

Lecture Notes in Artificial Intelligence 6814
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

João Leite Paolo Torroni
Thomas Ågotnes Guido Boella
Leon van der Torre (Eds.)

Computational Logic
in Multi-Agent Systems
12th International Workshop, CLIMA XII
Barcelona, Spain, July 17-18, 2011
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

João Leite
Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: jleite@di.fct.unl.pt

Paolo Torroni
Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: paolo.torroni@unibo.it

Thomas Ågotnes
University of Bergen, P.O. Box 7802, 5020 Bergen, Norway
E-mail: thomas.agotnes@infomedia.uib.no

Guido Boella
Università degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy
E-mail: guido@di.unito.it

Leon van der Torre
Université du Luxembourg
6 Rue Richard Coudenhove-Kalergi, 1359 Luxembourg, Luxembourg
E-mail: leon.vandertorre@uni.lu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22358-7 e-ISBN 978-3-642-22359-4
DOI 10.1007/978-3-642-22359-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2, F.3, D.2, C.2.4, F.4.1, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of the 12th International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA XII), held during July 17–18, 2011 in
Barcelona, and co-located with the 22nd International Joint Conference on Ar-
tificial Intelligence.

Multi-agent systems are systems of interacting autonomous agents or com-
ponents that can perceive and act upon their environment to achieve their in-
dividual goals as well as joint goals. Research on such systems integrates many
technologies and concepts in artificial intelligence and other areas of comput-
ing as well as other disciplines. Over recent years, the agent paradigm gained
popularity, due to its applicability to a full spectrum of domains, from search
engines to educational aids to electronic commerce and trade, e-procurement,
recommendation systems, simulation and routing, to mention only some.

Computational logic provides a well-defined, general, and rigorous frame-
work for studying syntax, semantics and procedures for various tasks by indi-
vidual agents, as well as interaction amongst agents in multi-agent systems, for
implementations, environments, tools, and standards, and for linking together
specification and verification of properties of individual agents and multi-agent
systems.

The purpose of the CLIMA workshops is to provide a forum for discussing
techniques, based on computational logic, and for representing, programming
and reasoning about agents and multi-agent systems in a formal way.

Former CLIMA editions have mostly been conducted in conjunction with
major computational logic and artificial intelligence events such as CL in 2000,
ICLP in 2001 and 2007, FLoC in 2002, LPNMR and AI-Math in 2004, JELIA in
2004 and 2008, AAMAS in 2006, MATES in 2009, and ECAI in 2010. In 2005,
CLIMA VI was organized as a stand-alone event.

CLIMA XII closely followed the format established by its predecessor, with
regular proceedings and two special sessions: “Logics for Games and Social
Choice”, organized by Thomas Ågotnes, and “Norms and Normative Multi-
Agent Systems”, organised by Guido Boella and Leon van der Torre.

Norms are pervasive in everyday life and influence the conduct of the en-
tities subject to them. One of the main functions of norms is to regulate the
behavior and relationships of agents. Accordingly, any agent or multi-agent sys-
tem, if intended to operate in or model a realistic environment has to take norm
regulating into account. Norms have been proposed in multi-agent systems and
computer science to deal with coordination and security issues, and to model
multi-agent organizations and legal aspects of electronic institutions and elec-
tronic commerce.

Logic and game theory form two theoretical underpinnings of multi-agent
systems. On one hand, formal logic is a foundation for knowledge representa-

VI Preface

tion and reasoning, and opens the door to techniques for formal specification
and automated verification. On the other hand, the interaction between ratio-
nal decision makers has been studied in game theory for a long time. However,
traditional game theory is not concerned with formal languages or reasoning sys-
tems, nor with computational issues, and until relatively recently formal logic was
not concerned with expressing properties of game-like situations. For reasoning
about interesting properties of many, if not most, multi-agent systems, we need
game theoretic concepts such as strategies, preferences, etc. In particular, many
multi-agent systems can be seen as implementing social choice mechanisms.

This 12th CLIMA edition received an exceptionally high number of submis-
sions. Many of those involved in the revision and selection process acknowledged
the high quality of the program. In many instances the authors expressed their
satisfaction with very informative and constructive reviews, for which CLIMA
is renown.

This book features regular papers as well as abstracts of invited talks. These
were delivered by Simon Parsons (Brooklyn College, USA), Ulle Endriss (Uni-
versity of Amsterdam, The Netherlands), and Jan Broersen (Utrecht University,
The Netherlands). The chapters in this book are organized according to the
workshop schedule, in topical sessions. The main track and each of the special
sessions started with an invited talk.

CLIMA opened with a session on “Secrets and Trust”. In his invited talk,
Simon Parsons discussed the use of argumentation for reasoning about which in-
dividuals to trust, and for relating sources of information to conclusions drawn
from information provided by those sources. Robert Demolombe then looked at
information and trust propagation, exploring formal notions of sincerity, compe-
tence, vigilance, cooperation, validity and completeness. Afterwards, Sara Miner
More and Pavel Naumov presented a follow-up of their CLIMA XI work, with a
theoretical study of a logic of dependence between secrets, addressing the ques-
tion: which secrets functionally determine which others?

In the second half of the morning, we had three presentations on “Knowl-
edge and Beliefs”, covering topics such as knowledge-based protocols, security in
information exchange, but also modalities for modeling beliefs and information
sources, belief merging, information aggregation, and the concept of definability.
Hans Van Ditmarsch and Fernando Soler-Toscano opened the session by pre-
senting a three-step protocol which allows two players to (publicly) inform each
other about their playing cards without making it known to a third player, the
eavesdropper. Emiliano Lorini, Laurent Perrussel, and Jean-Marc Thévenin then
illustrated a framework for processing signed information before incorporating
it in the agent’s beliefs. The last presentation of the morning, based on work
by Hans Van Ditmarsch, David Fernández and Wiebe van der Hoek, dealt with
epistemic logic: under what conditions can individual Kripke models be uniquely
characterized (up to bi-simulation) by a single epistemic formula?

The afternoon, entirely devoted to the special session on “Logics for Games
and Social Choice”, was opened by Ulle Endriss’s invited talk. While illustrating
recent work conducted by members of his group at the University of Amster-

Preface VII

dam, Ulle showed many different ways in which modern logic can contribute
to the study of social choice theory. Following the invited talk, five regular pa-
pers covered theoretical aspects and applications. Jan Van Eijck presented a new
(geometric) proof of the Gibbard – Satterthwaite theorem, based on the Saari tri-
angle for three alternatives, and elaborated on the notion of non-manipulability
and the need for a finer granularity. Tiago De Lima’s talk on alternating-time
announcement logic presented a very general logic of action and change. Jan
Calta, Dmitry Shkatov and Holger Schlingloff presented results on synthesizing
strategies for multi-agent systems. Thomas Ågotnes and Natasha Alechina then
discussed how coalition logic reasoning can be done in standard PDL-like logics.
A final presentation by Daniele Porello and Ulle Endriss illustrated a proposal
to regard ontology merging as a problem of social choice.

The second day was opened by a session featuring four talks on “Cooper-
ation”, covering aspects related to interaction protocols, teams, commitments,
query-answering, monitoring, verification and diagnosis. Özgür Kafalı and Paolo
Torroni started with a systematic analysis of types of delegation, similarity dele-
gation and improper delegation. Taolue Chen, Marta Kwiatkowska, David Parker
and Aistis Simaitis proposed using probabilistic model checking as an analysis
tool for organizational construction. Samy Sá and João Alcântara presented some
strategies to generate cooperative answers in query-answering systems: when
there is no correct answer to a given query, it is more helpful to return some
answers related to the query using query relaxation. In the last presentation,
Özgür Kafalı, Francesca Toni and Paolo Torroni discussed an assumption-based
argumentation approach to diagnosis of commitment exceptions.

Three presentations on “Logic and Languages” for agent programming con-
cluded the morning. Domenico Corapi, Daniel Sykes, Katsumi Inoue and Alessan-
dra Russo discussed a proposal for rule learning, aimed to enrich abductive
reasoning with a probabilistic component as well as to model inductive logic
programming tasks as a special form of abductive reasoning. Richard Stocker,
Maarten Sierhuis, Louise Dennis, Clare Dixon and Michael Fisher then presented
a formal semantics for the Brahms modeling and simulation framework for hu-
man – agent teamwork. Finally, Alfredo Gabaldon showed how norm-enforcing
mechanisms can be accommodated in the Golog situation calculus-based pro-
gramming language.

The final part of the CLIMA program featured the special session on “Norms
and Normative Multi-Agent Systems”, with one invited talk and five regular pa-
per presentations. In his invited talk, Jan Broersen discussed modeling of obli-
gations to attempt an action in a probabilistic stit framework extended with
deontic modalities, and the effects of reasoning with probabilities on the seman-
tics of deontic modalities like obligation and prohibition. Jan’s talk was followed
by two presentations on actions and norms that used modal style logics. An-
dreas Herzig, Emiliano Lorini and Nicolas Troquard defined a logic of action
which enables reasoning about the distinction between physical actions bringing
about brute facts and institutional actions bringing about institutional facts.
Mathieu Beirlaen and Christian Straßer, instead, proposed a paraconsistent ap-

VIII Preface

proach for dealing with normative conflicts in multi-agent systems. Afterwards,
a last group of three presentations discussed research in norms and normative
multi-agent systems using rules style logics. Marco Alberti, Ana Sofia Gomes,
Ricardo Gonçalves, João Leite and Martin Slota showed an application of a
logic combining DL ontologies with rule-based knowledge bases for represent-
ing and reasoning about norms in multi-agent systems. Nir Oren, Wamberto
Vasconcelos, Felipe Meneguzzi and Michael Luck then presented an approach in
which norms are constraints and are used to generate plans that satisfy those
norms that yield the highest utility. In the concluding talk, Guido Governatori
and Antonino Rotolo extended a logic of violation with time, thus enabling the
representation of compliance with respect to different types of legal obligation
and different temporal constraints over them, as well as the representation of
reparative obligations.

The 22 papers presented at CLIMA XII were selected from 43 submissions.
These were on average of very high quality. In line with the high standards
of previous editions, the final acceptance rate, after two rounds of reviewing
and selection, was circa 50%. The Program Committee consisted of 48 top-level
researchers from 35 institutions located in 5 continents and 15 countries. Nine
additional reviewers helped in the process. The papers in this book have been
authored by 58 researchers worldwide.

Further information about CLIMA XII is available from the website http:
//centria.di.fct.unl.pt/events/climaXII/. General information about the
workshop series, with links to past and future events, can be found on the CLIMA
workshop series home page, http://centria.di.fct.unl.pt/~clima/.

We thank all the authors of papers submitted to CLIMA XII, the invited
speakers, the members of the Program Committee, and the additional reviewers,
for ensuring that CLIMA keeps up to its high standards. A special thank you
goes to Adele Howe, the IJCAI 2011 Workshop Chair, and to the local organizers
in Barcelona for their help and support.

July 2011 João Leite
Paolo Torroni

Thomas Ågotnes
Guido Boella

Leon van der Torre

Organization

Workshop Chairs

João Leite Universidade Nova de Lisboa, Portugal
Paolo Torroni University of Bologna, Italy

Special Session Chairs

Thomas Ågotnes University of Bergen, Norway
Guido Boella University of Turin, Italy
Leon van der Torre ILIAS, University of Luxembourg

Program Committee

Natasha Alechina University of Nottingham, UK
Jose Julio Alferes Universidade Nova de Lisboa, Portugal
Alexander Artikis NCSR Demokritos, Athens, Greece
Rafael H. Bordini Federal University of Rio Grande do Sul, Brazil
Gerhard Brewka Leipzig University, Germany
Jan Broersen Utrecht University, The Netherlands
Nils Bulling Clausthal University of Technology, Germany
Stefania Costantini Università di L’Aquila, Italy
Célia Da Costa Pereira University of Nice Sophia Antipolis, France
Mehdi Dastani Utrecht University, The Netherlands
Marina De Vos University of Bath, UK
Louise Dennis University of Liverpool, UK
Juergen Dix Clausthal University of Technology, Germany
Michael Fisher University of Liverpool, UK
Nicoletta Fornara Università della Svizzera Italiana, Switzerland
Dov Gabbay King’s College, London, UK
Chiara Ghidini FBK-irst, Trento, Italy
Guido Governatori NICTA, Brisbane, Australia
Davide Grossi University of Amsterdam, The Netherlands
Paul Harrenstein Technische Universität München, Germany
Hisashi Hayashi Toshiba Corporation, Japan
Koen Hindriks Delft University of Technology, The Netherlands
Katsumi Inoue NII, Tokyo, Japan
Wojtek Jamroga University of Luxembourg
Jérôme Lang Université Paris Dauphine, France
Alessio Lomuscio Imperial College London, UK
Emiliano Lorini IRIT, Toulouse, France
Viviana Mascardi University of Genova, Italy

X Organization

John-Jules Meyer Utrecht University, The Netherlands
Jan Odelstad University of Gävle, Sweden
Mehmet Orgun Macquarie University, Sydney, Australia
Eric Pacuit Tilburg University, The Netherlands
Maurice Pagnucco The University of New South Wales, Australia
Gabriella Pigozzi Université Paris Dauphine, France
Jeremy Pitt Imperial College London, UK
Enrico Pontelli New Mexico State University, USA
R. Ramanujam Chennai Mathematical Institute, India
Antonino Rotolo University of Bologna, Italy
Fariba Sadri Imperial College London, UK
Chiaki Sakama Wakayama University, Japan
Ken Satoh NII and Sokendai, Tokyo, Japan
Tran Cao Son New Mexico State University, USA
Michael Thielscher The University of New South Wales, Australia
Nicolas Troquard University of Essex, UK
Wiebe Van Der Hoek University of Liverpool, UK
M. Birna Van Riemsdijk Delft University of Technology, The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Cees Witteveen Delft University of Technology, The Netherlands

Additional Reviewers

Dongmo Zhang The University of New South Wales, Australia
Frederic Moisan IRIT, Toulouse, France
Ji Ruan The University of New South Wales, Australia
Johannes Oetsch Vienna University of Technology, Austria
Massimo Benerecetti Università di Napoli Federico II, Italy
Nir Piterman University of Leicester, UK
S P Suresh Chennai Mathematical Institute, India
Sunil Simon CWI, The Netherlands
Tristan Behrens Clausthal University of Technology, Germany

CLIMA Steering Committee

Jürgen Dix Clausthal University of Technology, Germany
Michael Fisher University of Liverpool, UK
João Leite Universidade Nova de Lisboa, Portugal
Fariba Sadri Imperial College London, UK
Paolo Torroni University of Bologna, Italy

CLIMA Publications

Special Issues

– Journal of Logic and Computation, Special Issue on Computational Logic
and Multi-Agent Systems. Expected, 2012.

– Annals of Mathematics and Artificial Intelligence. Special Issue on Compu-
tational Logic and Multi-Agent Systems, guest-edited by Jürgen Dix and
João Leite. Expected, 2011.

– Journal of Autonomous Agents and Multi-Agent Systems, 16(3), 2008. Spe-
cial Issue on Computational Logic-Based Agents, guest-edited by Francesca
Toni and Jamal Bentahar.

– Annals of Mathematics and Artificial Intelligence, 42(1-3), 2004. Special
Issues on Computational Logic and Multi-Agent Systems, guest-edited by
Jürgen Dix Dix, João Leite, and Ken Satoh.

– Annals of Mathematics and Artificial Intelligence, 37(1-2), 2003. Special
Issue on Computational Logic and Multi-Agent Systems, guest-edited by
Jürgen Dix, Fariba Sadri and Ken Satoh.

– Electronic Notes in Theoretical Computer Science, 70(5), 2002. Special Issue
on Computational Logic and Multi-Agency, guest-edited by Jürgen Dix Dix,
João Leite, and Ken Satoh.

Proceedings

– Computational Logic in Multi-Agent Systems XII, Proceedings. Vol. 6814 of
Lecture Notes in Artificial Intelligence, edited by João Leite, Paolo Torroni,
Thomas Ågotnes, Guido Boella, and Leon van der Torre. Springer-Verlag
Berlin Heidelberg 2011.

– Computational Logic in Multi-Agent Systems XI, Proceedings. Vol. 6245 of
Lecture Notes in Artificial Intelligence, edited by Jürgen Dix, João Leite,
Guido Governatori, and Wojtek Jamroga. Springer-Verlag Berlin Heidelberg
2010.

– Computational Logic in Multi-Agent Systems X, Revised Selected and Invited
Papers. Vol. 6214 of Lecture Notes in Artificial Intelligence, edited by Jürgen
Dix, Michael Fisher, and Peter Novák. Springer-Verlag Berlin Heidelberg
2010.

– Computational Logic in Multi-Agent Systems IX, Revised Selected and In-
vited Papers. Vol. 5405 of Lecture Notes in Artificial Intelligence, edited by
Michael Fisher, Fariba Sadri, and Michael Thielscher. Springer-Verlag Berlin
Heidelberg 2009.

– Computational Logic in Multi-Agent Systems VIII, Revised Selected and In-
vited Papers. Vol. 5056 of Lecture Notes in Artificial Intelligence, edited by
Fariba Sadri and Ken Satoh. Springer-Verlag Berlin Heidelberg 2008.

XII CLIMA Publications

– Computational Logic in Multi-Agent Systems VII, Revised Selected and In-
vited Papers. Vol. 4371 of Lecture Notes in Artificial Intelligence, edited by
Katsumi Inoue, Ken Satoh, and Francesca Toni. Springer-Verlag Berlin Hei-
delberg, Germany, 2007.

– Computational Logic in Multi-Agent Systems VI, Revised Selected and
Invited Papers. Vol. 3900 of Lecture Notes in Artificial Intelligence (State-
of-the-Art Survey), edited by Francesca Toni and Paolo Torroni, Springer-
Verlag Berlin Heidelberg, Germany, 2006.

– Computational Logic in Multi-Agent Systems V, Revised Selected and Invited
Papers. Vol. 3487 of Lecture Notes in Artificial Intelligence, edited by João
Leite Leite and Paolo Torroni. Springer-Verlag Berlin Heidelberg, Germany,
2005.

– Computational Logic in Multi-Agent Systems IV, Revised Selected and Invited
Papers. Vol. 3259 of Lecture Notes in Artificial Intelligence, edited by Jürgen
Dix and João Leite. Springer-Verlag Berlin Heidelberg, Germany, 2004.

Early Editions

– Proceedings of the 5th International Workshop on Computational Logic in
Multi-Agent Systems (CLIMA V), edited by João Leite Leite and Paolo Tor-
roni. Lisbon, Portugal, ISBN: 972-9119-37-6, September 2004.
http://centria.di.fct.unl.pt/~jleite/climaV/climaV-preprocs.pdf

– Proceedings of the 4th International Workshop on Computational Logic in
Multi-Agent Systems (CLIMA IV), edited by Jürgen Dix and João Leite.
ITZ Bericht 1(5). Papierflieger Verlag, Clausthal-Zellerfeld, Germany, ISBN
3-89720-688-9, 2003.
http://centria.di.fct.unl.pt/~jleite/climaIV/climaIV-TR.pdf

– Proceedings of the Third International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA III), edited by Jürgen Dix, João Leite, and
Ken Satoh. Datalogiske Skrifter 93, Roskilde University, Denmark, ISSN
0109-9779, 2002.
http://centria.di.fct.unl.pt/~jleite/papers/clima02_procs.pdf

– ICLP 2001 Workshop on Computational Logic in Multi-Agent Systems
(CLIMA II), held in association with ICLP 2001, Paphos, Cyprus, December
1, 2001. Organized by Ken Satoh and Jürgen Dix.
http://research.nii.ac.jp/~ksatoh/clima01.html

– CL-2000 Workshop on Computational Logic in Multi-Agent Systems (CLIMA
I), held in association with the International Conference on Computational
Logic, Imperial College London, UK, July 24-25, 2000. Organized by Ken
Satoh and Fariba Sadri.
http://research.nii.ac.jp/~ksatoh/clima00.html

– Workshop on Multi-Agent Systems in Logic Programming (MAS-LP), held
in conjunction with the 16th International Conference on Logic Program-
ming, Las Cruces, NM, November 30, 1999. Organized by Stephen Rochefort,
Fariba Sadri, and Francesca Toni.
http://www.cs.sfu.ca/news/conferences/MAS99/

Table of Contents

Secrets and Trust

Some Thoughts on Using Argumentation to Handle Trust
(Invited Talk) . 1

Simon Parsons, Yuqing Tang, Kai Cai, Elizabeth Sklar, and
Peter McBurney

Transitivity and Propagation of Trust in Information Sources:
An Analysis in Modal Logic . 13

Robert Demolombe

The Functional Dependence Relation on Hypergraphs of Secrets 29
Sara Miner More and Pavel Naumov

Knowledge and Beliefs

Three Steps . 41
Hans van Ditmarsch and Fernando Soler–Toscano

A Modal Framework for Relating Belief and Signed Information 58
Emiliano Lorini, Laurent Perrussel, and Jean-Marc Thévenin

On the Definability of Simulability and Bisimilarity by Finite Epistemic
Models . 74

Hans van Ditmarsch, David Fernández-Duque, and
Wiebe van der Hoek

Logics for Games and Social Choice

Applications of Logic in Social Choice Theory (Invited Talk) 88
Ulle Endriss

A Geometric Look at Manipulation . 92
Jan van Eijck

Alternating-Time Temporal Announcement Logic . 105
Tiago de Lima

Synthesizing Strategies for Homogenous Multi-agent Systems with
Incomplete Information . 122

Jan Calta and Dmitry Shkatov

XIV Table of Contents

Reasoning about Joint Action and Coalitional Ability in Kn with
Intersection . 139

Thomas Ågotnes and Natasha Alechina

Ontology Merging as Social Choice . 157
Daniele Porello and Ulle Endriss

Cooperation

Social Commitment Delegation and Monitoring . 171
Özgür Kafalı and Paolo Torroni

Verifying Team Formation Protocols with Probabilistic Model
Checking . 190

Taolue Chen, Marta Kwiatkowska, David Parker, and Aistis Simaitis

Abduction-Based Search for Cooperative Answers . 208
Samy Sá and João Alcântara

Reasoning about Exceptions to Contracts . 225
Özgür Kafalı, Francesca Toni, and Paolo Torroni

Logic and Languages

Probabilistic Rule Learning in Nonmonotonic Domains 243
Domenico Corapi, Daniel Sykes, Katsumi Inoue, and
Alessandra Russo

A Formal Semantics for Brahms . 259
Richard Stocker, Maarten Sierhuis, Louise Dennis,
Clare Dixon, and Michael Fisher

Making Golog Norm Compliant . 275
Alfredo Gabaldon

Norms and Normative Multi-agent Systems

Probabilistic Action and Deontic Logic (Invited Talk) 293
Jan Broersen

A Dynamic Logic of Institutional Actions . 295
Andreas Herzig, Emiliano Lorini, and Nicolas Troquard

A Paraconsistent Multi-agent Framework for Dealing with Normative
Conflicts . 312

Mathieu Beirlaen and Christian Straßer

Table of Contents XV

Normative Systems Represented as Hybrid Knowledge Bases 330
Marco Alberti, Ana Sofia Gomes, Ricardo Gonçalves,
João Leite, and Martin Slota

Acting on Norm Constrained Plans . 347
Nir Oren, Wamberto Vasconcelos, Felipe Meneguzzi, and
Michael Luck

Justice Delayed Is Justice Denied: Logics for a Temporal Account of
Reparations and Legal Compliance . 364

Guido Governatori and Antonino Rotolo

Author Index . 383

Some Thoughts on Using Argumentation to
Handle Trust
(Invited Talk)

Simon Parsons1,2, Yuqing Tang2, Kai Cai2, Elizabeth Sklar1,2, and Peter McBurney3

1 Department of Computer & Information Science, Brooklyn College,
City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210 USA

{sklar,parsons}@sci.brooklyn.cuny.edu
2 Department of Computer Science, Graduate Center

City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
{ytang,kcai}@gc.cuny.edu

3 Department of Informatics, Kings College London,
Strand Building,

peter.mcburney@kcl.ac.uk

Abstract. This paper describes some of our recent work on using argumenta-
tion to handle information about trust. We first discuss the importance of trust in
computer science in general and in multi-agent systems in particular. We then de-
scribe the setting of our work, situating it within the broad area of work on trust.
Next we provide an overview of two lines of work we are currently pursuing —
using argumentation to reason about which individuals to trust, and using argu-
mentation to relate sources of information to conclusions drawn from information
provided by those sources. Finally, we outline our current initiatives and briefly
highlight other work that is closely related to ours.

1 Why Trust Is Important

Trust is a mechanism for managing the uncertainty about autonomous entities and the
information they deal with. As a result, trust can play an important role in any decentral-
ized system. As computer systems have become increasingly distributed, and control in
those systems has become more decentralized, trust has become an increasingly more
important concept in computer science [3,12].

Much of the work on trust in computer science has concentrated on dealing with spe-
cific scenarios in which trust has to be established or handled in some fashion. Thus, we
see work on trust in peer-to-peer networks, including the EigenTrust algorithm [19] — a
variant of PageRank [27] where downloads from a source play the same role as outgoing
hyperlinks and which is effective in excluding peers who want to disrupt the network.
[1], also in the area of peer-to-peer networks, develops a mechanism that prevents peers
manipulating their trust values to get preferential downloads. [44] is concerned with
slightly different issues in mobile ad-hoc networks, looking to prevent nodes from get-
ting others to transmit their messages while refusing to transmit the messages of others.

The internet, as the largest distributed system of all, is naturally a target of much
of the research on trust. There have, for example, been studies on the development of

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Parsons et al.

trust in ecommerce through the use of reputation systems [34] and studies on how such
systems perform [33,39] and how such systems can be manipulated [21]. Another area
of concern has to do with the reliability of sources of information on the web. [43], for
example, investigates mechanisms to determine which sources to trust when faced with
multiple conflicting sources, while [4] looks at the related question of how to resolve
conflicting information, and [2] extends this idea to rate the individuals who provide
information by looking at the history of the information they have provided. Issues
related to trust in the social web have also attracted much attention [11,22,39,42].

Trust is an especially important issue from the perspective of autonomous agents
and multiagent systems. The premise behind the multiagent systems field is that of
developing software agents that will work in the interests of their owners, carrying out
their owners’ wishes while interacting with other entities. In such interactions, agents
will have to reason about the amount that they should trust those other entities, whether
they are trusting those entities to carry out some task, or whether they are trusting those
entities to not misuse crucial information. As a result we find much work on trust in
agent-based systems [35], including the influential model proposed by [6].

We are studying the use of formal systems of argumentation for handling trust. In
this paper we present a brief, and largely informal, overview of our work to date, with
pointers to the detailed treatment of all the topics we introduce.

2 The Setting for Our Work

Our work considers an agent Ag which is part of a society of agents Ags. Each agent
Agi ∈ Ags has a knowledge base Σi that contains the information that the agent has
about the world. The agents communicate, and so each Agi can make use of not only
the information that is in its Σi, but also the information that comes from other agents.
We model this situation by considering that each Agi has a commitment store CSi

which contains information that that agent has communicated. Since at the moment
we are only concerned with the perspective of the one agent Ag, we only consider
the commitment stores of agents other than Ag to hold information that the respective
agents have communicated to Ag. That is we ignore issues around how the information
was communicated, who else knows the same information, and so on. We just consider
all information that some agent Agi has communicated to Ag to be contained in CSi.

We assume that all agents that have communicated information to Ag are members
of Ag’s social network, and so it is possible to construct a graph which relates Ag to all
these agents. We further assume that it is possible to attach a numerical measure to each
link in this social network to quantify the extent to which an agent trusts those to which it
is linked in the social network. In common with the literature on trust in social networks,
we call such a structure a trust network. Figure 1 is a fragment of the trust network for
an agent john identifying john’s relationships with the agents dave, mary, alice and
jane. (This social network is taken from an example in [20], which itself is drawn from
the FilmTrust network [7,11], with the trust values normalized between 0 and 1.)

Our work has concentrated on establishing mechanisms by which our featured agent
Ag, john in the case of Figure 1, can use the information it obtains from its acquain-
tances in a way that reflects its trust in them. Thus, there is an assumption that if some
proposition p ∈ CSj , then Ag will accord that proposition the belief bel(p) where:

Some Thoughts on Using Argumentation to Handle Trust 3

alice

dave jane paul

john

mary

0.40.8 0.60.7

0.9

Fig. 1. A simple trust network

bel(p) = ttb(tr(Ag, Agj)) (1)

That is, bel(p) is some function of the trust that Ag has in Agj regarding its belief in p.
Thus, in the example of Figure 1, we consider that if john is told p by jane, we assume
that john’s belief in this is a function of his trust in jane.

Thinking a little about john’s relationship to jane raises some issues, one directly,
and others that follow from that first issue. The first issue is that according to Figure 1,
john doesn’t know jane. john only knows mary, and so only directly states his trust in
mary. However, it is common in the literature of trust in social networks to assume that
trust propagates (or, to describe it in another way, is transitive) so that since john trusts
mary and mary trusts jane, then john can trust jane. The assumption of transitivity
(and it is a big assumption, as discussed in [8]) then raises additional issues.

The first of these is the context in which john trusts jane. As many authors have
pointed out, not least [8], trust is highly context dependent. john may trust jane in
some domains, but not in others. To use a common example, john may trust jane, a
car mechanic, for information on cars and how to fix them. However, just because john
trusts jane about cars does not mean that he will trust her to recommend a restaurant or
someone to babysit his daughter. Indeed, as [17] points out, the semantics of the links
between john and mary and between john and jane are rather different. Consider
that john is, as in the example from which Figure 1 is taken in [20], looking for rec-
ommendations about which film to watch. If john solicits information from his friend
mary, he is trusting her to recommend films he would like to watch. However, if he
accepts an indirect recommendation from jane, whom he trusts because mary trusts
her, he is relying on jane being a good recommender of films but is relying on mary
being a good recommender of film recommenders. In other words, john is not trusting
mary’s film knowledge in this second case, but her knowledge of people who can rec-
ommend films. [17] distinguishes between functional trust, the trust in an individual to
carry out some task (such as recommending a film), and referral trust, the trust in an
individual’s recommendation of another individual. In our work, we ignore these dis-
tinctions, assuming that the trust networks capture a context in which transitivity holds.
(We can easily imagine an agent having different trust networks for different contexts,
each composed of functional and referral trust links.)

4 S. Parsons et al.

3 How We Use Argumentation in Handling Trust

In this section we describe how our work makes use of argumentation to handle trust.

3.1 How Argumentation Can Help

Some models of trust, for example the influential model from [6], start from the position
that trust in an individual is only ever important when the trusting party needs that
individual to perform an action. While it is clear that in such cases trust is important
— if we are going to construct a plan where a critical action is to be performed by
individual I then we certainly need to trust I to do what we need them to — we, like
[23] for example, believe that trust in individuals also has a role to play when those
individuals provide us with information.

In particular, we believe that knowing the sources of the information and the way
in which it is used, that is the provenance of the information, is important when the
sources of the information may not be completely trustworthy. As [26] points out,

By knowing the provenance of data, users can often better understand, trust,
reproduce, and validate it.

The relationship between trust and provenance has been explored by a number of au-
thors, for example [10,32,40,41]. As we argued in [29], since argumentation records
the data from which conclusions are drawn, it provides a natural mechanism to capture
provenance. This is especially the case when the argument records not only the data
from which conclusions are drawn, but also the full derivation of those conclusions (as,
for example, in [9,31]).

3.2 Our Contribution so Far

We are working on two related lines of research. In both, we use argumentation, as
described above, to make explicit the connection between sources of data and the con-
clusions derived from that data. In one line of research, we use argumentation to carry
out reasoning about the trustworthiness of sources — that is to compute trust propa-
gation — with the aim of permitting reasoning about the validity of different forms
of propagation. In the other line of research, we use a graphical representation of ar-
guments as a means of communicating provenance information, as will be explained
below.

In using argumentation to compute trust propagation [30], we assume that each agent
Agi has a knowledge base, Δtr

i ⊆ Σi, containing information about who trusts whom.
Table 1 contains Δtr

john, the knowledge base for john, constructed from the example in
Figure 1. Each element of Δtr

john has the form:

(〈index〉 : 〈data〉 : 〈value〉)

The first is a means of referring to the element, the second is a formula, and the third is
the degree of trust between the individuals.

Some Thoughts on Using Argumentation to Handle Trust 5

Table 1. Knowledge base containing john’s beliefs

Δtr
john (t1 : trusts(john, mary) : 0.9)

(t2 : trusts(mary, jane) : 0.7)
(t3 : trusts(mary,dave) : 0.8)
(t4 : trusts(alice, jane) : 0.6)
(t5 : trusts(alice, paul) : 0.4)

Arguments can then be constructed from Δtr
john using the rules in Figure 21. For

example, using the first two rules, from Figure 2, Axtr and dp, it is possible to construct
the argument:

Δtr
john �tr (trusts(john, jane) : {t1, t2} : {Axtr, Axtr, dp} : t̃)

where all arguments in our approach take the form:

(〈conclusion〉 : 〈grounds〉 : 〈rules〉 : 〈value〉)

The 〈conclusion〉 is inferred from the 〈grounds〉 using the rules of inference 〈rules〉
and with degree 〈value〉. In this case the argument says john trusts jane with degree t̃
(which is 0.9⊗tr 0.7), through two applications of the rule Axtr and one application of
the rule dp to the two facts indexed by t1 and t22. Using just Axtr and dp captures the
transitivity of trust, and the crucial inference step is what [13] calls “direct propagation”
(hence the name of the rule dp). Figure 3a shows the result of establishing all the indirect
links possible using direct propagation where ⊗tr is taken to be min, as we do in [30].

The reason for constructing arguments about trust is primarily so that it is possible
to tell on what basis the conclusion to trust a particular source has been drawn. We do
this because there are a variety of reasons that one might have for trusting a source,
and it may be necessary to identify which reasons(s) have been used in a particular
case in order to be able to dispute or defend them. Making the reasons explicit, as our
approach does, unleashes this possibility. As an example of an alternative to transitivity
as a form of trust propagation, consider the rule cc from Figure 2. This captures a form
of reasoning that [13] calls co-citation. [13] describes this as:

For example, suppose i1 trusts j1 and j2, and i2 trusts j2. Under co-citation,
we would conclude that i2 should also trust j1.

In our example (see Figures 1 and 3b), therefore, co-citation suggests that since alice
trusts jane and paul, and mary trusts jane, then mary should trust paul. The idea
is that since alice and mary agree on the trustworthiness of jane, mary should trust
alice’s opinion about paul. [13] also tells us how trust values should be combined in

1 Note that the consequence relation in Figure 2 is not intended to be comprehensive. There are
many other ways to construct arguments about trust — for some examples see [28] — which
could be included in the definition of �tr.

2 As mentioned above, there are good reasons for using the formulae themselves in the grounds
and factoring the whole proof into the set of rules (as we do in [29]) to obtain structured
arguments like those in [9,31]. However, for simplicity, here we use the relevant indices.

6 S. Parsons et al.

A
x

tr
(n

:
tr

u
st

s(
x
,y

)
:
d̃
)
∈

Δ
tr i

Δ
tr i

� t
r

(t
ru

st
s(

x
,y

)
:
{n

}:
{A

x
tr
}:

d̃
)

d
p

Δ
tr i

� t
r

(t
ru

st
s(

x
,y

)
:
G

:
R

:
d̃
)

an
d

Δ
tr i

� t
r

(t
ru

st
s(

y
,z

)
:
H

:
S

:
ẽ)

Δ
tr i

� t
r

(t
ru

st
s(

x
,z

)
:
G

∪
H

:
R

∪
S
∪
{d

p
}:

d̃
⊗tr

ẽ)

cc
Δ

tr i
� t

r
(t

ru
st

s(
x
,y

)
:
G

:
R

:
d̃
)

an
d

Δ
tr i

� t
r

(t
ru

st
s(

x
,z

)
:
H

:
S

:
ẽ)

an
d

Δ
tr i

� t
r

(t
ru

st
s(

w
,z

)
:
K

:
T

:
f̃
)

Δ
tr i

� t
r

(t
ru

st
s(

w
,y

)
:
G

∪
H

∪
K

:
R

∪
S
∪

T
∪
{c

c}
:
d̃
⊗tr

ẽ
⊗tr

f̃
)

F
ig

.2
.S

om
e

ru
le

s
fo

r
pr

op
ag

at
in

g
tr

us
t

Some Thoughts on Using Argumentation to Handle Trust 7

alice

dave jane paul

john

mary

0.8 0.6

0.70.8

0.40.7

0.9

(a) Direct propagation

alice

dave jane paul

john

mary

0.8 0.6 0.40.7 0.4

0.9

(b) Co-citation

Fig. 3. Two types of trust propagation — in each figure the dashed lines show the indirect trust
relationships that are inferred

this case — mary’s trust in paul is just the combination of trust values along the path
from mary to jane to alice to paul. Figure 3b shows the direct trust link that co-
citation implies in our example where the values are again combined using min, with
mary trusting paul to degree 0.4.

Combining the application of cc with the use of dp, as above, allows the construction
of the argument:

Δtr
john �tr (trusts(john, paul) : {t1, t2, t4, t5} : rules1 : r̃)

indicating that john trusts paul (based on john’s knowledge base as in Table 1), where
rules1 is:

{Axtr, Axtr, Axtr , Axtr, cc, dp}
and r̃ is 0.9 ⊗tr 0.7 ⊗tr 0.6 ⊗tr 0.4 (which also comes to 0.4 when ⊗tris min).

Once these trust values have been established, john can then apply Equation 1 to
establish a degree of belief for anything the other agents in the trust network tell him,
and then combine this information with what he already knows. [30] describes formally
how this can be done.

The description above concerns the first of the two lines of work we are pursuing:
the use of argumentation to capture trust propagation. Our second line of work employs
a graphical model of arguments as the basis of communicating provenance information.
The model we have developed [38,37] is best explained through the use of an instance
of a graphical argument of the kind generated by the model. Such a graph is given in
Figure 4. In short, the graph contains three components. First, there is a trust graph.
In this case, it is a subset of the trust graph from Figure 1 — exactly that bit of the
graph from Figure 1 which contains the agents from whom john can infer trust using
direct propagation. Second, there are arguments. These are proof trees where the con-
clusions of the trees are formulae of interest, and each formula that is not an inference
is linked to the agent that supplies the information. In this case, the arguments — taken
from the example in [20] — concern whether or not to watch the Pedro Almodovar
film “Hable con ella” (abbreviated “hce” in Figure 4). Again Equation 1 tells us how

8 S. Parsons et al.

tr
u
st

n
et
w
or
k

f
ir
st

a
rg
u
m
en

t
se
co
n
d
a
rg
u
m
en

t

¬W
a
tc
h
(h
ce
)

I
n
d
ie
F
il
m
(h
ce
)

I
n
d
ie
F
il
m
(h
ce
)

S
p
a
n
is
h
F
il
m
(h
ce
)

δ j
a
n
e
=

I
n
d
ie
F
il
m

(x
)∧

S
p
a
n
is
h
F
il
m

(x
)

¬W
a
tc
h
(x

)

W
a
tc
h
(h
ce
)

d
a
v
e

D
ir
ec
te
d
B
y
(h
ce
,A

lm
od

ov
a
r)

ja
n
e

jo
h
n

m
a
ry

δ d
a
v
e
=

I
n
d
ie
F
il
m

(x
)∧

D
ir
e
c
te
d
B
y
(x

,A
lm

o
d
o
v
a
r
)

W
a
tc
h
(x

)

re
bu

t

re
bu

t

F
ig

.4
.A

n
ex

am
pl

e
of

a
tr

us
t-

ex
te

nd
ed

ar
gu

m
en

ta
ti

on
gr

ap
h

Some Thoughts on Using Argumentation to Handle Trust 9

to establish belief values for information that comes from different agents in a way that
depends on trust in the source agent(s). Third, there are arcs that identify conflicts be-
tween arguments. In Figure 4, these are just between the conclusions of arguments, but
more general conflicts are also identified in the full model [37]. Together these three
components make up a trust-extended argumentation graph.

The full model [37] not only includes a formal description of each of these compo-
nents, but also translates standard approaches for evaluating arguments [5] into criteria
that can be evaluated on the graph. In addition, we have identified algorithms for build-
ing the graph and then evaluating the arguments that it contains.

3.3 Current and Future Work

Our long term aim is to build tools that help users to reason with information from
sources of varying trustworthiness. Our hypothesis is that the graphical argumentation
model we illustrated above is a useful way to do this. Now that we have a formal model
which makes it possible to automate reasoning and link sources to conclusions, we
are working towards testing this hypothesis. To do this, we need an interactive tool,
and implementing such a tool is one of our current foci. One important aspect of the
implementation is the interface. While we believe that it is useful to show users how
sources of information relate to conclusions, we do not think that users will respond
well to complete graphs of the kind in Figure 4 — there is too much information for this
to be easily digested by the average user. Instead we are looking at ways of allowing
users to navigate sections of the graph, zooming in on areas of interest. To help us
understand the best way to do this, we are running user studies where human subjects
develop argument graphs for some simple problem scenarios.

4 Conclusions

We have described our work on using argumentation to handle trust. We focus on the
situation in which some entity uses information that comes from sources of varying
trustworthiness, and look at how argumentation can be used to capture the provenance
of the information used to derive answers to queries of interest. There are two main
aspects of our work to date. One is the use of argumentation as a means of capturing
different mechanisms for propagating trust. The other is the generation of a graphical
model that can be used to communicate provenance information to users. Our current
work is concentrating on implementing the second model and experimentally determin-
ing how best to present results to users.

Finally we should note that though the particular combinations of argumentation and
trust that we are studying are novel, the idea of combining trust and argumentation
is not. Four lines of work on trust and argumentation that are complementary to ours
are those of Harwood [14,15], Matt at al., Hunter [16], [24], and Stranders [36]. For
a detailed comparison of this work and ours, see [37]. In addition, argumentation has
been used in the past to reason about risk [18,25], a subject closely related to trust;
though the cited work looks at risk of carcinogenicity given chemical structure rather
than risk due to untrustworthiness.

10 S. Parsons et al.

Acknowledgments

Research was sponsored by the Army Research Laboratory and was accomplished un-
der Cooperative Agreement Number W911NF-09-2-0053. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation
here on.

References

1. Abrams, Z., McGrew, R., Plotkin, S.: Keeping peers honest in EigenTrust. In: Proceedings
of the 2nd Workshop on the Economics of Peer-to-Peer Systems (2004)

2. Adler, B.T., de Alfaro, L.: A content-driven reputation system for the Wikipedia. In: Pro-
ceedings of the 16th International World Wide Web Conference, Banff, Alberta (May 2007)

3. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Journal of Web
Semantics 5(2), 58–71 (2007)

4. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role of source
dependence. In: Proceedings of the 35th International Conference on Very Large Databases,
Lyon, France (August 2009)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

6. Falcone, R., Castelfranchi, C.: Social trust: A cognitive approach. In: Castelfranchi, C., Tan,
Y. (eds.) Trust and Deception in Virtual Societies, pp. 55–99. Kluwer Academic Publishers,
Dordrecht (2001)

7. http://trust.mindswap.org/FilmTrust/
8. Francone, R., Castelfranchi, C.: Transitivity in trust: A discussed property. In: Proceedings of

the Undicesimo Workshop Nazionale ”Dagli Oggetti agli Agenti”, Rimini (September 2010)
9. Garcı́a, A.J., Simari, G.: Defeasible logic programming: an argumentative approach. Theory

and Practice of Logic Programming 4(1), 95–138 (2004)
10. Golbeck, J.: Combining provenance with trust in social networks for semantic web con-

tent filtering. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 101–108.
Springer, Heidelberg (2006)

11. Golbeck, J., Hendler, J.: Filmtrust: Movie recommendations using trust in web-based social
networks. In: Proceedings of the IEEE Consumer Communications and Networking Confer-
ence (2006)

12. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Communications
Surveys and Tutorials 4(4), 2–16 (2000)

13. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Pro-
ceedings of the 13th International Conference on the World Wide Web (2004)

14. Harwood, W.T., Clark, J.A., Jacob, J.L.: Networks of trust and distrust: Towards logical rep-
utation systems. In: Gabbay, D.M., van der Torre,L. (eds.) Logics in Security, Copenhagen,
Denmark (2010)

15. Harwood, W.T., Clark, J.A., Jacob, J.L.: A perspective on trust, security and autonomous
systems. In: Proceedings of the New Security Paradigms Workshop, Concord, MA (2010)

16. Hunter, A.: Reasoning about the appropriateness of propoents for arguments. In: Proceedings
of the 23rd AAAI Conference on Artificial Intelligence, Chicago, Illinois (July 2008)

http://trust.mindswap.org/FilmTrust/

Some Thoughts on Using Argumentation to Handle Trust 11

17. Jøsang, A., Gray, E., Kinateder, M.: Simplification and analysis of transitive trust networks.
Web Intelligence and Agent Systems 4(2), 139–161 (2006)

18. Judson, P.N., Fox, J., Krause, P.J.: Using new reasoning technology in chemical information
systems. Journal of Chemical Information and Computer Sciences 36, 621–624 (1996)

19. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for reputation
management in P2P networks. In: Proceedings of the 12th World Wide Web Conference
(May 2004)

20. Katz, Y., Golbeck, J.: Social network-based trust in prioritzed default logic. In: Proceedings
of the 21st National Conference on Artificial Intelligence (2006)

21. Lang, J., Spear, M., Wu, S.F.: Social manipulation of online recommender systems. In: Bolc,
L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 125–139.
Springer, Heidelberg (2010)

22. Lerman, K., Galstyan, A.: Analysis of social voting patterns on Digg. In: Proceedings of the
1st Workshop on Online Social Networks, Seattle (August 2008)

23. Liau, C.-J.: Belief, information acquisition, and trust in multi-agent systems — a modal logic
formulation. Artificial Intelligence 149, 31–60 (2003)

24. Matt, P.-A., Morge, M., Toni, F.: Combining statistics and arguments to compute trust. In:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagents
Systems, Toronto, Canada (May 2010)

25. McBurney, P., Parsons, S.: Dialectical argumentation for reasoning about chemical carcino-
genicity. Logic Journal of the IGPL 9(2), 191–203 (2001)

26. Miles, S., Groth, P., Munroe, S., Moreau, L.: PrIMe: A methodology for developing
provenance-aware applications. ACM Transactions on Software Engineering and Method-
ology (2010) (to appear)

27. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order
to the Web. Technical Report 1999-66, Stanford InfoLab (1999)

28. Parsons, S., Haigh, K., Levitt, K., Rowe, J., Singh, M., Sklar, E.: Arguments about trust.
Technical report, Collaborative Technology Alliance (2011)

29. Parsons, S., McBurney, P., Sklar, E.: Reasoning about trust using argumentation: A position
paper. In: Proceedings of the Workshop on Argumentation in Multiagent Systems, Toronto,
Canada (May 2010)

30. Parsons, S., Sklar, E., McBurney, P.: Using argumentation to reason with and about trust.
In: Proceedings of the 8th International Workshop on Argumentation in Multiagent Systems,
Taipei, Taiwan (2011)

31. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
and Computation 1, 93–124 (2010)

32. Rajbhandari, S., Wootten, I., Ali, A., Rana, O.F.: Evaluating provenance-based trust for sci-
entific workflows. In: Proceedinsg of the Sixth IEEE International Symposium on Cluster
Computing and the Grid, pp. 365–372. IEEE Computer Society Press, Singapore (2006)

33. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: Empirical anal-
ysis of eBay’s reputation system. In: Baye, M.R. (ed.) The Economics of the Internet and
E-Commerce, pp. 127–157. Elsevier Science, Amsterdam (2002)

34. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation systems: Facilitating
trust in internet interactions. Communications of the ACM 43, 45–48 (2000)

35. Sabater, J., Sierra, C.: Review on computational trust and reputation models. AI Re-
view 23(1), 33–60 (2005)

36. Stranders, R., de Weerdt, M., Witteveen, C.: Fuzzy argumentation for trust. In: Sadri, F.,
Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 214–230. Springer,
Heidelberg (2008)

37. Tang, Y., Cai, K., McBurney, P., Sklar, E., Parsons, S.: Using argumentation to reason about
trust and belief. Journal of Logic and Computation (to appear, 2011)

12 S. Parsons et al.

38. Tang, Y., Cai, K., Sklar, E., McBurney, P., Parsons, S.: A system of argumentation for rea-
soning about trust. In: Proceedings of the 8th European Workshop on Multi-Agent Systems,
Paris, France (December 2010)

39. Teng, C.-Y., Lauterbach, D., Adamic, L.: I rate you. You rate me. Should we do so publicly?
In: Proceedings of the 3rd Workshop on Online Social Networks, Boston (June 2010)

40. Victor, P., Cornelis, C., De Cock, M., Pinheiro da Silva, P.: Towards a provenance-preserving
trust model in agent networks. In: Proceedings of the Workshop on Models of Trust for the
Web (2006)

41. Wang, X., Govindan, K., Mohapatra, P.: Provenance-based information trustworthiness eval-
uation in multihop networks. In: Proceedings of the 53rd Annual IEEE Global Communica-
tions Conference, Miami, FL (December 2010)

42. Ye, S., Wu, S.F.: Measuring message propagation and social influence on twitter.com. In:
Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 216–231.
Springer, Heidelberg (2010)

43. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information providers on
the web. In: Proceedings of the Conference on Knowledge and Data Discovery (2007)

44. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple cheat-proof, credit-based system for mo-
bile ad-hoc networks. In: Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies (2003)

Transitivity and Propagation of Trust in

Information Sources:
An Analysis in Modal Logic

Robert Demolombe

Institut de Recherche en Informatique de Toulouse, France
robert.demolombe@orange.fr

Abstract. The paper is about trust in information sources in the con-
text of Multi Agents Systems and it is focused on information and trust
propagation. Trust definition is inspired from Cognitive Science and it is
seen as a truster’s belief in some trustee’s properties which are called: sin-
cerity, competence, vigilance, cooperativity, validity and completeness.
These definitions are formalized in Modal Logic and it is shown that
even if trust, in that sense, is not transitive, we can find interesting suf-
ficient conditions based on trust that guarantee that the truth of an
information is propagated along a chain of information sources.

1 Introduction

In the context of Multi Agent Systems trust plays a quite significant role with
respect to interactions between agents. That is because in many applications
agents only have a partial knowledge of the agents they have to interact with.
For instance, in the context of electronic commerce the buyer has to trust the
seller in the properties of the goods he wants to buy and the seller has to trust
the buyer in the fact that he will be paid for the goods he wants to sell.

In the context of information retrieval the agents have to trust the information
sources in the fact that the transmitted information is true or in the fact that
information sources are competent or sincere or both competent and sincere.
Moreover, in many cases the information transmitted by the information sources
is not supported by direct observations but by information reported by other
information sources. Then, information may be propagated along a chain of
information sources and it is definitely not easy to decide wether we can trust
such or such information source. That is the main issue which is investigated in
this paper.

The analysis of this problem is not easy because the notion of trust itself is not
simple. Even if some authors do not analyse this notion in detail and define trust
by a relationship of the kind: agent i trusts agent j, we consider here that this is
an over simplification and that trust is a complex mental attitude as people in
the field of Cognitive Science [4,5] or in Philosophy [1,13,12] have pointed out.

In this approach concepts definitions and reasoning rules related to trust have
to be carefully defined. That is why a formalism based on mathematical logic is

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 13–28, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

14 R. Demolombe

adopted in this work in order to investigate trust transitivity and propagation.
Thanks to this formalism it will be shown that even if trust is not transitive,
other properties related to information propagation and to trust propagation
hold.

The paper is structured as follows. In section 2 are informally compared several
trust definitions and the definition adopted in the rest of the paper is presented.
The logical framework which is used for formal definitions and reasoning rules is
defined in section 3. This formalism is used in section 4 to define different kinds
of trust. Since properties that guarantee the truth of transmitted information
or of trust propagation are quite complex a case study is presented in section 5
to give to the reader an intuitive understanding of these properties. The main
results of the paper are presented in section 6 in terms of theorems. In section
7 our work is compared with related works and the last section presents our
conclusions.

2 Informal Trust Definitions

As mentioned above there are many different trust definitions. In [4,5] Castel-
franchi and Falcone mention that they have found around 60 different definitions.
However, their own definition is one of the most popular in this field. It is infor-
mally presented below.

The main feature is that trust is a truster’s belief about some trustee’s prop-
erties. This belief is motivated by truster’s goal and the properties he ascribes
to the trustee are such that by doing some action α the trustee will reach the
truster’s goal. More precisely trust is defined by the fact that the truster has the
following beliefs:

– truster’s goal is to reach a situation where the proposition φ holds
– the action α has the effect that φ holds
– the trustee has the ability and opportunity to do the action α
– the trustee has the intention to do α

This approach has been expressed by Lorini and Demolombe in Modal Logic in
[14,15] and it has been shown that a logical consequence of truster’s beliefs is
that the truster believes that his goal will be reached after α performance by
the trustee.

In this paper the trust definition we have adopted has some similarities with
the above definition. However, there are significant differences. The first one is
that truster’s goal is not involved in trust definition itself even if this goal may
be a motivation for the truster to adopt some beliefs about the trustee. The
second one is that the properties ascribed to the trustee are all in a conditional
form. That is, the truster believes that some fact entails another fact, and at
least one of these facts is about a trustee’s property.

In the specific context of trust in information sources these facts may be that
(1) the trustee has informed the truster about some proposition or that (2) the
trustee believes that some proposition is true or the fact that (3) it is the case that

Transitivity and Propagation of Trust in Information Sources 15

some proposition is true. The combination of these three kinds of facts in terms
of the entailment relationship leads to six different kinds of trustee’s properties
and six kinds of trust in the trustee’s properties [7,8,9]. These properties are
presented below.

Trust in sincerity: the truster believes that if he is informed by the trustee
about some proposition, then the trustee believes that this proposition is true.

Trust in competence: the truster believes that if the trustee believes that some
proposition is true, then this proposition is true.

Trust in vigilance: the truster believes that if some proposition is true, then
the trustee believes that this proposition is true.

Trust in cooperativity: the truster believes that if the trustee believes that
some proposition is true, then he is informed by the trustee about this proposi-
tion.

Trust in validity: the truster believes that if he is informed by the trustee
about some proposition, then this proposition is true.

Trust in completeness: the truster believes that if some proposition is true,
then he is informed by the trustee about this proposition.

We can informally see how these trust definitions and the definition proposed
by Castelfranchi and Falcone are related. Let us assume, for example, that the
truster’s goal is to be informed about the truth of some proposition φ. Then,
if the truster trusts the trustee in his completeness about φ and about ¬φ, the
truster believes that if φ is true he will be informed by the trustee about the
fact φ is true and if φ is false, he will be informed by the trustee about the fact
that φ is false. If, in addition, the truster trusts the trustee in his validity about
φ and ¬φ, from the fact that he has been informed that φ is true, he will believe
that φ is true, and, in the same way, if he has been informed that φ is false, he
will believe that φ is false. Therefore, whatever φ is true or false, the truster goal
will be achieved.

To express these definitions and derivations in formal terms we present in the
next section an appropriate logical framework.

3 Logical Framework

The logical framework is defined by its formal language L and its axiomatics.
We have adopted the following notations:
ATOM : set of atomic propositions denoted by p, q, r...
AGENT : set of agents denoted by i, j, k, l,...
The language L is the set of formulas defined by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | Beliφ | Infj,iφ

where p ranges over ATOM and i and j range over AGENT .
The intuitive meaning of the modal operators is:

– Beliφ: the agent i believes that φ is the case.
– Infj,iφ: the agent j has informed the agent i about φ.

16 R. Demolombe

The axiomatics of the logic is the axiomatics of a Propositional multi Modal
Logic (see Chellas in [6]).

In addition to the axiomatics of Classical Propositional Calculus we have the
following axiom schemas an inference rules.

(K) Beli(φ→ ψ)→ (Beliφ→ Beliψ)
(D) ¬(Beliφ ∧Beli¬φ)
(Nec) If � φ, then � Beliφ

For the modal operator Infj,i we have the inference rule and axiom schemas:

(EQV) If � φ↔ ψ, then � Infj,iφ↔ Infj,iψ
(CONJ) Infj,iφ ∧ Infj,iψ → Infj,i(φ ∧ ψ)
(OBS) Infj,iφ→ BeliInfj,iφ
(OBS’) ¬Infj,iφ→ Beli¬Infj,iφ

According to Chellas’s terminology, modalities of the kind Beli obey a normal
system KD and modalities of the kind Infj,i obey a particular kind of classical
system which is not monotonic. Axioms (OBS) and (OBS’) show how these two
kinds of modalities interact.

The justification of (OBS) and (OBS’) is that it is assumed that if an agent
j informs or does not inform an agent i about φ, then i is aware of this fact.
Roughly speaking, it is assumed that we have perfect communication channels.

The adoption of axiom schema (CONJ) is questionable. It can be adopted
or rejected depending on the fact that performance of both actions Infj,iφ and
Infj,iψ, on one hand, and performance of the action Infj,i(φ∧ψ), on the other
hand, have ”equivalent” effects with respect to the issues we want to analyze. If
an effect of the action Infj,iφ is denoted by Effect(φ), this ”equivalence” holds
as long as we have: (CLOS) Effect(φ)∧Effect(ψ)→ Effect(φ∧ψ). In the con-
text of our trust definitions the effects we are interested in, which are mentioned
in the following section, are either Effect(φ) def= φ or Effect(φ) def= Beljφ. For
both of them the property of closure under conjonction (CLOS) holds. Therefore,
the axiom schema (CONJ) does not lead to any counter intuitive consequence
in our context. Nevertheless, it is worth noting that it is not needed to prove
any theorem in this paper and, then, it could be rejected as well. Last comment:
if in an other context (for example, if we are interested in resources that have
been used for communication) we have to count the number of communication
actions that have been performed, then the (CLOS) property does not hold any
more and (CONJ) should be rejected.

We have not accepted the following inference rule:

(CLOS) If � φ→ ψ, then � Infj,iφ→ Infj,iψ

The reason is that it could lead to consequences that are counter intuitive. Let’s
consider, for example, a situation where, if j informs i about p∨ q, then p∨ q is
true, while the fact that j informs i about p does not entail that p is true. That
could be the case, for instance, if p means that it is snowing and q means that

Transitivity and Propagation of Trust in Information Sources 17

it is raining, because there are much more situations where it is raining than
situations where it is snowing.

If we accept (CONS), in a situation where j has informed i about p, from
(CONS) we could infer that it is also true that j has informed i about p∨ q and
that p ∨ q is true.

4 Formal Trust Definitions

The different kinds of trust which have been informally presented in section 2
are formally represented in this framework as follows.

Sincerity.
Sinc(j, i, φ): if agent j has informed agent i about φ, then j believes φ.
Sinc(j, i, φ) def= Infj,iφ→ Beljφ
TrustSinc(i, j, φ): agent i trusts agent j in his sincerity about φ.
TrustSinc(i, j, φ) def= Beli(Infj,iφ→ Beljφ)
Competence.
Comp(j, φ): if agent j believes φ, then φ is true.
Comp(j, φ) def= Beljφ→ φ
TrustComp(i, j, φ): agent i trusts agent j in his competence about φ.
TrustComp(i, j, φ) def= Beli(Beljφ→ φ)
The ”dual” of these properties are formally represented below.
Cooperativity.
Coop(j, i, φ): if agent j believes φ, then j informs agent i about φ.
Coop(j, i, φ) def= Beljφ→ Infj,iφ
TrustCoop(i, j, φ): agent i trusts agent j in his cooperativity about φ.
TrustCoop(i, j, φ) def= Beli(Beljφ→ Infj,iφ)
Vigilance.
V igi(j, φ): if φ is true, then agent j believes φ.
V igi(j, φ) def= φ→ Beljφ
TrustV igi(i, j, φ): agent i trusts agent j in his vigilance about φ.
TrustV igi(i, j, φ) def= Beli(φ→ Beljφ)
We also have the following less specific kinds of trust.
Validity.
V al(j, i, φ): if agent j has informed agent i about φ, then φ is true.
V al(j, i, φ) def= Infj,iφ→ φ
TrustV al(i, j, φ): agent i trusts agent j in his validity about φ.
TrustV al(i, j, φ) def= Beli(Infj,iφ→ φ)
The ”dual” of validity is completeness.
Completeness.
Cmp(j, φ): if φ is true, then agent j informs i about φ.
Cmp(j, φ) def= φ→ Infj,iφ
TrustCmp(i, j, φ): agent i trusts agent j in his completeness about φ.

18 R. Demolombe

TrustCmp(i, j, φ) def= Beli(φ→ Infj,iφ)

Some of these properties are not independent. We can easily show that we have:

(V) � TrustSinc(i, j, φ) ∧ TrustComp(i, j, φ)→ TrustV al(i, j, φ)
(C) � TrustV igi(i, j, φ) ∧ TrustCoop(i, j, φ)→ TrustCmp(i, j, φ)

These definitions can be used to characterize the effects of the fact that an agent
has informed or does not have informed another agent, depending on different
kinds of assumption about the trust relationship between these two agents. We
have the following properties.

(E1) � TrustSinc(i, j, φ)→ (Infj,iφ→ BeliBeljφ)
(E2) � TrustV al(i, j, φ)→ (Infj,iφ→ Beliφ)
(E3) � TrustCoop(i, j, φ)→ (¬Infj,iφ→ Beli¬Beljφ)
(E4) � TrustCmp(i, j, φ)→ (¬Infj,iφ→ Beli¬φ)

Property (E2) (resp. (E4)) shows sufficient conditions about trust that guarantee
that performing (resp. not performing) the action Infj,iφ has the effect that i
believes that φ is true (resp. false).

5 From Case Studies to Generalization

Before to show in formal terms in which situations information and/or trust can
be propagated along a chain of information sources a case study is presented in
order to give an intuitive understanding of the general results which are presented
in the next section.

John wants to invest money in stocks and bonds. Peter who is a journalist in
the field of finance has told to John that Franck, who is a trader, told him that
the stock value of the company AXB is going to increase. John trusts Peter and
Peter trusts Franck. The question is: can we infer that John trusts Franck?.

It is tempting to answer: ”yes”. However, to answer this question we have to
make more precise the kind of trust we have in mind.

Let us assume that we are thinking to trust in validity. Then, if the sentence:
”the stock value of the company AXB is going to increase” is denoted by p, the
sentence ”John trusts Peter” means: ”John believes that if Peter tells to John
that p, then p is true”, the sentence ”Peter trusts the Franck” means: ”Peter
believes that if Franck tells to Peter that p, then p is true”, and the sentence
”John trusts Franck” means: ”John believes that if Franck tells to John that p,
then p is true”.

According to this definition of trust, from the fact that John trusts Peter
(i.e. TrustV al(John, Peter, p)) and Peter trusts Franck (i.e. TrustV al(Peter,
Franck, p))) we cannot infer that John trusts Franck (i.e. TrustV al(John,
Franck, p)). The first reason is that John is not necessarily aware of what be-
lieves Peter, and in particular he may not be aware of the fact that Peter trusts
Franck. In formal terms we may have: ¬BelJohn(TrustV al(Peter, Franck, p)).

Even if it is assumed that Peter has told to John that he trusts Franck (i.e.
InfPeter,John(TrustV al(Peter, Franck, p))) it is not necessarily the case that

Transitivity and Propagation of Trust in Information Sources 19

John believes that what Peter told him is true. In other words, it may be that
John does not trust Peter in his validity about the fact that Peter trusts Franck
in his validity about p (i.e. ¬TrustV al(John, Peter, V al(Peter, Franck, p))).

Indeed, it may be that John trusts Peter as a reliable information source about
the value of the stocks but that he does not trust Peter as an evaluator of other
information sources.

The reason why John does not trust Peter as an evaluator may be, for ex-
ample, that John believes that Peter has the capacity to evaluate the trader’s
competence about p but Peter does not have the capacity to evaluate the trader’s
sincerity about p and it could happen that the trader Franck tells to Peter that
the stock value of the company AXB is going to increase while Franck believes
that it is going to decrease.

This simple example shows that trust in informations sources’ validity, as it
has been defined, is not transitive. In formal terms, it can easily be checked that
the set of sentences: TrustV al(John, Peter, p), TrustV al(John, Franck, p) and
¬TrustV al(Peter, Franck, p) is consistent.

Nevertheless, we can try to find if there are other kinds of trust relative to
information transmission that ”guarantees” the truth of the information which
is transmitted.

Let us use q to denote the sentence: ”Franck has told p to Peter and, if Franck
has told p to Peter, then p is true”.

Now, it is assumed that John trusts Peter in his validity about q.
If John is aware of the fact that the trader Franck has told p to Peter and of

the fact that Peter has told q to him, we can infer that John believes that p is
true.

To check the validity of this derivation and to understand how it can be
generalized to an unlimited number of information sources we introduce the
following notations: i: John, i1: Peter, i2: Franck and:

q
def= Infi2,i1p ∧ (Infi2,i1p→ p)

In that example we have: Infi2,i1p, Infi1,iq and Beli(Infi1,iq → q).
If it is assumed that i (John) is aware of what i1 (Peter) told him q, we also

have: BeliInfi1,iq. Then, we can infer Beliq and, by definition of q, we have:
Beli(Infi2,i1p ∧ (Infi2,i1p→ p)), which entails Belip.

Let us consider now a variant of the previous examples where some agents
play the role of information sources and others play the role of evaluators of the
information sources. Let us assume, for example, that Franck has told to Peter
that if another agent, who is called Carlo, tells to John that p, then p is true.
The reason why Franck ascribes this property to Carlo may be, for example,
that he knows that Carlo is a manager of the company AXB. Let us assume in
addition that Jack, who is a consultant in stocks and bonds, has told to John
that Franck is a reliable evaluator of Carlo, and John believes that Jack is a
reliable evaluator of Franck. Can we infer in that case that John trusts Carlo in
p and that John believes p?

To find a formal answer to this question we adopt the following notations: e2:
Jack, j: Carlo and:

20 R. Demolombe

p′ def= Infj,ip→ p

r
def= Infi2,i1p

′ → p′

s
def= (Infi2,i1p

′) ∧ (Infe2,i1r) ∧ (Infe2,i1r → r)

It is assumed that John trusts Peter in his validity about s and John is aware
of the fact that Peter has told him s and Carlo has told him p. Then, we have:

BeliInfj,ip, BeliInfi1,is and Beli(Infi1,is→ s).

From these assumptions we can infer: Beli(s), which, by definition of s means:
Beli((Infi2,i1p

′)∧(Infe2,i1r)∧(Infe2,i1r → r)), which entails: Beli((Infi2,i1p
′)∧

r), which, by definition of r, means: Beli((Infi2,i1p
′)∧ (Infi2,i1p

′ → p′)), which
entails: Belip

′, which, by definition of p′, means: Beli(Infj,ip → p), and from
BeliInfj,ip we can infer: Belip. That gives a positive answer to the above ques-
tion.

Before to present a general analysis of trust and information propagation we
introduce the following general notations.

In the case of the second example the information transmitted by an agent ik
to another agent ik−1 is denoted by Φk,k−1. Then, we have: Φ2,1 = p and Φ1,0 =
Infi2,i1Φ2,1∧V al(i2, i1, Φ2,1). Roughly speaking we can say that the information
transmitted by i1 to i0 represents the fact that i1 has received the piece of
information represented by Φ2,1 from i2 (i.e. Infi2,i1Φ2,1) and the fact that i2 is
a valid information source for i1 with respect to Φ2,1 (i.e. V al(i2, i1, Φ2,1)).

If we have three information sources: i3, i2 and i1, we have (see figure 1):
Φ3,2 = p, Φ2,1 = Infi3,i2Φ3,2 ∧ V al(i3, i2, Φ3,2) and Φ1,0 = Infi2,i1Φ2,1 ∧

V al(i2, i1, Φ2,1)
The fact that i trusts i1 in his validity about Φ1,0 is represented by:

Beli(Infi1,iΦ1,0 → Φ1,0).

i3
Φ3,2 = p Φ1,0Φ2,1

i
i1i2

Fig. 1. Chain of information sources

For the third example Ψk,k−1 is used to denote the information transmitted by
an agent ik to another agent ik−1. Then, we have: Ψ2,1 = V al(j, i, p) and Ψ1,0 =
(Infi2,i1Ψ2,1) ∧ (Infe2,i1V al(i2, i1, Ψ2,1)) ∧ V al(e2, i1, V al(i2, i1, Ψ2,1)). In that
case we can say that the information transmitted by i1 to i represents the fact
that i1 has received the piece of information Ψ2,1 from i2 (i.e. Infi2,i1Ψ2,1) and i1
has received from the evaluator e2 a piece of information which means that i2 is a
valid information source for i1 with respect to Ψ2,1 (i.e. Infe2,i1V al(i2, i1, Ψ2,1))
and the fact that the evaluator e2 is a valid information source for i1 with respect
to the fact that i2 is a valid information source for i1 with respect to Ψ2,1 (i.e.
V al(e2, i1, V al(i2, i1, Ψ2,1))).

Transitivity and Propagation of Trust in Information Sources 21

i3

p
V al(i3, i2, Ψ3,2) V al(i2, i1, Ψ2,1)

Ψ1,0Ψ2,1Ψ3,2 = V al(j, i, p)

je2e3

i
i1i2

Fig. 2. Chain of information sources and of of their evaluators

In the case of a generalization of the third example to three information
sources, the information transmitted by an information source to another one is
represented by the following sentences (see figure 2).
Ψ3,2 = V al(j, i, p), Ψ2,1 = (Infi3,i2Ψ3,2) ∧ (Infe3,i2V al(i3, i2, Ψ3,2)) ∧ V al(e3, i2,
Ψ3,2) and Ψ1,0 = (Infi2,i1Ψ2,1) ∧ (Infe2,i1V al(i2, i1, Ψ2,1)) ∧ V al(e2, i1, Ψ2,1)

The fact that i trusts i1 in his validity about Ψ1,0 is represented by:
Beli(Infi1,iΨ1,0 → Ψ1,0).

6 Trust in Information Sources Propagation

In this section general results about information and trust propagation are pre-
sented in the form of theorems. We first prove the following Lemma 1.

Lemma 1. If φ is in L and i and j are in AGENT , we have:
� Infj,iφ ∧BeliV al(j, i, φ)→ Beliφ
� ¬Infj,iφ ∧BeliCmp(j, i, φ)→ Beli¬φ

Proof. This Lemma is a direct consequence of (OBS), (OBS’) and of validity
and completeness definitions. QED.

The Theorem 1 shows a property which allows us to infer from an assumption
about the fact that i trusts j in his competence about k’s competence and i
believes that j trusts k in his competence a conclusion about the fact i trusts
k in his competence. However, this is not a property of transitivity because the
assumptions do not have exactly the same form as the conclusion.

Theorem 1. If φ is in L and i, j and k are in AGENT , we have:
� TrustComp(i, j, Comp(k, φ)) ∧BeliTrustComp(j, k, φ)

→ TrustComp(i, k, φ)

Proof. From TrustComp(i, j, Comp(k, φ)) definition we have:
(1) Beli(BeljComp(k, φ)→ Comp(k, φ))
From BeliTrustComp(j, k, φ) we have: (2) BeliBeljComp(k, φ).

22 R. Demolombe

Then, from (1) and (2) we have: (3) BeliComp(k, φ).
By definition of TrustComp, (3) is: TrustComp(i, k, φ). QED.
The Theorem 2 shows that if agent i1 has informed agent i about the fact

that agent i2 has informed agent i1 about the fact that...agent in has informed
agent in−1 about φ, and agent i believes that these agents are valid for what
they have told each other, then agent i believes φ.

This theorem guarantees some kind of propagation of the proposition φ
through a chain of information sources from in to i, provided agent i believes
that they are all valid information sources for what they have told to the next
information source in that chain.

Theorem 2. If φ is in L and i, i1, i2, ... ,in are in AGENT and we adopt the
following notations:

Φn,n−1
def
= φ and for k in [1, n− 1]: Φk,k−1

def
= Infik+1,ik

Φk+1,k

we have:
� (Infi1,iΦ1,0) ∧ Beli(V al(i1, i, Φ1,0) ∧ V al(i2, i1, Φ2,1) ∧ . . . ∧ V al(in, in−1,

Φn,n−1)) → Beliφ

Proof. From V al definition definition V al(i1, i, Φ1,0)∧V al(i2, i1, Φ2,1) is: (Infi1,i

Φ1,0 → Φ1,0) ∧ (Infi2,i1Φ2,1 → Φ2,1), and from Φk,k−1 definition Φ1,0 is Infi2,i1

Φ2,1. Then, V al(i1, i, Φ1,0)∧V al(i2, i1, Φ2,1) is logically equivalent to: Infi1,iΦ1,0

→Φ2,1, and we can easily prove by induction that V al(i1, i, Φ1,0)∧V al(i2, i1, Φ2,1)
∧ . . . ∧ V al(in, in−1, Φn,n−1) is logically equivalent to Infi1,iΦ1,0 → Φn,n−1.

Then, from Beli(V al(i1, i, Φ1,0)∧V al(i2, i1, Φ2,1)∧ . . .∧V al(in, in−1, Φn,n−1))
we infer that: (1) Beli(Infi1,iΦ1,0) → Φn,n−1), and from (1), Infi1,iΦ1,0 and
Lemma 1 we infer: Beli(Φn,n−1), that is Beliφ. QED.

The Theorem 3 shows that if it not the case that agent i1 has informed agent
i about the fact that agent i2 has informed agent i1 about the fact that...agent
in has informed agent in−1 about φ, and agent i believes that these agents are
complete for what they might have told each other, then agent i believes ¬φ.

This theorem can be seen as the dual of Theorem 2 where completeness plays
a similar role as validity.

Theorem 3. If φ is in L and i, i1, i2, ... ,in are in AGENT and we adopt the
following notations:

Φn,n−1
def
= φ and for k in [1, n− 1]: Φk,k−1

def
= Infik+1,ik

Φk+1,k

we have:
� (¬Infi1,iΦ1,0) ∧Beli(Cmp(i1, i, Φ1,0) ∧Cmp(i2, i1, Φ2,1) ∧ . . .

∧Cmp(in, in−1, Φn,n−1)→ Beli¬φ

Proof. proof is very similar as the proof of Theorem 2.
The difference between the assumptions in Theorem 4 and those in the Theo-

rem 2 is that each agent ik informs ik−1 about the validity of agent ik+1 for the
information Φk+1,k transmitted by ik+1 to him and agent i only trusts agent i1
in his validity. Roughly speaking, here it is not required that i knows the agents
i2, i3, ... ,in.

Transitivity and Propagation of Trust in Information Sources 23

Theorem 4. If φ is in L and i, i1, i2, ... ,in are in AGENT and we adopt the
following notations:

Φn,n−1
def
= φ and

for k in [1, n− 1]: Φk,k−1
def
= (Infik+1,ik

Φk+1,k) ∧ V al(ik+1, ik, Φk+1,k)
we have:
� (Infi1,iΦ1,0) ∧ TrustV al(i, i1, Φ1,0)→ Beliφ

Proof. Let us call (H) the formula: (Infi1,iΦ1,0) ∧ TrustV al(i, i1, Φ1,0).
We prove by induction that for every l in [1, n]: (H) entails BeliΦl,l−1.
For l = 1, from (H) definition and Lemma 1 we have: BeliΦ1,0.
Induction hypothesis: (H) entails BeliΦl,l−1.
From Φl,l−1 definition and the induction hypothesis (H) entails:
(1) BeliInfil+1,il

Φl+1,l and (2) BeliV al(il+1, il, Φl+1,l)
From (1) and (2) we have: BeliΦl+1,l. Therefore, (H) entails BeliΦl+1,l.
Then for every l in [1, n] we have: BeliΦl,l−1, and in particular we have:

BeliΦn,n−1 which is, by definition of Φn,n−1, Beliφ. QED.

The following Theorem 5 is the dual of Theorem 4. The main difference is that
here the meaning of the proposition Φk,k−1 is that if ik+1 is a complete informa-
tion source, then ik+1 informs ik about Φk+1,k.

Theorem 5. If φ is in L and i, i1, i2, ... ,in are in AGENT and we adopt the
following notations:

Φn,n−1
def
= φ and

for k in [1, n− 1]: Φk,k−1
def
= Cmp(ik+1, ik, Φk+1,k)→ Infik+1,ik

Φk+1,k

we have:
� (¬Infi1,iΦ1,0) ∧ TrustCmp(i, i1, i, Φ1,0)→ Beli¬φ

Proof. The proof is very similar as the proof of Theorem 4.
If we call (H) the formula: (¬Infi1,iΦ1,0)∧ TrustCmp(i, i1, Φ1,0) we prove by

induction that (H) entails Beli¬Φl,l−1.
We just have to notice that ¬Φl,l−1 is equivalent to: Cmp(il+1, il, Φl+1,l) ∧

¬Infil+1,il
Φl+1,l, which entails ¬Φl+1,l. QED.

The following Theorem 6 has a similar meaning as Theorem 4.
The difference is that for each information source ik there is another informa-

tion source ek who plays the role of an evaluator of ik’s validity and ek himself
is considered by ik−1 as a valid information source for this evaluation.

Theorem 6. If φ is in L and j, i, i1, i2, ... ,in are in AGENT and we adopt
the following notations:

Ψn,n−1
def
= φ and

for k in [1, n − 1]: Ψk,k−1
def
= (Infik+1,ik

Ψk+1,k) ∧ (Infek+1,ik
V al(ik+1, ik,

Ψk+1,k)) ∧V al(ek+1, ik, V al(ik+1, ik, Ψk+1,k))
we have:
� (Infi1,iΨ1,0) ∧ TrustV al(i, i1, Ψ1,0)→ Beliφ

24 R. Demolombe

Proof. The proof is similar as the proof of Theorem 4.
Let us call (H) the formula (Infi1,iΨ1,0) ∧ TrustV al(i1, i, Ψ1,0).
We prove by induction on l that for every l in [1, n] (H) entails BeliΨl,l−1.
For l = 1, from BeliV al(i1, i, Ψ1,0) and Infi1,iΨ1,0, by Lemma 1 we have:

BeliΨ1,0.
Induction hypothesis: (H) entails BeliΨl,l−1.
From (H) and Ψl,l−1 definition we infer: (1) Beli(Infel+1,il

V al(il+1, ik, Ψl+1,l))
and (2) BeliV al(el+1, il, V al(il+1, il, Ψl+1,l)).

Then, from (1) and (2), we infer: (3) Beli(V al(il+1, il, Ψl+1,l)).
From (H) and Ψl,l−1 definition we also infer: (4) Beli(Infil+1,il

Ψl+1,l).
Then, from (3) and (4), we infer: BeliΨl+1,l. Therefore, (H) entails BeliΨl+1,l.
Then, by definition of Ψn,n−1, (H) entails Beliφ. QED.

The following Theorem 7 is the dual of Theorem 6 in the sense that the evaluator
ek+1 is an evaluator of ik+1’s completeness instead of ik+1’s validity.

Theorem 7. If φ is in L and j, i, i1, i2, ... ,in are in AGENT and we adopt
the following notations:

Ψn,n−1
def
= φ and

for k in [1, n−1]: Ψk,k−1
def
= ((Infek+1,ik

Cmp(ik+1, ik, Ψk+1,k))∧V al(ek+1, ik,
Cmp(ik+1, ik, Ψk+1,k)))→ (Infik+1,ik

Ψk+1,k)
we have:
� (¬Infi1,iΨ1,0) ∧ TrustCmp(i, i1, Ψ1,0)→ Beli¬φ

Proof. The proof is similar as the proof of Theorem 6.
Here (H) is (¬Infi1,iΨ1,0) ∧ TrustCmp(i, i1, Ψ1,0) and we prove by induction

that (H) entails Beli¬Ψn,n−1.
Indeed, if it assumed that (H) entails Beli¬Ψl,l−1, from Ψl,l−1 definition

¬Ψl,l−1 is equivalent to (1) (Infel+1,il
Cmp(il+1, il, Ψl+1,l)) ∧ V al(el+1, il,

Cmp(il+1, il, Ψl+1,l)) ∧ ¬(Infil+1,il
Ψl+1,l). We can easily show that (1) entails:

(2) Cmp(il+1, il, Ψl+1,l) and (3) ¬(Infil+1,il
Ψl+1,l). Since (2) and (3) entail (4)

¬Ψl+1,l, we have Beli¬Ψl+1,l. QED.

In the following Theorem 8 the assumptions are similar as the assumptions in
Theorem 6. The first difference is that here each information source ik trusts
the evaluator ek+1. That is, the information transmitted by ik to ik−1 expresses
ik’s opinion. The second one is that agent i trusts all the information sources
in their competence about the information they have transmitted to the other
information sources.

Theorem 8. If φ is in L and j, i, i1, i2, ... ,in are in AGENT and we adopt
the following notations:

Ψn,n−1
def= φ and

for k in [1, n − 1]: Ψk,k−1
def
= (Infik+1,ik

Ψk+1,k) ∧ (Infek+1,ik
V al(ik+1, ik,

Ψk+1,k)) ∧TrustV al(ik, ek+1, V al(ik+1, ik, Ψk+1,k))

TrustCompAlli
def
=
∧

k∈[1,n−1] TrustComp(i, ik, Ψk+1,k)

Transitivity and Propagation of Trust in Information Sources 25

we have:
� TrustV al(i, i1, Ψ1,0) ∧ (Infi1,iΨ1,0) ∧ TrustCompAlli → Beliφ

Proof. The proof is similar as the proof of Theorem 6.
Let us call (H) the formula: TrustV al(i, i1,Ψ1,0) ∧ (Infi1,iΨ1,0) ∧

TrustCompAlli.
We prove by induction on l that for every l in [1, n] (H) entails BeliΨl,l−1.
For l = 1, from (H) we have: (1) TrustV al(i, i1, Ψ1,0) ∧ (Infi1,iΨ1,0).
From (1) and Lemma 1 we have: BeliΨ1,0.
Induction hypothesis: (H) entails BeliΨl,l−1.
From (H) and Ψl,l−1 definition we have:

(2) Beli(Infel+1,il
V al(il+1, il, Ψl+1,l)) ∧ TrustV al(il, el+1, V al(il+1, il, Ψl+1,l)).

From (2) and Lemma 1 we have: (3) BeliBelil
V al(il+1, il, Ψl+1,l).

From BeliΨl,l−1 and Ψl,l−1 definition we also have: (4) BeliInfil+1,il
Ψl+1,l.

Then, from (3), (4) and Lemma 1 we have: (5) BeliBelil
Ψl+1,l.

From (H) and TrustCompAlli definition we have: TrustComp(i, il, Ψl+1,l),
and by TrustComp definition we have: (6) Beli(Belil

Ψl+1,l → Ψl+1,l).
Therefore, from (5) and (6) we have: BeliΨl+1,l.
Then, for l = n− 1 we have: BeliΨn,n−1, that is Beliφ. QED.
The following Theorem 9 is the dual of Theorem 8.

Theorem 9. If φ is in L and j, i, i1, i2, ... ,in are in AGENT and we adopt
the following notations:

Ψn,n−1
def
= φ and

for k in [1, n−1]: Ψk,k−1
def
= ((Infek+1,ik

Cmp(ik+1, ik, Ψk+1,k))∧TrustV al(ik,
ek+1, Cmp(ik+1, ik, Ψk+1,k)))→ (Infik+1,ik

Ψk+1,k)

TrustCompAlli
def
=
∧

k∈[1,n−1] TrustComp(i, ik,¬Ψk+1,k)
we have:
� TrustCmp(i, i1, Ψ1,0) ∧ ¬(Infi1,iΨ1,0) ∧ TrustCompAlli → Beli¬φ

Proof. The proof is similar as the proof of Theorem 8.
Here (H) is the formula TrustCmp(i, i1, Ψ1,0) ∧ ¬(Infi1,iΨ1,0) ∧

TrustCompAlli and we prove by induction that (H) entails Beli¬Ψl,l−1.
It is assumed that (H) entails Beli¬Ψl,l−1. From Ψl,l−1 definition ¬Ψl,l−1 is

equivalent to (1) (Infel+1,il
Cmp(il+1, il, Ψl+1,l)) ∧ TrustV al(il, el+1,

Cmp(il+1, il, Ψl+1,l)) ∧ ¬(Infil+1,il
Ψl+1,l).

We can easily show that (1) entails: (2) Belil
Cmp(il+1, il, Ψl+1,l) and (3)

¬(Infil+1,il
Ψl+1,l). From Lemma 1, (2) and (3) entail (4) Belil

¬Ψl+1,l. Therefore,
Beli¬Ψl,l−1 entails (5) BeliBelil

¬Ψl+1,l.
From TrustCompAlli, (H) entails (6) TrustComp(i, il,¬Ψl+1,l) and (5) and

(6) entail Beli¬Ψl+1,l. QED.

In the Theorems 2, 4, 6, 8 the information represented by φ is propagated under
some assumptions from the first information source in in the chain until the
agent i. It is worth noting that the proposition φ may be about some other
information source j. For example, φ may be of the form: V al(j, i, θ) (resp.

26 R. Demolombe

Cmp(j, i, θ)). In that case the conclusions of these theorems express that i trusts
j in his validity (resp. his completeness) about θ that is: TrustV al(i, j, θ) (resp.
TrustV al(i, j, θ)).

The Theorems 3, 5, 7 and 9 respectively are the dual of 2, 4, 6 and 8 and from
the fact that agent i has not been informed i can infer that φ is false.

7 Related Works

In [17] trust is represented by a probability associated to a binary relation between
two agents. It is also assumed a priori that the trust relationship is transitive.
These simplifications are assumed by the authors in order to be able to define a
mathematical model to compute the ”percolation” of trust in a graph of agents.

In [3] the authors have also considered that trust is just a binary relation
between the truster and the trustee and the weight associated to this relation
represents trust level. Then, the objective is to define a method to evaluate this
weight. The method is based on the operators: aggregation, concatenation, and
selection of information coming from different sources.

The authors in [16] investigate opinion propagation in order to determine
agent’s reputation level instead of agent’s trust. It has similar objectives as our
work with respect to the analysis of propagation. However, these opinions are
not analyzed in detail and they are not explicitly considered as agents’ beliefs.

The work presented in [2] is the work which is the closest to our work we have
found in the literature. In an informal analysis trust is decomposed into several
elements: the truster, the trustee and the purpose of trust. Then, these notions
are formalized in the Josiang’s Subjective Logic which, roughly speaking, can be
seen as a combination of probability theory and epistemic logic. However, in this
work trust purpose is represented by atomic propositions and no nested modal
operator is used for reasoning about agents’ beliefs. For example, it is not possible
to represent the fact that some agent has some beliefs about the agents’ beliefs
in a chain of information sources as we did. The main contribution is to propose
a technique to evaluate the level of trust in a context of trust propagation.

The common feature of these works is that it is assumed that trust is transitive
and the goal is to find a method to compute how the trust level is propagated
along a network of agents. Also, they all implicitly assume that all the agents
are informed about the trust network, which is not really the case in many real
applications. In [2] the trust purpose is explicit but this purpose is not analyzed
in detail in the case where the purpose is to propagate information. For example,
agents’ properties like sincerity or competence are ignored.

8 Conclusion

Trust in information sources has been defined in terms of truster’s belief about
an entailment relation about some trustee’s properties. It has been formally rep-
resented by formulas of the form: Beli(Antj → Consj), where the antecedent

Transitivity and Propagation of Trust in Information Sources 27

Antj and the consequent Consj can be a communication action Infj,iφ or a
belief Beljφ or a fact φ.

These trust definitions have been used to define sufficient conditions which
guarantee that information is propagated along a chain of information sources:
in, in−1, ... , ik, ... , i1 until agent i. A particular case we have analyzed is when
this information is about another information source j and, in that case, the
effect of information propagation is that i trusts j in some properties.

The conditions that guarantee propagation can be about the fact that each
information source is valid or complete or about the fact that each information
source validity or completeness is evaluated by a valid evaluator or about the
fact that each information source trusts the previous information source in the
chain about his validity or completeness.

An original feature of these properties is that the agent i can draw the con-
clusion that a proposition φ is false from the fact that he did not receive an
information about φ.

We have presented the proofs of the theorems because we think that they can
help to understand the meaning of the information Φk,k−1 or Ψk,k−1 transmitted
between each information source in the cases where this information is represented
by complex formulas. Indeed, the proofs are constructive and they are by induc-
tion on the rank of the information sources. Then, we can imagine that the agent
i when he is reasoning about the information sources does the same proofs.

The results which have been presented in the theorems could be used as
specifications to implement automated reasoning techniques in order to apply
them to specific applications. It could be that to find efficient implementations
we have to restrict the expressive power of the proposition φ which is propagated.
That should deserve further works.

A possible direction for further works is to investigate whether the assump-
tions in these theorems are minimal in the sense that they are not only sufficient
conditions to guarantee such or such kind of propagation, but that they also are
necessary conditions.

Another direction is to consider a more general structure for information
sources than a linear structure. For instance, if agent i infers that agent j is
valid from the fact that i has been informed by i1 about j’s sincerity and by i2
about j’s competence, the structure of information sources is a tree.

Another direction could also be to consider graded trust instead of ”yes/no”
trust as we did in [11,10]. For example, in this approach graded validity is rep-
resented by: Belgi (Infj,iφ⇒h φ), where h is the regularity level of the fact that
Infj,iφ entails φ and g is the uncertainty level of agent i about this entailment
level. That could be relevant to express that trust level decreases a long a chain
of information sources.

References

1. Bacharach, M., Gambetta, D.: Trust as type detection. In: Castelfranchi, C., Tan,
Y.-H. (eds.) Trust and Deception in Virtual Societies. Kluwer Academic Publisher,
Dordrecht (2001)

28 R. Demolombe

2. Bhuiyan, T., Josang, A., Xu, Y.: An analysis of trust transitivity taking base rate
into account. In: Proceeding of the Sixth International Conference on Ubiquitous
Intelligence and Computing, Brisbane (2009)

3. Singh, M., Hang, C., Wang, Y.: Operators for propagating trust and their evalu-
ation in social networks. In: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems (2009)

4. Castelfranchi, C., Falcone, R.: Social trust: a cognitive approach. In: Castelfranchi,
C., Tan, Y.-H. (eds.) Trust and Deception in Virtual Societies. Kluwer Academic
Publisher, Dordrecht (2001)

5. Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational
Model. Wiley, Chichester (2010)

6. Chellas, B.F.: Modal Logic: An introduction. Cambridge University Press,
Cambridge (1988)

7. Cholvy, L., Demolombe, R., Jones, A.J.I.: Reasoning about the safety of informa-
tion: from logical formalization to operational definition. In: Proc. of 8th Interna-
tional Symposium on Methodologies for Intelligent Systems (1994)

8. Demolombe, R.: To trust information sources: a proposal for a modal logical frame-
work. In: Castelfranchi, C., Tan, Y.-H. (eds.) Trust and Deception in Virtual
Societies. Kluwer Academic Publisher, Dordrecht (2001)

9. Demolombe, R.: Reasoning about trust: A formal logical framework. In: Jensen,
C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 291–303.
Springer, Heidelberg (2004)

10. Demolombe, R.: Graded Trust. In: Falcone, R., Barber, S., Sabater-Mir, J., Singh,
M. (eds.) Proceedings of the Trust in Agent Societies Workshop at AAMAS 2009
(2009)

11. Demolombe, R., Liau, C.-J.: A logic of graded trust and belief fusion. In: Castel-
franci, C., Falcone, R. (eds.) Proc. of 4th Workshop on Deception, Fraud and Trust
(2001)

12. Jones, A.J.I.: On the concept of trust. Decision Support Systems, 33 (2002)
13. Jones, A.J.I., Firozabadi, B.S.: On the characterisation of a trusting agent. Aspects

of a formal approach. In: Castelfranchi, C., Tan, Y.-H. (eds.) Trust and Deception
in Virtual Societies. Kluwer Academic Publisher, Dordrecht (2001)

14. Lorini, E., Demolombe, R.: Trust and norms in the context of computer security:
A logical formalization. In: van der Meyden, R., van der Torre, L. (eds.) DEON
2008. LNCS (LNAI), vol. 5076, pp. 50–64. Springer, Heidelberg (2008)

15. Lorini, E., Demolombe, R.: From trust in information sources to trust in commu-
nication systems:An analysis in modal logic. In: Meyer, J.-J., Broersen, J. (eds.)
KRAMAS 2008. LNCS(LNAI), vol. 5605, pp. 81–98. Springer, Heidelberg (2009)

16. Osman, N., Sierra, C., Sabater-Mir, J.: Propagation of opinions in structural
graphs. In: 19th European Conference on Artificial Intelligence, ECAI 2010 (2010)

17. Richters, O., Peixoto, T.P.: Trust transitivity in social networks. Technical report,
Darmstadt Technical University (2010)

The Functional Dependence Relation on

Hypergraphs of Secrets

Sara Miner More and Pavel Naumov

Department of Mathematics and Computer Science
McDaniel College, Westminster, Maryland 21157, USA

{smore,pnaumov}@mcdaniel.edu

Abstract. The paper considers interdependencies between secrets in a
multiparty system. Each secret is assumed to be known only to a certain
fixed set of parties. These sets can be viewed as edges of a hypergraph
whose vertices are the parties of the system. In previous work, the authors
investigated properties of interdependencies that are expressible through
a multi-argument relation called independence, which is a generalization
of a binary relation also known as nondeducibility. This work studies
properties expressible through functional dependence. The main result is
a complete and decidable logical system that describes interdependencies
on a fixed hypergraph.

1 Introduction

In this paper, we study properties of interdependencies between pieces of in-
formation. We call these pieces secrets to emphasize the fact that they might
be known to some parties and unknown to the others. Below, we first describe
two relations for expressing interdependencies between secrets. Next, we dis-
cuss these relations in the context of collaboration networks which specify the
available communication channels for the parties establishing the secrets.

Relations on Secrets. If there is no interdependence at all between two secrets,
then we will say that the two secrets are independent. In other words, secrets a
and b are independent if any possible value of secret a is compatible with any pos-
sible value of secret b. We denote this relation between two secrets by [a, b]. This
relation was introduced by Sutherland [1] and is also known as nondeducibility in
the study of information flow. Halpern and O’Neill [2] proposed a closely-related
notion called f -secrecy. In earlier work [3,4], we generalized independence to a
relation [a1, . . . , an] between an arbitrary set of secrets.

Another natural relation between two secrets is functional dependence, which
we denote by a� b. It means that the value of secret a reveals the value of secret
b. A more general and less trivial form of functional dependence is functional
dependence between sets of secrets. If A and B are two sets of secrets, then A�B
means that, together, the values of all secrets in A reveal the values of all secrets
in B. Armstrong [5] presented the following sound and complete axiomatization
of this relation:

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 29–40, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

30 S. Miner More and P. Naumov

1. Reflexivity: A � B, if A ⊇ B,
2. Augmentation: A � B → A, C � B, C,
3. Transitivity: A � B → (B � C → A � C),

where here and everywhere below A, B denotes the union of sets A and B. The
above axioms are known in database literature as Armstrong’s axioms [6, p. 81].
Beeri, Fagin, and Howard [7] suggested a variation of Armstrong’s axioms that
describe properties of multi-valued dependence. A logical system that combines
independence and functional dependence predicates was described by Kelvey,
More, Naumov, and Sapp [8].

a

b

d

c

P

Q

R S

T

U

Fig. 1. Network H0

Secrets in Networks. So far, we have assumed that the values of secrets are
determined a priori. In the physical world, however, secret values are often gener-
ated, or at least disseminated, via interaction between several parties. Quite often
such interactions happen over a network with fixed topology. For example, in
social networks, interaction between nodes happens along connections formed by
friendship, kinship, financial relationship, etc. In distributed computer systems,
interaction happens over computer networks. Exchange of genetic information
happens along the edges of the genealogical tree. Corporate secrets normally flow
over an organization chart. In cryptographic protocols, it is often assumed that
values are transmitted over well-defined channels. On social networking websites,
information is shared between “friends”. Messages between objects on an UML
interaction diagram are sent along connections defined by associations between
the classes of the objects.

In this paper, we will use the notion of collaboration network to refer to the
topological structure that specifies which secrets are known to which parties.
An example of such network is given in Figure 1. In this network, parties P, Q
and R share1 secret a; parties R and S share secrets b and c; and parties S, T
and U share secret d. If different secrets are established completely indepen-
dently, then possession of one or several of these secrets reveals no information
about the other secrets. Assume, however, that secrets are not picked completely

1 In this paper, the “sharing of a secret” between parties means that all parties know
the entire secret in question; this is not to be confused with cryptographic secret-
sharing [9].

The Functional Dependence Relation on Hypergraphs of Secrets 31

independently. Instead, each party with access to multiple secrets may enforce
some desired interdependence between the values of these secrets. These “lo-
cal” interdependencies between secrets known to a single party may result in
a “global” interdependence between several secrets, not all of which are known
to any single party. Given the fixed topology of the collaboration network, we
study what global interdependencies between secrets may exist in the system.

We will say that the local interdependencies define a protocol. For the col-
laboration network H0 depicted in Figure 1, for example, we can imagine the
following protocol. Parties P, Q and R together pick a random value a from set
{0, 1}. Next, party R chooses values b and c from {0, 1} in such a way that
a = b + c mod 2 and sends both of these values to party S. Party S computes
d = b + c mod 2 and shares value d with parties T and U . In this protocol, it
is clear that the values of a and d will always match. Hence, for this specific
protocol, we can say that a � d and a, b � c, d, but at the same time, [a, b] and
[a, c].

The functional dependence and independence examples above are for a single
protocol, subject to a particular set of local interdependencies between secrets. If
the network remains fixed, but the protocol is changed, then secrets which were
previously interdependent may no longer be so, and vice versa. For example,
for network H0 above, the claim a � d will no longer be true if, say, party s
switches from enforcing the local condition d = b + c mod 2 to enforcing the
local condition d = b. In this paper, we study properties of relations between
secrets that follow from the topological structure of the collaboration network, no
matter which specific protocol is used. Examples of such properties for network
H0 are a � d→ b, c � d and [a, b, c]→ [a, d].

In our previous CLIMA paper [4], we gave a complete axiomatization of all
properties of independence between sets of secrets over an arbitrary collaboration
network. In this work, we give a similar axiomatization for the properties of
functional dependence. It consists of the above-mentioned Armstrong axioms and
an additional Gateway axiom that captures properties specific to the topology
of the collaboration network.

Although the proposed logical system captures properties of functional de-
pendence that are not specific to any protocol, this logic could potentially be
used as a framework for reasoning about specific protocols in the same way, for
example, as the first order logic is used for reasoning about specific mathematical
theories.

2 Hypergraphs

A collaboration network where a single secret can be shared between multiple
parties can be described mathematically as a hypergraph in which vertices are
parties and (hyper)edges are secrets. In this section, we introduce the hypergraph
terminology that is used later in the article.

32 S. Miner More and P. Naumov

Definition 1. A hypergraph is pair H = 〈V, E〉, where

1. V is a finite set, whose elements are called “vertices”.
2. E is a finite multiset of subsets of V . Elements of E are called “edges”.

Elements of an edge are called the “ends” of the edge.

Note that we use “mulitisets” in the above definition to allow for multiple edges
between the same set of ends.

A path in a hypergraph is a sequence of edges in which adjacent edges share
at least one end. Paths will be assumed to be simple, in the sense that no edge
is repeated in a path.

Definition 2. A gateway between sets of edges A and B is a set of edges G such
that every path from A to B contains at least one edge from G.

For instance, set {b, c} is a gateway between single-element sets {a} and {d} on
the hypergraph H0 from Figure 1. Note also that in the definition above, sets
A, B, and G are not necessarily disjoint. Thus, for example, for any set of edges
A, set A is a gateway between A and itself. Also, note that the empty set is a
gateway between any two components of the hypergraph that are not connected
one to another.

3 Protocol: A Formal Definition

Definition 3. A protocol over a hypergraph H = 〈V, E〉 is a pair P = 〈V al, Loc〉
such that

1. V al(e) is an arbitrary set of “values” for each edge e ∈ E,
2. Loc = {Loc(v)}v∈V is a family of relations, indexed by vertices (parties) of

the hypergraph H, which we call “local conditions”. If Inc(v) is the set of all
edges incident with vertex v, then Locv ⊆

∏
e∈Inc(v) V al(e).

Definition 4. A run of a protocol 〈V al, Loc〉 is a function r such that

1. r(e) ∈ V al(e) for any edge e ∈ E,
2. 〈r(e)〉e∈Inc(v) ∈ Loc(v).

The set of all runs of a protocol P is denoted by R(P).

Definition 5. A protocol P = 〈V al, Loc〉 is called finite if the set V al(e) is
finite for every edge e of the hypergraph.

We conclude this section with the key definition of this paper. It is the defi-
nition of functional dependence between sets of edges.

Definition 6. A set of edges A functionally determines a set of edges B, with
respect to a fixed protocol P, if

∀r, r′ ∈ R(P)

(∧
a∈A

r(a) = r′(a)→
∧
b∈B

r(b) = r′(b)

)
.

The Functional Dependence Relation on Hypergraphs of Secrets 33

We find it convenient to use the notation f ≡X g if functions f and g are equal
on every argument from set X . Using this notation, we can say that a set of
edges A functionally determines a set of edges B if

∀r, r′ ∈ R(P) (r ≡A r′ → r ≡B r′).

4 Language of Secrets

By Φ(H), we denote the set of all collaboration network properties specified by
hypergraph H that are expressible through the functional dependence predicate.
More formally, Φ(H) is the minimal set of formulas defined recursively as follows:
(i) for any finite subsets A and B of the set of all edges of hypergraph H , formula
A� B is in Φ(H), (ii) the false constant ⊥ is in Φ(H), and (iii) for any formulas
φ and ψ ∈ Φ(H), the implication φ → ψ is in Φ(H). As usual, we assume that
conjunction, disjunction, and negation are defined through → and ⊥.

Next, we define a relation � between a protocol and a formula from Φ(H).
Informally, P � φ means that formula φ is true under protocol P .

Definition 7. For any protocol P over a hypergraph H, and any formula φ ∈
Φ(H), we define the relation P � φ recursively as follows:

1. P � ⊥,
2. P � A�B if the set of edges A functionally determines set of edges B under

protocol P,
3. P � φ1 → φ2 if P � φ1 or P � φ2.

In this article, we study the formulas φ ∈ Φ(H) that are true under every protocol
P over a fixed hypergraph H . Below we describe a formal logical system for such
formulas. This system, like earlier systems defined by Armstrong [5], More and
Naumov [10,3,4] and by Kelvey, More, Naumov, and Sapp [8], belongs to the set
of deductive systems that capture properties of secrets. In general, we refer to
such systems as logics of secrets. Since this article is focused on only one such
system, here we call it simply the Logic of Secrets of hypergraph H .

5 Axioms

For a fixed hypergraph H , the Logic of Secrets, in addition to propositional
tautologies and the Modus Ponens inference rule, contains the following axioms:

1. Reflexivity: A � B, if A ⊇ B,
2. Augmentation: A � B → A, C � B, C,
3. Transitivity: A � B → (B � C → A � C),
4. Gateway : A � B → G � B, if G is a gateway between sets A and B in

hypergraph H .

Recall that the first three of these axioms were introduced by Armstong [5]. The
soundness of all four axioms will be shown in Section 7. We use the notation
X �H Φ to state that formula Φ is derivable from the set of formulas X in the
Logic of Secrets for hypergraph H .

34 S. Miner More and P. Naumov

6 Examples of Proofs

In this section, we give four examples of proofs in the Logic of Secrets. Our first
example refers to the square hypergraph H1 depicted in Figure 2.

d

a

b

P

c

Q

S

R

Fig. 2. Hypergraph H1

Proposition 1. �H1 (a � c) ∧ (b � d)→ (a � d) ∧ (b � c).

Proof. Due to the symmetry of the hypergraph, it is sufficient to show that
(a� c)∧ (b�d)→ a�d. Note that {a, c} is a gateway between sets {b} and {d}.
Thus, by the Gateway axiom, b � d implies (a, c � d). On the other hand, by the
Augmentation axiom, the assumption a � c yields (a � a, c). By the Transitivity
axiom, (a � a, c) and (a, c � d) imply a � d. ��
For the second example, consider the linear hypergraph H2 shown in Figure 3.

aP b c d eQ R S T U

Fig. 3. Hypergraph H2

Proposition 2. �H2 (a � d) ∧ (e � c)→ b � c.

Proof. We begin with the assumption that e� c. Since {d} is a gateway between
sets {e} and {c}, by the Gateway axiom, d� c. Next, using the assumption that
a � d, the Transitivity axiom yields a � c. Finally, we note that {b} is a gateway
between {a} and {c}, and apply the Gateway axiom once again to conclude that
b � c. ��
Note that the second hypothesis in the example above is significant. Indeed,
imagine a protocol on H2 where V (d) = {0}, the set of values allowed on all
other edges is {0, 1}, and the local condition at each vertex v is always true, or,
formally, L(v) ≡

∏
e∈Inc(v) V al(e). Under this protocol, a � d since the value of

a on any run trivially determines the (constant) value of d. However, the value
of b is of no help in determining the value of c, so the conclusion b � c does not
hold.

Next, consider the “olympic rings” hypergraph H3 shown in Figure 4.

The Functional Dependence Relation on Hypergraphs of Secrets 35

a b

d e

cP Q

R S

V

T U

Fig. 4. Hypergraph H3

Proposition 3. �H3 (a � e) ∧ (c � d)→ b, c � e.

Proof. Assume that a � e and c � d. Note that set {d, b} is a gateway between
sets {a} and {e}. Thus, by the Gateway axiom, from assumption a � e we can
conclude that d, b�e. The assumption c�d, by the Augmentation axiom, implies
that b, c � b, d. Therefore, by the Transitivity axiom, b, c � e. ��

As our final example, we prove a property of the hexagonal hypergraph H3 shown
in Figure 5.

a 2

b 3

a
1

b
2

b1

a3U T

S

RQ

P

Fig. 5. Hypergraph H4

Proposition 4. �H4 (a1, a2 � a3) ∧ (a2, a3 � a1) ∧ (a3, a1 � a2) → b1, b2, b3 �
a1, a2, a3.

Proof. Note that {b1, b3} is a gateway between sets {a2, a3} and {a1}. Thus,
by the Gateway axiom, a2, a3 � a1 → b1, b3 � a1. Hence, by the assumption,
a2, a3 � a1, we have that b1, b3 � a1. Similarly one can show that b1, b2 � a2 and
b2, b3 � a3 using the assumptions a3, a1 � a2 and a1, a2 � a3.

Consider statements b1, b3 � a1 and b1, b2 � a2. By the Augmentation axiom,
they, respectively, imply that b1, b2, b3 �a1, b1, b2 and a1, b1, b2 �a1, a2. Thus, by
the Transitivity axiom, b1, b2, b3 � a1, a2.

Now consider b1, b2, b3 �a1, a2 and statement b2, b3 �a3, established earlier. By
the Augmentation axiom, they, respectively, imply that b1, b2, b3�a1, a2, b2, b3 and
a1, a2, b2, b3 �a1, a2, a3. Thus, by the Transitivity axiom, b1, b2, b3 �a1, a2, a3. ��

36 S. Miner More and P. Naumov

7 Soundness

In this section, we demonstrate the soundness of each of the four axioms in the
Logic of Secrets.

Theorem 1 (Reflexivity). P � A � B, for any protocol P and any B ⊆ A.

Proof. Consider any two runs r, r′ ∈ R(P) such that r ≡A r′. Thus r ≡B r′ for
any B ⊆ A. ��

Theorem 2 (Augmentation). P � A � B → A, C � B, C, for any protocol P
and any sets of edges A, B, and C.

Proof. Assume P � A � B and consider any two runs r, r′ ∈ R(P) such that
r ≡A,C r′. By our assumption, r ≡B r′. Therefore, r ≡B,C r′. ��

Theorem 3 (Transitivity). P � A�B → (B � C → A� C), for any protocol
P and any sets of edges A, B, and C.

Proof. Assume P � A � B and P � B � C. Consider any two runs r, r′ ∈ R(P)
such that r ≡A r′. By the first assumption, r ≡B r′. By the second assumption,
r ≡C r′. ��

Theorem 4 (Gateway). P � A � B → G � B, for any protocol P and any
gateway G between sets A and B.

Proof. Assume P � A � B and consider any two runs r1, r2 ∈ R(P) such that
r1 ≡G r2. We will show that r1 ≡B r2. Consider the hypergraph H ′ obtained
from H by removal of all edges in set G. By the definition of a gateway, no single
connected component of hypergraph H ′ can contain edges from set A \ G and
set B \G at the same time. Let us divide all connected components of H ′ into
two subgraphs H ′

A and H ′
B such that H ′

A contains no edges from B \G and H ′
B

contains no edges from A\G. Components that do not contain edges from either
A \G or B \G can be arbitrarily assigned to either H ′

A or H ′
B .

Next, define a function r on each c ∈ E as follows:

r(c) =

⎧⎨
⎩

r1(c) if c ∈ H ′
A,

r1(c) = r2(c) if c ∈ G,
r2(c) if c ∈ H ′

B .

We will prove that r is a run of protocol P . We need to show that r satisfies the
local conditions of protocol P at each vertex v. The connected component of H ′

containing a vertex v either belongs to H ′
A or H ′

B. Without loss of generality,
assume that it belongs to H ′

A. Thus, Inc(v), the set of all edges in H incident
with vertex v, is a subset of H ′

A ∪ G. Hence, r ≡Inc(v) r1. Therefore, r satisfies
the local condition at vertex v simply because r1 does.

By the definition of r, we have r ≡A r1 and r ≡B r2. Together, the first of
these statements and the assumption that P � A�B imply that r ≡B r1. Thus,
due to the second statement, r1 ≡B r ≡B r2. ��

The Functional Dependence Relation on Hypergraphs of Secrets 37

8 Completeness

In this section, we demonstrate that the Logic of Secrets is complete with respect
to the semantics defined above. To do so, we first describe the construction of a
protocol called P0, which is implicitly parameterized by a hypergraph and a set
of formulas.

8.1 Protocol P0

Throughout this section, we will assume that H = 〈V, E〉 is a fixed hypergraph,
and X ⊆ Φ(H) is a fixed set of formulas.

Definition 8. For any A ⊆ E, we define A∗ to be the set of all edges c ∈ E
such that X �H A � c.

Theorem 5. A ⊆ A∗, for any A ⊆ E.

Proof. Let a ∈ A. By the Reflexivity axiom, �H A � a. Hence, a ∈ A∗. ��
Theorem 6. X �H A � A∗, for any A ⊆ E.

Proof. Let A∗ = {a1, . . . , an}. By the definition of A∗, X �H A � ai, for any
i ≤ n. We will prove, by induction on k, that X �H (A � a1, . . . , ak) for any
0 ≤ k ≤ n.
Base Case: X �H A � ∅ by the Reflexivity axiom.
Induction Step: Assume that X �H (A � a1, . . . , ak). By the Augmentation
axiom,

X �H A, ak+1 � a1, . . . , ak, ak+1. (1)

Recall that X �H A � ak+1. Again by the Augmentation axiom, X �H (A �
A, ak+1). Hence, X �H (A�a1, . . . , ak, ak+1), by (1) and the Transitivity axiom.

��
We now proceed to define our protocol P0. We will first specify the set of values
V al(c) for each edge c ∈ E. In this construction, the value of each edge c on a
particular run will be a function from the set 2E into the set {0, 1}. Thus, for any
c ∈ E and any F ⊆ E, we have r(c)(F) ∈ {0, 1}. We will find it more convenient,
however, to think about r as a two-argument boolean function: r(c, F) ∈ {0, 1}.

Furthermore, we will not allow the value of a edge on a particular run to be
just any function from the set 2E into {0, 1}. Instead, for any edge c, we will
restrict set V al(c) so that, for any run r, if c ∈ F ∗, then r(c, F) = 0.

To complete the description of protocol P0, we will specify the local conditions
for each vertex in the hypergraph. At each vertex v, we define the local condition
Loc(v) in such away that run r(c, F) satisfies Loc(v) if and only if

∀F ⊆ E ∀c, d ∈ (Inc(v) \ F ∗) (r(c, F) = r(d, F)) .

That is, when two edges are incident with a vertex v and neither edge is in F ∗,
the values of the functions assigned to those edges on argument F must match
on any given run.

Now that the definition of protocol P0 is complete, we make the following two
claims about its relationship to the given set of formulas X .

38 S. Miner More and P. Naumov

Theorem 7. If P0 � A � B, then X �H A � B.

Proof. Assume P0 � A � B and consider two specific runs of P0. The first of
these two runs will be the constant run r1(c, F) = 0. The second run is defined
as

r2(c, F) =
{

1 if c /∈ A∗ and F = A,
0 if c ∈ A∗ or F �= A.

(2)

Run r1 trivially satisfies the local condition at every vertex v. To show that
r2 satisfies the local condition at a vertex v, consider any F ⊆ E and any
c, d ∈ Inc(v) \ F ∗. If F �= A, then r2(c, F) = 0 = r2(d, F). If F = A, then, since
c, d ∈ Inc(v) \ F ∗, we have c, d /∈ A∗. Thus, r2(c, F) = 1 = r2(d, F). Therefore,
r2 is a run of protocol P0.

Notice that by Theorem 5, A ⊆ A∗. Thus, by equality (2), r2(a, F) = 0 for
any a ∈ A and any F ⊆ E. Hence, r1(a, F) = 0 = r2(a, F) for any a ∈ A and
F ⊆ E. Thus, by the assumption that P0 � A � B, we have r1(b, F) = r2(b, F)
for any b ∈ B and F ⊆ E. In particular, r1(b, A) = r2(b, A) for any b ∈ B.
Since, by definition, r1(b, A) = 0, we get r2(b, A) = 0 for any b ∈ B. By the
definition of r2, this means that B ⊆ A∗. By the Reflexivity axiom, �H A∗ � B.
By Theorem 6 and the Transitivity axiom, X �H A � B. ��

Theorem 8. If X �H A � B, then P0 � A � B.

Proof. Assume that X �H A � B, but P0 � A � B. Thus, there are runs r1 and
r2 of P0 such that r1(a, F) = r2(a, F) for any a ∈ A and any F ⊆ E, yet there
are b0 ∈ B and F0 ⊆ E such that

r1(b0, F0) �= r2(b0, F0). (3)

First, assume that hypergraph H ′, obtained from H by the removal of all edges
in set F ∗

0 , contains a path π connecting edge b0 with a edge a0 ∈ A. This case
implicitly assumes that b0, a0 /∈ F ∗

0 . Let functions f1 and f2 on the edges of
hypergraph H be defined as f1(c) = r1(c, F0) and f2(c) = r2(c, F0). Due to the
local conditions of protocol P0, all edges along path π must have the same value
of function f1. The same is also true about function f2. Therefore, r1(b0, F0) =
f1(b0) = f1(a0) = r1(a0, F0) = r2(a0, F0) = f2(a0) = f2(b0) = r2(b0, F0). This is
a contradiction with statement (3).

Next, suppose that there is no path in H ′ connecting b0 with a edge in A.
Thus, set F ∗

0 is a gateway between sets A and {b0}. By the Gateway axiom,

�H A � b0 → F ∗
0 � b0. (4)

By the Reflexivity axiom, �H B � b0. Recall the assumption X �H A�B. Thus,
by the Transitivity axiom, X �H A� b0. Taking into account (4), X �H F ∗

0 � b0.
By Theorem 6, � F0 �F ∗

0 . Hence, again by Transitivity, X �H F0 � b0. Thus, by
Definition 8, b0 ∈ F ∗

0 . Hence, by the definition of protocol P0, r(b0, F0) has value
0 for any run r. Therefore, r1(b0, F0) = 0 = r2(b0, F0). This is a contradiction
with statement (3). ��

The Functional Dependence Relation on Hypergraphs of Secrets 39

8.2 Main Result

Now, we are ready to finish the proof of completeness.

Theorem 9. If �H φ, then there is a finite protocol P such that P � φ.

Proof. Assume �H φ. Let X be a maximal consistent set of formulas such that
¬φ ∈ X . Consider the finite protocol P0 parameterized by hypergraph H and
set of formulas X . For any formula ψ, we will show that X �H ψ if and only if
P0 � ψ. The proof is by induction on the structural complexity of formula ψ.
The base case follows from Theorems 7 and 8. The induction case follows from
the maximality and consistency of set X . To finish the proof of the theorem,
select ψ to be ¬φ. ��

Corollary 1. Binary relation �H φ is decidable.

Proof. This statement follows from the completeness of the Logic of Secrets with
respect to finite protocols and the recursive enumerability of all theorems in the
logic. ��

9 Conclusion

We have presented a complete axiomatization of the properties of the functional
dependence relation over secrets on hypergraphs. In light of previous results
capturing properties of the independence relation in the same setting [4], it
would be interesting to describe properties that connect these two predicates on
hypergraphs.

An example of such a property for the hypergraph H6 in Figure 6 is given in
the following theorem.

aP b cQ R S

Fig. 6. Hypergraph H6

Theorem 10. For any protocol P over hypergraph H6,

P � (a, b � c) ∧ [a, b]→ b � c.

Proof. For any two runs r1, r2 ∈ R(P) where r1(b) = r2(b), we must show
that r1(c) = r2(c). The assumption [a, b] guarantees that values r1(a) and r2(b)
coexist in some run in R(P); call this run r3. Thus, we have r3(a) = r1(a) and
r3(b) = r2(b).

Next, we create a new function r4 which “glues” together runs r3 and r2 at
vertex q. Formally, we define r4 as

r4(x) =
{

r3(x) if x = a,
r2(x) if x ∈ {b, c}.

40 S. Miner More and P. Naumov

We claim that function r4 satisfies the local conditions of protocol P , since
at each vertex in H5, it behaves locally like an existing run. Indeed, at vertex
p, r4 matches run r3, and at parties r and s, r4 matches run r2. At vertex q,
r4 matches r2 exactly, since r4(b) = r2(b). Thus, r4 ∈ R(P). To complete the
proof, we note that r1(a) = r3(a) = r4(a) and r1(b) = r2(b) = r4(b). By the
assumption that (a, b � c), we have r1(c) = r4(c). The definition of r4 is such
that r4(c) = r2(c), so r1(c) = r2(c), as desired. ��

A complete axiomatization of properties that connect the functional dependence
relation and the independence relation between secrets on a hypergraph remains
an open problem.

Acknowledgment

The authors would like to thank Andrea Mills and Benjamin Sapp for discussions
of the functional dependence relation on sets of secrets during earlier stages of
this work.

References

1. Sutherland, D.: A model of information. In: Proceedings of Ninth National
Computer Security Conference, pp. 175–183 (1986)

2. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 1–47 (2008)

3. Miner More, S., Naumov, P.: On interdependence of secrets in collaboration net-
works. In: Proceedings of 12th Conference on Theoretical Aspects of Rationality
and Knowledge, pp. 208–217. Stanford University, Stanford (2009)

4. Miner More, S., Naumov, P.: Hypergraphs of multiparty secrets. In: Dix, J., Leite,
J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS(LNAI), vol. 6245,
pp. 15–32. Springer, Heidelberg (2010)

5. Armstrong, W.W.: Dependency structures of data base relationships. In: Infor-
mation Processing, Proc. IFIP Congress, Stockholm, pp. 580–583. North-Holland,
Amsterdam (1974)

6. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book,
2nd edn. Prentice-Hall, Englewood Cliffs (2009)

7. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: SIGMOD 1977: Proceedings of
the 1977 ACM SIGMOD International Conference on Management of Data, pp.
47–61. ACM, New York (1977)

8. Kelvey, R., Miner More, S., Naumov, P., Sapp, B.: Independence and functional
dependence relations on secrets. In: Proceedings of 12th International Conference
on the Principles of Knowledge Representation and Reasoning, Toronto, pp. 528–
533. AAAI, Menlo Park (2010)

9. Shamir, A.: How to share a secret. Communications of the Association for Com-
puting Machinery 22(11), 612–613 (1979)

10. More, S.M., Naumov, P.: An independence relation for sets of secrets. In: Ono,
H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS(LNAI), vol. 5514,
pp. 296–304. Springer, Heidelberg (2009)

Three Steps

Hans van Ditmarsch and Fernando Soler–Toscano

University of Sevilla, Spain
{hvd,fsoler}@us.es

Abstract. Given is a deal of ten cards over three players, such that two
players each get four cards and the remaining player (the ‘eavesdropper’)
two cards. We show that there does not exist a protocol of two steps
for the four-card players to inform each other safely of their hands of
cards, and we then present a protocol of three steps that achieves that
goal. We verify the properties of that protocol by combinatorial and,
mainly, logical (model checking) means. No such three-step protocol for
cards was known. The method can be generalized. This will advance the
characterization of card deals for which such exchanges of secrets are
possible.

1 Knowledge-Based Protocols for Card Players

From a pack of seven known cards two players A and B each draw three
cards and a third player C gets the remaining card. How can A and B
openly (publicly) inform each other about their cards, without the third
player learning from any of their cards who holds it?

This problem is often known as the Russian Cards Problem [16] and goes back
to [9]. Such issues in cards cryptography have been investigated in the logical
and model checking community [19,4,17,11], including related issues in epistemic
puzzles, and also in combinatorics and theoretical computer science [7,14,10,20],
including related issues in bit-exchange protocols.

One solution for the riddle is as follows. Suppose that the actual deal of cards
is that agent A has {0, 1, 2}, B has {3, 4, 5} and C has {6}.
– A says: My hand is one of 012, 046, 136, 145, 235.
– B says: C’s card is 6.

After this, it is common knowledge to the three agents that A knows the hand
of B, that B knows the hand of A, and that C is ignorant of the ownership of
any card not held by herself.

We can also see these two sequences as the execution of a knowledge-based
protocol. Given A’s hand of cards, there is a (non-deterministic) way to pro-
duce her announcement, and given her announcement, B always responds by
announcing C’s card. The protocol is knowledge-based, because the agents ini-
tially only know their own hand of cards, and have public knowledge of the deck
of cards and how many cards each agent has drawn from the pack. We can imag-
ine agent A producing her announcement as follows from her initial knowledge
(so, indeed, it is a function of her local state to her action):

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 41–57, 2011.
c© Springer-Verlag Berlin Heidelberg

42 H. van Ditmarsch and F. Soler–Toscano

Let my hand of cards be ijk and let the remaining cards be lmno. Choose
one from ijk, say, w.l.o.g. i, and choose two from lmno, say lm. Three
of the hands in my announcement are ijk, ilm, and ino. From lm choose
one, say l, and from no choose one, say n. The two remaining hands are
jln and kmo. Announce these five hands in random order.

