
Making Golog Norm Compliant

Alfredo Gabaldon

Center for Artificial Intelligence (CENTRIA)
Universidade Nova de Lisboa

ag@di.fct.unl.pt

Abstract. In this work we consider how to enforce norms in the Situa-
tion Calculus based programming language Golog and its relatives. We
define a notion of norm compliant sequence of actions with respect to
norms prescribing some actions to be forbidden or obliged (ought-to-do
norms), norms prescribing that a state-condition is forbidden (ought-
to-be norms) and norms that are a form of deadline. We then show a
procedure that allows incorporating the norms into the underlying action
theory so that after this is done, the agent’s behavior is guaranteed to
be norm compliant.

1 Introduction

The use of social laws or norms as a behavior and coordination mechanism has at-
tracted considerable interest among researchers in the area of autonomous agents
and multi-agent systems. The work in this area includes [1,2,3,4,5,6] among many
others.

Much of the current work on norms in autonomous agents involves develop-
ing agent programming languages that include facilities for expressing norms
and mechanisms for enforcing them. Along these lines, in this work we look at
an agent programming language and consider adding expressions for describing
norms and then consider what it means for an agent programmed in this lan-
guage to comply with the norms. The particular language we consider is Golog
[7]. This high-level action programming language was developed for providing
artificial agents with complex behaviors defined in terms of a set of primitive
operations or actions. Golog consists of a set of programming constructs typi-
cal of imperative programming languages, e.g. sequence, conditional, iteration,
and also some non-deterministic constructs such as choice between two sub-
programs. A distinguishing feature of Golog is that the primitive constructs are
actions formalized in an underlying logic—the Situation Calculus [8].

Golog has grown into a family of languages which extend it with various fea-
tures such as concurrency (ConGolog [9]), decision theory (dtGolog [10]), and
incremental execution and sensing (IndiGolog [11]), among others. The underly-
ing action language has also undergone substantial development with extensions
including adding explicit time, an epistemic modality for knowledge, and stochas-
tic actions. This makes the Golog family of languages an attractive choice for
programming autonomous agents.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 275–292, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

276 A. Gabaldon

2 The Golog Language

We briefly review the main components of a Basic Action Theory [12,13] and of
the Golog language [7].

2.1 Basic Action Theories

A basic action theory is a classical logic formalization of the dynamic domain
of an agent(s) in the Situation Calculus (SitCalc for short) [14]. The ontology
of the SitCalc includes actions, fluents, which are the properties of the domain
that change when actions occur, and situations, which are sequences of actions
representing possible ways in which the domain may evolve.

Formally, the SitCalc is a dialect of First-Order logic with sorts action, situa-
tion, and object. Consequently, actions, situations and domain objects are treated
as quantifiable, first-class citizens in the language. A special constant S0 is used
to denote the initial situation, and the function do of sort (action×situation) �→
situation is used to form sequences of actions. For instance, a sequence consisting
of actions a1, a2, a3 is represented by the term do(a3, do(a2, do(a1, S0))).1

Fluents are represented by means of relations F (x, s) where x is a tuple
of arguments of sorts object or action and the last argument s always of sort
situation. For example, a fluent owner(ag, file, s) could be used to represent
that an agent ag is the owner of a file in situation s.

Function symbols of sort object �→ action, A(x), represent action types. For
instance, a function write(ag, file) could be used to represent the action of an
agent ag writing to a file. We call them action types because a single function
symbol can be used to create multiple instances of an action, e.g. the instances
write(Ag1, F ile1), write(Ag2, F ile2), etc. We will use a1, a2, . . . to denote action
variables and α1, α2, . . . to denote action terms. Similarly, we use s1, s2, . . . for
situation variables and σ1, σ2, . . . for situation terms.

A Basic Action Theory D consists of the following sets of axioms (variables
that appear free are implicitly universally quantified. x denotes a tuple of vari-
ables x1, . . . , xn):

1. For each action type A(x) there is exactly one Action Precondition Ax-
iom (APA), of the form:

Poss(A(x), s) ≡ ΠA(x, s)

where variable s is the only term of sort situation in formula ΠA(x, s).
The latter formula represents the conditions under which an action A(x) is
executable. The restriction that the only situation mentioned in this formula
is s intuitively means that these preconditions depend only on the situation
where the action would be executed.

1 do([a1, a2, . . . , an], s) is an abbreviation of do(an, do(an−1, . . . , do(a1, s) . . .)).

Making Golog Norm Compliant 277

2. For each fluent F (x, s), there is exactly one Successor State Axiom (SSA),
of the form:

F (x, do(a, s)) ≡ ΦF (x, a, s)

where s is the only term of sort situation in formula ΦF (x, a, s). This formula
represents all and the only conditions under which executing an action a in
a situation s results in a situation do(a, s) where the fluent holds. These
axioms embody Reiter’s solution to the frame problem [12,13].

3. A set of sentences DS0 describing the initial state of the world. This is a
finite set of sentences whose only situation term may be the constant S0 and
describe the initial state of the domain. Any sentence is allowed as long as
the only situation variable that appears in it is S0, so one can write sentences
such as (∃ag)owner(ag, F ile1, S0), reflecting incomplete information about
the initial state.

