the generation of derivations where simple
inequalities {x − a ≤ 0,−x + b ≤ 0} are ingored and C is essentialy treated as
an infinite problem.

Theorem 2 (Termination). Given a finite problem C, and a reasonable strat-
egy, there is no infinite derivation sequence starting from 〈��, C0〉.

3.4 Relevant Propagations

Unlike in SAT and Pseudo-Boolean solvers, Propagate rules cannot be applied
to exhaustion for infinite problems. If C is unsatisfiable, the propagation rules
may remain applicable indefinitely.

Example 4. Consider the followin set of (unsatisfiable) constraints

C = {
I︷ ︸︸ ︷

−x + y + 1 ≤ 0,

J︷ ︸︸ ︷
−y + x ≤ 0,

K︷ ︸︸ ︷
−y ≤ 0} .

Starting from the initial state 〈�y ≥ 0�, C〉, it is possible to generate the following
infinite sequence of states by only applying the Propagate rule.

〈��, C〉 =⇒ 〈�y ≥K 0�, C〉 =⇒ 〈�y ≥K 0, x ≥I 1�, C〉
=⇒ 〈�y ≥K 0, x ≥I 1, y ≥J 1�, C〉 =⇒

〈�y ≥K 0, x ≥I 1, y ≥J 1, x ≥I 2�, C〉 =⇒ . . .

Let nb(x,M) denote the number of lower and upper bounds for x in M . Given
a state S = 〈M,C〉, we say a new lower bound x ≥I b is δ-relevant at S if

1. upper(x,M) �= +∞, or
2. lower(x,M) = −∞, or
3. lower(x,M) + δ|lower(x,M)| < b and nb(x,M) < Max.

If x has a upper bound, then any lower bound is δ-relevant because x becomes
bounded, and termination is not an issue for bounded variables. If x does not
already have lower bound, then any new lower bound x ≥I b is relevant. Finally,
the third case states that the magnitude of the improvement must be significant
and the number of bound improvements for x in M must be smaller than Max.
In theory, to prevent non-termination during bound propagation we only need
the cutoff Max. The condition lower(x,M) + δ|lower(x,M)| < b is used for prag-
matical reasons, and is inspired by an approach used in [1]. The idea is to block
any bound improvement for x that is insignificant with respect to the already
known bound for x.
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Even when only δ-relevant propagations are performed, it is still possible to
generate an infinite sequence of transitions. The key observation is that Backjump
is essentially a propagation rule, that is, it backtracks M , but it also adds a new
improved bound for some variable x. It is easy to construct non-terminating
examples, where Backjump is used to generate an infinite sequence of non δ-
relevant bounds.

We propose a simple heuristic to deal with the termination problem. It is
based on the observation that if we generate a non δ-relevant bound for x, then
the problem is probably unsatisfiable, and x is in the unsatisfiable core. Thus,
when selecting variables for the rule Decide we should give preference to variables
that we computed non δ-relevant bounds for.

4 Strong Conflict Resolution

In this section, we extend our procedure to be able to handle divisibility con-
straints, by adding propagation, solving and consistency checking rules into our
system. Then we show how to ensure that our procedure terminates even in cases
when some variables are unbounded.

Solving divisibility constraints. We will add one proof rule to the proof sys-
tem, in order to help us keep the divisibility constraints in a normal form. As
Cooper originally noticed in [5], given two divisibility constraints, we can always
eliminate a variable from one of them, obtaining equivalent constraints.

d1 | a1x + p1, d2 | a2x + p2
div-solve if d = gcd(a1d2, a2d1)

α(a1d2) + β(a2d1) = dd1d2 | dx + α(d2p1) + β(d1p2)
d | a2p1 − a1p2

We use the above proof rule in our transition system to enable such normalization
when needed.

Solve-Div

〈M,C〉 =⇒ 〈M,C′〉 if

⎧⎨
⎩

D1, D2 ∈ C,
(D′

1, D
′
2) = div-solve(D1, D2),

C′ = C \ {D1, D2} ∪ {D′
1, D

′
2}.

Unsat-Div
〈M,C ∪ {(d | a1x1 + · · ·+ anxn + c)}〉 =⇒ unsat if gcd(d, a1, . . . , an) � c

Propagation. With divisibility constraints as part of our problem, we can now
achieve even more powerful propagation of bounds on variables. We say a variable
x is fixed in the state S = 〈M,C〉 if upper(x,M) = lower(x,M). Similarly a
polynomial p is fixed if all its variables are fixed. To clarify the presentation, for
fixed variables and polynomials we write val(x,M) and val(p,M) as a shorthand
for lower(x,M) and lower(p,M).
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Let 〈M,C〉 be a well-formed state, and D, I ∈ C be a divisibility constraint
and a tight inequality

D ≡ d | ax + p , I ≡− x + q ≤ 0 ,

with a > 0, d > 0, and x ≥I b ∈ M . Assume, additionally, that p is fixed, i.e.
assume that val(p,M) = k.

In order to satisfy the divisibility constraint we then must have an integer z
such that dz = ax+p ≥ aq+p. Since all the variables in aq+p are either assigned
or implied, we can now use our system for deriving tight inequalities to deduce
−z + r ≤ 0 that would bound z in this state. Moreover substituting the solution
for z, that is on the bound of the inequality, when substituted for x, would also
satisfy the divisibility constraint. Using this, since dz = ax+p, we can deduce an
inequality −dax−dp+dr ≤ 0 which will guarantee that the bound on x satisfies
the divisibility constraint. And, we can also use our procedure to convert this
constraint into a tightly propagating one. Similar reasoning can be applied for
the upper bound inequalities. We denote, as a shorthand, the result of this whole
derivation with div-derive(I,D, x,M). We can now use the derivation above to
empower propagation driven by divisibility constraints, as summarize below.

Propagate-Div

〈M,C〉 =⇒ 〈�M,x ≥I c�, C ∪ {I}〉 if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D ≡ d | ax + p ∈ C,
x ≥J b ∈M,
I = div-derive(J,D, x,M)
improves(I, x,M)
c = bound(I, x,M)

Eliminating Conflicting Cores. For sets of constraints containing unbounded
variables, there is no guarantee that the procedure described in the previous
section will terminate, even if learned inequalities (cuts) are not deleted using
the Forget rule. In this section, we describe an extension based on Cooper’s
quantifier elimination procedure that guarantees termination.

Let U be a subset of the variables in X . We say U is the set of unbounded
variables. Let ≺ be a total order over the variables in X such that for all variables
x ∈ X \ U and y ∈ U , x ≺ y. We say a variable x is maximal in a constraint C
containing x if for all variables y different from x in C, y ≺ x. For now, we assume
U contains all unbounded variables in the set of constraints C, and ≺ is fixed.
Later, we describe how to dynamically change U and ≺ without compromising
termination.

A interval conflicting core for variable x at state S = 〈M,C〉 is a set {−ax +
p ≤ 0, bx − q ≤ 0} such that p and q are fixed at S, and bound(−ax + p ≤
0, x,M) > bound(bx − q ≤ 0, x,M). A divisibility conflicting core for variable
x at state S is a set {−ax + p ≤ 0, bx − q ≤ 0, (d | cx + s)} such that
p, q and s are fixed, and for all values k in the interval [bound(−ax + p ≤
0, x,M), bound(bx− q ≤ 0, x,M)], (d � ck + val(s,M)). We do not consider cores
containing more than one divisibility constraint because rule Solve-Div can be
used to eliminate all but one of them. From hereafter, we assume a core is always
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of the form {−ax + p ≤ 0, bx − q ≤ 0, (d | cx + r)}, since we can include the
redundant divisibility constraint (1 | x) to any interval conflicting core. We say
x is a conflicting variable at state S if there is a interval or divisibility conflicting
core for x. The variable x is the minimal conflicting variable at S if there is no
y ≺ x such that y is also a conflicting variable at S. Let x be a minimal conflicting
variable at state S = 〈M,C〉 and D = {−ax + p ≤ 0, bx − q ≤ 0, (d | cx + r)}
be a conflicting core for x, then a strong resolvent for D is a set R of inequality
and divisibility constraints equivalent to

∃x.− ax + p ≤ 0 ∧ bx− q ≤ 0 ∧ (d | cx + r)

The key property of R is that in any state 〈M ′, C′〉 such that R ⊂ C′, x is not
the minimal conflicting variable or D is not a conflicting core.

We compute the resolvent R using Cooper’s left quantifier elimination proce-
dure. It can be summarized by the rule

(d | cx + s), −ax + p ≤ 0, bx− q ≤ 0
Cooper-Left

0 ≤ k ≤ m, bp− aq + bk ≤ 0,
a | k + p, ad | ck + cp + as

where k is a fresh variable and m = lcm(a, ad
gcd(ad,c))− 1. The fresh variable k is

bounded so it does not need to be included in U . We extend the total order ≺
to k by making k the minimal variable. For the special case, where (d | cx + s)
is (1 | x),the rule above simplifies to

−ax + p ≤ 0, bx− q ≤ 0

0 ≤ k < a, bp− aq + bk ≤ 0, a | p + k

The rule Cooper-Left is biased to lower bounds. We may also define the Cooper-
Right rule that is based on Cooper’s right quantifier elimination procedure and is
biased to upper bounds. We use cooper(D) to denote a procedure that computes
the strong resolvent R for a conflicting core D. Now, we extend our procedure
with a new rule for introducing resolvents for minimal conflicting variables.

Resolve-Cooper

〈M,C〉 =⇒ 〈M,C ∪ cooper(D)〉 if

⎧⎨
⎩

x ∈ U,
x is the minimal conflicting variable,
D is a conflicting core for x.

Note in addition to fresh variables, Resolve-Cooper rule also introduces new
constraints without resorting to the Learn rule. We will show that this can not
happen indefinitely, as the rule can only be applied a finite number of times.

Now we are ready to present and prove a simple and flexible strategy that
will guarantee termination of our procedure even in the unbounded case.
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Definition 2 (Two-layered strategy). We say a strategy is two-layered for
an initial state 〈��, C0〉 if

1. it is reasonable (i.e., gives preference to the Propagate-Simple rules);
2. the Propagate rules are limited to δ-relevant bound refinements;
3. the Forget rule is never used to eliminate resolvents introduced by Resolvent-

Cooper;
4. only applies the Conflict rule if Resolve-Cooper is not applicable.

Theorem 3 (Termination). Given a set of constraints C, there is no infinite
derivation sequence starting from S0 = 〈��, C〉 that uses a two-layered strategy
and U contains all unbounded variables in C.

As an improvement, we note that we do not need to fix ordering ≺ at the
beginning. It can be modified but, in this case, termination is only guaranteed
if we eventually stop modifying it. Moreover, we can start applying the strategy
with U = ∅. Then, far any non-δ-relevant bound refinement γ(x), produced by
the Backjump rules, we add x to the set U . Moreover, a variable x can be removed
from U whenever a lower and upper bound for x can be deduced, and they do
not depend on any decided bounds (variable becomes bounded).

5 Experimental Evaluation

We implemented the procedure described in a new solver cutsat. Implementation
is a straightforward translation of the presented ideas, with very limited propaga-
tion, but includes heuristics from the sat community such as dynamic ordering
based on conflict activity, and Luby restarts. When a variable is to be decided,
and we have an option to choose between the upper and lower bound, we choose
the value that could satisfy most constraints. The solver source code, binaries
used in the experiments, and all the accompanying materials are available at the
authors website3.

In order to evaluate our procedure we took a variety of already available inte-
ger problems from the literature, but we also crafted some additional ones. We
include the problems that were used in [10] to evaluate their new simplex-based
procedure that incorporates a new way of generating cuts to eliminate rational
solutions. These problems are generated randomly, with all variables unbounded.
This set of problems, which we denote with dillig, was reported hard for modern
smt solvers. We also include a reformulation of these problems, so that all the
variables are bounded, by introducing slack variables, which we denote as slack.
Next, we include the pure integer problems from the MIPLIB 2003 library [2],
and we denote this problem set as miplib2003. The original problems are all very
hard optimization instances, but, since we are dealing with the decision prob-
lem only, we have removed the optimization constraints and turned them into
feasibility problems.4 We include pb problems from the 2010 pseudo-Boolean
3 http://cs.nyu.edu/~dejan/cutsat/
4 All of the problems have a significant Boolean part, and 13 (out of 16) problems are

pure PB problems.

http://cs.nyu.edu/~dejan/cutsat/
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competition that were submitted and selected in 2010, marked as pb2010, and
problems encoding the pigeonhole principle using cardinality constraints, de-
noted as pigeons. The pigeonhole problems are known to have no polynomial
Boolean resolution proofs, and will therefore be hard for any solver that does
not use cutting planes. And finally, we include a group of crafted benchmarks
encoding a tight n-dimensional cone around the point whose coordinates are
the first n prime numbers, denoted as primes. In these benchmarks all the vari-
ables are bounded from below by 0. We include the satisfiable versions, and the
unsatisfiable versions which exclude points smaller than the prime solution.

In order to compare to the state-of-the art we compare to three different types
of solvers. We compare to the current best integer smt solvers, i.e yices 1.0.29
[11], z3 2.15 [9], mathsat5 [13] and mathsat5+cfp that simulates the algorithm
from [10]. On all 0-1 problems in our benchmark suite, we also compare to the
sat4j [3] pb solver, one of the top solvers from the pb competition, and a version
sat4j+cp that is based on cutting planes. And, as last, we compare with the
two top commercial mip solvers, namely, gurobi 4.0.1 and cplex 12.2, and the
open source mip solver glpk 4.38. The mip solvers have largely been ignored in
the theorem-proving community, as it is claimed that, due to the use of floating
point arithmetic, they are not sound.

Table 1. Experimental results

problems miplib2003 (16) pb2010 (81) dillig (250) slacks (250) pigeons (19) primes (37)

cutsat 722.78 12 1322.61 46 4012.65 223 2722.19 152 0.15 19 5.08 37

smt solvers time(s) solved time(s) solved time(s) solved time(s) solved time(s) solved time(s) solved

mathsat5+cfp 575.20 11 2295.60 33 2357.18 250 160.67 98 0.23 19 1.26 37

mathsat5 89.49 11 1224.91 38 3053.19 245 3243.77 177 0.30 19 1.03 37

yices 226.23 8 57.12 37 5707.46 159 7125.60 134 0.07 19 0.64 32

z3 532.09 9 168.04 38 885.66 171 589.30 115 0.27 19 11.19 23

pb solvers

sat4j 22.34 10 798.38 67 0.00 0 0.00 0 110.81 8 0.00 0

sat4j+cp 28.56 10 349.15 60 0.00 0 0.00 0 4.85 19 0.00 0

mip solvers

glpk 242.67 12 1866.52 46 4.50 248 0.08 10 0.09 19 0.44 37

cplex 53.86 15 1512.36 58 8.65 250 8.76 248 0.51 19 3.47 37

gurobi 28.96 15 1332.53 58 5.48 250 8.12 248 0.21 19 0.80 37

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with
individual runs limited to 2GB of memory and 600 seconds. The results of our
experimental evaluation are presented in Table 1. The rows are associated with
the individual solvers, and columns separate the problem sets. For each problem
set we write the number of problems that the solver managed to solve within
600 seconds, and the cumulative time for the solved problems. We mark with
bold the results that are best in a group of solvers, and we underline the results
that are best among all solvers.

Compared to the smt solvers, cutsat performs surprisingly strong, particu-
larly being a prototype implementation. It outperforms or is the same as other
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smt solvers, except mathsat5 on all problem sets. Most importantly, it outper-
forms even mathsat5 on the real-world miplib2003 and pb2010 problem sets. The
random dillig problems seem to be attainable by the solvers that implement the
procedure from [10], but the same solvers surprisingly fail to solve the same
problems with the slack reformulation (slacks).

Also very noticeable, the commercial mip solvers outperform all the smt
solvers and cutsat by a big margin.

6 Conclusion

We proposed a new approach for solving ilp problems. It has all key ingredi-
ents that made cdcl-based sat solver successful. Our solver justifies propaga-
tion steps using tightly-propagating inequalities that guarantee that any conflict
detected by the search procedure can be resolved using only inequalities. We
presented an approach to integrate Cooper’s quantifier elimination algorithm
in a model guided search procedure. Our first prototype is already producing
encouraging results.

We see many possible improvements and extensions to our procedure. A solver
for Mixed Integer-Real problems is the first natural extension. One basic idea
would be to make the real variables bigger than the integer variables in the vari-
able order≺, and use Fourier-Moztkin resolution (instead of Cooper’s procedure)
to explain conflicts on rational variables. Integrating our solver with a Simplex-
based procedure is another promising possibility. The idea is to use Simplex to
check whether the current state or the search is feasible in the rational num-
bers or not. In principle, our solver can be integrated with a smt solver based
on dpll(t). For example, it is straightforward to extract proofs/lemmas from
unsatisfiable problems. On the other hand, there are many technical problems
that need to be addressed. One radical, but appealing possibility, would be to
use our solver instead of a sat solver as the main search engine in a smt solver.

Acknowledgements. We would like to thank Ken McMillan for reading an early
draft and providing useful feedback, and Alberto Griggio for providing us with
a custom version of mathsat5.

References

1. Achterberg, T.: SCIP: Solving constraint integer programs. PhD thesis, TU Berlin
(2007)

2. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Let-
ters 34(4), 361–372 (2006)

3. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2 system description. Journal
on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)
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Abstract. Determining satisfiability of sets of formula formulated in a
Nilsson style probabilistic logic (PSAT) by reduction to a system of li-
near (in)equations has been extensively studied, esp. in the propositional
setting. The basic technique for coping with the potentially exponentially
large (in terms of the formulae) linear system is column generation, which
has been successful (in various forms) in solving problems of around 1000
formulae. Common to existing techniques is that the column generation
model explicitly encodes all classical, i.e., non-probabilistic, knowledge.
In this paper we introduce a straightforward but new hybrid method
for PSAT that makes use of a classical solver in the column generation
process. The benefits of this technique are twofold: first, we can, in prac-
tice, accommodate inputs with significantly larger classical parts, and
thus which are overall larger, and second, we can accommodate inputs
with supra-propositional classical parts, such as propositionally complete
description logics. We validate our approach with an extensive series of
experiments which show that our technique is competitive with tradi-
tional non-hybrid approaches in spite of scaling the expressivity of the
classical part to the description logic SROIQ.

Keywords: column generation, probabilistic satisfiability.

1 Introduction

Nilsson-style probabilistic logics [13] have been known for the intractability of
probabilistic inference. Reasoning procedures are typically implemented via re-
duction to linear programming but it is well known that the corresponding li-
near programs are exponentially large in the size of the knowledge base. Thus,
scalability is very limited. Over the last two decades there have been several
attempts to use column generation to overcome that issue which eventually led
to solving the probabilistic satisfiability problem (PSAT) for 800–1000 proposi-
tional probabilistic formulas [7,2,16,3]. The results have been encouraging but a
few gaps remained unfilled. First, it has been unclear if the standard reduction
plus column generation approach could be generalized to handle PSAT for more
expressive logics, e.g., probabilistic description logics such as P-SROIQ [12]. Se-
cond, the scalability of the algorithms has been strongly limited by the number
of propositional formulas not involving any probabilities (classical formulas).

In this paper we present a new PSAT algorithm for P-SROIQ (and thus,
for propositional probabilistic satisfiability), a range of optimization techniques,
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and an empirical evaluation of our implementation in Pronto,1 our reasoner for a
probabilistic extension of the DL SROIQ (named P-SROIQ) [12]. Differently
from the previous approaches the algorithm is hybrid, i.e., it separates classical
reasoning (mainly SAT solving) from linear and integer programming.

Pronto is the first reasoner for a Nilsson-style probabilistic DL with scalability
is comparable to (and often better than) the scalability of propositional solvers.
In particular, it can solve propositional PSATs of similar size but i) can also
handle probabilistic statements over arbitrary (i.e. non-propositional) SROIQ
expressions and ii) can efficiently deal with KBs containing large bodies of non-
probabilistic knowledge in addition to roughly 1000 probabilistic statements.
This stands in stark contrast to existing propositional probabilistic solvers which,
aside from not being able to handle the greater expressivity of the classical
portion, are quite limited in the amount of classical knowledge they can handle.

2 Probabilistic Logic P-SROIQ
P-SROIQ [12] is a probabilistic generalization of the DL SROIQ [5]. It pro-
vides means for expressing probabilistic relationships between arbitrary SROIQ
concepts and a certain class of probabilistic relationships between classes and
individuals. Any SROIQ ontology can be used as a basis for a P-SROIQ on-
tology which facilitates transition from classical to probabilistic ontologies.

The syntactic constructs of P-SROIQ [12] include those of SROIQ [5] toge-
ther with conditional constraints. Conditional constraints are expressions of the
form (D|C)[l, u] where D,C are SROIQ concept expressions (called conclusion
and evidence respectively) and [l, u] ⊆ [0, 1] is a closed real-valued interval. Un-
conditional constraints are a special case of conditional ones when the evidence
class is �. A probabilistic TBox (PTBox) is a pair PT = (T ,P) where T is
a classical SROIQ TBox and P is a finite set of conditional constraints. (For
current purposes, we neglect discussion of PABoxes which are not distinctive
with respect to PSAT.)

A possible world I is a subset of the set of basic concepts Φ (not necessarily ato-
mic, see [12]) such that the set of axioms {{o} � C|C ∈ I} ∪ {{o} � ¬C|C /∈ I}
is satisfiable for a fresh individual o (in other words, possible worlds correspond
to realizable concept types). A basic concept C occurs positively in a possible
world I if C ∈ I, otherwise it occurs negatively. The set of all possible worlds
with respect to Φ, also called the index set, is denoted as IΦ. A world I satisfies
a basic concept C denoted as I |= C if C occurs positively in I. Satisfiability
of basic concepts is inductively extended to boolean concept expressions in the
standard way, e.g., I |= C �D if I |= C and I |= D. We assume a linear order
(fixed across all worlds of a PTBox) of basic concepts in Φ. Since Φ is a finite
set we can denote the i-th basic concept in Φ by Ci. For a given possible world
I we use the notation Ii to denote either Ci if Ci occurs positively in I or ¬Ci

if it occurs negatively.

1 http://www.cs.manchester.ac.uk/~klinovp/research/pronto

http://www.cs.manchester.ac.uk/~klinovp/research/pronto
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A world I is said to be a model of a TBox axiom α = C � D denoted as
I |= α if η ∪ {{o} � C|C ∈ I} ∪ {{o} � ¬C|C /∈ I} is satisfiable for a new
individual o. A world I is a model of a SROIQ TBox T denoted as I |= T if it
is a model of all axioms of T . A world I that satisfies a TBox T exists iff T has
a model (ΔI , ·I) [12].

A probabilistic interpretation Pr is a function Pr : IΦ → [0, 1] such that∑
I∈IΦ

Pr(I) = 1. Pr is said to satisfy a SROIQ TBox T denoted as Pr |= T
if ∀I ∈ IΦ, P r(I) > 0 ⇒ I |= T . The probability of a concept C, denoted
as Pr(C), is defined as

∑
I|=C Pr(I). Pr(D|C) is used as an abbreviation for

Pr(C �D)/Pr(C) given Pr(C) > 0. A probabilistic interpretation Pr satisfies
a conditional constraint (D|C)[l, u], denoted as Pr |= (D|C)[l, u], if Pr(C) = 0
or Pr(D|C) ∈ [l, u]. A PTBox PT = (T ,P) is called satisfiable if there exists
an interpretation that satisfies T and all constraints in P .

The probabilistic satisfiability problem (PSAT) is the problem of deciding
if a PTBox (T ,P) has a model Pr. It is decidable and its complexity class is
N2ExpTime-complete, i.e. the same as the complexity of reasoning in SROIQ
[8]. We refer to [12] for a more detailed presentation of P-SROIQ.

3 The Probabilistic Satisfiability Algorithm

A PTBox PT = (T ,P) is satisfiable iff the following system of linear inequalities
is feasible, i.e., admits a solution (by generalization from propositional PSAT [3]):

∑
I|=Ci

lixI ≤
∑

I|=Di�Ci

xI ≤
∑

I|=Ci

uixI , for each (Di|Ci)[li, ui] ∈ P (1)

∑
I∈IΦ

xI = 1 and all xI ≥ 0

where IΦ is the set of all possible worlds for the set of concepts Φ in T . Observe,
that IΦ is exponential in the size of Φ so it is not practical to try to explicitly
generate this system and then check whether it has a solution.

One successful approach to dealing with linear systems having an exponential
number variables is column generation. It is based on a fundamental property
of linear programming: any feasible program always has an optimal solution in
which only a linear number of variables have non-zero values. Column generation
exploits this property by trying to avoid an explicit representation of variables
(columns) which will not have positive values in the solution.

Consider the standard form of a linear program (2). Any linear program, e.g.,
the system (1), is reducible to this form by adding extra (i.e., slack) variables.

max z = cx (2)
s.t. Ax = b and x ≥ 0



Hybrid PSAT Algorithm 357

Let A denote a m × n matrix of linear coefficients of (2). At every step of
the simplex algorithm, A is represented as a combination (B,N) where B and
N are submatrices of the basic and non-basic variables, respectively. Values of
non-basic variables are fixed to zero, and the solver proceeds by replacing one
basic variable by a non-basic one until the optimal solution is found. Variables
are represented as indexed columns of A. The index of a non-basic column which
enters the basis is determined according to the following expression [3]:

j ∈ {1, . . . , |N |} s.t. cj − uT Aj is maximal (3)

where cj is the objective coefficient for the new variable and uT is the current
dual solution of (2). The expression cj −uTAj is called the reduced cost. At each
iteration the column with the highest positive reduced cost is selected. If no such
column exists, the program is at an optimum and the simplex algorithm stops.

If the size of N is exponential, as is the case for the program (1), one should
compute the index of the entering column according to (3) without examining
all columns in N . This is done using the column generation technique in which
(3) is treated as an optimization problem with the following objective func-
tion:

max (cj −
m+1∑
i=1

uia
j
i ), Aj = (aj

i ) ∈ {0, 1}m+1 (4)

where aj
i are variables representing linear coefficients of the entering column.

Successful column generation depends on the following criteria: i) there exists
an efficient algorithm for the optimization problem (4), and ii) an optimal solu-
tion of the program can be found without generation of an excessive number of
columns. This number characterizes convergence of the algorithm.

for s do
p

end
ace and clarity, we explain a simplified version of the algorithm which de-

cides PSAT for PTBoxes of the form (T {(Ci|�)[pi, pi]}), i.e., where probabilistic
statements are unconditional constraints over concept names with point-valued
probabilities.2 We first rewrite the simplified version of the linear system (1) as
the following linear program:

2 The generalization is straightforward, if somewhat cumbersome. In particular, hand-
ling conditional constraints merely requires a somewhat more complicated (6) (i.e.,
mapping of columns to concept expressions). The columns are no longer binary, e.g.,
the ith component could be one of {0, 1− li,−li, ui, ui− 1} which map, respectively,
to {¬Ci, Di 
 Ci,¬Di 
 Ci, Di 
 Ci,¬Di 
 Ci}. However, each column can still be
validated by checking satisfiability of a conjunctive concept expression (i.e., a pos-
sible world) using a SROIQ reasoner. Allowing arbitrary concept expressions in
constraints is a simple matter of introducing fresh names and adding corresponding
definitional axioms to T . Our implementation, Pronto, decides PSAT for arbitrary
PTBoxes.
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max
∑
I∈IΦ

xI (5)

s.t.
∑

I|=Ci

xI = pi ×
∑
I∈IΦ

xI , for each (Ci|�)[pi, pi] ∈ P

∑
I∈IΦ

xI ≤ 1 and all xI ≥ 0

This program has the optimal objective value of 1 if and only if the system (1)
is feasible. The advantage of using this program is that it is feasible even if the
PTBox is not satisfiable which facilitates use of the column generation technique.

The algorithm follows the basic column generation procedure. It first
constructs so called restricted master problem (RMP) which is a subprogram
of (5) with a restricted set of variables. Next the algorithm enters the main co-
lumn generation loop during which it tries to generate an improving column and,
if it has been generated, adds it to the linear program. The algorithm breaks
out of the loop when no improving column can be generated. Finally, it checks
the optimal value of the final RMP and returns Y es if it is equal to 1. The cen-
tral role in the algorithm is played by the procedure generating new improving
columns.

3.1 Possible World Generation

Consider aj
i , the i-th coefficient of some column Aj for the PSAT program

(5). The column corresponds to some possible world Ij = {Ci}, therefore aj
i =

1 implies that Ci occurs positively in Ij while aj
i = 0 implies that it occurs

negatively. We represent Ij as a conjunctive concept expression in SROIQ
using a fixed linear ordering of concept names {Ci} in Φ. We define the following
function η which maps columns, i.e. binary vectors, to conjunctions of concepts
from Φ:

η(Aj) =
�

Xi, where Xi =

{
Ci, if aj

i = 1
¬Ci, if aj

i = 0
(6)

Xi are literals that denote either a basic concept or its negation.
Soundness of the PSAT algorithm strongly depends on whether every solu-

tion of the optimization problem (4), which is added as a column to the RMP,
corresponds to a concept expression that is satisfiable w.r.t. T , i.e. is a possible
world. If this condition is true then soundness trivially follows because one may
enumerate the set of all solutions (since the set of possible worlds is finite), so
(5) will be equivalent to the original linear system (1). Completeness requires
that every possible world for the given PTBox corresponds to some solution of
(4). Therefore, for ensuring both soundness and completeness it is crucial to
construct a set of constraints H for the problem (4) such that its set of solutions
is in one-to-one correspondence with the set of all possible worlds IΦ.
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In what follows we will call columns which correspond to satisfiable expres-
sions valid and the others invalid. More formally, given a SROIQ TBox T , a
column Aj is valid if T � η(Aj) � ⊥ and is invalid otherwise. Validity can easily
be ensured in the propositional case where each Ci is a clause. One possibility is
to employ a well known formulation of SAT as a mixed-integer linear program
(MILP) [4]. For example, if Ci = c1 ∨ ¬c2 ∨ c3 then (4) will have the constraint
ai = xc1 + (1− xc2) + xc3 where all variables are binary. In that case soundness
and completeness follow from the reduction of SAT to MILP.

In the case of an expressive language, such as SROIQ, there appears to be
no easy way of determining the set of constraints H (it may not be polynomial
in the size of T ). Informally, H must capture every entailment, such as T |=
Ci�, . . . ,�Cj � ⊥ in order to prevent generation of any column Aj such that
Ci�, . . . ,�Cj is a subexpression of η(Aj). All such entailments can be computed
in a naive way by checking satisfiability of all conjunctions Ci�, . . . ,�Cj over Φ
but this is no better than constructing the full linear system (1). Instead, Pronto
implements a novel hybrid, iterative procedure to compute H (Algorithm 1).

Algorithm 1. Possible world generation algorithm
Input: PTBox PT = (T ,P), current dual solution uT of (5)
Output: New column Aj or null
IPColGen ← initialize the integer program (4) using uT and P1

H ← ∅2

while Aj �= null do3

Solve IPColGen subject to H to optimality4

Aj ← some optimal solution of IPColGen5

if Aj �= null then6

if satisfiable(η(Aj), T ) then7

return Aj
8

end9

H ← H ∪ inequalities that exclude Aj
10

end11

end12

return null13

The key steps are 5 and 8. On step 5 the algorithm invokes a SROIQ reasoner
(e.g., Pellet [15]) to determine if the computed column corresponds to a possible
world. If yes, the column is valid and returned. If no, the current set of constraints
H needs to be extended to exclude Aj from the set of solutions to (4). To
explicate this step we first define the notion of the minimal unsatisfiable core for
an unsatisfiable conjunctive concept expression.

Definition 1 (Unsatisfiable Core). Given a TBox T and unsatisfiable (w.r.t.
T ) concept expression

	
Xi represented as a set of conjuncts X = {Xi}, a

minimal unsatisfiable subexpression (MUS) is a subset X ′ = {X ′
i} ⊆ {Xi} such

that
	

Xi is unsatisfiable w.r.t. T and any X ′′ = {X ′′
i } ⊂ {X ′

i} is satisfiable
w.r.t. T . The unsatisfiable core (UC) of

	
Xi is the set of all its MUSes.
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Observe that it is sufficient to add a constraint that rules out any of the
MUSes to exclude the current column from the set of solutions to (4).

Next, we show how to translate MUSes into linear inequalities. A MUS is a
set of conjuncts {X ′

i} each of which corresponds to a binary variable (observe
that η, as defined in (6), is a bijective function). By a slight abuse of notation we
write ai = η−1(X ′

i) to denote the variable that corresponds to Ci. Then given a
MUS X ′ = {X ′

i}k
i=1 we add the following linear constraint:

k∑
i=1

ai ≤ k − 1, where ai =

{
η−1(X ′

i), X ′
i = Ci

1− η−1(X ′
i), Xi = ¬Ci

(7)

If a conjunctive concept contains
	

Xi as a subexpression then all binary
expressions bi, i.e. either ai or 1 − ai depending on whether Xi is a positive
or a negative literal, are equal to 1. Therefore

∑k
i=1 ai = k where k is the

size of {Xi}. Constraining
∑k

i=1 bi to be less or equal to k − 1 is equivalent
to requiring at least one bi to be equal to 0. According to the definition of η
this is equivalent to removing of at least one conjunct from X ′ which makes
it satisfiable. Therefore, each of the constraints (7) is sufficient to exclude all
columns, which correspond to concept expressions containing X ′, from the set of
solutions to (4). The algorithm does so on step 8 by computing the unsatisfiable
core, transforming each of the MUSes into a linear inequality according to (7),
and adding it toH. Observe that the new inequalities do not exclude any columns
not containing X ′ thus ensuring completeness.

We call algorithm 1 “hybrid” because it combines invocations of LP solver (to
optimize (5)), MILP and SROIQ solvers (to optimize (4) and check satisfiability
of concept expressions respectively). It is iterative because during the possible
world generation phase it iteratively tightens the set of solutions to (4) until
either a valid column is found or provably no such column exists. We conclude
with a short example demonstrating our iterative technique:

Example 1. Consider a PTBox where T = {A � ∃R.C,B � ∃R.¬C,≥ 2R.� �
D} and P contains some probabilistic constraints over the ordered signature
Φ = {A,B,D}. Algorithm 1 starts out with an empty set of linear constraints
for (4). The list of binary variables for (4) is (xA, xB , xD). Assume that at some
iteration the algorithm generates the following column: Aj = (1, 1, 0, 1) (the last
component of any column is always equal to 1 because of the normalization row
in (5)). Then η(Aj) = A �B � ¬D.

Observe that T |= η(Aj) � ⊥. Any instance o of A � B must have two
R-successors (domain elements which are connected to oI by RI). They are
necessarily distinct because one is an instance of C and another is an instance
of ¬C. Therefore, o is an instance of ≥ 2R.� and consequently is an instance
of D. This is a contradiction with ¬D in η(Aj). The unsatisfiable core of η(Aj)
is {A,B,¬D}. This MUS is converted into the following linear inequality xD ≥
xA + xB − 1 which is then added to the binary program (4). As a result, no
invalid column containing this MUS will be computed on subsequent iterations.
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Theorem 1 (Soundness, Correctness, and Termination). The column ge-
neration algorithm for solving PSAT in P-SROIQ which uses Algorithm 1 to
generate columns is sound, complete, and N2ExpTime-complete.

Proof. The proofs are straightforward (see the technical report [10]).
A naive implementation will exhibit quite poor performance simply due to the
overhead of switching between the solver and the reasoner, not to mention that
classical SAT tests can be expensive. A reasonable implementation can mitigate
these issues by pulling larger chunks of classical knowledge into the solver at a
time. For example, a large portion of real ontologies is propositional. In fact,
we need not limit our attention to asserted knowledge. Virtually all modern
DL reasoners can efficiently construct the so called classification hierarchy by
finding all subsumptions between concept names that are logically entailed by
the TBox. These entailments are essentially propositional and can be absorbed.
In the extreme case all propositional knowledge (asserted or inferred) can be
absorbed into the program (4). However, the algorithm tries to find a trade-
off between eager absorption (which can exhaust memory) and lazy generation
of inequalities (which requires extra concept satisfiability checks). The balance
depends on available memory vs. the number of absorbable axioms.

Another issue with a naive implementation of Algorithm 1 is that computing
unsatisfiability cores may appear impractical for certain concept expressions and
TBoxes. This may especially happen for long expressions which contain MUSes
with little or no overlap. It is known the model diagnosis theory [14] that finding
all minimal unsatisfiable sets may require a number of SAT tests that is expo-
nential in the total size of all sets. To address this issue the algorithm imposes
a time limit on the procedure that computes the UC. If at least one MUS has
been found but finding others exceeds the timeout the procedure is interrupted.
The found MUSes are then converted to linear inequalities and the algorithm
moves on as if the full UC was computed.

4 Evaluation

Our implementation, Pronto, is written in Java and compiled using Sun JDK
1.6. All evaluation tests have been performed on a PC with 2GHz CPU, 2GB
of RAM, Sun JRE 1.6.0 07 running under Windows XP SP3. The only JVM
option that was used for performance tuning was -Xmx to allow the reasoner use
the maximal available amount of memory. All of the evaluation tests presented
below use wall time as the main measure of performance (“Total Time”). We
also also record the number of generated columns (to track convergence speed)
and total column generation time (“CG Total”).

Due to the lack of existing probabilistic knowledge bases, all of our experi-
ments have to involve a generated component. For each experimental configura-
tion (i.e., each row in Tables 1-4), we generated 5 distinct test cases and report
the average. While we experimented with generation larger number of cases,
the variance between cases was so low and the cost of generating and running
additional cases was high, the benefit of additional cases was low.
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4.1 Random Propositional Knowledge Bases

In order to compare our algorithm with existing approaches in the propositional
literature, we have followed the methodology for generating random knowledge
bases which was described by Jaumard et al. [6] and later used in [1,3]. Since
those solvers are not publicly available, the comparison primarily rests on solving
similarly sized problems and in tracking the columns generated. The number of
concept names was kept fixed to 200 since it is the largest number of atoms
in [3]. We generated the required number of disjunctive expressions and then
assigned probability intervals in the satisfiability preserving way (see [10] for
details). The length of each expression is randomly varied between 1 and 4
literals. The polarity of each literal is also random. Note that while the input
does not have a separate set of classical axioms, the interactions between the
classical structure of the clauses effectively introduces such. It is easy to see
that naming the disjunctive expressions using equivalence axioms is satisfiability
preserving (and, effectively, is what our implementation does internally).

The results are presented in Table 1. As reported in [3] the previously deve-
loped propositional PSAT algorithm on average generated about 3300 columns
for collections of 800 clauses over 200 atoms. Our algorithm generates about 10
times fewer columns (we do not compare the total time to abstract away from
the hardware differences). Even more importantly our algorithm does not seem
to exhibit a super-polynomial growth in the number of generated columns which
is the case with Hansen’s. One possible reason for that is that we use exact
optimization methods for computing each improving column while Hansen and
Perron use the variable neighborhood heuristics to optimize non-linear 0-1 pro-
grams. In fact, the number of columns increases only very gently, most probably
because of the fixed signature size. At the same time the experiment reveals
that the average time it takes to generate a column may increase exponentially.
Since the number of variables in the column generation model, i.e. the MILP
program (4), depends only on the signature size and therefore stays constant,
this suggests that the program becomes harder for some other reason. We leave
tuning of this program to future work.

Given this good performance, it is surprising that a hybrid approach has not
been considered in the literature before. Our speculation is that the increase
in implementation complexity and the obvious overhead potential of communi-
cation between the components made hybrid methods unattractive. Of course,
they are forced upon us by the expressive and large classical parts we must deal
with, but this experiment shows that they do well even in the propositional case.

Table 1. PSAT performance on random propositional clauses

# atoms # clauses Time(s) CG Total (s) # columns

200 250 27.32 18.46 164.6

200 500 102.43 61.73 228.2

200 750 263.06 140.79 264.6

200 1000 396.8 185.22 274.6
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4.2 Probabilistic Extensions of Real Ontologies

While there are hundreds to thousands of publicly available OWL (i.e., SROIQ)
ontologies of varying size, logical expessivity, and axiom sophistication, none of
these have a probabilistic part. For our experiments, we selected six ontologies:3

The NCI Anatomy Ontology (NCI), the Subcellular Anatomy Ontology (SAO),
the Process Ontology, the Sequence Ontology with Composite Terms (SO-XP),
the Teleost Anatomy Ontology (TAO), and the Cell Type ontology. None of these
ontologies is propositional or small and simple enough to consider their proposi-
tionalization and are varied enough to give a reasonable feel for robustness. The
probabilistic parts of test PTBoxes are produced by a random generation process
that takes a probabilistic signature as an argument. Common to all cases, we fix
the number of unconditional statements to 10% of the size probabilistic part. We
need to have some unconditional part for two reasons: First, it is necessary for
realism; in our modelling experience, a small ratio of unconditional constraints
likely common modeling pattern in P-SROIQ, e.g., to represent probabilistic
facts, or beliefs, about a specific individual [9]. Second, and relatedly, it is neces-
sary to avoid trivial satisfiability. If all constraints are conditional, then we can
obtain a vacuous model by assigning zero probability to all evidence concepts.
This is undesirable from both a modeling perspective (that is, unrealistic) and
does not engage the reasoning algorithm at all. As from modeling realism, we
settle on 10% because in preliminary experiments wherein we varied the per-
centage of unconditionals from 10%-50% there was no significant performance
differences (see [10] for details).

Ultimately it is the probability intervals attached to constraints that deter-
mine whether the resulting PTBox will be satisfiable or not. It has been reported
that satisfiable KBs are typically harder for PSAT algorithms [16,3] so, we want
to focus on (nontrivial) satisfiable problems. Unfortunately, random assignment
of probabilities to generated constraints is likely to result in an unsatisfiable
PTBox, provided that it contains unconditional statements [6,16,3]. Therefore,
we use a standard technique based on generation of probabilistic interpretations
which can then be used to assign probabilities to statements [6]. In that case
satisfiability is guaranteed because satisfying interpretations (models) have been
constructed explicitly. Its main advantage is that it works with any probabilistic
KB, propositional or not, and does not impose any restrictions on its structure
(such as cycle disallowance). The main disadvantage is that large cases become
prohibitively more difficult to generate. For the current evaluation it has been
implemented in the following steps: First, two sets of possible worlds I1

Φ, I2
Φ of

size k ≥ 2 × |P| are generated for a PTBox (T ,P) with probabilistic signature
Φ. Second, probabilistic interpretations Pr1, P r2 are defined by generating two
sequences of k random numbers summing to 1 which represent probabilities of
possible worlds in I1

Φ and I2
Φ. Third, the lower probability l (resp. the upper

probability u) for each constraint (D|C)[l, u] in P is determined as the smallest
(resp. the largest) of values Pri(D|C) (i ∈ {1, 2}).

3 All ontologies are available from: http://bit.ly/cade-2011-ontologies

http://bit.ly/cade-2011-ontologies


364 P. Klinov and B. Parsia

Against these common factors, we explore three basic scenarios: (1) where the
probabilistic signature is fixed, but the number of axioms with regard to that
signature grows; (2) where the number of probabilistic axioms is fixed, but the
probabilistic signature grows; and (3) where both the probabilistic signature and
number of probabilistic axioms grows, but the ratio between them stays fixed.
In addition to isolating the key factors (signature and axiomatization level),
each scenario corresponds to a reasonable set of ontologies: (1) corresponds to
increasing probabilistic axiomatization of a given subpart of the classical onto-
logy. For example, a formalization of the risk factors for a given disease (e.g.,
breast cancer) would focus on a fairly fixed subset of something like the NCI
Oncology Ontology, though the number of probabilistic axioms would increase
as additional risk factors and their interaction were modeled. (2) corresponds to
a variety of situations wherein we have roughly the same amount of probabilistic
knowledge, but it touches a varying amount of the ontology. Considering risk re-
lations, it is not uncommon for different domains to have more (or less) scattered
risk factors: compare the risk of mortality due to breast cancer vs. risk of morta-
lity due to all causes. Finally, (3) corresponds to cases where the modeler aims
to increase the probabilistic “coverage” of the ontology, that is, wherein they
aim to say something about the probabilistic relations over increasing amounts
of the terms in the ontology. Obviously, each scenario, and the particular way
we realize it, is artificial, but they are reasonably motivated and, in aggregate,
capture a wide variety of probabilistic ontologies.

To realize (1) (Table 2), the probabilistic signature size is fixed at 250 concept
names while the number of PTBox constraints varies from 250 to 1000. To rea-
lize (2) (Table 3) , the PTBox size was kept fixed at 500 constraints while the
signature size was varied from 100 to 500. To realize (3) (Table 4), the number
of constraints was varied between 250 and 1000 as in the first experiment but
signature’s size was kept at 50% of the PTBox size.

Summary. The first, and the major, conclusion that can be made from the
evaluation results is that the algorithm is robust, i.e. it behaves quite well on
satisfiable PTBoxes with varying parameters. No combination of the main pa-
rameters causes it to hit the worst case. It robustly scales to 1000 probabilistic
statements defined over 500 concepts from large, expressive real ontologies.

The second observation is that PTBoxes built over the SAO and the SO-
XP ontologies tend to be harder for the algorithm than the rest. The difference
is especially visible in Table 3 and Table 4, i.e. where signature size varies.
While the total number of generated columns is approximately the same, it
is substantially harder to generate a column when signature size is over ap-
proximately 200 concepts (for the SO-XP ontology) and 300 concepts (for the
SAO ontologies). The explanation for this is that in these ontologies is most
concepts, which are randomly selected from the TBox, are highly connected
by subsumption or disjointness relationships. These relationships need to be
captured in the MILP model. However, if the number of the relationships is
high not all corresponding linear inequalities will be created when exploiting
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Table 2. PSAT times for PTBoxes with probabilistic signatures of 250 concept names

Ontology Language TBox size PTBox size Total time (s) CG Total (s) # columns

NCI ALE+ 5423 250 151.33 22.6 99
500 240.06 95.12 190.6
750 314.92 125.68 241.8

1000 440.35 163.43 306

SAO SHIN 2499 250 77.94 65.35 123.2
500 160.48 134.17 246.2
750 321.2 242.82 404.2

1000 525.55 344.49 526

Process SHOF 2007 250 46.73 28.58 97.2
500 124.73 91.16 180.4
750 211.78 132.4 248.6

1000 337.5 166.71 300.4

SO-XP SHI 1928 250 129.18 89.32 130.4
500 206.11 151.67 198.2
750 319.47 227.03 251.8

1000 524.95 350.67 318.4

TAO EL+ 3406 250 43.64 22.41 95.6
500 127.42 90.15 182.4
750 205.36 124.1 240.8

1000 326.16 164.38 310.2

Cell Type EL+ 1263 250 65.96 34.33 98
500 138.12 91.3 182.2
750 219.59 126.65 244.2

1000 336.54 162.48 300.2

the concept hierarchy in order to prevent memory exhaustion.4 Consequently,
invalid column candidates are more likely to be generated and require a com-
putationally intensive search for the unsatisfiable cores. This effect can be mi-
tigated by either increasing the amount of available memory or employing a
more intelligent approach to compute the initial set of inequalities for the MILP
model.

The third outcome is that the number of columns generated by Algorithm 1
does not seem to grow exponentially with either size of the PTBox or size of the
probabilistic signature. This suggests that the PSAT algorithm may well scale
beyond 1000 conditional constraints. We have not yet extended the experiments
beyond 1000 since it is extremely time consuming to generate satisfiable proba-
bilistic KBs of that size over complex ontologies because it requires computing
a high number of possible worlds.

5 Conclusion

In many cases, the vast majority of inequalities for the column generation mo-
del are generated by absorption. Note that since we absorb a distinguished set
4 Given the available RAM (2GB) we set the limit of the height of the MILP model to

15,000 inequalities—enough to capture all subsumptions from the Process, T-A and
Cell Type ontologies, but not for the SAO or SO-XP. The problem is especially visible
for the SO-XP for which Algorithm 1 computed more than 100 invalid columns for
an average PTBox of 500 constraints and 500 concepts in the signature.
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Table 3. PSAT times for PTBoxes with 500 probabilistic statements

Ontology Language TBox size Sig. size Total time (s) CG Total (s) # columns

NCI ALE+ 5423 100 139.56 71.83 145.4
200 201.66 82.72 169.6
300 258.94 89.25 202.6
400 304.98 84.88 224
500 365.23 93.44 249.2

SAO SHIN 2499 100 179.35 153.15 306
200 158.56 133.4 246
300 165.47 138 232.6
400 252.37 221.93 212
500 415.24 382.17 197

Process SHOF 2007 100 95.71 73.47 146.6
200 119.17 89.6 175.6
300 134.28 97.44 188.8
400 158.02 111.54 211
500 180.3 124.05 234.8

SO-XP SHI 1928 100 118.69 89.45 152
200 178.3 132.59 186.4
300 266.66 203.28 208.4
400 330.62 250.81 224.6
500 468.64 370.46 252.8

TAO EL+ 3406 100 91.91 68.91 139.8
200 107.78 76.64 156.2
300 124.89 84.02 193.6
400 139.68 88.61 224.4
500 160.15 95.94 258

Cell Type EL+ 1263 100 96.53 69.03 141.6
200 126.55 85.96 172.4
300 155.55 101.11 198.4
400 170.59 105.81 200.4
500 218.77 139.25 252.6

of entailments (i.e., the atomic subsumptions and disjointnesses), even a KB
with complete absorption is hybrid: the classical reasoner performs a good deal
of the computation, in these cases, in the first round. This holds even in pure
propositional cases. Not computing all MUSs is indispensable for dealing with
hard TBoxes for which computing all unsatisfiable subexpressions of a conjunc-
tive concept expression is highly intractable (mostly due to their large number).
In particular, the PSAT algorithm runs out of memory on PTBoxes with 1000
constraints over the SAO and the SO-XP ontologies if this technique is off. Nor-
mal column generation tweaking, e.g., various stabilization techniques (omitted
for space reasons but see [10]) is needed for acceptable convergence. Without
reasonable stabilization the algorithm generates more than 5,000 columns for
PTBoxes with a weak classical part. The PSAT algorithm is very memory in-
tensive: First, it makes heavy use of the SROIQ reasoning algorithms which
have exponential memory requirements. Second, it may require a non-polynomial
number of linear inequalities to capture the TBox structure in the MILP
model (4).

