
Density Based Subspace Clustering over

Dynamic Data

Hans-Peter Kriegel, Peer Kröger, Irene Ntoutsi, and Arthur Zimek

Institute for Informatics, Ludwig-Maximilians-Universität München
http://www.dbs.ifi.lmu.de

{kriegel,kroeger,ntoutsi,zimek}@dbs.ifi.lmu.de

Abstract. Modern data are often high dimensional and dynamic.
Subspace clustering aims at finding the clusters and the dimensions of
the high dimensional feature space where these clusters exist. So far,
the subspace clustering methods are mainly static and cannot address
the dynamic nature of modern data. In this paper, we propose a dy-
namic subspace clustering method, which extends the density based
projected clustering algorithm PreDeCon for dynamic data. The pro-
posed method efficiently examines only those clusters that might be af-
fected due to the population update. Both single and batch updates are
considered.

1 Introduction

Clustering is the unsupervised classification of data into natural groups (called
clusters) so that data points within a cluster are more similar to each other than
to data points in other clusters. Due to its broad application areas, the clustering
problem has been studied extensively in many contexts and disciplines, including
Data Mining. As a result, a large number of clustering algorithms exists in the
literature (see [16] for a thorough survey). However, modern data impose new
challenges and requirements for the clustering algorithms due to their special
characteristics. First of all, a huge amount of data is collected nowadays as a
result of the wide spread usage of computer devices. This possibility of cheaply
recording massive data sets may also be the reason for another new character-
istic of modern data; the high dimensionality of objects. While years ago, data
recording was more expensive and, thus, the relevance of features was carefully
evaluated before recording, nowadays, people tend to measure as much as they
can. As a consequence, an object might be described by a large number of at-
tributes. Many of these attributes may be irrelevant for a given application like
cluster analysis and there might be correlations or overlaps between these at-
tributes. In addition to their quantity and high dimensionality, today’s data is
often highly dynamic, i.e., new data records might be inserted and existing data
records might be deleted, as time goes by.

As an example, consider the data derived from the Bavarian newborn screen-
ing program [20]. For each newborn in Bavaria, Germany, the blood concentra-
tions of 43 metabolites are measured in the first 48 hours after birth producing

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 387–404, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.dbs.ifi.lmu.de

388 H.-P. Kriegel et al.

a vast amount of high dimensional data that is highly dynamic (new individ-
uals are added usually in a batch on a daily or weekly basis). The analysis of
these data shall help doctors in the diagnosis the exploration of known and new
metabolic diseases. Clustering the data is a crucial step in this process. How-
ever, for different diseases, it is very likely that different metabolites are relevant.
Thus, clusters representing groups of newborns with a homogeneous phenotype,
e.g. suffering from a similar disease, can usually only be found in subspaces of
the data. As batches of new individuals are coming in every day or week, the de-
tected clustering structure needs to be updated as well. Due to the huge amount
of data, the update of the clustering structure should be done incrementally only
for the changing part of the structure, rather than re-computing the complete
structure from scratch. Let us note that such screening projects are implemented
in a large number of states/countries so that there are many data sets having
similar characteristics that need to be analyzed.

The scenario described above represents a general data warehouse environ-
ment. With this term, we do not associate a certain architecture, but describe
an environment in which changes in the transactional database are collected
over some period (e.g. daily) and the data warehouse is updated using batch
operations. Beside data originating from scientific experiments, also many com-
panies store terabytes of corporate data in such an environment. Applications
like scientific data analysis or industrial decision support systems in such envi-
ronments require not only high accuracy from data analysis methods but also
fast availability of up-to-date knowledge — a prohibitive demand for many data
mining algorithms which are able to gain knowledge only from scratch using
highly complex operations. Rather, to cope with the problem of updating mined
patterns in a data warehouse environment, algorithms preferably should perma-
nently store the acquired knowledge in suitable data structures and facilitate an
efficient adaptation of this stored knowledge whenever the raw data changes.

Lately, a lot of work has been carried out on adapting traditional clustering
algorithms in order to meet the requirements of modern systems or on proposing
new algorithms that are specialized on handling data with the above features. In
particular, several methods have been proposed for each of the aforementioned
problems separately, like for clustering of large amounts of data, e.g. [22,11,5],
for clustering over data streams, e.g. [15,2], for change detection and monitoring
over evolving data, e.g. [1,21], as well as for clustering high dimensional data
(see [19] for a survey). Less work though has been done to tackle the complete
list of challenges in a single, unified approach.

We propose a new algorithm, based on the density based subspace clustering
algorithm PreDeCon [6] providing a solution to the problem of high dimension-
ality by finding both clusters and subspaces of the original feature space where
these clusters exist. The original PreDeCon works upon static datasets. In this
work, we propose an incremental version of PreDeCon, which also deals with
the issue of dynamic data.1 The new algorithm can also serve as a framework for

1 A preliminary version of this paper has been discussed at the StreamKDD 2010
workshop [18].

Density Based Subspace Clustering over Dynamic Data 389

monitoring clusters in a dynamic environment. We choose the algorithm Pre-
DeCon [6] because it already addresses the problem of high dimensional data
(for static scenarios) and it relies on a density-based clustering model such that
updates usually do not affect the entire clustering structure but rather cause
only limited local changes. This is important to explore update procedures for
dynamic data.

The rest of the paper is organized as follows. In Section 2, we discuss the
related work and our contribution. In Section 3, we present the basic notions
of PreDeCon which are necessary for the understanding of the incremental
method. In Section 4, we present the incremental algorithm, incPreDeCon.
We distinguish between a single update scenario and a batch update scenario
(Section 5 and 6, respectively). Experimental results are reported in Section 7.
Section 8 concludes our work.

