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Abstract. We propose here a novel approach to rule learning in probabilistic
nonmonotonic domains in the context of answer set programming. We used the
approach to update the knowledge base of an agent based on observations. To
handle the probabilistic nature of our observation data, we employ parameter
estimation to find the probabilities associated with each of these atoms and con-
sequently with rules. The outcome is the set of rules which have the greatest
probability of entailing the observations. This ultimately improves tolerance of
noisy data compared to traditional inductive logic programming techniques. We
illustrate the benefits of the approach by applying it to a planning problem in
which the involved agent requires both nonmonotonicity and tolerance of noisy
input.

Keywords: Inductive Logic Programming, Probabilistic Logic Programming,
Answer Set Programming, Hypothetical Reasoning, Planning.

1 Introduction

Traditional machine learning techniques assume preliminary knowledge about the do-
main elements which are critical to solve the learning task. This is often expressed as a
task of finding a target function from a collection of examples, where the examples are
assumed to be useful and relevant to the learned function. This is problematic in certain
contexts. For example, a robot whose goal is to deliver an object to a location may fail
to achieve this goal for a variety of reasons. Perhaps the motors failed, or the object was
dropped along the way. It is not immediately obvious how to relate the observation (a
failure) to the knowledge base of the robot. In other words, the extraction of features
relevant to the learning task is itself a problem that must be considered.

Inductive logic programming (ILP) [[16] is a technique, using logic programs as a
representation language, that can be seen as a general-purpose method to find the rele-
vant features amongst a large set of candidates [6] through a process of generalisation.
The dependencies between features in the knowledge base and observations are then

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 243-B58, 2011.
(© Springer-Verlag Berlin Heidelberg 2011



244 D. Corapi et al.

captured in a logic program. Such logic programs, when explicitly accounting for non-
monotonicity, are expressive enough to be used for a wide range of applications, e.g.
for planning tasks [29].

However, ILP techniques tend to produce poor results in domains where a logical
representation alone cannot capture uncertainty since they are heavily reliant upon the
concept of logical implication, which limits their capacity to cope with erroneous train-
ing examples and knowledge.

We can improve upon this dependency by recognising that the example data and the
knowledge available about the domain naturally suffer from noise. Explicit probabilistic
treatment of the observations and the knowledge also has the advantage of producing
‘higher’ abstraction as insignificant aspects of the examples are ignored.

In this work, we develop a novel rule learning approach, which builds on an exist-
ing technique that transforms ILP to abductive reasoning [4] (enabling us to handle
nonmonotonic domains) and techniques for estimating probabilities of logic facts [10],
[L1]. Answer set programming (ASP) [[17] is used to generate candidate rules for the
ILP problem, which is to say, rules that logically entail some of the observations. Gradi-
ent descent is then used to estimate probabilities for the rules so that the error between
the expected probability of the observations (as calculated) and the actual probability is
minimised. The set of rules that most closely fits the observations is given as the result.
Our main contribution is to show how through an encoding technique that represents
logic rules as logic atoms, established techniques can be adapted to derive structured
rules that improve a nonmonotonic theory, together with a probabilistic weight by esti-
mating the probabilities of these logic atoms.

We have applied our approach in the context of learning rules to perform planning
for a reactive agent. While reactive planning already has the benefit of making choices
on the basis of sensing during execution, there remain situations when multiple actions
can be performed in the same state. Standard reactive planning chooses one such action
arbitrarily, but in the uncertain physical environments in which planning is often used,
greater reliability can be achieved by choosing the actions which are most likely to lead
to success of the overall plan.

The rest of the paper is organised as follows. SectionRlintroduces some preliminary
definitions. Section [3] describes the approach (NoMPRoL) in detail. Section [ intro-
duces our planning case study and the results gained thereof. Section [3] discusses the
contribution and related work. Section [6] describes future work and concludes.