The key obstacle to further improvements in scalability is the size and hard-
ness of the MILP model (4) used to generate columns for the PSAT algorithm.
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Table 4. PSAT times for PTBoxes with varying number of statements & concepts

Ontology Language TBox size PTBox size Total time (s) CG Total (s) # columns

NCI ALE+ 5423 250 100.21 32.79 83.4
500 239.45 93.89 186.4
750 429.13 157.37 301.4

1000 745.15 231.62 418.4

SAO SHIN 2499 250 77.1 68.41 129.4
500 178.16 149.29 276.4
750 375.3 300.02 341.2

1000 1360.21 1176.05 425.4

Process SHOF 2007 250 50.98 39.39 88.6
500 119.92 87.02 176.4
750 240.94 144.42 275.2

1000 479.69 236.42 404.8

SO-XP SHI 1928 250 61.31 40.31 76
500 197.05 144.17 189
750 449.49 323.31 307.6

1000 921.57 644.28 423.4

TAO EL+ 3406 250 50.24 37.13 89.4
500 125.76 89.38 179.8
750 252.52 149.5 287.8

1000 544.71 238.09 431.8

Cell Type EL+ 1263 250 57.22 39.18 89.2
500 137.89 91.66 182.6
750 283.45 158.88 296.4

1000 487.68 220.32 384.2

The time it takes to solve it (CG Total) is the only performance measure that
appears to grow non-polynomially with the size of probabilistic KBs.5 Approxi-
mate approaches to solving it do not promise substantial improvements because
the time it takes to obtain some, not even a near-optimal, solution also grows
non-polynomially. This suggests that required are ways to decompose this mo-
del into smaller sub-models which, in turn, leads to a wider research question of
decomposing (or modularizing) probabilistic knowledge bases. Our results gua-
rantee that even decomposing a KB onto even a small number of relatively large,
i.e. around 1000 constraints, modules can lead to a dramatic increase of scala-
bility. We have demonstrated this in practice on the CADIAG-2 propositional
knowledge base which has over 20,000 statements, a majority of which are proba-
bilistic. Due to the particular structure of CADIAG-2, we were able to perform
an ad hoc partitioning and verify the satisfiability of a repaired version [11].

The experiments we have conducted establish two key points: First, a column
generation based hybrid procedure for PSAT is competitive with the traditional
non-hybrid approaches, even when using a solver not tuned for propositional
SAT. It has the inherent advantages of being more robust with respect to the
amount of non-probabilistic knowledge as well as its expressivity.

Second, our implementation is a computationally reasonable tool for modelers
seeking to add probabilistic statements to large existing ontologies. Worst case

5 Another measure is the difference between Total time and CG Total which is the
time spent on optimizing the main linear program (1). However, since LP is a PTime

problem it could be improved by tuning the program or using PTime methods to
solve it, e.g., interior-point algorithms.
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complexity considerations preclude strong promises in the face of novel input,
however, it is evident that we have reason to believe that even if the current
optimizations fail at some point that, as with classical DL reasoners, new ones
can be found.
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2. Hansen, P., Jaumard, B., Nguetsé, G.B.D., de Aragão, M.P.: Models and algorithms
for probabilistic and Bayesian logic. In: International Joint Conference on Artificial
Intelligence, pp. 1862–1868 (1995)

3. Hansen, P., Perron, S.: Merging the local and global approaches to probabilis-
tic satisfiability. International Journal of Approximate Reasoning 47(2), 125–140
(2008)

4. Hooker, J.N.: Quantitative approach to logical reasoning. Decision Support Sys-
tems 4, 45–69 (1988)

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR,
pp. 57–67 (2006)

6. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for pro-
babilistic logic. In: IPCOC, pp. 313–331 (1990)

7. Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for pro-
babilistic logic. INFORMS Journal on Computing 3(2), 135–148 (1991)

8. Kazakov, Y.: SRIQ and SROIQ are harder than SHOIQ. In: KR, pp. 274–284
(2008)

9. Klinov, P., Parsia, B.: Probabilistic modeling and OWL: A user oriented introduc-
tion into P-SHIQ(D). In: OWLED (2008)

10. Klinov, P., Parsia, B.: Practical reasoning in Probabilistic Description Logic.
Tech.rep., University of Manchester (2011),
http://www.cs.man.ac.uk/~klinovp/pubs/2011/psroiq-eval-report.pdf

11. Klinov, P., Parsia, B., Picado-Muiño, D.: The consistency of the medical expert
system CADIAG-2: A probabilistic approach. Journal of Information Technology
Research 4(1), 1–20 (2011)

12. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelli-
gence 172(6-7), 852–883 (2008)

13. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)
14. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,

57–95 (1987)
15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-

DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)
16. de Souza Andrade, P.S., da Rocha, J.C.F., Couto, D.P., da Costa Teves, A., Coz-

man, F.G.: A toolset for propositional probabilistic logic. In: Encontro Nacional
de Inteligencia Artificial, pp. 1371–1380 (2007)

http://www.cs.man.ac.uk/~klinovp/pubs/2011/psroiq-eval-report.pdf


Solving Systems of Linear Inequalities by Bound
Propagation

Konstantin Korovin� and Andrei Voronkov��

The University of Manchester

Abstract. In this paper we introduce a new method for solving systems of linear
inequalities. The algorithm incorporates many state-of-the-art techniques from
DPLL-style reasoning. We prove soundness, completeness and termination of the
method.

1 Introduction

There are several well-known methods for linear programming and solving systems of
linear inequalities over the rational or real numbers. These are the Fourier-Motzkin vari-
able elimination method, simplex, the interior point method (see, [7] for an overview),
a recent conflict resolution method [2] and the GDPLL method [5]. In this paper we in-
troduce a new method. Interestingly, this method is rather different from the previously
known methods in that it incorporates ideas recently developed in the SAT solving
community: namely, DPLL [1], unit propagation, dynamic variable ordering, lemma
learning and backjumping [4], see also [6] for the state-of-the-art exposition of DPLL
related techniques.

The method works by assigning values to variables and using the assigned values
to derive bounds on other variables, using bound propagation. The process of assign-
ing values either terminates with a solution, or results in inconsistent bounds derived by
bound propagation. In the latter case we learn a new inequality, which we call a collaps-
ing inequality, which is also used to derive a bound on a variable excluding a previously
done assignment. After that we either obtain inconsistent bounds, which means that the
system is unsatisfiable or change the assignment to conform to the new bound. The
algorithm incorporates many ideas developed in SAT solving, such as clause learning,
backjumping and dynamic variable ordering. Another interesting property of the algo-
rithm is that the number of inequalities at each stage can be kept linear in the number
of variables and the number of input inequalities.

For those familiar with DPLL, the informal description of the method above may
look familiar. However, there are fundamental differences between the two methods.
Firstly, it turns out that bound propagation can be non-terminating, so we have to im-
pose some restrictions on it. Secondly, unlike propositional DPLL, there exists an infi-
nite possible number of bounds and values for a variable, so making an algorithm that
terminates is highly non-trivial.
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The rest of this paper is organised as follows. Section 2 introduces definitions related
to systems of linear inequalities. We define notions of bound (on a variable), context as
a set of bounds, and inference rules of resolution and bound-resulting resolution on lin-
ear inequalities. We also introduce bound propagation as a sequence of bound-resulting
resolution inferences. Section 3 introduces a fundamental notion of collapsing inequal-
ity. We give an algorithm for extracting collapsing inequalities from resolution proofs.
We show that, in the case of bound propagation, the extracted collapsing inequality can
be used to collapse a bound propagation derivation into a single inference by bound-
resulting resolution.

In Section 4 we introduce our algorithm for solving systems of linear inequalities
using bound propagation and other rules. Section 5 gives an example of how this al-
gorithm works. In Section 6 we show soundness, completeness and termination of the
algorithm. Proofs that did not fit can be found in the full version of this paper [3].

2 Preliminaries
We will denote variables by x, rational constants by c and positive rational constants
by d, maybe with indices. We call a literal a variable x or its negation −x and denote
literals by l. Literals of the forms x and −x are said to be complementary. A literal
complementary to a literal l will be denoted by l̄. Note that every linear inequality can
be written in the form

d1l1 + · · ·+ dnln + c ≥ 0. (1)

where the variables of the li’s are pairwise different. Note that all the constants di’s are
positive by our choice of notation. We say that inequality (1) contains literals l1, . . . , ln.
An inequality is called trivial if it contains no variables. It is straightforward to adapt all
our considerations to systems also containing strict inequalities and equalities, which
for simplicity we do not consider in this paper.

We define an assignment σ over a set of variables X as a mapping from X to the set
of real numbers R, i.e. σ : X → R.

For a linear term q over X , denote by qσ the value of q after replacing all variables
x ∈ X by the corresponding values σ(x). An assignment σ is called a solution of a lin-
ear inequality q ≥ 0 if qσ ≥ 0 is true; it is a solution of a system of linear inequalities if
it is a solution of every inequality in the system. If σ is a solution of a linear inequality I
(or a system L of such inequalities), we also say that σ satisfies I (respectively, L), de-
noted by σ |= I (respectively, σ |= L), otherwise we say that σ violates I (respectively,
L). A system of linear inequalities is said to be satisfiable if it has a solution.

We will denote inequalities as I, J, G, possibly with indexes and the corresponding
linear terms as I, J,G respectively, so I = (I ≥ 0), J = (J ≥ 0) and so on. Two
linear inequalities are equivalent if one can be obtained from another by multiplying
by a positive constant. When we deal with linear inequalities, we will not distinguish
equivalent linear inequalities. That is, we assume that the order of linear terms dili in
a linear expression is irrelevant and that we can multiply the inequality by any positive
rational. We also assume that a trivial inequality is either −1 ≥ 0 or 0 ≥ 0.

For an inequality I, let var(I) denote the set of all variables with non-zero co-
efficients in I. Similarly, for a system of inequalities L, let var(L) denote the set
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Table 1. Correspondence between the SAT terminology and our terminology

SAT this paper
variable variable
literal literal
clause linear inequality
unit clause bound
resolution resolution
unit-resulting resolution bound-resulting resolution
unit propagation bound propagation

∪I∈Lvar (I). We say that a system of inequalities L implies an inequality I, if every
solution to L is also a solution to I. We say that an inequality I is a non-negative linear
combination of inequalities I1, . . . , Ik, if I is of the form α1I1 + · · ·+αkIk ≥ 0 where
αi ≥ 0 for 1 ≤ i ≤ k, in this case we also write I = α1I1 + · · ·+ αkIk. It is easy to
see that any non-negative linear combination of inequalities from L is implied by L. An
inequality I of the form d1l1 + · · ·+ dnln + c ≥ 0 improves an inequality I′ if either I
is −1 ≥ 0 or I′ is of the form d1l1 + · · ·+ dnln + c′ ≥ 0 and c′ ≥ c.

Lemma 2.1. If an inequality I improves I′ then I implies I′.

Proof. Let I be of the form d1l1 + · · ·+ dnln + c ≥ 0. If I is −1 ≥ 0 then the lemma
trivially holds. Assume I is not−1 ≥ 0 and I′ is of the form d1l1 + · · ·+dnln +c′ ≥ 0,
where c′ ≥ c. Then I′ = I + (c′ − c ≥ 0), hence I implies I′. ❏

Definition 2.2. (Bounds).A bound on a literal l is an inequality of the form l+c ≥ 0. A
pair of bounds l+c1 ≥ 0 and l̄+c2 ≥ 0 on two complementary literals is contradictory
if c1 + c2 < 0, in this case we will also say that l + c1 ≥ 0 contradicts l̄ + c2 ≥ 0.
A bound is either a bound on a literal, or a trivial inequality. Trivial inequalities will
also be called trivial bounds. A bound l + c1 ≥ 0 is said to strictly improve a bound
l + c2 ≥ 0 if c2 > c1. ❏

Definition 2.3. (Context). Let B be a finite set of non-trivial bounds. B is called a
context if it contains no contradictory pair of bounds. A bound b is called redundant
in B if some bound in B strictly improves b. We say that a bound b contradicts to a
context B if some bound in B contradicts b. ❏

By our definition contexts are always satisfiable. It is easy to see that a bound b is
implied by a context B if and only if either b ∈ B or b is redundant in B.

Our aim now is to introduce an inference system on linear inequalities. This inference
system will have inference rules similar to those used in the resolution calculus. To
emphasise the analogy to the resolution calculus we will use terminology similar to the
one used in the theory of resolution.

For the readers familiar with the resolution calculus for propositional logic and the
DPLL method we define a correspondence between the notions introduced in this paper
and those used in propositional satisfiability in Table 1.

Definition 2.4 (Resolution). Let I1, I2 be linear inequalities such that I1 has the form
d1x + I ′1 ≥ 0 and I2 has the form−d2x + I ′2 ≥ 0 for some variable x. We say that the
linear inequality
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d2I
′
1 + d1I

′
2 ≥ 0

is a resolvent of I1 and I2 upon x. We consider resolvent as a symmetric relation, that
is, a resolvent of I1 and I2 upon x is also a resolvent of I2 and I1 upon x. Resolution
is the inference rule deriving a resolvent from two linear inequalities. ❏

For example, consider two clauses x1 + 2x2 + x3 + 3 ≥ 0 and −2x1 − 3x2 + 5 ≥ 0.
Then their resolvent upon x1 is x2 + 2x3 + 11 ≥ 0 and their resolvent upon x2 is
−x1 + 3x3 + 19 ≥ 0. Note that any resolvent of two inequalities is a consequence of
these inequalities. Also note that resolution is compatible with equivalence on linear
inequalities. That is if we replace inequalities in the premise of a resolution inference
by equivalent inequalities then the conclusion of the new inference will be equivalent
to the conclusion of the original inference.

Any application of resolution to a bound b and a linear inequality I eliminates a
variable from I in the following sense: the variables of the resolvent are the variables of
I minus the variable of b. Thus, if we repeatedly apply resolution to a linear inequality
of n variables x1, . . . , xn and bounds on variables x2, . . . , xn, all variables except x1

in I will be eliminated and we will obtain a bound on x1. We will formalise such
repeated applications of resolution to a linear inequality and a sequence of bounds in
the following definition.

Definition 2.5 (Bound-Resulting Resolution). Consider any linear inequality I of the
form (1). Let bi be bounds of the form l̄i + ci ≥ 0, where i = 2, . . . , n, on literals com-
plimentary to literals in I. Then one can derive (by a sequence of resolution inferences)
from b2, . . . , bn and I the following bound b on l1:

l1 + (c + d2c2 + . . . + dncn)/d1 ≥ 0.

We will say that b is obtained by bound-resulting resolution from b2, . . . , bn and I.
Likewise, let bi be bounds of the form l̄i + ci ≥ 0, where i = 1, . . . , n, on liter-

als complimentary to literals in I. Then one can derive (by a sequence of resolution
inferences) from b1, . . . , bn and I the following trivial inequality:

c + d1c1 + d2c2 + . . . + dncn ≥ 0.

In this case we will also say that this trivial inequality is obtained by bound-resulting
resolution from b1, . . . , bn and I. ❏

We can consider resolution and bound-resulting resolution as inference rules and put
together sequences of resolution steps to form a derivation, that is, a tree consisting of
inferences. For example, the following

x4 − 1 ≥ 0 x3 − x4 + 1 ≥ 0
x3 ≥ 0 −x2 ≥ 0 x4 − 1 ≥ 0 x1 + x2 − x3 − x4 ≥ 0

x1 − 1 ≥ 0
(2)
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is a derivation of the bound x1 − 1 ≥ 0 from two bounds x4 − 1 ≥ 0 and −x2 ≥ 0 and
two inequalities x3 − x4 + 1 ≥ 0 and x1 + x2 − x3 − x4 ≥ 0. This derivation uses two
bound propagation inferences.

By repeated applications of bound-resulting resolution we can repeatedly derive new
bounds. Such repeated applications are formalised in the following definition.

Definition 2.6 (Bound Propagation). Let B be a context and L a system of linear in-
equalities. A bound propagation from B and L is a sequence of bounds b1, . . . , bn,
such that

1. n > 0.
2. For all k such that 1 ≤ k ≤ n, the bound bk is not implied by B ∪ {b1, . . . , bk−1}.
3. For all k such that 1 ≤ k ≤ n, the bound bk is obtained by bound-resulting resolu-

tion from B ∪ {b1, . . . , bk−1} and an inequality in L.

We will also use this definition in the case when bn is a trivial inequality. ❏

By collecting all inferences in a tree one can regard bound propagation as a derivation
of the bound (or a trivial inequality) bn from B and L.

3 Collapsing Inequalities

In the DPLL procedure unit propagation always terminates since there is only a finite
number of literals that can be derived. In the case of linear equalities the number of
bounds is infinite, which may result in bound propagation of unrestricted length, deriv-
ing better and better bounds. This is illustrated by the following example.

Example 3.1. Consider the context {x1 ≥ 0} and the following two linear inequalities

x2 − x1 ≥ 0 (3)

x1 − x2 − 1 ≥ 0 (4)

Using x1 ≥ 0 and (3) one can derive a new bound x2 ≥ 0, from which, using (4) one
can derive an improved bound x1− 1 ≥ 0 on x1. In a similar way from x1− 1 ≥ 0 one
can derive in two steps x1 − 2 ≥ 0, then x1 − 3 ≥ 0 etc. ❏

In this section we will analyse bound propagation. First, we will show that any deriva-
tion consisting of bound propagation steps using a collection of inequalities can be
collapsed into a single bound-resulting resolution inference by adding a new inequality,
called a collapsing inequality.

To explain the idea of collapsing inequalities consider derivation (2). It uses two
inferences to derive the bound x1−1 ≥ 0 from the context B = {x4−1 ≥ 0,−x2 ≥ 0}.
It also derives the bound x3 ≥ 0 on the variable x3. If we resolve the inequalities
x1 + x2−x3−x4 ≥ 0 and x3−x4 + 1 ≥ 0 used in the derivation upon the variable x3

we obtain a new inequality x1 + x2 − 2x4 + 1 ≥ 0. This inequality has the following
interesting property: we can obtain the bound x1 − 1 ≥ 0 from the context B using a
single inference

x4 − 1 ≥ 0 −x2 ≥ 0 x1 + x2 − 2x4 + 1 ≥ 0
x1 − 1 ≥ 0 .
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Thus, the new inequality x1 + x2 − 2x4 + 1 ≥ 0 makes derivation (2) collapse into a
single inference.

Let us prove a general result on collapsing inequalities and then show how to extract
collapsing inequalities from resolution and bound-resulting resolution proofs. We will
use Farkas’s Theorem stated in the following form.

Theorem 3.2 (Farkas). Let L be a system of linear inequalities. If L implies a linear
inequality I then there is a linear non-negative combination of inequalities from L im-
proving I. ❏

For a proof we refer to [7].

Theorem 3.3 (Collapsing Inequalities). Let L1 and L2 be two systems of linear in-
equalities such that L1 ∪ L2 implies a linear inequality I. Then there exist two linear
inequalities I1 and I2 such that

1. L1 implies I1 and L2 implies I2;
2. the system {I1, I2} implies I.

Proof. By Theorem 3.2, if L1 ∪ L2 implies a linear inequality I then there is a non-
negative linear combination of inequalities from L1 ∪L2 which implies I. This combi-
nation can be represented in the form

α1J1 + · · ·+ αkJk + β1G1 + · · ·+ βmGm,

where Ji ∈ L1, αi ≥ 0 for 1 ≤ i ≤ k and Gi ∈ L2, βi ≥ 0 for 1 ≤ i ≤ m.
We define I1 = α1J1+· · ·+αkJk and I2 = β1G1+· · ·+βmGm. It is straightforward

to check that I1 and I2 satisfy conditions 1–2 of the theorem. ❏

We will call inequalities I1 and I2 satisfying the conditions of Theorem 3.3 collapsing
for I w.r.t. L1 and L2 respectively.

Let us show how to effectively extract collapsing inequalities from resolution proofs.

Theorem 3.4. Let L1 and L2 be two systems of linear inequalities and Π be a resolu-
tion (or a bound-resulting resolution) derivation of an inequality I from inequalities in
L1∪L2. Then inequalities I1 and I2, collapsing for I w.r.t. L1 and L2 respectively, can
be constructed in time polynomial in the size of Π .

Proof. Since any bound-resulting resolution derivation can be considered as a special
case of a resolution derivation, we will only prove this theorem for resolution deriva-
tions.

The proof is by induction on the depth of Π . We will prove a slightly stronger, yet
equivalent statement: our construction will also imply I = I1 + I2.

Base case. Suppose Π has I as the (only) leaf, then I ∈ L1 ∪ L2. If I ∈ L1 then we

define I1
def= I and I2

def= (0 ≥ 0). The case I ∈ L2 is similar.
Inductive case. Let I be a conclusion of an inference in Π with premises J and G:

Π1
J

Π2
G

I
.
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By the induction hypothesis, we can construct pairs of collapsing inequalities J1, J2

for Π1 and G1, G2 for Π2. Since I is obtained by resolution from J and G, we have

that I = αJ + βG for some coefficients α > 0 and β > 0. Define I1
def= αJ1 + βG1

and I2
def= αJ2 + βG2. By the induction hypothesis, L1 implies {J1, G1}, hence L1

implies I1. Likewise, we have L2 implies I2. By the induction hypothesis we also have
J = J1 + J2 and G = G1 + G2. It remains to prove I1 + I2 = I. To this end, note that
I1 + I2 = (αJ1 + βG1) + (αJ2 + βG2) = α(J1 + J2) + β(G1 + G2) = αJ + βG = I.

Let us note that with additional bookkeeping we can obtain an explicit representation
for the collapsing inequalities I1 and I2 as non-negative combinations of inequalities
from L1 (L2 respectively). ❏

Let us now consider bound-resulting resolution inferences between a context B and a
set of inequalities L.

Theorem 3.5. Let b be a (possibly trivial) bound derived from a context B and a set L
of linear inequalities by bound propagation. Then there exists a linear inequality I such
that

1. L implies I, and
2. either (i) I is −1 ≥ 0, or (ii) there is a bound b′ improving b which can be derived

from B and I by a single bound-resulting resolution inference.

Moreover, the bound b′ and inequality I can be constructed in time polynomial in the
size of the derivation by bound propagation. ❏

For the proof we refer to the full version of this paper. Let us only note that we can take
I to be a collapsing inequality for b w.r.t. L, which by Theorem 3.4, can be computed
in polynomial time from the bound-resulting resolution proof of b.

4 Bound Propagation Algorithm

In this section we introduce the bound propagation algorithm for solving systems of
linear inequalities, called BPA. BPA will be presented using a system of derivation
(transition) rules which are applied to states of BPA. A state is a triple (S,L, ε) where
S is a sequence of annotated bounds, called bound stack, L is a system of inequalities
and ε is either the empty set or a set consisting of one bound, called conflicting bound.
We denote a state (S,L, ε) as S ‖ L, ε and in the case when ε = ∅ as S ‖ L. The bounds
in S are annotated with information reflecting on how the bounds were introduced. Each
bound b in S is either:

– a decision bound, denoted bd, or
– a propagation bound, denoted as bp.

We say that a bound b in S is below a bound b′ in S if b occurs before b′ (in the order
of their occurrences in S), in this case b′ is also called above b. In other words, we
consider the stack as growing upwards.

Every propagation bound in the stack will be obtained by bound propagation from
bounds below it and linear inequalities in L. Consider a bound stack S. Let b be a
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propagation bound in the stack. We refer to the corresponding bound-resulting resolu-
tion derivation of b from bounds below it as Πb. Based on Theorems (3.4–3.5) we can
calculate a collapsing inequality from Πb, which we call the collapsing inequality for b
under S and denote by CIb, such that (i) CIb is implied by L and (ii) a bound improving
b can be derived by a single bound-resulting resolution inference from CIb and decision
bounds in S below b.

An initial state of BPA is a state of the form S0 ‖ L0 where S0 is the empty se-
quence, and L0 is the system of inequalities we want to solve. Let us state invariants
on BPA states which will be preserved by BPA derivations. These invariants either triv-
ially follow from the BPA rule definitions or will be proved later. Consider a BPA state
S ‖ L, ε which is obtained from an initial state by a sequence of applications of BPA
derivation rules.

Invariant 1. The set of all bounds in S is consistent. In other words, we can consider
S as a context.

We call a sequence consisting of a pair of bounds 〈x − c ≥d 0,−x + c ≥d 0〉 a
decision pair on x with the decision value c. To simplify the notation we will also write
such a decision pair as xc. If a stack contains a decision pair on x, we will call x a
decision variable of this stack.

Invariant 2. S is of the form U0 xc1
1 U1 . . . xck

k Uk where k ≥ 0 and (i) all xc1
1 , . . . , xck

k

are decision pairs, (ii) each Ui contains no decision bounds for 0 ≤ i ≤ k, (iii) for any
variable x there is at most one decision pair on x in S. We say that bounds in Ui are
implied bounds of the decision level i for 0 ≤ i ≤ k, and the decision level of S is k.

Denote a restriction of the stack S to bounds below a decision pair xc as S<xc (in-
cluding xc as S≤xc), or simply S<l (S≤l, respectively) when we are not concerned with
the decision value and var(l) = x.

Invariant 3. Any propagation bound b in S is not implied by the set of the bounds
below b.

Let us note that Invariants (2, 3) imply that if S contains a decision pair on a variable
x then there are no bounds on x above this decision pair.

A bound b is called decision-derived from an inequality I and a stack S if either (i)
both I and b are −1 ≥ 0, or (ii) I is of the form l + I ≥ 0, where all variables in I
are decision variables in S≤l, and b either coincides with I, or is obtained by a single
bound-resulting resolution inference from I and decision bounds in S<l.

With each decision pair xc in S we associate a pair of sets BCI x = 〈USx, LS x〉
called a bounding collapsing interval on x with the following properties. The set LS x

(respectively, USx) is either empty or consists of a single inequality Lx (respectively,
Ux) of the form x + I ≥ 0 (−x + I ≥ 0, respectively), where all variables in I are
decision variables in S<x. We denote by lbx the bound on x decision-derived from Lx

and S, called the lower collapsing bound on x and similarly by ubx the bound on x
decision-derived from Ux and S, called the upper collapsing bound on x.

Invariant 4. For any decision pair xc in S with the associated bounding collapsing
pair BCI x, inequalities in BCI x are implied by L.
For example, consider a system of inequalities L:

−y + x− 2z + 3 ≥ 0
y − x− 3z + 1 ≥ 0

z ≥ 0



Solving Systems of Linear Inequalities by Bound Propagation 377

and a stack

S = 〈z ≥p 0, x1, y2〉.

Assume that with the first decision pair we associated a bounding collapsing pair
consisting of empty sets, and with the second the pair 〈{−y +x+3 ≥ 0}, {y−x+1 ≥
0}〉. Invariant 4 is satisfied since both −y + x + 3 ≥ 0 and y − x + 1 ≥ 0 are implied
by L. Note that the assignment {y �→ 2} satisfies the corresponding upper and lower
collapsing bounds uby = (−y + 4 ≥ 0) and lby = (y ≥ 0).

Invariant 5. If ε consists of a conflicting bound b then b contradicts to a decision
bound in S. With each conflicting bound bwe associate a conflicting collapsing inequal-
ity CCIb satisfying the following. Conflicting collapsing inequality CCIb is implied by
L, and b is the bound decision-derived from CCIb and S.

We define the bound-propagation depth of bounds in a bound-propagation derivation
w.r.t. S inductively as follows. If a bound b is a decision bound in S or a bound in L
then the bound propagation depth of b is bpd(b) = 0. If a bound b is obtained by
a bound-resulting resolution inference from bounds b1, . . . , bk and an inequality in L
then the bound-propagation depth of b is bpd(b) = max{bpd(bi) | 1 ≤ i ≤ k}+ 1.

Invariant 6. We restrict bound-propagation depth of propagation bounds in S by an
a priory fixed constant denoted D ≥ 0.

During backjumping (rules (LBBC) and (UBBC)) we can resolve collapsing inequal-
ities. In order to show that the number of such resolvents is finite we need a notion of
the resolution rank.

The resolution rank of inequalities is defined by induction as follows. The set of
inequalities of rank 0, denoted RI 0, consists of all inequalities in L together with all
collapsing inequalities obtained from bound-propagation derivations of depth ≤ D +
1, from L and a set of bounds. Assume that RI k is defined then RI k+1 consists of
all inequalities in RI k together with all inequalities obtained by a single resolution
inference from inequalities in RI k.

Lemma 4.1. For any (finite) set of inequalities L and any non-negative integers D and
k, the set RI k is finite. ❏

The proof is given in [3].
Invariant 7. Consider the conflicting collapsing inequality CCIb associated with

a conflicting bound b of the form l + c ≥ 0. Denote the number of all variables
in L as |var(L)| and the number of decision variables in S≤l as |vard(S≤l)|. Then
CCIb ∈ RI |var(L)|−|vard(S≤l)|. Similarly, if xc is a decision variable in S then BCI x ∈
RI |var(L)|−|vard(S≤x)|.

We define a contradictory BPA state as a special state denoted as ⊥. Now we define
the BPA derivation rules. When defining the rules, we assume by induction, that all
invariants above are satisfied on the BPA states to which the rules are applied. Initial
BPA states trivially satisfy the invariants.

Bound Propagation (BP)

S ‖ L ⇒BP S bp ‖ L, where
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1. b is in L, or obtained by bound propagation from S and L,
2. bpd(b) ≤ D,
3. b is consistent with S,
4. b is not implied by S.

Decide (D)
S ‖ L ⇒D S xc ‖ L, where

1. xc is a decision pair 〈x− c ≥d 0,−x + c ≥d 0〉, such that
2. x is a variable in L,
3. x is not a decision variable in S,
4. bounds x− c ≥ 0 and −x + c ≥ 0 are consistent with S and at least one bound in

xc is not implied by S.

In the Decide rule above, we associate with the introduced decision pair xc a bound-
ing collapsing pair BCI x = 〈USx, LSx〉 where USx and LSx are defined as follows.
If there is no lower bound on x in S then LSx is the empty set. Otherwise, let x−c′ ≥ 0
be a lower bound on x in S which is not implied by any other bound in S. Note that
x − c′ ≥ 0 is a propagation bound, since by conditions on the applicability of Decide,
x is not a decision variable in S. Therefore x − c′ ≥ 0 is derived from L and decision
bounds in S by bound propagation (of depth ≤ D). We define LS x = {CI(x−c′≥0)}.
The set USx is defined similarly.

Conflicting Bound (CB)

S ‖ L ⇒CB S ‖ L, {b}, where

1. (−1 ≥ 0) is obtained by bound-resulting resolution from S and L,
2. CI(−1≥0) is the collapsing inequality for (−1 ≥ 0) under S, and
3. b is decision-derived from CI(−1≥0) and S.

In the Conflicting Bound rule above, we associate with the bound b the conflicting
collapsing inequality CCIb = CI(−1≥0).

Contradiction (⊥)

S ‖ L, {−1 ≥ 0} ⇒⊥ ⊥
The next set of rules deals with the case when the conflicting bound b is a lower

bound, i.e., of the form x + c ≥ 0, these rules are (LBBV) and (LBBC). The case when
the conflicting bound is of the form −x + c ≥ 0 is similar and the corresponding rules
are (UBBV) and (UBBC).

Lower Bound Backjump Value (LBBV)

V xuU ‖ L, {x + c ≥ 0} ⇒LBBV V xv ‖ L, where

1. CCI(x+c≥0) is of the form x + I ≥ 0,
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2. x + c ≥ 0 is consistent with the upper bound ubx,
3. define BCI ′

x = 〈USx, {CCI(x+c≥0)}〉,
4. xv is consistent with ub′

x and lb ′
x corresponding to BCI ′

x.

In the (LBBV) rule above, with the new decision pair xv we associate the bounding
collapsing pair BCI ′

x.
We use the following notation. Consider two inequalities of the form I = (x+I ≥ 0)

and J = (−x + J ≥ 0). Then the resolvent of I and J on x will be denoted as I⊗x J.

Lower Bound Backjump Conflict (LBBC)

V xuU ‖ L, {x + c ≥ 0} ⇒LBBC V ‖ L, {b}, where

1. CCI(x+c≥0) is of the form x + I ≥ 0,
2. x + c ≥ 0 is inconsistent with the upper bound ubx,
3. b is decision-derived from CCI(x+c≥0) ⊗x Ux.

In the (LBBC) rule above, with the new decision conflicting bound b we associate the
conflicting collapsing inequality CCI(x+c≥0) ⊗x Ux.

The rules (UBBV) and (UBBC) below are defined similarly to (LBBV) and (LBBC).

Upper Bound Backjump Value (UBBV)

V xuU ‖ L, {−x + c ≥ 0} ⇒UBBV V xv ‖ L, where

1. CCI(−x+c≥0) is of the form −x + I ≥ 0,
2. −x + c ≥ 0 is consistent with the lower bound lbx,
3. define BCI ′

x = 〈{CCI(−x+c≥0)}, LSx〉,
4. xv is consistent with ub′

x and lb ′
x corresponding to BCI ′

x.

In the (UBBV) rule above, with the new decision pair xv we associate the bounding
collapsing pair BCI ′

x.

Upper Bound Backjump Conflict (UBBC)

V xuU ‖ L, {−x + c ≥ 0} ⇒UBBC V ‖ L, {b}, where

1. CCI(−x+c≥0) is of the form −x + I ≥ 0,
2. −x + c ≥ 0 is inconsistent with the lower bound lbx,
3. b is decision-derived from CCI(−x+c≥0) ⊗x Lx.

In the (UBBC) rule above, with the new decision conflicting bound b we associate the
conflicting collapsing inequality CCI(−x+c≥0) ⊗x Lx.

A BPA transition is a transition by one of the BPA rules above, denoted as⇒. A BPA
derivation is a sequence of BPA transitions starting from an initial state.

Let us remark on some properties of the BPA derivations. First we note that the set
of inequalities L is never changed during the BPA derivations. Secondly, the number of
inequalities at each state is linear in the number of variables and the number of input
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inequalities. Indeed, the only inequalities in a state are the input inequalities, inequali-
ties in bounding collapsing pairs, which are at most double in the number of variables
and at most one conflicting collapsing inequality. Thirdly, the order of variables is not
fixed and can be dynamically changed during the BPA derivations. Fourthly, we can
note that bounding collapsing pairs are used only during backjumping rules. Therefore
in an implementation instead of computing BCI ’s for each decision variable, we can
compute BCI ’s on demand during backjumping.

5 Example

We use a simplified notation for bounds: upper bounds of the form −x− c ≥ 0 will be
denoted as −x ≥ c and lower bounds of the form x− c ≥ 0 as x ≥ c.

Let us apply our BPA algorithm to the following set of inequalities L.

x0 − 2x1 − 1 ≥ 0 (5)

x0 + 2x1 − 1 ≥ 0 (6)

−x0 + x1 ≥ 0 (7)

We have the following possible BPA derivation.

‖ L ⇒D

〈x0
0〉 ‖ L ⇒(6)

BP

〈x0
0, x1 ≥p 1/2〉 ‖ L ⇒(5)

CB (CCI(x0≥1) = (x0 ≥ 1))
〈x0

0, x1 ≥p 1/2〉 ‖ L, {x0 ≥ 1} ⇒LBBV (BCI ′ = 〈∅, {x0 ≥ 1}〉)
〈x1

0〉 ‖ L ⇒(7)
BP

〈x1
0, x1 ≥p 1〉 ‖ L ⇒(5)

CB (CCI(−x0≥1) = (−x0 ≥ 1))
〈x1

0, x1 ≥p 1〉 ‖ L, {−x0 ≥ 1} ⇒UBBC (CCI(−x0≥1) ⊗x (x0 ≥ 1) = (−1 ≥ 0))
‖ L, {−1 ≥ 0} ⇒⊥ ⊥

Let us informally explain the derivation steps. There are no bounds in L available for
bound propagation, therefore only the Decide rule is applicable to the initial state, which
adds decision bounds x0 ≥d 0 and −x0 ≥d 0 to the bound stack. With this decision
pair we associate the empty bounding collapsing interval (BCI x0 = 〈∅, ∅〉). Now, the
Bound Propagation rule is applicable resulting in a propagation bound x1 ≥p 1/2,
derived from the decision bound −x0 ≥d 0 and inequality (6). Next, the contradictory
bound −1 ≥ 0 is derivable by bound-resulting resolution from bounds −x0 ≥d 0,
x1 ≥p 1/2 and inequality (5) (transition⇒CB).

We construct a collapsing inequality for this bound as in the proof of Theorem 3.4,
in this case CI(−1≥0) = (x0 ≥ 1). Let us note that x0 ≥ 1 is implied by L (without
using any decision bounds) and all variables in x0 ≥ 1 are decision variables in our
bound stack. From x0 ≥ 1 we decision-derive the conflicting bound b, which in this
case coincides with x0 ≥ 1. We associate with b the conflicting collapsing inequality
CCI(x0≥1) = (x0 ≥ 1).

By Invariant 5, the conflicting bound b contradicts to one of the decision bounds, in
this case −x0 ≥d 0. Next we backjump to the decision that contradicts to b and try to
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modify the decision value within the bounding collapsing interval, such that the new
decision bounds would not contradict to the conflicting inequality (transition⇒LBBV ).
This is possible by taking a decision value for x0 satisfying the new lower collapsing
bound lb ′

x0
= (x0 ≥ 1), which is decision-derived from the new collapsing interval

BCI ′ = 〈∅, CCI(x0≥1)〉. The new stack consists of the decision bounds x0 ≥d 1 and
−x0 ≥d −1.

We apply the Bound Propagation rule adding x1 ≥p 1 to the stack. Next, the con-
tradictory bound −1 ≥ 0 is derivable and we analyse it as above. In this case it is not
possible to modify the value of the decision variable x0 in such a way as to satisfy both
the conflicting inequality and collapsing bounds on x0. This results in application of the
(UBBC) rule which resolves the conflicting inequality (CCI(−x0≥1) = (−x0 ≥ 1)) with
the corresponding inequality from the bounding collapsing interval (Lx0 = (x0 ≥ 1)).
The resulting conflicting collapsing inequality is CCI(−x0≥1) ⊗x0 Lx0 = (−1 ≥ 0).
The corresponding conflicting bound is also (−1 ≥ 0).

After this step, the only applicable rule is the Contradiction rule. Note that conflicting
collapsing inequalities are implied by L, and therefore at the last step we haveL implies
−1 ≥ 0, i.e., L is indeed unsatisfiable.

6 Correctness of BPA

Lemma 6.1. In any BPA derivation S0 ⇒ · · · ⇒ Sn ⇒ · · ·, all states S0, . . . , Sn, . . .
satisfy Invariants (1–7).

Proof. We prove this lemma by induction on the length of the BPA derivation. Initial
states satisfy the invariants since at these states the stack is empty and there are no
conflicting bounds. Assume that the invariants hold for states S0, . . . , Sn−1. Let us show
that the invariants also hold for Sn = S ‖ L, ε.

Invariants (1–3) trivially follow from the definition of the BPA derivation rules.
Invariant (4) states that for any decision pair xc in S, inequalities in BCI x are im-

plied by L. This follows from the fact that inequalities in BCI x are either collapsing
inequalities for L, or obtained from collapsing inequalities by a sequence of resolution
inferences in both cases these inequalities are implied by L.

Let us show that Invariant (5) holds at the state Sn. First, let us note the conflicting
collapsing inequality CCIb is either a collapsing inequality w.r.t. L, or obtained from
collapsing inequalities by a sequence of resolution inferences, in both cases CCIb is
implied by L. Now we show that the conflicting bound b contradicts to a decision
bound in S. The only non-trivial cases are when Sn is obtained by one of the BPA
rules (CB), (LBBC) or (UBBC). First we consider the (CB) rule. If b is of the form
−1 ≥ 0 then obviously b is itself contradictory. Assume that b is of the form l + c ≥ 0
and b is decision-derived from CI(−1≥0) of the form l + I ≥ 0, where all variables
in CI(−1≥0) are decision variables. Let l̄ + c′ ≥ 0 be the decision bound in S which
is used in the single bound-resulting inference deriving −1 ≥ 0 from CI(−1≥0). It is
easy to see that b is contradictory with l̄ + c′ ≥ 0 and hence Invariant (5) is satisfied.
Now we consider the (LBBC) rule. We have Sn−1 is of the form V xuU ‖ L, {x +
c ≥ 0} and Sn is of the form V ‖ L, {b}. From the conditions on applicability of
(LBBC) we have x + c ≥ 0 is inconsistent with the upper bound ubx on x and b is
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decision-derived from CCI(x+c≥0)⊗xUx. We have CCI(x+c≥0) is of the form x+I ≥ 0,
Ux is of the form −x + U ≥ 0. The bound (x + c ≥ 0) is decision-derived from
CCI(x+c≥0) and inconsistent with the bound ubx, decision-derived from Ux. Therefore,
CCI(x+c≥0)⊗xUx is inconsistent with decision bounds in V . Since b is decision-derived
from CCI(x+c≥0) ⊗x Ux, b is inconsistent with a decision bound in V . The case of the
(UBBC) rule is similar. Therefore Invariant (5) holds at the state Sn.

Invariant 6 holds by conditions in the definition of the (BP) rule.
Let us show that Invariant 7 holds at Sn. We need to consider the case when Sn is

obtained by one of the following BPA rules: (D), (CB), (LBBV), (UBBV), (LBBC)
and (UBBC). Note that by Invariant 6, bound propagation depth of all bounds in S
is less or equal to D . Consider the (D) rule. In this case, all inequalities in BCI x are
collapsing inequalities obtained from bound propagation derivations of depth ≤ D.
Therefore ineqaulities in BCI x are in RI 0 and Invariant 6 is satisfied. Consider the
(CB) rule. The bound propagation depth of the derived (−1 ≥ 0) is less or equal to
D + 1. Hence, CCIb = CI(−1≥0) is in RI 0 and Invariant 6 is satisfied. In the case
of the rules (LBBV) and (UBBV) one of the bounding inequalities is replaced by a
conflicting collapsing inequality which is by induction assumed to be of the required
resolution rank. Now we consider the case of the rule (LBBC). We have Sn−1 is of the
form V xuU ‖ L, {x + c ≥ 0} and Sn is of the form V ‖ L, {b}. Denote S′ = V xuU .
Let the conflicting bound b be of the form l+c′ ≥ 0 where var(l) is a decision variable
in V . The conflicting collapsing inequality associated with b is CCI(x+c≥0) ⊗x Ux.
By the induction hypothesis, CCI(x+c)≥0 and Ux are in RI |var(L)|−|vard(S′

≤x
)|. Hence,

CCI(x+c≥0)⊗xUx ∈ RI |var(L)|−|vard(S′
≤x

)|+1. Since V≤l contains at least one decision

variable less than S′
≤x, namely x, we have |var (L)| − |vard(S′

≤x)| + 1 ≤ |var(L)| −
|vard(V≤l)|. Therefore, CCI(x+c≥0) ⊗x Ux ∈ RI |var(L)|−|vard(V≤l)| and Invariant 6 is
satisfied. The case of the rule (UBBC) is similar. ❏

Theorem 6.2 (Termination). Any BPA derivation terminates. ❏

The proof is given in [3].

Theorem 6.3 (Soundness). If a BPA derivation terminates in a contradictory state ⊥
then the initial system of inequalities L is unsatisfiable.

Proof Let us note that the system of inequalities L does not change during BPA deriva-
tions. A BPA derivation can result in the contradictory state ⊥ only by applying the
Contradiction rule (⊥). We have that the last step in such derivation is of the form
S ‖ L, {−1 ≥ 0} ⇒⊥ ⊥. But in this case the conflicting collapsing inequality as-
sociated with −1 ≥ 0 is contradictory, i.e., CCI(−1≥0) = (−1 ≥ 0). By Invariant 5,
CCI(−1≥0) is implied by L, and therefore L is unsatisfiable. ❏

Before stating the Completeness theorem let us observe the following. Any BPA deriva-
tion that finishes at a state with a conflicting bound, i.e., of the form S ‖ L, {b}, can
be extended by applying one of the following rules: (⊥), (LBBV), (LBBC), (UBBV) or
(UBBC).
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Theorem 6.4 (Completeness). Consider a BPA derivation ‖ L ⇒ S1 ⇒ · · · ⇒ Sn

such that Sn is a non-contradictory state of the form S ‖ L and neither the Decide rule
(D) nor the Conflicting Bound rule (CB) is applicable to Sn. Then the initial system of
inequalities L is satisfiable.

Proof. Since the Decide rule is not applicable at the state Sn = S ‖ L, for any variable
x in L, x is either (i) a decision variable in S, or (ii) there are two implied bounds in S
of the form x− c ≥ 0 and −x + c ≥ 0, called value-implying bounds. In the latter case
we call c the implied value of x in S. Let us note that by Invariant 1, S is consistent.
Therefore each variable has a unique decision or implied value. Define an assignment
σ, mapping each variable into the corresponding decision/implied value. Let us show
that σ satisfies each inequality in L. Assume otherwise, and let I be an inequality in L
which is not satisfied by σ. It is easy to see that in this case (−1 ≥ 0) can be obtained
by a bound-resulting resolution inference from I and the bounds in S, resolving all
literals in I with the corresponding decision/value-implying bounds in S. Therefore the
Conflicting Bound rule is applicable to the state S ‖ L, contradicting to our assumption.

❏

7 Conclusions

We presented a new method for solving systems of linear inequalities. The method
incorporates DPLL-style techniques such as backjumping, lemma learning and bound
propagation, which can be seen as an analogue of unit propagation in DPLL. Unlike unit
propagation, bound-propagation can easily lead to non-termination if applied naively.
We showed that our method is sound, complete and terminating.
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Abstract. In this paper we discuss the recently introduced transfinite
Knuth-Bendix orders. We prove that any such order with finite subterm
coefficients and for a finite signature is equivalent to an order using or-
dinals below ωω, that is, finite sequences of natural numbers of a fixed
length. We show that this result does not hold when subterm coefficients
are infinite. However, we prove that in this general case ordinals below
ωωω

suffice. We also prove that both upper bounds are tight. We briefly
discuss the significance of our results for the implementation of first-
order theorem provers and describe relationships between the transfinite
Knuth-Bendix orders and existing implementations of extensions of the
Knuth-Bendix orders.

1 Introduction

The Knuth-Bendix order (KBO for short) is the most common order used in
first-order theorem provers. It is implemented in all commonly used resolution
theorem provers: Vampire [15,19], E [16], Otter [21], Spass [20], and in the equa-
tional theorem prover Waldmeister [4]. Recently, Ludwig and Waldmann [11]
introduced a modification of KBO, called transfinite KBO (TKBO for short),
which can use arbitrary ordinals below ε0 instead of natural numbers as sym-
bols weights and subterm coefficients (we give all the necessary definitions in
Section 3).

The TKBO can be more expressive than the KBO. However, the increase in
expressiveness comes at the cost of a more complex implementation since one
has to implement ordinals and two operations on them: the natural sum and the
natural product. The natural product is especially hard to implement. One can
get rid of the natural product by requiring that subterm coefficients are finite.

This paper is organised as follows. Section 2 gives a brief introduction into
ordinals. In Section 3 we define the KBO and the TKBO. Our two main results
are proved in Sections 4 and 6, as follows. In Section 4 we show that every
instance of the TKBO on finite signatures with finite subterm coefficients is
equivalent to a TKBO using ordinals below ωω, that is, sequences of natural
numbers of a fixed length. Moreover, in Section 6 we prove that every instance
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of the TKBO (with unrestricted subterm coefficients) is equivalent to a TKBO
using ordinals below ωωω

, that is, sequences of sequences of natural numbers. In
Section 5 we show that these results cannot be significantly improved. Note that
ordinals below ωω are relatively easy to implement. For example, such orders
have been implemented in Vampire long ago. In Section 7 we discuss the use of
KBO and TKBO in theorem provers and termination tools.

2 Preliminaries

We assume basic knowledge of set-theory, in particular of ordinals [5]. We write
> to denote the standard order on ordinals, and < to denote the inverse of >.
Recall that any ordinal α �= 0 can be uniquely represented in Cantor normal
form, that is, written as a finite sum

ωα1 + · · ·+ ωαn ,

where α1 
 · · · 
 αn. Here 
 denotes the usual total order on ordinals. We
allow the sum in the above equation to be empty, that is, 0 = ωα1 + · · · + ωαn

for n = 0.
For ordinals below ε0, the Cantor normal form gives a basis for their syntactic

representation: any such ordinal can be written in this form by recursively writing
the exponents of ω in the same form. For every ordinal α, the set of ordinals strictly
less than α is denoted by O(α). Note that O(α) = α, however we will use O(α)
when we consider α as a set rather than an element of an ordered collection. We
will simply write O when α = ε0, that is, O is the set of all ordinals strictly below
ε0. Recall, that ε0 is the smallest solution of the equation α = ωα.