This first step of such a protocol extends to a trivial second step wherein B
announces C’s card. It can be viewed as an unconditionally secure protocol,
as C cannot learn any of the cards of A and B, no matter her computational
resources. The security is therefore not conditional on the high complexity of
some computation.

The Russian Card problem can be seen as the (3, 3, 1) instance of the general
(a, b, c) case, where A, B, C hold a, b, c cards, respectively. When can A and B
communicate their hands of cards to each other, and when not? And how many
steps are needed in a protocol realizing this?

Some results are found in [7,16,1,2]. An announcement by a player in a pro-
tocol is always equivalent to the announcement of a set of alternative hands in-
cluding the actual hand. There are two-step protocols for a wide range of cases,
for example, merely to mention some instantiations of more general patterns, for
(4, 2, 1), for (22, 22, 1), and for (10, 18, 3) (an instantation of [2, Theorem3] for a
deck of p2 + p + 1 cards, for prime p = 5).

The protocol above is a two-step protocol: B’s answer depends on hearing A’s
announcement; he does not know what C’s card is initially. Surprisingly, there
are ‘one-step protocols’ of a kind: a different way to produce the sequence 012,
046, 136, 145, 235 is to observe that the sum of the cards in every triple is 3
modulo 7. So A could execute the protocol wherein she announces the sum of
her cards, modulo 7. Agent B could also have done that, and even at the same
time as A (alternatively to announcing C’s card, after A’s announcement) [2]. We
require that A and B make their announcement in some order and therefore keep
calling that a two-step protocol as well. In [2] we have proved that for (n, n, 1)
with n > 2 there is a two-step protocol, with A announcing the sum of his cards
modulo 2n + 1 and B announcing C’s card. Recently we have generalized this
result to provide two-step protocols for (n, m, 1) with n, m > 2.

There does not always exist a protocol for (a, b, c), for two players to exchange
their hands of cards. For example, this is not possible when each player holds one
card [7]. If there exists a protocol for (a, b, c), is it always possible to make the
exchange in two steps? Other works [7,14,10] give protocols of various length,
three, four, or more steps—but without a proof of minimality. The answer to
that question is: no. This contribution presents a three-step protocol for (4, 4, 2)
and a proof that no shorter protocol exists.

2 Logical Preliminaries

Protocols for card deals consist of public announcements. Public announcement
logic [13,3] is an extension of multi-agent epistemic logic. Its language, structures,
and semantics are as follows.

Three Steps 43

Given are a finite set of agentsA and a countable set of propositional variables
P . The language of public announcement logic is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | KAϕ | CA′ϕ | [!ϕ]ψ

where p ∈ P , A ∈ A, and A′ ⊆ A. For KAϕ, read ‘agent A knows formula ϕ’.
For CA′ϕ, read ‘group of agents A′ commonly know formula ϕ’. For [!ϕ]ψ, read
‘after truthful public announcement of ϕ, formula ψ (is true)’.

An epistemic model M = 〈S,∼, V 〉 consists of a domain S of states (or
‘worlds’), an accessibility function R : A → P(S × S), where each ∼A is an
equivalence relation, and a valuation V : P → P(S). The accessibility relation
∼A′ is defined as (

⋃
A∈A′ ∼A)∗. For s ∈ S, (M, s) is an epistemic state, also

known as a pointed Kripke model.
Assume an epistemic model M = 〈S,∼, V 〉.

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s �|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= KAϕ iff for all t ∈ S : s ∼A t implies M, t |= ϕ
M, s |= CA′ϕ iff for all t ∈ S : s ∼A′ t implies M, t |= ϕ
M, s |= [!ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

where the model restriction M |ϕ = 〈S′,∼′, V ′〉 is defined as S′ = {s′ ∈ S such
that M, s′ |= ϕ}, ∼′

A = ∼A ∩ (S′ × S′) and V ′(p) = V (p) ∩ S′. Complete proof
systems for this logic are presented in [13,3].

Our definition of a knowledge-based protocol consisting of announcements is
a special case of the knowledge-based program à la Fagin et al. [6]. Instead of each
agent choosing an action conditional on her knowledge, each agent chooses an
announcement conditional on her knowledge. Although as a concept it is fairly
obvious, it has not been singled out in the literature so far.
Definition 1 (Knowledge-based protocol). A knowledge-based protocol for
public announcement logic is a finite sequence of instructions determining se-
quences of announcements. Each agent A chooses an announcement KAψ con-
ditional on that agent’s knowledge KAϕ. The chosen announcements are uttered
simultaneously, i.e., an |A|-tuple of preconditions of form KAϕA determines an
announcement !

∧
A∈A KAψA. The protocol is assumed common knowledge be-

tween all agents.
In this work, we further assume that only one agent makes an announcement
at the same time, that announcements are alternating between agents A and
B, and that agent A starts the protocol. Given an initial epistemic model M , a
protocol execution is a sequence of announcements determined by a knowledge-
based protocol effecting successive model changes. The set of all such execution
sequences is the extensional notion of protocols as in [12].

The protocol execution above consists of an announcement by A followed by
announcement by B that can be modelled in public announcement logic as

a announc = KA(012A ∨ 046A ∨ 136A ∨ 145A ∨ 235A) (1)
b announc = KB6C (2)

44 H. van Ditmarsch and F. Soler–Toscano

where ni, for 0 ≤ n ≤ 6 represents that agent i has the card n, and where nmki is
an abbreviation for ni∧mi∧ki. Note that A’s announcement is indeed a function
of A’s knowledge, because KA012A entails KA(012A∨046A∨136A∨145A∨235A),
and that also B’s announcement is a function of his knowledge.

We need some more card deal terminology in the continuation. Given players
or agents A, B and C and a, b and c cards, with a + b + c = d. The cards are
shuffled and dealt to the agents. A gets a cards, etc. This is a card deal of size
(a, b, c). A condition holds for a protocol if it holds after every execution sequence
of the protocol. A protocol is safe if it preserves common knowledge of ignorance
of C. A protocol is A-informative if after termination it is common knowledge
that A knows the card deal. A protocol is B-informative if after termination it
is common knowledge that B knows the card deal. These three conditions are:

b knows as =
d−1∧
n=0

(
KBnA ∨KB¬nA

)
(3)

a knows bs =
d−1∧
n=0

(
KAnB ∨KA¬nB

)
(4)

c ignorant =
d−1∧
n=0

(
¬KCnA ∧ ¬KCnB

)
(5)

The protocol for (3, 3, 1) in the introductory section is safe, A-informative, and
B-informative because after A’s public announcement of (1) it is true that

CABC

(
b knows as ∧ c ignorant

)
(6)

and after B’s public announcement of (2) it is true that

CABC

(
b knows as ∧ a knows bs ∧ c ignorant

)
(7)

where we write CABC for C{A,B,C}. Note that CABC

(
b knows as∧c ignorant

)
holds whenever one of the hands in (1) is the actual hand. It is therefore suf-
ficient to check that

(
b knows as ∧ c ignorant

)
is a model validity after the

announcement.
The model checker DEMO (for ‘a Demo of Epistemic MOdelling’) has been

developed by van Eijck [18]. It is written in Haskell. DEMO allows the represen-
tation of epistemic models, performing updates with epistemic actions such as
public announcements, and evaluating epistemic formulas in epistemic models
or epistemic models resulting from update execution. The syntax of dynamic
epistemic logic in DEMO is fairly similar to the standard language defined
above, e.g., KB(8B ∧ 9B) is represented by K b (Conj[Prop (R 8),Prop (R
9)] (DEMO syntax only allows atoms called P , Q, or R, with number labels) and
CABCc ignorant by (CK [a,b,c] c ignorant). Instead of the single-pointed
epistemic states (M, s) defined above, DEMO allows multi-pointed epistemic
states: the set of designated points of the model stands for the current uncer-
tainty about the actual state. If all points of the model are designated, checking

Three Steps 45

the truth of a formula in that model means checking if it is a model validity (we
will use this in the continuation). In DEMO, the names of states must be natural
numbers, starting with 0. Let the model M be rus and the actual state be 0,
then the verification that M, s |= CABCc ignorant is represented in DEMO by

Main> isTrue (rus 0) (CK [a,b,c] c_ignorant)
True

The model resulting from updating (rus 0) with a public announcement of the
formula b knows as is represented by (upd (rus 0) (public b knows as)).
A multi-pointed model has a list of states instead of a single state, as in (rus
[0..224]). The DEMO script employed in this paper is similar to the one in
[17] that treats the (3, 3, 1) case (but the protocol is very different).

3 There Is No Two-Step Protocol for (4, 4, 2)

We show that there does not exist a protocol in two steps, consisting of one an-
nouncement by A and one announcement by B, for (4, 4, 2). We prove this using
the upper and lower bounds for the number of hands in a safe announcement as
in [1], namely by showing that the minimum number of hands is greater than
the maximum number of hands. We recall that any announcement whatsoever
must be equivalent to an announcement of alternative hands (see [16] — this is
for the simple reason that the denotation of an announcement known to be true
by the agent making it, is a union of equivalence classes for that agent; and an
equivalence class is characterized by a hand of cards for that agent).

Consider an announcement consisting of alternative hands and containing
the actual hand. An announcement is more informative if it consists of fewer
hands. The most informative announcement consists of announcing the actual
hand. The least informative announcement consists of announcing all hands.
However, an announcement is safer if is consists of more hands. Clearly, the
safest announcement consists of announcing all hands. But that announcement
is uninformative. In [1] lower and upper bounds are given for the number of hands
in an announcement. In the following, ‘good’ means ‘safe and B-informative’.

– [1, Prop.1] The number of hands in a good announcement is at least

(a + b + c)(c + 1)
a

– [1, Prop.2] The number of hands in a good announcement is at least

(a + b)(a + b + c)
b(b + c)

– [1, Prop.3] The number of hands in a good announcement is at most

(a + b + c)!(c + 1)!
(b + c)!(c + a + 1)!

⌊
a + c + 1

c + 1

⌋

46 H. van Ditmarsch and F. Soler–Toscano

– [1, Prop.4] The number of hands in a good announcement is at most

(a + b + c)!(c + 1)!
a!(b + 2c + 1)!

⌊
b + 2c + 1

c + 1

⌋

The two propositions for lower bounds should read ‘at least the ceiling of’,
and those for higher bounds ‘at most the floor of’. We obviously need integers.
Which of the two lower bounds is sharper, depends on the card deal (a, b, c); and
similarly for the two upper bounds. For (4, 4, 2), [1, Prop.2] delivers a lower bound
of 4 and [1, Prop.3] a higher bound of 12. That is not problematic. However, the
other two propositions prove that:

Proposition 1. There is no two-step protocol for (4, 4, 2).

Proof. For a lower bound, apply [1, Prop.1]. For (a, b, c) = (4, 4, 2), the number
of hands required is at least⌈

(a + b + c)(c + 1)
a

⌉
=
⌈

10 · 3
4

⌉
= �7.5� = 8.

For a higher bound, apply [1, Prop.4]. For (a, b, c) = (4, 4, 2), the number of
hands required is at most⌊

(a + b + c)!(c + 1)!
a!(b + 2c + 1)!

�b + 2c + 1
c + 1

�
⌋

=
⌊

10!3!
4!9!
�9
3
�
⌋

= �10
4
· 3� = �7.5� = 7.

As a safe and B-informative announcement for (4, 4, 2) should contain at least
eight and at most seven hands, it cannot exist.

4 A Safe and Informative Announcement

The first step in the three-step protocol that we propose employs a block design
[15]. We recall the definition of a t-design with parameters (v, k, λ) (also called
a t–(v, k, λ) design). Relative to a v-set X (i.e., a set with |X | = v elements)
this is a collection of k-subsets of X called blocks with the property that every
t-subset of X is contained in exactly λ blocks.

Announcements in protocols for card deals may be, but do not have to be,
block designs. Given a deal with parameters (a, b, c), we take v = d = a + b + c,
and k = a (the blocks are A-hands). For (3, 3, 1), the announcement 012 034 056
135 246 is not a design. The announcement 012 034 056 135 146 236 245 is a
2–(7, 3, 1) design—each number pair occurs once. And it is a 1–(7, 3, 3) design—
each of the numbers 0 to 6 occurs three times.

Now for the card deal of size (4, 4, 2). Consider the following 2–(10, 4, 2) design
LA listed in the database Design DB [5].

0123 0145 0267 0389 0468 0579 1289 1367 1479 1568 2345 2478 2569 3469 3578

Three Steps 47

The set LA is a 2–(10, 4, 2) design, because each pair occurs twice. It is also a 1–
(10, 4, 6) design: each card occurs 6 times; but it is not a 3–design, e.g., triple 012
is in, but triple 018 is out. The block size 4 corresponds to the number of A’s cards.
Would this make a suitable announcement for A? Not every quadruple occurs in
the design. What if A’s hand of cards is 0124? Consider the following protocol.

Definition 2 (Protocol OneStep for A’s announcement). Let {i, j, k, l} be
A’s hand of cards. Select a member {m, n, o, p} from LA. (We do not assume
that i, j, k, l or m, n, o, p are ordered by size, as in 0123.) Select a permutation
π of 0..9 such that π(i) = m, π(j) = n, π(k) = o, π(l) = p. Let π(LA) be the
collection induced by permutation π. Player A announces π(LA). (I.e., A says:
“My hand of cards is one of π(LA).”)

This is a knowledge-based protocol, because A knows her hand of cards. If 0123
is A’s actual hand, the selected element of LA is also 0123, and the selected
permutation is the identity, then A’s announcement corresponds to the following
public announcement.

Ka(0123a ∨ 0145a ∨ 0267a ∨ 0389a ∨ 0468a ∨ 0579a ∨ 1289a ∨ 1367a∨
1479a ∨ 1568a ∨ 2345a ∨ 2478a ∨ 2569a ∨ 3469a ∨ 3578a)

(8)

We now show that this is a safe announcement. There are two ways to go about
this: a combinatorial proof, and more logical proof, namely by means of dynamic
epistemic model checking.

Proposition 2. Protocol OneStep is safe.

Proof. The combinatorial proof uses the two combinatorial safety requirements
formulated in [1]. They are:

– CA2. For every c-set X the members of L avoiding X have empty inter-
section.

– CA3. For every c-set X the members of L avoiding X have union consisting
of all cards except those of X .

For (4, 4, 2), and L = LA, CA2 guarantees that, if C holds the two cards in X ,
then after A announces LA, C does not learn one of A’s cards (if a card occurs
in all A-hands that C still considers possible, then A must have that card). CA3
guarantees that C does not learn one of B’s cards (if a card does not occur in
all A-hands that C still considers possible, and C also does not have that card,
then B must have that card).

Let X = {0, 1} (X = 01). From the fifteen hands in LA, there are six contain-
ing 0 and six containing 1 (it’s a 1–design with λ = 6)—of which two contain the
pair 01 (it’s a 2-design with λ = 2): ten hands contain 0 or 1. Consider the five
remaining hands 2345 2478 2569 3469 3578. Some numbers occur three times
(2, 3, 4, and 5) and some twice only (6, 7, 8, and 9). But all numbers occur at
least once—so they are contained in the union of these five hands—and at least
once not—so they are not in the intersection of these five hands. Therefore, for
X = 01 the conditions CA2 and CA3 are satisfied.

48 H. van Ditmarsch and F. Soler–Toscano

This holds not just for 01 but for any ij. There are always five hands that
do not contain i and j, because of the design properties. If a card k �= i, j were
to occur in all those five hands, it would only occur once in the remaining ten
(as LA is a 1–design wherein each card occurs 6 times). But there must be two
occurrences of the pair ik, as LA is a 2–design wherein each pair occurs twice. So
no card k occurs in all remaining hands. However, if a card k �= i, j were to occur
in none of those five hands, it would occur six times in the ten hands containing
i or j. One can easily see that the maximum number of allowed k-occurrences is
four, otherwise there would be more than two ik or more than two jk pairs. So
it can also not be the case that k does not occur in any of the remaining hands.

Alternatively, we can achieve this result by model checking. The requirement is
then that after LA it is common knowledge, given the actual deal of cards, that
C is ignorant. This requirement is satisfied if it is a model validity that C is
ignorant. Therefore, the proof is:

Main> isTrue (rus [0..224]) c_ignorant

True

This succinct line hides the computation behind it. Also, the structure of the
epistemic model resulting from LA will serve us in extending Protocol OneStep
to a full protocol—we did not mention so far what B learns from LA. The next
subsection presents this model, and some statistics on the model checking.

5 The Model before and after the First Announcement

The initial model has
(
10
4

)(
6
4

)
= 3150 states/deals. After A’s announcement of

15 hands it is reduced to 15 ·
(
6
4

)
= 225 states, that are labeled from 0 to 224.

Appendix A shows the equivalence classes for the three agents in this model. For
example, it indicates that in the deals 0..14 agent A has the same hand (another
part of the DEMO specification, not shown, nails down which hand).

Figure 1 depicts a part of the epistemic model after A’s announcement. This is
a ∼BC -equivalence class (we write ∼BC for ∼{B,C}). All states in this class can
be distinguished by A. The model consists of 15 such subgraphs (an A-class also
consisting of 15 states, one in each of these subgraphs). In the picture, the solid
lines represent accessibility for C and the dashed lines accessibility for B. Note
that in 12 of the 15 states B knows the deal, and that in the remaining three
({0, 59, 104}) B considers three possible hands for C. The numbers in the points
refer to the deals that appear in the equivalence classes of Appendix A. The state
named 0 represents the deal 0123|4567|89, i.e., where A’s hand is {0, 1, 2, 3}, B’s
hand is {4, 5, 6, 7} and C’s hand is {8, 9}.

The verification in epistemic logic of Proposition 2 was represented by

Main> isTrue (rus [0..224]) c_ignorant
True

and to similar effect we can check

Three Steps 49

�� ��
��

��
��

�� ��
��

��
��

�� ��
��

��
��

��
��

��
148 133

193

178

219 204

89

74

30 105

15015

59

0

104

B
=
{4,5

, 6
,7
}

C = {0, 3} C = {1,2}

C = {8, 9}
0: 0123 | 4567 | 89
15: 0145 | 2367 | 89
30: 0267 | 1345 | 89
105: 1367 | 0245 | 89
150: 2345 | 0167 | 89

104: 1289 | 4567 | 03
133: 1479 | 2568 | 03
148: 1568 | 2479 | 03
178: 2478 | 1569 | 03
193: 2569 | 1478 | 03

59: 0389 | 4567 | 12
74: 0468 | 3579 | 12
89: 0579 | 3468 | 12
204: 3469 | 0578 | 12
219: 3578 | 0469 | 12

Fig. 1. The epistemic model for B and C after A’s announcement

Main> isTrue (rus 0) CK [a,b,c] c_ignorant
True

The computational cost of this check depends on some inessential but for practi-
cal purposes important parameters. Table 1 shows the runtime required to check
Proposition 2 with DEMO in a 2.26 GHz processor, running GHCi, version 6.12.3
over Ubuntu Linux 9.10. Two formulas that represent the ignorance of C about
card n are provided. The first is the one used in (5). The second checks C’s ig-
norance only for cards that C does not hold. Both formulas are equivalent in the
model. There are also two ways for checking C’s ignorance. The first one (central
column) is by checking that ignorance of C is common knowledge at some point
in the model (0 in this case). The second one (right) is by checking that C’s ig-
norance is a model validity. As the model is connected, both ways are equivalent
in the model. The minimum time corresponds to checking that (5) is a model
validity. The improvement for the lower, conditional formula for C’s ignorance is
only when checking common knowledge. We have also checked c ignorant (5)
in the (initial) model prior to A’s announcement, and the cost of announcing LA

(8) in that initial model. This takes 13.2 seconds.

Table 1. DEMO’s runtime in milliseconds to check Proposition 2 in several ways

C’s ignorance about n (rus[0]) |= CABCc ignorant (rus) |= c ignorant

¬KCnA ∧ ¬KCnB 629 256
¬nC → ¬KCnA ∧ ¬KCnB 544 399

We have used the Haskell script in Appendix B to demonstrate that the epis-
temic model after executing Protocol OneStep indeed consists of fifteen ∼BC–
connected subgraphs like the one in Figure 1, where all points in one such sub-
graph are all different for A. Function (goodGraph n) checks that every point

50 H. van Ditmarsch and F. Soler–Toscano

n in the epistemic model after the execution of Protocol OneStep belongs to a
∼BC–graph like that of Figure 1.

Main> foldl1 (&&) (map goodGraph [0..224])
True

By showing the structure of this model we have demonstrated (or rather
corroborated) two aspects of Protocol OneStep. Firstly, given an actual hand of
A, the actual announcement is not LA but π(LA). That does not change the
model structure, as this merely involves renaming atoms. In fact, we have done
this anyway: ‘B holds 8’ is not an atom 8B in DEMO, but some R 8 (see the
previous section). So this involves only further renaming. Secondly, the point of
the structure need not be card deal 0123|4567|89, as here, but can be another deal
of cards wherein A holds another hand of cards in LA. But the model looks the
same from any such different perspective. This is as expected: for any two hands
X and Y of the design, there are (many) permutations π such that π(X) = Y
and π(LA) = LA, in other words, these permutations induce automorphisms of
the design. The remaining sections will not refer to design theory phenomena —
the further extensions of the protocol are not designs.

6 A Three Step Protocol for (4, 4, 2)

We now present a three-step protocol for (4, 4, 2) that extends Protocol OneStep.

Begin

1 A’s announcement

2
B announces three possible hands for C
(C’s hands in the graph for B and C)

3 A announces C’s hand

End

Fig. 2. Protocol ThreeSteps for (4,4,2)

Definition 3 (Protocol ThreeSteps).

Step 1. A announces (a permutation of) (8). Call this LA, as before.
Step 2. B announces that C has one of three hands. These are the three C

hands in the ∼BC–connected part of the model M |LA.

Three Steps 51

Step 3. A announces the hand of C.

Proposition 3. Protocol ThreeSteps is safe.

Proof. The safety of Step 1 is guaranteed by Proposition 2. The effect of Step 2
is to reduce the epistemic model to just one ∼BC -class like the one depicted in
Figure 1. As it contains three complete ∼C–classes, the ignorance of C remains
common knowledge. Step 3 reduces the model to a single ∼C–class. So, again,
common knowledge of ignorance is preserved.

Proposition 4. Protocol ThreeSteps is A-informative.

Proof. Agent A knows the deal after Step 2. All ∼A-classes are then singletons.

Proposition 5. Protocol ThreeSteps is B-informative.

Proof. Agent B knows the deal after Step 3: a ∼C-class consists of five singleton
∼B-classes.

7 A Probabilistic Protocol

Consider a 15-state ∼BC -class, as in Figure 1. It seems appealing for B to an-
nounce the card deal in the twelve cases where he knows the card deal, and only
to continue the protocol in the three cases where he does not know that. This is
not safe (Figure 3), but we can make it safe (Figure 4 and Definition 4).

Begin

1 A’s announcement

B knows the deal?

2
B announces three possible hands for C
(C’s hands in the graph for B and C)

2’ B announces C’s hand

3 A announces C’s hand

End

Yes

No

Fig. 3. An unsafe protocol for (4,4,2)

52 H. van Ditmarsch and F. Soler–Toscano

Look at Figure 3. If B knows the deal after A’s announcement at Step 1, B
announces C’s cards and the protocol finishes in just two steps. It is Step 2’ in
Figure 3. Otherwise, the protocol continues as in Figure 2 and takes three steps.

After every step in Figure 3 agent C remains ignorant about any card of A
and B, but this becomes different when C also knows the protocol. Kerckhoffs’s
Principle [8] says that the protocol should be common knowledge: the design
of a security protocol should be done under the assumption that an intruder
knows everything about the protocol except the key. For cards communication
this means that we may assume that C knows everything about the protocol
except the hands of A and B; i.e., C knows the flowchart in Figure 3. If B
announces C’s cards in Step 2 he implicitly announces b knows as and if B
announces some alternative hands for C he implicitly announces the negation of
that. Fortunately, we have that

Main> isTrue (upd (rus [0..224]) (public b_knows_as)) c_ignorant
True

This is not trivial (there remain four indistinguishable card deals for C, and that
is enough in this case to keep her ignorant) but unfortunately, we also have that

Main> isTrue (upd (rus [0..224]) (public (Neg b_knows_as)))
(Neg c_ignorant)

True

When C is informed about B’s ignorance, she learns that the actual deal is the
only one in C’s pentagon (see Figure 1) where B does not know the deal: A
gains full knowledge of the card deal.

The protocol in Figure 3 is unsafe. The problem is that B performs Step 2 only
if he does not know the card deal. The link is broken in Protocol ProbSteps—see
Figure 4.

Definition 4 (Protocol ProbSteps).

Step 1. A announces (a permutation of) LA.
Step 2’. If B knows the deal then with probability p < 1 B announces C’s hand.
Step 2. If B does not know the deal after Step 1 or if B did not execute Step

2’, then B announces the three C-hands in the ∼BC–class.
Step 3. If Step 2 was executed, A announces the hand of C.

Proposition 6. Protocol ProbSteps is safe.

Proof. In case that the protocol follows the sequence of Steps 1, 2, 3, it is like
Protocol ThreeSteps, so it is safe (Proposition 3). Note that when B performs
Step 2, he is not implicitly announcing his ignorance of C’s cards, because there
is non-zero probability that B performs Step 2 when he knows the deal. When
the protocol consists of Steps 1 and 2’ it is also safe, because (as before)

Main> isTrue (upd (rus [0..224]) (public b_knows_as)) c_ignorant
True

Three Steps 53

Begin

1 A’s announcement

B knows the deal? B flips a coin

2
B announces three possible hands for C
(C’s hands in the graph for B and C)

3 A announces C’s hand 2’ B announces C’s hand

End

No

Yes

HeadTail

Fig. 4. A probabilistic version of the protocol

The following two propositions are obvious.

Proposition 7. Protocol ProbSteps is A-informative.

Proposition 8. Protocol ProbSteps is B-informative.

Proposition 9. The average length of Protocol ProbSteps is 3− 0.8p.

Proof. Given that the permutation of (8) announced by A at Step 1 is randomly
chosen, then on the further assumption that all cards deals are equally likely
(random probability distribution), the probability that B knows the deal after
A’s announcement is 0.8. (B knows the deal in four out of five states in every
∼C-pentagon.) As p is the probability of then announcing the deal, the protocol
has length 2 with probability 0.8p, and it has length 3 with probability 1− 0.8p.
So the average length of the protocol is

3(1− 0.8p) + 2(0.8p) = 3− 0.8p

When p approaches 1, this probability approaches 2.2. (It cannot be 1, as the
protocol is then unsafe again.)

The value of p in Proposition 9 is common knowledge. Agent C can apply
Bayes’ Theorem when B performs Step 2, to calculate the probability for B not
knowing the deal:

P (¬b knows all|Step 2) =
P (Step 2|¬b knows all)P (¬b knows all)

P (Step 2)
=

=
1× 0.2

0.2 + 0.8(1− p)
=

0.2
1− 0.8p

54 H. van Ditmarsch and F. Soler–Toscano

This is the probability for C to correctly guess the deal when Step 2 is performed
with B is still ignorant.

It remains safe ‘in principle’ to have a large p value but that also increases the
probability that the eavesdropper C correctly guesses the deal. We can reduce
the probability of guessing if we consider a parallel execution of n instances of
the protocol, where the secret is the conjunction of the n deals. The probability
of guessing correctly is then multiplied to the power of n, and can therefore be
reduced as much as we want.

8 Conclusion

For a card deal of size (4, 4, 2) we have shown that there does not exist a protocol
of two steps for the four-card players to inform each other safely of their hands
of cards. We have presented a three-step Protocol ThreeSteps that achieves that
goal. We verified the properties of that protocol by combinatorial means, using
properties of block designs, and also by model checking in DEMO. Future work
involves investigating other designs, in order to find protocols of at least three
steps for card deals of size (a, b, c) for c ≥ 2 (for c = 1 and two steps, a full
characterization is known). This will advance the characterization of card deals
for which such exchanges of secrets are possible.

Acknowledgment

We thank three anonymous CLIMA reviewers for their comments. Hans van Dit-
marsch is also affiliated to IMSC (Institute of Mathematical Sciences Chennai),
India, as associated researcher. We thank the participants of the Sevilla logic
seminar for their interaction.

References

1. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., van Ditmarsch, H., Handley, C.C.:
Safe communication for card players by combinatorial designs for two-step proto-
cols. Australasian Journal of Combinatorics 33, 33–46 (2005)

2. Albert, M.H., Cordón-Franco, A., van Ditmarsch, H., Fernández-Duque, D.,
Joosten, J.J., Soler-Toscano, F.: Secure communication of local states in inter-
preted systems. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana,
J. (eds.) International Symposium on Distributed Computing and Artificial Intelli-
gence. Advances in Intelligent and Soft Computing, vol. 91, pp. 117–124. Springer,
Heidelberg (2011)

3. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Gilboa, I. (ed.) Proceedings of the 7th Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK 1998), pp.
43–56 (1998)

4. Dixon, C.: Using temporal logics of knowledge for specification and verification–a
case study. Journal of Applied Logic 4(1), 50–78 (2006)

Three Steps 55

5. Dobcsányi, P.: Design db (2011), http://batman.cs.dal.ca/~peter/designdb/
6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

MIT Press, Cambridge (1995)
7. Fischer, M.J., Wright, R.N.: Bounds on secret key exchange using a random deal

of cards. Journal of Cryptology 9(2), 71–99 (1996)
8. Kerckhoffs, A.: La cryptographie militaire. Journal Des Sciences Militaires IX, 5–

38, 161–191 (1883)
9. Kirkman, T.: On a problem in combinations. Camb. and Dublin Math. J. 2, 191–

204 (1847)
10. Koizumi, K., Mizuki, T., Nishizeki, T.: Necessary and sufficient numbers of cards

for the transformation protocol. In: Chwa, K.-Y., Munro, J.I. (eds.) COCOON
2004. LNCS, vol. 3106, pp. 92–101. Springer, Heidelberg (2004)

11. Luo, X., Su, K., Sattar, A., Chen, Y.: Solving sum and product riddle via bdd-
based model checking. In: Web Intelligence/IAT Workshops, pp. 630–633. IEEE,
Los Alamitos (2008)

12. Parikh, R., Ramanujam, R.: A knowledge based semantics of messages. Journal of
Logic, Language and Information 12, 453–467 (2003)

13. Plaza, J.A.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S.,
Hadzikadic, M., Ras, Z.W. (eds.) Proceedings of the 4th International Symposium
on Methodologies for Intelligent Systems: Poster Session Program, pp. 201–216.
Oak Ridge National Laboratory (1989)

14. Stiglic, A.: Computations with a deck of cards. Theoretical Computer Sci-
ence 259(1-2), 671–678 (2001)

15. Stinson, D.R.: Combinatorial Designs – Constructions and Analysis. Springer, Hei-
delberg (2004)

16. van Ditmarsch, H.: The Russian cards problem. Studia Logica 75, 31–62 (2003)
17. van Ditmarsch, H., van der Hoek, W., van der Meyden, R., Ruan, J.: Model check-

ing russian cards. Electronic Notes in Theoretical Computer Science 149, 105–123
(2006); Presented at MoChArt 2005, Model Checking in Artificial Intelligence

18. van Eijck, J.: DEMO — a demo of epistemic modelling. In: van Benthem, J.,
Gabbay, D., Löwe, B. (eds.) Interactive Logic — Proceedings of the 7th Augustus
de Morgan Workshop. Texts in Logic and Games, vol. 1, pp. 305–363. Amsterdam
University Press, Amsterdam (2007)

19. van Otterloo, S., van der Hoek, W., Wooldridge, M.: Model checking a knowledge
exchange scenario. Applied Artificial Intelligence 18(9-10), 937–952 (2004)

20. Wang, Y.: Epistemic Modelling and Protocol Dynamics. PhD thesis, Universiteit
van Amsterdam (2010)

http://batman.cs.dal.ca/~peter/designdb/

56 H. van Ditmarsch and F. Soler–Toscano

A Equivalence Classes after A’s Announcement

cA = [[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15,16,17,18,19,20,21,22,23,

24,25,26,27,28,29],[30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],[45,46,

47,48,49,50,51,52,53,54,55,56,57,58,59],[60,61,62,63,64,65,66,67,68,69,

70,71,72,73,74],[75,76,77,78,79,80,81,82,83,84,85,86,87,88,89],[90,91,92,

93,94,95,96,97,98,99,100,101,102,103,104],[105,106,107,108,109,110,111,

112,113,114,115,116,117,118,119],[120,121,122,123,124,125,126,127,128,

129,130,131,132,133,134],[135,136,137,138,139,140,141,142,143,144,145,

146,147,148,149],[150,151,152,153,154,155,156,157,158,159,160,161,162,

163,164],[165,166,167,168,169,170,171,172,173,174,175,176,177,178,179],

[180,181,182,183,184,185,186,187,188,189,190,191,192,193,194],

[195,196,197,198,199,200,201,202,203,204,205,206,207,208,209],

[210,211,212,213,214,215,216,217,218,219,220,221,222,223,224]]

cB = [[0,59,104],[1],[2],[3],[4],[5,44,119],[6],[7],[8],[9],[10],[11],

[12],[13],[14,29,164],[15],[16,87,132],[17],[18],[19,72,147],[20],[21],

[22],[23],[24],[25],[26],[27],[28],[30],[31,82,191],[32],[33],[34,67,

176],[35],[36],[37],[38],[39],[40],[41],[42],[43],[45],[46,78,220],[47],

[48],[49,63,205],[50],[51],[52],[53],[54],[55],[56],[57],[58],[60],[61],

[62],[64],[65],[66],[68],[69],[70],[71],[73],[74],[75],[76],[77],[79],

[80],[81],[83],[84],[85],[86],[88],[89],[90],[91],[92,141,186],[93,126,

171],[94],[95],[96],[97],[98],[99],[100],[101],[102],[103],[105],[106],

[107,139,217],[108,124,202],[109],[110],[111],[112],[113],[114],[115],

[116],[117],[118],[120],[121],[122],[123],[125],[127],[128],[129],[130],

[131],[133],[134],[135],[136],[137],[138],[140],[142],[143],[144],[145],

[146],[148],[149],[150],[151],[152,170,215],[153,185,200],[154],[155],

[156],[157],[158],[159],[160],[161],[162],[163],[165],[166],[167],[168],

[169],[172],[173],[174],[175],[177],[178],[179],[180],[181],[182],[183],

[184],[187],[188],[189],[190],[192],[193],[194],[195],[196],[197],[198],

[199],[201],[203],[204],[206],[207],[208],[209],[210],[211],[212],[213],

[214],[216],[218],[219],[221],[222],[223],[224]]

cC = [[0,15,30,105,150],[1,16,60,135,151],[2,17,152,180,195],[3,18,153,

165,210],[4,19,75,120,154],[5,20,45,90,155],[6,31,61,106,166],[7,32,107,

121,196],[8,46,62,91,197],[9,47,92,122,167],[10,33,108,136,211],[11,34,

76,109,181],[12,48,93,137,182],[13,49,77,94,212],[14,35,50,95,110],[21,

36,63,138,168],[22,37,78,123,183],[23,64,96,139,184],[24,79,97,124,169],

[25,66,111,141,213],[26,81,112,126,198],[27,51,67,142,199],[28,52,82,127,

214],[29,69,84,129,144],[38,65,98,125,170],[39,80,99,140,185],[40,70,156,

171,216],[41,85,157,186,201],[42,57,72,173,203],[43,58,87,188,218],[44,

73,88,174,189],[53,68,113,128,200],[54,83,114,143,215],[55,71,158,187,

202],[56,86,159,172,217],[59,74,89,204,219],[100,146,162,191,206],[101,

131,163,176,221],[102,117,132,177,207],[103,118,147,192,222],[104,133,

148,178,193],[115,145,160,175,220],[116,130,161,190,205],[119,134,149,

208,223],[164,179,194,209,224]]

Three Steps 57

B A Haskell Script

import List

goodGraph :: Integer -> Bool

goodGraph n =

let

-- cc1: C-class with n (a pentagon)

cc1 = head (take 1 (filter (\x -> (elem n x)) cC))

-- bc1: points B-accessible with cc1 (4 singlet. + 1 triang.)

bc1 = foldl1 (++)

(take 5 (filter (\x -> (intersect x cc1) /= []) cB))

-- cc2: C-classes with points in bc1 (three pentagons)

cc2 = filter (\x -> (intersect x bc1) /= []) cC

-- cc3: points in the three pentagons

cc3 = foldl1 (++) cc2

-- bc2: B-classes with points in cc2 (12 singlet. + 1 triang.)

bc2 = filter (\x -> (intersect x cc3 /= [])) cB

-- na: number of A-classes with elements in the graph

na = length (filter (\x -> (intersect x cc3 /= [])) cA)

in

-- 1: all the A-classes are represented (1 point per class)

na == 15 &&

-- 2: in the B-classes there is just one triangle

length (filter (\x -> (length x) == 3) bc2) == 1 &&

-- 3: in the B-classes there are 12 singletons

length (filter (\x -> (length x) == 1) bc2) == 12 &&

-- 4: in the C-classes there are 15 points (3 pentagons)

length cc3 == 15

A Modal Framework for Relating Belief and Signed
Information

Emiliano Lorini1, Laurent Perrussel2, and Jean-Marc Thévenin2

1 IRIT
Toulouse - France

emiliano.lorini@irit.fr
2 IRIT - Université de Toulouse

Toulouse - France
{laurent.perrussel,jean-marc.thevenin}@univ-tlse1.fr

Abstract. The aim of this paper is to propose a modal framework for reason-
ing about signed information. This modal framework allows agents to keep track
of information source as long as they receive information in a multi-agent sys-
tem. Agents gain that they can elaborate and justify their own current belief state
by considering a reliability relation over the sources of information. The belief
elaboration process is considered under two perspectives: (i) from a static point
of view an agent aggregates received signed information according to its pre-
ferred sources in order to build its belief and (ii) from a dynamic point of view as
an agent receives information it adapts its belief state about signed information.
Splitting the notions of beliefs and signed statement is useful for handling the
underlying trust issue: an agent believes some statement because it may justify
the statement’s origin and its reliability.

1 Introduction

An agent embedded in a multi-agent system gets information from multiple origins; it
captures information from its own sensors or, it may receive messages issued by other
agents through some communication channels. Based on this set of basic information
the agent then defines its belief state and performs actions [25]. As long as it gets in-
formation, the agent has to decide what it should believe and also which beliefs are no
longer available [14,16,4]. In order to decide which beliefs should hold, the agent needs
some criteria. A common criterion consists of handling a reliability relation about infor-
mation origins [10,6]. According to its opinion about the reliability of the information
source, the agent decides to adopt the received piece of information or not.

Keeping track of information and its origin is a key issue for trust characterization.
Agents can justify their beliefs: agent a believes ϕ because agent b has provided ϕ and
b is reliable [19]. In addition, keeping track of agents involved in information broad-
casting enables agents to evaluate, from their own point of view, whether they are all
reliable, i.e. believable [21].

Although several works have been made in order to show how an agent can merge
information issued from multiple origins [27,23], very few works have focused on the
explicit representation of the origins of information [24,19] in the context of BDI-based

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 58–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Modal Framework for Relating Belief and Signed Information 59

systems with communication actions. This explicit representation is necessary since it
represents the underlying rationale of agents’ beliefs.

The aim of this article is to propose a modal framework to describe agent’s belief
state while preserving information source. The underlying purpose is to avoid the syntax
dependency of the work proposed in [24]. We formalize the transition from information
to belief and consider the dynamics of information, that is how the agent adapts its belief
state about signed information with respect to new incoming information (messages).

The dynamics is usually described in terms of performative actions based on KQML
performatives [13] or speech acts [7,8]. Hereafter, we propose to consider a tell action
as a private announcement from one agent (the sender of the message) to a second agent
(the receiver of the message). A private announcement enables to stress up how an agent
“restricts” its belief state as it receives information. More precisely, it shrinks the space
of possible information states with respect to information sent by its sources and then
according to that space, it builds up its beliefs.

The article is structured as follows: In section 2, we present the intuitive meaning of
signed information and belief state. Next in section 3, we present the technical details of
the modal logic framework. In section 4, we then formalize two intuitive and common
policy for relating signed information and belief which consist in the adoption as belief
of (i) information commonly signed by some set of agents and (ii) all consistent signed
information. In section 5, we extend the modal framework with actions of the form
“agent a tells to agent b that a certain fact ϕ is true”. In section 6, we apply our results
on an example. We conclude the paper in section 7 by summing up the contribution and
considering some open issues.

2 Setting the Framework

Handling the source of information leads to the notion of signed statement, that is some
statement is true according to some source. From a semantics perspective, we want to
be able to represent for an agent, what are the possible states according to information
received from each source (w.r.t. some initial state of affairs).

2.1 Representing Signed Statements

Signed information can be represented through Kripke models using one accessibility
relation per source of information. Relation denoted Sb describes all the states reachable
from some initial state according to information issued from source b. The belief states
of each agent, can in turn be represented using one accessibility relation per agent.
Relation denoted Ba provides all the possible belief states agent a can reach from some
initial state. Figure 1 represents signed states that can be reached from the four possible
belief states of agent a, namely w1, w2, w3 and w4, according to information issued
from agents b and c.

Modal statement Sign(b, p) stands for statement p is true in some state according
to source b. Intuitively Sign(b, p) is true in state w if statement p holds in all states
reachable from w through relation Sb. Let us have a look at the example presented
Figure 1. Statements p or ¬p and q or ¬q are mentioned between brackets above each

60 E. Lorini, L. Perrussel, and J.-M. Thévenin

Fig. 1. Relating belief state and signatures

world reachable through Sb or Sc in which they hold. Following Sb in state w1 agent a
can only reach state w11 and statement p holds in this state. Consequently Sign(b, p) is
true for in state w1. Following Sc from state w1, agent a can only reach state w12 where
statement ¬p hold. Consequently, in state w1 Sign(c,¬p) is true.

In this framework, signed statements represent the rationales for beliefs. It is pos-
sible to interpret formulas such as Bel(a, Sign(b, p)) which stands for agent a believes
that agent b signs statement p by checking that in all possible belief states of agent a
Sign(b, p) is true. According to Figure 1, we get Bel(a, Sign(b, p) ∧ Sign(c,¬p)) since
Sign(b, p) and Sign(c,¬p) hold in w1, w2, w3 and w4.

2.2 Preferences over Information Sources

In order to handle possibly mutually inconsistent signed statements, agents consider
extra information stating which signed statement they prefer. Agents may determine
themselves their preferences by considering the sources of information [10,23], tempo-
ral aspects or the topics of the statements [9].

In this paper, for the sake of conciseness and following numerous contributions such
as [6], we propose to consider extra information representing a preorder relation de-
noted � defined over the reliability of sources of information: a � b stands for a is
at least as reliable as b and a < b stands for a is more reliable than b. We assume
that the agents consider information about only one topic and handling competencies or
different kinds of reliability (such as suggested in [5]) is out of the scope of this paper.

According to the example presented Figure 1 agent a believes that agent b signs p
and agent c signs ¬p. Considering extra information Bel(a, c < b) standing for agent
a believes that agent c is more reliable than agent b, agent a should adopt statement ¬p
as a belief. In semi-formal terms, we get that:

Bel(a, (Sign(b, p) ∧ Sign(c,¬p) ∧ c < b))⇒ Bel(a,¬p) (Adpt)

Using extra-information on the reliability of sources and considering signed statements
rather than statements, the problem of belief change [14] is almost rephrased in terms
close to the ones used in belief merging [20,18]. Reliability order over sources of in-
formation enables us to stratify signed information and then by merging this stratified
information in a consistent way the agents get “justified” beliefs [3].

A Modal Framework for Relating Belief and Signed Information 61

By splitting the two concepts of beliefs and signed statements, we are not limited to
axiom schema (Adpt). It is possible to define multiple policies to define agent’s beliefs:
lexicographic aggregation; focus on statements signed by some specific agents; evalu-
ating the truthfulness of signed information (does the receiver believes that the sender
believes the signed statement). This dichotomy also avoids defining belief state (private
state) only by considering belief about other agent’s belief (also a private state). We
adopt a different principle which enables to show the transition from a public charac-
teristic (signed information and tell actions) to a private one (belief).

2.3 Representing Tell Statements

Let us consider performative Tell(b, a, q) which stands for agent b tells to agent a that
q is true. We interpret this performative as a private announcement [29] rather than with
help of actions and transitions between states. After performative Tell(b, a, q) agent a
believes that b signs q. Consequently, all belief states for which Sign(b, q) is false are
no more reachable for agent a after Tell(b, a, q).

Fig. 2. Agent b tells q to agent a

Figure 2 illustrates how agent a’s belief state changes after receiving performa-
tive Tell(b, a, q). In the initial situation (the left part of the figure), agent a believes
Sign(b, p) but does not believe Sign(b, q) since q does not hold in states w21 and w41

that can be reached through Sb from belief states w2 and w4. After receiving agent
b’s message (right part of the figure), belief state w2 and w4 are no longer reachable
through Ba and agent a believes Sign(b, p) and Sign(b, q). Notice that agent a still be-
lieves Sign(c,¬p) and still does not believe Sign(c, q) and Sign(c,¬q). In other words,
agent a’s beliefs about information signed by c have not changed. At this stage, using
extra information Bel(a, c < b) agent a can aggregate its signed beliefs as follows:
Bel(a,¬p) and Bel(a, q). Indeed, statement q issued from b is not contradicted by the
more reliable source c.

Private announcements stress up the information gathering aspect: possible worlds
accessible through relation Ba represent the ignorance of agent Ba and by shrinking this
set of possible believable worlds, we represent how agent a gains information. Notice
that this way of handling the dynamics entails as a drawback that agent’s belief cannot
always be consistent: updating a model might lead to a model where seriality cannot be
guaranteed [29].

62 E. Lorini, L. Perrussel, and J.-M. Thévenin

3 Formal Framework

In this section, we focus on signatures, beliefs and preferences; tell actions will be
introduced later. The proposed language for reasoning about these three notions is a re-
stricted first order language which enables quantification over agent ids. Quantification
allows agents to reason about anonymous signatures. Logical language L is based on
doxastic logic. Modal operator Bel represents beliefs: Bel(a, ϕ) means agent a believes
L-formula ϕ. Modal operator Sign represents signed statements: Sign(t, ϕ) means t
(an agent id or a variable of the agent sort) signs statement ϕ. In order to represent
an agent’s opinion about reliability, we introduce the notation a � b which stands for:
agent a is said to be at least as reliable as b.

Definition 1 (Syntax of L). Let P be a finite set of propositional symbols. Let A be a
finite set of agent ids. Let V be a set of variables s.t. A ∩ V = ∅. Let T = A ∪ V be
the set of agent terms. The set of formulas of the language L is defined by the following
BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Sign(t, ϕ) | Bel(a, ϕ) | ∀xϕ | t � t′

where p ∈ P , t ∈ T , t′ ∈ T , a ∈ A and x ∈ V .

Writing a < b stands for a is strictly more reliable than b: a � b∧¬(b � a). Operators
→ and ∃ are used according to their usual meaning.

3.1 Axiomatics

Axiomatization of logic L includes all tautologies of propositional calculus. Table 1
details the axioms and inference rules describing the behavior of belief, signed state-
ment and reliability. These axioms and inference rules are standard and follow KD45

Table 1. Logic L axioms and inference rules

(KS) Sign(a, ϕ → ψ) → (Sign(a,ϕ) → Sign(a, ψ))

(DS) Sign(a, ϕ) → ¬Sign(a,¬ϕ)

(KB) Bel(a, ϕ → ψ) → (Bel(a, ϕ) → Bel(a, ψ))

(4B) Bel(a, ϕ) → Bel(a, Bel(a, ϕ))

(5B) ¬Bel(a, ϕ) → Bel(a,¬Bel(a,ϕ))

(R�) t � t

(Tr�) t � t′ ∧ t′ � t′′ → t � t′′

(T�) t � t′ ∨ t′ � t

(To�) Bel(a, t � t′) ∨ Bel(a, t′ � t)

(MP) From ϕ and ϕ → ψ infer ψ

(G) From ϕ infer ∀tϕ

(NS) From ϕ infer Sign(t, ϕ)

(NB) From ϕ infer Bel(a, ϕ)

A Modal Framework for Relating Belief and Signed Information 63

logic for the behavior of signed statement and K45 logic for the behavior of belief;
let us again stress that axiom D could not hold because of public announcement (see
section 5). Notice axiom schema (To�) which reflects that reliability relations have to
be believed as total. Let � denotes the proof relation.

3.2 Semantics

The semantics ofL-formulas is defined in terms of possible states and relations between
states [12]. Those relations respectively represent the notion of signatures and beliefs
as discussed in section 2. In each state, propositional symbols are interpreted and total
preorders representing agents’ reliability are set.

Definition 2 (Model). Let M be a model defined as a tuple:

〈W,
⋃
i∈A

Si,
⋃
i∈A

Bi, I,�〉

where W is a set of possible states. Si ∈ W × W is an accessibility relation rep-
resenting signatures, Bi ∈ W × W is an accessibility relation representing beliefs.
I is an interpretation function of the propositional symbols w.r.t. each possible state,
I : W ×P �→ {0, 1}.� is a function which represents total preorders; these preorders
are specific to each state, that is �: W �→ 2A×A.

A variable assignment is a function v which maps every variable x to an agent id. A
t-alternative v′ of v is a variable assignment similar to v for every variable except t.
For t ∈ T , [[t]]v belongs to A and refers to the assignment of agent terms w.r.t. variable
assignment v, such that:

if t ∈ A then [[t]]v = t if t ∈ V then [[t]]v = v(t)

We define the satisfaction relation |= with respect to some model M , state w and vari-
able assignment v as follows.

Definition 3 (|=). Let M be a model and v be a variable assignment: v : V → A. M
satisfies an L-formula ϕ w.r.t. a variable assignment v and a state w, according to the
following rules:

– M, v, w |= t � t′ iff ([[t]]v, [[t′]]v) ∈�(w).
– M, v, w |= p iff p ∈ P and I(w, p) = 1.
– M, v, w |= Sign(t, ϕ) iff M, v, w′ |= ϕ for all w′ s.t. (w, w′) ∈ S[[t]]v

– M, v, w |= Bel(a, ϕ) iff M, v, w′ |= ϕ for all w′ s.t. (w, w′) ∈ Ba

– M, v, w |= ∀tϕ iff for every t-alternative v′, M, v′, w |= ϕ.

We write |= ϕ iff for all M , w and v, we have M, v, w |= ϕ. The semantics for operators
¬,→, ∨, ∧ and ∃ is defined in the standard way. Let us now detail the constraints that
should operate on the model. We require that signature has to be consistent which entails
that all relations Si have to be serial. Belief operator as well as signature operator are
K45 operator and thus all Bi and Si are transitive and euclidean. Interwoven relations
between signatures and beliefs are detailed in the next section.

64 E. Lorini, L. Perrussel, and J.-M. Thévenin

Constraining the Reliability Relations. We assume that every agent holds belief about
reliability without any uncertainty. That is, agent’s beliefs about reliability can be rep-
resented as a total preorder. We propose to handle multiple preorders by indexing re-
liability with worlds. However, the aggregation of the preorders associated to all the
believable worlds of one agent (which are total) must lead to a total preorder. This will
then help the agent to aggregate all signed statements. In other words, we require that
the integration (or merging) of signed statements should be based on an underlying total
preorder over statements (as it is commonly assumed in the belief revision and merging
areas—see [14,17,18]). Formally we introduce the two following constraints:

1. for all states w, t �(w) t′ or t′ �(w) t and,
2. suppose w′ s.t. (w, w′) ∈ Bi and t �(w′)t′, then for all states w′′ s.t. (w, w′′) ∈ Bi,

t �(w′′) t′.

The first constraint enforces that preorders are total in all states, which reflects axiom
schema (T�). The second constraint expresses that totality should hold in all the belief
states of one agent, which reflects axiom schema (To�). Moreover, preorder definition
entails that reflexivity and transitivity hold.

We conclude the section by giving the results about soundness and completeness.

Theorem 1. Logical system L is sound and complete.

Proof. Soundness is straightforward. The completeness proof is mainly based on [12].
The proof is based on the definition of a canonical model which is itself built upon the
definition of maximal consistent sets. A maximal consistent set is defined as follows:
let ϕ0, ϕ1, · · · be an infinite sequence of L-formulas. W.r.t. the sequence ϕ0, ϕ1, · · · , a
maximal and consistent set T is built s.t. T = ∪i∈0···∞T i where: (i) if ϕi �= ∀tϕ(t) then
Ti = Ti−1 ∪ {ϕi} if Ti−1 ∪ {ϕi} is consistent and Ti = Ti−1 ∪ {¬ϕi} otherwise and
(ii) if ϕi = ∀tϕ(t) then Ti = Ti−1 ∪{ϕi} if Ti−1 ∪{ϕi} is consistent and Ti = Ti−1 ∪
{¬ϕi} ∪ {¬ϕ(t̄)} otherwise (t̄ is a new variable). Using the set of maximal consistent
sets, we then define the canonical model M c: M c = 〈W c,∪i∈ASi,∪i∈ABi, I,�〉 s.t.
(i) W c is the set of maximal consistent sets, (ii) I(w, p) = 1 if p ∈ w and I(w, p) = 0
otherwise, (iii) a �(w)b iff a � b ∈ w, (iv) (w, w′) ∈ Ba iff {ϕ | Bel(a, ϕ) ∈ w} ⊆ w′

(idem for Sa). Using that canonical model, it is routine to prove that M c, w |= ϕ iff
ϕ ∈ w by assuming that property M c, w |= ϕ′ iff ϕ′ ∈ w is satisfied for every sub-
formula ϕ′ of ϕ. Next, we conclude the proof by showing that M c is a model for logicL,
that is all Sa are serial, all Ba are transitive and euclidean and all � are total preorders
(because of the axioms (R�), (Tr�) and (To�)). Completeness is then proved.

4 Linking Signatures and Beliefs

There are multiple ways to switch from information to beliefs. These different ways
may follow principles issued from the belief merging principle [20,18,6] or epistemic
attitudes such as trust [21,19]. As previously mentioned, we do not require that an agent
has to believe that other agents believe in information they provide. This is a key issue
when information is propagated from one agent to another. At some stage, an agent

A Modal Framework for Relating Belief and Signed Information 65

may just broadcast some information without committing to that information in terms
of belief. Hereafter, we present two different policies showing how an agent switches
from signed information to belief: the first one consists of aggregating in an incremental
way signed statements that are commonly signed by a subset of agents which are equally
reliable; the second policy consists of accepting as beliefs statements which are signed
by one agent and not contradicted by the other agents.

4.1 Ranking Agents

The two policies for aggregating signed statements require that these signed statements
are considered in an incremental way; that is “from the most reliable to the less reliable
statements”. Agents can be ranked since we always consider a total preorder. The agents
which are equally reliable are gathered in the same group and the groups can then be
ranked. Agents are ranked as follows. At first, we characterize the most reliable set of
agents denoted as set C1 with the help of the following formula:

a ∈ C1 =def ∀t(a � t)

The formula characterizing members of C1 can then be used for characterizing mem-
bership to a set Ci such that i > 1.

a ∈ Ci =def

((∧
j∈1...(i−1)

¬(a ∈ Cj)
)
∧ ∀t

(
(

∧
j∈1...(i−1)

¬(t ∈ Cj))→ (a � t)
))

It means that all agents belonging to a set Ci are equally reliable and for all a ∈
Ci, b ∈ Cj if i <N j then a < b.

Let us now rephrase this ranking in terms of semantics. Consider agent a, an initial
state w0 and the reliability relations associated to the belief states of agent a that can
be reached using relation Ba. These reliability relations can be aggregated to produce a
total preorder representing the reliability relation believed by agent a at w0. Notice that
the constraints shown in section 3.2 ensure that this preorder is total and thus we can
build a partition of the set of agent ids as follows.

Let C(w0) be a partition ofA at w0 such that in every set Ci(w0) of C(w0), all agents
are equally reliable:

a, b ∈ Ci(w0) ⇐⇒ a �(w0)b and b �(w0)a

For all a ∈ Ci(w0), b ∈ Cj(w0) if i <N j then a ≺(w0)b.

Proposition 1. For any M , w0 and v: a ∈ Ci(w0) iff M, w0, v |= a ∈ Ci.

4.2 Careful Aggregation

The first policy for aggregating signed statement is a skeptical (or careful) policy, close
to the classical notion of universal belief (i.e. everybody in a group believes a certain

66 E. Lorini, L. Perrussel, and J.-M. Thévenin

proposition p to be true) [11]: only statements which are universally signed by a group
of agents are considered as beliefs.

Let us consider the formal definition. The following shortcut stands for the fact that
all agents belonging to some set Ci sign information ϕ:

Sign(Ci, ϕ) =def ∀t
(
t ∈ Ci → Sign(t, ϕ)

)
The following definition of aggregation policy states that statement ϕ is believed by
agent a if agent a (i) believes that statement ϕ is a common signed statement w.r.t.
some Ci (line 1 left part) and (ii) believes that ¬ϕ is not signed by all other agents
which are more reliable than agents belonging to Ci (line 1 right part).

Careful(a,ϕ) =def

∨
i

(
Bel
(
a, Sign(Ci, ϕ)

)
∧ Bel

(
a,
∧

j∈1...(i−1) ¬Sign(Cj ,¬ϕ)
))

→ Bel(a, ϕ)

Note that Careful(a,ϕ) stands for: agent a aggregates information about ϕ in a careful
way.

4.3 A More Confident Aggregation

The first proposed policy for switching from signed statements to belief is a restrictive
one. A less careful policy is to elaborate beliefs by considering statements that are
signed by some agent(s) belonging to a group Ci while other agents of the same level
of preference don’t have contradictory opinion on this statement. As previously, these
statements have to be aggregated with respect to the reliability of the groups of agents.

This aggregation attitude can be expressed in our logic. We first redefine the notion
of group signature as follows:

C−Sign(Ci, ϕ) =def ∃t
(
t ∈ Ci ∧ Sign(t, ϕ)

)
∧ ∀t′(t′ ∈ Ci → ¬Sign(t′,¬ϕ))

This shortcut stands for: there is a formula ϕ that is believed by some agent belonging
to the group Ci and all the agents of that group can sign this statement ϕ. Again, the
aggregation stage has to be redefined in order to consider this confident group signature:

Conf(a,ϕ) =def

∨
i

(
Bel
(
a, C−Sign(Ci, ϕ)

)
∧Bel

(
a,
∧

j∈1...(i−1) ¬C−Sign(Cj ,¬ϕ)
))

→ Bel(a, ϕ)

Note that Conf(a,ϕ) stands for: agent a aggregates information about ϕ in a confident
way.

As we can see, facing information sent by other agents does not entail that the re-
ceiver has only one way to handle them. By specifying multiple policies for elaborating
its belief state, we allow a more flexible definition of multi-agent system: each agent
of the system can adopt a specific policy. This characteristic also enables to handle the
trust issue in a sophisticated way: when an agent believes that some other agents sign
information it can at first ask them (or check) if they believe information they sign and

A Modal Framework for Relating Belief and Signed Information 67

second ask them (or check) how these agents elaborate their belief state. It then of-
fers new opportunities for the definition of more sophisticated policies for elaborating
beliefs which take into account the two previous issues.

5 Acquiring Information

In the previous section, we have detailed two policies for building belief based on signed
information. These policies consider belief and signed information from a static point
of view. Let us now consider a more dynamic view by introducing actions of the form
“agent b tells to agent a that a certain fact ϕ is true” (alias tell actions). This tell action
ensures that agent a will believe that agent b signs ϕ, that is, a tell action is responsible
for updating an agent’s beliefs about other agents’ signatures. A tell action of agent
b (the sender) towards agent a (the receiver) that ϕ is true is considered as a private
announcement in the sense of [15], so that if agent a’s belief state should change, the
belief states of the other agents should not change. We note tell actions by Tell(b, a, ϕ).
Let LT be the extended language which embeds tell statements.

Definition 4 (Syntax of LT). The set of formulas of the language LT is defined by the
following BNF:

ϕ ::=p | ¬ϕ | ϕ ∧ ϕ | Sign(t, ϕ) | Bel(a, ϕ) |
∀xϕ | t � t′ | [Tell(b, a, ϕ)]ϕ

where p ∈ P , t ∈ T , t′ ∈ T , a ∈ A, b ∈ A and x ∈ V .

LT extends L with dynamic operator [Tell(b, a, ϕ)]. The intuitive meaning of state-
ment [Tell(b, a, ϕ)]ϕ′ is after b tells ϕ to a, ϕ′ holds.

Let us first focus on the axiomatics of the logic LT . Table 2 details the reduction ax-
ioms describing the behavior of the operator [Tell(a, b, ϕ)]. (TAP) denotes the atomic
permanence, (TN) denotes negation handling, and (TC) denotes conjunction handling.
(TB) describes the interplay between a tell action and the beliefs of the message re-
ceiver. (TB�=) describes the interplay between a tell action and the beliefs of all agents
different from the message receiver. In particular, (TB�=) highlights the permanence of
the beliefs of all agents different from the message receiver. (TS) describes signature
permanence, (T≤) describes preferences permanence, and (T∀) describes the interplay
between tell action and quantification over variable assignments.

We write �T to denote the proof relation for the logic LT determined by the prin-
ciples of the logic L, the schemata in table 2 and the rule of replacement of proved
equivalence.

The result bellow captures the essential aspect of the tell action. It says that after
agent b tells to agent a information ϕ, agent a believes that agent b signs ϕ:

Proposition 2. �T [Tell(b, a, ϕ)]Bel(a, Sign(b, ϕ))

Once agent a starts to believe that agent b signs ϕ (as an effect of b’s act of telling to a
that ϕ), agent a might also start to believe that ϕ. As we have shown above, this depends
on the reliability of agent b according to agent a and on policies linking signatures with
beliefs such as those described in Section 4.

68 E. Lorini, L. Perrussel, and J.-M. Thévenin

Table 2. Logic LT axioms

(TAP) [Tell(b, a, ϕ)]p ↔ p

(TN) [Tell(b, a, ϕ)]¬ϕ ↔ ¬[Tell(b, a, ϕ)]ϕ

(TC) [Tell(b, a, ϕ)](ϕ ∧ ϕ′) ↔
([Tell(b, a, ϕ)]ϕ ∧ [Tell(b, a, ϕ)]ϕ′)

(TB) [Tell(b, a, ϕ)]Bel(a, ϕ) ↔
Bel(a, (Sign(b, ϕ) → [Tell(b, a, ϕ)]ϕ))

(TB�=) [Tell(b, a, ϕ)]Bel(i, ϕ) ↔ Bel(i, ϕ) if i �= a

(TS) [Tell(b, a, ϕ)]Sign(t, ϕ′) ↔ Sign(t, ϕ′)

(T≤) [Tell(b, a, ϕ)](t � t′) ↔ (t � t′)

(T∀) [Tell(b, a, ϕ)]∀xϕ ↔ ∀x[Tell(b, a, ϕ)]ϕ

We define the semantics of a tell statement as follows. The truth conditions are those
given above for the formulas p, ¬ϕ, ϕ∧ϕ′, Sign(t, ϕ), Bel(a, ϕ), ∀xϕ, t � t′. The truth
condition for [Tell(b, a, ϕ)]ϕ′ is defined in a way which is close to the semantics of
dynamic epistemic logic [29]. More precisely, after agent b tells to agent a information
ϕ, agent a removes from its belief state all states in which agent b does not sign ϕ so
that agent a believes that agent b signs ϕ.

Definition 5 (Announcement Semantics). Let M be a model s.t.
M = 〈W,

⋃
i∈A Si,

⋃
i∈A Bi, I,�〉 and let w be a state in W . We have:

– M, v, w |= [Tell(b, a, ϕ)]ϕ′ iff M |〈a,b,ϕ〉, v, w1 |= ϕ′.

where M |〈b,a,ϕ〉 = 〈W ∗,
⋃

i∈A S∗
i ,
⋃

i∈A B∗
i , I∗,�∗〉 is defined as follows:

– W ∗ = W1 ∪W2 such that W1 = {w1|w ∈W} and W2 = {w2|w ∈ W};
– B∗

a = {(w1, w
′
1)|(w, w′) ∈ Ba and M, v, w′ |= Sign(b, ϕ)}∪{(w2, w

′
2)|(w, w′) ∈

Ba};
– B∗

i = {(w1, w
′
2)|(w, w′) ∈ Bi}∪

{(w2, w
′
2)|(w, w′) ∈ Bi} for all i ∈ A such that i �= a;

– S∗
i = {(w1, w

′
2)|(w, w′) ∈ Si}∪

{(w2, w
′
2)|(w, w′) ∈ Si} for all i ∈ A;

– �∗ (w1) =�∗ (w2) =�(w) for all w ∈ W ;
– I∗(w1, p) = I∗(w2, p) = I(w, p) for all w ∈W .

Basically, the effect of b’s action of telling to a that ϕ is to shrink the set of belief
accessible states for a to the states in which b signs ϕ, while keeping constant the set of
accessible belief states for all other agents (see Figure 3). To get this result, we proceed
as follows: (i) all states w are duplicated in W1 and W2; (ii) we restrict the set of possible
belief state of agent a w.r.t. set of states W1. It can be the case that some agent c has
some belief about agent a’s belief; in such configuration, changing the set of possible
belief state for agent a in set of states W1 should have no influence on belief of agent
c about agent a’s belief. We prevent this problem using the set of duplicated states W2

A Modal Framework for Relating Belief and Signed Information 69

Fig. 3. Updating belief state

preserving all initial relations B and S so that each agent except agent a has a link
between W1 and W2. Figure 3 illustrates this problem: suppose that b tells to a statement
p; we should then restrict belief of agent a: state w′′ should not be a possible belief state.
If we do not duplicate states and relations, the consequence is that agent c’s belief will
be changed. The duplication keeps state w′′, represented by w′′

2 , as a possible belief
state for agent a when this belief state is considered from agent c’s possible belief state.

Note that Tell(b, a, ϕ) also keeps constant other agents’ signatures and the reliabi-
lity order over agents: S∗

i and �∗ are full copies of initial Si and �.

Theorem 2. If M is a L-model then M |〈a,b,ϕ〉 is also a L-model.

Proof. It is straightforward to prove that, after action Tell(b, a, ϕ), preorders �∗ (w)
are total for every state w (i.e. for all states w, t �∗ (w) t′ or t′ �∗ (w) t), and totality
holds in all possible states for an agent (i.e. if wB∗

i w′ and t �∗ (w′)t′, then for all states
w′′ s.t. wB∗

i w′′, t �∗ (w′′) t′). Let us prove that the action Tell(b, a, ϕ) preserves the
seriality of every Si and the transitivity of every Bi. Suppose there is w′ such that
(w, w′) ∈ Si. Then, (w1, w

′
2) ∈ S∗

i and (w2, w
′
2) ∈ S∗

i . Thus, S∗
i is serial.

Suppose (w, w′), (w′, w′′) and (w, w′′) ∈ Bi s.t. i �= a. Then (w1, w
′
2) ∈ B∗

i and
(w′

2, w
′′
2) ∈ B∗

i and (w1, w
′′
2) ∈ B∗

i . Then, transitivity is preserved for all agent i �=
a. Now, let us focus on agent a. Suppose (w, w′), (w′, w′′) and (w, w′′) ∈ Ba, we
have to consider different cases w.r.t. the truth value of Sign(b, ϕ) in w′ and w′′. If
M, v, w′ |= Sign(b, ϕ) and M, v, w′′ |= Sign(b, ϕ), then transitivity is preserved; if
M, v, w′ |= Sign(b, ϕ) and M, v, w′′ �|= Sign(b, ϕ) then (w1, w

′′
1) and (w′

1, w
′′
1) �∈ B∗

a

and transitivity is preserved; if M, v, w′ �|= Sign(b, ϕ) and M, v, w′′ |= Sign(b, ϕ)
then (w1, w

′
1) �∈ B∗

a and transitivity is preserved; finally if M, v, w′ �|= Sign(b, ϕ) and
M, v, w′′ �|= Sign(b, ϕ) then (w1, w

′
1), (w1, w

′′
1) and (w′

1, w
′′
1) �∈ B∗

a and transitivity is
also preserved.

In a similar way we can prove that action Tell(b, a, ϕ) preserves the euclidianity of
every Bi.

We conclude this section by considering soundness and completeness.

Theorem 3. All formulas presented in table 2 are valid.

We skip the proof since it is routine to prove these validities. We then state the theorem
about completeness of the logic LT .

Theorem 4. The logic LT is completely axiomatized by principles of the logic L to-
gether with the schemata in Table 2 and the rule of replacement of proved equivalence.

70 E. Lorini, L. Perrussel, and J.-M. Thévenin

Proof. The theorem is an immediate consequence of Theorem 3. That is, each axiom
allows to eliminate the tell operator in an incremental way; it enable to write formulas in
a particular normal form: starting from the innermost modal operator, the tell operator
is pushed inside the formulas such that it only occurs in front of atomic formulas, the
tell operator can then be eliminated [29].

6 Example

Suppose a car accident involving three cars which are blue (bc), red (rc) and yellow (yc).
Let po be the police detective who is interviewing the three eyewitnesses of the accident
e1, e2, e3. In this scenario we have thereforeA = {po, e1, e2, e3}. The first eyewitness
e1 tells the police detective that the blue car is responsible of the accident while the
second one (e2) states that the red car has caused the collision; the third eyewitness (e3)
can only state information about the yellow car. The three eyewitnesses tell the police
detective that yc is not responsible of the accident.

In that context of information gathering, the police detective does not need to assume
that the eyewitnesses tell the truth or believe in information they provide. The police
detective just needs to assume that e1 provides or signs information bc∧ ¬rc ∧¬yc, e2

provides or signs information ¬bc ∧ rc ∧ ¬yc and e3 provides information rc ∧ ¬yc.
Next, based on these pieces of information, the police detective will build his opinion,
i.e. his belief about the accident. The police detective faces contradicting information
about the blue and red cars, but because the witnesses all agree about the yellow one, the
police detective should believe that the yellow car is not the responsible of the collision.
That is, the detective is willing to root his belief w.r.t. the set of signed statements he
handles and the aggregation policy he considers.

Let us formally translate this belief elaboration stage in formal terms. Suppose at
first, the following preferences for the police detective: eyewitnesses 1 and 3 are equally
reliable and are more reliable than eyewitness 2. That is:

�T Bel(po, e1 � e3 ∧ e3 � e1) ∧ Bel(po, e1 < e2 ∧ e3 < e2)

We also suppose that the police detective considers himself less reliable than e2, because
he was not present when the car accident occurred:

�T Bel(po, e2 < po)

Furthermore, we consider information provided by the three witnesses. Tell actions
are represented by the following actions:

T1 =def Tell(e1, po, bc ∧ ¬rc ∧ ¬yc)
T2 =def Tell(e2, po,¬bc ∧ rc ∧ ¬yc)
T3 =def Tell(e3, po, rc ∧ ¬yc)

Proposition 2 entails that the police detective believes received information:

�T [T1][T2][T3]Bel(po, Sign(e1, bc ∧ ¬rc ∧ ¬yc)∧
Sign(e2,¬bc ∧ rc ∧ ¬yc) ∧ Sign(e3, rc ∧ ¬yc))

A Modal Framework for Relating Belief and Signed Information 71

Theorems 5–7 entail that after the announcements, preferences are unchanged:

�T [T1][T2][T3]Bel(po, e1 � e3 ∧ e3 � e1) ∧ Bel(po, e1 < e2 ∧ e3 < e2)

Thirdly, we consider the aggregation stage. According to the detective’s preferences, we
have the following groups of equally reliable agents: C1 = {e1, e3} and C2 = {e2}. Let
us focus on the definition of belief based on a careful approach. There is one statement,
namely ¬yc, signed by the group of most reliable agents C1. Moreover,¬bc∧ rc∧¬yc
is signed by the group C2. Finally, it is not the case that the group of most reliable agents
signs ¬rc because e1 and e3 provide conflicting information about rc (in particular e3

says that rc):

�T [T1][T2][T3]Bel(po, Sign(C1,¬yc) ∧ Sign(C2,¬bc ∧ rc ∧ ¬yc) ∧ ¬Sign(C1,¬rc))

Hence, if the police detective aggregates information in a careful way, he will believe
that the red car is the responsible one:

�T [T1][T2][T3](Careful(po,rc)→ Bel(po, rc))

Let us now focus on belief involved by the confident aggregation policy. Since e1

signs statement bc and e3 tells nothing about bc, it is then the case that bc is signed in a
confident way by the group C1. That is, at least one agent in C1 signs bc and no agent
in C1 signs ¬bc:

�T [T1][T2][T3]Bel(po, C−Sign(C1, bc))

Hence, if the police detective aggregates information in a confident way, he will ag-
gregate signed information in a different way and will conclude that the blue car is the
responsible one:

�T [T1][T2][T3](Conf(po,rc)→ Bel(po, bc))

As we can see, the key issue is the aggregation policy since it leads to different conclu-
sions. It also leads to stress up the interest of defining belief as a non-primitive concept.

Finally, we can notice that both policies lead to the conclusion that yellow car is not
responsible because of the unanimity of witnesses.

7 Conclusion

In this paper we have shown how information and its source can be processed by an
agent so that at first, it just acquires information from sensors or other agents and sec-
ond, it builds its belief state by considering signed information. By splitting information
and belief, an agent is able to handle clear rationales to construct its belief state both
from a static and dynamic perspectives. From a static perspective we have applied our
formal framework to characterize two possible policies for agents in the process of
building their belief state from the basic signed information they hold. From this per-
spective this work is close to what has been done in belief merging [20,18,6]. The key
difference with existing work in the belief merging area is the introduction of merging

72 E. Lorini, L. Perrussel, and J.-M. Thévenin

in a modal based framework at first (this is also a common characteristic with [6]); sec-
ond a clear distinction between belief and signed statement and third a dynamic view
on belief construction. These last two characteristics differ in two ways from existing
work [20,18,6]: (i) it is usually assumed that belief and information are almost similar;
we have shown that we do not have to assume this hypothesis; (ii) beliefs are almost not
viewed as a primitive concepts but rather as the result of some information processing
which gives a flexible framework (see Section 4). Our work is also related to the work
of [22] in which agents’ mental attitudes and agent’s ostensible (expressed) attitudes
are distinguished and a formalism capturing this distinction is proposed. In particular,
our notion of signed information is close to the notion of ostensible belief of Nickles et
al. However, Nickles et al. do not consider reliability of information sources. Moreover,
their approach does not deal with dynamics of information by means of communicative
actions. The latter is a central aspect of our proposal (see Section 5).

Concerning the dynamic perspective we have shown how the basic signed infor-
mation held by an agent may change as it receives tell statements from another agent
processed in a similar way to private announcements in the sense of dynamic epistemic
logic (DEL) [29,15].

Our short term goal is to consider more sophisticated ways to set the reliability re-
lations. The idea is to consider the agent skills [5] so that agents can consider multiple
reliability relations at the same time. At this time, even if agents can consider multiple
alternative reliability relations, they cannot mixed them. Our goal is to avoid this limit.

Another interesting direction of future research is to refine the dynamic part of our
approach. Indeed, the approach presented in Section 5 only deals with belief expansion
in the sense of AGM theory [1] but it does not deal with belief revision. In particular,
our logic does not allow to model a situation in which an agent believes that a certain
fact p is true and, after revising his beliefs in the light of a new information received by
an information source, he starts to believe ¬p. In order to model this scenario, we will
have to extend our formalism with a belief revision mechanism [28,2,26].

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
contraction and revision functions. The Journal of Symbolic Logic 50(2), 510–530 (1985)

2. Aucher, G.: A combined system for update logic and belief revision. In: Barley, M.W.,
Kasabov, N. (eds.) PRIMA 2004. LNCS (LNAI), vol. 3371, pp. 1–17. Springer, Heidelberg
(2005)

3. Benferhat, S., Garcia, L.: Handling locally stratified inconsistent knowledge bases. Studia
Logica 70, 77–104 (2002)

4. Booth, R., Meyer, T.: How to revise a total preorder. Journal of Philosophical Logic 40(2),
193–238 (2011)

5. Cholvy, L.: Automated reasoning with merged contradictory information whose reliability
depends on topics. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946,
pp. 125–132. Springer, Heidelberg (1995)

6. Cholvy, L.: A modal logic for reasoning with contradictory beliefs which takes into account
the number and the reliability of the sources. In: Godo, L. (ed.) ECSQARU 2005. LNCS
(LNAI), vol. 3571, pp. 390–401. Springer, Heidelberg (2005)

A Modal Framework for Relating Belief and Signed Information 73

7. Cohen, P., Levesque, H.: Rational Interaction as the Basis for Communication. In: Cohen,
P., Morgan, J., Pollack, M. (eds.) Intentions in Communication, pp. 221–256. MIT Press,
Cambridge (1990)

8. Cohen, P., Levesque, H.: Communicative actions for artificial agents. In: Lesser, V., Gasser,
L. (eds.) Proceedings of the First International Conference on Multi-Agent Systems (ICMAS
1995), pp. 65–72. The MIT Press, San Francisco (1995)

9. Fariñas del Cerro, L., Herzig, A., Longin, D., Rifi, O.: Belief reconstruction in cooperative
dialogues. In: Giunchiglia, F. (ed.) AIMSA 1998. LNCS (LNAI), vol. 1480, pp. 254–266.
Springer, Heidelberg (1998)

10. Dragoni, A., Giorgini, P.: Revising beliefs received from multiple sources. In: Frontiers of
Belief Revision, Applied Logic. Kluwer, Dordrecht (1999)

11. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cam-
bridge (1995)

12. Fagin, R., Halpern, Y.M.J.: Reasoning About Knowledge. MIT Press, Cambridge (1995)
13. Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language. In: Brad-

shaw, J. (ed.) Software Agents. MIT Press, Cambridge (1997)
14. Gärdenfors, P.: Knowledge in flux: Modeling the Dynamics of Epistemic States. MIT Press,

Cambridge (1988)
15. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. of Logic, Language

and Information 6(2) (1997)
16. Herzig, A., Longin, D.: Belief dynamics in cooperative dialogues. J. of Semantics 17(2)

(2000) (vol. published in 2001)
17. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.

Artificial Intelligence 52(3), 263–294 (1991)
18. Konieczny, S., Pérez, R.: Propositional belief base merging or how to merge beliefs/goals

coming from several sources and some links with social choice theory. European Journal of
Operational Research 160(3), 785–802 (2005)

19. Liau, C.: Belief, information acquisition, and trust in multi-agent systems–a modal logic
formulation. Artificial Intelligence 149(1), 31–60 (2003)

20. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Transac-
tions on Knowledge and Data Engineering 10(1), 76–90 (1998)

21. Lorini, E., Demolombe, R.: From Binary Trust to Graded Trust in Information Sources: A
Logical Perspective. In: Falcone, R., Barber, S.K., Sabater-Mir, J., Singh, M.P. (eds.) Trust
2008. LNCS (LNAI), vol. 5396, pp. 205–225. Springer, Heidelberg (2008)

22. Nickles, M., Fischer, F., Weiss, G.: Communication attitudes: A formal approach to osten-
sible intentions, and individual and group opinions. In: Proc. of LCMAS 2005. Electronic
Notes in Computer Science, vol. 157(4), pp. 95–115. Elsevier, Amsterdam (2005)

23. Perrussel, L., Thévenin, J.-M.: (Dis)Belief Change Based on Messages Processing. In: Dix,
J., Leite, J. (eds.) CLIMA IV 2004. LNCS (LNAI), vol. 3259, pp. 201–217. Springer, Hei-
delberg (2004)

24. Perrussel, L., Thévenin, J.: A logical approach for describing (dis)belief change and message
processing. In: Proc. of AAMAS 2004, pp. 614–621. IEEE C.S, Los Alamitos (2004)

25. Rao, A., Georgeff, M.: Modeling rational agents within a bdi-architecture. In: Proc. of KR
1991, pp. 473–484 (1991)

26. Segerberg, K.: Belief revision from the point of view of doxastic logic. Logic Journal of
IGPL 3(4), 535–553 (1995)

27. van der Hoek, W., Wooldridge, M.: Towards a logic of rational agency. Journal of the
IGPL 11(2), 133–157 (2003)

28. van Ditmarsch, H.: Prolegomena to dynamic logic for belief revision. Synthese 147(2), 229–
275 (2005)

29. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library,
vol. 337. Springer, Heidelberg (2007)

On the Definability of Simulability and

Bisimilarity by Finite Epistemic Models

Hans van Ditmarsch, David Fernández-Duque, and Wiebe van der Hoek

University of Sevilla, Spain
{hvd,dfduque}@us.es

University of Liverpool, United Kingdom
Wiebe.Van-Der-Hoek@liverpool.ac.uk

Abstract. We explore when finite epistemic models are definable up to
simulability or bisimulation, either over the basic multi-agent epistemic
language L or over its extension LC with common knowledge operators.
Our negative results are that: simulability is not definable in general in
LC , and finite epistemic states (i.e., pointed models) are not definable
up to bisimulation in L. Our positive results are that: finite epistemic
states are definable up to bisimulation by model validity of L-formulas,
and there is a class of epistemic models we call well-multifounded for
which simulability is definable over L. From our method it also follows
that finite epistemic models (i.e., not-pointed models) are definable up to
bisimulation using model validity in L. Our results may prove useful for
the logical specification of multi-agent systems, as it provides justification
for the ubiquitous but often unjustified claims of the form ‘suppose action
a can only be performed in state s’: we show when such preconditions
exist. An application are characteristic formulae for interpreted systems.
They have a special form wherein factual knowledge, positive knowledge,
and ignorance can be separated.

1 Introduction

Modal logic is the framework for formalising knowledge representation and areas
in artificial intelligence as diverse as distributed computing, reasoning about
programs, verifying temporal properties of systems, game theoretic reasoning,
reasoning about knowledge and belief, and specifying and verifying multi-agent
systems. One of the reasons of the popularity of modal logic in such diverse
fields is its semantics: the notion of states, or worlds, together with that of a
relation between them, is the key concept in Kripke models, on which modal
logics are interpreted. Such worlds may model the state of a distributed system,
a processor, or a machine, or a situation in a game or a protocol, and the binary
relations indicate for instance a possible transition (in time, or by a computation)
between states, or they may represent some attitude of an agent: some state may
be desired by an agent, some states may form the goal of an agent, or, as is the
interpretation for epistemic logic, states may be conceived as indistinguishable
by the agent.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 74–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Definability of Simulability and Bisimilarity 75

baM1

p

s1

Fig. 1. A two-agent one-fact scenario

Kripke models are a great tool for designing and modelling complex situations,
and a modal language provides a perfect way to verify properties about the
systems obtained. To give an example, consider the simplest multi-agent system
one can envisage to reason about information: we assume to have two agents, a
and b, and one atomic fact, say p. Suppose the information about the scenario
to be modelled is the following: p is true, although neither a nor b knows it. One
model that comes to mind to represent this situation isM1 depicted in Figure 1,
the ‘actual state’ is s1. Given this state where p is true, each agent considers
another state possible were it is false.

However, this raises many questions: is this the model of the scenario, or are
there alternative models, and how do we tell they are different? For instance,
would the models of Figure 2 be ‘equally good’? It of course depends on what
is meant by that criterion: yes, all three models satisfy the description of the
scenario (p ∧ ¬Kap ∧ ¬Kbp is true in all of their designated states si), yet each
model verifies some additional and different information about which the scenario
description stayed ambiguous, or, rather, under-specified.

p

a,bM3 a

p

a,bM2
s2

s3

Fig. 2. Two other two-agent one-fact scenarios

The notion of bisimulation [3] tells us when two structures are essentially the
same, at least as far as modal logic is concerned; in this sense it plays a role
analogous to, say, an isomorphism between algebraic structures. Following this
analogy a simulation [1] would play the role of a homomorphism; simulations
are defined like bisimulations without the ‘back’ clause, and as in the case of
isomorphisms, bisimulations can be defined as simulations whose inverses are
also simulations. These relations preserve a fragment of the modal language
known as the positive existential formulas [3].

Referring back to our examples, we want to specify that we are actually in
model M2, in state s2: Can we specify that in our object language? Because

76 H. van Ditmarsch, D. Fernández-Duque, and W. van der Hoek

the modal language is bisimulation-invariant we can hope at most to describe
models up to bisimulation. However, it is not immediate that this can be done
and, in fact, it is usually not the case. For example, finite unimodal K-states
(i.e., arbitrary finite Kripke frames) cannot be defined up to bisimulation over
the basic modal language, but they can over PDL [9,2].

Over the class of transitive models we do have that finite pointed models are
definable up to bisimulation in the basic modal language, but greater expressive
power is needed to define simulability [6]. Over S5 we should expect the situ-
ation to become much simpler because accessibility is an equivalence relation
[8] – indeed, both simulability by and bisimilarity to finite models are modally
definable in this class – but once we consider multiagent models, things become
trickier.

Our goal is, for S5, to explore when finite epistemic models are definable up
to simulability or bisimulation, either over the basic modal language L or the
language LC enriched with common knowledge operators. Our main results are

1. simulability is not definable in general in LC (Theorem 2);
2. finite epistemic states are not definable up to bisimulation in L (Theorem 1);
3. finite epistemic models are defined up to bisimulation by model validity in L

(Theorem 3), and
4. there is a class of epistemic models we call well-multifounded for which sim-

ulability is definable over L (Theorem 5).

Note that finite epistemic states are definable up to bisimulation in LC [10]; our
third result is a variant of this, exploiting the fact that the common knowledge
operator is used in a somewhat shallow fashion there.

2 Epistemic Logic

We consider the basic language of epistemic logic L = LA, where A is a non-empty
finite set of ‘agents’ (in this paper mainly a and b) and whose formulas are built
from propositional variables in a finite set PV using the Boolean connectives ∧
and ¬ (all other connectives are to be defined in terms of these) and the unary
modal operator Ka for each a ∈ A. We write Ma as a shorthand for ¬Ka¬. The
reason we work with a finite set PV of propositional variables is that, evidently,
one cannot define models up to simulation or bisimulation in the presence of
infinitely many variables using a finite formula.

The language LC is an extension of L which introduces an operator CB (‘com-
mon knowledge’) for each B ⊆ A.

We are interested in interpreting L and LC over epistemic models, which are
tuples

M = 〈|M|,∼M, �·�M〉

where |M| is a non-empty set, ∼M a tuple of equivalence relations a∼M for each
a ∈ A and

�·�M : PV→ 2|M|.

On the Definability of Simulability and Bisimilarity 77

We will usually omit the subindex on ∼M unless this may lead to confusion.
The valuation �·�M is extended to arbitrary formulas in the standard way for
Booleans. For the epistemic modal operator we have

�Kaϕ�M = {s ∈ |M| : ∀t a∼ s, t ∈ �ϕ�M} ,

and �CBϕ�M is the largest subset F of |M| such that, if s ∈ F , b ∈ B and t b∼ s,
then t ∈ �ϕ�M. For t ∈ �ϕ�M we also write 〈M, t〉 |= ϕ, and if 〈M, t〉 |= ϕ for all
t ∈ |M| we writeM |= ϕ, and we say ϕ is valid on modelM. An epistemic state
(or pointed epistemic model) is a pair 〈M, s〉 where M is an epistemic model
and s ∈ |M|.

3 Simulation and Bisimulation

In this section we define simulations and bisimulations, and some notions and
results linking these to the logical language.

Definition 1. If M, N are epistemic models, a simulation between M and N
is a binary relation

S ⊆ |M| × |N | such that

Atoms for every x S y and every propositional variable p, x ∈ �p�M ⇔ y ∈
�p�N and

Forth if x′ a∼Mx and x S y, there is y′ a∼N y with x′ S y′.

The relation S is a bisimulation if it further satisfies

Back if x S y and y′ a∼N y, there is x′ a∼M x with x′ S y′.

Given models M and N , a point x ∈ |M| simulates y ∈ |N | if there exists a
simulation S ⊆ |M| × |N | such that x S y; we will write 〈M, x〉 � 〈N , y〉. We
also say that 〈M, x〉 simulates 〈N , y〉, or that 〈N , y〉 is simulated by 〈M, x〉.

If a bisimulation B exists between M and N such that x B y, we will write
〈M, x〉 � 〈N , y〉 or (unless confusion results) x � y. We writeM � N (in words,
M and N are bisimilar to each other) if there is a bisimulation between them
with domain |M| and range |N |. This is called a total bisimulation.

A well-known fact [3] is that:

Proposition 1. If 〈M, x〉 � 〈N , y〉, then x and y satisfy the same formulas
of L.

Although we are mainly interested in “full” simulations and bisimulations, we
occasionally need an approximation to a bisimulation given by an k-bisimulation,
defined as follows:

Definition 2. Let M,N be epistemic models, x ∈ |M| and y ∈ |N | and k ≥ 0.
We define x �k y (x is k-bisimilar to y) if x and y satisfy the same set of atoms
and either k = 0 or the following variant of the ‘back and forth’ conditions holds:

78 H. van Ditmarsch, D. Fernández-Duque, and W. van der Hoek

Forth’ if x′ a∼M x, there is y′ a∼N y with x′ �k−1 y′ and
Back’ if y′ a∼N y, there is x′ a∼Mx with x′ �k−1 y′.

Then we have the following, also found in [3]:

Proposition 2. If 〈M, x〉 �k 〈N , y〉, then x and y satisfy the same formulas of
L of modal depth at most k.

Recall that the modal depth of a formula ϕ is the nesting number of modal
operators appearing in ϕ.

We continue by defining some relevant types of formulas. Let an epistemic
state 〈M, s〉 be given, and a logical language LAN, where LAN is either L or LC .

The factual description σs ∈ LAN of state s in M is the conjunction of the
values of all variables in s: Let σp = p if s ∈ �p�M and else σp = ¬p, then
σs :=

∧
σp.

A characteristic formula χ〈M,s〉, or, alternatively, a description of the epis-
temic state 〈M, s〉, is a LAN formula that is true in 〈M, s〉 and such that
〈N , t〉 |= χ〈M,s〉 implies 〈N , t〉 � 〈M, s〉. Similarly a description of an epis-
temic modelM is a LAN formula χM true in the modelM and such that for all
N , N |= χM implies M � N .

A distinguishing formula between two subsets S, S′ of an epistemic modelM
is a LAN formula δS,S′ such that S ⊆ �δS,S′�M whereas S′ ∩ �δS,S′�M = ∅. If
S = {x} and S′ = {y} we write δx,y and we say that δx,y distinguishes x from y in
M; and for a formula that distinguishes a state x from all other (non-bisimilar)
states in the model M we write δx. For a distinguishing δx we have that for all
t inM, 〈M, t〉 |= δx implies 〈M, t〉 � 〈M, x〉.

4 Undefinability

Some (meta-) property Φ is definable over logical language LAN (where LAN is
L or LC) iff there is some ϕ ∈ LAN such that for all epistemic states 〈M, s〉 we
have 〈M, s〉 |= ϕ iff 〈M, s〉 satisfies Φ. In particular, to say that ‘being bisimilar
to a finite epistemic state’ is definable over LAN means that for every 〈M, x〉
with |M| being finite, there is some formula ϕ〈M,x〉 ∈ LAN such that, for every
epistemic state 〈N , y〉,

〈N , y〉 |= ϕ〈M,x〉 ⇔ 〈M, x〉 � 〈N , y〉 . (1)

Replacing � by � in (1) we have definability of ‘being simulated by a finite
epistemic state’.

Theorem 1. The property of being bisimilar to a finite epistemic state is not
definable over L.

Proof. See also Figure 3. Given N < ω, consider the model SN consisting of
2N + 1 states

|SN | = {sn : −N ≤ n ≤ N}

On the Definability of Simulability and Bisimilarity 79

a,b

e0 e1

S3

s−3 s−2 s−1 s0 s1 s2

a bbab a

E

Fig. 3. The models E and S3. p-states are black

such that sn
a∼ sn+1 if n is even, sn

b∼ sn+1 if n is odd and

�p�SN
= {s2n ∈ |SN | : n < N} .

Let E be a model with two worlds e0, e1, both indistinguishable to both agents
and with �p�E = {e0}.

Then, clearly, for all N
〈SN , s0〉 �� 〈E , e0〉 (2)

yet an easy induction shows that

〈SN , s0〉 �N 〈E , e0〉 (3)

Now suppose there would be a formula ϕ〈E,e0〉 such that for all states 〈M, x〉,
we would have 〈M, x〉 |= ϕ〈E,e0〉 iff 〈M, x〉 � 〈E , e0〉. Let k be the modal depth of
ϕ〈E,e0〉. Since every model is bisimilar to itself, we would have 〈E , e0〉 |= ϕ〈E,e0〉.
Also, by (3) we would conclude 〈Sk, s0〉 |= ϕ〈E,e0〉, which would then yield, by
our assumption, that 〈Sk, s0〉 � 〈E , e0〉, which contradicts (2).

Theorem 2. The property of being simulated by a finite epistemic state is not
definable over LC .

Proof. Let E be as in the proof of Theorem 1. We will define two epistemic states
〈H, 0〉 and 〈H′, 0〉 satisfying the following properties:

1. for all ϕ ∈ LC : 〈H, 0〉 |= ϕ iff 〈H′, 0〉 |= ϕ.
2. 〈E , e0〉� 〈H′, 0〉
3. not 〈E , e0〉� 〈H, 0〉.

Consider the two variants of a ‘spider’ (See also Figure 4.) The first of those
is H given by

|H| = {0} ∪ {〈n, m〉 : 0 < |n| < m}

with 〈n, m〉 a∼ 〈n + 1, m〉 if n is odd, 〈n, m〉 b∼ 〈n + 1, m〉 if n is even, 0 a∼ 〈1, m〉
and 0 b∼ 〈−1, m〉 for all m and

�p�H = {〈n, m〉 : n is odd} .

Then consider the spider H′, defined as H but with {〈n, ω〉 : n ∈ Z \ {0}}
added (this set represents two ‘infinite legs’ of the spider).

80 H. van Ditmarsch, D. Fernández-Duque, and W. van der Hoek

2

3

4

ω

0 1 2 3 ...

...

-1-2-3...

b

b

b a

a

a

b a

a

a

a

b

b

b

b

b

a

a

Fig. 4. Part of the spider H′ (0 < |n| < 5 and m ∈ {2, 3, 4, ω}). p-states are black,
¬p-states are white. The large state at the center is 0. The two bottom legs are infinite;
H lacks them.

Then, 〈H, 0〉 and 〈H′, 0〉 satisfy the same set of LC formulas; we omit the
proof, which uses common knowledge games (cf. [11]).

Now, being simulated by 〈E , e0〉 is equivalent to there being an infinite se-
quence 〈sn : n ∈ Z〉 of possibly repeating states such that s0 = 0, sn+1

a∼ sn if n
is even, sn+1

b∼ sn if n is odd, and sn satisfies p if and only if n is odd. To see this,
suppose that N is some model, and S ⊆ |E| × |N | is a non-empty simulation.
Then, there is some s0 ∈ |N | such that e0 S s0. Now, because S is a simulation
and e1

a∼E e0, there is s1
a∼ s0 such that e1 S s1; similarly, e1

b∼E e0, so there is
s−1

b∼ s0 such that e1 S s−1. Now, to find s2 we note that e1
b∼E e0, so because

S is a simulation there must be s2
b∼ s1 with e0 S s2.

Continuing in this fashion (in both directions) we obtain sn for each n. Note
that the actual point may be repeated, but this is not important.

Now, some inspection will show that H′ provides such a sequence (on its ω-
branch). More precisely, we define a simulation S ⊆ |E| × |H′| with e0 S 0 and
ei S 〈n, ω〉 if and only if i ≡ n (mod 2).

However, H does not have such an infinite sequence, so 〈E , e0〉 � 〈H′, 0〉 but
〈E , e0〉 �� 〈H, 0〉, as claimed.

5 Definability

When describing a state s in a modal structure using a formula χs, what matters
is the factual description σs of s, and a description χt of every accessible state
t together with a statement that nothing else is accessible. So the basic pattern
for state s is σs ∧

∧
Rst Mχt ∧K

∨
Rst χt, where, in turn, each χt has a pattern

On the Definability of Simulability and Bisimilarity 81

similar to χs. This is the basis of the 1970s Jankov-Fine construction to describe
finite modal tree structures [3]. The unwinding of an S5-structure is an infinite
tree, where this does not work, unless we have infinitary modal operators or an
infinitary language at our disposition. In [2] the authors show that any model
〈M, s〉 has a characteristic formula in the modal language with infinitary con-
junctions and disjunctions. In the subsequent [9] an alternative route is taken via
infinitary modal operators. In an older setting, [4] tackle the issue for CTL and
CTL∗ and prove characterization of finite models in CTL. The modus operandi
in [2,9] is to introduce fresh variables ps for a given modal structure, one for each
state s, and describe the fixpoint using these fresh variables ps. This serves to
characterize modal structures but at the price of going to an extended language
with an infinite stock of variables. The explicit purpose of these fresh variables
is to make each state unique. The implicit justification for this procedure is
that it does not matter if we change a model structure in the value of ‘irrele-
vant’ variables (in an S5 setting one could imagine a variable to be irrelevant
if it is commonly known to be true or false, so that—psychologizing—it can be
removed from the vocabulary in which agents reason about their uncertainty).
But this approach does not serve our present goals, for two reasons: firstly, we
want to give a characteristic formula in a given logical language, i.e., with a
given set of propositional variables, and secondly, the procedure of introducing
fresh variables makes bisimilar states s and t non-bisimilar, even at the Atoms
level.

So, to distinguish a state from other states, state descriptions σs are too
weak but fresh variables ps are too strong. There is a way in between. Given a
finite multi-agent S5 model, iterating the (multi-agent version of the) Jankov-
Fine construction above up to the number of states in a model, for each s we
can construct a distinguishing formula δs in L. Clearly, this construction may
be costly. Van Benthem also mentions the distinguishing formulae δs in [9],
in the setting of PDL. Another result in [9] is that every finite 〈M, s〉 has a
characteristic formula in PDL with the Kleene *, using the existence of such
distinguishing formulas δs. In [9] in fact only the unimodal case is considered,
over arbitrary K-models. This can be generalized to a set of PDL-action labels
a, b, . . . ; we fill in the details here (see also [10,12]). Given a finite set of action
labels a1, . . . , an = A, we can see the corresponding dynamic modal operators
[a1], . . . , [an] also as epistemic modal operators Ka1 ,, Kan ; and instead of the
Kleene-* applied to the choice between all these operators (a crucial detail!), i.e.,
(a1 + ... + an)∗, interpreted by the accessibility relation (Ra1 ∪ · · · ∪ Ran)∗, we
take the common knowledge operator CA. Given that translation, we can adapt
[9, Proposition 3].

Lemma 1. Each finite epistemic state 〈M, s〉 is distinguished from all other
(non-bisimilar) points inM by a formula δs in epistemic logic without common
knowledge.

Proof. For any finite model M, the following informal algorithm partitions its
domain SM into its bisimulation equivalence classes, with a distinguishing for-
mula for each class. We give the construction for a single agent and for a finite set

82 H. van Ditmarsch, D. Fernández-Duque, and W. van der Hoek

of variables P , the multi-agent case is similar. The algorithm consists of a finite
iteration. For step 0, consider the state descriptions σs for all states s ∈ SM,
and refine the domain into subsets with the same state description. Before we
show step n + 1 given step n, let us show step 1. For step 1, we proceed with
the non-singleton subsets. Consider some such subset S′ ⊆ SM. For each s ∈ S′,
consider the formulas σs ∧

∧
t∼s Mσt ∧K

∨
t∼s σt, and refine S′ into subsets sat-

isfying the same such formula. Formally, for step 0, let δ0
s := σs; and for step

n + 1, we get δn+1
s := σs ∧

∧
t∼s Mδn

t ∧K
∨

t∼s δn
t . Proceed iteratively until all

sets are singletons or until a maximum of |SM| steps is reached. As the outcome
of this process, each state is accompanied by a distinguishing formula δs, where
δs = δm

s for some m ≤ |M|. Note that all δs are in L. In this construction,
bisimilar states will end up in the same subset.1

Theorem 3. Each finite epistemic model M is characterised by a formula in
epistemic logic without common knowledge; that is, given finiteM there exists
a formula χM ∈ L such that, for every (possibly infinite) epistemic model N ,
N |= χM if and only if M � N .

Proof. Let M be finite, and without loss of generality, suppose it contraction-
minimal, i.e., M is not bisimilar to a smaller model. Also assume that it is
generated. Define

Forthx =
∧
a∈A

∧
y

a∼x

Maδy and Backx =
∧
a∈A

Ka

∨
y

a∼x

δy;

χM =
∨

x∈|M|
δx ∧

∧
x∈|M|

(δx → Forthx ∧ Backx) (4)

Now the following are equivalent, for any 〈N , t〉:
– M � N
– N |= χM.

SinceM, s |= χM, any bisimilar model N also satisfies χM. For the converse,
If N |= χM, then we can define a relation

B ⊆ |M| × |N |

given by x B y if and only if y ∈ �δx�N . Then, it remains to be checked that B
is a bisimulation; indeed, if x B y and x′ a∼ x, then we have that y satisfies δx

and, since
〈N , t〉 |= δx → Forthx

(use χM), it follows that y satisfies Maδx′ , and thus there is y′ a∼ y such that y′

satisfies δx′ , i.e., x′ B y′. Thus B satisfies Forth.
A similar argument shows that B satisfies Back as well, and hence it is a

bisimulation.
1 The maximum |SM| of the iteration is also mentioned as Facts 7 and 8 in [9, p.30];

but no actual construction is given there. A similar maximum can be construed in
the CTL setting of the older publication [4].

On the Definability of Simulability and Bisimilarity 83

Compare this to the following, proven in [10]:

Theorem 4. Given a finite modelM and x ∈ |M|, there is a formula χ〈M,x〉 ∈
LC such that, given any finite state 〈N , y〉, 〈N , y〉 |= χ〈M,x〉 if and only if
〈N , y〉 � 〈M, x〉.

Note that, by Theorem 1, the use of common knowledge is essential. Indeed,
common knowledge is used as follows:

χ〈M,s〉 = δs ∧ CA

∧
x∈|M|

(δx → Forthx ∧ Backx) (5)

We observe that common knowledge is used rather weakly, namely in the form
of a single occurrence of that operator. Compare this with Theorem 3 above,
that does not have the common knowledge operator. We further point out the
resemblance with the distinguishing formula construction in the proof of Lemma
1. There, we use the Yankov-Fine construction iteratively up to the size of the
finite model, and with building units the state descriptions. Whereas for the
characteristic formula we use the Yankov-Fine construction as a conjunction
over all states in the model, closed by common knowledge, and with building
units the distinguishing formulas.

Now we turn our attention to a setting in which simulability does become
definable:

Definition 3 (Well-multifounded models). An epistemic model M is well-
multifounded if there does not exist an infinite sequence of states sn

a(n)∼ sn+1

such that for all n, sn �= sn+1 and a(n) �= a(n + 1).

The model M1 from Figure 1 is well-multifounded, the models M2 and M3

from Figure 2 are not.

Theorem 5. IfM is well-multifounded and finite and s ∈ |M|, then simulabil-
ity by 〈M, s〉 is definable over L.

Proof. Suppose thatM is well-multifounded and finite. We first note that given
two distinct states s, t ∈ |M|, there is at most one agent a ∈ A such that s a∼ t;
otherwise, this would immediately give us an infinite loop s, t, s, t, s... violating
well-multifoundedness.

Now, pick s∗ ∈ |M|. We will show, by induction on the size ofM, that there
is a formula Sim(〈M, s∗〉) defining the property of being simulated by 〈M, s∗〉.

The base case, when M has no states, is vacuously true.
Suppose, then, that a formula Sim(〈Y, s〉) exists defining the property of being

simulated by 〈Y, t〉 whenever Y is well-multifounded and has strictly less states
than M.

Consider
N =M � (|M| \ {s∗}),

i.e., the model obtained by deleting s∗ from M.

84 H. van Ditmarsch, D. Fernández-Duque, and W. van der Hoek

Because N is smaller thanM, for every t ∈ |N | there is a formula Sim(〈N , t〉)
which defines simulability by 〈N , t〉; that is, such that given any epistemic model
X and x ∈ |X |, 〈N , t〉� 〈X , x〉 if and only if X , x |= Sim(〈N , t〉).

Recall that σ(s) is the conjunction of all literals (propositional variables or
their negation) which are true on s. Define

Sim(〈M, s∗〉) = σ(s∗) ∧
∧
a∈A

∧
t

a∼Ms∗

Sim(N , t).

We claim that Sim(〈M, s∗〉) defines being simulated by 〈M, s∗〉 over the class
of epistemic models, that is, given any state 〈X , x〉 we have that

〈M, s∗〉� 〈X , x〉 ⇔ 〈X , x〉 |= Sim(〈M, s∗〉).

We consider each direction separately.

Left-to-right. Assume that 〈M, s∗〉� 〈X , x〉, so that there is a simulation

S ⊆ |M| × |X |

with s∗ S x. We need to show that X , x |= Sim(〈M, s∗〉).
Clearly x ∈ �σ(s∗)�X . Now, if t a∼M s∗, because S is a simulation there is

y a∼X x such that t S y.
We need to show that y ∈ �Sim(〈N , t〉)�X to establish our claim; but by our

induction hypothesis, it suffices to observe that S � |N | is a simulation (the ‘forth’
condition is clearly preserved by submodels), and by assumption the existence
of such a simulation implies that y satisfies Sim(N , t).

Looking at the definition of Sim(〈M, s∗〉), it follows that x ∈ �Sim(〈M, s∗〉)�X ,
as desired.

Right-to-left. Suppose that x∗ ∈ �Sim(〈M, s∗〉)�X ; we need to construct a
simulation S ⊆ |M|× |X | such that s∗ S x∗. In fact, for our inductive argument
to work it is convenient to define S so that it is a function; let us call a simulation
which is a function an embedding. Let B be the set of all agents a such that there
is t �= s∗ with t a∼M s∗. For each a ∈ B pick a fixed representative d(a) with the
property that d(a) a∼M s∗.

Let Na define the submodel of N generated by d(a). We claim:

1. each Na is well-multifounded.
(Since well-multifoundedness is preserved under submodels);

2. Na does not depend on the specific choice of d(a); that is, for all t a∼M s∗,
the model Na equals the submodel of N generated by t.
(If t a∼M s∗, by transitivity we have that t a∼ d(a), so t ∈ |Na|; similarly, d(a)
is contained in the submodel generated by t, so the two are equal.)

3. |Na| ∩ |Nb| = ∅ whenever a �= b.
(If t ∈ |Na|∩|Nb|, we have a path connecting d(a) to t and another connecting
d(b) to t (this is the definition of lying in the generated submodel). ‘Pruning’

On the Definability of Simulability and Bisimilarity 85

the path if necessary, we can assume that points do not repeat and the agents
connecting consecutive points are distinct.
These two paths give us a ‘loop’ which begins on s∗ and passes through d(a),
then t, then d(b) and back to s∗; we can then run this loop infinitely many
times to obtain a sequence violating well-multifoundedness. We conclude
that there is no such t.)

For every a ∈ B and t a∼ s∗, we have x∗ ∈ �MaSim(〈N , t〉)�X (by Sim(〈M, s∗〉));
in particular,

x∗ ∈ �MaSim(〈N , d(a)〉)�X .

By induction we can assume that there is y(a) a∼X x∗ and an embedding Sa ⊆
|Na| × |X | such that d(a) Sa (d(a)) = y(a)2. Define

S = {〈s∗, x∗〉} ∪
⋃

a∈B

Sa.

We claim that S is an embedding: clearly it preserves propositional variables;
it remains to check that the ‘forth’ condition holds. It is easy to see that S is
indeed a function, since we have only added the pair 〈s∗, x∗〉 to a disjoint union of
functions (with disjoint domains). Thus the ‘forth’ condition becomes: if s a∼M t
then S(s) a∼X S(t).

To prove this, pick s a∼M t and suppose that x = S(s). There are essentially
three cases we must consider. (1) s, t ∈ N . They both lie in some Na, since
these models are generated; but then Sa is an embedding, so Sa(s) a∼X Sa(t).
(2) s = s∗, so that S(s) = x∗. By transitivity of a∼M we have that t a∼M d(a),
hence Sa(t) a∼X y(a) and, by transitivity of a∼X , we have that Sa(t) a∼X x∗,
which is what we needed. (3) t = s∗. Then s ∈ |Na|, and because these sets
are disjoint it is the only agent for which this holds. Thus S(s) = Sa(s). Now,
s a∼M s∗ a∼M d(a), so by transitivity s a∼M d(a) and, because Sa is a simulation,
Sa(s) a∼X y(a) a∼X x∗, as desired.

6 Conclusion and Further Research

When building multi-agent systems applications, in case you want to execute
some dynamics, you often want to apply the action ‘right here in the model’.
Unless you have nominals, you can enforce this by preconditions that distin-
guish that state from other states. This can be done in logic without com-
mon knowledge. However, there are different cases wherein you want to pin
down the current state including all its epistemic aspects. ‘Only under exactly
these conditions, this action will apply’. Then you need a characteristic formula
and that can only be done in epistemic logic with common knowledge. This

2 Properly speaking, we begin with an embedding S′
a between N and X and restrict

it to Na.

86 H. van Ditmarsch, D. Fernández-Duque, and W. van der Hoek

significant distinction may not always be observed. We hope that our results,
already known in the communities of PDL and CTL, may therefore contribute
to logical hygiene in epistemic applications.

Computing characteristic formulas employing distinguishing formulas may be
costly. For specific model classes the characteristic formulas may be simpler.
Static interpreted systems [5] consist of a domain of global states, where each
global state is a collection of local states, one for each agent. If agents only know
their local state, the description of the global state (i.e., the description of the
valuation) is a distinguishing formula in the Kripke model for that interpreted
system. (See also [7] on the relation between interpreted systems wherein agents
only know their local state, and Kripke models, by way of ‘hypercubes’.) Also,
for such systems, the characteristic formula has a special shape wherein fac-
tual (purely propositional), positive, and negative knowledge can be separated
as different parts of the formula. The factual part says that one of all global
states in the system must be the case (this is therefore a large disjunction of
state descriptions); the positive part says that each agent knows her local state,
and the negative part sums up the ignorance. This approach is followed in [12]
for interpreted systems modelling card deals—but it can clearly be generalized.
The constructions in the previous section, instead, consist of many conjuncts
in each of which all these three types of formula are mixed. The modular form
of characteristic formulas for such interpreted systems is an advantage, because
when there are dynamic developments in the system it allows us to focus on
the changing parts of the formula: factual and positive knowledge are always
preserved, and only the negative knowledge, the ignorance, is reduced.

Here our results on simulability are also useful, since simulation is intimately
related with epistemic actions. Roughly speaking, epistemic actions are events
by which agents learn new information, and given an epistemic model M, any
submodel N ofM (and even more: if N results from executing whatever action
model in M, then N is simulated by M) models a situation where agents have
more positive knowledge than they had onM, since each new world onM repre-
sents a new source of uncertainty for the agents. Simulation is the bisimulation-
invariant analogue of being a submodel; that is, N �M is only slightly more
general than to say that N is bisimilar to a submodel ofM.

Thus defining submodels up to simulability helps us interiorize dynamics into
the syntax by fully describing the effect of certain epistemic actions on a model.
This could be used to turn a static description of a model into a dynamic one, by
describing which epistemic states may result after executing those actions which
are available to the agents.

For future research, it is also worthwhile to determine (and lower) the com-
plexity of the computation of distinguishing formulas, the building stones of
the characteristic formulas. Complexity worries were already uttered in [4]—but
we do not know of any subsequent resolution. In the case of static interpreted
systems where state descriptions are already distinguishing, this is clearly more
efficient.

On the Definability of Simulability and Bisimilarity 87

Acknowledgment

We thank the CLIMA reviewers for comments. Hans van Ditmarsch is also affili-
ated to IMSC (Institute of Mathematical Sciences Chennai), India, as associated
researcher.

References

1. Aczel, P.: Non-Well-Founded Sets. CSLI Lecture Notes, vol. 14. CSLI Publications,
Stanford (1988)

2. Barwise, J., Moss, L.S.: Vicious Circles. CSLI Publications, Stanford (1996)
3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-

retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
4. Browne, M., Clarke, E., Grümberg, O.: Characterizing Kripke structures in tem-

poral logic. In: Ehrig, H., Levi, G., Montanari, U., Kowalski, R. (eds.) CAAP 1987
and TAPSOFT 1987. LNCS, vol. 249, pp. 256–270. Springer, Heidelberg (1987)

5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

6. Fernández-Duque, D.: On the modal definability of simulability by finite transitive
models. In: Studia Logica (forthcoming, 2011)

7. Lomuscio, A.R., Ryan, M.D.: On the relation between interpreted systems
and kripke models. In: Wobcke, W.R., Pagnucco, M., Zhang, C. (eds.) Agents
and Multi-Agent Systems Formalisms, Methodologies, and Applications. LNCS
(LNAI), vol. 1441, pp. 46–59. Springer, Heidelberg (1998)

8. Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge Tracts in Theoretical Computer Science, vol. 41. Cambridge University
Press, Cambridge (1995)

9. van Benthem, J.: Dynamic odds and ends. ILLC Technical Report ML (1998)
10. van Benthem, J.: ‘One is a lonely number’: on the logic of communication. In:

Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium 2002. Lecture
Notes in Logic, vol. 27. Association for Symbolic Logic (2002)

11. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Berlin (2007)

12. van Ditmarsch, H., van der Hoek, W., Kooi, B.P.: Descriptions of game states. In:
Mints, G., Muskens, R. (eds.) Logic, Games, and Constructive Sets. CSLI Lecture
Notes, vol. 161, pp. 43–58. CSLI Publications, Stanford (2003)

Applications of Logic in Social Choice Theory

(Invited Talk)

Ulle Endriss

Institute for Logic, Language and Computation (ILLC)

University of Amsterdam

Abstract. Social choice theory studies of how groups of people should
and do make collective decisions. In this talk I will argue that modern
logic can contribute to the study of social choice theory in many different
ways, and I will substantiate this claim with examples from recent work
by members of my group at the University of Amsterdam.

1 Social Choice Theory

Social choice theory (SCT) is the formal study of mechanisms for collective
decision making. As a scientific discipline, it is usually considered to be part of
Economic Theory, although it also plays an important role in Political Science
and Philosophy. In recent years, furthermore its fundamental significance for
work in Multiagent Systems has become to be widely recognised.

The archetypal problem in the field is preference aggregation: given the pref-
erences of a number of agents over a set of alternatives, how should we aggregate
these individual preferences so as to arrive at a single collective preference order?
To see that this is not a trivial question, consider the following example. There
are three alternatives, called A, B and C, and five agents. The preferences of
each agent are modelled as a linear order over the set of alternatives:

Agent 1: A � B � C
Agent 2: B � C � A
Agent 3: C � A � B
Agent 4: C � A � B
Agent 5: B � C � A

The most obvious approach for obtaining a collective preference order is to use
the majority rule: rank X above Y if and only if a majority of the agents do. If
we follow this rule, then we must adopt A � B (as three of the agents do), B � C
(as again three of the agents do), and C � A (as four of the agents do). But this
means that we get a collective preference order that is cyclic! This surprising
outcome is an instance of the Condorcet Paradox, named after the 18th century
political scientist and mathematician who first discussed it at length.

The question now arises whether there is a better aggregation rule than the
majority rule, one that does not suffer from this paradox. Social choice theo-
rists have approached this question using the so-called “axiomatic method”: by

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 88–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Applications of Logic in Social Choice Theory 89

formulating desirable properties of aggregation rules as “axioms” in a mathemat-
ically rigorous manner, they have been able to obtain results that show that it
is impossible to find a rule that satisfies a certain combination of desirable prop-
erties or that a certain combination of such properties uniquely characterises a
particular rule. Famous examples include Arrow’s Theorem (showing that there
exists no preference aggregation rule for three or more alternatives that respects
unanimous choices made by the individuals, that ranks pairs of alternatives in-
dependently from how other alternatives are ranked, and that is not dictatorial);
the Gibbard-Satterthwaite Theorem (showing that there exists no voting rule for
three or more alternatives that does not exclude an alternative from winning a
priori, that does not allow for situations in which a voter can benefit from sub-
mitting a ballot that does not truthfully reflect her actual preferences, and that
is not dictatorial); and May’s Theorem (showing that for two alternatives the
majority rule is the only aggregation rule that treats all agents and alternatives
symmetrically and that respects a basic monotonicity condition).

2 Applications of Logic

Logic has long played an important role in SCT: for instance, some properties of
aggregation rules entail other properties, and impossibility theorems establish
the inconsistency of certain sets of properties.

However, this use of “logic” is rather informal in nature. While it does refer to
logical concepts such as “consistency”, it does not make use of a formal language.
In the sequel I will argue that logic, including formal symbolic logic, has many
more applications in SCT, and I will substantiate this claim with examples from
recent work by members of my group at the University of Amsterdam.1

2.1 Representation of Preferences

Before we can tackle the problem of aggregating preferences, we need to decide
how to model the preferences themselves. In classical SCT, preferences are taken
to be linear (or weak) orders over the set of alternatives, but other types of
preference structures are also of interest (see e.g. [4]).

How to actually represent preferences, using a formal language, becomes criti-
cal when alternatives have a combinatorial structure, e.g., when agents are asked
to express their preferences over all combinations of assigning truth values to, say,
ten variables. (For an introduction to the field of preference modelling for social
choice in combinatorial domains, see the expository article authored jointly with
Chevaleyre et al. [1].) One family of languages proposed is based on weighted
goals: agents describe their preferences in terms of propositional formulas they
would like to see satisfied, together with numerical weights indicating their

1 This is not intended to be a comprehensive review of the field; in particular, refer-
ences are restricted to my own work. For extensive references to the use of logic in
SCT, as well as to work in classical SCT and modern computational social choice
more generally, please refer to the bibliographies of the cited papers.

90 U. Endriss

relative importance. Besides their application in SCT, also the study of the
properties of such languages themselves, e.g., their expressive power, has lead to
interesting research questions [11,12].

Much of this work requires only classical propositional logic, but nonclassical
logic also has a role to play. For instance, for resource allocation problems where
there may be multiple copies of the same type of resource available, linear logic
turns out to be the right kind of formalism to represent preferences [9].

2.2 Characterisation and Impossibility Results

A natural application of logic in SCT is to attempt to fully formalise parts of the
field. For instance, we have been able to give a full formalisation, in classical first-
order logic, of the framework of preference aggregation introduced by Arrow and
we have shown that Arrow’s Theorem corresponds to the claim that a particular
set of first-order formulas does not have a finite model [6].

In another line of work we have shown that paradoxes of social choice, such as
the Condorcet Paradox, can be explained in terms of the violation of an integrity
constraint, expressed in propositional logic, that characterises the domain of ag-
gregation [7,8]. This approach provides a new way of characterising aggregation
rules, namely in terms of the types of integrity constraints it respects, as well as
a new proof technique for deriving old and new impossibility theorems in SCT.

2.3 Automated Reasoning in Social Choice Theory

One motivation for seeking to formalise SCT is that it opens up the possibility
of using automated theorem provers to verify known results. For instance, a by-
product of our work on the formalisation of the Arrovian framework of preference
aggregation is a specification of that framework in the language of Prover9, the
automated theorem prover formerly known as Otter [6]. Further optimisation
may one day lead to a fully automated proof of Arrow’s Theorem.

In another area of SCT, known as ranking sets of objects, we already have been
able to obtain results in a fully automated manner. Here the choice-theoretic
problem is how to extend an agent’s preferences over individual objects to a
preference order over sets of such objects. Building on a model-theoretic result,
we have been able to use a satisfiability checker to not only verify known impos-
sibility theorems but also to discover nontrivial new results [5].

2.4 Judgment Aggregation

Logic is not only useful for the analysis of aggregation problems, but information
expressed in terms of logic may itself be subject to aggregation. This kind of
problem is studied in the field of judgment aggregation (JA). Suppose three
agents each have to judge which of the formulas ϕ, ψ and ϕ ∧ ψ are true:

ϕ ψ ϕ ∧ ψ
Agent 1: true true true
Agent 2: true false false
Agent 3: false true false

Applications of Logic in Social Choice Theory 91

Observe that each agent provides a logically consistent set of judgments. How
should we aggregate this information? If we use the majority rule for each
proposition, then ϕ should be collectively accepted, ψ should also be collectively
accepted, and ϕ∧ψ should be collectively rejected—that is, we obtain an incon-
sistent judgment set! Over the past decade or so, this paradox of JA has given rise
to a fast moving area of research, spanning Legal Theory, Philosophy, Economic
Theory and AI. For instance, we have recently begun to analyse the computa-
tional complexity of a number of problems that naturally arise in JA [2,3].

While originally associated with problems in legal reasoning, it is not hard
to see that JA can have a range of significant applications in other fields as
well. One of them I believe to be the Semantic Web, and more specifically the
aggregation of knowledge distributed over a number of different ontologies [10].

References

1. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Preference handling in combi-
natorial domains: From AI to social choice. AI Magazine 29(4), 37–46 (2008)

2. Endriss, U., Grandi, U., Porello, D.: Complexity of judgment aggregation: Safety
of the agenda. In: Proc. 9th International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS-2010 (2010)

3. Endriss, U., Grandi, U., Porello, D.: Complexity of winner determination and
strategic manipulation in judgment aggregation. In: Proc. 3rd International Work-
shop on Computational Social Choice, COMSOC-2010 (2010)

4. Endriss, U., Pini, M.S., Rossi, F., Venable, K.B.: Preference aggregation over re-
stricted ballot languages: Sincerity and strategy-proofness. In: Proc. 21st Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-2009 (2009)

5. Geist, C., Endriss, U.: Automated search for impossibility theorems in social
choice theory: Ranking sets of objects. Journal of Artificial Intelligence Research
(JAIR) 40, 143–174 (2011)

6. Grandi, U., Endriss, U.: First-order logic formalisation of arrow’s theorem. In: He,
X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS, vol. 5834, pp. 133–146. Springer,
Heidelberg (2009)

7. Grandi, U., Endriss, U.: Lifting rationality assumptions in binary aggregation.
In: Proc. 24th AAAI Conference on Artificial Intelligence, AAAI-2010 (2010)

8. Grandi, U., Endriss, U.: Binary aggregation with integrity constraints. In: Proc.
22nd International Joint Conference on Artificial Intelligence, IJCAI-2011 (2011)

9. Porello, D., Endriss, U.: Modelling combinatorial auctions in linear logic. In: Proc.
12th International Conference on the Principles of Knowledge Representation and
Reasoning, KR-2010 (2010)

10. Porello, D., Endriss, U.: Ontology merging as social choice. In: Leite, F., Torroni, P.,
Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS (LNAI),
vol. 6814, pp. 157–170. Springer, Heidelberg (2011)

11. Uckelman, J., Chevaleyre, Y., Endriss, U., Lang, J.: Representing utility functions
via weighted goals. Mathematical Logic Quarterly 55(4), 341–361 (2009)

12. Uckelman, J., Endriss, U.: Compactly representing utility functions using weighted
goals and the max aggregator. Artificial Intelligence 174(15), 1222–1246 (2010)

A Geometric Look at Manipulation

Jan van Eijck

CWI, Amsterdam

Abstract. We take a fresh look at voting theory, in particular at the notion of
manipulation, by employing the geometry of the Saari triangle. This yields a ge-
ometric proof of the Gibbard/Satterthwaite theorem, and new insight into what it
means to manipulate the vote. Next, we propose two possible strengthenings of
the notion of manipulability (or weakenings of the notion of non-manipulability),
and analyze how these affect the impossibility proof for non-manipulable voting
rules.