4. The Foundational Axioms Σ which define situations in terms of the con-
stant S0 and the function do. Intuitively, these axioms define a tree-like
structure for situations with S0 as the root of the tree. They also define re-
lation � on situations. Intuitively, s � s′ means that the sequence of actions
s is a prefix of sequence s′.

5. A set of unique names axioms (UNA) for actions. For example,write(ag, f) �=
delete(ag, f), write(ag, f) = write(ag′, f ′) ⊃ (ag = ag′ ∧ f = f ′), etc.

Given a basic action theory D we can define a few basic reasoning tasks. For
instance, checking if a sequence of actions is executable, i.e. physically possible
for the agent according to the axiomatization of its dynamic environment. This
check is formally defined as follows: let α1, . . . , αk be action terms

D |= executable(do([α1, . . . , αk], S0))

where executable(·) is defined as follows:

executable(s) ≡ (∀a, s′).do(a, s′)
 s ⊃ Poss(a, s′).

Another reasoning problem is projection: checking if some condition, denoted
by a formula φ(s) with a free variable s, holds after a sequence of actions is
executed:

D |= φ(do([α1, . . . , αk], S0)).

2.2 Golog

The situation calculus based programming language Golog [7] and variants such
as ConGolog [9] and IndiGolog [11], provide Algol-like programming constructs
for defining complex behaviors in terms of the primitive actions formalized in
a basic action theory of the form described above. Among various applications,
these languages have been employed for programming autonomous agents. For

278 A. Gabaldon

the purpose of this work, which mainly deals with the logic underlying these
languages, we need not go into the details. Here we will refer to Golog when
generally referring to the family of Golog variants.

In addition to atomic actions, which are the primitive construct in Golog, the
language includes constructs such as a test φ?, test whether φ currently holds;
sequence δ1; δ2, execute program δ1 followed by δ2; non-deterministic choice δ1|δ2,
choose between executing δ1 and executing δ2; among others.

An important aspect of these languages is the fact that they allow one to
write non-deterministic programs. Intuitively, the execution of a program δ1|δ2
can result in the execution of either one of δ1 and δ2, as long as their execution
is successful. A program may fail to execute if one of the primitive actions in
its execution trace turns out not to be executable. In the case of programs
run concurrently, e.g. δ1‖δ2, the result of the execution is any of the possible
interleavings of the primitive actions that result from δ1 and those from δ2.
Again, some interleavings may fail because one of the actions is not executable
at the given time.

The semantics for these languages is captured through a relation Do(δ, s, s′),
meaning that executing program δ in situation s results in situation s′. Given
a background theory D, including a definition of Do(δ, s, s′), the execution of a
program δ in the initial situation S0 is defined in terms of logical entailment as
the problem of finding a sequence of actions α1, . . . , αk such that

D |= Do(δ, S0, do([α1, . . . , αk], S0)).

3 Norms

Social laws, norms or policies, are used as mechanisms for regulating the behav-
ior of agents, as a mechanism for coordination, and for access control in systems
security, among others. Many normative system frameworks use pairs of expres-
sions (φ, a) to represent norms. The intuitive meaning of a pair (φ, a) would be
that in states where φ holds, the action a is permitted/forbidden/obligatory.

We will represent norms in terms of formulae denoted by φ(x, s) and ψ(x, s)
with free-variables x, s, with s the only situation term appearing in the formulae
and x the remaining free variables. Norms are enforced in all situations so when
writing them we will omit the universally quantified situation variable and write
φ(x) and ψ(x). We will use the notation F a to denote that an action a is
forbidden, O a to denote that a is (immediately) obligatory, and F ψ to denote
that a (state) condition ψ is forbidden.

We will assume that actions are permitted and not obligatory by default, that
is, if there is no norm that in a given situation says that an action is forbidden
(resp. obligatory), then the action is assumed permitted (resp. not obligatory).
For this reason, it is unnecessary to write norms using negation in front of F a
and O a. Modifying the formalization to make the opposite assumptions, for
example that actions are assumed forbidden unless a norm says otherwise, is
straight forward.

Making Golog Norm Compliant 279

In the norm expressions below, t,v are tuples of terms, t a subset of the terms
v, and any variables appearing free, including omitted situation variables, are
implicitly universally quantified.

3.1 Ought-to-Do Norms

1. Forbidden actions: φ(t) → F A(v).
Example: regular users are not allowed to write to files owned by others:

file(f) ∧ regUsr(r) ∧ ¬owner(r, f) → F write(r, f).

2. Obligatory actions: φ(t) → O A(v).
Example: if a licensed file has an expired license, the owner must delete it.

file(f) ∧ owner(r, f) ∧ expLic(f) → O del(r, f)

Given a set of norms, we can define a notion of compliance by a program with
the norms. To that end, it will be useful to take a set of norms in the above
forms and put them in a compact normal form by applying the following steps.

1. Take each norm φ(t) → F A(v) and rewrite it so as to replace the param-
eters with variables::

φ(x′) ∧ x′ = t ∧ x′′ = u → F A(x)

where u are the terms in v not in t and x′,x′′ are among the variables x.
Let us denote the resulting formula by Φ(x) → F A(x).