In the sequel we assume that all ordinals are represented using their Cantor
normal form.

To motivate the definitions of natural sum and natural product given below,
we recall that the standard ordinal addition + and ordinal multiplication · are
not commutative. Moreover, · does not right-distribute over +.

For α = ωα1 + · · ·+ ωαn and β = ωαn+1 + · · ·+ ωαn+m , we define the natural
sum α ⊕ β as ωαπ(1) + · · ·+ ωαπ(n+m) , where π is any permutation of the indices
{1, . . . , n+m} such that απ(1) 
 απ(2) 
 · · · 
 απ(n+m). Note that this definition
includes the case that β is zero; so we have α ⊕ 0 = 0 ⊕ α = α. Likewise, we
define the natural product - of ordinals in O, as follows. For α = ωα1 + · · ·+ωαn

and β = ωβ1 + · · ·+ ωβm , we define

α - β =
n⊕

i=1

m⊕
j=1

(
ωαi

⊕
βj

)
.

Remark 2.1. The natural sum and product defined above are respectively
called the Hessenberg addition and the Hessenberg product in [11].

We write α · n as an abbreviation of α + · · ·+ α︸ ︷︷ ︸
n times

. Further, we identify the

natural numbers with the ordinals below ω. For example, we write 3 instead of
ω0 + ω0 + ω0.
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The following lemma is an immediate consequence of the above given definitions.

Lemma 2.2. Let α, β, and γ be ordinals in O. Then the following properties
hold.

1. α ⊕ β = β ⊕ α.
2. α - β = β - α.
3. α - (β ⊕ γ) = α - β ⊕ α - γ.
4. If α > β, then α ⊕ γ > β ⊕ γ. If, in addition, γ > 0, then α - γ > β - γ. ❏

3 Transfinite KBO

In what follows, we assume that F is a finite signature. We denote by N the set
of natural numbers.

Definition 3.1. Let F be a signature. A weight function for F is a function w :
F → O. A subterm coefficient function for F is a partial function s : F ×N→ O
such that for every f ∈ F and every n > 0, if n is less than or equal to the arity
of f , then s(f, n) is defined and s(f, n) > 0. A precedence relation on F is any
(strict) total order on F . ❏

Definition 3.2 (order basis). An order basis is a tuple (w, s,9, w0) where:

1. w is a weight function for F ;
2. s is a subterm coefficient function for F ;
3. 9 is a precedence relation on F ;
4. w0 ∈ N and w0 > 0;
5. for every constant c ∈ F , we have w(c) 
 w0;
6. if f ∈ F is a unary function symbol and w(f) = 0, then f is the greatest

element in F w.r.t. 9. ❏

We will extend weight functions to variables and assume that w(x) = w0 for
every variable x.

Given an order basis (w, s,9, w0), we define the weight of terms as follows.

Definition 3.3 (weight). Let t be a term. The weight of t, denoted by
weight(t), is defined inductively as follows.

1. If t is a variable, then weight(t) def= w0.
2. weight(f(t1, . . . , tn)) def= w(f)⊕ (s(f, 1) - weight(t1))

⊕ · · ·
⊕ (s(f, n) - weight(tn)) . ❏

In the sequel we will often assume that we have a fixed order basis (w, s,9, w0).
The notion of the weight of a term is central for this paper. We will therefore

introduce some notation and prove essential properties of term weights.
We will use the standard notion of a position in a term, and a subterm at

a given position [2]. Any position is a sequence of positive integers. The empty
position is denoted by ε.
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Definition 3.4 (coefficient). Let t be a term and let p be a position in t. The
coefficient of p in t, denoted by coeff (p, t), is an ordinal defined inductively as
follows.

1. coeff (ε, t) def= 1.
2. coeff (i.p, f(t1, . . . , tn)) def= s(f, i) - coeff (p, ti). ❏

Let t be a term. We denote by Var(t) the set of all variables of t, by Pos(t) the
set of positions in t, and by PosV(t) the set of variable positions in t. If p is a
position in t, we denote by topp(t) the symbol (that is, a function symbol or a
variable) of t at the position p. Let x be a variable. The set of positions of x in
t is denoted by PosV(x, t). We call the variable coefficient of x in t, denoted by
vcoeff (x, t), the ordinal

⊕
p∈PosV(x,t) coeff (p, t).

Let us give a useful characterisation of weights of terms using coeff .

Lemma 3.5. For every term t we have

weight(t) =
⊕

p∈Pos(t)

coeff (p, t) - w(topp(t)).

Proof. By straightforward induction on the depth of t. ❏

Definition 3.6 (TKBO). Let B = (w, s,9, w0) be an order basis. The in-
stance of a transfinite Knuth-Bendix order induced by B, denoted by 'B, is
defined as follows. For all terms s, t, we have s 'B t if the following conditions
hold:

1. Var(s) ⊇ Var(t);
2. for all x ∈ Var(t),

vcoeff (x, s) 
 vcoeff (x, t) ; (†)
3. either

(a) weight(s) > weight(t), or
(b) weight(s) = weight(t), and one of the following alternatives hold:

i. t is a variable, and s = fn(t) for some unary function symbol f and
n > 0;

ii. s = f(s1, . . . , sn), t = f(t1, . . . , tn), and there exists i ∈ {1, . . . , n}
such that si 'B ti and sj = tj for all 1 � j < i.

iii. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f 9 g. ❏

We will sometimes simply write “a TKBO” instead of “an instance of a TKBO”.
For every function whose range is a set of ordinals, we say that the function

is finite if every value of this function is an ordinal below ω, that is, an element
of N. The standard Knuth-Bendix order (KBO) is a special case of the TKBO
when the weight function is finite and the subterm coefficient function always
returns 1. The TKBO is thus more expressive than the KBO, as it allows the use
of infinite weight functions and arbitrary finite and infinite subterm coefficient
functions.

We recall the following fact about the TKBO from [11].
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Proposition 3.7. For any order basis B, the induced TKBO 'B is a simplifi-
cation order. That is, 'B is monotone, closed under substitutions, well-founded,
and extends the subterm relation. ❏

We will now give two lemmas formulating sufficient conditions for equality and
inequality of instances of the TKBO.

In the sequel we will assume that B = (w, s,9, w0) and B′ = (w′, s′,9′, w′
0)

are two order bases. Denote by weight and weight ′ the term weight functions
defined respectively by B and B′. Likewise, denote by coeff and coeff ′ the co-
efficients, and by vcoeff and vcoeff ′ the variable coefficients defined respectively
by B and B′.

Lemma 3.8. Suppose that (i) 9 coincides with 9′; (ii) for every two terms s
and t and variable x ∈ Var(t) we have vcoeff (x, s) 
 vcoeff (x, t) iff vcoeff ′(x, s) 

vcoeff ′(x, t); and (iii) for every two terms s and t we have weight(s) > weight(t)
iff weight ′(s) > weight ′(t).

Then 'B coincides with 'B′ .

Proof. Immediate by Definition 3.6. ❏

Lemma 3.9. Suppose there exist two terms s and t such that weight(s) >
weight(t) and weight ′(t) > weight ′(s).

Then 'B does not coincide with 'B′ .

Proof. Let s, t be terms satisfying the conditions of the lemma. Take a fresh
variable x and denote by u and v the terms obtained by replacing all variables
in, respectively, s and t by x. Then Var(u) = Var(v) = {x}. Furthermore, as
the weights of all variables are the same, we have weight(u) = weight(s) >
weight(t) = weight(v). Similarly, we conclude weight ′(v) > weight ′(u).

Consider now the two possible cases. If vcoeff (x, u) 
 vcoeff (x, v), we have
u 'B v, but weight ′(v) > weight ′(u) makes u 'B′ v impossible, so the two
orderings do not coincide. Likewise, if vcoeff (x, v) > vcoeff (x, u), we have v 'B′

u, but weight(u) > weight(v) makes v 'B u impossible, so the two orderings do
not coincide, too. ❏

4 TKBOs with Finite Subterm Coefficient Functions

In this section we consider TKBOs with finite subterm coefficient functions.
Throughout this section we thus assume that B = (w, s,9, w0) is an order basis
such that s is finite. The aim of this section is to prove that for every such
basis, 'B is equivalent to a TKBO using ordinals less than ωω. To this end, we
will define a new basis B′ = (w′, s,9, w′

0) which agrees with B on the subterm
coefficient function and the precedence relation, and show that B′ induces the
same transfinite Knuth-Bendix order as B.

Definition 4.1 (ΓB). Let α be an ordinal such that α = ωα1 + · · · + ωαn .
Then we define Γ (α) def= {α1, . . . , αn}. The collection of ordinals ΓB is defined
as ΓB

def= Γ (w0) ∪
⋃

f∈F Γ (w(f)). ❏
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In other words, ΓB is the set of exponents used in w0 and in the weights of
symbols in F . Since F is finite, clearly the set ΓB is finite and totally ordered
by >. This property is used in the next definition.

Definition 4.2 (rank function). We define a rank function φ : ΓB → N as
follows:

φ(α) def= max{φ(β) + 1 | α > β, β ∈ ΓB} ,

where we assume that max ∅
def= 0. In other words, φ(α) is the number of ordinals

in ΓB strictly smaller than α. Note that φ is only defined on elements of ΓB. ❏

The next lemma is a direct consequence of the previous definitions.

Lemma 4.3 (φ is monotone). Let α, β ∈ ΓB . Then α 
 β (respectively,
α > β) if and only if φ(α) 
 φ(β) (respectively, φ(α) > φ(β)). ❏

Note that, if 0 ∈ ΓB, then φ(0) = 0. Likewise, if i ∈ N ∩ ΓB, then φ(i) � i.
Let us also make a trivial but useful observation on how to compare two

weights given in Cantor normal form.

Lemma 4.4. Let
α = ωα1 + . . . + ωαk ,
β = ωβ1 + . . . + ωβm

be two non-zero ordinals in Cantor normal form. Then α > β if and only if
(α1, . . . , αk) > (β1, . . . , βm), where the sequences of ordinals are compared lexi-
cographically. ❏

We now define a new weight function w′ and an ordinal w′
0.

Definition 4.5. Let f ∈ F and w(f) = ωα1 + · · ·+ ωαn . Then we define

w′(f) def= ωφ(α1) + · · ·+ ωφ(αn) .

Likewise, if w0 = ωα1 + · · ·+ ωαn , then we define w′
0

def= ωφ(α1) + · · ·+ ωφ(αn). ❏

Due to Lemma 4.3, note that the above expressions for w′(f) and w′
0 are in

Cantor normal form. Using Definition 4.5, we define B′ def= (w′, s,9, w′
0).

Lemma 4.6. B′ is an order basis.

Proof. Properties (1)-(3) of Definition 3.2 of order basis are obvious. Prop-
erty (5) is derived by using Lemma 4.4 in conjunction with Lemma 4.3 on
the monotonicity of φ. To prove property (6), take an arbitrary f ∈ F . Let
w(f) = ωα1 + · · ·+ωαn . Then w′(f) = ωφ(α1) + · · ·+ωφ(αn). Evidently, w(f) = 0
holds if and only if n = 0, and likewise for w′(f) = 0. Therefore, w(f) = 0 if
and only if w′(f) = 0. From this property (6) follows immediately. By replacing
f with w0 is this proof, we obtain a proof of property (4). ❏

Lemma 4.7. Let t be a term and weight(t) = ωα1 +. . .+ωαk . Then weight ′(t) =
ωφ(α1) + . . . + ωφ(αk). As a consequence, weight ′(t) < ωω.
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Proof. Straightforward from Lemma 3.5. ❏

Lemma 4.8. For all terms s, t of the signature F , we have s 'B t if and only
if s 'B′ t.

Proof. Use Lemma 3.8. Since properties (i) and (ii) of Lemma 3.8 are trivially
satisfied, it suffices to prove for any two terms s and t, we have weight(s) >
weight(t) iff weight ′(s) > weight ′(t).

Assume weight(s) > weight(t). Let weight(s) = ωα1 + . . . + ωαk and
weight(t) = ωβ1 + . . . + ωβm . By Lemma 4.4 we have

(α1, . . . , αk) > (β1, . . . , βm). (1)

By Lemma 4.7 we have weight ′(s) = ωφ(α1) + . . . + ωφ(αk) and weight ′(t) =
ωφ(β1) + . . .+ωφ(βm). Applying Lemma 4.3 on monotonicity of φ to (1) we obtain
(φ(α1), . . . , φ(αk)) > (φ(β1), . . . , φ(βm)), which by Lemma 4.4 gives weight ′(s) >
weight ′(t). ❏

Lemmas 4.8 and 4.6 imply one of our main results for the case of finite weight
coefficients.

Theorem 4.9. Every instance of a TKBO with finite weight coefficients is
equivalent to an instance using weights in O(ωω). ❏

5 Lower Bounds on Ordinals

In Section 4 we showed that for a basis with finite subterm coefficients the
induced TKBO 'B is equivalent to a TKBO using ordinals less than ωω. In
Subsection 5.1 of this section we will show that this result is essentially optimal.
Then in Subsection 5.2 we prove a similar lower bound of ωωω

for the general
case.

To prove these results we will use ordering constraints (in the sequel simply
constraints), that is, expressions s � t, where s and t are terms. We say that an
order > satisfies such a constraint if s > t. The way we use constraints is the
following. Suppose we have a family F of orders and an order >. Suppose also
that > satisfies a set S of constraints and each order in F violates at least one
of the constraints in S. Then we can conclude that > does not belong to F .

5.1 Finite Term Coefficients

Throughout this subsection we assume finite subterm coefficients. In this sub-
section a, b, c will denote constants; f, g, maybe with indices, unary function
symbols; and h a binary function symbol.

We will now define, for every natural number k, a satisfiable set of constraints
that can only be satisfied when the weight of one of the symbols is at least ωk.

Example 5.1. Let k ∈ N, F = {c, h, f0, . . . , fk}. Consider the set consisting
of all the constraints fi(x) � h(x, x), where 0 � i � k, and the constraints
fi+1(c) � fn

i (c), where 0 � i < k and n 
 0. ❏
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Lemma 5.2. There exists a TKBO > with finite subterm coefficients satisfy-
ing all constraints of Example 5.1. Moreover, for every TKBO satisfying these
constraints, we have w(fi) 
 ωi for all 1 � i � k.

Proof. To satisfy the constraints, we define the weights and subterm coefficients
of h and c to be 1, the subterm coefficients of each fi to be 2 and the weight of
fi to be ωi, for all 0 � i � k. We arbitrarily fix the value of w0. It is not hard
to argue that weight(fn

i (c)) < ωi+1 < weight(fi+1(c)), so all the constraints
fi+1(c) � fn

i (c) are satisfied. It is also easy to see that the constraints fi(x) �
h(x, x) are satisfied too.

For the second part, take any TKBO ' that satisfies all constraints of Ex-
ample 5.1. First, we note that fi(x) ' h(x, x) and condition (2) of the TKBO
imply

s(fi, 1) = vcoeff (x, fi(x)) 
 vcoeff (x, h(x, x)) = s(h, 1) ⊕ s(h, 2) 
 2.

Therefore, the subterm coefficient of every fi is not less than 2. This implies
that for every term t we have weight(fn

i (t)) 
 2n - weight(t) ⊕ 2n−1 - w(fi).
As weight(fi+1(c)) 
 weight(fn

i (c)), we then have

w(fi+1) ⊕ s(fi+1, 1) - w(c) = weight(fi+1(c)) 

weight(fn

i (c)) 
 2n - w(c) ⊕ 2n−1 - w(fi).

Thus, we proved that for all natural numbers n 
 1 we have

w(fi+1) ⊕ s(fi+1, 1) - w(c) 
 2n - w(c) ⊕ 2n−1 - w(fi). (2)

Consider the case i = 0. In this case (2) implies

w(f1) ⊕ s(f1, 1) - w(c) 
 2n - w(c).

Since s(f1, 1) is finite, we have w(f1) 
 (2n − s(f1, 1)) - w(c) for all sufficiently
large n. This implies w(f1) 
 ω. Let us now prove w(fi+1) 
 ωi+1 for all
i = 1, . . . , k − 1 by induction on i. To this end, note that for sufficiently large n
we have 2n - w(c) > s(fi+1, 1) - w(c). Hence, for sufficiently large n, inequality
(2) implies

w(fi+1) 
 2n−1 - w(fi).
The induction hypothesis gives w(fi) 
 ωi, so

w(fi+1) 
 2n−1 - w(fi) 
 2n−1 - ωi.

Since this holds for all sufficiently large n, we finally conclude w(fi+1) 
 ωi+1.
❏

The next theorem is a direct consequence of Lemma 5.2.

Theorem 5.3. For every natural number k > 0 there exists a TKBO > with
finite subterm coefficients satisfying the following conditions: (i) all function
symbols have weights less than ωk+1, and (ii) > is not equivalent to any TKBO
with finite subterm coefficients in which all function symbols have weights less
than ωk. ❏

Let us emphasise that the constraints defined in Example 5.1 are based on finite
signatures.
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5.2 Arbitrary Weight Coefficients

In the remaining part of this section we prove lower bounds for the case when
arbitrary subterm coefficient functions are used. To this end, we use the condi-
tion (†) of Definition 3.6 to force higher ordinals as lower bounds.

Example 5.4. Consider the finite signature F = {g, h, f1}. We define the fol-
lowing set S1 of constraints: f1(x) � gn(x) for all n 
 0, and g(x) � h(x, x).

❏

We show that S1 can only be satisfied when infinite subterm coefficient functions
are used. More precisely, we show that the constraints of this example force
s(f1, 1) 
 ω.

Lemma 5.5. S1 is satisfiable. For every TKBO satisfying S1, we have
s(f1, 1) 
 ω.

Proof. To satisfy S1, we set w(g) = 2, and w(f1) = w(h) = w0 = 1. We also set
s(f1, 1) = ω, s(g, 1) = 2, and s(h, 1) = s(h, 2) = 1.

Let us prove the second part of the lemma. Take any TKBO > satisfying S1.
Property (†) of Definition 3.6 applied to g(x) > h(x, x) implies s(g, 1) 
 2. Then
f1(x) > gn(x) implies s(f1, 1) 
 2n for all n, hence s(f1, 1) is infinite. ❏

Example 5.4 shows that we can force infinite values for the subterm coefficient
functions. The next example uses ideas of Example 5.1 to define, for every posi-
tive integer k, constraints over a finite signature that require the use of subterm
coefficient functions greater than ωωk

.

Example 5.6. Let F = {g, h, f1, . . . , fk, a, b}. Consider the set S2 of constraints
obtained from S1 by adding, for every 1 � i < k and n 
 0, the constraints
fi+1(x) � fn

i (x), plus a single constraint a � fk(b). ❏

Lemma 5.7. S2 is satisfiable. For every TKBO satisfying S2, we have s(fi, 1) 

ωωi−1

for all 1 � i � k, and weight(a) 
 ωωk−1
.

Proof. To prove satisfiability, we arbitrarily fix the the constants a and b, and
change the order basis of the proof of Lemma 5.5 by changing the weights of
fi as follows: w(fi) = 1 and s(fi, 1) = ωωi

, for all i. To verify that S2 requires
s(fi, 1) 
 ωωi−1

for all i, we proceed inductively as before. Finally, weight(a) 

ωωk−1

follows from weight(b) 
 1. ❏

The next theorem is a direct consequence of Lemma 5.7.

Theorem 5.8. For every positive integer k there exists a TKBO satisfying the
following conditions: (i) all terms have weights less than ωωk+1

, and (ii) this
TKBO is not equivalent to any TKBO in which terms have weights less than
ωωk

. ❏
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6 TKBOs with Unrestricted Subterm Coefficient
Functions

Throughout this section we assume that B = (w, s,9, w0) is an order basis. We
will show, using a modification of the construction used in Definition 4.5, that
an arbitrary TKBO is equivalent to a TKBO using only ordinals less than ωωω

.
To do so, we first define an analogue of ΓB given in Definition 4.1 as follows.

Definition 6.1. Let α be an ordinal such that α = ωα1 + · · ·+ωαn , where αi =
ωβi1 + · · ·+ωβimi for each i ∈ {1, . . . , n}. We define Δ(α) def= {β11, . . . , β1m1 , . . . ,
βn1, . . . , βnmn}. Further, the collection of ordinals ΔB is defined as:

ΔB
def= Δ(w0) ∪

⋃
f∈F

Δ(w(f)) ∪
⋃

f∈F ,i∈N

Δ(s(f, i)) . ❏

In other words, ΔB is the set of exponents of the exponents used in w0, in the
weights of symbols in F , and in the subterm coefficient functions. Clearly, ΔB

is finite and totally ordered by >. Without loss of generality, we assume that
0 ∈ ΔB.

We next refine the definition of the mapping φ given in Definition 4.2.

Definition 6.2. We define a rank function ψ : ΔB → N as follows:

ψ(α) def= max{ψ(β) + 1 | α > β, β ∈ ΔB} ,

where we set max ∅
def= 0. ❏

Using the function ψ, below we define an ordinal basis B′ = (w′, s′,9, w′
0) using

only ordinals in O(ωωω

), and then prove that it defines a TKBO equivalent to
B. To this end, we will first develop some results about ordinals.

Definition 6.3. Denote by OB the set of all ordinals having the form

ωωβ11+···+ω
β1m1 + · · ·+ ωωβn1+···+ωβnmn + ωk + m . (3)

where for all 1 � i � n, 1 � j � mi, βij ∈ ΔB. Note that the set OB is closed
under ⊕ and -. We define an ordinal mapping γ with the domain OB as follows.
For every ordinal α of the form (3) we have

γ(α) def= ωωψ(β11)+···+ω
ψ(β1m1 )

+ · · ·+ ωωψ(βn1)+···+ωψ(βnmn )
+ ωk + m . ❏

The following lemma is the key for all proofs of this section.

Lemma 6.4. The mapping γ defines an isomorphic embedding of the ordered
algebra of ordinals OB into O, that is, for every pair (α1, α2) of ordinals we have

γ(α1 ⊕ α2) = γ(α1) ⊕ γ(α2),
γ(α1 - α2) = γ(α1) - γ(α2),

α1 
 α2 iff γ(α1) 
 γ(α2). ❏
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The proof of this lemma is straightforward and left to the reader.
Using γ, we can now define the order base B′ which will give us the required

order.

Definition 6.5. Define the order basis B′ = (w′, s′,9, w′
0) having the same

precedence relation 9 as B, as follows. Let f ∈ F . Then w′(f) def= γ(w(f)).
Further, let i be a positive integer less than or equal to the arity of f . Then
s′(f, i) def= γ(s(f, i)). Finally, we let w′

0
def= γ(w0). ❏

As usual, we will respectively denote by coeff ′, vcoeff ′, and weight ′ the functions
coeff , vcoeff , and weight induced by B′. The following result is then straightfor-
ward.

Lemma 6.6. B′ is an order basis. For all terms t, we have weight ′(t) < ωωω

. ❏

It remains to prove that B′ defines the same order as B. To this end, we will
use Lemma 6.4.

Lemma 6.7. Let t be a term, x be a variable, and p a position in s. Then we
have the following.

1. coeff ′(p, t) = γ(coeff (p, t));
2. vcoeff ′(v, t) = γ(vcoeff (v, t));
3. weight ′(t) = γ(weight(t)).

Proof. (1) is immediate by the definition of coeff and Lemma 6.4. (2) is immediate
by the definition of vcoeff , (1) and Lemma 6.4. (3) is immediate by the definition
of weight , (1) and Lemma 6.4. ❏

Lemma 6.8. For all s, t, we have s 'B t if and only if s 'B′ t.

Proof. Immediate by the definition of TKBO and Lemmas 6.4 and 6.7. ❏

Lemma 6.8 implies the main result of this paper given below.

Theorem 6.9. Every instance of a TKBO is equivalent to an instance using
weights in O(ωωω

). ❏

7 Notes on Implementation and Applications

Knuth-Bendix orders have two main applications: automatic proofs of termi-
nation and first-order theorem proving. In termination tools, one automatically
seeks orders that orient a given set of rewrite rules. For that purpose one can use
the ordering algorithm of Korovin and Voronkov [7] to decide whether a given
set of rules is compatible with a KBO – see also related results by Zankl et al.
in [22].

The transfinite KBO has not been used for this purpose so far. The standard
KBO ordering problem can be reduced to a problem of finding weights of symbols
and precedences satisfying some conditions that turn out to be decidable (and
even solvable in polynomial time). For transfinite KBOs the problem is much
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Table 1. Performance of the TKBO in Vampire on Hard Problems

Order Solvable only by such orders 30 seconds difference 10 seconds difference
KBO 163 32 110
TKBO 342 59 190

more complex, since subterm coefficients create non-linear inequalities and there
is no clear way of searching for ordinals instead of numbers. Our results shed
some light on the problem and essentially show that it is sufficient to search
for “small” ordinals only, but it is not clear also how the search for such small
ordinals can be implemented. This can be a subject of future work.

It is interesting that simple variants of the transfinite KBO have been im-
plemented in theorem provers before paper [11] describing them appeared. The
theorem prover Otter [21] allowed for arbitrary finite subterm coefficient func-
tions. The resulting instances of the KBO were not transfinite since the weights
were always finite. We do not know exactly when such subterm coefficient func-
tions first appeared in Otter, but they were available already in 1994 (see [13],
sections 5.4 and 8.1).

Later in 2004 such orders were implemented in Vampire and immediately
abandoned. The reason was that the use of weight coefficient 2 resulted in integer
arithmetic overflows. We asked Bill McCune [12] whether he observed a similar
behavior in Otter. He replied that Otter uses ordinary C ”int”s (that were 32
bits at the time), yet he “have never noticed it, and no one has ever complained
about it”. He also pointed out that Otter’s weighting is used only for very simple
things, mainly for slight adjustments to the default weight (symbol count).

Since integer overflow results in incorrect ordering comparisons, using weight
coefficients greater than 1 requires the use of arbitrary precision integers. We
decided not to use such weight coefficients in Vampire for efficiency reasons.
Indeed, theorem provers sometimes make millions of KBO comparisons in a
short time, and these comparisons may take considerable time [10]. Therefore,
modern theorem provers use a linear KBO comparison algorithm of [10]. Using
arbitrary-precision integers incurs potential performance degradation both in
time and space.

Nonetheless, a simple special case of TKBO was implemented in Vampire
[15,19] in 1996, and already used in the version of 1999, winning CASC-16 [17]. In
Vampire, comparison of atoms is done in the following way. Each predicate sym-
bol is assigned, in addition to the precedence and weight, a level, which is a non-
negative integer. When we compare two atoms p(s1, . . . , sm) and q(t1, . . . , tn),
we first compare the levels of p and q. If the level of p is greater, we decide
p(s1, . . . , sm) ' q(t1, . . . , tn). If we compare two atoms having predicates of the
same level, we apply the ordinary KBO. One can see that this way of ordering
atoms corresponds to using a TKBO where the weight of a predicate symbol p
is ω · l + w, where l is the level and w the weight of p. This ordering scheme is
also convenient for the following reason: the use of orders in superposition-based
provers normally requires that equalities be smaller than non-equality atoms. We
achieve this by assigning equality level 0 and using positive levels for all other
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Table 2. Use of Strategies in the CASC Version of Vampire

Category TKBO KBO
CNF, non-Horn, with equality (NEQ) 35 28
CNF, Horn, with equality (HEQ) 7 9
CNF, non-Horn, without equality (NNE) 16 3
First-order, with equality (FEQ) 145 79
First-order, without equality (FNE) 10 4

Total 213 123

predicates. This means that Vampire uses a special case of the TKBO with or-
dinals below ω2 and subterm coefficient always set to 1. We will now present
some statistics showing that the use of such ordinals is essential in Vampire’s
performance.

Hard problems. We have a database containing results of running various
proving strategies of Vampire on TPTP problems [18]. We selected all problems
solvable by Vampire and belonging to categories having predicate symbols dif-
ferent from equality (otherwise, the use of levels makes no difference). There are
8019 such problems. This set of problems contains many very hard problems:
652 problems, for example, have the TPTP rating greater than 0.91 which, in
most cases, means that these problems are solvable by only one theorem prover.

The database contains results of 1,351,630 test runs of Vampire on these
problems. Most of the runs use 60 seconds time limits, but there are other runs
ranging from 30 seconds to 3 minutes time limits. It is common in theorem
proving that solvable problems are solved by at least one strategy in a very
short time (a few seconds) but there are many exceptions.

Table 1 shows the number of problems on which KBO is considerably better
than TKBO and vice versa. It turned out that there are 342 problems solvable
only by TKBO and 163 problems solvable only by KBO. That is, the 163 prob-
lems solvable only by the KBO could not be solved using a TKBO where the
subterm coefficient function is not set to 1 and the weight function is not finite.
We also considered problems solvable both by the KBO and the TKBO but on
which the difference between the best KBO and TKBO results is more than
30 seconds (10 seconds). It turned out that on such problems the TKBO also
behaves considerably better than the KBO.

Use of strategies in the CASC version of Vampire. Since 1999, Vampire
won 23 World Champion titles in various divisions of CASC. The 2010 version
won in three divisions. Given a problem, Vampire runs on it a sequence of strate-
gies, depending on the syntactic class of the problem. For each class of problems
(i.e. category) we selected a collection of proving strategies that turned out to
be the best on this class in our test runs before the competition. Each strategy
uses exactly one instance of the KBO or the TKBO.

Table 2 summarises the number of strategies using, respectively, the KBO and
the TKBO. It turns out that the number of strategies using the TKBO is almost
double the number of strategies using the KBO. The difference is especially big
on problems without equality.
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Note that Vampire does not implement the full TKBO with ordinals below ω2

since function symbols only have finite weights. Nonetheless, Vampire was prob-
ably the first first-order prover using a TKBO with infinite ordinals in CASC.
The usage of limited forms of the TKBO in Vampire suggests that other forms
of the TKBO may turn out to be useful for solving hard problems. The TKBO
with finite subterm coefficients turned out to be also very useful in [1] for prov-
ing algebraic problems by combining resolution theorem proving with quantifier
elimination over real closed fields.

Our theoretical results show that one does not need very complex ordinals
to obtain arbitrarily complex instances of the TKBO. However, we think it is
unrealistic to expect TKBOs with arbitrary subterm coefficients to be used in
first-order theorem provers since the overhead of implementing ordinals in O
and especially their natural product is too high. Moreover, as we pointed out,
even the use of finite subterm coefficient functions requires arbitrary precision
integers. However, implementing TKBOs with ordinals below ωk for small k
(sequences of k non-negative integers ordered lexicographically) and subterm
coefficients set to 1 seems relatively inexpensive and requires more experiments
to be understood. We believe it makes sense to make experiments in this area
since in practice in first-order provers KBO behaves much better than LPO.
For example, Waldmeister [4] selects LPO only on a small handful of problems
(Waldmeister implements both kinds of orderings and is known for its extensive
experiments with finding best orderings and strategies).

One potential use of instances of the TKBO below ωk would be to assign large
weights to symbols “close” to the goal. The theorem prover E [16] has a similar
strategy (though based on finite ordinals only); likewise, Vampire chooses the
level of a predicate symbol based on the “distance” between the symbol and
symbols occurring in the goal. However, to the best of our knowledge nobody
so far used TKBO instances in which function (not predicate) symbols have
infinite weights. Checking whether a potential gain from using TKBOs outweighs
performance overhead arising from their use is an interesting subject for future
work.

Yet another potential use of the TKBO is automated termination proofs of
sets of rewrite rules that are currently outside the scope of termination tools.
Such set R is given for example as an early formalisation of the battle of Hydra
and Hercules [6]. The system R, introduced in [3], withstands any attempt so
far in proving its termination automatically. The reason is that the termination
proof necessarily needs interpretations into O [14]. Due to our results we cannot
hope to define generalisations of TKBO that are compatible with R. Even if
we would allow for ordinal weights greater or equal to ε0, our result imply that
we cannot use this additional power. However, the TKBO may be successfully
applied on restrictions.

It is also worth noting that the use of a TKBO with ordinals below ω3 was
essential in the applications of Vampire in interpolation [9] and loop invariant
generation [8].
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8 Conclusion

We proved two main results related to the use of transfinite Knuth-Bendix orders
with finite signatures. First, we proved that any such order with finite subterm
coefficients is equivalent to an order using ordinals below ωω, that is, finite
sequences of natural numbers of a fixed length. Second, we proved that any such
order is equivalent to an order using ordinals below ωωω

. We also proved that the
ωω and ωωω

bounds are tight. Our results show that transfinite Knuth-Bendix
orders based on arbitrarily complex ordinals below ε0 can be replaced by such
orders using simpler ordinals. For example, when searching for an instance of
the TKBO ordering a rewrite rule system, it is enough to search only for such
instances using ordinals below ωωω

.
We also discuss application and implementation issues of extensions of the

Knuth-Bendix orders in first-order theorem provers.

Acknowledgements. We thank reviewers, including Uwe Waldmann, for point-
ing out technical problems in the previous version of the paper.
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École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname@epfl.ch

Abstract. We describe a system that integrates the SMT solver Z3 with
the Scala programming language. The system supports the use of the
SMT solver for checking satisfiability, unsatisfiability, as well as solution
enumeration. The embedding of formula trees into Scala uses the host
type system of Scala to prevent the construction of certain ill-typed con-
straints. The solution enumeration feature integrates into the iteration
constructions of Scala and supports writing non-deterministic programs.
Using Z3’s mechanism of theory extensions, our system also helps users
construct custom constraint solvers where the interpretation of predi-
cates and functions is given as Scala code. The resulting system pre-
serves the productivity advantages of Scala while simplifying tasks such
as combinatorial search.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers have in the past few years become
very powerful tools. Their efficient search heuristics have made them applicable
to a wide variety of problems. However, they are still primarily used by expert
users that have substantial understanding of constraint solvers, their languages
and interfaces. Our aim is to make SMT solving accessible to a wider audience
by integrating it into a familiar programming language.

This paper presents ScalaZ3, a library to bring the power of the SMT solver
Z3 [3] to users of the Scala programming language [4]. We identify two types of
clients for our system:

– general programmers, who are not necessarily familiar with SMT, but who
may want to use constraint solving as a library;

– SMT power users, who can use it in a way similar to how they would in C,
yet will still benefit from a concise language with a strong type system.

2 Implicit Computation Using Z3

Our system enables programmers to state the properties that the values should
satisfy instead of how to compute them. In that sense, it supports a form of
implicit computation. We illustrate this approach through several examples.
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Mixing searching with solving. Consider the following satisfiability problem:
Find three integers x, y, z such that x > 0, y > x, 2x+3y ≤ 40, x·z = 3y2, and y
is prime? We know of no decidable logic in which this problem can be naturally
expressed. As an alternative to applying a decision procedure, we can search for
a solution. Using the system we present in this paper, we can concisely program
the search in Scala as follows:

val results = for(
(x,y) ← findAll((x: Val[Int], y: Val[Int]) ⇒ x > 0 && y > x && x ∗ 2 + y ∗ 3 ≤ 40);

if(isPrime(y));
z ← findAll((z: Val[Int]) ⇒ z ∗ x === 3 ∗ y ∗ y))

yield (x, y, z)

This for-comprehension constructs an iterator of integer triples. The iterator
ranges over all solutions (in general, it can be infinite, here there are 8 solutions).
The for-comprehension interleaves invocations of the SMT solver Z3 —the calls
to findAll— and applications of Scala functions —here isPrime, whose definition
we omit. Because findAll works by lazily generating a stream, Z3 is only invoked
as more values are requested. For instance, if we only wish to check whether a
solution exists, we can test results.isEmpty and only one solution will be com-
puted. Similarly, when y is not prime, the inner constraint is not dispatched to
the solver. Note that this constraint is, despite its appearance, in linear arith-
metic, since x and y are known at the time of its construction. Note that the only
constructs that a Scala programmer needs to learn to use the above example is
the findAll function, and the Val[ ] type constructor. The remaining constructs
are a standard part of Scala [4].

N-Queens puzzle. We consider now the problem of solving the N-Queens
puzzle: In how many ways can N queens be placed on an N × N checkerboard
such that they do not attack each other? The following program encodes the
problem using integer arithmetic and invokes the solver to count the number of
solutions:

val z3 = new Z3Context(”MODEL” → true)
val N = 8
val cols = (0 until N) map { ⇒ IntVar() } // column vars
val diffCnstr = Distinct(cols : ∗) // all queens on distinct cols
val boundsCnstr = for (c ← cols) yield (c ≥ 0 && c < N) // cols are within bounds
val diagonalsCnstr = // no two queens on same diagonal

for (i ← 0 until N; j ← 0 until i) yield
((cols(i) − cols(j) !== i − j) && (cols(i) − cols(j) !== j − i))

z3.assertCnstr(diffCnstr)
boundsCnstr map (z3.assertCnstr( ))
diagonalsCnstr map (z3.assertCnstr( ))
println(z3.checkAndGetAllModels.size) // prints 92

In this example, we use ScalaZ3 with the same degree of control we would have
with the native interface: we build the context explicitly, push constraints, etc.
We start by declaring a list of Z3 constants; the i-th constant representing the
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(integer) column value of the queen that will be placed on row i. We then specify
the constraints, stating that each queen is on a different column, row and diago-
nal. Finally we assert these three constraints in the current context, and invoke
the solver to retrieve the stream of all solutions that satisfy the constructed
formulas. Most variables in this program are of the type Tree yet type inference
allows us to keep this transparent. Thanks to operator overloading, the meaning
of the constraints is clear from the code.1

Calendar computation. Implicit computations are useful not only as a form
of constraint solving, but also in cases where writing code that matches a precise
specification may be hard; in such cases we can sometimes replace explicit code
by an implicit definition. Our next example shows how we can use ScalaZ3 to
compute date differences while accounting for leap years.2 The following program
takes as input a number of days totalDays and computes the year and the day
in the year that correspond to totalDays since January 1st, 1980.

val totalDays = 10593
val originYear = 1980

val (year, day) = choose((year: Val[Int], day: Val[Int]) ⇒ {
def leapYearsUntil(y : Tree[IntSort]) = (y − 1) / 4 − (y − 1) / 100 + (y − 1) / 400

totalDays === (year − originYear) ∗ 365
+ leapYearsUntil(year) − leapYearsUntil(originYear) + day &&

day > 0 && day ≤ 366
})

println(year + ”, ” + day) // prints 2008, 366

Note that we defined a helper method leapDaysUntil which produces a tree ex-
pressing the number of leap years between year 1 and y. This is possible because
this auxiliary definition doesn’t affect the type of the predicate used in the call
to choose. We can then use this method in our predicate to express conveniently
the number of total days between January 1st, 1980 and the day specified by
year and day.

3 Design and Implementation

ScalaZ3 is implemented as a Scala library that connects to Z3’s C interface
through the Java Native Interface [2], and consists of just over 5,000 lines of
a combination of Scala, Java, and C code. Although it is possible to use ScalaZ3

as a simple Scala view of the C or OCaml interface of Z3, there are several
features that enable more productive combinations of the two systems.

1 We use the operators === and !== to construct ASTs because == and != can only
return booleans in Scala.

2 A piece of code that incorrectly performed this computation is famously responsible
for a bug that caused thousands of portable media devices to freeze in 2008.
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abstract class Tree[+A >: Bottom <: Top]

sealed trait Top
trait IntSort extends Top
trait BoolSort extends Top
trait BVSort extends Top
trait ... extends Top
trait SetSort extends Top
trait Bottom extends IntSort with BoolSort with BVSort with ... with SetSort

Top

Bottom

IntSort BoolSort
...

SetSort

Fig. 1. Soft typing system for the domain specific language

Domain specific language. There are two possible representations of Z3 ab-
stract syntax trees (ASTs) in ScalaZ3. The most basic is a Z3AST class that en-
capsulates a C pointer to the internal representation. This is used by all functions
that are direct mappings to the C interface. The other representation encodes
Z3 ASTs into typed Scala syntax trees. These trees can be combined using oper-
ators with which programmers are familiar, such as &&, +, as well as numerical
constants, for instance. The examples throughout this paper are all written us-
ing this domain specific language (DSL), which is enabled by adding the import
statement import z3.scala.dsl. .

The representations are mutually compatible, and through the mechanism of
implicit conversions [4, Chapter 21], the Scala compiler automatically inserts
calls to conversion functions where needed. The DSL trees are typed using a
soft-typing approach to prevent the construction of some ill-typed terms. Fig-
ure 1 shows the type system, which relies on Scala generic types and multiple
inheritance. For instance, the < operator defined on trees of integer sort has the
following signature:

def <(that: Tree[ <: IntSort]): Tree[BoolSort]

This declaration indicates that < expects an operand of a type equal to (or
a subtype of) Tree[IntSort] and returns a tree of type Tree[BoolSort]. Because
Z3ASTs are by nature untyped and should be usable in combination with the
DSL, they are converted to trees of type Tree[Bottom]. Because trees are covari-
ant in their type parameter, such trees can be used in place of any type. In these
cases, the library performs a runtime check to ensure that the types match, so
as to avoid triggering an error in the Z3 native library.

High-level model navigation. One key feature of the system is the ability
to evaluate the model of a Z3 constant as a Scala type. This is achieved by a
generic method whose signature is:

def evalAs[T](ast: Z3AST)(implicit extr: (Z3Model, Z3AST) ⇒ Option[T]): Option[T]

It returns an Option type because the model may not define a value for the
desired tree. The definition refers to an implicit parameter extr. Implicit param-
eters are parameters that can be omitted at the call-site, and that will be filled
according to objects that are marked as implicit in the scope. Here, extr is the
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function responsible for building a value of the proper Scala type from a Z3
model and constant. How this is done depends on the requested type. ScalaZ3

thus defines such functions for base types, and Scala’s mechanism for resolv-
ing implicits automatically inserts the right definitions according to the type T.
Because implicit resolution is done at compile-time, invocations of evalAs with
unsupported types result in a compile error. Experienced users can also extend
this mechanism by writing their own extractors, for instance to automatically
build algebraic data types such as lists or trees from models. ScalaZ3 also pro-
vides methods to recover models of uninterpreted function symbols or arrays,
and to wrap them in an object that can then be used as a Scala function.

The choose, find and findAll constructs. These three constructs are defined
as part of the domain specific language. choose attempts to find one assignment
to a constraint, and throws an exception if it could not, while find returns an
Option type using None to describe failures. findAll enumerates all models, as in
the introductory example. They all take a predicate that describes the constraint
as an argument. The particularity of these functions is that all the interaction
with Z3 is completely transparent. Similarly to evalAs, choose and findAll rely on
implicit arguments to build Z3 trees of the right kind and to retrieve values from
the models. Additionally, the type constructor Val[ ] encapsulates more implicit
conversion functions to build ASTs from it. The complete signature for (the one
argument version of) findAll is as follows:

def findAll[T](predicate : Val[T] ⇒ Tree[BoolSort])
(implicit cons : T ⇒ Tree[Bottom],

extr : (Z3Model, Z3AST) ⇒ T) : Iterator[T]

In the implementation, an iterator is constructed by maintaining the Z3 context
and successively pushing the negation of the previous model as a new constraint
when the next model is requested. Since iterators are standard in Scala, we can
use all the usual higher-order constructs on the result, including for instance
map, filter or for-comprehensions.

4 Theory Plugins

Z3 supports user-defined theory plugins ; users can integrate their decision pro-
cedure into Z3’s DPLL engine by specifying callbacks that are invoked by Z3 on
events such as context pushes and pops, newly propagated equalities, etc. We
now give two examples of how this mechanism can be exploited through ScalaZ3.

Theory plugin for sets with cardinality constraints. We implemented a
decision procedure for Boolean Algebra with Presburger Arithmetic, a logic that
supports sets with cardinality constraints,3 as a full-fledged theory extension to
Z3 using ScalaZ3 [5]. The details of the implementation are too complex to be
presented here, but we shortly illustrate here some of the programming language
aspects that we believe simplified this development. Scala is also an object-
oriented language, and following that paradigm, user-defined theory plugins are
3 Z3 natively supports sets, but without the cardinality operator.
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created by subclassing a class Z3Theory defined as part of ScalaZ3. A definition
such as the following is all that is needed to add a theory solver to Z3’s DPLL
engine:

class BAPATheory(val z3: Z3Context) extends Z3Theory(z3, ”Sets with cardialities”) {
// User−defined sorts, constant values and functions:
val setSort = mkTheorySort(”setSort”)
val emptySet = mkTheoryValue(”empty”, setSort)
// Declares a unary function from sets to integers:
val cardinality = mkTheoryFuncDecl(”card.”, setSort, z3.mkIntSort)

// This method is automatically called when a new term enters the logical context:
override def newApp(ast: Z3AST) : Unit = ast.getKind match {

case Z3AppAST(‘cardinality‘, arg) ⇒ processCard(arg)
case ⇒ ...

}}

The interaction with Z3 is done by overriding the right methods, like newApp
in the example above, which replace the callback functions used by the C inter-
face. Theory plugins typically need to manipulate many abstract syntax trees
communicated from Z3. To simplify such tasks, ScalaZ3 defines extractors, which
are functions that can be used in pattern-matching expressions [1]. The newApp
method contains an example, where with a single line of code we test whether
a Z3 tree corresponds to an application of the cardinality function and at the
same time bind the variable args to its argument.

Procedural attachments. ScalaZ3 provides special support for procedural at-
tachment extensions. Procedural attachments are a special kind of theory plugins
where the interpretation of ground terms is provided as executable functions. To
illustrate their use, consider the code below, where we define two predicates and
one function over strings:

val z3 = new Z3Context()
// Defines a new theory of strings with two predicates and one function symbol.
val strings = new ProceduralAttachment[String](z3) {

val oddLength = predicate(s ⇒ s.length % 2 == 1)
val isSubstr = predicate((s1,s2) ⇒ s2.contains(s1))
val concat = function((s1,s2) ⇒ s1 + s2)
}

From this declaration, ScalaZ3 constructs a Z3 theory plugin for a new sort
representing strings and creates the proper predicate and function symbols. It
also registers callbacks such that any ground term built over string constants is
1) translated back into Scala, 2) evaluated using the function definitions passed
by the user, 3) converted back into Z3 trees. A usage example follows:

import strings.
val s1, s2 = variable
z3.assertCnstr(s1 === ”hello” && (s2 === ”world” || s2 === ”moon”)

&& oddLength(concat(s2, s1)) && isSubstr(”low”, concat(s1,s2)))
println(z3.check) // unsatisfiable
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The import statement brings into scope not only the predicate and function
symbols, which can then be used as part of the domain specific language, but
also helper functions such as variable, which creates a Z3 tree for a variable
representing a string, as well as an implicit conversion function which converts
any string into a tree node representing its constant value. As a result, the
constraints can be expressed very naturally. Using Z3’s DPLL engine to assign
truth values to literals, the system concludes that the constraints cannot be
satisfied. Procedural attachment theories are in general not complete and may
return unknown when some variables never become ground. They remain very
useful extensions, though, for instance when all variables are known to range
over a finite domain.

5 Conclusions

We have demonstrated that it is possible and fruitful to smoothly integrate a
modern programming language and a powerful SMT solver. Our system en-
ables users to dynamically construct constraints, while supporting the syntax
of the underlying programming language. It enables combinatorial search that
combines Z3’s constraint solving with explicit tests and enumeration in the pro-
gramming language, as well as the creation of custom theory solvers based on
executable functions.

We have found a number of uses for ScalaZ3 in our research group, including
several program verification tools under development, as well as a new theory
plugin for Z3 [5]. We have also recently received interest from other groups to
use and contribute to ScalaZ3. Our implementation is freely available at:

http://lara.epfl.ch/w/ScalaZ3
We hope that the community will join the effort in enhancing the implementation
further. The current version includes mappings for all Z3 operations (including
manipulation of abstract data types, arrays and bitvectors, for instance), so
expert users can already use it as a substitute for the C interface. Among the
particularly desirable future extensions are: high-level support for further data
types, parallel invocation of Z3 instances, and reconstruction of proof objects.
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Abstract. General E-unification is an important tool in cryptographic
protocol analysis, where the equational theory E represents properties
of the cryptographic algorithm, and uninterpreted function symbols rep-
resent other functions. Some important properties are XOR, Abelian
groups, and homomorphisms over them. Polynomial time algorithms ex-
ist for unification in those theories. However, the general E-unification
problem in these theories is NP-complete, and existing algorithms are
highly nondeterministic. We give a mostly deterministic set of inference
rules for solving general E-unification modulo XOR with (or without) a
homomorphism, and prove that it is sound, complete and terminating.
These inference rules have been implemented in Maude, and are being
incorporated into the Maude NPA. They are designed in such a way so
that they can be extended to an Abelian group with a homomorphism.

1 Introduction

In symbolic cryptographic protocol analysis, messages are represented as terms.
Actions of principals involved in the protocol are represented with rules, indicat-
ing that if a principal receives a message with a given pattern then the principal
will send out a message based on the message received. Abilities of malicious
intruders are represented by rules indicating how an intruder can manipulate
data, where variables in the pattern indicate that the principal will accept any
message of that type. A goal state represents an attack, and an analyzer decides
whether the goal state is reachable. Generally, the analysis involves working back
from the goal state to initial states. If this is possible, then an attack exists. Ini-
tial methods of cryptographic protocol analysis were based on the free algebra
model[8]. In this method of analysis, two messages are the same only if they are
represented by the same term. In this case, during the search back from the goal,
a message pattern representing a received message will be compared against a
message pattern representing a sent message. Syntactic unification is used to
compare them against each other and find the intersection of the patterns.