2 Preliminaries

We assume that the reader is familiar with logic programming [18]. Given a logic-
based alphabet consisting of variables, constants and predicates, an afom is an ex-
pression of the form p(¢1, ..,t,), where p is a predicate and ¢; are terms (variable or
ground) in the alphabet. An atom can be negated using negation as failure. Literals
are atoms a or negated atoms not a. We say that not a is true if we cannot find evi-
dence supporting the truth of a. Atoms and literals are used to create rules of the form:
a < by, ...,by, 0t cq, ..., n0t ¢, Where a, b; and c; are atoms. Intuitively, this means
if all atoms b; are known/true and no atom c; is known/true, then a must be known/true.
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We refer to a as the head and b, ..., b,,, not ¢1, ..., not ¢, as the body of the rule. A
(normal) logic program (or theory) is a conjunction of rules and is also denoted by a set
of rules. The semantics is defined in terms of answer sets |17, i.e. assignments of true
and false to all atoms in the program that satisfy the rules in a minimal and consistent
fashion. A program has zero or more answer sets, each corresponding to a solution.
Our approach makes use of abductive reasoning, i.e. reasoning about explanations for
given observations. An abductive logic program is a pair (7, A) where 7 is a theory,
and A is set abducible atoms. An abductive solution A is the subset of abducibles that
must be added to the theory in order to obtain a particular answer set. We refer to the
answer sets M associated with some answer A as generalised answer sets [12]].

Definition 1. Let (T, A) be an abductive logic program and A C A be an abductive
solution. M is a generalised answer set for (7, A) iff M is an answer set of T U A.

We use the notation Ay, to denote the abductive solution associated with generalised
answer set M, i.e. Ayy = ANM. AS(T, A) denotes all the generalised answer sets of
(7, A). Given an abductive logic program (7, A), we assume that every possible 7 UA
has at most one answer setl.

3 Approach

We present a general methodology that, given an existing knowledge base in the form
of a logic program 7, and a set of observations X subject to noise, finds the set of rules
with estimated probabilities that explain the observations. The approach, which we call
NoMPRoL, is divided into three stages as shown in Figure[Il In the first stage, the task
of finding rules for the given knowledge base is encoded as an abductive reasoning
problem. A transformed knowledge base (with the observations) is then presented to
an answer set solver which finds all solutions (i.e. models) of this input, which is to
say, in addition to atoms relating to the original knowledge base, answer sets contain
abducibles representing learned rules that entail the observations. By construction, as
clarified in Section[3.1] such abductive solutions can be transformed into a set of rules
whilst preserving the semantics. The third part of the approach is to estimate proba-
bilities for abducibles to find a maximum likelihood hypothesis comprising the set of
rules H and a probability distribution P¢. This is achieved by using gradient descent to
minimise a mean squared error function.

We define a probability distribution over a set of abductive solutions, instantiating
the framework of [27]], treating negation in a similar way as in [23]].

Definition 2. A probabilistic theory is a tuple (T, A, PY) where T is a theory, A is a
set of abducible atoms and P¢ is a probability distribution over 2.

P{ depends on |A| independent variables 6, associated with the probability that the
abducible atom a € A is true. We call the set of all such variables 6. Note that the
independence assumption is common in the existing frameworks for probabilistic logic.

! This is true whenever 7 is acyclic. Under this assumption the unique answer set is charac-
terised by the Clark’s completion [3] of the program.
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Fig. 1. Schematic view of the three phases in NoMPRoL

Mutual exclusivity of the variables can be modelled through integrity constraints (that
in this work extend the independent choices in [23]]). For any A C A,

PYA) =[]0 J] (1—06a)

a€A  acA\A

defines the probability of sets of abducibles and indirectly of models that contain them.
We define the probability of a logic literal as follows:

: PlA
PO, Ay) = ZAneaserayaenn P8 (L) N

Z{M:MGAS(T,A)} P (Awmr)

The probability of a literal [ is given by the sum of the probabilities of the abductive
solutions that entail / normalised over the sum of the probabilities of all abductive solu-
tions of the theory. The probabilities always implicitly refer to an underlying abductive
logic program. If the abductive theory is clear from the context we use the notation
PO(1).