2. Next, for each action type A(x) we take all the norms

Φ1(x) → F A(x)
Φ2(x) → F A(x)
. . .
Φk(x) → F A(x)

and rewrite them as the following single norm for A(x):
[∨

i=1...k

Φi(x)

]
→ F A(x)

Let us denote the result by ΦA(x) → F A(x). This norm now completely
characterizes the conditions that make any instance, i.e. for any x, of the
action type A(x) forbidden.

3. Next we take each norm ΦAi(xi) → F Ai(xi) and rewrite it as follows
using a fresh action variable a:

ΦAi(xi) ∧ a = Ai(xi) → F a

280 A. Gabaldon

4. Finally, we gather all the norms

ΦA1(x1) ∧ a = A1(x1) → F a
ΦA2(x2) ∧ a = A2(x2) → F a
. . .
ΦAn(xn) ∧ a = An(xn) → F a

and rewrite them as a single expression:[∨
i=1...n

ΦAi(xi) ∧ a = Ai(xi)

]
→ F a

Let us denote the result by ΦF (a) → F a.

Following the same steps with obligation norms, we can obtain the corresponding
expression ΦO(a) → O a.

By restoring the situation argument on the left-hand-side formula to obtain
ΦF (a, s), resp. ΦO(a, s), we now have a legit SitCalc formula that tells us, in any
given situation, whether or not an action is forbidden, resp. obligatory, according
to the system norms.

We can then define a notion of a sequence of actions s being compliant with
a set of norms in the above forms, by means of the following equivalence:

compliant(s) ≡ s = S0 ∨
(∃a, s′).s = do(a, s′) ∧ compliant(s′) ∧
¬ΦF (a, s′) ∧ (∀a′)[ΦO(a′, s′) ⊃ a′ = a].

(1)

Intuitively, this says that a sequence of actions s is compliant with the given
norms iff s is the empty sequence, S0, or s is s′ followed by a, where s′ is
compliant and a satisfies the norms in s′.

Given a set of norms and a corresponding definition of compliant(s), we can
define compliance with the norms by a Golog program δ. We will say that δ is
compliant with the norms if all its execution traces comply with the norms.

Definition 1. Let D be a basic action theory, δ a program, and N a set of
norms with corresponding definition of compliantN(s). Program δ is compliant
with norms N iff

D |= (∀s).Do(δ, S0, s) ⊃ compliantN(s).

The above definition assumes the program is executed in the initial situation S0.
A stronger version of compliance of a program can be defined by requiring the
program to satisfy the norms when executed in any situation:

D |= (∀s′, s).Do(δ, s′, s) ⊃ compliantN(s).

On the other hand, a weak version of compliance can be simply defined by
just requiring the program to have at least one compliant execution trace:

Making Golog Norm Compliant 281

D |= (∃s).Do(δ, S0, s) ∧ compliantN(s).

In terms of analyzing the norms themselves, a problem that is often of inter-
est is that of checking whether two sets of norms are equivalent or if one set is
subsumed by another. These problems can be defined in terms of classical en-
tailment in our language. Consider two sets of norms N1, N2 with corresponding
definitions of compliance denoted by compliantN1(·) and compliantN2(·) and
defined by an equivalence of the form (1).

Definition 2. We say that the sets of norms N1, N2 are equivalent (wrt D) iff

D |= (∀s).compliantN1(s) ≡ compliantN2(s).

Intuitively, the norms are said to be equivalent if the sequences that are compli-
ant under one set of norms are exactly the same sequences that are compliant
under the other set of norms.

Definition 3. We say that the set of norms N1 subsumes the set of norms N2

(wrt D) iff

D |= (∀s).compliantN1(s) ⊃ compliantN2(s).

As expected, two sets of norms N1, N2 are equivalent if they coincide, in all
situations, in designating the same actions as forbidden or obligatory. This is
established formally as follows.

Proposition 1. Let N1 be the norms Φ1
F (a, s) → F a and Φ1

O(a, s) → F a
and N2 be the norms Φ2

F (a, s) → F a and Φ2
O(a, s) → F a.

Then N1 and N2 are equivalent (wrt D) iff

D |= (∀a, s).[Φ1
F (a, s) ≡ Φ2

F (a, s)] ∧ [Φ1
O(a, s) ≡ Φ2

O(a, s)].

Another problem of interest is checking whether a set of norms is consistent in
some sense. Perhaps the simplest notion of consistency would be to define it as
existence of compliant sequences. That is, a set of norms N is inconsistent iff

D |= (∀s).S0 � s ⊃ ¬compliantN(s). (2)

But this is probably too strong to be very useful. Perhaps a more useful notion
would be one requiring only those sequences that are actually physically possible
for the agent, to be compliant. This is expressed as follows:

D |= (∀s).[S0 � s ∧ executable(s)] ⊃ ¬compliantN(s)

where executable(s) is defined in terms of Poss as described in Section 2.

282 A. Gabaldon

Another possibly useful notion is that of consistency with respect to an agent’s
goal, as denoted by a formula Goal(s). In this case we might say that a set of
norms N is inconsistent with respect to goal Goal(s) iff

D |= (∃s)Goal(s) ∧ (∀s)[Goal(s) ⊃ ¬compliantN(s)].