However, the free algebra model is not precise enough to model properties of
cryptographic algorithms[6]. For example, cryptographic algorithms may involve
XOR operations, and therefore two messages may be equivalent in the theory
� Both authors are supported by NSF Grant CNS 09-05378.
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of XOR but not syntactically equivalent. Abelian groups are also important,
because they can model products, such as the product of exponents in Diffie
Hellman. Another common property of cryptographic algorithms is a homomor-
phisms over an XOR or an Abelian group operator. For example, RSA, has the
property m1

em2
e = (m1m2)e, where raising to the power of e is a homomor-

phism, and the product of the messages forms an Abelian group. Unfortunately,
the free algebra approach fails to detect attacks in protocols using cryptographic
algorithms with these properties. Therefore, to conduct a more precise analysis,
unification must be performed modulo these equational theories.

In conclusion, unification algorithms for the theory of XOR (with homomor-
phism) and Abelian groups (with homomorphism) are essential for cryptographic
protocol analysis. It is important that these algorithms are efficient. Efficient uni-
fication algorithms have been developed for these theories[4,7]. However, crypto-
graphic protocol analysis also must deal with uninterpreted function symbols. So
it is important to have unification algorithms for these theories in combination
with uninterpreted function symbols. When uninterpreted function symbols oc-
cur in combination with these theories, the complete set of unifiers is not always
a singleton, but it is finite. It is crucial that the unification algorithm creates
a complete set of unifiers that is as small as possible. If this set is too large,
the search space of searching for an attack quickly blows up and cryptographic
protocol analysis becomes infeasible.

The goal then is to build equational unification algorithms for these theories
that are both efficient and create a small complete set of unifiers. There are two
standard techniques for dealing with these equational theories in combination
with uninterpreted function symbols. Let us consider the theory of exclusive OR
in particular, because the other theories suffer from the same issues. One way to
deal with XOR with uninterpreted function symbols is to create an efficient algo-
rithm to solve XOR unification, and an efficient syntactic unification algorithm
for uninterpreted function symbols and then to apply a standard combination
algorithm to combine the theories[1]. The second technique is to create a conver-
gent equational theory and apply Narrowing to solve the unification problem[5].
Both of these methods are highly nondeterministic. They are not very efficient
in practice, but worse they build a highly redundant complete set of unifiers.

In this paper, we try to overcome these problems by devising a set of infer-
ence rules that is simple, easy to implement, very deterministic in practice, and
produces a small complete set of unifiers. We can compare our work to [10].
That work is based on the combination method, and also has the goal of an
efficient unification algorithm for XOR unification. We think our inference rules
are simpler and easily extended to other equational theories.

We have developed a sound, complete and terminating set of inference rules for
XOR with homomorphism, along with uninterpreted function symbols. We have
implemented our inference rules in Maude[3], and they are being incorporated
into the NRL protocol analyzer[6]. These inference rules also apply to XOR
without homomorphism. We have designed them in such a way that they can be
extended to Abelian groups.



XOR with homomorphism Unification 409

2 Basic Definitions

Here we give some basic terminology which we will use in the following sections.
Let V be a set of variables, and F be a finite set of function symbols, where a
constant is a function with 0 arguments. We say t is a term if t ∈ V, or t has the
form f(t1, t2, · · · , tn), where f ∈ F, ti is a term.

We use T to denote the set of all terms. If t is a term, we use Sym(t) to
denote the multi-set of symbols occurring in t. We use V ars(t) to denote the
set of variables occurring in t, here t can be a term, or a set of terms. Top(t)
denotes the top symbol of term t. i.e. Top(f(t1, t2, · · · , tn)) = f . If t is a variable
x, Top(x) = x. Let t be a term and S be a set of terms. Top(t; S) denotes the
set of all terms in Swhich have top symbol Top(t).

The following are standard definitions[2].
A substitution σ is a mapping from V to the set of terms, which can be rep-

resented explicitly by a set of bindings of variables, i. e. {x1 �−→ t1, x2 �−→
t2, · · · , xn �−→ tn} represents the substitution which maps xi to ti for i =
1, 2, · · · , n and which maps y to y if y �= xi for all i = 1, 2, · · · , n. When we
apply σ to a term t, we denote the result as tσ. If t is a variable xi, xiσ = ti; if t
has the form f(s1, s2, · · · , sn), then tσ = f(s1σ, s2σ, · · · , snσ). The composition
of two substitutions σ and θ, denoted σθ is defined by t(σθ) = (tσ)θ for each
term.

A set of identities E is a subset of T×T. We write identities in the form s ≈ t.
An equational theory =E is induced by a set of identities E and it is the least
congruence relation (i.e. reflexive, symmetric, transitive and monotonic) on T
that is closed under substitution and contains E.

If two terms, t and s, are equal with respect to a theory E, we write it as
t =E s .

Definition 1 (E-unification problem, E-unifier, E-unifiable). For a given
signature F and a set of identities E, an E-unification problem over F is a
finite multiset of equations

Γ = {s1 =?
E t1, s2 =?

E t2, · · · , sn =?
E tn}

between terms. A substitution σ such that siσ =E tiσ, i = 1, 2, · · · , n is called
an E-unifier or a solution of Γ . UE(Γ ) is the set of all E-unifiers of Γ . A
unification problem Γ is called E-unifiable iff UE(Γ ) �= ∅. If E is the empty
theory, we call the E-unification problem a syntactic unification problem.

Let Γ = {t1 =? s1, · · · , tn =? sn}, we use VΓ to denote the set of variables in Γ .
And for σ = {x1 �−→ t1, x2 �−→ t2, · · · , xn �−→ tn}, we call the set of equations
{x1 =? t1, x2 =? t2, · · · , xn =? tn} the solved form, which we will denote by [σ]

For an E-unification problem Γ , two substitutions σ and θ are called equal
with respect to Γ , denoted by σ = |EΓ θ, if xσ =E xθ for every variable in Γ .
A substitution σ is more general modulo E with respect to Γ than another
substitution θ, denoted σ ≤ |EΓ θ if there exists a substitution τ , such that for
every variable x in Γ , xστ =E xθ. Note that the relation ≤ is a quasi-ordering,
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i. e. reflexive and transitive. We will omit Γ or E where Γ or E is clear from the
context.

Definition 2 (Complete Set of E-Unifiers). A complete set of E-
unifiers of an E-unification problem Γ is a set C of idempotent E-unifiers
of Γ such that for each θ ∈ UE(Γ ) there exists σ ∈ C with σ ≤E θ|VΓ . We call a
complete set C of E-unifiers minimal if two distinct elements are incomparable
w.r.t. ≤E, i.e. if σ ≤E θ and σ, θ ∈ C then σ = θ.

A minimal complete set of unifiers for the syntactic unification problem Γ has
only one element if it is not empty. We use mgu(Γ ) to denote this unifier.
Without loss of generality, we suppose all variables in mgu(Γ ) are in VΓ .

For some equational theory E, we will call two E-unification problems equiv-
alent modulo E if they have the same set of unifiers modulo theory E.

Definition 3 (Conservative Extension). Let E be an equational theory, we
say a multi-set of equations Γ ′ is a conservative E-extension of another
multi-set of equations Γ , if any solution of Γ ′ is also a solution of Γ and any
solution of Γ can be extended to a solution of Γ ′, which means for any solution
σ of Γ , there exists θ whose domain is the variables in V ars(Γ ′)/V ars(Γ ) such
that σθ is a solution of Γ ′.

If sθ �= tθ syntactically, we say the substitution θ satisfies the disequation s �=? t.

3 Exclusive OR with Homomorphism

In this section, we will consider the theory of Exclusive OR and Homomorphism,
together, we use EXH to denote this theory.

3.1 Basic Notation

Here the signature F is composed of {0,⊕, h} ∪ F′, where 0 is a constant, ⊕ a
binary symbol, h a unary function symbol and F′ a collection of uninterpreted
function symbols, with the following properties:
– (x⊕ y)⊕ z ≈ x⊕ (y ⊕ z) [Associativity];
– x⊕ y ≈ y ⊕ x [Commutativity];
– x⊕ 0 ≈ x [Existence of Unity];
– x⊕ x ≈ 0 [Nilpotence];
– h(x⊕ y) ≈ h(x)⊕ h(y) [Homomorphism of h] .

We say a term t is pure, if ⊕ /∈ Sym(t) and h does not occur under the top
symbol of t. We call a term h-term if the top function symbol of this term is
h. In a set of equations Γ , a free variable is the variable which does not occur
under a uninterpreted function symbol or in h-term. A term t is in pure sum
form if t has the form t1 ⊕ t2 ⊕ · · · tn, and: (i) for every i, ti is a pure term, (ii)
in {t1, · · · , tn}, there is at most one h-term and (iii) n > 0. We say an equation
S =? 0 is in pure sum form, if S is a pure sum.

Because of the properties of Exclusive OR, we only consider equations of the
form s =? 0 where s is a term. So for convenience, we will write an EXH-
unification problem as {s1 =? 0, s2 =? 0, · · · sn =? 0}, where each si is a term.
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3.2 Rewriting System REXH

Before we introduce our inference system, we give a convergent rewriting system
REXH for EXH modulo associativity and commutativity:

– x⊕ x→ 0;
– x⊕ 0 → x;
– h(x)⊕ h(y) → h(x⊕ y);
– h(0) → 0;

Here we omit the extensions of x⊕ x→ 0 and h(x)⊕ h(y) → h(x⊕ y).
In our inference system, all terms will get reduced by REXH modulo AC. So

unless stated, all the terms are in reduced form by REXH .

Lemma 4. Any set of equations Γ can be purified to be a set of equations Γ ′ in
pure sum form, which is a conservative extension of Γ .

Proof. We use the following inference rule, which we call Purify, to prove this:

Γ ∪ {S ⊕ t[s] =? 0}
Γ ∪ {S ⊕ t[x] =? 0} ∪ {x⊕ s =? 0}

where Γ is a set of equations, S a term, t a pure term, s a proper subterm of t,
with Top(s) ∈ {⊕, h}, and x is a fresh variable.

Purification (the exhaustive application of Purify) on a unification problem
Γ will halt in a pure sum Γ ′, which is a conservation extension of Γ . �!

Without difficulty, we have the following lemma:

Lemma 5. Let Γ and Γ ′ be two unification problems, where Γ ′ is the result of
applying Purify on Γ . Then Γ ′ is Conservative Extension of Γ .

From now on, we will assume that every equation has the form S =? 0, where
S is a pure sum. In the following sections, we will use Γ to denote a set of
equations, S to denote a pure sum, s, t, si, ti to denote pure terms, x, xi, y, yi,
v, vi, etc. to denote variables, σ, θ to denote substitutions.

3.3 Inference System IEXH

For efficiency and convenience, in our inference procedure, we will use a triple
Γ‖Δ‖Λ, where ‖s are used to separate these three sets. In Γ‖Δ‖Λ, Γ is a uni-
fication problem, a set of the form {S1 =? 0, S2 =? 0, · · · , Sn =? 0}, where each
Si is a pure sum. Δ is a set of disequations, and Λ is a set of equations. Every
disequation in Δ has the form f(s1, · · · , sn) ⊕ f(t1, · · · , tn) �=? 0 or 0 �=? 0,
where f is an uninterpreted symbol from Γ and si, ti are terms. Δ is used to
track non-deterministic choices in our inference system. Every time we make a
choice, we will add a disequation into Δ. Some equation will be added to Λ if a
variable in Γ was solved during the inference procedure. All the equations in Λ



412 Z. Liu and C. Lynch

will have the form x =? S where x is a solved variable, which means that x does
not occur in Γ . Δ and Λ are both empty initially.

For convenience, we call Γ an equation set, Δ a disequation set, Λ a solved
equation set and Γ‖Δ‖Λ a set triple. We say a substitution θ satisfies the set
triple Γ‖Δ‖Λ, if θ satisfies every equation in Γ and Λ, and every disequation in
Δ, and write that relation as θ � Γ‖Δ‖Λ. Similarly, we call Γ‖Λ a set pair, and
a substitution θ satisfies the set pair Γ‖Λ if θ satisfies every equation in Γ and
Λ. We use Fail to be a special set triple with no solution.

IEXH contains four necessary rules: Trivial, Variable Substitution, N-
Decomposition and Annulization; and six auxiliary rules used for efficiency.
Trivial, Variable Substitution, Annulization and the auxiliary rules are deter-
ministic, and N-Decomposition is nondeterministic. In our inference procedure,
there are three priorities for applying rules. The rules with the highest priority
are Trivial, Variable Substitution and the auxiliary rules. They will be applied
whenever they can be applied. The rule with the second highest priority is N-
Decomposition. The rule with lowest priority is Annulization. Rules can only be
applied if no rules with higher priority can be applied.

If Γ = ∅, then Λ is a solution. Exhaustively applying the inference rules to
Γ ||∅||∅ yields a complete set of EXH-unifiers of Γ .

In this section, we introduce the necessary rules.
Trivial

Γ ∪ {0 =? 0}‖Δ‖Λ
Γ‖Δ‖Λ

Variable Substitution

(Γ ∪ {x⊕ S =? 0})‖Δ‖Λ
(Γσ)‖(Δσ)‖Λσ ∪ {x =? S}

where σ = [x �−→ S]. Here we need the conditions: x is free in Γ ∪ x ⊕ S =? 0
and either (i) S has no h-term, or (ii) all equations of the form x⊕ T =? 0 in Γ
contain an h-term; Note: (a)If S is empty, then we set σ = [x �−→ 0]. (b) If the
resulting equation set is not pure1, Purification is immediately applied to the
conclusion of the inference.

If we do not check the first condition (i), the procedure may not terminate.

Example 31. Find the solution of {x⊕ f(z) =? 0, x⊕ y ⊕ z =? 0}.
If we solve x first, we get [x→ f(z)] and {f(z)⊕y⊕z =? 0}. At this time, y is

the only free variable, so we solve y and get the answer [x→ f(z), y → z⊕f(z)].
If we had chosen y first, we would get the same result.

The next inference rule N-Decomposition is nondeterministic. When we apply N-
Decomposition, we get two new independent problems, whose combined solutions
are the solutions of the original problem. We will use

∨
to separate these two

problems.

1 This can only happen by application of the rewrite rule h(x)⊕ h(y)→ h(x⊕ y)
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N-Decomposition
If f(s1, s2, · · · , sm)⊕ f(t1, t2, · · · , tm) �=? 0 /∈ Δ,

Γ ∪ {S⊕ f(s1, s2, · · · , sm)⊕ f(t1, t2, · · · , tm) =? 0}‖Δ‖Λ
(Γσ ∪ {S =? 0}σ)‖(Δσ)‖(Λσ ∪ [σ])

∨
Γ ′

1‖Δ′
1‖Λ

.

where (i) σ = mgu(s1 =? t1, s2 =? t2, · · · , sm =? tm) (ii) Γ ′
1 = Γ ∪ {S ⊕

f(s1, s2, · · · , sm) ⊕ f(t1, t2, · · · , tm) =? 0}. (iii) Δ′
1 = Δ ∪ {f(s1, s2, · · · , sm) ⊕

f(t1, t2, · · · , tm) �=? 0}
Example 32

Γ = {x⊕ f(y)⊕ f(z) =? 0, y ⊕ f(x)⊕ f(w) =? 0}

We can do nothing via Variable Substitution, so choose two of the pure terms in
one equation to apply the N-Decomposition rule.

{x⊕ f(y)⊕ f(z) =? 0, y ⊕ f(x)⊕ f(w) =? 0}‖∅‖∅
=⇒ (N-Decomposition)

{x =? 0, z ⊕ f(x)⊕ f(w) =? 0}‖∅‖{y =? z}∨
Γ1‖Δ1‖∅

∗=⇒ (several steps by Variable Substitution)

∅‖∅‖{x =? 0, y =? f(0)⊕ f(w), z =? f(0)⊕ f(w)}
∨

Γ1‖Δ1‖∅

where

Γ1 = {x⊕ f(y)⊕ f(z) =? 0, y ⊕ f(x)⊕ f(w) =? 0}
Δ1 = {f(y)⊕ f(z) �=? 0}

Here we get one solution σ1 = [x �−→ 0, y �−→ f(0)⊕ f(w), x �−→ f(0)⊕ f(w)]
and another equation set Γ1 and disequation set Δ1. We apply N-Decomposition
to Γ1‖Δ1‖∅, and use a similar procedure to get the second solution σ2 = [x �−→
f(0)⊕ f(z), y �−→ 0, w �−→ f(0)⊕ f(z)] (We will prove that the Δ can be thrown
away at the end). So σ1 and σ2 are two solutions to this problem. The third
branch fails, because no inference rule can be applied to it.

The fourth rule is based on the homomorphism property h(0) =EXH 0:
Annulization

(Γ ∪ {S⊕ h(t) =? 0})‖Δ‖Λ
(Γ ∪ {S =? 0} ∪ {t =? 0})‖Δ‖Λ

if (i) no other rules can be applied, and (ii)there are no uninterpreted function
symbol on the top in Γ and S2, Here S may be empty.

Now we give an example of how to apply Annulization. For convenience we
will ignore Δ and Λ.
2 If there are uninterpreted function symbols and no other rules apply then there is

no solution.
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Example 33

Γ = {x⊕ h(y) =? 0, y ⊕ h(z) =? 0, z ⊕ h(x) =? 0}

In Γ , no variables are pure and N-Decomposition cannot be applied. We can
only apply Annulization: in three steps, get x = 0, y = 0, z = 0. So the solution
is [x→ 0, y → 0, z → 0].

3.4 Termination, Soundness and Completeness

In this subsection, we will give the proof of the termination, soundness and
completeness of our inference system.

Before giving the proof, we define directed conservative extension:

Definition 6 (Directed Conservative Extension). Let Γ‖Δ‖Λ and
Γ ′‖Δ′‖Λ′ be set triples. Γ ′‖Δ′‖Λ′ is called a directed conservative exten-
sion of Γ‖Δ‖Λ if for any substitution θ, such that θ � Γ‖Δ‖Λ, then there
exists σ, whose domain is the variables in V ars(Γ ′∪Λ′)/V ars(Γ ∪Λ), such that
θσ � Γ ′‖Δ′‖Λ′.

This is one direction of conservative extension, but with respect to triples not
only Γ . We will used it to prove the inference rules never lose any solutions.

Next, we give some notation and definitions about an abstract inference rule
called Simplifier, which covers all our concrete auxiliary rules, given later.

We give two mappings here: P and μ. We call P : P(Γ ) → {True, False} a
property of Γ . and μ : P(Γ‖Δ‖Λ) → N a measurement of Γ‖Δ‖Λ, where N is
a well-ordered set.

Definition 7 (Preservative rules and Simplifiers)
Let E be an equational theory. Let I be an inference rule of the following form:

Γ‖Δ‖Λ
Γ ′‖Δ′‖Λ′

If Γ‖Δ‖Λ has the same set of solutions as Γ ′‖Δ′‖Λ′ and every solution of
Γ ′‖Λ′ is a solution of Γ‖Λ, and Γ ′‖Δ′‖Λ′ is a directed conservative extension of
Γ‖Δ‖Λ, we say I is E-equation preservative. If for some property P , P (Γ ′) is
true whenever P (Γ ) is true, we say I is P -preservative. If μ is a measurement
such that μ(Γ‖Δ‖Λ) > μ(Γ ′‖Δ′‖Λ′), we say I is μ-reducing. If I is E-Equation
Preservative, P -preservative and μ-reducing, we say I is a (P,E, μ)-Simplifier.

If P , E and μ are clear, we will write it as simplifier.

Termination. We give four well-founded orderings for proving termination:
Let Γ be a set of equations then V ars(Γ ) = {x|x occurs in some equation in

Γ}, and |V ars(Γ )| is a well-founded ordering.
Recall that Sym(Γ ) is the multiset of all symbols occurring in Γ . Obviously,

the standard ordering of |Sym(Γ )| based on natural numbers is a well-founded
ordering on the set of equations sets.
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From the definition of Δ, we see that Δ only contains disequations of the
form s ⊕ t �=? 0 where s and t have the same top function symbol. So we
let Par(Δ) be {(t, s) : t ⊕ s �=? 0 ∈ Δ} and Par(Γ ) be {(t, s) : t, s ∈
Γ and t has the same top function symbol as s}.

We use Par(Γ/Δ) to denote Par(Γ ) − Par(Δ). Since the number of terms
in Γ is finite, |Par(Γ/Δ)| is a well-founded ordering. This ordering is used to
count all possible disequations that could be placed in Δ by N-Decomposition,
not including the ones that are already there.

We also need a well-founded ordering H(Γ ), which is the number of h-terms
in Γ .

We then define the measure of Γ‖Δ‖Λ as the lexicographically ordered
quadruple MEXH(Γ,Δ,Λ) = (H(Γ ), |V ars(Γ )|, |Sym(E)|, |Par(Γ/Δ)|). Obvi-
ously, this measure is well founded because the four arguments are well-founded.

For two set triples, Γ‖Δ‖Λ and Γ ′‖Δ′‖Λ′, we use Γ‖Δ‖Λ⇒IEXH Γ ′‖Δ′‖Λ′ to
mean we can obtain Γ ′‖Δ′‖Λ′ from Γ‖Δ‖Λ by applying a rule with the following
form from IEXH once. Note that for N-Decomposition, Γ ′‖Δ′‖Λ′ could represent
either of the choices. We let Γ‖Δ‖Λ ∗=⇒IEXH Γ ′‖Δ′‖Λ′ mean that Γ ′‖Δ′‖Λ′ can
be obtained by applying zero or more rules from IEXH .

Given this measurement, MEXH(Γ,Δ,Λ) is reduced by every inference rule.

Lemma 8. Let Γ‖Δ‖Λ and Γ ′‖Δ′‖Λ′ be two triple sets, such that
Γ‖Δ‖Λ⇒IEXH Γ ′‖Δ′‖Λ′, Then, MEXH(Γ,Δ,Λ) > MEXH(Γ ′, Δ′, Λ′)

Theorem 9. For any triple set Γ‖Δ‖Λ, there is a triple set Γ ′‖Δ′‖Λ′ such that
Γ‖Δ‖Λ ∗=⇒IEXH Γ ′‖Δ′‖Λ′ and no rules in IEXH can be applied on Γ ′‖Δ′‖Λ′.

Let us estimate how many steps we need to solve a unification problem in the
worst case.

The purification procedure is linear with respect to the size of the unification
problem.

For Variable Substitution, assume after purification from the original unifica-
tion problem, we have m equations and n h-terms, where m is smaller than the
size of the original unification problem. Every time we apply Variable Substi-
tution, some equation will be removed from Γ . Because N-Decomposition and
Annulization will not add any new equations, the only possibility that new equa-
tions are added is from the purification after Variable Substitution. In this case,
the newly added equations will not contain any h-terms and the number of new
equations will be one less than the current number of h-terms. So in the worst
case, we need to apply Variable Substitution at most m+(n−1)(n−2)/2 times,
where (n− 1)(n− 2)/2 is the number of newly added equations.

For N-Decomposition, in the worst case we might need to compare all the pos-
sible uninterpreted function terms. Assume we have k different function terms.
Because our rules never increase the size of the set of uninterpreted function
terms, at most we need to compare k(k − 1)/2 times, which means at most we
need to apply N-Decomposition k(k − 1)/2 times.

We apply Annulization at most n times, where n is the number of h-terms.
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So the upper bound of inference steps we might apply is non-deterministically
quadratic with respect to the size of the problem. Because applying every infer-
ence rule is in polynomial time, our algorithm is bounded by non-deterministic
polynomial time.

Soundness and Completeness. The following theorem justifies disregarding
Δ at the end of the inference procedure.

Theorem 10. For any two set triples Γ‖Δ‖Λ and Γ ′‖Δ′‖Λ′, satisfying
Γ‖Δ‖Λ ∗=⇒IEXH Γ ′‖Δ′‖Λ′, if there is a solution θ, satisfying θ � Γ ′‖Λ′, then
θ � Γ‖Λ.

In the rest of this section, we show that the inference rules never lose any solu-
tions.

Lemma 11. Let Γ‖Δ‖Λ be a set triple, if there exists another set triple
Γ ′‖Δ′‖Λ′, such that Γ‖Δ‖Λ ⇒IEXH Γ ′‖Δ′‖Λ′ via a deterministic rule except
Annulization, then Γ ′‖Δ′‖Λ′ is a directed conservative extension of Γ‖Δ‖Λ.

Before we give the next lemma, we define a function called Lay which will count
the layers of a term, when the term is represented as a tree

Definition 12. If t is reduced, then Lay(t) has the following value:

– Lay(t) = 0, if t is a constant or variable.
– Lay(f(t1, t2, · · · , tn)) = max{Lay(t1), Lay(t2), · · · , Lay(tn)}+1, where f is

an uninterpreted symbol.
– Lay(t1 ⊕ t2 ⊕ · · · ⊕ tn) = max{Lay(t1), Lay(t2), · · · , Lay(tn)}.
– Lay(h(t)) = 1 + Lay(t).

Lemma 13. Let Γ‖Δ‖Λ be a set triple, if there exists another set triple
Γ ′‖Δ′‖Λ′, such that Γ‖Δ‖Λ⇒IEXH Γ ′‖Δ′‖Λ′ via Annulization, then Γ ′‖Δ′‖Λ′

is a directed conservative extension of Γ‖Δ‖Λ.

Proof. In the procedure of applying Annulization, we will not generate new
variables, so it is enough to show for any substitution θ, θ � Γ ′‖Δ′‖Λ′ whenever
θ � Γ‖Δ‖Λ.

Since Annulization is applicable, every equation has the form

xi1 ⊕ xi2 ⊕ · · · ⊕ xin ⊕ h(ti) =? 0

where none of the xij ’s are free. Annulization sets all the h-terms to zero. From
the rule, we know Annulization will not change Δ. So it is enough to show there
is no solution θ, such that for some h(ti), (h(ti)θ ↓) �= 0.

Suppose there is a ground reduced substitution θ and there exists an h-term
h(tj), such that (h(tj)θ) ↓�= 0. Suppose θ is {x1 �−→ T1, x2 �−→ T2, · · ·xn �−→
Tn, y1 �−→ S1, y2 �−→ S2, · · · , yl �−→ Sl}, where each xi is a non-free variable
and yi is a free variable in Γ . Without loss of generality, we suppose Lay(T1) ≥
Lay(T2) ≥ · · · ≥ Lay(Tn).



XOR with homomorphism Unification 417

We claim that Lay(T1) is not zero. If it is, then all Lay(Ti) are zero, which
means all the Ti are variables or constants. Then for the equation xj1 ⊕ xj2 ⊕
· · · ⊕ xjn ⊕ h(tj) =? 0, where (h(tj)θ) ↓�= 0, we have:

xj1 ⊕ xj2 ⊕ · · · ⊕ xjn ⊕ h(tj)θ
=aj1 ⊕ aj2 ⊕ · · · ⊕ ajn + h(tj)θ

where aji are constants or variables. There is no way to cancel h(tj)θ if h(t)θ ↓�=
0. This equation cannot be true.

So Lay(T1) is not zero. Since x1 occurs in ti in the equation xi1 ⊕ xi2 ⊕
· · · ⊕ xim ⊕ h(ti) =? 0, where xij ’s are not free variables, if we want to can-
cel h(ti)θ, we need another variable xijθ cancel it because there are no other
h-terms in it. Suppose xi1 ⊕ xi2 ⊕ · · · ⊕ xik can cancel h(ti)θ. Then we have
(xi1 ⊕ xi2 ⊕ · · · ⊕ xik)θ = h(ti)θ + T . So Lay((xi1 ⊕ xi2 ⊕ · · · ⊕ xik)θ) =
max{Lay(ti1), Lay(ti2), · · · , Lay(tik)} = Lay(h(ti)) > Lay(x1θ) = Lay(T1),
which is a contradiction.

So in this case there is no solution θ, such that for some h(t), (h(t)θ ↓) �= 0.
Therefore the statement is true. �!

Lemma 14. Let Γ‖Δ‖Λ be a set triple. If there exists another set triple
Γ ′‖Δ′‖Λ′, such that Γ‖Δ‖Λ ⇒IEXH Γ ′‖Δ′‖Λ′ via N-Decomposition, then
Γ ′‖Δ′‖Λ′ is a directed conservative extension of Γ‖Δ‖Λ.

Proof. In the procedure of applying N-Decomposition, we will not generate
new variables, so it is enough to show that if there exists another two set
triples Γ ′‖Δ′‖Λ′ and Γ ′′‖Δ′′‖Λ′′, such that Γ‖Δ‖Λ ⇒IEXH Γ ′‖Δ′‖Λ′ and
Γ‖Δ‖Λ ⇒IEXH Γ ′′‖Δ′′‖Λ′′ via N-Decomposition, then for any substitution θ,
either θ � Γ ′‖Δ′‖Λ′ or θ � Γ ′′‖Δ′′‖Λ′′, whenever θ � Γ‖Δ‖Λ.

We have two cases if we can apply N-Decomposition.
Case 1: Γ has an equation of the form

S⊕ f(s1, s2, · · · , sm)⊕ f(t1, t2, · · · , tm) =? 0

which has a solution θ, such that f(s1, s2, · · · , sm)θ = f(t1, t2, · · · , tm)θ.
Recall what σ is in N-Decomposition. Let xσ = r where x is in the domain

of σ. Then x =? r ∈ [σ]. Because θ � f(s1, s2, · · · , sm) =? f(t1, t2, · · · , tm), we
have θ � [σ]. So xσθ = rθ = xθ. For every variable y in Γ which is not in the
domain of σ, yσθ = yθ, which means θ � (Γσ ∪ {S =? 0})‖Δσ‖(Λσ ∪ [σ]).
Case 2: Γ has an equation of the form

S⊕ f(s1, s2, · · · , sm)⊕ f(t1, t2, · · · , tm) =? 0

and a solution θ, such that f(s1, s2, · · · , sm)θ �= f(t1, t2, · · · , tm)θ, there is no
deterministic rule to be applied and f(s1, s2, · · · , sm)⊕ f(t1, t2, · · · , tm) �=? 0 /∈
Δ.

We can apply N-Decomposition(the second choice) and add
f(s1, s2, · · · , sm) ⊕ f(t1, t2, · · · , tm) �=? 0 into the disequation set. It is
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trivially true that

θ � Γ‖Δ∪ {f(s1, s2, · · · , sm)⊕ f(t1, t2, · · · , tm) �=? 0}‖Λ. �!

Lemma 15. Let Γ‖Δ‖Λ be a set triple. If there is not another set triple
Γ ′‖Δ′‖Λ′, such that Γ‖Δ‖Λ⇒IEXH Γ ′‖Δ′‖Λ′, then Γ‖Δ‖Λ has no solution.

Proof. Because there are no rules applicable including Annulization, there is
some uninterpreted function symbol occurring as top function symbol, i.e. some
equation has the form:

xi1 ⊕ · · · ⊕ xik ⊕ S⊕ f(s1, s2, · · · , sm) =? 0

where each xij is a non-free variable in Γ , and S contains no pure variables.
Assume there are no rules to apply to Γ‖Δ‖Λ and θ is a ground reduced

substitution, which is {x1 �−→ T1, x2 �−→ T2, · · ·xn �−→ Tn, y1 �−→ S1, y2 �−→
S2, · · · , yl �−→ Sl}, where each xi is a non-free variable and each yi is a free
variable in Γ . Without loss of generality, we suppose Lay(T1) ≥ Lay(T2) ≥
· · · ≥ Lay(Tn).

Here, we claim that Lay(T1) is not zero. If it is, then all Lay(Ti)s are zero.
Then the equation

xi1 ⊕ · · · ⊕ xik ⊕ S⊕ f(s1, s2, · · · , sm) =? 0

becomes

ai1 ⊕ · · · ⊕ aik ⊕ Sθ ⊕ f(s1, s2, · · · , sm)θ = 0

where ai are constants or variables. Because this equation is true, we need
the inverse of f(s1, s2, · · · , sm)θ to cancel it. If there is some f -term, e.g.
f(t1, t2, · · · , tm)θ in Sθ which can cancel it, then because here we have no
rules to apply, f(t1, t2, · · · tm) ⊕ f(s1, s2, · · · , sm) �= 0 ∈ Δ, which means
f(t1, t2, · · · tm)θ �= f(s1, s2, · · · , sm)θ. So this equation can not be zero.

Thus Lay(T1) is not zero.
Because no rules in IEXH can be applied and from Variable Substitution’s

conditions, there are no free variable in Γ . Since x1 is not a free variable, x1

must occur under some uninterpreted function symbol or h-term. So we have
two cases:
Case A: x1 occurs under some uninterpreted function symbol. Suppose this
equation is S ⊕ t =? 0 where x1 ∈ t and Top(t) is an uninterpreted function
symbol or t is an h-term of the form h(f(t1, t2, · · · , tn)). Then if we want to
cancel x1θ, we need another variable xθ to cancel it because there is no other t′

in S with f on the top to cancel it or else N-Decomposition could be applied.
Suppose this x is some xi, then xiθ = t[x1]θ+T . Then Lay(xiθ) = Lay(Ti) =

Lay(t[x1]θ + T ) ≥ Lay(t[x1]θ) > Lay(x1θ) = Lay(T1), which is a contradiction
with Lay(T1) is the biggest during all the Ti’s.
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Case B: x1 occurs only in an h-term. If it is under some uninterpreted function
symbol in this h-term, we know there is no solution from the analysis of Case
A. So we can suppose this equation is S⊕ h(x1) =? 0. Because Lay(T1) �= 0, we
can suppose T1 = t1 ⊕ T ′

2, where Lay(T1) = Lay(t1) ≥ Lay(T ′2) and t1 is not a
sum. Because only one h-term is in this equation and h(s) + h(t) = h(s + t), we
need another variable x to has the contribution to cancel h(t1). we claim that
no variable can cancel h(t1).

If some non-free variable xi can cancel h(t1), then xiθ = h(t1) + R. So
Lay(Ti) = Lay(xiθ) = Lay(h(t1) + R) ≥ Lay(h(T1)) > Lay(T1) which is a
contradiction.

In summary, if there is no rule we can apply for some triple, there is no solution
for this triple. �!

Then by combining Lemma 11, Lemma 13, Lemma 14 and Lemma 15 we get:

Lemma 16. Let Γ‖Δ‖Λ be a set triple. If there exists another set triple
Γ ′‖Δ′‖Λ′, such that Γ‖Δ‖Λ ⇒IEXH Γ ′‖Δ′‖Λ′, then Γ ′‖Δ′‖Λ′ is a directed
conservative extension of Γ‖Δ‖Λ. If there is no such set triple, then Γ‖Δ‖Λ has
no solution.

Then by induction via Lemma 16, we get:

Theorem 17. Let Γ‖Δ‖Λ be a set triple. If there exists another set triple
Γ ′‖Δ′‖Λ′, such that Γ‖Δ‖Λ +=⇒IEXH Γ ′‖Δ′‖Λ′, then Γ ′‖Δ′‖Λ′ is a directed
conservative extension of Γ‖Δ‖Λ. If there is no such set triple, then Γ‖Δ‖Λ has
no solution.

We have proved our inference system IEXH is terminating, sound and complete.

3.5 Auxiliary Rules for Improving Efficiency

For efficiency, we add some other inference rules to our system. These auxiliary
rules are all Simplifiers.
Dis-Trivial

Γ‖(Δ ∪ {0 �=? 0})‖Λ
Fail

.

Clash

(Γ ∪ {S⊕ f(t11, · · · , t1n)⊕ · · · ⊕ f(tm1, tm2, · · · , tmn) =? 0})‖Δ‖Λ
Fail

.

if there is neither a pure variable nor a term with uninterpreted function symbol
f as top symbol in S, and m is odd.
Clash-Annul

(Γ ∪ {S⊕ h(t) =? 0})‖Δ‖Λ
(Γ ∪ {S =? 0} ∪ {t =? 0})‖Δ‖Λ.
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if there is no pure variable in S.
Occur Check

(Γ ∪ {x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ t1 ⊕ t2 ⊕ · · · ⊕ tm =? 0})‖Δ‖Λ
Fail

.

where, i > 0, and for all xi, there exists a term tj with an uninterpreted function
symbol on the top of it, such that:

1. xi ∈ V ars(tj);
2. |Top(tj; {t1, t2, · · · , tm})| is odd; and
3. xi occurs in every term in Top(tj; {t1, t2, · · · , tm}).

Occur Check-Annul

(Γ ∪ {x⊕ S⊕ h(t) =? 0})‖Δ‖Λ
(Γ ∪ {t =? 0} ∪ {S =? 0)‖Δ‖Λ} .

if no pure variable in S and x occurs in t.
Decomposition

If all the pure variables xi in S occur in some term sj (or tj) and no top
symbol of a pure term of S is uninterpreted function symbol f , then:

(Γ ∪ {S⊕ f(s1, s2, · · · sm)⊕ f(t1, t2, · · · tm) =? 0})‖Δ‖Λ
(Γ1σ)‖(Δσ)‖(Λσ ∪ {[σ]})

where Γ1 = Γ ∪ ({S =? 0}), where σ = mgu(s1 =? t1, s2 =? t2, · · · , sm =? tm).

4 Conclusion and Future Work

We introduced inference rules for general E-unification problems modulo XOR
with homomorphism. We proved these inference rules to be sound, complete
and terminating. We also introduced auxiliary rules to avoid applying N-
Decomposition, and to make the inference system more efficient. These inference
rules also apply to XOR without homomorphism. In this case, the Variable Sub-
stitution rule becomes simpler, because the conditions involving the h symbols
are trivially true, N-Decomposition remains the same, and Annulization never
applies. The auxiliary rules are the same, but Clash-Annul and Occur-Check-
Annul no longer apply.

XOR is an important theory in cryptographic protocols, and that is the focus
of our research. The algorithms are simple to implement, have already been
implemented in Maude, and are being incorporated in the Maude NPA. The
inference rules have the benefit that the N-Decomposition rule is not applied
often, so the inference system is mostly deterministic. This makes the algorithm
more efficient and the complete set of unifiers smaller.

The theory of Abelian groups, especially with homomorphism, is also an im-
portant theory in cryptographic protocols. That is our next extension of this
theory. For future work, we will also combine it with convergent rewrite theories
like cancellation.
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Abstract. We present a modular framework to analyze the innermost
runtime complexity of term rewrite systems automatically. Our method
is based on the dependency pair framework for termination analysis. In
contrast to previous work, we developed a direct adaptation of successful
termination techniques from the dependency pair framework in order to
use them for complexity analysis. By extensive experimental results, we
demonstrate the power of our method compared to existing techniques.

1 Introduction

In practice, termination is often not sufficient, but one also has to ensure that algo-
rithms terminate in reasonable (e.g., polynomial) time. While termination of term
rewrite systems (TRSs) is well studied, only recently first results were obtained
which adapt termination techniques in order to obtain polynomial complexity
bounds automatically, e.g., [2,3,4,5,7,9,15,16,19,20,21,23,27,28]. Here, [3,15,16]
consider the dependency pair (DP) method [1,10,11,14], which is one of the most
popular termination techniques for TRSs.1 Moreover, [28] introduces a related
modular approach for complexity analysis based on relative rewriting.

Techniques for automated innermost termination analysis of term rewriting
are very powerful and have been successfully used to analyze termination of
programs in many different languages (e.g., Java [25], Haskell [12], Prolog [26]).
Hence, by adapting these termination techniques, the ultimate goal is to obtain
approaches which can also analyze the complexity of programs automatically.

In this paper, we present a fresh adaptation of the DP framework for innermost
runtime complexity analysis [15]. In contrast to [3,15,16], we follow the original DP
framework closely. This allows us to directly adapt the several termination tech-
niques (“processors”) of the DP framework for complexity analysis. Like [28], our
method is modular. But in contrast to [28], which allows to investigate derivational
complexity [17], we focus on innermost runtime complexity. Hence, we can inherit
the modularity aspects of the DP framework and benefit from its transformation
techniques, which increases power significantly.
� Supported by the DFG grant GI 274/5-3.
1 There is also a related area of implicit computational complexity which aims at char-

acterizing complexity classes, e.g., using type systems [18], bottom-up logic programs
[13], and also using termination techniques like dependency pairs (e.g., [20]).
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After introducing preliminaries in Sect. 2, in Sect. 3 we adapt the concept
of dependency pairs from termination analysis to so-called dependency tuples
for complexity analysis. While the DP framework for termination works on DP
problems, we now work on DT problems (Sect. 4). Sect. 5 adapts the “processors”
of the DP framework in order to analyze the complexity of DT problems. We
implemented our contributions in the termination analyzer AProVE. Due to the
results of this paper, AProVE was the most powerful tool for innermost runtime
complexity analysis in the International Termination Competition 2010. This
is confirmed by our experiments in Sect. 6, where we compare our technique
empirically with previous approaches. All proofs can be found in [24].

2 Runtime Complexity of Term Rewriting

See e.g. [6] for the basics of term rewriting. Let T (Σ,V) be the set of all terms
over a signature Σ and a set of variables V where we just write T if Σ and V are
clear from the context. The arity of a function symbol f ∈ Σ is denoted by ar(f)
and the size of a term is |x| = 1 for x ∈ V and |f(t1, . . . , tn)| = 1+ |t1|+ . . .+ |tn|.
The derivation height of a term t w.r.t. a relation → is the length of the longest
sequence of →-steps starting with t, i.e., dh(t,→) = sup{n | ∃t′ ∈ T , t →n t′ },
cf. [17]. Here, for any set M ⊆ N∪{ω}, “supM” is the least upper bound of M .
Thus, dh(t,→) = ω if t starts an infinite sequence of →-steps.

As an example, consider R = {dbl(0) → 0, dbl(s(x)) → s(s(dbl(x)))}. Then
dh(dbl(sn(0)),→R) = n + 1, but dh(dbln(s(0)),→R) = 2n + n− 1.

For a TRS R with defined symbols Σd = { root(�) | � → r ∈ R}, a term
f(t1, . . . , tn) is basic if f ∈ Σd and t1, . . . , tn do not contain symbols from Σd.
So for R above, the basic terms are dbl(sn(0)) and dbl(sn(x)) for n ∈ N, x ∈ V .
The innermost runtime complexity function ircR maps any n ∈ N to the length
of the longest sequence of i→R-steps starting with a basic term t with |t| ≤ n.
Here, “ i→R” is the innermost rewrite relation and TB is the set of all basic terms.

Definition 1 (ircR [15]). For a TRS R, its innermost runtime complexity
function ircR :N→N∪{ω} is ircR(n) = sup{ dh(t, i→R) | t ∈ TB , |t| ≤ n }.
If one only considers evaluations of basic terms, the (runtime) complexity of the
dbl-TRS is linear (ircR(n) = n−1 for n ≥ 2). But if one also permits evaluations
starting with dbln(s(0)), the complexity of the dbl-TRS is exponential.

When analyzing the complexity of programs, one is typically interested in (in-
nermost) evaluations where a defined function like dbl is applied to data objects
(i.e., terms without defined symbols). Therefore, (innermost) runtime complexi-
ty corresponds to the usual notion of “complexity” for programs [5,4]. So for any
TRS R, we want to determine the asymptotic complexity of the function ircR.

Definition 2 (Asymptotic Complexities). Let C = {Pol0,Pol1,Pol2, ..., ?}
with the order Pol0 � Pol1 � Pol2 � . . . � ?. Let � be the reflexive closure of �.
For any function f : N → N ∪ {ω} we define its complexity ι(f) ∈ C as follows:
ι(f) = Polk if k is the smallest number with f(n) ∈ O(nk) and ι(f) = ? if there
is no such k. For any TRS R, we define its complexity ιR as ι(ircR).
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So the dbl-TRS R has linear complexity, i.e., ιR = Pol1. As another example,
consider the following TRS R where “m” stands for “minus”.

Example 3. m(x, y)→ if(gt(x, y), x, y) gt(0, k)→ false p(0)→ 0
if(true, x, y)→ s(m(p(x), y)) gt(s(n), 0)→ true p(s(n))→n
if(false, x, y)→ 0 gt(s(n), s(k))→ gt(n, k)

Here, ιR = Pol2 (e.g., m(sn(0), sk(0)) starts evaluations of quadratic length).

3 Dependency Tuples

In the DP method, for every f ∈ Σd one introduces a fresh symbol f � with ar(f)
= ar(f �). For a term t = f(t1, . . . , tn) with f ∈ Σd we define t� = f �(t1, . . . , tn)
and let T � = { t� | t ∈ T , root(t) ∈ Σd }. Let Pos(t) contain all positions of t and
let Posd(t) = { π | π ∈ Pos(t), root(t|π) ∈ Σd }. Then for every rule � → r with
Posd(r) = {π1, . . . , πn}, its dependency pairs are �� → r|�π1

, . . . , �� → r|�πn
.

While DPs are used for termination, for complexity we have to regard all
defined functions in a right-hand side at once. Thus, we extend the concept
of weak dependency pairs [15, 16] and only build a single dependency tuple � →
[r|�π1

, . . . , r|�πn
] for each �→ r. To avoid handling tuples, for every n ≥ 0, we intro-

duce a fresh compound symbol Comn of arity n and use �� → Comn(r|�π1
,..., r|�πn

).

Definition 4. [Dependency Tuple] A dependency tuple is a rule of the form
s� → Comn(t�1, . . . , t

�
n) for s�, t�1, . . . , t

�
n ∈ T �. Let �→ r be a rule with Posd(r) =

{π1, . . . , πn}. Then DT (�→ r) is defined2 to be �� → Comn(r|�π1
, . . . , r|�πn

). For
a TRS R, let DT (R) = {DT (�→ r) | �→ r ∈ R}.

Example 5. For the TRS R from Ex. 3, DT (R) is the following set of rules.

m�(x, y)→Com2(if�(gt(x, y), x, y), gt�(x, y)) (1)

if�(true, x, y)→Com2(m�(p(x), y), p�(x)) (2)

if�(false, x, y)→Com0 (3)

p�(0)→Com0 (4)

p�(s(n))→Com0 (5)

gt�(0, k)→Com0 (6)

gt�(s(n), 0)→Com0 (7)

gt�(s(n), s(k))→Com1(gt�(n, k)) (8)

For termination, one analyzes chains of DPs, which correspond to sequences
of function calls that can occur in reductions. Since DTs represent several DPs,
we now obtain chain trees. (This is analogous to the path detection in [16]).

Definition 6. [Chain Tree] Let D be a set of DTs and R be a TRS. Let T be
a (possibly infinite) tree whose nodes are labeled with both a DT from D and a
substitution. Let the root node be labeled with (s� → Comn(. . .) | σ). Then T is
a (D,R)-chain tree for s�σ if the following holds for all nodes of T : If a node
is labeled with (u� → Comm(v�

1, . . . , v
�
m) | μ), then u�μ is in normal form w.r.t.

R. Moreover, if this node has the children (p�
1 → Comm1(. . .) | τ1), . . . , (p�

k →
2 To make DT (�→ r) unique, we use a total order < on positions where π1 < ... < πn.
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m�(x, y)→ Com2(if�(gt(x, y), x, y), gt�(x, y)) | σ

if�(true, x, y)→ Com2(m�(p(x), y),p�(x)) | σ gt�(s(n), 0)→ Com0 | μ

m�(x, y)→ Com2(if�(gt(x, y), x, y), gt�(x, y)) | τ p�(s(n))→ Com0 | μ

if�(false, x, y)→ Com0 | τ gt�(0, k)→ Com0 | μ

Fig. 1. Chain Tree for the TRS from Ex. 3

Commk
(. . .) | τk), then there are pairwise different i1, . . . , ik ∈ {1, . . . ,m} with

v�
ij
μ i→∗

R p�
jτj for all j ∈ {1, . . . , k}. A path in the chain tree is called a chain.3

Example 7. For the TRS R from Ex. 3 and its DTs from Ex. 5, the tree in Fig.
1 is a (DT (R),R)-chain tree for m�(s(0), 0). Here, we use substitutions with
σ(x) = s(0) and σ(y) = 0, τ(x) = τ(y) = 0, and μ(n) = μ(k) = 0.

For any term s� ∈ T �, we define its complexity as the maximal number of nodes
in any chain tree for s�. However, sometimes we do not want to count all DTs
in the chain tree, but only the DTs from some subset S. This will be crucial to
adapt termination techniques for complexity, cf. Sect. 5.2 and 5.4.

Definition 8 (Complexity of Terms, Cplx 〈D,S,R〉). Let D be a set of depen-
dency tuples, S ⊆ D, R a TRS, and s� ∈ T �. Then Cplx 〈D,S,R〉(s

�) ∈ N∪ {ω} is
the maximal number of nodes from S occurring in any (D,R)-chain tree for s�.
If there is no (D,R)-chain tree for s�, then Cplx 〈D,S,R〉(s�) = 0.

Example 9. For R from Ex. 3, we have Cplx 〈DT (R),DT (R),R〉(m�(s(0), 0)) = 7,

since the maximal tree for m�(s(0), 0) in Fig. 1 has 7 nodes. In contrast, if S is
DT (R) without the gt�-DTs (6) – (8), then Cplx 〈DT (R),S,R〉(m�(s(0), 0)) = 5.

Thm. 10 shows how dependency tuples can be used to approximate the derivation
heights of terms. More precisely, Cplx 〈DT (R),DT (R),R〉(t�) is an upper bound for
t’s derivation height, provided that t is in argument normal form.

Theorem 10 (Cplx bounds Derivation Height). Let R be a TRS. Let t =
f(t1, . . . , tn) ∈ T be in argument normal form, i.e., all ti are normal forms
w.r.t. R. Then we have dh(t, i→R) ≤ Cplx 〈DT (R),DT (R),R〉(t

�). If R is confluent,
we have dh(t, i→R) = Cplx 〈DT (R),DT (R),R〉(t�).