1 Introduction

We start with fixing some terminology, mostly following the conventions of [11].
Let A be a finite set of goods, with |A| > 2. An A-ballot is a linear ordering of A.

Let {1, . . . , n} be a set of voters. An (A, n)-profile is an n-tuple of A-ballots. If P is an
(A, n)-profile, then P can be written as (>1, . . . , >n). >i, the i-th component of profile
(>1, . . . , >n), is the ballot of voter i. >i expresses “what voter i wants.”

Let P(A) be the set of all (A, n)-profiles, for given n ∈ N. A function V : P(A) → A
is a resolute voting rule for A. A function V : P(A) → P+(A) is a voting rule for A. A
function V : P(A)→ P+(A)→ P+(A) with the property that

V(P)(v) ⊆ v

is a social choice function for A. Let ord(A) be the set of all linear orderings of A. A
function

V : P(A)→ ord(A)

is a social welfare function for A. A social welfare function transforms a sequence of
ballots into a single ballot.

When a linear preference order> on A is mentioned, we will use < for {(x, y) | y > x},
≥ for {(x, y) | x > y ∨ x = y}, and ≤ for {(x, y) | x < y ∨ x = y}.

Let P ∼i P′ express that P and P′ differ only in the ballot of voter i.
A voting rule satisfies Pareto if no x is winning if there is some y that every voter

prefers to x:
∀P∀x ∈ V(P)∀y ∈ A(y � x −→ ∃i ∈ N : x ≥i y).

A resolute voting rule V is non-manipulable (NM) (or: strategy-proof) if P ∼i P′ implies
V(P) ≥i V(P′).

Note that in P, “what voter i wants” is expressed by >i, and in P′, “what voter i
wants” is expressed by >′i . If changing the ballot from >i to >′i gives a better outcome
(better, given >i) than sticking to >i, then the voting rule invites strategic voting.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 92–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Geometric Look at Manipulation 93

A voting rule V is non-imposed if any candidate can be a winner: ∀a ∈ A∃P : a ∈
V(P). We will use a slightly weaker property. A resolute voting rule V is weakly non-
imposed (NI) if at least three outcomes are possible: |{x | ∃P : V(P) = x}| ≥ 3.

A resolute voting rule V is a dictatorship if there is some k such that V : P(A) → A
maps any P to the top ranking item in >k.

A voter i is effective (or: pivotal) for V and P if there is some P′ with P ∼i P′ and
V(P) � V(P′).

Here is what the famous ‘Gibbard-Satterthwaite Theorem [5,10] states:

GS. Any resolute voting rule that is NM and that is NI is a dictatorship.

In this paper we will reflect on the theorem by starting out with giving a new easy
proof, and then analyzing what makes the proof so easy.

The more important a theorem is, the harder we should look for explanations
why it is true. And the Gibbard-Satterthwaite theorem is extremely important.
[11]

The Gibbard/Satterthwaite theorem is closely related to Arrow’s Theorem [1], although
the GS theorem is about (resolute) voting rules, while Arrow’s theorem is about social
welfare functions. A proof in dialogue form of Arrow’s theorem, with comments on the
connection with Gibbard/Satterthwaite, is in [4]. Geometric proofs of Arrow’s theorem
exist [9,7]. The geometric approach to paradoxes of preference aggregation from [9] is
extended in [3] to paradoxes of judgement aggregation. In jugdgement aggregation not
all outcomes are possible because the judgements are logically interconnected.

In this paper we give a geometric proof of the Gibbard-Satterthwaite Theorem. Our
first aim is to make (still) clearer why the GS Theorem is true. It will turn out that
our proof is easy because the notion of manipulability is strong. Next, we will analyse
what the proof tells us about the notion of manipulability, and study what some slight
modifications of this notion would do to the proof.

2 Geometry of Voting: The Saari Triangle

If a voter i changes his ballot from >i to >′i , then this change can be decomposed into a
sequence of adjacent transpositions. E.g., the change from abcd to cbad can be decom-
posed into

abcd → bacd→ bcad→ cbad.

First a and b are swapped, then c and a, and finally b and c.
We call such an adjacent transposition where x and y are swapped from a situation

where x is preferred over y to a situation where y is preferred over x an x : y crossing.
Geometrically, an x : y crossing crosses the line between the set of ballots where x is
preferred over y to the set of ballot where y is preferred over x.

For the case of three alternatives, this is made clear in the geometry of profiles given
by the Saari Triangle from [9]. Following [9], we call call the voters that have ballot
a > b > c voters of type 1. The voters of type 2 are those that have ballot a > c > b.
The voters of type 3 have ballot c > a > b. The voters of type 4 have ballot c > b > a.
The voters of type 5 have ballot b > c > a. The voters of type 6 have ballot b > a > c.

94 J. van Eijck

a b

c

1

2

3 4

5

6

Here is how to read this. The closer a region is to a vertex, the more preferred the
vertex. Now the six regions represent the six types of voters. The subtriangle marked
1 is closest to the a vertex and farthest from the c vertex, so this area represents the
a > b > c voters. Note that every time a boundary between regions in the triangle gets
crossed, one binary preference gets swapped. E.g., in crossing from the 1 into the 2
region, b < c gets swapped to c < b.

Geometrically, P ∼i P′ gets represented as a single voter i changing type by moving
from one region in the triangle to another.

To allow draws in the ballots one can allow voters positioned on the lines. It is easy
to extend all that follows to cover such cases as well; it is left to the reader to check that
the argument is not affected by this.

3 A ‘Geometric’ Proof of the Gibbard Satterthwaite Theorem

We will now chart the possible effects of minimal type changes, on the assumption that
the voting rule satisfies NM. It will turn out that the constraints on vote changing that
follow from NM are very strong.

The Crossing Lemma describes the possible effects of x : y crossings on the outcome
of the vote, given that the voting rule satisfies NM. Note that the lemma holds for any
number of alternatives.

Lemma 1 (Crossing Lemma). Let V be NM, and let P ∼i P′ be such that >i and >′i
are related by an adjacent transposition that exchanges x and y (with x >i y). Then
V(P) � V(P′) implies V(P) = x and V(P′) = y.

Proof. Suppose V , P, P′, i, x, y are as in the statement of the Lemma. Assume V(P) �
V(P′). By NM we have that V(P) ≥i V(P′) and V(P) ≤′i V(P′). Since the two orderings
differ only in the positions of x and y, and x and y are adjacent, it follows that V(P) = x
and V(P′) = y. (This continues to hold if ballots are allowed to have ties.) �
For the Saari triangle, where the regions are arranged by adjacent transpositions, we
can visualize the constraints on crossing the a ∼ b divide as follows:

A Geometric Look at Manipulation 95

a b

c

a ∼ b: dividing line between a and b regions

The only vote change that can take place when this line is crossed is from a to b if
the line is crossed from the a region into the b region, and from b to a if it is crossed in
the other direction.

Similarly for the consequences of NM for crossing the b ∼ c divide:

a b

c

b ∼ c: dividing line between b and c regions

The only shift in the vote (given NM) that can take place when this line is crossed
from the b to the c region is from b to c, and vice versa.

Finally, the consequences of NM for crossing the a ∼ c divide:

a b

c

a ∼ c: dividing line between a and c regions

96 J. van Eijck

Crossing from a to c by a single voter can only cause a vote shift from a to c, and
crossing in the other direction can only cause a vote shift from c to a.

Summing up, we get the following crossing rule for crossings in the Saari triangle:

Fact 1. In crossing the x ∼ y divide, from the x region into the y region (call this an
x : y crossing) the only value change that is allowed is from x to y.

The Crossing Lemma is our main tool to prove the following Effectiveness Lemma:

Lemma 2 (Effectiveness Lemma). If V is NM and NI, and i is effective for P, then
V(P) is equal to the top of the i-ballot in P.

Proof. Assume V is NM and i is effective for P, and suppose for a contradiction that
V(P) <i x, where x is the top element of the i-ballot in P. Since i is effective, there is
a profile P′ with P ∼i P′ and V(P) � V(P′). By NM, V(P) >i V(P′). Let y = V(P) and
z = V(P′). Then the i-ballot in P has the pattern x · · · ẏ · · · z, with ẏ indicating that y is
the outcome of the vote. Now change all ballots in P by pushing values different from
x, y, z below the third position, while keeping the order of x, y, z. Let the result be Q.
Then by the Crossing Lemma, V(Q) = V(P) = y. So i-ballot and result of the vote in
Q are given by xẏz. All ballots different from those with one of the six permutations of
x, y, z on top are irrelevant for the argument that follows, and we can disregard them.
By the Crossing Lemma, the only consistent configuration for how the vote can change
as i moves through the relevant ballots is given by: xẏz ∼i xży ∼i żxy ∼i żyx ∼i ẏzx ∼i

ẏxz (∼i xẏz). See the lefthand side picture below.

x y

z

y

z

z z

y

y

x y

z

y
z

z z

y

y

Suppose some other agent j is able to influence the vote. Then all j can do is make the
vote switch to x. The only way of doing that is by moving x up in his ballot. This ballot
change can be decomposed into adjacent transposition steps. According to the Crossing
Lemma, this is what j could do: move from zxy to xzy to make the vote switch from z
to x, move from zyx to zxy to make the vote switch from z to x, move from yxz to xyz
to make the vote switch from y to x, or move from yzx to yxz to make the vote switch
from y to x. See the righthand side picture above. Here are two of the cases:

A Geometric Look at Manipulation 97

i : xẏz
j : ẏxz

∼i
i : xży
j : yxż

i : ẋyz
j : ẋyz

∼i
i : xży
j : xyż

j j

i : xẏz
j : zẏx

∼i
i : xży
j : żyx

i : ẋyz
j : zẋy

∼i
i : xży
j : żxy

j j

In both cases, ẋyz ∼i xży in the bottom line contradicts the Crossing Lemma. The other
two cases are similar. So, x cannot be forced, and contradiction with NI. This proves
the Lemma. �
Theorem 1 (Gibbard-Satterthwaite). Any resolute voting rule that is NM and NI is a
dictatorship.

Proof. Let V be a resolute voting rule that is NM and NI. Then by NI, there has to be a
profile P with at least one effective voter i.

Suppose P has another effective voter j. By the Effectiveness Lemma, i determines
the vote for every P′ with P ∼i P′, and j determines the vote for every P′′ with P ∼ j P′′.
By the Effectiveness Lemma, V(P) = x is the favourite of both i and j in P. By the
Effectiveness Lemma, V(P′) = y � x is the favourite of i in P′, while the favourite of j
in P′ is still x. By the Effectiveness Lemma, V(P′′) = z � x is the favourite of j in P′′,
while the favourite of i in P′′ is still x. We may assume that z � y, for by NI there is
some z different from both x and y that can be the outcome of the vote, and if j moves z
to the top of her ballot, z will be the outcome of the vote by the Effectiveness Lemma.
Let Q be the result of both i and j changing their ballots from those in P, i to his P′

ballot and j to her P′′ ballot. Then P′ ∼ j Q ∼i P′′. Suppose V(Q) � V(P′). Then j is
effective in P′, so by the Effectiveness Lemma, V(P′) should equal the favourite of j
in P′, which is not the case. So V(Q) = V(P′). This means that i is effective in P′′. By
the Effectiveness Lemma, V(P′′) should equal the favourite of i in P′′, which is not the
case. Contradiction.

So i is the one and only effective voter for P. But then i must be the one and only
effective voter for any P, and therefore i is the dictator. �

4 Some Other Properties of Resolute Voting Rules

The following theorem provides another example of use of the Saari triangle for proving
simple properties of voting rules.

Theorem 2. For any resolute voting rule V that satisfies NM it holds that V satisfies
Pareto iff V satisfies NI.

Proof. ⇒: We will show that any resolute voting rule V that satisfies NM but not Pareto
is imposed.

Suppose V satisfies NM, but not Pareto. Then (wlog) there is a profile P that has
everywhere a above b, but V(P) = b.

98 J. van Eijck

a b

c

x

y

z 0

0

0

Check that type changes to the empty regions, moving clockwise, can never produce a
V-value different from b. So V is imposed. (In fact, no outcome other than b is possible!)
⇐: Let V satisfy NM and Pareto. Suppose for a contradiction that V is imposed, i.e.,

for any profile P, either V(P) = x or V(P) = y. Since we assume that |A| > 2 there
is some z different from both x and y. Consider some P with V(P) = x. Move any
alternative different from x, y, z down below any of these three alternatives in all ballots
of P. Call the resulting profile Q. By Pareto, V(Q) = x. Let Q′ be the result of all voters
changing their ballots in Q by moving z to the top position of their ballot. Then by
Pareto, V(Q′) = z and contradiction with the assumption that V is imposed. �

A resolute voting rule V is monotonic if whenever V(P) = a and P′ is the result of
changing each >i to >′i in such a way that for all b ∈ A, a >i b implies a >′i b, then
V(P′) = a.

Theorem 3. If V is NM then V is monotonic.

Proof. It follows immediately from the crossing lemma that any adjacent transposition
that does not move a b up past a winning a will not make the vote change from a to
b. �
Theorem 4. If V is mononotic then V is NM.

Proof. Assume V is monotonic. Suppose for a contradiction that V can be manipulated.
Then there has to be a pair P ∼i P′ such that V(P′) >i V(P). Since any individual
vote change can be decomposed into adjacent transpositions, there has to be a pair
P ∼i Pi with V(P′) >i V(P) and such that an adjacent transposition relates >i to >′i . Let
V(P′) = a and V(P) = b. Then >i= αabβ and >′i= αbaβ. By monotonicity, changing
>′i to >i by means of moving a up over b should not change the vote, and contradiction
with V(P) = b. �
Theorem 5 (Muller-Satterthwaite [6]). Any resolute voting rule V that is monotonic
and satisfies Pareto is a dictatorship.

Proof. Let V be a resolute voting rule that is monotonic and satisfies Pareto. Then by
Theorem 4, V is NM. By Theorem 2, V also is NI. It follows from Theorem 1 that V is
a dictatorship. �
This ends our discussion of the proof of the Gibbard-Satterthwaite theorem and related
results.

A Geometric Look at Manipulation 99

5 Reflections on Manipulation

In this section we will argue that the notion of manipulation that was used for proving
the Gibbard-Satterthwaite theorem is too general to serve as a useful classifier of voting
rules. If we define our concept of sin in such manner that every human (including saints
and law-abiding citizens) is a sinner, then we can take this as a condemnation of human-
ity, but we can also conclude that there may be something wrong with our definition of
sin. To escape from the uniform condemnation of humanity, we could ask ourselves if
some sins are perhaps worse than others.

So let us ask ourselves some questions about possible manipulations. Which of the
following is worse?

champion rearrangement. My preferences are a > b > c, and the V-value is c. I
switch my preferences to b > a > c and the value becomes b.

champion bashing. My preferences are a > b > c, and the V-value is c. I switch my
preferences to b > c > a and the value becomes b.

In the first case, the only thing that happens is that a does not beat c, but I have another
candidate b for beating c. So I push b, and it turns out b is better for the job.

One might think about vote manipulation from the perspective of reasoning about
other minds, as follows. Taking an epistemic perspective on manipulation, we see:

– I know that the outcome of the voting process if I stick to ordering a > b > c is c.
This in information about what the others think.

– I know that the outcome if I change the order of my two most favoured candidates
is b. This is information about how others would react if I readjust.

– Who, in his right mind, would not readjust? Not adjusting would be worse than a
crime: it would be a stupidity.

– I can even explain it to a: “Sorry, in the circumstances you are not the right choice.
If I insist on you, I will not be able to beat c. But I will not deny that you are way
better than that abject c.”

These considerations show that ‘manipulation’ is simply too coarse for making useful
distinctions. To illustrate that it is possible to do better, we propose a couple of notions
that are stronger than manipulation.

Definition 1. The knights of a voter i, given profile P and resolute voting rule V, are
the goods that are above V(P) on the i-ballot. The knaves of a voter i, given profile P
and resolute voting rule V, are the goods that are below V(P) on the i-ballot.

For example, if i has ballot a > b > c > d in P, and the outcome of the vote is c, then a
and b are knights of i in P, and d is a knight of i in P.

Definition 2. A resolute voting rule V is demotion pervertible (DP) if there exists an
i-minimal pair of profiles P, P′ such that

– V(P) <i V(P′), and
– ∃x : V(P) <i x <′i V(P).

100 J. van Eijck

A resolute voting rule V is NDPe (non-demotion-pervertible) if V is not DP.

Note: the demotion of knight x from above V(P) to a new position below V(P) is the
perversion.

For example, suppose i has ballot abcd in P, and the outcome of the vote is c, and
P ∼i P′ where i has ballot bcad in P′, and the outcome of the vote in P′ is b. Then V is
demotion pervertible, for we have that V(P) = c <i b = V(P′), and V(P) = c <i a <′i
c = V(P), that is to say, a was demoted from a knight to a knave position (from the
perspective of P).

Definition 3. A resolute voting rule V is promotion pervertible (PP) if there exists an
i-minimal pair of profiles P, P′ such that

– V(P) <i V(P′), and
– ∃x : V(P) <′i x <i V(P).

A resolute voting rule V is NPPe (non-promotion-pervertible) if V is not PP.

Note: the promotion of knave x from below V(P) to a new position above V(P) is the
perversion.

For example, suppose i has ballot abcd in P, and the outcome of the vote is c, and
P ∼i P′ where i has ballot abdc in P′, and the outcome of the vote in P′ is b. Then V is
promotion pervertible, for we have that V(P) = c <i b = V(P′), and V(P) = c <′i d <i

c = V(P), that is to say, d was promoted from a knave to a knight position (from the
perspective of P).

Definition 4. An i-minimal pair of profiles P, P′ invites decency towards knights if the
following hold:

– ∃x : V(P) <i x <′i V(P) implies V(P) ≥i V(P′),
– ∃x : V(P′) <′i x <i V(P′) implies V(P) ≤′i V(P′).

Conversely:

– V(P) <i V(P′) implies ∀x : V(P) <i x⇒ V(P) ≤′i x,
– V(P) >′i V(P′) implies ∀x : V(P′) <′i x⇒ V(P′) ≤i x.

“If the shift from ≥i to ≥′i is an improvement, then no knight was demoted”, and simi-
larly in the other direction.

Definition 5. An i-minimal pair of profiles P, P′ invites decency towards knaves if the
following hold:

– ∃x : V(P) <′i x <i V(P) implies V(P) ≥i V(P′),
– ∃x : V(P′) <i x <′i V(P′) implies V(P) ≤′i V(P′).

Conversely:

– V(P) <i V(P′) implies ∀x : V(P) <′i x⇒ V(P) ≤i x,
– V(P) >′i V(P′) implies ∀x : V(P′) <i x⇒ V(P′) ≤′i x.

A Geometric Look at Manipulation 101

Lemma 3 (Non-Perversion Lemma: the Meaning of Perversion). A resolute voting
rule V is NDPe iff V invites decency towards knights for every i-minimal pair of pro-
files. A resolute voting rule V is NPPe iff V invites decency towards knaves for every
i-minimal pair of profiles.

Proof. By an easy check on the definitions. �
We can use the notion of decency-inviting pairs to work out what the decent V-value
switches are for adjacent transpositions (in the case of three alternatives: crossings in
the Saari triangle). It then turns out that the constraints on the crossings change. Here is
the new crossing lemma for decent behaviour towards both knights and knaves:

Lemma 4 (Lemma For Decent Crossings). Let V be NDP and NPP, and let P ∼i P′

be such that >i and >′i are related by an adjacent transposition that exchanges x and y
(with x >i y). Then V(P) � V(P′) implies:

– if V(P) = x then V(P′) <i x,
– if V(P) = y then V(P′) <′i y.

Proof. Assume V is NDP and NPP, let P ∼i P′ be such that >i and >′i are related by an
adjacent transposition that exchanges x and y (with x >i y). Assume V(P) � V(P′).

Suppose V(P) = x. Then V(P′) ≥i x and V(P) � V(P′) imply V(P) <i V(P′).
Moreover, V(P) = x <i y <′i x. Contradiction with the given that V is NDP. Therefore
V(P′) <i x.

Suppose V(P) = y. Then V(P′) ≥′i y and V(P) � V(P′) imply V(P) <i V(P′).
Moreover V(P) = y <′i x <i y. Contradiction with the given that V is NPP. Therefore
V(P′) <′i y. �
What the new crossing lemma says is that in decent x : y crossing a shift in the vote
from x has to be to a position that is above x on the original ballot, and a shift of the
vote from y has to be to a position that is above y on the new ballot (in particular, a shift
to x is forbidden).

Working this out we find what the decent V-value switches are for walking through
the Saari triangle, moving in clockwise direction.

– From 1 to 2: all except (c, b).
– From 2 to 3: all except (a, c).
– From 3 to 4: all except (b, a).
– From 4 to 5: all except (b, c).
– From 5 to 6: all except (a, c).
– From 6 to 1: all except (a, b).

Armed with this, we can turn back to the manipulability proof, to see where it breaks
down. It is clear, then, that the Effectiveness Lemma cannot be proved anymore with
the new, much weaker version of the Crossing Lemma.

Other theorems also break down. The equivalence of the Pareto condition and non-
imposition no longer holds for resolute voting rules that satisfy NPP and NDP. This can
be seen by analyzing the picture again:

102 J. van Eijck

a b

c

x

y

z 0

0

0

It remains to show that the notion of pervertibility allows for useful distinctions.
For that, notice that these notions can also be applied to voting rules (functions from
profiles to non-empty subsets of alternatives), as follows. A voting rule V is single
winner demotion pervertibible if there is a pair of profies P ∼i P′ with V(P) = {x} and
V(P′) = {y}, and x <i y, and moreover >′i is the result of demoting at least one knight in
>i. Similarly for promotion pervertibility.

The following example shows that the Borda Count rule (the set of alternatives with
the highest Borda counts tie for a win, where the Borda count of an alternative a in ballot
>i is given by the number of alternatives strictly below a according to >i) is promotion
pervertible in this sense. Let P ∼1 Pi be given by:

1 2 3 4
a b d c
b d c a
c c a b
d a b d

∼1

1 2 3 4
b b d c
a d c a
d c a b
c a b d

The BC scores in P are given by a : 6, b : 6, c : 7, d : 5, so the outcome of the Borda
vote in P is {c}. The BC scores in P′ are given by a : 5, b : 7, c : 6, d : 6, so the outcome
of the Borda vote in P′ is {b}. The vote change involves a promotion of the 1-knave d in
P; moreover, this promotion is necessary to get b to win. (This example is used in [11]
to show that the Borda Count rule is single winner manipulable.)

The Borda Count rule is not single winner demotion pervertible, because of the fol-
lowing fact:

Theorem 6. The Borda Count Rule has the following property: Although it is possible
to pervert the Borda Count rule by knight demotion, this is never profitable. For any
knight demoting manipulation there is a rearrangement alternative that does not demote
knights and that works just as well.

Proof. Let P ∼i P′ be an i-minimal pair of profiles with V(P) = {x}, and V(P′) = {y},
with x <i y. To make y the winner in P′, either the Borda count of y must have gone up,
or the Borda count of x must have gone down, or both. Moving y up does not involve
knight demotion, and moving x down does not involve knight demotion either. �

A Geometric Look at Manipulation 103

6 Conclusion

Don Saari analyzes Arrow’s impossibility theorem using geometry, and argues that the
principle of IIA (Indepence of Irrelevant Alternatives) is to blame (a very brief summary
is in [8]). Saari shows how modifying IIA can turn the impossibility theorem into a
useful possibility result.

The same seems possible (and necessary) for the notion of manipulability. Our anal-
ysis of proof of the Gibbard/Satterthwaite theorem highlights the severity of the con-
straints that NM imposes on how the value of the vote can change.

Our notions of pervertibility are just examples of possible ways out. Hopefully, the
distinction between pervertible and non-pervertible voting rules will turn out more use-
ful than that between manipulable and non-manipulable voting rules. Classifying the
pervertible voting rules is future work.

An earlier proposal for modifying the notion of manipulability is in [2]. The crit-
icism in that paper of the notion of manipulability is two-fold: the authors argue that
manipulations can be sincere, and they argue that the non-transparancy that results from
manipulability can be a boon. Let’s ignore the second criticism, and focus on the first.

We do not think that someone has revealed a preference for beer over cham-
pagne when they buy beer rather than champagne, when we know their finances
will not stretch to a bottle of the bubbly. [2]

The cited paper calls a manipulation of V in P given by P′ sincere if P′ is the result of
a subset S of the voters moving some y that they all prefer to V(P) to the top of their
ballots, while leaving the rest of the ballot unchanged. (Actually, the definition is stated
in game-theoretic terms; this is my paraphrase.) Clearly, this is a special case of our
proposal: y is among the knights of all voters in S , so no knave is promoted and no
knight demoted in the switch from P to P′. But the proposal is less general than ours,
for a ballot change from xyzẇ to xżyw (with the dots indicating the outcome of the vote)
is not sincere in the sense of [2], but it is decent in our sense.

Acknowledgement. Thanks to Krzysztof Apt, Vince Conitzer, Ulle Endriss, Floor Si-
etsma and Sunil Simon for enlightening discussions about the topic of this paper. Three
anonymous CLIMA XII reviewers also gave useful feedback.

References

1. Arrow, K.: Social Choice and Individual Values, 2nd edn. Wiley, New York (1951)
2. Dowding, K., van Hees, M.: In praise of manipulation. British Journal of Political Science 38,

1–15 (2008), http://dx.doi.org/10.1017/S000712340800001X
3. Eckert, D., Klamler, C.: A geometric approach to paradoxes of majority voting: From

Anscombe’s paradox to the discursive dilemma with Saari and Nurmi. Homo Oeconomi-
cus 26(3/4), 471–488 (2009)

4. van Eijck, J.: On Social Choice Theory. In: Discourses on Social Software, pp. 71–85.
Amsterdam University Press, Amsterdam (2009),
www.cwi.nl/˜jve/books/pdfs/justOSCT.pdf

5. Gibbard, A.: Manipulation of voting schemes: A general result. Econometrica 41, 587–601
(1973)

http://dx.doi.org/10.1017/S000712340800001X
www.cwi.nl/~jve/books/pdfs/justOSCT.pdf

104 J. van Eijck

6. Muller, E., Satterhwaite, M.: The equivalence of strong positive association and strategy
proofness. Journal of Economic Theory 14, 412–418 (1977)

7. Perote-Peña, J., Piggins, A.: Geometry and impossibility. Economic Theory 20, 831–836
(2002)

8. Saari, D.: Arrow impossibility theorem. In: Encyclopaedia of Mathematics. Springer Online
Reference Works. Springer, Heidelberg (2001),
http://eom.springer.de/a/a110710.htm

9. Saari, D.G.: Basic Geometry of Voting. Springer, Heidelberg (1995)
10. Satterthwaite, M.A.: Strategy-proofness and Arrow’s conditions: Existence and correspon-

dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory 10, 187–217 (1975)

11. Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Mathematical Association
of America and Cambridge University Press (2005)

http://eom.springer.de/a/a110710.htm

Alternating-Time Temporal Announcement Logic

Tiago de Lima

CRIL – University of Artois and CNRS
Rue Jean Souvraz, SP 18

F-62307 Lens Cedex, France

Abstract. We propose a formalism that we call Alternating-time Temporal An-
nouncement Logic (ATAL). It can be seen as an extension of the Coalition An-
nouncement Logic (CAL) proposed by Ågotnes et al. As well as CAL, ATAL has
modal operators enabling to express sentences like ‘there is an action α by group
of agents G after which consequence ϕ is true, in spite of what the other agents
do’. One of the differences here, is that such action α can also be a physical action,
and not only public announcements, as in CAL. Based on the latter kind of oper-
ator, ATAL also presents operators similar to those in Alternating-time Temporal
Logic, which enable to express agents abilities. For instance, ATAL has operators
enabling to express sentences like ‘the group of agents G is able to enforce that
ϕ is true from the next step on until ψ becomes true’. We also provide a sound
and complete axiomatization for ATAL and draw comparisons with several other
logics, such as Public Announcement Logic with Assignment, Arbitrary Public
Announcement Logic, Coalition Logic and Alternating-time Temporal Logic.

Keywords: Logics for coalitional ability; Epistemic Logic; Dynamic Epistemic
Logic; Coalition Logic; Alternating-time Temporal Logic.

1 Introduction

Recently, several formalisms aiming at modeling multi-agent systems have been
proposed. The most known examples are perhaps Sees-To-It-That logic (STIT) [5,7],
Coalition Logic (CL) [20] and Alternating-time Temporal Logic (ATL) [3,17]. These
formalisms allow reasoning about the abilities of the agents, i.e., about what states the
agents are able to achieve. In ATL for example, one can write the formula 〈〈G〉〉ϕ, which
means ‘the group of agents G is able to enforce an outcome satisfying ϕ’. However,
these logics do not enable reasoning about how the group G is able to enforce such
outcomes. In other words, these logics do not enable reasoning about the actions the
agents actually perform in order to enforce the outcome satisfying ϕ.

In the literature, we can find formalisms allowing reasoning about what outcomes
agents are able to achieve and about how the agents achieve such outcomes. But fre-
quently, they do not allow reasoning about individual actions of the agents. In other
words, the actions are either exogenous or always executed jointly by all the agents of
the scenario. For example, in Public Announcement Logic (PAL) [21], one can write
the formula 〈ϕ〉Kiψ, which means ‘agent i knows ψ after the announcement of ϕ’. But
the announcement of ϕ is not “enacted” by any agent of the scenario. It is either inter-
preted as executed by all the agents together, or as an exogenous event. To this category

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 105–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 T. de Lima

also belong logic ES [18] as well as some logics of the family known as Dynamic Epis-
temic Logics (DEL), such as the BMS framework [4], the already mentioned Public
Announcement Logic (PAL) [21], and Public Announcement Logic with Assignment
(PALA) [10].

Formalisms allowing reasoning about agents abilities and individual actions also ex-
ist. But their focus is on epistemic actions, i.e., actions only able to change the epistemic
state of the agents. To this category belong Group Announcement Logic (GAL) and
Coalition Announcement Logic (CAL) [2,1]. Both are extensions of Epistemic Logic
(EL) with “enacted” public announcement operators and with group announcement
operators. In GAL, one can write, e.g., the formula 〈Kiϕ〉Kjψ, which means ‘agent j
knows that ψ after the announcement of ϕ by agent i’. In addition, the formula 〈G〉ϕ
means ‘there is an announcement by group G after which ϕ, where the other agents re-
main silent’. The group announcement operator in CAL is different. There, the formula
〈〈G〉〉ϕ means ‘there is an announcement by group G after which ϕ is true, in spite of
what the other agents announce’. In both formalisms though, the only kind of action
present is public announcement. Such actions are a specific kind of communication
actions enabling to change the epistemic state of the agents.

Here, a new formalism called Alternating-time Temporal Announcement Logic
(ATAL) is proposed. This logic can be seen as an extension of CAL. As well as in
CAL, in ATAL, formula 〈〈G〉〉ϕ is true if and only if there is an action by group G after
which ϕ is true, in spite of what the other agents do, which can also be read as ‘the
group G is able to enforce that ϕ is true in the next step’. But it brings some improve-
ments. First, ATAL also contains physical actions. These are actions that also change
the actual state of the world (and not only the epistemic state of the agents). Second, it
contains temporal operators. In ATAL, the formula 〈〈G〉〉∗ϕmeans ‘the group G is able to
enforce that ϕ is true from now on’ and formula 〈〈G, ψ〉〉ϕ means ‘the group G is able to
enforce that eventually ϕ will be true, while meanwhile enforcing that ψ is true’. Third,
a complete axiomatization and a decidability result are achieved (those were missing
for CAL). The logic is shown to be decidable when the set of available actions is finite.

The remainder of the article is organized as follows. Section 2 presents the way we
address an issue related to conflicting physical actions. Section 3 presents the formal-
ism: its syntax, semantics, axiomatization, expressivity and a decidability result. Sec-
tion 4 presents two examples which show how ATAL can be used to model multi-agent
systems. Section 5 discusses related work. And finally, Section 6 concludes.

2 Formalizing Conflicting Actions

Before presenting the entire formalism, we show how we intend to solve an issue related
to conflicting physical actions.

For our logic ATAL, we will assume a countable set P of propositional variables and
a countable set A of labels denoting actions. (Actually, there will be more than one set
of actions. But this is not important for the moment.) Then, inspired by other work on
reasoning about actions [8,9], we will also assume that every action a ∈ A has an ‘action
description’. Such action descriptions are an alternative way to implement the successor

Alternating-Time Temporal Announcement Logic 107

state axioms (which are proposed, e.g., in [22,18]). It enables us to represent the actions
in a simple way, which then permits system specifications with reasonable size.

An action description is a triple D(a) = 〈pre(a), con+(a), con−(a)〉, where pre(a) is a
formula describing the executability pre-condition of action a, and con+(a) and con−(a)
are partial functions from a finite subset of P to formulae. Formula con+(a)(p) is the
positive condition of p (i.e., the condition to make p true). Formula con−(a)(p) is the
negative condition of p (i.e., the condition to make p false).

For example, consider a scenario with a light bulb that can be turned on and off
using two different buttons. If button a is pressed, the light will turn on; and if button
b is pressed, the light will turn off. Now, let the proposition p represent the state of the
light bulb: it is true if and only if the light bulb is on. The description of the actions of
pressing the buttons are:

D(a) = 〈�, {(p �→ ϕ)}, {(p �→ ⊥)}〉
D(b) = 〈�, {(p �→ ⊥)}, {(p �→ ψ)}〉

In this description, pre(a) = � means that the action of pressing button a is always
executable; con+(a)(p) = ϕmeans that the light should turn on if ϕ is true; con−(a)(p) =
⊥ means that the light does not turn off if this button is pressed; and analogously for b.
We do not bother with the contents of ϕ and ψ. They could, for instance, describe the
state where the mechanism linking the corresponding button to the light bulb is working
properly.

The formalism will be constructed in such a way that, if action a is executed, the
truth value of p is set to true if con+(a)(p) is true, and it is set to false if con−(a)(p)
is true. To avoid problems, we can also impose the restriction that both con+(a)(p) and
con−(a)(p) cannot be true at the same time for all a and p. Then, let pos(a)(p) represent
the truth value of p after the execution of action a, we could use:

pos(a)(p) = con+(a)(p) ∨ (p ∧ ¬con−(a)(p))

which correspond to the successor state axiom suggested in [22]. However, because we
intend to use such descriptions to treat multi-agent scenarios, we now ask the question:
‘What should be the truth value of p if one agent presses button a and another agent
presses the button b, both at the same time?’ Note that the two mechanisms may very
well be working properly, i.e., ϕ and ψ may be true at the same time, which means that
we cannot use the idea based on successor state axioms as above.

There are several possible answers to this question. We may take the approach where
p is set to true if at least one agent decides to do so. In such approach, we say that agents
have ‘positive control’ of the propositional variables. But we can also take the approach
where p is set to false if at least one among the agents decides to do so. In such approach,
we say that agents have ‘negative control’ of the propositional variables. And finally,
we can also take the approach where agents have ‘shared control’ of the propositional
variables. That is, the truth value of an atom is calculated taken all agents actions into
account. The latter approach is the one we take here. More precisely, let a1 · · · an

denote the execution of a1 to an in parallel, we define:

108 T. de Lima

(1)

con+ = con+(a1)(p) ∨ · · · ∨ con+(an)(p)

con− = con−(a1)(p) ∨ · · · ∨ con−(an)(p)

pos(a1 · · · an)(p) = (con+ ∧ ¬con−) ∨
(p ∧ ¬con−) ∨
(p ∧ con+ ∧ con−)

This means that the condition to make p true (noted con+) is true if and only if at least
one of its conditions con+(ai)(p) is true. Analogously, the condition to make p false
(noted con−) is true if and only if at least one of its conditions con−(ai)(p) is true. In
addition, the truth value of p after the execution of action a will:

– be true if con+ is true and con− is false,
– be false if con− is true and con+ is false, and
– remain the same if both con+ and con− have the same truth value.

Indeed, returning to our example of the light bulb, we have:

– in the situation where both ϕ and ψ are true, the light bulb will not change its state,
because pos(a b)(p) is equivalent to p;

– in the situation where ϕ is true and ψ is false, the light bulb will be on, because
pos(a b)(p) is equivalent to ϕ ∨ p; and

– in the situation where ϕ is false and ψ is true, the light bulb will be off, because
pos(a b)(p) is equivalent to p ∧ ¬ψ.

Now, we may ask a similar question about the executability pre-condition of actions
taken in parallel. But this matter seems much less controversial. We thus take the fol-
lowing standard approach:

(2) pre(a1 · · · an) = pre(a) ∧ · · · ∧ pre(a)

This means that the execution of a1 to an in parallel possible if and only if all the
individual actions are executable.

In what follows, we assume that these approaches for pos and pre are taken. However,
most of the results of this article also hold with other approaches. For instance, with the
already mentioned positive and negative control.

3 The Logic

Once a suitable way of handling conflicting physical actions is found, we can build up
our logic. As said before, it will be called Alternating-time Temporal Announcement
Logic (or simply ATAL).

3.1 Syntax

The vocabulary of the language of ATAL contains a countable set P of propositional
variables, a finite set N of labels denoting agents and, for each i ∈ N, a countable set

Alternating-Time Temporal Announcement Logic 109

Ai of labels denoting the actions available for the agent i. We assume that each set Ai

contains the special action ε, which stands for the ‘no-operation action’.
We use AN to denote the set of all joint actions available for the entire group of

agents, i.e., AN is the set of functions from N to
⋃

i∈N Ai, each of them returning, for
each i ∈ N, an action from Ai. Thus, each α ∈ AN is a set {(i, a) : i ∈ N and a ∈ Ai}.
Let G ⊆ N and α ∈ AN , we use αG to denote α with its domain restricted to G, i.e.,
αG = {(i, a) : (i, a) ∈ α and i ∈ G}. (We note that αN = α and α∅ = ∅).

The language L of our logic is the set of formulae ϕ defined by the following BNF:

ϕ ::= � | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [αG]ϕ | 〈〈G〉〉ϕ | 〈〈G〉〉∗ϕ | 〈〈G, ϕ〉〉ϕ
where p ranges over P, α ranges over AN , and G ranges over 2N . The language fragment
without operators 〈〈G, ϕ〉〉 and 〈〈G〉〉∗ is called the ‘next-fragment of ATAL and is noted
LX. The fragment formed by LX without operators [αG] and 〈〈G〉〉 is the language of
epistemic logic and is noted Lel. In what follows, the common abbreviations for ∧,→,
↔ and ⊥ are used. We also use the abbreviations for the duals of [αG] and [[G]]. They

are defined by 〈αG〉ϕ def
= ¬[αG]¬ϕ and 〈〈G〉〉ϕ def

= ¬〈〈G〉〉¬ϕ, respectively.
As usual, the intended meaning of formula Kiϕ is ‘agent i knows that ϕ is true’.

The intended meaning of a joint action αG = {(i1, a1), . . . , (i|G|, a|G|)} is ‘all the agents
in {i1, . . . , i|G|} execute their corresponding actions in {a1, . . . , a|G|} simultaneously (and
we do not consider what the other agents are doing at the same time)’. The intended
meaning of formula [αG]ϕ is ‘after every possible occurrence of αG ϕ is true’. The
intended meaning of formula 〈〈G〉〉ϕ is ‘group G is able to enforce that ϕ is true in the
next step’. Thus, the intended meaning of its dual [[G]]ϕ is ‘it is not the case that group G
is able to enforce that¬ϕ is true in the next step’, or, equivalently, ‘group G is not able to
avoid that ϕ is true in the next step’. Moreover, the intended meaning of formulae of the
form 〈〈G〉〉∗ϕ is ‘group G is able to enforce that ϕ is true from now on’, while formulae
of the form 〈〈G, ψ〉〉ϕ is intended to mean ‘group G is able to enforce that eventually ϕ
will be true, while meanwhile enforcing that ψ is true’.

3.2 Semantics

To interpret joint actions, we assume, for each a ∈ Ai and each i ∈ N, an action descrip-
tion D(a) = 〈pre(a), con+(a), con−(a)〉, where pre(a) ∈ Lel, each con+(a)(p) ∈ Lel, and
each con−(a)(p) ∈ Lel.1 In addition, the ‘no-operation’ action ε has an action descrip-
tion formed by pre(ε) = � and con+(ε) = con−(ε) = ∅.

Formulae in L are interpreted using Kripke structures, also called epistemic models
(or simply models), consisting of triples M = 〈W,R,V〉, where W is a non-empty set of
possible worlds; R is a function from N to W ×W which, for every agent i ∈ N, returns
an equivalence relation over the set of worlds; and V is a function from P to 2W which,
for every propositional variable p ∈ P, returns the set of worlds where p is true.

Dynamic operators of ATAL are interpreted using ‘model updates’. The update by
αN modifies M in two ways: the worlds not satisfying its executability pre-condition

1 Their restriction of these formulae to Lel prevents the definition of the satisfaction relation
given below to be circular.

110 T. de Lima

are removed and the truth value of propositional variables is changed according to their
positive and negative conditions. Formally, it is defined as follows. The update of the
model M = 〈W,R,V〉 by the joint action αN ∈ AN is the new epistemic model M|αN =

〈W |αN ,R|αN ,V |αN〉 where:

W |αN = {w : M,w |= pre(αN)}
R|αN(i) = R(i) ∩ (W |αN ×W |αN)

V |αN(p) = {w : M,w |= pos(αN)(p)} ∩W |αN

and where pre(αN) is as defined in Equation 2 (Section 2) and pos(αN)(p) is as defined
in Equation 1 (Section 2).

Let an epistemic model M = 〈W,R,V〉 and a possible world w ∈ W be given. The
satisfaction relation |= between pairs (M,w), which are called pointed epistemic models,
and formulae from L is defined as usual for Boolean operators, plus:

M,w |= Kiϕ iff for all v ∈ W, if (w, v) ∈ R(i) then M, v |= ϕ
M,w |= [αG]ϕ iff for all β ∈ AN , if M,w |= pre(αG ∪ βN\G) then M|(αG ∪ βN\G),w |= ϕ
M,w |= 〈〈G〉〉ϕ iff there is α ∈ AN such that M,w |= [αG]ϕ

M,w |= 〈〈G〉〉∗ϕ iff for all n ∈ N, if n ≥ 0 then M,w |= 〈〈G〉〉nϕ
M,w |= 〈〈G, ψ〉〉ϕ iff there is n ∈ N s.t. n ≥ 0 and M,w |= 〈〈G〉〉nϕ and

for all m ∈ N, if 0 ≤ m < n then M,w |= 〈〈G〉〉m(¬ϕ ∧ ψ)

where 〈〈G〉〉n, for n ≥ 0, stands for a sequence of n operators 〈〈G〉〉, i.e., 〈〈G〉〉0ϕ def
= ϕ and

〈〈G〉〉n+1ϕ
def
= 〈〈G〉〉〈〈G〉〉nϕ.

As usual, a formula ϕ ∈ L is valid in ATAL, noted |= ϕ, if and only if every pointed
model (M,w) satisfies ϕ.

Remark 1. Following the definition given above, the satisfaction relation for the opera-
tors [αN] is:

M,w |= [αN]ϕ iff for all β ∈ AN , if M,w |= pre(αN ∪ β∅) then M|(αN ∪ β∅),w |= ϕ
iff if M,w |= pre(αN) then M|αN ,w |= ϕ

because β∅ = ∅ for all β ∈ AN . We note its similarity with the semantics of operators
[ϕ] of PAL.

Remark 2. The satisfaction relation for operators [α∅] is:

M,w |= [α∅]ϕ iff for all β ∈ AN , if M,w |= pre(α∅ ∪ βN) then M|(α∅ ∪ βN),w |= ϕ
iff for all β ∈ AN , if M,w |= pre(βN) then M|βN ,w |= ϕ

We note its similarity with the semantics of operator � of APAL.

3.3 The Next-Fragment of ATAL

The next-fragment of ATAL has some interesting properties that are worth to be ana-
lyzed separately. We do so in this section.

Alternating-Time Temporal Announcement Logic 111

Axiomatization. Two of the inference rules of ATAL are formulated using ‘necessity
forms’ η. These are defined by the following BNF:

η ::= � | ϕ→ η | Kiη | [αG]η

where � is a special symbol (that appears only once in a necessity form), ϕ ranges over
L, i ranges over N, α ranges A and G ranges over 2N .

If η is a necessity form, then η(ϕ) is obtained from η by substituting � in η for
formula ϕ.

Table 1. Axiomatization of the next-fragment of ATAL

All instantiations of propositional tautologies(TAU)

All instantiations of axioms K, T and 5 for each operator Ki(KT5)

[αN]p↔ (pre(αN)→ pos(αN)(p)) (action and atoms)(AA)

[αN]¬ϕ↔ (pre(αN)→ ¬[αN]ϕ) (action and negation)(AN)

[αN](ϕ ∧ ψ)↔ ([αN]ϕ ∧ [αN]ψ) (action and conjunction)(AC)

[αN]Kiϕ↔ (pre(αN)→ Ki[αN]ϕ) (action and knowledge)(AK)

([αG]ϕ ∧ [βH]ψ)→ [αG ∪ βH](ϕ ∧ ψ) (if G ∩ H = ∅) (action superadditivity)(AS)

[αG]ϕ→ 〈〈G〉〉ϕ (action and group)(AG)

From ϕ and ϕ→ ψ infer ψ (modus ponens)(RMP)

From ϕ infer [αN]ϕ (action necessitation)(RNA)

From ϕ infer Kiϕ (knowledge necessit.)(RNK)

From η([αG ∪ βH]ϕ) for all β ∈ AN infer η([αG]ϕ) (deriving action)(RA)

From η(〈αG〉ϕ) for all α ∈ AN infer η([[G]]ϕ) (deriving group)(RG)

Table 1 displays the axiomatization of the next-fragment of ATAL. The principles
axiomatizing the full language of ATAL are shown later. Principles TAU, KT5, RMP
and RNK are standard. Principles AA, AN, AC and AK are similar to the reduction
axioms of public announcement logic [21], and principle RNA is the necessitation rule
for operators [αN]. These principles follow directly from the semantics of ATAL (c.f.
Remark 1). Principle AS is sometimes called ‘superadditivity’. It captures the intuition
that, if a group G enforces ϕ by executing action α, and group H enforcesψ by executing
action β, then, by working together, the two groups enforce outcomes satisfying both ϕ
and ψ. Principle RA is formulated using necessity forms. It captures the intuition that,
if a group G enforces ϕ by executing α in spite of what other agents do, in particular,
in spite of what H does, then G enforces ϕ by executing α. And finally, Principles RA
and RG capture the intuition that, if group G enforces ϕ by executing action α, then G
is able to enforce ϕ.

Theorem 1 (Soundness). All principles in Table 1 are valid in ATAL.2

2 The proofs of this and some other theorems are omitted to not exceed the page limit.

112 T. de Lima

As usual, a formula ϕ ∈ L is a theorem of ATAL, noted � ϕ, if and only if ϕ is an
instantiation of some axiom from the axiomatization of ATAL, or it is generated by
the application of some inference rule from the axiomatization of ATAL to theorems of
ATAL.

In the sequel, some interesting properties of ATAL are derived. Some of them are
used to prove completeness of the axiomatization. Moreover, this exercise helps to il-
lustrate how to correctly use the non-standard inference rules RA and RG.

Proposition 1

1. If � ϕ then � [αG]ϕ (necessitation for [αG])
2. � [αG]ϕ→ [αG ∪ βH]ϕ (if G ∩ H = ∅) (outcome monotonicity)
3. � [αG](ϕ ∧ ψ)↔ ([αG]ϕ ∧ [αG]ψ) (action and conjunction for [αG])
4. � Ki[αG]ϕ→ [αG]Kiϕ (perfect recall)
5. � 〈〈G〉〉� (group activity)
6. � ¬〈〈∅〉〉¬ϕ→ 〈〈N〉〉ϕ (joint determinism)
7. � (〈〈G〉〉ϕ ∧ 〈〈H〉〉ψ)→ 〈〈G ∪ H〉〉(ϕ ∧ ψ) (if G ∩ H = ∅) (group superadditivity)
8. If � ϕ→ ψ then � 〈〈G〉〉ϕ→ 〈〈G〉〉ψ (monotonicity)

Proof. We derive each property using the axiomatization of ATAL:

1. 1. � ϕ (hypothesis)
2. for all β ∈ AN , � [αG ∪ βN\G]ϕ (from 1 with RNA)
3. � [αG]ϕ (from 2 with RA, because � is a necessity form)

2. Assume G ∩ H = ∅.
1. � [βH]� (from Prop. 1.1)
2. � ([αG]ϕ ∧ [βH]�)→ [αG ∪ βH](ϕ ∧ �) (AS)
3. � [αG]ϕ→ [αG ∪ βH]ϕ (from 1 and 2)

3. First, we derive the implication from the right to the left:
1. for all β ∈ AN , � ([αG]ϕ ∧ [αG]ψ)→ ([αG ∪ βN\G]ϕ ∧ [αG ∪ βN\G]ψ) (from
Prop. 1.2)
2. for all β ∈ AN , � ([αG]ϕ ∧ [αG]ψ)→ [αG ∪ βN\G](ϕ ∧ ψ) (from 1 and AC)
3. � ([αG]ϕ ∧ [αG]ψ)→ [αG](ϕ ∧ ψ) (from 2 with RA, because
([αG]ϕ ∧ [αG]ψ)→ � is a necessity form)

Now, we derive the implication from the left to the right:
1. for all β ∈ AN , � [αG](ϕ ∧ ψ)→ [αG ∪ βN\G](ϕ ∧ ψ) (Prop. 1.2)
2. for all β ∈ AN , � [αG ∪ βN\G](ϕ ∧ ψ)→ ([αG ∪ βN\G]ϕ ∧ [αG ∪ βN\G]ψ) (from
AC)
3. for all β ∈ AN , � [αG ∪ βN\G](ϕ ∧ ψ)→ [αG ∪ βN\G]ϕ (from 2)
4. for all β ∈ AN , � [αG](ϕ ∧ ψ)→ [αG ∪ βN\G]ϕ (from 1 and 3)
5. � [αG](ϕ ∧ ψ)→ [αG]ϕ (from 4 with RA, because [αG](ϕ ∧ ψ)→ � is a
necessity form)

Analogously, we obtain � [αG](ϕ ∧ ψ) → [αG]ψ. From this and 5, we obtain:
� [αG](ϕ ∧ ψ)→ ([αG]ϕ ∧ [αG]ψ).

Alternating-Time Temporal Announcement Logic 113

4. 1. for all β ∈ AN , � ([αG]ϕ ∧ [βN\G]�)→ [αG ∪ βN\G](ϕ ∧ �) (AS)
2. for all β ∈ AN , � [αG]ϕ→ [αG ∪ βN\G]ϕ (from 1)
3. for all β ∈ AN , � Ki([αG]ϕ→ [αG ∪ βN\G]ϕ) (from 2 with RNK)
4. for all β ∈ AN , � Ki[αG]ϕ→ Ki[αG ∪ βN\G]ϕ (from 3 with KT5)
5. for all β ∈ AN , � Ki[αG ∪ βN\G]ϕ→ [αG ∪ βN\G]Kiϕ (AK)
6. for all β ∈ AN , � Ki[αG]ϕ→ [αG ∪ βN\G]Kiϕ (from 4 and 5)
7. � Ki[αG]ϕ→ [αG]Kiϕ (from 6 with RA, because Ki[αG]ϕ→ � is a necessity
form)

5. 1. � [αG]� (from Prop. 1.1)
2. � 〈〈G〉〉� (from 1 with RA and RMP)

6. We show its contrapositive:
1. for all α ∈ AN � [[N]]ϕ→ 〈αN〉ϕ (from AG)
2. for all α ∈ AN � [[N]]ϕ→ [αN]ϕ (from 1 with AN)
3. � [[N]]ϕ→ [α∅]ϕ (from 2 with RA)
4. � [[N]]ϕ→ 〈〈∅〉〉ϕ (from 2 with AG)

7. Again, we show its contrapositive. Let G ∩ H = ∅:
1. for all α ∈ AN � [[G ∪ H]](ϕ ∨ ψ)→ 〈αG∪H〉(ϕ ∨ ψ) (from AG)
2. for all α ∈ AN � [[G ∪ H]](ϕ ∨ ψ)→ (〈αG〉ϕ ∨ 〈αH〉ψ) (from 1 with AS)
3. � [[G ∪ H]](ϕ ∨ ψ)→ ([[G]]ϕ ∨ [[H]]ψ) (from 2 with RG)

8. 1. � ϕ→ ψ (hypothesis)
2. for all α ∈ AN � [αG](ϕ→ ψ) (from 1 with Prop. 1.1)
3. for all α ∈ AN � [αG]ϕ→ [αG]ψ (from 2 with Prop. 1.3)
4. for all α ∈ AN � 〈αG〉¬ψ→ 〈αG〉¬ϕ (from 3)
5. � 〈αG〉¬ψ→ [[G]]¬ϕ (from 3 with RG)
6. � 〈〈G〉〉ϕ→ [αG]ψ (from 5)
7. � 〈〈G〉〉ϕ→ 〈〈G〉〉ψ (from 6 with AG)

�

Propositions 1.1 and 1.3 together show that operators [αG] are normal modal operators.
Proposition 1.4 corresponds to what is called ‘perfect recall’ in [11]. It captures the
intuition that the knowledge of the agents either increases or remains the same after
the execution of an action. This means that agents never loose information, i.e., once
an agent knows something, this agent will never forget it. Together with the fact that
each R(i) is an equivalence relation, Proposition 1.4 implies that action occurrences are
perceived by all agents, which implies that the agents also perceive the passage of time.

Propositions 1.5–8 are the principles satisfied by operators 〈G〉 of Coalition Logic
(CL). We conjecture that ATAL is at least as expressive as CL. But we leave the full
proof of this claim for future work.

Theorem 2 (Completeness). Every valid formula ϕ ∈ LX is a theorem of ATAL.

114 T. de Lima

Expressivity. The next-fragment of ATAL is at least as expressive as Public Announce-
ment Logic (PAL). The latter logic is an extension of multi-agent epistemic logic with
public announcements. This logic contains formulae of the form [ϕ]ψ, which mean ‘af-
ter the public announce of ϕ, ψ is true’.

We show that ATAL is at least as expressive as PAL by encoding PAL into the version
of ATAL satisfying the following condition:

(a) For some agent i ∈ N and for each ϕ ∈ Lel, there is an action aϕ ∈ A such that
pre(aϕ) = ϕ and con+(aϕ) = con−(aϕ) = ∅.

Now, it follows that, for each ϕ ∈ Lel, there is a joint action αϕ ∈ AN such that αϕ(i) = aϕ

and αϕ(i′) = ε for all i′ � i. The idea is that agent i is the only one who acts in the system.
Using this observation, we can define the translation from PAL to ATAL recursively, as
follows:

tr(ϕ) = ϕ (if ϕ ∈ Lel)

tr([ϕ]ψ) = [αϕN]tr(ψ)

It is routine to show that ϕ is valid in PAL if and only if tr(ϕ) is valid in ATAL. The
formal proof uses Remark 1.

The next-fragment of ATAL is also at least as expressive as Public Announcement
Logic with Assignment (PALA). The latter logic is an extension of PAL with public
assignments. This logic contains formulae of the form [p:=ϕ]ψ, which mean ‘after the
assignment of the truth value of ϕ to p, ψ is true’.

The translation tr can be extended to a translation from PALA to ATAL, as follows.
We take the version of ATAL where, in addition to (a) above, we have:

(b) For each assignment σ of PALA there is an action aσ ∈ A such that pre(aσ) = �;
and for each p ∈ dom(σ) we have con+(aσ)(p) = σ(p) and con−(aσ)(p) = ¬σ(p).

Similarly as before, it follows that, for each assignment σ, there is a joint action ασ ∈
AN such that ασ(i) = aσ and ασ(i′) = ε for all i′ � i. Then, the translation tr from PALA
to ATAL is the one defined above plus:

tr([σ]ϕ) = [ασN]tr(ϕ)

Again, it is routine to show that ϕ is valid in PALA if and only if it is valid in ATAL.
Here, we use again Remark 1 with the addition that, since pre(aσN) = �, the semantics
of operators [ασN] is equivalent to the semantics of operators [σ] of PALA.

The next-fragment of ATAL is also at least as expressive as Arbitrary Public An-
nouncement Logic (APAL), which is an extension of PAL with the arbitrary announce-
ment operator. This logic contains formulae of the form �ψ, which mean ‘after every
public announcement, ψ is true’.

The translation tr from PAL to ATAL is extended by the addition of:

tr(�ψ) = [α∅]tr(ψ)

By using in addition Remark 2, it is easy to see that ϕ is valid in APAL if and only if it
is valid in ATAL.

Alternating-Time Temporal Announcement Logic 115

Finally, it is easy to see that our operator 〈〈G〉〉 has the same semantics as the coalition
announcement operator in Coalition Announcement Logic (CAL). The only difference
is that in CAL, the set of available announcements is restricted to a specific kind. In
ATAL, every formula ϕ ∈ Lel can be announced.

(Un)decidability. Validity checking in ATAL is not decidable. It follows immediately
from the non-decidability of validity checking in APAL [12], since ATAL is at least as
expressive as APAL. However, when the set Ai of available actions for each agent i is
finite, so is the set AN of available joint actions. In this case, the infinitary rules RA and
RG can be replaced by the following two axioms:

∧

β∈AN

[αG ∪ βN\G]ϕ→ [αG]ϕ(RA’)

∧

α∈AN

〈αG〉ϕ→ [[G]]ϕ(RG’)

Axioms RG’ and AG together imply the following reduction axiom:

〈〈G〉〉ϕ↔
∨

α∈AN

[αG]ϕ

This means that operators 〈〈G〉〉 can be eliminated from formulae by successive applica-
tions of this equivalence (and the rule of substitution of equivalences RSE).

Similarly, Axiom RA’ and Proposition 1.2 together imply the following reduction
axiom:

[αG]ϕ↔
∧

β∈AN

[αG ∪ βN\G]ϕ

In this case, successive applications of this equivalence (and rule RSE) replace operators
[αG] for operators [α′N], i.e., formulae containing actions executed by a group G can be
replaced by formulae containing actions executed by the entire set of agents N. And
finally, using Axioms AA, AN, AC and AK, operators [α′N] can be eliminated. The
result is a formula in Lel.

All this means that the next-fragment of ATAL with a finite set of actions is reducible
to epistemic logic. And since validity checking in the latter logic is decidable, so is
validity checking in such fragment.

3.4 Adding Always and Until

Now, we analyze some properties of the entire logic ATAL.

Axiomatization. Table 2 displays the axiomatization of ATAL. The principles therein
are standard for logics containing operators always and until. For instance, they are
analogous to the principles present in the axiomatization of ATL, given in [13]. They
are proved to be sound in Theorem 3 below.

116 T. de Lima

Table 2. Axiomatization of ATAL with a finite number of actions

All principles in Table 1 (of Page 111)

〈〈G〉〉∗ϕ→ (ϕ ∧ 〈〈G〉〉〈〈G〉〉∗ϕ) (fixed-point for always)(FPA)

〈〈G, ψ〉〉ϕ↔ (ϕ ∨ (ψ ∧ 〈〈G〉〉〈〈G, ψ〉〉ϕ)) (fixed-point for until)(FPU)

From χ→ (ϕ ∧ 〈〈G〉〉χ) infer χ→ 〈〈G〉〉∗ϕ (induction for always)(RIA)

From (ϕ ∨ (ψ ∧ 〈〈G〉〉χ))→ χ infer 〈〈G, ψ〉〉ϕ→ χ (induction for until)(RIU)

Theorem 3 (Soundness (cont.)). All principles in Table 2 are valid in ATAL.

However, to prove completeness, we need to add the assumption that all sets Ai are
finite! This is so because the technique used (similar to the one used in [14] for the
common knowledge operator) requires a finite canonical model. The complete axioma-
tization for ATAL with infinite sets Ai is left as an open question.

Theorem 4 (Completeness (cont.)). Every formula ϕ ∈ L which is valid in ATAL with
a finite number of actions is also a theorem of ATAL.

Expressivity. We conjecture that the version of ATAL with a finite number of actions
is, nonetheless, at least as expressive as Vanilla ATL, i.e., the fragment of ATL where
a group operator is always followed by a temporal operator, and a temporal operator is
always immediately preceded by a group operator.3 The translation tr from Vanilla ATL
to ATAL would be the trivial one for Boolean formulae, plus:

tr(〈〈G〉〉 © ϕ) = 〈〈G〉〉ϕ
tr(〈〈G〉〉�ϕ) = 〈〈G〉〉∗ϕ

tr(〈〈G〉〉(ϕUψ)) = 〈〈G, ϕ〉〉ψ
The translation of Vanilla ATL models would also be simple. Because the former does
not have epistemic modalities, the actual possible world in the Vanilla ATL model cor-
responds to an epistemic state where all agents have complete information, i.e., an epis-
temic model with only one possible world and reflexive arrows for all agents. In addi-
tion, each choice in the Vanilla ATL model corresponds to a different possible update of
this epistemic model. Also note that there can only be physical actions in Vanilla ATL.

Decidability. ATAL with a finite number of actions is decidable. This can be shown as
follows.

Theorem 5 (Finite Model Theorem). Every satisfiable formula ϕ ∈ L is satisfiable in
a finite model.

The proof is based on the fact that the filtrated canonical model for ATAL is constructed
using a finite set of formulae cl+(ϕ). This enables us to show the following theorem.

3 For instance, let © mean “next”. In Vanilla ATL, 〈〈G〉〉 © p is a formula, but 〈〈G〉〉(p ∧ ©p) is
not, nor is©p or 〈〈G〉〉p. For more details, please, consult [3].

Alternating-Time Temporal Announcement Logic 117

Theorem 6 (Decidability). Validity checking in ATAL with a finite number of actions
is decidable.

Proof. Recall from the discussion in Section 3.3 that a finite set of actions enables us to
provide a finitary axiomatization for ATAL. Then, there is a finite proof for each valid
formula. Because the set of such proofs is enumerable, if ϕ is valid, one can find its
proof in such enumeration. On the other hand, there is a finite model satisfying every
satisfiable formula. Because the set of such models is enumerable, if ϕ is not valid, one
can find the model satisfying ¬ϕ in such enumeration. Altogether means that there is an
algorithm that decides whether ϕ is valid or not. �

4 Applications

We show in this section two examples of scenarios which can be modeled using
ATAL.

Light bulb and light switch. In ATAL, one can reason about collaborative agency. To
see it, we consider a scenario containing two agents: Alice (agent i) and Betty (agent
j). They live in a strange house: its interior is illuminated by a light bulb, but the corre-
sponding switch is located outside the house. In our scenario, Alice is inside the house
and Betty is outside it, close to the switch. Thus, Alice can see whether the light bulb is
on (noted p) or off (noted ¬p) and tell (or rater shout) it to Betty, but she cannot toggle
the switch. Betty, on the other hand, can toggle the switch (action tog) but she cannot
see whether the light is on or off. If she toggles the switch with the light on, it will turn
off, and if she toggles it with the light off, it will turn on. So, if Alice and Betty want
to reach a state where the light is on and they know it, i.e., if they want to reach a state
satisfying Ki p ∧ K j p, they must put their efforts together.

To formalize this in ATAL, let the set of agents be N = {i, j} and the actions be
described with:

D(tog) = 〈�, {(p �→ ¬p)}, {(p �→ p)}〉
D(on) = 〈p, ∅, ∅〉
D(off) = 〈¬p, ∅, ∅〉

Action tog is available only for Betty while actions on and off are available only for
Alice. Note that the latter two actions work as the public announcements that the light
bulb is on and off, respectively. Thus, we stipulate A j = {ε, tog} and Ai = {ε, on, off }.

The set of available joint actions AN is formed by all combinations of these actions.
For the considerations below, we will use the following ones:

α{i, j} = {(i �→ on), (j �→ ε)}
α′{i, j} = {(i �→ off), (j �→ ε)}
β{i, j} = {(i �→ ε), (j �→ tog)}
β′{i, j} = {(i �→ ε), (j �→ ε)}

118 T. de Lima

It is easy to check that every pointed model (M,w) satisfies p → [α{i, j}][β′{i, j}](Ki p ∧
K j p), which means that, if the light is on, then both agents will know that the light
will be on after Alice telling that it is on and Betty not toggling the switch. Therefore,
we have that every pointed model also satisfies p → 〈〈{i, j}〉〉〈〈{i, j}〉〉(Ki p ∧ K j p), which
means that, if the light is on, then after two steps Alice and Betty are able to enforce an
outcome where both of them know that the light is on. Analogously, it is easy to check
that every pointed model also satisfies ¬p → [α′{i, j}][β{i, j}](Ki p ∧ K j p) which implies
that we also have ¬p→ 〈〈{i, j}〉〉〈〈{i, j}〉〉(Ki p∧K j p), Altogether means that every pointed
model satisfies: 〈〈{i, j}〉〉〈〈{i, j}〉〉(Ki p ∧ K j p), And finally, it implies that every pointed
model satisfies 〈〈{i, j},�〉〉(Ki p ∧ K j p), which in words means that whatever the initial
situation is, Alice and Betty are able to enforce that eventually both know that the light
is on.

Tic tac toe. To illustrate that ATAL can also be used to model competitive agency, such
as in game-like scenarios, we consider a formalization of the game tic tac toe. We use
capital letters to name each cell in the grid from the left to the right and from the top
to the bottom (i.e., A names the rightmost top cell, B names the middle top cell, . . . ,
and I names the leftmost bottom cell). Then, we assume some propositional variables
describing the situation of the game, e.g., pXA means ‘there is a X in cell A’, and two
propositional variables expressing which player has the right to play: qX means ‘it is X’s
turn to play’ and qO means ‘it is O’s turn to play’. Finally, we assume some action labels
describing the possible plays, e.g., aOB means ‘plays O in cell B’. Their description can
be given as follows. For all x ∈ {X,O} and y ∈ {A, . . . , I}:

pre(axy) = qx ∧ ¬pXy ∧ ¬pOy

con+(axy) = {(pxy �→ �), (qx �→ �)}
con−(axy) = {(qx �→ �)}

where x means ‘the opposite player’, i.e., X = O and O = X. For instance, it follows
from this description that player x can play x in cell y if and only if it is x’s turn and
there is no X nor O in the cell y. The actions aXy are only available for player X, while
actions aOy are only available for player O. Finally, let some available joint actions
be:

α{X,O} = {(X �→ aXI), (O �→ ε)}
α′{X,O} = {(X �→ aXD), (O �→ ε)}
β{X,O} = {(X �→ ε), (O �→ aOI)}

Now, let us suppose an already started match which looks like the following picture,
where it is X’s turn to play:

X O
X O

O

Alternating-Time Temporal Announcement Logic 119

Assume a pointed model (M,w) satisfying this situation, i.e., assume:

M,w |= qX ∧ pXA ∧ ¬pXB ∧ ¬pXC∧
¬pXD ∧ pXE ∧ ¬pXF∧
¬pXG ∧ ¬pXH ∧ ¬pXI∧
¬pOA ∧ ∧pOB ∧ pOC∧
¬pOD ∧ pOE ∧ pOF∧
pOG ∧ ¬pOH ∧ ¬pOI

It is easy to check that (M,w) also satisfies [α{X}]pXI , which means that pXB becomes
true after such action and, therefore, player X wins. Note that such formula implies
〈〈{X}〉〉pXI , which means that player X can win in one step. But we also have that this
model satisfyes [α′{X}][β{O}]pOI , which means that after some other play by player X,
player O can win. Note that this implies 〈〈X〉〉〈〈O〉〉pOI , which means that X can put O in
a position where O can win the game.

5 Related Work

Apart from the formalisms mentioned in Sections 3.3 and 3.4, there are some other
containing group actions and group modalities in their languages that are worth to be
mentioned here.

The first of those formalisms is the Group Announcement Logic (GAL) [2,1]. Its
differences from ATAL are also mentioned in the introduction: actions in GAL are only
public announcements and its operator 〈G〉 has a different meaning. It is not clear to us
whether ATAL is as expressive as GAL or vice-versa.

There is also the Coalition Action Logic [6], the Alternating-time Temporal Logic
with Explicit Strategies [23], the Dynamic Logic of Agency (DDL) [16] and the Coali-
tion Epistemic Dynamic Logic (CEDL) [19]. The first two differ from ATAL in several
aspects. The most important of them is perhaps the fact that they do not model the
knowledge of the agents and, thus, also does not have epistemic actions. The third and
fourth ones model the knowledge of agents and their languages look very similar to that
of ATAL. But, their semantics is completely defined in terms of Kripke structures, in-
stead of model updates. This difference is reflected on their axiomatization. Both, DDL
and CEDL do not validate reduction axioms as ATAL does (i.e., Axioms AA, AN, AC
and AK). One can argue that those formalisms are able to model “more actions”, in-
stead of only public announcements and physical actions. To this we can respond by
saying that, first, these two kinds of actions are very useful in practice. The examples
in Section 4 give a strong support for this argument. Second, because of its action de-
scriptions, the formalization of a dynamic scenarios in ATAL is generally more succinct
than in DDL and CEDL. This is the case because one must deal with the so-called frame
axioms in DDL and CEDL. Compare, for example, the formalizations in Section 4, and
the formalization in Section 4 of [19].

6 Conclusion

In this work, we propose the Alternating-time Temporal Announcement Logic (ATAL),
wherein one may write formulae of the form 〈〈G〉〉ϕ, which mean ‘there is an action

120 T. de Lima

by group G after which ϕ is true, in spite of what the other agents do’ (as well as
always and until versions of it). Differently from the previously existent Coalition An-
nouncement Logic, ATAL also contains physical actions and is equipped with a sound
and complete axiomatization. We show that ATAL subsumes several logics in Dynamic
Epistemic Logics family. ATAL is also shown to be useful in modeling multi-agent
systems through examples of collaborative and competitive scenarios.

Possible future work include a couple of questions and improvements. First of all, we
intend to address the issue on non-finite sets Ai. Second, we intend to establish whether
ATAL is at least as expressive as CL, ATL and also Group Announcement Logic (GAL).

For the improvements part, we expect to be able to enrich ATAL language with com-
plex actions, in the same spirt as in Dynamic Logic [15]. This would probably enable
reasoning about conditional plans and repetition, thus, making ATAL also a useful for-
malism for multi-agent planning. Another possible improvement would be the incorpo-
ration of other actions, such as the private announcements of the BMS framework [4].

References

1. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. Journal
of Applied Logic 8(1), 62–81 (2010)

2. Ågotnes, T., van Ditmarsch, H.: Coalitions and announcements. In: Padgham, et al. (eds.)
Proc. of the AAMAS 2008. IFAAMAS, pp. 673–680 (2008)

3. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 5(49), 672–713 (2002)

4. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139, 165–224 (2004)
5. Belnap, N.D., Perloff, M., Xu, M.: Facing the future: agents and choices in our indeterminist

world. Oxford University Press, Oxford (2001)
6. Borgo, S.: Coalitions in action logic. In: Veloso, M. (ed.) Proc. of IJCAI 2007, pp. 1822–1827

(2007)
7. Broersen, J.: A complete STIT logic for knowledge and action, and some of its applications.

In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS
(LNAI), vol. 5397, pp. 47–59. Springer, Heidelberg (2009)

8. Demolombe, R., Herzig, A., Varzinczak, I.: Regression in modal logic. Journal of Applied
Non-classical Logics 13(2), 165–168 (2003)

9. van Ditmarsch, H., Herzig, A., de Lima, T.: Optimal regression for reasoning about knowl-
edge and actions. In: Proc. of AAAI, pp. 1070–1075. AAAI Press, Menlo Park (2007)

10. van Ditmasch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment.
In: Dignum, F., et al. (eds.) Proc. of AAMAS 2005, pp. 141–148 (2005)

11. Fagin, R., Halpern, J., Vardi, Y.M.M.: Reasoning about Knowledge. MIT Press, Cambridge
(1995)

12. French, T., van Ditmarsch, H.: Undecidability for arbitrary public announcement logic. In:
Areces, C., Goldblatt, R. (eds.) Proc. of AiML 2008, pp. 23–42. College Publications, Lon-
don (2008)

13. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of alternating-
time temporal logic. Theoretical Computer Science 353, 93–117 (2006)

14. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowl-
edge and belief. Artificial Intelligence 54, 311–379 (1992)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

Alternating-Time Temporal Announcement Logic 121

16. Herzig, A., Lorini, E.: A dynamic logic of agency I: STIT, abilities and powers. Journal of
Logic, Language and Information 19, 89–121 (2009)

17. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time tem-
poral epistemic logic and its applications. Studia Logica 75, 125–157 (2003)

18. Lakemeyer, G., Levesque, H.: Semantics for a useful fragment of the situation calculus.
In: Proc. of IJCAI 2005, pp. 490–496. Professional Book Center (2005)

19. de Lima, T., Royakkers, L., Dignum, F.: A logic for reasoning about responsibility. Logic
Journal of the IGPL 18(1), 99–117 (2010)

20. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computa-
tion 12(1), 149–166 (2002)

21. Plaza, J.: Logics of public communication. In: Proc. of ISMIS 1989 (1989)
22. Reiter, R.: The frame problem in the situation calculus: A simple solution (sometimes) and

a completeness result for goal regression. In: Lifschitz, V. (ed.) Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 359–380.
Academic Press, New york (1991)

23. Walther, D., van der Hoek, W., Wooldridge, M.: Alternating-time temporal logic with explicit
strategies. In: Samet, D. (ed.) Proc. of TARK XI, pp. 269–278. Presses Universitaires de
Louvain (2007)

Synthesizing Strategies for Homogenous

Multi-Agent Systems with Incomplete
Information

Jan Calta1 and Dmitry Shkatov2

1 Humboldt University, Berlin, Germany
calta@informatik.hu-berlin.de

2 University of the Witwatersrand, Johannesburg, South Africa
dmitry@cs.wits.ac.za

Abstract. We present an algorithm for synthesizing strategies for multi-
agent systems composed of homogeneous agents possessing incomplete
information about the system as a whole. The algorithm finds all max-
imal strategies for such agents that enforce a certain property of the
system. In contrast to other algorithms known from the literature, our
algorithm can be used for automated program synthesis for systems in
which agents are required to be homogeneous (i.e., every agent has to
follow the same strategy), which is a more restrictive setting.

1 Introduction

Multi-agent systems have, over the last decade, emerged as an active research
area on the borderline between game theory, logic, computer science, and arti-
ficial intelligence. The two most common computational tasks associated with
multi-agent systems are checking if the system conforms to a given specification
(technically, this is a model-checking problem for multi-agent systems) and syn-
thesizing strategies for agents that enforce a certain property (technically, this
is a synthesis problem). In the present paper, we are concerned with the latter
problem.

In the case of systems where agents are heterogeneous—that is, are not re-
quired to behave in the same way—every strategy for a group of agents is a set of
strategies for individual agents (an agent’s strategy is a set of “rules” prescribing
the agent how to act given particular circumstances) so that, when agents follow
their respective strategies, they bring about a desired outcome. In the case, con-
sidered here, of systems where agents are homogeneous, a strategy for a group of
agents is a bunch of identical individual strategies since all agents are required to
follow the same rules; therefore, a single individual strategy automatically gives
us a strategy for the group.

Another distinction commonly made when considering multi-agent systems
is the one between those in which agents have complete information about the
current state of the whole system and those in which agents have only partial—
or, incomplete—information about the current state of the system. In the present

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 122–138, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Synthesizing Strategies for Homogenous Multi-Agent Systems 123

paper, we consider the case of systems made up of agents possessing incomplete
information.

As alluded to above, in this paper, we present an algorithm for automatically
synthesizing strategies for multi-agent systems of homogeneous agents with in-
complete information. In practice, such a synthesis allows us to automatically
generate an algorithm for a system in which all software components must ex-
ecute the same program and, moreover, the components have no access to the
complete information about the system.

While the synthesis problem for systems with imperfect information is well
studied (see [3] for an overview), the traditional approaches are automata-theoretic
and we are not aware of any framework for synthesizing strategies specifically
for homogenous systems.

2 Formal Model

In this section, we introduce the formal framework for the synthesis of the strate-
gies; namely, structures used to model multi-agent systems and the language for
expressing the desired system properties.

2.1 Modular Models

We use modular models (inspired by modular interpreted systems from [6]) to
formally model homogeneous multi-agent systems with incomplete information
and a fixed topology. More precisely, in such systems,

– all agents have the same set of local states and the same set of available
actions;

– each agent has (complete) information about its local state and a limited
information about the states of its ”neighbors”; thus, an agent may not be
able to distinguish between separate system states (a system state is a tuple
of local states, one for each agent);

– the neighborhood relation does not change during the runtime (the connec-
tions between the agents are fixed throughout the computation).

An example of such system is a multi-core processor, where agents are the cores,
agents’ actions are processor instructions, the local states of the cores are given
by the content of their registers, and the topology of the system is a grid.

The above assumptions allow us to model an agent as a module. Since our
agents are homogenous, modules for all agents are identical. Thus, the entire
system can be represented by a single agent module and the topology of the
system. The use of modular models allows us to possibly save a considerable
amount of storage space in comparison to the traditional model — a transition
system built upon the global statespace of the entire system (such models are
referred to in the literature as ”concurrent epistemic game structures”).

Definition 1. A modular model M is a tuple

M = 〈Agt,Act, St,Π, π, neig, k,Σ,man, tran〉, where

124 J. Calta and D. Shkatov

– Agt = {1, . . . , n} is a set of agents;
– Act is a finite nonempty set of actions; arbitrary actions will be denoted by

lower-case Greek letters from the beginning of the alphabet, such as α, β, . . .;
– St is a finite nonempty set of agent’s states (the set of system states is then
Stn); we denote the members of St using lower-case Latin letters such as q
and members of Stn using upper-case Latin letters such as Q;

– Π = Π1 ∪ · · · ∪Πn is the union of sets of atomic propositions, one for each
agent,

– π : Π → P(St) is a valuation function,
– k is the maximal number of neighbors an agent can have,
– neig : Agt × {1, . . . , k} → Agt ∪ {	} is a neighborhood function (thus, if
a ∈ Agt and 1 ≤ i ≤ k, then neig(a, i) is the ith neighbor of a; neig(a, i) = 	
means that a does not have the ith neighbor),

– Σ is a finite nonempty set of manifestation symbols,
– man : St→ Σ is a manifestation function; for technical reasons, man(Q[])

= λ,1 where λ ∈ Σ is a manifestation of an ”absent” neighbor;
– tran : St×Σk ×Act→ St is a transition function.

In our example of the multi-core processor (Fig. 1), there are four cores with
identifiers 1 through 4 (Agt = {1, . . . , 4}). Each of them uses two Boolean regis-
ters, l (“low”) and h (“high”). The content of each register is represented by one
atomic proposition (Πa = {la, ha} for every a ∈ Agt). Thus, each core has four
possible states: St = {q0, q1, q2, q3} and π(la) = {q1, q3}, π(ha) = {q2, q3} for
every a ∈ Agt (i is the binary value of the combination of registers hl for every
qi ∈ St). The cores are arranged in square, so that k = 2 and neigh(a, 1) = a−1
for a ∈ {2, 3, 4},neigh(a, 2) = a + 1 for a ∈ {1, 2, 3},neigh(1, 1) = 4 and
neigh(4, 2) = 1. Each core makes his register l observable to its neighbors, that
is, Σ = {0, 1}, man(qi) = 0 for i ∈ {0, 2} and man(qi) = 1 for i ∈ {1, 3}. The
agents are capable of two actions (Act = {nop, add}). Action nop has no effect
on the state of any agent and action add adds to the binary value of the agent’s
registers the binary value of the observable registers of the agent’s neighbors.
The transition function defines the effects of the actions as follows:

For every i ∈ {0, . . . , 3} and every σ1, σ2 ∈ Σ
tran(qi, σ1, σ2, nop) = qi and
tran(qi, σ1, σ2, add) = qi+σ1σ2 mod 4 .

(1)

Manifestation function models the incomplete information available to the
agents; if man(q1) = man(q2) for two different states of agent a then these
states can not be distinguished by a’s neighbors and no other agent beside a’s
neighbors has any information about a’s state. Notice that all of a’s neighbors
have the same partial view of a’s state (this is part of our assumption that the
system being modeled is homogenous).

1 Throughout the paper, we write t[i] for the ith element of a tuple t.

Synthesizing Strategies for Homogenous Multi-Agent Systems 125

h1

h4 h3

h2l1

l4

l2

l3

4

1

3

2

Fig. 1. A four-core processor with cores 1, . . . , 4, each of the cores has two boolean
registers — h and l — where the value of l is observable by the neighboring cores

In what follows, we refer to the combinations of agent’s state and manifes-
tations of her neighbors as her perception. Then we can think of the transition
function as assigning a’s state to a combination of a’s perception and action
(thus, given a’s perception and her action, her state changes according to the
transition function).

2.2 Logical Formalism

Over the recent years, the logic of choice for reasoning about multi-agent sys-
tems has been ATL, introduced in [1]. ATL has pretty elaborate syntax, as it
allows to reason about strategic ability of coalitions of agents, which requires
the use of the so-called coalition modalities. As all the agents in the systems we
consider in this paper are under our control, and we can model the presence of
environment as a choice of what systems states the system is in at the begin-
ning of the computation, we do not need the full syntactic machinery of ATL.
Moreover, as all our computations are meant to be deterministic, it is sufficient
for our purposes to use the syntax of the Linear-Time Temporal Logic LTL. (On
the other hand, the semantics we are going to propose will differ substantially
from the standard LTL semantics, to reflect the particularities of the models we
consider.) Our syntax reflects the fact that propositional symbols are evaluated
at agents’, not system, states:

γ ::=
 | pa | ¬pa,where a ∈ Agt and pa ∈ Πa (2)
ϕ ::=γ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Gϕ | ϕUϕ, where γ is defined as in (2). (3)

Such syntax only allows LTL formulas in positive normal form, that is, the
ones where nothing but the statements about agent states can be negated. Every
LTL formula can be translated into an equivalent formula in positive normal
form.

Definition 2. A homogenous strategy is a function S : St×Σk → Act assigning
actions to perceptions.

126 J. Calta and D. Shkatov

For now, we only consider total functions. Following function S is one possible
homogenous strategy for the model of our four-core processor:

For every i ∈ {0, . . . , 3} and σ1, σ2 ∈ Σ
S(qi, σ1σ2) = add if σ1 = σ2 and
S(qi, σ1σ2) = nop if σ1 �= σ2.

Definition 3. The perception function per : Stn × Agt → St × Σk assigns to
a system state and an agent her perception of that system state: per(Q, a) =
〈Q[a],man(Q[neig(a, 1)]), . . . ,man(Q[neig(a, k)])〉 where Q is a system state,
a ∈ Agt and k is the neighborhood size.

For example, per(〈q0, q2, q3, q3〉, 3), that is, agent’s 3 perception of system
state Q = 〈q0, q2, q3, q3〉, would be 〈q3, 0, 1〉, because the state of agent 3 is
q3, the manifestation of the state of its left neighbor (agent 2) is 0 and the
manifestation of the state of its right neighbor (agent 4) is 1.

Definition 4. An action vector is an n-tuple of actions from Act, one for each
a ∈ Agt.

Given system states Q and Q′, we say that action vector A leads from Q to
Q′ if tran(per(Q, a), A[a]) = Q′[a] for every a ∈ Agt.

Definition 5. A path is an infinite sequence of system states Λ = Q1, Q2, Q3 . . .
that can be effected by subsequent action vectors; that is, for every j ≥ 1, there
exists an action vector A ∈ Actn leading from Qj to Qj+1. The jth component
of Λ is denoted by Λ[j].

Definition 6. The outcome of a homogenous strategy S at system state Q,
denoted by out(Q,S), is the path Λ such that Λ[1] = Q and

Λj+1 =
∏

a∈Agt

tran(per(Λj , a), S(per(Λj , a))),

for every j ≥ 1.

Given a set of system states Q, we use notation out(Q, S) as a shorthand for⋃
Q∈Q out(Q,S).
Informally, given a modular model M and a set of system states Q, an LTL

formula ϕ holds at Q if there exists a homogenous strategy S such that for every
system state Q ∈ Q the outcome of S at Q satisfies ϕ. Formally:

M,Q |= ϕ iff there is a strategy S such that Λ �LTL ϕ for every Λ ∈ out(Q, S),

where Λ �LTL ϕ holds iff Λ satisfies ϕ according to the standard LTL semantics.
From the semantics above it follows that,

– M,Q |= pa iff Q[a] ∈ π(pa) for every Q ∈ Q

Synthesizing Strategies for Homogenous Multi-Agent Systems 127

– M,Q |= ¬pa iff Q[a] �∈ π(pa) for every Q ∈ Q

where a ∈ Agt and pa ∈ Πa.
If the outcome of a strategy at some state satisfies a formula ϕ then we say

that the strategy enforces ϕ. For a given strategy enforcing a formula ϕ we want
to know the set of all system states at which the outcome of the strategy satisfies
ϕ; we refer to this set as the domain of the strategy. This is the reason why we
evaluate formulas at sets of system states rather than at states themselves. We
took the idea of evaluating formulas at sets of states from [5].

Note that in our model, all the information available for an agent’s decision
what action to perform is stored in the current local states of the agent and her
neighbors, including a (finite) section of history if required. Since the strategies
are based on the perceptions of current states, they can be seen as memoryless
strategies.

3 Synthesis of All Maximal Homogenous Strategies

Our aim in this paper is, given a modular model M and an LTL formula ϕ, to
synthesize all maximal homogenous strategies enforcing ϕ, i.e., all homogenous
strategies enforcing ϕ whose domains cannot be extended.2

3.1 Naive Solution

The naive solution (Alg. 1) is to generate all the possible strategies for a given
modular model, and then, for each of those strategies, to check at which system
states its outcome satisfies ϕ. Finally, we have to check the resulting strategies
for maximality, excluding all non-maximal strategies from our solution.

We now briefly outline this ”naive” approach. The algorithm below uses func-
tion mc, which for a given LTL formula ϕ and a transition system T returns the
set of all states in T at which ϕ holds. The transition system T passed to mc
represents all outcomes of a strategy; therefore, there exists exactly one outgoing
transition from each state of T . Therefore, the number of transitions in T equals
the number of system states in T , i.e., |St|n. The model checking of ϕ on the
outcomes of a strategy is thus polynomial to the number of system states and
length of the formula.

The naive solution outlined above has two major drawbacks. First, we have
to go through all possible (total) strategies, whose number equals |Act||St|·|Σ|k ,
which is a pretty large number. Second, we have, prior to the model check-
ing stage, generated the whole transition system corresponding to our modular
model (i.e., the transition system containing every possible system state; the
number of such states, as we have seen, is |St|n). In other words, following this
”naive” approach, we do not take advantage of the fact that, from the very be-
ginning, we know what formula we want to enforce—we blindly generate all the
possible total strategies, and only then check which of them enforce ϕ.
2 From now on, we only consider homogenous strategies and omit the word “homoge-

nous”.

128 J. Calta and D. Shkatov

Algorithm 1. Naive Synthesis
Data an LTL formula ϕ to enforce and a model M

Result a set of all maximal strategies enforcing ϕ, together with their domains
1: Out := ∅
2: //generate the set of all homogenous strategies Str
3: for all S ∈ Str do

//generate the entire transition system T by following S at every system state
4: T := {〈Q, Q′〉 | Q′[i] = tran(per(Q, i), S(per(Q, i))) for every 1 ≤ i ≤ n}

//do global model checking for T |= ϕ
5: D = mc(ϕ, T) //D is the set of all system states from T where ϕ holds
6: if D �= ∅ then
7: Out := Out ∪ {〈S, D〉}

//remove non-maximal solutions
8: for all 〈S, D〉 ∈ Out do
9: if ∃〈S′, D′〉 ∈ Out such that D ⊂ D′ then Out := Out \ {〈S, D〉}

return Out

The more sophisticated approach that we are going to consider in the rest of
the paper immediately takes advantage of such knowledge; namely, we only ever
generate strategies enforcing ϕ.

3.2 Incremental solution

In this subsection, we explore the solution that only ever considers strategies
that enforce the desired property ϕ (as opposed to exploring all the strategies).

Since we construct the strategies for a formula ϕ incrementally, we work with
partial functions defined only on a subset of all possible perceptions. We can
see a partial strategy S as a set of pairs “perception—assigned action”: S ⊆
{〈q,m1, . . . ,mk, α〉 ∈ St×Σk ×Act}.

Definition 7. The outcome of a partial strategy S at a system state Q, denoted
by out(Q,S), is the (possibly finite) sequence Λ of system states such that Λ[1] =
Q and Λj+1 =

∏
a∈Agt tran(per(Λj , a), S(per(Λj , a))) for every 1 ≤ j ≤ |Λ|. If

Λ is finite, then it ends with a system state Q′ such that S is not defined for
per(Q′, a) for at least one a ∈ Agt.

Given a set of system states Q, we use out(Q, S) as a shorthand for⋃
Q∈Q out(Q,S). We use Λi for the suffix of Λ starting at Λ[i]. We use Λ for

the set of all paths with the prefix Λ. If Λ is infinite then Λ = {Λ}. We say that
a sequence of states Λ satisfies an LTL formula ϕ if Λ′ �LTL ϕ for every Λ′ ∈ Λ.

Definition 8 (Strategy for a formula). A partial strategy for an LTL formula
ϕ with domain D is a partial strategy S such that Λ′ �LTL ϕ for every Λ′ ∈ Λ
and every Λ ∈ out(D, S).

Definition 9 (Compatibility). Two partial strategies S and S′ are compati-
ble if they assign the same actions to the same perceptions, i.e., if both S and
S′ are defined for 〈q,m1, . . . ,mk〉 then S(q,m1, . . . ,mk) = S′(q,m1, . . . ,mk).

Synthesizing Strategies for Homogenous Multi-Agent Systems 129

If partial strategies S′ and S′′ are compatible, we define the joint strategy S =
S′∪S′′ at every state at which either S′ or S′′ is defined. We can join compatible
strategies into a maximal strategy:

Definition 10 (Maximal strategy). A partial strategy S for an LTL formula
ϕ with domain D is maximal if:

1. there is no other partial strategy S′ ⊃ S for ϕ with domain D′ ⊃ D and
2. there is no other partial strategy S′′ ⊂ S for ϕ with domain D

A minimal strategy for an LTL formula ϕ and a system state Q is defined exactly
for all the agent states that occur in the computation starting at Q until ϕ is
satisfied. Formally:

Definition 11 (Minimal strategy). Let S be a partial strategy for an LTL
formula ϕ with a system state Q in its domain, let Λ be the outcome of S at Q and
let Λp be the shortest prefix of Λ such that Λ′ �LTL ϕ for every Λ′ ∈ Λp. S is a
minimal strategy for ϕ and Q if S is defined exactly for the set {〈q,m1, · · ·mk〉 ∈
St×Σk | 〈q,m1, · · ·mk〉 = per(Q, a) for some Q ∈ Λp and some a ∈ Agt}

We construct all maximal strategies for an LTL formula ϕ in two steps:

1. We iteratively find every system state Q from which ϕ can be enforced and
every minimal strategy for ϕ and Q.

2. We find every combination of the compatible minimal strategies such that
the joint strategy is a maximal strategy for ϕ.

To accomplish the first step, for every subformula ϕ′ of ϕ, we construct a directed
graph representing the outcomes of minimal strategies enforcing ϕ′. Every vertex
〈Q,S〉 of such graph represents a system state Q and a minimal strategy S that
enforces ϕ′ at Q. Every edge directed from vertex v to vertex u represents an
action vector given by the strategy from v, that leads from the system state from
v to the system state from u, that is, given v = 〈Q,S〉 and u = 〈Q′, S′〉, if an
edge is directed from v to u then Λ[2] = Q′ where Λ = out(Q,S) and S′ ⊆ S.
Given a subgraph F = 〈VF , EF 〉 of such graph, we refer with [F] to the set
{Q ∈ Stn | 〈Q,S〉 ∈ VF for some S}.

Informally, for each subformula ϕ′ of ϕ, we obtain a directed forest Fϕ′ (see
Def. 12). A vertex 〈Q,S〉 is included in Fϕ′ iff S is a minimal strategy for ϕ′ and
Q.3 Maximal strategies for ϕ consist of partial strategies given by the directed
forests for the subformulas with incompatible branches cut off.

Definition 12. A directed tree is a connected directed graph 〈V,E〉 such that
|V | = |E| + 1 and every vertex has at most one outgoing edge. The root of a
directed forest 〈V,E〉 is v ∈ V such that there is a path from u to v for every
u ∈ V . A directed forest is a set of directed trees.

3 If S = ∅ then any strategy enforces ϕ′ at Q.

130 J. Calta and D. Shkatov

Fig. 2. A directed forest consisting of two trees. The black vertices are the roots.

Remark 1. Let F and F ′ be directed forests, let 〈Q1, S1〉 be a non-root vertex
in F with its direct successor being 〈Q2, S2〉. Then S2 ⊆ S1 and if there is a
non-root vertex 〈Q1, S

′
1 ⊇ S1〉 in F ′ then its direct successor is 〈Q2, S

′
2〉 where

S2 ⊆ S′
2 ⊆ S′

1.

Consequently, given a vertex 〈Q,S〉 in a tree of directed forest F with root
〈QR, SR ⊆ S〉, whenever there is a vertex 〈Q,S′ ⊇ S〉 in another directed forest
F ′, then for the branch 〈Q,S〉, . . . , 〈QR, SR〉 of F there is a sequence of vertices
〈Q,S′〉, . . . , 〈QR, S

′
R〉 such that SR ⊆ S′

R ⊆ S′ in F’.
The basic operation in constructing a directed forest for a formula ϕ is com-

puting the set of all predecessors of a vertex v = 〈Q,S〉, using function pre:

pre(Q,S) = {〈Q′, S′〉 | S′ is the smallest strategy such that
Λ[2] = Q where Λ = out(Q′, S′) and S ⊆ S′}

To compute pre(Q,S), we construct a colored undirected graph C(Q,S) =
〈V,E〉 where V is partitioned into sets of vertices V1, . . . , Vn (n = |Agt|), with
every vertex from Va representing a perception and an action of agent a:

Va = {〈s,m1, . . . ,mk, α〉 ∈ St×Σk ×Act |
tran(s,m1, . . . ,mk, α) = Q[a] and
S(s,m1, . . . ,mk) = α or is undefined }

We say that every vertex in Va has color a. Two vertices from V are connected iff
they represent mutually non-conflicting perceptions of the neighboring agents:

E ={〈s,m1, . . . ,mk, α〉 ∈ Va, 〈s′,m′
1, . . . ,m

′
k, α

′〉 ∈ Vb |
∃1 ≤ l ≤ k such that neig(a, l) = b and ml = man(s′) and
∃1 ≤ l′ ≤ k such that neig(b, l′) = a and m′

l′ = man(s)}

Consider a subgraph 〈V ′, E′〉 of C(Q,S) such that:

1. V ′ contains, for every a ∈ Agt, exactly one vertex va from Va (let va =
〈s,m1, . . .mk, α〉),

2. for every two a, a′ ∈ Agt, 〈va, va′〉 ∈ E′ iff a and a′ are neighbors and
3. for every va, va′ ∈ V ′, if va and va′ represent the same perceptions then they

also represent the same actions.

Synthesizing Strategies for Homogenous Multi-Agent Systems 131

〈q1, 1, 1, add〉

〈q3, 0, 0, nop〉

〈q2, 1, 0, add〉
〈q3, 0, 1, add〉

〈q0, 0, 0, add〉

〈q3, 0, 1, nop〉

〈q3, 1, 1, nop〉
〈q3, 1, 0, nop〉

〈q2, 1, 1, nop〉

〈q3, 0, 0, add〉
〈q2, 0, 1, add〉
〈q1, 1, 0, add〉

〈q3, 1, 1, add〉
〈q2, 0, 0, add〉
〈q1, 0, 1, add〉

〈q3, 0, 0, nop〉
〈q3, 0, 1, nop〉

〈q3, 1, 1, nop〉
〈q3, 1, 0, nop〉

〈q3, 0, 0, add〉
〈q2, 0, 1, add〉
〈q1, 1, 0, add〉

〈q2, 1, 0, nop〉
〈q2, 0, 1, nop〉
〈q2, 0, 0, nop〉

V1

V3V4

V2

〈q0, 0, 0, nop〉
〈q0, 0, 1, nop〉
〈q0, 1, 0, nop〉
〈q0, 1, 1, nop〉

〈q0, 1, 0, add〉

〈q0, 1, 1, add〉〈q0, 1, 1, add〉

Fig. 3. Graph CQ,S where Q = 〈q0, q2, q3, q3〉 and S = ∅ (each tuple represents one
vertex, edges of CQ,S are not depicted). The dashed squares represent the colored
partitions of the vertices for the respective agents. One subgraph representing a pre-
decessor of Q is depicted, with grey vertices and solid edges. The subgraph represents
state Q′ = 〈q3, q3, q1, q0〉 and strategy S′ composed of the vertices of the subgraph.
The second state of the outcome of S′ at Q′ is Q.

Every such subgraph represents one system state Q′ where Q′[a] = s and
one partial strategy S′ = S ∪

⋃
a∈Agt va. Thus, 〈Q′, S′〉 ∈ pre(Q,S) and the

subgraphs of C(Q,S) satisfying the conditions above represent all predecessors of
〈Q,S〉. An example of such subgraph for pre(Q = 〈q0, q2, q3, q3〉, S = ∅) and for
our model with transition function tran (1) is depicted in Fig. 3.

Other auxiliary functions used for construction of the directed trees are:

– roots(F), returns all roots of the directed forest F ;
– predecessors(〈Q,S〉, F), returns all predecessors of the vertex 〈Q,S〉 in the

directed forest F ;
– traverse(〈Q,S〉, F), returns all vertices of the (sub)tree rooted in 〈Q,S〉 in

the directed forest F ; and
– prune(T,R, S′), in directed tree T cuts off all subtrees rooted in a vertex

representing state R or representing a strategy incompatible with strategy
S′ and extends the strategies in the remaining vertices with S′ (T may be
empty after this operation).

Using the functions described above, we construct, for each subformula ϕ′ of
ϕ, the following directed forest Fϕ′ = 〈Vϕ′ , Eϕ′〉:

– case ϕ′ = pa:
Vϕ′ = {〈Q, ∅〉 | {Q} |= pa}; Eϕ′ = ∅;

– case ϕ′ = ¬pa:
Vϕ′ = {〈Q, ∅〉 | {Q} |= ¬pa}; Eϕ′ = ∅;

– case ϕ′ = ψ1 ∨ ψ2:
Fϕ′ = Fϕ1 ∪ Fϕ2 ;

– case ϕ′ = ψ1 ∧ ψ2:

132 J. Calta and D. Shkatov

Vϕ′ ={〈Q,S〉 | either 〈Q,S〉 ∈ Fψ1 and 〈Q,S′〉 ∈ Fψ2 for some S′ ⊆ S or
〈Q,S〉 ∈ Fψ2 and 〈Q,S′〉 ∈ Fψ1 for some S′ ⊆ S};

Eϕ′ =∅;

– case ϕ′ = Xψ
We alter a copy of Fψ as follows: For every vertex 〈Q,S〉 in Fψ (obtained
by function traverse), we find all its predecessors by pre(Q,S) and append
to 〈Q,S〉 those that are not preceding 〈Q,S〉 in Fψ . Moreover, we remove
every vertex that is a root in Fψ. Thus, the predecessors of the removed
roots become roots themselves. The resulting directed forest is Fϕ′ .

Vϕ′ =(Vψ ∪ {〈Q,S〉 | 〈Q,S〉 ∈ pre(Q′, S′) for some 〈Q′, S′〉 ∈ Fψ}) \
{〈Q,S〉 | 〈Q,S〉 ∈ roots(Fψ)};

Eϕ′ ={〈〈Q,S〉, 〈Q′, S′〉〉 | 〈Q,S〉 ∈ pre(Q′, S′)};

– case ϕ′ = ψ1Uψ2 (Fig. 4):
We use function reach(〈Q,S〉, R, F1, F2) to construct Fϕ′ . The function ap-
pends to every vertex 〈Q,S〉 from the forest F2, directly or indirectly, every
branch of the forest F1 from which 〈Q,S〉 is reachable. Where possible, the
function extends the strategy S′ of a vertex 〈Q′, S′〉 from the directed forest
F1 so that, when following the extended strategy at Q′, after reaching the
root of 〈Q′, S′〉 in F1, vertex 〈Q,S〉 in F2 is reached solely through the system
states represented by vertices of F1 (the function uses pre, roots and prune,
see Alg. 2). In case that Q′ is identical with the system state R represented
by the root of 〈Q,S〉, the entire subtree rooted in 〈Q′, S′〉 is excluded from
the result. Thus, every system state is represented in any given branch of the
resulting tree at most once and unfolding of potential cycles is prevented.
At the end, altered forest F2 is Fϕ′ .

Algorithm 2. reach(〈Q,S〉, R, F1, F2)

Data a directed forest F2, a vertex 〈Q,S〉 from F2, the state R represented by the
root of the tree containing 〈Q,S〉 and a directed forest F1

1: for all 〈Q′, S′〉 ∈ roots(F1) such that Q′ = Q and S′ is compatible with S do
2: copy the tree rooted in 〈Q′, S′〉 as T ;
3: prune(T,R, S ∪ S′);
4: append every subtree of T rooted in a predecessor of the root of T to 〈Q,S〉 in F2;

5: for all 〈Q′, S′〉 ∈ roots(F1) such that Q′ �= Q and there is 〈Q′, S′′〉 ∈ pre(Q,S)
where S′ is compatible with S′′ do

6: copy the tree rooted in 〈Q′, S′〉 as T ;
7: prune(T,R, S′′);
8: append T to 〈Q,S〉 in F2;

9: for all 〈Q′, S′〉 ∈ predecessors(〈Q,S, 〉, F2) do
10: reach(〈Q ′,S ′〉,R,F1 ,F2);

Synthesizing Strategies for Homogenous Multi-Agent Systems 133

Fψ1

Fψ2

〈Q,S〉

(a). Forests for ψ1 and
ψ2.

Fψ1Uψ2

〈Q,S〉

(b). Forest for ψ1Uψ2.

Fig. 4. An example of Fψ1Uψ2 . The dashed vertex is excluded from Fψ1Uψ2 by
reach(〈Q, S〉, R, Fψ1 , Fψ2) because its strategy is incompatible with S or because it
represents the same state as the root of Fψ2 .

– case ϕ′ = Gψ:
We represent with vertices of Fϕ′ all strategies that eventually enforce cycles
visiting only the states from [Fψ]. We use function cycle(〈Q,S〉, R, {〈Q,S〉},
Fψ , Fϕ′) to add to Fϕ′ all such strategies that, in addition, include state
〈Q,S〉 in the cycle, where R is the state represented by the root of 〈Q,S〉
in Fψ (see Alg. 3). Since we use cycle(〈Q,S〉, R, {〈Q,S〉}, Fψ, Fϕ′) for every
vertex 〈Q,S〉 that is a root in Fψ , the resulting forest is Fϕ′ .

Algorithm 3. cycle(〈Q,S〉, R, T, F1, F2)

Data a directed forest F1, a tree T , a vertex 〈Q, S〉 from T , the state R represented by
the root of the tree in F1 containing 〈Q, S〉, a directed forest F2 to add the results.

1: P = {〈Q′, S′〉 ∈ pre(Q,S) | ∃〈Q′, S′′ ⊆ S′〉 ∈ F1};
2: append every 〈Q′, S′〉 ∈ P to 〈Q,S〉 in T ;
3: for all 〈Q′, S′〉 ∈ P do
4: if Q′ = R then
5: cut off 〈Q′, S′〉 from T ;
6: copy T to F2 as T ′;
7: prune(T ′, R, S′);
8: else
9: cycle(〈Q′, S′〉, R, T, F1, F2);

Now we show, how the directed forest Fϕ for a formula ϕ represents all min-
imal strategies for ϕ.

Claim. Let ϕ be an LTL formula and let Fϕ be the directed forest for ϕ. S is a
minimal homogenous strategy for ϕ and a system state Q iff 〈Q,S〉 is a vertex
of Fϕ.

Proof. We only proof the nontrivial cases:

– case ϕ = Xψ:
Sψ is a minimal strategy for ψ and state Qψ iff there is 〈Qψ, Sψ〉 ∈ Vψ .
Let S be a strategy, let Q be a state and let Λ = out(Q,S). Vertex 〈Q,S〉 is

134 J. Calta and D. Shkatov

present in Fϕ iff 〈Q,S〉 ∈ pre(Q′, S′) for some 〈Q′, S′〉 ∈ Vψ iff, for some
〈Q′, S′〉 ∈ Vψ , Λ[2] = Q′ and S ⊇ S′ is defined for the same agent states as
S′ and, moreover, for the agent states from Q iff S is a minimal strategy for
ϕ and Q.

– case ϕ′ = ψ1Uψ2:
(⇐): Let 〈Q,S〉 be a vertex from Fϕ′ . Either (i) 〈Q,S〉 ∈ Vψ2 or (ii) 〈Q,S〉 is
added to Fϕ′ by function reach from Fψ1 and thus some 〈Q,Sψ1 ⊆ S〉 ∈ Vψ1 .
〈Q,S〉 ∈ Vψ2 iff S is a minimal strategy for ψ2 and Q. Every minimal strategy
for ψ2 and Q is also a minimal strategy for ϕ′ and Q. Thus, if (i) then S is
a minimal strategy for ϕ′ and Q. If (ii) then S is the union of compatible
strategies Sr and Sψ2 where (1) the last state of Λ = out(Q,Sr) is Q′ such
that 〈Q′, Sψ2〉 ∈ Vψ2 and (2) for every other state QΛ ∈ Λ there is some
vertex 〈QΛ, SΛ ⊆ Sr〉 ∈ Fψ1 . Thus, the outcome Λϕ′ of 〈Q,S〉 consists of
Λ followed by Λ2 = out(Q′, Sψ2). Since Λr is composed of the outcomes of
minimal strategies for ψ1 and ends with Q′, every path starting beforeQ′ and
following Λϕ′ satisfies ψ1 and every path starting from Q′ on and following
Λϕ′ satisfies ψ2. Thus, there is i ≥ 1 such that Λ′ �LTL ψ2 for every Λ′ ∈ Λi

ϕ′

and Λ′ �LTL ψ1 for every Λ′ ∈ Λj
ϕ′ and every 1 ≤ j < i, namely such i that

Λϕ′ [i] = Q′. Thus, S is a strategy for ϕ′ and Q.
Strategy Sr is defined for the same agent states as the minimal strategies

for ψ1 from which Sr is composed and, moreover, for the agent states from
the last system states of the outcomes of the minimal strategies for ψ1.
Thus, every agent state for which Sr is defined is present at some system
state from the outcome of Sr at Q. Since Sψ2 is a minimal strategy for ψ2

and Q′, every for which Sψ2 is defined is present at some system state from
the outcome of Sψ2 at Q′. Since S = Sr ∪ Sψ2 , every agent state for which
S is defined is present at some system state from the outcome of S at Q.
Let Λϕ′ = out(S,Q) with length l and Q′ = Λϕ′ [i] for some i. Since every
path satisfying ϕ′ must contain a state from [Fψ2] and Λϕ′ [i] is the first such
state in Λϕ′ , there is no j < i such that Λ′ �LTL ϕ

′ for every Λ′ ∈ Λj. Since
Sψ2 is a minimal strategy for ψ2 and Q′, there is no prefix of the outcome of
Sψ2 such that all paths starting with this prefix satisfy ψ2 and thus, there is
no i ≤ j < l such that Λ′ �LTL ϕ

′ for every Λ′ ∈ Λj . Hence, S is a minimal
strategy for ϕ′ and Q.
(⇒): Let S be a minimal strategy for ψ and state Q. Then there is i ≥ 1
such that, for every path Λ′ with prefix Λ = out(Q,S), Λ′i �LTL ψ2 and
Λ′j �LTL ψ1 for every 1 ≤ j < i. Thus, some Sψ2 ⊆ S is a minimal strategy
for ψ2 and Λ[i] and therefore there is a vertex 〈Λ[i], Sψ2 ⊆ S〉 in Fψ2 . If
i = 1 then S itself is a minimal strategy for ψ2 and Q and thus, vertex
〈Q,S〉 ∈ Fψ2 . Since Fψ2 ⊆ Fϕ′ , 〈Q,S〉 is a vertex of Fϕ′ . If i > 1 then for
every Λ[j] there is a vertex representing Λ[j] in Fψ1 . Since Λ[i] is reachable
from every Λ[j] by visiting only states from [Fψ1], Λ[j] is found by function
reach for every 1 ≤ j < i and vertex 〈Λ[j], Sj〉 is added to Fϕ′ . Strategy
Sj contains Sψ2 and, in addition, is defined for every agent state present in
some Λ[l] where j ≤ l < i so that the outcome of Sj at Λ[j] is Λj. Thus,

Synthesizing Strategies for Homogenous Multi-Agent Systems 135

out(Λ[1], S1) = Λ1 = Λ where Λ = out(Q,S). Since S is a minimal strategy
for ϕ′ and Q and the outcomes of S1 and S at Q are identical, S1 = S. Thus,
〈Λ[1], S1〉 = 〈Q,S〉 and 〈Q,S〉 ∈ Fϕ′ .

– case ϕ′ = Gψ:
(⇐): Let 〈Q,S〉 be a vertex from Fϕ′ contained in a tree T . Tree T with
root 〈R,SR〉 is added by cycle to Fϕ′ only if out(R,SR)[2] = QR for some
〈QR, SR〉 ∈ T . For every vertex 〈Q′, S′〉 from T , the outcome of S′ at Q′

contains R and thus, also the outcome of SR at QR contains R. Therefore,
ΛR = out(R,SR) contains R infinitely often and thus, ΛR is infinite. Since
SR ⊆ S′ and R ∈ out(Q′, S′) for every 〈Q′, S′〉 ∈ T , ΛR is a suffix of
out(Q′, S′) for every 〈Q′, S′〉 ∈ T . Thus, out(Q,S) is infinite.
As we have shown, Λ = out(Q,S) is a path (i.e., an infinite sequence) con-
sisting solely of Q followed by the system states represented by the successors
of 〈Q,S〉 in T . Since T is constructed by function cycle from Fψ , for every
〈Q′, S′〉 ∈ T there is some 〈Q′, Sψ ⊆ S′〉 ∈ Fψ. Thus, for every i ≥ 1, Λi has
a prefix out(Λ[i], Si ⊆ S) where 〈Λ[i], Si〉 is a vertex from Fψ. Since Si is a
minimal strategy for ψ and Λ[i], every path starting with out(Λ[i], Si) sat-
isfies ψ and thus, also Λi satisfies ψ. Therefore, S is a strategy for ϕ′ = Gψ
with Q in its domain.

Strategy S is composed of strategies Si such that 〈Λ[i], Si〉 ∈ Fψ where
Λ = out(Q,S) and i ≥ 1. Since every Si is a minimal strategy for ψ and
Λ[i], it is defined solely for the agent states present in all system states in
out(Λ[i], Si) except the last one. Additionally, S is defined also for all agent
states present in the last system state of out(Λ[i], Si) for every i ≥ 1 so that
Λ is infinite. Thus, S is defined exactly of the agent states present in the
system states from Λ = out(Q,S) and since Λ satisfies ϕ′, S is a minimal
strategy for ϕ′ and Q.
(⇒): Let S be a minimal strategy for ϕ′ and state Q. Then Λ = out(Q,S)
is infinite and Λi �LTL ψ for every i > 0. Thus, for every i > 0 there is some
minimal strategy Si for ψ and Λ[i] such that out(Λ[i], Si) is a prefix of Λi

and therefore 〈Λ[i], Si〉 ∈ Fψ for every i > 0 and some Si ⊆ S.
First, consider the case that Q = Λ[1] occurs in Λ infinitely often. Thus,

Q is part of a cycle and can be reached from Q through the sequence of
predecessors of Q. Since 〈Q,S1〉 ∈ Fψ , function cycle looks for vertices
〈Q′, S′〉 such that Λ′[i] = Q for some i > 0 and Λ′ = out(Q′, S′) and
〈Λ′[j], S′

j ⊆ S′〉 ∈ Fψ for every 0 < j < i until Q′ = Q. S′ is always defined
exactly for the agent states occurring at system states from out(Q′, S′). In
case that Q′ = Q, outcome of S′ at Q′ contains Q infinitely often. Since S
is also defined exactly for the for the agent states occurring at system states
from out(Q,S), vertex 〈Q,S〉 is found be cycle and a tree with root 〈Q,S〉
is added to Fϕ′ .

Second, consider that Q = Λ[1] does not occur in Λ infinitely often (that
implies that it occurs in Λ only once). Since Λ is infinite, there is Q′ �= Q
that occurs in Λ infinitely often and a vertex 〈Q′, S′ ⊆ S〉 was found by cycle
such that out(Q′, S′) is a suffix of Λ. Function cycle adds to Fψ every vertex

136 J. Calta and D. Shkatov

〈Q′′, S′′ ⊇ S′〉 such that Q′ ∈ out(Q′′, S′′) and S′′ is only defined for the
agent states occurring at the system states from out(Q′′, S′′). Thus, 〈Q,S〉
is found as well and added to Fϕ′ . ��

Definition 13. A branch is a path in a directed tree that starts with a leaf and
ends with the root. A subbranch is a suffix of a branch.

Definition 14. A maximal compatible subforest M of a directed forest F is a
set of subbranches of F such that:

1. all strategies from the vertices of M are mutually compatible and
2. no other subbranch of F can be added to M without violating condition 1.

In the second step, all maximal compatible subforests of Fϕ are generated during
depth-first search through Fϕ.

Claim. Let Fϕ be the directed forest for an LTL formula ϕ. M is a maximal
strategy for ϕ iff M is a maximal compatible subforest of Fϕ.

Proof. Straightforward. ��

Hence, after completing the second step, all maximal strategies for ϕ are found
and the task of the strategy synthesis is fulfilled.

4 Complexity and Comparison

The naive approach described in Section 3.1 involves model checking on every
transition system generated by a total strategy. Since a total strategy assigns
α ∈ Act to every possible perception from St×Σk, where k is the maximal size
of the neighborhood, there exist |Act||St|·|Σ|k total strategies. As the number of
manifestations (|Σ|) is in the worst case equal to the number of agent states
(|St|), the number of all strategies is always less or equal S = |Act||St|k+1

. As we
have shown in Section 3.1, the model checking of one total strategy for a formula
ϕ of length l involves at most l · |St|n steps. Thus, the worst case complexity of
finding all total strategies for ϕ is O(l · |St|n · |Act||St|k+1

). To keep only maximal
strategies for ϕ, we have to drop strategies with non-maximal domains. Thus,
we have to mutually compare the domains of all total strategies for ϕ and the
overall complexity is O(|Act|2·|St|k+1

).
The worst case complexity of the incremental approach described in Sec-

tion 3.2 is worse than that of the naive approach. To show this, we estimate
the upper bound on the size of the directed forest Fϕ from which all maximal
strategies for formula ϕ are computed. We denote the number of vertices of Fϕ

with |Fϕ|. This number is given by the maximal number of the predecessors of
a vertex in the forest (denoted by degin) to the power of the maximal depth of
the tree. Since every branch represents in its vertices each global state at most
once, the maximal depth of the tree is the number of global states, which is

Synthesizing Strategies for Homogenous Multi-Agent Systems 137

|St|n. Thus, O(|Fϕ|) = O(degin |St|n). Assume that number of agents is bigger
than the size if the neighborhood (n > k + 1) and that degin is at least two
(which is usually the case), and therefore, regardless of the complexity of pre
function used for finding predecessors in Fϕ, the construction of Fϕ already may
take more steps than synthesizing all maximal strategies for ϕ with the naive
approach (O(2|St|n) > O(|Act|2|̇St|k+1

).
The incremental approach may take more time than the naive one for example

if ϕ = G
. While any total strategy is a maximal strategy for G
, the non-trivial
approach would still look for all predecessors of all global states while iteratively
generating strategies that eventually enforce cycles. This computation would
be in this case more expensive than simple generation of all total strategies.
However, we believe that in case of non-trivial formulas, which usually cannot
be enforced by every arbitrary strategy, incremental constructing of only such
strategies that enforce the formula takes substantially fewer steps that following
the naive approach. This is a phenomenon known in other areas. For example, as
shown in [4], a 2-EXPTIME algorithm for deciding satisfiability in LTL vastly
outperforms in practice an algorithm whose worst-time theoretical complexity is
singly exponential.

5 Conclusion

In this paper, we described a technique for the synthesis of strategies for ho-
mogenous multi-agent systems with incomplete information. While there exists
a general solution for this problem in the context of heterogenous systems [2],
it is not directly applicable in scenarios where the agents are homogenous and
each of them must follow the same strategy.

We proposed a modular system model that takes the advantage of the assump-
tion on the homogeneity of the agents and allows for a compact representation
of the systems, especially in comparison to the traditional models based on the
global system statespace. We used the language of Linear Temporal Logic (LTL)
to express the system properties that the synthesized strategies shall enforce. We
proposed alternative semantics for LTL that enables us to express these prop-
erties intuitively in our context. We described a naive solution to the stated
problem and then we proposed a non-trivial algorithm, which constructs the
strategies incrementally. Although the latter algorithm has higher worst case
complexity than the naive solution, we argue that in practice, the incremen-
tal strategy synthesis works much better than the naive solution. Experimental
evaluation of the incremental method is left for future work.

Acknowledgements. This work is supported by the grant SUA 08/034 from
the National Research Foundation of South Africa and the Deutsches Zentrum
für Luft- und Raumfahrt, as well as by the grant from the Deutsche Forschungs-
gemeinschaft, Graduiertenkolleg METRIK (GRK 1324/1).

138 J. Calta and D. Shkatov

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Calta, J., Shkatov, D., Schlingloff, B.H.: Finding Uniform Strategies for Multi-agent
Systems. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA XI.
LNCS, vol. 6245, pp. 135–152. Springer, Heidelberg (2010)

3. Gastin, P., Sznajder, N., Zeitoun, M.: Distributed synthesis for well-connected
architectures. Formal Methods in System Design 34(3), 215–237 (2009)

4. Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic
ability in multiagent systems. ACM Trans. Comput. Logic 11(1), 1–51 (2009)

5. Jamroga, W., Ågotnes, T.: Constructive knowledge: what agents can achieve under
imperfect information. Journal of Applied Non-classical Logics 17(4), 423–475 (2007)

6. Jamroga, W., Ågotnes, T.: Modular interpreted systems. In: AAMAS 2007: Proceed-
ings of the 6th International Joint Conference on Autonomous Agents and Multia-
gent Systems, pp. 1–8. ACM, New York (2007)

Reasoning about Joint Action and Coalitional Ability in
Kn with Intersection

Thomas Ågotnes1 and Natasha Alechina2

1 Department of Information Science and Media Studies,
University of Bergen, Norway

thomas.agotnes@infomedia.uib.no
2 School of Computer Science
University of Nottingham, UK

natasha.alechina@nottingham.ac.uk

Abstract. In this paper we point out that standard PDL-like logics with intersec-
tion are useful for reasoning about game structures. In particular, they can express
coalitional ability operators known from coalition logic and ATL. An advantage
of standard, normal, modal logics is a well understood theoretical foundation
and the availability of tools for automated verification and reasoning. We study a
minimal variant, multi-modal K with intersection of modalities, interpreted over
models corresponding to game structures. There is a restriction: we consider only
game structures that are injective. We give a complete axiomatisation of the cor-
responding models, as well as a characterisation of key complexity problems. We
also prove a representation theorem identifying the effectivity functions corre-
sponding to injective games.

1 Introduction

Logics interpreted in game structures, enabling automated reasoning and verification
of game theoretic properties of multi-agent systems, have received considerable inter-
est in recent years. For computational reasons most such logics are modal logics [17].
One of the most popular approaches is reasoning about coalitional ability. Examples
of logics in this category include Coalition Logic (CL) [14] and Alternating-time Tem-
poral Logic (ATL) [2], and many extensions of these, which are interpreted in game
structures. These logics have coalition operators of the form [C] where C is a set of
agents (a coalition), and [C]φ means that C can make φ true by choosing some joint
action. On the other hand, van Benthem [15,16] has pointed out that standard proposi-
tional dynamic logic (PDL) [9] is natural for reasoning about games. An advantage of
using PDL-like languages is that they are theoretically well understood, with a range of
mathematical and computational tools available.

In this paper we point out that standard PDL-like logics with intersection are useful
for reasoning about games. In particular, they can express coalition operators. We study
a minimal variant, multi-modal K with intersection of modalities (K∩

n), interpreted in
game structures, and define an embedding of CL into K∩

n . K∩
n is a fragment of Boolean

Modal Logic [6] which has been extensively studied (and implemented) as a variant

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 139–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

140 T. Ågotnes and N. Alechina

of propositional dynamic logic with intersection and also by researchers in description
logic (see for example [12]).

Although other logics that are normal modal logics and/or have PDL-type operators
and can express coalition operators have been studied recently [4,11], these typically
have non-standard syntactic operators and/or non-standard semantics (see Section 7).
The focus in the current paper is on reasoning about joint action in game structures
using a minimal language with the intersection operator.

The main contributions of the paper are, in our view, threefold. First, we give an
interpretation of K∩

n over models corresponding to game structures and give a sound
and complete axiomatisation and characterisations of key complexity problems. There
is a snag: this restricted model class does in fact not correspond to all game structures,
only to injective game structures [7], i.e., game structures where two different strategy
profiles never lead to the same outcome state. However, we argue that this is a minor
limitation:

– Coalition Logic cannot discern between injective and non-injective game struc-
tures.