Intuitively, this says that a set of norms is inconsistent with respect to a goal
if the goal is achievable but it is not possible to achieve it and satisfy the norms
at the same time.

Other properties can be defined in a similar fashion in terms of logical entail-
ment from a background theory D. For example, a notion of two sets of norms
being equivalent with respect to a goal, etc.

3.2 Ought-to-Be Norms

Ought-to-be norms specify situations in which a state condition, instead of an
action as in ought-to-do norms, is forbidden or obligatory. We write such laws
in the following form: Φ(t) → F Ψ(v).

For example: when a user is logged out, no processes owned by the user should
be executing:

loggedOut(usr) ∧ owner(usr, proc) → F executing(proc)

Since negation can appear in front of Ψ(t), we do not use the obligation symbol
O in these norms. Also, we understand these laws as dynamic, not static laws.
That is, the condition Φ(t) is intended to be evaluated in the “current” state
and the condition Ψ(v) evaluated in the next state.

These norms cannot be put together into a normal form as in the case of ought-
to-do norms, so we simply put them together as a conjunction of implications
relative to a situation and its predecessor situation.

Compliance of a sequence is then defined as follows:

compliant(s) ≡ s = S0 ∨
(∃a, s′).s = do(a, s′) ∧ compliant(s′) ∧∧

i=1,...,n(∀)[Φi(ti, s
′) ⊃ ¬Ψi(vi, s)].

Having defined compliant(s) this way for ought-to-be norms, the formal def-
initions of program compliance and norm equivalence, subsumption and consis-
tency are exactly as for ought-to-do norms.

3.3 Deadlines

Consider an abstract form of deadline specifying that some condition ψ is for-
bidden before condition ϕ, written as F ψ ≺ ϕ (deadlines like this are discussed
in [15]). Norms involving deadlines would then take the form (to simplify the
presentation, we assume all formulae have the same terms x as arguments):

Making Golog Norm Compliant 283

φ(x) → F ψ(x) ≺ ϕ(x). (3)

For example, first-year students are not allowed to registered before the session
starts:

firstyear(st) → F registered(st) ≺ sessionstart.

Not surprisingly, compliance with a deadline is slightly more involved since it
imposes conditions over a full sequence of actions. For the sake of clarity we will
define it only for a single deadline of the form (3). The definition basically says
that a sequence complies with a deadline if after any state where φ holds, either
ψ never holds afterwards or ϕ holds at some point and ψ does not hold before
that.

compliant(s) ≡
(∀)(∀s1).[s1 � s ∧ φ(x, s1)] ⊃{

(∀s2)[s1 � s2
 s ⊃ ¬ψ(x, s2)] ∨
(∃s2).s1 � s2
 s ∧ ϕ(x, s2) ∧ (∀s3).[s1 � s3
 s2] ⊃ ¬ψ(x, s3)

}

As before, the definitions of program compliance and norm equivalence, sub-
sumption and consistency apply to deadlines using the above definition of
compliance(s).

4 Internalizing Norms

The straight forward way of enforcing a set of norms on an agent is to check
that the norms are satisfied every time the agent chooses an action to execute
next. That is, when an agent considers whether or not to execute an action α in
situation σ, in addition to checking that α is physically possible, it would also
check whether compliant(do(α, σ)) holds.

An alternative way of enforcing the norms is to incorporate the norms into
the agent’s dynamic world description D. Once the agent has “internalized” the
norms into D, it would behave in a norm compliant way.

One advantage of internalizing the norms is that, especially in the case of
deadlines, compliance becomes a local check involving only the current state
and the action being considered. There is no need to check conditions in the
resulting state after executing an action nor on past states as required by the
definition of compliance for deadlines. In implementations that update the belief
base after each action is performed, internalizing the norms has the advantage
that computing the tentative new state for each considered action, in order to
check norm compliance, becomes unnecessary. And of course there is no need to
store past states either.

4.1 Ought-to-Do Norms

Since we take norms as constraints on the behavior of an agent, their practi-
cal effect is to render some actions non-executable. The natural way then to

284 A. Gabaldon

incorporate a set of norms into the agent’s domain description is in the form a
additional preconditions in the APAs.

Consider the APA of an action type A(x):

Poss(A(x), s) ≡ ΠA(x, s).

The simplest way to incorporate a set of ought-to-do norms is by adding
conditions saying a) A(x) is not one of the forbidden actions, and b) if there is
any obligatory action at all, it is A(x). Assuming the set of norms are in the
forms ΦF (a) → F a and ΦO(a) → O a, we obtain the following modified APA
for A(x):

Poss(A(x), s) ≡ ΠA(x, s) ∧
(∀a)[ΦF (a, s) ⊃ a �= A(x)] ∧
(∀a)[ΦO(a, s) ⊃ a = A(x)].

The additional preconditions added to each APA are the same except for the
A(x) term appearing in the consequent of the implications.

A more “efficient” way of incorporating the norms into the APAs, however,
follows from the observation that each APA describes the preconditions of one
specific action type A(x). So any laws that forbid other actions are in fact
irrelevant with respect to A(x).