Note that DTs are much closer to the original DP method than the weak DPs
of [15, 16]. While weak DPs also use compound symbols, they only consider the
3 These chains correspond to the “innermost chains” in the DP framework [1,10,11].

To handle full (i.e., not necessarily innermost) runtime complexity, one would have
to adapt Def. 6 (e.g., then u�μ would not have to be in normal form).
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topmost defined function symbols in right-hand sides of rules. Hence, [15, 16]
does not use DP concepts when defined functions occur nested on right-hand
sides (as in the m- and the first if-rule) and thus, it cannot fully benefit from the
advantages of the DP technique. Instead, [15, 16] has to impose several restric-
tions which are not needed in our approach, cf. Footnote 8. The close analogy
of our approach to the DP method allows us to adapt the termination tech-
niques of the DP framework in order to work on DTs (i.e., in order to analyze
Cplx 〈DT (R),DT (R),R〉(t�) for all basic terms t of a certain size). Using Thm. 10,
this yields an upper bound for the complexity ιR of the TRS R, cf. Thm. 14.
Note that there exist non-confluent TRSs4 where Cplx 〈DT (R),DT (R),R〉(t�) is ex-
ponentially larger than dh(t, i→R) (in contrast to [15, 16], where the step from
TRSs to weak DPs does not change the complexity). However, our main interest
is in TRSs corresponding to “typical” (confluent) programs. Here, the step from
TRSs to DTs does not “lose” anything (i.e., one has equality in Thm. 10).

4 DT Problems

Our goal is to find out automatically how large Cplx 〈D,S,R〉(t�) could be for basic
terms t of size n. To this end, we will repeatedly replace the triple 〈D,S,R〉 by
“simpler” triples 〈D′,S′,R′〉 and examine Cplx 〈D′,S′,R′〉(t�) instead.

This is similar to the DP framework where termination problems are repre-
sented by so-called DP problems (consisting of a set of DPs and a set of rules)
and where DP problems are transformed into “simpler” DP problems repeatedly.
For complexity analysis, we consider “DT problems” instead of “DP problems”
(our “DT problems” are similar to the “complexity problems” of [28]).

Definition 11 (DT Problem). Let R be a TRS, D a set of DTs, S ⊆ D. Then
〈D,S,R〉 is a DT problem and R’s canonical DT problem is 〈DT (R),DT (R),R〉.

Thm. 10 showed the connection between the derivation height of a term and
the maximal number of nodes in a chain tree. This leads to the definition of the
complexity of a DT problem 〈D,S,R〉. It is defined as the asymptotic complexity
of the function irc〈D,S,R〉 which maps any number n to the maximal number of
S-nodes in any (D,R)-chain tree for t�, where t is a basic term of at most size n.

Definition 12 (Complexity of DT Problems). For a DT problem 〈D,S,R〉,
its complexity function is irc〈D,S,R〉(n) = sup{ Cplx 〈D,S,R〉(t�) | t ∈ TB, |t| ≤ n }.
We define the complexity ι〈D,S,R〉 of the DT problem as ι(irc〈D,S,R〉).

Example 13. Consider R from Ex. 3 and let D = DT (R) = {(1), . . . , (8)}. For
t ∈ TB with |t| = n, the maximal chain tree for t� has approximately n2 nodes,
i.e., irc〈D,D,R〉(n)∈O(n2). Thus, 〈D,D,R〉’s complexity is ι〈D,D,R〉=Pol2.

Thm. 14 shows that to analyze the complexity of a TRS R, it suffices to analyze
the complexity of its canonical DT problem: By Def. 2, ιR is the complexity of
4 Consider the TRS f(s(x))→ f(g(x)), g(x)→ x, g(x)→ a(f(x)). Its runtime complex-

ity is linear, but for any n > 0, we have Cplx 〈DT (R),DT (R),R〉(f
�(sn(0))) = 2n+1 − 2.
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the runtime complexity function ircR which maps n to the length of the longest
innermost rewrite sequence starting with a basic term of at most size n. By Thm.
10, this length is less than or equal to the size Cplx 〈DT (R),DT (R),R〉(t�) of the max-
imal chain tree for any basic term t of at most size n, i.e., to irc〈DT (R),DT (R),R〉(n).

Theorem 14 (Upper bound for TRSs via Canonical DT Problems).
Let R be a TRS and let 〈D,D,R〉 be the corresponding canonical DT problem.
Then we have ιR � ι〈D,D,R〉 and if R is confluent, we have ιR = ι〈D,D,R〉.

Now we can introduce our notion of processors which is analogous to the “DP
processors” for termination [10, 11] (and related to the “complexity problem
processors” in [28]). A DT processor transforms a DT problem P to a pair
(c, P ′) of an asymptotic complexity c ∈ C and a DT problem P ′, such that P ’s
complexity is bounded by the maximum of c and of the complexity of P ′.

Definition 15 (Processor, ⊕). A DT processor Proc is a function Proc(P )
= (c, P ′) mapping any DT problem P to a complexity c ∈ C and a DT problem
P ′. A processor is sound if ιP � c⊕ ιP ′ . Here, “⊕” is the “maximum” function
on C, i.e., for any c, d ∈ C, we define c⊕ d = d if c � d and c⊕ d = c otherwise.

To analyze the complexity ιR of a TRS R, we start with the canonical DT
problem P0 = 〈DT (R), DT (R),R〉. Then we apply a sound processor to P0

which yields a result (c1, P1). Afterwards, we apply another (possibly different)
sound processor to P1 which yields (c2, P2), etc. This is repeated until we obtain
a solved DT problem (whose complexity is obviously Pol0).

Definition 16 (Proof Chain, Solved DT Problem). We call a DT problem
P = 〈D,S,R〉 solved, if S = ∅. A proof chain5 is a finite sequence P0

c1
� P1

c2
�

. . .
ck
� Pk ending with a solved DT problem Pk, such that for all 0 ≤ i < k there

exists a sound processor Proci with Proci(Pi) = (ci+1, Pi+1).

By Def. 15 and 16, for every Pi in a proof chain, ci+1 ⊕ . . . ⊕ ck is an upper
bound for its complexity ιPi . Here, the empty sum (for i = k) is defined as Pol0.

Theorem 17 (Approximating Complexity by Proof Chain). Let P0
c1
�

P1
c2
� . . .

ck
� Pk be a proof chain. Then ιP0 � c1 ⊕ . . .⊕ ck.

Thm. 14 and 17 now imply that our approach for complexity analysis is correct.

Corollary 18 (Correctness of Approach). If P0 is the canonical DT problem
for a TRS R and P0

c1
� . . .

ck
� Pk is a proof chain, then ιR � c1 ⊕ . . .⊕ ck.

5 Of course, one could also define DT processors that transform a DT problem P into
a complexity c and a set {P ′

1, . . . , P
′
n} such that ιP � c ⊕ ιP ′

1
⊕ . . . ⊕ ιP ′

n
. Then

instead of a proof chain one would obtain a proof tree.
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5 DT Processors

In this section, we present several processors to simplify DT problems automat-
ically. To this end, we adapt processors of the DP framework for termination.

The usable rules processor (Sect. 5.1) simplifies a problem 〈D,S,R〉 by delet-
ing rules from R. The reduction pair processor (Sect. 5.2) removes DTs from S,
based on term orders. In Sect. 5.3 we introduce the dependency graph, on which
the leaf removal and knowledge propagation processor (Sect. 5.4) are based. Fi-
nally, Sect. 5.5 adapts processors based on transformations like narrowing.

5.1 Usable Rules Processor

As in termination analysis, we can restrict ourselves to those rewrite rules that
can be used to reduce right-hand sides of DTs (when instantiating their variables
with normal forms). This leads to the notion of usable rules.6

Definition 19 (Usable Rules UR [1]). For a TRS R and any symbol f , let
RlsR(f) = {�→ r | root(�) = f}. For any term t, UR(t) is the smallest set with

• UR(x) = ∅ if x ∈ V and
• UR(f(t1, . . . , tn)) = RlsR(f) ∪

⋃
�→r ∈RlsR(f) UR(r) ∪

⋃
1≤i≤n UR(ti)

For any set D of DTs, we define UR(D) =
⋃

s→t∈D UR(t).

So for R and DT (R) in Ex. 3 and 5, UR(DT (R)) contains just the gt- and the
p-rules. The following processor removes non-usable rules from DT problems.7

Theorem 20 (Usable Rules Processor). Let 〈D,S,R〉 be a DT problem.
Then the following processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D,S,UR(D)〉).

So when applying the usable rules processor on the canonical DT problem
〈D,D,R〉 of R from Ex. 3, we obtain 〈D,D,R1〉 where R1 are the gt- and
p-rules.

5.2 Reduction Pair Processor

Using orders is one of the most important methods for termination or complexity
analysis. In the most basic approach, one tries to find a well-founded order' such
that every reduction step (strictly) decreases w.r.t. '. This proves termination
and most reduction orders also imply some complexity bound, cf. e.g. [7, 17].
However, direct applications of orders have two main drawbacks: The obtained
bounds are often far too high to be useful and there are many TRSs that cannot
be oriented strictly with standard orders amenable to automation, cf. [28].

6 The idea of applying usable rules also for complexity analysis is due to [15], which
introduced a technique similar to Thm. 20.

7 While Def. 19 is the most basic definition of usable rules, the processor of Thm. 20 can
also be used with more sophisticated definitions of “usable rules” (e.g., as in [11]).
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Therefore, the reduction pair processor of the DP framework only requires
a strict decrease (w.r.t. ') for at least one DP, while for all other DPs and
rules, a weak decrease (w.r.t. ) suffices. Then the strictly decreasing DPs can
be deleted. Afterwards one can use other orders (or termination techniques)
to solve the remaining DP problem. To adapt the reduction pair processor for
complexity analysis, we have to restrict ourselves to Com-monotonic orders.8

Definition 21 (Reduction Pair). A reduction pair (,') consists of a stable
monotonic quasi-order  and a stable well-founded order ' which are compatible
(i.e., ◦'◦ ⊆ '). An order ' is Com-monotonic iff Comn(s�

1, ..., s
�
i , ..., s

�
n) '

Comn(s�
1, ..., t

�, ..., s�
n) for all n ∈ N, all 1 ≤ i ≤ n, and all s�

1, . . . , s
�
n, t� ∈ T �

with s�
i ' t�. A reduction pair (,') is Com-monotonic iff ' is Com-monotonic.

For a DT problem (D,S,R), we orient D ∪ R by  or '. But in contrast to
the processor for termination, if a DT is oriented strictly, we may not remove it
from D, but only from S. So the DT is not counted anymore for complexity, but
it may still be used in reductions.9 We will improve this later in Sect. 5.4.

Example 22. This TRS R shows why DTs may not be removed from D.10

f(0) → 0 f(s(x)) → f(id(x)) id(0) → 0 id(s(x)) → s(id(x))

Let D=DT (R) = {f�(0) → Com0, f�(s(x)) → Com2(f�(id(x)), id�(x)), id�(0) →
Com0, id�(s(x)) → Com1(id�(x))}, where UR(D) are just the id-rules. For the
DT problem 〈D,S,UR(D)〉 with S = D, there is a linear polynomial interpre-
tation [·] that orients the first two DTs strictly and the remaining DTs and
usable rules weakly: [0] = 0, [s](x) = x + 1, [id](x) = x, [f�](x) = x + 1, [id�](x) =
0, [Com0] = 0, [Com1](x) = x, [Com2](x, y) = x + y. If one would remove the
first two DTs from D, there is another linear polynomial interpretation that
orients the remaining DTs strictly (e.g., by [id�](x) = x + 1). Then, one would
falsely conclude that the whole TRS has linear runtime complexity.

Hence, the first two DTs should only be removed from S, not from D. This
results in 〈D,S′,UR(D)〉 where S′ consists of the last two DTs. These DTs can
occur quadratically often in reductions with D ∪ UR(D). Hence, when trying to
orient S′ strictly and the remaining DTs and usable rules weakly, we have to
use a quadratic polynomial interpretation (e.g., [0] = 0, [s](x) = x + 2, [id](x) =
x, [f�](x) = x2, [id�](x) = x+ 1, [Com0] = 0, [Com1](x)=x, [Com2](x, y)=x+ y).

8 In [15] “Com-monotonic” is called “safe”. Note that our reduction pair processor is
much closer to the original processor of the DP framework than [15]. In the main
theorem of [15], all (weak) DPs have to be oriented strictly in one go. Moreover, one
even has to orient the (usable) rules strictly. Finally, one is either restricted to non-
duplicating TRSs or one has to use orderings " that are monotonic on all symbols.

9 This idea is also used in [28]. However, [28] treats derivational complexity instead
of (innermost) runtime complexity, and it operates directly on TRSs and not on
DPs or DTs. Therefore, [28] has to impose stronger restrictions (it requires " to be
monotonic on all symbols) and it does not use other DP- resp. DT-based processors.

10 An alternative such example is shown in [8, Ex. 11].
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Hence, now we (correctly) conclude that the TRS has quadratic runtime com-

plexity (indeed, dh(f(sn(0)), i→R) = (n+1)·(n+2)
2 ).

So when applying the reduction pair processor to 〈D,S,R〉, we obtain (c,
〈D,S \ D�,R〉). Here, D� are the strictly decreasing DTs from D and c is an
upper bound for the number of D�-steps in innermost reductions with D ∪R.

Theorem 23 (Reduction Pair Processor). Let P = 〈D,S,R〉 be a DT prob-
lem and (,') be a Com-monotonic reduction pair. Let D ⊆  ∪ ', R ⊆ ,
and c ; ι(irc�) for the function irc�(n) = sup{ dh(t�,') | t ∈ TB, |t| ≤ n}.11
Then the following processor is sound: Proc( 〈D,S,R〉 ) = (c, 〈D, S \D�, R〉).

To automate Thm. 23, we need reduction pairs (,') where an upper bound c
for ι(irc�) is easy to compute. This holds for reduction pairs based on polynomial
interpretations with coefficients from N (which are well suited for automation).
For Com-monotonicity, we restrict ourselves to complexity polynomial interpre-
tations (CPIs) [·] where [Comn](x1, ..., xn) = x1 + ... + xn for all n ∈ N. This
is the “smallest” polynomial which is monotonic in x1, ..., xn. As Comn only
occurs on right-hand sides of inequalities, [Comn] should be as small as possi-
ble.

Moreover, a CPI interprets constructors f ∈ Σ \Σd by polynomials [f ](x1, ...,
xn) = a1x1 + . . . + anxn + b where b ∈ N and ai ∈ {0, 1}. This ensures that the
mapping from constructor ground terms t ∈ T (Σ\Σd, ∅) to their interpretations
is in O(|t|), cf. [7, 17]. Note that the interpretations in Ex. 22 were CPIs.

Thm. 24 shows how such interpretations can be used12 for the processor of
Thm. 23. Here, as an upper bound c for ι(irc�), one can simply take Polm, where
m is the maximal degree of the polynomials in the interpretation.

Theorem 24 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let P = 〈D,S,R〉 be a DT problem and let  and ' be induced by a
CPI [·]. Let m ∈ N be the maximal degree of all polynomials [f �], for all f � with
f ∈ Σd. Let D ⊆  ∪ ' and R ⊆ . Then the following processor is sound:
Proc( 〈D,S,R〉 ) = (Polm, 〈D, S \ D�, R〉).

Example 25. This TRS [1] illustrates Thm. 24, where q(x, y, y) computes %x
y &.

q(0, s(y), s(z))→0 q(s(x), s(y), z)→q(x, y, z) q(x, 0, s(z)) → s(q(x, s(z), s(z)))

11 As noted by [22], this can be weakened by replacing dh(t�,") with dh(t�,"∩ i→D/R),
where→D/R =→∗

R ◦ →D ◦ →∗
R and i→D/R is the restriction of→D/R where in each

rewrite step with→R or→D, the arguments of the redex must be in (D∪R)-normal
form, cf. [3]. Such a weakening is required to use reduction pairs based on path orders
where a term t� may start "-decreasing sequences of arbitrary (finite) length.

12 Alternatively, our reduction pair processor can also use matrix interpretations [8,19,
21,23,27], polynomial path orders (POP∗ [3]), etc. For POP∗, we would extend C by
a complexity Pol∗ for polytime computability, where Poln � Pol∗ � ? for all n ∈ N.
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The dependency tuples D of this TRS are

q�(0, s(y), s(z))→ Com0 (9) q�(s(x), s(y), z)→ Com1(q�(x, y, z)) (10)

q�(x, 0, s(z))→ Com1(q�(x, s(z), s(z))) (11)

As the usable rules are empty, Thm. 20 transforms the canonical DT problem to
〈D,D, ∅〉. Consider the CPI [0] = 0, [s](x) = x+1, [q�](x, y, z) = x+1, [Com0] =
0, [Com1](x) = x. With the corresponding reduction pair, the DTs (9) and
(10) are strictly decreasing and (11) is weakly decreasing. Moreover, the degree
of [q�] is 1. Hence, the reduction pair processor returns (Pol1, 〈D, {(11)}, ∅〉).
Unfortunately, no reduction pair based on CPIs orients (11) strictly and both
(9) and (10) weakly. So for the moment we cannot simplify this problem further.

5.3 Dependency Graph Processors

As in the DP framework for termination, it is useful to have a finite representa-
tion of (a superset of) all possible chain trees.

Definition 26 (Dependency Graph). Let D be a set of DTs and R a TRS.
The (D,R)-dependency graph is the directed graph whose nodes are the DTs in
D and there is an edge from s→ t to u→ v in the dependency graph iff there is
a chain tree with an edge from a node (s → t | σ1) to a node (u→ v | σ2).

Every (D,R)-chain corresponds to a path in the (D,R)-dependency graph.
While dependency graphs are not computable in general, there are several tech-
niques to compute over-approximations of dependency graphs for termination,
cf. e.g. [1]. These techniques can also be applied for (D,R)-dependency graphs.

Example 27. For the TRS R from Ex. 3, we obtain the following (D,R1)-
dependency graph, where D = DT (R) and R1 are the gt- and p-rules.

m�(x, y) → Com2(if�(gt(x, y), x, y), gt�(x, y)) (1)

if�(false, x, y) → Com0 (3)if�(true, x, y) → Com2(m�(p(x), y), p�(x)) (2)

p�(0) → Com0 (4) p�(s(n)) → Com0 (5)

gt�(0, k) → Com0 (6)

gt�(s(n), 0) → Com0 (7)

gt�(s(n), s(k)) → Com1(gt�(n, k)) (8)

For termination analysis, one can regard strongly connected components of
the graph separately and ignore nodes that are not on cycles. This is not possible
for complexity analysis: If one regards the DTs D′ = {(1), (2)} and D′′ = {(8)}
on the two cycles of the graph separately, then both resulting DT problems
〈D′,D′,R1〉 and 〈D′′,D′′,R1〉 have linear complexity. However, this allows no
conclusions on the complexity of 〈D,D,R1〉 (which is quadratic). Nevertheless,
it is possible to remove DTs s→ t that are leaves (i.e., s→ t has no successors
in the dependency graph). This yields 〈D1,D1,R1〉, where D1 = {(1), (2), (8)}.
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Theorem 28 (Leaf Removal Processor). Let 〈D,S,R〉 be a DT problem
and let s → t ∈ D be a leaf in the (D,R)-dependency graph. Then the following
processor is sound: Proc( 〈D,S,R〉 ) = (Pol0, 〈D \ {s→ t},S \ {s→ t},R〉).

5.4 Knowledge Propagation

In the DP framework for termination, the reduction pair processor removes
“strictly decreasing” DPs. While this is unsound for complexity analysis (cf.
Ex. 22), we now show that by an appropriate extension of DT problems, one
can obtain a similar processor also for complexity analysis.

Lemma 29 shows that we can estimate the complexity of a DT if we know the
complexity of all its predecessors in the dependency graph.

Lemma 29 (Complexity Bounded by Predecessors). Let 〈D,S,R〉 be a
DT problem and s → t ∈ D. Let Pre(s → t) ⊆ D be the predecessors of s → t,
i.e., Pre(s → t) contains all DTs u → v where there is an edge from u → v to
s→ t in the (D,R)-dependency graph. Then ι〈D,{s→t},R〉 � ι〈D,Pre(s→t),R〉.

q�(s(x), s(y), z) → Com1(q�(x, y, z)) (10)

q�(x, 0, s(z)) → Com1(q�(x, s(z), s(z))) (11)

Example 30. Consider the TRS
from Ex. 25. By usable rules
and reduction pairs, we ob-
tained 〈D, {(11)}, ∅〉 for D =
{(9), (10), (11)}. The leaf re-
moval processor yields 〈D′, {(11)}, ∅〉 with D′ = {(10), (11)}. Consider the
the (D′, ∅)-dependency graph above. We have ι〈D′, {(11)}, ∅〉 � ι〈D′, {(10)}, ∅〉
by Lemma 29, since (10) is the only predecessor of (11). Thus, the complexity of
〈D′, {(11)}, ∅〉 does not matter for the overall complexity, if we can guarantee
that we have already taken the complexity of 〈D′, {(10)}, ∅〉 into account.

Therefore, we now extend the definition of DT problems by a set K of DTs
with “known” complexity, i.e., the complexity of the DTs in K has already been
taken into account. So a processor only needs to estimate the complexity of a
set of DTs correctly if their complexity is higher than the complexity of the DTs
in K. Otherwise, the processor may return an arbitrary result. To this end, we
introduce a “subtraction” operation � on complexities from C.

Definition 31 (Extended DT Problems, �). For c, d,∈ C, let c � d = c if
d � c and c�d = Pol0 if c � d. Let R be a TRS, D a set of DTs, and S,K ⊆ D.
Then 〈D,S,K,R〉 is an extended DT problem and 〈DT (R), DT (R), ∅,R〉 is the
canonical extended DT problem for R. We define the complexity of an extended
DT problem to be γ〈D,S,K,R〉 = ι〈D,S,R〉 � ι〈D,K,R〉 and also use γ instead of
ι in the soundness condition for processors. So on extended DT problems, a
processor with Proc(P ) = (c, P ′) is sound if γP � c ⊕ γP ′ . An extended DT
problem 〈D,S,K,R〉 is solved if S = ∅.

So for K = ∅, the definition of “complexity” for extended DT problems is
equivalent to complexity for ordinary DT problems, i.e., γ〈D,S,∅,R〉 = ι〈D,S,R〉.
Cor. 32 shows that our approach is still correct for extended DT problems.
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Corollary 32 (Correctness). If P0 is the canonical extended DT problem for
a TRS R and P0

c1
� . . .

ck
� Pk is a proof chain, then ιR = γP0 � c1 ⊕ . . .⊕ ck.

Now we introduce a processor which makes use of K. It moves a DT s→ t from
S to K whenever the complexity of all predecessors of s → t in the dependency
graph has already been taken into account.13

Theorem 33 (Knowledge Propagation Processor). Let 〈D,S,K,R〉 be an
extended DT problem, s→ t ∈ S, and Pre(s → t) ⊆ K. Then the following pro-
cessor is sound: Proc( 〈D,S,K,R〉 ) = (Pol0, 〈D, S\{s→ t}, K∪{s→ t}, R〉 ).

Before we can illustrate this processor, we need to adapt the previous processors
to extended DT problems. The adaption of the usable rules and leaf removal
processors is straightforward. But now the reduction pair processor does not only
delete DTs from S, but moves them to K. The reason is that the complexity of
these DTs is bounded by the complexity value c ∈ C returned by the processor.
(Of course, the special case of the reduction pair processor with polynomial
interpretations of Thm. 24 can be adapted analogously.)

Theorem 34 (Processors for Extended DT Problems). Let P = 〈D,S,
K,R〉 be an extended DT problem. Then the following processors are sound.

• The usable rules processor: Proc(P ) = (Pol0, 〈D,S,K,UR(D)〉).
• The leaf removal processor Proc(P ) = (Pol0, 〈D \ {s → t},S \ {s → t},
K \ {s→ t},R〉), if s→ t is a leaf in the (D,R)-dependency graph.

• The reduction pair processor: Proc(P ) = (c, 〈D, S \ D�, K ∪ D�, R〉),
if (,') is a Com-monotonic reduction pair, D ⊆  ∪ ', R ⊆ , and
c ; ι(irc�) for the function irc�(n) = sup{ dh(t�,') | t ∈ TB, |t| ≤ n}.

Example 35. Reconsider the TRS R for division from Ex. 25. Starting with its
canonical extended DT problem, we now obtain the following proof chain.

〈 {(9), (10), (11)}, {(9), (10), (11)}, ∅, R〉
Pol0
� 〈 {(10), (11)}, {(10), (11)}, ∅, R〉 (leaf removal)
Pol0
� 〈 {(10), (11)}, {(10), (11)}, ∅, ∅〉 (usable rules)
Pol1
� 〈 {(10), (11)}, {(11)}, {(10)}, ∅〉 (reduction pair)
Pol0
� 〈 {(10), (11)}, ∅, {(10), (11)}, ∅〉 (knowledge propag.)

For the last step we use Pre((11)) = {(10)}, cf. Ex. 30. The last DT problem is
solved. Thus, ιR � Pol0⊕Pol0⊕Pol1⊕Pol0 = Pol1, i.e.,R has linear complexity.

5.5 Transformation Processors

To increase power, the DP framework for termination analysis has several pro-
cessors which transform a DP into new ones (by “narrowing”, “rewriting”, “in-
stantiation”, or “forward instantiation”) [11]. We now show how to adapt such
processors for complexity analysis. For reasons of space, we only present the
narrowing processor (the other processors can be adapted in a similar way).
13 In particular, this means that nodes without predecessors (i.e., “roots” of the de-

pendency graph that are not in any cycle) can always be moved from S to K.
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For an extended DT problem 〈D,S,K,R〉, let s → t ∈ D with t = Comn(t1,
..., ti, ..., tn). If there exists a (variable-renamed) u→ v ∈ D where ti and u have
an mgu μ and both sμ and uμ are in R-normal form, then we call μ a narrowing
substitution of ti and define the corresponding narrowing result to be tiμ.

Moreover, if s → t has a successor u → v in the (D,R)-dependency graph
where ti and u have no such mgu, then we obtain additional narrowing substitu-
tions and narrowing results for ti. The reason is that in any possible reduction
tiσ

i→∗
R uτ in a chain, the term tiσ must be rewritten at least one step before it

reaches uτ . The idea of the narrowing processor is to already perform this first
reduction step directly on the DT s → t. Whenever a subterm ti|π /∈ V of ti
unifies with the left-hand side of a (variable-renamed) rule � → r ∈ R using an
mgu μ where sμ is in R-normal form, then μ is a narrowing substitution of ti
and the corresponding narrowing result is w = ti[r]πμ.

If μ1, . . . , μd are all narrowing substitutions of ti with the corresponding nar-
rowing results w1, . . . , wd, then s→ t can be replaced by sμj → Comn(t1μj , . . . ,
ti−1μj , wj , ti+1μj , . . . , tnμj) for all 1 ≤ j ≤ d.

However, there could be a tk (with k �= i) which was involved in a chain
(i.e., tkσ

i→∗
R uτ for some u→ v ∈ D and some σ, τ), but this chain is no longer

possible when instantiating tk to tkμ1, . . . , tkμd. We say that tk is captured by μ1,
. . . , μd if for each narrowing substitution ρ of tk, there is a μj that is more general
(i.e., ρ = μj ρ′ for some substitution ρ′). The narrowing processor has to add
another DT s → Comm(tk1 , . . . , tkm) where tk1 , . . . , tkm are all terms from t1,
. . . , tn which are not captured by the narrowing substitutions μ1, . . . , μd of ti.

This leads to the following processor. For any sets D,M of DTs, D[s→t /M]
denotes the result of replacing s → t by the DTs in M. So if s→ t ∈ D, then
D[s→t /M] = (DT \ {s→t}) ∪M and otherwise, D[s→t /M] = D.

Theorem 36 (Narrowing Processor). Let P = 〈D,S,K,R〉 be an extended
DT problem and let s → t ∈ D with t = Comn(t1, . . . , ti, . . . , tn). Let μ1, . . . , μd

be the narrowing substitutions of ti with the corresponding narrowing results
w1, . . . , wd, where d ≥ 0. Let tk1 , . . . , tkm be the terms from t1, . . . , tn that are
not captured by μ1, . . . , μd, where k1, . . . , km are pairwise different. We define

M = {sμj → Comn(t1μj , . . . , ti−1μj , wj , ti+1μj , . . . , tnμj) | 1 ≤ j ≤ d}
∪ {s → Comm(tk1 , . . . , tkm)}.

Then the following processor is sound: Proc(P ) = (Pol0, 〈D′,S′,K′,R〉), where
D′ = D[s→t /M] and S′ = S[s→t /M]. K′ results from K by removing s→ t
and all DTs that are reachable from s→ t in the (D,R)-dependency graph.14

14 We cannot define K′ = K[s→ t / M], because the narrowing step performed on
s→ t does not necessarily correspond to an innermost reduction. Hence, there can
be (D′,R)-chains that correspond to non-innermost reductions with D∪R. So there
may exist terms whose maximal (D′,R)-chain tree is larger than their maximal
(D,R)-chain tree and thus, ι〈D′,K[s→t/M],R〉 $ ι〈D,K,R〉. But we need ι〈D′,K′,R〉 �
ι〈D,K,R〉 in order to guarantee the soundness of the processor, i.e., to ensure that
γ〈D,S,K,R〉 = ι〈D,S,R〉 � ι〈D,K,R〉 � ι〈D′,S′,R〉 � ι〈D′,K′,R〉 = γ〈D′,S′,K′,R〉.
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Example 37. To illustrate the narrowing processor, consider the following TRS.

f(c(n, x)) → c( f(g(c(n, x))), f(h(c(n, x))) ) g(c(0, x)) → x h(c(1, x)) → x

So f operates on “lists” of 0s and 1s, where g removes a leading 0 and h removes a
leading 1. Since g’s and h’s applicability “exclude” each other, the TRS has linear
(and not exponential) complexity. The leaf removal and usable rules processors
yield the problem 〈 {(12)}, {(12)}, ∅, {g(c(0, x)) → x, h(c(1, x)) → x} 〉 with

f�(c(n, x)) → Com4( f�(g(c(n, x))), g�(c(n, x)), f�(h(c(n, x))), h�(c(n, x)) ). (12)

The only narrowing substitution of t1 = f�(g(c(n, x))) is [n/0] and the correspon-
ding narrowing result is f�(x). However, t3 = f�(h(c(n, x))) is not captured by
the substitution [n/0], since [n/0] is not more general than t3’s narrowing sub-
stitution [n/1]. Hence, the DT (12) is replaced by the following two new DTs:

f�(c(0, x)) → Com4( f�(x), g�(c(0, x)), f�(h(c(0, x))), h�(c(0, x)) ) (13)
f�(c(n, x)) → Com1( f�(h(c(n, x))) ) (14)

Another application of the narrowing processor replaces (14) by f�(c(1, x)) →
Com1(f�(x)).15 Now ιR � Pol1 is easy to show by the reduction pair processor.

Example 38. Reconsider the TRS of Ex. 3. The canonical extended DT problem
is transformed to 〈D1,D1, ∅,R1〉, where D1 = {(1), (2), (8)} and R1 are the
gt- and p-rules, cf. Ex. 27. In m�(x, y) → Com2(if�(gt(x, y), x, y), gt�(x, y)) (1),
one can narrow t1 = if�(gt(x, y), x, y). Its narrowing substitutions are [x/0, y/k],
[x/s(n), y/0], [x/s(n), y/s(k)]. Note that t2 = gt�(x, y) is captured, as its only
narrowing substitution is [x/s(n), y/s(k)]. So (1) can be replaced by

m�(0, k) → Com2(if�(false, 0, k), gt�(0, k)) (15)
m�(s(n), 0) → Com2(if�(true, s(n), 0), gt�(s(n), 0)) (16)

m�(s(n), s(k)) → Com2(if�(gt(n, k), s(n), s(k)), gt�(s(n), s(k))) (17)
m�(x, y) → Com0 (18)

The leaf removal processor deletes (15), (18) and yields 〈D2,D2, ∅,R1〉 with D2 =
{(16), (17), (2), (8)}. We replace if�(true, x, y) → Com2(m�(p(x), y), p�(x)) (2) by

if�(true, 0, y) → Com2(m�(0, y), p�(0)) (19)
if�(true, s(n), y) → Com2(m�(n, y), p�(s(n))) (20)

by the narrowing processor. The leaf removal processor deletes (19) and the
usable rules processor removes the p-rules from R1. This yields 〈D3,D3, ∅,R2〉,
15 One can also simplify (13) further by narrowing. Its subterm g�(c(0, x)) has no

narrowing substitutions. This (empty) set of narrowing substitutions captures
f�(h(c(0, x))) and h�(c(0, x)) which have no narrowing substitutions either. Since
f�(x) is not captured, (13) can be transformed into f�(c(0, x))→ Com1(f�(x)).
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where D3 = {(16), (17), (20), (8)} and R2 are the gt-rules. By the polynomial in-
terpretation [0] = [true] = [false] = [p�](x) = 0, [s](x) = x+2, [gt](x, y) = [gt�](x,
y) = x, [m�](x, y) = (x+ 1)2, [if�](x, y, z) = y2, all DTs in D3 are strictly decrea-
sing and all rules in R2 are weakly decreasing. So the reduction pair processor

yields 〈D3,D3, ∅,R2〉
Pol2
� 〈D3, ∅,D3,R2〉. As this DT problem is solved, we

obtain ιR � Pol0 ⊕ . . .⊕ Pol0 ⊕ Pol2 = Pol2, i.e., R has quadratic complexity.

6 Evaluation and Conclusion

We presented a new technique for innermost runtime complexity analysis by
adapting the termination techniques of the DP framework. To this end, we in-
troduced several processors to simplify “DT problems”, which gives rise to a
flexible and modular framework for automated complexity proofs. Thus, recent
advances in termination analysis can now also be used for complexity analysis.

To evaluate our contributions, we implemented them in the termination prover
AProVE and compared it with the complexity tools CaT 1.5 [28] and TCT 1.6 [2].
We ran the tools on 1323 TRSs from the Termination Problem Data Base used
in the International Termination Competition 2010.16 As in the competition,
each tool had a timeout of 60 seconds for each example. The left half of the
table compares CaT and AProVE. For instance, the first row means that AProVE
showed constant complexity for 209 examples. On those examples, CaT proved
linear complexity in 182 cases and failed in 27 cases. So in the light gray part of
the table, AProVE gave more precise results than CaT. In the medium gray part,
both tools obtained equal results. In the dark gray part, CaT was more precise
than AProVE. Similarly, the right half of the table compares TCT and AProVE.

CaT TCT
Pol0 Pol1 Pol2 Pol3 no result

∑
Pol0 Pol1 Pol2 Pol3 no result

∑

A
P
ro

V
E

Pol0 - 182 - - 27 209 10 157 - - 42 209
Pol1 - 187 7 - 76 270 - 152 1 - 117 270
Pol2 - 32 2 - 83 117 - 35 - - 82 117
Pol3 - 6 - - 16 22 - 5 - - 17 22

no result - 27 3 1 674 705 - 22 3 - 680 705∑
0 434 12 1 876 1323 10 371 4 0 938 1323

So AProVE showed polynomial innermost runtime for 618 of the 1323 examples
(47 %). (Note that the collection also contains many examples whose complex-
ity is not polynomial.) In contrast, CaT resp. TCT proved polynomial innermost
runtime for 447 (33 %) resp. 385 (29 %) examples. Even a “combined tool” of
CaT and TCT (which always returns the better result of these two tools) would
only show polynomial runtime for 464 examples (35 %). Hence, our contributions
represent a significant advance. This also confirms the results of the Termina-
tion Competition 2010, where AProVE won the category of innermost runtime
16 See http://www.termination-portal.org/wiki/Termination_Competition .

http://www.termination-portal.org/wiki/Termination_Competition
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complexity analysis.17 AProVE also succeeds on Ex. 3, 25, and 37, whereas CaT
and TCT fail. (Ex. 22 can be analyzed by all three tools.) For details on our
experiments (including information on the exact DT processors used in each ex-
ample) and to run our implementation in AProVE via a web interface, we refer
to http://aprove.informatik.rwth-aachen.de/eval/RuntimeComplexity/.

Acknowledgments. We are grateful to the CaT and the TCT team for their
support with the experiments and to G. Moser and H. Zankl for many helpful
comments.
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Abstract. Android is a programming language based on Java and an
operating system for mobile or embedded devices. It features an extended
event-based library and dynamic inflation of graphical views from declar-
ative XML layout files. A static analyzer for Android programs must
consider such features, for correctness and precision. This article is a
description of how we extended the Julia system, based on abstract in-
terpretation, to run formally correct analyses of Android programs. We
have analyzed with Julia the Android sample applications by Google and
a few larger open-source programs. Julia has found, automatically, bugs
and flaws both in the Google samples and in the open-source programs.

1 Introduction

Android is a main actor in the operating system market for mobile or embedded
devices. It is an operating system for such devices and a programming language,
based on Java, with an extended event-based library for mobile applications.
Any Java compiler can compile Android applications, but the resulting Java
bytecode must be translated into a final, very optimized, Dalvik bytecode.

Static analysis of Android applications is important as quality and reliability
are keys to success on the Android market (http://www.android.com/market).
The company Klocwork (http://www.klocwork.com) has already extended its
analysis tools from Java to Android, obtaining the only static analysis for An-
droid that we are aware of, currently limited in power and incorrect: if the
analyzed program contains a bug, it will often miss it. Nevertheless, this shows
that industry recognizes the importance of the static analysis of Android code.

Julia is a static analyzer for Java bytecode programs that do not use reflection
nor multithreading, based on abstract interpretation [1]. It ensures, automati-
cally, that the analyzed applications do not contain a large set of programming
bugs. It applies non-trivial whole-program, interprocedural and semantical static
analyses, including classcast, dead code, nullness and termination analysis. It
comes with a correctness guarantee, as typical in the abstract interpretation
community: if the application contains a bug, of a kind considered by the an-
alyzer, then Julia reports it. This makes the result of the analyses more sig-
nificant. However, its application to Android is not immediate and we had to
solve many problems before Julia could analyze Android programs in a cor-
rect and precise way. This article presents those problems and our solutions.
The resulting system analyzes non-trivial Android programs with high degree
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of precision and finds bugs in third-party code. Our experimental results are
available at http://julia.scienze.univr.it/runs/android/results.html.
This paper does not describe in detail the static analyses provided by Julia, al-
ready published elsewhere, but only their adaptation to Android. Our analyzer
is a commercial product (http://www.juliasoft.com). It can be freely used
through the web interface at http://julia.scienze.univr.it, whose maxi-
mal analysis size has been limited.

The analysis of Android programs is non-trivial since we must consider some
specific features of Android, both for correctness and precision of analysis. First
of all, Julia analyzes Java bytecode while Android applications are shipped in
Dalvik bytecode. Eclipse (http://www.eclipse.org) is the standard develop-
ment environment for Android at the moment. It can export Android applica-
tions in jar format i.e., in Java bytecode. Hence we have generated the jar files of
our experiments from Eclipse. Another problem is that Julia starts the analysis
of a program from its main method while Android programs start from many
event handlers, executed by a single thread. Hence, we had to modify Julia so
that it starts the analysis from all such handlers, considering them as potentially
concurrent entry points. Layout classes, such as views, menus and preferences,
contain most or even all the code of an Android application, including its busi-
ness logic. A complex problem is that, in Android, user interfaces are specified
declaratively by XML files. This means that the code is not completely available
in bytecode format, but is rather inflated, at runtime, from XML layout files
into actual bytecode, by using Java reflection. Moreover, the link between XML
inflated code and the explicit application code introduces casts and potential
null pointer exceptions. Finally, a real challenge is the size of the libraries: An-
droid programs use both the java.* and the new android.* hierarchies. Their
classes must be analyzed along with the programs, which easily leads to analyze
10,000 methods and more.

2 Android Basics

Android applications are written in Java and made out of activities, or event-
driven user interfaces. Programs do not have a single entry point but can rather
use parts of other Android applications on-demand and ask services by calling
their event handlers, directly or through the operating system.

An XML manifest file registers the components of an application. Other XML
files describe the visual layout of the activities. Activities inflate layout files into
visual objects (a hierarchy of views), through an inflater provided by the An-
droid library. This means that library or user-defined views are not explicitly
created by new statements but rather inflated through reflection. Library meth-
ods such as findViewById access the inflated views. As an example, consider the
activity in Fig. 1, from the Google distribution of Android 2.1. The onCreate
event handler gets called when the activity is first created, after its construc-
tor has been implicitly invoked by the Android system. The setContentView
library method calls the layout inflator. Its integer parameter uniquely iden-
tifies the XML layout file shown in Fig. 2. From line 3 of this file, it is clear

http://julia.scienze.univr.it/runs/android/results.html
http://www.juliasoft.com
http://julia.scienze.univr.it
http://www.eclipse.org
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1 public class LunarLander extends Activity {
2 private LunarView mLunarView;
3 @Override
4 protected void onCreate (Bundle savedInstanceState) {
5 super.onCreate (savedInstanceState);
6 // tell system to use the layout defined in our XML file
7 setContentView(R.layout.lunar_layout);
8 // get handles to the LunarView from XML
9 mLunarView = (LunarView) findViewById(R.id.lunar);

10 // give the LunarView a handle to a TextView
11 mLunarView.setTextView(( TextView ) findViewById(R.id.text));
12 }
13 }

Fig. 1. A portion of the source code Android file LunarLander.java

1 <FrameLayout xmlns:android="http :// schemas.android.com/apk/res/android"
2 android:layout_width="match_parent" android:layout_height="match_parent">
3 <com.example.android.lunarlander.LunarView android:id="@+id/lunar"
4 android:layout_width="match_parent" android:layout_height="match_parent"/>
5 <RelativeLayout
6 android:layout_width="match_parent" android:layout_height="match_parent" >
7 <TextView android:id="@+id/text"
8 android:text="@string/lunar_layout_text_text"
9 android:visibility="visible"

10 android:layout_width="wrap_content" android:layout_height="wrap_content"
11 android:layout_centerInParent="true" android:gravity="center_horizontal"
12 android:textColor="#88 ffffff" android:textSize="24sp"/>
13 </RelativeLayout >
14 </FrameLayout >

Fig. 2. The XML layout file lunar layout.xml

that the view identified as lunar at line 9 of Fig. 1 belongs to the user-defined
view class com.example.android.lunarlander.LunarView. The cast at line 9
in Fig. 1 is hence correct. Constants R.layout.lunar_layout and R.id.lunar
are automatically generated at compile-time from the XML layout file names
and from the view identifiers that they contain, respectively. The user can call
setContentView many times and everywhere in the code; he can pass the value
of any integer expression to it and to findViewById, although the usual approach
is to pass the compiler-generated constants. This declarative construction of ob-
jects also applies to preferences (graphical application options) and menus.

3 Our Set of Static Analyses

We describe here the analyses that we let Julia apply to Android programs. None
of these analyses is a simple syntactical check, but they all exploit semantical,
whole-program and inter-procedural information about the program.

Equality Checks. Java programmers can compare objects with a pointer iden-
tity check == and with a programmatic check .equals. In most cases, the
latter is preferred but == can be used for efficient comparisons. The use of
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== and .equals on the same class type is a symptom of a potential bug.
This check controls such situations, using the precise class analysis of Julia.

Classcast Checks. The XML layout inflation used in Android has introduced
situations where casts are unavoidable. Julia applies its class analysis to
prove casts correct. We had to consider the idiosyncracies of the Android
library to keep this class analysis precise for the Android casts (see Sect. 4).

Static Update Checks. The modification of a static field from inside a con-
structor or an instance method is legal but a symptom of a possible bug
or, at least, of bad programming style. We check when that situation occurs
inside the reachable code by exploiting the precise class analysis of Julia.

Dead Code Checks. Dead code is a method or constructor never invoked in
the program and hence useless. The identification of dead code is complex
in object-oriented programs, as method call targets are resolved at run-
time. The class analysis of Julia comes to help, by providing a static over-
approximation of the run-time resolved targets. Android complicates this
problem, as event handlers are called by the system, implicitly, and some
constructors are invoked, implicitly, during the XML layout inflation.

Method Redefinition Checks. A programmer might use, mistakenly, slightly
different names (differences in case) or argument types (differences in the
package portion) for the redefining and redefined methods. He might also
use an inconsistent policy while calling super, forgetting some of those calls.
This check controls such situations.

Nullness Checks. Dereferences occur when an instance field or an array is
accessed, an instance method is called or threads synchronize. If they occur
on null, a run-time exception is raised. Julia performs a very precise nullness
analysis for Java [4]. Android complicates the problem, because of the XML
layout inflation and of the use of the onCreate event handler to perform
tasks that, in Java, are normally done in constructors. Hence the precision
of the nullness analysis of Julia, applied to Android code, is not so high as for
Java. We had to improve it by considering these specific features (Sect. 5).

Termination Checks. A non-terminating program is often considered incor-
rect. Julia performs termination analysis of Java code [6], and has won the
latest international competition of termination analysis for Java bytecode
on July 2010. The application of its termination analysis to Android code is
challenging because of the size of the Java and Android libraries together.

4 Class Analysis for Android

Before the analysis of a program, the latter must be available and its boundaries
clear. Object-oriented languages use dynamic lookup of method implementations
in method calls, on the basis of the run-time class of their receiver. Hence,
the exact control-flow graph of a program is not even computable. An over-
approximation can be computed, where each method call is decorated with a
superset of its actual run-time targets. Class analysis computes, for each program
variable, field or method return value, a superset of the class types of the objects
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that it might contain at run-time [5]. Julia uses an improvement of the very
precise class analysis defined in [3], to build a constraint graph whose nodes are
the variables, fields and method return values in the program. Arcs link these
nodes and mimick the propagation of data in the program. The new statements
inject class types in the graph, that propagate along the arcs. Since the control-
flow graph of the program is not yet available when the class analysis starts, the
latter extracts the program on-demand, from its main method, during the same
propagation of the class types. This is problematic for Android programs, that do
not have a single main entry point, but many event handlers, that the system calls
when a specific event occurs. They are syntactically identified as implementations
overriding some method in the android.* hierarchy. Class analysis must hence
start from all event handlers and use, at their beginning, a worst-case assumption
about the state of the system.

This does not solve the problem of class analysis for Android programs yet.
As we said above, new statements inject class types in the constraint graph. But
it turns out that Android uses reflection to inflate (instantiate) graphical views
from the strings found in the XML layout files. In general, class analyses are
incorrect for reflection. Here, we want to stick on Julia’s precise class analysis
and we want it to work on Android code.

The first step in that direction has been to instrument the code of the library
class android.view.LayoutInflater, that performs the inflation. We replace
reflection, there, with a non-deterministic execution of new statements, for all
view classes reported in the layout files of the application. This makes the class
analysis of Julia correct w.r.t. layout inflation, but we have a problem of precision
with the return value of the Android method findViewById, which retrieves the
inflated views from constant identifiers. Thus, the second step has been to use
explicit knowledge on the view identifiers. We introduced new nodes views(x ) in
the constraint graph, one for each view identifier x occurring in the XML layout
files. Node views(x ) contains a superset of the class types of the views labelled
as x . Note that the same identifier x can be used for many views in the same
or different layout files and this is why, in general, we need a set. Node views(x )
is used for the return value of the findViewById(R.id.x) calls. Moreover, we
build the arc {name | x identifies a view of class name in some layout file} →
views(x ) to inject into views(x ) all class types explicitly bound to the identifier
x . We let (very unusual) calls findViewById(exp), for an expression exp that
is not, syntactically, a constant view identifier, keep their normal approximation
for the return value, containing all views referenced in the XML layout files. This
same technique is used also for menus and preferences, that work similarly.

5 Nullness Analysis for Android

Julia includes one of the most precise correct nullness analyses for Java. A basic
analysis is strengthened with others, to get a high degree of precision [4]. We
can apply it to Android, without any modification. The results are precise, with
some exceptions that we describe below, together with our solutions.
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An extensively used programming pattern in Android consists in calling the
setContentView method to inflate an XML layout file and the findViewById
method to retrieve the inflated views. The nullness analysis of Julia, without any
improvement, issues spurious warnings complaining about the possible nullness
of the views returned by findViewById. This is because Julia is not so clever
to understand that setContentView inflates an XML layout file where a view,
associated with an identifier, exists, so that a subsequent call to findViewById,
with that same identifier, does not yield null.

The nullness analysis of Julia includes, already, an expression non-nullness
analysis that computes, at each program point, sets of expressions that are lo-
cally non-null. For instance, this analysis knows that if a check this.foo(x)
!= null succeeds, then the expression this.foo(x) is non-null, if foo does not
modify any field or array read by foo itself. This local non-nullness is lost as soon
as the subsequent code modifies a field or array read by foo. To check these condi-
tions, Julia embeds a side-effect analysis of method calls. We exploited this anal-
ysis to embed specific knowledge on the setContentView method. Namely, after
a call to setContentView(R.layout.file), we let the expression non-nullness
analysis add non-null expressions findViewById(R.id.z), for every identifier
z of a view reported in file.xml. These expressions remain non-null as long as
no field or array is modified, that is read by findViewById (for instance, by a
setId or another setContentView), but this is the standard way of working of
our expression non-nullness analysis, so we had to change nothing for that.