3.1 ILP as Abductive Reasoning

ILP is used when a certain knowledge base must be enriched with rules that are also
able to classify new examples. We follow the common practice of defining the space
of acceptable rules (the language bias) with a set of mode declarations. Head and body
mode declarations L [20] define the structure of the atoms (by means of a schema)
that can appear in the body or in the head of the rules, hence defining the space s(L) of
possible hypotheses (the language bias).
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Mode declarations are specified as m : mode(t, r(m), s) where m is the label; the
first argument specifies whether it is a head (%) or body (b) mode declaration; the second
argument specifies the maximum number of occurrences of m; and the third argument
specifies the schema. A schema s is a ground literal that contains one or more place-
markers. A placemarker is a ground function with one of the three symbols ‘+’ for
input placemarkers, -’ for output placemarkers, ‘# for constant placemarkers. The
only argument of the function is a constant called type.

Let r be a clause h : -by,...,b, and L be a set of mode declarations. Then r is
compatible with L (i.e. r € s(L)) iff the following conditions are met:

1. h corresponds to the schema of a head mode declaration in L where all the in-
put placemarkers and output placemarkers are replaced with variables and all the
constant placemarkers are replaced with constants;

2. for each b;,7 = 1,...,n, b; corresponds to the schema of a body mode declaration
in L where all the input placemarkers and output placemarkers are replaced with
variables and all the constant placemarkers are replaced with constants;

3. every variable that replaces a input placemarker in any of the literals in the body
either replaces a input placemarker in h or an output placemarker in some atom
bj7 j <.

We provide an example and refer to [20] for details.
Example 1. Consider the following mode declarations L:

ml : mode(h, 1, daughter(+person, +person)).
m2 : mode(b, 1, mother(+person, +person)).
m3 : mode(b, 1, sex(+person, #mf)).

Given a background theory 7°
mf(m). mf(f).

sex(ann, f). sex(tom,m).
mother(mary, ann).

and a set of constraints R = {:- not daughter(ann, mary), :- daughter(tom, mary)},
the following labelled rules are compatible with L (i.e. {r1,72} C s(L)):

rl : daughter(X,Y) :- sex(X, m).
r2 : daughter(X,Y) :-mother(X,Y), sex(Y, m).

and the following rule:

r3 : daughter(X,Y) :-mother(Y, X), sex(X, f).

is such that 7 U R U {r3} has one generalised answer set (while 7 U R has none)
and r3 € s(L). Thus 3 is a possible solution and it defines the concept of daughter
based on the predicates mother and sex, consistently with the constraints. Rules 71
and 2 are within the language bias but violate the given constraints (in turn they imply
daughter(tom, mary) and not daughter(ann, mary)).
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We treat examples as constraints, so the task at hand is to find new rules that sat-
isfy a set of given constraints. This is achieved by “lifting” the abductive reasoning to
inductive reasoning using a similar representation to that in [4]. In contrast to [4], we
use ASP mainly because it better supports the generation of all the solutions and the
use of integrity constraints. To transform an ILP task into an abductive search task we
represent all the rules within s(L) as logical atoms that can be abduced using an an-
swer set solver. Abductive solutions for the new theory can be transformed back into a
solution for the equivalent ILP problem. The correctness and completeness of the trans-
formations are obtained, as in [4], using logical equivalences after the truth values of
the abducibles are defined.

For a given mode declaration, s* denotes the atom created from the schema s by
replacing the placemarkers with newly defined variables. ins(s+) is shorthand for a list
of all the variables that replace input placemarkers, outs(s*) is a list of the variables
that replace output placemarkers and cons(sx) is a list of the variables that replace
constant placemarkers in sx. All abducibles are marked by a $ character.