– Injectivity is a very common assumption in game theory. Indeed, the notion of out-
come states is often (as in the standard textbook [13]) dispensed with altogether,
and preferences defined directly over strategy profiles – implicitly defining an in-
jective game.

Second, we show that the coalition logic operator can be expressed in K∩
n . Third, we

prove a variant of Pauly’s representation theorem [14,8] for injective games: we char-
acterise the class of effectivity functions that α-correspond to injective games.

We argue that the logic we study is interesting for several reasons. As a normal modal
logic it has a well understood theoretical foundation, and it is well supported by tools
for automated verification and reasoning as a fragment of standard computer science
logics such as PDL. For example, model checking can be done using standard model
checkers for PDL (with intersection). In contrast, CL is a non-normal modal logic, with
only special purpose tool support (mainly tools developed for ATL) available. Our logic
can also be seen as providing an additional set of model-checking and theorem-proving
tools for CL. Finally, from a theoretical viewpoint, the logic establishes new connections
between coalition logic and normal modal logics.

The paper is organised as follows. We start with introducing CL and K∩
n . We then, in

Section 3, discuss the restriction of CL to injective game structures and prove the repre-
sentation theorem. In Section 4 we define the interpretation of K∩

n in game structures,
together with translations from CL, before axiomatisation and complexity are discussed
in Sections 5 and 6. We discuss related work and conclude in Section 7. Some of the
proofs are found in a technical appendix.

2 Background

2.1 Coalition Logic

We give a brief introduction to Coalition Logic (CL) [14]. Let N = {1, . . . , g} be a
finite set of agents, and Θ a set of propositional variables. The language of LCL(N,Θ)

Joint Action in Kn with Intersection 141

of CL [14] is defined as follows:

φ ::= p | ¬φ | φ ∧ φ | [C]φ

where p ∈ Θ and C ⊆ N . Derived propositional connectives are defined as usual. We
write C for N \ C and sometimes abuse notation and write a singleton {i} as i. The
language can be interpreted over concurrent game structures (CGSs) [2]. A CGS overN
and Θ is a tuple M = 〈S, V,Act, d, δ〉 where

– S is a set of states;
– V is a valuation function, assigning a set V (q) ⊆ Θ to each state q ∈ S;
– Act is a set of actions;
– For each i ∈ N and q ∈ S, di(q) ⊆ Act is a non-empty set of actions available

to agent i in q. D(q) = d1(q) × · · · × dg(q) is the set of full joint actions in q.
When C ⊆ N , DC(q) = ×i∈Cdi(q) is the set of C-actions in q. If a ∈ DC(q), ai

(i ∈ C) denotes the action taken from di(q).
– δ is a transition function, mapping each state q ∈ S and full joint action a ∈ D(q)

to a state δ(q, a) ∈ S.

Let Mcgs(N,Θ,Act) be the class of CGSs over N and Θ having Act as the set of
actions.

A CGS can be seen as a state-transition system where the edges are labelled with joint
actions, but also, alternatively, as an assignment of a strategic game form to each state.
A strategic game form is a tuple 〈N, {Σi : i ∈ N}, S, o〉 where Σi is the strategies
for i ∈ N , and o : ×j∈NΣj → S is the outcome function. We write ΣC for ×i∈CΣi.
When σC ∈ ΣC , we use (σC)i to denote the strategy for i. A CGS can be seen as an
assignment of a game G(s) = 〈N, {Σs

i : i ∈ N}, S, os〉 to each state s ∈ S, where
Σs

i = di(s) and os(a) = δ(s,a).
Intuitively, the CL expression [C]φ means that a group of agents (coalition) C is

effective for formula φ, i.e., that they can ensure that φ holds in the next state no matter
what the other agents do. Formally, a formula φ is interpreted in a state s of CGS M as
follows:

M, s |= p⇔ p ∈ V (s)
M, s |= ¬φ⇔M, s �|= φ
M, s |= (φ1 ∧ φ2)⇔ (M, s |= φ1 and M, s |= φ2)
M, s |= [C]ψ ⇔
∃aC ∈ DC(s)∀aC ∈ DC(s), M, δ(s, (a1, . . . , ag)) |= ψ

As effectivity is the only property of games relevant for the interpretation of coalition
logic, we can in fact abstract away all other aspects of game structures. An effectivity
function [14] overN and a set of states S is a functionE that maps any coalitionC ⊆ N
to a set of sets of states E(C) ⊆ 2S. Given a strategic game form G, the (α-)effectivity
function EG of G is defined as follows:

X ∈ EG(C) iff ∃σC ∈ ΣC∀σC ∈ ΣC , o(σC , σC) ∈ X.

Which effectivity functions are the effectivity functions of strategic game forms? In
[14] it is claimed that an effectivity functionE is the α-effectivity function of a strategic
game form iff E is playable:

142 T. Ågotnes and N. Alechina

1. X ∈ E(C)&X ⊆ Y&Y ⊆ S ⇒ Y ∈ E(C) (outcome monotonicity);
2. S \X �∈ E(∅)⇒ X ∈ E(N) (N -maximality);
3. ∅ �∈ E(C) (Liveness);
4. S ∈ E(C) (Safety);
5. C ∩D = ∅&X ∈ E(C)&Y ∈ E(D)⇒ X ∩ Y ∈ E(C ∪D) (superadditivity).

However, it has recently been showed [8] that this claim is in fact not correct: there are
playable effectivity functions over infinite sets, which are not α-effectivity functions of
any strategic game forms. In [8] the result is also corrected: an effectivity function E
is said to be truly playable iff it is playable and E(∅) has a complete nonmonotonic
core. The nonmonotonic core Enc(C) of E(C), for C ⊆ N , is defined as follows:
Enc(C) = {X ∈ E(C) : ¬∃Y (Y ∈ E(C) and Y ⊂ X)}. Enc(C) is complete if
for every X ∈ E(C) there exists Y ∈ Enc(C) such that Y ⊆ X . The corrected
representation theorem [8] shows thatE is the α-effectivity function of a strategic game
form iffE is truly playable. A coalition model is a tupleM = 〈S,E, V 〉whereE gives
a truly playable effectivity function E(s) for each state s ∈ S, and V is a valuation
function. The coalition logic language can alternatively be interpreted in a coalition
model, as follows:

M, s |= [C]φ iff φM ∈ E(s)(C)

where φM = {t ∈ S : M, t |= φ}. It is easy to see that the two semantics coincide:
M, s |= φ iffMα, s |= φ for all φ, whereM = (S, V,Act, d, δ) andMα = (S,Eα, V)
and Eα(s) = EG(s).

2.2 Multi-modal K with Intersection of Modalities

Given a finite set of atomic modalities Π0 of cardinality n and a countably infinite set
of propositional atoms Θ, the formulae φ ∈ L∩K(Π0, Θ) and modalities π ∈ Π of
multi-modalK with intersection of modalities (K∩

n) are defined as follows:

φ ::= p ∈ Θ | ¬φ | φ ∧ φ | [π]φ π ::= a | π ∩ π

where a ∈ Π0. As usual, 〈π〉φ is defined as ¬[π]¬φ, and derived propositional connec-
tives are defined as usual.

A (Kripke) model for the language L∩K(Π0, Θ) is a tuple M = 〈S, V, {Rπ : π ∈
Π}〉 where

– S is a set of states;
– V : Θ → 2S is a valuation function;
– For each π ∈ Π , Rπ ⊆ S × S
– Rπ1∩π2 = Rπ1 ∩Rπ2 (INT)

The interpretation of a formula in a state of a model is defined as follows (other clauses
as usual):

M, s |= [π]φ iff ∀(s, s′) ∈ Rπ, M, s′ |= φ

Joint Action in Kn with Intersection 143

3 Injective Games

The idea of interpreting K∩
n in game structures is very simple: interpret a full joint

action 〈a1, . . . , ag〉 in a CGS as a set of g different (“atomic”) edges, one for each
agent-action combination. This gives us a K∩

n model, where the atomic modalities are
agent-action pairs. Full joint actions can be recovered by taking the intersection between
the relations for two or more atomic modalities for different agents.

(1, a)

(a, b)
s t

(1, a) ∩ (2, b)

s t(2, b)

Fig. 1. CGS (left) and K∩
n model (right)

For example, consider the CGS on the left in Figure 1. The correspondingK∩
n model

is shown to the right. Coalition operators can now be captured approximately as follows.
If we for example want to say that there exists a joint action by agents 1 and 2, all
executions of which result in the outcome p, in such aK∩

n model, we can say something
like

∨
a,b∈Act[(1, a) ∩ (2, b)]p (in addition we must check that the actions a and b are

actually available in the current state, but that is straightforward).
However, there is a problem with this approach. Consider the CGS to the left in

Figure 2. The approach above gives us the K∩
n model to the right in the figure. This

model has four atomic transitions from s to t: two labelled (1, a1) and (2, b1) which
correspond to the full joint action (a1, b1), and two labelled (1, a2) and (2, b2) which
correspond to (a2, b2). The full joint actions can be recovered by intersection of the
atomic transitions, but the problem is that too much is “recovered” in this way: we get
the spurious transitions (a1, b2) and (a2, b1) which are not present between these states
in the original model.

(a2, b1)

u

(1, a2) ∩ (2, b2)
(1, a1) ∩ (2, b2)
(1, a2) ∩ (2, b1)
(1, a1) ∩ (2, b1)

(2, b1)
(1, a1)

(1, a2) ∩ (2, b2)s
(1, a1) ∩ (2, b2)
(1, a2) ∩ (2, b1)
(1, a1) ∩ (2, b1)

(2, b2)
(1, a2)
(2, b1)
(1, a1)

(2, b2)
(1, a2)

t u

s

(a1, b1)
(a2, b2)

(a1, b2)

t

Fig. 2. CGS (left) and K∩
n model (right). An arrow with more than one label represents a transition

for each label.

The problem is that by decomposing a full joint action into individual actions, we
lose information about which combinations of actions relate the two states. That in-
formation is crucial, e.g., for the interpretation of coalition operators. We call a CGS

144 T. Ågotnes and N. Alechina

without two or more different full joint actions between the same two states, i.e., with
an injective δ, injective (following [7]). Injective CGSs do not suffer this problem.

It is relatively straightforward to see that any CGS is equivalent, in the sense of sat-
isfying the same coalition logic formulae, to an injective CGS: take the tree-unfolding
of the model (see [1] for relevant definitions of tree-unfoldings, bisimulations, and in-
variance under bisimulation, for the ATL language which contains the CL language).
The tree-unfolding, however, is a model with infinitely many states, which may be a
problem, e.g., if we want to do model checking. Fortunately it turns out that every finite
CGS (finite state space) is CL-equivalent to a finite, and even “small”, injective CGS.
The following theorem follows immediately from a result by Goranko [7, Proposition
12] (with some minor changes and amendments).

Theorem 1. For every CGS M = 〈S, V,Act, d, δ〉 there is an injective CGS M ′ with
states S′ such that S ⊆ S′ and for all CL formulae φ and states s ∈ S, M, s |= φ iff
M ′, s |= φ. Moreover, if M is finite, then |S′| ≤ |S|+ |δ|.

This makes it possible to translate a CGS into a K∩
n model, such that we can recover

a CGS that is CL-equivalent to the former from the latter. Before formally defining the
translation in Section 4 we take a closer look at injective games; the reader mainly
interested in the translation can skip directly to that section.

3.1 Effectivity Functions and Representation

Although coalition logic cannot discern between injective games and non-injective
games, there is still another pertinent question if we want to restrict our attention to
injective games: the question of representation using effectivity functions. Which truly
playable effectivity functions correspond to injective games? The answer is not nec-
essarily “all”: this is similar to the relationship between playable and truly playable
effectivity functions [8]; the latter is a proper subset of the former while coalition logic
cannot discern between the two. Indeed, not all truly playable effectivity functions are
the α-effectivity functions of injective games:

Example 1. Let N = {1, 2} and E be defined as follows:

E(∅) = E(1) = E(2) = {{s, t}} E({1, 2}) = {{s}, {t}, {s, t}}

(where s �= t). The reader can check that E is truly playable. However, it is not the
α-effectivity function of an injective game. For assume it is, that E = EG for some
G.. Because of Safety, the game has exactly two states s and t. Together with the fact
that {s}, {t} ∈ E({1, 2}), that means that one of the agents must have exactly one
strategy, and the other exactly two: all other combinations violates injectivity of a two-
state game. Wlog. assume that Σ1 = {σ1} and Σ2 = {σ′

1, σ
′
2}. {s} ∈ EG({1, 2})

implies that o(σ1, σ
′
1) = s or o(σ1, σ

′
2) = s; wlog. assume the former. Then {t} ∈

EG({1, 2}) implies that o(σ1, σ
′
2) = t. But that means that {s}, {t} ∈ EG(2), which is

not the case.

Joint Action in Kn with Intersection 145

We now state and prove a representation theorem (Theorem 2) for injective games.
An effectivity function is injectively playable iff it is playable and (for all C, i, j,X, Y):

E(C) has a complete nonmonotonic core (1)

Enc(C) = {
⋂
i∈C

Xi : Xi ∈ Enc(i)} C �= ∅ (2)

X,Y ∈ Enc(i) and X �= Y ⇒ X ∩ Y = ∅ (3)

X ∈ Enc(j) and x ∈ X ⇒ ∃Y ∈ Enc(i), x ∈ Y (4)

Injective playability extends the true playability requirement of a complete nonmono-
tonic core [8] from the empty coalition to all coalitions. As a result,E(C) is completely
determined by its nonmonotonic core (stated formally in the following Lemma). In ad-
dition, there are some restrictions on the structure of the core. None of the additional
properties of injective playability, (1)–(4), hold in general for truly playable effectivity
functions (in particular, true playability does not imply complete nonmonotonic core
for non-empty coalitions).

Lemma 1. Let E be an outcome monotonic effectivity function. E(C) has a complete
nonmonotonic core iff E(C) = {X : Y ⊆ X,Y ∈ Enc(C)}.

Lemma 2. If E is injectively playable, then:

(∀i∈NXi ∈ Enc(i))⇒ |
⋂
i∈N

Xi| = 1 (5)

Enc(∅) = {Z} where Z =
⋃

Enc(N) (6)

Before proving the main result (Th. 2) we need the following lemma.

Lemma 3. If EG is the α-effectivity function of an injective game G = (N, {Σi : i ∈
N}, o, S), then for all C ⊆ N :

Enc
G (C) = { {o(σC , σC) : σC ∈ ΣC} : σC ∈ ΣC}

Theorem 2. An effectivity function E is injectively playable iff it is the α-effectivity
function of some injective game G.

Proofs are found in the appendix.

4 Multi-modal K with Intersection for Games

We now show how K∩
n formulae can be interpreted in game structures, by identifying

a class of K∩
n models corresponding to (injective) game structures.

4.1 Joint Action Models

Let Act be a finite set of actions and N a set of g agents. Define a set of atomic modal-
ities as follows:

Π0
ActN = N ×Act

146 T. Ågotnes and N. Alechina

Intuitively, an atomic modality is a pair (i, a) intended to represent an action and the
agent that executes that action. We will call an atomic modality in Π0

ActN an individual
action, and a composite modality π = π1 ∩ π2 a joint action. Since the intersection
operation is associative, we can write any joint action π as an intersection of a set of
individual actions: π = (i1, a1)∩· · ·∩ (ik, ak). Joint actions of the form (1, a1)∩ . . .∩
(g, ag) with one individual action for every agent in N will be called complete (joint)
actions.

The following are some properties of K∩
n models over Π0

ActN that will be of partic-
ular interest. We say that an action a ∈ Act is enabled for agent i in a state s iff there is
a state s′ such that (s, s′) ∈ R(i,a).

Seriality (SER). For any state s and agent i, at least one action is enabled in s for i.
Independent Choice (IC). For any state s, agents C = {i1, . . . , ik} and actions

a1, . . . , ak ∈ Act, if for every j aj is enabled for ij in s, then there is a state
s′ such that (s, s′) ∈ R(i1,a1)∩···∩(ik,ak).

Deterministic Joint Actions (DJA). For any complete joint actionαand states s, s1, s2,
(s, s1), (s, s2) ∈ Rα implies that s1 = s2.

Unique Joint Actions (UJA). For any complete joint actions α and β and states s, t, if
(s, t) ∈ Rα ∩Rβ then α = β.

A K∩
n model over Π0

ActN (where Act is finite) is a joint action model if it satisfies the
properties SER, IC, DJA, and UJA.

Given (finite) Act and N , we now translate any CGS over Act and N into a joint
action model.

Definition 1. Given an injective CGS M = 〈S, V,Act, d, δ〉 ∈ Mcgs(N,Θ,Act) where
Act is finite, the corresponding joint action model M̂ = 〈S, V, {Rπ : π ∈ Π}〉 over Θ
and Π0

ActN is defined as follows:

– R(i,a) = {(s, s′) : ∃a ∈ D(s) s.t. ai = a and s′ = δ(s,a)}, when (i, a) ∈ Π0
ActN

– Rπ1∩π2 = Rπ1 ∩Rπ2

We use the following property to show that MN is indeed a joint action model.

Lemma 4. Let M = 〈S, V,Act, d, δ〉 be injective and M̂ = 〈S, V, {Rπ : π ∈ Π}〉
be the corresponding joint action model, and let π = (i1, a1) ∩ . . . ∩ (ik, ak). Then
(s, t) ∈ Rπ iff there is an a′ ∈ D(s) such that a′ij

= aj for all 1 ≤ j ≤ k and
δ(s,a′) = t.

Proof. (s, t) ∈ Rπ iff there are a1, . . . ,ak ∈ D(s) such that for all 1 ≤ j ≤ k:
aj

ij
= aj and t = δ(s,aj). Since M is injective, it must be the case that a1 = · · · = ak.

Lemma 5. M̂ is a joint action model.

Proof. M̂ is a proper L∩K(Π0
ActN , Θ) model by definition. SER holds because di(s) is

always non-empty. IC holds because D(s) is defined as the cross product of di(s) for
all i. For DJA, (s, s1), (s, s2) ∈ Rα implies that δ(s,a) = s1 = s2 by Lemma 4. For
UJA, (s, t) ∈ Rα ∩Rβ implies that δ(s,a) = t and δ(s,b) = t by Lemma 4, which by
injectivity implies that a = b which again implies that α = β.

Thus, we get a direct interpretation of formulae φ ∈ L∩K(Π0
ActN , Θ) in injective CGSs

M ∈Mcgs(N,Θ,Act): M, s |= φ iff M̂, s |= φ.

Joint Action in Kn with Intersection 147

4.2 Embedding of CL

Given a coalition logic formula φ ∈ LCL(N,Θ) and a finite set of actions Act, we
define the translation φ′ ∈ L∩K(Π0

ActN , Θ) as follows:

p′ ≡ p
(¬φ)′ ≡ ¬φ′
(φ1 ∧ φ2)′ ≡ φ′1 ∧ φ′2
([{i1, . . . , ik}]φ)′ ≡

∨
a1,...,ak∈Act

∧
1≤j≤k〈(ij , aj)〉

∧[(i1, a1) ∩ . . . ∩ (ik, ak)]φ′

The translation of the CL formula [C]φ says that there is an action for each agent in
C, such that (i) the actions are enabled and (ii) for all possible states resulting from exe-
cuting the actions at the same time (the translation of) φ holds. The translation assumes
that the set of possible actions Act is given and that it is finite. In model checking this
can be obtained directly from the model.

Theorem 3. Let Θ, N and Act (finite) be fixed. For any φ ∈ LCL(N,Θ) and any
injective CGS M ∈Mcgs(N,Θ,Act) and any state s in M :

M, s |= φ iff M̂, s |= φ′

Proof. LetΘ,N andAct (finite) be given,φ ∈ LCL(N,Θ) andM ∈Mcgs(N,Θ,Act)
be injective and s in M . The proof is by induction on the structure of φ. The only in-
teresting case is when φ = [C]ψ where C = {i1, . . . , ik}. By Lemma 4 M̂, s |=
([C]ψ)′ iff there is a 〈a1, . . . , ak〉 ∈ DC(s) such that for all (s, t) ∈ R(i1,a1)∩...(ik,ak)

M̂, t |= ψ′ iff there is a 〈a1, . . . , ak〉 ∈ DC(s) such that for all a′ ∈ D(s) with
a′

ij
= aj (1 ≤ j ≤ k) M̂, δ(s,a′) |= ψ′ iff by the induction hypothesis there is

a 〈a1, . . . , ak〉 ∈ DC(s) such that for all a′ ∈ D(s) with a′
ij

= aj (1 ≤ j ≤ k)
M, δ(s,a′) |= ψ iff M, s |= [{i1, . . . , ik}]ψ.

The following follows immediately from Theorems 3 and 1.

Corollary 1. Let Θ, N andAct (finite) be fixed. For any φ ∈ LCL(N,Θ) and any CGS

M ∈ Mcgs(N,Θ,Act) there is a joint action model M over Π0
ActN such that for any

state s in M :
M, s |= φ iff M, s |= φ′

5 Axiomatisation of Joint Action Models

We now give an axiomatisation for the language L∩K(Π0
ActN , Θ) and prove that it is

sound and complete with respect to the class of all joint action models over Π0
ActN and

Θ. The axiom system S is defined as follows:

K [π](φ→ ψ)→ ([π]φ→ [π]ψ)
A1
∨

a∈Act〈(i, a)〉

A2 〈π〉φ→

∨
a∈Act〈π ∩ (i, a)〉φ

148 T. Ågotnes and N. Alechina

A3
∧

i∈N 〈(i, ai)〉
 → 〈(1, a1) ∩ . . . ∩ (g, ag)〉

A4 〈(1, a1) ∩ · · · ∩ (g, ag)〉φ→ [(1, a1) ∩ . . . ∩ (g, ag)]φ
A5 [π]φ→ [π ∩ π′]φ
A6 [(i, a) ∩ (i, b)]⊥ when a �= b
MP From φ→ ψ and φ infer ψ
G From φ infer [π]φ

K, MP and G says that the [π] modalities are normal. A1 says that at least one action
is enabled for each agent in every state, A2 says that if there is a joint action for some
agents that can ensure φ, then any agent can do some action at the same time such that
φ is still ensured, A3 says that all joint actions composed of enabled individual actions
are enabled, A4 says that complete joint actions are deterministic, A5 is the standard
axiom for intersection, and A6 says that an agent cannot do two actions simultaneously.

Theorem 4. The axiom system S is sound and complete wrt. all joint action models.

Proof. Soundness is straightforward. To prove completeness, we introduce some con-
ventions and auxiliary concepts and show some intermediate properties. When π =
(i1, a1)∩· · ·∩(ik, ak) and π′ = (j1, b1)∩· · ·∩(jl, bl) are joint actions, we write π ≤ π′

to denote that for every 1 ≤ u ≤ k there is a 1 ≤ v ≤ l such that iu = jv and au = bv.
Recall that a complete joint action is an expression of the form (1, a1) ∩ · · · ∩ (g, ag)
where ai ∈ Act, giving one action for each agent in the system. Let JA denote the
(finite) set of complete joint actions. We use α, β, . . . to denote complete joint actions.

We will make use of a notion of pseudomodels, which only have transition relations
for complete joint actions. Formally, a pseudomodel is a tuple (S, {Rα : α ∈ JA}, V)
where: S is a set of states, Rα ⊆ S × S for each α ∈ JA and V : Θ → 2S .

First, we construct the canonical pseudomodel M c = (Sc, {Rc
α : α ∈ JA}, V c) as

follows:

– Sc is the set of L∩K(Π0
ActN , Θ)-maximal S-consistent sets Γ

– V c(p) = {Γ : p ∈ Γ}
– Rc

αΓΓ
′ iff for any ψ, if ψ ∈ Γ ′ then 〈α〉ψ ∈ Γ

Lemma 6 (Existence Lemma). For any s ∈ Sc, if 〈α〉γ ∈ s for some α ∈ JA, then
there is an s′ such that (s, s′) ∈ Rc

α and γ ∈ s′.

The proof of the existence lemma is as in standard normal modal logic.
Now let φ be a consistent formula; we show that it is satisfied in some joint action

model. Let x ∈ Sc be such that φ ∈ x. We now take the unravelling of the canonical
pseudomodel around x. The pseudomodelMx = (Sx, {Rx

α : α ∈ JA}, V x) is defined
as follows:

– Sx is the set of all finite sequences (s0, Rc
α0
, s1 . . . , R

c
αk−1

, sk) such that s0, . . . , sk

∈ Sc, s0 = x, and (si, si+1) ∈ Rc
αi

for all 0 ≤ i ≤ k − 1.
– (s, u) ∈ Rx

α iff s = (x,Rc
α0
, s1 . . . , R

c
αk−1

, sk) and
u = (x,Rc

α0
, s1 . . . , R

c
αk−1

, sk, R
c
α, sk+1) for some sk+1 ∈ Sc.

– V x(p) = {(x,Rc
α0
, s1 . . . , R

c
αk−1

, sk) : sk ∈ V c(p)}

Joint Action in Kn with Intersection 149

We now transform the pseudomodelMx into a (proper) modelM = (Sx, {Rπ : π ∈
Π}, V x) as follows:

– R(i,a) =
⋃

α∈JA,(i,a)≤α R
x
α

– Rπ1∩π2 = Rπ1 ∩Rπ2

Lemma 7. Rα = Rx
α, for any complete joint action α ∈ JA.

Proof. Let α = (1, a1) ∩ · · · ∩ (g, ag), and observe that

Rα = (
⋃

(1,a1)≤α′
Rx

α′) ∩ · · · ∩ (
⋃

(g,ag)≤α′
Rx

α′).

First, assume that (s, t) ∈ Rx
α. It follows immediately that (s, t) ∈

⋃
(i,ai)⊆α′ Rx

α′ for
all i by taking α′ = α. Second, assume that (s, t) ∈ Rα, i.e., that there are α1, . . . , αg

such that (i, ai) ≤ αi for all i and (s, t) ∈ Rx
α1
∩ · · · ∩ Rx

αg
. By construction of Mx,

that implies that α1 = · · · = αg . So α1 = · · · = αg = α.

Let last(s) denote the last element sk ∈ Sc in a sequence s ∈ Sx.

Lemma 8 (Truth Lemma). For any s and ψ, M, s |= ψ iff ψ ∈ last(s).

Proof. The proof is by induction on the structure of ψ. The cases for propositional
atoms and Boolean connectives are straightforward, so let ψ = 〈π〉γ. Let π = (i1, a1)∩
· · · ∩ (ik, ak) for some 1 ≤ k ≤ n.

First assume that il = im = i and al �= am for some l �= m. Observe that Rπ =
(
⋃

(i1,a1)≤α′ Rx
α′)∩ · · · ∩ (

⋃
(ik,ak)≤α′ Rx

α′). Let α1 and α2 be arbitrary complete joint
actions such that (il, al) ≤ α1 and (im, am) ≤ α2. α1 �= α2 since il = im and
al �= am. By construction ofMx,Rx

α1
∩Rx

α2
= ∅. Thus,Rπ = ∅ (since α1 and α2 were

arbitrary), andM, s �|= 〈π〉γ for any γ. On the other hand, by A6 ¬〈(i, al)∩(i, am)〉γ ∈
last(s) for any γ, and it follows by A5 that ¬〈π〉γ ∈ last(s). Thus, the Lemma holds
in this case and we henceforth assume that al = am whenever il = im.

For the implication to the right, assume that M, s |= 〈π〉γ, i.e., that M, t |= γ for
some (s, t) ∈ Rπ =

⋃
(i1,a1)≤α′ Rx

α′ ∩ · · · ∩
⋃

(ik,ak)≤α′ Rx
α′ . Thus, for each 1 ≤

j ≤ k, there is an αj such that (s, t) ∈ Rx
αj

and (ij , aj) ∈ αj . By construction of
Mx, α1 = · · · = αk = α (the state t has only one “incoming” transition). Thus,
(s, t) ∈ Rx

α with π ≤ α. Assume that s = (x,Rc
α0
, s1, . . . , R

c
αk−1

, sk). Then t =
(x,Rc

α0
, s1, . . . , R

c
αk−1

, sk, R
c
α, sk+1) for some sk+1 such that (sk, sk+1) ∈ Rc

α. By
the induction hypothesis γ ∈ last(t) = sk+1. By construction of Rc

α, 〈α〉γ ∈ sk =
last(s). By (repeated applications of) A5, 〈π〉γ ∈ sk = last(s).

For the implication to the left, let s = (x,Rc
α0
, s1, . . . , R

c
αk−1

, sk) and let 〈π〉γ ∈
last(s) = sk. Let X = {l0, . . . , lm} be the agents not mentioned in π, i.e., X = {l ∈
N : l �= ij, 1 ≤ j ≤ n}. Let π0 = π, and πj+1 = πj ∩ (lj , aj) for each 0 ≤ j ≤ m
where aj ∈ Act is such that 〈πj∩(lj , aj)〉γ ∈ sk. The existence of such ajs are ensured
by axiom A2. Finally, let α = πm+1. This construction together with the assumption
that al = am whenever ik = im ensures that α is a complete joint action. By the
fact that 〈α〉γ ∈ sk and the existence lemma, there is a state sk+1 ∈ Sc such that
(sk, sk+1) ∈ Rc

α and γ ∈ sk+1. Let t = (x,Rc
α0
, s1, . . . , R

c
αk−1

, sk, R
c
α, sk+1); t ∈ Sx

150 T. Ågotnes and N. Alechina

and (s, t) ∈ Rx
α by definition of Mx. By Lemma 7 (s, t) ∈ Rα, and from the fact

that π ≤ α it is easy to see that Rα ⊆ Rπ by definition of Rπ, so (s, t) ∈ Rπ. Since
γ ∈ last(t), by the induction hypothesisM, t |= γ, and thus M, s |= 〈π〉γ.

Lemma 9. M is a joint action model.

Proof. INT: Immediate from the definition.
SER: Let s be a state and i an agent. From A1 and A3 there is some α = (1, a1) ∩

· · · ∩ (g, ag) such that 〈α〉
 ∈ s. From the truth lemma and Lemma 7 there is a s′

such that (s, s′) ∈ Rα = Rx
α. From the definition of R(i,ai), R

x
α ⊆ R(i,ai), and thus

(s, s′) ∈ R(i,ai).
IC: Let s be a state, C = {i1, . . . , ik} a coalition, and assume that for each j,

(ij , aij) is enabled for ij in s. Let π = (i1, ai1) ∩ · · · ∩ (ik, aik
). By the truth lemma,∧

ij∈C〈(ij , aij)〉
 ∈ last(s). For each ij ∈ N \ C, let aij be such that 〈(ij , aij)〉
 ∈
last(s) – existing by A1. Let α = (1, a1) ∩ · · · ∩ (g, ag). By A3 〈α〉
 ∈ last(s), and
by A5 〈π〉
 ∈ last(s). By the truth lemma, there is an s′ such that (s, s′) ∈ Rπ.

DJA: Assume that s = (x,Rc
α0
, s1, . . . , R

c
αk−1

, sk). Let (s, s1), (s, s2) ∈ Rα, where
α is complete. By Lemma 7, there are s1k+1, s

2
k+1 ∈ Sc such that

s1 =(x,Rc
α0
, s1, . . . , R

c
αk−1

, sk, R
c
α, s

1
k+1), s2 =(x,Rc

α0
, s1, . . . , R

c
αk−1

, sk, R
c
α, s

2
k+1),

and (sk, s
1
k+1), (sk, s

2
k+1) ∈ Rc

α. Assume that s1 �= s2, i.e., since s1 and s2 are identical
up to the last state, that s1k+1 �= s2k+1. By the definition of Sc, there must be a formula
ψ ∈ s1k+1 such that ¬ψ ∈ s2k+1. By the truth lemma, M, s1 |= ψ and M, s2 |= ¬ψ
and thus M, s |= 〈α〉ψ ∧ 〈α〉¬ψ. By the truth lemma again, 〈α〉ψ, 〈α〉¬ψ ∈ last(s).
By A4, [α]ψ, [α]¬ψ ∈ last(s). But 〈α〉ψ, [α]¬ψ ∈ last(s) contradicts, via standard
modal reasoning, the fact that last(s) is consistent. Thus, s1 = s2.

UJA: Immediate by Lemma 7 and construction of Mx.

Since φ ∈ x = last(x), φ is satisfied in a joint action model by Lemma 8 and 9. This
concludes the completeness proof.

6 Complexity

We show that the complexity of deciding satisfiability in joint action models of
L∩K(Π0

ActN , Θ) formulae is in PSPACE. The proof uses ideas from [12].
In what follows, we assume wlog. that formulas do not contain diamond modalities

and disjunctions. Given a set of formulas X , we use Cl(X) to denote the smallest set
containing all subformulas of formulas in X such that:

(a) for each agent i and action a, [(i, a)]⊥ ∈ Cl(X)
(b) for every complete joint action α ∈ JA, [α]⊥ ∈ Cl(X)
(c) if ¬[(1, a1), . . . , (g, ag)]ψ ∈ Cl(X), then [(1, a1), . . . , (g, ag)] ∼ ψ ∈ Cl(X),

where ∼ ψ = ¬ψ if ψ is not of the form ¬χ, and ∼ ψ = χ otherwise
(d) for each i and a �= b, [(i, a) ∩ (i, b)]⊥ ∈ Cl(X)
(e) if ψ ∈ Cl(X), then ∼ ψ ∈ Cl(X)

The following procedure Tab is based on the K∩∪
ω -World proc. of [12]. For sets of

formulas Δ and S where S is closed as above, Tab(Δ,S) returns true iff

Joint Action in Kn with Intersection 151

(A) Δ is a maximally propositionally consistent subset of S, that is, for each ¬ψ ∈ S,
ψ ∈ Δ iff ¬ψ �∈ Δ and for each ψ1 ∧ ψ2 ∈ S, ψ1 ∧ ψ2 ∈ Δ iff ψ1 ∈ Δ and
ψ2 ∈ Δ.

(B) There is a partition of the set {¬[π]ψ : ¬[π]ψ ∈ Δ} into sets Wα (at most one for
each α ∈ JA) such that if ¬[π]ψ ∈Wα then π ≤ α and
(i) ¬ψ ∈ Δα

(ii) for each π′ and ψ′, if [π′]ψ′ ∈ Δ and π′ ≤ α, then ψ′ ∈ Δα

(iii) Tab(Δα, S
′) returns true, where S′ = Cl({ψ′ : [π′]ψ′ ∈ Δ and π′ ≤ α} ∪

{¬ψ : ¬[π]ψ ∈ Wα})
(C) for each i ∈ N , ¬[(i, a)]⊥ ∈ Δ for some a ∈ Act
(D) if ¬[(1, a1)]⊥, . . . , ¬[(g, ag)]⊥ ∈ Δ, then ¬[(1, a1)∩ . . . ∩(g, ag)]⊥ ∈ Δ
(E) if ¬[α]ψ ∈ Δ, then [α] ∼ ψ ∈ Δ
(F) for every i ∈ N and a, b ∈ Act such that a �= b, [(i, a) ∩ (i, b)]⊥ ∈ Δ

We require Tab(Δ,S) to terminate when the only modal formulas in S are those in-
troduced by the clauses (a), (b) and (d) of the definition of Cl(X). Note that otherwise
formulas of the form ¬[α]⊥ will continue triggering new calls to Tab(Δ,S).

Lemma 10. A formula φ is satisfiable in a joint action model iff there existsΔ ⊆ Cl(φ)
with φ ∈ Δ such that Tab(Δ,Cl(φ)) returns true.

Proof. One direction is easy. For the other direction, we will show how to construct a
model for φ if there exists Δ ⊆ Cl(φ) with φ ∈ Δ such that Tab(Δ,Cl(φ)) returns
true. Suppose for φ such Δ exists, and let us call it Δ0. The model M and state s0 sat-
isfying φ are constructed as follows. Each Δ in successive recursive calls of Tab(Δ,S)
corresponds to a (partial specification of a) state. The existence of propositional assign-
ment satisfying formulas in Δ is ensured by clause (A). The initial state s0 corresponds
to Δ0. In each Δ, each formula of the form ¬[π]ψ by the clause (B) belongs to a set
Wα and has a ‘witness’ Δα for ¬ψ accessible by a complete joint action α such that
π ≤ α and ¬ψ ∈ Δα. In the model we stipulate Rα(sΔ, sΔα) holds together with
Rπ′(sΔ, sΔα) for every π′ ≤ α. The rest of clause (B) makes sure that Δα contains
all formulas ψ′ such that [π′]ψ′ ∈ Δ, which makes sure both that the truth definition
for [π] and the semantics of intersection work as expected. This part is almost identical
to the proof for K∩

ω (apart from requiring a unique α-successor). All we need to prove
is that in addition, the resulting model satisfies the properties of seriality, independent
choice, determinism for complete joint actions, and uniqueness of joint actions.

SER is trivial by clause (C). When we terminate the procedure, to ensure seriality
we add one more successor state for each α with an α loop to itself. This modification
will not affect the truth of φ in s0 because it is at a modal distance from s0 which is
greater than the modal depth of φ. IC is ensured by clause (D). DJA is ensured by (B);
the existence of partition is enabled by (E) which makes the set of formulas ∼ ψ for
¬[α]ψ ∈ Δ consistent. UJA is ensured by (F); namely there is no Δ′ accessible by
α∩α′ fromΔ, where α, α′ ∈ JA and α �= α′; otherwise by clause (F) for some agent i
which performs a different action in α and α′, [(i, a)∩ (i, b)]⊥ ∈ Δ and hence⊥ ∈ Δ′,
but by the definition of the procedure then it cannot return true for Δ′.

Theorem 5. The complexity of satisfiability problem of formulas in joint action models
is PSPACE-complete.

152 T. Ågotnes and N. Alechina

Proof. Satisfiability is decided by Tab(Δ,Cl(φ)) by the previous lemma. To see that
Tab(Δ,Cl(φ)) requires polynomial space, consider the size of Cl(φ). The set of sub-
formulas of φ is clearly polynomial in |φ|. The number of formulas added to Cl(φ)
by clause (a) is gm, the number of formulas added by clause (b) is mg, the number
of formulas added by clause (d) is gm2, and (c) and (e) at most double the number of
formulas in Cl(φ). Note that g and m are constant factors, hence the size of Cl(φ) and
Δ is polynomial in |φ|. PSPACE-hardness follows from K being PSPACE-complete.

The following is an immediate consequence of the result for model checking complexity
of PDL with intersection [10]:

Theorem 6. Model checking the L∩K(Π0
ActN , Θ) language in joint action models is in

PTIME.

The complexity results above are encouraging from the point of view of using the logic
of joint actions for verifying properties of game structures using standard theorem-
proving and model-checking tools for normal modal logic. However, verification of
properties involving coalitional ability comes at the price of performing a translation
from CL to the language of K∩

n . The size of the translation may grow exponentially in
the size of the input formula (nested coalition modalities give rise to nested disjunctions
over all possible actions).

7 Discussion

In this paper we defined and studied a class of K∩
n models corresponding to the class

of concurrent game structures that are (1) injective and (2) parameterised by a fixed and
finite set of actions, and showed that on this model class coalition modalities can be
expressed in the K∩

n language. Along the way we proved a representation theorem for
injective games (this result holds also games with infinite sets of actions).

As mentioned in the introduction, the idea of interpreting PDL-like languages in
games is not new. However, we are not aware of existing completeness or complexity
results forKn with intersection interpreted in game structures, nor on using intersection
to capture the coalition operator.

[15] uses propositional dynamic logic (PDL) interpreted directly in extensive-form
games, and also suggests extending the language with a “forcing” operator {G, i}φ,
with the meaning that agent i has a strategy in game G which forces a set of outcomes
that all will satisfy φ. However, the forcing operator is not defined in terms of intersec-
tion, and the operator is only defined for singleton coalitions. [4] have already shown
that coalition logic can be embedded in a normal modal logic, namely in a variant of
STIT (seeing-to-it-that) logic [3]. While this is a valuable result for several reasons, we
argue that embedding in K∩

n is of additional interest because the latter is a more stan-
dard logic (see the introduction). A closely related work is [11], which sets out from a
similar starting point as the current paper: defining a “minimalistic” logical framework
based on PDL that is interpreted in models where agents perform joint actions. Deter-
ministic Dynamic Logic of Agency (DDLA) [11] has modalities of the form 〈i : a〉
where i is an agent and a is an action, very similar to the modalities in the current paper

Joint Action in Kn with Intersection 153

in other words, and is shown to embed coalition logic. The interpretation of the modal-
ities is slightly different: 〈i : a〉φ informally means that “i performs action a and φ
holds afterwards”. The formal interpretation is not a standard PDL interpretation. Also
the language is not standard PDL; it includes a modality � that quantifies over actions.
The language does not use intersection. In contrast, the current paper has focused on
reasoning about joint action using only standard PDL modalities and operators, in par-
ticular intersection. We leave the precise relationship between the two logics to future
work.

In this paper we studied a “minimal” language with intersection, sufficient to capture
the coalition operators. For future work, extensions of the language with other PDL

operators would be of interest, building on existing results on PDL with intersection
such as [5].

Acknowledgments

We thank the anonymous reviewers for comments that helped us improve the paper. We
also thank Pål Grønås Drange who commented on a draft of the paper.

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with irrevocable
strategies. In: Samet, D. (ed.) Proceedings of the 11th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK XI), June 2007, pp. 15–24. Presses Universitaires de
Louvain, Brussels, Belgium (2007)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

3. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. Theoria 54, 175–199
(1988)

4. Broersen, J., Herzig, A., Troquard, N.: A normal simulation of coalition logic and an epis-
temic extension. In: Samet, D. (ed.) Proceedings of the 11th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK-2007), Brussels, Belgium, June 25-27, pp.
92–101 (2007)

5. Danecki, S.: Nondeterministic propositional dynamic logic with intersection is decidable. In:
Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer, Heidelberg (1985)

6. Gargov, G., Passy, S.: A note on boolean modal logic. In: Proc. of The Summer School and
Conf. on Mathematical Logic ”Heyting 1988”, pp. 311–321. Plenum Press, New York (1988)

7. Goranko, V.: Coalition games and alternating temporal logics. In: Proceeding of the Eighth
Conference on Theoretical Aspects of Rationality and Knowledge (TARK VIII), pp. 259–
272. Morgan Kaufmann, San Francisco (2001)

8. Goranko, V., Jamroga, W., Turrini, P.: Strategic games and truly playable effectivity func-
tions. In: Tumer, Yolum, Sonenberg, Stone (eds.) Proceedings of the 10th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan,
pp. 727–734 (2011)

9. Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical
Logic, Volume II: Extensions of Classical Logic. Synthese Library, vol. 165, pp. 497–604.
D. Reidel Publishing Co., Dordrecht (1984)

154 T. Ågotnes and N. Alechina

10. Lange, M.: Model checking propositional dynamic logic with all extras. J. Applied
Logic 4(1), 39–49 (2006)

11. Lorini, E.: A dynamic logic of agency II: Deterministic DLA, coalition logic, and game
theory. Journal of Logic, Language and Information 19, 327–351 (2010)

12. Lutz, C., Sattler, U.: The complexity of reasoning with boolean modal logics. In: Wolter, F.,
Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 3, pp.
329–348. World Scientific, Singapore (2002)

13. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)
14. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computa-

tion 12(1), 149–166 (2002)
15. van Benthem, J.: Games in dynamic-epistemic logic. Bulletin of Economic Research 53(4),

219–248 (2001)
16. van Benthem, J.: Extensive games as process models. J. of Logic, Lang. and Inf. 11, 289–313

(2002)
17. van der Hoek, W., Pauly, M.: Modal logic for games and information. In: van Benthem, J.,

Blackburn, P., Wolter, F. (eds.) The Handbook of Modal Logic, pp. 1152–1180. Elsevier,
Amsterdam (2006)

Appendix: Some Proofs

Proof (Lemma 1). For the implication to the right, assume that E(C) has a complete
nonmonotonic core. E(C) ⊆ {X : Y ⊆ X,Y ∈ Enc(C)} is immediate. If Y ⊆ X
and Y ∈ Enc(C), then X ∈ E(C) by outcome monotonicity. The implication to the
left is immediate.

Proof (Lemma 2). (5) Let Xi ∈ Enc(i) for each i ∈ N . By (2),
⋂

i∈N Xi ∈ Enc(N),
and by true playability and [8, Proposition 5] there is an x ∈

⋂
i∈N Xi such that {x} ∈

E(N). That means that {x} =
⋂

i∈N Xi; because
⋂

i∈N Xi �= {x} contradicts the facts
that
⋂

i∈N Xi ∈ Enc(N), {x} ∈ E(N) and x ∈
⋂

i∈N Xi.
(6) Let Z =

⋃
Enc(N). Since injective playability implies true playability, we know

that Enc(∅) = {Z ′} for some Z ′ [8, Proposition 5]. We show that Z ′ = Z . We have
that S \ Z �∈ E(N); otherwise there would be a X ⊆ S \ Z such that X ∈ Enc(N)
(by (1)) and thus X ⊆ Z by definition of Z , which together with the fact that X �= ∅
(Liveness) is a contradiction. By N -maximality, S \ (S \ Z) = Z ∈ E(∅). Thus,
Z ′ ⊆ Z by (1). Assume, towards a contradiction, that Z �⊆ Z ′, i.e., that there is an
x ∈ Z such that x �∈ Z ′. That x ∈ Z means that there is an X ∈ Enc(N) with
x ∈ X . Let X ′ = X \ {x}. That Z ′ ∈ E(∅) and X ∈ E(N) implies by superadditivity
that Z ′ ∩ X ∈ E(N), and by the fact that x �∈ Z ′ we have that Z ′ ∩ X ⊆ X ′. By
outcome monotonicity, X ′ ∈ E(N). But that contradicts the fact that X ∈ Enc(N).
Thus, Z = Z ′.

Proof (Lemma 3). X ∈ Enc
G (C) iff ∃σC∀σCo(σC , σC) ∈ X and there is no Y ∈

EG(C) such that Y ⊂ X . Let P = { {o(σC , σC) : σC ∈ ΣC} : σC ∈ ΣC}.
First, letX∈Enc

G (C) and let σC be as above (a witness forX). Let Y ={o(σC , σC) :
σC ∈ ΣC}. Y ∈ P . Y ⊆ X . We have that Y ∈ EG(C) (by definition of α-effectivity),
so by the fact that X ∈ Enc

G (C) it follows that Y �⊂ X and thus that Y = X .

Joint Action in Kn with Intersection 155

Second, let X = {o(σC , σC) : σC ∈ ΣC} ∈ P for some σC . X ∈ EG(C). Assume
towards a contradiction that there is a Y ∈ EG(C) such that Y ⊂ X . Thus there is a
σ′

C ∈ ΣC such that for all σ′
C
∈ ΣC , o(σ′

C , σ
′
C

) ∈ Y . σC �= σ′
C ; otherwise X ⊆ Y ,

a contradiction. Y �= ∅, so there is a y ∈ Y ∩ X . In other words, there are σC and σ′
C

such that o(σC , σC) = o(σ′
C , σ

′
C

) = y. But this contradicts the fact that G is injective,
since σC �= σ′

C . Thus, there is no such Y , and X ∈ Enc
G (C).

Proof (Theorem 2). First, letEG be theα-effectivity function of some injective gameG.
We show that EG is injectively playable. It is immediate from [14] that EG is playable.

In order to show (1), let X ∈ EG(C), i.e., there is a σC such that for all σC

o(σC , σC) ∈ X . Let Y = {o(σC , σC) : σC ∈ ΣC}. Y ⊆ X , and Y ∈ Enc
G (C)

by Lemma 3.
In order to show (2), assume that |C| ≥ 2, since (2) holds trivially for |C| = 1. For

one direction, let X ∈ Enc
G (C). By Lemma 3, X = {o(σC , σC) : σC ∈ ΣC} for some

σC . Let, for each i ∈ C, σi = (σC)i and Xi = {o(σi, σi) : σi ∈ Σi}. Xi ∈ Enc
G (i) by

Lemma 3. X ⊆
⋂

i∈C Xi. We must show that
⋂

i∈C Xi ⊆ X . Let x ∈
⋂

i∈C Xi. For
each i ∈ C, there exists some σi such that x = o(σi, σi). For any arbitrary i, j ∈ C,
i �= j, from o(σj , σj) = x = o(σi, σi) we get that (σj)i = σi by injectivity. Thus,
o(σC , σC) = o(σj , σj), for all j ∈ C and some σC , and thus x ∈ X .

For the other direction of (2), let X =
⋂

i∈C Xi with Xi ∈ Enc
G (i). Again, for each

i ∈ C, Xi = {o(σi, σi) : σi ∈ Σi} for some σi. Let σC be defined by (σC)i = σi.
Let Y = {o(σC , σC) : σC ∈ ΣC}. Y ∈ Enc

G (C) by Lemma 3. We show that Y = X .
First, let σC ∈ ΣC be arbitrary. Since (σC)i = σi, o(σC , σC) ∈ Xi for all i ∈ C, and
o(σC , σC) ∈ X . Thus, Y ⊆ X . Let x ∈ X . For each i ∈ C, there is some σi such that
o(σi, σi) = x. We can now reason as above. Let i, j ∈ C, i �= j. From o(σj , σj) = x =
o(σi, σi), we get that (σj)i = σi by injectivity. Thus, o(σj , σj) = o(σC , σC), for some
arbitrary j ∈ C and some σC , and thus x ∈ Y . Thus, X ⊆ Y .

In order to show that (3) holds, let X �= Y ∈ Enc
G (i). By Lemma 3, there are σi, σ

′
i

such that X = {o(σi, σi) : σi ∈ Σi} and Y = {o(σ′
i, σi) : σi ∈ Σi}. Assume

that x ∈ X ∩ Y , i.e., that o(σi, σi) = o(σ′
i, σ

′
i
) for some σi and σ′

i
. Since the game

is injective that means that σi = σ′
i, but that contradicts the fact that X �= Y . Thus,

X ∩ Y = ∅.
In order to show that (4) holds, let X ∈ Enc

G (j) and x ∈ X . By Lemma 3, there is a
σj such that X = {o(σj , σj) : σj ∈ Σj}. In particular, x = o(σj , σj) for some σj . Let
σi = (σj)i, and let Y = {o(σi, σi) : σi ∈ Σi}. x ∈ Y , and Y ∈ Enc

G (i) by Lemma 3.
Second, let E be an injectively playable effectivity function over N and S. We

construct a game G = (N, {Σi : i ∈ N}, o, S) as follows:

Σi = Enc(i) o(X1, . . . , Xg) = x where {x} =
⋂
i∈N

Xi

The property (5) (Lemma 2) ensures that the game is well defined. To see that G is
injective, assume that o(X1, . . . , Xg) = o(X ′

1, . . . , X
′
g) = x. That means that, for each

i, x ∈ Xi ∩X ′
i, and by (3) it follows that Xi = X ′

i. Thus, G is injective.
We must show that EG = E. By (1), outcome monotonicity and Lemma 1 it suffices

to show that Enc
G (C) = Enc(C) for all C ⊆ N .

156 T. Ågotnes and N. Alechina

First assume that C �= ∅. For any X , X ∈ Enc
G (C) iff (by Lemma 3) ∃σC such

that X = {o(σC , σC) : σC ∈ ΣC} iff ∃{Xi ∈ Enc(i) : i ∈ C} such that X =
{x : {x} =

⋂
i∈N Xi, Xj ∈ Enc(j), j ∈ N \ C}. On the other hand, X ∈ Enc(C)

iff ∃{Xi ∈ Enc(i) : i ∈ C} such that X =
⋂

i∈C Xi, by (2). Thus, let, for each
i ∈ C, Xi ∈ Enc(i). It suffices to show that {x : {x} =

⋂
i∈N Xi, Xj ∈ Enc(j), j ∈

N \ C} =
⋂

i∈C Xi. For inclusion towards the left, assume that x ∈
⋂

i∈C Xi. If
C = N we are done. Otherwise, from (4) it follows that there is a Xj ∈ Enc(j) such
that x ∈ Xj , for every j ∈ N \C. Thus, x ∈

⋂
i∈N Xi. For inclusion towards the right,

let {x} =
⋂

i∈N Xi for some {Xi ∈ Enc(i) : i ∈ N \ C}. It immediately follows that
x ∈

⋂
i∈C Xi.

Second, consider the case that C = ∅. X ∈ Enc
G (∅) iff (by Lemma 3) X = {o(σN) :

σN ∈ ΣN} iff X = {x : {x} =
⋂

i∈N Xi, Xi ∈ Enc(i)} iff (by (2)) X =
⋃
Enc(N)

iff (by Lemma 2) X ∈ Enc(∅).

Ontology Merging as Social Choice

Daniele Porello and Ulle Endriss

Institute for Logic, Language and Computation (ILLC)

University of Amsterdam

Abstract. The problem of merging several ontologies has important ap-
plications in the Semantic Web, medical ontology engineering, and other
domains where information from several distinct sources needs to be in-
tegrated in a coherent manner. We propose to treat ontology merging as
a problem of social choice, i.e., as a problem of aggregating the input of a
set of individuals into an adequate collective decision, and we show how
to apply the methodology of social choice theory in this new domain.
We do this for the case of ontologies that are modelled using description
logics. Specifically, we formulate a number of desirable properties for on-
tology merging procedures, we identify the incompatibility of some of
these properties, and we define and analyse several concrete procedures.

1 Introduction

Merging a number of ontologies originating from different sources is a pressing
problem in applications ranging from medical informatics to the Semantic Web
[13,6]. We propose to add a new perspective to this problem by treating it as
a problem of social choice. Social choice theory (SCT) is a branch of economic
theory that deals with the design and analysis of mechanisms for aggregating
opinions of individual agents to arrive at a basis for a collective decision [7]. A
typical example is voting. In the context of ontology merging, we may think of the
provider of each ontology as a voter, and these voters try to “elect” a collective
ontology that adequately and fairly represents the information provided by each
of them.

As an example, imagine a possible Semantic Web scenario. Suppose several
sources provide different encyclopedia entries of the same word. Naturally, en-
cyclopedias might differ with respect to the information provided, the degree of
exhaustiveness attained, or the aspects chosen as relevant. Of course, there might
be conflicts about the views provided by the different sources. We might imag-
ine an agent who is searching the web for a given definition who is interested in
knowing an answer that best represents the class of encyclopedias he has access
to, rather than checking each source by itself. This problem is clearly related
to the problem of aggregating several points of view into a collective point of
view, where we do not have enough information to discriminate the reliability of
the various sources. With respect to such a scenario, the kind of axioms usually
discussed in SCT are relevant, because they provide precise definitions of the
idea of collective information.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 157–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

158 D. Porello and U. Endriss

Our aim in this paper is to make the idea of viewing ontology merging as a
problem of social choice precise by providing a suitable formal framework for its
analysis and to propose a number of simple procedures that fit this framework,
together with an initial analysis of some of their most fundamental properties.
We concentrate on high-level properties that are broadly related to “fairness”
and we restrict attention to what one might want to call “coarse” merging: the
ontology to be constructed will be a list of some of the formulas included in the
individual ontologies. We do not deal with “fine” merging, where we might also
want to construct entirely new formulas from those provided by the individuals.
We use ontologies expressed in a simple description logic [1] as an example,
although the choice of logic is in fact not critical to our proposal.

In the remainder of this paper we shall use the term ontology aggregation to
refer to our specific approach based on SCT, to distinguish it from the broader
and established research area of ontology merging.

What we propose is closely related to judgment aggregation (JA), a branch
of SCT that deals with the aggregation of individual judgments regarding the
truth or falsehood of a set of interrelated propositions modelled as formulas of
propositional logic [10]. The main points of interest of our proposal from the
viewpoint of the JA literature are the following:

(1) First, the agenda, i.e., the set of formulas which may or may not be accepted
by individuals, is not closed under complementation (which is a standard
assumption in JA).

(2) Second, we operate under an open world assumption, meaning that an agent’s
failure to explicitly include a formula in her ontology does not necessarily
mean that she rejects the truth of that formula.

(3) Third, description logical ontologies make a separation between terminologi-
cal and assertional knowledge, and this conceptual distinction can guide the
aggregation process (cf. the discussion of “premises” and “conclusions” in
the JA literature).

The problem of modelling ontology change is of course a very general and protean
task, dealing with a vast number of interrelated phenomena such as updating
after new information has arrived, revision, or debugging for inconsistencies [6].
Contributions to ontology merging range from sophisticated engineering solu-
tions (see e.g. [13]) to works in mathematical logic. Applications of AGM belief
revision to ontology merging and debugging have been discussed, for instance,
by [14]. However, even though the connections between SCT and belief merging
are clearly recognised in AI [8], this methodology seems not yet to have been
applied to ontology merging.

The remainder of the paper is organised as follows. In Section 2, we define
a formal framework for ontology aggregation in description logics. In Section 3,
we then define a number of axioms (i.e., desirable properties) that a specific
aggregation procedure may or may not satisfy. Finally, in Section 4, we present a
number of such procedures based on simple principles and discuss to what extent
they satisfy the axioms defined earlier. We conclude with a brief discussion of
possible directions for future work.

Ontology Merging as Social Choice 159

2 A Framework for Ontology Aggregation

We first define our framework for aggregating ontologies expressed in a descrip-
tion logic with a common alphabet. We begin by recalling some basic notation
and terminology from description logics.

2.1 Preliminaries: Description Logics

Description logics are languages for knowledge representation with a formal syn-
tax and semantics that balance expressive power as dictated by applications
with computational efficiency requirements. The best known and mostly widely
used basic description logic is ALC. Our approach is not tied to any particular
description logic, but for reasons of clarity of exposition we shall restrict atten-
tion to ALC. The following review of the basics of description logics and ALC is
fairly succinct; for full details we refer to the literature [1].

The language of ALC is based on an alphabet consisting of atomic concepts,
role names, and object names. The set of concept descriptions is generated by
the following grammar (where A represents atomic concepts and R role names):

C ::= A | ¬C | C �C | C �C | ∀R.C | ∃R.C

A TBox is a finite set of formulas of the form A � C and A ≡ C (where A is an
atomic concept and C a concept description). It is used to store terminological
knowledge regarding the relationships between concepts. An ABox is a finite set
of formulas of the form A(a) (“object a is an instance of concept A”) and R(a, b)
(“objects a and b stand to each other in the R-relation”).1 It is used to store
assertional knowledge regarding specific objects. The semantics of ALC is de-
fined in terms of interpretations that map each object name to an element of its
domain, each atomic concept to a subset of the domain, and each role name to a
binary relation on the domain. The truth of a formula in such an interpretation
is defined in the usual manner [1]. For instance, ∀R.C is true in a given interpre-
tation at point a if all elements related to a via (the interpretation of) R belong
to the (interpretation of) C. A set of (TBox and ABox) formulas is satisfiable if
there exists an interpretation in which they are all true. A consequence relation
|= is defined on top of this semantics in the standard way.

2.2 Ontology Aggregators

Let us now fix a particular alphabet. This induces a fixed finite set of ABox
formulas (but the set of TBox formulas is infinite). Let us fix a finite set L of
ALC formulas over this alphabet that includes all ABox formulas that can be
expressed.2 We call L the agenda and any set O ⊆ L an ontology.3 Any such
1 Note that limiting the ABox to “atomic” formulas is not a restriction, as A may be

given a complex definition in the TBox.
2 The finite set of TBox formulas in L might be all TBox formulas of a certain max-

imum length or the union of all TBox formulas that a given population of agents
choose to include in their TBoxes.

3 In the literature, the term “ontology” is sometimes restricted to terminological
knowledge; here we use it in this broader sense.

160 D. Porello and U. Endriss

ontology O can be divided into a TBox OT and an ABox OA. We denote the set
of all those ontologies that are satisfiable by On(L). Also recall that the closure
of a set of formulas Φ ⊆ L is the set of all formulas that logically follow from
those in Φ. It is denoted by Cl(Φ) := {ϕ ∈ L | Φ |= ϕ}.

Let N = {1, . . . , n} be a finite set of agents (or individuals, or experts). Each
agent i ∈ N provides a satisfiable ontology Oi ∈ On(L). An ontology profile
O = (O1, . . . , On) ∈ On(L)N is a vector of such ontologies, one for each agent.
We write NO

ϕ := {i ∈ N | ϕ ∈ Oi} for the set of agents including ϕ in their
ontology under profile O.

The question we shall address in this paper is how to best aggregate an on-
tology profile into a single collective ontology. That is, our object of study are
ontology aggregators.

Definition 1 (Ontology aggregators). An ontology aggregator is a function
F : On(L)N → 2L mapping any profile of satisfiable ontologies to an ontology.

Observe that, according to this definition, the ontology we obtain as the outcome
of an aggregation process need not be satisfiable. Of course, we will be partic-
ularly interested in ontology aggregators that are satisfiable, i.e., aggregators F
for which F (O1, . . . , On) is satisfiable whenever all Oi are.

2.3 Example

A simplistic example for an ontology aggregator is F with F (O) := O1∪· · ·∪On,
which simply returns the union of the individuals ontologies. Of course, this
will usually not be a good choice, as F clearly is not a satisfiable aggregator.
Another simple natural choice is the majority rule: accept a formula if and only
if a majority of the agents do. This can also lead to unsatisfiable outcomes, as we
can easily simulate the doctrinal paradox familiar from JA [10]. Suppose three
agents share a common TBox with two formulas:

C3 � C1 � C2 C4 � ¬C3

Furthermore, suppose the three ABoxes are as follows:

C1(a) C2(a) C3(a) C4(a)
Agent 1 yes yes yes no
Agent 2 yes no no yes
Agent 3 no yes no yes
Majority yes yes no yes

Even though all individual ontologies are satisfiable, the ontology obtained by
applying the majority rule is not.

3 Properties of Ontology Aggregators

We now define a number of properties that a given ontology aggregator may or
may not satisfy. Most of these properties relate, in one way or another, to the

Ontology Merging as Social Choice 161

“fairness” of the aggregation process and are directly inspired by properties of
voting rules, JA rules, and other types of aggregators commonly defined in SCT
[7,10]. As in SCT, we refer to these properties as axioms.

3.1 Syntactic Axioms

We first define a number of axioms that are “syntactic” in the sense that they
relate to the formulas that occur explicitly in the ontologies of individual agents
or in the collective ontology. We will later contrast this with “semantic” ax-
ioms that also make reference to the formulas that can be inferred from those
ontologies.

The axiom of unanimity postulates then when all individual ontologies include
ϕ, then so should the collective ontology. This clearly is a desirable property in
any kind of domain. An aggregator F is anonymous if it is symmetric wrt. in-
dividual ontologies. This is appropriate if we have reasons to treat all agents
equally. In the social choice literature the axiom of anonymity is usually moti-
vated in terms of fairness considerations, which may or may not be relevant in
the context of ontology aggregation, depending on the application at hand. But
treating all agents equally is also justified, for instance, if we simply do not have
any information regarding the reliability of individual agents. F is independent if
inclusion of ϕ in the collective ontology only depends on the pattern of its inclu-
sion in the individual ontologies and is independent from which other formulas
may or may not have been included. Independence is a more demanding axiom
that the previous two; whether or not it should be imposed certainly is debat-
able. Finally, F is monotonic if additional support for a collectively accepted
formula will never lead to it being rejected. This, again, is a property that we
would usually (though maybe not always) like to see satisfied, certainly in cases
where it is reasonable to assume that every agent has at least some degree of
reliability. The four axioms introduced so far are formalised as follows:

– Unanimity: F is called unanimous if O1∩· · ·∩On ⊆ F (O) for every profile
O ∈ On(L)N .

– Anonymity: F is called anonymous if for any profile O ∈ On(L)N and any
permutation π : N → N we have that F (O1, . . . , On) = F (Oπ(1), . . . , Oπ(n)).

– Independence: F is called independent if for any ϕ ∈ L and profiles O,O′ ∈
On(L)N , we have that ϕ ∈ Oi ⇔ ϕ ∈ O′

i for all i ∈ N implies ϕ ∈ F (O)⇔
ϕ ∈ F (O′).

– Monotonicity: F is called monotonic if for any i ∈ N , ϕ ∈ L, and O,O′ ∈
On(L)N with Oj=O′

j for all j �= i, we have that ϕ ∈ O′
i \Oi and ϕ ∈ F (O)

imply ϕ ∈ F (O′).

A further important axiom from the literature is neutrality, which, intuitively,
requires all formulas to be treated symmetrically. In fact, there are a number of
possible interpretations of this notion, including these:

– Neutrality: F is called neutral if for any ϕ, ψ ∈ L and O ∈ On(L)N we
have that ϕ ∈ Oi ⇔ ψ ∈ Oi for all i ∈ N implies ϕ ∈ F (O)⇔ ψ ∈ F (O).

162 D. Porello and U. Endriss

– Acceptance-Rejection Neutrality: F is called acceptance-rejection neu-
tral if for any ϕ ∈ L and O ∈ On(L)N we have that ϕ ∈ Oi ⇔ ψ �∈ Oi for
all i ∈ N implies ϕ ∈ F (O)⇔ ψ �∈ F (O).

The first notion of neutrality is the one that we shall adopt here. It says that if
two formulas enjoy the same pattern of acceptance—in the same profile—then
either both should be accepted or both should be rejected. The second axiom
is closer to the original neutrality axiom in voting theory proposed by [11]. It
says that if those patterns of acceptance are complementary, then exactly one
of the two formulas should be accepted. The reason we do not believe that
acceptance-rejection neutrality is appropriate for ontology aggregation is that it
makes the implicit assumption that not explicitly including a formula into one’s
knowledge base amounts to actively rejecting the validity of that formula. This
is an appropriate assumption in JA, but not here.4

We also propose three axioms that are specific to ontology aggregation and
that do not have a counterpart in standard SCT or JA. The first is groundedness:
a formula should only occur in the collective ontology if it is included in at least
one of the individual ontologies, i.e., if it is an element of O1 ∪ · · · ∪ On, the
support of a given profile (O1, . . . , On). In standard JA, due to the assumption
that agendas are closed under complementation (and that each agent will accept
either ϕ or its complement), groundedness is implied by unanimity (with consis-
tency) and does not require a separate axiom. The second axiom we propose is
exhaustiveness: it should not be possible to add any formula from the support to
the collective ontology without rendering the latter unsatisfiable. In other words,
we should “exhaust” the supply of formulas in the support when building the
collective ontology—as long as we do not create any inconsistencies this way.
This axiom is desirable if we assume that all information supplied by individuals
is (potentially) useful information and if we do not take an agent’s omission of
a particular formula in their ontology as a vote against that formula. That is,
exhaustiveness is closely related to the open world assumption. Our third axiom
is group closure, a weaker version of exhaustiveness: any formula in the support
that is logically entailed by the collective ontology should in fact be part of that
ontology. We now state these additional axioms formally:

– Groundedness: F is called grounded if F (O) ⊆ O1 ∪ · · · ∪ On for every
profile O ∈ On(L)N .

– Exhaustiveness: F is called exhaustive if there exists no satisfiable set
Φ ⊆ O1 ∪ · · · ∪On with F (O) ⊂ Φ for any profile O ∈ On(L)N .

– Group Closure: F is called group-closed if there exists no set Φ ⊆ O1 ∪
· · · ∪On with F (O) |= Φ and F (O) ⊂ Φ for any profile O ∈ On(L)N .

4 Dietrich and List [3] use the name “acceptance-rejection neutrality” for a slightly
different axiom: for any ϕ ∈ L and O,O′ ∈ On(L)N , we have that ϕ ∈ Oi ⇔ ψ �∈ O′

i

for all i ∈ N implies ϕ ∈ F (O) ⇔ ψ �∈ F (O′). Arguably, this is closer to an
(in)dependence axiom, as it makes reference to two profiles.

Ontology Merging as Social Choice 163

All of the above axioms are natural requirements, but we stress that we do not
impose them in general. Some may be more desirable than others for any given
problem domain (but all should certainly be considered).

We are now in a position to make our objection to the axiom of acceptance-
rejection neutrality more precise:

Proposition 1. Any ontology aggregator that satisfies acceptance-rejection neu-
trality violates exhaustiveness.

Proof. Any acceptance-rejection neutral aggregator cannot accept both ϕ and
ψ when ϕ ∈ Oi ⇔ ψ �∈ Oi for all i ∈ N . But if each is accepted by at least
one agent, and if each is logically independent from all other formulas in the
support, then an exhaustive aggregator must accept them both. �

3.2 Semantic Axioms

For many applications, the agents providing individual ontologies will not only be
worried about the formulas included in the collective ontology but also about the
formulas that can be inferred from that ontology. This distinction has also been
discussed by Flouris et al. [5] in terms of implicitly and explicitly represented
knowledge. We therefore formulate semantic variants of the axioms above in
which we refer to the closures of ontologies rather than the ontologies themselves.
Note that the existing literature on JA only deals with what we have called
syntactic axioms above.

Here we only spell out the precise formulation of the semantic variants of the
aforementioned axioms for some of them. The remaining ones can be adapted
following the same pattern.

– Semantic Unanimity: F is called semantically unanimous if Cl(O1)∩· · ·∩
Cl(On) ⊆ Cl(F (O)) for every profile O ∈ On(L)N .

– Semantic Groundedness: F is called semantically grounded if Cl(F (O)) ⊆
Cl(O1) ∪ · · · ∪ Cl(On) for every O ∈ On(L)N .

– Semantic Exhaustiveness: F is called semantically exhaustive if there
exists no satisfiable set Φ ⊆ Cl(O1) ∪ · · · ∪ Cl(On) with Cl(F (O)) ⊂ Φ for
any O ∈ On(L)N .

That is, semantic unanimity, for instance, is satisfied if whenever each individual
ontology suffices to infer some formula ϕ, then ϕ should also be derivable from the
collective ontology. We believe that all of our semantic properties are generally
desirable properties and system designers should be interested in satisfying these
axioms—with one exception: semantic groundedness. This axiom postulates that
only formulas derivable from at least one individual ontology should be derivable.
This will rarely be a reasonable requirement. On the contrary, we would hope
that by combining the information provided by several agents we are able to
make new inferences that were not possible before aggregation. For comparison,
note that syntactic groundedness is perfectly reasonable, at least for what we
have called coarse merging above (for fine merging, we do want to be able to
construct new formulas).

164 D. Porello and U. Endriss

An interesting feature of our model is that it allows for stating precisely the
relationship between implicitly and explicitly represented knowledge, namely by
investigating relationship between syntactic and the semantic axioms. So, what
is the relative strength of a syntactic axiom and its semantic variant? For una-
nimity, for instance, we can show that the syntactic version does not entail the
semantic version, nor vice versa. First, consider this example, showing that there
are syntactically unanimous aggregators that are not semantically unanimous:
Suppose three agents share a common TBox including the formulas C ≡ D and
D ≡ E, and suppose the ABox of the first agent includes only C(a), the sec-
ond only D(a), and the third only E(a). Now the majority rule will produce an
empty ABox. This violates semantic unanimity, as C(a) can be inferred from
all three individual ABoxes, but not from the collective ABox. However, the
majority rule clearly is (syntactically) unanimous. Second, a trivial counterex-
ample shows that semantically unanimous aggregators need not be syntactically
unanimous: Consider the aggregator F mapping any input to a fixed unsatisfi-
able ontology, such as {C ≡ D � ¬D,C(a)}. F is not syntactically unanimous,
but it is semantically unanimous (as we can infer anything from a contradictory
ontology). Still, intuitively, semantic unanimity is the (much) stronger property.
This intuition can be confirmed for “well-behaved” aggregators:

Proposition 2. Any satisfiable and exhaustive ontology aggregator that is se-
mantically unanimous is unanimous.

Proof. Take any F that is satisfiable, exhaustive, and semantically unanimous.
Now pick any formula ϕ and any profile O such that ϕ ∈ O1 ∩ · · · ∩ On. By
satisfiability of F , the outcome F (O) is satisfiable and so is its deductive closure.
For the sake of contradiction, assume ϕ �∈ F (O). ϕ ∈ O1 ∩ · · · ∩ On implies
ϕ ∈ Cl(O1)∩· · ·∩Cl(On). Thus, by semantic unanimity, ϕ ∈ Cl(F (O)). That is,
there exists a formula in the support (namely ϕ) that could be added to F (O)
without rendering the set unsatisfiable. But this violates exhaustiveness, and we
are done. �

Similar connections between syntactic and semantic variants can be established
for the other axioms.

4 Procedures for Ontology Aggregation

We now define a number of simple procedures for ontology aggregation and
discuss some of their properties, including both the extent to which they can
guarantee that collective ontologies will be satisfiable and the extent to which
they satisfy some of the axioms introduced earlier. We stress that these pro-
cedures are not sophisticated enough to be employed for real-world ontology
aggregation. Rather, our intent is to provide a catalogue of basic procedures
that can serve as building blocks for constructing more sophisticated procedures
in the future. Fully understanding the properties of these basic procedures is a
necessary step towards designing more advanced procedures.

Ontology Merging as Social Choice 165

4.1 The Majority Rule

We have already introduced the majority rule informally. Formally, it is defined
as follows:

Definition 2 (Majority rule). The majority rule is the ontology aggregator
M with M(O) = {ϕ ∈ L | |NO

ϕ | > n
2 } for all O ∈ On(L)N .

We have seen that the majority rule can produce unsatisfiable collective ontolo-
gies. Following Endriss et al. [4], we call L safe for a given aggregator F if F (O)
is satisfiable for any profile O ∈ On(L)N . We will now identify necessary and
sufficient conditions for the safety of L under the majority rule.

Adapting the terminology from JA [10], we recall that an agenda L satisfies
the median property if and only if every unsatisfiable set X ⊆ L contains itself
an unsatisfiable set Y with cardinality at most 2. Now a simple reformulation of
a known result due to Nehring and Puppe shows that an agenda L is safe for the
majority rule if and only if it satisfies the median property [12,10,4]. This result
can be refined if we put restrictions on the range of profiles on L that we consider.
Description logical ontologies suggest a natural restriction of this kind due to
the division of knowledge into the TBox and the ABox. Suppose we restrict
attention to profiles with a common TBox: all agents agree on the TBox but
still need to aggregate their ABoxes. Fix such a TBox T . We say that L satisfies
the T -median property if and only if for every set of ABox formulasX ⊆ LA such
that T ∪X is unsatisfiable there exists a set Y ⊆ X with cardinality at most 2
such such T ∪ Y is also unsatisfiable. We obtain the following characterisation:

Proposition 3. The majority rule will return a satisfiable ontology for any pro-
file with a common TBox T if and only if the agenda L satisfies the T -median
property.

Proof. One direction is proved by the doctrinal paradox we have seen earlier.
For the other direction, assume the T -median property holds but M(O) is un-
satisfiable. By definition of the majority rule, the TBox of M(O) is exactly the
common TBox T . Thus, by the T -median property, there must be a set Y of
ABox formulas in M(O) with |Y | � 2 such that T ∪ Y is unsatisfiable. First, Y
cannot be empty as that would mean that T is unsatisfiable, contradicting our
assumption that individual ontologies are satisfiable. Second, |Y | = 1 is also not
possible, as that would mean that at least one individual ontology must have
included that one formula in Y (together with T), which would again contra-
dict our assumption that individual ontologies are satisfiable. So suppose that
|Y | = 2 with Y = {ϕ, ψ}. These formulas could only have been accepted by M
if |NO

ϕ | > n
2 and |NO

ψ | > n
2 . But this means that at least one agent must have

accepted both ϕ and ψ (and T). This again contradicts the assumption that
individual ontologies are satisfiable. �

In fact, from a purely technical point of view, we can prove the same kind of result
for any division of the agenda into two disjoint sets: those formulas on which
there is certain agreement (here the TBox) on those on which there is not (here

166 D. Porello and U. Endriss

the ABox). For any such division we can formulate a weakened version of the
median property (relative to the first) and prove a corresponding (strengthened)
characterisation theorem. In the context of ontology aggregation, we argue, such
a division is particularly natural.

4.2 Quota Rules

We can generalise the idea underlying the majority rule and accept a formula for
the collective ontology whenever the number of agents who do so meet a certain
quota. This gives rise to the family of quota rules:

Definition 3 (Quota rules). Let q ∈ [0, 1]. The quota rule with quota q is the
ontology aggregator Fq with Fq(O) = {ϕ ∈ L | |NO

ϕ | 	 q ·n} for all O ∈ On(L)N .

We could also generalise further and allow different quotas for different formulas;
Dietrich and List [2] make a distinction between general and uniform quota rules.
Observe that we obtain the majority procedure for q = 1

2 + ε for any positive
ε < 1

n . Also observe that for q � 1
n the aggregator Fq simply returns the union

of all individual ontologies.
We have seen earlier that the majority rule violates semantic unanimity. In

fact, any quota rule does, unless we lower the quota so far as to obtain the trivial
union aggregator:

Proposition 4. A quota rule with quota q for n agents is semantically unani-
mous if and only if q � 1

n .

Proof (sketch). First, it is easy to check that if the quota is at most 1
n , then

semantic unanimity holds. To see that the axiom does not hold as soon as q >
1
n , consider the following example. All agents agree on the same TBox {C1 ≡
C2, C2 ≡ C3, . . . , Cn−1 ≡ Cn} and, for each i ∈ N , the ABox of agent i consists of
the single formula Ci(a). Then C1(a) can be inferred from each agent’s ontology,
but it will not be accepted if q > 1

n . �

Quota-based rules are (syntactically) anonymous, neutral, independent and
monotonic [2]. We can strengthen Proposition 4 and show that anonymity and
independence together with semantic unanimity are sufficient to single out the
trivial union aggregator:

Proposition 5. If F is anonymous, independent and semantically unanimous,
then F (O) = O1 ∪ · · · ∪On for any O ∈ On(L)N .

Proof (sketch). By a standard argument [9,4], if F is anonymous and indepen-
dent, then there exists a family of functions {gϕ : N → {0, 1}}ϕ∈L such that
ϕ ∈ F (O) if and only if gϕ(|{i ∈ N | ϕ ∈ Oi}|) = 1. That is, whether of not
ϕ is accepted only depends on the number of agents accepting ϕ. Now, using a
similar construction as in the proof of Proposition 4, we can show that seman-
tic unanimity forces us to accept a formula as soon as any positive number of
individual agents do. �

Ontology Merging as Social Choice 167

4.3 A Support-Based Procedure

The next aggregation procedure we introduce works as follows: we order the
formulas in terms of the number of agents supporting them; we then accept for-
mulas in decreasing order, but drop any formula that would render the ontology
constructed thus far unsatisfiable. To decide which of two formulas with the
same number of agents supporting it to try first, we introduce a priority rule
 mapping each profile O to a strict linear order O on L such that ϕ O ψ
implies |NO

ϕ | 	 |NO
ψ | for all ϕ, ψ ∈ L.

Definition 4 (Support-based procedure). Given a priority rule , the
support-based procedure with is the ontology aggregator SBP	 mapping any
profile O ∈ On(L)N to SBP	(O) := Φ for the unique set Φ ⊆ L for which ϕ ∈ Φ
if and only if

(i) NO
ϕ �= ∅ and

(ii) {ψ ∈ Φ | ψ O ϕ} ∪ {ϕ} is satisfiable.

We can also define an irresolute aggregator that returns the set of all ontolo-
gies obtained by some choice of priority rule: SBP(O) := {O | SBP	(O) =
O for some }.

The SBP clearly satisfies the axioms of anonymity, monotonicity, grounded-
ness (due to condition (i)), and exhaustiveness (due to condition (ii)). Neutrality
is violated by virtue of having to fix a priority rule . Independence is also vio-
lated (because ϕ may cease to be accepted if a formula it is contradicting receives
additional support).

Several variants and generalisations of the SBP are possible and interesting.
For instance, we can replace as defined above with any other function map-
ping each profile O to a linear order O on L. Each choice of corresponds
to a different greedy procedure that attempts to accept as many formulas as
possible without violating satisfiability in order of priority as specified by ϕ.
For instance, a priority rule for which ϕ O ψ holds whenever NO

ϕ ⊇ NO
ψ

does but not necessarily whenever |NO
ϕ | 	 |NO

ψ | does will be appropriate to
aggregate ontologies from sources with different degrees of reliability (i.e., when
the violation of anonymity is acceptable). Another attractive variant would be
a semantic SBP, where we define in terms of {i ∈ N | Oi |= ϕ} instead of
NO

ϕ . That is, under this procedure we accept formulas (supported by at least
one agent) in order of priority defined in terms of the number of agents who
were able to infer those formulas from their own ontologies (but not necessarily
included them explicitly).

4.4 A Distance-Based Procedure

In voting theory, many voting rules can be defined using a notion of distance.
The well-known Kemeny rule is a natural example [7]. Similar ideas have also
been used in belief merging [8].

We will now define an aggregation procedure that chooses from a class of
acceptable ontologies (namely the satisfiable ones) that ontology that minimises

168 D. Porello and U. Endriss

the sum of the distances to the individual ontologies. A common choice is the
Hamming distance: the distance between two ontologies O and O′ is the number
of formulas that are included in one and only one of O and O′. In fact, the
Hamming distance is not appropriate here, because it gives the same weight to a
formula ϕ that an agent has stated but that will not be included in the collective
ontology as to a formula ψ that she has omitted but that will be included (when
in fact the former should be much worse; indeed, she may be entirely indifferent
to the latter). That is, distances stricto sensu, which are symmetric, are not
suitable for our purposes. With a slight abuse of terminology, we shall still call
the function d : (A,B) !→ |{ϕ | ϕ ∈ A and ϕ /∈ B}| a distance.

Definition 5 (Distance-based procedure). The distance-based procedure is
the (irresolute) ontology aggregator DBP mapping any profile O ∈ On(L)N to
the following set of satisfiable ontologies:

DBP(O) = argminO∈On(L)

∑
i∈N

d(Oi, O)

To obtain a resolute aggregator, the DBP needs to be combined with a tie-
breaking rule, which will violate either anonymity or neutrality. It also violates
independence, becauseO does not range over all possible ontologies. On the other
hand, it is satisfiable by construction. Note that if we choose a tie-breaking rule
that selects a maximal set (wrt. set-inclusion), then the DBP will always return
a maximally satisfiable set and thus satisfy the axiom of exhaustiveness.

4.5 Two-Stage Procedures

Finally, we briefly sketch an approach for two-stage procedures. Depending on
the application, we may give priority to terminological knowledge over asser-
tional knowledge, or vice versa, and define aggregation procedures accordingly.
This idea is closely related to two classical procedures in JA, the premise-based
procedure, where individuals vote on the premises by majority and then draw the
conclusions, and the conclusion-based procedure, where each individual draws her
own conclusions and then votes on them by majority [9]. The problem with these
procedures is that we lack a convincing general approach for how to label a given
proposition as either a premise or a conclusion. There is a significant difference
in our case: when we aggregate ontologies, we have a clear separation between
two classes of formulas by definition, namely the TBox and the ABox, so we can
avoid the problem of splitting the agenda into premises and conclusions.

Definition 6 (Assertion-based procedures). An (irresolute) assertion-
based procedure maps each profile O to the set of ontologies obtained as follows:

(1) Choose an aggregator FA restricted to ABox formulas, and let FA(O) be the
outcome.

(2) Then the TBox is defined as follows:

FT (O) = argminO∈On(L)

∑
i∈N

d(FA(O) ∪OT
i , O)

Ontology Merging as Social Choice 169

An assertion-based procedure stresses the information coming from the ABox.
A natural choice for the procedure used in the first step would be the majority
rule. In the second step we then select a TBox that is satisfiable in view of the
majority ABox and that minimises the cumulative distance to the individual
TBoxes. Observe that it is possible that the collective TBox obtained in this
manner is empty. An interesting variant of this approach may be to allow agents
to revise their TBoxes themselves after the collective ABox has been fixed.

Similarly, we may want to give priority to TBox information and first aggre-
gate TBoxes, then fix a TBox, and finally aggregate ABoxes.

5 Conclusion and Future Work

We have presented a framework for aggregating individual ontologies, consisting
of both a TBox and an ABox, inspired by social choice theory. We have dis-
cussed axioms that are closely related to well-known fairness conditions and we
have introduced new axioms defining a notion of efficiency for the aggregation of
ontologies. We have then presented relevant results concerning those axioms and
several ontology aggregation procedures we introduced, discussing how they bal-
ance fairness and efficiency. We have concentrated on coarse ontology merging,
since we wanted to model the aggregation of the information actually provided
by agents, as explicitly reflected by our groundedness axiom.

Concerning future work, we believe that the social choice approach provides
useful insights also for fine merging. For example, support-based procedures
and distance-based procedures can potentially be adapted to deal with concept
merging (i.e., the construction of new TBox definitions out of definitions stem-
ming from different individual ontologies), providing further qualitative desider-
ata that can be used to select among several possible ways of building concept
definitions. We also believe that our work can provide an interesting starting
point for future research in judgment aggregation and social choice theory. On-
tologies suggest a very rich notion of agent, since they allow for representing the
preferences an agent might have over a given set of alternatives together with
her information on such alternatives and her criteria for choosing. In this sense,
our approach to ontology aggregation can lead to a richer model of collective
information and choices.

Acknowledgments. We would like to thank the participants of the Computational
Social Choice Seminar at the ILLC for their feedback on an early incarnation of
this work, particularly Umberto Grandi, Szymon Klarman and Eric Pacuit.

References

1. Baader, F., Nutt, W.: Basic description logics. In: The Description Logic Hand-
book. Cambridge University Press, Cambridge (2003)

2. Dietrich, F., List, C.: Judgment aggregation by quota rules: Majority voting gen-
eralized. Journal of Theoretical Politics 19(4), 391–424 (2007)

170 D. Porello and U. Endriss

3. Dietrich, F., List, C.: Judgment aggregation with consistency alone. Working paper.
London School of Economics (2009)

4. Endriss, U., Grandi, U., Porello, D.: Complexity of judgment aggregation: Safety
of the agenda. In: Proc. AAMAS-2010 (2010)

5. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies,
negations and changes in ontologies. In: Proc. AAAI-2006 (2006)

6. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: On-
tology change: Classification and survey. Knowledge Engineering Review 23(2),
117–152 (2008)

7. Gaertner, W.: A Primer in Social Choice Theory. Oxford University Press, Oxford
(2006)

8. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelli-
gence 157(1-2), 49–79 (2004)

9. List, C., Pettit, P.: Aggregating sets of judgments: An impossibility result.
Economics and Philosophy 18(1), 89–110 (2002)

10. List, C., Puppe, C.: Judgment aggregation: A survey. In: Handbook of Rational
and Social Choice. Oxford University Press, Oxford (2009)

11. May, K.O.: A set of independent necessary and sufficient conditions for simple
majority decision. Econometrica 20(4), 680–684 (1952)

12. Nehring, K., Puppe, C.: The structure of strategy-proof social choice. Part I: Gen-
eral characterization and possibility results on median spaces. Journal of Economic
Theory 135(1), 269–305 (2007)

13. Noy, N.F., Musen, M.A.: Algorithm and tool for automated ontology merging and
alignment. In: Proc. AAAI-2000 (2000)

14. Ribeiro, M.M., Wassermann, R.: Base revision for ontology debugging. Journal of
Logic and Computation 19(5), 721–743 (2009)

Social Commitment Delegation and Monitoring�

Özgür Kafalı1 and Paolo Torroni2

1 Department of Computer Engineering - Boğaziçi University
34342, Bebek, İstanbul - Turkey

ozgurkafali@gmail.com
2 DEIS - University of Bologna

V.le Risorgimento, 2, 40136, Bologna - Italy
paolo.torroni@unibo.it

Abstract. The success of contract-based multiagent systems relies on
agents complying with their commitments. When something goes wrong,
it is important to understand what are the commitments’ mutual re-
lations as well as their individual states. Accordingly, we explore how
commitments are related through the three-agent commitment delega-
tion operation. We then propose exception monitoring based on such
relations, and demonstrate it via a case study.

1 Introduction

A social commitment describes a contract between two agents: the debtor com-
mits to satisfy a property for the creditor [14]. In a contract-based multiagent
system, several such commitments are in effect, e.g., the merchant is committed
to deliver the goods when the customer pays, the bank is committed to confirm
the customer’s payment in three days. The former is represented by a condi-
tional commitment CC(merchant, customer, paid, delivered), while the latter is
represented by a base-level temporal commitment C(bank, customer, paid(3)),
e.g., with a deadline. Often, agents delegate their commitments to others for
several reasons, e.g., they are not capable of satisfying the properties. C(courier,
merchant, delivered) is a delegation of CC(merchant, customer, paid, delivered)
in which the merchant delegates the task of delivery to the courier.

Usually, commitments formed between different agents are connected to each
other; either explicitly (by delegation), or implicitly (other dependencies). The
delegation operation is important in the sense that it extends the set of agents
that a commitment is involved with. The merchant-courier example demon-
strates a typical case of delegation, where the commitment of delivery between
the merchant and customer agents is extended with the courier agent. The cus-
tomer agent may not be aware of this extension until the delivery is completed,
or something goes wrong (e.g., the deadline passes). In the case of a problem, this
connection should be revealed so that if the problem is related to the courier, it
can be identified. However, not all connections are explicitly identified as in the
� This paper extends the AAMAS ’11 poster paper [11].

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 171–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

172 Ö. Kafalı and P. Torroni

delegation case. The bank-customer example is a typical case of implicit causal
dependency; the bank’s confirmation of the customer’s payment affects the mer-
chant’s commitment of delivery towards the customer. Again, if something goes
wrong, the commitments should be traced in a chain to identify the problem.

We say that an exception has occurred regarding a property of the system if
there is something wrong in the chain of commitments that are formed to satisfy
that property. Possible causes of such exceptions are:

– Violation: One of the commitments related to the subject property is violated
by its debtor, e.g., the bank does not confirm the customer’s payment in time.
Often, an exception is considered identical to a commitment violation.

– Improper delegation: One of the commitments related to the subject prop-
erty is delegated without respecting its previous deadline, e.g., the merchant
delays the courier’s delivery by handing over the goods late.

– Misalignment: Two or more commitments related to the subject property
are not aligned with each other, possibly due to different observations of the
participating agents, e.g., the bank confirms the customer’s payment but
fails to notify the merchant on time.

When there are many commitments in the system at hand, in order to identify
an exception we need effective ways to explore the space of commitments. In par-
ticular, we need to identify links between commitments and exclude from our
search the irrelevant instances. The process of tracking down individual com-
mitment states is called commitment monitoring [1,16]. We extend monitoring
to enable run-time tracking of exceptions via the links between agents’ com-
mitments. To this end, we propose similarity relations to connect commitments
based on their components: the agents, the properties, and the temporal as-
pects. The properties of commitments have been studied before in [4]. Moreover,
temporal constraints are used to compare commitments in [9]. However, both
approaches mainly focus on two-agent interactions, or compare commitments
one by one. In [5], delegation is also taken into account from the perspective of
commitment alignment, but no temporal aspects are considered. In [1], commit-
ments are tracked and reasoned upon centrally. Those work should be able to
capture exceptions caused by improper delegation or misalignment. Still, they
fail to reveal implicit commitment dependencies as we propose to identify here.
Note that a relatively insignificant commitment violation may be the cause of
an exception.

Accordingly, we propose a monitoring framework where the relations between
agents’ commitments are extracted to identify problems related to a commitment
violation. The framework identifies all improper delegations that have occurred
in the system.

The rest of the paper is structured as follows. Section 2 reviews commitments
and introduces our formal model. Section 3, 4 and 5 describe commitment dele-
gation and the similarity relations based on delegation. Section 6 describes how
monitoring is performed, proposing an implementation. Section 7 demonstrates
the case study. Finally, Section 8 concludes the paper with further discussion.

Social Commitment Delegation and Monitoring 173

2 Formal Model

A commitment [14] is formed between two agents; the debtor commits to the
creditor for satisfying a property. There are two types of commitments:

– Conditional commitment: CC(X, Y, Q, P(T)) represents a conditional com-
mitment where X is the debtor, Y is the creditor, Q is the antecedent, and
P(T) is the consequent. T is the limit of the consequent.

– Base-level commitment: When the antecedent Q is satisfied, a base-level
commitment C(X, Y, P(T)) is formed. T is the deadline of the consequent.

Our definition of commitments extends the Singh’s definition [14] with the no-
tions of limit and deadline, following a recent line of research on reasoning with
commitments in time [1,16]. The limit of a consequent of a conditional commit-
ment is an existential temporal constraint indicating the the number of time
units allowed to satisfy P, as of the moment the antecedent Q is satisfied (rela-
tive deadline). The deadline in the base-level commitment represents instead an
absolute deadline.

For example, the commitment CC(merchant, customer, paid, delivered(7))
tells that the delivery should take place at most seven time units after the
payment. If the payment is done at time 3, then the base-level commitment
C(merchant, customer, delivered(10)) tells that the merchant has to deliver lat-
est at time 10.

From a logical perspective, a base-level commitment can be seen as a special
case of a conditional commitment, in which the antecedent Q is true.

The commitment properties (i.e., antecedent and consequent) are described
by conjunctions of atomic propositions together with temporal constraints to
express limits or deadlines. Currently, we do not support negation or disjunction
of properties. A commitment is a live object and changes state through its life-
cycle [17]. We use the following four states for commitments: (1) conditional,
when Q is not yet satisfied, (2) active, when Q is satisfied and P is not yet
satisfied, (3) fulfilled, when P is satisfied within T, and (4) violated when P is
not satisfied within T.

We are now ready to define the monitoring framework.

Definition 1. Monitoring framework F is a five-tuple 〈P , R, A, T ,M〉, where

– P is a set of conditional commitment templates, representing an abstract
contract or protocol [17,3],

– R is a set of roles, each consisting of a subset of P ’s commitments and a set
of actions,

– A is a set of agents, each enacting a role in R,
– T is a trace of events, consisting of a set of actions performed at specific

time points, and
– M is the monitoring process.

174 Ö. Kafalı and P. Torroni

Elements of P are abstract entities, i.e., templates which include roles from R in
place of agents. When the agents in A are bound to the roles in the protocol [6],
the commitments become real. The trace of events T describes a specific proto-
col execution, by which commitments change state accordingly. The monitoring
process M consistently checks for improper delegations during the protocol’s
execution. Similarly to diagnosis, which looks for assumptions over executions
of activities that classifies these executions either as correct (an activity behaves
as intended) or faulty (an activity does not behave as intended) [7], monitor-
ing seeks to detect faulty activity executions. It is important that monitoring is
carried out at runtime, in reaction to events that bring about properties charac-
terizing a faulty state. We propose to identify exceptions through the monitoring
of agents’ commitments. We describeM in more detail in Section 6.

3 Delegation

Previous work has looked at commitments and their relations from different
angles. Chopra and Singh [5,4] compare commitments via a strength relation
using the commitments’ properties, Kafalı et al. [9] focus on the temporal aspects
of commitments and provide similarity relations based on the commitments’
deadlines. In particular, we combine both approaches, and propose similarity
relations based on the three-agent commitment delegation operation. First, we
describe a delegation.

Definition 2. A delegation of a commitment CC (X, Y, Q, P), called primary,
is a new commitment where either X or Y plays the role of the creditor or
debtor, and a new agent Z is responsible for bringing about the antecedent Q or
the consequent P.

Six types of delegation are particularly meaningful. Only some of them have
been considered previously in the literature. Let us define and illustrate them
one by one, considering CC(merchant, customer, paid, delivered) as our primary,
like in Figure 1.

Definition 3. (Explicit delegation) The primary is canceled and a new com-
mitment CC (Z, Y, Q, P) is created. That is, a new debtor is committed to the
same creditor.

This delegation operation was proposed by Yolum and Singh [17]. A possible
explicit delegation of the primary is CC(courier, customer, paid, delivered). The
new debtor courier replace the old debtor merchant, and the primary is canceled.
Note that the antecedent (paid) is unchanged, but that may not necessarily be
the case in an extended version of explicit delegation (see below).

Definition 4. (Weak explicit delegation) The primary is canceled and a new
commitment CC (Y, Z, P, Q) is created. That is, the creditor Y of the primary
is now the debtor of the new commitment, and Y wishes to achieve P via a new
creditor Z. This is a weak delegation to achieve P since there is no obligation for
Z to satisfy P unless Z needs Q satisfied.

Social Commitment Delegation and Monitoring 175

merchant

customer

pr
im

ar
y

C
C

(m
er

ch
an

t,
 c

u
st

o
m

er
, p

ai
d

, d
el

iv
er

ed
)

courier

Explicit d
elegation [5]

CC(courier, c
ustomer, p

aid, delivered)

or C
(courier, c

ustomer, d
elivered)

Weak explicit d
elegation [2]

CC(customer, c
ourier, d

elivered, paid)

Implicit delegation [3]

CC(courier, merchant, paidDelivery, delivered)
or C(courier, merchant, delivered)

Weak implicit delegation

CC(merchant, courier, delivered, paidDelivery)

bank
Antecedent delegation

CC(bank, customer, enoughCredit, paid)
or C(bank, customer, paid)

Weak antecedent delegation

CC(customer, bank, paid, enoughCredit)

Fig. 1. Sample Delegations

The concept of weak delegation is inspired by Chopra et al. ’s work [3]. A pos-
sible weak explicit delegation of the primary is CC(customer, courier, delivered,
paid). Note that the roles of creditor and debtor are reversed, and accordingly
also antecedent and consequent are reversed.

Definition 5. (Implicit delegation) While the primary is still active, a new com-
mitment CC (Z, X, R, P) is created. That is, the debtor X of the primary is
now the creditor of a new commitment for the same consequent P.

This type of delegation chain (e.g., two dependent commitments) was proposed
by Kafalı et al. [9]. A possible implicit delegation of the primary is CC(courier,
merchant, paidDelivery, delivered). Note that the creditor is the merchant, which
is the primary’s debtor. For that reason, to maintain a commitment to the initial
creditor (the customer), the primary is not canceled, but it remains.

Definition 6. (Weak implicit delegation) While the primary is still active, a
new commitment CC (X, Z, P, R) is created. That is, the debtor X of the
primary also becomes the debtor of a new commitment where the antecedent P
is the primary’s consequent.

A possible weak implicit delegation of the primary is CC(merchant, courier,
delivered, paidDelivery).

176 Ö. Kafalı and P. Torroni

Definition 7. (Antecedent delegation) While the primary is still active, a new
commitment CC (Z, Y, R, Q) is created. That is, the creditor Y of the primary
also becomes the creditor of a new commitment for the antecedent Q of the
primary.

A possible antecedent delegation of the primary is CC(bank, customer, enough-
Credit, paid). Note that the initial consequent (delivered) does not appear in the
antecedent delegation. For that reason, to maintain a commitment about the
initial consequent, the primary is not canceled, but it remains.

Definition 8. (Weak antecedent delegation) While the primary is still active,
a new commitment CC (Y, Z, Q, R) is created. That is, the creditor Y of the
primary is now the debtor of a new commitment which has the same antecedent
Q as the primary.

A possible weak antecedent delegation of the primary is CC(customer, bank,
paid, enoughCredit).

Most of the above definitions can be extended to base-level commitments. In
addition, (weak) explicit delegation can be extended to have an antecedent R
different from Q. Also note that a special case of (weak) implicit delegation is
where R equals Q. Figure 1 summarizes the examples of commitment delegation
given above.

We gave an exhaustive account of how a commitment can be rationally del-
egated, i.e., by preserving the responsibilities of roles in relation with the pri-
mary’s properties. To see this, let us enumerate all the rational delegation pos-
sibilities for a commitment, and then show that they are covered by Definitions
3-8.

Let us first consider rational delegations that include the consequent P of a
primary CC(X, Y, Q, P). The secondary will have P either as the consequent or
the antecedent. Moreover, by Definition 2, a new agent Z should replace either
X or Y.

Case 1: P is the secondary’s consequent. In the primary, the debtor is respon-
sible for P. Therefore we need a new debtor Z responsible for P. There are three
alternatives: (1.1) CC(Z, Y, R, P), which is an (extended) explicit delegation;
(1.2) CC(Z, X, R, P), which is an implicit delegation; or (1.3) CC(Z, W, R, P),
with W also different from X and Y. However, the latter case is just a different
commitment about P, but it cannot be considered a delegation, since there is no
common agent between primary and secondary.

Case 2: P is the secondary’s antecedent. In that case, Z will be new creditor
expecting P. There are again three alternatives: (2.1) CC(Y, Z, P, R), which
is a weak explicit delegation, (2.2) CC(X, Z, P, R), which is a weak implicit
delegation; and (2.3) CC(W, Z, P, R), which cannot be considered a delegation
for the same reasons as in Case 1.

Let us now consider rational delegations that include the antecedent Q. There
are again two possibilities:

Case 3: Q is the secondary’s consequent. Rationally, the antecedent should be
different from Q and P, and the creditor should be the same Y, since Y is the

Social Commitment Delegation and Monitoring 177

agent who expects Q satisfied. The only option for a delegation is to have a new
debtor Z, other than X or Y. That is the definition of antecedent delegation,
CC(Z, Y, R, Q).

Case 4: Q is the antecedent. Rationally, the secondary’s debtor should be Y,
and the secondary should have a new creditor Z, other than X or Y. This defines
a weak antecedent delegation, CC(Y, Z, Q, R).

4 Similarity

We say that a commitment is delegation-similar to another commitment if one
is a delegation of the other according to Definitions 3-8. We showed that our ac-
count of commitment delegation is exhaustive (if we restrict ourselves to rational
delegations). Now, we shift the focus to commitments that are similar via other
commitments. We will therefore need to define ternary similarity relations, which
include two commitments similar to each other (we call them “secondary”), and
a “primary” commitment which connects them. For the sake of presentation,
we omit here the temporal constraints of the commitments, which will be the
subject of the next section.

Definition 9. Commitment CC1(X1, Y1, Q1, P1) is consequent-delegation sim-
ilar to commitment CC2(X2, Y2, Q2, P2) via commitment CC3(X3, Y3, Q3, P3)
iff

1. P3 |= P1 ∧ P2 (conjunction), and
2. Y1 = Y2 = X3 (delegation).

We call CC3 the primary, and CC1, CC2 secondary.

In Definition 9, the debtor X3 of a primary about a complex commitment (in
which the consequent P3 is a conjunction of several parts, P3 = P1 ∧ P2 ∧ . . .)
negotiates two implicit delegations of two such parts, with two new agents. As a
result, we have two delegations, and therefore two secondaries, connected by the
same primary. This corresponds to an X3 establishing one or more sub-contracts
to achieve some of the objectives. Note that the conditional commitments in the
definition can also be base-level commitments since the antecedents are not part
of the similarity relation.

Consider for instance the commitments in Cconsequent:

Cconsequent =

⎧⎨
⎩
C3(merchant, customer, delivered ∧ invoiced)
C1(courier, merchant, delivered)
C2(accountant, merchant, invoiced)

According to C3, the merchant is committed to deliver the item and provide the
invoice. Now, assume that the merchant delegates the delivery of the item to the
courier, and the preparation of the invoice to his accountant. Thus, we have the
commitments (C1 and C2). Accordingly, C1 and C2 are consequent-delegation
similar via C3. C3 is primary, and C1, C2 are secondary. The converse case (weak
delegation) is also possible:

178 Ö. Kafalı and P. Torroni

Definition 10. Commitment CC1(X1, Y1, Q1, P1) is weak consequent-
delegation similar to commitment CC2(X2, Y2,Q2, P2) via commitment CC3(X3,
Y3, Q3, P3) iff

1. P3 |= Q1 ∧ Q2 (conjunction), and
2. X1 = X2 = X3 (delegation).

Let us now focus on the antecedent. Consider the following example:

Cantecedent =

⎧⎨
⎩
CC3(merchant, customer, paid ∧ confirmed, delivered)
C1(accountant, customer, paid)
C2(bank, customer, confirmed)

According to CC3, once the customer pays and her card is confirmed, the
merchant will deliver the item. Now, the customer delegates the payment to her
accountant, and the confirmation to the bank. This brings us two new commit-
ments, C1 and C2, respectively. The following definitions capture this type of
similarity between C1 and C2.

Definition 11. Commitment CC1(X1, Y1,Q1, P1) is antecedent-delegation sim-
ilar to commitment CC2(X2, Y2, Q2, P2) via commitment CC3(X3, Y3, Q3, P3)
iff

1. Q3 |= P1 ∧ P2 (conjunction), and
2. Y1 = Y2 = Y3 (delegation).

As usual, CC3 is the primary, and CC1, CC2 secondary.

Definition 11 revises Definition 9 for conjunction of antecedents. This also rep-
resents a causal relation between the commitments, since CC3 cannot be dis-
charged until CC1 and CC2 are both fulfilled. The secondary commitments in
the definition can also be base-level commitments. However, CC3 cannot be a
base-level commitment anymore since Q3 is part of the relation. Antecedent del-
egation is not actively used in monitoring, but acts as a connective in a chain of
delegations. In the previus example, C1 and C2 are antecedent-delegation similar
via CC3. A weaker version is possible:

Definition 12. Commitment CC1(X1, Y1, Q1, P1) is weak antecedent-
delegation similar to commitment CC2(X2, Y2,Q2, P2) via commitment CC3(X3,
Y3, Q3, P3) iff

1. Q3 |= Q1 ∧ Q2 (conjunction), and
2. X1 = X2 = Y3 (delegation).

Social Commitment Delegation and Monitoring 179

Let us finally consider the following situation:

Ccausal =

⎧⎨
⎩
CC1(bank, client, requested, delivered)
CC3(courier, bank, printed, delivered)
C2(office, bank, printed)

According to CC1, once the client requests a credit card, the bank will deliver
the card. Now, the bank delegates the delivery to the courier via CC3. However,
in order to deliver, the courier needs the card printed. Thus, the bank makes
another delegation with the office via C2. There is a causal relation between
commitments here: in order to satisfy CC1’s secondary CC3, a new commitment
C2 is in place. In particular, CC3 is the link between two otherwise seemingly
unrelated commitments.

We will say that CC1 and C2 are causal-delegation similar via CC3. Put
formally:

Definition 13. Commitment CC1(X1, Y1, Q1, P1) is causal-delegation similar
to commitment CC2(X2, Y2, Q2, P2) via commitment CC3(X3, Y3, Q3, P3) iff

1. P1 = P3 and X1 = Y3 (implicit-delegation), and
2. P2 = Q3 and Y2 = Y3 (antecedent-delegation).

Here, we call CC1 outcome, CC2 cause, and CC3 connective.

Definition 13 connects two commitments through two delegations; one conse-
quent (implicit) and one antecedent delegation. Here, CC1 and CC2 can also be
base-level commitments since Q1 and Q2 are not part of the relation. However,
CC3 cannot be a base-level commitment since Q3 is part of the relation. We
do not consider the weak delegation case for causal delegation. Because, if the
consequent delegation is weak, then the causal structure between the connective
and cause no longer exists.

The similarity relations described in Definitions 9-13 allow us to trace com-
mitments in a chain-like structure, e.g., nested delegations. They are also exhaus-
tive, in the sense that they describe all possible, rational cases of commitment
delegation. Let us informally see why.

The primary commitment in (weak) explicit delegation no longer exists after
delegation, thus we do not need to consider it in the similarity relations. That is,
there is no longer a primary commitment to compare with. Implicit delegation is
covered in Definition 13, between commitments outcome and connective. In addi-
tion, Definition 9 covers implicit delegation where conjunction of consequents is
considered. Weak implicit delegation with conjunction of consequents is covered
in Definition 10, the single consequents case is trivial (i.e., each consequent is
identical).

Antecedent delegation is covered in Definition 13, between commitments con-
nective and cause. In addition, Definition 11 covers antecedent delegation where
conjunction of antecedents is considered. Weak antecedent delegation with

180 Ö. Kafalı and P. Torroni

conjunction of antecedents is covered in Definition 12. Again, the single an-
tecedents case is trivial.

5 Limits and Deadlines

We will now extend the ternary relations by taking into account the temporal
constraints. Since we are interested in exceptional situations and in the possible
reasons behind them, we will identify and define cases of delegation in which
the deadline of the primary is not properly propagated onto the secondary. In
particular, we will call improper a delegation that exceeds the deadline of the
primary commitment.

Definition 14. An improper consequent delegation between a primary and a
secondary commitment (as by Definition 9) occurs if either of the following holds:

1. All conditional: If the limit of a secondary is greater than the limit of the
primary.

2. All base-level: If the deadline of a secondary is greater than the deadline of
the primary.

3. Only primary conditional: If the deadline of a secondary is greater than the
limit of the primary added to the current time point.

4. Only primary base-level: If the limit of a secondary added to the current
time point is greater than the deadline of the primary.

Consider for instance the commitments in Cimproper−consequent:

Cimproper−consequent =

⎧⎨
⎩
C3(merchant, customer, delivered(12) ∧ invoiced(12))
C1(courier, merchant, delivered(12))
C2(accountant, merchant, invoiced(14))

These are the same commitments in Cconsequent, modified with temporal con-
straints. Assume that the current time is 8. Now, this is an improper delegation.
Because, the deadline of C2 is greater than that of C3. Note that the occurrence
of an exception, although likely, is not inevitable since the accountant may still
satisfy invoiced at time 12.

Note that we cannot have an improper antecedent delegation, since we do not
consider time limits for the antecedent of a commitment in this work.

Definition 15. An improper causal delegation between a cause and an outcome
commitment (as by Definition 13) occurs if either of the following holds:

1. All conditional: If the limit of the cause added to the limit of the connective
is greater than the limit of the outcome.

2. Only connective conditional: If the deadline of the cause added to the limit
of the connective is greater than the deadline of the outcome.

Social Commitment Delegation and Monitoring 181

Consider the commitments in Cimproper−causal:

Cimproper−causal =

⎧⎨
⎩
CC1(bank, client, requested, delivered(7))
CC3(courier, bank, printed, delivered(5))
CC2(office, bank, confirmed, printed(3))

These are the same commitments as in Ccausal, modified with temporal con-
straints. Obviously, there is a problem with this choice of conditional commit-
ments. Because, in order for the card to be delivered, it has to be printed first,
and the time requirements for those two processes exceed the time limit that the
bank has towards the client. The bank should have gotten into other commit-
ments that would have lead the fulfillment of its primary commitment towards
the client [3]. However, note that CC2 and CC3 may still fulfill CC1 since the
debtors of those commitments may satisfy the consequents before the deadlines.

Definition 16. An improper delegation is an improper consequent delegation
or an improper causal delegation, or a combination of them.

Combinations of delegations can occur in a chain-like structure. In such cases,
the deadlines or limits should be propagated for correct monitoring. Consider
for instance the commitments in Cjoint:

Cjoint =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1(bank, client, delivered(10))
CC2(courier, bank, printed ∧ tested, delivered(5))
C3(office, bank, printed(5) ∧ tested(5))
C4(operator, office, printed(5))
C5(tester, office, tested(7))

There is no problem when we consider C1, CC2 and C3 only; the deadlines
are consistent. However, the deadline of C5 is greater than the deadline of C3

which creates a problem for the C3, C4 and C5 consequent-delegation group.
This should be propagated up to C1. That is, the expected deadline of C3 is now
extended, which further extends the expected deadline of C1.

6 Monitoring

Given a monitoring framework F = 〈P , R, A, T , M〉, M identifies all the
improper delegations that occurred up to the current time point T . It makes use
of the current states of the commitments CT in the system to produceMT ; the
set of improper delegations. Now, let us formally describeM.

Definition 17. Given a monitoring framework F , the current time point T ,
and a set of commitments CT = {C1, ..., Ci,..., Cn} that describe the current
system at T , the monitoring process M produces the monitoring outcome MT

= {(Ci,Cj) | Ci, Cj ∈ CT and Ci is an improper delegation of Cj} that contains
the improper delegations among CT .

182 Ö. Kafalı and P. Torroni

The purpose of monitoring is to identify the faults (e.g., improper delegations)
among agents’ commitments. Once we have identified the improper delegations,
we can signal an exception based onMT . The following two rules describe when
an exception occurs:

monitor(Cm) ∧ ∃Ci : (Ci, Cm) ∈ MT

exception(Ci, Cm)

The first rule states that if we are interested in the monitoring of commitment
Cm, and there is a commitment Ci that is an improper delegation of Cm, then
there is an exception.

monitor(Cm) ∧ ∃Cj : delegation(Cj, Cm) ∧ ∃Ci : (Ci, Cj) ∈ MT

exception(Ci, Cm)

The second rule extends the first rule by taking into account nested dele-
gations. In particular, if a delegation (not necessarily improper) of the subject
commitment Cm has an improper delegation, then there is an exception. Note
that the level of nested delegations is indefinite. That is, Cm may have been
delegated several times (e.g., Cm to Cx and Cx to Cy), and then the occurrence
of an improper delegation triggers the exception. Note that we do not provide an
algorithm for exception monitoring in this paper. Rather, we present the rules
that describe how a certain case will be considered an exception in a declara-
tive way. We plan to build a distributed procedure where agents will identify
exceptions via an exchange of their local knowledge.

We implemented a proof-of-concept monitoring framework prototype using
jREC [1,16,9], a tool for run-time monitoring of commitments that accepts spec-
ifications written in the REC (Reactive Event Calculus) language [2].1 The input
to a REC reasoner is the following:

– a commitments model that contains the rules for manipulation of commit-
ments,

– a domain model that contains the protocol rules that describe the agents’
domain,

– an event trace that contains the actions of the agents throughout time.

Listing 1.1 shows part of the commitments model. First, the states of the com-
mitments are described. Then, the rules that describe the state transitions are
defined2. In REC, we can express that an event initiates (or terminates) a tem-
poral fluent, by way of initiates(Event, Fluent, Time) relations. A commitment
with its state is considered a temporal fluent.

1 The jREC tool is freely available for download from
http://www.inf.unibz.it/~montali/tools.html#jREC

2 Note that lines starting with % are comments.

http://www.inf.unibz.it/~montali/tools.html#jREC

Social Commitment Delegation and Monitoring 183

� �

% commitment s t a t e s
cond i t i ona l (C, T):− ho ld s a t (s t a tu s (C, c ond i t i ona l) , T) .
. . .

% c r ea t e as c ond i t i ona l
i n i t i a t e s (E, s t a tu s (C, c ond i t i ona l) , T) :− c c r e a t e (E, C, T) .

% c r ea t e as a c t i v e
i n i t i a t e s (E, s t a tu s (C, a c t i v e) , T) :− c r e a t e (E, C, T) .

% cond i t i ona l to a c t i v e
t e rminate s (E, s t a t u s (C1 , c ond i t i ona l) , T) :−

detach (E, C1 , C2 , T) .

i n i t i a t e s (E, s t a tu s (C1 , detached) , T) :− detach (E, C1 , , T) .

i n i t i a t e s (E, s t a tu s (C2 , a c t i v e) , T) :− detach (E, , C2 , T) .

detach (E, cc (X, Y, Q, P, t (T1)) , c (X, Y, P, t (T2)) , T):−
cond i t i ona l (cc (X, Y, Q, P, t (T1)) , T) ,
i n i t i a t e s (E, Q, T) , T2 i s T + T1 .

. . .
� �

Listing 1.1. Commitments model

Listing 1.2 shows part of the rules that describe the example domain. Note
that an offer from the bank to client creates a conditional commitment between
the two agents. The event trace will be given for a sample execution when we
present the case study.
� �

% f l u e n t manipulat ion
i n i t i a t e s (exec (pay (Cl ient , Bank , Card)) , paid (Card) ,) :−
i s C l i e n t (Cl i en t) , isBank (Bank) , isCard (Card) .

. . .

% commitment manipulat ion
c c r e a t e (exec (o f f e r (Bank , Cl ient , Card)) ,
cc (Bank , Cl ient , paid (Card) , d e l i v e r ed (Card) , t (7)) ,) :−
isBank (Bank) , i sC l i e n t (Cl i en t) , isCard (Card) .

. . .
� �

Listing 1.2. Domain model

Given these inputs, REC produces an outcome that demonstrates the agents’
fluents through time. This is used to monitor the individual states of the com-
mitments at run-time [1,16]. However, we are not limited to this. We provide

184 Ö. Kafalı and P. Torroni

exception monitoring via the relations among those commitments. Thus, we ex-
tend the commitments model with a similarity model and an exception model.

Listing 1.3 shows part of the rules that describe delegation-based similarity,
and how improper delegations occur (Section 4). Moreover, Listing 1.4 describes
the rules for exceptions.

� �

% de l ega t i on
e x p l i c i tD e l e g a t i o n (c (Z , Y, P,) , c (X, Y, P,)) :− X \= Z .
. . .

d e l e ga t i on (C1 , C2) :− e x p l i c i tD e l e g a t i o n (C1 , C2) .
. . .

% improper d e l e ga t i on
i n i t i a t e s (, improperDelegat ion (

c (X3 , Y3 , P3 , t (T3)) , c (X1 , Y1 , P1 , t (T1))) , T) :−
ac t i v e (c (X1 , Y1 , P1 , t (T1)) , T) ,
c ond i t i ona l (cc (X2 , Y2 , Q2, P2 , t (T2)) , T) ,
a c t i v e (c (X3 , Y3 , P3 , t (T3)) , T) ,
imp l i c i tDe l e ga t i o n (
cc (X2 , Y2 , Q2, P2 , t (T2)) , c (X1 , Y1 , P1 , t (T1))) ,

an tecedentDe legat ion (
c (X3 , Y3 , P3 , t (T3)) , cc (X2 , Y2 , Q2, P2 , t (T2))) ,

(T2 + T3) > T1 .
. . .

� �

Listing 1.3. Similarity model

� �

% Monitoring ru l e 1
i n i t i a t e s (, ex cep t ion (C1 , C2) , T):−
ho ld s a t (improperDelegat ion (C1 , C2) , T) .

% Monitoring ru l e 2
i n i t i a t e s (E, excep t ion (C1 , C2) , T):−
ho ld s a t (improperDelegat ion (C1 , C) , T) ,
a c t i v e (C2 , T) , d e l e ga t i on (C, C2) .

� �

Listing 1.4. Exception model

7 Case Study

Let us consider the protocol in Table 1, represented by 3 commitments. The bank
must deliver the credit card within 7 days of the customer’s request (see template
CCt

1 in Pcard). When the card is requested, the bank notifies the office for
printing the card (CCt

3). Then, the courier delivers the card to the client (CCt
2).

Social Commitment Delegation and Monitoring 185

Table 1. Acquire credit card (Pcard)

Pcard =

⎧⎨
⎩

CCt
1(bank, client, requested, delivered(7))

CCt
2(courier, bank, printed, delivered(3))

CCt
3(office, bank, confirmed, printed(3))

Rclient =

⎧⎨
⎩

CC1

request(client, bank) → requested
deliver(X, client) → delivered

A =
{

bank(hsbc), client(federico), courier(ups), office(office)
}

Notice the client’s role; it only includes CCt
1 and two actions, for requesting and

getting the card delivered. The last row of Table 1 shows which agents enact the
corresponding roles in the protocol. Consider now the following trace:

T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 request(federico, hsbc) (the client requests the credit
card from the bank on day 4)

7 confirm(hsbc, office) (the bank confirms the request)
10 print(office, ups) (the office produces the card and

passes it to the courier)

The following commitments are in place at time 11:

C11 =

⎧⎨
⎩
C1(hsbc, federico, delivered(11))
CC2(ups, hsbc, printed, delivered(3))
C3(office, hsbc, printed(10))

Notice the pattern among these three commitments; CC2 is an implicit dele-
gation of C1 (Definition 5), and C3 is an antecedent delegation of CC2 (Definition
7). Then C3 is delegation-similar to C1 via CC2.

Now assume that no delivery has occurred until time 12. Figure 2 shows
the output of j-REC, the Java-based REC reasoner. The horizontal axis shows
the timeline of events. The fluents are positioned vertically, and their truth
values (e.g., states for commitments) are computed according to the events.
C1 is indeed violated since its deadline has passed. Because of the similarity
relation, CC2 and C3’s deadlines together affect C1. Even though the printing
of the card is completed at day 10, the courier has 3 more days for delivery,
which will eventually exceed C1’s deadline. Indeed, notice in the figure that
delivery is completed at time 13, which fulfills the commitment of UPS to HSBC
(C2). However, the commitment of HSBC to Federico (C1) is violated. We have
the fluents improperDelegation and exception, corresponding to each improper
delegation of commitments (both conditional and base-level) in the system. Here,
the bank should have confirmed the client’s request earlier, and notified the office
accordingly.

186 Ö. Kafalı and P. Torroni

Fig. 2. REC output

8 Discussion

Work presented in this paper advances the state of the art in several directions.
First, we identify the ways that a commitment can be extended with a third party
(e.g., a delegatee agent), giving an exhaustive account. We use motivating exam-
ples inspired from an e-commerce scenario, to show that delegation can follow

Social Commitment Delegation and Monitoring 187

meaningful patterns, other than the usual one or two considered in literature. To
the best of our knowledge, no systematic classification of commitment delegation
types has ever been done before.

Moreover, we provide similarity relations to connect commitments with one
another. The relations we propose are again exhaustive, in the sense that they
are capture all possible chains of rational delegation. The similarity relations
are ternary relations, which connect two (otherwise unrelated) commitments via
another existing commitment called primary. Nested delegations are captured
(either explicit or implicit) through similarity. Similarity is fundamental to guide
the monitoring process.

Finally, we apply such notions to the problem of handling exceptions in
contract-regulated systems. We identify possible reasons of exceptions by consid-
ering time-related commitments and ways of delegating such commitments that
may bring about inconsistent states. We call such delegations improper. We de-
scribe a framework that enables commitment monitoring, at run-time, given a
specification of the current system state. The framework is able to identify the
improper delegations that cause the exception. We implemented the framework
in REC [1,16].

In principle, some of these notions, which we introduced for the purpose of
monitoring, could also be used of auditing, or even at design time. For example,
it may be useful to introduce design constraints, to prevent agents from causing
improper delegations. We do not deal with design issues here, but as a future
work it would be interesting to study the application of the improper delegation
notion in contexts other than monitoring.

While we focussed here on the general framework, we did not run a formal
analysis of the new notion of delegation. Therefore an important direction for
future work would be the definition of a model-theoretic semantics of delegation,
following and possibly extending recent results published by Lorini [12] and by
others. For example, the similarity relations we defined in Section 4 describe
how a single commitment can propagate into two separate delegations. It would
be interesting to characterize this notion in terms of some reasoning postulates
identified by Singh [15], for example l-disjoin and r-conjoin. Similarly, it
would be important to understand the implications of our characterization of
delegation in a normative context, following, e.g,. work done by Gelati et al. [8].

We plan to extend the language of commitment properties with negation and
disjunction. Commitments with negated propositions are interesting in the sense
that an agent commits to ensure something will not happen. This can be related
with a maintenance goal [13,1], where a certain property should hold at all times
during a specified interval.

Finally, we intend to design a distributed procedure where agents will col-
laboratively monitor improper delegations by exchanging their local knowledge.
We plan to build on our recent work on commitment diagnosis via a distributed
reasoning procedure [9] or to exploit higher-level forms of communication, such
as dialogues, as we proposed in [10].