This work removes some spurious warnings, but it is not completely satis-
factory. When an Android activity is first created, the onCreate event handler
gets called, before any other event handler of the activity. The problem is that
Android engineers have introduced onCreate to put code that, in Java, would
normally go into constructors. This comes with some drawback: Julia does not
spot these fields as globally non-null, although they do behave as such. Our
solution has been to instrument the code of activities and give them an extra
constructor that calls the standard constructor of the activity, normally empty,
and then the onCreate event handler, passing a null Bundle, exactly as it hap-
pens at activity start-up. Activities have two constructors now: the standard
one, typically never used directly, and this extra one, that Julia uses to simulate
the creation of the activity. They are syntactically distinguished by adding extra,
dummy parameters to the instrumented constructor. This solves our problem:
the instrumented constructor is now the only constructor called, directly, in the
program, to create the activity.

6 Termination Analysis for Android

Our termination analysis for Android is basically the same that we apply to
Java [6]. It builds linear constraints on the size of the program variables. This
results in a constraint logic program whose termination is proved by the Bin-
Term tool. For efficiency, Julia uses zones [2] for the linear approximation. It
can also use polyhedra, but their cost is much higher and we have not experi-
enced significant improvements in precision. BinTerm uses polyhedra anyway.
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For extra precision, we have defined the size of Android cursors as the number
of elements that must yet be scanned before reaching their end. This lets Julia
prove termination of the typical loops of Android code, where a cursor over a
database is used to scan its elements.

We observe that our tool proves termination of loops and recursive meth-
ods. Most Android programs might diverge if the user or the system keep in-
teracting with their event handlers. Our work does not consider this case of
non-termination, which is typically always possible.

7 Conclusion

This is the first static analysis framework for Android programs, based on a for-
mal basis such as abstract interpretation. It can analyze real third-party Android
applications, without any user annotation of the code, yielding formally correct
results in a few minutes and on standard hardware. So, it is ready for a first indus-
trial use. Formal correctness means that programs such as VoiceRecognition in
the table at http://julia.scienze.univr.it/runs/android/results.html
are proved to be bug-free, w.r.t. the classes of bugs considered by Julia.
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Abstract. Logic is a powerful tool for analyzing and verifying systems,
including programs, discrete systems, real-time systems, hybrid systems,
and distributed systems. Some applications also have a stochastic behav-
ior, however, either because of fundamental properties of nature, uncer-
tain environments, or simplifications to overcome complexity. Discrete
probabilistic systems have been studied using logic. But logic has been
chronically underdeveloped in the context of stochastic hybrid systems,
i.e., systems with interacting discrete, continuous, and stochastic dy-
namics. We aim at overcoming this deficiency and introduce a dynamic
logic for stochastic hybrid systems. Our results indicate that logic is a
promising tool for understanding stochastic hybrid systems and can help
taming some of their complexity. We introduce a compositional model
for stochastic hybrid systems. We prove adaptivity, càdlàg, and Markov
time properties, and prove that the semantics of our logic is measur-
able. We present compositional proof rules, including rules for stochastic
differential equations, and prove soundness.

1 Introduction

Logic has been used very successfully for verifying several classes of system
models, including programs [24], discrete systems, real-time systems [4], hybrid
systems [20], distributed systems, and distributed hybrid systems [21]. This gives
us confidence in the power of logic. Not all aspects of real systems can be repre-
sented faithfully by these models, however. Some systems are inherently uncer-
tain, either because of fundamental properties of nature, because they operate
in an uncertain environment, or because deterministic models are simply too
complex. Such systems have a stochastic dynamics. Nondeterministic overap-
proximations may be too inaccurate for a meaningful analysis, e.g., because a
worst-case analysis would let bad environment actions happen always, which is
very unlikely. Discrete probabilistic systems have been studied using logic. Yet,
complex systems are driven by joint discrete, continuous, and stochastic dynam-
ics. Logic has been chronically underdeveloped in the context of these stochastic
hybrid systems.
� This material is based upon work supported by the National Science Foundation
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Classical logic is about boolean truth and yes/no answers. That is why it is
tricky to use logic for systems with stochastic effects. Logic has reached out into
probabilistic extensions at least for discrete programs [13,14,6] and for first-order
logic over a finite domain [25]. Logic has been used for the purpose of specifying
system properties in model checking finite Markov chains [27] and probabilistic
timed automata [17]. Stochastic hybrid systems, instead, are a domain where
logic and especially proof calculi have so far been more conspicuous by their
absence. Given how successful logic has been elsewhere, we want to change that.

Stochastic hybrid systems [2,3,9] are systems with interacting discrete, con-
tinuous, and stochastic dynamics. There is not just one canonical way to add
stochastic behavior to a system model. Stochasticity might be restricted to the
discrete dynamics, as in piecewise deterministic Markov decision processes, re-
stricted to the continuous and switching behavior as in switching diffusion pro-
cesses [8], or allowed in many parts as in so-called General Stochastic Hybrid
Systems; see [2,3] for an overview. Several different forms of combinations of
probabilities with hybrid systems and continuous systems have been considered,
both for model checking [7,12,3] and for simulation-based validation [18,28].

We develop a very different approach. We consider logic and theorem proving
for stochastic hybrid systems1 to transfer the success that logic has had in other
domains. Our approach is partially inspired by probabilistic PDL [14] and by
barrier certificates for continuous dynamics [23]. We follow the arithmetical view
that Kozen identified as suitable for probabilistic logic [14].

Classical analysis is provably inadequate [11] for analyzing even simple con-
tinuous stochastic processes. We heavily draw on both stochastic calculus and
logic. It is not possible to present all mathematical background exhaustively
here. But we provide basic definitions and intuition and refer to the literature
for details and proofs of the main results of stochastic calculus [10,19,11].

Our most interesting contributions are:

1. We present the new model of stochastic hybrid programs (SHPs) and define a
compositional semantics of SHP executions in terms of stochastic processes.

2. We prove that the semantic processes are adapted, have almost surely càdlàg
paths, and that their natural stopping times are Markov times.

3. We introduce a new logic called stochastic differential dynamic logic (SdL)
for specifying and verifying properties of SHPs.

4. We define a semantics and prove that it is measurable such that probabilities
are well-defined and probabilistic questions become meaningful.

5. We present proof rules for SdL and prove their soundness.
6. We identify the requirements for using Dynkin’s formula for proving prop-

erties using the infinitesimal generator of stochastic differential equations.

SdL makes the rich semantical complexity and deep theory of stochastic hybrid
systems accessible in a simple syntactic language. This makes the verification of
stochastic hybrid systems possible with elementary syntactic proof principles.
1 Note that there is a model called Stochastic Hybrid Systems [9]. We do not mean

this specific model in the narrow sense but refer to stochastic hybrid systems as the
broader class of systems that share discrete, continuous, and stochastic dynamics.
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2 Preliminaries: Stochastic Processes

We fix a dimension d ∈ N for the Euclidean state space Rd equipped with
its Borel σ-algebra B, i.e., the σ-algebra generated by all open subsets. A σ-
algebra on a set Ω is a nonempty set F ⊆ 2Ω that is closed under complement
and countable union. We axiomatically fix a probability space (Ω,F , P ) with
a σ-algebra F ⊆ 2Ω of events on space Ω and a probability measure P on F
(i.e., P : F → [0, 1] is countable additive with P ≥ 0, P (Ω) = 1). We assume
the probability space has been completed, i.e., every subset of a null set (i.e.,
P (A) = 0) is measurable. A property holds P -almost surely (a.s.) if it holds with
probability 1. A filtration is a family (Ft)t≥0 of σ-algebras that is increasing, i.e.,
Fs ⊆ Ft for all s < t. Intuitively, Ft are the events that can be discriminated
at time t. We always assume a filtration (Ft)t≥0 that has been completed to
include all null sets and that is right-continuous, i.e., Ft =

⋂
u>t Fu for all t. We

generally assume the compatibility condition that F coincides with the σ-algebra
F∞ := σ

(⋃
t≥0 Ft

)
, i.e., the σ-algebra generated by all Ft.

For a σ-algebra Σ on a set D and the Borel σ-algebra B on Rd, function
f : D → Rd is measurable iff f−1(B) ∈ Σ for all B ∈ B (or, equivalently, for
all open B ⊆ Rd). An Rd-valued random variable is an F -measurable func-
tion X : Ω → Rd. All sets and functions definable in first-order logic over real
arithmetic are Borel-measurable. A stochastic process X is a collection {Xt}t∈T

of Rd-valued random variables Xt indexed by some set T for time. That is,
X : T ×Ω → Rd is a function such that for all t ∈ T , Xt = X(t, ·) : Ω → Rd

is a random variable. Process X is adapted to filtration (Ft)t≥0 if Xt is Ft-
measurable for each t. That is, the process does not depend on future events.
We consider only adapted processes (e.g., using the completion of the natural
filtration of a process or the completion of the optional σ-algebra for F [10]). A
process X is càdlàg iff its paths t �→ Xt(ω) (for each ω ∈ Ω) are càdlàg a.s., i.e.,
right-continuous (lims↘t Xs(ω) = Xt(ω)) and left limits (lims↗t Xs(ω)) exist.

We further need an e-dimensional Brownian motion W (i.e., W is a stochas-
tic process starting at 0 that is almost surely continuous and has independent
increments that are normally distributed with mean 0 and variance equal to
the time difference). Brownian motion is mathematically extremely complex. Its
paths are almost surely continuous everywhere but differentiable nowhere and of
unbounded variation. Intuitively, W can be understood as the limit of a random
walk. We denote the Euclidean vector norm by |x| and use the Frobenius norm
|σ| :=

√∑
i,j σ2

ij for matrices σ ∈ Rd×e.

3 Stochastic Differential Equations

We consider stochastic differential equations [19,11] to describe stochastic con-
tinuous system dynamics. They are like ordinary differential equations but have
an additional diffusion term that varies the state stochastically. Stochastic dif-
ferential equations are of the form dXt = b(Xt)dt + σ(Xt)dWt. We consider Itō
stochastic differential equations, whose solutions are defined by the stochastic
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Fig. 1. Sample paths with b = 1
(top) and b = 0 (bottom), σ = 1

Itō integral [19,11], which is again a stochastic
process. Like in an ordinary differential equa-
tion, the drift coefficient b(Xt) determines the
deterministic part of how Xt changes over
time as a function of its current value. As a
function of Xt, the diffusion coefficient σ(Xt)
determines the stochastic influence by inte-
gration with respect to the Brownian motion
process Wt. See Fig. 1 for two sample paths. Ordinary differential equations are
retained for σ = 0. We focus on the time-homogenous case, where b and σ are
time-independent, because time could be added as an extra state variable.

Definition 1 (Stochastic differential equation). A stochastic process
X : [0,∞)×Ω → Rd solves the (Itō) stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dWt (1)

with X0 = Z, if Xt = Z +
∫

b(Xt)dt +
∫

σ(Xt)dWt, where
∫

σ(Xt)dWt is an Itō
integral process [19,11].

For simplicity, we always assume b : Rd → Rd and σ : Rd → Rd×e to be measur-
able and locally Lipschitz-continuous:

∀N∃C∀x, y : |x|, |y| ≤ N ⇒ |b(x)− b(y)| ≤ C|x − y|, |σ(x)− σ(y)| ≤ C|x− y|

As an integral of an a.s. continuous process, solution X has almost surely con-
tinuous paths [19]. A.s. continuous solution X is pathwise unique [11, Ch 4.5].
Process X is a strong Markov process for each initial value x [19, Theorem 7.2.4].

4 Stochastic Hybrid Programs

As a system model for stochastic hybrid system, we introduce stochastic hybrid
programs (SHPs). SHPs combine stochastic differential equations for describing
the stochastic continuous system dynamics with program operations to describe
the discrete switching, jumps, and discrete stochastic choices. These primitive
dynamics can be combined programmatically in flexible ways. All basic terms in
stochastic hybrid programs and stochastic differential dynamic logic are polyno-
mial terms built over real-valued variables and rational constants. Our approach
is sound for more general settings, but first-order real arithmetic is decidable
[26].

Syntax. Stochastic hybrid programs (SHPs) are formed by the following gram-
mar (where xi is a variable, x a vector of variables, θ a term, b a vector of terms,
σ a matrix of terms, H is a quantifier-free first-order real arithmetic formula,
λ, ν ≥ 0 are rational numbers):

α ::= xi := θ | xi := ∗ | ?H | dx = bdt + σdW & H | λα ⊕ νβ | α; β | α∗
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Assignment xi := θ deterministically assigns term θ to variable xi instanta-
neously. Random assignment xi := ∗ randomly updates variable xi, but unlike in
classical dynamic logic [24], we assume a probability distribution for x. As one
example for a probability distribution, we consider uniform distribution in the
interval [0,1], but other distributions can be used as long as they are computa-
tionally tractable, e.g., definable in first-order real arithmetic.

Most importantly, dx = bdt + σdW & H represents a stochastic continuous
evolution along a stochastic differential equation, restricted to the evolution do-
main region H , i.e., the stochastic process will not continue when it leaves H . We
assume that dx = bdt + σdW satisfies the assumptions of stochastic differential
equations according to Def. 1. In particular, the dimensions of the vectors x, b,
matrix σ, and (vectorial) Brownian motion W fit together and b, σ are globally
Lipschitz-continuous (which is first-order definable for polynomial terms and,
thus, decidable by quantifier elimination [26]).

Test ?H represents a stochastic process that fails (disappears into an ab-
sorbing state) if H is not satisfied yet continues unmodified otherwise. Linear
combination λα ⊕ νβ evolves like α in λ percent of the cases and like β oth-
erwise. We simply assume λ + ν = 1. Sequential composition α; β and repetition
α∗ work similarly to dynamic logic [24], except that they combine SHPs.

Stochastic Process Semantics. The semantics of a SHP is the stochastic
process that it generates. The semantics [[α]] of a SHP α consists of a function
[[α]] : (Ω → Rd) → ([0,∞)×Ω → Rd) that maps any Rd-valued random variable
Z describing the initial state to a stochastic process [[α]]Z together with a func-
tion (|α|) : (Ω → Rd) → (Ω → R) that maps any Rd-valued random variable Z

describing the initial state to a stopping time (|α|)Z indicating when to stop [[α]]Z .
Often, an F0-measurable random variable Z or deterministic state is used to de-
scribe the initial state. We assume independence of Z from subsequent stochastic
processes like Brownian motions occurring in the definition of [[α]]Z .

For an Rd-valued random variable Z, we denote by Ẑ the stochastic process
Ẑ : {0} ×Ω → Rd; (0, ω) �→ Ẑ0(ω) := Z(ω) that is stuck at Z. We write x̂ for
the random variable Z that is a deterministic state Z(ω) := x for all ω ∈ Ω. We
write [[α]]x and (|α|)x for [[α]]Z and (|α|)Z then.

In order to simplify notation, we assume that all variables are uniquely
identified by an index, i.e., the only occurring variables are x1, x2, . . . , xd. We
write Z(ω) |= H if state Z(ω) satisfies first-order real arithmetic formula H and
Z(ω) �|= H otherwise. In the semantics we will use a family of random variables
{Ui}i∈I that are distributed uniformly in [0, 1] and independent of other Uj and
all other random variables and stochastic processes in the semantics. Hence,
U satisfies P ({ω ∈ Ω : U(ω) ≤ s}) =

∫ s

−∞ I[0,1]dt with the usual extensions to
other Borel subsets. To describe this situation, we just say that “U ∼ U(0, 1) is
i.i.d. (independent and identically distributed)”, meaning that U is furthermore
independent of all other random variables and stochastic processes in the seman-
tics. We denote the characteristic function of a set S by IS , which is defined by
IS(x) := 1 if x ∈ S and IS(x) := 0 otherwise.
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Definition 2 (Stochastic hybrid program semantics). The semantics of
SHP α is defined by [[α]] : (Ω → Rd) → ([0,∞)×Ω → Rd); Z �→ [[α]]Z = ([[α]]Zt )t≥0

and (|α|) : (Ω → Rd) → (Ω → R); Z �→ (|α|)Z . These functions are inductively de-
fined for random variable Z by

1. [[xi := θ]]Z = Ŷ where Y (ω)i = [[θ]]Z(ω) and Yj = Zj for all j �= i. Further,
(|xi := θ|)Z = 0.

2. [[xi := ∗]]Z = Û where Uj = Zj for all j �= i and Ui ∼ U(0, 1) is i.i.d. and
F0-measurable. Further, (|xi := ∗|)Z = 0.

3. [[?H ]]Z = Ẑ on the event {Z |= H} and (|?H |)Z = 0 (on all events ω ∈ Ω).
Note that [[?H ]]Z is not defined on the event {Z �|= H}.

4. [[dx = bdt + σdW & H ]]Z is the process X : [0,∞)×Ω → Rd that solves the
(Itō) stochastic differential equation dXt = [[b]]Xtdt + [[σ]]XtdBt with X0 = Z
on the event {Z |= H}, where Bt is a fresh e-dimensional Brownian motion if
σ has e columns. We assume that Z is independent of the σ-algebra generated
by (Bt)t≥0. Further, (|dx = bdt + σdW & H |)Z = inf{t ≥ 0 : Xt �∈ H}. Note
that X is not defined on the event {Z �|= H}.

5. [[λα ⊕ νβ]]Z = IU≤λ[[α]]Z + IU>λ[[β]]Z =

{
[[α]]Z on the event {U ≤ λ}
[[β]]Z on the event {U > λ}

(|λα ⊕ νβ|)Z = IU≤λ(|α|)Z + IU>λ(|β|)Z

where U ∼ U(0, 1) is i.i.d. and F0-measurable.

6. [[α; β]]Zt =

⎧⎨
⎩[[α]]Zt on {t < (|α|)Z}

[[β]]
[[α]]Z

(|α|)Z
t−(|α|)Z on {t ≥ (|α|)Z}

and (|α; β|)Z = (|α|)Z+(|β|)[[α]]Z
(|α|)Z

7. [[α∗]]Zt = [[αn]]Zt on the event {(|αn|)Z
> t} and (|α∗|)Z = lim

n→∞
(|αn|)Z

where α0 ≡ ?true, α1 ≡ α, and αn+1 ≡ α; αn.

For Case 7, note that (|αn|)Z is monotone in n, hence the limit (|α∗|)Z exists and
is finite if the sequence is bounded. The limit is ∞ otherwise. Note that [[α∗]]Zt
is independent of the choice of n on the event {(|αn|)Z

> t} (but not necessarily
independent of n on the event {(|αn|)Z ≥ t}, because α might start with a jump
after αn). Observe that [[α∗]]Zt is not defined on the event {∀n (|αn|)Z ≤ t}, which
happens, e.g., for Zeno executions violating divergence of time. It would still be
possible to give a semantics in this case, e.g., at t = (|αn|)Z , but we do not gain
much from introducing those technicalities.

In the semantics of [[α]]Z , time is allowed to end. We explicitly consider [[α]]Zt
as not defined for a realization ω if a part of this process is not defined, because
of failed tests in α. The process may be explicitly not defined when t > (|α|)Z .
Explicitly being not defined can be viewed as being in a special absorbing state
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that can never be left again, as in killed processes. The stochastic process [[α]]Z is
only intended to be used until time (|α|)Z . We stop using [[α]]Z after time (|α|)Z .

A Markov time (a.k.a. stopping time) is a non-negative random variable τ
such that {τ ≤ t} ∈ Ft for all t. For a Markov time τ and a stochastic process
Xt, the following process is called stopped process Xτ

Xτ
t := Xt�τ =

{
Xt if t < τ

Xτ if t ≥ τ
where t � τ := min{t, τ}

A class C of processes is stable under stopping if X ∈ C implies Xτ ∈ C for every
Markov time τ . Right continuous adapted processes, and processes satisfying the
strong Markov property are stable under stopping [5, Theorem 10.2].

Most importantly, we show that the semantics is well-defined. We prove that
the natural stopping times (|α|)Z are actually Markov times so that it is mean-
ingful to stop process [[α]]Z at (|α|)Z and useful properties of [[α]]Z inherit to
the stopped process [[α]]Zt�(|α|)Z . Furthermore, we show that the process [[α]]Z is
adapted (does not look into the future) and càdlàg, which will be important to
define a semantics for formulas. We give a proof of the following theorem in [22].

Theorem 3 (Adaptive càdlàg process with Markov times). For each
SHP α and any Rd-valued random variable Z, [[α]]Z is an a.s. càdlàg process and
adapted (to the completed filtration (Ft)t≥0 generated by Z and the constituent
Brownian motion (Bs)s≤t and uniform U processes) and (|α|)Z is a Markov time
(for (Ft)t≥0). In particular, the end value [[α]]Z(|α|)Z is again F(|α|)Z -measurable.

Note in particular, that the event {(|αn|)Z ≥ t} is Ft-measurable, thus, by [10,
Prop 1.2.3], the event {(|αn|)Z

> t} in Case 7 of Def. 2 is Ft-measurable. As a
corollary to Theorem 3, [[α]]Z is progressively measurable [10, Prop 1.1.13].

5 Stochastic Differential Dynamic Logic

0 ≡ I∅
1 ≡ IRd

¬f ≡ 1− f

A ∧B ≡ AB

A ∨B ≡ A + B −AB

A→ B ≡ 1−A + AB

if(H) {α}else{β} ≡ 1
2

(?H ; α) ⊕ 1
2

(?¬H ; β)

while(H) {α} ≡ (?H ; α)∗; ?¬H

[α]f ≡ ¬〈α〉¬f

Fig. 2. Common SdL and SHP abbreviations

For specifying and analyz-
ing properties of SHPs, we
introduce stochastic differ-
ential dynamic logic SdL.

Syntax. Function terms
of stochastic differential
dynamic logic SdL are
formed by the grammar (F
is a primitive measurable
function definable in first-
order real arithmetic, e.g.,
the characteristic function
IS of a measurable set S
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definable in first-order real arithmetic, B is a boolean combination of such char-
acteristic functions using operators ∧,∨,¬,→ from Fig. 2, λ, ν are rational num-
bers):

f, g ::= F | λf + νg | Bf | 〈α〉f
These are for linear (λf + νg) or boolean product (Bf) combinations of terms.
Term 〈α〉f represents the supremal value of f along the process belonging to α.
The syntactic abbreviations in Fig. 2 can be useful. Formulas of SdL are simple,
because SdL function terms are powerful. SdL formulas express equational and
inequality relations between SdL function terms f, g. They are of the form:

φ ::= f ≤ g | f = g

Measurable Semantics. The semantics of classical logics maps an interpreta-
tion to a truth-value. This does not work for stochastic logic, because the state
evolution of SHPs contained in SdL formulas is stochastic, not deterministic.
Instead, we define the semantics of an SdL function term as a random variable.

Definition 4 (SdL semantics). The semantics [[f ]] of a function term f is a
function [[f ]] : (Ω → Rd) → (Ω → R) that maps any Rd-valued random variable
Z describing the current state to a random variable [[f ]]Z . It is defined by

1. [[F ]]Z = F �(Z), i.e., [[F ]]Z(ω) = F �(Z(ω)) where function F denotes F �

2. [[λf + νg]]Z = λ[[f ]]Z + ν[[g]]Z

3. [[Bf ]]Z = [[B]]Z ∗ [[f ]]Z , i.e., multiplication [[Bf ]]Z(ω) = [[B]]Z(ω) ∗ [[f ]]Z(ω)
4. [[〈α〉f ]]Z = sup{[[f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z}

When Z is not defined (results from a failed test), then [[f ]]Z is not defined. To
avoid partiality, we assume the convention [[f ]]Z := 0 when Z is not defined.

If f is a characteristic function of a measurable set, then [[〈α〉f ]]Z corresponds
to a random variable that reflects the supremal f value that α can reach at
least once during its evolution until stopping time (|α|)Z when starting in a state
corresponding to random variable Z. Then P ([[〈α〉f ]]Z = 1) is the probability
with which α reaches f at least once and E([[〈α〉f ]]Z) is the expected value, given
Z. This includes the special case where Z is a deterministic state Z(ω) := x for
all ω ∈ Ω. But first, we prove that these quantities are well-defined probabilities
at all. Note that well-definedness of the definition in case 4 uses Theorem 3.

Cases 1–3 of Def. 4 are as in [14] with the notable exception of case 4, which
we define as a supremum, not an integral. The reason is that we are interested
in probabilistic worst-case verification, not in average-case verification. For dis-
crete programs, it is often sufficient to consider the input-output behavior, so
that Kozen did not need to consider the temporal evolution of the program over
time, only its final (probabilistic) outcome [14]. In stochastic hybrid systems,
the temporal evolution is highly relevant, in addition to the stochastic behavior.
When averaging over time, the system state may be very probably good (the
integral of the error is small). But, still, it could be very likely that the system
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exhibits a bug at some state during a run. In this case, we would still want to
declare such a system as broken, because, when using it, it will very likely get us
into trouble. Stochastic average-case analysis is interesting for performance anal-
ysis. But for safety verification, supremal stochastic analysis is more relevant,
because a system that is very probably broken at some time, is still too broken
to be used safely. We thus consider stochastic dynamics with worst-case tempo-
ral behavior, i.e., our semantics performs stochastic averaging (in the sense of
probability) among different behaviors, but considers supremal worst-case prob-
ability over time. The logic SdL is intended to be used (among other things) to
prove bounds on the probability that a system fails at some point at all.

A car that, on average over all times of its use, has a low crash rate, but
still has a high probability of crashing at least once during the first ride would
not be safe. This is one example where stochastic hybrid systems exhibit new
interesting characteristics that we do not see in discrete systems.

We show that the semantics is well-defined. We prove that [[f ]]Z is, indeed,
a random variable, i.e., measurable. Without this, probabilistic questions about
the value of formulas would not be well-defined, because they are not measurable
with respect to the probability space (Ω,F , P ) and the Borel σ-algebra on R.

Theorem 5 (Measurability). For any Rd-valued random variable Z, the se-
mantics [[f ]]Z of function term f is a random variable (i.e., F-measurable).

We give a proof of this theorem in [22].

Corollary 6 (Pushforward measure). For any Rd-valued random variable
Z and function term f , probability measure P induces the pushforward measure

S �→ P (([[f ]]Z)−1(S)) = P ({ω ∈ Ω : [[f ]]Z(ω) ∈ S}) = P ([[f ]]Z ∈ S)

which defines a probability measure on R. Hence, for each Borel-measurable set
S, the probability P ([[f ]]Z ∈ S) is well-defined.

We say that f ≤ g is valid if it holds for all Rd-valued random variables Z:

� f ≤ g iff for all Z, [[f ]]Z ≤ [[g]]Z , i.e., ([[f ]]Z)(ω) ≤ ([[g]]Z)(ω) for all ω ∈ Ω

Validity of f = g is defined accordingly, hence, � f = g iff � f ≤ g and � g ≤ f .
As consequence relation on formulas, we use the (global) consequence relation
that we define as follows (similarly when some of the formulas are fi = gi):

f1 ≤ g1, . . . , fn ≤ gn � f ≤ g

iff � f1 ≤ g1, . . . ,� fn ≤ gn implies � f ≤ g

Also f1 ≤ g1, . . . , fn ≤ gn � f ≤ g holds pathwise if it holds for each ω ∈ Ω.

6 Stochastic Calculus

In this section, we review important results from stochastic calculus [10,19,11]
that we use in our proof calculus. To indicate the probability law of process X
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starting at X0 = x a.s., we write P x instead of P . By Ex we denote the expecta-
tion operator for probability law P x. That is Ex(f(Xt)) :=

∫
Ω

f(Xt(ω))dP x(ω)
for each Borel-measurable function f : Rd → R. A very important concept is the
infinitesimal generator that captures the average rate of change of a process.

Definition 7 (Infinitesimal generator). The (infinitesimal) generator of an
a.s. right continuous strong Markov process (e.g., solution from Def. 1) is the
operator A that maps a function f : Rd → R to function Af : Rd → R defined as

Af(x) := lim
t↘0

Exf(Xt)− f(x)
t

We say that Af is defined if this limit exists for all x ∈ Rd. The generator can
be used to compute the expected value of a function when following the process
until a Markov time without solving the SDE.

Theorem 8 (Dynkin’s formula [19, Theorem 7.4.1],[5, p. 133]). Let Xt

an a.s. right continuous strong Markov process (e.g., solution from Def. 1). If
f ∈ C2(Rd, R) has compact support and τ is a Markov time with Exτ <∞, then

Exf(Xτ ) = f(x) + Ex

∫ τ

0

Af(Xs)ds

Dynkin’s formula is very useful, but only if we can compute the generator and
its integral. The generator A gives a stochastic expression. It has been shown,
however, that it is equal to a deterministic expression called the differential
generator under fairly mild assumptions:

Theorem 9 (Differential generator [19, Theorem 7.3.3]). For a solution
Xt from Def. 1, if f ∈ C2(Rd, R) is compactly supported, then Af is defined and

Af(x) = Lf(x) :=
∑

i

bi(x)
∂f

∂xi
(x) +

1
2

∑
i,j

(σ(x)σ(x)∗)i,j
∂2f

∂xi∂xj
(x)

A stochastic process Y that is adapted to a filtration (Ft)t≥0 is a supermartin-
gale iff E|Yt| <∞ for all t ≥ 0 and

E(Yt | Fs) ≤ Ys for all t ≥ s ≥ 0

Proposition 10 (Doob’s maximal martingale inequality [10, Theorem
I.3.8]). If f(Xt) is a càdlàg supermartingale with respect to the filtration gen-
erated by (Xt)t≥0 and f ≥ 0 on the evolution domain of Xt, then for all λ > 0:

P

(
sup
t≥0

f(Xt) ≥ λ | F0

)
≤ Ef(X0)

λ

7 Proof Calculus

Now that we have a model, logic, and semantics for stochastic hybrid systems,
we investigate reasoning principles that can be used to prove logical properties of
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〈x := θ〉f = fθ
x if admissible substitution replacing x with θ (〈:=〉)

〈?H〉f = Hf (〈?〉)
〈α; β〉f ≤ 〈α〉(f � 〈β〉f)

(
≤ 〈α〉(f + 〈β〉f) if 0 ≤ f

)
(〈;〉)

〈α; β〉f ≤ 〈α〉〈β〉f if � f ≤ 〈β〉f or β continuous at 0 a.s. (〈;〉′)
〈α〉(λf) = λ〈α〉f (〈〉λ)

〈α〉(λf + νg) ≤ λ〈α〉f + ν〈α〉g (〈〉+)

0 ≤ B = BB ≤ 1 if B boolean from characteristic functions (I)

0 ≤ f � 0 ≤ 〈α〉f (pos)

f ≤ g � 〈α〉f ≤ 〈α〉g (mon)

H → f ≤ λ � 〈dx = bdt + σdW & H〉f ≤ λ (λ ∈ Q) (mon′)

〈α〉g ≤ g � 〈α∗〉g ≤ g (ind)

Fig. 3. Pathwise proof rules for SdL

stochastic hybrid systems. First we present proof rules that are sound pathwise,
i.e., satisfy the global consequence relation pathwise for each ω ∈ Ω. By ! we
denote the binary maximum operator. It can either be added into the language
or approximated conservatively by + as in rule 〈;〉. Operator ! coincides with
∨ for values in {0,1}, e.g., built using operators ∧,∨,¬, 〈α〉 from characteristic
functions. As a supremum, 〈α〉B only takes on values {0,1} if B does.

Theorem 11 (Pathwise sound). The proof rules in Fig. 3 are globally sound
pathwise.

For a proof see [22]. For 〈;〉′, β is a.s. continuous at 0 if, on all paths, the
first primitive operation that is not a test is a stochastic differential equation,
not a (random) assignment. Our rules generalize to the case of probabilistic
assumptions. Note that formula H → f ≤ λ in mon′ is equivalent to Hf ≤ Hλ
but easier to read. If f is continuous, rule mon′ is sound when replacing the
topological closure H (which is computable by quantifier elimination) by H ,
because the inequality is weak.

Next we show proof rules that do not hold pathwise, but still in distribution.

Theorem 12 (Sound in distribution). Rule 〈⊕〉 is sound in distribution.

P (〈λα ⊕ νβ〉f ∈ S) = λP (〈α〉f ∈ S) + νP (〈β〉f ∈ S) (〈⊕〉)

For a proof see [22]. How to prove properties about random assignment xi := ∗
depends on the distribution for the random assignment. For a uniform distribu-
tion in [0,1], e.g., we obtain the following proof rule that is sound in distribution:

P (〈xi := ∗〉f ∈ S) =
∫ 1

0

I〈xi:=r〉f∈Sdr (〈∗〉)

The integrand is measurable for measurable S by Corollary6. The rule is appli-
cable when f has been simplified enough using other proof rules such that the
integral can be computed after using 〈:=〉 to simplify the integrand.
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Theorem 13 (Soundness for stochastic differential equations). If func-
tion f ∈ C2(Rd, R) has compact support on H (which holds for all f ∈ C2(Rd, R)
if H represents a bounded set), then the proof rule 〈′〉 is sound for λ > 0, p ≥ 0

(〈′〉)
〈α〉(H → f) ≤ λp H → f ≥ 0 H → Lf ≤ 0

P (〈α〉〈dx = bdt + σdW & H〉f ≥ λ) ≤ p

Proof. Since f has compact support on H , it has a C2(Rd, R) modification with
compact support on Rd that still satisfies the premises of 〈′〉, because all prop-
erties of f in the premises assume H . To simplify notation, we write f(x) for
[[f]]x. Let Xt be the stochastic process [[dx = bdt + σdW & H ]]Z . Let X̌t be Xt

restricted to H , i.e., the stopped process X̌t := Xt�(|dx=bdt+σdW & H|)Z , which is
stopped at a Markov time by Theorem 3. The stopped process X̌t, thus, inherits
càdlàg and strong Markov properties from Xt; see, e.g., [5, Theorem 10.2]. If Af
is defined and continuous and bounded on H [5, Ch 11.3][15, Ch I.3,I.4], then
the infinitesimal generator of X̌t agrees with the generator of Xt on H (and is
zero otherwise). This is the case, since f ∈ C2(Rd, R) has compact support (thus
bounded as continuous), because Af is then defined and Af = Lf by Theorem 9,
hence, Lf is continuous, because b, σ are continuous by Def. 1.

All premises of rule 〈′〉 still hold when assuming the topological closure H
instead of H , because the functions f and Lf are continuous and the conditions
are weak inequalities, thus, closed. Consider any x ∈ Rd and any time s ≥ 0. The
deterministic time s is a (very simple) Markov time with Exs = s <∞. Since f
is compactly supported, Theorem 8 is applicable and implies that

Exf(X̌s) = f(x) + Ex

∫ s

0

Af(X̌r)dr (2)

Now Lf ≤ 0 on H by the third premise. Hence, Af ≤ 0 on H , because Lf = Af (on
H) by Theorem 9, as f ∈ C2(Rd, R) has compact support. Because X and X̌ have
a.s. continuous paths and are not defined on the event {Z �|= H}, we know that
X̌s stays in the closure H a.s. Thus, Af(X̌s) ≤ 0 a.s., hence,

∫ s

0
Af(X̌r)dr ≤ 0

a.s., thus, Ex
∫ s

0
Af(X̌r)dr ≤ 0. Then (2) implies Exf(X̌s) ≤ f(x) for all x.

Because the filtration is right-continuous and f ∈ C(Rd, R) is compactly
supported (hence bounded), the strong Markov property [10, Prop 2.6.7] for
X̌t implies for all t ≥ s ≥ 0 that P x-a.s.: Ex(f(X̌t)|Fs) = EX̌s f(X̌t−s) ≤ f(X̌s).
The inequality holds, since Exf(X̌s) ≤ f(x) for all x, s. Thus, f(X̌t) is a super-
martingale with respect to X̌t, because it is adapted to the filtration of X̌t (as
f ∈ C2(Rd, R)) and Ex|f(X̌t)| <∞ for all t since f ∈ C2(Rd, R) has compact sup-
port. Further, f(X̌t) inherits continuity from X̌t (which follows from Xt), since
f is continuous.

Thus, by the second premise, Proposition 10 is applicable. Consider any ini-
tial state Y := [[α]]Zt for X̌. Thus, P

(
supt≥0 f(X̌t) ≥ λ | F0

)
≤ Ef(Y )

λ by Proposi-
tion 10 (filtration at X̌0 is F0). On event {Y �|= H}, X̌ is not defined and nothing
to show. On {Y |= H}, f(Y ) ≤ λp is valid where relevant by the first premise.
This implies the conclusion, as [[〈dx = bdt + σdW & H〉f]]Y = supt≥0 f(X̌t). �!



458 A. Platzer

The implications in the premises can be understood like that in mon′. Let H
be given by first-order real arithmetic formulas. If f is polynomial and, thus,
f ∈ C2(Rd, R), then the second and third premise of 〈′〉 are in first-order real
arithmetic, hence decidable. Note that our proof rules can be generalized to
probabilistic assumptions by the rule of partition and then combined.

The proof shows that it is enough to assume the first premise holds only a.s.
From the proof we see that it would be sufficient to replace the third premise of
〈′〉 with

∫ s

0 Lf(Xr)dr ≤ 0. This is a weaker condition, because it does not require
Lf ≤ 0 always, but only “on average”. But this condition is computationally
more involved, because the integral needs to be computed first. For polynomial
expressions, this is not too difficult, but still increases the polynomial degree.

A simple two-dimensional example is the following for H ≡ x2 + y2 < 10:

P (〈?x2+y2≤1
3

; x :=
x

2
; dx=

−x

2
dt− ydW, dy =

−y

2
dt+ xdW & H〉x2+y2≥1) ≤ 1

3

which can be proven easily using 〈;〉′,〈;〉, 〈?〉, 〈:=〉, 〈′〉, since f ≡ x2 + y2 ≥ 0 and

Lf =
1
2

(
−x

∂f

∂x
− y

∂f

∂y
+ y2 ∂2f

∂x2
− 2xy

∂2f

∂x∂y
+ x2 ∂2f

∂y2

)
≤ 0

8 Related Work

Our approach is partially inspired by the work of Kozen, who studied 3 semantics
of programs with random number generators [13] and probabilistic PDL [14]. We
generalize from discrete systems to stochastic hybrid systems. To reflect the new
challenges, we have departed from probabilistic PDL. Kozen uses a measure
semantics. We choose a semantics that is based on stochastic processes, because
the temporal behavior of SHPs is more crucial than that of abstract discrete
programs. SdL further uses a supremal semantics that is more interesting for
stochastic worst-case verification than the integral semantics assumed in [14].

The comparison to a first-order dynamic logic for deterministic programs with
random number generators [6] is similar. They axiomatize relative to first-order
analysis with arithmetic, enriched with frequencies and random number genera-
tors. They do not show how this logic could be handled (incompletely).

Our approach for stochastic differential equations is inspired by barrier certifi-
cates [23]. We extend this work by identifying the assumptions that are required
for soundness of using Dynkin-type arguments for stochastic differential equa-
tions. They propose to use global generators for switching diffusion processes
(which cannot reset variables). We use logic and compositional proofs for SHPs.

Probabilities and logic have also been used in AI, e.g., [25]. Markov logic net-
works are a combination of Markov networks and first-order logic and resembles
logic programming with weights for probabilities. They are restricted to finite
domains, which is not the case in stochastic hybrid systems.

Model checking has been used for discrete probabilistic systems like finite
Markov chains, e.g., [27], and probabilistic timed automata [17]. Assume-guarantee
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model checking is a challenge for discrete probabilistic automata, with recent
successes for finite automata assumptions [16]. We use a compositional proof
approach based on logic and consider stochastic hybrid systems.

Statistical model checking has been suggested for validating stochastic hybrid
systems [18] and later refined for discrete-time hybrid systems with a proba-
bilistic simulation function [28] based on corresponding discrete probabilistic
techniques [27]. They did not show measurability and do not support stochastic
differential equations [28]. Validation by simulation is generally unsound, but
the probability of giving a wrong answer can sometimes be bounded [27,28].

Fränzle et al. [7] show first pieces for continuous-time bounded model checking
of probabilistic hybrid automata (no stochastic differential equations).

Bujorianu and Lygeros [2] show strong Markov and càdlàg properties for a
class of systems known as General Stochastic Hybrid Systems. They also study
an interesting concatenation operator. For an overview of model checking tech-
niques for various classes of stochastic hybrid systems, we refer to [3]. Most
verification techniques for stochastic hybrid systems use discretizations, approx-
imations, or assume discrete time, bounded horizon [12,3,1,9]. We consider the
continuous-time behavior and develop compositional logic and theorem proving.

9 Conclusions

We introduce the first verification logic for stochastic hybrid systems along with
a compositional model of stochastic hybrid programs. We prove theoretical prop-
erties that are important for well-definedness and measurability and we develop
a compositional proof calculus. Our logic makes the complexity of stochastic
hybrid systems accessible in logic with simple syntactic proof principles.

Our results indicate that SdL is a promising starting point for the study of
logic for stochastic hybrid systems. Extensions include nondeterminism.

Acknowledgements. I thank the anonymous referees for their good comments
and Steve Marcus and Sergio Pulido Niño for helpful discussions.
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Reasoning in the OWL 2 Full Ontology Language

Using First-Order Automated Theorem Proving
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Abstract. OWL 2 has been standardized by the World Wide Web Con-
sortium (W3C) as a family of ontology languages for the Semantic Web.
The most expressive of these languages is OWL 2 Full, but to date no
reasoner has been implemented for this language. Consistency and en-
tailment checking are known to be undecidable for OWL 2 Full. We
have translated a large fragment of the OWL 2 Full semantics into first-
order logic, and used automated theorem proving systems to do reasoning
based on this theory. The results are promising, and indicate that this
approach can be applied in practice for effective OWL reasoning, beyond
the capabilities of current Semantic Web reasoners.

Keywords: Semantic Web, OWL, First-order logic, ATP.

1 Introduction

The Web Ontology Language OWL 2 [16] has been standardized by the World
Wide Web Consortium (W3C) as a family of ontology languages for the Semantic
Web. OWL 2 includes OWL 2 DL [10], the OWL 2 RL/RDF rules [9], as well as
OWL 2 Full [12]. The focus of this work is on reasoning in OWL 2 Full, the most
expressive of these languages. So far, OWL 2 Full has largely been ignored by the
research community, and no reasoner has been implemented for this language.

OWL 2 Full does not enforce any of the numerous syntactic restrictions of the
description logic-style language OWL 2 DL. Rather, OWL 2 Full treats arbitrary
RDF graphs [7] as valid input ontologies, and can safely be used with weakly
structured RDF data as is typically found on the Web. Further, OWL 2 Full
provides for reasoning outside the scope of OWL 2 DL and the OWL 2 RL/RDF
rules, including sophisticated reasoning based on meta-modeling. In addition,
OWL 2 Full is semantically fully compatible with RDFS [5] and also with the
OWL 2 RL/RDF rules, and there is even a strong semantic correspondence [12]
with OWL 2 DL, roughly stating that any OWL 2 DL conclusion can be reflected
in OWL 2 Full. This makes OWL 2 Full largely interoperable with the other
OWL 2 languages, and allows an OWL 2 Full reasoner to be combined with
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most existing OWL reasoners to provide higher syntactic flexibility and semantic
expressivity in reasoning-enabled applications.

Due to its combination of flexibility and expressivity, OWL 2 Full is compu-
tationally undecidable with regard to consistency and entailment checking [8].
While there cannot be any complete decision procedure for OWL 2 Full, the
question remains to what extent practical OWL 2 Full reasoning is possible.
This paper presents the results of a series of experiments about reasoning in
OWL 2 Full using first-order logic (FOL) theorem proving. A large fragment of
the OWL 2 Full semantics has been translated into a FOL theory, and auto-
mated theorem proving (ATP) systems have been used to do reasoning based on
this theory. The primary focus of these experiments was on the question of what
can be achieved at all; a future study may shift the focus to efficiency aspects.

The basic idea used in this work is not new. An early application of this ap-
proach to a preliminary version of RDF and a precursor of OWL was reported
by Fikes et al. [2]. That work focused on identifying technical problems in the
original language specifications, rather than on practical reasoning. Hayes [4]
provided fairly complete translations of RDF(S) and OWL 1 Full into Common
Logic, but did not report on any reasoning experiments. This gap was filled by
Hawke’s reasoner Surnia [3], which applied an ATP system to an FOL axioma-
tisation of OWL 1 Full. For unknown reasons, however, Surnia performed rather
poorly on reasoning tests [17]. Comparable studies have been carried out for
ATP-based OWL DL reasoning, as for Hoolet [15], an OWL DL reasoner imple-
mented on top of a previous version of the Vampire ATP system (http://www.
vprover.org). The work of Horrocks and Voronkov [6] addresses reasoning over
large ontologies, which is crucial for practical Semantic Web reasoning. Finally,
[1] reports on some historic knowledge representation systems using ATP for
description logic-style reasoning, such as Krypton in the 1980s.

All these previous efforts are outdated, in that they refer to precursors of
OWL 2 Full, and appear to have been discontinued after publication. The work
reported in this paper refers to the current specification of OWL 2 Full, and
makes a more extensive experimental evaluation of the FOL-based approach
than any previous work. Several aspects of OWL 2 Full reasoning have been
studied: the degree of language coverage of OWL 2 Full; semantic conclusions
that are characteristic specifically of OWL 2 Full; reasoning on large data sets;
and the ability of first-order systems to detect non-entailments and consistent
ontologies in OWL 2 Full. The FOL-based results have been compared with
the results of a selection of well-known Semantic Web reasoners, to determine
whether the FOL-based approach is able to add significant value to the state-of-
the-art in Semantic Web reasoning.

This paper is organized as follows: Section 2 provides an introduction to the
technologies used in this paper. Section 3 describes the FOL-based reasoning
approach. Section 4 describes the evaluation setting, including the test data,
the reasoners, and the computers used in the experiments. The main part of
the paper is Section 5, which presents the results of the experiments. Section 6
concludes, and gives an outlook on possible future work.

http://www.vprover.org
http://www.vprover.org
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2 Preliminaries

2.1 RDF and OWL 2 Full

OWL 2 Full is specified as the language that uses the OWL 2 RDF-Based Se-
mantics [12] to interpret arbitrary RDF graphs. RDF graphs are defined by the
RDF Abstract Syntax [7]. The OWL 2 RDF-Based Semantics is defined as a
semantic extension of the RDF Semantics [5].

According to the RDF Abstract Syntax, an RDF graph G is a set of RDF
triples: G = {t1, . . . , tn}. Each RDF triple t is given as an ordered ternary
tuple t = s p o of RDF nodes. The RDF nodes s, p, and o are called the subject,
predicate, and object of the triple t, respectively. Each RDF node is either a URI,
a (plain, language-tagged or typed) literal, or a blank node.

The RDF Semantics is defined on top of the RDF Abstract Syntax as a model
theory for arbitrary RDF graphs. For an interpretation I and a domain U , a URI
denotes an individual in the domain, a literal denotes a concrete data value (also
considered a domain element), and a blank node is used as an existentially quan-
tified variable indicating the existence of some domain element. The meaning of
a triple t = s p o is a truth value of the relationship 〈I(s), I(o)〉 ∈ IEXT(I(p)),
where IEXT is a mapping from domain elements that are properties to associated
binary relations. The meaning of a graph G = {t1, . . . , tn} is a truth value deter-
mined by the conjunction of the meaning of all the triples, taking into account
the existential semantics of blank nodes occurring in G. If an RDF graph G is
true under an interpretation I, then I satisfies G. An RDF graph G is consistent
if there is an interpretation I that satisfies G. An RDF graph G entails another
RDF graph H if every interpretation I that satisfies G also satisfies H .

Whether an interpretation satisfies a given graph is primarily determined by
a collection of model-theoretic semantic conditions that constrain the mapping
IEXT. There are different sets of model-theoretic semantic conditions for the
different semantics defined by the RDF Semantics specification. For example,
the semantics of class subsumption in RDFS is defined mainly by the semantic
condition defined for the RDFS vocabulary term rdfs:subClassOf:

〈c, d〉 ∈ IEXT(I(rdfs:subClassOf)) ⇒ c, d ∈ IC ∧ ICEXT(c) ⊆ ICEXT(d)

where “c” and “d” are universally quantified variables. Analogous to the map-
ping IEXT, the mapping ICEXT associates classes with subsets of the domain.
The two mappings are responsible for the metamodeling capabilities of RDFS
and its semantic extensions: Although the quantifiers in the RDFS semantic
conditions range over exclusively domain elements, which keeps RDFS in the
realm of first-order logic, the associations provided by the two mappings allow
domain elements (properties and classes) to indirectly refer to sets and binary
relations. This enables a limited but useful form of higher order-style modeling
and reasoning.

The OWL 2 RDF-Based Semantics, i.e. the semantics of OWL 2 Full, extends
the RDF Semantics specification by additional semantic conditions for the OWL-
specific vocabulary terms, such as owl:unionOf and owl:disjointWith.
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2.2 FOL, the TPTP Language, and ATP

The translation of the OWL 2 Full semantics is to classical untyped first-order
logic. The concrete syntax is the TPTP language [14], which is the de facto stan-
dard for state-of-the-art ATP systems for first-order logic. The ATP systems used
in the evaluation were taken from their web sites (see Section 4.3) or from the
archives of the 5th IJCAR ATP System Competition, CASC-J5 (http://www.
tptp.org/CASC/J5/). Most of the systems are also available online as part of the
SystemOnTPTP service (http://www.tptp.org/cgi-bin/SystemOnTPTP/).