Taking then only those norms that forbid A(x), if any, put in the form
ΦA(x) → F A(x), as derived in Section 3, we modify the APA for A(x)
as follows:

Poss(A(x), s) ≡ ΠA(x, s) ∧
¬ΦA(x, s) ∧
(∀a)[ΦO(a, s) ⊃ a = A(x)].

In this case the additional precondition ¬ΦA(x, s) is specific to the action
type A(x) so it varies with each APA.

Once the norms have been “compiled” into the underlying action theory D, all
programs will be compliant with the norms. Formally, let D be the background
theory of an agent, N be a set of norms and DN be the theory that results from
applying the above transformation to D with respect to N .

Proposition 2. For every program δ, DN |= (∀s).Do(δ, S0, s) ⊃ compliantN(s).

In other words, a sequence of actions is now considered to be a “legal” execution
trace of the program δ only if it satisfies the norms.

Note that if N is inconsistent, e.g. as in (2), then δ has no legal execution
traces, i.e. ¬(∃s)Do(δ, S0, s), and the implication in Prop. 2 is vacuously satisfied.
If one does not want to count such a program as compliant, one can simply
modify Def. 1 by adding the condition for weak compliance as a conjunct and
define δ as compliant if it has at least one legal execution trace.

Making Golog Norm Compliant 285

4.2 Ought-to-Be Norms

In the case of an ought-to-be norm of the form Φ(t) → F Ψ(v), when the agent
is considering an action α in a situation σ, it needs to check Φ(t) with respect to
σ and Ψ(v) with respect to do(α, σ). However, for the reasons mentioned earlier,
we want to incorporate norms in terms of conditions on the current situation
and the action under consideration. Moreover, according to the definition of
APAs, the only term of sort situation allowed to appear in the formula on the
right-hand-side of an APA is the variable s.

Fortunately, there is a mechanism that will allow us to compute a precon-
dition relative to situation s from a condition relative to situation do(A(x), s).
This mechanism is the regression operator R from [16,13]. Roughly, this oper-
ator takes a formula Γ (do([α1, . . . , αn], S0)) relative to a sequence of actions
do([α1, . . . , αn], S0)) and computes a formula Γ ′(S0) relative to S0 that is equiv-
alent to the original formula with respect to the background theory D. The com-
putation is purely syntactic and works by iteratively replacing each occurrence
of a fluent F (t, do(α, σ)) with the formula ΦF (t, α, σ) given a corresponding SSA
F (x, do(a, s)) ≡ ΦF (x, a, s). For details on operator R, please refer to [16,13].

Consider any action type A(x) and its corresponding APA

Poss(A(x), s) ≡ ΠA(x, s)

Let us now describe a procedure for incorporating a norm Φ(v) → F Ψ(v) as
additional preconditions.

1. Restore s as the situation argument in the premise: Φ(t, s).
2. Restore do(A(x), s) as the situation argument in Ψ(v) to obtain:
Ψ(v, do(A(x), s))

3. Apply one regression step to the formula Ψ(v, do(A(x), s)) to obtain a for-
mula ΨA(v,x, s) relative to s, that is, let

ΨA(v,x, s) = R1[Ψ(v, do(A(x), s))].

4. Take the formulae from steps 1 and 3 and put them together in an implication
as follows:

Φ(t, s) ⊃ ¬ΨA(v,x, s)

5. Finally, include the universal closure of the implication as an additional
precondition in the APA for action A(x):

Poss(A(x), s) ≡ ΠA(x, s) ∧ (∀)[Φ(t, s) ⊃ ¬ΨA(v,x, s)].

The right-hand-side of the modified APA mentions only one situation term, s,
as required. Note also that the subformula ΨA(v,x, s) obtained by regression is
specific to the action type A(x). This is important because in many cases the
result is that the subformula can be substantially simplified, as illustrated in the
examples below. In fact, when a norm is completely irrelevant to a particular

286 A. Gabaldon

action type, the subformula frequently simplifies into a formula which is clearly
valid and can be removed altogether.

As an example, consider a robot that lives in a university classroom building
and has the norm

lecture(rm) → F at(rm).

saying that if there is a lecture occurring in a room, it should not be there.
Suppose that it has actions enter(rm) for entering a room and the action wait,
as a representative of other actions that are not relevant to the location of the
robot. The latter actions are interesting to consider since on the surface they
appear irrelevant to the law. Let the corresponding APAs be:

Poss(enter(x), s) ≡ ¬at(x, s) ∧ nextto(door(x), s).

Poss(wait, s) ≡ True.

Let the SSA of fluent at(x, s) be as follows:

at(x, do(a, s)) ≡ a = enter(x) ∨ at(x, s) ∧ ¬(∃y)a = enter(y).

Let us apply the above procedure to incorporate the law into the APAs. Start-
ing with action enter(x), we compute the regression of at(rm, do(enter(x), s)):

R[at(rm, do(enter(x), s))] =
enter(x) = enter(rm) ∨ at(rm, s) ∧ ¬(∃y)enter(x) = enter(y).