188 Ö. Kafalı and P. Torroni

Acknowledgements

The first author is supported by Boğaziçi University Research Fund under grant
BAP5694, and the Turkish State Planning Organization (DPT) under the TAM
Project, number 2007K120610. We thank Marco Montali for providing us with
a working implementation of jREC, which enabled us to run experiments. We
are indebted to the anonymous reviewers for their valuable feedback.

References

1. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: IJCAI 2009: 21st International Joint Conference on
Artificial Intelligence, pp. 91–96 (2009)

2. Chesani, F., Mello, P., Montali, M., Torroni, P.: A logic-based, reactive calculus of
events. Fundamenta Informaticae 105(1-2), 135–161 (2010)

3. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about agents
and protocols via goals and commitments. In: AAMAS 2010: 9th International
Conference on Autonomous Agents and Multiagent Systems, pp. 457–464 (2010)

4. Chopra, A.K., Singh, M.P.: Constitutive interoperability. In: AAMAS 2008: 7th
International Conference on Autonomous Agents and Multiagent Systems, pp. 797–
804 (2008)

5. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: AAMAS 2009:
8th International Conference on Autonomous Agents and Multiagent Systems, pp.
937–944 (2009)

6. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In:
AAMAS 2003: 2nd International Conference on Autonomous Agents and Multia-
gent Systems, pp. 489–496 (2003)

7. Friedrich, G.: Repair of service-based processes – an application area for logic pro-
gramming. The ALP Newsletter (December 2010), http://www.cs.nmsu.edu/ALP

8. Gelati, J., Rotolo, A., Sartor, G., Governatori, G.: Normative autonomy and nor-
mative co-ordination: Declarative power, representation, and mandate. Artificial
Intelligence & Law 12(1-2), 53–81 (2004)

9. Kafalı, Ö., Chesani, F., Torroni, P.: What happened to my commitment? Exception
diagnosis among misalignment and misbehavior. In: Dix, J., Leite, J., Governatori,
G., Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 82–98. Springer, Heidel-
berg (2010)

10. Kafalı, Ö., Toni, F., Torroni, P.: Reasoning about exceptions to contracts. In: Leite,
F., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011.
LNCS, vol. 6814, pp. 225–242. Springer, Heidelberg (2011)

11. Kafalı, Ö., Torroni, P.: Diagnosing commitments: Delegation revisited (extended
abstract). In: AAMAS 2011: 10th International Conference on Autonomous Agents
and Multiagent Systems, pp. 1175–1176 (2011)

12. Lorini, E.: A logical analysis of commitment dynamics. In: Governatori, G., Sartor,
G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 288–305. Springer, Heidelberg (2010)

13. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a unifying
framework. In: AAMAS 2008: 7th International Conference on Autonomous Agents
and Multiagent Systems, pp. 713–720 (2008)

http://www.cs.nmsu.edu/ALP

Social Commitment Delegation and Monitoring 189

14. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

15. Singh, M.P.: Semantical considerations on dialectical and practical commitments.
In: Fox, D., Gomes, C.P. (eds.) AAAI 2008: 23rd National Conference on Artificial
Intelligence, pp. 176–181. AAAI Press, Menlo Park (2008)

16. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Sat-
isfied or compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)

17. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In: AAMAS 2002: 1st International
Conference on Autonomous Agents and Multiagent Systems, pp. 527–534 (2002)

Verifying Team Formation Protocols
with Probabilistic Model Checking�

Taolue Chen, Marta Kwiatkowska, David Parker, and Aistis Simaitis

Computing Laboratory, University of Oxford,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. Multi-agent systems are an increasingly important software paradigm
and in many of its applications agents cooperate to achieve a particular goal.
This requires the design of efficient collaboration protocols, a typical example
of which is team formation. In this paper, we illustrate how probabilistic model
checking, a technique for formal verification of probabilistic systems, can be
applied to the analysis, design and verification of such protocols. We start by
analysing the performance of an existing team formation protocol modelled as a
discrete-time Markov chain. Then, using a Markov decision process model, we
construct optimal algorithms for team formation. Finally, we use stochastic two-
player games to analyse the competitive coalitional setting, in which agents are
split into cooperative and hostile classes. We present experimental results from
these models using the probabilistic model checking tool PRISM, which we have
extended with support for stochastic games.

1 Introduction

Multi-agent systems have become an important software paradigm. One of the key ideas
behind this approach is that several different agents can cooperate to achieve certain
goals. This requires the design of efficient collaboration protocols, of which team for-
mation is a typical example. In this paper, we focus on a distributed team formation
protocol introduced in [10]. There, the authors used it to analyse team performance in
dynamic networks. The protocol has also been applied to coalition formation for data
fusion in sensor networks [11]. In both cases it has been used as a basis for designing
other algorithms, which makes it a compelling target for formal analysis.

The basic setting for the protocol of [10] consists of an agent organisation, i.e., a
network of interconnected agents which have certain resources. These agents attempt to
form teams in order to accomplish tasks which are generated periodically and globally
advertised to the agent organisation. The topology of the network restricts the set of
possible agent teams – for an agent to be on a team, the agent must have a connection
with at least one other agent in that team. Tasks are generic in that they only require a
team of agents with the necessary resources to accomplish the specific task. As in [10],
we do not consider the solution process, but only the team formation.

As is typical for multi-agent algorithms, probabilities play a crucial role in team for-
mation protocols. Firstly, agents are scheduled to act in a random order, following the

� This work is supported by the ERC Advanced Grant VERIWARE.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 190–207, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verifying Team Formation Protocols with Probabilistic Model Checking 191

approach of [10]; secondly, in our setting, tasks are drawn from a task pool, following
some known probability distribution. This is particularly interesting for the online ver-
sion of the algorithm (see Alg. 3), where tasks are generated after teams have formed.
In this case, agents have to choose strategies to optimise against a set of tasks governed
by a certain probability distribution rather than a particular task. Finally, probabilities
are used to implement strategies of agents themselves, for example random selection of
a team to join. These issues motivate the use of analysis techniques that take can take
probabilistic behaviour into account.

Formal verification is an approach to check the correctness of a system using rig-
orous, mathematical reasoning. Fully automated verification techniques such as model
checking have proved to be widely applicable, including to multi-agent systems [17].
In this paper, as described above, the systems that we study exhibit probabilistic be-
haviour. Thus, we use probabilistic model checking, an automated technique for the
formal verification of stochastic systems.

Probabilistic model checking is based on the construction of a probabilistic model
from a precise, high-level description of a system’s behaviour. The model is then anal-
ysed against one or more formally specified quantitative properties, usually expressed
in temporal logic. These properties capture not just the correctness of the system, but
a wide range of measures such as reliability or performance. We can compute, for ex-
ample, “the probability that the algorithm successfully terminates within k rounds”. By
augmenting the model with rewards, a further range of properties can be analysed.

In addition to offering convenient high-level formalisms for representing models and
their properties, the strength of probabilistic model checking is that offers exact, ex-
haustive analysis techniques. Rather than, for example, discrete-event simulation (as it
is done for team formation protocols in [10]), probabilistic model checking is based
on an exhaustive exploration and numerical solution of the model, allowing best- and
worst-case behaviour to be identified. This is particularly valuable for distributed proto-
cols (like the ones in this paper), whose behaviour is notoriously difficult to understand
precisely. Furthermore, efficient techniques and tools exist for this purpose.

In this paper, we use the PRISM probabilistic model checker [16] to analyse various
agent organisations for the team formation protocol of [10]. We use several different
types of probabilistic models and express quantitative performance properties of them
in temporal logic. Firstly, we model the original version of the protocol using discrete-
time Markov chains (DTMCs), where the behaviour of each agent is described entirely
in a probabilistic (deterministic) way. Then, we extend the original algorithm by allow-
ing agents to make decisions nondeterministically, instead of randomly, when forming
teams; such systems are naturally modelled by Markov decision processes (MDPs). By
analysing the MDP, we obtain the best- and worst-case performance of agent organisa-
tions. MDPs, however, can only model fully collaborative behaviour, whereas in many
scenarios it is crucial to address hostile behaviour of some agents in the organisation.
To cater for this we use stochastic two-player games (STPGs) as a model for the system
containing two groups of agents – collaborative and hostile – which try to, respec-
tively, maximise or minimise the performance of the organisation (i.e. this effectively
becomes a zero-sum stochastic two-player game). Orthogonal to these, we consider two

192 T. Chen et al.

different settings, namely offline and online, depending on whether the tasks are gener-
ated respectively before and after teams have formed (see Alg. 3).

Our experiments illustrate several aspects of agent organisation analysis. As a typical
case, we choose four network topologies, each consisting of five agents, i.e., fully con-
nected, ring, star, and a network having one isolated agent. For each one, we compute
the expected performance of the organisation and find organisation-optimal resource
allocation among agents. Then we show using MDP model checking what is the best
performance that can be achieved by this organisation. Lastly, we take the model to
the STPG setting to obtain the optimal coalitions of different sizes and evaluate their
performance. For all of these cases, we consider the offline and online dichotomy.

In summary, the main contributions of this paper are as follows:

(1) We perform a comprehensive and formal analysis of the performance of the team
formation protocol proposed in [10].

(2) We extend the original algorithm of [10], allowing agents to make decisions non-
deterministically when forming teams. Then, by modelling and analysing as an
MDP, we synthesise the best strategies for agents to achieve optimal performance,
partially solving an open problem posed in [10].1

(3) We extend the PRISM model checker with support for modelling and automated
analysis of STPGs and address the competitive coalitional setting, in which agents
are split into cooperative and hostile classes, using stochastic games to synthesise
optimal agent coalitions. To the best of our knowledge, this is the first work to
perform a fully-automated probabilistic analysis of this kind.

We note that it would be difficult to achieve (2) and (3) using simulation-based ap-
proaches; this demonstrates the strength of formal verification.

Related work. Cooperative behaviour, which is one of the greatest advantages of agent-
based computing, has been studied from many different angles over the years. Coali-
tional games have traditionally been analysed from a game-theoretic perspective [19],
but in recent years have attracted a lot of attention from researchers in artificial intel-
ligence, especially in cooperative task completion [20]. Several approaches for team
formation and collaborative task solving have been considered including team forma-
tion under uncertainty using simple heuristic rules [13], reinforcement learning tech-
niques [1] and methods using distributed graph algorithms [18]. To reason formally
about cooperative games, several logics (e.g., Alternating Time Logic [3], Coalitional
Game Logic [2], Strategy Logic [6]) and other formalisms (e.g., Cooperative Boolean
Games [8]) have been introduced and used to analyse coalitional behaviour [5]. Model
checking has been used to analyse (non-probabilistic) knowledge-based properties of
multi-agent systems, using the tool MCMAS [17]. Probabilistic model checking was
employed to analyse probabilistic agents in negotiation protocols [4] (but only for fixed
strategies modelled as DTMCs) and to Byzantine agreement protocols [14].

1 We quote: “the problem of developing or learning effective team initialising and team joining
policies is also important, and is included in our on-going and future work”.

Verifying Team Formation Protocols with Probabilistic Model Checking 193

2 Preliminaries

2.1 Probabilistic Models

We begin with a brief introduction to the three different types of probabilistic models
that we will use in this paper.

Discrete-time Markov chains (DTMCs) are the simplest of these models. A DTMC
(S,P) is defined by a set of states S and a probability transition matrix P : S × S →
[0, 1], where

∑
s′∈S P(s, s′) = 1 for all s ∈ S. This gives the probability P(s, s′) that

a transition will take place from state s to state s′.
Markov decision processes (MDPs) extend DTMCs by incorporating nondetermin-

istic choice in addition to probabilistic behaviour. An MDP (S,Act, Steps) comprises
a set of actions Act and a (partial) probabilistic transition function Steps : S ×Act→
Dist(S), which maps state-action pairs to probability distributions over the state space
S. In each state s ∈ S, one or more distinct actions can be taken and, assuming that
action a ∈ Act is chosen, the distribution Steps(s, a) gives the probability of making
a transition to each state.

Stochastic two-player games (STPGs) generalise MDPs by allowing the nondeter-
ministic choices in the model to be resolved by two distinct players. An STPG is a
tuple (S, (S1, S2), Act, Steps) where the set of states S is partitioned into two disjoint
subsets S1 and S2. As for MDPs, Steps : S × Act → Dist(S) is a function mapping
state-action pairs to distributions over states. This is a turn-based game: in each state s
of the game, either player 1 or player 2 selects an action a ∈ Act, depending on whether
s is in set S1 or S2.

2.2 Probabilistic Model Checking and PRISM

Probabilistic model checking involves the construction and analysis of a probabilis-
tic model. Usually, a high-level description language is used to model a system (here,
we use the PRISM [16] modelling language). Then, one or more quantitative proper-
ties are formally specified and analysed on the model. Typically, probabilistic tempo-
ral logics are used to formalise properties. In this paper, we use PRISM’s temporal
logic-based query language, which is essentially the logic PCTL [12], extended to in-
clude reward-based properties [15,9]. This can be used to express properties of both
DTMCs and MDPs. We also generalise the logic to capture properties of stochastic
games.

PCTL extends the well known temporal logic CTL with a probabilistic (P) operator.
Informally, this places bounds on the probability of the occurrence of certain events
in the model. We will illustrate the use of PRISM temporal logic queries, using some
simple examples, referring the reader to [12,15] for precise details of the syntax and
semantics. For a DTMC, typical queries would be:

– P<0.01[♦ fail] - “the probability of a failure occurring is less than 0.01”
– P≥0.95[♦ end] - “the probability of the protocol terminating is at least 0.95”.

194 T. Chen et al.

For simplicity, we restrict our attention to reachability queries (in the examples above,
fail is a label, denoting a particular subset of the DTMC’s states S and ♦ fail refers to
the event in which a state from this set is reached). In practice, we often use a quanti-
tative variant of the P operator, denoted P=?, which returns the actual probability of an
event’s occurrence, e.g.:

– P=?[♦ fail] - “what is the probability of a failure occurring?”

Whereas in a DTMC it is relatively straightforward to define the probability of an event
such as ♦ fail , for MDPs we must also take account of the nondeterminism in the model.
The standard approach is to use the notion of strategies (also referred to as policies,
schedulers, etc.). A strategy resolves nondeterminism in an MDP (i.e. chooses an action
in a state), based on its execution history. For a specific strategy, we can define the prob-
ability of an event. Thus, probabilistic model checking focuses on best- or worst-case
analysis, quantifying over all possible strategies. We still employ quantitative proper-
ties, which now ask for minimum or maximum probabilities:

– Pmax=?[♦ fail] - “what is the maximum probability of a failure occurring?”

For a stochastic game, the same approach generalises naturally, but we require strategies
for both players. Usually, we assume that the two players have opposing objectives,
for example player 1 aims to minimise the probability of ♦ fail and player 2 tries to
maximise it. Extending the notation from above, we write:

– Pmin,max=?[♦ fail] - “what is the minimum probability of failure that player 1 can
guarantee, assuming that player 2 tries to maximise it?”

For this simple class of (zero-sum) properties, these values are well defined [7].
Finally, we also use properties based on rewards, which capture a variety of addi-

tional quantitative measures. For consistency across all three types of models, we as-
sume a simple state-based scheme, i.e., a reward function ρ : S → R≥0. We consider
the expected total reward accumulated until some target set of states is reached. Con-
sider a DTMC with reward function time and a label end denoting a set of target states.
We write, for example:

– Rtime
=? [♦ end] - “what is the expected time for the algorithm to complete?”

In exactly the same style as above, these queries generalise to MDPs and STPGs:

– Rtime
max=?[♦ end] - “what is the maximum expected algorithm completion time?”

– Rtime
min,max=?[♦ end] - “what is the minimum expected time for algorithm comple-

tion that player 1 can guarantee, assuming player 2 tries to maximise it?”

PRISM [16] is a probabilistic model checker. It supports several different types of mod-
els, including DTMCs and MDPs (it also supports continuous-time Markov chains and
probabilistic timed automata). On these models, a wide range of temporal logic-based
properties can be checked, including all of those illustrated above. For the work pre-
sented here, we have built a prototype extension of PRISM that adds support for STPGs
in the form of solving turn-based stochastic two-player zero-sum games (i.e. model-
checking temporal formulae of the form described above). Models to be analysed by

Verifying Team Formation Protocols with Probabilistic Model Checking 195

PRISM are described in a high-level modelling language based on guarded command
notation; we discuss this further in Section 4.1.

3 Definitions and Algorithms

The purpose of this section is to provide definitions of terminology used throughout this
paper and then present the algorithms which will be analysed.

3.1 Definitions

We introduce definitions of agent organisations, tasks, teams, and formulae for com-
puting rewards to measure the performance of both individual agents and agent teams.

Definition 1 (Agent Organisation). An agent organisation is a tupleO=〈A,N,R,RA〉
where:

– A = {a1, a2, ..., an} is a set of agents,
– N = {{ai, aj} : “ai and aj are neighbours” } is a neighbourhood relation,
– R = {r1, r2, . . . , rk} is a set of resource types, and
– RA = {Ra1 , Ra2 , . . . , Ran} is a set of agent resources where rj ∈ Rai ⇐⇒

“agent ai has a resource rj”.

Definition 2 (Task). A task Ti = {ri : “ri is required by the task i”} is a set of
resources that are required to accomplish Ti. By T = {T1, T2, . . . , Tt} we denote a
collection of tasks.

Definition 3 (Team). A team of agents is denoted by Mi = {aj : “aj is a member of
team i”}, and the set of all teams is M = {M1,M2, . . . ,Mm}. By M̄ =

⋃
1≤i≤m Mi,

we denote the set of all agents that are committed to some team. For 1 ≤ i ≤ m,
RMi =

⋃
a∈Mi

Ra is the set of resources the team Mi has. The team Mi is said to be
able to accomplish the task Tj iff Tj ⊆ RMi .

Definition 4 (Rewards). For agent a, we define two types of reward:

– Type W1, which rewards the agent with 1 point if it is in the team which was able
to complete its task after team formation is over; and 0 otherwise. Formally,

W1(a) =
{

1 if ∃Mi.a ∈Mi ∧ Ti ⊆ RMi ,
0 otherwise,

(1)

– Type W2, which rewards 1 point to the team which was able to complete its task,
and 0 otherwise. The reward is shared equally between team members.

W2(a) =
{ 1

|Mi| if ∃Mi.a ∈Mi ∧ Ti ⊆ RMi ,
0 otherwise.

(2)

196 T. Chen et al.

For a set of agents A, the rewards are defined accordingly as the total reward
achieved by its members, i.e.,

W1(A) =
∑
a∈A

W1(a) W2(A) =
∑
a∈A

W2(a). (3)

The underlying idea of these two types of rewards is that W2 provides incentives for
agents to form smaller teams which can accomplish tasks, whereasW1 motivates agents
to be in a successful team. From the organisation’s perspective, the W1 reward should
be used when resources are limited, whereas the W2 reward will encourage agents to
introduce resource redundancy into teams, but this may ensure that tasks are completed
with higher probabilities.

3.2 Algorithms

In this section we provide pseudocode for the algorithms which we later analyse. During
the team formation process, each agent performs as follows: when it is not committed
to any team (meaning that it is available and not assigned to any task), it considers each
task in a random order. If a task currently has no other agents committed to it, the agent
can choose to initialise a team, and does so with the probability given in Eqn. (4) (i.e.,
the ratio between neighbours that are not committed to any team and total number of
neighbours).

IPa =
|{a′ ∈ A : {a, a′} ∈ N ∧ a′ /∈ M̄}|

|{a′ ∈ A : {a, a′} ∈ N}| . (4)

For team joining, if an agent is eligible for a team, it always joins the team. Note that
only uncommitted agents can commit to a new or partially filled task, and committed
agents can not decommit from a given task.

In Alg. 1 we reproduce pseudocode for the JOINTEAM algorithm introduced in [10].
This combines team initialisation and team joining. This algorithm will be modelled
and analysed as a DTMC, as we shall see in Sec. 5.1.

Algorithm 1. JOINTEAM algorithm [10] (probabilistic and deterministic)
procedure JOINTEAM(a, T , M)

for all Ti ∈ T in random order do
if a /∈ M̄ then 	 agent is not committed

if |Mi| = 0 then 	 team for task i is empty
if Ra ∩ Ti �= ∅ then 	 agent has skill (replaced by true if called from ONLINE, cf. Alg. 3)

with probability IPa : Mi ← Mi ∪ {a} 	 initialise a team (see Eqn. (4))
end if

else if ∃{a, a′} ∈ N.a′ ∈ Mi then 	 there is neighbour in team for task i
if Ra ∩ Ti \ RMi

�= ∅ then 	 agent has a missing resource (replaced by true if called from ONLINE)
Mi ← Mi ∪ {a} 	 join team

end if
end if

end if
end for

end procedure

To tackle the problem of finding the best team initialisation and team joining strategy,
we modify the original JOINTEAM algorithm by allowing agents to make decisions re-
garding what actions to take, instead of picking one randomly. Technically, the changes
are as follows, which are highlighted in Alg. 2.

Verifying Team Formation Protocols with Probabilistic Model Checking 197

Algorithm 2. JOINTEAM algorithm (non-deterministic extension)
procedure JOINTEAM(a, T , M)

for all Ti ∈ T in arbitrary order do
if a /∈ M̄ then 	 agent is not committed

if |Mi| = 0 then 	 team for task i is empty
if Ra ∩ Ti �= ∅ then 	 agent has skill (replaced by true if called from ONLINE, cf. Alg. 3)

Mi ← Mi ∪ {a} or Mi ← Mi 	 initialise a team or do nothing
end if

else if ∃{a, a′} ∈ N.a′ ∈ Mi then 	 there is neighbour in team for task i
if Ra ∩ Ti \ RMi

�= ∅ then 	 agent has a missing resource (replaced by true if called from ONLINE)
Mi ← Mi ∪ {a} or Mi ← Mi 	 join a team or do nothing

end if
end if

end if
end for

end procedure

– Allow agents to consider tasks in arbitrary order instead of randomly;
– Replace probabilistic choice to initialise the team by nondeterministic choice;
– Allow agent not to join a team even if it has a resource and neighbour in that team.

This algorithm allows analysis of the best-case performance that can be achieved by
the protocol. It also allows us to analyse agent organisations with hostile agents, which
aim to reduce organisation’s performance. It will be modelled and analysed as an MDP
and STPG respectively, as we shall see in Sec. 5.2 and Sec. 5.3. Furthermore, we ob-
serve that there are two natural ways to call JOINTEAM: the OFFLINE procedure first
initialises the set of tasks and then sequentially calls the JOINTEAM procedures of ev-
ery agent in random order, as described in Alg. 1. In contrast, the ONLINE routine calls
JOINTEAM procedures for agents before selecting the tasks. (The JOINTEAM algorithm
needs to be adapted slightly, see Alg. 1, the 5th line.) We investigate both the offline and
online versions of the algorithms because they provide a nice comparison between op-
timisation against specific tasks (offline), and distribution of tasks (online). As we will
see in Sec. 5.3, whether the offline or online version results in better performance de-
pends on network topology.

Algorithm 3. Offline and online versions of JOINTEAM algorithm
procedure OFFLINE(t) 	 t - number of tasks

M = {Mi = ∅ : 1 ≤ i ≤ t} 	 initialise empty teams
T = {Ti �= ∅ : Ti ⊆random R, 1 ≤ i ≤ t} 	 initialise tasks at random
for all a ∈ A in random order do

JOINTEAM(a, T , M)
end for
perform tasks and compute rewards

end procedure

procedure ONLINE(t) 	 t - number of tasks
M = {Mi = ∅ : 1 ≤ i ≤ t} 	 initialise empty teams
for all a ∈ A in random order do

JOINTEAM(a, T , M)
end for
T = {Ti �= ∅ : Ti ⊆random R, 1 ≤ i ≤ t} 	 initialise tasks at random
perform tasks and compute rewards

end procedure

198 T. Chen et al.

4 Models and Experimental Setup

4.1 PRISM Models

The PRISM model checker has been briefly described above. The purpose of this sec-
tion is to explain how we model the algorithms from the previous section in PRISM.
Due to space limitations we do not provide the source code of the models and prop-
erties used in this paper; instead, we have made them all available online2. Here we
use a toy example from Fig. 1 to illustrate the design concepts. The system modelled in
this example consists of two agents and a scheduling module which randomly generates
the number of tasks to be performed (1 or 2, each with probability 0.5). Then, agents
act in turn by choosing which team to join for each task. The reward structure “total”
rewards 0.3 points for each task for which agents joined different teams and 1.0 points
when agents cooperate. The choice of teams for an agent is nondeterministic (i.e. the
underlying model will be either an MDP or STPG), but it could be made probabilistic
in a way similar to the scheduler’s generation of tasks (and thus become a DTMC).

module scheduler
turn : [1..3] init 1;
num tasks : [-1..2] init -1;
[gen] num tasks=-1 → 0.5 : (num tasks′=1) + 0.5 : (num tasks′=2);
[go1] num tasks>0 ∧ turn=1 → (turn′=2);
[go2] num tasks>0 ∧ turn=2 → (turn′=3);
[do] num tasks>0 ∧ turn=3 → (turn′=1) ∧ (num tasks′=num tasks − 1);

endmodule

module agent1
team1 : [1..2] init 1;
[go1] true → (team1 ′=1);
[go1] true → (team1 ′=2);

endmodule

module agent2 = agent1 [go1=go2 , team1=team2] endmodule

rewards “total”
turn=3 ∧ team1 �=team2 : 0.3;
turn=3 ∧ team1=team2 : 1.0;

endrewards

Fig. 1. Example of a two agent system, described in PRISM’s guarded command modelling lan-
guage; see [16] for further details and links

The same principle has been applied to the models that we used for experiments.
Each agent is modelled as a module with Alg. 1 and Alg. 2 encoded as guarded com-
mands. There is a scheduler module which has Alg. 3 implemented as guarded com-
mands. The reward structures are also described according to definitions in Eqn. (1)-(3).

From this high-level description of the algorithm, our extension of PRISM then con-
structs the corresponding models: DTMC, MDP, or STPG. For STPGs, we also need to
specify the split of model states into those controlled by players 1 and 2. This is done
with two expressions over PRISM model variables, describing these sets.

2 See http://www.prismmodelchecker.org/files/clima11/

http://www.prismmodelchecker.org/files/clima11/

Verifying Team Formation Protocols with Probabilistic Model Checking 199

〈a1 r1〉

〈a2 r1〉

〈a3 r2〉〈a4 r2〉

〈a5 r3〉

(a) Fully connected (Ofc)

〈a1 r1〉

〈a2 r2〉

〈a3 r1〉〈a4 r2〉

〈a5 r3〉

(b) Ring (Or)

〈a1 r1〉

〈a2 r2〉

〈a3 r2〉〈a4 r3〉

〈a5 r3〉

(c) Star (Os)

〈a1 r1〉

〈a2 r2〉

〈a3 r3〉〈a4 r3〉

〈a5 r2〉

(d) Isolated agent (Oia)

Fig. 2. Experimental configurations of the agent organisations with optimal resource allocation
(see Tab. 2). In parentheses is the abbreviation that we will use to refer to the organisation through-
out this paper.

4.2 Experimental Setup

For our experiments we mainly consider organisations consisting of five agents which
are organised into four networks: fully connected, ring, star, and a network having one
isolated agent. Each agent is assigned one resource, and there are three different re-
sources available. For each network, we find the optimal resource allocation with re-
spect to task generation described3 below using DTMC model checking (see Sec. 5).
These organisations are then fixed and used in all experiments.

Agent Organisations. We run experiments with a set of five agentsA = {a1, a2, a3, a4,
a5} and a set of three resources R = {r1, r2, r3} arranged into four different agent or-
ganisations Ofc , Or, Os, Oia (see Fig. 2 for graphical representations of these).

Tasks. We fix seven different tasks that will be used in experiments T = {{r1}, {r2},
{r3}, {r1, r2}, {r1, r3}, {r2, r3}, {r1, r2, r3}}. When running the algorithm, two tasks
T1 and T2 are picked uniformly and independently at random (with replacement) and
are advertised to the agent organisation. So, there are a total of 49 different combinations
of T1 and T2 that can be generated.

5 Experimental Results

In this section, we present results obtained using three models: DTMC, MDP, and
STPG. Tab. 1 compares model construction information for different sizes of fully con-
nected agent organisations4. All experiments are performed on a 2.8GHz Intel Core
2 PC, 4Gb of RAM running the Fedora Core 13 operating system. Nondeterministic
models (MDPs/STPGs) have a smaller state space because agent choices do not have
to be resolved at the model construction stage. However, the model checking is gener-
ally more time consuming for MDPs and STPGs than for DTMCs. The time needed for
model checking is in the range of 5-240 seconds.

3 We have chosen this way of allocating resources in order to easily show how the performance
can be improved by changing the strategy while keeping actions unchanged (i.e. compare
DTMC and MDP models).

4 We choose a fully connected agent organisation because it produces the largest models.

200 T. Chen et al.

Table 1. Model comparison for different numbers of agents in a fully connected agent organisa-
tion for the offline version of Alg. 1

Agents States Transitions Constr. Time (s)
2 1865 2256 0.1
3 17041 20904 0.3
4 184753 226736 3.4
5 2366305 2893536 74.4
6 35058241 42638400 2916.2

(a) DTMC

Agents States Transitions Constr. Time (s)
2 1405 1846 0.1
3 9721 12474 0.2
4 76865 96664 1.1
5 731233 907992 5.1
6 8155873 10040112 29.7

(b) MDP and STPG

Table 2. Optimal resource allocations with respect to rewards defined in Eqn. (3). All satisfy the
constraint ∀i.|Rai | = 1 ∧ ∀i.1 ≤ |{Raj : ri ∈ Raj (1 ≤ j ≤ 5)}| ≤ 2.

Organisation O Additional constraints Example 〈Ra1Ra2Ra3Ra4Ra5〉
Ofc - RA = 〈{r1}{r1}{r2}{r2}{r3}〉
Or Ra1 �= Ra5 ∧ ∀i < 5.Rai �= Rai+1 RA = 〈{r1}{r2}{r1}{r2}{r3}〉
Os Ra1 = {r} ∧ ∀i > 1.r /∈ Rai RA = 〈{r1}{r2}{r2}{r3}{r3}〉
Oia Ra5 = {r} ∧ ∃i < 4.r ∈ Rai RA = 〈{r1}{r2}{r3}{r3}{r2}〉

As mentioned in Sec. 4.2, for each topology from Fig. 2 we obtain optimal resource
allocations using probabilistic model checking on the DTMC model of the offline ver-
sion of the algorithm (see Alg. 3 and Alg. 1). The following PRISM temporal logic
queries are used to compute the expected rewards of the agent organisation under a
particular resource allocation:

– R
Wj

=? [♦finished] - “what is the expected total reward Wj of an agent organisation
when execution terminates?” (j ∈ {1, 2}).

After obtaining the expected rewards for all possible resource allocations, we selected
the one with the highest expected reward. The results are summarised in Tab. 2. The
resource allocations given in column “Example” of Tab. 2 will be used for all future
experiments and are shown in Fig. 2. We decided to fix resource allocations in this way
in order to show how model-checking techniques can be used to improve algorithm
performance by synthesising strategies (see discussion of MDP results in Sec. 5.2).

5.1 DTMC Analysis

In this section, we present the results for model checking the DTMC model of Alg. 1
for experimental agent organisations from Fig. 2, as well as offline and online versions
of the algorithm (see Alg. 3 for details).

Tab. 3 shows the results obtained for the expected rewards of agent organisations in
different settings, namely, using W1 and W2 reward structures (see Eqn. (3) for organi-
sations and Eqn. (1) and Eqn. (2) for individual agents), and offline and online versions
of Alg. 1. The following PRISM temporal logic queries were used to obtain the results:

Verifying Team Formation Protocols with Probabilistic Model Checking 201

Table 3. Model checking results for agent organisations from Fig. 2 with optimal resource alloca-
tions from Tab. 2 for offline and online versions of Alg. 3. Tables also show largest and smallest
individual agent rewards. For a histogram view of the total reward data, see Fig. 3.

O W1(O) mina∈A W1(a) maxa∈A W1(a)

Ofc 2.54906 0.44958 0.75073
Or 2.30359 0.35494 0.63985
Os 1.87278 0.28677 0.72568
Oia 2.38529 0.28867 0.68769

(a) Offline. W1 reward structure.

O W2(O) mina∈A W2(a) maxa∈A W2(a)

Ofc 1.49125 0.26721 0.42238
Or 1.42923 0.23531 0.38625
Os 1.16649 0.18582 0.42321
Oia 1.43599 0.20621 0.39907

(b) Offline. W2 reward structure.

O W1(O) mina∈A W1(a) maxa∈A W1(a)

Ofc 3.53645 0.64101 0.97239
Or 3.48638 0.55089 0.91190
Os 2.52500 0.41934 0.84761
Oia 3.37359 0.41186 0.93601

(c) Online. W1 reward structure.

O W2(O) mina∈A W2(a) maxa∈A W2(a)

Ofc 1.29743 0.24247 0.32657
Or 1.31882 0.23157 0.31297
Os 0.94404 0.16060 0.30158
Oia 1.25560 0.17970 0.31990

(d) Online. W2 reward structure.

– R
Wj

=? [♦finished] - “what is the expected total reward Wj?” (j ∈ {1, 2}),
– R

Wj

=? [♦ (finished ∧ ai∈M̄)] - “what is the expected reward Wj for agent ai?” (j ∈
{1, 2}, i ∈ {1, 2, 3, 4, 5}).

As can be seen in Tab. 3, agents organised in Os have the worst expected rewards in all
settings, and also the largest disparity between the worst and best performing individual
agents. Both of these characteristics are not surprising because agent a1, which is placed
in the middle, is most likely to be in a winning team, whereas the others do not have
any choice but to join the team with a1. OrganisationOia, which has one isolated agent,
shows a smaller differences between the worst and the best performing agents, but this
is only because the performance of the “best” agents is lower, whereas the “worst”
agent’s performance is very close to that of Os.

Fig. 3 compares total rewards of all organisations in offline and online settings. It
can be seen that a fully connected organisation Ofc has the best overall performance
in all but the online version using the W2 reward structure, where it is outperformed
by Or. It is interesting to note that a more significant difference between Ofc and Oia

only emerges when moving to the online setting. This shows that having one agent
which is isolated does not affect the ability of the organisation to efficiently respond to
the generated tasks, but impacts its chances to organise before the tasks are generated.
This is where the advantages of Or emerge: in the online setting, it not only starts
outperformingOia with respect to overall performance and disparity, but gets very close
to the performance ofOfc using theW1 reward structure, and produces a better totalW2

reward while keeping similar disparity levels. An attentive reader would have noticed
that the online version produces larger expected W1, but smaller expected W2 rewards.
This observation shows that, in an online version, the algorithm organises agents into
teams that increase the expectation for more agents to be in a successful team, but
decrease the expected total number of tasks completed. This is summarised in Tab. 4,

202 T. Chen et al.

Ofc Or Os Oia

(a) Reward W1(O).

Ofc Or Os Oia

(b) Reward W2(O).

Fig. 3. Expected rewards for agent organisations when using online and offline (see Alg. 3) ver-
sions of Alg. 1

Table 4. Task completion probabilities for optimal agent organisations using Alg. 1’s offline and
online versions (see Alg. 3)

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 0.74562 0.74562 0.49596
Or 0.71461 0.71461 0.47062
Os 0.58324 0.58324 0.23639
Oia 0.71799 0.71799 0.44839

(a) Offline

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 0.64871 0.64871 0.31320
Or 0.65941 0.65941 0.36712
Os 0.47202 0.47202 0.07465
Oia 0.62780 0.62780 0.29270

(b) Online

which shows the task completion probabilities. The following PRISM temporal logic
queries were used to find the probabilities:

– P=?[♦Tj done] - “what is the probability to complete task Tj?” (j ∈ {1, 2}),
– P=?[♦ (T1 done ∧ T2 done)] - “what is the probability to complete both tasks?”.

Using formal analysis for DTMCs, we produced exact values of expectations for prop-
erties of the system (task completion probabilities and rewards were used as examples),
so that even small differences between different organisations can be captured precisely.
Also, we focused on one particular strategy defined in Alg. 1, but the PRISM code can
be adapted easily to analyse other strategies and reward structures. In the next section
we will explore how the performance can be improved by changing the strategy of the
agents so that they collaborate to optimise the performance of the organisation.

5.2 MDP Analysis

In this section, we present the analysis of Alg. 2, which is modelled as an MDP. Using
PRISM we find the maximum expected rewards and task completion probabilities for
all agent organisations and compare the results with the strategy used in Alg. 1. This
is achieved by synthesizing the optimal strategy for the MDP using PRISM and then
model-checking the formulae on the resulting DTMC. Due to space limitations we do

Verifying Team Formation Protocols with Probabilistic Model Checking 203

Table 5. Maximum task completion probabilities for optimal agent organisations using Alg. 2’s
online and offline versions (see Alg. 3)

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 1.0 1.0 0.67346
Or 1.0 1.0 0.67346
Os 0.82857 0.82857 0.39183
Oia 1.0 1.0 0.67346

(a) Offline

O T1 compl. T2 compl. T1 and T2 compl.
Ofc 1.0 1.0 0.42857
Or 1.0 1.0 0.42857
Os 0.88571 0.88571 0.12653
Oia 1.0 1.0 0.42857

(b) Online

not present the actual strategies here.5 In Tab. 5 we can see the maximum expected task
completion probabilities that can be achieved. All organisations except Os can ensure
that at least one task is completed with probability 1.0, no matter what the scheduling
is. The following PRISM temporal logic queries were used to get the results:

– Pmax=?[♦Tj done] - “what is the maximum probability to complete task Tj?”
(j ∈ {1, 2}),

– Pmax=?[♦ (T1 done ∧ T2 done)] - “what is the maximum probability to complete
both tasks?”.

Fig. 4 compares maximum expected rewards for Alg. 1 that can be achieved by all
agents collaborating. It is not very difficult to see that Ofc , Or and Oia have the same
maximum reward, no matter whether W1/W2 reward or online/offline version is taken.
These outperform the star organization Os in all circumstances. More significant im-
provement can be obtained for the offline version for both rewards than for the online
version. This result shows that there is more potential for collaboration for agents in
the offline version. The small performance improvement for the online version suggests
that the original strategy of Alg. 1 is close to optimal when teams are formed before
tasks are advertised.

The PRISM temporal logic queries used to find the rewards were the following:

– R
Wj

max=?[♦finished] - “what is the maximum expected total reward Wj?” (j ∈
{1, 2}),

– R
Wj

max=?[♦ (finished ∧ ai∈M̄)] - “what is the maximum expected reward Wj for
agent ai?” (j ∈ {1, 2}, i ∈ {1, 2, 3, 4, 5}).

Using MDP model checking we have obtained the optimal strategy for the protocol and
compared its performance to Alg. 1. The designer could choose to synthesize and use
this strategy but it is worth noting that, even if the designer chooses not to implement
this particular strategy, it still serves as a “best-case” benchmark for measuring other al-
gorithms’ performance. This analysis allows us to evaluate the effects of a fully collab-
orative behaviour of agents. However often only limited collaboration can be achieved.
In order to facilitate analysis of such systems, one has to go beyond MDPs. In the next
section we show how STPGs can be used for this purpose.

5 The instructions on how to generate optimal strategies for MDPs can be found at:
http://www.prismmodelchecker.org/manual/
RunningPRISM/Adversaries

http://www.prismmodelchecker.org/manual/

204 T. Chen et al.

Ofc Or Os Oia

(a) Offline. Reward W1(O).

Ofc Or Os Oia

(b) Online. Reward W1(O).

Ofc Or Os Oia

(c) Offline. Reward W2(O).

Ofc Or Os Oia

(d) Online. Reward W2(O).

Fig. 4. Bar charts comparing offline and online versions of Alg. 1 analysed as a DTMC with the
best-case performance of Alg. 2 analysed as an MDP

5.3 STPG Analysis

In this section we focus on the analysis of Alg. 2, but, in contrast to the previous section,
we distinguish agents as either cooperative or hostile. This is naturally modelled as an
STPG, by considering each class of agents (cooperative or hostile) as a separate player
in a zero-sum game. Cooperative agents collaborate fully to act in the interest of the
organisation, i.e., maximising rewards W1 or W2, whereas all hostile agents together
take actions so as to minimise the expected rewards gained by the organisation. As a
result of solving the STPG, we are able to obtain (synthesise) the optimal strategies for
both cooperative and hostile agents, these can be used in further design of the system.
Here we present the expected rewards achieved by the optimal strategies, but due to
space limitations we omit the strategies themselves.

We are mainly interested in finding the optimal coalition. In general, a coalition
C⊆A is a subset of agents who cooperate to ensure certain goals, irrespective of how the
other agents behave in the organization. We consider two criteria: the largest probability
to accomplish tasks, and the largest reward (W1 or W2) achieved by the coalition. To
this aim, we use the following PRISM temporal logic queries which, as mentioned
earlier, have been extended for STPGs.

– Pmax,min=?[♦Tj done] - “what is the maximum probability for coalition C to
complete task Tj when agents in A \ C are hostile?” (j ∈ {1, 2}),

Verifying Team Formation Protocols with Probabilistic Model Checking 205

(a) Offline. Reward W1(O). (b) Online. Reward W1(O).

(c) Offline. Reward W2(O). (d) Online. Reward W2(O).

Fig. 5. Graphs comparing how the optimal coalition’s performance depends on its size

– Pmax,min=?[♦ (T1 done∧T2 done)] - “what is the maximum probability for coali-
tion C to complete both tasks T1 and T2 when agents in A \ C are hostile?”,

– R
Wj

max,min=?[♦finished] - “what is the maximum expected reward Wj for coalition
C when agents in A \ C are hostile?” (j ∈ {1, 2}).

For all agent organisations from Fig. 2, we enumerate all possible coalitions with dif-
ferent sizes and use PRISM to compute task completion probabilities (one task or both
tasks) and rewards obtained (W1 orW2). These are done for both online and offline ver-
sions of the algorithm. It turns out that there exist coalitions of all sizes that are optimal
with respect to all evaluated criteria; they are shown in Tab. 6. This result highlights the
importance of positions in the network and resources held by the agents. For example,
agent a4 is in all optimal coalitions of sizes greater than 1 for Oia. This is because it
is connected to all agents, including agent a5 which is isolated from other agents. For

Table 6. Optimal coalitions of all sizes for agent organisations from Fig. 2

O 1 2 3 4 5
Ofc 〈a1〉 〈a1, a3〉 〈a1, a3, a5〉 〈a1, a2, a3, a5〉 〈a1, a2, a3, a4, a5〉
Or 〈a1〉 〈a2, a3〉 〈a1, a4, a5〉 〈a1, a2, a4, a5〉 〈a1, a2, a3, a4, a5〉
Os 〈a1〉 〈a1, a2〉 〈a1, a2, a4〉 〈a1, a2, a3, a4〉 〈a1, a2, a3, a4, a5〉
Oia 〈a1〉 〈a1, a4〉 〈a1, a2, a4〉 〈a1, a2, a4, a5〉 〈a1, a2, a3, a4, a5〉

206 T. Chen et al.

Or, however, the structure of the optimal coalition varies depending on coalition size.
For example, for size 2 the optimal coalition consists of agents a2 and a3, but neither
of them is in the optimal coalition of size 3.

Fig. 5 shows a comparison of agent organisations in terms of the maximum perfor-
mance for different coalition sizes. Ofc outperforms others in all examples. This is in-
teresting, because it suggests that having strong connectivity within the team outweighs
the exposure to many hostile agents. Performance of Or is the most consistent, as the
maximum reward increases steadily with the coalition size. However, to be as effective
as more connected networks like Ofc , the coalition has to contain most agents in the
network. Better performance of Os against Or for coalition sizes up to 3 illustrates the
importance of having a highly interconnected agent for small coalitions.

Important differences between the online and offline settings can be seen for reward
W1 in Fig. 5a and 5b. When going from coalition size 2 to 3, especially, for strongly
connectedOfc andOia, coalitions can ensure that one task is completed with probability
1.0 , and thus guaranteeing reward of at least 3 for the coalition, which results in a jump
of performance.

In this section, we have shown how an extension of PRISM to support STPGs can
be used to verify properties of the multi-agent system that can be enforced by particular
agent coalitions. This competitive scenario allowed us to analyse the team formation
algorithm from the coalitional perspective, finding the optimal coalitions and comparing
their performance on different network topologies.

6 Conclusion and Future Work

In this paper, we have presented a comprehensive, formal analysis of a team formation
algorithm using probabilistic model checking. We believe this demonstrates the strong
potential of these techniques to the formal analysis of multi-agent systems and hope
that this case study will serve as a motivation for further work in this area.

As ongoing and future work, we plan to explore parallel execution of the JOINTEAM

algorithm for multiple agents, as here we only considered sequential execution, and
consider the problem of synthesising optimal agent organisations for task distributions
from a mechanism design perspective. We also plan to develop our prototype extension
of PRISM into a fully-fledged model checker for stochastic games and to equip the
analysis with abstraction techniques to allow for analysis of larger systems.

References

1. Abdallah, S., Lesser, V.R.: Organization-based cooperative coalition formation. In: IAT,
pp. 162–168. IEEE, Los Alamitos (2004)

2. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Reasoning about coalitional games. Artificial
Intelligence 173(1), 45–79 (2009)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5),
672–713 (2002)

4. Ballarini, P., Fisher, M., Wooldridge, M.: Uncertain agent verification through probabilistic
model-checking. In: Barley, M., Mouratidis, H., Unruh, A., Spears, D., Scerri, P., Massacci,
F. (eds.) SASEMAS 2004-2006. LNCS, vol. 4324, pp. 162–174. Springer, Heidelberg (2009)

Verifying Team Formation Protocols with Probabilistic Model Checking 207

5. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Efficient coalitions in Boolean games.
In: Texts in Logic and Games, vol. 5, pp. 293–297 (2008)

6. Chatterjee, K., Henzinger, T., Piterman, N.: Strategy logic. In: Caires, L., Vasconcelos, V.T.
(eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer, Heidelberg (2007)

7. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
8. Dunne, P.E., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative boolean games. In:

Proc. of AAMAS 2008, pp. 1015–1022. ACM, New York (2008)
9. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated Verification Techniques for

Probabilistic Systems. In: Proc. SFM 2011. Springer, Heidelberg (to appear, 2011)
10. Gaston, M.E., des Jardins, M.: Agent-organized networks for dynamic team formation.

In: Proc. of AAMAS 2005, pp. 230–237. ACM, New York (2005)
11. Glinton, R., Scerri, P., Sycara, K.: Agent-based sensor coalition formation. In: Proc. Fusion

2008, pp. 1–7. IEEE, Los Alamitos (2008)
12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects

of Computing 6(5), 512–535 (1994)
13. Kraus, S., Shehory, O., Taase, G.: Coalition formation with uncertain heterogeneous infor-

mation. In: Proc. of AAMAS 2003, pp. 1–8. ACM, New York (2003)
14. Kwiatkowska, M., Norman, G.: Verifying randomized Byzantine agreement. In: Peled, D.A.,

Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 194–209. Springer, Heidelberg (2002)
15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M.,

Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)
16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time

systems. In: Proc. of CAV 2011. LNCS. Springer, Heidelberg (to appear, 2011)
17. Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems. In: Her-

manns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)
18. Manisterski, E., David, E., Kraus, S., Jennings, N.R.: Forming efficient agent groups for

completing complex tasks. In: Proc. of AAMAS 2006, pp. 834–841. ACM, New York (2006)
19. Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT press, Cambridge (1994)
20. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial

Intelligence 101(1-2), 165–200 (1998)

Abduction-Based Search for Cooperative

Answers

Samy Sá and João Alcântara

Universidade Federal do Ceará
samy@lia.ufc.br, jnando@lia.ufc.br

Abstract. We propose that agents may use abductive reasoning to
adopt a Cooperative Answering behavior. In the event of failure or inade-
quacy of answers to a query (question), the agent should provide related
answers by employing Query Relaxation. These answers are to be re-
lated to the query and might be useful to the querying agent. In order
to achieve that, we consider agents with knowledge bases consisting of
Abductive Logic Programs. Such agents are able to explain failure and
guide the search for related answers. A distinctive aspect of our proposal
is that in order to avoid undesirable results, one can select the parts of
the query that cannot be relaxed.

1 Introduction

In a communication, agents can deliver or request information. When a request
is made, it takes the form of a question (a query) and other agents will try
to provide answers according to their knowledge bases. Cooperative Answering
[5,7] is a form of cooperative behavior in which an effort is made so a deductive
database can provide extra information (possibly useful) associated to a query.
On its turn, deductive databases are a special kind of logic programs and queries
have the same basic structure in both settings. Relaxation is presented in [5] as a
method for expanding both deductive databases and logic programming queries.
Just as well, logic programs are suitable to build intelligent agents and multi-
agents systems, especially as an account for reasoning. Therefore, Cooperative
Answering is particularly convenient when an agent whose knowledge base con-
sists of a logic program fails to answer a query or the answer provided is not
satisfactory to whoever made the question (its author), which may be either an
user or another agent. In both cases, cooperative answering involves an effort to
provide the best possible answer. This behavior can be of great use to Multiagent
Systems (MAS) in most information sharing situations. For instance, consider
the user agent u01 asking for service in a library. Here is an example of question
together with some possible answers:

u01 Do you have any books on MAS I have not yet borrowed?
(1) No. (or “None.”)
(2) We only have these books on MAS, but you have borrowed them all.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 208–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Abduction-Based Search for Cooperative Answers 209

(3) There is a possibility. We have an unclassified publication on MAS never
borrowed by you. It might be a book...

The first answer is the traditional one in databases, since there would be only
an empty set of answers in case of failure. Clearly, the second and third options
might be of more help to the asking agent. The effort to provide better answers
characterizes this form of cooperative behavior.

Abduction is a form of non-monotonic reasoning capable of building expla-
nations for newly observed, previously unknown data. In this paper, we attack
the problem of maximizing the usefulness of related answers retrieved by relax-
ation of a query by employing abductive reasoning to search for answers closer
to those of the original query. We will introduce criteria based on abductive
reasoning such as those found in abductive logic programming (ALP) [4,10,14].
ALP has been combined with deductive databases in a variety of ways, such
as for database integrity recovery [13], query optimization [16] and for assuring
database integrity over view updates [14,1], just to name a few. In our approach,
abduction is used to produce explanations for failure or give clues about the best
way to expand a query in an attempt to retain its meaning. In that sense, an ex-
planation is used to pinpoint which conditions of the query should be worked on
to guide the relaxation process. We say such conditions are useful towards relax-
ation. Other contributions involve relating abductive explanations to Maximally
Succeeding Subqueries [7] and providing preference criteria to rank explanations
that relates to the Best-Small Plausibility Criterion [3]. We also consider the au-
thor of a query (either an user or another agent) can name the most important
conditions and help the process. For most of the paper, we will only consider
failed queries. In fact, we will argue that the expansion of the scope of a query
can be considered as a special case of failure. In either case, we defend abduction
to be the key to retrieve good related answers.

The paper is organized as follows: Section 2 introduces abductive logic pro-
grams, queries and relaxations. Section 3 presents the concepts we will use to
guide the search process, which is discussed in Section 4. Section 5 considers the
case in which the original query does not fail. We will evaluate our contributions
in Section 6. Related work is discussed in Section 7 and Section 8 concludes the
paper.

2 Background

In this paper we combine abductive reasoning and query relaxation to assist find-
ing better related answers to queries. In this section we introduce Extended Dis-
junctive Programs (EDPs) [6], Abductive Logic Programs (ALPs) [14,15]; and
define explanations, queries and different relaxation methods. We also present
an example that will be used all along the paper.

2.1 Extended Disjunctive Programs

In this paper, we account for programs as intended in Extended Disjunctive
Programs (EDP) [6] or Databases.

210 S. Sá and J. Alcântara

An EDP is defined over a Herbrand Universe HB, the set of all ground terms
(terms without variables) a program might refer to. Such a program consists of
a set of rules of the form

r : L1; . . . ;Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln

with n ≥ m ≥ k ≥ 0. In this notation, “;” is the disjunction operator, each Li is
an objective literal, meaning it is either an atom (A) or its negation(¬A) and not
is negation as failure (NAF). If L is an objective literal, not L is called a NAF-
literal. We refer to both NAF-literals and objective literals as literals. In a rule r
as above, we the disjunction L1; . . . ;Lk is the head of the rule and we use head(r)
to denote the set of objective literals {L1, . . . , Lk}. Similarly, the conjunction
Lk+1, . . . , Lm, not Lm+1, . . . , not Ln is the body of the rule, and body(r) denotes
the set of literals {Lk+1, . . . , Lm, not Lm+1, . . . , not Ln}. We differ the objective
literals from the positive and negative parts as body+(r) and body−(r) to refer
to the sets {Lk+1, . . . , Lm} and {Lm+1, . . . , Ln}, respectively. We also denote
not body−(r) as the set of NAF-Literals {not Lm+1, . . . , not Ln}. A rule may
be written as head(r) ← body+(r), not body−(r) or simply head(r) ← body(r),
since body(r) = body+(r)∪not body−(r). A rule is disjunctive if head(r) has more
than one literal and range restricted if all variables in not body−(r) also appear in
body+(r). We also say a rule is an integrity constraint if head(r) = ∅ and that it
is a fact if body(r) = ∅. Rules and literals can be differentiated through renaming
their variables. A substitution θ = {x1/t1, . . . xn/tn} is a mapping from variables
to terms where x1, . . . , xn are all distinct variables and all ti is a distinct term
from xi. If G is a conjunction of literals, Gθ is the conjunction obtained from
G through application of the substitution θ. Similarly, if r is a rule, rθ is an
instance of r through the application of θ. We say that a program, rule or literal
without variables is ground. A program with variables has a ground instantiation
ground(P) which consists of gathering all the substitutions of variables in P for
elements of HB. We consider a program P with variables is identified by its
ground instantiation ground(P).

The semantics of an EDP is given by the Answer Sets Semantics [6]. Consider
LitP as the set of all ground objective literals in the language of a program P
and S one of its subsets. So PS is the reduct of ground(P) containing only all the
ground instances head(r)← body+(r) of rules of P such that body−(r) ∩ S = ∅.
Given a NAF-free EDP P , S will be an Answer Set of P if it is a minimal
subset of LitP such that (i) for every ground rule of P , if body+(r) ⊆ S, then
head(r) ∩ S �= ∅ and (ii) S is either consistent or S = LitP . An answer set S
is consistent if, for every objective literal L, {L,¬L} �⊆ S. A program might
have zero, one or multiple answer sets. The program itself will be said consistent
(inconsistent) if at least one (none) of its answer sets is consistent.

2.2 Abductive Logic Programs

Abduction is a special kind of non-deductive reasoning in which hypothesis are
inferred to explain observable facts otherwise inconsistent to a theory. Abductive
Logic Programming (ALP) brings this feature to standard logic programming

Abduction-Based Search for Cooperative Answers 211

[10,4]. We will now introduce ALPs as in the abductive framework of Extended
Abduction [14,15].

An abductive program is a pair 〈P,H〉, where P is an Extended Disjunc-
tive Program (EDP) [6] with semantics given by the Answer Set Semantics
[6] and H is a set of objective literals referred to as abducibles. If a literal
L ∈ H has variables, then all ground instances of L are abducibles and, conse-
quently, elements of H . If P is consistent, then 〈P,H〉 is consistent. Through-
out the paper we will assume only consistent programs. We say a conjunction
G = L1, . . . , Lm, not Lm+1, . . . , not Ln is range restricted if every variable in
Lm+1, . . . , Ln also appears in L1, . . . , Lm. An observation over 〈P,H〉 is a con-
junction G with all variables existentially quantified and range restricted. An
observation L1, . . . , Lm, not Lm+1, . . . , not Ln is satisfied by P if {L1θ, . . . , Lmθ}
⊆ S and {Lm+1θ, . . . , Lnθ} ∩ S = ∅ for some substitution θ and answer set S of
P . An observation is satisfied by 〈P,H〉 if it is satisfied by P .

Definition 1. Let G be an observation over the ALP 〈P,H〉. A pair (E,F) is
an explanation of G in 〈P,H〉 if:

1. (P \ F) ∪ E has an answer set which satisfies G1,
2. (P \ F) ∪ E is consistent,
3. E and F are sets of ground objective literals such that E ⊆ H \ P and

F ⊆ H ∩ P .

Intuitively, an explanation (E,F) means that by taking the literals in E as true
while retracting (falsifying) the literals in F from P , the resulting P ′ satisfies G.
If (P\F)∪E has an answer set S satisfying all three conditions, S is called a Belief
Set of 〈P,H〉 satisfying G with respect to (E,F). When an observation has an
explanation, it means it can be made consistent with P . If the original program
has an answer set satisfying G, then (∅, ∅) is an explanation and no changes are
needed in P . An explanation (E,F) is minimal if, for any explanation (E′, F ′)
such that E′ ⊆ E and F ′ ⊆ F , then E′ = E and F ′ = F . In general, only
the minimal explanations are of interest. The set H is related to the explanatory
power of an agent. The more the elements in H , the more explanations the agent
might be able to conceive.

2.3 Queries to an ALP

Informally, a query is a question to a knowledge base about its data and rep-
resents the intention of retrieving specific sets of facts from it. In the case of
disjunctive programs, a query is a conjunction of conditions that describe the
expected data. In fact, a query to an ALP consists of an observation over it, so
it succeeds and fails in the same conditions (Section 2.2).

1 This definition is for credulous explanations. Its choice over skeptical explanations
[9] makes possible to have more explanations and gives us a better chance of finding
good related answers to a query.

212 S. Sá and J. Alcântara

Definition 2. A query is a conjunction G = L1, . . . , Lm, not Lm+1, . . . , not Ln

of literals (conditions) with all variables existentially quantified and range re-
stricted. We write Lit(G) to refer to the set of literals in a query G in contrast
to the conjunction of such literals.

Each literal represents a condition. We commonly refer to a query by writing
either its set of literals Lit(G) or the conjunction of those.

2.4 Query Relaxation

Cooperative query answering is a paradigm of query processing that tries to help
the user by adding results closely related to the query or correcting misconcep-
tions about a database [5]. By relaxing a query, we substitute it by another one
that has a broader scope than the previous, so its result is a superset of the first.
Relaxation is mainly employed when a query fails and allows to retrieve related
results instead of failure. We consider the relaxation methods introduced in [15]
as they are oriented to be used with ALPs.

Definition 3. A query G can be relaxed to G′ by any of the following methods:

1. Anti-Instantiation (AI): given a substitution θ if G′θ = G, then G′ is a
relaxation of G by anti-instantiation.

2. Dropping Conditions (DC): if G′ is a query and Lit(G′) ⊂ Lit(G) then G′

is a relaxation of G where the conditions of Lit(G) \ Lit(G′) were dropped.
3. Goal Replacement (GR): if G is a conjunction G1, G2 and there is a rule

L ← G′
1 in P with G′

1θ = G1, then G′ = Lθ,G2 is a relaxation of G by
goal replacement.

In each case, G′ is also a query as previously defined.

Definition 4. We say a literal (or condition) L of G was replaced in a relaxation
G′ if L ∈ Lit(G)\Lit(G′) (in case of Dropping Condition or Goal Replacement)
or L has some arguments with ground terms in G and variables in G′ (in case
of Anti-Instantiation).

One can imagine the various ways of iteratively relaxing a query G in the manner
of a Directed Graph with a single source in the original query and sink in the
empty query (G′ = ∅). In that case, each possible relaxation of G is represented
as a node and every edge leads a node to a relaxation of its query obtained by
a single application of just one of the methods presented above. Since a path
in the graph is a sequence of relaxations, it will be a Directed Acyclic Graph
(DAG) if no rule in the program has head(r) ⊆ body(r).

2.5 Running Example

We will introduce an ALP, a query and some possible relaxations. This example
will be referred back at the end of each section in order to illustrate any new
concepts.

Abduction-Based Search for Cooperative Answers 213

In what follows, we address the terms user (usr), book (bk), MAS, ALP,
article (artc), borrowed (brwd) and publication (pub) and Artificial Intelligence
(ai). We employ the character “.” to separate rules in a program.

Example 1. Consider the ALP 〈P,H〉:

P : usr(u01).
bk(b11). mas(b11). brwd(u01, b11).
bk(b12). alp(b12).
pub(b13). alp(b13). brwd(u01, b13).
artc(b14). mas(b14).
artc(b15). alp(b15).
pub(b16). mas(b16).

pub(X)← bk(X). pub(X)← artc(X).
ai(X)← mas(X). ai(X)← alp(X).
← usr(X), bk(X).
← bk(X), artc(X).

H : {bk(X),mas(X), alp(X), brwd(X,Y), artc(X)}

The program P has a single answer set S that includes all the facts in the pro-
gram together with the conclusions pub(b11), pub(12), pub(14), pub(15), ai(11),
ai(12), ai(13), ai(14), ai(15), ai(16).

The query G = bk(X),mas(X), not brwd(u01, X) from Section 1 fails in P .
It has the following explanations:

(E1, F1) = ({ }, {brwd(u01, b11)})
(E2, F2) = ({mas(b12)}, { })
(E3, F3) = ({bk(b13), mas(b13)}, {brwd(u01, b13)})
(E4, F4) = ({bk(b14)}, {artc(b14)})
(E5, F5) = ({bk(b15), mas(b15)}, {artc(b15)})
(E6, F6) = ({bk(b16)}, { })

The possible relaxations of G are quite numerous. In the sequel, we present just
a few examples to illustrate Definition 3:

G′
1 = bk(X),mas(X), not brwd(Y,X) (AI)

G′
2 = mas(X), not brwd(u01, X) (DC)

G′
3 = pub(X),mas(X), not brwd(u01, X) (GR)

The literal not brwd(u01, X) was replaced in G′
1. Similarly, bk(X) was replaced

in both G′
2 and G′

3.

We will address to other relaxations of G throughout the paper.

3 Important Concepts

This section explores the concepts of useful literals and rational relaxations. We
propose guiding the relaxation search by discarding options not based on these

214 S. Sá and J. Alcântara

concepts. Their formalization should be enough to convince of their usefulness
to the problem and motivate our work. We first present a way for the author of
the query to restrict relaxation attempts.

3.1 Useful Literals

Whenever a query G fails in a program 〈P,H〉 for a substitution θ, some literals
in Lit(Gθ) may be satisfied by 〈P,H〉. If any of these literals are replaced in
a relaxation G′, then G′θ will also fail. In a search for a successful relaxation,
such literals are useless. In order to identify the useful ones, we introduce the
following definition:

Definition 5. Let G be a failed query and (E,F) an explanation for it in the
program 〈P,H〉. Let S be an answer set of P . The set US

E,F (G) = {L ∈ Lit(G) |
Gθ is satisfied by P ′ = (P \F)∪E and either L is not a NAF-literal and Lθ /∈ S
or L is a NAF-literal and Lθ ∈ S, for some θ}. We say US

E,F (G) is the set of
useful literals of G towards relaxation according to the explanation (E,F) and
answer set S.

Definition 6. Let G be a failed query and (E,F) an explanation for it in the
program 〈P,H〉. Let S1, . . . , Sn be the answer sets of P . The set UE,F (G) =
{L ∈ Lit(G) | L ∈ USi

E,F (G), 1 ≤ i ≤ n} is the set of useful literals of G towards
relaxation (or just useful, for short) according to the explanation (E,F). A literal
is useful according to H if it is useful according to a minimal explanation in
〈P,H〉. The set of such literals is denoted by UH(G).

Example 2. Next, we show which literals are useful in UE,F (G) according to each
explanation (E,F) for the query G = bk(X),mas(X), not brwd(u01, X) in the
program from Example 1, that has a single answer set S:

UE1,F1(G) = US
E1,F1

(G) = {not brwd(u01, X)}
UE2,F2(G) = US

E2,F2
(G) = {mas(X)}

UE3,F3(G) = US
E3,F3

(G) = {bk(X), mas(X), not brwd(u01, X)}
UE4,F4(G) = US

E4,F4
(G) = {bk(X)}

UE5,F5(G) = US
E5,F5

(G) = {bk(X), mas(X)}
UE6,F6(G) = US

E6,F6
(G) = {bk(X)}

Relying on useful literals is the first step to guide relaxation. Any attempts
to relax a query by only replacing non-useful literals should fail. Next, we will
restrict explanations to avoid wrongly taking a literal as useful.

3.2 Querying Agent’s Choice

The author of a query might consider some of its conditions as crucial to the an-
swer. We propose an extended notion of query in which the author might impose
restrictions to relaxation. By extending a query with a set of non-replaceable lit-
erals, the querying agent can help the process with a better understanding of
what is expected as answer for the query. This should be perceived as a way for
the querying agent to indicate which neighborhood answers are acceptable.

Abduction-Based Search for Cooperative Answers 215

Definition 7. A restricted query is a pair (G,B) such that B ⊆ Lit(G) and G
is a query (as before).

The literals in B are intended to identify those that cannot be replaced in a relax-
ation attempt nor used to build explanations. These restrictions bring change to
the definitions of useful literals and explanations above, however these definitions
can be easily revised: For useful literals, it suffices to replace UE,F (G) ⊆ Lit(G)
with UE,F (G) ⊆ Lit(G)\B in Definition 6. Explanations for restricted queries are
the same as in Section 2.2, except that E and F are now such that E ⊆ (H\B)\P
and F ⊆ (H \B) ∩P . We believe that making the proper corrections instead of
presenting this version from start is better for clarity and presentation.

Example 3. Consider the restricted query (G,B) with G being the same as in
Example 1 and B = {not brwd(u01, X)}. This restriction means that any related
answers suggested should definitely not have been borrowed by the author of the
query before. In that case, the explanations (E1, F1) and (E3, F3) would not be
accepted, leaving only four explanations to be taken into account.

We will commonly address general queries instead of restricted ones. Whenever
we do so, we will omit B. Any other changes promoted by a non-empty B should
be easy to understand. Otherwise, we will be sure to comment on it.

3.3 Rational Explanations

A substitution θ′ such that no literals in Lit(Gθ′) are satisfied by and answer
set S of P suggests all literals as useful according to that answer set. Such
explanations can be misleading as they consider ground instances of the query
that fail in every condition. Any relaxation based on such explanations will
likely produce answers far from those expected or also lead to failure. In fact,
in case all possible relaxations of a query also fail, it is possible to still have
explanations, but only of the kind that suggests all literals as useful. We will call
such explanations to be non-rational and distinguish them from rational ones.

Definition 8. An explanation (E,F) is called rational iff Lit(G)\US
E,F (G) �= ∅,

for at least one answer set S of P . Otherwise, it is said to be a non-rational
explanation.

Example 4. The explanation (E3, F3) can be concluded to be non-rational from
the beginning, since US

E3,F3
(G) = Lit(G). Then, this explanation should be dis-

carded. All other explanations are taken as rational. If we consider the restricted
query (G,B) from Example 3, these explanations are not produced. As a conse-
quence, all explanations for (G,B) are rational.

Rational explanations state that the query is somehow partially satisfied, as
opposed to non-rational explanations. In case all explanations are non-rational,
it means that there are no good related answers or that the agent did not find
rational explanations. That last case should be interpreted as if the agent does

216 S. Sá and J. Alcântara

not consider rational to relax the query. For the remainder of the paper, whenever
we address explanations, we will be considering rational explanations.

Next, we present some results that encourage the choice of rational
explanations.

Theorem 1. If there is at least one rational explanation for the failure of G
in 〈P,H〉, then every relaxation of G that fails will also have at least one
explanation.

Proof. The existence of an explanation (E,F) means G can be made consistent
with P . If G′ is a relaxation of G, then (E,F) is also an explanation for G′

(possibly not minimal).

The existence of an explanation for the failure of a query G means no integrity
constraints are violated by its potential answers, otherwise it would not be pos-
sible to make the query consistent with P by changing the set of facts in the
program. Theorem 1 states that every relaxation of G also has at least one expla-
nation, so we can assure no integrity constraints will be violated by such relaxed
queries.

Theorem 2. Every rational explanation can be effectively used to guide the
search for a relaxed query that succeeds (is satisfied by 〈P,H〉).

Proof. By Definition 8, |Lit(G)| − |UE,F (G)| ≥ 1. It suffices to drop the con-
ditions consisting of useful literals. By doing so, the set of conditions left will
consist of a query that succeeds.

Non-rational explanations might relax the query to the point it gets empty before
succeeding.

Definition 9. A relaxation G′ of G is rational if (E,F) is rational and only
literals L ∈ UE,F (G) are being replaced.

4 Our Search Method

The search for answers related to a query is usually treated as search in a directed
graph. As such, it can benefit of many search methods from AI. Our approach
suggests significant cuts to the tree, guiding the search to make it local. Each
explanation restricts the possible relaxations of the query by pinpointing which
literals should be replaced. Another use of explanations is to describe the related
results. In that sense, the less replacements an explanation suggests and the less
changes to the program an explanation requires, the better. Therefore, we build a
ranking of rational explanations and use it to guide the search towards the most
promising paths in the graph. In this section we present our ranking criteria,
define our approach and discuss how it deals with common issues related to
search in graphs.

Abduction-Based Search for Cooperative Answers 217

4.1 Ranking the Explanations

In cooperative answering, it would be helpful to identify adequate criteria to
decide which explanations in a set should lead to the best related answers. An
agent capable of pinpointing the best explanations will surely be able to provide
answers as helpful as possible to any queries against its knowledge base. We
now present the reduced numbers of useful literals and changes suggested to a
program by an explanation as good leads to rank them.

Definition 10. Let T be the set of all explanations for the failure of a query G.
T� is a reflexive and transitive preference relation over T , such that (E,F) �
(E′, F ′) iff |UE,F (G)| ≤ |UE′,F ′(G)|.

Definition 11. An explanation (E,F) has a preference priority grade in T�,
denoted by NT�(E,F), such that NT�(E,F) = |{(E′, F ′) | (E′, F ′) � (E,F)}|.

We use the preference priority grades to decide in which order the explanations
are taken to guide relaxation. As such, an explanation with lower priority grade
is said to be of higher priority in the sense of being used to improve search.

Example 5. We refer back to the explanations taken as rational according to the
previously presented Example 3. In that case, we have

T� = (E2, F2) � (E4, F4) � (E6, F6) � (E2, F2) and (E2, F2) � (E5, F5).

The explanations (E2, F2), (E4, F4), (E6, F6) can appear in any sequence, since
NT�(E2, F2) = NT�(E4, F4) = NT�(E6, F6) = 2. However, (E5, F5) has a lower
preference priority when compared to the others (NT�(E5, F5) = 3).

The explanations of lowest priority grade in T� are related to the ground in-
stances of G that are the closest of being satisfied by P and, consequently, to
the Maximal Succeeding Subqueries (MSS) of G [7].

The changes required to P by an explanation can also be taken as clue to how
far a query is from being satisfied according to it.

Definition 12. Let T be the set of all explanations for the failure of a query G.
T� is a reflexive and transitive preference relation over T , such that (E,F) #
(E′, F ′) iff (i) |UE,F (G)| = |UE′,F ′(G)| and |E| + |F | ≤ |E′| + |F ′| or (ii)
|UE,F (G)| �= |UE′,F ′(G)| and (E,F) � (E′, F ′).

Please note that the symbols � and # used in the preference relations above
defined look alike, but are different. We chose such a pair of symbols because
the concepts behind each preference relation are themselves similar.

Definition 13. An explanation (E,F) has a preference priority grade in T�,
denoted by NT�(E,F), such that NT�(E,F) = |{(E′, F ′) | (E′, F ′) # (E,F)}|.

Example 6. Once again, we refer to the rational explanations according to Ex-
ample 3. We then have

218 S. Sá and J. Alcântara

T� = (E2, F2) # (E6, F6) # (E2, F2) and (E2, F2) # (E4, F4) # (E5, F5).

In T� only the explanations (E2, F2) and (E6, F6) have minimal priority grade
(NT�(E2, F2) = NT�(E6, F6) = 1). Also, the explanation (E4, F4) is only pre-
ferred over (E5, F5), since NT�(E4, F4) = 2 and NT�(E5, F5) = 3.

The explanations of minimal priority grade in T� are those related to MSSs
that require the lesser adaptation of P . The ranking criteria of T� resembles the
Best-Small Plausibility Criterion [3]. This criterion suggests that more plausible
explanations are preferred over less plausible ones. In case two explanations
present the same plausibility, the smaller explanation should be preferred.

Definition 14. The TOP-Explanations for a query G are the explanations with
minimal priority grade in the preference relation T�.

The intuition behind TOP-Explanations is that they are the best-ranked expla-
nations in our priority relations. Therefore, these should be the best candidates
to be considered when searching for related answer of a query.

Example 7. (E6, F6) and (E2, F2) are TOP-Explanations in 1.

The explanations with minimal priority grade in T� indicate, to some extent,
which useful literals should be replaced first in relaxation attempts. Thus the
use of TOP-Explanations can further determine precedence over useful literals.

4.2 Equivalent Explanations

Some explanations will lead to the exact same attempts to relax a query. Such
a pair of explanations will suggest the exact same literals as useful.

Definition 15. We say two explanations (E,F) and (E′, F ′) are equivalent iff
UE,F (G) = UE′,F ′(G).

This definition produces different equivalence classes. For each class, some of
its elements can be discarded in order to further optimize search. The selected
representatives should be those with minimal priority grade in the preference
relation T� when restricted to that class of equivalence.

Example 8. The explanations (E4, F4) and (E6, F6) are equivalent, so we can
discard one of them safely. In this case, we opt to discard (E4, F4), resulting in
the relation

(E6, F6) # (E2, F2) # (E5, F5).

4.3 The Search for Cooperative Answers

Our search method is based on the preference relation T� presented in Section
4.1. This relation is conceived to minimize the changes to the query during the

Abduction-Based Search for Cooperative Answers 219

relaxation process. This is done as an attempt to retain as much as possible of
the query semantics.

In case a query (G,B) fails in P , the agent should search for explanations,
discard the non-rational ones and build the preference relation T�. When this
relation is not empty, then some rational explanations can be conceived and the
query can be successfully relaxed. The agent should reduce equivalent explana-
tions and then follow the preference relation, considering one explanation at a
time and starting by the TOP-Explanations. For each explanation, the agent
restricts the replacement of literals to those suggested as useful.

In order to assure completeness and efficiency, a search strategy implementa-
tion is bound to try to apply the relaxation methods in an specific order over
each query. Taking this into consideration, we suppose any attempts to relax a
query will take preference for Goal Replacement over Dropping Conditions and
for Anti-Instantiation over both the other kinds. These preferences cope with the
intuition that the set of predicates used in a query characterize it more than its
ground arguments and that good related answers should be as close as possible
to satisfying all such predicates.

Example 9. Most of these steps have been shown in the previous examples. The
agent follows the preference relation built in Example 6 and relaxes the query G
based on information from the TOP-Explanation (E6, F6). Relaxations should be
made first by attempting anti-instantiation, then goal replacements and dropping
conditions. The first relaxation is produced by goal replacement with the rule
pub(X)← bk(X). The query G′ = pub(X),mas(X), not brwd(u01, X) succeeds
with two results X = b14 and X = b16 and the related answer is returned.

A search using other explanations will only be necessary if all answers provided
by the first explanation are not satisfactory to the query author. In that case,
the agent takes the next explanation in the preference relation and so on.

4.4 Relaxation Trees and Issues

A relaxation tree relates a query (root) to its possible relaxations. The sons of
a query node are its relaxations obtained by applying any of the methods from
Definition 3 once. The leaves are nodes that can only be relaxed by dropping
conditions and leading to an empty query. Given that tree, any search methods
can be used. In any case, breadth-first methods are preferable over depth-first
methods [5]. Some issues of the search in trees include multiple paths to the same
answer and the size of neighborhood [5]. Those issues, especially when combined,
result in a big search space and redundancy. Our approach reduces the search
space by restricting possible relaxation attempts. As a result, the neighborhood
of nodes and the number of alternative paths to relaxed queries are decreased.

The restrictions of explanatory power of an agent and from the author of the
query in restricted queries make for alternative cuts in the search space. Differ-
ently, we use the best rational explanations (Definition 14) to possibly reduce
changes to the original query. A set of useful literals will determine which relax-
ation methods can be applied. Each set refers to a part of the search space and

220 S. Sá and J. Alcântara

restricts search to a specific part of it. By rationally restricting the literals that
can be replaced, we reduce the neighborhood of the nodes. This feature can be
also perceived as pruning the tree. In that sense, our method works by reducing
the neighborhood of nodes to be visited and, consequently, redundancies in the
search. Redundancies are also reduced by eliminating equivalent explanations
(Section 4.2).

5 Expanding the Scope of a Query

In case an answer (either relaxed or not) is not satisfactory to the querying
agent, the cooperative behavior is to expand the scope of the query by relaxing
it and looking for related answers. When a query fails in the first place, we have
a preference relation over the explanations and the agent can follow it to guide
relaxation. We now address the case when the query first succeeds. Explanations
to guide relaxation can be found and ordered by applying the following steps:

1. Given a1, ..., an are the arguments of G, extend the language of 〈P,H〉 with
a new relation R\n.

2. Take the literal R(a1, ..., an) as an abducible and compose the query G0 as
G ∧R(a1, ..., an).

3. Discard any explanations (E,F) that consists of nothing but an instance of
R\n in E together with any non-rational ones (Definition 8).

4. Compute the preference relation T� for G0 (Definition 10).
5. Compute T� (Definition 12).
6. Discard unnecessary explanations out of equivalence as in Section 4.2.
7. Use the preference relation T� to guide the relaxations of G.

The first and second steps produce a query that will be guaranteed to fail in
〈P,H〉. As a consequence, for each substitution θ = {X1/a1, ..., Xn/an} for
which G succeeded, there will be a minimal explanation ({R(a1, ..., an)}, {})
in T�. After discarding these in the fourth step, the explanations with minimal
priority grade are related to ground instances of G that failed in P minimally.
The preference relation T� is then built and optimized in the sixth step. As a
consequence, all literals in UH will be useful to relax the original query, except
by R(q).

Example 10. Consider, for instance, the query G = bk(X),mas(X) which suc-
ceeds in 〈P,H〉 from example 1 with result X = b11. Suppose, then, the agent
u01 wants to know about other books on MAS and replies that such answer is not
satisfactory. The answering agent creates the query G0 = bk(X),mas(X), R(X),
which fails, and takes R(X) as an abducible. The query G0 has the following
explanations in 〈P,H〉:

(E1, F1) = ({R(b11)}, { })
(E2, F2) = ({mas(b12), R(b12)}, { })
(E3, F3) = ({bk(b13), mas(b13), R(b13)}, { })
(E4, F4) = ({bk(b14), R(b14)}, {artc(b14)})
(E5, F5) = ({bk(b15), mas(b15), R(b15)}, {artc(b14)})
(E6, F6) = ({bk(b16), R(b16)}, { })

Abduction-Based Search for Cooperative Answers 221

The useful literals UE,F (G0) according to each explanation (E,F) for the query
G0 = bk(X),mas(X), R(X) are:

UE1,F1(G0) = US
E1,F1

(G0) = {R(X)}
UE2,F2(G0) = US

E2,F2
(G0) = {mas(X), R(X)}

UE3,F3(G0) = US
E3,F3

(G0) = {bk(X), mas(X), R(X)}
UE4,F4(G0) = US

E4,F4
(G0) = {bk(X), R(X)}

UE5,F5(G0) = US
E5,F5

(G0) = {bk(X), mas(X), R(X)}
UE6,F6(G0) = US

E6,F6
(G0) = {bk(X), R(X)}

The agent discards the non-rational explanations (E3, F3) and (E5, F5), to-
gether with (E1, F1), since it consists of only the literal R(X). Next, the agent
computes the preference relation T� (Definition 10) to find

T� = (E2, F2) � (E4, F4) � (E6, F6) � (E2, F2).

The preference relation T� (Definition 12) has the result

T� = (E2, F2) # (E6, F6) # (E2, F2) and (E2, F2) # (E4, F4).

Next, the agent discards explanation (E4, F4), since it is equivalent to (E6, F6)
(Definition 15), and (E6, F6) # (E4, F4). Then, if the agent uses the explanation
(E2, F2) to guide relaxation, it will consider mas(X) and R(X) as useful. Since
the process is made over the original query G, only mas(X) is actually useful.
No relaxation by anti-instantiation is possible, so the agent attempts goal re-
placement. The agent finds a relaxed query G′ = bk(X), ai(X), which succeeds
as more general than G and returns results X = b11 and X = b12, a superset
of the results of G. In case the agent chooses to use the explanation (E6, F6), it
will succeed with the relaxed query G′ = pub(X),mas(X) and results X = b11,
X = b14 and X = b16.

6 Evaluation

First, we explore the trade-off perceived in searching for explanations before at-
tempting relaxations. An extensive study about the complexity of abduction can
be found in [3]. Their work deals with explanations that correct missing informa-
tion, differently from those in [15], which are more expressive. The explanations
of the latter relate the most to the class of Incompatibility Abduction Problems
from the first. For such problems, finding a best explanation is NP-Hard [3].
For more specific results on the complexity of Extended Abduction, please refer
to [14] (Theorem 6.3, item 1). For instance, the complexity of deciding if an
observation as in Section 2.2 has a credulous explanation is

∑P
2 −complete.

We point out that explanations tend to be far less numerous than possible
relaxations of a query. In fact, the number of explanations and possible relax-
ations depend on the knowledge base and the query itself, but we can control
these numbers in a few ways. For instance, a restriction on the set of abducibles
to only the literals of the query can reduce the number of explanations produced.

222 S. Sá and J. Alcântara

Also, one can reduce the number of possible relaxations of a query by naming
conditions that should not be replaced as in Section 3.2. Another way to interfere
with the number of possible relaxations is by orienting the design of the knowl-
edge base to exhibit a cooperative answering behavior. In that case, possible
relaxations should be previously conceived and made possible by the addition of
rules or blocked by working out different integrity constraints. Either way, the
use of explanations can drastically reduce redundancy in search.

As a final note, our approach is capable of significantly improving the quality
of answers related to a query. Such an improvement in quality is achieved by
finding minimal explanations to guide relaxation, which in turn are related to
ground instances of data that satisfy the most conditions of the original query.
Our approach reduce the search space because it considers relaxations that re-
place literals useful to one rational explanation at a time. Even though there
is some reduction in the time spent exploring the tree, to build the preference
relations from Section 4.1 changes the complexity of the process since we first
need to find all the explanations for the failure of the query. However, we draw
attention of the reader to the fact that instead of searching for related answers,
we search for the best related answers.

7 Related Work

The approach of using sets of abducibles to support and filter relaxations is novel.
Bylander et al. brings an extensive study of the computational complexity of ab-
duction in [3]. The relation to our work lies at the discussion on explanations
and plausibility. Their work considers comparing explanations to find the best
ones. Our approach builds on criteria for rationality. Our explanations are par-
tially ordered to indicate the best explanations in similarity to the Best-Small
Plausibility Criterion introduced by these authors. This concept suggests that
smaller explanations are preferable over bigger explanations of same plausibility.
Their work, however, is not driven to cooperative query answering.

Godfrey motivates and presents several complexity results about minimal fail-
ing (MFS) and maximum succeeding subqueries (MSS) in [7]. These concepts
introduce preference criteria over relaxation possibilities to produce answers as
close as possible to what would satisfy the query. This approach is the closest to
ours, but it is not based on abduction. The explanations with minimal priority
grade in our preference relation T� relate to maximum succeeding subqueries.
Our filter is more suitable to agents, as it relies on the explanatory power of an
agent and restrictions imposed by the author of a query.

An approach to cooperative answering based on Abstract Interpretation [8]
has been proposed by Halder and Cortesi. In this approach, a query is rewritten
into an abstract query as its strict values of arguments are replaced for con-
cepts that generalize them. Such concepts are specified during the design of the
database (or knowledge base) in an abstract database that consists of a copy
of each data record with all arguments replaced by their corresponding abstract
concepts. The abstract query is executed over the abstract database and the

Abduction-Based Search for Cooperative Answers 223

corresponding records of the original database are retrieved as cooperative an-
swers. This approach considers a single possibility for relaxation of queries and
the quality of the answers retrieved is highly dependent on the design of the
abstract database.

Pivert et al. propose replacing a failed query by a related one which has
been previously processed and whose answer is known to be non-empty [12].
This approach uses fuzzy sets to model semantic approximation of queries. This
concept is used as criteria to determine which cached query is the most similar
to the one being replaced. This strategy is different from query relaxation, so
related queries might not subsume the original. For that reason, this approach
is only suitable to deal with failed queries.

There are also other approaches to hypothetical reasoning in logic program-
ming that could be considered instead of Abductive Logic Programming. Induc-
tive Logic Programming (ILP) [11] uses induction to construct clausal theories
based on positive and negative examples. One difference is that abductive hy-
pothesis consist of only ground terms, while an inductive hypothesis consists of
a rule that generalizes the knowledge from the examples, therefore not ground.
This kind of reasoning is commonly used for machine learning and could be ap-
plied to cooperative answering to improve the knowledge base and reduce failure
over time. Abduction is more adequate to deal with failure on the spot. Another
approach, CR-Prolog [2] introduces Constraint Restoring rules (CR-Rules) to
extended programs. Such rules are only applied in case the regular program is
inconsistent and are designed to deal with event exceptions. CR-Rules can also
represent explanations which can be ordered by preference of application. How-
ever, in contrast to ALP, all explanations would need to be preconceived and
encoded as cr-rules. While those explanations could then be ranked according
to a preference relation, our approach makes it much simpler for the agents to
discard relaxation possibilities and restrict the search space.

8 Conclusion and Future Work

Our goal is to improve the quality of the related answers obtained by relaxation.
In order to attain this objective we build on explanations and established criteria
to inform the search. Our contributions are manifold. First, our approach makes
it possible for the author of the query to restrict relaxations by forbidding that
some conditions are replaced. We also established criteria to rank and discard
explanations, electing the best ones and using them to reduce redundancies and
node neighborhood in the search. Finally, we cover both the cases of failure
and non satisfaction by the author about the answers retrieved. We show how
to do this by building a failing query from the original succeeding one, so the
agent produces explanations related to neighborhood answers. This approach
can improve cooperation between agents, as an effort is made to retrieve relevant
data in face of a question. In the near future we plan to investigate how agents
can use abduction-based cooperative answers to cooperatively work in group
decision situations. Our focus will be to build a protocol for agents to solve
impasses and seek consensus.

224 S. Sá and J. Alcântara

Acknowledgements

Research partially supported by CAPES (PROCAD).

References

1. Andreasen, T., Christiansen, H.: Flexible query-answering systems modelled in
metalogic programming. In: ECAI 1996 Workshop Knowledge Representation
Meets Databases, pp. 1–7 (1996)

2. Balduccini, M.: Computing answer sets of cr-prolog programs. Technical report,
Texas Tech. University (2006)

3. Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R.: The computational
complexity of abduction. Artif. Intell. 49, 25–60 (1991)

4. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Kakas, A.C.,
Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS
(LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)

5. Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative
answering. J. Intell. Inf. Syst. 1(3/4), 293–321 (1992)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

7. Godfrey, P.: Minimization in cooperative response to failing database queries.
International Journal of Cooperative Information Systems 6, 95–149 (1997)

8. Halder, R., Cortesi, A.: Cooperative query answering by abstract interpretation.
In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 284–296. Springer, Heidelberg
(2011)

9. Inoue, K., Sakama, C.: Abductive framework for nonmonotonic theory change.
In: IJCAI, pp. 204–210 (1995)

10. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming.
In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5,
pp. 235–324. Oxford University Press, Oxford (1998)

11. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
J. Log. Program. (19/20), 629–679 (1994)

12. Pivert, O., Jaudoin, H., Brando, C., Hadjali, A.: A method based on query caching
and predicate substitution for the treatment of failing database queries. In: Bichin-
daritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 436–450. Springer,
Heidelberg (2010)

13. Sadri, F., Toni, F.: Active behaviour in deductive databases. Technical report
(1996)

14. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base
updates. Theory Pract. Log. Program. 3, 671–715 (2003)

15. Sakama, C., Inoue, K.: Negotiation by abduction and relaxation. In: AAMAS,
pp. 1022–1029 (2007)

16. Wetzel, G., Toni, F.: Semantic query optimization through abduction and con-
straint handling. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) FQAS
1998. LNCS (LNAI), vol. 1495, pp. 149–366. Springer, Heidelberg (1998)

Reasoning about Exceptions to Contracts�

Özgür Kafalı1, Francesca Toni2, and Paolo Torroni3

1 Department of Computer Engineering - Boğaziçi University
34342, Bebek, İstanbul - Turkey

ozgurkafali@gmail.com
2 Department of Computing - Imperial College London

London, UK
ft@imperial.ac.uk

3 DEIS - University of Bologna
V.le Risorgimento, 2, 40136, Bologna - Italy

paolo.torroni@unibo.it

Abstract. We show an application of Assumption-Based Argumenta-
tion for reasoning about and handling exceptions in multiagent contracts.
We show that this solution enjoys interesting properties regarding the
ABA semantics of results obtained and the determinism of diagnostic
answers. As a case study, we present the workings of the framework on
a delivery process from e-commerce.

1 Introduction

Open multiagent systems enable distributed business process execution using au-
tonomous agents. Each agent executes a different part of the process. While this
provides some advantages (e.g., privacy), it also makes the process vulnerable
to exceptions. For example, if a buyer does not receive a merchandise that was
scheduled for delivery, it can conclude that there must have been an exception in
the workings of the entire process. Clearly, an agent’s misbehaviour affects oth-
ers. Thus when such an exception occurs, the agent facing the exception needs
to identify and diagnose the problem behind it, so as to handle it properly and
get back to normal execution.

Exception handling, and diagnosis in particular, is a hard and complicated
task. This is especially true in a distributed setting, because reasoning is local
but information is not, and agents need to spend considerable effort in gathering
the missing bits from the other agents or from the environment.

According to Kalech and Kaminka [15], who studied social diagnosis in the
context of agent teams, diagnosis has two phases: (i) selection of the diagnosing
agents, and (ii) diagnosis of the team state (by the selected agent). An accu-
rate selection of the diagnosing agents is in general a non-trivial task, but it is
essential in limiting information flooding. In the case of commitment-regulated
multiagent business process execution, however, selection becomes an elemen-
tary task, because commitments already contain a reference to the agent (the
� This paper extends the AAMAS ’11 poster paper [12].

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 225–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

226 Ö. Kafalı, F. Toni, and P. Torroni

S0

PROCESS
TERMINATION

S5

PROCESS
EXECUTION

S1

PROCESS
EXCEPTION

S2

EXCEPTION
DIAGNOSIS

S3

EXCEPTION
RECOV ERY

S4

process
initiated

termination
condition reached

exception
condition detected

exception condition
questioned

exception
condition justified

compensation
provided

Discovery DialogueDeliberation /
Negotiation Dialogue

Fig. 1. Process Life-Cycle

so-called debtor) who may have caused a specific exception, or who may be able
to find out what happened.

In [11], Kafalı et al. presented a distributed framework for handling exceptions
in contract-based open multiagent systems. In their framework, agents perform
monitoring tasks in order to detect possible misalignments and misbehaviours.
However, their architecture does not tell how agents reason about exceptions
and how they exchange the results of their reasoning.

This paper addresses precisely these two issues. We show that argumentation
technologies are well suited to carry out such reasoning tasks and to support
dialogues for collaborative diagnosis of multiagent contract exceptions. The dia-
logues provide the information exchange among the agents to enable diagnostic
activities to step from agent to agent until the reason of the exception is found.
Reasoning is based on the ABA argumentation framework [1,6,8,7]. Thanks to
its grounding on consolidated argumentation theories, we are able to describe
the diagnosis process in a high-level, declarative way, we can enable agents to
construct hypotheses (arguments) about what went wrong and exchange such
hypotheses between them, and we can ensure that the overall process is deter-
ministic.

The diagnosis activities are embedded in an agent execution cycle, and they
are performed whenever necessary. An agent executing a process assumes the
role of diagnosing agents when he senses something wrong. Figure 1 shows the
life-cycle of the multiagent system executing a process. The process begins ex-
ecution as soon as it is initialized (e.g., the contracts between the agents are
created), and it proceeds to normal execution (S1), where it stays until it termi-
nates or an exception condition is detected. In that case, the process enters the
exception state (S2) where the agent detecting the exception starts investigating
the cause of the exception. This initiates the diagnosis process (S3), which is
carried out by local reasoning whenever the agent has sufficient information to

Reasoning about Exceptions to Contracts 227

explain the exception, and by way of dialogues otherwise. When a valid justifi-
cation is produced and agreed upon by the agents involved in the diagnosis, the
process enters the recovery state (S4). Ideally, if a reasonable compensation is
found for the exception, e.g., after some negotiation, or by applying contractual
clauses, the process goes back to normal execution state (S1). Finally, the pro-
cess terminates if a termination condition is reached (S5). In this paper, we only
focus on the diagnosis phase (S3).

Customer Bookstore

Deliverer

pay

paydeliverydeliver

Fig. 2. Delivery Process

Throughout the paper we illustrate our proposal using an e-commerce scenario
that describes a delivery process (see Figure 2). Such a scenario is inspired by the
MIT Process Handbook [18]. It encompasses three business parties: a customer,
a bookstore, and a deliverer. In a “normal” execution, the customer pays to
the bookstore for an item. Then, the bookstore pays to the deliverer for the
delivery of that item. Finally, the deliverer delivers the item to the customer.
Social commitments [27] specify the mutual contractual obligations among the
parties involved.

The rest of the paper is structured as follows: Section 2 reviews related work on
multiagent diagnosis. Section 3 gives the necessary background on commitment-
based contract modeling and outlines our diagnosis architecture. Section 4 intro-
duces ABA, shows how to achieve diagnostic reasoning in ABA, and discusses
properties of the formalization. Section 5 illustrates the workings of the frame-
work on the delivery scenario. Section 6 discusses our contribution with respect
to the state of the art and possible directions for future work.

2 Diagnosis in Multiagent Systems

Diagnosis is a process that starts from observing a deviation from the expected
behaviour of a given system, and whose purpose is to identify the reason of the
exception, i.e., to locate those subsystems whose abnormal behaviour accounts
for the observed behaviour [20]. In multiagent systems, diagnosis is typically
initiated by one specific agent, who detects an exception in the system, and
interacts with other agents in order to isolate a problem in its own behaviour or
in the behaviour of other agents.

The diagnosis problem is in general a hard one. For example, component-
based diagnosis is in the worst case exponential in the number of annotated
components [2]. Multiagent diagnosis presents additional problems, depending on
the setting. In closed systems, such as teams, we may need to avoid information

228 Ö. Kafalı, F. Toni, and P. Torroni

flooding. In open domain, such as e-commerce settings, we may care for privacy
of information and for the trust we put on autonomous, unknown agents.

There are two fundamentally different approaches to diagnostic reasoning:
heuristic approaches, such as fault-based diagnosis (FBD) and diagnosis from
the first principles or model-based diagnosis (MBD) [20]. In FBD, the idea is to
encode the diagnostic reasoning of human experts in a given domain. The real-
world system is not modeled. All known faults are instead modeled. Conversely,
MBD starts from a model of the structure (components and their connections)
and function (or behaviour) of the system, and a set of observations indicating an
abnormal behaviour. A system is faulty if the observed behaviour of the system
contradicts the behaviour predicted by assuming that all of its components are
correct [3].

As pointed out by Kalech and Kaminka following Micalizio et al. [21], fault-
based techniques [10,22,19,5], in which faults are modeled in advance, cannot
be used for multiagent diagnosis, because the interactions in multiagent systems
are unpredictable. For this reason, multiagent diagnosis is typically model-based.
This is especially true in open systems, where the idea of social commitments
is precisely to avoid enumerating all possible ways agents can interact in order
to fulfill a contract, thus providing agents with more flexibility and opportuni-
ties [26].

Thus in recent years, the MBD approach has been applied to MAS diagnosis
by several research groups, including Console et al. [4] with applications in the
automotive industry [23], Roos et al. [30,25] for plan diagnosis, and Kalech and
Kaminka [15,16] for coordination failures in agent teams. These are in general
closed systems. For example, in [15], a coordination model is described by way
of concurrency and mutual exclusion constraints. The approach assumes that
each agent has knowledge of all the possible behaviours available to each team-
member, i.e., their behaviour library. In this way, each observing agent creates a
model of other agents in the team. Transitions between one behaviour to another
are described in terms of pre-conditions and termination conditions. Then, a
“social” diagnosis is initiated as a collaborative process aimed at finding causes
of failures to maintain designer-specific social relationships [17]. More specifically
to the case of team-work, a diagnosis is a set of contradictions in beliefs that
accounts for the selection of different team behaviours by different agents [15].

Commitment exceptions are similar to coordination failures, and our diag-
nostic framework also follows an MBD approach. However, the setting and un-
derlying assumptions are different, and so are the architecture, technology and,
importantly, the concept of model.

In terms of assumptions, for one thing, we do not have a coordination model.
Moreover, we do not restrict our work to cooperative teams, but we assume open
systems, in which coordination is limited to social commitments about properties
that must hold at some times (e.g., predefined deadlines). No assumptions are
made on the behaviours of the agents that need to bring about such properties.
Thus, we do not have an agent model, and we do not assume that agents share
the same observations.

Reasoning about Exceptions to Contracts 229

In terms of architecture, the idea is that an agent reasons locally, from the
commitments and conditions that he is aware of, and progressively fills the gaps
in his knowledge by way of inter-agent dialogues and local environmental sensing
whenever needed. We do not have dedicated diagnosing agents. The agents that
execute the process switch to diagnosis mode after they sense a commitment
violation (see Figure 1), or if they are requested to do so by another agent (see
Section 3). The underlying technology is computational argumentation, and in
particular ABA, which can support both local diagnostic reasoning and dialogue-
based interaction using the same language.

The main difference with the approaches mentioned above lays in our concept
of model, which is at a more abstract level. At the agent level, the model is
the set of domain-dependent rules about the process at hand. At the multiagent
system level, the model is the set of commitments and their state. The notion of
exception, or abnormal system behaviour, coincides with that of commitment vi-
olation. We are not after understanding what particular agent behaviour caused
the exception, because an agent cannot know what causes or motivates other
agents to behave in certain ways. The assumption of openness in the system
prevents any assumption on the architecture of other agents. Our purpose is
instead to explain the reason of an exception in terms of the state of the related
commitments. Once we know that, responsible agents can be isolated, and we
can proceed to the recovery phase.

3 Contracts, Commitments and Diagnosis Architecture

Social commitments [27] are artifacts that can be used to specify mutual con-
tractual obligations among parties. A social commitment imposes an obligation
on a “debtor” agent x towards a “creditor” agent y to bring about a certain
property. Singh [27] considers two types of social commitments:

– c(x, y, p(o)) is a base-level commitment between debtor x and creditor
y to bring about the property described by proposition p(o). When this
commitment is created, it is said to be active, and debtor x is committed to
creditor y for satisfying p(o). c(x, y, p(o)) stays active until its proposition
gets either satisfied, in which case it becomes fulfilled, or violated, in which
case it becomes violated [31].

– cc(x, y, q(o), p(o)) is a conditional commitment between debtor x and
creditor y to bring about the property described by proposition p(o) when
condition q(o) holds. When this commitment is active, namely when q(o) is
satisfied, x will become committed to y for satisfying p(o). Thus a new base-
level commitment c(x, y, p(o)) is created, and we say that the conditional
commitment is fulfilled. Note that a conditional commitment may never be
violated.

We will use c(X,Y,P(O)) and cc(X,Y,Q(O),P(O)) as templates, whereby X and
Y are variables standing for agents, O is a variable standing for an object, e.g., a

230 Ö. Kafalı, F. Toni, and P. Torroni

certain book, and P(O) and Q(O) are placeholders for atoms and literals (respec-
tively) expressing properties about O, e.g., delivered(book) and ¬delivered(book).
All variables are implicitly universally quantified, and the actual commitments
are instances of these templates. In the case of conditional commitments, when
Y satisfies Q(O) with a specific substitute o for O, then X becomes committed
to Y for satisfying P(o).

We will assume that social commitments are represented with respect to an
underlying commitment language Lc shared amongst all agents. In the remainder
of the paper we will use the following conventions: as earlier in this section, upper-
case letters denote variables; variables X,Y, Z are used to represent agents; P is
used to represent an atomic property; Q is used to represent a property in the
form of a literal (of the form P or ¬P); R is used to represent a conjunction
of (literal) properties. As standard, ¬¬P is P . As in Prolog, represents an
anonymous variable.

For simplicity, we will assume that there is at most one cc(x, y, q(o), p(o))
for a given x, y, and p(o). In other words, we do not consider those cases in
which an agent x conditionally commits to the same agent y to bring about the
very same property p(o) using two different contracts, which would unnecessarily
complicate the diagnosis process. Such cases are left as an extension for future
work. Also, note that, for the sake of simplicity and because we focus on diagnosis
procedures, we will ignore (and not explicitly model) the active commitment
state.

To describe the delivery process using contracts, we use two commitments.
One tells that if customer pays for an item, then bookstore will be committed to
deliver that item:

cc(bookstore, customer, paid(book), delivered(book))

The second one tells that if bookstore pays for the delivery of an item, then
deliverer will be committed to deliver that item:

cc(deliverer, bookstore, paid delivery(book), delivered(book))

In real life, the delivery process does not always take its “normal” course. It
may happen that the book does not get delivered. Usually, the customer is the
first one to realize. We say that the customer detects an exception. Let us say
we are now the customer. What shall we do? In order to recover the book, we
should first understand what went wrong. We will consider several options: the
bookstore may not have correctly place the order with the deliverer; the deliverer
may be late; the bookstore may not have yet received the payment; and so on. A
diagnosis process will tell us which of these possibilities truly explains what went
wrong. The diagnosis process is initiated by the agent detecting an exception.
During this process agents collect evidence from the environment and exchange
information with each other.

The diagnosis architecture we rely upon to support the diagnosis process is
that by Kafali et al. [11], in which agents sense and act upon an environment
and exchange information about the state of their commitments. In this paper,
such an exchange is carried out by way of dialogues.

Reasoning about Exceptions to Contracts 231

Following the KGP agent model [14], we will assume that actions may be
“physical” (e.g. pay), communicative (e.g. justify) or sensing actions on the en-
vironment (i.e. question). In the delivery process, we will consider the following
physical actions:

– pay(customer,bookstore,item): a customer agent pays a bookstore agent for
an item of interest.

– paydelivery(bookstore,deliverer,item): the bookstore pays a deliverer for the
delivery of an item of interest.

– deliver(deliverer,customer,item): a deliverer delivers an item of interest to a
customer.

The sensing actions amount to a particular type of database lookup for evidence
gathering, that we call evidence request exchange, between an agent and some
trustworthy element of the environment that can produce evidence. By doing so,
we abstract away from the specific ways agents interact with the environment.
Note that each agent has a partial view of the overall environment. Thus we call
EX the environment accessible to agent X . We use two types of sensing actions:

– question(X , EX , P): agent X looks up EX to check whether property P
holds or not.

– answer(X , EX , Q): agent X gets to know from EX that Q holds.

Inter-agent dialogues are instead based on the following utterances (communica-
tive actions):

– explain(X , Y , P): agent X sends a diagnosis request to Y , asking for a
justification for a given property P .

– justify(X , Y , Q, P): agent X provides agent Y with a justification Q to why
P holds.

– rebut(X , Y , Q, ¬P): agent X provides agent Y with a justification Q to why
P does not hold.

In this paper we focus on the agents’ reasoning to support the diagnosis process,
and thus we do not discuss the agent execution model responsible for identifying
actions to be performed. Several alternatives would be possible, e.g. using or
devising control theories as in the KGP agent model [14].

4 Reasoning

We show how agents can reason about commitment exceptions based on as-
sumption-based argumentation (ABA) [1,6,8,7], which we first briefly review
below. We choose this framework because it can deal with inconsistent and
incomplete information in general and in support of decision-making, it can
generate justifications that can be communicated across agents, and because of
its strong theoretical properties and the fact that it is equipped with provably

232 Ö. Kafalı, F. Toni, and P. Torroni

correct computational mechanisms, that will support any future deployment,
e,g, using the publicly available CaSAPI ABA framework [9].1

Assumption-Based Argumentation (ABA) is a general-purpose argumen-
tation framework where arguments and attacks between them are built from
ABA frameworks, which are tuples 〈L, R, A, 〉 where:

– (L,R) is a deductive system, with L a language and R a set of inference
rules,

– A ⊆ L, referred to as the set of assumptions,
– is a (total) mapping from A into L, where x is referred to as the contrary

of x.

In this paper, we assume that inference rules have the syntax s0 ← s1, . . . , sn

(for n ≥ 0) where si ∈ L. We refer to s1, . . . , sn as the premises and to s0 as
the head of the rule. If n = 0, we represent a rule simply by its head and we call
the rule a fact. As in [6], we will restrict attention to flat ABA frameworks, such
that no assumption occurs in the head of a rule.

Rules may be domain-dependent or not, and some of the premises of rules may
be assumptions. These can be used to render the rules defeasible. In this setting,
contraries of assumptions can be seen as representing “defeaters”. Assumptions
can also be used to fill gaps in incomplete knowledge/beliefs, and in this setting
contraries are reasons for not making some gap-filling choices. Also, assumptions
can be used to resolve inconsistencies (by making these depend upon assumptions
that can be defeated).

An (ABA) argument in favour of a sentence c ∈ L supported by a set of
assumptionsA ⊆ A is a proof of c from A and (some of) the rules inR. This proof
can be understood as a tree (with root the claim and leaves the assumptions),
as in [7], as a backward deduction, as in [6,8], or as a forward deduction, as in
[1], equivalently. For the purposes of this paper, we will use the notation A $R c
to stand for an argument for c supported by A by means of rules R ⊆ R. When
the rules can be ignored, we write an argument A $R c simply as A $ c. An
argument A $ c attacks an argument A′ $ c′ if and only if c = α for some α ∈ A′.

Several “semantics” for ABA have been defined in terms of sets of assumptions
fulfilling a number of conditions. These are expressed in terms of a notion of
attack between sets of assumptions, where A ⊆ A attacks A′ ⊆ A if and only if
there is an argument B $ c, with B ⊆ A, attacking an argument B′ $ c′, with
B′ ⊆ A′.

In this paper we will focus on the following notions:

– A ⊆ A is conflict-free if and only if A does not attack itself
– A ⊆ A is admissible if and only if A is conflict-free and attacks every B ⊆ A

that attacks A
– A ⊆ A is preferred if and only if A is (subset) maximally admissible.

Note that these notions can be equivalently expressed in terms of arguments,
rather than assumptions, as shown in [8].
1 http://www.doc.ic.ac.uk/~dg00/casapi.html

http://www.doc.ic.ac.uk/~dg00/casapi.html

Reasoning about Exceptions to Contracts 233

Given an ABA framework F=〈L, R, A, 〉 and a (conflict-free, admissible
or preferred) set of assumptions A ⊆ A in F , the (conflict-free, admissible or
preferred, respectively) extension EF (A) is the set of all sentences supported by
arguments with support a set of assumptions B ⊆ A:

EF(A) = {s ∈ L|∃B $ s with B ⊆ A}.

Note that conflict-free, admissible and preferred extensions are guaranteed to
exist, for any ABA framework.

In the remainder of this section, we give an ABA framework supporting the
reasoning of our agents. We will assume that each agent is equipped with an ABA
framework 〈L, R, A, 〉 such that the commitment language, Lc, is contained
in the internal language L underlying the ABA framework, namely Lc ⊆ L.
We will leave this L implicit, and focus on rules, assumptions and contraries.
Indeed, L will always consist of the set of all sentences occurring in all the given
rules, as well as the given assumptions and contraries. We will give rules/as-
sumptions/contraries as schemata, standing for all their ground instances over
appropriate universes (for agents and properties). Until section 5 we will not
focus on any specific agent and define rules, assumptions and contraries for a
generic agentX . Assumptions will be of the form asm(). The contrary of asm(a)
will be of the form c asm(a), for any a, formally: asm(a) = c asm(a).

4.1 Domain-Dependent Rules

These depend on the domain of application. In our example, these rules are re-
lated to the delivery process and include:

(F1) by contract(cc(bookstore, customer, paid(book), delivered(book))).

(F2) by contract(cc(deliverer, bookstore, paid delivery(book), delivered(book))).

(F3) effect(pay(customer, bookstore, book), paid(book)).

(F4) effect(paydelivery(bookstore, deliverer, book), paid delivery(book)).

(F5) effect(deliver(deliverer, customer, book), delivered(book)).

(R1) justification(¬paid delivery(book),¬delivered(book))←
¬paid delivery(book),¬delivered(book).

The first two facts model the conditional commitment between the customer
and bookstore agents (F1) and between the bookstore and deliverer agents (F2).
The other facts (F3–F5) describe the action-consequence relations. The rule R1

represents that a problem in the delivery payment may be the reason for no
delivery.

We will assume that the domain-dependent rules only define predicates by con-
tract(), effect(,), and justification(,) as well as the predicates believe(),
answer(,), and executed() used below.

234 Ö. Kafalı, F. Toni, and P. Torroni

4.2 General-Purpose Reasoning Rules

These rules are held by agent X , independently of the specific scenario for ex-
ception diagnosis. They consist of belief rules (BR), commitment rules (CR) and
action rules (AR).

Belief rules allow to “internalise” beliefs drawn from observations and ex-
pected effects of actions, unless there are reasons not to do so. They are re-
quired to avoid epistemic inconsistencies to arise, such as believe(paid(book))
and believe(¬paid(book)).

(BR1) P ← believe(P), asm(P).

(BR2) ¬P ← believe(¬P), asm(¬P).

(BR3) believe(¬P)← asm(believe(¬P)).

(BR4) P ← answer(X,EX , P).

(BR5) ¬P ← answer(X,EX ,¬P).

(BR6) believe(Q)← executed(A), effect(A,Q).

Belief rules BR1–BR3 are defeasible, as represented by the presence of
assumptions in their premises. The following rules for the contraries of the
assumptions are their defeaters:

(BR7) c asm(P)← ¬P.
(BR8) c asm(¬P)← P.

(BR9) c asm(believe(¬P))← believe(P).

Note that rules BR1–BR2 could be combined within a single rule

Q← believe(Q), asm(Q).

Similarly for BR4–BR5 and BR7–BR8. However, we prefer to leave them sepa-
rate for clarity, and to better underline the asymmetry in our treatment of pos-
itive and negative literals (properties). In particular, note that rules BR3 and
BR9, together, model a form of closed-world assumption/negation-as-failure over
properties, where believe(¬(¬P)) can be interpreted as the negation-as-failure
of P .

Rules BR4–BR9 are strict, as there are no assumptions in their premises.
Rules BR4–BR5 allow to turn observations (that a specific answer has been
obtained after consulting the agent’s environment EX) into (internalised) beliefs.
The fact that these rules are strict represents that we consider the environment
as beyond doubt.

Note however that, should this not be the case, we could turn BR4–BR5

into defeasible rules by adding suitable assumptions and definitions for their
contraries. Rule BR6 allows to introduce (non-internalised) beliefs about the
effects of executed actions. These beliefs may then become internalised by

Reasoning about Exceptions to Contracts 235

applying rules BR1–BR2. Specific definitions of effects of actions belong to the
domain-dependent part of the beliefs (see section 4.1).

As an illustration of the use of these rules extended with domain-dependent
rules and under the notion of admissible sets of assumptions/arguments, consider
the following cases:

– believe(p) is the only domain-dependent rule;
then {asm(p)} is the only (non-empty) admissible set of assumptions, sup-
porting argument {asm(p)} $ p in favour of p;

– believe(¬p) is the only domain-dependent rule;
then {asm(¬p)} and {asm(believe(¬p))} and their union are the only (non-
empty) admissible sets of assumptions, all supporting arguments in favour
of ¬p;

– believe(p) and believe(¬p) are the only domain-dependent rules;
then {asm(p)} and {asm(¬p)} are the only (non-empty) admissible sets of
assumptions, representing alternative choices for resolving the given incon-
sistency; the agent can choose whichever alternative;

– there are no domain-dependent rules;
then {asm(¬p), asm(believe(¬p))} is the only (non-empty) admissible set of
assumptions, supporting an argument in favour of ¬p.

Note that (i) in no case an agent can assume both asm(p) and asm(¬p), (ii)
it can only derive p if it has some evidence for p, and (iii) it can only assume
asm(believe(¬p)) if it cannot derive believe(p). Thus, the following result holds:

Property 1. Given an ABA framework with rules BR1 − BR9 and any set of
domain-dependent rules as in section 4.1

1. every preferred extension E is consistent, namely there exists no property P
such that both P and ¬P belong to E ;

2. every preferred extension E is total, namely for every property P either P or
¬P belongs to E .

This result directly follows from our definition of belief rules and from the defi-
nition of preferred extensions in ABA.

Commitment rules model the evolution of commitments (atoms of the form
by contract(. . .)) and commitment states (atoms of the form fulfilled(. . .) and
violated(. . .)) 2 during the agent’s life-cycle.

(CR1) fulfilled(c(X,Y, P))← by contract(c(X,Y, P)), P,
asm(fulfilled(c(X,Y, P))).

(CR2) by contract(c(X,Y, P))← by contract(cc(X,Y,Q, P)), Q,
asm(by contract(c(X,Y, P))).

2 As discussed in section 3, we ignore the active commitment state.

236 Ö. Kafalı, F. Toni, and P. Torroni

(CR3) violated(c(X,Y, P))← by contract(c(X,Y, P)),¬P,
asm(violated(c(X,Y, P))).

(CR4) c asm(fulfilled(c(X,Y, P)))← ¬P.
(CR5) c asm(by contract(c(X,Y, P)))← by contract(cc(X,Y,Q, P)),¬Q.
(CR6) c asm(violated(c(X,Y, P)))← P.

Note that, like belief rules, commitment rules may also be defeasible, since
commitments change during the agent’s life-cycle. In particular, CR1 − CR3

above are defeasible.

Property 2. Given an ABA framework with rules CR1 −CR6, BR1 −BR9 and
any set of domain-dependent rules as in section 4.1, for any preferred extension
E , for any agent Y :

– there exists no property P such that fulfilled(c(X,Y, P)) and violated(c(X,Y,
P)) belong to E ;

– for every property P such that by contract(cc(X,Y, P)) belongs to E , either
fulfilled(c(X,Y, P)) or violated(c(X,Y, P)) belongs to E .

Part 1 follows from part 1 of result 1, since P and ¬P are respectively conditions
of CR1 and CR3. Part 2 follows from part 2 of result 1.

Action rules are of two types: for determining whether and how to consult the
environment (action question) or for determining whether and how to conduct
a request explanation dialogue. The first type of rules are:

(AR1) question(X,EX ,¬P)← violated(c(Y,X, P)), asm(question(X,EX ,¬P)).

(AR2) question(X,EX ,¬Q)← violated(c(Y,X, P)), by contract(cc(Y,X,Q, P)),
asm(question(X,EX ,¬Q)).

where contraries of assumptions are defined by rules:

(AR3) c asm(question(X,EX ,¬P))← by contract(c(Y,X, P)),
answer(X,EX ,¬P).

(AR4) c asm(question(X,EX ,¬Q))← by contract(cc(Y,X,Q, P)),
answer(X,EX ,¬P), asm(question(X,EX ,¬P)).

(AR5) c asm(question(X,EX ,¬Q))← by contract(cc(Y,X,Q, P)),
answer(X,EX ,¬Q).

AR3 and AR5 prevent a question by X to its environment on a violated prop-
erty or a commitment condition if the question has already been answered. AR4

forces a preference of a question about a violated commitment over a question
about the condition of that commitment.

The second type of action rules regulate dialogues between agents. These are
as follows:

Reasoning about Exceptions to Contracts 237

(DR1) explain(X,Y,¬P)← violated(c(Y,X, P)), by contract(cc(Y,X,Q, P)),
answer(EX , X,¬P), answer(EX , X,Q), asm(explain(X,Y,¬P)).

(DR2) c asm(explain(X,Y,¬P))← violated(c(Y,X, P)), violated(c(Z, Y, P)).

Namely, in case of a violation over P by X towards Y , and after having already
checked within its environment, X asks Y for an explanation (DR1), unless Y
itself is object of a violation on P by some other agent Z (DR2).

(DR3) justify(X,Y,R,¬P)← explain(Y,X,¬P), justification(R,¬P),
asm(justification(R,¬P)).

(DR4) rebut(X,Y,R, P)← explain(Y,X,¬P), justification(R,P),
asm(justification(R,P)).

(DR5) c asm(justification(R,X))← justification(R,¬X).

5 Case Study

We present here two case studies of the diagnosis process, in the simple delivery
scenario we have used throughout the paper.

5.1 Customer’s Fault

This case presents the trace of the diagnosis process on the exception that is
caused by the customer (the customer has not paid for the item correctly, al-
though he thinks he did).

The customer’s domain-dependent rules initially consist solely of F1, F3 − F5

in section 4.1. The general rules are all rules in section 4.2. Let us refer to the
resulting ABA framework as F . After the customer pays for the book, one fact
is added to F : (F6) executed(pay(customer, bookstore, book)) resulting in a new
ABA framework F ′.

1. By F6, F3, BR6 and BR1, the property paid(book) becomes supported in the
unique preferred extension P of F ′, with argument (where we use p to stand
for the property)

– {asm(p)} ${F6,F3,BR6,BR1} p.

2. Moreover, using additionally CR2 and F1, a contract

by contract(bookstore, customer, delivered(book))

can also be derived in the context of P , supported by the argument (where
we use c to stand for the contract and R1 to stand for {F6, F3, BR6, BR1})
– {asm(p), asm(c)} $R1∪{CR2,F1} c.

3. Then, the customer realizes that the book has not been delivered, supported
by argument (where we use ¬d to stand for ¬delivered(book))

238 Ö. Kafalı, F. Toni, and P. Torroni

– {asm(¬d)} ${BR3} ¬d.
4. This causes an exception, since an argument for a violation can be supported

in P using, additionally, CR3 (R2 = R1 ∪ {CR2, F1} ∪ {BR3} and v stands
for violated(c(bookstore, customer,delivered(book))))

–
{

asm(p), asm(c), asm(¬d), asm(v)
}
$R2∪{CR3} v.

5. When the time comes for the agent to think about the possible reasons
of the exception, the action rules give support to a possible question for
the environment of the customer (Ec). Namely, the following argument is
supported (where q stands for question(customer, Ec,¬paid(book) and R3 =
R2 ∪ {CR3})
–
{

asm(p), asm(c), asm(¬d), asm(v), asm(q)
}
$R3∪{AR1} q.

Thus, since q ∈ P ∩Actions, the agent cycle selects to perform action q.
6. Assume, in return, the customer learns that he did not pay, namely

(F7) answer(Ec,¬paid(book))

is observed and added to F ′, resulting in a new ABA framework F ′′. Let
P ′ be the preferred extension of F ′′. P ′ supports the conclusion that the
customer did not actually pay for the book, namely

– {} ${F7,BR5} ¬p
as well as the argument

– {} ${F7,BR5,BR7} c asm(p).

This attacks all arguments including asm(p) in their support, e.g. the ar-
gument given at step 4 (as well as the arguments given at steps 1, 2 and
5). Thus, v does not belong to P ′ and therefore the customer is aware that
no commitment is violated (even though no delivery has occurred). More-
over, the customer knows that it has not paid for the book correctly (first
argument at this step).

At the end of this process, the customer has been able to remove the exception.

5.2 Bookstore’s Fault

Now imagine that the bookstore has not paid for the delivery of the item
correctly.

As in the previous case, the customer’s domain-dependent rules initially are
F1, F3 − F5 in section 4.1. The general rules are all rules in section 4.2. Let us
refer to the resulting ABA framework as Fc. The bookstore’s domain-dependent
rules initially consist of F1 − F5 and R1 in section 4.1. Again, the general rules
are all rules in section 4.2. Let us refer to the resulting ABA framework as Fb.
The customer’s reasoning starts and proceeds as before.

However, at step 6, the answer

(F8) answer(Ec, paid(book))

Reasoning about Exceptions to Contracts 239

is observed instead and added to the ABA framework of the customer. Then the
dialogue rules lead the customer to ask the bookstore to explain why the book
has not been delivered.

7. An argument exists in favour of

explain(customer, bookstore,¬delivered(book))

using rule such as DR1 to construct an argument for

violated(c(bookstore, customer, delivered(book))

(see step 4 in previous case), supported by

asm(explain(bookstore, customer, delivered(book)))

as well as all assumptions for the argument at step 4 in the previous case.
8. Upon receipt of such an explanation request, the bookstore also derives

the conclusion that the book has not been delivered, similarly to step 3
in the previous case (but now the bookstore is constructing the arguments).
Then, again similarly to the previous case, step 4, a violation is detected (by
the bookstore now), that

violated(c(bookstore, customer, delivered(book)))

and, in addition, a further violation

violated(c(deliverer, bookstore, delivered(book)))

using rule F2 instead of F1.
9. The bookstore’s ABA framework at this point supports an argument in

favour of a new action of querying the environment of the bookstore (Eb):

question(bookstore, Eb,¬paid delivery(book))

10. On observation of

answer(Eb, bookstore,¬paid delivery(book))

the bookstore knows that he has not paid for delivery, therefore the set of
conclusions supported by his ABA framework change. In particular,

violated(c(deliverer, bookstore, delivered(book)))

is not supported any more, while a justify for the failed delivery is now
supported.

11. Using rule DR4 and R1, the bookstore can now answer the customer’s re-
quest for explanation at step 7:

justify(bookstore, customer,¬paid delivery(book),¬delivered(book))

240 Ö. Kafalı, F. Toni, and P. Torroni

6 Conclusion and Future Work

Diagnosis of commitments exceptions is a major issue in multiagent process
execution. However, it is a hard and complicated task, because the handling of
an exception requires significant information exchange and because of the very
nature of the information exchanged.

In this paper, we have shown that argumentation technologies, in particular
ABA, can be used as a principled way to model agent reasoning about com-
mitment exceptions, and as a basis to run diagnosis dialogues. In spite of the
many works on argumentation-based negotiation [24], to the best of our knowl-
edge, this is the first attempt to use argumentation theories in the context of
multiagent contracts and exception handling.

Dialogues for diagnosis are also another novel contribution, as diagnosis does
not seem to fit in any of the purposes of dialogues identified by Walton & Krabbe
[29] and in other relevant literature.