Intuitively we want to transform the original theory into a “meta-theory” that can
be used to reason about possible inductive solutions. The transformation is such that
whenever certain abducibles are part of an abductive solution we must infer that a cer-
tain head is needed in a rule in inductive solution. Other abducibles are derived to define
the body of such rules. Atoms of the type $head(h, id) are abduced whenever a rule
(identified by id) is needed that uses the mode declaration A in the head. Atoms of the
type $body(b, id, r,l, c¢) are abduced whenever a condition that uses the mode declara-
tion b is required in the body of a rule that is part of a solution. In $body (b, id, r, 1, c),
r disambiguates amongst different uses of the same mode declaration in the body; [ de-
fines the bindings of the input variables; and c contains the constants used. For brevity
we will not go into details of the type checking. Given a set of mode declarations L, we
construct a set of rules R as follows:

— Let by, ..., b, be labels for all body mode declarations in L. For each head mode
declaration m : mode(h, r(m), s) the following clause is in R:

sk - Shead(m,1D),
not body (b1, ID,1,ins(sx), X1.1),

not body (b1, 1D, r(b1), X1,(r(b1)—1)s X1,r(b1))s
not bOdy(bQ,ID, 17X1,(r(b1))7X2,1>7

not bOdy(bQ, ID, T‘(bz), X2,(7‘(b2)—1)a X2,7‘(b2))7

not body(b(n), [D7 r(bn), Xn,(r(b")fl)v Xnﬂﬂ(b ))

n

These rules represent a skeleton for the rules that can be considered as inductive
hypotheses. If the $head atom is not part of an abductive solution the rule is always
true and has no effect on the rest of the theory. Otherwise the truth of the head de-
pends on the other conditions. In each body condition, except the first, the fourth
argument is the same variable as the fifth argument of the previous body condition
(ordered left to right). This makes it possible to share variables between conditions
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and bind input variables to output variables. Variables that substitute output place-
markers are this way shared amongst conditions. Note that an order is established
a priori mainly for efficiency purposes and to remove redundancies. As shown in
[4] this can be avoided with a different encoding.
— For each body mode declaration m : mode(b,r(m), s), the following clause is
inR:
body(m,ID,R,V,X) :-

link(V,ins(sx), E),

append(V, outs(s*), X),

$body(m,ID, R, E, cons(sx)),

not s * .

Rules of this type only have effect on the transformed theory if the $body atom

is abduced. The atom link(v,4,e) produces a list ¢ where all the elements are
also in v and a list of e that contains the indexes of the elements ¢ in v (e.g.
link((ann, mary, f,tom), (ann, f), (1, 3)) is a true instance). The list in the third
argument is used in the abducible $body to codify the binding of the variables.
append is a conventionally defined operator for appending lists.

The theory R is used within the learning process and processed together with a back-
ground theory and a set of constraints by the ASP solver. The final solution is trans-
formed back into a set of rules.

Example 2. Let 7, R and L be the theories and mode declarations from the previous
example. R is constructed from L as follows:

daughter(X,Y) :-$head(ml, ID),
not body(m2,ID,1,(X,Y), Xm2.1),
not body(m3,ID,1, Xma.1, Xm3,1)-

body(m2,1D,1,V, X) :-
link(V, (X1, Y1), L),
$body(m2,1D,1,L,()),
not mother(X1,Y1).

body(m3,1D,1,V, X) :-
link(V, (X1), L),
$body(m3,ID,1,L,C),
not sex(X1,C).