Since ¬(∃y)enter(x) = enter(y) is unsatisfiable, the resulting formula can be
simplified to enter(x) = enter(rm). By UNA on actions, this can be further sim-
plified to x = rm. Thus the procedure yields the implication (∀rm)[lecture(rm, s)
⊃ x �= rm] which can be further simplified to ¬lecture(x, s). Adding this to the
preconditions of enter(x) we obtain the following APA:

Poss(enter(x), s) ≡ ¬at(x, s) ∧ nextto(door(x), s) ∧ ¬lecture(x, s).
Intuitively, from the general norm we have obtain the additional precondition

specific to the enter action saying that there should not be a lecture in progress
in the room to be entered.

Consider now the wait action. Following the procedure, we compute the re-
gression of at(rm, do(wait, s)):

R[at(rm, do(wait, s))] =
wait = enter(rm) ∨ at(rm, s) ∧ ¬(∃y)wait = enter(y).

By UNA on actions, wait �= enter(y) for any y, so the resulting formula can be
simplified to at(rm, s). So the procedure yields the implication lecture(rm, s) ⊃
¬at(rm, s), and thus we obtain the following APA for the action wait:

Poss(wait, s) ≡ lecture(rm, s) ⊃ ¬at(rm, s)

Making Golog Norm Compliant 287

which intuitively says that the agent can wait as long as it is not in a room
where there is a lecture in progress. Exactly the same result would be obtained
for similar actions that are not relevant to the location of the agent, such as
paint(obj), pickup(book), etc. In other words, if the agent happens to be in
a room where a lecture has started, the norm imposes the obligation on the
agent to take immediate action to change location, by rendering all other actions
impossible.

As in the case of ought-to-do norms, the above procedure yields an action
theory DN such that executing a program will now always result in a norm
compliant sequence of actions, as formally stated in Proposition 2.

4.3 Deadlines

Let us finally look at how we might incorporate deadlines into an agent’s back-
ground theory. As for the other types of norm, the aim is to extract additional
preconditions from deadlines and add them to the APAs. The complication in the
case of deadlines is that they are not local but may refer to situations arbitrarily
far from the current one. In order to access those situations while satisfying the
requirement of basic action theories that axioms only refer to the current situa-
tion, we employ a technique that consists in adding a small number of auxiliary
fluents to keep track of whether certain conditions have been satisfied in a pre-
vious situation. This approach has been employed before in other contexts such
as DB integrity constraints, automated planning and evolving knowledge bases
[17,18,19,20,21,22].

For a deadline of the form φ(z) → F ψ(z) ≺ ϕ(z) it suffices to add one
auxiliary fluent Fφ(z, s) with the following corresponding SSA:

Fφ(z, do(a, s)) ≡ [φ(z, do(a, s)) ∨ Fφ(z, s)] ∧ ¬ϕ(z, do(a, s)).

Intuitively, Fφ(z, s) holds in s if the deadline is active in s.
The above axiom is actually not yet in the required form of an SSA because

of the subformulae on the right-hand-side that have argument do(a, s). This
needs to be fixed by applying one regression step using operator R on those
subformulae.

Having applying this procedure to a deadline, we add the corresponding aux-
iliary fluent Fφ and its SSA to the background theory. Then we modify the APA
of each action type A(x) by adding an additional precondition as follows:

Poss(A(x), s) ≡ ΠA(x, s) ∧
(∀z)Fφ(z, s) ⊃ [¬ψ(z, do(A(x), s)) ∨ ϕ(z, do(A(x), s))]

Note that this again requires applying regression in order to obtain a legit
APA. Moreover, since regression is applied for the specific action type A(x), it
is possible that the resulting formulae can be substantially simplified as was the
case with the ought-to-be norms. The resulting theory DN yields a result similar
to that in Proposition 2.

288 A. Gabaldon

5 Related Work

In addition to work already mentioned, we discuss here some other related work.
Governatori and Rotolo [23,24] present a logical language called Process Com-

pliance Language (PCL) which has deontic operators of several kinds: punctual
obligation, maintenance obligation and achievement obligation. In [23], an algo-
rithm for checking compliance of a business process is given. The algorithm takes
an execution trace of the process, described by a Petri Net, and checks if norms
are satisfied. While the norms are formalized in PCL, the process is described
as a Petri Net and the algorithm is extra-logical. This differs from our approach
where the norms, the process (program) and compliance is all expressed in the
same logical language. Another difference is that PCL is a much richer norm
language. In [24], they show that in addition to expressing norms, PCL can be
used to describe the control flow of business processes using the deontic features
of PCL. Since PCL specifications can be executed by a rule engine, expressing
business processes in terms of PCL allows for the execution of business pro-
cesses under PCL norms on the same rule engine. Similarly, our work is based
on expressing both processes (Golog programs) and norms in the same language
(the Situation Calculus), which is an advantage over approaches using different
formalisms for each task. Also related is earlier work by this group on business
processes and business contracts [25,26].