This work distinguishes itself from some influential approaches to multia-
gent diagnosis, in that we provide a high-level model of the system (the com-
mitments in place and their states), but not of the system behaviour, nor the
individual models of agents. Since we employ commitment protocols, which en-
able flexible execution for agents, (e.g., agent behaviour is not significant as
long as commitments are fulfilled), we identify abnormal behaviour (inconsis-
tencies) with commitment violation. The idea is to explain the reason of an
exception in terms of the state of the related commitments. Once we know that,
responsible agents can be isolated, and we can take the necessary steps towards
recovery.

Related research on handling commitment exceptions has been carried out by
Kafalı et al. [11,13], but without saying anything about agent reasoning. Such
an integration is enabled here by the underlying ABA argumentation logic. In
this way we can express knowledge and reasoning in a declarative and modular
way, and show properties about the overall diagnosis process.

In the future, we intend to work on a formal analysis of our framework. Many
other important properties could be investigated. One interesting direction is the
identification of (necessary and) sufficient conditions for the existence of solutions
in diagnosis. Another one is a complexity analysis. Moreover, as we mentioned in
Section 2, complexity is an issue in (multiagent) diagnosis. However, we believe
that social commitments can mitigate this problem, because they reify that
knowledge about the coordination model execution state, which typically needs
to be inferred, thus reducing the computational cost of tasks such as monitoring,
exception detection and diagnosis.

Finally, temporal reasoning has been recognized to be a very important as-
pect of commitment specification and handling [28]. Our framework does not
accommodate such an aspect. To fill this gap, we plan to exploit the temporal
reasoning capabilities of the KGP agent model [14], which we identified as a
potential candidate for the embedding of this work.

Reasoning about Exceptions to Contracts 241

Acknowledgements

The first author is supported by Boğaziçi University Research Fund under grant
BAP5694, and the Turkish State Planning Organization (DPT) under the TAM
Project, number 2007K120610. We thank Paola Mello for her comments and
suggestions, and the anonymous reviewers for their valuable feedback.

References

1. Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101
(1997)

2. Bylander, T., Allemang, D., Tanner, M.C., Josephson, J.R.: The computational
complexity of abduction. Artificial Intelligence 49(1-3), 25–60 (1991)

3. Console, L., Dressler, O.: Model-based diagnosis in the real world: Lessons learned
and challenges remaining. In: IJCAI 1999: 16th International Joint Conference on
Artificial Intelligence, pp. 1393–1400 (1999)

4. Console, L., Dupré, D.T., Torasso, P.: Towards the integration of different knowl-
edge sources in model-based diagnosis. In: Ardizzone, E., Sorbello, F., Gaglio, S.
(eds.) AI*IA 1991. LNCS, vol. 549, pp. 177–186. Springer, Heidelberg (1991)

5. Dellarocas, C., Klein, M., Rodŕıguez-Aguilar, J.A.: An exception-handling archi-
tecture for open electronic marketplaces of contract net software agents. In: ACM
Conference on Electronic Commerce, pp. 225–232 (2000)

6. Dung, P., Kowalski, R., Toni, F.: Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)

7. Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan,
I., Simari, G. (eds.) Argumentation in AI, pp. 199–218. Springer, Heidelberg (2009)

8. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artificial Intelligence 171(10-15), 642–674 (2007)

9. Gaertner, D., Toni, F.: Computing arguments and attacks in assumption-based
argumentation. IEEE Intelligent Systems 22(6), 24–33 (2007)

10. Horling, B., Benyo, B., Lesser, V.R.: Using self-diagnosis to adapt organizational
structures. In: Agents 2001: 5th International Conference on Autonomous Agents,
pp. 529–536 (2001)

11. Kafalı, Ö., Chesani, F., Torroni, P.: What happened to my commitment? Excep-
tion diagnosis among misalignment and misbehavior. In: Dix, J., Leite, J., Gover-
natori, G., Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 82–98. Springer,
Heidelberg (2010)

12. Kafalı, Ö., Toni, F., Torroni, P.: Collaborative diagnosis of exceptions to con-
tracts (extended abstract). In: AAMAS 2011: 10th International Conference on
Autonomous Agents and Multiagent Systems. IFAAMAS, pp. 1167–1168 (2011)

13. Kafalı, Ö., Yolum, P.: Detecting exceptions in commitment protocols: Discovering
hidden states. In: Dastani, M., El Fallah Segrouchni, A., Leite, J., Torroni, P. (eds.)
LADS 2009. LNCS, vol. 6039, pp. 112–127. Springer, Heidelberg (2010)

14. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: Computational logic
foundations of KGP agents. Journal of Artificial Intelligence Research 33, 285–348
(2008)

15. Kalech, M., Kaminka, G.A.: On the design of social diagnosis algorithms for multi-
agent teams. In: IJCAI 2003: 18th International Joint Conference on Artificial
Intelligence, pp. 370–375 (2003)

242 Ö. Kafalı, F. Toni, and P. Torroni

16. Kalech, M., Kaminka, G.A.: Towards model-based diagnosis of coordination
failures. In: AAAI 2005: 20th National Conference on Artificial intelligence,
pp. 102–107 (2005)

17. Kaminka, G.A., Tambe, M.: Robust agent teams via socially-attentive monitoring.
Journal of Artificial Intelligence Research 12, 105–147 (2000)

18. Klein, M., Dellarocas, C.: A systematic repository of knowledge about handling
exceptions in business processes. Tech. Rep. ASES-WP-2000-03. Massachusetts
Institute of Technology, Cambridge, MA, USA (2000)

19. Lamperti, G., Zanella, M.: Eden: An intelligent software environment for diagnosis
of discrete-event systems. In: Applied Intelligence, pp. 55–77 (2003)

20. Lucas, P.J.F.: Analysis of notions of diagnosis. Artificial Intelligence 105(1-2),
295–343 (1998)

21. Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of a team of
service robots: A model-based approach. AI Communications 19, 313–340 (2006)

22. Pencole, Y., Cordier, M.O., Roze, L.: Incremental decentralized diagnosis approach
for the supervision of a telecommunication network. In: IEEE Conference on
Decision and Control, pp. 435–440 (2002)

23. Picardi, C., Bray, R., Cascio, F., Console, L., Dague, P., Millet, D., Rehfus,
B., Struss, P., Vallée, C.: Idd: Integrating diagnosis in the design of automo-
tive systems. In: ECAI 2002: 15th European Conference on Artificial Intelligence,
pp. 628–632. IOS Press, Amsterdam (2002)

24. Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg,
L.: Argumentation-based negotiation. Knowledge Engineering Review 18, 343–375
(2003)

25. Roos, N., Witteveen, C.: Models and methods for plan diagnosis. Autonomous
Agents and Multi-Agent Systems 19, 30–52 (2009)

26. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE
Computer 31, 40–47 (1998)

27. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a uni-
fication of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

28. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Sat-
isfied or compensated. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B., Lloyd,
J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 228–243. Springer, Heidelberg (2010)

29. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. State University of New York Press, Albany (1995)

30. Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single
and multi-agent plans. In: AAMAS 2005: 4th International Joint Conference on
Autonomous Agents, pp. 805–812. ACM, New York (2005)

31. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In: AAMAS 2002: 1st International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 527–534.
ACM, New York (2002)

Probabilistic Rule Learning in Nonmonotonic Domains

Domenico Corapi1, Daniel Sykes1, Katsumi Inoue2, and Alessandra Russo1

1 Department of Computing
Imperial College London

180 Queen’s Gate, SW7 2AZ
London, UK

{d.corapi,d.sykes,a.russo}@imperial.ac.uk
2 National Institute of Informatics
Chiyoda-ku, 2-1-2, Hitotsubashi

Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. We propose here a novel approach to rule learning in probabilistic
nonmonotonic domains in the context of answer set programming. We used the
approach to update the knowledge base of an agent based on observations. To
handle the probabilistic nature of our observation data, we employ parameter
estimation to find the probabilities associated with each of these atoms and con-
sequently with rules. The outcome is the set of rules which have the greatest
probability of entailing the observations. This ultimately improves tolerance of
noisy data compared to traditional inductive logic programming techniques. We
illustrate the benefits of the approach by applying it to a planning problem in
which the involved agent requires both nonmonotonicity and tolerance of noisy
input.

Keywords: Inductive Logic Programming, Probabilistic Logic Programming,
Answer Set Programming, Hypothetical Reasoning, Planning.

1 Introduction

Traditional machine learning techniques assume preliminary knowledge about the do-
main elements which are critical to solve the learning task. This is often expressed as a
task of finding a target function from a collection of examples, where the examples are
assumed to be useful and relevant to the learned function. This is problematic in certain
contexts. For example, a robot whose goal is to deliver an object to a location may fail
to achieve this goal for a variety of reasons. Perhaps the motors failed, or the object was
dropped along the way. It is not immediately obvious how to relate the observation (a
failure) to the knowledge base of the robot. In other words, the extraction of features
relevant to the learning task is itself a problem that must be considered.

Inductive logic programming (ILP) [16] is a technique, using logic programs as a
representation language, that can be seen as a general-purpose method to find the rele-
vant features amongst a large set of candidates [6] through a process of generalisation.
The dependencies between features in the knowledge base and observations are then

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 243–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

244 D. Corapi et al.

captured in a logic program. Such logic programs, when explicitly accounting for non-
monotonicity, are expressive enough to be used for a wide range of applications, e.g.
for planning tasks [29].

However, ILP techniques tend to produce poor results in domains where a logical
representation alone cannot capture uncertainty since they are heavily reliant upon the
concept of logical implication, which limits their capacity to cope with erroneous train-
ing examples and knowledge.

We can improve upon this dependency by recognising that the example data and the
knowledge available about the domain naturally suffer from noise. Explicit probabilistic
treatment of the observations and the knowledge also has the advantage of producing
‘higher’ abstraction as insignificant aspects of the examples are ignored.

In this work, we develop a novel rule learning approach, which builds on an exist-
ing technique that transforms ILP to abductive reasoning [4] (enabling us to handle
nonmonotonic domains) and techniques for estimating probabilities of logic facts [10],
[11]. Answer set programming (ASP) [17] is used to generate candidate rules for the
ILP problem, which is to say, rules that logically entail some of the observations. Gradi-
ent descent is then used to estimate probabilities for the rules so that the error between
the expected probability of the observations (as calculated) and the actual probability is
minimised. The set of rules that most closely fits the observations is given as the result.
Our main contribution is to show how through an encoding technique that represents
logic rules as logic atoms, established techniques can be adapted to derive structured
rules that improve a nonmonotonic theory, together with a probabilistic weight by esti-
mating the probabilities of these logic atoms.

We have applied our approach in the context of learning rules to perform planning
for a reactive agent. While reactive planning already has the benefit of making choices
on the basis of sensing during execution, there remain situations when multiple actions
can be performed in the same state. Standard reactive planning chooses one such action
arbitrarily, but in the uncertain physical environments in which planning is often used,
greater reliability can be achieved by choosing the actions which are most likely to lead
to success of the overall plan.

The rest of the paper is organised as follows. Section 2 introduces some preliminary
definitions. Section 3 describes the approach (NoMPRoL) in detail. Section 4 intro-
duces our planning case study and the results gained thereof. Section 5 discusses the
contribution and related work. Section 6 describes future work and concludes.

2 Preliminaries

We assume that the reader is familiar with logic programming [18]. Given a logic-
based alphabet consisting of variables, constants and predicates, an atom is an ex-
pression of the form p(t1, .., tn), where p is a predicate and ti are terms (variable or
ground) in the alphabet. An atom can be negated using negation as failure. Literals
are atoms a or negated atoms not a. We say that not a is true if we cannot find evi-
dence supporting the truth of a. Atoms and literals are used to create rules of the form:
a ← b1, ..., bm, not c1, ...,not cn, where a, bi and cj are atoms. Intuitively, this means
if all atoms bi are known/true and no atom ci is known/true, then a must be known/true.

Probabilistic Rule Learning in Nonmonotonic Domains 245

We refer to a as the head and b1, ..., bm, not c1, ...,not cn as the body of the rule. A
(normal) logic program (or theory) is a conjunction of rules and is also denoted by a set
of rules. The semantics is defined in terms of answer sets [17], i.e. assignments of true
and false to all atoms in the program that satisfy the rules in a minimal and consistent
fashion. A program has zero or more answer sets, each corresponding to a solution.

Our approach makes use of abductive reasoning, i.e. reasoning about explanations for
given observations. An abductive logic program is a pair 〈T , A〉 where T is a theory,
and A is set abducible atoms. An abductive solution Δ is the subset of abducibles that
must be added to the theory in order to obtain a particular answer set. We refer to the
answer sets M associated with some answer Δ as generalised answer sets [12].

Definition 1. Let 〈T , A〉 be an abductive logic program and Δ ⊆ A be an abductive
solution. M is a generalised answer set for 〈T , A〉 iff M is an answer set of T ∪Δ.

We use the notation ΔM to denote the abductive solution associated with generalised
answer set M , i.e. ΔM = A∩M . AS(T , A) denotes all the generalised answer sets of
〈T , A〉. Given an abductive logic program 〈T , A〉, we assume that every possible T ∪Δ
has at most one answer set1.

3 Approach

We present a general methodology that, given an existing knowledge base in the form
of a logic program T , and a set of observationsX subject to noise, finds the set of rules
with estimated probabilities that explain the observations. The approach, which we call
NoMPRoL, is divided into three stages as shown in Figure 1. In the first stage, the task
of finding rules for the given knowledge base is encoded as an abductive reasoning
problem. A transformed knowledge base (with the observations) is then presented to
an answer set solver which finds all solutions (i.e. models) of this input, which is to
say, in addition to atoms relating to the original knowledge base, answer sets contain
abducibles representing learned rules that entail the observations. By construction, as
clarified in Section 3.1, such abductive solutions can be transformed into a set of rules
whilst preserving the semantics. The third part of the approach is to estimate proba-
bilities for abducibles to find a maximum likelihood hypothesis comprising the set of
rules H and a probability distribution P θ

0 . This is achieved by using gradient descent to
minimise a mean squared error function.

We define a probability distribution over a set of abductive solutions, instantiating
the framework of [27], treating negation in a similar way as in [23].

Definition 2. A probabilistic theory is a tuple 〈T , A, P θ
0 〉 where T is a theory, A is a

set of abducible atoms and P θ
0 is a probability distribution over 2A.

P θ
0 depends on |A| independent variables θa associated with the probability that the

abducible atom a ∈ A is true. We call the set of all such variables θ. Note that the
independence assumption is common in the existing frameworks for probabilistic logic.

1 This is true whenever T is acyclic. Under this assumption the unique answer set is charac-
terised by the Clark’s completion [3] of the program.

246 D. Corapi et al.

Fig. 1. Schematic view of the three phases in NoMPRoL

Mutual exclusivity of the variables can be modelled through integrity constraints (that
in this work extend the independent choices in [23]). For any Δ ⊆ A,

P θ
0 (Δ) =

∏
a∈Δ

θa

∏
a∈A\Δ

(1 − θa)

defines the probability of sets of abducibles and indirectly of models that contain them.
We define the probability of a logic literal as follows:

P θ(l|〈T , A〉) =

∑
{M :M∈AS(T ,A),l∈M} P

θ
0 (ΔM)∑

{M :M∈AS(T ,A)} P
θ
0 (ΔM)

(1)

The probability of a literal l is given by the sum of the probabilities of the abductive
solutions that entail l normalised over the sum of the probabilities of all abductive solu-
tions of the theory. The probabilities always implicitly refer to an underlying abductive
logic program. If the abductive theory is clear from the context we use the notation
P θ(l).

3.1 ILP as Abductive Reasoning

ILP is used when a certain knowledge base must be enriched with rules that are also
able to classify new examples. We follow the common practice of defining the space
of acceptable rules (the language bias) with a set of mode declarations. Head and body
mode declarations L [20] define the structure of the atoms (by means of a schema)
that can appear in the body or in the head of the rules, hence defining the space s(L) of
possible hypotheses (the language bias).

Probabilistic Rule Learning in Nonmonotonic Domains 247

Mode declarations are specified as m : mode(t, r(m), s) where m is the label; the
first argument specifies whether it is a head (h) or body (b) mode declaration; the second
argument specifies the maximum number of occurrences of m; and the third argument
specifies the schema. A schema s is a ground literal that contains one or more place-
markers. A placemarker is a ground function with one of the three symbols ‘+’ for
input placemarkers, ‘-’ for output placemarkers, ‘#’ for constant placemarkers. The
only argument of the function is a constant called type.

Let r be a clause h : - b1, ..., bn and L be a set of mode declarations. Then r is
compatible with L (i.e. r ∈ s(L)) iff the following conditions are met:

1. h corresponds to the schema of a head mode declaration in L where all the in-
put placemarkers and output placemarkers are replaced with variables and all the
constant placemarkers are replaced with constants;

2. for each bi, i = 1, ..., n, bi corresponds to the schema of a body mode declaration
in L where all the input placemarkers and output placemarkers are replaced with
variables and all the constant placemarkers are replaced with constants;

3. every variable that replaces a input placemarker in any of the literals in the body
either replaces a input placemarker in h or an output placemarker in some atom
bj , j < i.

We provide an example and refer to [20] for details.

Example 1. Consider the following mode declarations L:

m1 : mode(h, 1, daughter(+person,+person)).
m2 : mode(b, 1,mother(+person,+person)).
m3 : mode(b, 1, sex(+person,#mf)).

Given a background theory T

mf(m). mf(f).
sex(ann, f). sex(tom,m).
mother(mary, ann).

and a set of constraintsR ={: -not daughter(ann,mary), : - daughter(tom,mary)},
the following labelled rules are compatible with L (i.e. {r1, r2} ⊆ s(L)):

r1 : daughter(X,Y) : - sex(X,m).
r2 : daughter(X,Y) : -mother(X,Y), sex(Y,m).

and the following rule:

r3 : daughter(X,Y) : -mother(Y,X), sex(X, f).

is such that T ∪ R ∪ {r3} has one generalised answer set (while T ∪ R has none)
and r3 ∈ s(L). Thus r3 is a possible solution and it defines the concept of daughter
based on the predicates mother and sex, consistently with the constraints. Rules r1
and r2 are within the language bias but violate the given constraints (in turn they imply
daughter(tom,mary) and not daughter(ann,mary)).

248 D. Corapi et al.

We treat examples as constraints, so the task at hand is to find new rules that sat-
isfy a set of given constraints. This is achieved by “lifting” the abductive reasoning to
inductive reasoning using a similar representation to that in [4]. In contrast to [4], we
use ASP mainly because it better supports the generation of all the solutions and the
use of integrity constraints. To transform an ILP task into an abductive search task we
represent all the rules within s(L) as logical atoms that can be abduced using an an-
swer set solver. Abductive solutions for the new theory can be transformed back into a
solution for the equivalent ILP problem. The correctness and completeness of the trans-
formations are obtained, as in [4], using logical equivalences after the truth values of
the abducibles are defined.

For a given mode declaration, s∗ denotes the atom created from the schema s by
replacing the placemarkers with newly defined variables. ins(s∗) is shorthand for a list
of all the variables that replace input placemarkers, outs(s∗) is a list of the variables
that replace output placemarkers and cons(s∗) is a list of the variables that replace
constant placemarkers in s∗. All abducibles are marked by a $ character.

Intuitively we want to transform the original theory into a “meta-theory” that can
be used to reason about possible inductive solutions. The transformation is such that
whenever certain abducibles are part of an abductive solution we must infer that a cer-
tain head is needed in a rule in inductive solution. Other abducibles are derived to define
the body of such rules. Atoms of the type $head(h, id) are abduced whenever a rule
(identified by id) is needed that uses the mode declaration h in the head. Atoms of the
type $body(b, id, r, l, c) are abduced whenever a condition that uses the mode declara-
tion b is required in the body of a rule that is part of a solution. In $body(b, id, r, l, c),
r disambiguates amongst different uses of the same mode declaration in the body; l de-
fines the bindings of the input variables; and c contains the constants used. For brevity
we will not go into details of the type checking. Given a set of mode declarationsL, we
construct a set of rulesR as follows:

– Let b1, ..., bn be labels for all body mode declarations in L. For each head mode
declaration m : mode(h, r(m), s) the following clause is inR:

s∗ : - $head(m, ID),
not body(b1, ID, 1, ins(s∗), X1,1),
...
not body(b1, ID, r(b1), X1,(r(b1)−1), X1,r(b1)),
not body(b2, ID, 1, X1,(r(b1)), X2,1),
...
not body(b2, ID, r(b2), X2,(r(b2)−1), X2,r(b2)),
...
not body(b(n), ID, r(bn), Xn,(r(bn)−1), Xn,r(bn)).

These rules represent a skeleton for the rules that can be considered as inductive
hypotheses. If the $head atom is not part of an abductive solution the rule is always
true and has no effect on the rest of the theory. Otherwise the truth of the head de-
pends on the other conditions. In each body condition, except the first, the fourth
argument is the same variable as the fifth argument of the previous body condition
(ordered left to right). This makes it possible to share variables between conditions

Probabilistic Rule Learning in Nonmonotonic Domains 249

and bind input variables to output variables. Variables that substitute output place-
markers are this way shared amongst conditions. Note that an order is established
a priori mainly for efficiency purposes and to remove redundancies. As shown in
[4] this can be avoided with a different encoding.

– For each body mode declaration m : mode(b, r(m), s), the following clause is
inR:

body(m, ID,R, V,X) : -
link(V, ins(s∗), E),
append(V, outs(s∗), X),
$body(m, ID,R,E, cons(s∗)),
not s ∗ .

Rules of this type only have effect on the transformed theory if the $body atom
is abduced. The atom link(v, i, e) produces a list i where all the elements are
also in v and a list of e that contains the indexes of the elements i in v (e.g.
link((ann,mary, f, tom), (ann, f), (1, 3)) is a true instance). The list in the third
argument is used in the abducible $body to codify the binding of the variables.
append is a conventionally defined operator for appending lists.

The theory R is used within the learning process and processed together with a back-
ground theory and a set of constraints by the ASP solver. The final solution is trans-
formed back into a set of rules.

Example 2. Let T , R and L be the theories and mode declarations from the previous
example.R is constructed from L as follows:

daughter(X,Y) : - $head(m1, ID),
not body(m2, ID, 1, (X,Y), Xm2,1),
not body(m3, ID, 1, Xm2,1, Xm3,1).

body(m2, ID, 1, V,X) : -
link(V, (Xl, Y l), L),
$body(m2, ID, 1, L, ()),
not mother(Xl, Y l).

body(m3, ID, 1, V,X) : -
link(V, (Xl), L),
$body(m3, ID, 1, L, C),
not sex(Xl,C).

Using an ASP solver we can generate the following abductive solution that codifies
rule r3 from the previous example Δ = {$head(m1, r3), $body(m2, r3, 1, (2, 1), ()),
$body(m3, r3, 1, (1), (f))}. The first abducible specifies mode declaration m1 is used
in the head of r3. The second specifies m3 is used in the body; the list (2, 1) specifies
that the first input variable (left to right in order of appearance in the mode declaration)
is linked to the second variable in the head and that the second input variable is linked
to the first variable in the head. The third abducible specifies m3 is used in the body,
that the input variable is linked to the first variable in the head and that the constant is
instantiated to f .

250 D. Corapi et al.

As made clear in Section 4.3, by defining a probability distribution over the ab-
ducibles we can instantiate a probability for the literals in the constraints. For ex-
ample, let θ$head(m1,r3) = 1, θ$body(m2,r3,1,(2,1),()) = 0.8, θ$body(m3,r3,1,(1),(f)) =
1 and θa = 0 for all a ∈ A \ Δ. In this case P0

θ(Δ) = 0.8 and
P0

θ(Δ \ {$body(m2, r3, 1, (2, 1), ())}) = 0.2. The two considered sets of ab-
ducibles together with R are respectively logically equivalent to {daughter(X,Y) :
-mother(Y,X), sex(X, f)} and {daughter(X,Y) : - sex(X, f)} and implicitly de-
fine their probabilities.

3.2 Model Generation

Given a set of mode declarations L, the theory R generated from it, and a background
theory T , for each observation x we generate all the generalised answer sets that are
needed to calculate P θ(x). That is to say, we generate all generalised answer sets for
the abductive theory 〈T ∪ {: −not x} ∪R, A〉. A includes all the atoms with predicate
$head and $body that correspond to meaningful literals in the final rule. The solutions
Δ1, ..., Δq are used to construct the data structures that codify the sum of products in
Equation (1), where each Δi corresponds to one element of the sum. Conceptually, the
abductive solutions correspond to a boolean formula where all the abducibles within a
solution are in conjunction (and negated if not part of the model) and all the solutions
are in disjunction.

3.3 Parameter Estimation

The observations xi are represented by literals and they are associated with a target
probability yi, i.e. the learned theory should entail each observation xi with probability
yi. We assume that the true target value is altered by random Gaussian noise to account
for errors in the background theory and noise in the observed literals as in [10]. Finding
the maximum likelihood (abductive) hypothesis under this assumption corresponds to
minimising the following mean squared error function [19]:

MSE(θ) =
1
|X |
∑

i

(yi − P θ(xi|〈T , A〉))2 (2)

We use gradient descent2 over equation (2) to estimate the probabilities of each ab-
ducible. In our particular case, positive and negative examples are modelled as (possibly
negated) literals with target probability yi = 1. Initially θ is given random values. Our
implementation uses the algorithm described in [10], adopting binary decision diagrams
(BDDs) to calculate the value of the gradient and of the probabilities of the observa-
tions at each iteration. The final θo that minimises the MSE can be mapped into a set
of probabilistic hypotheses, thus providing rules that improve the original knowledge
base by taking account of the probabilistic observations. This can be seen in more detail
in Section 4.3.

2 Other optimisation algorithms can be used.

Probabilistic Rule Learning in Nonmonotonic Domains 251

4 Case Study: A Planning Agent

An ideal application for nonmonotonic rule learning is a planning problem [9] in which
the initial knowledge base (from which plans are generated) is discovered to be in-
correct or incomplete when the plans are generated and executed. Moreover, when the
plans refer to a robotic agent situated in the physical world, with all its uncertainties,
a probabilistic approach is required. Probabilities can also account for an incomplete
model of the environment or of other agents acting in the same environment.

4.1 Knowledge Base

Figure 2 depicts the feedback loop between the knowledge base and the running system.
The knowledge base (also known as a domain model) contains a description of the agent
and the world it occupies, expressed as logic program in terms of conditions that hold
and actions that can be performed (similar to Event Calculus [15]). Figure 3 shows part
of the knowledge base for our specific example of a mobile robot, which states that a
move action between two locations is possible if the places are connected and the robot
is at the initial location.

Fig. 2. Feedback between planning and rule learning

Typically there are many sequences of actions which the agent could perform to
achieve a given goal. In a traditional linear plan, a single sequence is selected and the
agent performs it blindly. Reactive or universal plans [28] improve robustness by having
the agent sense the new world state after each action so that unexpected state changes—
those not described by the knowledge base—can be handled. However, even for a given
state there are often several actions which lead to the goal, and reactive planners make
an almost arbitrary choice (often the shortest path). The practical truth is that each action
has a different probability of leading to the goal, and it is on this basis that alternatives
should be selected. The problem described is nonmonotonic as adding rules to the the-
ory can invalidate previous consequences. The case study provided is a small instance
of a class of problems that can involve complex interactions with the environment and
rich contextual properties to be taken into account, e.g. position of other agents, speed,
available power.

We generate plans given a goal condition such as holdsAt(at(gps5), 3) by following
an abductive procedure [29]. The resulting linear plans are merged to produce (a variant

252 D. Corapi et al.

:− do (E1 , T) ,
do (E2 , T) ,
E1 != E2 .

l i n k e d (gps1 , gps2) .
l i n k e d (gps1 , gps3) .
l i n k e d (gps1 , gps4) .
. . .

%move
p o s s i b l e (move (L1 , L2) , T) :− L1 != L2 ,

h o l d s A t (a t (L1) , T) ,
l i n k e d (L1 , L2) .

i n i t i a t e s (move (L1 , L2) , a t (L2) , T) .
t e r m i n a t e s (move (L1 , L2) , a t (L1) , T) .
p o s s i b l e (move (L1 , L2) , T) :− L1 != L2 ,

h o l d s A t (a t (L1) , T) ,
l i n k e d (L1 , L2) .

. . .
happens (E , T) :− do (E , T) ,

s u c c e e d s (E , T) .

Fig. 3. Knowledge base fragment

of) a reactive plan in which each state is associated with one or more actions, thus
preserving the choice of paths present in the knowledge base. Each possible action for
the current state has a probability (of achieving the goal) given by the sum over the
probabilities of possible worlds (represented by generalised answer sets) that contain
the action. The action with the highest probability is chosen at each iteration.

4.2 Trace Generation

Traces, from which the observations are derived, are generated by executing the reactive
plan as follows:

1. the current environment state is sensed;
2. action(s) applicable to the current state are generated abductively for the given goal;

and
3. one action is executed. Initially, when no probabilistic bias is available, where there

is a choice of actions (multiple paths to the goal), one is selected randomly.

These steps are repeated until the goal condition is met, or a time-out occurs. At each
iteration, the sensed state and the action chosen are recorded. The sequence of states
and actions provides a trace. Figure 4 shows an example trace.

From each trace j we derive a set of observations {o1,j , ..., om,j} (one for each time
the environment is sensed), and a set of histories {O1,j , ..., Om,j}. Each history Oi,j

includes all the states and actions in the execution up to the time point before the one

Probabilistic Rule Learning in Nonmonotonic Domains 253

%t r a c e 12
h o l d s A t (a t (gps1) , 0) .
do (move (gps1 , gps2) , 0) .
h o l d s A t (a t (gps2) , 1) .
do (move (gps2 , gps5) , 1) .
h o l d s A t (a t (gps5) , 2) .
do (pickup , 2) .
h o l d s A t (a t (gps5) , 3) .

Fig. 4. Execution trace

oi,j refers to. The training set X thus contains such pairs (oi,j , Oi,j) and the target
probability for each observation is set to 1. For example, the trace in Figure 4 gives a
set of observations including:

o12,2 :
{
holdsAt(at(gps5), 2),
not holdsAt(holdingBall, 2).

O12,2 :

⎧⎪⎪⎨
⎪⎪⎩
holdsAt(at(gps1), 0).
do(move(gps1, gps2), 0).
holdsAt(at(gps2), 1).
do(move(gps2, gps5), 1).

We are interested here in a revised theory that fits the observations for a given his-
tory. The probability associated with each observation thus involves the corresponding
history. Consequently, the function we want to minimise is the following:

MSE(θ) =
1
|X |
∑
i,j

(1− P θ(oi,j |T ∪Δ ∪Oi,j))2 (3)

4.3 Experiment

The practical experiment involves a mobile robot carrying a ball and a robotic arm
which can remove the ball from the robot. The goal of the system is for the mobile
robot to transport the ball to the arm whereupon the ball can be placed in a store next to
the arm. This is expressed as holdsAt(at(gps5), T), holdsAt(holdingBall, T). The
mobile robot is able to sense obstacles using short-range infra-red sensors and to detect
when the ball is placed on top. In order to navigate through the environment, one or
more cameras are placed on the ceiling which use simple computer vision techniques to
determine the position and orientation of the mobile robot. The robotic arm is equipped
with another camera to locate the ball, and pressure sensors to detect when it has suc-
cessfully gripped an object.

As with any robotic system, there are many sources of noise. The infra-red sensors
can detect obstacles incorrectly, causing erratic motion. Likewise, noise in the camera
image can lead to incorrect localisation of the robot. Erratic motion may ultimately lead
to complete failure of the plan, if for instance the robot collides with an obstacle or goes

254 D. Corapi et al.

Fig. 5. The environment has three paths from the starting point to the arm

outside the area visible to the cameras. Noise in the camera and pressure sensors of the
robotic arm can lead to the ball being dropped or not being identified at all.

To simplify navigation from the starting location to the target (the location of the
arm), we create three waypoints, as shown in Figure 5, providing three alternative paths
to the arm. The choice of a path leads to different rates of success, as a consequence of
the sources of noise described above.

We executed the plan a total of 30 times, each starting in a random state and produc-
ing one trace. Each trace consists of the state observed and action taken at each time
step, a flag indicating whether or not the goal was achieved and the time taken to execute
the plan. Failure is detected explicitly (if the robot leaves the camera range) or otherwise
through a time-out. Figure 4 shows one trace in which the robot started at location gps1,
moved to gps2 followed by gps5. The absence of holdsAt(holdingBall, 3) shows that
the arm failed to pick up the ball, and this trace is recorded as a failure. Finally, we
applied NoMPRoL, using the following mode declarations:

mode(h, 2, succeeds(pickup,+time)).
mode(h, 2, succeeds(move(+loc,+loc),+time)).
mode(b, 2,+loc = #loc).
mode(b, 1, holdsAt(at(+loc,+time))).
mode(b, 1, linked(+loc,+loc)).
mode(b, 1, wasAt(+loc,+loc)).

Results. The benefit of the approach will be shown by whether the robot improved its
performance, measured as time taken to reach the goal in the real world and as the ratio
of failures over many runs. We run NoMPRoL leaving one trace out for testing each
time and using the remaining ones for the training. We then selected only those traces
which contain the same actions as those which the agent would perform after learning,
thus omitting those where learning has caused the behaviour to change. The average of
those execution times and the number of time-outs for the initial and the trained agent
are reported in Table 1.

Probabilistic Rule Learning in Nonmonotonic Domains 255

Table 1. Performance measure of the initial and trained agents

Average execution time (s) Failure rate
Initial agent 85.2 0.3
Trained agent 63.6 0.1

We consider one representative training instance and discuss the process and results.
After the GD algorithm converges each abducible in A is associated with a probability.
For example the abducible body(b not was at, (dp, 1), 1, (1), (gps2)) has probability
θbody(b not was at,(dp,1),1,(1),(gps2)) = 0.7315. Intuitively this probability encodes the
relevance of the condition within the rule labelled as (dp, 1). Processing and approxi-
mating the probabilities for ease of exposition, we obtain the following rules:

r1 : succeeds(pickup, T) : -
not wasAt(gps2, T). 0.7

r2 : succeeds(move(L1, L2), T) : -
linked(L1, L2). 0.5

r3 : succeeds(move(L1, L2), T) : -
not wasAt(gps3, T), 0.2
L2 = gps3, 0.4
holdsAt(L1, T), 1
linked(L1, L2). 1

The probability associated with a condition intuitively represents the probability that
the condition is part of a sampled theory, resulting in a distribution over possible sub-
theories3. In general the final output will be chosen based on the interpreter or based on
readability and accuracy requirements.

In our experiment the MSE for all the executions is lower than 1. Non-probabilistic
logic rules would never result in a lower MSE, since at least one of the observations
would not be entailed. Also, for systems where the estimation is performed on logic
facts [11] the dependency between the final pickup and the robot’s moving through
location gps2 would not be detected.

3 In fact, from these rules we can derive an equivalent distribution over theories, similarly to [5],
that are obtained by dropping some of the conditions. For example the following theory has a
probability p = 0.168 (causing every atom that is entailed by this theory to have a probability
greater than p):

succeeds(pickup, T) : - not wasAt(gps2, T).
succeeds(move(L1, L2), T) : - linked(L1, L2).
succeeds(move(L1, L2), T) : - holdsAt(L1, T), linked(L1, L2).

Intuitively, the probability is derived from the product of the probabilities associated with the
conditions that are kept and the complement of the probabilities of the conditions that are
discarded.

256 D. Corapi et al.

5 Discussion and Related Work

Much of the recent work in the field of Statistical Relational Learning [8] shares similar
objectives to those addressed here. The work we present is, to the best of our knowl-
edge, the first with a methodology for learning probabilistic rules in nonmonotonic
domains. Under the assumption of monotonicity, the problem of learning probabilistic
rules has been addressed separately as an estimation problem and as structure learning
[22]. [21] concentrates on single-clause hypotheses; [10] applies gradient descent to
estimate probabilities of logic facts in a logic program; [7] extends an established ILP
search algorithm with a probability-based search heuristic. [31] addresses the problem
of learning probabilistic planning rules.

Markov Logic Networks (MLN) [25] extend first-order logic with Markov networks
and are successfully supported by a number of different learning techniques. Amongst
these, [30] employs a gradient-driven estimation of the parameters and [14] proposes
an integrated solution for structure learning. The main disadvantage of MLN compared
to the type of representation used in this paper and, in general, to probabilistic logic
representations based on distribution semantics is that formula weights in MLN are
counterintuitive and their effect on the inference is not obvious.

Compared to solutions based on Markov Decision Processes (MDP) (e.g. [2]) the
approach proposed employs a full first-order representation. An MDP could be used as
a target representation for the learned output, with the caveat that maintainability is lost
in a more constrained knowledge representation language. Furthermore in the case of
planning the states and the effects of the actions can be modelled to take into account,
as shown in the example, of relevant past events and states, thus defining the probability
of an action at a time point t also as a function of states at t′ ≤ t− 1.

The methodology proposed is not a full solution to the problem of learning prob-
abilistic nonmonotonic logic programs. Application in real scenarios would require a
considerable computational effort. Nevertheless we provide a general mechanism to
transform an inference problem into an equivalent learning task, thus enabling the use
of established techniques, and a framework for further developments. ASP tools pro-
vide the most effective way to generate and check models for nonmonotonic theories
and techniques for parameter estimation benefit from years of consolidation. To im-
prove efficiency, we are currently working on an extension of NoMPRoL that makes
use of stochastic sampling techniques as in [13].

We designed an integrated mechanism to solve the problem of generating inductive
hypotheses that is based on ASP. Despite the interest in nonmonotonic ILP [26], there
is a lack of available tools. [24], a nonmonotonic ILP system, does not provide the re-
quired support for the methodology presented in this paper. In particular, the system is
not designed to tolerate noise in training examples and outputs only maximally com-
pressive solutions.

6 Conclusions

We have presented an approach for rule learning in probabilistic nonmonotonic do-
mains. The approach estimates probabilities for rules which, together with a knowledge

Probabilistic Rule Learning in Nonmonotonic Domains 257

base, minimise the error between a target probability and the entailed probability over
a set of observed atoms. Such rules can be used to improve the original knowledge
base, reducing the gap between the current knowledge and the observations, as we have
shown in a planning scenario where executing the learned rules reduces the overall rate
of the robotic agent failing to reach its goal.

NoMPRoL has a potentially broad applicability, ranging from situations involving
interactions with the external environment, such as is the case in self-adaptive systems,
to cases where a rich logical representation is integrated with uncertainty (e.g. in soft-
ware engineering [1], in which nonmonotonic ILP is used to extend a partial system
specification with learned requirements). Our approach would enable such systems to
revise their knowledge bases with probabilistic information that is difficult or impossi-
ble for the designer to provide. Currently the main limit of the approach is scalability.
As the space of candidate hypotheses and the domain entities and relations grows, the
answer set solver has to deal with exponentially large ground theories. We plan fur-
ther experiments aimed at improving the scalability of the methodology and extensions
towards an incremental online learning setting.

References

1. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Extracting Requirements from Scenarios with
ILP. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI),
vol. 4455, pp. 64–78. Springer, Heidelberg (2007)

2. Boutilier, C., Brafman, R.I., Geib, C.: Prioritized goal decomposition of markov decision
processes: Toward a synthesis of classical and decision theoretic planning. In: Proceedings of
the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1156–1162 (1997)

3. Clark, K.L.: Negation as failure. Logic and Data Bases, 293–322 (1977)
4. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In: Tec.

Comm. of the 26th ICLP, LIPIcs, vol. 7, pp. 54–63, Dagstuhl (2010)
5. Dantsin, E.: Probabilistic logic programs and their semantics. In: Voronkov, A. (ed.) RCLP

1990 and RCLP 1991. LNCS, vol. 592, pp. 152–164. Springer, Heidelberg (1992)
6. De Raedt, L., Thomas, G., Getoor, L., Kersting, K., Muggleton, S. (eds.): Probabilistic,

Logical and Relational Learning. Schloss Dagstuhl (2008)
7. De Raedt, L., Thon, I.: Probabilistic Rule Learning. In: Frasconi, P., Lisi, F.A. (eds.) ILP

2010. LNCS (LNAI), vol. 6489, pp. 47–58. Springer, Heidelberg (2011)
8. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation

and Machine Learning). The MIT Press, Cambridge (2007)
9. Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP

1999. LNCS, vol. 1809, pp. 1–20. Springer, Heidelberg (2000)
10. Gutmann, B., Kimmig, A., Kersting, K., De Raedt, L.: Parameter learning in probabilis-

tic databases: A least squares approach. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 473–488. Springer, Heidelberg
(2008)

11. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypothe-
ses using an em algorithm on bdds. In: Boutilier, C. (ed.) IJCAI, pp. 810–815 (2009)

12. Inoue, K., Sakama, C.: Transforming abductive logic programs to disjunctive programs.
In: Proc. 10th ICLP, pp. 335–353. MIT Press, Cambridge (1993)

258 D. Corapi et al.

13. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient execu-
tion of probLog programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 175–189. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-89982-2_22

14. Kok, S., Domingos, P.: Learning the structure of markov logic networks. In: Proceedings
of the 22nd International Conference on Machine Learning, pp. 441–448. ACM Press, New
York (2005)

15. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

16. Lavrac, N., Dzeroski, S.: Inductive logic programming - techniques and applications. Ellis
Horwood series in artificial intelligence. Ellis Horwood (1994)

17. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2)
(2002); Knowledge Representation and Logic Programming

18. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
19. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
20. Muggleton, S.: Inverse entailment and progol. New Gen. Comp. 13(3&4), 245–286 (1995)
21. Muggleton, S.: Learning structure and parameters of stochastic logic programs. In: Matwin,

S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206. Springer, Heidelberg
(2003)

22. Muggleton, S.: Learning stochastic logic programs. Electron. Trans. Artif. Intell. 4(B),
141–153 (2000)

23. Poole, D.: Abducing through negation as failure: stable models within the independent choice
logic. The Journal of Logic Programming 44(1-3), 5–35 (2000)

24. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic 7(3),
329–340 (2009), http://www.cs.bris.ac.uk/Publications/
Papers/2001069.pdf

25. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136
(2006)

26. Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 62. Springer, Heidel-
berg (2001)

27. Sato, T.: A statistical learning method for logic programs with distribution semantics.
In: ICLP, pp. 715–729 (1995)

28. Schoppers, M.: Universal plans for reactive robots in unpredictable environments. In: IJCAI,
vol. 87, pp. 1039–1046 (1987)

29. Shanahan, M.: An abductive event calculus planner. The Journal of Logic Program-
ming 44(1-3), 207–240 (2000)

30. Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Veloso, M.M.,
Kambhampati, S. (eds.) AAAI. pp. 868–873. AAAI Press / The MIT Press (2005)

31. Zettlemoyer, L.S., Pasula, H., Kaelbling, L.P.: Learning planning rules in noisy stochastic
worlds. In: AAAI, pp. 911–918 (2005)

http://dx.doi.org/10.1007/978-3-540-89982-2_22
http://www.cs.bris.ac.uk/Publications/Papers/2001069.pdf
http://www.cs.bris.ac.uk/Publications/Papers/2001069.pdf

A Formal Semantics for Brahms�

Richard Stocker1,��, Maarten Sierhuis2,3, Louise Dennis1, Clare Dixon1,
and Michael Fisher1

1 Department of Computer Science, University of Liverpool, UK
2 PARC, Palo Alto, USA

3 Man-Machine Interaction, Delft University of Technology, Delft, NL
R.S.Stocker@liverpool.ac.uk

Abstract. The formal analysis of computational processes is by now a well-
established field. However, in practical scenarios, the problem of how we can for-
mally verify interactions with humans still remains. In this paper we are
concerned with addressing this problem. Our overall goal is to provide formal
verification techniques for human-agent teamwork, particularly astronaut-robot
teamwork on future space missions and human-robot interactions in health-care
scenarios. However, in order to carry out our formal verification, we must first
have some formal basis for this activity. In this paper we provide this by detailing
a formal operational semantics for Brahms, a modelling/simulation framework
for human-agent teamwork that has been developed and extensively used within
NASA. This provides a first, but important, step towards our overall goal by es-
tablishing a formal basis for describing human-agent teamwork, which can then
lead on to verification techniques.

1 Introduction

Computational devices often need to interact with humans. These devices can range
from mobile phones or domestic appliances, all the way to fully autonomous robots. In
many cases all that the users care about is that the device works well most of the time.
However, in mission critical scenarios we clearly require a more formal, and conse-
quently much deeper, analysis. Specifically, as various space agencies plan missions to
the Moon and Mars which involve robots and astronauts collaborating, then we surely
need some form of formal verification for astronaut-robot teamwork. This is needed at
least for astronaut safety (e.g. “the astronaut will never be out of contact with the base”)
but also for mission targets (e.g. “three robots and two astronauts can together build
the shelter within one hour”). But: how are we to go about this? How can we possibly
verify human behaviour? And how can we analyze teamwork?

In [2] a formal approach to the problem of human-agent (and therefore astronaut-
robot) analysis was proposed, suggesting the model-checking of Brahms models [9, 17,
13]. Brahms is a simulation/modelling language in which complex human-agent work
patterns can be described. Importantly for our purposes, Brahms is based on the concept
of rational agents and the system continues to be successfully used within NASA for
the sophisticated modelling of astronaut-robot planetary exploration teams [3, 12, 10].

� Work partially funded in the UK through EPSRC grants EP/F033567 and EP/F037201.
�� Corresponding author.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 259–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

260 R. Stocker et al.

Thus, it seems natural to want to formally verify Brahms models [2] but, until now,
the Brahms language had no formal semantics (unless you count the implementation
code as this). So this paper describes the first formal operational semantics [15] for the
Brahms language; in current work we are using the formal semantics to develop and
apply model checking to Brahms.

2 Brahms

Brahms is a multi-agent modelling, simulation and development environment devised
by Sierhuis [9] and subsequently developed at NASA Ames Research Center. Brahms
is a modelling language designed to model human activity using rational agents.

An agent [18] essentially captures the idea of an autonomous entity, being able to
make its own choices and carry out its own actions. Beyond simple autonomy, rational
agents are increasingly used as a high-level abstraction/metaphor for building com-
plex/autonomous space systems [5]. Rational agents can be seen as agents that make
their decisions in a rational and explainable way (rather than, for example, purely ran-
domly). The central aspect of the rational agent metaphor is that such agents are au-
tonomous, but can react to changes in circumstance and can choose what to do based
on their own agenda. In assessing such systems it may not be sufficient to consider what
the agent will do, but we must often also consider why it chooses to do it. The predom-
inant view of rational agents is that provided by the BDI (beliefs-desires-intentions)
model [8, 7] in which we describe the goals the agent has and the choices it makes.
Thus, in modelling a system in terms of rational agents, we typically describe each
agent’s beliefs and goals (desires), which in turn determine the agent’s intentions.

Brahms follows a similar rational agent approach but, because it was developed in
order to represent people’s activities in real-world contexts, it also allows the represen-
tation of artifacts, data, and concepts in the form of classes and objects. Both agents and
objects can be located in a model of the world (the geography model) giving agents the
ability to detect objects and other agents in the world and have beliefs about the objects.
Agents can move from one location in the world to another by executing a move activ-
ity, simulating the movement of people. For a more detailed description of the Brahms
language we refer the reader to [9] and [10]. The key aspects of Brahms are:

– activities: actions an agent can perform, which typically consume simulation time;
– facts: state of the environment (which every agent/object can observe through the

use of “detectables”);
– beliefs: each agent’s own personal perceptions;
– detectables: bring facts into the an agent’s belief base and determine how the agent

will react in response;
– workframes: sequences of events required to complete a task, together with any

belief updates resulting from the task completion;
– thoughtframes: reasoning/thought processes, e.g. “I believe it is raining therefore I

believe I need an umbrella”;
– time: central to Brahms as the output is represented in the form of a time-line dis-

playing every belief change and event that occurs.

A Formal Semantics for Brahms 261

In summary, the Brahms language was originally devised to model the contextual sit-
uated activity behaviour of groups of people. It has now evolved into a language for
modelling both people and robots/agents. As such it is ideal for describing human-
agent/robot teamwork.

2.1 Brahms Example

Orbital Communications Adaptor (OCA) officer flight controllers in NASA’s Interna-
tional Space Station Mission Control Center use different computer systems to uplink,
downlink, mirror, archive, and deliver files to and from the International Space Station
(ISS) in real time. The OCA Mirroring System (OCAMS) is a multi-agent software
system operational in NASA’s Mission Control Center [14], replacing the OCA officer
flight controller with an agent system that is based on the behavior of the human opera-
tor. NASA researchers developed a detailed human-behavioral agent model of the OCA
officers’ work practice behaviour in Brahms. The agent model was based on work prac-
tice observations of the OCA officers and the observed decision-making involved with
the current way of doing the work. In the system design and implementation phases,
this model of the human work practice behaviour was made part of the OCAMS multi-
agent system, enabling the system to behave and make decisions as if it were an OCA
officer.

Here is a short scenario of how the OCAMS system is used in mission control: The
On-board Data File and Procedures Officer (ODF) sends a request to the OCAMS (per-
sonal) agent via their email system. The OCAMS agent parses the request and under-
stands that the ODF has dropped a zip file to be uplinked to the ISS on the common
server. The OCAMS agent needs to identify the type of file that is being delivered and
decide, based on this, what uplink procedure needs to be executed. Having done so,
the OCAMS agent chooses the procedure and starts executing it, as if it were an OCA
officer. The OCAMS agent first transfers the file and performs a virus scan, and then
continues to uplink the file to the correct folder on-board the ISS. The OCAMS agent
applies the same procedure that an OCA officer would do.

The OCAMS system has been extended over three years [4]. With the latest release
the OCAMS system will have completely taken over all routine tasks from the OCA
officer, about 80% of the workload. Other flight controllers in mission control will in-
teract with the OCAMS agent as if it were an OCA officer. With every new release
(indeed with every increase in functionality) the system developers are required to per-
form complete testing of the system. Increases in functionality mean that there is now
not enough time to test every possible case. The ability to carry out formal verification
and validation of this human-agent system would enable more comprehensive analysis.

3 Overview of Semantics

Rather than presenting the full semantics in detail (see [16]), we consider the core el-
ements of the semantics here and then work through an example Brahms scenario in
Section 4.

262 R. Stocker et al.

3.1 Time Keeping and Scheduling

An important aspect of Brahms is a shared system clock; this creates the simulation
time line and is used as a global arbiter of when activities start and end. Agents are not
explicitly aware of the system clock even though it controls the duration of activities
and can be referred to in the selection of workframes and thoughtframes. As a result,
many applications also involve a clock “object” that agents are explicitly aware of.

The Brahms execution model involves updating the system clock, then examining
each agent in turn to see what internal state changes take place at that time step, and
then updating the system clock once more. The system clock does not update by a fixed
amount in each cycle but makes a judgment about the next time something “interesting”
is going to happen in the system and jumps forward to that point.

3.2 Running Workframes and Thoughtframes

Workframes and thoughtframes represent the plans and thought processes in Brahms.
A workframe contains a sequence of activities and belief/fact updates which the
agent/object will perform and a guard which determines whether the workframe is
applicable or not. A thoughtframe is a restricted version of this which only contains
sequences of belief/fact updates. Workframes may take time to complete (depending
on the activities involved) while thoughtframes are assumed to run instantaneously. A
workframe can also detect changes in its environment (facts), bring these changes into
the agent’s belief base and then decide whether or not to continue executing in the
light of the changes. Essentially, workframes represent the work processes involved in
completing a task and thoughtframes represent the reasoning process upon the current
beliefs, e.g. “I perform a workframe to go the shops; on leaving the house I detect it is
raining so I suspend my workframe and update my belief that it is raining, which then
triggers a thoughtframe stating that, since it is raining and I want to go the shops, then
I need a raincoat”.

3.3 Priority and Suspension of Workframes and Thoughtframes

Workframes and thoughtframes have a priority (which can be assigned by the program-
mer or derived from their list of activities). Thoughtframe and workframe priorities are
independent, but an agent will execute all thoughtframes first in any given time step
before moving on to examine workframes. At any point in time, the workframe that an
agent is currently working on can be suspended if another, higher priority, workframe
becomes available. Thoughtframes are never suspended because they have no duration
and so always complete before any higher priority thoughtframe becomes available.
When several workframes have the same priority, Brahms considers the currently ex-
ecuting workframe to have the highest priority, any other suspended workframes have
second highest, impassed1 workframes will have third highest, and then any other work-
frame will follow. Priorities in Brahms are integers but to model this priority order
in our semantics we assign suspended workframes an increased priority of “0.2” and

1 Workframes suspended because of changes in detectable facts.

A Formal Semantics for Brahms 263

impassed workframes “0.1”. Workframes and thoughtframes of equal status and with
joint highest priority will be selected at random. When a workframe is suspended, ev-
erything is stored, even the duration into its current activity, so the agent can resume
exactly from where it left off.

3.4 Executing Plans: Activities and Communication

When an agent is assigned a workframe/thoughtframe all the instructions contained
within it are stored on one of two stacks; one for the current thoughtframe and one for
the current workframe. When an agent executes an instruction it is ‘popped’ off the
top of the stack. Primitive activities and move activities all have time associated with
them — when they are at the top of a stack the duration of the task is decreased by
an appropriate amount each time the system clock updates. If the duration remaining
reaches zero then the activity is finished and popped off the stack. When the activity is
a move activity the belief base of the agent, together with the global facts, are changed
to reflect the new position of the agent/object; this update occurs when the time of the
activity reaches zero.

Communications are also activities and may have a duration. When the communi-
cation ends, a belief update is performed on the target agent’s (the receiver’s) belief
set.

3.5 Detectables

Detectables are contained within workframes and can only be executed if the workframe
is currently active. Detected facts are imported into the agent’s belief base and then
either: aborts - deletes all elements from the workframe’s stack; impasses - suspends
the current workframe, continues - carries on regardless; or completes - deletes only
activities from the workframe’s stack but allows it to make all (instantaneous) belief
updates.

3.6 Variables

Variables provide a method of quantification within Brahms. If there are multiple ob-
jects or agents which can match the specifications in a work- or thoughtframe’s guard
condition then the variable can either perform: forone — just select one; foreach —
work on all, one after another; or collectall — work on all simultaneously. This is han-
dled by recursive sets of workframes, e.g.

“Set of Workframes” = {W1,W2,W3:{W3.1,W3.2},W4}

where W3 is a workframe with variables and W3.1 and W3.2 are instantiations of W3
but with objects/agents in the place of the variables. When a workframe with variables
is empty e.g. W3:{} Brahms will invoke a selection function to make instantiations
based on the conditions.

264 R. Stocker et al.

3.7 Brahms Syntax

Brahms has a complex syntax for creating systems, agents and objects, although there is
no space here to cover the full specification2. As an example Fig. ?? shows the definition
of an agent’s workframe showing where variables, detectables and the main body of the
workframe are placed. Guards are specified by precondition-decl.

workframe ::= workframe workframe-name
{
{ display : ID.literal-string ; }
{ type : factframe | dataframe ; }
{ repeat : ID.truth-value ; }
{ priority : ID.unsigned ; }
{ variable-decl }
{ detectable-decl }
{ [precondition-decl workframe-body-decl] |

workframe-body-decl }
}

3.8 Semantics: Notation

In the rest of this paper we use the following conventions to refer to components of the
system, and agent and object states.

Agents: ag represents one agent, while Ag represents the set of all agents.
Beliefs: b represents one belief, while B represents a set of beliefs. In Brahms the

overall system may have beliefs which are represented by Bξ.
Facts: f represents one fact, while F represents a set of facts.
Workframes: β represents the current workframe being executed, WF represents a

set of workframes, while W is any arbitrary workframe.
Thoughtframes: T represents any arbitrary thoughtframe, while TF represents a set

of thoughtframes.
Activities: Prim Actt is a primitive activity of duration t.
Environment: ξ represents the environment
Time: T represents the time in general, while a specific duration for an activity is

represented by t. The time maintained by the system clock is Tξ.
Stage: The semantics are organised into “stages”. Stages refer to the names of the

operational semantic rules that may be applicable at that time, wild cards (∗) are
used to refer to multiple rules with identical prefixes. There is also a “fin” stage
which indicates an agent/object is ready for the next cycle, and an “idle” stage
which means it currently has no applicable thoughtframes or workframes.

Since the data structures for workframes are fairly complex we will treat these as a
tuple, 〈Wd,Wins 〉 where Wd is workframe header data and Wins is the workframe
instruction stack. The workframe header data includes

2 For the full syntax (with an informal semantics) see [11].

A Formal Semantics for Brahms 265

– W r is the workframe’s repeat variable.
– W pri is the workframe’s priority.
– W V is the variable declaration.
– W D is the workframe’s detectables
– W g is the workframe’s guard.

Here we are considering any possible workframe (W), for the current workframe we
would use β (or the name of the workframe). Thoughtframes are structured in a similar
way.

3.9 Semantics: Structure

The system configuration is a 5-tuple: Ags - set of all agents; agi - current agent under
consideration; Bξ - belief base of the system, used to synchronise the agents (not used
in simulations) e.g. agent i’s next event finishes in 1000 seconds; F - set of facts in the
environment, e.g. temperature is 20 degrees celsius; and Tξ - current time of the system:

System’s tuple = 〈Ags , agi, Bξ, F, Tξ〉

The agents and objects within a system have a 9-tuple representation: agi - the iden-
tification of the agent; T - the current thoughtframe; W - current workframe; stage -
stage the agent is at; B - set of beliefs the agent has; F - set of facts of the world; T
- time of the agent; TF - set of thoughtframes the agent has; and WF - agent’s set of
workframes. The stage explains which set of rules the agent is currently considering or
if the agent is in a finish (fin) or idle (idle) stage.

Agents tuple = 〈agi, T ,W, stage, B, F, T,TF ,WF 〉

The semantics are represented as a set of transition rules of the form

〈StartingTuple〉 ActionsPerformed−−−−−−−−−−−−−−−−−−−−→
ConditionsRequiredForActions

〈ResultingTuple〉

Here, ‘ConditionsRequiredForActions’ refers to any conditions which must hold
before the rule can be applied. ‘ActionsPerformed ’ is used to represent change to
the agent, object or system state which, for presentational reasons, can not be easily
represented in the tuple.

Finally, it is assumed that all agents and objects can see and access everything in the
environment’s tuple, e.g. Tξ.

4 Running Example of Brahms Semantics

As explained above, rather than giving all the semantics in detail (see [16] for the full se-
mantics), we here work through a small Brahms scenario. Though simple, this scenario
involves many of the aspects available within Brahms and so utilises a wide variety of
semantic rules.

This example scenario is based on that provided in the Brahms tutorial which can be
downloaded from http://www.agentisolutions.com/download. The sce-
nario models two students: Alex, who will sit and study in the library until he becomes

http://www.agentisolutions.com/download

266 R. Stocker et al.

hungry; and Bob who sits idly until the other student suggests going for food. When
Alex becomes hungry he will decide to message Bob and venture out for food. Once
Alex arrives at the restaurant he will wait for Bob to arrive and then he will eat, pay for
the food and return to the library to study. The scenario also contains an explicit hourly
clock object (separate from the system clock) which announces how many hours have
passed, providing Alex with his beliefs about the current time.

Initialisation and parsing of the program code assigns the agents all their initial be-
liefs, determines the initial world facts and the geography of the area (distances between
each location etc.). The agent Bob will be ignored in the discussion until his role be-
comes active. The initial beliefs of our student (Alex) are:

{
hungry = 15, Loc = Library, Bob.Loc = Home,
perceivedtime = 0, Clock.time = 0, desiredRestaurant = ∅

}
(1)

Alex starts in the “fin” (finish) stage. Starting in the finished stage appears counterin-
tuitive, however this “fin” indicates the agents have finished their previous events and
are ready for the next cycle. On system initiaition we assume the agents previous events
have been completed, even though they were empty.

Below is example Brahms code showing one of Alex’s thoughtframes and one of
his workframes. The thoughtframe represents Alex’s thought process for increasing his
hunger as time progresses (Campanile Clock refers to the clock object) and Alex be-
comes hungrier when he sees that the clock object’s time is later than he believes it is.
He then updates his internal belief about the time and his hunger. The workframe tells
Alex to perform the study activity when both the time and his level of hunger are less
than 20.

agent Alex
{

...
thoughtframes:
thoughframe tf_FeelHungry
{

when(knownval(Campanile_Clock.time >
current.perceivedtime)

do
{

conclude((current.perceivedtime =
Campanile_Clock.time), bc: 100);

conclude((current.hungry =
current.hungry + 3), bc: 100);

}
}

workframes:
workframe wf_Study
{

repeat: true;
priority: 1;

A Formal Semantics for Brahms 267

when(knownval(Campanile_Clock.time < 20)
and current.hungry < 20)

do
{

Study();
}

}
}

Here, “bc: 100” describes a percentage probability value associated with the belief.
For simplicity we omit further discussion of this in the remainder of the paper.

In representations of thoughtframes and workframes in the semantics, the thought-
frame tf FeelHungry will appear as

〈 FeelHungryd,
[conclude(perceivedtime = Clock.time); conclude(hungry = hungry + 3)]〉

where the thoughtframe data FeelHungryd contains the guard, FeelHungryg with the
value Clock.time > perceivedtime. Similarly, the wf Study workframe above will
later appear as 〈Studyd, [Prim Act3000]〉. Note that Study() is a primitive activity
with duration 3000 seconds and we translate it directly into the primitive activity rep-
resentation in the workframe’s instruction stack. Studyd includes the repeat variable
Studyr = true, the priority Studypri = 1 and the guard Studyg = (Clock.time <
20) ∧ (hungry < 20)

The thoughtframes Alex uses are:
tf FeelHungry - increases Alex’s hunger;
tf ChooseBlakes - tells Alex to choose Blakes restaurant;
tf ChooseRaleighs - tells Alex to choose Raleighs restaurant.

The workframes Alex uses are:
wf Study - tells Alex to study;
wf MoveToRestaurant - tells Alex to move to his desired restaurant;
wf Wait - tells Alex to do nothing if he is in the restaurant and Bob isn’t present;
wf Eat - tells Alex to order and eat his food.

The workframes the Clock uses are:
wf AsTimeGoesBy - increases the clock’s time by 1 hour.

4.1 System Initiation

Initially the tuples for the Alex agent and the Clock object are

Alex: 〈agAlex , ∅, ∅,fin, BAlex , F, 0,TFAlex ,WFAlex 〉
Clock: 〈obClock , ∅, ∅,fin, BClock , F, 0, ∅,WFClock〉

268 R. Stocker et al.

where BAlex is as in (1) and

TFAlex = {tf FeelHungry, tf ChooseBlakes , tf ChooseRaleighs}
WFAlex = {wf Study,wf MoveToRestaurant ,wf Wait ,wf Eat}

WFClock = {wf AsTimeGoesBy}
BClock = {time = 0}

F = {Alex.Loc = library,Bob.Loc = Home,Clock.time = 0}

4.2 Scheduler Rules

All the semantic rules used by the scheduler have the prefix ‘Sch ’. The scheduler acts
as a mediator between agents keeping them synchronized. It tells all the agents when
the system has started, finished and when to move to the next part of the system cycle.

The scheduler is initiated first in any run of the system. It checks if all agents’ current
stage is either “active” or “finished”. Since, in our example, it is the beginning of the
system and the default setting for the agents’ stage is finished then the system updates
the stage of each agent to Set Act . This will cause all the agents to start processing.
This system action is expressed with the Sch run rule.

RULE: Sch run

〈Ags, agi, Bξ, F, Tξ〉
∀agi(ag

′stage
i =Set Act)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∀agi∈Ags|(astage
i =fin∨a

stage
i =idle),¬(Tξ=−1)

〈Ags,ag′
i, Bξ, F, Tξ〉

So, after this rule is executed Alex’s state becomes:

〈agAlex , ∅, ∅,Set Act , BAlex , F, 0,TFAlex ,WFAlex 〉

While there is an agent in an active (not idle or finished) stage the scheduler waits. If
all the agents are idle the system terminates:

RULE: Sch Term

〈Ags, agi, Bξ, F, Tξ〉 −−−−−−−−−−−−−−→
∀agi∈Ags|astage

i =idle

〈Ags, agi, Bξ, F,−1〉

Agents and objects have their own internal clock but the scheduler manages the global
clock which all agents/objects synchronize with. When agents or objects perform an
activity they inform the scheduler of the time the activity will conclude. Once all agents
are either idle or engaged in an activity (a set of stages marked Pop CA∗, Pop MA∗
and Pop CA∗where “∗” is a wild card) the scheduler then finds the smallest of all these
times and updates the global clock to this time. This is achieved by the ‘Sch rcvd’ rule:

RULE: Sch rcvd

〈Ags, agi, Bξ, F, Tξ〉
T ′
ξ=MinTime(Bξ)−−→

∀agi∈Ags|(agstage
i =Pop (PA∗/MA∗/CA∗)∨ag

stage
i =idle),¬(Tξ=−1)

〈Ags, agi, Bξ, F, T
′
ξ〉

Where MinTime() takes a belief base of the agents times and finds the minimum time
with in it.

A Formal Semantics for Brahms 269

4.3 Agents and Objects Are Now Invoked

The agents and objects are invoked in order and each processes one rule in turn. In the
Set Act stage the agents run the Set Act rule which, in this case, moves them all on
to examining their thoughtframes for applicability. This is the ‘Tf *’ stage which indi-
cates that they will be looking at all the rules beginning with ‘Tf ’. These are rules for
processing thoughtframes. In our simple example there are currently no thoughtframes
available for any objects or agents, so ‘Tf Exit’ is selected, which moves Alex and the
Clock on to checking for detectables.

In our example, no object or agent has a current workframe which checks detectables
and so ‘Det Empty’ is invoked which passes them on to checking workframes. This is
the basic cycle of Brahms processing: thoughtframes, followed by detectables, followed
by workframes.

Running workframes. wf AsTimeGoesBy is the only workframe the Clock can pro-
cess. This contains an activity of 3600 seconds duration and then the Clock increases
its time by 1 hour. The guard on this workframe is that the current value of the Clock’s
time attribute is less than 20, which is currently true so the workframe is put forward
for selection. Since there are no other workframes, the Clock selects this workframe as
current and stores the list of instructions contained within the workframe in a stack.

Meanwhile Alex also selects a workframe for execution using Wf Select.

RULE: Wf Select

〈agi, ∅, ∅,Wf ∗, Bi, F, Ti,TF i,WF i〉
β=MaxPri(W∈WFi|Bi|=W g)−−−−−−−−−−−−−−−−−−−→

∃W∈WFi |Bi |=W g

〈agi, ∅, β,Wf (true/false/once), Bi, F, Ti,TF i,WF i〉

This selects Alex’s workframe (wf Study) and restricts his rule choice to ‘Wf true’,
‘Wf false’ or ‘Wf once’, depending on the workframe’s repeat variable. The body of
the workframe contains a single primitive activity, Study .

Alex’s state is now

〈 agAlex , ∅, 〈Studyd, [Prim Act3000]〉, Wf (true/false/once),
BAlex , F, 0, TFAlex , WFAlex 〉

The next semantic rule selected depends on the repeat variable of the current work-
frame. Here, wf Study has repeat set to “true” (always repeat) so rule ‘Wf True’ is
applicable. This does nothing more than pass the agent to the next set of rules used
for handling variables (denoted Var ∗). There are two other repeat rules: ‘Wf False’
(never repeat) means the workframe would be deleted from the set of workframes when
finished; and ‘Wf Once’ (repeat only one more time) sets the repeat variable in the
workframe to false from this point onward.

Both the Clock and Alex now move to pop elements off the stack associated with the
current workframe. These rules are denoted with ‘Pop *’.

270 R. Stocker et al.

Popping the stack. Both the Clock object and our Alex agent are now processing the
elements on their current workframe’s stack of activities, using the rules denoted by
‘Pop ’. wf Study tells Alex to perform a primitive activity (essentially a wait) called
Study with duration 3000 seconds. Meanwhile the Clock has an activity to wait 3600
seconds before updating the time. For convenience we will simply show the current
workframe’s instruction stack in the following tuples, not the full workframe.

The current states of Alex and the Clock are:

〈agAlex , ∅, 〈Studyd, [Prim Act3000]〉,Pop ∗, BAlex , F, 0,TFAlex ,WFAlex 〉

〈 obClock , ∅, 〈AsTimeGoesByd, [Prim Act3600]〉,Pop ∗,
BClock , F, 0,TFClock ,WFClock〉

The Clock and Alex communicate the duration of their current activity to the scheduler
by updating the system’s beliefs about the time they are due to finish their next event.
This is done using the rule ‘Pop PASend’(Recall that individual agents can still act
upon the main system state, e.g. Tξ and Bξ here).

RULE: Pop PASend

〈agi, ∅, 〈βd, [Prim Actt; βins]〉,Pop ∗, Bi, F, Ti, TF i,WF i〉
B′

ξ=Bξ\{Ti}∪{Ti=Ti+t}−−−−−−−−−−−−−−−−→
Tξ=Ti

〈agi, ∅, 〈βd, [Prim Actt; βins]〉,Pop PA∗, Bi, F, Ti,TF i,WF i〉
B′

ξ = Bξ \ {Ti} ∪ {Ti + t} shows that B′
ξ is a copy of Bξ where Ti has been replaced

by Ti + t.
Once all the agents have communicated their duration (excluding idle agents) the

scheduler compares their durations to find the shortest activity and updates its internal
clock using ‘Sch rcvd’. In this case it updates the time from 0 to 3000 which is when
Alex’s activity will finish.

Both Alex’s and the Clock’s time remain at 0 but the global clock is now at 3000. The
‘Pop PA*’ rules all have a time difference as a guard and act to decrease the remaining
duration of the current activity and update the agent/object’s internal time keeping.

In this situation the Clock object’s primitive activity duration is decreased to 600.
Alex’s activity will have finished (since it is 3000) and a different rule, ‘Pop PA(t=0)’
is invoked:

RULE: Pop PA(t=0)

〈agi, ∅, 〈βd, [Prim Actt; βins]〉, P op PA∗, Bi, F, Ti,TF i,WF i〉
T ′

i =Tξ−−−−−−−−−−−−−−→
¬(Tξ=Ti),Ti+t−Tξ=0

〈agi, ∅, 〈βd, βins〉,Pop concWf ∗, B, F, T ′
i ,TF i,WF i〉

Alex has now moved on to a stage where he will only perform ‘conclude’ actions in a
workframe stack (denoted by stage ’Pop concWf*’). There are no conclude actions on
the stack so he is transferred to the workframe rules ‘Wf *’ once more.

A Formal Semantics for Brahms 271

4.4 The Cycle Continues

The simulation continues to run and the Clock’s time attribute is updated when its
primitive activity finishes. This means Alex’s belief about his perceived time no longer
matches the Clock’s time. Alex’s thoughtframe, tf FeelHungry , becomes active. This
places two “conclude” instructions on Alex’s current thoughtframe stack. As mentioned
above, thoughtframes act like workframes but only involve belief updates (conclude in-
structions) and so take no time. The rule ’Pop concTf’ updates an agent’s belief using
a thoughtframe.

RULE: Pop concTf

〈agi, ∅, 〈βd, [conclude(b = v); βins]〉, P op ∗, Bi, F, Ti,TF i,WF i〉
B′

i=Bi\{b=v′}∪{b=v}−−−−−−−−−−−−−−−→
b=v′∈Bi

〈agi, ∅, 〈βd, βins〉, P op ∗, B′
i, F, Ti,TF i,WF i〉

After applying ‘Pop concTf’ twice to conclude first perceivedtime = Clock.time and
then hungry = hungry + 3 Alex’s beliefs are:

⎧⎨
⎩

hungry = 18, Loc = Library,
Bob.Loc = Home, percievedtime = 1,
Clock.time = 1, desiredRestaurant = ∅

⎫⎬
⎭

Alex continues to study. The cycle of Alex and the Clock counting time, studying and
increasing hunger continues until the point where Alex’s hunger level is 21 or above
and he decides it is time to find some food.

The situation is as follows: the simulation time is 10800; Alex’s hunger is 21; the
Clock’s time attribute is 2 and it has just completed a primitive activity causing Alex’s
tf FeelHungry thoughtframe to execute; Alex has an active workframe with 1200 sec-
onds remaining of study time. However, a thoughtframe has now been activated and has
updated Alex’s beliefs to conclude that his intended restaurant is Raleigh’s. In our tuple
representation the states of the Alex agent and the Clock object are:

〈agAlex , ∅, 〈Studyd, [Prim Act1200]〉, Pop ∗, BAlex , F, 10800,TFAlex ,WFAlex 〉

〈obClock , ∅, ∅,fin, BClock , F, 10800,TFClock ,WFClock〉

Alex is now hungry. Although Alex has a currently active workframe, the workframe
wf MoveToRestaurant is now applicable and has a higher priority. This requires that
the current workframe is suspended. This is achieved by creating a new workframe
which stores wf Study’s remaining instructions. This is achieved by ‘Wf Suspend’.

272 R. Stocker et al.

RULE: Wf Suspend

〈agi, ∅, 〈βd, βins〉, Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β\{βpri}∪{βpri=βpri+0.2}],WF ′

i=WFi∪β′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∃W∈WFi|Bi|=W g&W pri>(βpri+0.3)

〈agi, ∅, ∅, Wf ∗, Bi, F, Ti,TF i,WF ′
i〉

After applying this rule Alex’s set of workframes becomes

WFAlex =
{
〈Studyd , [Prim Act1200]〉, wf MoveToRestaurant ,
wf Study, wf Wait , wf Eat

}

Alex calls Bob to meet. A simple communication activity is performed by Alex dur-
ing a workframe which sends a message to Bob indicating that he wishes to meet for
food. This communication works like a primitive activity followed by a simple be-
lief update, the primitive activity would represent the duration of the communication.
This communication will change the beliefs Bob has about Alex such that Bob will
now believe (for simplicity) meetAlex = true, Alex.desiredRestaurant
= Raleigh. Bob will then perform actions, similar to Alex’s in the following, in or-
der to get to Raleigh’s restaurant.

Alex goes out for food. Alex has now selected a workframe to move to Raleigh’s
restaurant, wf MoveToRestaurant . This workframe is different to those we have seen
previously because it has a move activity, which acts like a primitive activity followed
by a conclude. The primitive activity has the duration dependant on journey time (cal-
culated via pre-processing) and the conclude updates beliefs and facts of the our agent’s
location which, in this case, will be Raleigh’s restaurant.

Waiting for Bob. Alex has arrived before Bob, so Alex initiates a workframe to wait
for Bob. This workframe contains a detectable which detects when Bobs location is
Telegraph Av 2405. When Bob eventually arrives, an external belief (a fact) is
updated which activates the detectable. The detectable on Alex’s workframe which is
of type ‘Abort’. This abortion will cancel the current workframe and any activities Alex
is working on but will also update his beliefs to match the fact (Bob’s new location).
The abort is is handled by ‘Det Abort’:

RULE: Det Abort

〈agi, ∅, 〈βd, βins〉, Det ∗, Bi, F, Ti,TF i,WF i〉
B′

i=Bi∪F ′
−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|∃F ′⊆F |=dg&dtype=Abort

〈agi, ∅, ∅, Det ∗, B′
i, Ti, F,TF i,WF i〉

where d is the detectable, βD is the set of all detectables for workframe β, dg is the
guard condition of the detectable d, and dtype is the detectable type: Impasse; Complete;
Continue; or Abort.

A Formal Semantics for Brahms 273

Scenario Conclusion. Alex’s waiting has now been terminated and guards are satisfied
for him to start the workframe to eat with Bob. The scenario finally terminates when
the Clock object’s time attribute has reached 20 hours, this is an additional condition in
every single workframe/thoughtframe. After 20 hours each entity will no longer have
any frames active so they all enter an idle state prompting the scheduler to use the
‘Sch Term’ rule.

5 Concluding Remarks and Future Work

In this paper we have outlined the first formal semantics for the Brahms language.
While the full semantics is given in the associated technical report [16], the worked
scenario described above demonstrates much of the semantics of Brahms, including
the most important aspects: selection of workframes and thoughtframes; suspension
of workframes when a more important (higher priority) workframe becomes active;
detection of facts; performance of ‘concludes’, primitive activities, ‘move’ activities
and communication activities; and the use of the scheduler.

This formal semantics provides us with a route towards the formal verification of
Brahms applications. Using these operational semantics we can devise model checking
procedures and can either invoke standard model checkers, such as Spin [6] or agent
model checkers such as AJPF [1]. Currently we are developing a translator for Brahms
which, via the transition rules in our semantics, will then be able to generate input for
such model checkers.

We are also currently identifying a suite of example Brahms scenarios (together with
their required properties) for evaluating this tool. For the small Brahms example devel-
oped in Section 4, we might wish to verify that: “Alex will never starve”; or “Alex will
eventually reach Raleigh’s”.

Brahms is an important language. It has been used to model very extensive appli-
cations in agent-human teamwork. While we have emphasized applications in space
exploration, Brahms is equally at home in describing more mundane applications in
home health-care or human-robot interaction. As such, the formal verification of this
language would be very useful for assessing human safety; the operational semantics
developed here are a necessary first step towards this.

References

1. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated Verification of Multi-Agent
Programs. In: Proc. 23rd IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp. 69–78 (2008)

2. Bordini, R.H., Fisher, M., Sierhuis, M.: Formal Verification of Human-Robot Teamwork.
In: Proc. 4th ACM/IEEE International Conference on Human Robot Interaction (HRI),
pp. 267–268. ACM Press, New York (2009)

3. Clancey, W., Sierhuis, M., Kaskiris, C., van Hoof, R.: Advantages of Brahms for Speci-
fying and Implementing a Multiagent Human-Robotic Exploration System. In: Proc. 16th
Florida Artificial Intelligence Research Society (FLAIRS), pp. 7–11. AAAI Press, Menlo
Park (2003)

274 R. Stocker et al.

4. Clancey, W.J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., Scott, M.: Multi-
agent Simulation to Implementation: A Practical Engineering Methodology for Designing
Space Flight Operations. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.)
ESAW 2007. LNCS (LNAI), vol. 4995, pp. 108–123. Springer, Heidelberg (2008)

5. Dennis, L.A., Fisher, M., Lisitsa, A., Lincoln, N., Veres, S.M.: Satellite Control Using Ra-
tional Agent Programming. IEEE Intelligent Systems 25(3), 92–97 (2010)

6. Holzmann, G.J.: Software model checking with SPIN. Advances in Computers (2005)
7. Rao, A.S., Georgeff, M.: BDI Agents: From Theory to Practice. In: Proc. 1st International

Conference on Multi-Agent Systems (ICMAS), San Francisco, USA, pp. 312–319 (1995)
8. Rao, A.S., Georgeff, M.P.: Modeling Agents within a BDI-Architecture. In: Proc. Conference

on Knowledge Representation & Reasoning (KR). Morgan Kaufmann, San Francisco (1991)
9. Sierhuis, M.: Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling

and simulation language for work system analysis and design. PhD thesis, Social Science
and Informatics (SWI), University of Amsterdam, The Netherlands (2001)

10. Sierhuis, M.: Multiagent Modeling and Simulation in Human-Robot Mission Operations
(2006), http://ic.arc.nasa.gov/ic/publications

11. Sierhuis, M.: Brahms Language Specification, http://www.agentisolutions.com/
documentation/language/LanguageSpecificationV3.0F.pdf

12. Sierhuis, M., Bradshaw, J.M., Acquisti, A., Hoof, R.V., Jeffers, R., Uszok, A.: Human-Agent
Teamwork and Adjustable Autonomy in Practice. In: Proc. 7th International Symposium on
Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS (2003)

13. Sierhuis, M., Clancey, W.J.: Modeling and Simulating Work Practice: A Human-Centered
Method for Work Systems Design. IEEE Intelligent Systems 17(5) (2002)

14. Sierhuis, M., Clancey, W.J., van Hoof, R.J., Seah, C.H., Scott, M.S., Nado, R.A., Blumen-
berg, S.F., Shafto, M.G., Anderson, B.L., Bruins, A.C., Buckley, C.B., Diegelman, T.E., Hall,
T.A., Hood, D., Reynolds, F.F., Toschlog, J.R., Tucker, T.: NASA’s OCA Mirroring System:
An application of multiagent systems in Mission Control (2009)

15. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Computer Science Department. Aarhus University, Denmark (1981)

16. Stocker, R., Sierhuis, M., Dennis, L., Dixon, C., Fisher, M.: A Formal Semantics for the
Brahms Language (2011), http://www.csc.liv.ac.uk/˜rss/publications

17. van Hoof, R.: Brahms website (2000), http://www.agentisolutions.com
18. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons, Chichester

(2002)

http://ic.arc.nasa.gov/ic/publications
http://www.agentisolutions.com/documentation/language/LanguageSpecificationV3.0F.pdf
http://www.agentisolutions.com/documentation/language/LanguageSpecificationV3.0F.pdf
http://www.csc.liv.ac.uk/~rss/publications
http://www.agentisolutions.com

Making Golog Norm Compliant

Alfredo Gabaldon

Center for Artificial Intelligence (CENTRIA)
Universidade Nova de Lisboa

ag@di.fct.unl.pt

Abstract. In this work we consider how to enforce norms in the Situa-
tion Calculus based programming language Golog and its relatives. We
define a notion of norm compliant sequence of actions with respect to
norms prescribing some actions to be forbidden or obliged (ought-to-do
norms), norms prescribing that a state-condition is forbidden (ought-
to-be norms) and norms that are a form of deadline. We then show a
procedure that allows incorporating the norms into the underlying action
theory so that after this is done, the agent’s behavior is guaranteed to
be norm compliant.

1 Introduction

The use of social laws or norms as a behavior and coordination mechanism has at-
tracted considerable interest among researchers in the area of autonomous agents
and multi-agent systems. The work in this area includes [1,2,3,4,5,6] among many
others.

Much of the current work on norms in autonomous agents involves develop-
ing agent programming languages that include facilities for expressing norms
and mechanisms for enforcing them. Along these lines, in this work we look at
an agent programming language and consider adding expressions for describing
norms and then consider what it means for an agent programmed in this lan-
guage to comply with the norms. The particular language we consider is Golog
[7]. This high-level action programming language was developed for providing
artificial agents with complex behaviors defined in terms of a set of primitive
operations or actions. Golog consists of a set of programming constructs typi-
cal of imperative programming languages, e.g. sequence, conditional, iteration,
and also some non-deterministic constructs such as choice between two sub-
programs. A distinguishing feature of Golog is that the primitive constructs are
actions formalized in an underlying logic—the Situation Calculus [8].

Golog has grown into a family of languages which extend it with various fea-
tures such as concurrency (ConGolog [9]), decision theory (dtGolog [10]), and
incremental execution and sensing (IndiGolog [11]), among others. The underly-
ing action language has also undergone substantial development with extensions
including adding explicit time, an epistemic modality for knowledge, and stochas-
tic actions. This makes the Golog family of languages an attractive choice for
programming autonomous agents.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 275–292, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

276 A. Gabaldon

2 The Golog Language

We briefly review the main components of a Basic Action Theory [12,13] and of
the Golog language [7].

2.1 Basic Action Theories

A basic action theory is a classical logic formalization of the dynamic domain
of an agent(s) in the Situation Calculus (SitCalc for short) [14]. The ontology
of the SitCalc includes actions, fluents, which are the properties of the domain
that change when actions occur, and situations, which are sequences of actions
representing possible ways in which the domain may evolve.

Formally, the SitCalc is a dialect of First-Order logic with sorts action, situa-
tion, and object. Consequently, actions, situations and domain objects are treated
as quantifiable, first-class citizens in the language. A special constant S0 is used
to denote the initial situation, and the function do of sort (action×situation) !→
situation is used to form sequences of actions. For instance, a sequence consisting
of actions a1, a2, a3 is represented by the term do(a3, do(a2, do(a1, S0))).1

Fluents are represented by means of relations F (x, s) where x is a tuple
of arguments of sorts object or action and the last argument s always of sort
situation. For example, a fluent owner(ag, file, s) could be used to represent
that an agent ag is the owner of a file in situation s.

Function symbols of sort object !→ action, A(x), represent action types. For
instance, a function write(ag, file) could be used to represent the action of an
agent ag writing to a file. We call them action types because a single function
symbol can be used to create multiple instances of an action, e.g. the instances
write(Ag1, F ile1), write(Ag2, F ile2), etc. We will use a1, a2, . . . to denote action
variables and α1, α2, . . . to denote action terms. Similarly, we use s1, s2, . . . for
situation variables and σ1, σ2, . . . for situation terms.

A Basic Action Theory D consists of the following sets of axioms (variables
that appear free are implicitly universally quantified. x denotes a tuple of vari-
ables x1, . . . , xn):

1. For each action type A(x) there is exactly one Action Precondition Ax-
iom (APA), of the form:

Poss(A(x), s) ≡ ΠA(x, s)

where variable s is the only term of sort situation in formula ΠA(x, s).
The latter formula represents the conditions under which an action A(x) is
executable. The restriction that the only situation mentioned in this formula
is s intuitively means that these preconditions depend only on the situation
where the action would be executed.

1 do([a1, a2, . . . , an], s) is an abbreviation of do(an, do(an−1, . . . , do(a1, s) . . .)).

Making Golog Norm Compliant 277

2. For each fluent F (x, s), there is exactly one Successor State Axiom (SSA),
of the form:

F (x, do(a, s)) ≡ ΦF (x, a, s)

where s is the only term of sort situation in formula ΦF (x, a, s). This formula
represents all and the only conditions under which executing an action a in
a situation s results in a situation do(a, s) where the fluent holds. These
axioms embody Reiter’s solution to the frame problem [12,13].

3. A set of sentences DS0 describing the initial state of the world. This is a
finite set of sentences whose only situation term may be the constant S0 and
describe the initial state of the domain. Any sentence is allowed as long as
the only situation variable that appears in it is S0, so one can write sentences
such as (∃ag)owner(ag, F ile1, S0), reflecting incomplete information about
the initial state.

4. The Foundational Axioms Σ which define situations in terms of the con-
stant S0 and the function do. Intuitively, these axioms define a tree-like
structure for situations with S0 as the root of the tree. They also define re-
lation � on situations. Intuitively, s � s′ means that the sequence of actions
s is a prefix of sequence s′.

5. A set of unique names axioms (UNA) for actions. For example,write(ag, f) �=
delete(ag, f), write(ag, f) = write(ag′, f ′) ⊃ (ag = ag′ ∧ f = f ′), etc.

Given a basic action theory D we can define a few basic reasoning tasks. For
instance, checking if a sequence of actions is executable, i.e. physically possible
for the agent according to the axiomatization of its dynamic environment. This
check is formally defined as follows: let α1, . . . , αk be action terms

D |= executable(do([α1, . . . , αk], S0))

where executable(·) is defined as follows:

executable(s) ≡ (∀a, s′).do(a, s′) � s ⊃ Poss(a, s′).

Another reasoning problem is projection: checking if some condition, denoted
by a formula φ(s) with a free variable s, holds after a sequence of actions is
executed:

D |= φ(do([α1, . . . , αk], S0)).

2.2 Golog

The situation calculus based programming language Golog [7] and variants such
as ConGolog [9] and IndiGolog [11], provide Algol-like programming constructs
for defining complex behaviors in terms of the primitive actions formalized in
a basic action theory of the form described above. Among various applications,
these languages have been employed for programming autonomous agents. For

278 A. Gabaldon

the purpose of this work, which mainly deals with the logic underlying these
languages, we need not go into the details. Here we will refer to Golog when
generally referring to the family of Golog variants.

In addition to atomic actions, which are the primitive construct in Golog, the
language includes constructs such as a test φ?, test whether φ currently holds;
sequence δ1; δ2, execute program δ1 followed by δ2; non-deterministic choice δ1|δ2,
choose between executing δ1 and executing δ2; among others.

An important aspect of these languages is the fact that they allow one to
write non-deterministic programs. Intuitively, the execution of a program δ1|δ2
can result in the execution of either one of δ1 and δ2, as long as their execution
is successful. A program may fail to execute if one of the primitive actions in
its execution trace turns out not to be executable. In the case of programs
run concurrently, e.g. δ1‖δ2, the result of the execution is any of the possible
interleavings of the primitive actions that result from δ1 and those from δ2.
Again, some interleavings may fail because one of the actions is not executable
at the given time.

The semantics for these languages is captured through a relation Do(δ, s, s′),
meaning that executing program δ in situation s results in situation s′. Given
a background theory D, including a definition of Do(δ, s, s′), the execution of a
program δ in the initial situation S0 is defined in terms of logical entailment as
the problem of finding a sequence of actions α1, . . . , αk such that

D |= Do(δ, S0, do([α1, . . . , αk], S0)).

3 Norms

Social laws, norms or policies, are used as mechanisms for regulating the behav-
ior of agents, as a mechanism for coordination, and for access control in systems
security, among others. Many normative system frameworks use pairs of expres-
sions (φ, a) to represent norms. The intuitive meaning of a pair (φ, a) would be
that in states where φ holds, the action a is permitted/forbidden/obligatory.

We will represent norms in terms of formulae denoted by φ(x, s) and ψ(x, s)
with free-variables x, s, with s the only situation term appearing in the formulae
and x the remaining free variables. Norms are enforced in all situations so when
writing them we will omit the universally quantified situation variable and write
φ(x) and ψ(x). We will use the notation F a to denote that an action a is
forbidden, O a to denote that a is (immediately) obligatory, and F ψ to denote
that a (state) condition ψ is forbidden.

We will assume that actions are permitted and not obligatory by default, that
is, if there is no norm that in a given situation says that an action is forbidden
(resp. obligatory), then the action is assumed permitted (resp. not obligatory).
For this reason, it is unnecessary to write norms using negation in front of F a
and O a. Modifying the formalization to make the opposite assumptions, for
example that actions are assumed forbidden unless a norm says otherwise, is
straight forward.

Making Golog Norm Compliant 279

In the norm expressions below, t,v are tuples of terms, t a subset of the terms
v, and any variables appearing free, including omitted situation variables, are
implicitly universally quantified.

3.1 Ought-to-Do Norms

1. Forbidden actions: φ(t) → F A(v).
Example: regular users are not allowed to write to files owned by others:

file(f) ∧ regUsr(r) ∧ ¬owner(r, f) → F write(r, f).

2. Obligatory actions: φ(t) → O A(v).
Example: if a licensed file has an expired license, the owner must delete it.

file(f) ∧ owner(r, f) ∧ expLic(f) → O del(r, f)

Given a set of norms, we can define a notion of compliance by a program with
the norms. To that end, it will be useful to take a set of norms in the above
forms and put them in a compact normal form by applying the following steps.

1. Take each norm φ(t) → F A(v) and rewrite it so as to replace the param-
eters with variables::

φ(x′) ∧ x′ = t ∧ x′′ = u → F A(x)

where u are the terms in v not in t and x′,x′′ are among the variables x.
Let us denote the resulting formula by Φ(x) → F A(x).

2. Next, for each action type A(x) we take all the norms

Φ1(x) → F A(x)
Φ2(x) → F A(x)
. . .
Φk(x) → F A(x)

and rewrite them as the following single norm for A(x):
[∨

i=1...k

Φi(x)

]
→ F A(x)

Let us denote the result by ΦA(x) → F A(x). This norm now completely
characterizes the conditions that make any instance, i.e. for any x, of the
action type A(x) forbidden.

3. Next we take each norm ΦAi(xi) → F Ai(xi) and rewrite it as follows
using a fresh action variable a:

ΦAi(xi) ∧ a = Ai(xi) → F a

280 A. Gabaldon

4. Finally, we gather all the norms

ΦA1(x1) ∧ a = A1(x1) → F a
ΦA2(x2) ∧ a = A2(x2) → F a
. . .
ΦAn(xn) ∧ a = An(xn) → F a

and rewrite them as a single expression:[∨
i=1...n

ΦAi(xi) ∧ a = Ai(xi)

]
→ F a

Let us denote the result by ΦF (a) → F a.

Following the same steps with obligation norms, we can obtain the corresponding
expression ΦO(a) → O a.

By restoring the situation argument on the left-hand-side formula to obtain
ΦF (a, s), resp. ΦO(a, s), we now have a legit SitCalc formula that tells us, in any
given situation, whether or not an action is forbidden, resp. obligatory, according
to the system norms.

We can then define a notion of a sequence of actions s being compliant with
a set of norms in the above forms, by means of the following equivalence:

compliant(s) ≡ s = S0 ∨
(∃a, s′).s = do(a, s′) ∧ compliant(s′) ∧
¬ΦF (a, s′) ∧ (∀a′)[ΦO(a′, s′) ⊃ a′ = a].

(1)

Intuitively, this says that a sequence of actions s is compliant with the given
norms iff s is the empty sequence, S0, or s is s′ followed by a, where s′ is
compliant and a satisfies the norms in s′.

Given a set of norms and a corresponding definition of compliant(s), we can
define compliance with the norms by a Golog program δ. We will say that δ is
compliant with the norms if all its execution traces comply with the norms.

Definition 1. Let D be a basic action theory, δ a program, and N a set of
norms with corresponding definition of compliantN(s). Program δ is compliant
with norms N iff

D |= (∀s).Do(δ, S0, s) ⊃ compliantN(s).

The above definition assumes the program is executed in the initial situation S0.
A stronger version of compliance of a program can be defined by requiring the
program to satisfy the norms when executed in any situation:

D |= (∀s′, s).Do(δ, s′, s) ⊃ compliantN(s).

On the other hand, a weak version of compliance can be simply defined by
just requiring the program to have at least one compliant execution trace:

Making Golog Norm Compliant 281

D |= (∃s).Do(δ, S0, s) ∧ compliantN(s).

In terms of analyzing the norms themselves, a problem that is often of inter-
est is that of checking whether two sets of norms are equivalent or if one set is
subsumed by another. These problems can be defined in terms of classical en-
tailment in our language. Consider two sets of norms N1, N2 with corresponding
definitions of compliance denoted by compliantN1(·) and compliantN2(·) and
defined by an equivalence of the form (1).

Definition 2. We say that the sets of norms N1, N2 are equivalent (wrt D) iff

D |= (∀s).compliantN1(s) ≡ compliantN2(s).

Intuitively, the norms are said to be equivalent if the sequences that are compli-
ant under one set of norms are exactly the same sequences that are compliant
under the other set of norms.

Definition 3. We say that the set of norms N1 subsumes the set of norms N2

(wrt D) iff

D |= (∀s).compliantN1(s) ⊃ compliantN2(s).

As expected, two sets of norms N1, N2 are equivalent if they coincide, in all
situations, in designating the same actions as forbidden or obligatory. This is
established formally as follows.

Proposition 1. Let N1 be the norms Φ1
F (a, s) → F a and Φ1

O(a, s) → F a
and N2 be the norms Φ2

F (a, s) → F a and Φ2
O(a, s) → F a.

Then N1 and N2 are equivalent (wrt D) iff

D |= (∀a, s).[Φ1
F (a, s) ≡ Φ2

F (a, s)] ∧ [Φ1
O(a, s) ≡ Φ2

O(a, s)].

Another problem of interest is checking whether a set of norms is consistent in
some sense. Perhaps the simplest notion of consistency would be to define it as
existence of compliant sequences. That is, a set of norms N is inconsistent iff

D |= (∀s).S0 � s ⊃ ¬compliantN(s). (2)

But this is probably too strong to be very useful. Perhaps a more useful notion
would be one requiring only those sequences that are actually physically possible
for the agent, to be compliant. This is expressed as follows:

D |= (∀s).[S0 � s ∧ executable(s)] ⊃ ¬compliantN(s)

where executable(s) is defined in terms of Poss as described in Section 2.

282 A. Gabaldon

Another possibly useful notion is that of consistency with respect to an agent’s
goal, as denoted by a formula Goal(s). In this case we might say that a set of
norms N is inconsistent with respect to goal Goal(s) iff

D |= (∃s)Goal(s) ∧ (∀s)[Goal(s) ⊃ ¬compliantN(s)].

Intuitively, this says that a set of norms is inconsistent with respect to a goal
if the goal is achievable but it is not possible to achieve it and satisfy the norms
at the same time.

Other properties can be defined in a similar fashion in terms of logical entail-
ment from a background theory D. For example, a notion of two sets of norms
being equivalent with respect to a goal, etc.

3.2 Ought-to-Be Norms

Ought-to-be norms specify situations in which a state condition, instead of an
action as in ought-to-do norms, is forbidden or obligatory. We write such laws
in the following form: Φ(t) → F Ψ(v).

For example: when a user is logged out, no processes owned by the user should
be executing:

loggedOut(usr) ∧ owner(usr, proc) → F executing(proc)

Since negation can appear in front of Ψ(t), we do not use the obligation symbol
O in these norms. Also, we understand these laws as dynamic, not static laws.
That is, the condition Φ(t) is intended to be evaluated in the “current” state
and the condition Ψ(v) evaluated in the next state.

These norms cannot be put together into a normal form as in the case of ought-
to-do norms, so we simply put them together as a conjunction of implications
relative to a situation and its predecessor situation.

Compliance of a sequence is then defined as follows:

compliant(s) ≡ s = S0 ∨
(∃a, s′).s = do(a, s′) ∧ compliant(s′) ∧∧

i=1,...,n(∀)[Φi(ti, s
′) ⊃ ¬Ψi(vi, s)].

Having defined compliant(s) this way for ought-to-be norms, the formal def-
initions of program compliance and norm equivalence, subsumption and consis-
tency are exactly as for ought-to-do norms.

3.3 Deadlines

Consider an abstract form of deadline specifying that some condition ψ is for-
bidden before condition ϕ, written as F ψ ≺ ϕ (deadlines like this are discussed
in [15]). Norms involving deadlines would then take the form (to simplify the
presentation, we assume all formulae have the same terms x as arguments):

Making Golog Norm Compliant 283

φ(x) → F ψ(x) ≺ ϕ(x). (3)

For example, first-year students are not allowed to registered before the session
starts:

firstyear(st) → F registered(st) ≺ sessionstart.

Not surprisingly, compliance with a deadline is slightly more involved since it
imposes conditions over a full sequence of actions. For the sake of clarity we will
define it only for a single deadline of the form (3). The definition basically says
that a sequence complies with a deadline if after any state where φ holds, either
ψ never holds afterwards or ϕ holds at some point and ψ does not hold before
that.

compliant(s) ≡
(∀)(∀s1).[s1 � s ∧ φ(x, s1)] ⊃{

(∀s2)[s1 � s2 � s ⊃ ¬ψ(x, s2)] ∨
(∃s2).s1 � s2 � s ∧ ϕ(x, s2) ∧ (∀s3).[s1 � s3 � s2] ⊃ ¬ψ(x, s3)

}

As before, the definitions of program compliance and norm equivalence, sub-
sumption and consistency apply to deadlines using the above definition of
compliance(s).

4 Internalizing Norms

The straight forward way of enforcing a set of norms on an agent is to check
that the norms are satisfied every time the agent chooses an action to execute
next. That is, when an agent considers whether or not to execute an action α in
situation σ, in addition to checking that α is physically possible, it would also
check whether compliant(do(α, σ)) holds.

An alternative way of enforcing the norms is to incorporate the norms into
the agent’s dynamic world description D. Once the agent has “internalized” the
norms into D, it would behave in a norm compliant way.

One advantage of internalizing the norms is that, especially in the case of
deadlines, compliance becomes a local check involving only the current state
and the action being considered. There is no need to check conditions in the
resulting state after executing an action nor on past states as required by the
definition of compliance for deadlines. In implementations that update the belief
base after each action is performed, internalizing the norms has the advantage
that computing the tentative new state for each considered action, in order to
check norm compliance, becomes unnecessary. And of course there is no need to
store past states either.

4.1 Ought-to-Do Norms

Since we take norms as constraints on the behavior of an agent, their practi-
cal effect is to render some actions non-executable. The natural way then to

284 A. Gabaldon

incorporate a set of norms into the agent’s domain description is in the form a
additional preconditions in the APAs.

Consider the APA of an action type A(x):

Poss(A(x), s) ≡ ΠA(x, s).

The simplest way to incorporate a set of ought-to-do norms is by adding
conditions saying a) A(x) is not one of the forbidden actions, and b) if there is
any obligatory action at all, it is A(x). Assuming the set of norms are in the
forms ΦF (a) → F a and ΦO(a) → O a, we obtain the following modified APA
for A(x):

Poss(A(x), s) ≡ ΠA(x, s) ∧
(∀a)[ΦF (a, s) ⊃ a �= A(x)] ∧
(∀a)[ΦO(a, s) ⊃ a = A(x)].

The additional preconditions added to each APA are the same except for the
A(x) term appearing in the consequent of the implications.

A more “efficient” way of incorporating the norms into the APAs, however,
follows from the observation that each APA describes the preconditions of one
specific action type A(x). So any laws that forbid other actions are in fact
irrelevant with respect to A(x).

Taking then only those norms that forbid A(x), if any, put in the form
ΦA(x) → F A(x), as derived in Section 3, we modify the APA for A(x)
as follows:

Poss(A(x), s) ≡ ΠA(x, s) ∧
¬ΦA(x, s) ∧
(∀a)[ΦO(a, s) ⊃ a = A(x)].

In this case the additional precondition ¬ΦA(x, s) is specific to the action
type A(x) so it varies with each APA.

Once the norms have been “compiled” into the underlying action theory D, all
programs will be compliant with the norms. Formally, let D be the background
theory of an agent, N be a set of norms and DN be the theory that results from
applying the above transformation to D with respect to N .

Proposition 2. For every program δ, DN |= (∀s).Do(δ, S0, s) ⊃ compliantN(s).

In other words, a sequence of actions is now considered to be a “legal” execution
trace of the program δ only if it satisfies the norms.

Note that if N is inconsistent, e.g. as in (2), then δ has no legal execution
traces, i.e. ¬(∃s)Do(δ, S0, s), and the implication in Prop. 2 is vacuously satisfied.
If one does not want to count such a program as compliant, one can simply
modify Def. 1 by adding the condition for weak compliance as a conjunct and
define δ as compliant if it has at least one legal execution trace.

Making Golog Norm Compliant 285

4.2 Ought-to-Be Norms

In the case of an ought-to-be norm of the form Φ(t) → F Ψ(v), when the agent
is considering an action α in a situation σ, it needs to check Φ(t) with respect to
σ and Ψ(v) with respect to do(α, σ). However, for the reasons mentioned earlier,
we want to incorporate norms in terms of conditions on the current situation
and the action under consideration. Moreover, according to the definition of
APAs, the only term of sort situation allowed to appear in the formula on the
right-hand-side of an APA is the variable s.

Fortunately, there is a mechanism that will allow us to compute a precon-
dition relative to situation s from a condition relative to situation do(A(x), s).
This mechanism is the regression operator R from [16,13]. Roughly, this oper-
ator takes a formula Γ (do([α1, . . . , αn], S0)) relative to a sequence of actions
do([α1, . . . , αn], S0)) and computes a formula Γ ′(S0) relative to S0 that is equiv-
alent to the original formula with respect to the background theory D. The com-
putation is purely syntactic and works by iteratively replacing each occurrence
of a fluent F (t, do(α, σ)) with the formula ΦF (t, α, σ) given a corresponding SSA
F (x, do(a, s)) ≡ ΦF (x, a, s). For details on operator R, please refer to [16,13].

Consider any action type A(x) and its corresponding APA

Poss(A(x), s) ≡ ΠA(x, s)

Let us now describe a procedure for incorporating a norm Φ(v) → F Ψ(v) as
additional preconditions.

1. Restore s as the situation argument in the premise: Φ(t, s).
2. Restore do(A(x), s) as the situation argument in Ψ(v) to obtain:

Ψ(v, do(A(x), s))
3. Apply one regression step to the formula Ψ(v, do(A(x), s)) to obtain a for-

mula ΨA(v,x, s) relative to s, that is, let

ΨA(v,x, s) = R1[Ψ(v, do(A(x), s))].

4. Take the formulae from steps 1 and 3 and put them together in an implication
as follows:

Φ(t, s) ⊃ ¬ΨA(v,x, s)

5. Finally, include the universal closure of the implication as an additional
precondition in the APA for action A(x):

Poss(A(x), s) ≡ ΠA(x, s) ∧ (∀)[Φ(t, s) ⊃ ¬ΨA(v,x, s)].

The right-hand-side of the modified APA mentions only one situation term, s,
as required. Note also that the subformula ΨA(v,x, s) obtained by regression is
specific to the action type A(x). This is important because in many cases the
result is that the subformula can be substantially simplified, as illustrated in the
examples below. In fact, when a norm is completely irrelevant to a particular

286 A. Gabaldon

action type, the subformula frequently simplifies into a formula which is clearly
valid and can be removed altogether.

As an example, consider a robot that lives in a university classroom building
and has the norm

lecture(rm) → F at(rm).

saying that if there is a lecture occurring in a room, it should not be there.
Suppose that it has actions enter(rm) for entering a room and the action wait,
as a representative of other actions that are not relevant to the location of the
robot. The latter actions are interesting to consider since on the surface they
appear irrelevant to the law. Let the corresponding APAs be:

Poss(enter(x), s) ≡ ¬at(x, s) ∧ nextto(door(x), s).

Poss(wait, s) ≡ True.

Let the SSA of fluent at(x, s) be as follows:

at(x, do(a, s)) ≡ a = enter(x) ∨ at(x, s) ∧ ¬(∃y)a = enter(y).

Let us apply the above procedure to incorporate the law into the APAs. Start-
ing with action enter(x), we compute the regression of at(rm, do(enter(x), s)):

R[at(rm, do(enter(x), s))] =
enter(x) = enter(rm) ∨ at(rm, s) ∧ ¬(∃y)enter(x) = enter(y).

Since ¬(∃y)enter(x) = enter(y) is unsatisfiable, the resulting formula can be
simplified to enter(x) = enter(rm). By UNA on actions, this can be further sim-
plified to x = rm. Thus the procedure yields the implication (∀rm)[lecture(rm, s)
⊃ x �= rm] which can be further simplified to ¬lecture(x, s). Adding this to the
preconditions of enter(x) we obtain the following APA:

Poss(enter(x), s) ≡ ¬at(x, s) ∧ nextto(door(x), s) ∧ ¬lecture(x, s).

Intuitively, from the general norm we have obtain the additional precondition
specific to the enter action saying that there should not be a lecture in progress
in the room to be entered.

Consider now the wait action. Following the procedure, we compute the re-
gression of at(rm, do(wait, s)):

R[at(rm, do(wait, s))] =
wait = enter(rm) ∨ at(rm, s) ∧ ¬(∃y)wait = enter(y).

By UNA on actions, wait �= enter(y) for any y, so the resulting formula can be
simplified to at(rm, s). So the procedure yields the implication lecture(rm, s) ⊃
¬at(rm, s), and thus we obtain the following APA for the action wait:

Poss(wait, s) ≡ lecture(rm, s) ⊃ ¬at(rm, s)

Making Golog Norm Compliant 287

which intuitively says that the agent can wait as long as it is not in a room
where there is a lecture in progress. Exactly the same result would be obtained
for similar actions that are not relevant to the location of the agent, such as
paint(obj), pickup(book), etc. In other words, if the agent happens to be in
a room where a lecture has started, the norm imposes the obligation on the
agent to take immediate action to change location, by rendering all other actions
impossible.

As in the case of ought-to-do norms, the above procedure yields an action
theory DN such that executing a program will now always result in a norm
compliant sequence of actions, as formally stated in Proposition 2.

4.3 Deadlines

Let us finally look at how we might incorporate deadlines into an agent’s back-
ground theory. As for the other types of norm, the aim is to extract additional
preconditions from deadlines and add them to the APAs. The complication in the
case of deadlines is that they are not local but may refer to situations arbitrarily
far from the current one. In order to access those situations while satisfying the
requirement of basic action theories that axioms only refer to the current situa-
tion, we employ a technique that consists in adding a small number of auxiliary
fluents to keep track of whether certain conditions have been satisfied in a pre-
vious situation. This approach has been employed before in other contexts such
as DB integrity constraints, automated planning and evolving knowledge bases
[17,18,19,20,21,22].

For a deadline of the form φ(z) → F ψ(z) ≺ ϕ(z) it suffices to add one
auxiliary fluent Fφ(z, s) with the following corresponding SSA:

Fφ(z, do(a, s)) ≡ [φ(z, do(a, s)) ∨ Fφ(z, s)] ∧ ¬ϕ(z, do(a, s)).

Intuitively, Fφ(z, s) holds in s if the deadline is active in s.
The above axiom is actually not yet in the required form of an SSA because

of the subformulae on the right-hand-side that have argument do(a, s). This
needs to be fixed by applying one regression step using operator R on those
subformulae.

Having applying this procedure to a deadline, we add the corresponding aux-
iliary fluent Fφ and its SSA to the background theory. Then we modify the APA
of each action type A(x) by adding an additional precondition as follows:

Poss(A(x), s) ≡ ΠA(x, s) ∧
(∀z)Fφ(z, s) ⊃ [¬ψ(z, do(A(x), s)) ∨ ϕ(z, do(A(x), s))]

Note that this again requires applying regression in order to obtain a legit
APA. Moreover, since regression is applied for the specific action type A(x), it
is possible that the resulting formulae can be substantially simplified as was the
case with the ought-to-be norms. The resulting theory DN yields a result similar
to that in Proposition 2.

288 A. Gabaldon

5 Related Work

In addition to work already mentioned, we discuss here some other related work.
Governatori and Rotolo [23,24] present a logical language called Process Com-

pliance Language (PCL) which has deontic operators of several kinds: punctual
obligation, maintenance obligation and achievement obligation. In [23], an algo-
rithm for checking compliance of a business process is given. The algorithm takes
an execution trace of the process, described by a Petri Net, and checks if norms
are satisfied. While the norms are formalized in PCL, the process is described
as a Petri Net and the algorithm is extra-logical. This differs from our approach
where the norms, the process (program) and compliance is all expressed in the
same logical language. Another difference is that PCL is a much richer norm
language. In [24], they show that in addition to expressing norms, PCL can be
used to describe the control flow of business processes using the deontic features
of PCL. Since PCL specifications can be executed by a rule engine, expressing
business processes in terms of PCL allows for the execution of business pro-
cesses under PCL norms on the same rule engine. Similarly, our work is based
on expressing both processes (Golog programs) and norms in the same language
(the Situation Calculus), which is an advantage over approaches using different
formalisms for each task. Also related is earlier work by this group on business
processes and business contracts [25,26].

In [27], Meneguzzi and Luck present an approach to adjusting the behavior
of an agent to newly accepted norms. Similar to ours, the approach is based on
modifying the agent’s behavior by changing the implementation of such behav-
ior. The main difference with our approach is that they apply the modifications
to the programs in the plan library, e.g. by removing plans that include a forbid-
den action. These plans are then restored when the corresponding norm expires
and the action is no longer forbidden. In our case, the modification is done in
the underlying primitive action theory, not at the plan library level. This has
several advantages: 1) If a program is non-deterministic, a norm may make some
execution traces illegal while others remain legal. In our case, after modifying
the underlying action theory, executing the program would result only in legal
execution traces but the program remains the same. In their approach, the only
choice seems to be to remove the program altogether. 2) Whether an action has
a forbidden effect or not may depend on the state where the action is executed,
and in turn the same applies for an agent program. In our approach, the agent
would still be able to execute a program in a situation that does not lead to
a forbidden state, even if the plan would violate a norm if executed in another
context. Again, in their case the only choice is to remove the program altogether.
On the other hand, they consider the interesting case of accepting new norms at
run-time, which requires the ability to abandon programs already in execution
or in the intention base.

The recent work of van Riemsdijk et al. [28] also deals with norms in multi-
agent systems. Their main concern is to formalize norms present in the MOISE+

Making Golog Norm Compliant 289

organizational modeling language [29]. The work is complementary to ours since
we consider how to ensure an agent complies with a set of accepted norms, with-
out considering the source of the norms, which could very well be an organization
such as those modeled in MOISE+. The approach in [28] is to formalize norms
in LTL, which has a close correspondence to the language used here. This means
those norms would not be too difficult to integrate with our approach.

There is also a large amount of related work on verifying that an agent con-
forms to an interaction protocol. We discuss some of that work next.

In [30], Endriss et al. consider the problem of checking that communicating
agents conform to a public dialog protocol. The approach is based on abductive
logic programming and protocols are formalized as integrity constraints which
“filter out” illegal dialog moves. This allows a simple way to enforce a protocol:
add the protocol to the agent’s knowledge base. The analogous way to enforce
prohibitions in our framework would be to modify the definition of the relation
Do(δ, s′, s) to include compliant(s) as a condition on s. This would be obviously
correct. But contrast that with our proposed procedure for internalizing norms:
in the former approach, all the norms have to be checked for every action the
agent intends to execute next. In the latter approach, only those norms which are
actually relevant to a particular action need to be checked, and in a simplified
form. In a sense, the process of internalizing the norms computes what norms
are relevant and simplifies them for each action.

Baldoni et al. [31,32] consider a-priori verification of conformance of an
agent with a role in an interaction protocol. The main concern there is to guar-
antee interoperability: that the system will function correctly provided agents
conform to their roles in the protocol. The approach is base on finite state
automata.

Singh et al. [33,34,35] also look at the problem of conformance with an inter-
action protocol, but their approach is based on commitments. In [33], compliance
with commitments is reduced to model checking CTL formulae against a model
of the agents’ interactions. Thus it roughly corresponds in our framework to
checking compliant(s) on an execution trace s. In [35], using a notion of run
subsumption, an agent is said to conform to a protocol if the execution traces
of its program are subsumed by the execution traces of the protocol. While we
do not consider it here, run subsumption conformance is similar to norm sub-
sumption (see Def. 3) so it seems it would not be too difficult to define a similar
notion.

Finally, Chesani et al. [36] formalize a form of run-time conformance check-
ing based on commitments using a reactive version of the Event Calculus. The
approach allows “full” and “partial” violations where the latter allow the agent
to fulfil a commitment after the deadline by paying a penalty.

Approaches to protocol conformance are mainly concerned with guaranteeing
global interoperability and hence take an external view of agents. This is com-
plementary to our work here where the problem is to ensure compliance with a
set of norms by incorporating them into the agent.

290 A. Gabaldon

6 Conclusions

In this work we have considered how to express several types of norms, namely
ought-to-do, ought-to-be and a form of deadline, and how to incorporate them
into the framework of Golog. We define a notion of a sequence of agent actions
complying with a set of norms and a formal definition of an agent’s program
complying with the norms. We also describe notions of equivalence between norm
systems with respect to an agent’s background theory in the Situation Calculus,
as well as notions of norm system subsumption and consistency. We have also
shown procedures for incorporating a set of norms into the formalization of the
primitive actions of an agent so that after the norms have been thus internalized,
the agent is guaranteed to behave in a norm compliant manner.

This is a first approach at the problem of regulating the behavior of a Golog
agent using a set of norms, so we make many strong simplifying assumptions. For
example, we assume that the agent has accepted the norms and will not violate
them. This should be extended to allow the agent to violate some of the norms
if desirable, and perhaps provide also a penalty mechanism. We would also like
to look at more complex forms of deadline involving explicit time, especially
since there is already a temporal extension of Golog [37]. Further work is also
necessary on the multi-agent aspect of this work.

References

1. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line
design. Artificial Intelligence 73(1-2), 231–252 (1995)

2. Dastani, M., Grossi, D., Meyer, J.J.C., Tinnemeier, N.A.M.: Normative multi-agent
programs and their logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008.
LNCS, vol. 5605, pp. 16–31. Springer, Heidelberg (2009)

3. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative
multiagent systems. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) Ninth In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 255–266 (2004)

4. Sergot, M.: Norms, action and agency in multi-agent systems. In: Governatori,
G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 2–2. Springer, Heidelberg
(2010)

5. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Min-
imality and simplicity. Artificial Intelligence 119(1-2), 61–101 (2000)

6. Craven, R., Sergot, M.J.: Agent strands in the action language nC+. Journal of
Applied Logic 6(2), 172–191 (2008)

7. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic
programming language for dynamic domains. Journal of Logic Programming
31(1-3), 59–83 (1997)

8. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford Uni-
versity (1963); Reprinted in Semantic Information Processing (M. Minsky ed.),
pp. 410–417. MIT Press, Cambridge (1968)

9. De Giacomo, G., Lesperance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121, 109–169
(2000)

Making Golog Norm Compliant 291

10. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI 2000), Austin, Texas, pp. 355–362
(2000)

11. De Giacomo, G., Levesque, H.J.: An incremental interpreter for high-level programs
with sensing. In: Logical Foundations for Cognitive Agents: Contributions in Honor
of Ray Reiter, pp. 86–102. Springer, Heidelberg (1999)

12. Reiter, R.: The frame problem in the situation calculus: A simple solution (some-
times) and a completeness result for goal regression. In: Lifschitz, V. (ed.) Artifi-
cial Intelligence and Mathematical Theory of Computation, pp. 359–380. Academic
Press, London (1991)

13. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

14. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of arti-
ficial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp.
463–502. Edinburgh University Press (1969); Also appears in Nilsson, N., Webber,
B.(eds.) Readings in Artificial Intelligence. Morgan-Kaufmann, San Francisco

15. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.C.: Meeting the deadline: Why,
when and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C. (eds.)
FAABS 2004. LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

16. Pirri, F., Reiter, R.: Some contributions to the metatheory of the Situation Calcu-
lus. Journal of the ACM 46(3), 325–364 (1999)

17. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems 20(2), 148–186 (1995)

18. Gabaldon, A.: Compiling control knowledge into preconditions for planning in the
situation calculus. In: Gottlob, G., Walsh, T. (eds.) 18th International Joint Con-
ference on Artificial Intelligence (IJCAI 2003), pp. 1061–1066 (2003)

19. Gabaldon, A.: Precondition control and the progression algorithm. In: Dubois, D.,
Welty, C., Williams, M.A. (eds.) 9th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2004), pp. 634–643 (2004)

20. Bienvenu, M., Fritz, C., McIlraith, S.A.: Planning with qualitative temporal pref-
erences. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Tenth International
Conference on Principles of Knowledge Representation and Reasoning, pp. 134–
144 (2006)

21. Alferes, J.J., Gabaldon, A., Leite, J.A.: Evolving logic programming based agents
with temporal operators. In: IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT 2008), pp. 238–244. IEEE,
Los Alamitos (2008)

22. Alferes, J.J., Gabaldon, A., Leite, J.A.: Evolving logic programs with temporal
operators. In: Balduccini, M., Son, T. (eds.) Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 193–212.
Springer, Heidelberg (2011)

23. Governatori, G., Rotolo, A.: A conceptually rich model of business process com-
pliance. In: Link, S., Ghose, A. (eds.) 7th Asia-Pacific Conference on Conceptual
Modelling (APCCM 2010), vol. 110, pp. 3–12 (2010)

24. Governatori, G., Rotolo, A.: Norm compliance in business process modeling.
In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 194–209. Springer, Heidelberg (2010)

292 A. Gabaldon

25. Padmanabhan, V., Governatori, G., Sadiq, S.W., Colomb, R., Rotolo, A.: Process
modelling: the deontic way. In: Stumptner, M., Hartmann, S., Kiyoki, Y. (eds.)
3rd Asia-Pacific Conference on Conceptual Modelling (APCCM 2006), vol. 53,
pp. 75–84 (2006)

26. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between busi-
ness processes and business contracts. In: 10th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), pp. 221–232. IEEE
Computer Society, Los Alamitos (2006)

27. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009),
pp. 177–184 (2009)

28. van Riemsdijk, M.B., Hindriks, K.V., Jonker, C.M., Sierhuis, M.: Formalizing or-
ganizational constraints: a semantic approach. In: van der Hoek, W., Kaminka,
G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 823–830 (2010)

29. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels.
International Journal of AOSE 1(3-4), 370–395 (2007)

30. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for logic-based
agents. In: Gottlob, G., Walsh, T. (eds.) 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), pp. 679–684 (2003)

31. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Dan, A., Lamersdorf,
W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 339–351. Springer, Heidelberg (2006)

32. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,
interoperability, and conformance in interaction protocols and service choreogra-
phies. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.) 8th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), pp. 843–850 (2009)

33. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols.
Autonomous Agents and Multi-Agent Systems 2(3), 217–236 (1999)

34. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commit-
ments in business processes. In: Holte, R.C., Howe, A. (eds.) 22nd AAAI Conference
on Artificial Intelligence (AAAI 2007), pp. 1328–1333. AAAI Press, Menlo Park
(2007)

35. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, cov-
erage, and interoperability. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS
(LNAI), vol. 4327, pp. 1–15. Springer, Heidelberg (2006)

36. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the
reactive event calculus. In: Boutilier, C. (ed.) 21st International Joint Conference
on Artificial Intelligence (IJCAI 2009), pp. 91–96 (2009)

37. Reiter, R.: Sequential, temporal GOLOG. In: Cohn, A., Schubert, L. (eds.) Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the 6th Inter-
national Conference (KR 1998), pp. 547–556. Morgan Kaufmann, San Francisco
(1998)

Probabilistic Action and Deontic Logic
(Invited Talk)

Jan Broersen

Department of Information and Computing Sciences, Utrecht University,
The Netherlands

Deontic logic aims at formally modeling the reasoning with norm-related modal-
ities. Von Wright recognized that the obligation modality bears a resemblance
to modal necessity and the permission modality to modal possibility, which re-
sulted in his Standard Deontic Logic [9]. SDL is the modal logic KD. Since its
conception, SDL has drawn a lot of criticism: e.g., Chisholm [2] argued that
it was unfit to represent certain types of conditional obligation, and Makinson
[5] and van der Torre [6] emphasized that deontic logic is much more naturally
studied as a process of iterative detachment relative to explicitly represented
normative systems; a view that does not fit well with the modal logic modeling
proposed by Von Wright.

One way in which SDL, but also most other systems of deontic logic, falls
short is the treatment of action with uncertain, probabilistic or attempted ef-
fects. Yet it is very natural, and sometimes even crucial for rational decision
making, to reason, for instance, about being forbidden to take certain risks, be-
ing obliged to try something, or to avoid being liable for an attempted crime (see
[10] for an excellent philosophical discussion of the role of attempt in criminal
law). In our view, the modalities involved in these cases can all be viewed as
applying to probabilistic action, that is, action with a certain chance of success.
In particular, we suggest to model attempts as actions maximizing subjective
probabilities of action success [1]. This modeling of attempt is quite different
from other approaches in the literature. Placek [7] aims to define attempt en-
tirely in terms of objective, non-mental modalities. Vanderveken [8] does take a
subjective stance, but does not use probabilities or any other means to represent
subjective epistemic attitudes. Finally, Herzig and Lorini [4] see attempt as an
internal mental action preceding the objective external action. The first ques-
tion we will discuss is how the obligation to attempt an action can be suitably
modeled in a probabilistic stit framework extended with deontic modalities.