Using an ASP solver we can generate the following abductive solution that codifies
rule 3 from the previous example A = {$head(m1,73), $body(m2,r3,1,(2,1), (),
$body(m3,r3,1,(1),(f))}. The first abducible specifies mode declaration m1 is used
in the head of r3. The second specifies m3 is used in the body; the list (2, 1) specifies
that the first input variable (left to right in order of appearance in the mode declaration)
is linked to the second variable in the head and that the second input variable is linked
to the first variable in the head. The third abducible specifies m3 is used in the body,
that the input variable is linked to the first variable in the head and that the constant is
instantiated to f.
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As made clear in Section [£.3] by defining a probability distribution over the ab-
ducibles we can instantiate a probability for the literals in the constraints. For ex-
ample, let Ognead(mi,r3) = 1, Osbody(m2,r3,1,2,1),0) = 0-8, Ospody(m3,r3,1,(1),(f)) =
1 and 6, = 0 for all a € A\ A. In this case P,’(A) = 0.8 and
P’ (A \ {$body(m2,r3,1,(2,1),())}) = 0.2. The two considered sets of ab-
ducibles together with R are respectively logically equivalent to {daughter(X,Y) :
-mother(Y, X), sex(X, f)} and {daughter(X,Y) :-sex(X, f)} and implicitly de-
fine their probabilities.

3.2 Model Generation

Given a set of mode declarations L, the theory R generated from it, and a background
theory 7, for each observation  we generate all the generalised answer sets that are
needed to calculate P?(z). That is to say, we generate all generalised answer sets for
the abductive theory (7 U {: —not 2} UR, A). A includes all the atoms with predicate
$head and $body that correspond to meaningful literals in the final rule. The solutions
Ay, ..., Ay are used to construct the data structures that codify the sum of products in
Equation (), where each A; corresponds to one element of the sum. Conceptually, the
abductive solutions correspond to a boolean formula where all the abducibles within a
solution are in conjunction (and negated if not part of the model) and all the solutions
are in disjunction.

3.3 Parameter Estimation

The observations x; are represented by literals and they are associated with a target
probability y;, i.e. the learned theory should entail each observation z; with probability
y;. We assume that the true target value is altered by random Gaussian noise to account
for errors in the background theory and noise in the observed literals as in [10]]. Finding
the maximum likelihood (abductive) hypothesis under this assumption corresponds to
minimising the following mean squared error function [19]:

MSE(# =X Z — PO(z;|(T, A)))? )

We use gradient descentd over equation (2) to estimate the probabilities of each ab-
ducible. In our particular case, positive and negative examples are modelled as (possibly
negated) literals with target probability y; = 1. Initially  is given random values. Our
implementation uses the algorithm described in [[L0], adopting binary decision diagrams
(BDDs) to calculate the value of the gradient and of the probabilities of the observa-
tions at each iteration. The final 6, that minimises the M SE can be mapped into a set
of probabilistic hypotheses, thus providing rules that improve the original knowledge
base by taking account of the probabilistic observations. This can be seen in more detail
in Section[4.3

2 Other optimisation algorithms can be used.
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4 Case Study: A Planning Agent

An ideal application for nonmonotonic rule learning is a planning problem [9]] in which
the initial knowledge base (from which plans are generated) is discovered to be in-
correct or incomplete when the plans are generated and executed. Moreover, when the
plans refer to a robotic agent situated in the physical world, with all its uncertainties,
a probabilistic approach is required. Probabilities can also account for an incomplete
model of the environment or of other agents acting in the same environment.

4.1 Knowledge Base

Figure[ldepicts the feedback loop between the knowledge base and the running system.
The knowledge base (also known as a domain model) contains a description of the agent
and the world it occupies, expressed as logic program in terms of conditions that hold
and actions that can be performed (similar to Event Calculus [13])). Figure Blshows part
of the knowledge base for our specific example of a mobile robot, which states that a
move action between two locations is possible if the places are connected and the robot
is at the initial location.

Planning (abduction)

Execution

Knowledge base

NoMPRoL

Fig. 2. Feedback between planning and rule learning

Typically there are many sequences of actions which the agent could perform to
achieve a given goal. In a traditional linear plan, a single sequence is selected and the
agent performs it blindly. Reactive or universal plans [28]] improve robustness by having
the agent sense the new world state after each action so that unexpected state changes—
those not described by the knowledge base—can be handled. However, even for a given
state there are often several actions which lead to the goal, and reactive planners make
an almost arbitrary choice (often the shortest path). The practical truth is that each action
has a different probability of leading to the goal, and it is on this basis that alternatives
should be selected. The problem described is nonmonotonic as adding rules to the the-
ory can invalidate previous consequences. The case study provided is a small instance
of a class of problems that can involve complex interactions with the environment and
rich contextual properties to be taken into account, e.g. position of other agents, speed,
available power.