In [27], Meneguzzi and Luck present an approach to adjusting the behavior
of an agent to newly accepted norms. Similar to ours, the approach is based on
modifying the agent’s behavior by changing the implementation of such behav-
ior. The main difference with our approach is that they apply the modifications
to the programs in the plan library, e.g. by removing plans that include a forbid-
den action. These plans are then restored when the corresponding norm expires
and the action is no longer forbidden. In our case, the modification is done in
the underlying primitive action theory, not at the plan library level. This has
several advantages: 1) If a program is non-deterministic, a norm may make some
execution traces illegal while others remain legal. In our case, after modifying
the underlying action theory, executing the program would result only in legal
execution traces but the program remains the same. In their approach, the only
choice seems to be to remove the program altogether. 2) Whether an action has
a forbidden effect or not may depend on the state where the action is executed,
and in turn the same applies for an agent program. In our approach, the agent
would still be able to execute a program in a situation that does not lead to
a forbidden state, even if the plan would violate a norm if executed in another
context. Again, in their case the only choice is to remove the program altogether.
On the other hand, they consider the interesting case of accepting new norms at
run-time, which requires the ability to abandon programs already in execution
or in the intention base.

The recent work of van Riemsdijk et al. [28] also deals with norms in multi-
agent systems. Their main concern is to formalize norms present in the MOISE+

Making Golog Norm Compliant 289

organizational modeling language [29]. The work is complementary to ours since
we consider how to ensure an agent complies with a set of accepted norms, with-
out considering the source of the norms, which could very well be an organization
such as those modeled in MOISE+. The approach in [28] is to formalize norms
in LTL, which has a close correspondence to the language used here. This means
those norms would not be too difficult to integrate with our approach.

There is also a large amount of related work on verifying that an agent con-
forms to an interaction protocol. We discuss some of that work next.

In [30], Endriss et al. consider the problem of checking that communicating
agents conform to a public dialog protocol. The approach is based on abductive
logic programming and protocols are formalized as integrity constraints which
“filter out” illegal dialog moves. This allows a simple way to enforce a protocol:
add the protocol to the agent’s knowledge base. The analogous way to enforce
prohibitions in our framework would be to modify the definition of the relation
Do(δ, s′, s) to include compliant(s) as a condition on s. This would be obviously
correct. But contrast that with our proposed procedure for internalizing norms:
in the former approach, all the norms have to be checked for every action the
agent intends to execute next. In the latter approach, only those norms which are
actually relevant to a particular action need to be checked, and in a simplified
form. In a sense, the process of internalizing the norms computes what norms
are relevant and simplifies them for each action.

Baldoni et al. [31,32] consider a-priori verification of conformance of an
agent with a role in an interaction protocol. The main concern there is to guar-
antee interoperability: that the system will function correctly provided agents
conform to their roles in the protocol. The approach is base on finite state
automata.

Singh et al. [33,34,35] also look at the problem of conformance with an inter-
action protocol, but their approach is based on commitments. In [33], compliance
with commitments is reduced to model checking CTL formulae against a model
of the agents’ interactions. Thus it roughly corresponds in our framework to
checking compliant(s) on an execution trace s. In [35], using a notion of run
subsumption, an agent is said to conform to a protocol if the execution traces
of its program are subsumed by the execution traces of the protocol. While we
do not consider it here, run subsumption conformance is similar to norm sub-
sumption (see Def. 3) so it seems it would not be too difficult to define a similar
notion.

Finally, Chesani et al. [36] formalize a form of run-time conformance check-
ing based on commitments using a reactive version of the Event Calculus. The
approach allows “full” and “partial” violations where the latter allow the agent
to fulfil a commitment after the deadline by paying a penalty.

Approaches to protocol conformance are mainly concerned with guaranteeing
global interoperability and hence take an external view of agents. This is com-
plementary to our work here where the problem is to ensure compliance with a
set of norms by incorporating them into the agent.

290 A. Gabaldon

6 Conclusions

In this work we have considered how to express several types of norms, namely
ought-to-do, ought-to-be and a form of deadline, and how to incorporate them
into the framework of Golog. We define a notion of a sequence of agent actions
complying with a set of norms and a formal definition of an agent’s program
complying with the norms. We also describe notions of equivalence between norm
systems with respect to an agent’s background theory in the Situation Calculus,
as well as notions of norm system subsumption and consistency. We have also
shown procedures for incorporating a set of norms into the formalization of the
primitive actions of an agent so that after the norms have been thus internalized,
the agent is guaranteed to behave in a norm compliant manner.

This is a first approach at the problem of regulating the behavior of a Golog
agent using a set of norms, so we make many strong simplifying assumptions. For
example, we assume that the agent has accepted the norms and will not violate
them. This should be extended to allow the agent to violate some of the norms
if desirable, and perhaps provide also a penalty mechanism. We would also like
to look at more complex forms of deadline involving explicit time, especially
since there is already a temporal extension of Golog [37]. Further work is also
necessary on the multi-agent aspect of this work.