3 Approach

Each of the model-theoretic semantic conditions of the OWL 2 Full semantics
is translated into a corresponding FOL axiom. The result is an axiomatization
of OWL 2 Full. The RDF graphs to reason about are also converted into FOL
formulae. In the case of consistency checking there is a single RDF graph that
is converted into a FOL axiom, for which satisfiability needs to be checked. In
the case of entailment checking, there is a premise graph that is converted into
a FOL axiom, and a conclusion graph that is converted into a FOL conjecture.
The FOL formulae (those representing the input RDF graphs and those building
the FOL axiomatization of the OWL 2 Full semantics) are passed to an ATP
system, which tries to prove the conclusion or establish consistency.

We apply a straight-forward translation of the semantic conditions, making
use of the fact that all semantic conditions have the form of FOL formulae. A se-
mantic relationship of the form “〈s, o〉 ∈ IEXT(p)” that appears within a seman-
tic condition is converted into an atomic FOL formula of the form “iext(p, s, o)”.
Likewise, a relationship “x ∈ ICEXT(c)” is converted into “icext(c, x)”. Apart
from this, the basic logical structure of the semantic conditions is retained. For
example, the semantic condition specifying RDFS class subsumption shown in
Section 2.1 is translated into

∀c, d : [ iext(rdfs:subClassOf, c, d) ⇒
( ic(c) ∧ ic(d) ∧ ∀x : (icext(c, x) ⇒ icext(d, x)) ) ]

The translation of RDF graphs amounts to converting the set of triples “s p o”
into a conjunction of corresponding “iext(p, s, o)” atoms. A URI occurring in an
RDF graph is converted into a constant. An RDF literal is converted into a func-
tion term, with a constant for the literal’s lexical form as one of its arguments.
Different functions are used for the different kinds of literals: function terms for
plain literals have arity 1; function terms for language-tagged literals have a con-
stant representing the language tag as their second argument; function terms for
typed literals have a constant for the datatype URI as their second argument.
For each blank node, an existentially quantified variable is introduced, and the
scope of the corresponding existential quantifier is the whole conjunction of the
“iext” atoms. For example, the RDF graph

:x rdf:type foaf:Person .
:x foaf:name "Alice"^^xsd:string .

http://www.tptp.org/CASC/J5/
http://www.tptp.org/CASC/J5/
http://www.tptp.org/cgi-bin/SystemOnTPTP/
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which contains the blank node “ :x”, the typed literal “"Alice"^^xsd:string”,
and the URIs “rdf:type”, “foaf:Person”, and “foaf:name”, is translated into
the FOL formula

∃x : [ iext(rdf:type, x, foaf:Person)∧
iext(foaf:name, x, literaltyped(Alice, xsd:string)) ]

4 Evaluation Setting

This section describes the evaluation setting: the OWL 2 Full axiomatization,
the test cases, the reasoners, and the computing resources. Supplementary ma-
terial including the axiomatizations, test data, raw results, and the software
used for this paper can be found online at: http://www.fzi.de/downloads/
ipe/schneid/cade2011-schneidsut-owlfullatp.zip.

4.1 The FOL Axiomatization and RDF Graph Conversion

Following the approach described in Section 3, most of the normative semantic
conditions of the OWL 2 Full semantics have been converted into the correspond-
ing FOL axioms, using the TPTP language [14]. The main omission is that most
of the semantics concerning reasoning on datatypes has not been treated, as we
were only interested in evaluating the “logical core” of the language. All other
language features of OWL 2 Full were covered in their full form, with a restriction
that was sufficient for our tests: while OWL 2 Full has many size-parameterized
language features, for example the intersection of arbitrarily many classes, our
axiomatization generally supports these language feature schemes only up to a
size of 3. The resulting FOL axiomatization consists of 558 formulae. The ax-
iom set is fully first-order with equality, but equality accounts for less than 10%
of the atoms. The first-order ATP systems used (see Section 4.3) convert the
formulae to clause normal form. The resultant clause set is non-Horn. Almost
all the clauses are range-restricted, which can result in reasoning that produces
mostly ground clauses.

In addition, a converter from RDF graphs to FOL formulae was implemented.
This allowed the use of RDF-encoded OWL test data in the experiments, without
time consuming and error prone manual conversion.

4.2 Test Data

Two complementary test suites were used for the experiments: one test suite
to evaluate the degree of language coverage of OWL 2 Full, and another suite
consisting of characteristic conclusions for OWL 2 Full reasoning. For scalability
experiments a large set of RDF data was also used.

http://www.fzi.de/downloads/ipe/schneid/cade2011-schneidsut-owlfullatp.zip
http://www.fzi.de/downloads/ipe/schneid/cade2011-schneidsut-owlfullatp.zip
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The Language Coverage Test Suite. For the language coverage experiments,
the test suite described in [13] was used.1 The test suite was created specifically
as a conformance test suite for OWL 2 Full and its main sub languages, including
RDFS and the OWL 2 RL/RDF rules. The test suite consists of one or more test
cases for each of the semantic conditions of the OWL 2 RDF-Based Semantics,
i.e., the test suite provides a systematic coverage of OWL 2 Full at a specification
level. Most of the test cases are positive entailment and inconsistency tests, but
there are also a few negative entailment tests and positive consistency tests.
The complete test suite consists of 736 test cases. A large fraction of the test
suite deals with datatype reasoning. As the FOL axiomatization has almost no
support for datatype reasoning, only the test cases that cover the “logical core”
of OWL 2 Full were used. Further, only the positive entailment and inconsistency
tests were used. The resultant test suite has 411 test cases.

OWL 2 Full-characteristic Test Cases. In order to investigate the extent of
the reasoning possible using the FOL axiomatization, a set of test cases that are
characteristic conclusions of OWL 2 Full was created. “Characteristic” means
that the test cases represent OWL 2 Full reasoning that cannot normally be
expected from either OWL 2 DL reasoning or from reasoners implementing
the OWL 2 RL/RDF rules. The test suite consists of 32 tests, with 28 en-
tailment tests and 4 inconsistency tests. There are test cases probing semantic
consequences from meta-modeling, annotation properties, the unrestricted use
of complex properties, and consequences from the use of OWL vocabulary terms
as regular entities (sometimes called “syntax reflection”).

Bulk RDF Data. For the scalability experiments, a program that generates
RDF graphs of arbitrary size (“bulk RDF data”) was written. The data consist
of RDF triples using URIs that do not conflict with the URIs in the test cases.
Further, no OWL vocabulary terms are used in the data sets. This ensures that
adding this bulk RDF data to test cases does not affect the reasoning results.

4.3 Reasoners

This section lists the different reasoning systems that were used in the experi-
ments. The idea behind the selection was to have a small number of represen-
tative systems for (i) first-order proving, (ii) first-order model finding, and (iii)
OWL reasoning. Details of the ATP systems can be found on their web sites,
and (for most) in the system descriptions on the CASC-J5 web site. The OWL
reasoners were tested to provide comparisons with existing state of the art Se-
mantic Web reasoners. Unless explicitly stated otherwise, the systems were used
in their default modes.

1 There is an official W3C test suite for OWL 2 at http://owl.semanticweb.org/

page/OWL_2_Test_Cases (2011-02-09). However, it does not cover OWL 2 Full suffi-
ciently well, and was not designed in a systematic way that allows easy determination
of which parts of the language specification are not supported by a reasoner.

http://owl.semanticweb.org/page/OWL_2_Test_Cases
http://owl.semanticweb.org/page/OWL_2_Test_Cases
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Systems for first-order theorem proving

– Vampire 0.6 (http://www.vprover.org). A powerful superposition-based
ATP system, including strategy scheduling.

– Vampire-SInE 0.6 A variant of Vampire that always runs the SInE
strategy (http://www.cs.man.ac.uk/~hoderk/sine/desc/) to select ax-
ioms that are expected to be relevant.

– iProver-SInE 0.8 (http://www.cs.man.ac.uk/~korovink/iprover). An
instantiation-based ATP system, using the SInE strategy, and including
strategy scheduling.

Systems for first-order model finding

– Paradox 4.0 (http://www.cse.chalmers.se/~koen/code/). A finite model
finder, based on conversion to propositional form and the use of a SAT solver.

– DarwinFM 1.4.5 (http://goedel.cs.uiowa.edu/Darwin). A finite model
finder, based on conversion to function-free first-order logic and the use of
the Darwin ATP system.

Systems for OWL reasoning

– Pellet 2.2.2 (http://clarkparsia.com/pellet). An OWL 2 DL reasoner
that implements a tableaux-based decision procedure.

– HermiT 1.3.2 (http://hermit-reasoner.com). An OWL 2 DL reasoner
that implements a tableaux-based decision procedure.

– FaCT++ 1.5.0 (http://owl.man.ac.uk/factplusplus). An OWL 2 DL
reasoner that implements a tableaux-based decision procedure.

– BigOWLIM 3.4 (http://www.ontotext.com/owlim). An RDF
entailment-rule reasoner that comes with predefined rule sets. The OWL 2
RL/RDF rule set (owl2-rl) was used. The commercial “BigOWLIM” vari-
ant of the reasoning engine was applied, because it provides inconsistency
checking.

– Jena 2.6.4 (http://jena.sourceforge.net). A Java-based RDF frame-
work that supports RDF entailment-rule reasoning and comes with prede-
fined rule sets. The most expressive rule set, OWL MEM RULE INF, was used.

– Parliament 2.6.9 (http://parliament.semwebcentral.org). An RDF
triple store with some limited OWL reasoning capabilities. Parliament can-
not detect inconsistencies in ontologies.

4.4 Evaluation Environment

Testing was done on computers with a 2.8GHz Intel Pentium 4 CPU, 2GB mem-
ory, running Linux FC8. A 300s CPU time limit was imposed on each run.

http://www.vprover.org
http://www.cs.man.ac.uk/~hoderk/sine/desc/
http://www.cs.man.ac.uk/~korovink/iprover
http://www.cse.chalmers.se/~koen/code/
http://goedel.cs.uiowa.edu/Darwin
http://clarkparsia.com/pellet
http://hermit-reasoner.com
http://owl.man.ac.uk/factplusplus
http://www.ontotext.com/owlim
http://jena.sourceforge.net
http://parliament.semwebcentral.org
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5 Evaluation Results

This section presents the results of the following reasoning experiments: a lan-
guage coverage analysis, to determine the degree of conformance to the language
specification of OWL 2 Full; “characteristic” OWL 2 Full reasoning experiments
to determine the extent to which distinguishing OWL 2 Full reasoning is possible;
some basic scalability testing; and several model finding experiments to deter-
mine whether first-order model finders can be used in practice for the recognition
of non-entailments and consistent ontologies. The following markers are used in
the result tables to indicate the outcomes of the experiments:

– success (‘+’): a test run that provided the correct result.
– wrong (‘−’): a test run that provided a wrong result, e.g., when a reasoner

claims that an entailment test case is a non-entailment.
– unknown (‘?’): a test run that did not provide a result, e.g., due to a

processing error or time out.

This section also presents comparative evaluation results for the OWL reasoners
listed in Section 4.3. This illustrates the degree to which OWL 2 Full reasoning
can already be achieved with existing OWL reasoners, and the added value
of our reasoning approach compared to existing Semantic Web technology. This
means, for example, that an OWL 2 DL reasoner will produce a wrong result if it
classifies an OWL 2 Full entailment test case as a non-entailment. However, this
negative evaluation result refers to only the level of conformance with respect to
OWL 2 Full reasoning, i.e., the reasoner may still be a compliant implementation
of OWL 2 DL.

5.1 Language Coverage

This experiment used the FOL axiomatization with the 411 test cases in the
language coverage suite described in Section 4.2. The results of the experiment
are shown in Table 1. iProver-SInE succeeded on 93% of the test cases, and
Vampire succeeded on 85%. It needs to be mentioned that the results were not
perfectly stable. Over several runs the number of successes varied for iProver-
SInE between 382 and 386. This is caused by small variations in the timing of
strategy changes within iProver-SInE’s strategy scheduling.

Figure 1 shows the runtime behavior of the two systems, with the times for
successes sorted into increasing order. Both systems take less than 1s for the ma-
jority of their successes. Although Vampire succeeded on less cases than iProver-
SInE, it is typically faster in the case of a success.

Table 1. Language coverage: ATPs with OWL 2 Full axiom set

Reasoner Success Wrong Unknown

Vampire 349 0 62

iProver-SInE 383 0 28
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Fig. 1. Language coverage: ordered system times of ATPs

An analysis of the 28 test cases for which both Vampire and iProver-SInE
did not succeed revealed that 14 of them require support for OWL 2 Full lan-
guage features not covered by the FOL axiomatization, including certain forms
of datatype reasoning and support for the RDF container vocabulary [5]. A fu-
ture version of the axiomatization will encode these parts of the OWL 2 Full
semantics, which might lead to improved results. For each of the remaining
14 test cases, subsets of axioms sufficient for a solution were hand-selected from
the FOL axiomatization. These axiom sets were generally very small, with up
to 16 axioms, and in most cases less than 10 axioms. iProver-SInE succeeded
on 13 of these 14 test cases. The remaining test case is a considerably complex
one, involving the semantics of qualified cardinality restrictions. It was solved
by Vampire. Thus, all test cases were solved except for the 14 that are beyond
the current axiomatization.

For comparison, the OWL reasoners listed in Section 4.3 were also tested.
The results are shown in Table 2. The OWL 2 DL reasoners Pellet and HermiT
both succeeded on about 60% of the test cases. A comparison of the individual
results showed that the two reasoners succeeded mostly on the same test cases.
Interestingly, although most of the test cases are formally invalid OWL 2 DL
ontologies, reasoning rarely resulted in a processing error. Rather, in ca. 40%
of the cases, the reasoners wrongly reported a test case to be a non-entailment
or a consistent ontology. The third OWL 2 DL reasoner, FaCT++, signaled a
processing error more often, and succeeded on less than 50% of the test cases.

The OWL 2 RL/RDF rule reasoner BigOWLIM succeeded on roughly 70%
of the test cases. Although the number of successful tests was larger than for
all the OWL 2 DL reasoners, there was a considerable number of test cases for
which the OWL 2 DL reasoners were successful but not BigOWLIM, and vice
versa. The Jena OWL reasoner, which is an RDF entailment rule reasoner like
BigOWLIM, succeeded on about only 30% of the test cases, which is largely due
to missing support for OWL 2 features. Finally, Parliament succeeded on only
14 of the test cases. In particular, it did not solve any of the inconsistency test
cases. The low success rate reflects the style of “light-weight reasoning” used in
many reasoning-enabled RDF triple stores.
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Table 2. Language coverage: OWL reasoners

Reasoner Success Wrong Unknown

Pellet 237 168 6

HermiT 246 157 8

FaCT++ 190 45 176

BigOWLIM 282 129 0

Jena 129 282 0

Parliament 14 373 24

Table 3. Characteristic conclusions: OWL reasoners PE=Pellet, HE=HermiT,
FA=FaCT++, BO=BigOWLIM, JE=Jena, PA=Parliament

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

PE + + + − − − − − + + − − − − + − − − − + + − − − − + − − ? − − −
HE + ? + − − ? − + + + − − − − + − − − − + + − − + ? + − − ? − − −
FA + ? ? ? ? ? ? − ? + − − − ? + ? − − − + + ? ? ? ? + − ? ? − − ?
BO + − − + − − + + − − + + − − + − − + + − − − − − − − − − − − − −
JE + − − − − + + + − − + − − − − − − + − − − − + − − + − − − − − +
PA + − − − − − − + − − ? − − − − − − − ? − − − − − − − − − − ? ? −

5.2 Characteristic OWL 2 Full Conclusions

The test suite of characteristic OWL 2 Full conclusions focuses on semantic
consequences that are typically beyond the scope of OWL 2 DL or RDF rule
reasoners. This is reflected in Table 3, which presents the results for the OWL
reasoning systems. The column numbers correspond to the test case numbers in
the test suite. In general, the OWL reasoners show significantly weaker perfor-
mance on this test suite than on the language coverage test suite. Note that
the successful test cases for the OWL 2 DL reasoners (Pellet, HermiT and
FaCT++) have only little overlap with the successful test cases for the RDF
rule reasoners (BigOWLIM and Jena). Parliament succeeded on only two test
cases.

The first two rows of Table 4 show that the ATP systems achieved much better
results than the OWL reasoners, using the complete OWL 2 Full axiomatization.
iProver-SInE succeeded on 28 of the 32 test cases, and Vampire succeeded on
23. As was done for the language coverage test cases, small subsets of axioms
sufficient for each of the test cases were hand-selected from the FOL axiomati-
zation. As the last two rows of Table 4 show, both ATP systems succeeded on
all these simpler test cases.

Figure 2 shows the runtime behavior of the two systems. For the complete
axiomatization, Vampire either succeeds in less than 1s or does not succeed. In
contrast, iProver’s performance degrades more gracefully. The reasoning times
using the small-sufficient axiom sets are generally up to several magnitudes lower
than for the complete axiomatization. In the majority of cases they are be-
low 1s.



Reasoning in OWL 2 Full Using First-Order ATP 471

Table 4. Characteristic conclusions: ATPs with complete and small axiom
sets. VA/c=Vampire/complete, IS/c=iProver-SInE/complete, VA/s=Vampire/small,
IS/s=iProver-SInE/small.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

VA/c + + + + + + + + + ? + ? ? + + + + + + ? ? ? + + ? + ? ? + + + +
IS/c + + + + + + + + + + + ? ? + + + + + + ? ? + + + + + + + + + + +
VA/s + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
IS/s + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
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Fig. 2. Characteristic conclusions: ordered system times of ATPs

5.3 Scalability

The Semantic Web consists of huge data masses, but single reasoning results
presumably often depend on only a small fraction of that data. As a basic test
of the ATP systems’ abilities to ignore irrelevant background axioms, a set of
one million “bulk RDF axioms” (as described in Section 4.2) was added to the
test cases of characteristic OWL 2 Full conclusions. This was done using the
complete FOL axiomatization, and also the small-sufficient sets of axioms for
each test case.

Table 5 shows the results. The default version of Vampire produced very poor
results, as is shown in the first and fourth rows of the table. (Strangely, Vampire
had two more successes with the complete axiomatization than with the small-
sufficient axiom sets. That can be attributed to differences in the strategies
selected for the different axiomatizations.) In contrast, as shown in the second,
third, fifth and sixth rows, the version of Vampire-SInE and iProver-SInE did
much better. The use of the SInE strategy for selecting relevant axioms clearly
helps.

Figure 3 shows the runtime behavior of the systems. The bulk axioms evi-
dently add a constant overhead of about 20s to all successes, which is believed
to be taken parsing the large files. In an application setting this might be done
only once at the start, so that the time would be amortized over multiple reason-
ing tasks. The step in iProver’s performance at the 20th problem is an artifact
of strategy scheduling.
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Table 5. Scalability: ATPs with complete and small axiom sets,
1M RDF triples. VA/c=Vampire/complete, VS/c=Vampire-SInE/complete,
IS/c=iProver-SInE/complete, VA/s=Vampire/small, VS/s=Vampire-SInE/small,
IS/s=iProver-SInE/small.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

VA/c + + + ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
VS/c + + + + + + ? + ? ? + ? ? ? + + ? + + ? ? ? + ? ? + ? ? ? + ? +
IS/c + + + + + + + + + + + ? ? + + + + + + ? ? + + + + + + + + + + +
VA/s + ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
VS/s + + + + + + ? + + + + + ? + + + ? + + ? ? + + + + + + ? + + ? +
IS/s + + + + + + + + + + + + ? + + + + + + + + + + + + + + + + + + +
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Fig. 3. Scalability: ordered system times of ATPs, 1M RDF triples

The bulk axioms were designed to have no connection to the FOL axiomati-
zation or the RDF graphs. As such, simple analysis of inference chains from the
conjecture [11] would be sufficient to determine that the bulk axioms could not
be used in a solution. This simplistic approach is methodologically an appropri-
ate way to start testing robustness against irrelevant axioms, and potentially not
too far off the reality of Semantic Web reasoning. However, future work using
axioms that are not so obviously redundant would properly exercise the power
of the SInE approach to axiom selection.

5.4 Model Finding

This section presents the results from experiments concerning the detection of
non-entailments and consistent ontologies w.r.t. OWL 2 Full and two of its sub
languages: ALCO Full [8] and RDFS [5]. ALCO Full is interesting because it is
a small fragment of OWL 2 Full that is known to be undecidable [8]. RDFS is
interesting because it is a minimally meaningful language that shares the main
characteristics of OWL 2 Full. The RDFS axioms included the “extensional”
semantic extension, as non-normatively defined in Section 4.2 of [5]. Similarly,
the original definition of ALCO Full was extended to include extensional RDFS.
No report is given for the OWL reasoners, as only the OWL 2 DL reasoners have
model-finding capabilities, and not for any of the three languages considered
here.
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Table 6. Model Finding: ATPs with ALCO Full and RDFS axiom sets.
The black entries indicate positive entailments or inconsistent ontologies.
PA/A=Paradox/ALCO Full, PA/R=Paradox/RDFS, DF/R=DarwinFM/RDFS.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

PA/A + + + + + + ? + + + + + ? ? ? ? + ? ? ? + + ? +
PA/R + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
DF/R + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Consistency checking for an RDF graph G w.r.t. some ontology language L
corresponds to consistency checking for the combination of a complete axioma-
tization of L and the FOL translation of G. Hence, a minimum requirement is
to confirm that the FOL axiomatization of OWL 2 Full is consistent. Unfortu-
nately, for the OWL 2 Full axiomatization no model finder was able to confirm
consistency.2

For the ALCO Full axioms, Paradox found a finite model of size 5 in ca. 5s
CPU time, while DarwinFM timed out. Paradox was then used on the charac-
teristic OWL 2 Full test cases, with the OWL 2 Full axiomatization replaced by
the ALCO Full axioms. As ALCO Full is a sub language of OWL 2 Full, 24 of
the 32 test cases are either non-entailments or consistent ontologies, out of which
15 were correctly recognized by Paradox. iProver-SInE was used to confirm that
the remaining 8 test cases are positive entailments or inconsistent ontologies.
The results are shown in the first row of Table 6.

For the RDFS axioms, analogous experiments were done. Paradox found a
finite model of the axioms, of size 1, in about 1s. The consistency was confirmed
by DarwinFM in less than 1s. With the OWL 2 Full axiomatization replaced
by the RDFS axioms, 29 of the 32 characteristic test cases are non-entailments
or consistent ontologies. Paradox and Darwin confirmed all of these, mostly in
ca. 1s, with a maximum time of ca. 2s. iProver-SInE confirmed that the remaining
3 test cases are positive entailments or inconsistent ontologies. These results are
shown in the second and third rows of Table 6.

An interesting observation made during the model finding experiments was
that finite model finders were effective, e.g., the results of Paradox and Dar-
winFM above. In contrast, other model finders such as iProver-SAT (a variant
of iProver tuned for model finding) and Darwin (the plain Model Evolution core
of DarwinFM) were less effective, e.g., taking 80s and 37s respectively to confirm
the satisfiability of the RDFS axiom set.

6 Conclusions and Future Work

This paper has described how first order ATP systems can be used for reasoning
in the OWL 2 Full ontology language, using a straight-forward translation of the
2 This raised the question of whether our positive entailment reasoning results were

perhaps due to an inconsistent axiomatization. However, none of the theorem provers
was able to establish inconsistency. In addition, the model finders confirmed the
consistency of all the small-sufficient axiom sets mentioned in Section 5.2. Hence, it
is at least ensured that those positive reasoning results are achievable from consistent
subsets of the OWL 2 Full axiomatization.
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underlying model theory into a FOL axiomatization. The results were obtained
from two complementary test suites, one for language coverage analysis and one
for probing characteristic conclusions of OWL 2 Full. The results indicate that
this approach can be applied in practice for effective OWL reasoning, and offers
a viable alternative to current Semantic Web reasoners. Some scalability testing
was done by adding large sets of semantically unrelated RDF data to the test
case data. While the ATP systems that include the SInE strategy effectively
ignored this redundant data, it was surprising that other ATP systems did not
use simple reachability analysis to detect and ignore this bulk data – this suggests
an easy way for developers to adapt their systems to such problems.

In contrast to the successes of the ATP systems proving theorems, model find-
ers were less successful in identifying non-entailments and consistent ontologies
w.r.t. OWL 2 Full. However, some successes were obtained for ALCO Full. Since
ALCO Full is an undecidable sub-language of OWL 2 Full, there is hope that
the failures were not due to undecidability but rather due to the large number of
axioms. This needs to be investigated further. Model finding for RDFS worked
quite efficiently, which is interesting because we do not know of any tool that
detects RDFS non-entailments.

In the future we plan to extend the approach to datatype reasoning, which is of
high practical relevance in the Semantic Web. It may be possible to take advan-
tage of the typed first-order or typed higher-order form of the TPTP language to
effectively encode the datatypes, and reason using ATP systems that take advan-
tage of the type information. Another topic for further research is to develop tech-
niques for identifying parts of the FOL axiomatization that are relevant to a given
reasoning task. It is hoped that by taking into account OWL 2 Full specific knowl-
edge, more precise axiom selection than offered by the generic SInE approach will
be possible. An important area of development will be query answering, i.e., the
ability to obtain explicit answers to users’ questions. For future OWL 2 Full rea-
soners this will be a very relevant reasoning task, particularly with respect to the
current extension of the standard RDF query language SPARQL towards “en-
tailment regimes” (http://www.w3.org/TR/sparql11-entailment). This topic
is also of growing interest in the ATP community, with a proposal being consid-
ered for expressing questions and answers in the TPTP language (http://www.
tptp.org/TPTP/Proposals/AnswerExtraction.html).
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Abstract. We present a new decidable logic called TREX for expressing con-
straints about imperative tree data structures. In particular, TREX supports a tran-
sitive closure operator that can express reachability constraints, which often ap-
pear in data structure invariants. We show that our logic is closed under weakest
precondition computation, which enables its use for automated software verifica-
tion. We further show that satisfiability of formulas in TREX is decidable in NP.
The low complexity makes it an attractive alternative to more expensive logics
such as monadic second-order logic (MSOL) over trees, which have been tradi-
tionally used for reasoning about tree data structures.

1 Introduction

This paper introduces a new decision procedure for reasoning about imperative manip-
ulations of tree data structures. Our logic of trees with reachability expressions (TREX)
supports reasoning about reachability in trees and a form of quantification, which en-
ables its use for expressing invariants of tree data structures, including the tree prop-
erty itself. Despite the expressive power of the logic, we exhibit a non-deterministic
polynomial-time decision procedure for its satisfiability problem, showing that TREX
is NP-complete. Our development is directly motivated by our experience with verify-
ing tree data structures in the Jahob verification system [15, 18, 21] in which we used
the MONA decision procedure [11] for MSOL over trees. Although MONA contributed
great expressive power to our specification language and, in our experience, works well
for programs that manipulate lists, there were many tree-manipulating programs whose
verification failed due to MONA running out of resources. It was thus a natural goal to
identify a logic that suits our needs, but can be decided much more efficiently.

There are other expressive logics supporting reachability but with lower complexity
than MSOL [4, 7, 10, 20]. We did not find them suitable as a MONA alternative, for
several reasons. First, we faced difficulties in the expressive power: some of the logics
can only reason about sets but not individual objects, others have tree model prop-
erty and thus cannot detect violations of the tree invariants. Moreover, the complexity

� An extended version of this paper including proofs of the key lemmas is available as a technical
report [19].
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of these logics is still at least EXPTIME, and their decision procedures are given in
terms of automata-theoretic techniques or tableaux procedures, which can be difficult
to combine efficiently with existing SMT solvers. Similarly, the logic of reachable pat-
terns [20] is decidable through a highly non-trivial construction, but the complexity is
at least NEXPTIME, as is the complexity of the Bernays-Schönfinkel Class with Data-
log [5]. The logic [2] can express nested list structures of bounded nesting along with
constraints on data fields and numerical constraints on paths, but cannot express con-
straints on arbitrary trees. On the other hand, TREX does not support reasoning on data
fields; although such an extension is in principle possible. Other approaches generate
induction scheme instances to prove transitive closure properties in general graphs [14].
While this strategy can succeed for certain examples, it gives neither completeness nor
complexity guarantees, and suffers from the difficulties of first-order provers in han-
dling transitive relations. Tree automata with size constraints can express properties
such as the red-black tree invariant [8]. However, this work does not state the complex-
ity of the reasoning task and the presented automata constructions appear to require
running time beyond NP. Regular tree model checking with abstraction has yielded ex-
cellent results so far [3] and continues to improve, but has so far not resulted in a logic
whose complexity is in NP, which we believe to be an important milestone.

The primary inspiration for our solution came from the efficient SMT-based tech-
niques for reasoning about list structures [13], as well as the idea of viewing single-
parent heaps as duals of lists [1]. However, there are several challenges in relying on
this immediate inspiration. For integration with other decision procedures, as well as
for modular reasoning with preconditions and postconditions, it was essential to obtain
a logic and not only a finite-model property for the analysis of systems as in [1]. Fur-
thermore, the need to support imperative updates on trees led to technical challenges
that are very different than those of [13]. To address these challenges, we introduced
a reachability predicate that is parametrized by a carefully chosen class of formulas to
control the reachability relation. We show that the resulting logic of trees is closed under
weakest preconditions with respect to imperative heap updates, which makes it suitable
for expressing verification conditions in imperative programs. We devised a four-step
decision procedure that contains formula transformations and ultimately reduces to a
Ψ -local theory extension [9, 16]. Consequently, our logic can be encoded using a quan-
tifier instantiation recipe within an SMT solver. We have encoded the axiomatization of
TREX in Jahob and used Z3 [6] with a default instantiation strategy to verify tree and
list manipulating programs. We have obtained verification times of around 1s, reducing
the running times by two orders of magnitude compared to MONA.

Motivating Example. We next show how to use our decision procedure to verify func-
tional correctness of a Java method that manipulates a binary tree data structure.

Fig. 1 shows a fragment of Java code for insertion into a binary search tree, factored
out into a separate insertLeftOf method. In addition to Java statements, the example in
Fig. 1 contains preconditions and postconditions, written in the notation of the Jahob
verification system [12, 15, 17, 18, 21].

The search tree has fields (l, r) that form a binary tree, and field p, which for each node
in the tree points to its parent (or null, if the node is the root of the tree). This property is
expressed by the first class invariant using the special predicate ptree, which takes the
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class Node {Node l, r, p;}
class Tree {

private Node root;
invariant ”ptree p [ l , r ] ” ; invariant ”p root = null ” ;
private specvar content :: objset ;
vardefs ”content=={x. root �= null ∧ (x,root) ∈ {(x,y). p x = y}∗}”;
public void insertLeftOf (Node pos, Node e)

requires ”pos ∈ content ∧ pos �= null ∧ l pos = null ∧
e /∈ content ∧ e �= null ∧ p e = null ∧ l e = null ∧ r e = null”

modifies content,l,p
ensures ”content = old content ∪ {e}”
{ e.p = pos; pos.l = e; } }

Fig. 1. Fragment of insertion into a tree

parent field and a list of successor fields of the tree structure as arguments. The second
invariant expresses that the field root points to the root node of the tree. The vardefs
notation introduces the set content denoting the useful content of the tree. Note that if
we are given a program that manipulates a tree data structure without explicit parent
field then we can always introduce one as a specification variable that is solely used for
the purpose of verification. This is possible because the parent field in a tree is uniquely
determined by the successor fields.

The insertLeftOf method is meant to be invoked when the insertion procedure has
traversed the tree and found a node pos that has no left child. The node e then becomes
the new left child of pos. Our system checks that after each execution of the method
insertLeftOf the specified class invariants still hold and that its postcondition is satisfied.
The postcondition states that the node e has been properly inserted into the tree.

The full verification condition of method insertLeftOf can be expressed in our logic.
Figure 2 shows one of the subgoals of this verification condition. It expresses that after
execution of method insertLeftOf the heap graph projected to field p is still acyclic. This
is a subgoal for checking that the ptree invariant is preserved by method insertLeftOf.
Note that our logic supports field update expressions upd(p, e, pos) so that we can ex-
press the verification condition directly in the logic. Note further that the precondition
stating that the ptree invariant holds at entry to the method is not explicitly part of the
verification condition. It is implicit in the semantics of our logic.

Our logic also supports reasoning about forward reachability 〈l, r〉∗ in the trees (i.e.,
transitive closure of the successor fields rather than the parent field) and quantification
over sets of reachable objects. The latter is used, e.g., to prove the postcondition of
method insertLeftOf stating that the node e was properly inserted and that no elements
have been removed from the tree.

While we only consider a logic of binary trees in this paper; the generalization to
trees of arbitrary finite arity is straightforward. In particular, an acyclic doubly-linked
list is a special case of a tree with parent pointers, so reasoning about such structures is
also supported by our decision procedure.
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p(root) = null ∧ root �= null ∧ 〈p〉∗(pos, root) ∧ ¬〈p〉∗(e, root) ∧
e �= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null
→ (∀z.〈upd(p, e, pos)〉∗(z, null))

Fig. 2. Verification condition expressing that, after execution of method insertLeftOf, the heap
graph projected to field p is still acyclic

p(root) = null ∧ root �= null ∧ 〈p〉∗(pos, root) ∧ ¬〈p〉∗(e, root) ∧ e �= null ∧ p(e) = null∧
l(e) = null ∧ r(e) = null ∧ ¬(∀z.〈p〉∗(x �=e)(z, null) ∨ 〈p〉∗(z, e) ∧ 〈p〉∗(x �=e)(pos, null))

Fig. 3. Negated verification condition from Fig. 2 after function update elimination

2 Decision Procedure through an Example

We consider the negation of the verification condition shown in Figure 2, which is
unsatisfiable in tree structures. Our decision procedure is described in Section 5 and
proceeds in four steps.

The first step (Section 5.1) is to eliminate all function update expressions in the
formula. The result of this step is shown in Figure 3. Our logic supports so called con-
strained reachability expressions of the form 〈p〉∗Q where Q is a binary predicate over
dedicated variables x, y. The semantics of this predicate is that 〈p〉∗Q(u, v) holds iff
there exists a p-path connecting u and v and between every consecutive nodes w1, w2

on this path, Q(w1, w2) holds. Using these constrained reachability expressions we can
reduce reachability expressions over updated fields to reachability expressions over the
non-updated fields, as shown in the example. This elimination even works for updates
of successor functions below forward reachability expressions of the form 〈l, r〉∗.

The second step (Section 5.2) eliminates all forward reachability constraints over
fields l, r from the formula and expresses them in terms of the relation 〈p〉∗. Since there
are no such constraints in our formula, we immediately proceed to Step 3.

The third step (Section 5.3) reduces the formula to a formula in first-order logic,
whose finite models are exactly the models of the formula from the previous step, which
is still expressed in TREX. For the purpose of the reduction, all occurrences of the
reachability relation 〈p〉∗ are replaced by a binary predicate symbol P , which is then
axiomatized using universally quantified first-order axioms so that 〈p〉∗ and P coincide
in all finite models. All remaining reachability constraints are of the form 〈p〉∗Q. We
can express these constraints in terms of P by introducing a unary function bpQ (called
break point function) that maps each node u to the first p-reachable node v of u for
which Q(v, p(v)) does not hold, i.e., bpQ(u) marks the end of the segment of nodes
w that satisfy 〈p〉∗Q(u,w). The function bpQ can be axiomatized in terms of P and Q.
Figure 4 shows the resulting formula (including only the necessary axioms for proving
unsatisfiability of the formula).

The fourth step (Section 5.4) computes prenex normal form and skolemizes re-
maining top-level existential quantifiers. Then we add additional axioms that ensure
Ψ -locality of the universally quantified axioms in the formula obtained from Step 3.
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p(root) = null ∧ root �= null ∧ P (pos, root) ∧ ¬P (e, root) ∧
e �= null ∧ p(e) = null ∧ l(e) = null ∧ r(e) = null ∧
¬(∀z.P (z, null) ∧ P (null, bp(x �=e)(z)) ∨ P (z, e) ∧ P (pos, null) ∧ P (null, bp(x �=e)(pos))) ∧
(∀z. P (z,null)) ∧ (∀z. P (z, z)) ∧ (∀wz.P (w, z) ∧ P (z, w) → z = w) ∧
(∀vwz. P (v,w) ∧ P (v, z) → P (w, z) ∨ P (z, w)) ∧
(∀wz. P (w, z) → w = z ∨ P (p(w), z)) ∧
(∀z. P (z, bp(z �=e)(z))) ∧ (∀z. bp(x �=e)(z) �= e→ bp(x �=e)(z) = null) ∧
(∀wz. P (w, z) ∧ P (z, bp(x �=e)(w))→ z �= e ∨ z = bp(x �=e)(w)) ∧ . . .

Fig. 4. Negated verification condition from Figure 2 after the reduction step to first-order logic.
Only the axioms that are necessary for proving unsatisfiability of the formula are shown.

The key property of the resulting formula is that its universal quantifiers can be instan-
tiated finitely many times with terms syntactically derived from the terms within the
formula. The result is an equisatisfiable quantifier-free formula, which can be handled
by the SMT solver’s congruence closure and the SAT solver.

3 Preliminaries

In the following, we define the syntax and semantics of formulas. We further recall the
notions of partial structures and Ψ -local theories as defined in [9].

Sorted logic. We present our problem in sorted logic with equality. A signature Σ is
a tuple (S,Ω), where S is a countable set of sorts and Ω is a countable set of function
symbols f with associated arity n ≥ 0 and associated sort s1 × · · · × sn → s0 with
si ∈ S for all i ≤ n. Function symbols of arity 0 are called constant symbols. In this
paper we will only consider signatures with sorts S = {bool, node} and the dedicated
equality symbol =∈ Ω of sort node × node → bool. Note that we generally treat
predicate symbols of sort s1, . . . , sn as function symbols of sort s1 × . . .× sn → bool.
Terms are built as usual from the function symbols in Ω and (sorted) variables taken
from a countably infinite set X that is disjoint from Ω. A term t is said to be ground, if
no variable appears in t. We denote by Terms(Σ) the set of all ground Σ-terms.

A Σ-atom A is a Σ-term of sort bool. We use infix notation for atoms built
from the equality symbol. A Σ-formula F is defined via structural recursion as
either one of A, ¬F1, F1 ∧ F2, or ∀x : s.F1, where A is a Σ-atom, F1 and F2

are Σ-formulas, and x ∈ X is a variable of sort s ∈ S. In formulas appearing in
this paper we will only ever quantify over variables of sort node, so we typically
drop the sort annotation. We use syntactic sugar for Boolean constants (�, ⊥),
disjunctions (F1 ∨F2), implications (F1 → F2), and existential quantification (∃x.F1).
For a finite index set I and Σ-formulas Fi, for all i ∈ I, we write

∧
i∈I Fi for

the conjunction of the Fi (respectively, � if I is empty) and similarly
∨

i∈I Fi for
their disjunction. We further write F [x1 := t1, . . . , xn := tn] for the simultaneous
substitutions of the free variables xi appearing in F by the terms ti. We define
literals and clauses as usual. A clause C is called flat if no term that occurs in
C below a predicate symbol or the symbol = contains nested function symbols.
A clause C is called linear if (i) whenever a variable occurs in two non-variable
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terms in C that do not start with a predicate or the equality symbol, the two terms
are identical, and if (ii) no such term contains two occurrences of the same variable.

Total and partial structures. Given a signature Σ = (S,Ω), a partial Σ-structure
α is a function that maps each sort s ∈ S to a non-empty set α(s) and each function
symbol f ∈ Ω of sort s1 × · · · × sn → s0 to a partial function α(f) : α(s1) × · · · ×
α(sn) ⇀ α(s0). If α is understood, we write just t instead of α(t) whenever this is
not ambiguous. We assume that all partial structures interpret the sort bool by the two-
element set of Booleans {0, 1}. We therefore call α(node) the universe of α and often
identify α(node) and α. We further assume that all structures α interpret the symbol
= by the equality relation on α(node). A partial structure α is called total structure or
simply structure if it interprets all function symbols by total functions. For a Σ-structure
α where Σ extends a signature Σ0 with additional sorts and function symbols, we write
α|Σ0 for the Σ0-structure obtained by restricting α to Σ0.

Given a total structure α and a variable assignment β : X → α(S), the evaluation
�t�α,β of a term t in α, β is defined as usual. For a ground term t we typically write just
�t�α. A quantified variable of sort s ranges over all elements of α(s). From the interpre-
tation of terms the notions of satisfiability, validity, and entailment of atoms, formulas,
clauses, and sets of clauses in total structures are derived as usual. In particular, we use
the standard interpretations for propositional connectives of classical logic. We write
α, β |= F if α satisfies F under β where F is a formula, a clause, or a set of clauses.
Similarly, we write α |= F if F is valid in α. In this case we also call α a model of
F . The interpretation �t�α,β of a term t in a partial structure α is as for total structures,
except that if t = f(t1, . . . , tn) for f ∈ Ω then �t�α,β is undefined if either �ti�α,β is
undefined for some i, or (�t1�α,β , . . . , �tn�α,β) is not in the domain of α(f). We say
that a partial structure α weakly satisfies a literal L under β, written α, β |=w L, if (i) L
is an atom A and either �A�α,β = 1 or �A�α,β is undefined, or (ii) L is a negated atom
¬A and either �A�α,β = 0 or �A�α,β is undefined. The notion of weak satisfiability is
extended to clauses and sets of clauses as for total structures. A clause C (respectively,
a set of clauses) is weakly valid in a partial structure α if α weakly satisfies α for all
variable assignments β. We then call α a weak partial model of C.

Ψ -local theories. The following definition is a particular special case of the more gen-
eral notion of Ψ -local theory extensions. For the general definitions of local theory
extensions, respectively, Ψ -local theory extensions, we direct the reader to [9, 16].

Let Σ = (S,Ω) be a signature. A theory T for a signature Σ is simply a set of
Σ-formulas. We consider theories T (K) defined as a set of Σ-formulas that are conse-
quences of a given set of clauses K. We call K the axioms of the theory T (K) and we
often identify K and T (K). In the following, when we refer to a set of ground clauses
G, we assume they are over the signature Σc = (S,Ω ∪ Ωc) where Ωc is a set of
new constant symbols. For a set of clauses K, we denote by st(K) the set of all ground
subterms that appear in K. Let Ψ be a function associating with a set of (universally
quantified) clauses K and a set of ground terms T a set Ψ(K, T ) of ground terms such
that (i) all ground subterms in K and T are in Ψ(K, T ); (ii) for all sets of ground terms
T, T ′ if T ⊆ T ′ then Ψ(K, T ) ⊆ Ψ(K, T ′); (iii) Ψ is a closure operation, i.e., for all
sets of ground terms T , Ψ(K, Ψ(K, T )) ⊆ Ψ(K, T ). (iv) Ψ is compatible with any map
h between constants, i.e., for any map h : Ωc → Ωc, Ψ(K, h(T )) = h(Ψ(K, T )) where
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h is the unique extension of h to terms. Let K[Ψ(K, G)] be the set of instances of K
in which all terms are in Ψ(K, st(G)), which here will be denoted by Ψ(K, G). We say
that K is Ψ -local if it satisfies condition (LocΨ ):
(LocΨ ) For every finite set of ground clauses G, K ∪G |= ⊥ iff K[Ψ(K, G)] ∪ G

has no weak partial model in which all terms in Ψ(K, G) are defined.

4 TREX: Logic of Trees with Reachability Expressions

We now formally define the formulas of our logic of trees with reachability expressions
(TREX), whose satisfiability we study. For simplifying the exposition in the remainder
of this paper, we restrict ourselves to binary trees. The decidability and complexity
result carries over to trees of arbitrary finite arity in a straightforward manner.

Syntax of TREX formulas. Figure 5 defines the TREX formulas. A TREX formula is a
propositional combination of atomic formulas. An atomic formula is either an equality
between terms, a reachability expression, or a restricted quantified formula. A term t is
either a constant c ∈ Γ or a function term f applied to a term t. The set of constants
Γ is an arbitrary countably infinite set of symbols disjoint from all other symbols used
in the syntax of formulas. However, we assume that Γ contains the special constant
symbol null. A function term is either one of the function symbols l, r (standing for the
two successor functions of a tree), and p (standing for the parent function of a tree), or
an update upd(f, t1, t2) of a function term f . In the latter case we call t1 the index of
the update and t2 the target. A forward reachability expression relates two terms by a
relation 〈fl, fr〉∗Q where fl and fr are the possibly updated successor functions and Q
is a predicate built from boolean combinations of equalities between constants and the
dedicated variables x and y. The syntactic restrictions on Q ensure that if one computes
the disjunctive normal form of Q then the resulting formula will contain a disjunct that
is a conjunction of disequalities between constants and variables. A backward reacha-
bility expression is similar but refers to the possibly updated parent function. We call
the relations 〈fl, fr〉∗Q descendant relations and the relations 〈fp〉∗Q ancestor relations.
Finally, the formulas below restricted quantified formulas are almost like TREX formu-
las, except that the quantified variable may only appear at particular positions below
function symbols and only as arguments of ancestor relations. For a predicate Q and
terms t1, t2, we typically write Q(t1, t2) for the formula Q[x := t1, y := t2]. Finally,
we simply write p∗ as a shorthand for 〈p〉∗	.

Semantics of TREX formulas. TREX formulas are interpreted over finite forests of
finite binary trees. We formally define these forests as first-order structures αF over the
signature ΣF of constant symbols Γ and the unary function symbols l, r and p. To this
end define the set of tree nodes N as the set of strings consisting of the empty string ε
and all strings over alphabet N∪{L, R} that satisfy the regular expression N · (L | R)∗,
i.e., we enumerate the trees comprising a forest by attaching a natural number to the
nodes in each tree. A forest αF is then a structure whose universe is a finite prefixed-
closed subset of tree nodes. The interpretation of the special constant symbol null ∈ Γ
and the function symbols l, r, and p are determined by the universe of αF as in Figure 6.
The remaining constant symbols in Γ may be interpreted by any tree node in αF . Let F
be the set of all forests and letMF be the set of all first-order structures over signature
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F ::= A | F ∧ F | ¬F

A ::= t = t | 〈fl, fr〉∗Q(t, t) | 〈fp〉∗Q(t, t) | F∀

t ::= c | f(t)

f ::= fl | fr | fp

fl ::= upd(fl, t, t) | l
fr ::= upd(fr, t, t) | r
fp ::= upd(fp, t, t) | p
Q ::= v = c→ R | Q ∧Q

R ::= tR = tR | R ∧R | ¬R

tR ::= v | c

F∀ ::= ∀z.Gin

Gin ::= f(z) = t→ Gin | Fin

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin = tin | 〈fp〉∗Q(tin, tin)

tin ::= z | t

terminals:
c ∈ Γ - constant symbol
l, r, p - function symbols
v ∈ {x, y} - dedicated variable
z ∈ X - variable

Fig. 5. Logic of trees with reachability TREX

αF (null) = ε αF (l)(n) =

{
nL if nL ∈ αF

ε otherwise
αF (r)(n) =

{
nR if nR ∈ αF

ε otherwise

αF (p)(n) =

{
n′ if n = n′s for some s ∈ N ∪ {L, R} and n′ ∈ αF

ε otherwise

Fig. 6. Semantics of functions and constants in the forest model

ΣF that are isomorphic to some structure in F . We extend the term forest to all the
structures in MF .

For defining the semantics of TREX formulas, let αF ∈ MF . We only explain the
interpretation of terms, function terms, and reachability expressions in detail, the re-
maining constructs are interpreted as expected. The notions of satisfiability, entailment,
etc. for TREX formulas are defined as in Section 3.

The interpretation of terms and function terms in αF under a variable assignment β
recursively extend the interpretation of ΣF -terms as follows:

�f�αF ,β
def= αF (f), for f ∈ {l, r, p}

�upd(f, t1, t2)�αF ,β
def= �f�αF ,β [�t1�αF ,β �→ �t2�αF ,β]

�f(t)�αF ,β
def= �f�αF ,β(�t�αF ,β)

In order to define the semantics of reachability expressions compactly, we write
〈Fn〉∗Q(t1, t2) for either a forward reachability expression 〈fl, fr〉∗Q(t1, t2) or a
backward reachability expression 〈fp〉∗Q(t1, t2). In the first case, the meta variable
Fn denotes the set of function terms {fl, fr} and in the second case the set {fp}. We
also use the notation 〈f, Fn〉∗Q(t1, t2), which denotes: 〈fp〉∗Q(t1, t2) if f = fp and
Fn = ∅, and denotes 〈fl, fr〉∗Q(t1, t2) if Fn = {fr} and f = fl or Fn = {fl} and
f = fr. A reachability expression 〈Fn〉∗Q(t1, t2) expresses that the node defined by t2
can be obtained from the node defined by t1, by successively applying the functions
defined by the function terms in Fn , where at each step Q holds between the current
node and its image. Formally, we define the binary predicate RQ,Fn by the formula
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f∈Fn f(x) = y

)
∧ Q and interpret the reachability relation 〈Fn〉∗Q as the reflexive

transitive closure of RQ,Fn :

�〈Fn〉∗Q�αF ,β
def=
{

(u, v) ∈ αF × αF | �RQ,Fn�αF ,β[x �→u,y �→v]

}∗
The interpretation of 〈Fn〉∗Q(t1, t2) is then defined as expected.

Definition 1 (Satisfiability Problem for TREX). The satisfiability problem for TREX
asks whether, given a TREX formula F , there exists a forest αF that satisfies F .

5 Decision Procedure for TREX

The logic TREX is a proper subset of MSOL over finite trees. Thus, decidability of the
satisfiability problem for TREX follows from the decidability of MSOL over trees. In
fact TREX formulas can be expressed in terms of MSOL formulas with at most two
quantifier alternations, which gives a 2-EXPTIME upper-bound for the complexity. In
the following, we show that the satisfiability problem for TREX is actually in NP.