We generate plans given a goal condition such as holds At(at(gps5), 3) by following
an abductive procedure [29]. The resulting linear plans are merged to produce (a variant
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:— do(El, T),
do(E2, T),
El != E2.

linked (gpsl, gps2).
linked (gpsl, gps3).
linked (gpsl, gps4).

Jomove

possible (move(L1, L2), T) :— L1 != L2,
holdsAt(at(L1), T),
linked (L1, L2).

initiates (move(Ll, L2), at(L2), T).

terminates (move(L1, L2), at(L1), T).

possible (move(L1, L2), T) :— L1 != L2,
holdsAt(at(L1), T),
linked (L1, L2).

happens(E, T) :— do(E, T),
succeeds (E,T).

Fig. 3. Knowledge base fragment

of) a reactive plan in which each state is associated with one or more actions, thus
preserving the choice of paths present in the knowledge base. Each possible action for
the current state has a probability (of achieving the goal) given by the sum over the
probabilities of possible worlds (represented by generalised answer sets) that contain
the action. The action with the highest probability is chosen at each iteration.

4.2 Trace Generation

Traces, from which the observations are derived, are generated by executing the reactive
plan as follows:

1. the current environment state is sensed;

2. action(s) applicable to the current state are generated abductively for the given goal;
and

3. one action is executed. Initially, when no probabilistic bias is available, where there
is a choice of actions (multiple paths to the goal), one is selected randomly.

These steps are repeated until the goal condition is met, or a time-out occurs. At each
iteration, the sensed state and the action chosen are recorded. The sequence of states
and actions provides a trace. Figure 4] shows an example trace.

From each trace j we derive a set of observations {01 j, ..., 0m ; } (one for each time
the environment is sensed), and a set of histories {O1 j, ..., Or, ; }. Each history O; ;
includes all the states and actions in the execution up to the time point before the one
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Yotrace 12
holdsAt(at(gpsl),0).
do(move(gpsl , gps2),0).
holdsAt(at(gps2),1).
do(move(gps2,gps5),1).
holdsAt(at(gps5).,2).
do(pickup ,2).
holdsAt(at(gps5).,3).

Fig. 4. Execution trace

0;,; refers to. The training set X thus contains such pairs (o; ;,O; ;) and the target
probability for each observation is set to 1. For example, the trace in Figure [ gives a
set of observations including:

oo o - holdsAt(at(gpsb), 2),
1227 not holds At(holdingBall, 2).

holdsAt(at(gpsl),0).
do(move(gpsl, gps2)
holdsAt(at(gps2),1).
do(move(gps2, gps5), 1).

,0
O12,2 : )

We are interested here in a revised theory that fits the observations for a given his-
tory. The probability associated with each observation thus involves the corresponding
history. Consequently, the function we want to minimise is the following:

MSE(0) = pl(‘ Z(1—P9(0i7j\TuAu0i,j))2 (3)

4.3 Experiment

The practical experiment involves a mobile robot carrying a ball and a robotic arm
which can remove the ball from the robot. The goal of the system is for the mobile
robot to transport the ball to the arm whereupon the ball can be placed in a store next to
the arm. This is expressed as holdsAt(at(gps5),T), holdsAt(holdingBall,T). The
mobile robot is able to sense obstacles using short-range infra-red sensors and to detect
when the ball is placed on top. In order to navigate through the environment, one or
more cameras are placed on the ceiling which use simple computer vision techniques to
determine the position and orientation of the mobile robot. The robotic arm is equipped
with another camera to locate the ball, and pressure sensors to detect when it has suc-
cessfully gripped an object.