References

1. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line
design. Artificial Intelligence 73(1-2), 231–252 (1995)

2. Dastani, M., Grossi, D., Meyer, J.J.C., Tinnemeier, N.A.M.: Normative multi-agent
programs and their logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008.
LNCS, vol. 5605, pp. 16–31. Springer, Heidelberg (2009)

3. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative
multiagent systems. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) Ninth In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 255–266 (2004)

4. Sergot, M.: Norms, action and agency in multi-agent systems. In: Governatori,
G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 2–2. Springer, Heidelberg
(2010)

5. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Min-
imality and simplicity. Artificial Intelligence 119(1-2), 61–101 (2000)

6. Craven, R., Sergot, M.J.: Agent strands in the action language nC+. Journal of
Applied Logic 6(2), 172–191 (2008)

7. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic
programming language for dynamic domains. Journal of Logic Programming
31(1-3), 59–83 (1997)

8. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford Uni-
versity (1963); Reprinted in Semantic Information Processing (M. Minsky ed.),
pp. 410–417. MIT Press, Cambridge (1968)

9. De Giacomo, G., Lesperance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121, 109–169
(2000)

Making Golog Norm Compliant 291

10. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI 2000), Austin, Texas, pp. 355–362
(2000)

11. De Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level programs
with sensing. In: Logical Foundations for Cognitive Agents: Contributions in Honor
of Ray Reiter, pp. 86–102. Springer, Heidelberg (1999)

12. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artifi-
cial Intelligence and Mathematical Theory of Computation, pp. 359–380. Academic
Press, London (1991)

13. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

14. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of arti-
ficial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp.
463–502. Edinburgh University Press (1969); Also appears in Nilsson, N., Webber,
B.(eds.) Readings in Artificial Intelligence. Morgan-Kaufmann, San Francisco

15. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.C.: Meeting the deadline: Why,
when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C. (eds.)
FAABS 2004. LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

16. Pirri, F., Reiter, R.: Some contributions to the metatheory of the Situation Calcu-
lus. Journal of the ACM 46(3), 325–364 (1999)

17. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems 20(2), 148–186 (1995)

18. Gabaldon, A.: Compiling control knowledge into preconditions for planning in the
situation calculus. In: Gottlob, G., Walsh, T. (eds.) 18th International Joint Con-
ference on Artificial Intelligence (IJCAI 2003), pp. 1061–1066 (2003)

19. Gabaldon, A.: Precondition control and the progression algorithm. In: Dubois, D.,
Welty, C., Williams, M.A. (eds.) 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2004), pp. 634–643 (2004)

20. Bienvenu, M., Fritz, C., McIlraith, S.A.: Planning with qualitative temporal pref-
erences. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Tenth International
Conference on Principles of Knowledge Representation and Reasoning, pp. 134–
144 (2006)

21. Alferes, J.J., Gabaldon, A., Leite, J.A.: Evolving logic programming based agents
with temporal operators. In: IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT 2008), pp. 238–244. IEEE,
Los Alamitos (2008)

22. Alferes, J.J., Gabaldon, A., Leite, J.A.: Evolving logic programs with temporal
operators. In: Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 193–212.
Springer, Heidelberg (2011)

23. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: Link, S., Ghose, A. (eds.) 7th Asia-Pacific Conference on Conceptual
Modelling (APCCM 2010), vol. 110, pp. 3–12 (2010)

24. Governatori, G., Rotolo, A.: Norm compliance in business process modeling.
In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 194–209. Springer, Heidelberg (2010)

292 A. Gabaldon

25. Padmanabhan, V., Governatori, G., Sadiq, S.W., Colomb, R., Rotolo, A.: Process
modelling: the deontic way. In: Stumptner, M., Hartmann, S., Kiyoki, Y. (eds.)
3rd Asia-Pacific Conference on Conceptual Modelling (APCCM 2006), vol. 53,
pp. 75–84 (2006)

26. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between busi-
ness processes and business contracts. In: 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), pp. 221–232. IEEE
Computer Society, Los Alamitos (2006)

27. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009),
pp. 177–184 (2009)

28. van Riemsdijk, M.B., Hindriks, K.V., Jonker, C.M., Sierhuis, M.: Formalizing or-
ganizational constraints: a semantic approach. In: van der Hoek, W., Kaminka,
G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 823–830 (2010)

29. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of AOSE 1(3-4), 370–395 (2007)

30. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based
agents. In: Gottlob, G., Walsh, T. (eds.) 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), pp. 679–684 (2003)

31. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 339–351. Springer, Heidelberg (2006)

32. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), pp. 843–850 (2009)

33. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols.
Autonomous Agents and Multi-Agent Systems 2(3), 217–236 (1999)

34. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commit-
ments in business processes. In: Holte, R.C., Howe, A. (eds.) 22nd AAAI Conference
on Artificial Intelligence (AAAI 2007), pp. 1328–1333. AAAI Press, Menlo Park
(2007)

35. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, cov-
erage, and interoperability. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS
(LNAI), vol. 4327, pp. 1–15. Springer, Heidelberg (2006)

36. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: Boutilier, C. (ed.) 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pp. 91–96 (2009)

37. Reiter, R.: Sequential, temporal GOLOG. In: Cohn, A., Schubert, L. (eds.) Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the 6th Inter-
national Conference (KR 1998), pp. 547–556. Morgan Kaufmann, San Francisco
(1998)

	Making Golog Norm Compliant
	Introduction
	The Golog Language
	Basic Action Theories
	Golog

	Norms
	Ought-to-Do Norms
	Ought-to-Be Norms
	Deadlines

	Internalizing Norms
	Ought-to-Do Norms
	Ought-to-Be Norms
	Deadlines

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