Recently Harel en Porat [3] put forward the issue of what we might rephrase as
‘the probabilistic aggregation of blame’. They consider the question whether or
not an agent who committed criminal action p with probability 0.9 and criminal
action q also with probability 0.9, should be considered as having done wrong
at least either p or q with a probability of 0.99. For instance, if the certainty
threshold for convicting the agent of a crime is 0.95, then we could say that
although we cannot convict the agent for either seeing to it that p or seeing to
it that q, we can convict the agent for the non-deterministic action of seeing to

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 293–294, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

294 J. Broersen

it that p ∨ q1. The laws in our legal systems do not allow for an accumulation
of blame in this way. The second question we address is whether or not the
semantics of deontic modalities like obligation and prohibition is vulnerable to
similar effects in case they pertain to probabilistic action.

References

1. Broersen, J.: Modeling attempt and action failure in probabilistic stit logic. In:
Proceedings of Twenty-Second International Joint Conference on Artificial Intelli-
gence, IJCAI 2011 (2011)

2. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24,
33–36 (1963)

3. Harel, A., Porat, A.: Aggregating probabilities across cases: Responsibility for un-
specified offences. Minnesota Law Review 94, 261–310 (2009)

4. Lorini, E., Herzig, A.: A logic of intention and attempt. Synthese 163(1), 45–77
(2008)

5. Makinson, D.: On a fundamental problem of deontic logic. In: McNamara, P.,
Prakken, H. (eds.) Norms, Logics and Information Systems. New Studies on De-
ontic Logic and Computer Science, pp. 29–53. IOS Press, Amsterdam (1998)

6. Makinson, D., van der Torre, L.W.N.: Input-output logics. Journal of Philosphical
Logic 29, 383–408 (2000)

7. Placek, T.: On attempting. In: Logica Yearbook 2009, pp. 155–161. College
Publications, London (2010)

8. Vanderveken, D.: Attempt, success and action generation: A logical study of inten-
tional action. In: Vanderveken, D. (ed.) Logic, Thought and Action, pp. 316–342.
Springer, Heidelberg (2005)

9. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)
10. Yaffe, G.: Attempts. Oxford University Press, Oxford (2010)

1 We rephrase Harel en Porat’s problem here in terms of these stit sentences; Harel
and Porat do not speak of non-deterministic actions but of ‘unspecified offences’.

A Dynamic Logic of Institutional Actions

Andreas Herzig1, Emiliano Lorini1, and Nicolas Troquard2

1 University of Toulouse, CNRS, IRIT, France
2 Laboratory of Applied Ontology, ISTC-CNR, Italy

Abstract. We propose a logical framework to represent and reason about some
important aspects of a theory of institutional action: (1) the distinctions between
physical facts and actions and institutional facts and actions; (2) the distinction
between causality and ‘counts-as’; (3) the notion of institutional power. Tech-
nically, our contribution consists in extending a dynamic logic of propositional
assignments with constructions allowing to express that an agent plays a given
role; that a physical action causes another physical action; that a physical action
performed by an agent playing a given role counts as an institutional action.

1 Introduction

We present a logical framework in which we can represent and reason about some im-
portant aspects of a theory of institutional action: (1) the distinctions between physical
facts and actions and institutional facts and actions; (2) the distinction between causal-
ity and ‘counts-as’; (3) the notion of institutional power. Our framework is that of a
dynamic logic of propositional assignments in the sense of [32,33,6,2]. In preceding
work [14] we have shown that this logic allows to reason about agent capabilities in
the sense of coalition logic [26] and coalition logic of propositional control [16,15]. We
here refine our account by distinguishing ‘brute’, physical facts from institutional facts.
This leads us to the distinction between brute actions (changing brute facts) from insti-
tutional actions (changing institutional facts). We moreover add constructions allowing
to express that an agent plays a given role; that a physical action causes another phys-
ical action (e.g. Jack’s action of shooting Joe causes Jack’s action of killing Joe); that
a physical action performed by an agent playing a given role counts as an institutional
action (e.g. an agent’s act of performing certain gestures during the wedding ceremony
while playing the role of priest counts as the act of marrying the couple). This provides
a full-blown account of normative systems.

The paper is organized as follows. Section 2 establishes the conceptual basis of the
logical analysis developed in the rest of the paper, providing a detailed discussion of
the philosophical theory of institutional action developed by Goldman, Searle and other
scholars, and it explains how the logic presented in the paper takes into account its
different dimensions and aspects. Section 3 presents the syntax and the semantics of
the logic, while Section 4 provides a complete axiomatization as well as a complexity
result for the satisfiability problem. In Section 5 the logic is exploited to formalize the
concept of institutional power. In Section 6 we discuss related works in the area of logic
of normative systems. We finally conclude in Section 7 by discussing some perspectives
for future work.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 295–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

296 A. Herzig, E. Lorini, and N. Troquard

2 Institutional Actions: Conceptual Analysis

Some background and clarifications of the notion of institutional action are needed
in order to ground the logical analysis presented in the rest of the paper on a solid
conceptual basis.

Physical facts and actions vs. institutional facts and actions. According to several au-
thors working in legal theory and in the field of normative multiagent systems (MAS)
(see e.g. [1,3]), normative systems are based both on regulative as well as constitutive
(i.e., non-regulative) components. That is, normative systems are not only defined in
terms of sets of permissions, obligations, and prohibitions (i.e. norms of conduct) but
also in terms of rules which specify and create new forms of behavior and concepts.
According to Searle for instance “[. . .] regulative rules regulate antecedently or inde-
pendently existing forms of behavior [. . .]. But constitutive rules do not merely regulate,
they create or define new forms of behavior” [29, p. 33]. In Searle’s theory [29,30], con-
stitutive rules are expressed by means of ‘counts-as’ assertions of the form “X counts as
Y in context C” where the context C refers to the normative system in which the rule is
specified. Constitutive rules relate “brute” physical facts and actions with institutional
facts and actions. For example, in the context of the US federal reserve, receiving a
piece of paper with a certain shape, color, etc. (a physical action) counts as receiving a
certain amount of money (an institutional action); or in the context of Catholic Church
the priest’s action of performing certain gestures during the wedding ceremony (which
is a physical action) counts as the act of marrying the couple (which is an institutional
action). Although Searle’s counts-as relation is between objects in general (such as a
piece of paper counting as an amount of money), in this work we only consider the
counts-as’ relation between actions.

As pointed out by [17], the counts-as relation may also relate two institutional ac-
tions. For example, in the context of chess, the action of checkmating the opponent (an
institutional action) counts as the action of winning the game (an institutional action).

Causality vs. counts-as. In his seminal work on the philosophical theory of action,
Goldman studied a fundamental relation between actions and events of the form “ac-
tion α is done by doing a different action β” [8]. The word “by” expresses a relation
between actions which Goldman calls generation. This means that an action can be
performed by way of one or more actions. According to Goldman’s theory, there are
actions which have a deep recursive structure. In fact, there could be an action α done
by doing an action β which in turn is done by doing a further action γ and so on. Such
a decomposition of an agent’s action α stops at the level of basic actions. Basic actions
therefore represent the agent’s only direct intervention in the process of doing α. As
Davidson puts it, “the rest is up to nature” [5].1 By way of example, consider Jack’s
action of killing Joe. Jack kills Joe by shooting him and Jacks shoots Joe by pulling
the trigger of the gun. Jack’s bodily movement of pulling the trigger (which consists in
Jack’s moving his forefinger in a certain way) is a basic action, as it is the only part of
the action of killing Joe which is directly controlled by Jack.

1 See [19] for a formal analysis of basic actions in dynamic logic.

A Dynamic Logic of Institutional Actions 297

Goldman’s theory opposes “causal generation” to “conventional generation”. The
latter can be identified with Searle’s counts-as relation. According to Goldman, physi-
cal actions are causally generated, that is, they just consist in an agent bringing about
(i.e. causing) a certain state of affairs to be true. On the other hand, institutional ac-
tions are conventionally generated, by which he meant that actions such as signaling
before making a turn, and checkmating one’s opponent, exist in virtue of rules or con-
ventions relating physical actions with institutional effects. For example, in the sentence
“a player wins a chess game against his opponent by checkmating him” the word “by”
expresses a relation of conventional generation, that is, the action of checkmating the
opponent counts-as the action of winning the chess game. On the contrary, in the sen-
tence “Jack kills Joe by shooting him” the word “by” expresses a relation of causal
generation, that is, Jack’s action of shooting Joe causes the action of killing Joe (i.e. the
action of making Joe dead). To carry the example further, the action of killing Joe might
conventionally generate the action of murdering Joe (which is an institutional action).

We here explore Goldman’s view. We assume that the causal relation and the counts-
as’ relation between actions are ontologically different for at least two reasons. While
the former relates a physical action to another physical action, the latter relates a phys-
ical action to an institutional action, or an institutional action to another institutional
action. Moreover, while the causal relation is merely a relation between physical ac-
tions performed by an agent, counts-as’ is a relation between actions performed by an
agent playing a certain role in a given institutional context. For example, in the institu-
tional context of Catholic Church, an agent’s act of performing certain gestures during
the wedding ceremony while playing the role of priest counts as the act of marrying
the couple. As the next paragraph highlights, this aspect of counts-as is fundamental to
understand the notion of institutional power.

Institutional power. Some legal and social theorists [4,29,12] as well as some logi-
cians [17,20,22] have emphasized the tight relationship between counts-as and the no-
tion of institutional power. According to these authors, there exists a specific kind of
norms called norms of competence whose function in a legal system is to assign in-
stitutional powers to the agents playing certain roles within a given institution.2 Such
power-conferring norms should not be reduced to norms of conduct such as obligations,
prohibitions, commands and permissions. On the contrary, they are expressed by means
of counts-as assertions relating physical or institutional actions to institutional actions.
They have a fundamental function in normative and legal systems since they provide
the criteria for institutional change, that is, they provide the criteria for the creation and
modification of institutional facts (e.g. agent i and agent j are married, this house is i’s
property, etc.). In other words, according to these authors, saying that “an agent playing
the role r has the institutional power to do the institutional action α by doing action β”
just means that “an agent’s performance of action β while playing the role r counts as
the agent’s performance of the institutional action α”. For example, “an agent playing
the role of priest has the institutional power to marry a couple by performing certain

2 From this perspective, a given role can be identified with the set of norms of competence
concerning it. This view is compatible with [27] in which a role is defined as a set (or cluster)
of norms.

298 A. Herzig, E. Lorini, and N. Troquard

gestures during the wedding ceremony” just means that “an agent’s act of performing
certain gestures during the wedding ceremony while playing the role of priest counts as
the act of marrying the couple”.

The interesting aspect of this notion of institutional power is that it allows to properly
understand how (human or software) agents, conceived as physical entities, can produce
institutional effects by way of performing physical actions and by playing certain social
roles. To summarize, the crucial point is the following. A given agent i has the ability to
perform a certain institutional action α by way of performing another action β because:
(1) the agent plays a certain social role r; (2) there is a norm of competence establishing
that the performance of action α by an agent playing the role r counts as the performance
of the institutional action β. For example, an agent i has the ability of marrying a couple
by performing certain gestures during a wedding ceremony because: (1) i plays the role
of priest; (2) there is a norm of competence establishing that an agent’s physical act
of performing certain gestures during the wedding ceremony while playing the role of
priest counts as the institutional act of marrying the couple.

Remarks on the nature of roles and brute abilities. In the framework presented in Sec-
tion 3, the world the agents populate will be a mere database listing the atomic facts
that are true at this very moment. The world is dynamic because the agents can act
upon their environment by changing the truth value of these atomic facts. Our proposal
relies on the assumption that an agent’s brute abilities can be identified with the set of
propositional assignments that he can perform. As shown in [14], such a framework
also supports the models of propositional control [16,7].

Roles are central in our study of institutional abilities. It is by occupying roles that
an agent’s brute action generates an institutional event. However, we do not need at this
stage to ground our proposal on a rigorous ontology of roles. We refer to [23] for a
foundational ontology of roles and a detailed interdisciplinary review of the literature.

The rest of the paper. We start by splitting the set of propositional variables into two
disjoint sets: atomic physical facts and atomic institutional facts. In the logic presented
in Section 3, a physical action just consists in setting to ‘true’ or to ‘false’ some atomic
physical fact, while an institutional action consists in setting to ‘true’ or to ‘false’ some
atomic institutional fact. The latter actions can only be performed indirectly, i.e. by
performing a physical action. Moreover, we distinguish two different relations between
actions: “counts-as” and “causes”. There are conditionals of the form α1 ⇒ α2 ex-
pressing that i’s performance of the physical action α1 causes the performance of the

physical action α2, and there are conditionals of the form α1
r
� α2 expressing that i’s

performance of the physical or institutional action α1 in the social role r counts as the
performance of the institutional action α2. Finally, in Section 5, we study the notion of
institutional power by introducing special modal operators describing an agent’s capa-
bility of producing a given institutional effect by way of performing a physical action
while playing a given social role.

For the sake of simplicity we suppose that there is only one institution.

A Dynamic Logic of Institutional Actions 299

3 Logic

This section introduces the syntax and the semantics of the logic. It is basically an
extension of our logic of [14] by a causality relation.

3.1 Language

We suppose that there is a finite set of agents A, a finite set of roles R, and a countable
set of propositional variables.

Propositional variables are meant to capture the atomic facts about the world. They
are partitioned into two kinds: facts about the physical world (or brute facts) and facts
about the institutional world (or institutional facts) and are collected in two sets Pphys

and Pinst. These sets form a partition, and we thus assume that P = Pphys ∪ Pinst and
Pphys ∩ Pinst = ∅. Our propositional variables are therefore typed.

These sets are again composed of variables of different sub-types: we suppose that
they respectively contain a countable set P0

phys ⊆ Pphys of basic physical facts; and a

countable set P0
inst ⊆ Pinst of basic institutional facts. Beyond these basic variables the

set Pinst contains variables denoting that an agent plays a role and the set Pphys contains
variables denoting that an agent is able to assign a variable to true or false. We suppose
that the latter covers the case of ability variables being themselves assigned; we will
therefore need a recursive definition.

In the sequel we are going to analyze in more detail what kinds of propositions
actually populate P.

Institutional facts. We have assumed the existence of a finite set of roles R. These roles
are occupied by agents. We write Ri(r) to formalize the fact that agent i ∈ A occupies
the role r ∈ R. Holding a role is a societal construct, and an atomic institutional fact. It
is also a contingent fact (or anti-rigid [23]) meaning that role occupations can change.
Hence, we assume that expressions of the form Ri(r) are propositional variables in Pinst.
These are the only ’special’ atomic institutional facts in Pinst and we therefore have
Pinst = P

0
inst ∪ {Ri(r) : r ∈ R, i ∈ A}. We can write this in a BNF:

Pinst : pinst � p0
inst | Ri(r)

where p0
inst ranges over the set of basic institutional facts P0

inst, i ranges over the set of
agents A, and r ranges over the set of roles R. Then the language Linst of (complex)
institutional facts is defined by the following grammar:

Linst : ϕinst � pinst | ¬ϕinst | ϕinst ∨ ϕinst

where pinst ranges over the set of atomic institutional facts Pinst.

Assignments. Assignments are expressions of the form p←� or p←⊥, where p is a
propositional variable from P. Assignments and formulas are different entities: the for-
mer are events modifying the truth values of propositional variables. The event p←�
sets p to true, and the event p←⊥ sets p to false. We sometimes write p←τ in order to

300 A. Herzig, E. Lorini, and N. Troquard

talk about p←� and p←⊥ in an economic way; τ is therefore a placeholder for either
� or ⊥.

The sets
Aphys = {p←τ : p ∈ Pphys, τ ∈ {�,⊥}}
Ainst = {p←τ : p ∈ Pinst, τ ∈ {�,⊥}}

respectively collect the assignments of brute facts and the assignments of institutional
facts. Observe thatAphys∩Ainst = ∅ because Pphys∩Pinst = ∅. The set of all assignments
is A = Aphys ∪ Ainst. We write αphys, α

′
phys, . . . to denote assignments from Aphys and

αinst, α
′
inst, . . . to denote assignments from Ainst. We sometimes use α, α′, . . . to denote

generic assignments fromA.

Physical facts. We assume that an agent can act upon his environment by assigning
values to some propositional variables. We also assume that these variables can only be
the atomic physical facts in Pphys, while the values of the atomic institutional facts of
Pinst can only be modified indirectly.

For a physical assignment event α ∈ Aphys and an agent i ∈ A, we formalize that i
has the physical ability to perform α by writing Ai(α). We take that the physical ability
of an agent to perform an action is itself an atomic physical fact. Moreover, we assume
that agent’s physical abilities are contingent facts. Hence, we assume that expressions
of the form Ai(α) are propositional variables in Pphys.

We allow this to be recursive: for every ability variable Ai(α) there is an ability
variable A j(Ai(α)←�) that is also an atomic physical fact.

We suppose that the set of atomic physical facts Pphys is made up of the basic physical
facts of P0

phys plus all these ability variables, and nothing else. This set is therefore built
according to the following grammar:

Pphys : pphys � p0
phys | Ai(pphys←τ)

where p0
phys ranges over the set of basic brute facts P0

phys and τ ranges over the set
{�,⊥}. Then the languageLphys of (complex) physical facts is defined by the following
grammar:

Lphys : ϕphys � pphys | ¬ϕphys | ϕphys ∨ ϕphys

where pphys ranges over the set of atomic brute facts Pphys.

‘Causes’. We have a binary connective⇒ relating assignments of physical facts: if α1

and α2 are both assignments in Aphys then α1 ⇒ α2 expresses that the performance of
α1 triggers α2. For example, p←� ⇒ q←⊥ says that the atomic physical fact q is made
false by making the atomic physical fact p true.

‘Counts-as’. We have a ternary connective� whose arguments are a role, an atomic
fact, and an atomic institutional fact, written α1

r
� α2. For instance, we write p←� r

�
q←⊥ to formalize the fact that setting the (physical or institutional) fact p to true while
acting in role r counts as setting the institutional fact q to false.

A Dynamic Logic of Institutional Actions 301

Achieving by doing. Actions are physical events performed by an agent. The formula
〈i:pphys←τ〉ϕ reads “i can achieve ϕ by performing pphys←τ”. By convention, we adopt
a strong reading of ‘can’ and assume that if i does not have the ability to perform
pphys←τ, then i cannot achieve anything by performing pphys←τ.

Definition of the language. The languageL of the logic is fully defined by the following
grammar:

L : ϕ� pphys | pinst | αphys ⇒ αphys | αphys
r
� αinst | αinst

r
� αinst |

¬ϕ | ϕ ∨ ϕ | 〈i:αphys〉ϕ
where pphys and pinst respectively range over the set of brute facts Pphys and the set of
institutional facts Pinst; αphys and αinst respectively range over the set of assignments of
physical factsAphys and the set of assignments of institutional factsAinst; r ranges over
the set of roles R; and i ranges over the set of agents A.

The logical constants � and ⊥ and the logical connectives ∧, → and ↔ have the
usual meaning.

Remarks. A few remarks about our choices of language are in order. As our assign-

ments only operate on P, the truth values of α ⇒ β and α
r
� β cannot be re-assigned.

Assignments being the only means to change things in our logic, it follows that the
‘causes’ and the ‘counts-as’ relation do not evolve. We are aware that assuming that
causality and counts-as relation are rigid facts of the world is a limitation of our formal
theory. For instance, that flipping a switch causes the light to go on can be changed by
an action of disconnecting the electric wires; and the counts-as relation in an institution
can be changed by way of new agreements, laws, etc.

In contrast, we have modeled the ability relation and the role-playing relation by
means of propositional variables Ai(α) and Ri(r), and these variables are elements of
P. Both are therefore contingent facts of the world, just like the physical fact that “the
pen is on the table” [23], and their truth values can change due to the performance of
assignments.

Let us have a closer look at the way these changes are brought about. First, agent i’s
ability to perform α being a (non-basic) physical fact of Pphys, that fact can be modified
by an assignment event that is performed by some agent j; precisely, some agent j
for which A j(Ai(α)←�) or A j(Ai(α)←⊥) holds. The fact Ai(α) can also be modified
indirectly by the causality relation. For instance, my action of grabbing John’s arm
causes the loss of John’s ability to raise his arm. Second, an agent playing a role being
an institutional fact of Pinst, that fact cannot be modified directly by an agent’s action:
just as any institutional fact, it can only change via the application of the counts-as
relation. This allows a very strict control over the institutional consequences of an event.

3.2 Models

A model is a tuple

M = (A,R, P0
phys, P

0
inst,Vphys,Vinst,Cphys,Cinst)

302 A. Herzig, E. Lorini, and N. Troquard

where the sets A, R, P0
phys and P0

inst are as detailed above; Vphys ⊆ P0
phys and Vinst ⊆

P
0
inst are valuations describing which atomic fact are true; Cphys ⊆ Aphys × Aphys is a

relation between assignments of physical facts; and Cinst : R −→ 2A×Ainst is a function
mapping roles to relations between assignments and institutional assignments. When
(α1, α2) ∈ Cphys then the occurrence of action α1 causes the occurrence of action α2.
When (α1, α2) ∈ Cinst(r) then the occurrence of action α1 performed by an agent playing
role r counts as the occurrence of action α2. The relations Cphys and Cinst(r) are nothing
but the relations of “causal generation” and “conventional generation” in Goldman’s
sense as described in Section 2.

3.3 Constraints on Models

Models have to satisfy the following two constraints:

(Reflphys) Cphys is reflexive:
for every α ∈ Aphys, (α, α) ∈ Cphys.

(Cohphys) Cphys is coherent:
for every α ∈ Aphys and q ∈ P, if (α, q←�) ∈ Cphys then (α, q←⊥) �
Cphys.

(Transphys) Cphys is transitive:
Cphys ◦ Cphys ⊆ Cphys

(Cohinst) Cinst is coherent:
for every α ∈ A, q ∈ P, and r1, r2 ∈ R,
if (α, q←�) ∈ Cinst(r1) then (α, q←⊥) � Cinst(r2).

(Transphys,inst) Cphys and Cinst satisfy a mixed transitivity property:
for every r ∈ R, Cphys ◦ Cinst(r) ⊆ Cinst(r).

In the rest of the section we briefly discuss these properties in the light of our expo-
sition in Section 2. (See also [28] for a review of properties of causality relations in the
framework of artificial intelligence.)

The constraint (Reflphys) means that we consider that causality is reflexive. We are
aware that this can be criticized because causes temporally precede their effects. It how-
ever simplifies the technicalities when updating models; the reader may wish to think
of it as the reflexive closure of the causality relation. (Cohphys) says that a physical ac-
tion cannot have inconsistent causal ramifications. (Cohinst) is a similar principle for
the counts-as relation: for every assignment α there cannot be two roles leading to
inconsistent consequences via the counts-as relations. Constraint (Transphys,inst) is the
institutional counterpart of the transitivity of causality as expressed by (Transphys).

Reflexivity of event generation relations is rejected by Goldman [8, p. 5] on the
simple ground that it is not intuitive to say that John turns on the light by turning on
the light. In our proposal, the counts-as relation is not necessarily reflexive; we however

allow that α
r
� α if α is an institutional action. Moreover, our modeling of the causality

A Dynamic Logic of Institutional Actions 303

relation assumes reflexivity. This is essentially motivated by the fact that this way, our
definitions are less cluttered, but since Goldman’s argument against reflexivity is merely
linguistic, we believe it is not a major conceptual transgression.

Goldman insists that an event generation relation should be antisymmetric. We nei-
ther preclude the symmetry of the causality relation nor of the counts-as relation since
we could have for instance that a subset of events form an equivalence class in which
all events causally generate all events.

It is worth noting that there is some disagreement in the literature whether the counts-
as relation should satisfy transitivity. For a discussion on this matter see [17,11,21]. In
our logic this is not necessarily the case.

Finally, some author argues that the counts-as should satisfy contraposition [11],
while other authors have a different opinion on this matter [17]. Again, we remain un-
committed w.r.t. this point, and it may be the case that (p←�, q←�) ∈ Cinst(r) while
(q←⊥, p←⊥) � Cinst(r).

3.4 Updating a Model by an Action

An agent’s capability can be represented semantically by the valuations V ′ his actions
can bring about. This is achieved by interpreting the agents’ actions as model updates.

Definition 1. Let

M = (A,R, P0
phys, P

0
inst,Vphys,Vinst,Cphys,Cinst)

be a model and let α ∈ Aphys. The update of M by the action i:α is defined as

Mi:α = (A,R, P0
phys, P

0
inst,V

α
phys,V

i:α
inst,Cphys,Cinst)

where the updates Vi:α
phys and Vi:α

inst of the valuations Vphys and Vinst by i:α are defined as
follows:

Vαphys =
(

Vphys \ {q : (α, q←⊥) ∈ Cphys}
)
∪ {q : (α, q←�) ∈ Cphys}

Vi:α
inst = (Vinst \ {q : ∃r ∈ R : Ri(r) ∈ Vinst, (α, q←⊥) ∈ Cinst(r)})

∪ {q : ∃r ∈ R : Ri(r) ∈ Vinst, (α, q←�) ∈ Cinst(r)}
Actions therefore (1) directly affect the physical world (via the causality relation),

and (2) affect the institutional world via the counts-as relation.3 Suppose that α = p←�.
Then, due to reflexivity of the causality relation Cphys, the valuation V p←�

phys contains p

and V p←⊥
phys does not contain p. Note that the physical valuation is actually updated by

the event α, not by the action i:α.
Our constraints on models are clearly preserved under updates because neither the

causal relation nor the counts-as relation can be modified.

3 Note that the order of the set theoretic operations in the definition seems to privilege positive
facts; however, due to our two constraints (Cohphys) and (Cohinst) —and also because Pphys and
Pinst have empty intersection— the ramifications of an assignment of a physical fact will never
conflict.

304 A. Herzig, E. Lorini, and N. Troquard

Let us illustrate our definition by a couple of examples.

Example 1. Suppose Vinst contains Ri(r1) and p←� r1� q←�, i.e. agent i plays role r1,
and in role r1 making p true counts as making q true. Then V p←�

phys contains p, and Vi:p←�
inst

contains q. Hence, under the hypothesis that Vphys contains Ai(p←�) (that is that agent
i is indeed able to make p true), agent i can achieve about p ∧ q by doing p←�.

Example 2. Suppose Vinst contains Ri(r1) and Ri(r2), and (p←�, q1←�) ∈ Cinst(r1) and
(p←�, q2←⊥) ∈ Cinst(r2), i.e. agent i plays two roles r1 and r2, and in role r1 this counts
as making q1 true, while in role r2 this counts as making q2 false. Then in Mi:p←�, the
valuation V p←�

phys contains p and Vi:p←�
inst contains q1 and does not contain q2. Hence,

assuming that Vphys contains Ai(p←�) (that is agent i is indeed able to make p true),
agent i can achieve p ∧ q1 ∧ ¬q2 by doing p←�.

3.5 Truth Conditions

Let
M = (A,R, P0

phys, P
0
inst,Vphys,Vinst,Cphys,Cinst)

be a model. The truth conditions are as usual for the Boolean operators, and we only
state those clauses that are not standard.

M |= pphys iff pphys ∈ Vphys

M |= pinst iff pinst ∈ Vinst

M |= α1 ⇒ α2 iff (α1, α2) ∈ Cphys

M |= α1
r
� α2 iff (α1, α2) ∈ Cinst(r)

M |= 〈i:αphys〉ϕ iff Ai(αphys) ∈ Vphys and Mi:αphys |= ϕ
The operator 〈i:αphys〉ϕ captures the notion of “achieving by doing” that has been
sketched in Section 3.1 and in the two examples of the last sub-section.

4 Axiomatization and Complexity

The logic is axiomatized as an extension of classical propositional logic with (1) a the-
ory describing the constraints imposed on the counts-as and causality relations, (2) the
reduction axioms of the dynamic operator, and (3) an inference rule of replacement of
equivalents in the scope of a dynamic operator.

Theory of counts-as and causality.

α⇒ α
(α⇒ p←⊥)→ ¬(α⇒ p←�)

(α
r1� p←�)→ ¬(α

r2� p←⊥)
((α1 ⇒ α2) ∧ (α2 ⇒ α3))→ (α1 ⇒ α3)

((α1 ⇒ α2) ∧ (α2
r1� α3))→ (α1

r1� α3)

A Dynamic Logic of Institutional Actions 305

Reduction axioms for the dynamic operator.

〈i:α〉� ↔ Ai(α)
〈i:α〉⊥ ↔ ⊥
〈i:α〉(α1 ⇒ α2) ↔ Ai(α) ∧ (α1 ⇒ α2)

〈i:α〉(α1
r
� α2)↔ Ai(α) ∧ (α1

r
� α2)

〈i:α〉pphys ↔ Ai(α) ∧ ((α⇒ pphys←�) ∨ (pphys ∧ ¬(α⇒ pphys←⊥)))

〈i:α〉pinst ↔ Ai(α) ∧ (
∨

r∈R(Ri(r) ∧ (α
r
� pinst←�))

∨(pinst ∧ ¬∨r∈R(Ri(r) ∧ (α
r
� pinst←⊥))))

〈i:α〉¬ϕ ↔ Ai(α) ∧ ¬〈i:α〉ϕ
〈i:α〉(ϕ ∨ ψ) ↔ Ai(α) ∧ (〈i:α〉ϕ ∨ 〈i:α〉ψ)

Inference rule.
From ϕ↔ ψ infer 〈i:α〉ϕ↔ 〈i:α〉ψ

Proofs are defined in the standard way. For example, the rule of replacement of equiv-
alents can be proved from our axiomatization (due to the inference rule).

Given a formula ϕ let red(ϕ) be the formula obtained by iterating the application of
the reduction axioms from the left to the right. Thanks to the rule of replacement of
equivalents it is clear that red(ϕ)↔ ϕ is valid.

Proposition 1. For every formula ϕ, red(ϕ) ↔ ϕ is valid, and the length of red(ϕ) is
linear in the length of ϕ.

Proposition 2. Let ϕ be a formula without dynamic operators 〈.〉. ϕ is valid if and
only if Tϕ → ϕ is valid in classical propositional logic, where Tϕ is the conjunction
of the axiom schemas of the theory of counts-as and causality instantiated by those
assignments occurring in ϕ.

As the length of Tϕ is cubic in the length of ϕ we obtain a complexity result for our
logic.

Corollary 1. The problem of checking satisfiability of a formula is NP-complete.

Our logic has therefore the same complexity as classical propositional logic. We how-
ever believe that it allows to express things in a more natural way. In the rest of the
paper we give some arguments for this.

5 Institutional Power and Compact Characterization

Let S be a finite set of assignments. We identify the concept “agent i has the capability
to achieve outcome ϕ by possibly performing one of the actions in the set S ” with the
formula

�i:Sϕ
def
= ϕ ∨

∨

α∈S
〈i:α〉ϕ

If ϕ belongs to the language of institutional facts Linst then i’s capability to achieve ϕ
can be rightly called i’s institutional power to achieve ϕ by doing actions from S .

306 A. Herzig, E. Lorini, and N. Troquard

We now illustrate our logic by adapting an example of water management from [14].
In that paper, beyond abilities Ai(α) there are also atomic facts Pi(α) whose intended
meaning is that agent i is permitted to perform α. Clearly, it seems natural to assume
that such atomic facts are institutional facts from Pinst. Note that any combination of
abilities and permissions is consistent: an agent might be able to perform α but not
permitted to do so, etc.

Example 3. There are two farmers i1 and i2 working in a certain area close to a town
called Thirstytown who need water in order to irrigate their fields. In this area there
are three different exploitable water basins 1, 2 and 3. Only water basins 1 and 2 can
be safely used by the farmers; basin 3 provides drinkable water to the population of
Thirstytown, and if it is exploited for irrigation then Thirstytown will fall short of water.
There are two other actors in this scenario: agent i3 plays the role of chief of the Water
Authority which has the jurisdiction over the area, and agent i4 is a local policeman
working in Thirstytown. Let wAuth denote the role of head of water authority, and let
pol denote the role of policeman. We consider that Ri3 (wAuth) and Ri4 (pol) are both
true.

The propositional variables {p1, p2, p3} indicate whether the level of water in a given
basin is high or low: p1 means that “the level of water in the basin 1 is high”, ¬p1 means
that “the level of water in the basin 1 is low”, etc. Furthermore, for every farmer ik ∈
{i1, i2} and for every propositional variable ph with h ∈ {1, 2, 3}, Aik (ph←⊥) expresses
that basin h is physically connected to the field of farmer ik so that ik is able to exploit
the water of basin h and Pik (ph←⊥) expresses that ik is authorized to exploit the water
of basin h.

Let prohibSignh mean that there are prohibition-to-pump signs at basin h. We sup-

pose that the the counts-as relation is such that prohibSignh←�
pol
� Pik (ph←⊥)←⊥ for

every k and h: to make prohibSignh true action while performing the policeman role
counts as disallowing to anybody to pump water from that basin.

Our causality relation allows us to model indirect effects of actions. For example,
basin 1 being close to basin 2, farmer pumping from 1 also lowers the water level in
basin 2. This can be expressed by stating p1←⊥ ⇒ p2←⊥.

Our definition of capability is only about performance of a single action from the set S .
It can be generalized by allowing for arbitrary combinations of actions from S . Let us
introduce a modal operator of iterative capability �∗i:S whose truth condition is:

M |= �∗i:Sϕ iff there is a sequence (α1, . . . , αn) of assignments from S such that
M |= 〈i:α1〉 . . . 〈i:αn〉ϕ

It is useful to first introduce the dynamic logic program operators skip and ∪. Their
semantics requires to move from the functional interpretation of actions to a relational
interpretation: now for every action i:α, Ri:α relates models M to their updates Mi:α. The
recursive definition of Rπ is as follows, where π is a program:

Ri:α = {(M,M′) : M′ = Mi:α}
Rskip = {(M,M′) : M′ = M}
Rπ1∪π2 = Rπ1 ∪ Rπ2

A Dynamic Logic of Institutional Actions 307

We therefore have 〈skip〉ϕ↔ ϕ and 〈i:α ∪ j:β〉ϕ↔ 〈i:α〉ϕ∨〈 j:β〉ϕ. The truth condition
becomes:

M |= 〈π〉ϕ iff M′ |= ϕ for every M′ such that MRπM
′

As a simple illustration, observe that the above definition of ‘one shot capability’
�i:S can now be written in an alternative and more elegant way. Let S = {α1, . . . , αn} be
a set of assignments. We have:

�i:Sϕ↔ 〈skip ∪ i:α1 ∪ . . . ∪ i:αn〉ϕ
The next result states that in order to check whether�∗i:Sϕ it suffices to check whether

ϕ can be obtained by performing some of the assignments in S once, in any order,
provided that abilities are not used before being acquired, and are not abandoned before
used.

Proposition 3. Let S = {α1, . . . , αcard(S)} be a set of assignments. The formula

�∗i:Sϕ↔ 〈skip ∪ i:α1〉 · · · 〈skip ∪ i:αcard(S)〉ϕ
is valid, where (α1, . . . , αcard(S)) is any ordering of the elements of S such that for all
αl ∈ S , whenever αk = Ai(αl)←� then k < l, and whenever αk = Ai(αl)←⊥ then l < k.

Proof (sketch). Suppose M |= �∗i:Sϕ. Hence there is a sequence (α1, . . . , αn) of assign-
ments from S such that M |= 〈i:α1〉 . . . 〈i:αn〉ϕ. We can permute assignments and put
them in the appropriate order by applying the following valid equivalences.

〈i:p←τ〉〈i:q←τ′〉ϕ ↔
⎧⎪⎪⎨⎪⎪⎩
〈i:q←τ′〉ϕ when q = p

〈i:q←τ′〉〈i:p←τ〉ϕ when q � p

〈i:α〉〈i:A j(β)←�〉ϕ↔
⎧⎪⎪⎨⎪⎪⎩
〈i:α〉ϕ when β = α and j = i

〈i:A j(β)←�〉〈i:α〉ϕ when β � α or j � i

〈i:A j(β)←⊥〉〈i:α〉ϕ↔
⎧⎪⎪⎨⎪⎪⎩
⊥ when β = α and j = i

〈i:α〉〈i:A j(β)←⊥〉ϕ when β � α or j � i

The first equivalence allows to eliminate multiple occurrences of the same assignment
from S . The second equivalence allows to move ability gain assignments to the left,
while the third equivalence allows to move ability loss assignments to the right. To-
gether, these three equivalences allow to replace 〈i:α1〉 . . . 〈i:αn〉ϕ by the equivalent
〈i:β1〉 . . . 〈i:βm〉ϕ such that for all βl ∈ S , whenever βk = Ai(βl)←� then k < l, and
whenever βk = Ai(βl)←⊥ then l < k. It finally follows from the valid implication
ψ → 〈skip ∪ i:β〉ψ that those elements of S that are not in our sequence yet can be
inserted, and that M |= 〈skip ∪ i:β1〉 . . . 〈skip ∪ i:βcard(S)〉ϕ where (β1, . . . , βcard(S)) is
an ordering of the elements of S satisfying the condition of the proposition.

The other direction of the proof is straightforward. �

Note that unfolding the right-hand side of the equivalence in Proposition 3 yields a
formula in L that is exponentially larger. In fact, extending the language L with the

308 A. Herzig, E. Lorini, and N. Troquard

program construct ∪ increases the complexity of the logic from NP-complete to
PSPACE-complete.4 This seems to indicate that reasoning about the notion of iterative
capability with the operator �∗i:Sϕ is computationally more expensive.

6 Related Works

In the last decade several logicians have focused on a number of aspects of counts-as
such as institutional power [17], defeasibility [3,9], contextual and classificatory as-
pects [11], mental aspects [21,20], the distinction between brute facts and institutional
facts [10].

In their seminal paper [17], Jones and Sergot gave the status of an implication-like
logical connective to the counts-as relation. The latter links two propositions ϕ1 and
ϕ2 within a normative system (or institution) s. This is formally written ϕ1 �s ϕ2 and
reads “ϕ1 counts as ϕ2 in s”. Jones and Sergot gave a possible worlds semantics for the
counts-as connective together with an axiomatic characterization of the valid formulas
of that logic. In order to capture the notion of institutional power they extended their
logic with an action component: the ‘bringing it about that’ modal operator Eiϕ which
has to be read “agent i brings it about that ϕ”. Eiϕ1 �s Eiϕ2 then expresses that “in s,
i’s action of bringing about ϕ1 counts as i’s action of bringing about ϕ2”.

In a more recent paper [11], Grossi and colleagues paved the way towards a sub-
stantial simplification of Jones and Sergot’s logic. Contrarily to the latter they did not
consider the counts-as relation as primitive: the basic logical operators of Grossi et col.’s
logic are normal modal operators of the form [s]ϕ, reading “in normative system s, it is
the case that ϕ”. These operators can be combined with the standard Boolean operators.
For example, [s](ϕ→ ψ) is a formula of the language of Grossi et col., reading “in s, if
ϕ then ψ”. Based on the [s] connectives, Grossi et col. then define the counts-as connec-
tive. First of all they argue that the formula [s](ϕ → ψ) is already an approximation of
ϕ�s ψ. Nevertheless, this approximation validates formulas such as ϕ�s �: in s, any
ϕ counts as a tautology. This is felt to be counter-intuitive. Therefore, in order to better
capture Jones and Sergot’s�s connective, Grossi et col. introduce a so-called univer-
sal modality [∀], where [∀]ϕ reads “ϕ universally holds”. The latter is used in order to
strengthen the link between ϕ and ψ: in addition to [s](ϕ→ ψ), Grossi et col. moreover
require that for ϕ to count as ψ it should not be universally true that ϕ implies ψ. In
formulas, they define a so-called proper classificatory rule ϕ�cl+

s ψ by stipulating:

ϕ�cl+
s ψ

def
= [s](ϕ→ ψ) ∧ ¬[∀](ϕ→ ψ)

In this way they guarantee that no ϕ counts as a tautology.
There are several novel aspects in our logical analysis of counts-as. First of all, dif-

ferently from other approaches, our framework allows to explicitly represent physical
actions and institutional actions, as well as the links between the two kinds of actions.
By distinguishing in the object language a counts-as relation from a causal relation be-
tween events, our logic clearly opposes Goldman’s notion of causal generation to that
of conventional generation. We have shown that these two relations are ontologically

4 There is an easy reduction from QSAT, see e.g. [14].

A Dynamic Logic of Institutional Actions 309

different for at least two reasons. While the former relates a physical action to another
physical action, the latter relates a physical action to an institutional action. Moreover,
while the causal relation is merely a relation between physical actions performed by
an agent, counts-as is a relation between actions performed by an agent playing a cer-
tain role.

Furthermore, while previous logical accounts of counts-as were mainly conceptual
and did not consider decidability issues, our work also focuses on the computational
aspects of a logic of institutional action: we have provided in Section 4 a complete
axiomatization of our logic based on reduction axioms and have characterized the com-
plexity of the satisfiability problem.

We note that technically, our reduction axioms in terms of a causality relation are
close to causality-based solutions to the ramification problem in reasoning about actions
[18,24,25,31,28].

7 Conclusion

In the framework presented in this paper counts-as and causal relations are static, that
is, there is no way to update models in order to modify these relations. An interest-
ing direction of future research is to integrate into the framework a dynamic dimension
of counts-as and causality in order to be able to model interesting phenomena such
as: (1) the modification of causal connections between physical events (e.g. by dis-
connecting the electric wires, I can remove the causal relation “flipping the switch”
causes “turning on the lights”); (2) norm promulgation (creating a new counts-as rela-
tion between events); (3) norm cancellation (removing a pre-existent counts-as relation
between events).

Another interesting topic of future research is the creation of institutional facts. We
intend to extend our logic in order to model scenarios such as the following one. Be-
fore 2000, it was not possible to assign a truth value to the sentence “he has a note of
50 Euro in his pocket”, as the concept “Euro” was not an element of our vocabulary
of institutional facts and objects. After its introduction the Euro became an element
of our vocabulary of institutional facts and objects. This might be integrated into our
framework by adapting approaches to awareness such as [13].

Finally, at the current stage our logic allows to clearly distinguish physical actions
with physical effects from institutional actions with institutional effects. Nevertheless, it
does not support reasoning about physical actions that an agent may decide to perform
on the basis of his preferences. A further interesting direction of future research is to
relate our framework with game and decision theory by introducing a notion of pref-
erence. This extended framework will allow to reason about situations in which agents
desire that certain physical and/or institutional facts obtain, and choose strategically a
given physical action in order to ensure these facts.

Acknowledgements

We are grateful to the reviewers of CLIMA XII. Nicolas Troquard is supported by a
Marie Curie Trentino Fellowship.

310 A. Herzig, E. Lorini, and N. Troquard

References

1. Alchourrón, C., Bulygin, E.: Normative systems. Springer, New York (1971)
2. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information

and Computation 204(204), 1620–1662 (2006)
3. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent

systems. In: KR 2004, pp. 255–266. AAAI Press, Menlo Park (2004)
4. Bulygin, E.: On norms of competence. Law and Philosophy 11(3), 201–216 (1992)
5. Davidson, D.: Agency. In: Essays on Actions and Events. Oxford University Press, New York

(1980)
6. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with assignment.

In: AAMAS 2005, pp. 141–148. ACM Press, New York (2005)
7. Gerbrandy, J.: Logics of propositional control. In: Proc. AAMAS 2006, pp. 193–200 (2006)
8. Goldman, A.: A Theory of Human Action. Prentice-Hall, Englewood Cliffs (1970)
9. Governatori, G., Gelati, J., Rotolo, A., Sartor, G.: Actions, institutions, powers: prelimi-

nary notes. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA 2002. LNCS (LNAI),
vol. 2934, pp. 131–147. Springer, Heidelberg (2004)

10. Grossi, D.: A note on brute vs. institutional facts: modal logic of equivalence up to a sig-
nature. In: Boella, G., Pigozzi, G., Noriega, P., Verhagen, H. (eds.) Proceedings of Dagstuhl
Seminar on Normative Multi-agent Systems (2009)

11. Grossi, D., Meyer, J.-J.C., Dignum, F.: Classificatory aspects of counts-as: An analysis in
modal logic. Journal of Logic and Computation 16(5), 613–643 (2006)

12. Hart, H.L.A.: The concept of law, new edn. Clarendon Press, Oxford (1992)
13. Heifetz, A., Meier, M., Schipper, B.: Interactive unawareness. Journal of Economic

Theory 130(1), 78–94 (2006)
14. Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative systems (reg-

ular paper). In: Walsh, T. (ed.) Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI
2011). Morgan Kaufmann Publisher, Barcelona (2011)

15. van der Hoek, W., Walther, D., Wooldridge, M.: Reasoning about the transfer of control.
JAIR 37, 437–477 (2010)

16. van der Hoek, W., Wooldridge, M.: On the logic of cooperation and propositional control.
Artificial Intelligence 164(1-2), 81–119 (2005)

17. Jones, A., Sergot, M.J.: A formal characterization institutionalised power. J. of the IGPL 4,
429–445 (1996)

18. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Proc. 14th Int.
Joint Conf. on Artificial Intelligence (IJCAI 1995), pp. 1985–1991 (1995)

19. Lorini, E., Herzig, A.: A logic of intention and attempt. Synthese 163(1), 45–77 (2008)
20. Lorini, E., Longin, D.: A logical account of institutions: from acceptances to norms via leg-

islators. In: Proceedings of the International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2008), pp. 38–48. AAAI Press, Menlo Park (2008)

21. Lorini, E., Longin, D., Gaudou, B., Herzig, A.: The logic of acceptance: grounding institu-
tions on agents’ attitudes. J. of Logic and Computation 19(6), 901–940 (2009)

22. Makinson, D.: On the formal representation of rights relations: remarks on the work of Stig
Kanger and Lars Lindahl. The Journal of Philosophical Logic 15, 403–425 (1986)

23. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social roles and their descriptions. In: Dubois, D., Welty, C.A., Williams, W.-A. (eds.) KR,
pp. 267–277. AAAI Press, Menlo Park (2004)

24. McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proc. 14th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1995), pp. 1978–1984 (1995)

A Dynamic Logic of Institutional Actions 311

25. McCain, N., Turner, H.: Causal theories of action and change. In: Proc. Nat. Conf. on Artifi-
cial Intelligence (AAAI 1997), pp. 460–465 (1997)

26. Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computa-
tion 12(1), 149–166 (2002)

27. Pörn, I.: Action Theory and Social Science: Some Formal Models. Synthese Library,
vol. 120. D. Reidel, Dordrecht (1977)

28. Schwind, C.: Causality in action theories. ETAI Electronic Articles in Computer and Infor-
mation Science 3(A), (1999), www.ida.liu.se/ext/etai

29. Searle, J.R.: Speech acts: An essay in the philosophy of language. Cambridge University
Press, New York (1969)

30. Searle, J.R.: The Construction of Social Reality. The Free Press, New York (1995)
31. Thielscher, M.: Ramification and causality. Artificial Intelligence 89, 317–364 (1997)
32. Tiomkin, M.L., Makowsky, J.A.: Propositional dynamic logic with local assignments. Theor.

Comput. Sci. 36, 71–87 (1985)
33. van Eijck, J.: Making things happen. Studia Logica 66(2), 41–58 (2000)

www.ida.liu.se/ext/etai

A Paraconsistent Multi-agent Framework for

Dealing with Normative Conflicts�

Mathieu Beirlaen and Christian Straßer

Centre of Logic and Philosophy of Science, Ghent University
{Mathieu.Beirlaen,Christian.Strasser}@UGent.be

Abstract. In a multi-agent deontic setting, normative conflicts can take
a variety of different logical forms. In this paper, we present a very general
characterization of such conflicts, including both intra- and inter-agent
normative conflicts, conflicts between groups of agents, conflicts between
obligations and permissions, and conflicts between contradictory norms.
In order to account for the consistent possibility of this wide variety
of conflict-types, we present a paraconsistent deontic logic, i.e. a logic
that invalidates the classical principle of non-contradiction. Next, we
strengthen this logic within the adaptive logics framework for defeasible
reasoning. The resulting inconsistency-adaptive deontic logic interprets
a given set of norms ‘as consistently as possible’.

1 Introduction

The development of systems capable of tolerating conflicting norms is considered
an important challenge in the fields of deontic logic [15] and normative multi-
agent systems [7]. In this paper, we try to meet this challenge by consistently
allowing for various types of normative conflicts within a non-classical multi-
agent framework, i.e. a multi-agent framework that invalidates some rules and
theorems of Standard Deontic Logic (SDL).

For reasons of presentation we will first introduce a classical variant of the
framework (Section 2), and illustrate how the resulting logic MDC treats indi-
vidual and collective obligations. Next, we present a subdivision of various types
of normative conflicts (Section 3), and show that MDC cannot consistently
allow for the possibility of such conflicts.

In order to prevent instances of normative conflicts from giving rise to deontic
explosion, we introduce a paraconsistent variant of the logic MDC: the logic
MDP (Section 4). As opposed to MDC, MDP can consistently deal with
any type of normative conflict. However, the conflict-tolerance of MDP comes
at a price. Since MDP gives up some of the rules validated by SDL (and
hence by MDC), it loses much of the latter system’s inferential power. This
drawback is common to any monotonic paraconsistent deontic logic presented
so far (Section 5).
� Research for this paper was supported by subventions from the Research Foundation

– Flanders (FWO Vlaanderen). The authors are indebted to the anonymous referees
for valuable comments and suggestions.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 312–329, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Paraconsistent Multi-agent Framework 313

The solution to this problem presented here consists of extending MDP
within the adaptive logics framework [4]. In the resulting logic (called MDPm),
some MDC-inferences are made conditional upon the behavior of the premises:
MDPm verifies only those inferences which rely on premises that can safely be
assumed to behave ‘normally’. The technically precise sense in which MDPm

does so is spelled out in Section 6. MDPm has the nice property that for premise
sets all members of which behave ‘normally’ in this sense, MDPm delivers the
same consequences as MDC.

2 A Simple Classical Multi-agent Framework

2.1 Language

We use a denumerable setWa of propositional constants (atoms) p, q, r, The
〈¬,∧,∨,⊃,≡〉-closure of Wa is denoted by W . We call formulas in W (purely)
propositional formulas.

Next to propositional formulas, we use a finite set I = {i1, . . . , in} of agents.
We will in the remainder often refer to groups of agents J in I, i.e. non-empty
subsets of I. The following notation is useful for this: J ⊆∅ I iff J �= ∅ and
J ⊆ I. The set WI = {〈A, J〉 | A ∈ W , J ⊆∅ I} denotes the set of agent-
proposition pairs. Throughout the paper, we will use “AJ” as a shortcut for
“〈A, J〉.” Where i ∈ I, we will in the remainder of the paper abbreviate A{i}
by Ai. A formula AJ ∈ WI is translated as “group J brings about A by a joint
effort”. We will discuss and distinguish this notion from another, weaker reading
of group obligations in Section 2.3.Wc

I is the set of all formulas in the 〈¬,∧,∨,⊃
,≡〉-closure of WI . Where W l denotes the set of literals (i.e. the set of atoms in
Wa and their negations), we also define the set W l

I = {AJ | A ∈ W l, J ⊆∅ I}
of agent-literal complexes. Finally, the set Wc of well-defined formulas for the
classical multi-agent framework is defined recursively as follows:

Wc := 〈W ∪WI〉 | O〈Wc
I 〉 | P〈Wc

I 〉 | ¬〈Wc〉 | 〈Wc〉 ∧ 〈Wc〉 |
〈Wc〉 ∨ 〈Wc〉 | 〈Wc〉 ⊃ 〈Wc〉 | 〈Wc〉 ≡ 〈Wc〉

Where A ∈ Wc
I , a formula OA [PA] is interpreted as “it ought to be [is

permitted] that A”. Hence, OAi is read as “It ought to be that agent i brings
about A”. Similarly, OAJ is read as “The group of agents J ought to bring
about A by a joint effort”. We do not allow for formulas OA and PA where
A ∈ Wc \ Wc

I such as OB where B is a propositional atom. This is because
we are only interested in obligations that are addressed directly to (groups of)
agents. Note that we do allow for formulas such as O(Ai ∨Bj) and OAi ∨ OBj .
While the former expresses that it ought to be the case that either i brings
about A or that j brings about B, the latter expresses that either i ought to
bring about A or j ought to bring about B. This difference corresponds to the
distinction in SDL between the formulas O(A ∨B) and OA ∨ OB.

314 M. Beirlaen and C. Straßer

There is another subtlety worth pointing out, namely the difference between
O¬(Ai) and O(¬A)i. While the latter indicates i’s obligation to bring about ¬A,
the former is literally read as “It ought to be that it is not the case that i brings
about A”. This can be understood as i’s obligation to refrain from bringing
about A.

2.2 The Logic MDC

In this section we present a classical system for modeling normative reasoning.
We presuppose that (i) norms dealt with by this system arise from the same
source, and (ii) agents have epistemic access to all norms issued by this source.

Let us demonstrate how to adjust the Kripke-frames that are usually used
in order to semantically characterize SDL to the multi-agent setting of MDC.
We shortly outline some of the basic ideas. An SDL-model is a tuple M =
〈W,R, v, w0〉. W is a set of worlds where each world is associated with a set of
atoms by the assignment function v : Wa → ℘(W). A propositional atom A is
said to hold in a world w iff it is assigned to the world by v, i.e. w ∈ v(A). The
validity of complex formulas is then recursively defined as usual. R ⊆W ×W is
a serial accessibility relation. A formula A is obliged in a world w iff it is valid in
all the accessible worlds of w. Moreover, w0 ∈W is the so-called actual world.

Let us now step-by-step generalize these frames for the multi-agent setting.
First we need to introduce agents. We represent them by a finite non-empty
set I = {i1, . . . , in}. An MDC-model is a tuple M = 〈W, I,R, v, vI , w

0〉 where
as before W is a set of worlds, R ⊆ W × W is a serial accessibility relation,
v : Wa → ℘(W) is an assignment function, and w0 ∈ W is the actual world.
Just as before, the idea is that the propositional atom A is the case in w iff
w ∈ v(A).

We are not only interested in what is the case in our worlds, but also in
causation, more precisely the question which agents cause certain events. In
order to express this, our worlds are not just points, such as in the case of the
SDL-semantics, but they are structured. Every world w ∈W is associated with
tuples 〈w, J〉, for all J ⊆∅ I. We use wJ as a shortcut for 〈w, J〉.

While in SDL the assignment v associates a world w ∈ W with atoms in
order to express what atoms hold in w, we add now an additional assignment vI

that associates each wJ with literals in order to express what literals are brought
about by the group of agents J . The idea is that a literal A is brought about in w
by a group of agents J iff wJ ∈ v(A). Hence, vI :W l → ℘({wJ | w ∈W,J ⊆∅ I}).
v associates only atoms (and not literals) with worlds because this provides

enough information to uniquely define whether a complex propositional formula
representing factual information holds in a world. We for instance do not need
to assign worlds to negated propositional atoms such as ¬A, since by means of
a semantic clause such as the following it can be determined whether ¬A holds
in a world w: (†) “¬A holds in w in a model M iff A does not hold in w in M”.
Note that, in order to determine whether J brings about ¬A in w, we cannot
rely on the fact that J does not bring about A. After all, from the fact that J
refrains from bringing about A we cannot infer that J brings about ¬A. The

A Paraconsistent Multi-agent Framework 315

fact that A or ¬A holds in a world may be independent of actions by J . Hence,
we need to specify for each literal by what group of agents it is brought about
(if any).

In the SDL-semantics the clause (†) ensures that the worlds are consistent
in the sense that it is not the case that for an atom A, A holds in a world
w and at the same time ¬A holds in the world w. Since vI associates worlds
with both atoms and their negations we need to ensure the consistency by a
frame-condition:
F-Con. For all A ∈ Wa, for all w ∈ W , and for all J,K ⊆∅ I: (i) if wJ ∈ vI(A)

then wK /∈ vI(¬A) and (ii) if wJ ∈ vI(¬A) then wK /∈ vI(A).
Moreover, we want to ensure that whenever an agent or group brings about A,
then A is also the case (factually). This is guaranteed by adding the following
frame condition:
F-Fac. For all A ∈ Wa and all w ∈ W , (i) if wJ ∈ vI(A) then w ∈ v(A) and

(ii) if wJ ∈ vI(¬A) then w /∈ v(A).
The valuation vM :Wc → W associated with the model M is defined by:

Cl
I where AJ ∈ W l

I : M,w |= AJ iff wJ ∈ vI(A)
CI∧ whereA,B ∈ W : M,w |= (A∧B)J iffM,w |= AJ andM,w |= BJ

CI∨ where A,B ∈ W : M,w |= (A∨B)J iff M,w |= AJ or M,w |= BJ

CI⊃ where A,B ∈ W : M,w |= (A ⊃ B)J iffM,w �|= AJ orM,w |= BJ

CI≡ where A,B ∈ W : M,w |= (A ≡ B)J iff (M,w |= AJ iff M,w |=
BJ)

CI¬¬ where A ∈ W : M,w |= (¬¬A)J iff M,w |= AJ

CI¬∨ where A,B ∈ W : M,w |= (¬(A ∨B))J iff M,w |= (¬A ∧ ¬B)J

CI¬∧ where A,B ∈ W : M,w |= (¬(A ∧B))J iff M,w |= (¬A ∨ ¬B)J

CI¬⊃ where A,B ∈ W : M,w |= (¬(A ⊃ B))J iff M,w |= (A ∧ ¬B)J

CI¬≡ where A,B ∈ W : M,w |= (¬(A ≡ B))J iff M,w |= ((A ∨ B) ∧
(¬A ∨ ¬B))J

Ca where A ∈ Wa : M,w |= A iff w ∈ v(A)
C¬ where A ∈ Wc : M,w |= ¬A iff M,w �|= A
C∧ where A,B ∈ Wc : M,w |= A ∧B iff M,w |= A and M,w |= B
C∨ where A,B ∈ Wc : M,w |= A ∨B iff M,w |= A or M,w |= B
C⊃ where A,B ∈ Wc : M,w |= A ⊃ B iff M,w �|= A or M,w |= B
C≡ where A,B ∈ Wc : M,w |= A ≡ B iff (M,w |= A iff M,w |= B)
CO where A ∈ Wc

I : M,w |= OA iff M,w′ |= A for all w′ such that
Rww′

CP where A ∈ Wc
I : M,w |= PA iff M,w′ |= A for some w′ such that

Rww′

An MDC-model M verifies A ∈ Wc (M �MDC A) iff M,w0 |= A. Where
Γ ⊆ Wc, M is an MDC-model of Γ iff M is an MDC-model and M �MDC A
for all A ∈ Γ . Moreover, |=MDC A iff all MDC-models verify A, and Γ |=MDC A
iff all MDC-models of Γ verify A.

All of the following inferences are valid in MDC (where A,B ∈ Wc
I):

316 M. Beirlaen and C. Straßer

OA,OB |=MDC O(A ∧B)
OA |=MDC ¬O¬A

O(A ∨B),O¬A |=MDC OB

2.3 More on Group Obligations

Where i, j ∈ I, the formula OA{i,j} abbreviates a collective obligation for group
{i, j} to bring about A. Note that none of OAi, OAj , OAi∨OAj , and O(Ai∨Aj)
is MDC-derivable from OA{i,j}. This is due to the fact that OA{i,j} expresses
that i and j should bring about A by a joint effort. Collective obligations of
this kind are called strict collective obligations by Dignum & Royakkers [12]. A
strict collective obligation to bring about A is satisfied only if all agents in the
collective bring about A together.

Not all collective obligations are strict collective obligations. Suppose, for
instance, that a mother of three children orders her offspring to do the dishes.
In order to satisfy this obligation, it might not matter if only one or two of the
children actually do the dishes. All that matters is that, in the end, the dishes
are clean. The obligation issued by this agent is hence not a strict collective
obligation. It is what Dignum & Royakkers call a weak collective obligation. A
weak collective obligation to bring about A is satisfied as soon as any subset of
the collective brings about A.

Although the formula OAJ is in MDC interpreted as a strict collective obli-
gation, we can also define an obligation operator Ow in order to express weak
collective obligations:

OwAJ =df O(
∨

K⊆∅J AK)

The weak collective obligation operator Ow captures the intended meaning
that if a group of agents ought to bring about a certain state of affairs, then this
state of affairs ought to be brought about by some subset of the group.1 It follows
immediately by the definition and CI∨ that |=MP OAJ ⊃ OwAJ . Obviously, if
the group J faces the strict collective obligation to bring about A, then some
subgroup of J –namely J itself– has to bring about A. Note that OwAi = OAi.

The disambiguation of the notion of collective obligation by means of the
distinction between strict and weak collective obligations allows us to further
illustrate some subtle differences in MDC. Suppose that some agent i ought
to bring about ¬A, whereas agents i and j ought to bring about A ∨ B. If the
latter obligation is interpreted as a strict collective obligation, then it is MDC-
derivable that i and j share the strict collective obligation to bring about B:

(1) O(¬A)i,O(A ∨B){i,j} |=MDC OB{i,j}

1 The Ow-operator as defined here is slightly different from the one defined by
Dignum & Royakkers in [12]. We write the latter operator as Ow. Then OwAJ =df∨

K⊆∅J OAK . Note that OwA{a,b} = O(Aa ∨ Ab ∨ A{a,b}), while OwA{a,b} =

OAa ∨OAb ∨OA{a,b}. We prefer to define weak obligation in terms of Ow instead of
Ow because we take a weak (collective) obligation to be a single norm rather than a
disjunction of norms.

A Paraconsistent Multi-agent Framework 317

In general, if some group faces a strict collective obligation, then it should
try to satisfy this obligation in a way that conflicting obligations are avoided
whenever possible. This is exactly what happens in the above example.

If we interpret i and j’s obligation to bring about A ∨B as a weak collective
obligation, then OB{i,j} is no longer MDC-derivable, but the weaker obligation
OwB{i,j} is:

(2) O(¬A)i,O
w(A ∨B){i,j} |=MDC OwB{i,j}

Again, conflicting obligations are neatly avoided: i and j’s weak obligation
to bring about A ∨ B is satisfied in a consistent way whenever i, j, or i and j
together bring about B.

If instead of supposing that i has the obligation to bring about ¬A, we suppose
that i merely has the obligation to refrain from bringing about A, the above
reasoning no longer applies:

(3) O¬(Ai),O(A ∨B){i,j} �|=MDC OB{i,j}
That i ought to refrain from bringing about A, does not entail that the group

{i, j} ought to do so.2 Hence there is no strict obligation for {i, j} to bring about
B. In the variant for weak collective obligation, a similar reasoning applies:

(4) O¬(Ai),Ow(A ∨B){i,j} �|=MDC OwB{i,j}
That i should refrain from bringing about A does not allow us to derive a

weak collective obligation for i and j to bring about B, because Ow(A ∨B){i,j}
is also satisfied if, for instance, j brings about A or if i and j together (in the
strict sense) bring about A.

3 Normative Conflicts

In single-agent settings, normative conflicts (moral conflicts, deontic conflicts)
are usually conceived as situations in which an agent has two (or more) con-
flicting obligations. In the language of MDC, such intra-agent conflicts between
obligations can have two logical forms. Where the agent in question is repre-
sented by the subscript i, we say that i faces an obligation-obligation conflict
(in short, an OO-conflict) if, for some A, either OAi ∧O(¬A)i or OAi ∧O¬(Ai).
In the first case, i has both an obligation to bring about A and an obligation to
bring about ¬A. In the second case, i has both an obligation to bring about A
and an obligation to refrain from bringing about A. Similarly, a group of agents
J faces an OO-conflict if OAJ ∧ O(¬A)J or if OAJ ∧ O¬(AJ).

In a multi-agent setting, we have to allow for the possibility of inter-agent
conflicts next to intra-agent conflicts. Conflicts of obligations between different
(groups of) agents can arise only in case one of the agents or groups, say J , has
to bring about a state of the world inconsistent with a state of the world that
should be brought about by another agent or group, sayK, i.e. if OAJ∧O(¬A)K .

2 Suppose, for example, that i has to refrain from lifting a heavy cupboard (because,
for instance, i has chronic back pain). From this it does not follow that i should still
refrain from doing so if she is assisted by j.

318 M. Beirlaen and C. Straßer

Note that if J �= K, a formula OAJ ∧ O¬(AK) no longer guarantees a conflict
of obligations in the multi-agent setting: it is perfectly possible that agent or
group J brings about A, while another agent or group K refrains from bringing
about A. Altogether, in a multi-agent framework an OO-conflict has one of the
following two logical forms: OAJ ∧ O¬(AJ) or OAJ ∧ O(¬A)K (where possibly
J = K).

Logicians often limit their study of normative conflicts to conflicts between
two or more obligations, e.g. [14,16,18,19,25]. However, other types of normative
conflicts can occur. It might, for instance, be the case that an agent or group
J ought to bring about A, while J is also permitted to refrain from doing so,
i.e. OAJ ∧ P¬(AJ). Moreover, J might have the obligation to bring about A
while a possibly different group or agent K is permitted to bring about ¬A, i.e.
OAJ∧P(¬A)K . In what follows such conflicts will be called obligation-permission
conflicts or OP-conflicts. For some examples of OP-conflicts in a single-agent
setting, see [6,30]. The possibility of OP-conflicts was also defended in [1,2,8,35].

In [6,24] examples were given of contradicting norms. Suppose, for instance,
that in some country the constitution contains the following clauses concerning
parliamentary elections: (i) it is not the case that women are permitted to vote,
and (ii) property holders are permitted to vote. Suppose further that (possibly
due to a recent revision of the property law) women are allowed to hold property.
Then the law is inconsistent: any female property holder i is both permitted and
not permitted to vote: PVi ∧ ¬PVi (example from [24, pp. 184-185]).

The same reasoning holds, of course, for formulas of the form OA ∧ ¬OA
(where A ∈ Wc

I). As hinted at above, normative conflicts of the type PA∧ ¬PA
or OA ∧ ¬OA are called contradicting norms.

Next to contradicting norms, i.e. different norms that contradict each other,
one might also face a contradictory norm, i.e. a norm that contradicts itself. A
contradictory norm is of the form O(AJ∧¬(AJ)), P(AJ∧¬(AJ)), O(AJ∧(¬A)K),
P(AJ∧(¬A)K), O(A∧¬A)J , or P(A∧¬A)J . For a defense of contradictory norms,
we refer to [24].

Unfortunately, none of the types of normative conflicts presented above can
be dealt with consistently by the logic MDC. MDC trivializes all instances of
all types of normative conflicts. This gives rise to what is usually called deontic
explosion: the fact that from a deontic conflict any obligation follows. See [14,30]
for a more detailed discussion of this phenomenon in deontic logic. An oversight
of the various types of normative conflicts and their accompanying principles of
deontic explosion is provided in the table below. Where A ∈ W and B,C ∈ Wc

I :

OO-conflicts: OAJ ∧ O¬(AJ) |= OC, OAJ ∧ O(¬A)K |= OC
OP-conflicts: OAJ ∧ P¬(AJ) |= OC, OAJ ∧ P(¬A)K |= OC

Contradicting norms: OB ∧ ¬OB |= OC, PB ∧ ¬PB |= OC
Contradictory norms: O(AJ ∧ ¬(AJ)) |= OC, P(AJ ∧ ¬(AJ)) |= OC,

O(AJ ∧ (¬A)K) |= OC, P(AJ ∧ (¬A)K) |= OC,
O(A ∧ ¬A)J |= OC, P(A ∧ ¬A)J |= OC

A Paraconsistent Multi-agent Framework 319

4 Avoiding Deontic Explosion: The Logic MDP

Since MDC causes explosion when faced with a normative conflict, and since we
want to allow for the consistent possibility of normative conflicts, we need a logic
that is weaker than MDC.3 The situation is analogous in non-agentive settings.
There too, SDL gives rise to explosion in view of formulas of the form OA∧O¬A,
OA ∧ P¬A, etc. And there too, authors have suggested weakening the logic in
order to tolerate normative conflicts; for some examples, see [13,22,25,28,31,32].
A good oversight can be found in [14].

The solution presented here is to replace the classical negation operator by a
weaker negation operator that renders invalid the Ex Contradictione Quodlibet
principle (ECQ), i.e. A∧¬A |= B. One of the main reasons for invalidating ECQ
in deontic logic is that it is the only possible solution for consistently allowing
for contradicting norms.

Logics that invalidate ECQ are usually called paraconsistent logics. In a
single-agent deontic setting, paraconsistent deontic logics have been presented
in [6,11,24]. To the best of our knowledge, this solution was never before used in
a multi-agent deontic setting.

The logic obtained by replacing the classical negation of MDC by a weaker,
paraconsistent negation is called MDP.4

Since we want MDP to invalidate all explosion principles from the table in
Section 3, frame condition F-Con must be given up. In MDC, F-Con excludes
accessible worlds which validate both AJ and (¬A)K for some J and K. Hence
this condition immediately trivializes e.g. normative conflicts of the form OAJ ∧
O(¬A)K or OAJ ∧ P(¬A)K . Thus if we want to consistently allow for all types
of normative conflicts, F-Con must be rejected.

Giving up F-Con takes us one step closer towards a conflict-tolerant deontic
logic. However, even if F-Con is rejected, triviality still ensues in view of e.g.
conflicts of the form OAJ∧O¬(AJ) or OAJ∧P¬(AJ). Hence more work is needed
in order to make the new logic fully conflict-tolerant, i.e. in order to invalidate
all explosion principles stated for MDC in the table in Section 3.

Analogous to MDC-models, MDP-models are tuples 〈W, I,R, v, vI , w
0〉. The

only difference is that the factual assignment v is now defined more broadly, i.e.
v : W l ∪ {¬(AJ) | A ∈ W l} → ℘(W). Moreover we remove the MDC-frame
condition F-Con, and replace F-Fac with F-Fac′:

3 Some authors circumnavigate the problems posed by normative conflicts by making
their formal system more expressive rather than by weakening its axioms or rules. For
instance, in [19] Kooi & Tamminga add super- and subscripts to the deontic operators
in order to express the source and the interest group in view of which a norm holds.
However, in their system explosion still ensues when faced with conflicting norms
that hold for the same source and interest group. Such ‘hardcore’ normative conflicts
are sometimes called symmetrical conflicts [21,27]. In order to consistently allow for
the possibility of these conflicts in deontic logic, we need a non-standard formalism,
i.e. a formalism that invalidates one or more of the theorems and rules of SDL.

4 The negation of MDP is that of the paraconsistent logic CLuNs as found in e.g.
[3,5].

320 M. Beirlaen and C. Straßer

F-Fac′. For all A ∈ Wa, all w ∈ W and all J ⊆∅ I, (i) if wJ ∈ vI(A) then
w ∈ v(A) and (ii) if wJ ∈ vI(¬A) then w /∈ v(A) or w ∈ v(¬A).

The valuation vM : Wc → W is defined by Cl
I , CI∧, CI∨, CI⊃, CI≡, CI¬¬,

CI¬∨, CI¬∧, CI¬⊃, CI¬≡, Ca, C∧, C∨, C⊃, C≡, C⊥, CO, CP, and the fol-
lowing:

C¬′ where A ∈ W l ∪W l
I : M,w |= ¬A iff M,w �|= A or w ∈ v(¬A)

C¬¬ where A ∈ Wc : M,w |= ¬¬A iff M,w |= A
C¬∨ where A,B ∈ Wc : M,w |= ¬(A ∨B) iff M,w |= ¬A ∧ ¬B
C¬∧ where A,B ∈ Wc : M,w |= ¬(A ∧B) iff M,w |= ¬A ∨ ¬B
C¬ ⊃ where A,B ∈ Wc : M,w |= ¬(A ⊃ B) iff M,w |= A ∧ ¬B
C¬≡ where A,B ∈ Wc : M,w |= ¬(A ≡ B) iff M,w |= (A∨B)∧ (¬A∨

¬B)

As before, an MDP-model M verifies A (M �MDP A) iff M,w0 |= A. Where
Γ ⊆ Wc, M is an MDP-model of Γ iff M is an MDP-model and M �MDP A
for all A ∈ Γ . Moreover, |=MDP A iff all MDP-models verify A, and Γ |=MDP A
iff all MDP-models of Γ verify A.
C¬¬, C¬∧, C¬∨, C¬⊃, and C¬≡ ensure that de Morgan laws and the double-

negation rule are valid for complex formulas inWc. Due to the weakened negation
of MDP this does not follow anymore from the other semantic clauses.

MDP allows for both AJ and ¬(AJ) to be true at one and the same accessible
world. Consequently, this logic can consistently model situations in which for an
agent or group J it ought to be that J brings about A and that J refrains from
bringing about A. In general, for any A ∈ Wc, MDP allows for both A and ¬A
to be true at one and the same accessible world. This is exactly what we need if
we also want to consistently allow for the possibility of contradicting norms.

Altogether, the paraconsistent multi-agent deontic logic MDP is fully conflict-
tolerant (where A ∈ W , and B,C ∈ Wc

I):

OO-conflicts: OAJ ∧O¬(AJ) �|=MDP OC, OAJ ∧O(¬A)K �|=MDP OC
OP-conflicts: OAJ ∧ P¬(AJ) �|=MDP OC, OAJ ∧ P(¬A)K �|=MDP OC

Contradicting norms: OB ∧ ¬OB �|=MDP OC, PB ∧ ¬PB �|=MDP OC
Contradictory norms: O(AJ ∧ ¬(AJ)) �|=MDP OC, P(AJ ∧ ¬(AJ)) �|=MDP OC,

O(AJ ∧ (¬A)K) �|=MDP OC, P(AJ ∧ (¬A)K) �|=MDP OC,
O(A ∧ ¬A)J �|=MDP OC, P(A ∧ ¬A)J �|=MDP OC

5 Drawbacks of MDP

In an MDP-model, accessible worlds can consistently verify contradictions. This
is what causes MDP to avoid deontic explosion when faced with a normative
conflict. However, this property comes at a cost. We illustrate this by means
of an example. Suppose that Frank has baked cookies and that it’s hot in his
kitchen. In order to let some fresh air in, Frank ought to open the door or open

A Paraconsistent Multi-agent Framework 321

the window (O(D ∨W)f). However, if someone opens the door, the neighbour’s
dog might smell Frank’s cookies and try to steal them from the table. Hence
Frank should take care that the door remains closed (O(¬D)f). In this situation
Frank can consistently satisfy his obligations by simply opening the window.

Yet OWf is not MDP-derivable from O(D ∨W)f and O(¬D)f . Note that
there are MDP-models of the premise set Γ1 = {O(D∨W)f ,O(¬D)f} in which
inconsistent worlds are accessible from the actual world, i.e. worlds in which both
Df and (¬D)f are true (and, consequently, in which both D and ¬D are true).
In these worlds, Wf may be false while the premises are true. In contrast, all
the MDC-models of our premise set Γ1 are such that all the accessible worlds
are consistent and verify (D ∨W)f , (¬D)f and hence Wf . This is the reason
why Γ1 |=MDC OWf while Γ1 �|=MDP OWf . Obviously our premise set is not
conflicting. In such cases we would ideally expect from any deontic logic that its
models do not verify normative conflicts. Hence, in our case we are interested in
MDP-models that –just like the MDC-models– do not validate Df ∧ (¬D)f in
any of the accessible worlds, i.e. models M for which M ��MDP P (Df ∧ (¬D)f).
It is easy to see that all these models validate Wf in all the accessible worlds, just
like the MDC-models. In other words, since Γ1 |=MDP OWf ∨ P (Df ∧ (¬D)f)
we get OWf by selecting models that do not validate any normative conflicts.

The solution offered above is obviously not working as soon as we have to
deal with conflicting premise sets. Suppose Frank invited his aunt Maggie for a
cup of coffee and cookies in the afternoon. However, his other aunt Beth is an
awfully jealous person: she would be deeply insulted if she’s not also invited.
Hence Frank has the obligation to also invite Beth (OBf). On the other hand,
Maggie cannot stand Beth (she’s a rather difficult person) and whenever they
are together all hell breaks loose. Thus, Frank should make sure that Beth is
not invited (O(¬B)f). Let Γ2 = Γ1 ∪ {OBf ,O(¬B)f}. While MDC trivializes
Γ2, MDP does not trivialize Γ2 but is again too weak. For the same reason as
above, Γ2 �|=MDP OWf . However, in contrast to above we cannot now simply
select models whose worlds are consistent since there are no such models. Indeed,
all models of Γ2 are such that in all accessible worlds Bf and (¬B)f are valid.
In other words, all models validate O(Bf ∧ (¬B)f). But, similar to above, the
idea is to not take into consideration models that validate P(Df ∧ (¬D)f).

In a nutshell the idea is to strengthen MDP by selecting models whose ac-
cessible worlds are “as non-conflicting as possible”. This idea will be realized by
means of the adaptive logic MDPm.

Before we introduce this logic in Section 6, let us focus on some other weak-
nesses of MDP. For instance, all of the following inferences are invalid in MDP,
for the same reason why OWf is not MDP-derivable from O(D ∨ W)f and
O(¬D)f : because of the possibility of contradictions being true in accessible
worlds in MDP-models.5 Where A,B ∈ W , and C,D ∈ Wc:

(1) O(A ∨B)J ,O(¬A)J �|=MDP OBJ

5 These problems are common to monotonic logics with a paraconsistent negation. In
[6], it was argued that the paraconsistent deontic logics presented in [11,24,25] are
too weak to account for deontic reasoning.

322 M. Beirlaen and C. Straßer

(2) O(A ∨B)J ,O¬(AJ) �|=MDP OBJ

(3) OAJ �|=MDP ¬P¬(AJ)
(4) ¬OAJ �|=MDP P¬(AJ)
(5) PAJ �|=MDP ¬O¬(AJ)
(6) ¬PAJ �|=MDP O¬(AJ)
(7) C ∨D,¬C �|=MDP D
(8) C ⊃ D �|=MDP ¬D ⊃ ¬C

Items (1) and (2) represent deontic variants of Disjunctive Syllogism, (3)–(6)
represent variants of the interdefinability between obligations and permissions,
(7) is the propositional version of Disjunctive Syllogism, and (8) is Contraposi-
tion. In contrast, the following inferences are valid in MDP.

(1’) O(A ∨B)J ,O(¬A)J |=MDP OBJ ∨ P(AJ ∧ (¬A)J)
(2’) O(A ∨B)J ,O¬(AJ) |=MDP OBJ ∨ P(AJ ∧ ¬(AJ))
(3’) OAJ |=MDP ¬P¬(AJ) ∨ P(AJ ∧ ¬(AJ))
(4’) ¬OAJ |=MDP P¬(AJ) ∨ (OAJ ∧ ¬OAJ)
(5’) PAJ |=MDP ¬O¬(AJ) ∨ P(AJ ∧ ¬(AJ))
(6’) ¬PAJ |=MDP O¬(AJ) ∨ (PAJ ∧ ¬PAJ)
(7’) C ∨D,¬C |=MDP D ∨ (C ∧ ¬C)
(8’) C ⊃ D |=MDP (¬D ⊃ ¬C) ∨ (D ∧ ¬D)

In items (1’)–(8’), all formulas on the right-hand side of the “∨”-sign repre-
sent normative conflicts. As in our example above, interpreting premise sets as
non-conflicting as possible will validate the deontic and propositional versions of
Disjunctive Syllogism, the interdefinability between obligations and permissions,
and Contraposition as much as possible. Indeed, given that the normative con-
flicts on the right-hand side of “∨” are false in (1’)–(8’), the left-hand disjuncts
must be true.

6 The Adaptive Logic MDPm

Adaptive logics are characterized by means of a triple consisting of a lower limit
logic (henceforth LLL), a set of abnormalities Ω, and an adaptive strategy.6 The
LLL constitutes the stable part of an adaptive logic: everything that is LLL-
derivable from a given set of premises, is still derivable by means of the adaptive
logic. Formulating adaptive logics in the standard format has the advantage
that a rich meta-theory is immediately available for this format [4]. Although
adaptive logics come with an attractive dynamic proof theory we will for the
sake of conciseness focus in this paper exclusively on the semantics.

Typically, an adaptive logic enables one to derive, for most premise sets, some
extra consequences on top of those that are LLL-derivable. These supplementary
6 For an introduction to adaptive logics, see [4]. However, familiarity with this frame-

work for non-monotonic reasoning is not necessary for understanding the workings
of the logic MDPm.

A Paraconsistent Multi-agent Framework 323

consequences are obtained by interpreting a premise set “as normally as possi-
ble”. The exact interpretation of this idea depends on the adaptive strategy
which defines which models of the LLL are selected.7 For our present purposes,
we shall use the Minimal Abnormality strategy. The logic MDPm is character-
ized by:

(1) LLL: MDP
(2) Set of abnormalities: Ω = Ω1 ∪Ω2 ∪Ω3, where

Ω1 = {A ∧ ¬A | A ∈ Wc}
Ω2 = {P(AJ ∧ ¬(AJ)) | A ∈ W , J ⊆∅ I}
Ω3 = {P(AJ ∧ (¬A)K) | A ∈ W ; J,K ⊆∅ I}

(3) Adaptive strategy: Minimal Abnormality

By (1) we make sure that we select MDP-models. This ensures that MDPm

inherits the conflict-tolerance from MDP.
As mentioned, adaptive logics interpret premise sets in a way that as few

abnormalities as possible are verified. The attentive reader will have noticed that
not all conflict-types that were listed in the table in Section 3 occur in Ω. This
is justified due to the fact that all other conflict-types give rise to abnormalities
in Ω, as the following table shows (where A ∈ W , and B,C ∈ Wc

I)8:

OAJ , O¬(AJ) |=MDP P(AJ ∧ ¬(AJ)), OAJ , O(¬A)K |=MDP P(AJ ∧ (¬A)K)
OAJ , P¬(AJ) |=MDP P(AJ ∧ ¬(AJ)), OAJ , P(¬A)K |=MDP P(AJ ∧ (¬A)K)

O(AJ ∧ ¬(AJ)) |=MDP P(AJ ∧ ¬(AJ)), O(AJ ∧ (¬A)K) |=MDP P(AJ ∧ (¬A)K)
O(A ∧ ¬A)J |=MDP P(AJ ∧ (¬A)J), P(A ∧ ¬A)J |=MDP P(AJ ∧ (¬A)J)

For our semantic selection we will make use of the notion of the abnormal part
of an MDP-model, i.e. the set of all abnormalities verified by it: Ab(M) = {A ∈
Ω | M �MDP A}. The Minimal Abnormality strategy selects all MDP-models
of a premise set Γ which have a minimal abnormal part (w.r.t. set-inclusion).

Definition 1. An MDP-model M of Γ is minimally abnormal iff there is no
MDP-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The semantic consequence relation of the logic MDPm is defined by selecting
the minimally abnormal MDP-models:

Definition 2. Γ |=MDPm A iff A is verified by all minimally abnormal MDP-
models of Γ .

The fact that the set of MDPm-models of Γ is a subset of the set of MDP-
models of Γ immediately ensures that MDPm strengthens MDP.

Theorem 1. If Γ |=MDP A, then Γ |=MDPm A.
7 Besides adaptive logics many other formal frameworks make use of semantic selec-

tions, e.g. [20,26].
8 conflicts of the form OB ∧¬OB, PB ∧¬PB, P(AJ ∧¬(AJ)), or P(AJ ∧ (¬A)K) are

not listed in the table, since these conflicts already have the form of an abnormality.

324 M. Beirlaen and C. Straßer

For an illustration of the logic, let’s return to the example presented in Section
5. Remember that Γ1 �|=MDP OWf . However, Γ1 |=MDP OWf ∨P(Df ∧ (¬D)f).
By C∨, we know that (†) for all MDP-models M of Γ1: if M ��MDP P(Df ∧
(¬D)f) then M �MDP OWf .

No abnormality A ∈ Ω is an MDP-consequence of Γ1, hence there are MDP-
models M of Γ1 such that Ab(M) = ∅. By Definition 1, these and only these are
the minimal abnormal models of Γ1. It follows that, for all minimal abnormal
modelsM of Γ1, M ��MDP P(Df∧(¬D)f). By (†), it follows thatM �MDP OWf

for all minimal abnormal models M of Γ1. Hence, by Definition 2, Γ1 |=MDPm

OWf .
By the same reasoning as applied in the example above, we can show that all

of (1”)-(8”) below are MDPm-valid in view of the MDP-validity of (1’)-(8’) as
displayed in Section 5:

(1”) O(A ∨B)J ,O(¬A)J |=MDPm OBJ

(2”) O(A ∨B)J ,O¬(AJ) |=MDPm OBJ

(3”) OAJ |=MDPm ¬P¬(AJ)
(4”) ¬OAJ |=MDPm P¬(AJ)
(5”) PAJ |=MDPm ¬O¬(AJ)
(6”) ¬PAJ |=MDPm O¬(AJ)
(7”) C ∨D,¬C |=MDPm D
(8”) C ⊃ D |=MDPm ¬D ⊃ ¬C

In a similar fashion, we can show that other intuitive MDC-inferences are also
MDPm-valid in the absence of normative conflicts. Remember from Section 2.3
that O(¬A)i,O(A ∨ B){i,j} |=MDC OB{i,j} and O(¬A)i,O

w(A ∨ B){i,j} |=MDC

OwB{i,j}. Both of these inferences are invalidated by MDP. However, O(¬A)i,
O(A∨B){i,j} |=MDP OB{i,j}∨P(A{i,j}∧(¬A)i), andO(¬A)i,O

w(A∨B){i,j} |=MDP

OwB{i,j}∨P(Ai∧(¬A)i)∨P(Aj∧(¬A)i)∨P(A{i,j}∧(¬A)i). Note that none of the
minimal abnormalMDP-models of {O(¬A)i,O(A∨B){i,j}} and {O(¬A)i,O

w(A∨
B){i,j}} validate one of the abnormalities P(A{i,j} ∧ (¬A)i),P(Ai ∧ (¬A)i), or
P(Aj∧(¬A)i). Hence O(¬A)i,O(A∨B){i,j} |=MDPm OB{i,j} and O(¬A)i,O

w(A∨
B){i,j} |=MDPm OwB{i,j}.

The following theorem shows that for any MDC-consistent premise set the
MDPm-consequences are identical to the MDC-consequences:

Theorem 2. For all MDC-consistent Γ , Γ |=MDPm A iff Γ |=MDC A.

A proof of Theorem 2 is contained in the Appendix. Note that (1”)-(8”) imme-
diately follow as a corollary to Theorem 2.

If all MDP-models of given a premise set verify at least one abnormality, then
MDPm is still considerably stronger than MDP. Consider the premise set Γ2

from Section 5, where we enriched Γ1 with the conflicting obligations concerning
the invitation of aunt Beth, OBf and O(¬B)f . Here too, Frank’s obligation to
open the window is an MDPm-consequence: Γ2 |=MDPm OWf . Although there
are no models of Γ2 that have an empty abnormal part since all models validate

A Paraconsistent Multi-agent Framework 325

the abnormality P(Bf ∧ (¬B)f), the minimal abnormal models do not validate
P(Df ∧ (¬D)f) (as the reader can easily verify).

Imagine now that we add to Γ2 the premise O(¬W)f , which abbreviates
Frank’s obligation to take care that the window remains closed (e.g. because it
was painted recently and the paint is not dry yet). Let us call this extended
premise set Γ3. Then Γ3 |=MDP P(Df ∧ (¬D)f) ∨ P(Wf ∧ (¬W)f). Conse-
quently, all minimally abnormal MDP-models M of Γ3 verify at least one of
P(Df ∧ (¬D)f) and P(Wf ∧ (¬W)f). Γ3 has minimally abnormal MDP-models
which verify P(Df ∧ (¬D)f). Since it is no longer the case that, for all minimally
abnormal MDP-models M of Γ3, M ��MDP P(Df ∧ (¬D)f), for these models it
no longer follows that M �MDP OWf . Hence Γ3 �|=MDPm OWf . Since Γ1 ⊂ Γ3

and Γ1 |=MDPm OWf , this shows that the logic MDPm is non-monotonic.
The following theorems state some further meta-theoretical properties of

MDPm. LetMMDP
Γ [MMDPm

Γ] abbreviate the set of MDP- [MDPm-] models
of Γ .

Theorem 3. If M ∈ MMDP
Γ −MMDPm

Γ , then there is a M ′ ∈ MMDPm

Γ such
that Ab(M ′) ⊂ Ab(M) (Strong reassurance).

For the proof of Theorem 3, we refer to [4].9

Theorem 4. If Γ |=MDPm A for all A ∈ Γ ′, then MMDPm

Γ =MMDPm

Γ∪Γ ′ .

Proof. Suppose (†) Γ |=MDPm A for all A ∈ Γ ′. Consider a M ∈ MMDPm

Γ∪Γ ′ .
Then M ∈ MMDP

Γ∪Γ ′ and whence M ∈ MMDP
Γ . Assume M /∈ MMDPm

Γ . By the
strong reassurance there is a M ′ ∈ MMDPm

Γ such that Ab(M ′) ⊂ Ab(M). In
view of (†), M ′ �MDP A for every A ∈ Γ ′. Hence, M ′ ∈ MMDP

Γ∪Γ ′ . But then
M /∈MMDPm

Γ∪Γ ′ ,— a contradiction.
Consider a M ∈ MMDPm

Γ . By (†), M �MDP A for everyA ∈ Γ ′. By definition
also M ∈ MMDP

Γ . Hence M ∈MMDP
Γ∪Γ ′ . Assume M /∈MMDPm

Γ∪Γ ′ . Hence, there is
a M ′ ∈ MMDP

Γ∪Γ ′ for which Ab(M ′) ⊂ Ab(M). By definition, M ∈ MMDP
Γ . But

then M /∈MMDPm

Γ ,— a contradiction.

Corollary 1. If Γ |=MDPm A for all A ∈ Γ ′, then

(i) if Γ |=MDPm A then Γ ∪ Γ ′ |=MDPm A (Cautious Monotonicity);
(ii) if Γ ∪ Γ ′ |=MDPm A then Γ |=MDPm A (Cautious Cut).

Theorem 5. MMDPm

Γ =MMDPm

{B|Γ |=MDPmB}, and whence Γ |=MDPm A iff
{B | Γ |=MDPm B} |=MDPm A (Fixed point).

Proof. Since obviously {B | Γ |=MDPm B} |=MDPm A for all A ∈ Γ , this is an
immediate consequence of Theorem 4 (where Γ ′ = {B | Γ |=MDPm B}).
9 In [4], the strong reassurance property is proven for logics that fit the so-called

standard format for adaptive logics. In order for the proof for strong reassurance
from [4] to work, MDPm needs to contain all classical connectives. MDPm can
easily be adjusted to do so by adding the constant false symbol “⊥” to its language,
and by defining a classical negation connective “∼” as ∼ A =df A ⊃ ⊥.

326 M. Beirlaen and C. Straßer

7 Outlook

The central problem tackled in this paper is the modeling of normative conflicts
in multi-agent deontic logic. Because of this focus and reasons of conciseness,
we have presented the logics MDC, MDP and MDPm in a very basic form.
In this section we will briefly demonstrate that they can be enhanced in various
ways.

Some may wish to increase the expressiveness of our logics by alethic modali-
ties. One way to technically realize this is to add another accessibility relation R′

to the MDC-models so that the models are tuples 〈W, I,R,R′, v, w0〉.10 Validity
for the �-operator is characterized as usual: M,w |= �A iff for all w′ ∈ W , if
R′ww′ then M,w′ |= A (and the dual version for ♦). By requiring R ⊆ R′ it
could be ensured that the Kantian “ought implies can” holds: OA ⊃ ♦A.

Another extension could indicate the authority that issues a norm. For in-
stance, OaAJ reads “authority a issues the norm that J brings about A”. Tech-
nically, introducing authorities is straightforward. First, we enhance our models
by a set A of authorities. This set may intersect with or even be identical to
the set of agents I. Second, instead of one accessibility relation we introduce
an accessibility relation Ra for each authority a ∈ A. The semantic clauses are
adjusted as expected: M,w |= OaA iff for all w′ ∈ W , if Raww′ then M,w′ |= A
(and dually for Pa).

In a way technically analogous to the representation of different authorities via
superscripts to the deontic operators, we could add subscripts for distinguishing
between various interest groups in view of which the norms hold (cfr. [19]).
Moreover, the adaptive framework could be enhanced so as to allow for varying
degrees of priority amongst norms and/or conditional norms [29].

The framework used in this paper is elementary not only in its limited ex-
pressive power, but also in its treatment of the notions of action and agency.
At the moment, this paper is lacking a comparison with other frameworks for
representing agency in deontic logic. Further research includes (i) the relation
of the agentive setting applied here with other such settings, e.g. dynamic logic
[9,23], stit theory [17,19], and their historical predecessors [10,33,34]; and (ii) the
application of the inconsistency-adaptive approach for accommodating norma-
tive conflicts within these other frameworks for accounting for action in deontic
logic.

References

1. Alchourrón, C.E.: Logic of norms and logic of normative propositions. Logique &
Analyse 47, 242–268 (1969)

2. Alchourrón, C.E., Bulygin, E.: The expressive conception of norms. In: Hilpinen,
R. (ed.) New Studies in Deontic Logic, pp. 95–124. D. Reidel Publishing Company,
Dordrecht (1981)

10 We will exemplify all enhancements by means of MDC. The arguments are analo-
gous for MDP and MDPm.

A Paraconsistent Multi-agent Framework 327

3. Batens, D.: A survey of inconsistency-adaptive logics. In: Batens, D., Priest, G.,
van Bendegem, J.-P. (eds.) Frontiers of Paraconsistent Logic, pp. 49–73. Research
Studies Press, Kings College Publication, Baldock (2000)

4. Batens, D.: A universal logic approach to adaptive logics. Logica Universalis 1,
221–242 (2007)

5. Batens, D., Meheus, J.: Recent results by the inconsistency-adaptive labourers. In:
Béziau, J.-Y., Carnielli, W., Gabbay, D. (eds.) Handbook of Paraconsistency, pp.
81–99. College Publications, London (2007)

6. Beirlaen, M., Meheus, J., Straßer, C.: An inconsistency-adaptive deontic logic for
normative conflicts. Under review

7. Boella, G., Van Der Torre, L., Verhagen, H.: Introduction to the special issue on
normative multiagent systems. Autonomous Agents and Multi-Agent Systems 17,
1–10 (2008)

8. Boella, G., van der Torre, L.: Permissions and obligations in hierarchical norma-
tive systems. In: Proceedings of the 9th International Conference On Artificial
Intelligence And Law, ICAIL 2003, pp. 109–118. ACM, New York (2003)

9. Broersen, J.: Action negation and alternative reductions for dynamic deontic logics.
Journal of Applied Logic 2, 153–168 (2004)

10. Castañeda, H.-N.: The paradoxes of deontic logic: the simplest solution to all of
them in one fell swoop. In: Hilpinen, R. (ed.) New Studies in Deontic Logic, pp.
37–85. D. Reidel Publishing Company, Dordrecht (1981)

11. Da Costa, N., Carnielli, W.: On paraconsistent deontic logic. Philosophia 16, 293–
305 (1986)

12. Dignum, F., Royakkers, L.: Collective commitment and obligation. In: Ciampi, C.,
Marinai, E. (eds.) Proceedings of 5th Int. Conference on Law in the Information
Society, Firenze, Italy, pp. 1008–1021 (1998)

13. Goble, L.: Multiplex semantics for deontic logic. Nordic Journal of Philosophical
Logic 5(2), 113–134 (2000)

14. Goble, L.: A logic for deontic dilemmas. Journal of Applied Logic 3, 461–483 (2005)
15. Hansen, J., Pigozzi, G., van der Torre, L.: Ten philosophical problems in de-

ontic logic. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative
Multi-agent Systems, Germany. Dagstuhl Seminar Proceedings, vol. 07122. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Scholos
Dagstuhl (2007)

16. Horty, J.F.: Moral dilemmas and nonmonotonic logic. Journal of Philosophical
Logic 23(1), 35–66 (1994)

17. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
18. Horty, J.F.: Reasoning with moral conflicts. Noûs 37, 557–605 (2003)
19. Kooi, B., Tamminga, A.: Moral conflicts between groups of agents. Journal of

Philosophical Logic 37, 1–21 (2008)
20. Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential

models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)
21. McConnell, T.: Moral dilemmas. In: Zalta, E.N. (ed.) The Stanford Encyclopedia

of Philosophy (2010) (Summer 2010 edn.)
22. Meheus, J., Beirlaen, M., Van De Putte, F.: Avoiding deontic explosion by contex-

tually restricting aggregation. In: Governatori, G., Sartor, G. (eds.) DEON 2010.
LNCS(LNAI), vol. 6181, pp. 148–165. Springer, Heidelberg (2010)

23. Meyer, J.-J.: A different approach to deontic logic: deontic logic viewed as a variant
of dynamic logic. Notre Dame Journal of Formal Logic 29, 109–136 (1988)

24. Priest, G.: In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford
University Press, Oxford (2006)

328 M. Beirlaen and C. Straßer

25. Routley, R., Plumwood, V.: Moral dilemmas and the logic of deontic notions. In:
Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic. Essays on the
Inconsistent, pp. 653–702. Philosophia Verlag, München (1989)

26. Shoham, Y.: A semantical approach to nonmonotonic logics. In: Ginsberg, M.L.
(ed.) Readings in Nonmonotonic Reasoning, pp. 227–250. Morgan Kaufmann Pub-
lishers, San Francisco (1987)

27. Sinnott-Armstrong, W.: Moral Dilemmas. Basil Blackwell, Oxford (1988)
28. Straßer, C.: An adaptive logic framework for conditional obligations and deontic

dilemmas. Logic and Logical Philosophy (2010) (forthcoming)
29. Straßer, C.: A deontic logic framework allowing for factual detachment. Journal of

Applied Logic 9(1), 61–80 (2011)
30. Straßer, C., Beirlaen, M.: Towards more conflict-tolerant deontic logics by relaxing

the interdefinability between obligations and permissions. Under review

31. Straßer, C., Meheus, J., Beirlaen, M.: Tolerating deontic conflicts by adaptively
restricting inheritance. Under review

32. van der Torre, L., Tan, Y.H.: Two-phase deontic logic. Logique et Analyse (171-
172), 411–456 (2000)

33. von Wright, G.H.: Norm and Action. A Logical Enquiry. Routledge and Kegan
Paul, London (1963)

34. von Wright, G.H.: On the logic of norms and actions. In: Hilpinen, R. (ed.) New
Studies in Deontic Logic, pp. 3–35. D. Reidel Publishing Company, Dordrecht
(1981)

35. von Wright, G.H.: Deontic logic: a personal view. Ratio Juris 12(1), 26–38 (1999)

A Appendix: Proof of Theorem 2

For every adaptive logic, there is a so-called upper limit logic. The upper limit logic
UMDP of MDPm is defined as follows: given a premise set Γ we select all MDP-
models M of Γ such that Ab(M) = ∅. UMDP is a monotonic logic that trivializes
premise sets that give rise to abnormalities.

Lemma 1. For each UMDP-model M of Γ , F-Con holds.

Proof. Let M = 〈W, I,R, v, vI , w0〉. Suppose for some w ∈ W , some A ∈ Wa, and some
J, K ⊆∅ I , wJ ∈ vI(A) and wK ∈ vI(¬A). By F-Fac′, w ∈ v(A) and w ∈ v(¬A).
If w = w0, by Ca, C¬′ and C∧, M, w0 |= A ∧ ¬A and hence A ∧ ¬A ∈ Ab(M),—a
contradiction. If w �= w0, then by Ca, C¬′, C∧ and CP, M, w0 |= P(AJ ∧ (¬A)K) and
hence P(AJ ∧ (¬A)K) ∈ Ab(M),—a contradiction. Hence, F-Con holds. ��
Let an MDP-model 〈W,I, R, v, vI , w

0〉 be MDC-like iff, (a) for all A ∈ Wa, w ∈ v(¬A)
iff w /∈ v(A); (b) for all AJ ∈ W l

I , w ∈ v(¬(AJ)) iff wJ /∈ vI(A); and (c) F-Fac holds.
We say that two models are equivalent iff they validate the same formulas.

Lemma 2. For each UMDP-model M = 〈W,I, R, v, vI , w0〉 there is an equivalent
MDC-like UMDP-model M ′ = 〈W, I,R, v′, vI , w0〉.
Proof. Define v′ as follows: (1) where A ∈ W l ∪ {¬(BJ) | B ∈ W l}, w0 ∈ v′(A) iff
w0 ∈ v(A); (2) where w ∈ W \ {w0} and A ∈ Wa, w ∈ v′(A) iff there is a J ⊆∅ I for
which wJ ∈ vI(A); (3) where w ∈ W \ {w0} and ¬A ∈ W l, w ∈ v′(¬A) iff w /∈ v′(A);
and (4) where A ∈ W l, w ∈ v′(¬(AJ)) iff wJ /∈ vI(A).

F-Con only depends on vI and hence holds for M ′ due to Lemma 1. F-Fac′(i) holds
by (2) and (ii) by (3) and due to F-Con. Hence, M ′ is a MDP-model.

A Paraconsistent Multi-agent Framework 329

F-Fac (i) holds due to F-Fac′ (i). Let wJ ∈ vI(¬A). Suppose first that w = w0. By
F-Fac′, w0 ∈ v′(¬A) or w0 /∈ v′(A) and whence w0 ∈ v(¬A) or w0 /∈ v(A). Assume
that w0 ∈ v(¬A)∩v(A). But then A∧¬A ∈ Ab(M),—a contradiction. Hence w0 /∈ v(A)
and whence w0 /∈ v′(A). Let now w ∈ W \ {w0}. By F-Con, there is no K ⊆∅ I for
which wK ∈ vI(A). Hence, by (2), w /∈ v′(A). Thus, F-Fac holds for M ′.

Note that (a) holds for v′ due to (3), and (b) holds due to (4). Hence, M ′ is MDC-
like.

M �MDP A iff M ′ �MDP A is shown by an induction over the length of the formula
A. The induction base is easily established. Where A ∈ Wa the equivalence holds by
Ca and (1). Where A ∈ W l

I the equivalence holds due to Cl
I . For the induction step

let first A = ¬A′. Suppose A′ ∈ Wa ∪W l
I . Note that by the induction hypothesis, C¬′

and (1) we have the same valuation for A. Let now A′ ∈ WI \Wl
I . Since both models

have the same assignment vI the valuation is analogous due to Cl
I , CI∧, CI∨, CI⊃,

CI≡, CI¬¬, CI¬∨, CI¬∧, CI¬⊃, and CI¬≡. The similar cases for A′ = BπC where
B, C ∈ Wc and π ∈ {∨,∧,⊃,≡} resp. for A′ = ¬B where B ∈ Wc are left to the
reader. The induction proceeds in a similar way if A ∈ WI \Wl

I , A = OA′ or A = PA′

where A′ ∈ Wc
I , or A = BπC where B, C ∈ Wc and π ∈ {∨,∧,⊃,≡}. Since M and

M ′ are equivalent, Ab(M ′) = Ab(M) = ∅ and whence M ′ is an UMDP-model. ��
Corollary 1. Γ |=UMDP A iff each MDC-like UMDP-model M of Γ validates A.

Where M = 〈W, I,R, v, vI , w0〉 is an MDC-like UMDP-model, let Mc = 〈W,I, R,
vc, vI , w0〉 be an MDC-model where vc : Wa → ℘(W),A �→ v(A). Note that Mc is
indeed an MDC-model since M satisfies F-Con and F-Fac and thus by the definition
also Mc.

Lemma 3. M and Mc are equivalent.

The Lemma is proved by a similar induction over the length of A as in the proof of
Lemma 2. Due to space restrictions this is left to the reader.

Lemma 4. Where M is an MDC-model of Γ , Ab(M) = ∅.
Proof. Suppose A ∈ Ab(M). Let A = B ∧ ¬B ∈ Ω1. By C¬, M |= B and M �|= B,—a
contradiction. The other cases are similar and left to the reader. ��
Where M = 〈W, I,R, v, vI , w0〉 is an MDC-model, let Mp = 〈W,I, R, vp, vI , w0〉 be an
MDC-like MDP-model where vp :W l∪{¬(AJ) | A ∈ W l, J ⊆∅ I} → ℘(W) is defined
by: w ∈ vp(A) iff M, w |= A. The reader can easily verify that Mp is MDC-like.

Lemma 5. M and Mp are equivalent and Mp is a UMDP-model.

Again, the proof of the equivalence proceeds by a similar induction over the length
of A as in the proof of Lemma 2. By Lemma 4, Ab(M) = ∅ and hence Ab(Mp) = ∅.
Hence, Mp is a UMDP-model.

Theorem 2 is an immediate consequence of Corollary 1, Lemma 3 and Lemma 5.

Normative Systems Represented as Hybrid

Knowledge Bases

Marco Alberti, Ana Sofia Gomes, Ricardo Gonçalves,
João Leite, and Martin Slota

CENTRIA & Departamento de Informática, Universidade Nova de Lisboa, Portugal

Abstract. Normative systems have been advocated as an effective tool
to regulate interaction in multi-agent systems.

Logic programming rules intuitively correspond to conditional norms,
and their semantics is based on the closed world assumption, which allows
default negation, often used in norms. However, there are cases where
the closed world assumption is clearly not adequate, and others that
require reasoning about unknown individuals, which is not possible in
logic programming.

On the other hand, description logics are based on the open world
assumption and support reasoning about unknown individuals, but do
not support default negation.

In this paper, we demonstrate the need for the aforementioned fea-
tures (closed and open world assumptions, and reasoning about unknown
individuals) in order to model human laws, with examples from the Por-
tuguese Penal Code. We advocate the use of hybrid knowledge bases
combining rules and ontologies, which provide the joint expressivity of
logic programming and description logics.

We define a normative scenario as the pair of a set of facts and a set
of norms, and give it a formal semantics by translation into an MKNF
knowledge base.

We describe the implementation of the language, which computes the
relevant consequences of given facts and norms, and use it to establish
the resulting sentence in a penal scenario.

1 Introduction

In this paper we argue for the need to jointly use the Closed World Assumption
based features of Logic Programming Rules, and the Open World Assumption
based features of Description Logic based Ontologies, to represent and reason
about Norms. We present a solution grounded on Hybrid MKNF Knowledge
Bases [18], illustrate its use with an excerpt of the Portuguese Penal Code, and
describe an efficient implementation.

Normative systems have long been advocated as an effective tool to regulate
interaction in multi-agent systems [24], and the theory and practice of normative
multi-agent systems constitutes a young, but very active, research area [6].

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 330–346, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Normative Systems Represented as Hybrid Knowledge Bases 331

Essentially, norms encode desirable behaviours for the population of natural or
artificial societies. For example, a (conditional) norm might specify that drivers
are expected to stop if so signaled by an authority. In general, they are commonly
understood as a specification of what is expected to follow (obligations, goals,
contingency plans, advices, actions, ...) from a specific state of affairs.

In practical multi-agent systems, norms are often implemented through elec-
tronic institutions which take a formal representation of the normative system
and, through automated reasoning, check observable agents’ behaviours in order,
for instance, to detect norm violation and to apply sanctions.

One key problem to implement such practical normative systems involves
the representation of, and reasoning with norms. If, on the one hand, we need a
representation language that is expressive enough to represent the norms we wish
to encode, on the other hand it must be such that we can reason with it efficiently.
In this paper, we will take a closer look at the problem of norm representation
and reasoning, trying to combine expressivity and efficiency, which has proved
a difficult task in automated reasoning.

Despite the specificities of multi-agent systems, many of their aspects are
inspired by human societies, and an intimate parallel between laws in real world
legal systems and norms in multi-agent systems can often be drawn.

Ever since the formalisation of the British Nationality Act using Logic Pro-
gramming by Sergot et al. [23], non-monotonic formalisms have been used to
deal with many aspects of legal rules and regulations. Important work on this
topic also includes the early use of argument-based extended logic programming
with defeasible priorities by Prakken and Sartor [20] and the use of defeasible
logic by Governatori et al. [12].

The non-monotonic features common to the languages used in these ap-
proaches, which implement the Closed-World Assumption, have been shown
necessary in the context of reasoning with laws and regulations, for example
to represent exceptions.

In this paper, instead of tailoring an artificial multi-agent based scenario to
illustrate our points, we will use the Portuguese Penal Code which is filled with
examples rich in intrinsic subtleties.

Example 1. The Portuguese Penal Code1 defines the penalty for murder as
follows:

Article 131. Murder
Who kills another person shall be punished with imprisonment from eight
to sixteen years.

However, exceptional circumstances for murder increase the duration of the
conviction:

1 Translation by the authors. For the original text, in Portuguese, consult, for example,
http://www.portolegal.com/CPENAL.htm

http://www.portolegal.com/CPENAL.htm

332 M. Alberti et al.

Article 132. Aggravated murder

1. If death is produced in circumstances which present a special repre-
hensibility or perversity, the agent is punished with imprisonment of
twelve to twenty-five years.

2. Is likely to reveal the special perversity or reprehensibility referred to
in the preceding paragraph, among others, the fact that the agent:
– (...)
d) employs torture or cruel act to increase the suffering of the vic-

tim;
– (...)
h) performs the fact with at least two other people, or uses partic-

ularly dangerous means, or [means] which would result in the
crime of common danger;

– (...)

Accordingly, killing someone is punished with imprisonment from eight to
sixteen years, except if some additional facts are established, in which case the
penalty is aggravated. In other words, unless one of these aggravating facts is
proved, by default this crime is punished with imprisonment from eight to sixteen
years. The relevant part can easily be captured by Logic Programming rules using
non-monotonic default negation as follows:

AggravatedMurder(X,Y)← KillingBy(X,Y),Censurable(X).
Murder(X,Y)← KillingBy(X,Y),∼AggravatedMurder(X,Y).

together with the definition of Censurable(X), which is the predicate representing
the “special perversity or reprensehibility” referred to in the law.

The use of non-monotonic rule based languages founded on Logic Program-
ming brings added value, as they also have well-studied computational properties
and mature implementations.

However, in legal reasoning, we sometimes need to represent concepts that
cannot be handled by the Logic Programming approach. There are cases where
the Open World Assumption is needed and, more importantly, others where we
need to deal with existential knowledge and unknown individuals.

Example 2. Going back to the previous example, encoding item h) as a condition
to establish special perversity or reprehensibility requires that we refer to (at
least) two possibly unknown individuals (a witness or a security camera recording
could be sufficient to establish that the culprit acted together with two more
people, but not their identity). The relevant part could be encoded in Description
Logics as follows:

Censurable ((≥ 3 PerformedBy.Person)

encoding that special censurability of the fact is established if it was committed
by at least three people. Such a condition cannot be expressed in the body of a

Normative Systems Represented as Hybrid Knowledge Bases 333

logic programming rule since it does not permit encoding unknown individuals.
Just as it would not be possible to assert that some fact was performed by e.g.
five people, but whose identities, besides that of the accused, are unknown.

Description Logics [2] based ontology languages are based on the Open World
Assumption and allow for reasoning with unknown individuals. Furthermore,
they are quite appropriate for taxonomic representations of facts and concepts,
and have been extensively used in legal reasoning [10]. However, they are mono-
tonic and therefore lack the aforementioned important ability to model defeasible
knowledge.

For all of these reasons, the representation and reasoning about normative
systems, and in particular those inspired by human legal systems, seems to de-
mand an approach that combines the best of the two families of formalisms,
rules and ontologies, and exhibits, at least, the following characteristics:

– have a formal rigorous semantics so that agents and institutions can both
reason about the norms to determine their actions and sanctions;

– support both the Open and Closed World Assumptions, and the ability to
represent and reason with unknown individuals;

– be equipped with efficient operational semantics to be usable in practical
multi-agent systems.

With these requirements in mind, in this paper we propose a language where
facts are represented as a description logic ABox, and norms as a combination
of description logic TBox and logic programming rules. We will then root our
language on Hybrid MKNF [18], a language that tightly integrates rules and
ontologies, and focus on its well founded version [1,14] for which we can exploit
an efficient implementation [11].

The remainder of the paper is structured as follows. In Sect. 2, we present the
language and the running example from the Portuguese penal code. In Sect. 3,
we give the language a formal semantics by mapping it to Hybrid MKNF. In
Sect. 4, we introduce the implementation of the reasoner for our language, and
show how it correctly handles the running example. Conclusions and comments
on future research follow.

2 Framework

In this section, we introduce the model of electronic institution that we envisage
by analogy with the Portuguese judicial system; the institution’s modus operandi
motivates the choice of a language for a normative system.

In Portugal, the first phase of a penal trial is a discussion aimed at establishing
the facts, where each of the parties (prosecution and defense) provides relevant
evidence.

At the end of the debate, a list is made of all the facts that have been es-
tablished in the debate. For example, it may have been established that (i) Bob
attempted murder on Mary by means of a knife, and (ii) Alice defended Mary’s
life by killing Bob with a handgun.

334 M. Alberti et al.

Then, the judge applies the relevant laws to the facts and pronounces a
sentence.

This procedure implies that the sentence depend on (i) facts established in
court; and (ii) relevant laws.

A similar model is in fact applied to normative multi-agent systems, where an
electronic institution automatically determines possible sanctions depending on
the agents’ behaviour (possibly detected by a runtime monitoring system) and
the norms.

In order to enable the electronic institution to perform this task by means
of automated reasoning, the language used to express the facts and the norms
must have a formal semantics.

2.1 Language

We record both the facts about a particular legal case as well as the relevant
norms for applying the law in a judicial knowledge base. The formalisation of this
notion must build upon a formalism that, on the one hand, is capable of rea-
soning with unknown individuals, and, on the other hand, allows for expressing
exceptions in a natural way. At the same time, the formalism should be amenable
to an efficient implementation. The natural candidates for such formalisms are
the integrative formalisms for Description Logics and non-monotonic rules. We
proceed by briefly introducing the syntax of both these formalisms.

Throughout the paper we use a function-free first-order signature. By a first-
order atom we mean a formula P (t1, t2, . . . , tn) where P is a predicate symbol
of arity n and t1, t2, . . . , tn are first-order terms.

Description Logics. Description Logics (DLs) [2] are (usually) decidable frag-
ments of first-order logic that are frequently used for knowledge representation
and reasoning in applications. Throughout the paper we assume that some De-
scription Logic is used to describe an ontology, i.e. it is used to specify a shared
conceptualisation of a domain of interest. Basic building blocks of such a specifi-
cation are constants, representing objects (or individuals), concepts, representing
groups of objects, and roles, representing binary relations between objects and
properties of objects. Typically, an ontology is composed of two distinguishable
parts: a TBox specifying the required terminology, i.e. concept and role defini-
tions, and an ABox with assertions about constants.

Most Description Logics can be equivalently translated into function-free first-
order logic, with constants represented by constant symbols, atomic concepts
represented by unary predicates and atomic roles represented by binary pred-
icates. We assume that for any DL axiom φ, ζ(φ) denotes such a translation
of φ.

Logic Programs. We consider ground logic programs for specifying nonmono-
tonic domain knowledge. The basic syntactic blocks of such programs are ground
atoms. A default literal is a ground atom preceded by ∼. A literal is either a
ground atom or a default literal. A rule r is an expression of the form

p← p1, p2, . . . , pm,∼q1,∼q2, . . . ,∼qn.

Normative Systems Represented as Hybrid Knowledge Bases 335

where m, n are natural numbers and p, p1, p2, . . . , pm, q1, q2, . . . , qn are first-order
atoms. The atom p is called the head of r and is denoted by H(r); the set
{ p1, p2, . . . , pm,∼q1,∼q2, . . . ,∼qn } is called the body of r and is denoted by
B(r). A rule r is a fact if its body is empty. A (normal) logic program P is a
finite set of rules.

Judicial Knowledge Base. As illustrated in Examples 1 and 2, a combination
of TBox axioms and rules is sufficient to faithfully represent significant parts
of real-world penal code. Also, ABox assertions are a natural candidate for de-
scribing the facts established in court. We henceforth define a judicial knowledge
base as follows:

Definition 1. A judicial knowledge base is a pair 〈F ,N〉 where F is a set of
ABox axioms and N is a set of TBox axioms and rules.

2.2 Example

In this section, we demonstrate the expressivity of our language by encoding one
example from real-world law, which would be problematic to express in either
logic programming or description logic formalisms.

Together with the definitions of murder and aggravated murder reported in
the introduction, consider the circumstances that exclude the illegality of an act
listed in the Portuguese Penal Code.

Article 31. Precluding wrongfulness

1. The act is not punishable when its wrongfulness is precluded by law
considered in its entirety.

2. In particular, it (the act) is not unlawful if committed:
a) In legitimate defense;
b) In the exercise of a right;
c) In fulfilling a duty imposed by law or lawful order of the authority,

or
d) With the consent of the holder of the harmed legal interest.

Among such circumstances, legitimate defense is defined as follows.

Article 32. Legitimate defense
Legitimate defense is an act executed as necessary means to repel an
actual and illicit aggression to legally protected interest of the executor
or of a third party.

Suppose that the following was established in court by debate:

– John committed murder together with three more people;
– Mary killed someone who was pointing a gun at her;
– an unidentified person committed murder and torture.

A formalisation using a judicial knowledge base K = 〈F ,N〉 is in Figs. 1 and 2.

336 M. Alberti et al.

Censurable � (≥ 3 PerformedBy.Person)

Censurable � Torture

AggravatedMurder(X, Y)← KillingBy(X, Y), Censurable(X).

Murder(X, Y)← KillingBy(X, Y),∼AggravatedMurder(X, Y).

KillingBy(X, Y)← Killing(X), CrimeBy(X, Y).

CrimeBy(X, Y)← Illegal(X), Guilt(X, Y).

Illegal(X)← Unlawful(X),∼ExceptionIllegal(X).

Unlawful(X)← Killing(X).

ExceptionIllegal(X)← JudicialOrder(X).

ExceptionIllegal(X)← ExerciseOfARight(X).

ExceptionIllegal(X)← WithConsentOfVictim(X).

ExceptionIllegal(X)← LegitimateDefense(X).

LegitimateDefense(X)← RelevantAggression(Z), EffectiveReaction(X, Z),

∼RequiredDifferentBehaviour(X, Z).

Guilt(X, Y)← Illegal(X), PerformedBy(X, Y),∼ExceptionGuilt(X, Y).

ExceptionGuilt(X, Y)← RelevantThreat(Z), EffectiveReaction(X, Z),

∼RequiredDifferentBehaviour(Y, X, Z).

JailSentence(Y, 8, 16) ← Murder(X, Y),∼AggravatedMurder(X, Y).

JailSentence(Y, 12, 25) ← AggravatedMurder(X, Y).

Fig. 1. Set of relevant norms N

a : Act a : Killing a : (≥ 4 PerformedBy.Person)

john : Person 〈a, john〉 : PerformedBy

b : Act b : Killing

mary : Person 〈b,mary〉 : PerformedBy

gun : RelevantThreat 〈b, gun〉 : EffectiveReactionTo

c : Act c : Killing c : Torture

Fig. 2. Set of facts established in court F

3 Formal Semantics

In order for judicial knowledge bases to be used in determining sanctions by
means of automated reasoning in a rigorous and verifiable fashion, they need a

Normative Systems Represented as Hybrid Knowledge Bases 337

formal semantics. This semantics is established here by translating them into
the logic of Minimal Knowledge and Negation as Failure (MKNF) [16,18]. In
the following, we first briefly introduce the syntax and semantics of MKNF,
adopting the well-founded MKNF model semantics introduced in [15] for which
top-down querying procedures have been introduced and an implementation with
support for the Description Logic ALCQ is available [11]. In Sect. 4, we use this
implementation to represent and query the judicial knowledge base in Figs. 1
and 2.

3.1 Hybrid MKNF Knowledge Bases

Syntactically, MKNF is an extension of function-free first-order logic with two
modal operators: K and not. A first-order atom P (t1, t2, . . . , tn) is an MKNF
formula; if φ is an MKNF formula, then ¬φ, ∃x : φ, Kφ, and notφ are MKNF
formulas, and so are φ1 ∧ φ2, φ1 ∨ φ2, φ1 ⊃ φ2, and φ1 ≡ φ2, if φ1, φ2 are
MKNF formulas. An MKNF formula φ is a sentence if it has no free variables.
By φ[t/x] we denote the formula obtained by simultaneously replacing in φ all
free occurrences of variable x by term t.

Hybrid MKNF knowledge bases, as presented in [15], are sets of MKNF for-
mulas restricted to a certain form. They consist of two components: a description
logic knowledge base and a logic program.2 Formally, a hybrid knowledge base is
a pair 〈O,P〉 where O is a DL ontology and P is a logic program.

For interpreting hybrid MKNF knowledge bases in terms of the logic of
MKNF, a transformation π is defined that translates both ontology axioms and
rules into MKNF sentences. For any ground atom p, set of literals B, rule r with
the vector of free variables x, and hybrid knowledge base K = 〈O,P〉, we define:

– π(p) = K p,
– π(∼p) = not p,
– π(B) = { π(L) | L ∈ B },
– π(r) = (∀x :

∧
π(B(r)) ⊃ π(H(r))),

– π(O) =
∧
{ ζ(φ) | φ ∈ O },

– π(P) =
∧
{ π(r) | r ∈ P },

– π(K) = K π(O) ∧ π(P).

Hybrid MKNF knowledge bases are in general undecidable, unless they are re-
stricted in some way. The reason for that is that rules can be applied to all
the objects in an infinite domain. The basic idea to make reasoning with hybrid
MKNF knowledge bases decidable is to apply rules only to the individuals that
appear in the knowledge base. This restriction is achieved by DL-safety [19].
Given a hybrid knowledge base 〈O,P〉, a first-order atom P (t1, t2, . . . , tn) such
that P occurs inO is called a DL-atom; all other atoms are called non-DL-atoms.
A rule r is DL-safe if every variable in r occurs in at least one non-DL-atom p
occurring positively in the body of r.