As with any robotic system, there are many sources of noise. The infra-red sensors
can detect obstacles incorrectly, causing erratic motion. Likewise, noise in the camera
image can lead to incorrect localisation of the robot. Erratic motion may ultimately lead
to complete failure of the plan, if for instance the robot collides with an obstacle or goes
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gps2

gpst gps5

= i

gps4

Fig. 5. The environment has three paths from the starting point to the arm

outside the area visible to the cameras. Noise in the camera and pressure sensors of the
robotic arm can lead to the ball being dropped or not being identified at all.

To simplify navigation from the starting location to the target (the location of the
arm), we create three waypoints, as shown in Figure[3] providing three alternative paths
to the arm. The choice of a path leads to different rates of success, as a consequence of
the sources of noise described above.

We executed the plan a total of 30 times, each starting in a random state and produc-
ing one trace. Each trace consists of the state observed and action taken at each time
step, a flag indicating whether or not the goal was achieved and the time taken to execute
the plan. Failure is detected explicitly (if the robot leaves the camera range) or otherwise
through a time-out. Figure M shows one trace in which the robot started at location gps1,
moved to gps2 followed by gps5. The absence of holds At(holdingBall, 3) shows that
the arm failed to pick up the ball, and this trace is recorded as a failure. Finally, we
applied NoMPRoL, using the following mode declarations:

mode(h, 2, succeeds(pickup, +time)).

mode(h, 2, succeeds(move(+loc, +loc), +time)).
mode(b, 2, +loc = #loc).

mode(b, 1, holds At(at(+loc, +time))).

mode(b, 1, linked(+loc, +1oc)).

mode(b, 1, wasAt(+loc, +loc)).

Results. The benefit of the approach will be shown by whether the robot improved its
performance, measured as time taken to reach the goal in the real world and as the ratio
of failures over many runs. We run NoMPRoL leaving one trace out for testing each
time and using the remaining ones for the training. We then selected only those traces
which contain the same actions as those which the agent would perform after learning,
thus omitting those where learning has caused the behaviour to change. The average of
those execution times and the number of time-outs for the initial and the trained agent
are reported in Table [Tl
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Table 1. Performance measure of the initial and trained agents

Average execution time (s) Failure rate
Initial agent 85.2 0.3
Trained agent 63.6 0.1

We consider one representative training instance and discuss the process and results.
After the GD algorithm converges each abducible in A is associated with a probability.
For example the abducible body (b not was at, (dp,1),1, (1), (gps2)) has probability
Obody(b not was at,(dp,1),1,(1),(gps2)) = 0.7315. Intuitively this probability encodes the
relevance of the condition within the rule labelled as (dp, 1). Processing and approxi-
mating the probabilities for ease of exposition, we obtain the following rules:

rl : succeeds(pickup,T) :-
not wasAt(gps2,T). 0.7

r2 : succeeds(move(L1, L2),T) :-
linked(L1, L2). 0.5

r3 : succeeds(move(L1, L2),T) :-
not wasAt(gps3,T), 0.2

L2 = gps3, 0.4
holdsAt(L1,T), 1
linked(L1, L2). 1

The probability associated with a condition intuitively represents the probability that
the condition is part of a sampled theory, resulting in a distribution over possible sub-
theoriedl. In general the final output will be chosen based on the interpreter or based on
readability and accuracy requirements.

In our experiment the M S'E for all the executions is lower than 1. Non-probabilistic
logic rules would never result in a lower M S FE, since at least one of the observations
would not be entailed. Also, for systems where the estimation is performed on logic
facts [[L1] the dependency between the final pickup and the robot’s moving through
location gps2 would not be detected.

3 In fact, from these rules we can derive an equivalent distribution over theories, similarly to [5],
that are obtained by dropping some of the conditions. For example the following theory has a
probability p = 0.168 (causing every atom that is entailed by this theory to have a probability
greater than p):

succeeds(pickup, T) :-not wasAt(gps2,T).
succeeds(move(L1,L2),T) :-linked(L1, L2).
succeeds(move(L1,L2),T) :- holdsAt(L1,T),linked(L1, L2).