For the remainder of this section we fix a TREX formula F0. Our decision procedure
proceeds in four steps. The first two steps eliminate function updates and forward reach-
ability expressions from F0, resulting in equisatisfiable TREX formulas F1 and then F2.
In the third step the formula F2 is reduced to a first-order formula F3 that has the same
finite models as the original formula F . We then use results on local theories [9, 16] to
prove a small model property for the obtained formulas. This allows us to use an ex-
isting decision procedure to check satisfiability of F3 in the final step of our algorithm
and obtain NP completeness.

5.1 Elimination of Function Updates

We first describe the elimination of function updates from the input formula F0. The
algorithm that achieves this is as follows:

1. Flatten the index and target terms of function updates in F0 by exhaustively apply-
ing the following rewrite rule:
C[upd(f, i, t)] � C[upd(f, ci, ct)] ∧ ci = i ∧ ct = t
where i, t are non-constant terms and ci, ct ∈ Γ are fresh constant symbols

2. Eliminate function updates in reachability expressions by exhaustively applying the
following rewrite rule:
C[〈upd(f, ci, ct), Fn〉∗Q(t1, t2)] � C[H ] ∧

∧
f ′∈Fn cf ′ = f ′(ci)

where the cf ′ are fresh constant symbols and
H

def= 〈f, Fn〉∗R(t1, t2) ∨ 〈f, Fn〉∗Q(t1, ci) ∧ 〈f, Fn〉∗R(ct, t2) ∧ Q(ci, ct)
R

def= Q ∧ (x = ci →
∨

f ′∈Fn y = cf ′)
3. Eliminate all remaining function updates by exhaustively applying the following

rewrite rule:
t1 = C[upd(f, ci, ct)(t2)] � t2 = ci ∧ t1 = C[ct] ∨ t2 �= ci ∧ t1 = C[f(t2)]

Note that the exhaustive application of the rule in each of the steps 1. to 3. is guaranteed
to terminate. Thus, let F1 be any of the possible normal form formulas obtained after
exhaustive application of these rules to F0.

Lemma 2. F1 is a TREX formula and is equisatisfiable with F0.
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5.2 Elimination of Descendant Relations

We next describe the second step of our decision procedure, which eliminates all de-
scendant relations from the formula F1. The elimination is performed using the follow-
ing rewrite rule:

〈l, r〉∗Q(s, t) � s= t ∨ s �=null ∧ (∃z. (l(z)= t ∨ r(z)= t) ∧ 〈p〉∗Q−1(z, s) ∧Q(z, t))

where Q−1 def= Q[x := y, y := x]. Let F2 be any of the normal form formulas obtained
by exhaustively applying this rewrite rule to F1.

Lemma 3. F2 is a TREX formula and is equisatisfiable with F1.

5.3 Reduction to First-Order Logic

In the third step of our decision procedure we reduce the formula F2 obtained after the
second step to a formula F3 in first-order logic. The idea of the reduction is to provide a
first-order axiomatization of the unconstrained ancestor relation p∗ whose finite models
are precisely the forests MF defined in Section 4. For this purpose we introduce a
fresh binary predicate symbol P representing p∗. The axioms defining P are given in
Figure 7. We can then axiomatize each constrained ancestor relation 〈p〉∗Q in terms of
p∗. To achieve thism we exploit that the relations 〈p〉∗Q can be characterized as follows:

∀xy. 〈p〉∗Q(x, y) ↔ p∗(x, y) ∧ p∗(y, bpQ(x)) (1)

where bpQ is the function that maps a node x to the first ancestor z of x such that
Q(z, p(z)) does not hold (or null if such a node does not exist). We call bpQ the break
point function for 〈p〉∗Q. The intuition behind the above definition is that for 〈p〉∗Q(x, y)
to be true, the break point for the path of ancestor nodes of x must come after y has been
reached (respectively, y itself is the break point of x). Note that this definition exploits
the fact that forests are acyclic graphs. The axioms defining bpQ are given in Figure 8.

Formally, the reduction of F2 to a first-order logic formula F3 is defined as fol-
lows: Let P be a fresh binary predicate symbol and let F3,1 be the formula obtained
by conjoining F2 with the axioms shown in Figure 7. Let Q be the set of predicates Q
appearing in reachability expressions 〈p〉∗Q(t1, t2) in F2. For each Q ∈ Q, let bpQ be
a fresh unary function symbol. For each Q ∈ Q, replace all occurrences of the form
〈p〉∗Q(t1, t2) in F2 by P (t1, t2) ∧ P (t2, bpQ(t1)). Let the result be F3,2. Finally, for
each Q ∈ Q, conjoin F3,2 with the axioms shown in Figure 8. Let F3 be the resulting
formula and let ΣP be the extension of the signature ΣF with the symbols P , and bpQ,
for all Q ∈ Q.

Lemma 4. For every finite ΣP -model α of the axioms in Figure 7, α(P ) = α(p)∗ and
α|ΣF ∈MF .

Lemma 5. The TREX formula F2 has a model in MF iff the ΣP -formula F3 has a
finite ΣP -model.
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l-Child : p(l(x)) = x ∨ l(x) = null p-Loop : p(x) = x→ x = null
r-Child : p(r(x)) = x ∨ r(x) = null NullTerm : P (x,null)
Parent : l(p(x))=x ∨ r(p(x))=x∨ p(x)=null Refl : P (x, x)
lr-Diff : l(x) = y ∧ r(x) = y → y = null Trans : P (x, y) ∧ P (y, z) → P (x, z)
l-Root : p(x) = null ∧ l(z) = x→ x = null AntiSym : P (x, y) ∧ P (y, x) → x = y
r-Root : p(x) = null ∧ r(z) = x→ x = null p-Step : P (x,p(x))

Total : P (x, y) ∧ P (x, z) → P (z, y) ∨ P (y, z) p-Unfold : P (x, y) → x=y ∨ P (p(x), y)

Fig. 7. First-order axioms for the unconstrained ancestor relation p∗ (represented by the binary
predicate symbol P ) and the functions l, r, and p in a forest

bpQ-Def1 : P (x, bpQ(x)) bpQ-Def2 : Q(bpQ(x), p(bpQ(x)))→ bpQ(x) = null
bpQ-Def3 : P (x, y) ∧ P (y, bpQ(x))→ Q(y, p(y)) ∨ y = bpQ(x)

Fig. 8. First-order axioms defining the break point functions bpQ

5.4 Ψ -Locality

Now let F4 be the formula obtained by transforming F3 into prenex normal from and
skolemizing all existential quantifiers. Note that our syntactic restrictions on TREX for-
mulas ensure that there are no alternating quantifiers appearing in the formulas F0, F1,
F2, and hence F3. So skolemization only introduces additional Skolem constants, but
no additional function symbols.

Let C be the set of clauses obtained by transforming F4 into clausal normal form.
Then partition C into sets of ground clauses G and non-ground clausesKP in which all
terms have been linearized and flattened. The idea is now to define a closure operator
Ψ such that condition (LocΨ ) from Section 3 holds for the particular pair KP , G. To
ensure that we can extend finite weak partial models of KP [Ψ(KP , G)] ∪ G to finite
total models of KP ∪ G, we have to make sure that Ψ(KP , G) contains sufficiently
many ground terms.

We will define Ψ such that in every finite weak partial model of KP [Ψ(KP , G)]∪G,
both P and the break point functions are already totally defined. However, for this we
have to bound the possible values of the break point functions. In fact, each predicate
Q ∈ Q bounds the possible values that bpQ can take. Let Γ (Q) be the set of constants
appearing in Q and let α be a finite total model of KP , then for all u ∈ α, bpQ(u) is
one of null, c, l(c), or r(c) for some c ∈ Γ (Q). Thus, for each predicate Q ∈ Q define
the set of its potential break points BP(Q) as follows. For sets of ground terms T and
a k-ary function symbol f , let f(T ) be the set of all (properly sorted) ground terms
f(t1, . . . , tk) for some t1, . . . , tk ∈ T . Then define

BP(Q) def= Γ (Q) ∪ l(Γ (Q)) ∪ r(Γ (Q)) ∪ {null}

Let further BP(Q) be the union of all sets BP(Q) for Q ∈ Q. This leads us to our first
approximation Ψbp of Ψ . To this end let f i(T ) be the set f(T ) restricted to the terms
in which the function symbol f appears at most i times, and let bp−(T ) be the set of
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bpQ-Def4 : P (x, y) ∧ P (y, bpQ(x))→ bpQ(x) = bpQ(y)
bpQ-Def5 :

∨
t∈BP(Q) bpQ(x) = t

Fig. 9. Additional first-order axioms for bounding the break point functions

fca-Def1 : P (x, fca(x, y)) fca-Def2 : P (y, fca(x, y))
fca-Def3 : P (x, z) ∧ P (y, z)→ P (fca(x, y), z)
fca-Def4 : fca(x, y)=w ∧ fca(x, z)=w ∧ fca(y, z)=w→ x=y ∨ x=z ∨ y=z ∨ w=null

Fig. 10. Axioms defining the first common ancestor of two nodes in a forest

ground terms obtained by removing from each ground term in T all appearances of the
function symbols

{
bpQ | Q ∈ Q

}
. Then define

Ψ0(T ) def= T ∪ { p(t) | t ∈ T, ∃t′. t = l(t′) ∨ t = r(t′) } ∪ BP (Q) ∪ p(BP (Q))
Ψ4(T ) def= T ∪

⋃
Q∈Q bpQ(bp−(T ))

Ψ5(T ) def= T ∪ P (T )
Ψbp(K, T ) def= Ψ5 ◦ Ψ4 ◦ Ψ0(st(K) ∪ T )

Let Kbp be the set of clauses obtained from KP by adding the linearized and flattened
clauses corresponding to the axioms shown in Figure 9. These additional axioms ensure
that the interpretation of the break point functions in weak partial models of KP are
consistent with those in total models of KP .

However, the above definition is not yet sufficient to ensure Ψ -locality. Assume that a
clause of the form z = c∨z = d appears inKbp that results from a restricted quantified
formula ∀z.z = c ∨ z = d in F0. Then this clause imposes an upper bound of 2 on the
cardinality of the models of F4. We thus have to make sure that for any weak partial
model of Kbp [Ψbp(Kbp , G)] ∪ G, we can find a total model of the same cardinality.
We can ensure that total models of matching cardinality exist by enforcing that every
weak partial model already determines the first common ancestor of every pair of nodes.
We axiomatize the first common ancestor of two nodes by introducing a fresh binary
function symbol fca and then adding the axioms shown in Figure 10. Let Σfca be the
signature ΣP extended with the binary function symbol fca and let Kfca be the set of
clauses obtained by adding toKbp the linearized and flattened clauses corresponding to
the axioms in Figure 10. Our second attempt at defining Ψ is then:

Ψ3(T ) def= T ∪ fca1(T ) ∪ fca2(T ∪ fca1(T ))
Ψfca(K, T ) def= Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ0(st(K) ∪ T )

Unfortunately, the operator Ψfca is still not good enough to ensure Ψ -locality. As-
sume that a clause of the form f(z) = t → H appears in Kfca that resulted from a
restricted quantified formula in F0 of the form ∀z. f(z) = t→ H and where f is either
one of p, l, or r. Assume that f = p. To ensure that this clause remains valid whenever
we complete p to a total function in some weak partial model α, we have to ensure that
we never have to define p(u) = t, for any u ∈ α for which p is undefined. Consider
first the case that in said model t is not null, then we can guarantee that we never have
to define p(u) = t by making sure that α is already defined on the ground terms p(l(t))
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Root1 : P (x, y)→ P (y, root(x)) ∨ y = null Root2 : root(x) = null↔ x = null
l-Leaf1 : P (lleaf (x), x) ∨ lleaf (x) = null r-Leaf1 : P (rleaf (x), x) ∨ rleaf (x) = null
l-Leaf2 : P (lleaf (x), l(x)) r-Leaf2 : P (rleaf (x), r(x))
l-Leaf3 : lleaf (lleaf (x)) = null r-Leaf3 : rleaf (rleaf (x)) = null
l-Leaf4 : lleaf (rleaf (x)) = null r-Leaf4 : rleaf (rleaf (x)) = null

Leaves1 : fca(lleaf (x), rleaf (x)) = x ∨ lleaf (x) = null ∨ rleaf (x) = null
Leaves2 : (lleaf (x) = null ∨ rleaf (x) = null) ∧ fca(y, z) = x→ x = y ∨ x = z ∨ x = null
Leaves3 : lleaf (x) = null ∧ rleaf (x) = null ∧ P (y, x)→ y = x ∨ x = null

Fig. 11. Axioms for the auxiliary function symbols root , lleaf , and rleaf

and p(r(t)). This suggests that we should add the following additional ground terms to
the set of ground terms generated by Ψ0(T ):

Ψ1(T ) def= T ∪ { l(t), p(l(t)), r(t), p(r(t)) | (p, t) ∈ Grd }
∪ { p(t), l(p(t)), p(l(p(t))) | (l, t) ∈ Grd }
∪ { p(t), r(p(t)), p(r(p(t))) | (r, t) ∈ Grd }

where Grd is the set of all pairs (f, t) of function symbols and ground terms appearing
in guards of clauses of the form f(z) = t→ H in Kfca .

If for some (f, t) ∈ Grd the weak partial model α satisfies t = null then the situation
is not quite so simple. We have to make sure that α already explicitly determines which
nodes u ∈ α satisfy f(u) = null, even if f is not defined on u. However, there is
no finite set of ground terms T over the signature Σfca such that instantiation of Kfca

with the terms in T will ensure this. To enable the construction of such a finite set of
terms, we introduce auxiliary functions root , lleaf , and rleaf that determine the root, a
left child, and a right child of every node in a forest. More precisely, the semantics of
these functions is as follows: for each u ∈ α, root(u) determines the root of the tree
in α to which u belongs (i.e., in all total models α of Kfca and u ∈ α, p(u) = null iff
root(u) = u). Similarly, lleaf (u) is some leaf of the tree to which u belongs such that
lleaf (u) is descendant of l(u), or null if l(u) is null (i.e., in all total models α of Kfca

and u ∈ α, l(u) = null holds iff lleaf (u) = null). The semantics of rleaf is analogous.
Let Σ be the signature Σfca extended with fresh unary function symbols root , lleaf ,
and rleaf . The axioms capturing this semantics are given in Figure 11. We can then
replace every clause f(z) = t → H in Kfca by the two clauses

f(z) = t→ t = null ∨H and t = null ∧ Nf (z) → H

where Nf(z) is root(z) = z if f is p, lleaf (z) = null if f is l, and rleaf (z) = null if
f is r. Let K be the resulting set of clauses extended with the linearized and flattened
clauses obtained from the axioms in Figure 11. After this final rewriting step no non-
ground occurrences of function symbols l, r, p remain in the clauses that resulted from
quantified subformulas in the original formula F0.

Lemma 6. The formula F3 has a finite ΣP -model iff K ∪G has a finite Σ-model.
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The final definition of the closure operator Ψ is then as follows:

Roots(T ) def= root1(T ) ∪ root(root1(T ))
Leaves(T ) def= lleaf 1(T ∪ root1(T )) ∪ rleaf 1(T ∪ root1(T ))

Ψ2(T ) def= T ∪ Roots(T ) ∪ Leaves(T ) ∪ lleaf (Leaves(T )) ∪ rleaf (Leaves(T ))
Ψ(K, T ) def= Ψ5 ◦ Ψ4 ◦ Ψ3 ◦ Ψ2 ◦ Ψ1 ◦ Ψ0(st(K) ∪ T )

One can easily check that Ψ satisfies the conditions (i) to (iv) on the closure operator of
a Ψ -local theory, as defined in Section 3.

Lemma 7. If there exists a weak partial model of K[Ψ(K, G)] ∪ G in which all terms
in Ψ(K, G) are defined, then there exists a finite total model of K ∪G.

Lemma 7 implies that we can decide satisfiability ofK∪G using the decision procedure
described in [9, Section 3.1]. Together with the previous Lemmas we conclude that the
combination of the steps described in this section result in a decision procedure for the
satisfiability problem of TREX.

Complexity. Note that the number of terms in Ψ(K, G) is polynomial in the size of
K ∪ G. From the parametric complexity considerations for Ψ -local theories in [9, 16]
follows that satisfiability of K ∪G can be checked in NP. Further note that all steps of
the reduction, except for the elimination of function updates, increase the size of the
formula at most by a polynomial factor. The case splits in the rewrite steps 2. and 3. of
the function update elimination may cause that the size of the formula increases expo-
nentially in the nesting depth of function updates in the original formula F0. However,
this exponential blowup can be easily avoided using standard techniques that are used,
e.g., for efficient clausal normal form computation.

Theorem 8. The satisfiability problem for TREX is NP-complete.

Implementation and experiments. We started implementation of our decision proce-
dure in the Jahob system. Our current prototype implements the first three steps of our
decision procedure and already integrates with the verification condition generator of
Jahob. Instead of manually instantiating the generated axioms, as described in the fourth
step of our decision procedure, we currently give the generated axioms directly to the
SMT solver and use triggers to encode some of the instantiation restrictions imposed
by Ψ . While this implementation is not yet complete, we already successfully used it to
verify implementations of operations on doubly-linked lists and a full insertion method
on binary search trees (including the loop traversing the tree). The speedup obtained
compared to using the MONA decision procedure is significant. For instance, using our
implementation the verification of all 16 subgoals for the insert method takes about 1s
in total. Checking the same subgoals using MONA takes 135s. We find these initial
results encouraging and consistent with other success stories of using SMT solvers to
encode NP decision procedures.

6 Conclusion

This paper introduced the logic TREX for reasoning about imperative tree data struc-
tures. The logic supports a transitive closure operator and a form of universal quantifi-
cation. It is closed under propositional operations and weakest preconditions for heap
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manipulating statements. By analyzing the structure of partial and finite models, we
exhibited a particular Ψ -local axiomatization of TREX, which implies that the satis-
fiability problem for TREX is in NP. It also yields algorithms for generating model
representations for satisfiable formulas, respectively, proofs of unsatisfiability.
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AC Completion with Termination Tools�

Sarah Winkler and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. We present mascott, a tool for Knuth-Bendix completion
modulo the theory of associative and commutative operators. In con-
trast to classical completion tools, mascott does not rely on a fixed AC-
compatible reduction order. Instead, a suitable order is implicitly con-
structed during a deduction by collecting all oriented rules in a similar
fashion as done in the tool Slothrop. This allows for convergent systems
which cannot be completed using standard orders. We outline the under-
lying inference system and comment on implementation details such as
the use of multi-completion, term indexing techniques, and critical pair
criteria.

1 Introduction

Reasoning modulo an equational theory A is required in many practical prob-
lems. The generalization of the classical Knuth-Bendix completion algorithm to
rewriting modulo A is well-known (see [3] for an overview). Like ordinary comple-
tion, completion modulo A critically depends on the choice of the A-compatible
reduction order supplied as input. In this system description we show how the
use of termination tools supporting termination modulo A can replace a fixed
reduction order, in a similar fashion as proposed by the authors of the tool
Slothrop [20]. Recent developments in the area of termination proving can thus
be directly exploited to obtain convergent systems for theories which were diffi-
cult to complete before. Our method can be combined with the multi-completion
approach proposed by Kondo and Kurihara [14]. For equational theories A con-
sisting of AC axioms, this approach is implemented in our new tool mascott.
Our contribution can thus be viewed as an extension of the completion tool
mkbTT [19,21] to AC theories. As an example, mascott successfully completes
the following system (adapted from [17]) describing addition on natural num-
bers represented in binary:

#0 5 # (x + y)1 5 x0 + y1 triple(x) 5 x0 + x

(x + y)0 5 x0 + y0 x0 + y0 + #10 5 x1 + y1

Here + is an AC operator, 0 and 1 are unary operators in postfix notation,
and # denotes the empty bit sequence. For example, #100 represents the num-
ber 4 in binary. The following completed system is obtained when using (e.g.)
AProVE [11] as a termination prover, but cannot be shown terminating by any
� The first author is supported by a DOC-fFORTE fellowship of the Austrian Academy

of Sciences.
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c© Springer-Verlag Berlin Heidelberg 2011



AC Completion with Termination Tools 493

standard AC-compatible simplification order:

#0 → # triple(x) → x0 + x

(x + #)0 → x0 + # (x + #)1 → x1 + #
x0 + y0→ (x + y)0 x0 + y0 + z → (x + y)0 + z

x0 + y1→ (x + y)1 x0 + y1 + z → (x + y)1 + z

x1 + y1→ (x + y + #1)0 x1 + y1 + z → (x + y + #1)0 + z

Our tool mascott can be accessed via a simple web interface.1 The sources and
a binary are available as well. In the sequel we outline the underlying inference
system, describe the implementation, and give some (preliminary) experimental
results for mascott.

2 Inference System

We assume familiarity with term rewriting and Knuth-Bendix completion, and
recall only some central notions. We consider a rewrite system R and a set of
equations A. A term s rewrites to t in R modulo A, denoted by s →R/A t,
whenever s↔∗

A · →R · ↔∗
A t. The system R terminates modulo A whenever the

relation →R/A is well-founded. It is convergent modulo A if in addition for every
conversion s↔∗

A∪R t there exist terms u and v such that s→∗
R u↔∗

A v ←∗
R t. To

check termination of R modulo A, A-compatible reduction orders > satisfying
↔∗

A ·> ·↔∗
A ⊆ > can be used. Since the relation→R/A is undecidable in general,

one typically considers the rewrite system RA consisting of all rules s → t such
that s ↔∗

A �σ and t = rσ for some rule � → r in R and substitution σ. We
obviously have →R ⊆ →RA ⊆ →R/A. Thus, if R is convergent modulo A then
also RA is convergent modulo A [3], and defines the same normal forms as R/A.
Hence rewriting using rules in RA constitutes a decidable way to compute with
respect to R/A.

We confine our analysis to theories A for which minimal sets of complete
unifiers are computable, and denote by CPA(R) the set of A-critical pairs among
rules in R.2 For a rule �→ r and a variable-disjoint equation u 5 v in A such that
a proper non-variable subterm u|p of u and � are A-unifiable, u[�]p → u[r]p is an
A-extended rule [18]. The set of A-extended rules of R is denoted by EXTA(R).

Our tool is based on a variant of the inference system E for extended comple-
tion developed by Bachmair [3, Chapter 3]. In order to get rid of a fixed reduction
order and have termination checks as side conditions, the system was modified to
resemble the calculus underlying Slothrop [20]. The inference rules thus operate
on a set of equations E, a set of rewrite rules R partitioned into unprotected
rules N and protected rules S, and a constraint system C. The resulting infer-
ence system ETT for completion modulo the theory A is depicted in Figure 1.
1 http://cl-informatik.uibk.ac.at/software/mascott
2 Although our tool is restricted to the theory of associative and commutative op-

erators, the underlying inference system is presented for arbitrary theories A that
satisfy the stated condition.

http://cl-informatik.uibk.ac.at/software/mascott
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deduce
E, N, S, C

E ∪ {s ! t}, N, S, C
if s↔∗

A∪R t

extend
E, N, S, C

E, N, S ∪ {s→ t}, C if s ! t ∈ EXTA(R)

orient
E ∪ {s ! t}, N, S, C

E,N ∪ {s→ t}, S, C ∪ {s→ t} if C ∪ {s→ t} terminates modulo A

protect
E, N ∪ {s→ t}, S, C

E, N, S ∪ {s→ t}, C

delete
E ∪ {s ! t}, N, S, C

E, N, S, C
if s↔∗

A t

simplify
E ∪ {s ! t}, N, S, C

E ∪ {s ! u}, N, S, C
if t→R/A u

compose
E, N ∪ {s→ t}, S, C

E, N ∪ {s→ u}, S, C
if t→R/A u

E, N, S ∪ {s→ t}, C
E, N, S ∪ {s→ u}, C if t→R/A u

collapse
E, N ∪ {t→ s}, S, C

E ∪ {u ! s}, N, S, C
if t↔�p

A t′ →p
�→r u for some rule

�→ r in R with t& �

Fig. 1. System ETT of extended completion with termination checks

Here 9 is some well-founded order on terms such as the encompassment order3

and the relation 5 is assumed to be symmetric.
A sequence (E0, ∅, ∅, ∅) � (E1, N1, S1, C1) � (E2, N2, S2, C2) � · · · of infer-

ence steps in ETT is called a run. Note that orient is the only inference rule which
actually modifies the set C of constraint rules. Since an A-termination check
is performed whenever a rule is added, all constraint systems Cn are terminat-
ing modulo A. Hence the transitive closure of the rewrite relation →+

Cn/A is an
A-compatible reduction order, so runs in ETT can be simulated in E :

Lemma 1

1. For every finite run (E0, ∅, ∅, ∅) �∗ (En, Nn, Sn, Cn) in ETT there is a cor-
responding run (E0, ∅, ∅) �∗ (En, Nn, Sn) in E using the A-compatible re-
duction order →+

Cn/A.
2. Every run (E0, ∅, ∅) �∗ (En, Nn, Sn) in E using an A-compatible reduction

order > can be simulated in an ETT run (E0, ∅, ∅, ∅) �∗ (En, Nn, Sn, Cn)
such that Cn ⊆ > holds. �!

3 In which s is greater than t if a subterm of s is an instance of t but not vice versa.
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The straightforward induction proofs closely resemble the respective counter-
parts for standard completion and are thus omitted. Since our implementation
is restricted to the theory AC of associative and commutative operators in FAC ,
we will now focus on this setting. Let Re denote the rewrite system containing
R, extended with all rules of the form f(�, x) → f(r, x) such that f ∈ FAC ,
�→ r ∈ R and x is a fresh variable.

Corollary 1. If a non-failing finite ETT run (E0, ∅, ∅, ∅) �∗ (∅, Nn, Sn, Cn)
satisfies CPAC(Rn) ⊆

⋃
i Ei and (Rn)e ⊆

⋃
i Si then (Rn)AC is convergent

modulo AC. �!

3 Implementation

In this section we present some implementation details of mascott, which stands
for multi-associative/commutative completion with termination tools.

If an equation s 5 t can be oriented in both directions, the orient rule in ETT

allows for a choice. In order not to restrict to one orientation, we adapted the
multi-completion approach proposed by Kondo and Kurihara [14] to the setting
of completion modulo a theory A. Similar to standard completion the obtained
method can be described by an inference system operating on sets of nodes N ,
which are defined as in [19], the difference being that a rewrite label Ri is now
split into unprotected and protected labels (Ni, Si). Figure 2 shows the inference
rules orient and extend which are specific to completion modulo A.

As an example, on input {d(s(x)+y) 5 d(p(s(x))+y), p(s(s(x))) 5 s(p(s(x)))}
with + an AC symbol, any completion procedure using standard AC-compatible
simplification orders orients the first equation from right to left, causing diver-
gence of the procedure. In contrast, our tool keeps track of both orientations and
immediately outputs the AC-convergent system obtained when orienting both
rules from left to right.

The termination checks required in orient inference steps may be performed
by an external tool supporting AC termination such as AProVE or muterm [1].
Alternatively, a modified version of TTT2 [13] can be used internally, supporting
AC-dependency pairs [10,17,2] and reduction pairs induced by polynomial or
matrix interpretations. A criterion for AC-compatibility of polynomial interpre-
tations was given in [5]. It is not difficult to check that matrix interpretations [7]
are AC-compatible if every AC symbol f is interpreted as fM(x, y) = Ax+By+b
where the square matrices A and B satisfy A = A2 = B in addition to the usual
constraint that the top-left entry of A is positive.

In order to limit the number of equational consequences, only prime critical
pairs are computed [12]. For AC-unification, the algorithms proposed in [16,8]
were used, in the latter case incorporating the SMT solver Yices to solve linear
Diophantine equations. For rewriting, AC-discrimination trees allow for a fast
pre-selection of matching rules [4].

The tool is equipped with a simple command-line interface. The termination
prover is given as argument to the -tp option. It is supposed to take the name of
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orient
N ∪ { 〈s : t, (N0, S0), (N1, S1), E, C0, C1〉 }

splitP (N ) ∪ { 〈s : t, (N0 ∪Rlr, S0), (N1 ∪Rrl, S1), E′, C0 ∪ Rlr, C1 ∪Rrl〉 }
with Elr, Erl ⊆ E such that Elr∪Erl �= ∅, P = Elr∩Erl, E′ = E \(Elr∪Erl),
C[N, p] ∪ {s → t} terminates modulo A for all p ∈ Elr, C[N, p] ∪ {t → s}
terminates modulo A for all p ∈ Erl, Rlr = (Elr \ Erl) ∪ {p0 | p ∈ P} and
Rrl = (Erl \ Elr) ∪ {p1 | p ∈ P} where splitP (N) replaces every p ∈ P in any
label of a node in N by p0 and p1

extend
N

N ∪ { 〈�′ : r′, (∅, N0 ∪ S0), (∅, ∅),∅, ∅, ∅〉 }
if 〈� : r, (N0, S0), . . . 〉 ∈ N , �′ → r′ ∈ EXTA{�→ r} and N0 ∪ S0 �= ∅

Fig. 2. Two inference rules for multi-completion modulo A

a file describing the termination problem in the TPDB4 format and print YES on
the first line of the output if termination modulo AC could be established. Our
tool accepts two time limits: for the overall procedure (-t) and for each call to
the termination prover (-T). The option -cp prime allows to apply primality as
a critical pair criterion. Further options are -ct to print the completed system
and -st to obtain some statistics. An example call might thus look as follows:

mascott -t 300 -T 1 -st -tp muterm binary_arithmetic.trs

4 Experiments

For our experiments we collected AC completion problems from a number of
different sources and ran mascott with different termination provers as backends.
All of the tests were performed on an Intel Core Duo running at a clock rate of
1.4 GHz with 2.8 GB of main memory.

The results are summarized in Table 1, where the superscripts attached to the
problems indicate their source: a refers to [9], b refers to [17], and c is associated
with [15]. The remaining examples were added by the authors. Columns (1) list
the total time in seconds while columns (2) give the percentage of time spent on
termination. The symbol ∞ marks a timeout of 300 seconds. For internal ter-
mination checks a termination strategy employing dependency pairs and matrix
interpretations was used. As expected, this strategy is far less powerful than the
techniques used by AProVE or muterm.

We also include a comparison with CiME [6], the only other current tool for
AC completion that we are aware of, although this requires the specification of
a concrete AC-RPO or AC-compatible polynomial interpretation by the user.
For our experiments we supplied an appropriate order whenever possible, and in
these cases CiME completed the given problems considerably faster. However, a
suitable order does not always exist (as for the example mentioned in Section 3)
4 Termination Problem Data Base, http://www.lri.fr/~marche/tpdb/

http://www.lri.fr/~marche/tpdb/
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Table 1. Comparison of mascott using different termination backends and CiME

mascott CiME
internal AProVE muterm
(1) (2) (1) (2) (1) (2) (1)

Abelian groups (AG)a 14.48 63 9.33 70 3.02 7 0.05
AG + homomorphism 169.62 87 73.87 84 30.20 15 0.05
arithmetica ∞ 24.58 47 35.03 8 ?
AC-ring with unita ∞ 64.15 53 55.96 38 0.1
associative ring with unita ∞ ∞ 163.96 71 0.1

binary arithmeticb ∞ 78.36 89 23.94 20 ?
commutative monoida 0.5 2 0.7 95 0.03 32 0.01
example 5.4.2c 8.26 97 5.94 98 0.39 79 0.01
example from Section 3 ∞ ∞ 0.74 91 ?
ICSa 12.75 7 9.03 34 6.10 1 0.01
maxc ∞ 8.34 98 0.29 58 ?
multisets over {0, 1} ∞ 117.11 96 9.76 52 ?
nondeterministic machinea ∞ ∞ ∞ 0.2
ringa ∞ 224.99 75 125.88 67 0.07
ring with unita ∞ 201.11 76 81.94 62 0.1
semiringa ∞ 24.90 75 12.35 45 0.1
semilatticea 10.12 4 5.66 12 5.33 1 0.01
sum ∞ 7.58 98 0.33 54 ?

completed systems 6 13 17 12
average time for success 33.54 58.60 42.71 0.07

or is not known (as for the binary addition example from the introduction or
the arithmetic problem). In Table 1 the symbol ? marks these cases.

In line with previous work on AC completion, the use of critical pair criteria
turned out to be highly beneficial. Restricting to so-called prime critical pairs
increases performance on the examples from Table 1 by 40%. For example, with-
out the criterion the theory of associative rings with unit cannot be completed
within 300 seconds.

5 Conclusion

Apparently, mascott is the only tool for AC completion which is automatic in
that it does not require a fixed reduction order as input. To the best of our knowl-
edge, mascott is also the first AC completion tool not restricted to AC-RPO or
AC-compatible polynomial interpretations as termination methods. Instead, all
techniques developed for AC termination can be exploited, such as the depen-
dency pair framework or matrix interpretations. Our tool is thus able to produce
novel complete systems such as the one mentioned in the introduction.
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ence. Birkhäuser (1991)

4. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative-commutative discrimi-
nation nets. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) TAPSOFT 1993. LNCS,
vol. 668, pp. 61–74. Springer, Heidelberg (1993)

5. Ben Cherifa, A., Lescanne, P.: Termination of rewriting systems by polynomial
interpretations and its implementation. SCP 9(2), 137–159 (1987)
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Abstract. This paper describes a new confluence tool for term rewrite
systems. Due to its modular design, the few techniques implemented so
far can be combined flexibly. Methods developed for termination analysis
are adapted to prove and disprove confluence. Preliminary experimental
results show the potential of our tool.

Keywords: term rewriting, confluence, automation.

1 Introduction

We describe a new automatic tool for (dis)proving confluence of first-order re-
write systems (TRSs for short). Our tool is developed in Innsbruck, the city at
the confluence of the two rivers Sill and Inn, and abbreviated CSI. It is available
from

http://cl-informatik.uibk.ac.at/software/csi

and supports two new techniques for disproving confluence and very few but
recent techniques for establishing confluence. CSI is open-source, equipped with
a strategy language, and accessible via a simple web interface.

We assume familiarity with term rewriting and confluence [3, 15]. The re-
mainder of this paper is organized as follows. In Section 2 the main techniques
supported by CSI are summarized. Implementation issues are addressed in Sec-
tion 3 and Section 4 concludes with preliminary experimental results.

2 Techniques

Besides Knuth and Bendix’ criterion [9] (joinability of critical pairs for termina-
ting systems), CSI supports the techniques described below.

Non-Confluence To disprove confluence of a TRS R we consider peaks

t �m← t1 ← s→ u1 →�n u (1)

such that t1 = s[r1σ]p ← s[�1σ]p = s = s[�2σ]q → s[r2σ]q = u1 with �1 → r1,
�2 → r2 ∈ R, q � p, and p ∈ Pos(s[�2]q). This includes critical overlaps and some
variable overlaps. In order to test non-joinability of t and u we consider ground
� This research is supported by FWF (Austrian Science Fund) project P22467.

N. Bjørner and V. Sofronie-Stokkermans (Eds.): CADE 2011, LNAI 6803, pp. 499–505, 2011.
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instances of t and u. Let cx be a fresh constant for every variable x and let t̂
denote the result of replacing every variable in a term t by the corresponding
constant. Since for terms s and w we have s →R w if and only if ŝ →R ŵ, it
follows that terms t and u are joinable if and only if t̂ and û are joinable. In
order to test non-joinability of t̂ and û we overapproximate the sets of reducts
for t̂ and û and check if the intersection is empty.

The first approach is based on TCAP, which was introduced to obtain a better
approximation of dependency graphs [7]. Let t be a term. The term TCAP(t)
is inductively defined as follows. If t is a variable, TCAP(t) is a fresh variable.
If t = f(t1, . . . , tn) then we let u = f(TCAP(t1), . . . , TCAP(tn)) and define
TCAP(t) to be u if u does not unify with the left-hand side of a rule in R, and
a fresh variable otherwise.

Lemma 1. If t̂ and û are joinable then TCAP(t̂ ) and TCAP(û) unify. �!

In the sequel we use the result in its contrapositive form, i.e., whenever TCAP(t̂ )
and TCAP(û) are not unifiable then t̂ and û are not joinable.

The following example motivates why replacing variables by constants is
beneficial.

Example 2. Consider the TRS R consisting of the rules f(x, y) → g(x) and
f(x, y) → g(y). Note that TCAP(g(x)) = g(x′) and TCAP(g(y)) = g(y′) are
unifiable but since x and y are different normal forms it is beneficial to replace
them by fresh constants such that unification fails. We have TCAP(g(cx)) =
g(cx) is not unifiable with g(cy) = TCAP(g(cy)).

The next example illustrates Lemma 1.

Example 3. Consider the TRS R = {a → f(a, b), f(a, b) → f(b, a)} from [16] and
the peak t̂ = f(f(b, a), b) 2← f(a, b) → f(b, a) = û. Since TCAP(t̂ ) = f(f(b, x), b)
and TCAP(û) = f(b, y) are not unifiable R is not confluent.

We remark that Lemma 1 subsumes the case that t and u are different normal
forms or that t and u have different root symbols which do not occur at the root of
any left-hand side in R. The latter amounts to t(ε) �= u(ε) and t(ε) �= �(ε) �= u(ε)
for all �→ r ∈ R, which is the test performed in [2].

Our second approach is based on tree automata. Let R be a left-linear TRS
and L a set of ground terms. A tree automaton A = (F , Q,Qf , Δ) is compa-
tible [6] with R and L if L ⊆ L(A) and for each �→ r ∈ R and state substitution
σ : Var(�) → Q, rσ →∗

Δ q whenever �σ →∗
Δ q. The extension to arbitrary TRSs

that we use in our implementation is described in [10]. Here L(A) is the lan-
guage accepted by a tree automaton A. In the following →∗

R(L) denotes the set
{t | s→∗

R t for some s ∈ L}.

Theorem 4. Let R be a TRS, A a tree automaton, and L a set of ground terms.
If A is compatible with R and L then →∗

R(L) ⊆ L(A). �!
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We overapproximate the sets of terms reachable from t̂ and û using tree auto-
mata, i.e., we construct tree automata A1 and A2 (by tree automata completion
[10]) such that →∗

R({t̂ }) ⊆ L(A1) and →∗
R({û}) ⊆ L(A2) and conclude non-

joinability of t̂ and û if L(A1) ∩ L(A2) = ∅, which is decidable.

Example 5. Consider Lévy’s TRS R from [8]

f(a, a) → g(b, b) a → a′ f(a′, x) → f(x, x) f(x, a′) → f(x, x)
g(b, b) → f(a, a) b → b′ g(b′, x) → g(x, x) g(x, b′) → g(x, x)

and t̂ = f(a′, a′) ∗← f(a, a) →∗ g(b′, b′) = û. We have →∗
R({t̂ }) = {t̂ } and

→∗
R({û}) = {û}. Consequently→∗

R({t̂ })∩→∗
R({û}) = ∅ and hence we conclude

non-joinability of t̂ and û which yields the non-confluence of R. Note that
TCAP(t̂ ) = x and TCAP(û) = y unify.

Order-Sorted Decomposition. Next we focus on a criterion that allows to
decompose a TRS R into TRSs R1 ∪ · · · ∪ Rn where R is confluent whenever
all Ri are confluent. Order-sorted decomposition is a generalization of persistent
decomposition [2, Definition 2] to ordered sorts. It is based on a result in [5].

Theorem 6. Let R be a TRS and 〈F ,V〉 an order-sorted signature with sorts
S equipped with a strict order '. Assume that the following conditions hold:

1. R is compatible with S, i.e., rules �→ r ∈ R are well-sorted, with variables
bound strictly in � and the sort of � is � that of r.

2. If R is non-left-linear and duplicating then for �→ r ∈ R, variables in r are
bound strictly as well. Furthermore, if r ∈ V the sort of r must be maximal.

If R is confluent on well-sorted terms then R is confluent on all terms. �!

Each sort attachment satisfying the conditions of Theorem 6 gives rise to a
decomposition of R into max {R ∩ T�α(F ,V) × T�α(F ,V) | α ∈ S}, where
T�α(F ,V) denotes the subterms of terms of sort < α. Note that we can replace
proper subterms t|p : β by any other terms with sort < β. Hence T�α(F ,V) is
closed under adding terms of sort < that of any terms in T�α(F ,V). As in the
many-sorted persistence case, we can find a most general ordered sort attachment
consistent with any given TRS efficiently. Start by assigning sort variables to the
argument and result types of all function symbols and to the variables occurring
in the rules, after renaming them to ensure that no two rules share any variables.
The consistency conditions, except for the maximality condition for collapsing
rules, translate to inequalities α � β between these type variables. To solve a
system of such constraints, consider the graph with sort variables as nodes and
edges from α to β whenever there is a constraint α � β. Then assign a distinct
sort to the variables of each strongly connected component of the graph, ordered
strictly by the edges between the components. A maximality constraint on β can
be enforced in a second pass that equates α and β whenever α ' β. This process
is demonstrated in the example below.
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Example 7. Consider the TRS

1: f(x,A) → G(x) 2 : f(x,G(x)) → B 3: G(C) → C 4: F(x) → F(G(x))

We start by assigning variables to the various sorts. Let xi be the sort of x in
rule i. Furthermore let A : A, B : B, C : C, f : f1 × f2 → f , F : F1 → F and
G : G1 → G. By well-sortedness we get constraints f1 � x1, f2 � A from the
left-hand side of the first rule. By strictness of left-hand sides, we require that
x1 � f1. We get similar constraints from the other rules, noting that since the
TRS is non-duplicating, we do not have strictness constraints on the right-hand
sides. By relating the sorts of left-hand sides and right-hand sides, we obtain
further constraints, namely f � G, f � B, G � C and F � F . Denoting α � β
by an edge α→ β, we obtain the following graph:

x2 f2 A

f1 G1 x4 F1 G C F

x1 f B

The strongly connected components are 8 = {f2}, 7 = {A}, 6 = {f}, 5 = {B},
4 = {G1, x1, f1, x2}, 3 = {F1, x4}, 2 = {G}, 1 = {C}, and 0 = {F}, ordered by
8 ' 7, 2, 6 ' 5, 2, and 4 ' 3 ' 2 ' 1. The resulting signature is A : 7, B : 5,
C : 1, f : 4 × 8 → 6, F : 3 → 0, and G : 4 → 2 giving rise to the decomposition
into the TRSs {(1), (2), (3)} and {(3), (4)}.

If we required maximality of the sort 2 = {G}, then we would equate 2 and
3 (since 3 ' 2), and further with 4 (as 4 ' 3), 6 (as 6 ' 2) and 8 (as 8 '
2), obtaining 8′ = {G,F1, x4, G1, x1, f1, x2, f, f2}, ordered by 8′ ' 7, 5, 1. The
resulting signature is A : 7, B : 5, C : 1, f : 8′ × 8′ → 8′, F : 8′ → 0, and
G : 8′ → 8′. Note that here no (non-trivial) decomposition is possible.

Decreasing Diagrams. The decreasing diagrams technique [12, 14] is a com-
plete method for confluence on countable abstract rewrite systems. The next re-
sult employs decreasing diagrams for TRSs and follows immediately from [17, Co-
rollary 3.16]. It also serves to demonstrate the design of our tool which typically
implements one criterion by combining smaller pieces via a strategy language
(cf. Section 3). Here Rd (Rnd) denotes the (non)duplicating rules in a TRS R.

Theorem 8. A left-linear TRS R is confluent if Rd is terminating relative
to Rnd and all critical peaks of R are decreasing with respect to the rule
labeling. �!

To exploit this theorem we need to solve relative termination problems. In [17] we
show that relative termination techniques can additionally be used for labeling
diagrams (also in combination with the rule labeling).
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3 Implementation

CSI is implemented based on the open source termination tool TTT2 [11] and
written in OCaml. As explained in the preceding section, several criteria from
termination analysis are useful for confluence. Our tool is based on few tech-
niques, but a strategy language (akin to the one to control TTT2) allows one to
combine different criteria flexibly and to obtain a powerful tool. For a grammar
of this strategy language, consult [11] or pass the option -h to the tool.

Automatic Mode. In its automatic mode CSI executes the strategy

(KB || NOTCR || (((CLOSED || DD) | add)2*)! || sorted -order)*

Here identifiers in capital letters abbreviate combinations of techniques. We skip
details for brevity. The command KB refers to Knuth and Bendix’ criterion [9],
NOTCR is a test for non-confluence as described in Section 2, and sorted -order
aims for an order-sorted decomposition (cf. Section 2 and [5]). The operator
|| executes all those criteria in parallel—to make use of modern multi-core
architectures—and the first substrategy that succeeds is used to make progress
on the given problem. Since a successful call to sorted -order returns a list of
problems, the trailing * ensures that the above strategy is iterated on all sub-
problems until no further progress can be achieved. Finally we describe the part
that is still missing. CLOSED tests whether the critical pairs of a left-linear system
are development closed [13] and DD implements decreasing diagrams (Section 2
and [17]). If these methods do not succeed the alternative | executes add, which
adds new rules that might enable the other criteria to succeed ([17, Lemma 4.3
and Example 4.4]) while the postfix 2* executes the strategy inside parentheses
at most two times, i.e., CLOSED || DD is run again, if some rules have been ad-
ded. The outermost ! ensures that the strategy inside only succeeds if confluence
could be (dis)proved.

Strategy Language. We elaborate on the strategy language to show the flexi-
bility and modularity of our tool. In the strategy nonconfluence -steps 2
-tcap the flag -tcap tests non-joinability of terms with TCAP, as outlined in
Section 2. With -steps values for m and n in the peak (1) on page 499 are set.

The criterion from Theorem 8 allows one to use the decreasing diagrams
technique, provided some precondition is satisfied. To this end the composition
operator ; is employed, where A; B executes B only if A succeeds. Given an input
TRS R, in the strategy

cr -dup;matrix -dim 2*; rule labeling;decreasing

the expressioncr -dup generates the relative TRSRd/Rnd, termination of which is
attempted with matrix interpretations of dimension 2. If this succeeds the critical
diagrams are labeled with the rule labeling [14], before a test for decreasingness is
performed. We note that the strategy language allows to label incrementally combi-
ning different (relative termination) criteria [17]. Here a critical diagram is a critical
peak t ← s → u together with joining sequences t →∗ v ∗← u. In the implemen-
tation for every critical peak we consider all joining sequences t→�n · �n← u for
which there is no smaller n that admits a common reduct.
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Table 1. Experiments

(a) 106 TRSs.

CSI ACP
∑

CR 61 64 67
not CR 20 18 21

(b) 99 TRSs.

CSI ACP
∑

CR 43 42 43
not CR 47 47 47

(c) 9 TRSs.

CSI ACP
∑

CR 6 2 6
not CR 2 2 2

Table 2. Performance difference on the three testbenches

system CSI ACP status

BN98/ex6.5f ×(∞) �(0.4) ¬CR
Der97/p204 ×(6.6) �(0.1) CR
GL06/ex3 �(0.6) ×(0.2) CR
GOO96/R2p ×(6.3) �(0.1) CR
Gra96caap/ex2 ×(3.0) �(0.1) CR
OO03/ex1 �(4.0) ×(7.0) CR
OO03/ex2 ×(6.3) �(0.1) CR
Ohl94caap/ex5.12 �(0.4) ×(0.1) ¬CR
TO01/ex6 ×(6.3) �(0.1) CR

system CSI ACP status

Tiw02/ex1 �(0.3) ×(0.1) ¬CR
Toy98/ex1 ×(6.1) �(0.1) CR
standards/AC �(2.7) ×(0.1) CR
standards/add C �(4.0) ×(0.1) CR
Transformed CSa �(4.6) ×(∞) CR
ZFM11/ex1.1 �(4.9) ×(7.0) CR
ZFM11/ex3.18 �(1.0) ×(0.1) CR
ZFM11/ex3.20 �(2.1) ×(0.5) CR
ZFM11/ex4.1 �(0.9) ×(0.1) CR

a Transformed CSR 04 PALINDROME nokinds-noand L

4 Evaluation

For experiments1 we used the collection from [1] which consists of 106 TRSs from
the rewriting literature dealing with confluence (Table 1(a)), the 99 TRSs from
the 2010 edition of the termination competition which are non-terminating or
not known to be terminating (Table 1(b)), and the TRSs from [5,17] (Table 1(c)).
The time limit of 60 seconds was hardly ever reached.

In Table 1 we compare the automatic mode of our tool with ACP [2], a
confluence prover that implements various techniques from the literature. On
the testbench in Table 1(a) ACP can show more systems confluent than CSI but
our tool is superior for non-confluence. The last column shows that on this test-
bench no tool subsumes the other one which is not the case for Tables 1(b)(c).

Table 2 elaborates on the differences of the tools’ performance. Here a ×
indicates that the corresponding tool failed to analyze the status of the given
TRS while a � means that confluence (or non-confluence) could be determined.
The numbers in parentheses refer to the time spent on this problem in seconds.
The different blocks in Table 2 correspond to the different testbeds employed.

The rewriting toolkit CiME3 [4] also supports confluence analysis as one of
its many features. This tool exploits Newman’s Lemma, i.e., for a terminating
TRS confluence coincides with local confluence (the latter can then effectively be

1 Details are available from the CSI website.
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checked [9]). While this test is also contained in ACP and CSI, the novel feature
of CiME3 is that it can (automatically) certify such confluence proofs in the
proof assistant Coq.

To conclude we stress the main attractions of CSI: To the best of our know-
ledge it is the only tool that implements order-sorted decomposition of rewrite
systems, it employs powerful criteria for disproving confluence, and due to the
modular design it allows to combine different labeling functions for the decrea-
sing diagrams technique.
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