2 In difference to [15], in this paper we consider only non-disjunctive rules.

338 M. Alberti et al.

3.2 Well-Founded MKNF Model

Following [18,15], we only consider Herbrand interpretations in our semantics
and adopt the standard names assumption, so apart from the constants used
in formulae, we assume our signature to contain a countably infinite supply of
constants. The Herbrand Universe of such a signature is denoted by Δ. A three-
valued MKNF structure 〈I,M,N〉 consists of a first-order interpretation I and
two pairs M = 〈M,M1〉 and N = 〈N,N1〉 of sets of first-order interpretations
where M1 ⊆M and N1 ⊆ N . Each three-valued MKNF structure assigns one of
the truth values t, u and f to all MKNF sentences. We use an ordering f < u < t
of these truth values and operators max and min that, respectively, choose the
greatest and least element with respect to this ordering. The truth value of a
ground atom P (t1, t2, . . . , tn) and of an MKNF sentence φ in a three-valued
MKNF structure 〈I,M,N〉 is defined as follows:

– 〈I,M,N〉(P (t1, t2, . . . , tn)) =

{
t iff 〈tI1, tI2, . . . , tIn〉 ∈ P I

f iff 〈tI1, tI2, . . . , tIn〉 /∈ P I

– 〈I,M,N〉(¬φ) =

⎧⎪⎨
⎪⎩

t iff (I,M,N)(φ) = f
u iff (I,M,N)(φ) = u
f iff (I,M,N)(φ) = t

– 〈I,M,N〉(φ1 ∧ φ2) = min { 〈I,M,N〉(φ1), 〈I,M,N〉(φ2) }

– 〈I,M,N〉(φ1 ⊃ φ2) =

{
t iff 〈I,M,N〉(φ2) ≥ 〈I,M,N〉(φ1)
f otherwise

– 〈I,M,N〉(∃x : φ) = max { 〈I,M,N〉(φ[α/x]) | α ∈ Δ }

– 〈I,M,N〉(Kφ) =

⎧⎪⎨
⎪⎩

t iff 〈J, 〈M,M1〉,N〉(φ) = t for all J ∈M
f iff 〈J, 〈M,M1〉,N〉(φ) = f for some J ∈M1

u otherwise

– 〈I,M,N〉(notφ) =

⎧⎪⎨
⎪⎩

t iff 〈J,M, 〈N,N1〉〉(φ) = f for some J ∈ N1

f iff 〈J,M, 〈N,N1〉〉(φ) = t for all J ∈ N
u otherwise

An MKNF interpretation is a non-empty set of first-order interpretations. An
MKNF interpretation pair 〈M,N〉 consists of two MKNF interpretations M , N
with ∅ � N ⊆M . An MKNF interpretation pair satisfies an MKNF sentence φ,
written 〈M,N〉 |= φ, if and only if 〈I, 〈M,N〉, 〈M,N〉〉(φ) = t for every I ∈ M .
If there exists an MKNF interpretation pair satisfying φ, then φ is consistent.
An MKNF interpretation pair 〈M,N〉 is a three-valued MKNF model for a given
MKNF sentence φ if

Normative Systems Represented as Hybrid Knowledge Bases 339

1. 〈M,N〉 satisfies φ and
2. for each MKNF interpretation pair 〈M ′, N ′〉 with M ⊆ M ′ and N ⊆ N ′,

where at least one of the inclusions is proper and M ′ = N ′ if M = N , there
is some I ′ ∈M ′ such that 〈I ′, 〈M ′, N ′〉, 〈M,N〉〉(φ) �= t.

For any MKNF interpretation pairs 〈M1, N1〉 and 〈M2, N2〉 we define the knowl-
edge ordering as: 〈M1, N1〉)k 〈M2, N2〉 iff M1 ⊆ M2 and N1 ⊇ N2. Such an
order is of particular interest for comparing models. In logic programming the
least model w.r.t. derivable knowledge among all three-valued models for a given
program is the well-founded model. Here, we introduce a similar notion referring
to the minimal three-valued MKNF models, i.e. the ones among all three-valued
MKNF models that leave as much as possible undefined.

Definition 2 (Well-Founded MKNF Model). Let φ be an MKNF sentence
and 〈M,N〉 a three-valued MKNF model of φ such that 〈M1, N1〉)k 〈M,N〉 for
all three-valued MKNF models 〈M1, N1〉 of φ. Then 〈M,N〉 is a well-founded
MKNF model of φ.

Given a hybrid knowledge base K, the well-founded model of K is the well-
founded model of π(K).

The following Theorem pinpoints the fact that every consistent DL-safe hybrid
MKNF knowledge base has a unique well-founded model.

Theorem 1 (Theorem 1 in [15]). If K is a consistent DL-safe hybrid MKNF
knowledge base, then a well-founded MKNF model of K exists, and it is unique.

As shown in [15], the well-founded MKNF semantics also generalises the well-
founded semantics for logic programs [9] – for every logic program P , the well-
founded model of P directly corresponds to well-founded MKNF model of π(P).

Finally, the well-founded model of a judicial knowledge base is determined by
the hybrid knowledge base to which it directly corresponds.

Definition 3 (Well-Founded Model of a Judicial Knowledge Base). Let
K = 〈F ,N〉 be a judicial knowledge base, T a TBox and P a logic program such
that N = T ∪P. The hybrid knowledge base associated to K is K′ = 〈F ∪ T ,P〉.

The well-founded model of K is the well-founded model of K′.

4 Implementation

As defined in Section 3, the MKNF Semantics is parametric on a decidable
description logic in which the ontology is written. As shown in [14], the choice of
this description logic determines the usability of the system, as the complexity
of reasoning in the well-founded MKNF semantics is in the same class as the
decidable description logic; a complexity result that is extended to a query-driven
approach in [1].

340 M. Alberti et al.

CDF-Rules3 [11] is an implementation of the well-founded MKNF semantics,
on XSB system, that fixes the description logic component to CDF [?] ontologies
which, in its Type-1 version, fully supports the ALCQ description logic. Since
reasoning in ALCQ is performed in EXPtime, CDF-Rules also achieves EXPtime
complexity.

One particular advantage of CDF-Rules is that it is a query-driven system. In
fact, the definition of the well-founded MKNF semantics presented in Section 3
constructs the complete well-founded model for a given hybrid knowledge base,
based on a bottom-up computation. However, in practical cases, this is not what
is intended. Particularly, in the context of judicial systems, what one usually
wants is to know whether or not a particular law is applicable to a particular
individual, or what is the applicable penalty. Deriving all the consequences of
the knowledge base to answer a query about an individual, or about a particular
crime, would be in most cases impractical.

CDF-Rules provides a practical framework for query evaluation in well-founded
MKNF knowledge bases, combining rules and ontologies, which is sound and
complete w.r.t. the well-founded semantics. Moreover, since the example pre-
sented in Section 2.2 can be expressed using ALCQ theories, CDF-Rules is suit-
able for our intents.

4.1 CDF-Rules

To evaluate queries, CDF-Rules makes use of XSB’s SLG Resolution [7], to-
gether with tableaux mechanisms supported by CDF theorem prover to check
entailment in the ontology. Accordingly, to decide the truth value of a formula
defined in the rules component, CDF-Rules employs SLG Resolution which, in
a nutshell, is a tabling method of resolution that is able to answer queries under
the well-founded semantics with polynomial-time complexity.

However, to decide the entailment of a formula φ w.r.t. an ontology O a
tableau algorithm tries to construct a common model for ¬φ and O, sometimes
called a completion graph (cf. e.g. [22]). If such a model can not be constructed
then O entails φ; otherwise O does not entail φ. Similar to other description logic
provers, the CDF theorem prover attempts to traverse as little of an ontology as
possible when proving φ. As a result, when the prover is invoked on an atom p,
the prover attempts to build a model for the underlying individual(s) to which
p refers, and explores additional individuals only as necessary.

Given the interdependence between the rules and the ontology in MKNF
knowledge bases, the prover must consider the knowledge inferred by the rules
in the program for the entailment proof, as a DL-atom can be derived by rules,
which in turn may rely on other DL-atoms proven by the ontology. Thus, in or-
der do compute a query Q, CDF-Rules constructs a fixed point that iteratively
computes a (sub-)model for the objects that appear in Q, deriving at each itera-
tion new information about their roles and classes, along with information about

3 The implementation is available from the XSB CVS repository as part of the CDF
package in the subdirectory packages/altCDF/mknf.

Normative Systems Represented as Hybrid Knowledge Bases 341

other individuals related to them, either in the ontology (via CDF’s tableau al-
gorithm) or in the rules (via SLG procedures). Since this (sub-)model is only
constructed for objects that are relevant to the query, CDF-Rules significantly
reduces the amount of computation required when compared to the Definition
of well-founded MKNF model presented in Section 3.2.

As stated in Section 3, the definition of MKNF imposes the restriction of DL-
safe knowledge bases to obtain decidability. The idea of this concept is basically
to constrain the use of rules to individuals actually appearing in the knowledge
base under consideration. To implement such concept, CDF-Rules has two spe-
cial predicates definedClass/2 and definedRole/3 that define the domain of the
rules, i.e. the set of individuals that are applicable to a given rule. These predi-
cates can be defined explicitly by the compiler or the programmer, but they can
also be inferred if all rules are DL-safe.

Next, we provide details on how to implement the example from Section 2.2
in CDF-Rules. For more information on the implementation of CDF-Rules the
interested reader is referred to [11].

4.2 Implementing Judicial Knowledge Bases

Intuitively, to implement a judicial knowledge base (and particularly, the ex-
ample presented in Section 2.2), one needs to define two different components
in CDF-Rules : one component defining the logic-programming rules; and one
component defining the intensional (TBox) and extensional (ABox) portions of
the ontology.

Rules in CDF-Rules are stated in a Prolog-like style but with the inclusion
of two additional special predicates known/1 and dlnot/1 that account for the
modalities K and not of MKNF4. For instance, the rules for defining murder
and aggravatedMurder presented in Section 2.2 can be represented as illustrated
in Figure 3.

aggrMurder (X,Y) :- known(killingBy (X, Y)), known(cens (X)).

murder(X,Y) :- known(killingBy (X, Y)),

dlnot(aggrMurder (X,Y)).

Fig. 3. CDF-Rules implementation of murder and aggravatedMurder properties

On the other hand, the ontology component in CDF-Rules is defined under the
standard CDF syntax. Instances of classes, roles and objects in CDF syntax are
defined by using the constructs cid/2, rid/2, oid/2, respectively. These constructs
are then used in reserved predicates that are interpreted as ontology definitions.
4 As defined in [11], we can relax the assumption of DL-Safe rules if we assume that

the predicates definedClass/2 and definedRole/3 are defined for each rule.

342 M. Alberti et al.

Furthermore, to express more complex statements to define classes as nega-
tion or cardinality, CDF-syntax supports a special kind of identifier: a virtual
identifier, denoted by the functor vid/1. This identifier is then used within the
special fact necessCond/2 that has the goal to state necessary conditions.

As illustration, in order to state that the class Torture is included in the class
Censurable (i.e., Censurable (Torture) we use the predicate isa/2 that defines
state inclusion (cf. Figure 4).

isa_ext(cid(torture ,mknf),cid(cens ,mknf)).

Fig. 4. CDF syntax for Censurable � Torture

Moreover, to state the expression Censurable ((≥ 3 PerformedBy.Person)
we need a little tweak. Particularly, since CDF syntax only allows one to state
inclusion (via isa/2) between identifiers of classes or objects, to express such
statement we need to transform the expression (≥ 3 PerformedBy.Person) also
into a class identifier. With this goal, we first need to define an auxiliary class
Aux such that Aux

.= (≥ 3 PerformedBy.Person). Since we are defining cardinality
of a class, to express such condition we need the special predicate necessCond/2.
Afterwards, all one needs to do is to state that the auxiliary class definition Aux
is a subclass of Censurable. This is materialised in Figure 5.

necessCond_ext (cid(aux ,mknf),

vid(atLeast (3,rid(performedBy ,mknf),cid(person ,mknf)))).

isa_ext(cid(aux ,mknf),cid(cens ,mknf)).

Fig. 5. CDF syntax for Censurable � (≥ 3 PerformedBy.Person)

Furthermore, to define simple minimal and maximal cardinality of objects in
CDF syntax, one can use the predicates minAttr/4 and maxAttr/4, respectively.
For instance, the predicate minAttr/4 can be used to encode the ABox a : (≥
4 PerformedBy.Person). This is illustrated in Figure 6.

As expected, such implementation is able to answer queries about the individ-
uals john and mary and about the facts a, b and c. Particularly, one is able to
ask questions to the system, in a Prolog-like style, and conclude that john should
be sentenced to 12–25 years in jail, and that mary is not guilty of crime b.5

5 The full encoding of the example presented in Figs. 1 and 2 in CDF-Rules is available
in http://centria.di.fct.unl.pt/~jleite/climaXIIexample.zip

http://centria.di.fct.unl.pt/~jleite/climaXIIexample.zip

Normative Systems Represented as Hybrid Knowledge Bases 343

minAttr_ext (oid(f,mknf),rid(performedBy ,mknf),

cid(person ,mknf) ,4).

Fig. 6. CDF syntax for a : (≥ 4 PerformedBy.Person)

5 Conclusions and Future Work

In this paper, we considered human-inspired normative systems and, in partic-
ular, those to be employed to regulate interaction in multi-agent systems. We
advocated the need for an integration of rules and ontologies (already recognized
in other areas of knowledge representation and reasoning) by showing how both
are required to express an excerpt of a real-world Penal Code. We presented
a language to express established facts (as a description logic ABox) and laws
(as a hybrid of logic programming rules and description logic TBox). We pro-
vided the language with a formal semantics by means of a mapping to Hybrid
MKNF, and exploited an efficient implementation to draw correct conclusions
in the motivating example.

In our working example, we have focused on the outcome of applying the
relevant laws to a given set of facts established in court. Therefore, the trial
discussion phase, where each of the parties (prosecution and defense) provides
relevant evidence to establish the facts, is outside of the scope of our frame-
work. A neat approach to deal with the discussion phase is the argumentation
framework of Sartor and Prakken [20].

Several other important aspects of rule-based approaches to normative sys-
tems and, in particular, to legal reasoning are outside the scope of the present
work. Many of them have been acknowledged in the field of artificial intelligence
and law, where there is now much agreement about the structure and proper-
ties of rules representing norms. These aspects include, for example, updates
of norms, jurisdiction, authority, temporal properties, conflicting rules, exclu-
sionary rules, legal interpretation and contrary-to-duty obligations. Notably, the
works of Sartor and Prakken [20,21] using an Argumentation framework, Gov-
ernatori et al [12,4] using a Defeasible Logic framework, Makinson and Van der
Torre et al [17,5] using Input-Output Logic, are examples of works that fruitfully
tackled some of these problems.

Boella et al. [3], among others, formally support the distinction between con-
stitutive norms, which define concepts, and regulative norms, which describe de-
sirable behaviour. While this distinction is conceptually clear and most probably
useful for designing artificial normative systems, in this paper we did not follow
this approach, because we preferred to remain faithful to the context of our mo-
tivating example, the Portuguese Penal Code, where such a formal distinction is
not present. However, splitting the normative part of the judicial knowledge base
into constitutive and regulatory portions would present to technical problems,
and would allow to apply MKNF hybrid knowledge base evolution to support
updates of constitutive norms (as done in [3]), regulative norms, or both.

344 M. Alberti et al.

In [8] we can find an application of first-order logic to the problem of specifying
and reasoning about information flow and privacy polices. The logic has an
expressive language, which allows the support for some features relevant in the
area of information flow and privacy polices, and has been used to formalise large
fragments of real world privacy laws, such as the Health Insurance Portability
and Accountability Act (HIPAA) and the Gramm-Leach-Bliley Act (GLBA).
The main difference w.r.t. our proposal is that they use classical implication
to model policy rules, whereas we use logic programming implication to model
norms. Moreover, their approach does not have a feature which is fundamental
in the area of normative systems which is the ability to represent defeasible
knowledge, allowed in our proposal by means of the use of default negation in
rules.

With respect to future work, one of our main goals is to investigate the im-
portant problem of dealing with the evolution of normative systems, in partic-
ular those with hybrid representations such as the one described in this paper.
The problems associated with knowledge evolution have been extensively stud-
ied, over the years, in different research communities, namely in the context of
Classical Logic, and in the context of Logic Programming. They proved to be
extremely difficult to solve, and existing solutions, even within each community,
are still subject of active debate as they do not seem adequate in all kinds of
situations in which their application is desirable. Then, when one looks at the
solutions developed by the two communities, one immediately realises that they
are based on entirely different intuitions and principles which makes them ap-
parently irreconcilable. Two recent proposals [25,26] towards the development of
update operators for Hybrid knowledge Bases seem promising and can perhaps
serve as starting points to tackle the problem of dealing with the evolution of
normative systems represented as Hybrid Theories.

We also intend to investigate the integration of our reasoner as a normative
engine in existing multi-agent platforms, as a runtime compliance verification
tool. In particular, we envisage the hybrid TBox and rules part of the judicial
knowledge base to be defined by the system designer, and the ABox part to be
provided by a monitoring system; the reasoner’s task would be to draw conclu-
sions about, for instance, applicable sanctions. Another long-term target of our
research is a-priori compliance verification, given a system specification and a
normative system. A possible approach would be similar to those proposed in
the business process domain by Governatori and Rotolo [13]: compute logical
consequences of the system formal model and the norms to which the system
will be subject.

Acknowledgments

The authors would like to thank Ana Leite for all her advice on the Portuguese
Penal Code and Matthias Knorr for discussions on the well-founded semantics
for Hybrid MKNF. Ana Sofia Gomes was partially supported by FCT Grant
SFRH/BD/64038/2009. Ricardo Gonçalves was partially supported by FCT

Normative Systems Represented as Hybrid Knowledge Bases 345

Grant SFRH/BPD/47245/2008. João Leite was partially supported by FCT
Project ASPEN PTDC/EIA-CCO/110921/2009. Martin Slota was partially sup-
ported by FCT Grant SFRH/BPD/47245/2008.

References

1. Alferes, J.J., Knorr, M., Swift, T.: Queries to hybrid MKNF knowledge bases
through oracular tabling. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 1–16. Springer, Heidelberg (2009)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

3. Boella, G., Governatori, G., Rotolo, A., van der Torre, L.: lex minus dixit
quam voluit, lex magis dixit quam voluit: A formal study on legal compliance
and interpretation. In: Casanovas, P., Pagallo, U., Sartor, G., Ajani, G. (eds.)
AICOL-II/JURIX 2009. LNCS, vol. 6237, pp. 162–183. Springer, Heidelberg (2010)

4. Boella, G., Governatori, G., Rotolo, A., van der Torre, L.: A logical understanding
of legal interpretation. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) KR. AAAI
Press, Menlo Park (2010)

5. Boella, G., Pigozzi, G., van der Torre, L.: Normative framework for normative
system change. In: Sierra, C., Castelfranchi, C., Decker, K.S., Sichman, J.S. (eds.)
AAMAS. IFAAMAS , vol. 1, pp. 169–176 (2009)

6. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent
systems. Computational and Mathematical Organization Theory 12, 71–79 (2006),
http://dx.doi.org/10.1007/s10588-006-9537-7 , 10.1007, doi:10.1007/s10588-
006-9537-7

7. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. J. ACM 43(1), 20–74 (1996)

8. DeYoung, H., Garg, D., Jia, L., Kaynar, D.K., Datta, A.: Experiences in the logical
specification of the HIPAA and GLBA privacy laws. In: Al-Shaer, E., Frikken, K.B.
(eds.) WPES, pp. 73–82. ACM, New York (2010)

9. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3), 620–650 (1991)

10. Sartor, G., Pompeu Casanovas, M.A.B., Fernandez-Barrera, M. (eds.): Approaches
to Legal Ontologies: Theories, Domains, Methodologies. Law, Governance and
Technology series. Springer, Heidelberg (2011)

11. Gomes, A.S., Alferes, J.J., Swift, T.: Implementing query answering for hybrid
MKNF knowledge bases. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS,
vol. 5937, pp. 25–39. Springer, Heidelberg (2010)

12. Governatori, G., Rotolo, A.: Bio logical agents: Norms, beliefs, intentions in defea-
sible logic. Autonomous Agents and Multi-Agent Systems 17(1), 36–69 (2008)

13. Governatori, G., Rotolo, A.: Norm compliance in business process modeling.
In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403,
pp. 194–209. Springer, Heidelberg (2010)

14. Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hybrid mknf
knowledge bases. In: ECAI, pp. 99–103 (2008)

15. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description
logics under the well-founded semantics. Artificial Intelligence (2011) (accepted for
publication)

http://dx.doi.org/10.1007/s10588-006-9537-7

346 M. Alberti et al.

16. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings of
the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991),
pp. 381–386 (1991)

17. Makinson, D., van der Torre, L.W.N.: What is input/output logic? input/output
logic, constraints, permissions. In: Boella, G., van der Torre, L.W.N., Verhagen, H.
(eds.) Normative Multi-agent Systems. Dagstuhl Seminar Proceedings, vol. 07122.
Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl (2007)

18. Motik, B., Rosati, R.: Reconciling description logics and rules. Journal of the
ACM 57(5) (2010)

19. Motik, B., Sattler, U., Studer, R.: Query answering for owl-dl with rules. J. Web
Sem. 3(1), 41–60 (2005)

20. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-Classical Logics 7(1) (1997)

21. Prakken, H., Sartor, G.: The role of logic in computational models of legal argu-
ment: A critical survey. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic:
Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 342–381. Springer,
Heidelberg (2002)

22. Schmidt-Strauss, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48, 1–26 (1990)

23. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Commun. ACM 29, 370–386 (1986),
http://doi.acm.org/10.1145/5689.5920

24. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line
design. Artif. Intell. 73, 231–252 (1995),
http://dx.doi.org/10.1016/0004-37029400007-N

25. Slota, M., Leite, J.: Towards closed world reasoning in dynamic open worlds.
TPLP 10(4-6), 547–563 (2010)

26. Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases.
TPLP (to appear, 2011)

27. Swift, T., Warren, D.S.: Cold Dead Fish: A System for Managing Ontologies (2003),
http://xsb.sourceforge.net

http://doi.acm.org/10.1145/5689.5920
http://dx.doi.org/10.1016/0004-37029400007-N
http://xsb.sourceforge.net

Acting on Norm Constrained Plans

Nir Oren1, Wamberto Vasconcelos1, Felipe Meneguzzi2, and Michael Luck3

1 Department of Computing Science, University of Aberdeen
Aberdeen AB24 3UE, UK

n.oren@abdn.ac.uk and wvasconcelos@acm.org
2 Robotics Institute, Carnegie Mellon University

Pittsburgh PA 15213, USA
meneguzz@cs.cmu.edu

3 Department of Informatics , King’s College London
London WC2R 2LS, UK
michael.luck@kcl.ac.uk

Abstract. The behaviour of deliberative agents is often guided by a plan
library designed to achieve goals given certain environmental conditions.
Plans in these plan libraries are designed to achieve individual goals, and
cannot possibly account for all possible variations of restrictions in the
societies within which these agents must operate. These restrictions, cap-
tured through norms, include obligations, prohibitions, and permissions.
Unlike traditional planning restrictions, norms can often be contradic-
tory and impossible to achieve simultaneously, necessitating some form
of compromise. In this paper we describe a technique for taking norms
into consideration when deciding how to execute a plan. Our norms are
constraint based, allowing for fine-grained control over actions. Our tech-
nique allows for reasoning about the interactions between norms, and re-
solves conflict by selecting actions where the cost of violating one set of
norms is outweighed by the reward obtained in complying with another.

Keywords: Norms, Plans, Constraints.

1 Introduction

Most agent architectures (e.g. BDI based approaches such as AgentSpeak(L)
[11]) make use of offline planning, where a plan library is created before execution
in the environment begins. An agent utilising an offline plan library selects a
plan for execution based on the state of the environment. A problem when
using pre-generated plan libraries involves how to select plans appropriate to
the current situation. A pre-generated plan is often conditional, identifying the
environmental context in which it is applicable. However, it is difficult for the
plan designer to envisage all the situations in which a plan could be considered
for execution at design time. In particular, the society in which an agent operates
may impose a given set of norms, which restrict the acceptable behaviour of the
agent in that society. Norms do not have to be fixed, and those which apply to
the agent may vary over time, and even emerge from multi-agent interaction, so

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 347–363, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

348 N. Oren et al.

it is often infeasible for the designer to take account of them in pre-generated
plans. For example, consider a plan to build a refugee camp following some
disaster. Such a plan may take the terrain in which the refugee camp is to be
located into account, but may not have considered some other logistical, social
or operational restrictions, such as fuel availability. If the original plan assumed
that fuel is freely available, then in the context of fuel limits, the original plan
may be unusable. However, by limiting the amount of fuel use, for example
by introducing a prohibition on driving large distances once the camp is built
(assuming that long drives are necessary for setting up the camp), the plan can
still be used.

An advantage in taking norms into account when selecting a plan for execution
involves the possibility of norm violation. In some situations, an agent may ignore
a norm in order to achieve a critical goal. By basing plan selection not only on
some context and invocation condition, but also on the norms that would be
complied with and violated during plan execution, more flexible (and robust)
behaviour can be achieved.

Clearly, the ability to adapt an existing plan library to cater for norms, and
thus function in a variety of different situations, greatly promotes plan reuse.
Given this, the main contribution of this paper lies in specifying how an agent
should execute a plan, while deciding which norms to adhere to, in such a way
so as to maximise its utility.

[14] created a constraint and predicate based norm representation, and we
extend this representation to actions found within plans. Constraints allow for
fine-grained control of the value of variables, increasing the expressiveness of
our notation, and the sophistication of the mechanisms to manipulate them.
In order to act in the presence of norms, we adopt a utility based approach.
Informally, given a plan represented as an AND/OR tree, with actions specified
as constrained predicates, we recursively compute the effects of executing the
next action from the plan, identifying what constraints would appear given that
the agent decides to comply, or violate a set of norms. Such norm compliance
or violation affects the ultimate utility of the plan. Executing an action with
specific bindings can trigger rules creating, or deleting additional norms, further
constraining future action. Therefore, different sets of constraints may lead to
plans with different utilities, and we must consider all possible sets of constraints.
Our goal is thus to identify the set of constraints on action that result in maximal
utility. These constraints are then used to guide plan execution.

The plans we consider for our approach are similar to a Hierarchical Task
Network (HTN) [5]. However, the exploration of these plans by our approach
differs from HTN planning with preferences [13] in that active norms, unlike
preferences, change dynamically during planning. The defeasible nature of norms
further complicates the determination of an optimal plan.

The remainder of this paper is structured as follows. Section 2 describes our
approach’s underlying data structures. Sections 3 and 4 then detail how these
components are combined to reason about plans in the context of normative
restrictions. We evaluate our approach in Section 5, and place our approach

Acting on Norm Constrained Plans 349

in the context of existing work in Section 6, before concluding and identifying
future work in Section 7.

2 Plans and Norms

We begin this section by describing the basic building blocks of our system.
We then explain how plans, built up of actions, are represented. Section 2.3 then
provides details regarding the specification of norms, following which we describe
normative rules that identify when norms begin, and when they cease, to affect
the scope of an action. Finally, we describe enactment states, which denote the
norms affecting execution at a single point in time. In the remainder of this
paper, we denote first-order terms generically as τ ; variables are represented as
X,Y, . . . and constants as a, b etc.

2.1 Constraints, Substitution and Unification

Our system makes extensive use of constraints to limit agent action. A con-
straint γ is an atomic formula of the form τ �� τ ′, where ��∈ {=, �=, >,≥, <,≤}
and τ, τ ′ are first order terms. We write Γ to denote a generic, possibly empty,
set of constraints. We employ the predicate satisfy(Γ) for a set of constraints
Γ , which holds if and only if the constraints allow at least one solution, i.e.
if they are satisfiable. Note that a set of constraints {γ1, . . . , γn} can be rep-
resented as a conjunction of constraints

∧n
i=1 γi, and we typically employ this

latter representation within the paper.
We also make use of unification and substitution relationships, usually applied

to a first order formula and/or a constraint. The application of a substitution
σ, which consists of a set of pairs X/τ to some structure β is written β · σ,
and consists of replacing all instances of X in β by τ . Finally, two structures
β, β′ unify according to substitution σ (abbreviated unify(β, β′, σ)) if and only
if β · σ = β′ · σ.

2.2 Actions and Plans

To affect its environment, an agent executes actions, which we represent as
ground atomic first order formulae. Plans identify groups of actions that must
be taken, and are applicable in different situations. Plans are thus represented
using partially ground actions. Applying a plan to a specific situation occurs
via the grounding of variables (and therefore, only fully ground actions can be
executed). We call partially ground actions abstract actions.

Definition 1. (Abstract Action, Actions and Entailment) We define an
abstract action α as ψ ◦ Γ , where ψ is a first order atomic formula, and Γ is a
set of constraints over a subset of the variables in ψ. Act is the set of all abstract
actions.

Given an abstract action α = ψ ◦ Γ and a substitution σ, we say that ψ′ is
an action iff ψ′ = ψ ·σ such that ψ′ contains no free variables. An abstract action

350 N. Oren et al.

α = ψ ◦ Γ entails an abstract action β = ψ′ ◦ Γ ′ if and only if for all σ such
that unify(ψ, ψ′, σ), whenever satisfy(Γ ·σ), satisfy(Γ ′ ·σ). If α entails β, we
write α ⊃ β.

Where obvious, we abbreviate abstract actions such as a(X,Y)◦X = τ1∧Y = τ2,
with τ1, τ2 terms, as a(τ1, τ2). Similarly, we write ψ ◦ ∅ simply as ψ.

Inspired by work on HTN planning [5], we represent plans as AND/OR trees,
with nodes in the tree generically specifying the actions that must be taken in
order to execute the plan. Leaf nodes are associated with primitive actions (that
is, those actions that an agent executes in order to affect the environment), while
other nodes represent compound actions, made up of all of the node’s children
in the case of the node being an AND node, or of any one of the node’s children
in the case of an OR node.

Definition 2. (Plan) A Plan P is one of

1. α, where α is an abstract action.
2. andN(P1, . . . , Pn) where P1 . . . Pn are plans.
3. orN(P1, . . . , Pn) where P1 . . . Pn are plans.

The α node represents a primitive action within the plan. A node of the form
andN(P1, . . . , Pn) represents an AND node in the plan. This node is a compound
action, requires all of the actions specified within P1, . . . , Pn to be executed. Plan
nodes of the form orN(P1, . . . , Pn) represent OR nodes in the plan tree; for this
compound action to be executed, one of P1, . . . , Pn must have been executed1.

As an example of such a plan, consider the requirement to establish a refugee
camp at position (X,Y). In order to do so, intelligence must first be collected
(via a intel(X,Y) action). The area must then be cleared, either by the agent
executing the plan (using a selfClear(X,Y) action, or through some other organ-
isation (via the outsourceClear(X,Y) action). Finally, the camp itself must be
built by executing the b camp and b roads primitive actions. This plan contains
both AND, and OR nodes, and any constraints on the actions themselves (e.g.
stating that X < 5) act as hard constraints on variable values. Such a plan (with
no hard constraints) can be written as follows

andN(intel(X ,Y),
orN(selfClear(X ,Y),outsourceClear(X ,Y)),
b camp(X ,Y), b roads(X ,Y))

Note that our representation considers plans independently of their context
with regards to the environment; we do not associate any preconditions with
plans or actions, and do not identify how the effects of a plan alter the environ-
ment. This independence of context also means that we ignore any factors that
might make one OR node selected within a plan as compared to another.

1 Compound actions can be associated with an abstract action, but this yields no
additional representative power.

Acting on Norm Constrained Plans 351

2.3 Norms

Within our system, norms are obligations, prohibitions and permissions on the
possible values of specific variables, in the context of specific actions. An obli-
gation can thus, for example, specify exactly where the refugee camp must be
placed in the previous example, by restricting X and Y to specific values for
the build(X,Y) action. In order to create this restriction, norms make use of
constraints.

Definition 3. (Norms and Constraints) A norm is an obligation, permis-
sion or prohibition, written respectively as Oα, Pα and Fα, where α = ψ ◦ Γ is
an abstract action. A norm is interpreted as obliging, permitting, or prohibiting
the execution of ψ according to constraints Γ .

A norm ω1 = Xψ ◦ Γ entails another norm ω2 = Xψ′ ◦ Γ ′, where X is some
modality, if and only if for all σ such that unify(ψ, ψ′, σ), whenever satisfy(Γ ·σ),
then satisfy(Γ ′ · σ). If ω1 entails ω2, we write ω1 ⊃ ω2

A generic norm is represented by the symbol ω.
Norms are intended to constrain the values assigned to some variables within

an abstract action. Critically, and unlike most work on norms (e.g. [1],[6]), an
obligation Oψ ◦ Γ thus does not specify that ψ should be executed, but instead
states that if action ψ is executed, it should be done in a way that is consistent
with constraints Γ .

Definition 4. (Auxilary Definitions for Norms)
If unify(ψ, φ, σ), X ∈ {O,P}, and satisfy(Γ ′ ·σ), then we say that α complies

with ω. Alternatively, if X = F, then the norm is complied with if, for all σ such
that unify(ψ, φ, σ), ¬satisfy(Γ ′ · σ).

A norm ω = Xψ ◦Γ ′ is said to be applicable for an abstract action α = φ ◦ Γ ,
written applicableNorm(ω, α) if and only if unify(φ, ψ, σ) for some σ. Given a set
of norms Ω and abstract action α, we define the function applicableNorms (Ω,α)
= {ω|ω ∈ Ω and applicableNorm(ω, α)}

Consider a norm ωc = OselfClear(X ,Y)◦X ≤ 8∧Y = 2. ωc is applicable for an
abstract action selfClear(A,B) ◦ Γ for any Γ . Similarly, selfClear (5, 2) complies
with ωc.

2.4 Permissions and Conflicts

We treat permissions as exceptions to obligations and prohibitions, so they do
not have meaning in isolation. Thus, for example, the norm OselfClear(X ,Y) ◦
{X < 30, Y = 20} imposes an obligation, when executing the selfClear action,
that X is bound to a value less than 30, and Y is equal to 20. The permission
PselfClear(X ,Y) ◦ {X < 40} allows X to be less than 40 if the obligation is
present, while still complying with the obligation.

352 N. Oren et al.

Violations apply in specific cases where an obligation or prohibition is not
complied with, and no permission exists that permits this non-compliance to
occur (we refer to such a permission as a mitigating permission). Clearly, given
this model of norms, violation must be considered with regards to a set of per-
missions.

Definition 5. (Mitigating Permissions and Violations) Given a norm
ω = Xψ ◦ Γ where X ∈ {O,F}, and a permission ω′ = Pψ ◦ Γ ′, we refer to ω′ as
a mitigating permission.

An abstract action β violates an obligation or prohibition ω if ω is applicable
for β, β does not comply with ω and there is no mitigating permission Pφ ◦ Γ ′

such that satisfy(Γ ′ · σ).

Finally, multiple obligations or prohibitions may conflict, requiring contradictory
behaviour. Informally, a set of norms over an action is in conflict if no substitution
of variables can be made that is consistent with the obligations and prohibitions
found within the norm set, and no mitigating permissions exist allowing this
substitution.

Definition 6. (Normative Conflict) Given a set of norms Ω, let ΩO, ΩP , ΩF

represent the subsets of obligations, permissions and prohibitions within Ω. Sim-
ilarly, ΓO/ΓP/ΓF represents the set of constraints found in ΩO/ΩP /ΩF . Then,
given a set of norms Ω of the form ωi = Xψ◦Γi (i.e. referring to the same action
ψ), the set Ω is in conflict, if and only if there is no substitution σ such that the
following holds ∧

γO∈Γ O

γO · σ
∧

γF ∈Γ F

¬γF · σ
∨

γP∈Γ P

γP · σ (1)

When conflicting norm sets occur, a reasoner must choose which subset of norms
to comply with, and which to ignore.

2.5 Normative Rules

The norms imposed on agents are situation dependent, and we make use of a
simple rule language to specify normative rules that identify the cases in which
a norm starts, and ceases, to exist. Normative rules are written in the form
LHS ⇒ RHS , where LHS contains conjunctions of actions and norms, and RHS
identifies which obligations, permissions and prohibitions should be added to, or
removed from, the set currently affecting the agent. Informally, if an action in the
LHS of such a rule has been executed, then the set of norms must be modified
according to the RHS of the rule. Similarly, if a norm ω exists in a rule’s LHS ,
then the set of norms is modified as per the rule’s RHS . The LHS is formed of
a maximum of one abstract action, together with a conjunctive combination of
zero or more norms. The RHS of the rule then identifies the norm to be added
or removed. The BNF for normative rules is shown in Figure 1.

Acting on Norm Constrained Plans 353

R ::= LHS ⇒ RHS
LHS ::= α|NLHS

NLHS ::= ω|NLHS ∧NLHS
RHS ::= RHS ∧ RHS | ⊕ ω| � ω

Fig. 1. BNF for normative rules

⊕ω denotes the addition of ω to the set of currently active norms, while ,ω
denotes the removal of ω from this set. Rules represents the set of all normative
rules in the system.

Thus, the rule intel(20 , 5)⇒ ⊕ωc states that if action intel(20 , 5) is executed,
norm ωc will come into force. Normative rules containing a norm in the LHS
can represent norms that come into force due to the presence of other norms,
allowing contrary-to-duty obligations to be modelled. For example, an obligation
to build a camp, represented by ωbc, might create an obligation to build a road,
represented as ωbr. The normative rule ωbc ⇒ ⊕ωbr captures this situation.

Before discussing the semantics of norms, we describe the structure used to
track the normative status of an executing system. This structure, referred to as
an enactment state, identifies the norms that exist at any point in time due to
the application of normative rules in a previous time point.

2.6 Enactment States

By executing actions, an agent changes the state of the world around it. Under
the influence of normative rules, such changes cause new norms to be instanti-
ated, or existing ones to be lifted, affecting future actions. Similarly, past actions
can limit future action, by binding values to some of the future action’s variables.
Following [4], we represent the environment affecting the agent as a transition
system between individual enactment states, each of which represent the system
at a single time point. By executing an action, the system is transitioned to a
new enactment state. Such a transition system, starting at an initial state, and
transitioning to new enactment states until all agent actions have been executed,
represents an entire run of the system.

To capture the portion of the environment affecting the agent, enactment
states must track the obligations, permissions and prohibitions that are in force,
and the constraints on variable values that have already been committed to.

Definition 7. (Enactment State) Δ = (ΩΔ, ΓΔ) is an enactment state, with
ΩΔ,a set of norms, and a constraint ΓΔ.

We have now described the basic data structures used by an agent in determining
how to act in the presence of norms and normative rules. Next, we describe the
rules that govern transitions between enactment states in more detail. These
rules are then extended to provide an algorithm for acting in the presence of
normative rules.

354 N. Oren et al.

3 Transitioning between Enactment States

The previous section described the data structures used in our framework, and we
now assign an operational semantics to these structures, using them to describe
legal transitions between enactment states. Our approach modifies that taken
by [4] in two ways. First, we allow only norms and actions in the LHS of a
rule, simplifying our semantics. Second, [4] was concerned with identifying a
new enactment state following the execution of an action. We are concerned with
determining the possible enactment states following the execution of some action
specified by an abstract action. Thus, multiple enactment states are possible. For
example, consider the rules

intel(X, Y)⇒ ⊕ω1 intel(5, 6) ⇒ ⊕ω2 intel(7, 8) ⇒ ⊕ω3

Executing action intel(2 , 2) results in norm ω1 added to the resulting enact-
ment state. Executing intel(5 , 6) leads to both ω1 and ω2 appearing in the new
enactment state. If it is known that the intel action is executed, but its param-
eters are unknown (e.g. due to the action appearing in a partially ground plan),
three possible enactment states can be transitioned to, namely one in which ω1

exists, one where ω1, ω2 exist, and one in which ω1, ω3 exists. Since our approach
considers the possible enactment states resulting from the execution of the ab-
stract actions, our semantics, unlike those of [4], must identify a set of possible
enactment states rather than a single enactment state.

Rules are applied when they are consistent with the action being executed,
and the norms found in the system. Since an abstract action can encapsulate a
large range of actions, we must identify when a rule is potentially applicable. This
situation occurs when the abstract action found in the rule entails the abstract
action being entailed, and all norms found in the rule are entailed by norms
found within the current enactment state. Formally,

Definition 8. (Potentially Applicable Rule) A rule R ≡ β ∧ ω1, . . . , ωn ⇒
RHS is potentially applicable with respect to a set of norms Ω and an abstract
action α if and only if α ⊃ β ∧ ∀ωi∃ω ∈ Ω such that ω ⊃ ωi. The predicate
potApp(R,Ω, α) holds if R is potentially applicable with respect to Ω and α.

Given an enactment state, an abstract action, and a set of normative rules,
Algorithm 1 returns the possible enactment states that can result from executing
all possible actions represented by the abstract action. Within this algorithm, the
actionConstraints function returns the constraint associated with the abstract
action found within the rule (or true if no abstract action exists).

The algorithm operates by first identifying all combinations of potentially
applicable rules, and then evaluating each of these combinations individually
(Line 5). Line 7 computes the constraints imposed due to the abstract action
and the norms under consideration, together with those constraints imposed to
ensure that the remaining norms are not applied. If these constraints can be
satisfied, the set of rules under consideration will result in a new enactment
state, and Lines 9–14 create this new enactment state, based on the old one, by
adding the appropriate norms, and the constraints imposed by the applied rules.

Acting on Norm Constrained Plans 355

Algorithm 1. Computing all possible enactment states.
1: function PosEnactStates(Δ, α, Rules)
2: Δ = (ΩΔ, ΓΔ)
3: α = ψ ◦ Γα

4: ΔN = {}
5: P = 2R s.t. R = {r|r ∈ Rules and potApp(r , ΩΔ, α)}
6: for all p ∈ P do
7: Γ = ΓΔ ∧ Γα

∧
r∈p actionConstraints(r)∧
s∈R\p ¬actionConstraints(s)

8: if satisfy(Γ) then
9: Ω = ΩΔ

10: for all RHS ⇒ ⊕ω ∈ p do
11: Ω = Ω ∪ {ω}
12: for all RHS ⇒ �ω ∈ p do
13: Ω = Ω\ω
14: ΔN = ΔN ∪ {(Ω, Γ)}
15: for all (Ω, Γ) ∈ ΔN do
16: if ∃(Ω′, Γ ′) ∈ ΔN s.t. Ω ⊂ Ω′ and Γ ′ → Γ then
17: ΔN = ΔN\(Ω, Γ)

18: return ΔN

Finally, starting at Line 15, we remove all enactment states obtained due to the
application of non-maximally consistent sets of potentially applicable rules.

Algorithm 1 provides us with a semantics for normative rules, identifying
the normative effects of an action on the current enactment state2. In the next
section, we investigate what abstract action should be executed given that the
current enactment state contains some set of norms.

4 From Plans to Norm Constrained Actions

When executing an abstract action, we must reason about the constraints that
should be imposed on it. These constraints are obtained from the norms found
within the current enactment state. For example, when executing action a(X),
given the norm Oa(X) ◦ X < 5, the agent could constrain the value of X to
less than 5 if it decides to comply with the norm. Now, consider a sequence
of abstract actions, such as a(X), b(Y), c(X,Z). Constraints on the value of
X , selected due to a(X), could affect norm compliance when executing c(X,Z).
Thus, compliance with norms at one time point can affect later norm compliance
choices.

We adopt a utility based model of norm compliance. More specifically, we
assume that the execution of a plan results in some base utility, and that different
types of norms are associated with different utility measures. Obligations and
2 Note that our algorithms do not explicitly manipulate substitutions, as these are

applied to variables during the computations.

356 N. Oren et al.

Algorithm 2. Finding the optimal plan.
Require: A plan Plan, utility function cost and set of rules Rules
1: for all Action ∈ first possible actions of Plan do
2: Let Υ = {〈({},!), [Action], 0〉}
3: Best = ∅
4: while Υ ! = ∅ do
5: 〈(Ω,Γ),Actions , U〉=removed highest utility element of Υ
6: Let α = The last element of Actions
7: if α = ∅ & U > utility of Best then
8: Best = 〈(Ω, Γ),Actions , U〉
9: break

10: AN = applicableNorms(Ω, α)
11: for all ΩAN ∈ 2AN do
12: ΓN = Γ ∧ constraint(α)
13: for all Xψ · Γψ ∈ ΩAN do
14: if X = O then ΓN = ΓN ∧ Γψ

15: if X = F then ΓN = ΓN ∧ ¬Γψ

16: if X = P then ΓN = ΓN ∨ Γψ

17: if satisfy(ΓN) then
18: Un = U + cost(α, ΩAN , AN\ΩAN)
19: ΔN = posEnactStates ((Ω, ΓN), α, Rules)
20: for all δ ∈ ΔN do
21: for all β=next possible action of Plan do
22: insert 〈δ, [Actions , β], Un〉 into Υ

prohibitions are associated with a a utility gain for compliance, and a utility loss
for violation. Permissions are associated with a utility loss for utilisation (for
example, obtaining permission to construct the refugee camp further away than
is normally allowed might incur a loss of trust within the society, reflected by
loss of utility). Actions also have a utility cost. Formally, we represent this via a
utility function cost : Act ×2Norms ×2Norms → �. The cost function is a partial
function, and its first parameter represents obligations and prohibitions that are
complied with, while its second parameter is those obligations and prohibitions
that are not complied with, together with the permissions that have been utilised.
Thus, if a norm appears in the set passed in as one parameter, it may not appear
within the other parameter. Under this model, the problem we are addressing
reduces to selecting a path through the plan, and a set of norms (created by the
rules as actions are executed) with which to comply, that is conflict free, and
which lead to maximal utility.

Our approach undertakes a best-first incremental search in the enactment
state space created by selectively expanding plans and selecting a subset of
norms for compliance. We define a data structure 〈Δ,Actions ,Utility〉 to track
the execution of a plan. Here, Δ is an enactment state, Actions is a sequence of
abstract actions, and Utility is the current utility of the plan. Using this data
structure Algorithm 2 describes the process of identifying an optimal plan.

Acting on Norm Constrained Plans 357

The algorithm first creates a initial structure Υ containing a single element
representing the plan with no actions having yet been executed. It also initialises
the currently found solution (represented by Best) to the empty set. The heart
of the algorithm starts at Line 4. We begin by selecting the current best action
sequence (Line 5) and checking if it satisfies the plan in a manner better than
the current best solution. If so, this action sequence replaces the current best
solution. Otherwise, all applicable norms are identified. For each possible com-
bination of applicable norms, the constraint of those norms that are applied are
added to any existing constraints (Lines 11–16). ΓN is analogous to (1) from Sec-
tion 2.4, and if it is satisfiable, then this combination of norms is not in conflict,
and can thus executed. The utility for complying with this subset of applicable
norms is thus computed (Line 18), and all possible enactment states resulting
from this action are then created (Line 19). Finally, all possible next abstract
actions are obtained from the plan, and the updated action sequences, utilities,
and enactment states are added back to Υ (Lines 20–22) allowing the process to
continue.

We do not describe how to extract the next actions from an AND/OR tree,
as standard algorithms exist to do so [5]. It should be noted that our algorithm
can easily be extended to reason over multiple plans by associating each plan
with its own base utility, and storing the plan in Υ . Also, note that a fully norm-
compliant reasoner (that is, one that will only act if it can comply with all its
norms) can be obtained from Algorithm 2 by modifying Line 11 to consider the
set of applicable norms rather than its powerset.

While our algorithm is guaranteed to terminate, and is sound and complete
if left to run to termination, its worst case complexity is clearly exponential.
However, this complexity is mitigated by two factors. First, our algorithm is
anytime, storing incrementally better solutions in Best (if they exist) as time
progresses. Second, it is possible to use heuristics to improve the algorithm’s
performance. Before discussing such heuristics, we evaluate our algorithm in a
simple domain.

5 Evaluation

We implemented our system in SWI-Prolog3, using the CLPFD constraint li-
brary, and evaluated it on a simple bomb clearing scenario, as shown in Figure
2. The domain consists of a tile world with a single agent. Each tile could be
empty, or contain a bomb that is either moderately (grey), or very (black), dan-
gerous. The bomb clearing agent has only one plan available to it, abstractly
represented as follows:

andN(scanC ,moveC ,orN(nothing, pickup, explodeC))

All except the nothing and pickup actions are compound actions, made up of
a orN of primitive actions. For example, the moveC compound action identifies
3 http://www.swi-prolog.org

http://www.swi-prolog.org

358 N. Oren et al.

the choice of moves available to the action at any point in time. It is defined as
follows:

moveC ≡ orN(move(X,Y,A,B) ·A = X ∧B = Y,
move(X,Y,A,B) ·A = X + 1 ∧B = Y,
move(X,Y,A,B) ·A = X − 1 ∧B = Y,
move(X,Y,A,B) ·A = X ∧B = Y + 1,
move(X,Y,A,B) ·A = X ∧B = Y − 1)

This action thus allows the agent to move to a neighbouring tile, or stay in its
current position (X and Y are replaced by the current position in our implemen-
tation). Similarly, the scanC action scans all four compass points around it to a
range of 2, identifying the contents of the tile and its associated scan threat level.
The explodeC action consists of an OR node composed of 8 primitive actions,
allowing the agent to trigger an explosion up to 2 tiles away from it. The pickup
action, used to clear a bomb from the square occupied by the agent, is defined
as

pickup(C,D), C = A ∧D = B

Note that this action takes two parameters identifying the agent’s current posi-
tion, and makes use of A and B, whose values are bound during the instantiation
of the moveC action. Like the explode action, picking up a bomb removes it from
the tile world.

We defined 10 normative rules for the system. Due to space constraints, we
describe most of these only informally. The first normative rule is designed to
prevent an agent from wandering out of the area in which bombs may exist.
Additional normative rules are designed to prohibit an agent from moving onto
a dangerous bomb, oblige the agent to explode such dangerous bombs, and also
to oblige the agent to pick up low threat level bombs. Another rule prohibits
explosions within 1 tile of the agent, and is defined as follows:

move(R4XO,R4Y O,R4X,R4Y) ·
 ⇒
⊕Fexplode(R4A,R4B)·(R4A = R4X ∧R4B = R4Y)∨

(R4A = R4X − 1 ∧R4B = R4Y)∨
(R4A = R4X + 1 ∧R4B = R4Y)∨
(R4A = R4X ∧R4B = R4Y − 1)∨
(R4A = R4X ∧R4B = R4Y + 1)))

A similar rule removing this obligation was also created. The order of rule
evaluation (removal and then addition) allows these rules to operate correctly.
Finally, 4 rules were defined to remove any obligations associated with bombs
that have been removed from the environment. Finally, we associated a utility
gain of 10 with exploding a bomb, and 5 with picking it up. We associated a
utility cost of 100 with exploding a bomb too close to the agent, and a cost of 1
for moving into a square containing a dangerous bomb.

In this environment, an agent using the algorithms described in this paper
will perform differently to a fully norm compliant agent. Consider the situation

Acting on Norm Constrained Plans 359

Fig. 2. A bomb clearing scenario in which norm aware and norm compliant agents will
behave differently. Black bombs are very dangerous, grey bombs moderately dangerous.

illustrated in Figure 2, where the agent is surrounded by dangerous bombs. A
fully norm compliant agent will not move from its starting position as doing so
would violate one of the norms imposed by its normative rules. An agent ca-
pable of violating norms will move into one of the dangerous squares (violating
a less important norm) and explode the bomb opposite it from 2 squares away
(complying with a more important norm), thereby freeing it to continue moving
around the environment. It should be noted that this is the only situation (out-
side similar cases when the agent is in a corner or edge of the world) where norm
awareness allows an agent to select a different action to one that would be chosen
by a norm compliant agent. Given this, we saw only a small improvement in the
performance of the former agent over the latter when evaluated over randomly
generated worlds.

Now norm-aware and norm-compliant agents should be contrasted with classic
(norm unaware) BDI type agents. The latter type of agent, when operating in the
sample domain, would execute some version of the plan at random, often moving
into dangerous squares, randomly triggering explosions in tiles near them, and
so on, and ultimately perform poorly. The difference between this type of agent,
and the ones described previously does not lie in their plans, but rather in their
norms. The ability to assign and modify norms in this way thus changes the
behaviour of an agent without requiring any modification to its plan library.

The improved performance in bomb clearing comes at the cost of additional
time; the norm aware and norm compliant agents both took approximately 13
seconds to select an action on a 2.4 GHz computer. This occurs as all possible
executions of the plan, with regards to all possible combinations of constraints
and norm violations, are evaluated by the system. In the next section, we discuss
a number of possible techniques for improving the performance of our algorithms.

6 Discussion

Algorithms such as A* have shown that the addition of a heuristic to estimate
the remaining utility gained by executing the rest of a plan can improve the

360 N. Oren et al.

speed at which good solutions can be found. Making use of such a heuristic
within our framework is simple, requiring only a change to Line 18 of Algorithm
2. However, identifying an appropriate heuristic is more difficult. [13] suggests
several heuristics usable in HTN planning with preferences, and inspired by
these, possible heuristics include assuming that no more norm violations will
occur; that all norms will be complied with; or that some norms will be ignored.
More complex heuristics include Monte-Carlo sampling of a plan.

Pruning low utility elements from Υ can also improve algorithm runtime.
This is achieved by modifying Line 22 of Algorithm 2 to not run if the can-
didate addition’s utility is much worse than the current best solution’s. How-
ever, this speedup comes at the cost of completeness unless the cost function is
monotonic.

The focus of this paper is on the role of norms within plans. While our work
can be viewed as a form of HTN planning, the presence of norms provides a differ-
entiator for our work. Norms provide guarantees to open large-scale distributed
systems, establishing limits to the autonomy of components/agents [1]. There
have been attempts at connecting the computational behaviours of individual
components/agents and norms, whether to detect norm violation [4], or with a
view to verify if a set of norms can ever be fulfilled by a society of autonomous
software agents [14], or to inform agents about changes in their behaviour so as
to make the behaviours norm-compliant [10]. However, our problem is distinct,
and our approach novel: autonomous agents, with access to a library of plans to
choose from, but subject to norms, can make use of our mechanism to choose a
plan that will achieve individual and global goals while attempting to abide by
these norms. Our approach was inspired by [14], which presents a mechanism to
detect potential normative conflicts before they arise. However, that approach
is overcautious, detecting conflicts that may never arise in actual system execu-
tion. In contrast, the work in this paper adopts a more accurate representation
of agent behaviour, represented as a plan (with non-determinism in the choices
of values for variables and choices for OR branches). Finally, Dignum et al. [2]
propose the idea of an action having potential deontic effects. When reasoning
about action execution, the norms resulting from the action are computed, and
the norms resulting from those norms (e.g. contrary to duty obligations) are
recursively identified. If normative conflict is detected, the action would not be
executed. Dignum et al. focus on the deontic effects of a single action in the
context of contrary to duty obligations, while we concentrate on the effects of
norms on an entire plan.

Additionally, there is some similarity with work pursued by Governatori and
others (e.g. [7,8]), in that both use an initial specification of possible behaviours,
and check the norm-compliance of these behaviours. [7] presented an early form
of Governatori’s model, which concentrated on manually constructed plans,
while [8] appears to be the most fully developed version of their approach. Both
our approach and theirs contain conditional norms, which are represented as
rules. However, there are also many differences. For example, while they utilise

Acting on Norm Constrained Plans 361

business process descriptions and informally define a mix of predicate and first
order logic for their underlying representation, we use a more abstract, and
simpler (but fully formalised) plan description. Furthermore, [8] addresses a spe-
cific class of norms, namely, reparational obligations, in which violated norms can
be repaired or compensated via other norms, but does not address, for instance,
the violation of prohibitions, as we have done. Furthermore, the propositional
nature of their work makes handling deadlines difficult, and their approach does
not support norm removal.

[9] also considered norm compliance. However, this work was at a more ab-
stract level, and while the interaction between an agent’s goals and norms was
discussed, no computational mechanism for deciding whether to comply with a
norm was proposed. Like us, [3] attempts to maximise utility based on the con-
sequence of complying with or violating a norm, with future world states repre-
sented as MDPs. However, while norms in our framework act as constraints on
the values of parameters, Fagundes consideres norms as affecting the ability to
perform an action in a given space. Thus, the space of actions to be considered,
and the effects of norm compliance and violation, are very different.

Our work can be compared with the work of Sohrabi et al. [13] on the
HTNPlan-P planner. This planner uses an extended version of PDDL that
allows preferences on the decompositions and actions employed in HTN plan-
ning in a similar way to which we use norms to restrict action execution. Their
extended preferences include temporally extended preferences regarding when a
particular action (or goal) should or should not be executable, conditional on
a subset of linear temporal logic (LTL). Preferences in LTL do not interact in
the same way as permissions affect obligations and prohibitions, limiting the
applicability of their techniques to our domain.

Finally, we believe our work can be applied to agent programming in a manner
similar to the one followed by Sardina and Padgham [12]. Like them, our work
expands a plan and finds applicable paths, and can thus be integrated into a
BDI agent in order to allow it to select an action for execution.

7 Conclusions and Future Work

When utilising offline planning, a plan is selected for execution from a pre-
generated plan library, with the selection being based on the goal to be met,
and on the current state of the environment in which the plan is to be executed.
However, such a plan cannot easily be adapted to operate under normative
constraints which were not originally anticipated by the plan designer. By making
use of a utility based approach, we have shown how a reasoner can act in an
optimal manner, violating, and complying with norms as needed.

We can identify a number of avenues of future work. Our current focus involves
investigating the heuristics discussed in Section 6. Additionally, as mentioned
previously, our obligations, prohibitions and permissions can be viewed as a

362 N. Oren et al.

specific type of conditional norm, imposing constraints on the manner in which
an action should, should not, or may be executed, but only in the case that
the action is executed. We intend to extend our framework to cope with more
general norms, for example, obliging an action to be executed subject to some
specific constraints. Such an extension would allow us to apply our work to
areas outside the practical reasoning domain, such as electronic contracts, where
the contracting parties can analyse the contract, and their plans, in order to
determine whether they can achieve their own goals in a satisfactory manner
while following the contract. We also intend to enrich our representation language
in order to allow for constraints over finite sets and inference over rules. Finally,
we intend to investigate how our approach can be adapted to domains containing
uncertainty.

References

1. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID
architecture. In: Proceedings of the Fifth International Conference on Autonomous
Agents, pp. 9–16 (2001)

2. Dignum, F., Morley, D., Sonenberg, E.A., Cavedon, L.: Towards socially sophis-
ticated BDI agents. In: Proceedings of the Fourth International Conference on
Multi-Agent Systems, pp. 111–118 (2000)

3. Fagundes, M.S., Billhardt, H., Ossowski, S.: Reasoning about norm compliance
with rational agents. In: Proceedings of the 2010 European Conference on Artificial
Intelligence, pp. 1027–1028 (2010)

4. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Con-
straint rule-based programming of norms for electronic institutions. Journal of
Autonomous Agents and Multiagent Systems 18(1), 186–217 (2009)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, San Francisco (2004)

6. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines
in temporal modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

7. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: 10th International Enterprise Distributed Ob-
ject Computing Conference, pp. 221–232 (2006)

8. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Proceedings
of the 2009 Workshop on Normative Multi-Agent Systems, vol. 09121 (2009)

9. López y López, F., Luck, M., d’Inverno, M.: A normative framework for agent-based
systems. In: Boella, G., van der Torre, L.W.N., Verhagen, H. (eds.) Proceedings of
the First International Symposium on Normative Multi-Agent Systems, vol. 07122
(2007)

10. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In:
Proceedings of the 2009 International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 177–184 (2009)

Acting on Norm Constrained Plans 363

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, pp. 42–55 (1996)

12. Sardiña, S., Padgham, L.: A bdi agent programming language with failure
handling, declarative goals, and planning. Autonomous Agents and Multi-Agent
Systems 23(1), 18–70 (2011)

13. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In:
Proceedings of the 2009 International Joint Conference on Artificial Intelligence,
pp. 1790–1797 (2009)

14. Vasconcelos, W., Kollingbaum, M., Norman, T.J.: Normative conflict resolu-
tion in multi-agent systems. Journal of Autonomous Agents and Multi-Agent
Systems 19(2), 124–152 (2009)

Justice Delayed Is Justice Denied: Logics for a Temporal
Account of Reparations and Legal Compliance

Guido Governatori1," and Antonino Rotolo2

1 NICTA, Queensland Research Lab, Australia
guido.governatori@nicta.com.au

2 CIRSFID, University of Bologna, Italy
antonino.rotolo@unibo.it

Abstract. In this paper we extend the logic of violation proposed by [14] with
time, more precisely, we temporalise that logic. The resulting system allows us to
capture many subtleties of the concept of legal compliance. In particular, the for-
mal characterisation of compliance can handle different types of legal obligation
and different temporal constraints over them. The logic is also able to represent,
and reason about, chains of reparative obligations, since in many cases the fulfill-
ment of these types of obligation still amount to legally acceptable situations.

1 Introduction

Developments in open MAS have pointed out that normative concepts can play a cru-
cial role in modeling agents’ interaction [24, 8]. Like in human societies, desirable
properties of MASs can be ensured if the interaction of artificial agents adopts institu-
tional models whose goal is to regiment agents’ behaviour through normative systems
in supporting coordination, cooperation and decision-making. However, to keep agents
autonomous it is often suggested that norms should not simply work as hard constraints,
but rather as soft constraints [4]. In this sense, norms should not limit in advance agents’
behaviour, but would instead provide standards which can be violated, even though
any violations should result in sanctions or other normative effects applying to non-
compliant agents. The detection of violations and the design of agents’ compliance
can amount to a relatively affordable operation when we have to check whether agents
are compliant with respect to simple normative systems. But things are tremendously
harder when we deal with realistic, large and articulated systems of norms such as the
law. To the best of our knowledge, no systematic investigation has been so far proposed
in this regard in the MAS field.

Among other things, the complexities behind the concept of legal compliance are
due to the following reasons:

Reparative Obligations. Legal norms often specify obligatory actions to be taken in
case of their violation. Obligations in force after some other obligations have been
violated correspond in general to contrary-to-duty obligations (CTDs) (see [7] for an

" NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

J. Leite et al. (Eds.): CLIMA XII 2011, LNAI 6814, pp. 364–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Justice Delayed Is Justice Denied 365

overview). A peculiar subclass of CTDs is particularly relevant for the law: the so-
called reparative obligations. For instance, in contract and in tort law reparative obli-
gations protect individual legitimate interests by imposing actions that compensate any
damages following from non-compliance [12]. These constructions affect the formal
characterisation of legal compliance since they identify situations that are not ideal, but
still legally acceptable. Consider the following example (where norms have as usual
a conditional structure: if the antecedents are jointly the case, then the consequent is
obligatory):

Invoice⇒OBLPayBy7days
OBLPayBy7days,¬PayBy7days⇒ OBLPay5%Interest

OBLPay5%Interest,¬Pay5%Interest⇒ OBLPay10%Interest

What about if a customer violates both the obligation to pay by 7 days after having
received the invoice for her purchase, and the obligation to pay the 5% of interest of the
due amount, but she pays the total amount plus the 10% of interest? In the legal per-
spective (which aims at protecting the rights of the vendor), the customer is compliant.

If so, these constructions can give rise to very complex rule dependencies, because
we can have that the violation of a single rule can activate other (reparative) rules,
which, in case of their violation, refer to other rules, and so forth [15]. Clearly, if we
take the above legal norms in isolation, the depicted situation is non-compliant, since
two applicable legal norms are violated. However, if we compensate the violations, then
we are still in a “legal” situation.

Obligation and Time. The law makes use of different types of obligations (see Section
2) also depending on how legal effects are temporally qualified. A first basic distinc-
tion is between those legal obligations which persist over time unless some other and
subsequent events terminate them (e.g., “If one causes damage, one has to provide com-
pensation”), and those that hold at a specific time on the condition that the norm pre-
conditions hold and with a specific temporal relationship between such preconditions
and the obligation (e.g., “If one is in a public building, one is forbidden to smoke”).

In regard to the concept of compliance, it is worth noting that we may have obliga-
tions requiring (1) to be always fulfilled during a certain time interval, (2) that a certain
condition must occur at least once before a certain deadline and such that the obliga-
tions may, or may not, persist after this deadline if they are not complied with, (3) that
something is done immediately [13].

Things are definitely harder when these types of obligations occur in chains of repar-
ative obligations. For example, if the primary obligation is persistent and states to pay
before tomorrow, and the secondary (reparative) obligation is to pay a fine in three days
after the violation of the primary obligation, we are compliant not only when we pay
by tomorrow, but also when we do not meet this deadline and pay both the due amount
and the fine on the day after tomorrow.

Formal Requirements for Legal Compliance. From a logical point of view, a formal
characterisation of the concept of legal compliance requires to address the following
related research tasks: (a) We need a logic able to handle different types of legal obli-
gation and different temporal constraints over them; (b) This logic should be able to

366 G. Governatori and A. Rotolo

represent, and reason about, chains of reparative obligations. In particular, we need a
procedure for making hidden conditions and reparative chains explicit; without this, we
do not know whether a certain situation is legally acceptable; (c) We have to embed into
the logic aspects of time, such as persistence and deadlines.

In the following section we informally discuss the types of obligation we will handle
in the proposed framework.

2 The Many Faces of Obligations

We can distinguish achievement from maintenance obligations [13]. For an achieve-
ment obligation, a certain condition must occur at least once before a deadline:

Example 1. Customers must pay within 7 days, after receiving the invoice.

The deadline refers to an obligation triggered by receipt of the invoice. After that the
customer is obliged to pay. The fulfilment of the obligation by its deadline terminates
the persistence of the obligation.

For maintenance obligations, a certain condition must obtain during all instants be-
fore the deadline:

Example 2. After opening a bank account, customers must keep a positive balance for
30 days.

In Example 2 the deadline only signals that the obligation is terminated: a violation
occurs when the obliged state does not obtain at some time before the deadline.

Finally, punctual obligations only apply to single instants:

Example 3. When banks proceed with any wire transfer, they must transmit a message,
via SWIFT, to the receiving bank requesting that the payment is made according to the
instructions given.

Punctual obligations apply to single instants; they can be thought as maintenance obli-
gations in force in time intervals where the endpoints are equal. Typically punctual
obligations must occur at the same time of their triggering conditions.

Norms can be associated with an explicit sanction. For example,

Example 4. Customers must pay within 7 days, after receiving the invoice. Otherwise,
10% of interest must be paid within 10 days.

Example 5. After opening a bank account, customers must keep a positive balance for
30 days. Otherwise, their account must be immediately blocked.

A sanction is often implemented through a separate obligation, which is triggered by
a detected violation. Thus, different types of obligations can be combined in chains of
reparative obligations: in Example 4, the violation of the primary achievement obliga-
tion is supposed to be repaired by another achievement obligation; in Example 5, the
violation of a primary maintenance obligation is compensated by a punctual obligation.

We introduced in [15, 14] the non-boolean connective⊗: a formula like a⊗b means
that a is obligatory, but if the obligation a is not fulfilled, then the obligation b is ac-
tivated and becomes in force until it is satisfied or violated. However, the violation

Justice Delayed Is Justice Denied 367

condition of an obligation varies depending on the types of obligations used. In the re-
mainder, we will extend the approach of [15, 14] by adding temporal qualifications to
cover these cases.

3 Temporalised Violation Logic

To start with, we consider a logic whose language is defined as follows:

Definition 1 (Language). Let T = (t1, t2, . . .) be a discrete linear order of instants of
time, Atm = {a,b, . . .} be a set of atomic propositions, and O be a deontic operator.

– A literal is either an atomic proposition or the negation of an atomic proposition,
that is: Lit = Atm∪{¬l : l ∈ Atm}.

– If l ∈ Lit and t ∈ T , then lt is a temporal literal;
 and ⊥ are temporal literals.
T Lit denotes the set of temporal literals.

– If lt is a temporal literal, then Olt and ¬Olt are deontic literals. The set of deontic
literals is denoted by DLit.

– If ata and btb are temporal literals, t ∈ T , and ta ≤ t, then ata ⊗x
t btb (for x ∈

{p,m,a}) is an ⊗-chain.
– If α is an ⊗-chain, ata is a temporal literal and t ∈ T , then α ⊗x

t ata (for x ∈
{p,m,a}) is an ⊗-chain.

– Let α be either a temporal literal, or an⊗-chain, t ∈T , then⊥, α⊗⊥ and α⊗t⊥
are deontic expressions. Nothing else is a deontic expression. The set of deontic
expressions is denoted by DExp.

Let us explain the intuitive meaning of the various elements of the language. The mean-
ing of a temporal literal at is that proposition a holds at time t. The deontic literal Oat

means that we have the obligation that a holds at time t. The meaning of
 and ⊥ is
that
 is a proposition that is always complied with (or in other terms it is impossible
to violate) and ⊥, on the other hand, is a proposition that is always violated (or it is im-
possible to comply with). According to the intended meaning it is useless in the present
context to temporalise them. ⊗ is a binary operator to express complex normative po-
sitions. More specifically, the meaning of a deontic expression like α ⊗x

tα ata ⊗y
t′a

btb is

that the violation of a triggers a normative position whose content is btb . What counts
as a violation of ata depends on the parameter x, encoding the type of obligation whose
content is a, and the two temporal parameters ta and t ′a. The nature of the normative
position whose content is btb depends on ⊗y. The type of obligation whose content is
ata is determined by x. If x = p, then we have a punctual obligation (in this case we
require that ta = t ′a) and this means that to comply with this prescription have must hold
at time ta. If x = a, then we have an achievement obligation; in this case a is obligatory
from ta to t ′a, and the obligation is fulfilled if a holds for at least one instant of time
in the interval [ta,t ′a]. Finally, if x = m, similarly to the previous case, a is obligatory
in the interval [ta,t ′a], but in this case, to comply with the prescription, a must hold for
all the instants in the interval. As we have said, the ⊗ operator introduces normative
positions in response to a violation of the formula on the left of the operator, thus this
is a contrary-to-duty operator. An important application of contrary-to-duties is that a
contrary-to-duty can be used to encode a sanction or compensation or reparation for

368 G. Governatori and A. Rotolo

a violation. The focus of this paper is mostly on this type of contrary-to-duties. What
about DExp? The meaning of a DExp, in particular of ⊥ at the end of them, is that we
have reached a situation that cannot be compensated for, This means that the penulti-
mate element of a deontic expression identifies the ‘last chance’ to be compliant. After
that the deontic expression results in a situation that cannot be complied with anymore.

Definition 2 (Rules/norms1). A rule r : Γ ↪→ α is an expression where r is a unique
rule label, Γ ⊆ TLit ∪DLit, ↪→∈ {⇒x,�}, α ∈DExp. If ↪→ is⇒x, the rule is a defea-
sible rule; If ↪→ is �, the rule is a defeater. For defeasible rules x ∈ {a,m, p}, and: If
x = a the rule is an achievement rule; If x = m the rule is a maintenance rule; If x = p
the rule is a punctual rule. For defeaters α ∈ TLit.

A rule is a relationships between a set of premises and a conclusion, thus we use several
types of rules to describe different types of relationships. We use the distinction of the
types of the rules (defeasible and defeater) for the strength of the relationship between
the premises and the conclusion. The superscript x indicates the mode of a rule. The
mode of a rule tells us what kind of conclusion we can obtain from the rule. In the
context the mode identifies the type of obligation we can derive. The idea is that from a
rule of mode a, an achievement rule, we derive an achievement obligation.

A defeasible rule is a rule where when the body holds then typically the conclu-
sion holds too unless there are other rules/norms overriding it. For example, when you
receive an invoice, you have the obligation to pay for it:

r1 : invoicet ⇒a payt (1)

The meaning of the above rule is that if you received an invoice at time t, then you have
the obligation to pay for it, starting from time t.2

Defeaters are the weakest rules. They cannot be used to derive obligations, but they
can be used to prevent the derivation of an obligation. Hence, they can be used to de-
scribe exceptions to obligations, and in this perspective they can be used to terminate
existing obligations. For this reason, the arrow � is not labeled by either a, m, nor p.
Continuing the previous example, paying for the invoice terminates the obligation to
pay for it:

r2 : paidt � payt (2)

Rule r2 says that if you pay at time t then, from time t on, there is no longer the obliga-
tion to pay. Notice that the defeater does not introduce the prohibition to pay again.

Definition 3 (Defeasible Theory). A Defeasible Theory is a structure (F,R,�), where
F, the set of facts, is a set of temporal literals; R is a set of rules; and�, the superiority
relation, is a binary relation over R.

A theory corresponds to a normative system, i.e., a set of norms, where every norm
is modelled by rules. The superiority relation is used for conflicting rules, i.e., rules

1 In the reminder, we will interchangeably use both the terms ‘norm’ and ‘rule’, but we will
prefer ‘norm’ whenever the usage of the term ‘rule’ may be confused with ‘inference rule’.

2 We assume the usual inter-definability between obligations and prohibition, thus O¬≡ F , and
F¬≡ O.

Justice Delayed Is Justice Denied 369

whose conclusions are complementary literals, in case both rules fire. Notice that we
do not impose any restriction on the superiority relation, which is a binary relation that
just determines the relative strength of two rules. For example, if we consider the two
rules in (1) and (2), given an invoice, and that the invoice has been paid the two rules
alone cannot allow us to conclude anything due to the sceptical nature of Defeasible
Logic. But if we further establish that r2 � r1, then the second rule prevails, and we will
conclude that we are permitted not to pay.

Definition 4. Given an ⊗-chain α , the length of α is the number of elements in it.
Given an ⊗-chain α ⊗x

t btb , the index of btb is n iff the length of α ⊗x
t btb is n. We also

say that b appears at index n in α⊗x
t btb .

Definition 5 (Notation). Given a rule r : Γ ↪→ α , we use A(r) = Γ to indicate the
antecedent or body of the rule, and C(r) = α for the consequent or conclusion or head
of r. Given a set or rules R: R⇒ is the set of defeasible rules in R; R� is the set of
defeaters in R; Ra is the set of achievement rules in R; Rm is the set of maintenance
rules in R; Rp is the set of punctual rules in R; R[at] is the set of rules whose head
contains at . R[at ,k] is the set of rules where at is at index k in the head of the rules.

To simplify and uniform the notation we can combine the above notations, and we use
subscripts and superscripts before the indication relative of the head. Thus, for example,
R�[p10] is the set of defeaters whose head is the temporal literal p10, and the rule

r : at1
1 . . . ,a

tn
n ⇒p a10⊗m

10 b20

is in Rm
⇒[b20], as well as in Rp[a10] and R⇒[b20,2].

Finally, notice that we will sometimes abuse the notation and omit (a) the timestamp
tl in the temporal literal ltl whenever it is irrelevant to refer to it in the specific context,
(b) the mode x in the rule arrow⇒x when x can be instantiated with any of a, m or p,
(c) x and y in ⊗x

y when x and y can be instantiated, respectively, with any of a,m, p and
with any time instants.

Properties of the ⊗ operator When we have a deontic expression α = a1⊗·· ·⊗an we
do not have information about the type of obligation for the first element. This infor-
mation is provided when we use the expression in a rule. In this section we are going to
investigate properties of ⊗, in particular when two (sub-)sequences of deontic expres-
sion are equivalent and thus we can replace them preserving the meaning of the whole
expression (or rule). To simplify the notation, we introduce the following conventions.

Definition 6. Let r : Γ ⇒x α be a rule, then xα is an ⊗-sequence. The empty se-
quence is an ⊗-sequence. If α ⊗x

tα ata ⊗y
t′a

β ⊗z
tβ

γ is an ⊗-sequence, where α,β ,γ are

⊗-sequences, then xata ⊗y
t′a

β is an ⊗-sequence.

Given a rule r : Γ ↪→x α ⊗y
t β , α can be the empty ⊗-sequence, and if so, then the

rule reduces to r : Γ ⇒y β .

From now on, we will refer to ⊗-sequences simply as sequences and we will provide
properties for sequences to be used in rules.

370 G. Governatori and A. Rotolo

The first property we want to list is the commutativity of the ⊗ operator.

α⊗x
t (β ⊗y

t′ γ)≡ (α⊗x
t β)⊗y

t′ γ (3)

We extend the language with
 and⊥. Given their meaning, those two propositions can
be defined in terms of the following sequence and equivalence3

pa0⊗p
0 ¬a0 ≡
 ⊥≡ ¬
. (4)

The two new propositions are useful to define reduction rules for deontic expressions.
Let us start with equivalences for
.

⊗α ≡
. (5)

This equivalence says that a violation of
 can be compensated by α; however,
 is
a proposition that cannot be violated. Thus, the whole expression cannot be violated.
What about when
 appears as the last element of ⊗?

α⊗
≡
. (6)

The meaning of α ⊗
 is that
 is the compensation of α , thus the violation of α is
sanctioned by
. This means that the violation of α is always compensated for, thus
we have a norm whose violation does not result in any effective sanction, thus violating
α does not produce any effect. Hence, we have two possibilities: to reject (6) if we
are interested to keep trace of violations, or to accept it if we want to investigate the
effects of violations. In this paper we take the first option and we reject the equivalence
of α ⊗
 and
. Notice that reducing α ⊗
 to α would change the meaning, since
this would mean that the violation of α cannot be repaired. To see this we move to the
properties involving⊥.

pata ⊗x
ta ⊥≡ ata (7)

The above equivalence specifies that if ⊥ is the compensation of a punctual obligation
a at time t, then there is no compensation, since the compensation cannot be complied
with. The effect of the rules is that we can eliminate ⊥ from the deontic expression
and we maintain the same meaning. Notice, however, that the same is not true for other
types of obligations. For example, for x ∈ {a,m}, we cannot eliminate⊥ from rules like

Γ ⇒x at ⊗m
t′ ⊥

since the resulting expression would be Γ ⇒x at and we would miss the information
about the deadline to comply with a. Nevertheless, the following equivalence states that
⊥ can be safely eliminated if it is not the last element of a deontic expression, or when
it is the ‘compensation’ of a maintenance obligation without deadline.

α⊗x
tα ⊥⊗

y
t β ≡ α⊗y

tα β mata ⊗⊥≡ mata (8)

3 In case one wants the temporalised version,
t ≡ pat ⊗p
t ¬at , and ⊥t ≡ ¬
t .

Justice Delayed Is Justice Denied 371

To complete the description for the properties for ⊥, we need to specify when we can
generate a new rule introducing⊥ from two other rules.

Γ ⇒x α⊗y
tα at ⊗ta⊥ Δ ↪→¬at′ ⊗t′′ ⊥

Γ ,Δ ⇒x α⊗y
tα at ⊗t′−1⊥

t < t ′ and y ∈ {a,m} (9)

The meaning of the above inference rule is that if we have a norm determining the
termination of an obligation, then we can encode the obligation, the time when the
obligation comes to force and the time when the norm terminates its normative effect.
The idea behind a norm like at ⇒x bt′ is the obligation b enters into force from time t ′.
Here we assume the intuition developed in [16] that a ‘new’ rule takes precedence over a
conclusion obtained in the past and carrying over to the current moment by persistence.
Thus if we have a rule ctc ⇒ ¬bt′′ with t ′′ > t ′ the rule for ¬ct′′ effectively terminates
the force of the obligation b. Consider the following instance of the rule

r1 : a5⇒m b10⊗15⊥ c12⇒a ¬b12⊗20⊥
a5,c12⇒m b10⊗11⊥

In this case r1 puts the obligation of b in force in the interval from 10 to 15, and r2

enforces ¬b from 12 to 20, thus when both conditions to apply, the effective time when
the obligation of b is in force is from 10 to 11 (after that the obligation ¬b enters into
force).

The ⊗ operator, introduced in [14], is a substructural operator corresponding to the
comma on the right hand side of a sequent in sequent system. In a classical sequent
system both the left hand side and right hand side of a sequent are set of formulas, thus
the order of the formulas does not matter, and properties like contraction and duplication
hold. In [14] we established the equivalence between α⊗a⊗β⊗a⊗γ and α⊗a⊗β⊗
γ . This states that if a literal occurs multiple times, we can remove all but the first
occurrence. We turn our attention to study conditions under which we have contraction
for the various (combination of) ⊗ operators we have.

Tables 1 and 2 give the conditions to remove duplicates of the same atom. Consider
for example, the instance pa10⊗m a0⊗20⊥ of the reduction Punctual-Maintenance in

Table 1. Reductions to ⊥

Punctual-Punctual pat ⊗x
t β ⊗p

tβ at ′ ⊗y
t ′ γ ≡p at ⊗x

t β ⊗p
tβ ⊥⊗

y γ t = t ′

Punctual-Achievement pat ⊗x
t β ⊗a

tβ ats ⊗y
te γ ≡p at ⊗x

t β ⊗a
tβ ⊥⊗

y γ t = ts = te
Punctual-Maintenance pat ⊗x

t β ⊗m
tβ ats ⊗y

te γ ≡p at ⊗x
t β ⊗m

tβ ⊥⊗
y γ t ∈ [ts,te]

Achievement-Punctual aats ⊗x
te β ⊗p

tβ at ′ ⊗y
t ′ γ ≡a ats ⊗x

te β ⊗p
tβ ⊥⊗

y γ t ′ = ts = te
Achievement-Achievement aats ⊗x

te β ⊗a
tβ at ′s ⊗y

t ′e
γ ≡a ats ⊗x

te β ⊗a
tβ ⊥⊗

y γ [t ′s,t ′e]⊆ [ts,te]
Achievement-Maintenance aats ⊗x

te β ⊗m
tβ at ′s ⊗y

t ′e
γ ≡a ats ⊗x

te β ⊗m
tβ ⊥⊗

y γ [ts,te]∩ [t ′s,t
′
e] �= /0

Maintenance-Punctual mats ⊗x
te β ⊗p

tβ at ′ ⊗y
t ′ γ ≡m ats ⊗x

te β ⊗p
tβ ⊥⊗

y γ t ′ = ts = te
Maintenance-Achievement mats ⊗x

te β ⊗a
tβ at ′s ⊗y

t ′e
γ ≡m ats ⊗x

te β ⊗a
tβ ⊥⊗

y γ ts = te = t ′s = t ′e
Maintenance-Maintenance mats ⊗x

te β ⊗m
tβ at ′s ⊗y

t ′e
γ ≡m ats ⊗x

te β ⊗m
tβ ⊥⊗

y γ [ts,te]⊆ [t ′s,te]

372 G. Governatori and A. Rotolo

Table 2. Reductions to

Punctual-Punctual pat ⊗x
t β ⊗p

tβ ∼at ′ ⊗y
t ′ γ ≡p at ⊗x

t β ⊗p
tβ
⊗

y γ t = t ′

Punctual-Achievement pat ⊗x
t β ⊗a

tβ ∼ats ⊗y
te γ ≡p at ⊗x

t β ⊗a
tβ
⊗

y γ t ∈ [ts,te]
Punctual-Maintenance pat ⊗x

t β ⊗m
tβ ∼ats ⊗y

te γ ≡p at ⊗x
t β ⊗m

tβ
⊗
y γ t = ts = te

Achievement-Punctual aats ⊗x
te β ⊗p

tβ ∼at ′ ⊗y
t ′ γ ≡a ats ⊗x

te β ⊗p
tβ
⊗

y γ t ′ = ts = te
Achievement-Achievement aats ⊗x

te β ⊗a
tβ ∼at ′s ⊗y

t ′e
γ ≡a ats ⊗x

te β ⊗a
tβ
⊗

y γ [ts,te]⊆ [t ′s, t ′e]
Achievement-Maintenance aats ⊗x

te β ⊗m
tβ ∼at ′s ⊗y

t ′e
γ ≡a ats ⊗x

te β ⊗m
tβ
⊗

y γ [t ′s,t
′
e]⊆ [ts, te]

Maintenance-Punctual mats ⊗x
te β ⊗p

tβ ∼at ′ ⊗y
t ′ γ ≡m ats ⊗x

te β ⊗p
tβ
⊗

y γ t ′ = ts = te
Maintenance-Achievement mats ⊗x

te β ⊗a
tβ ∼at ′s ⊗y

t ′e
γ ≡m ats ⊗x

te β ⊗a
tβ
⊗

y γ [ts,te]⊆ [t ′s, t
′
e]

Maintenance-Maintenance mats ⊗x
te β ⊗m

tβ ∼at ′s ⊗y
t ′e

γ ≡m ats ⊗x
te β ⊗m

tβ
⊗
y γ ts = te = t ′s = te

Table 1, where the primary obligation is to have a at time 10, and whose compensation
is to maintain a from 0 to 20. To trigger the secondary obligation we should have the
violation of the primary obligation. This means that ∼a holds at 10, but this implies
that it is not possible to maintain a from 0 to 20, thus it is not possible to compensate
the violation of the primary obligation. Notice that in several cases the reductions are
possible only when the intervals are just single instants.

Introduction Rules. Besides the properties given so far the full meaning of the ⊗ op-
erator is given by the rules to introduce (and modify) the operator. The general idea of
the introduction rules is to determine the conditions under which a norms is violated. If
these conditions imply a particular obligation then, then this obligation can be seen as
a compensation of the norm the conditions violate.

Γ ⇒x α⊗p
tα btb⊗Y

tb
γ Δ ,¬btb ↪→z δ

Γ ,Δ ⇒x α⊗p
tα btb ⊗z

tb δ
⊗ Ip

The punctual obligation Opbtb (implied by the first sequent) holds only at time tb thus
the only instant when the obligation can be violated is exactly tb.

Rule ⊗Ip is the standard rule to introduce a (novel) compensation or CTD (see [14]
for further discussion about it).

Γ ⇒x α⊗m
tα bts ⊗y

te β Δ ,Θ ⇒z δ
Γ ,Δ ⇒x α⊗m

tα bt′s ⊗z
t′e

δ
⊗ Im where Θ = {∼bt′ : ts < t ′s ≤ t ′ ≤ t ′e ≤ te}.

The introduction rule for ⊗m defines a slice of the interval where a specific compensa-
tion of the violation holds. This conditions requires a rule whose antecedent contains
the complement of a maintenance obligation in the head of the other rule, such that the
literal is temporalised with the last n consecutive instants. For example given the rules

a10⇒m b10⊗20⊥ c15,¬b17,¬b18,¬b19⇒p d20⊗20⊥

we can derive the new rule

a10,c15⇒m b17⊗p
19 d20⊗20⊥

Justice Delayed Is Justice Denied 373

The conditions to derive a new compensation rule for an achievement obligation are
more complicated. As we have seen from the previous two cases, the structure of the
introduction rules is that the negation of a consequent of a norm is a member of the an-
tecedent of another norm (with the appropriate time). This ensures that the antecedent of
the norm is a breach of the other one. The idea is the same for achievement obligations,
but now detecting a violation is more complex.

Γ ⇒x α⊗a
tα ats

a⊗x
te
a

β Δ ,Oat′a ,∼at′a ⇒z δ {Δ ,∼at′′a ⇒z δ}∀t′′a :ts
a<t′a≤t′′a≤te

a

Γ ,Δ ⇒x α⊗a
tα ats

a ⊗z
t′a

δ
⊗ Ia

The idea behind the introduction of a compensation for achievement obligation is that
we have to determine that the obligation has not been fulfilled at a time before the
deadline and for all instant greater or equal to it the complement is required. Essentially,
the ⊗Ia amounts to shortening the deadline for an achievement obligation.

a1⇒a b5⊗10⊥ Ob8,¬b8⇒p c15⊗15⊥ ¬b9⇒p c15⊗15⊥ ¬b10⇒p c15⊗15⊥
a1⇒a b5⊗p

8 c15⊗15⊥

The first norm initially sets the deadline by when b at to be achieved to 10. The last n
norms, in this case n = 2, have as premises the opposite of an obligation of the first norm
covering the last n instant of the force period of the obligation and the same conclusion.
This means that refraining to fulfill the obligation in the last n instants results in the
same consequence. The last part is to assess that we have a violation. This is achieved
by the second norm; here, we have the obligation in the antecedent (an achievement
obligation is no longer in force in two cases: we are after the deadline or the content
of the obligation has been achieved), thus the condition Ob8 and ¬b8 is to ensure that
the obligation is still in force at the time, and the combination of the norms ensures that
from now on not fulfilling the obligation results in the same compensation.

Subsumption. The inference rules combine premises in such a way as the deontic con-
tent of at least one of them is included by the conclusion. Consequently, some original
rules are no longer needed. To deal with this issue we introduce the notion of subsump-
tion. A norm subsumes a second when the behaviour of the second norm (its compliance
condition) is implied by the first one. Here below is an example illustrating this idea.

Example 6. Consider the following norms:

r : Invoicet ⇒a Payt ⊗p
t+6 PayInterestt+7⊗t+7⊥

r′ : Invoicet ,OPayt+6,¬Payt+6⇒a PayInterestt+7⊗t+8⊥

The first norm says that after the seller sends the invoice, the buyer has the achievement
obligation to pay within 7 days, otherwise immediately after the violation the buyer has
to pay the principal plus the interest (punctual obligation to pay at t + 7). According
to the second norm, given the same set of circumstances Invoice at time t, if we have
still the obligation on the seventh day after the invoice receipt date and the payment
is not made yet, we have the achievement obligation to pay the interest by the eighth
day. However, (a) the primary obligation of r′ obtains when we have a violation of the

374 G. Governatori and A. Rotolo

primary obligation of r; (b) after the primary obligation of r is violated, complying with
its secondary obligation entails complying with the primary obligation of r′ (but not
vice versa); (c) hence, r is more general than r′, and so the latter can be discarded.

In what follows, Definition 10 characterizes the concept of subsumption that we have
informally illustrated in Example 6. Since we need to check whether the compliance
of a norm guarantees the compliance of another norm (the subsumed one), we provide
below the following auxiliary definitions to establish (a) Definition 7: the modes with
which the compliance conditions for one obligation covers the compliance conditions of
another one; (b) Definition 8: when the compliance conditions of an ⊗-chain cover the
compliance conditions of another⊗-chain; (c) Definition 9: the conditions under which
a literal belonging to an ⊗-chains is violated (indeed, subsumption allows to remove
the norms whose applicability conditions require to violate another norm, while these
conditions are encoded in the ⊗-chain of the subsuming norm).

Definition 7. Let X ,Y ∈ {a,m, p}. Then, Y � X iff 1) if Y = a, then X ∈ {a,m, p}; 2) if
Y = m, then X = m; 3) if Y = p, then X ∈ {p,m}.

Definition 8. Let

γ =
x1

c
tc1
1 ⊗

x2
t′c1

c
tc2
2 ⊗

x3
t′c2
· · ·⊗x j

t′c j−1
c

tc j
j β =

y1
b

tb1
1 ⊗

y2
t′b1

b
tb2
2 ⊗

y3
t′b2

· · ·⊗yk
t′bk−1

b
tbk
k

be ⊗-chains. The ⊗-chain γ d-includes the ⊗-chain β iff

1. j = k,
2. ci = bi,
3. yi � xi;
4. (a) if yi = a, then t ′ci

≥ tbi when xi = m, otherwise tci = tbi and t ′ci
≤ t ′bi

;
(b) if either yi = m or yi = p, then tci ≤ tbi and t ′ci

≥ t ′bi

where 1≤ i≤ j,k.

Definition 9. Let
x1

c
tc1
1 ⊗

x2
t′c1

c
tc2
2 ⊗

x3
t′c2
· · · ⊗x j

t′c j−1
c

tc j
j be any ⊗-chain. For any ci, where

1≤ i≤ j, a set X violates ci iff

1. if xi = a, then X = {Oc
t′ci
i ,∼c

t′ci
i };

2. if xi = m or xi = p, then X ⊆ {∼ct
i|tci ≤ t ≤ t ′ci

}.

Definition 10. Let r1 : Γ ⇒ α⊗β ⊗ γ and r2 : Δ ⇒ δ be two rules, where α , β , γ , and

δ are ⊗-chains such that γ =
z1

c
tc1
1 ⊗

z2
t′c1

c
tc2
2 ⊗

z3
t′c2
· · ·⊗zl

t′cl−1
c

tcl
l .

Then r1 subsumes r2 iff

1. Γ = Δ and α d-includes δ ; or
2. Γ ∪X = Δ , where X violates all elements in α , and β d-includes δ ; or

3. Γ ∪Y = Δ , where Y violates all elements in β , and α⊗
z1

c
tc1
1 ⊗

z2
t′c1

c
tc2
2 ⊗

z3
t′c2
· · ·⊗zn

t′cn−1

ctcn
n d-includes δ , where n≤ l.

Justice Delayed Is Justice Denied 375

4 Proof Conditions

We introduce the conditions that allow us to determine whether an obligation is in force
at time t (and the type of obligation as well). The problem reduces to determine whether
a (temporalised) literal follows from a theory, in other terms whether we can derive the
(temporalised) literal. In addition the conditions allow us to establish whether a theory
has been complied with. In Definition 1 we stated that a deontic expression extends
an ⊗-chain with ⊥ at the end. Thus effectively the penultimate element of a deontic
expression identifies the ‘last chance’ to be compliant. After that the deontic expression
results in a situation that cannot be complied with anymore. Hence, checking whether
a theory is not compliant amounts to deriving⊥.

Definition 11. A tagged literal is an expression #l, where # ∈
{+∂ ,−∂ ,+∂ p,−∂ p,+∂ a,−∂ a,+∂ m,−∂ m}.

Definition 12. A proof P is a sequence P(1) . . .P(n) of tagged literals satisfying the
proof conditions given in Definitions 15, 16, 17 and 18. Each P(i), 1≤ i≤ n is called a
line of the proof. Given a proof P, P(1..n) denotes the first n lines of the proof.

Definition 13. A rule r is applicable at index i in a proof P at line P(n + 1) iff4

1. ∀a ∈ A(r):
(a) if a ∈ TLit, then a ∈ F, and
(b) i. if a = Olt , then +∂ lt ∈ P(1..n),

ii. if a = ¬Olt , then −∂ lt ∈ P(1..n); and
2. ∀c j ∈C(r),1 ≤ j ≤ i:

(a) if mode(c j) = p, then c j /∈ F or ∼c j ∈ F,
(b) if mode(c j) = a, then ∀t, start(c j)≤ t ≤ end(c j), ct

j /∈ F or ∼ct
j ∈ F,

(c) if mode(c j) = m, then ∃t, start(c j)≤ t ≤ end(c j), ct
j /∈ F or ∼ct

j ∈ F.

Definition 14. A rule r is discarded at index i in a proof P at line P(n + 1) iff

1. ∃a ∈ A(r):
(a) if a ∈ TLit, then a ∈ F; or

i. if a = Olt , then −∂ lt ∈ P(1..n),
ii. if a = ¬Olt , then +∂ lt ∈ P(1..n); or

2. ∀c j ∈C(r),1 ≤ j ≤ i
(a) if mode(c j) = p, then c j ∈ F,
(b) if mode(c j) = a, then ∀t, start(c j)≤ t ≤ end(c j), ct

j ∈ F,
(c) if mode(c j) = m, then ∃t, start(c j)≤ t ≤ end(c j), ct

j ∈ F.

In the proof conditions below we will simply use applicable/discarded at index i, instead
of applicable/discarded at index i in the proof P at line P(n + 1).

All proof tags presented in the paper will be defined according the principle of strong
negation [2]. According to it, the pair of tags +# and−# are the strong negation of each

4 In the following, if
x1

c
tc1
1 ⊗

x2
t ′c1
· · · ⊗x j

t ′c j−1
c

tc j

j ⊗
x j+1

t ′j
· · · ⊗t ′n ⊥ is an ⊗-chain of length n + 1,

mode(c j) = x j, start(c j) = tc j , and end(c j) = t ′c j
.

376 G. Governatori and A. Rotolo

other, where the strong negation is a function replacing/exchanging: ∀ and ∃, conjunc-
tions and disjunctions, and ‘applicable’ and ‘discarded’. For space reasons, we provide
the definition of both the positive and negative proof tags for punctual obligation (i.e.,
+∂ p and −∂ p), and only the positive definition of the proof tags for achievement and
maintenance obligations; the corresponding negative proof tags can be derived using
the above mentioned principle.

Definition 15. (Proof Conditions for±∂ p)

If P(n + 1) = +∂ p pt then
(1) ∃r ∈ Rp

⇒[pt , i] r is applicable at index i and
(2) ∀s ∈ R[∼ pt , j], either

(2.1) s is discarded at index j or
(2.2) ∃w ∈ R[pt ,k] such that w is applicable at k and w� s.

If P(n + 1) =−∂ p pt then
(1) ∀r ∈ Rp

⇒[pt , i] either r is discarded at i, or
(2) ∃s ∈ R[∼ pt , j] such that

(2.1) r is applicable at index j and
(2.2) ∀w ∈ R[pt ,k] either w is discarded at k or s �� w.

The proof conditions above are essentially a simple combination of the condition for
⊗ given in [12] and those for punctual obligation of [16]. To prove +∂ pat , there must
be a rule for at such that all the antecedents have to be provable, and for all elements
preceding at in the head, we have to ensure that a violation occurred. This means that
we have to examine the mode of the conclusions at indexes lower that the index of at ,
and then for a punctual obligation we have to see that the content of the obligation did
not happen at t. We have two cases: the first is that we do not have at in the set of facts,
and second we have the opposite, i.e., we have ∼at . For an achievement obligation we
have to check that for all instants in the interval the same condition as that for a punctual
obligation is satisfied, while for a maintenance obligation, a violation occurs when the
condition holds for at least one instant of time in the interval. Condition (2.1) and (2.2)
are the usual conditions of Defeasible Logic, that is: we have to verify that rules for the
opposite either do not fire (2.1), they are not applicable, or (2.2) they are defeated by
applicable rules for the conclusion we want to prove.

Definition 16. Proof Conditions for ±∂ a)

If P(n + 1) = +∂ a pt then
(1) ∃r ∈ Ra

⇒[pt , i] r is applicable at index i and
(2) ∀s ∈ R[∼ pt , j], either

(2.1) s is discarded at index j or
(2.2) ∃w ∈ R[pt ,k] such that w is applicable at k and w� s; or

(3) ∃x ∈ Ra
⇒[pt′ , i], t ′ < t, end(pt′)≥ t and

(3.1) x is applicable at index i, and
(3.2) ∀y ∈ R[∼ pt′′ , j], t ′ ≤ t ′′ < t either

(3.2.1) y is discarded at j or
(3.2.3) ∃z ∈ R[pt′′ ,k], z is applicable at k and z� y; and

(3.3) ∀t ′′′,t ′′ < t ′′′ ≤ t, pt′′′ /∈ F.

Justice Delayed Is Justice Denied 377

The conditions for +∂ a pt are similar to those for punctual obligations. The differences
are that we have to consider persistence, clause (3). This means that we could have
derived the obligation in the past, let us say at time t ′, and the obligation has not been
terminated since them. We have two ways to terminate it: there is a rule for the opposite
that is applicable between t and t ′ (3.2) see [16], or the obligation has been already
fulfilled (3.3).

Definition 17. (Proof Conditions for±∂ m)

If P(n + 1) = +∂ m pt then
(1) ∃r ∈ Rm

⇒[pt , i] r is applicable at index i and
(2) ∀s ∈ R[∼ pt , j], either

(2.1) s is discarded at index j or
(2.2) ∃w ∈ R[pt ,k] such that w is applicable at k and w� s; or

(3) ∃x ∈ Rm
⇒[pt′ , i], t ′ < t, end(pt′)≥ t and

(3.1) x is applicable at index i, and
(3.2) ∀y ∈ R[∼ pt′′ , j], t ′ ≤ t ′′ < t either

(3.2.1) y is discarded at j or
(3.2.3) ∃z ∈ R[pt′′ ,k], z is applicable at k and z� y.

The conditions for maintenance obligations are the same as those for achievement obli-
gation with the difference that fulfilling the obligation does not terminate it.

Definition 18 (Proof Condition for ±∂). If P(n + 1) = +∂ pt , then either +∂ p pt ∈
P(1..n), or +∂ a pt ∈ P(1..n), or +∂ apr pt ∈ P(1..n), or +∂ m pt ∈ P(1..n).

If P(n + 1) = −∂ pt , then −∂ p pt ∈ P(1..n), and −∂ a pt ∈ P(1..n), and +∂ apr pt ∈
P(1..n), and +∂ m pt ∈ P(1..n).

Definition 19. Given a theory D, the universe of D (UD) is the set of all the atoms
occurring in D. The extension ED of D is a structure (∂+,∂−), where, for X ∈ {p,a,m},
∂+

D = {lt : D $+∂ X lt} and ∂−D = {lt : D $ −∂ X lt}.

Example 7. Consider the following theory:

F = {Invoicet ,¬Payt ,¬Payt+1,PayInterestt+2,Defectivet}
R = {r1 : Invoicet ⇒a Payt ⊗t+1⊥

r2 : Invoicet ,OPayt+1,¬Payt+1⇒a PayInterestt+2⊗t+3⊥,
r3 : Defectivet � ¬Payt}

�= {r1 � r3}

The first two norms basically describe the same situation of Example 6: the only differ-
ence is that here we have not yet applied any introduction rule for ⊗. r3 states that, if
the delivered good is defective, the customer is allowed not to pay. The facts trigger r1,
thus we derive the obligation to pay by t +1 (starting from t): also r3 is triggered but is
weaker than r1. The obligation to pay is however not fulfilled by F . Since ¬Payt ∈ F ,
we obtain OPayt+1 from r1, which contributes to triggers r2, thus obtaining the obliga-
tion to pay the interest by t +3 (starting from t +2). Since the obligation to pay by t +1
is not fulfilled, the extension of the theory D contains⊥: r1 was not complied with.

378 G. Governatori and A. Rotolo

5 Checking Compliance

If we work on the idea that a set of facts may fulfill a set of norms even when some
of these norms are violated (but such violations are always compensated), then the
following definition of compliance does not suffice:

Definition 20 (Theory compliance). A Defeasible Theory D is compliant iff ⊥ �∈ ∂+
D .

Definition 20 is very simple and exploits the basic properties of any temporalized obli-
gations: since all ⊗-chains have ⊥ as their last element, they have an ultimate deadline
beyond which we derive⊥: this amounts to saying that after that deadline we state that
it is impossible to compensate. Since the proof conditions for our logic establish that
an obligation in an ⊗-chain is derived only if the previous obligations in that chain are
violated, if we have ⊥ in the positive extension of a theory, this means that there is at
least one obligation whose violation cannot be compensated. For instance, if we con-
sider Example 7, according to Definition 20 the theory D is not compliant because the
theory extension contains ⊥. However, such a theory should be considered compliant,
since norm r2, which provides a compensation for the violation of r1, is indeed fulfilled.

Normalisation Process. The inference rules (⊗Ip), (⊗Im), and (⊗Ia) provide a method
for representing the norms in a format that can be used to check the compliance of a
theory. In fact, they allow for making explicit the hidden reparative relation between
obligations. Once applied, the redundant rules can be removed. For instance, in Exam-
ple 7 above, we could apply (⊗Ia) to r1 and r2 and obtain the new rule

r3 : Invoicet ⇒a Payt ⊗a
t+1 PayInterestt+2⊗t+3⊥

Once r3 is obtained, since r2 is subsumed by r3, then r2 is deontically redundant and
can be removed from the theory.

Formally, this process is called normalisation of a theory. Before presenting the pro-
cess, some auxiliary notions are needed: (a) Definition 21 identifies all the instances of
inference rules we can obtain from a theory; (b) since such instances allow to introduce
new norms, we should establish when these norms can inherit the same strength quali-
fications (via �) of previous norms; we should also remove redundant norms and norm
priorities (Definitions 22 and 23); (c) Definition 24 introduces the deductive closure of
a theory under the inference conditions for⊗.

Definition 21. Let D = (F,R �) be any defeasible theory. Any instance I of the infer-
ence rules (⊗Ip), (⊗Im), and (⊗Ia) is based on D if each of the premises ri and r j of I is
either (a) in R (in which case, the instance is rooted), or (b) is the conclusion of another
instance of the inference rules (⊗Ip), (⊗Im), and (⊗Ia) based on D.

The instances of the inference rules (⊗Ip), (⊗Im), and (⊗Ia) based on D are also
called D-⊗-instances.

Definition 22. Let D =(F,R�) be any defeasible theory. The superiority relation�∞=
∪∞

i=1 �i is recursively defined as follows:

– �0=�∪{(j,k)| j (or k) is the conclusion of a rooted D-⊗-instance such that k ∈ R
(or j ∈ R) and, for any i ∈ R, (i,k) ∈� (or (j, i) ∈�) };

Justice Delayed Is Justice Denied 379

– �i+1=�i ∪{(j,k)| j (or k) is the conclusion of a D-⊗-instance such that (i,k) ∈�i

(or (j, i) ∈�i) }.
The relation �∞ is called the D-saturation of �.

Definition 23. Let D = (F,R�) be any defeasible theory. Let S be an operation over
D defined as follows: if Π = {r|r ∈ R,∃r′ ∈ R : r′ subsumes r}, then

S (D) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D′ where D′ = (F,R′,�′) such that

R′ = R−Π and

�′=�∞ −{(x,y) ∈� | either x ∈Π or y ∈Π}
D otherwise

(10)

Definition 24. If D = (F,R �) is any defeasible theory, let $⊗ be the consequence
relation defined by the inference rules (⊗Ip), (⊗Im), and (⊗Ia). The closure (D,$⊗) of
D under $i is a theory D′ = (F,R′,�′) where (a) R′ is the smallest set containing all
elements of R and the conclusions of all D-⊗-instances; (b)�′ is the D-saturation of�.

Definition 25 (Theory normalisation). The normalisation D∞ of a theory D is a theory
recursively obtained as follows: (a) D0 = D, (b) Di+1 = S (Di,$⊗).

The inference rules and the rule removal via subsumption must be done several times in
the appropriate order. The normalised theory is the fixed-point of the above construc-
tions. At each step of the the procedure we have to first apply the inference rules for
⊗ and then the subsumption: suppose we have a theory containing the following three
norms

r1 : f t f ⇒p ata⊗p
ta gtg ⊗tg ⊥ r2 : ete ⇒p ata ⊗p

ta btb ⊗p
tb ctc ⊗p

tc dtd ⊗td ⊥
r3 : ete ,¬ata ,¬btb ⇒p ctc ⊗tc ⊥

The normalisation process would consist here in a single cycle leading to apply (i)
(⊗Ip) to r1 and r3, thus producing r4 : ete , f t f ,¬btb ⇒p ata⊗p

ta ctc⊗tc⊥; (ii) subsumption
and remove r3. Notice that also r2 subsumes r3. However, if we apply subsumption first
on this basis we have to delete r3 and r4 would be no longer derivable from r1 and r3

alone.
After a theory is normalised, Definition 20 can be safely applied, as all redundant

rules are removed and all hidden reparative connections between obligations are made
explicit.

Finally, notice that (i) the structure of the inference rules (⊗Ip), (⊗Im), and (⊗Ia)
states that one premise in all instances is subsumed by the conclusion and so is removed
at the end of each step of the process; (ii) any defeasible theory contains only finitely
many rules and each rule has finitely many elements; also the operation on which the
construction is defined is monotonic [14].

If a superiority relation � is consistent iff (x,y),(y,x) �∈�, then reason (i) above
supports the following result:

Proposition 1. For any defeasible theory D, the normalisation D∞ = (F,R,�∞) is such
that �∞ is consistent.

Also, so by standard set theory results, reason (ii) above supports the following:

Proposition 2. The normalisation D∞ of any defeasible theory D exists and is unique.

380 G. Governatori and A. Rotolo

6 Summary and Related Work

This paper extends the logic of violation proposed by [14] with time. This extension
introduces a temporal dimension to the language saying when a norm produces its nor-
mative effects, or in other terms when the obligation (or, in general the normative po-
sition) corresponding to the normative effect of the norm is in force. An immediate
consequence of the extended language is that it is possible to investigate the ‘lifecycle’
of obligations, and more precisely if there are deadlines to comply with an obligation.
The extension is done to properly deal with the concept of legal compliance. To do this
we argue that we have to handle different types of temporalised legal obligations and
devise a normalisation procedure for making hidden conditions and reparative chains
explicit. One open research issue is to investigate the complexity of this procedure,
which requires, several times and in the appropriate order, to apply the inference rules
for⊗ and to remove redundant norms.

The literature on norm compliance is MAS is large (see, e.g., [5, 9, 20, 10, 1, 11,
17, 3, 19]). However, to the best of our knowledge no work in the field has so far at-
tempted to model legal compliance pertaining to realistic systems where complex norm-
enforcement mechanisms such as reparative chains are combined with a rich ontology
of obligations as the one described here. In the literature on deontic logic, besides a few
exceptions like [6], the research has mostly devoted extensive, but separate, efforts to
the role of time for dealing with CTDs (since the seminal [25]) and on logical systems
for modeling the concept deontic preference and CTDs (for an overview, [23]). This
paper combines the two perspectives: in this sense, it also inherits from [14] the advan-
tage of avoiding the most well-known CTD paradoxes. In this sense, [6] shares with
our paper the same general view, but time is captured there at the semantic level and the
language does not explicitly handle timestamps.

Combination of time and norms are not novel, as many combinations of temporal (or
tense) logic and deontic logic have been investigated. However, temporal logic cannot
handle specific times (or timestamps). Typically these logics can express the temporal
relationships between events (represented by propositions), or the relationships between
states. A possible solution to obviate this is to consider hybrid logic using nominals to
capture nominals [22]. A nominal represents a proposition true only in one possible
worlds. A temporal nominal represents a particular instant of time. In most temporal
logic it is possible to model branching of time, and the meaning of nominals is not clear
in this kind of situations (is the world corresponding to a nominal the same in all the
branches, or we have different copies of the same instant of time?). On the other hand
timestamps (and events) have been used in the Event Calculus. Event Calculus has been
used to model the interaction between norms and time (see, e.g., [21]). However, Event
Calculus is a dialect of first-order logic and Herrestad [18] has shown that these types
of logic are not suitable to model normative reasoning in presence of violations.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni, P.: Compliance ver-
ification of agent interaction: a logic-based software tool. Applied Artificial Intelligence
20(2-4), 133–157 (2006)

Justice Delayed Is Justice Denied 381

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.: A flexible framework for defeasi-
ble logics. In: Proc. AAAI-2000. AAAI Press, Menlo Park (2000)

3. Boella, G., Broersen, J., van der Torre, L.: Reasoning about constitutive norms, counts-as
conditionals, institutions, deadlines and violations. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.)
PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 86–97. Springer, Heidelberg (2008)

4. Boella, G., van der Torre, L.: Fulfilling or violating obligations in multiagent systems.
In: Procs. IAT 2004 (2004)

5. Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A.: Adaptation of autonomic electronic
institutions through norms and institutional agents. In: O’Hare, G.M.P., Ricci, A., O’Grady,
M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 300–319. Springer,
Heidelberg (2007)

6. Broersen, J., van der Torre, L.: Conditional norms and dyadic obligations in time. In: Proc.
ECAI 2008. IOS Press, Amsterdam (2008)

7. Carmo, J., Jones, A.J.I.: Deontic logic and contrary to duties. In: Gabbay, D., Guenther, F.
(eds.) Handbook of Philosophical Logic, 2nd edn. Kluwer, Dordrecht (2002)

8. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.: Normative multi-agent programs and
their logics. In: Bordini, R., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Program-
ming Multi-Agent Systems, Dagstuhl, Germany. Dagstuhl Seminar Proceedings, vol. 08361.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)

9. Esteva, M., Rosell, B., Rodríguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based mid-
dleware for electronic institutions. In: Proc. of AAMAS 2004, vol. 3394. ACM, New York
(2005)

10. Pasquier, P., Flores, R., Chaib-draa, B.: Modelling flexible social commitments and their
enforcement. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS
(LNAI), vol. 3451, pp. 139–151. Springer, Heidelberg (2005)

11. Gaertner, D., Garcia-Camino, A., Noriega, P., Rodriguez-Aguilar, J.-A., Vasconcelos, W.:
Distributed norm management in regulated multiagent systems. In: Proc. AAMAS 2007.
ACM, New York (2007)

12. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

13. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in tempo-
ral modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

14. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 44, 193–215 (2006)

15. Governatori, G., Rotolo, A.: An algorithm for business process compliance. In: Sartor, G.
(ed.) Jurix 2008, pp. 186–191. IOS Press, Amsterdam (2008)

16. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible
logic. In: 10th International Conference on Artificial Intelligence and Law (ICAIL 2005),
pp. 25–34 (2005)

17. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. In: In Coordination, Organizations, Institutions, and Norms in Multi-Agent
Systems II. Springer, Heidelberg (2006)

18. Herrestad, H.: Norms and formalization. In: ICAIL, pp. 175–184 (1991)
19. Hübner, J.F., Boissier, O., Bordini, R.: From organisation specification to normative pro-

gramming in multi-agent organisations. In: Dix, J., Leite, J., Governatori, G., Jamroga, W.
(eds.) CLIMA XI. LNCS, vol. 6245, pp. 117–134. Springer, Heidelberg (2010)

382 G. Governatori and A. Rotolo

20. López y López F., Luck, M., d’Inverno, M.: Constraining autonomy through norms. In: Proc.
AAMAS 2002. ACM, New York (2002)

21. Marín, R.H., Sartor, G.: Time and norms: a formalisation in the event-calculus. In: ICAIL,
pp. 90–99 (1999)

22. Smith, C., Rotolo, A., Sartor, G.: Temporal reasoning and mas. In: SNAMAS 2010 (2010)
23. van Benthem, J., Grossi, D., Liu, F.: Deontics = betterness + priority. In: Governatori, G.,

Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 50–65. Springer, Heidelberg (2010)
24. van der Torre, L., Boella, G., Verhagen, H. (eds.): Normative Multi-agent Systems, Special

Issue of JAAMAS, vol. 17(1) (2008)
25. van Eck, J.: A system of temporally relative modal and deontic predicate logic and its philo-

sophical applications. Logique et Analyse 25, 339–381 (1982)

Author Index

Ågotnes, Thomas 139
Alberti, Marco 330
Alcântara, João 208
Alechina, Natasha 139

Beirlaen, Mathieu 312
Broersen, Jan 293

Cai, Kai 1
Calta, Jan 122
Chen, Taolue 190
Corapi, Domenico 243

de Lima, Tiago 105
Demolombe, Robert 13
Dennis, Louise 259
Dixon, Clare 259

Endriss, Ulle 88, 157

Fernández-Duque, David 74
Fisher, Michael 259

Gabaldon, Alfredo 275
Gomes, Ana Sofia 330
Gonçalves, Ricardo 330
Governatori, Guido 364

Herzig, Andreas 295

Inoue, Katsumi 243

Kafalı, Özgür 171, 225
Kwiatkowska, Marta 190

Leite, João 330
Lorini, Emiliano 58, 295
Luck, Michael 347

McBurney, Peter 1
Meneguzzi, Felipe 347
Miner More, Sara 29

Naumov, Pavel 29

Oren, Nir 347

Parker, David 190
Parsons, Simon 1
Perrussel, Laurent 58
Porello, Daniele 157

Rotolo, Antonino 364
Russo, Alessandra 243

Sá, Samy 208
Shkatov, Dmitry 122
Sierhuis, Maarten 259
Simaitis, Aistis 190
Sklar, Elizabeth 1
Slota, Martin 330
Soler–Toscano, Fernando 41
Stocker, Richard 259
Straßer, Christian 312
Sykes, Daniel 243

Tang, Yuqing 1
Thévenin, Jean-Marc 58
Toni, Francesca 225
Torroni, Paolo 171, 225
Troquard, Nicolas 295

van der Hoek, Wiebe 74
van Ditmarsch, Hans 41, 74
van Eijck, Jan 92
Vasconcelos, Wamberto 347

	Title Page
	Preface
	Organization
	CLIMA Publications
	Table of Contents
	Secrets and Trust
	Some Thoughts on Using Argumentation to Handle Trust
	Why Trust Is Important
	The Setting for OurWork
	HowWe Use Argumentation in Handling Trust
	How Argumentation Can Help
	Our Contribution so Far
	Current and FutureWork

	Conclusions
	References

	Transitivity and Propagation of Trust in Information Sources: An Analysis in Modal Logic
	Introduction
	Informal Trust Definitions
	Logical Framework
	Formal Trust Definitions
	From Case Studies to Generalization
	Trust in Information Sources Propagation
	Related Works
	Conclusion
	References

	The Functional Dependence Relation on Hypergraphs of Secrets
	Introduction
	Hypergraphs
	Protocol: A Formal Definition
	Language of Secrets
	Axioms
	Examples of Proofs
	Soundness
	Completeness
	Protocol P0
	Main Result

	Conclusion
	References

	Knowledge and Beliefs
	Three Steps
	Knowledge-Based Protocols for Card Players
	Logical Preliminaries
	There Is No Two-Step Protocol for (4, 4, 2)
	A Safe and Informative Announcement
	The Model before and after the First Announcement
	A Three Step Protocol for (4, 4, 2)
	A Probabilistic Protocol
	Conclusion
	References

	A Modal Framework for Relating Belief and Signed Information
	Introduction
	Setting the Framework
	Representing Signed Statements
	Preferences over Information Sources
	Representing Tell Statements

	Formal Framework
	Axiomatics
	Semantics

	Linking Signatures and Beliefs
	Ranking Agents
	Careful Aggregation
	A More Confident Aggregation

	Acquiring Information
	Example
	Conclusion
	References

	On the Definability of Simulability and Bisimilarity by Finite Epistemic Models
	Introduction
	Epistemic Logic
	Simulation and Bisimulation
	Undefinability
	Definability
	Conclusion and Further Research
	References

	Logics for Games and Social Choice
	Applications of Logic in Social Choice Theory
	Social Choice Theory
	Applications of Logic
	Representation of Preferences
	Characterisation and Impossibility Results
	Automated Reasoning in Social Choice Theory
	Judgment Aggregation

	References

	A Geometric Look at Manipulation
	Introduction
	Geometry of Voting: The Saari Triangle
	A ‘Geometric’ Proof of the Gibbard Satterthwaite Theorem
	Some Other Properties of Resolute Voting Rules
	Reflections on Manipulation
	Conclusion
	References

	Alternating-Time Temporal Announcement Logic
	Introduction
	Formalizing Conflicting Actions
	The Logic
	Syntax
	Semantics
	The Next-Fragment of ATAL
	Adding Always and Until

	Applications
	Related Work
	Conclusion
	References

	Synthesizing Strategies for Homogenous Multi-Agent Systems with Incomplete Information
	Introduction
	Formal Model
	Modular Models
	Logical Formalism

	Synthesis of All Maximal Homogenous Strategies
	Naive Solution
	Incremental solution

	Complexity and Comparison
	Conclusion
	References

	Reasoning about Joint Action and Coalitional Ability in K_n with Intersection
	Introduction
	Background
	Coalition Logic
	Multi-modal K with Intersection of Modalities

	Injective Games
	Effectivity Functions and Representation

	Multi-modal K with Intersection for Games
	Joint Action Models
	Embedding of CL

	Axiomatisation of Joint Action Models
	Complexity
	Discussion
	References

	Ontology Merging as Social Choice
	Introduction
	A Framework for Ontology Aggregation
	Preliminaries: Description Logics
	Ontology Aggregators
	Example

	Properties of Ontology Aggregators
	Syntactic Axioms
	Semantic Axioms

	Procedures for Ontology Aggregation
	The Majority Rule
	Quota Rules
	A Support-Based Procedure
	A Distance-Based Procedure
	Two-Stage Procedures

	Conclusion and Future Work
	References

	Cooperation
	Social Commitment Delegation and Monitoring
	Introduction
	Formal Model
	Delegation
	Similarity
	Limits and Deadlines
	Monitoring
	Case Study
	Discussion
	References

	Verifying Team Formation Protocols with Probabilistic Model Checking
	Introduction
	Preliminaries
	Probabilistic Models
	Probabilistic Model Checking and PRISM

	Definitions and Algorithms
	Definitions
	Algorithms

	Models and Experimental Setup
	PRISM Models
	Experimental Setup

	Experimental Results
	DTMC Analysis
	MDP Analysis
	STPG Analysis

	Conclusion and Future Work
	References

	Abduction-Based Search for Cooperative Answers
	Introduction
	Background
	Extended Disjunctive Programs
	Abductive Logic Programs
	Queries to an ALP
	Query Relaxation
	Running Example

	Important Concepts
	Useful Literals
	Querying Agent's Choice
	Rational Explanations

	Our Search Method
	Ranking the Explanations
	Equivalent Explanations
	The Search for Cooperative Answers
	Relaxation Trees and Issues

	Expanding the Scope of a Query
	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Reasoning about Exceptions to Contracts
	Introduction
	Diagnosis in Multiagent Systems
	Contracts, Commitments and Diagnosis Architecture
	Reasoning
	Domain-Dependent Rules
	General-Purpose Reasoning Rules

	Case Study
	Customer's Fault
	Bookstore's Fault

	Conclusion and Future Work
	References

	Logic and Languages
	Probabilistic Rule Learning in Nonmonotonic Domains
	Introduction
	Preliminaries
	Approach
	ILP as Abductive Reasoning
	Model Generation
	Parameter Estimation

	Case Study: A Planning Agent
	Knowledge Base
	Trace Generation
	Experiment

	Discussion and Related Work
	Conclusions
	References

	A Formal Semantics for Brahms
	Introduction
	Brahms
	Brahms Example

	Overview of Semantics
	Time Keeping and Scheduling
	Running Workframes and Thoughtframes
	Priority and Suspension of Workframes and Thoughtframes
	Executing Plans: Activities and Communication
	Detectables
	Variables
	Brahms Syntax
	Semantics: Notation
	Semantics: Structure

	Running Example of Brahms Semantics
	System Initiation
	Scheduler Rules
	Agents and Objects Are Now Invoked
	The Cycle Continues

	Concluding Remarks and Future Work
	References

	Making Golog Norm Compliant
	Introduction
	The Golog Language
	Basic Action Theories
	Golog

	Norms
	Ought-to-Do Norms
	Ought-to-Be Norms
	Deadlines

	Internalizing Norms
	Ought-to-Do Norms
	Ought-to-Be Norms
	Deadlines

	Related Work
	Conclusions
	References

	Norms and Normative Multi-agent Systems
	Probabilistic Action and Deontic Logic
	References

	A Dynamic Logic of Institutional Actions
	Introduction
	Institutional Actions: Conceptual Analysis
	Logic
	Language
	Models
	Constraints on Models
	Updating a Model by an Action
	Truth Conditions

	Axiomatization and Complexity
	Institutional Power and Compact Characterization
	Related Works
	Conclusion
	References

	A Paraconsistent Multi-agent Framework for Dealing with Normative Conflicts
	Introduction
	A Simple Classical Multi-agent Framework
	Language
	The Logic MDC
	More on Group Obligations

	Normative Conflicts
	Avoiding Deontic Explosion: The Logic MDP
	Drawbacks of MDP
	The Adaptive Logic MDPm
	Outlook
	References

	Normative Systems Represented as Hybrid Knowledge Bases
	Introduction
	Framework
	Language
	Example

	Formal Semantics
	Hybrid MKNF Knowledge Bases
	Well-Founded MKNF Model

	Implementation
	$CDF-Rules$
	Implementing Judicial Knowledge Bases

	Conclusions and Future Work
	References

	Acting on Norm Constrained Plans
	Introduction
	Plans and Norms
	Constraints, Substitution and Unification
	Actions and Plans
	Norms
	Permissions and Conflicts
	Normative Rules
	Enactment States

	Transitioning between Enactment States
	From Plans to Norm Constrained Actions
	Evaluation
	Discussion
	Conclusions and Future Work
	References

	Justice Delayed Is Justice Denied: Logics for a Temporal Account of Reparations and Legal Compliance
	Introduction
	The Many Faces of Obligations
	Temporalised Violation Logic
	Proof Conditions
	Checking Compliance
	Summary and Related Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