Intuitively, the probability is derived from the product of the probabilities associated with the
conditions that are kept and the complement of the probabilities of the conditions that are
discarded.
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5 Discussion and Related Work

Much of the recent work in the field of Statistical Relational Learning [8]] shares similar
objectives to those addressed here. The work we present is, to the best of our knowl-
edge, the first with a methodology for learning probabilistic rules in nonmonotonic
domains. Under the assumption of monotonicity, the problem of learning probabilistic
rules has been addressed separately as an estimation problem and as structure learning
[22]]. [21]] concentrates on single-clause hypotheses; [[10] applies gradient descent to
estimate probabilities of logic facts in a logic program; [7]] extends an established ILP
search algorithm with a probability-based search heuristic. [31] addresses the problem
of learning probabilistic planning rules.

Markov Logic Networks (MLN) [25] extend first-order logic with Markov networks
and are successfully supported by a number of different learning techniques. Amongst
these, [30] employs a gradient-driven estimation of the parameters and [[14] proposes
an integrated solution for structure learning. The main disadvantage of MLN compared
to the type of representation used in this paper and, in general, to probabilistic logic
representations based on distribution semantics is that formula weights in MLN are
counterintuitive and their effect on the inference is not obvious.

Compared to solutions based on Markov Decision Processes (MDP) (e.g. [2]]) the
approach proposed employs a full first-order representation. An MDP could be used as
a target representation for the learned output, with the caveat that maintainability is lost
in a more constrained knowledge representation language. Furthermore in the case of
planning the states and the effects of the actions can be modelled to take into account,
as shown in the example, of relevant past events and states, thus defining the probability
of an action at a time point ¢ also as a function of states at ¢’ < ¢ — 1.

The methodology proposed is not a full solution to the problem of learning prob-
abilistic nonmonotonic logic programs. Application in real scenarios would require a
considerable computational effort. Nevertheless we provide a general mechanism to
transform an inference problem into an equivalent learning task, thus enabling the use
of established techniques, and a framework for further developments. ASP tools pro-
vide the most effective way to generate and check models for nonmonotonic theories
and techniques for parameter estimation benefit from years of consolidation. To im-
prove efficiency, we are currently working on an extension of NoMPRoL that makes
use of stochastic sampling techniques as in [13]].

We designed an integrated mechanism to solve the problem of generating inductive
hypotheses that is based on ASP. Despite the interest in nonmonotonic ILP [26], there
is a lack of available tools. [24]], a nonmonotonic ILP system, does not provide the re-
quired support for the methodology presented in this paper. In particular, the system is
not designed to tolerate noise in training examples and outputs only maximally com-
pressive solutions.

6 Conclusions

We have presented an approach for rule learning in probabilistic nonmonotonic do-
mains. The approach estimates probabilities for rules which, together with a knowledge
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base, minimise the error between a target probability and the entailed probability over
a set of observed atoms. Such rules can be used to improve the original knowledge
base, reducing the gap between the current knowledge and the observations, as we have
shown in a planning scenario where executing the learned rules reduces the overall rate
of the robotic agent failing to reach its goal.

NoMPRoL has a potentially broad applicability, ranging from situations involving
interactions with the external environment, such as is the case in self-adaptive systems,
to cases where a rich logical representation is integrated with uncertainty (e.g. in soft-
ware engineering [[1], in which nonmonotonic ILP is used to extend a partial system
specification with learned requirements). Our approach would enable such systems to
revise their knowledge bases with probabilistic information that is difficult or impossi-
ble for the designer to provide. Currently the main limit of the approach is scalability.
As the space of candidate hypotheses and the domain entities and relations grows, the
answer set solver has to deal with exponentially large ground theories. We plan fur-
ther experiments aimed at improving the scalability of the methodology and extensions
towards an incremental online learning setting.
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