2 Related Work and Contributions

2.1 Subspace Clustering

The area of subspace clustering has lately emerged as a solution to the problem
of the high dimensionality of the data. Its goal is to simultaneously detect both
clusters (i.e.,, sets of objects) and subspaces of the original feature space where
these clusters exist. This is in contrast to the traditional clustering that searches
for groups of objects in the full dimensional space [16]. Also this is in contrast to
global dimensionality reduction techniques like Principal Component Analysis
(PCA) that search for clusters in the reduced (though full) dimensional space. In
subspace clustering different features might be relevant for different clusters and
the goal is to find both the clusters and the features that form these clusters.

Recent work on subspace clustering (see e.g. [19] for a review) so far focus
on finding clusters in different subspaces of the original feature space in static
data. None of these methods are suitable to efficiently keep track of changes of
the clustering structure over time. Rather, the clustering structure can only be
updated by computing the entire clustering from scratch.

2.2 Incremental Clustering

Traditional incremental clustering methods rely on the old clustering at time
point t− 1 (based on dataset Dt−1) and on the update operations at time point
t in order to derive the new clustering at t. In this category belong methods
like incDBSCAN [10] which is the incremental version of the density based algo-
rithm DBSCAN [11] and incOPTICS [17] which is the incremental version of the
density based hierarchical clustering algorithm OPTICS [5]. Both incDBSCAN
and incOPTICS methods exploit the fact that, due to the density based nature
of the corresponding static algorithms, an update operation affects only some
part of the old clustering instead of the whole clustering. The update process
works directly upon raw data. Both methods produce the same results with the
corresponding static methods when the latest are applied over the accumulative

390 H.-P. Kriegel et al.

dataset Dt. Charikar et al.[8] present an incremental K–Means method which
maintains a collection of k clusters as the dataset evolves. When a new point is
presented, it is either assigned to one of the current k clusters, or it starts a new
cluster while two existing clusters are merged into one, so as the total number of
clusters does not exceed the threshold k. Chen et al. [9] propose the incremen-
tal hierarchical clustering algorithm GRIN which is based on gravity theory in
physics. In the first phase, GRIN constructs the initial clustering dendrogram,
which is then flattened and its bottom levels are pruned in order to derive the so
called tentative dendrogram. For each cluster, the tentative histogram keeps the
centroid, the radius and the mass of the cluster. In the second phase, new data
instances are inserted one by one and it is decided whether they belong to leaf
nodes of the tentative dendrogram or are outliers. If the tentative outlier buffer
exceeds some threshold, a new tentative dendrogram is reconstructed. Both [8]
and [9] are approximate methods, by means that the resulting clustering after
the update is not assured to be identical to the one we would obtain if we ap-
plied from scratch the static versions of the algorithms over the accumulative
dataset Dt. This is due to the fact, that the update process works upon cluster
summaries rather than upon raw data; the new data at t are actually “mapped”
to the closer cluster of the existing clustering (from timepoint t − 1).

2.3 Stream Clustering

Data streams impose new challenges for the clustering problem since “it is usu-
ally impossible to store an entire data stream or to scan it multiple times due to
its tremendous volume” [14]. As a result, several methods have been proposed
that first summarize the data through some summary structure and then apply
clustering over these summaries instead of the original raw data. With respect to
the clustering quality, these summaries might be either lossy (that is, they cor-
respond to some approximation of the raw data) or lossless (that, is they exactly
maintain the information contained in the original raw data). Agrawal et al. [2]
propose the CluStream framework for clustering of evolving data streams. The
clustering process is split into an online and an offline part: The online com-
ponent periodically stores summary statistics (the so called, micro–clusters),
whereas the offline component uses these micro–clusters for the formation of the
actual clusters (the so called, macro–clusters) over a user–defined time horizon.
No access to raw data is required in this method, since the clustering takes place
over the microclusters, which correspond to a lossy representation of the origi-
nal data. The incremental part in this case is the online component which up-
dates the micro–clusters, whereas the clustering process is applied from scratch
over these updated summaries. DenStream [7] follows the online–offline rationale
of CluStream [2] but in contrast to CluStream that is specialized to spherical
clusters, it can detect clusters of arbitrary shapes. In the context of their DE-
MON framework, Ganti et al. [12] present BIRCH+, an incremental extension
of BIRCH [22]. The original BIRCH [22] first summarizes the data into sub-
clusters and then it clusters those subclusters using some traditional clustering
algorithm. The subclusters are represented very concisely through cluster fea-

Density Based Subspace Clustering over Dynamic Data 391

tures. In BIRCH+, the cluster features are maintained incrementally as updates
occur, and then the clustering step takes place as in BIRCH over those (now
updated) summaries. So, the incremental part is that of summary structure up-
date, whereas clustering is then applied from scratch over the updated summary
structure. The incremental version produces the same results as the static version
when applied on the accumulative dataset Dt.

2.4 High Dimensional Stream Clustering

Gao et al. [13], propose DUCStream, an incremental data stream clustering al-
gorithm that applies the idea of dense units introduced in CLIQUE [4] to stream
data. As in CLIQUE [4], the data space is split into units and a cluster is defined
as a maximal set of connected dense units. Their method relies on incrementally
updating, according to the update operation, the density of these units and
on detecting units that change from dense to non-dense and the inverse. After
the grid update phase, they identify the clusters using the original procedure
of CLIQUE. DUCStream does not require access to the raw data of the past
time points, but only over the summary grid structure. The incremental version
produces the same results as the static version when applied to the accumulative
dataset Dt. Note that although CLIQUE is a subspace clustering algorithm, the
proposed method [13] updates incrementally only the grid summary structure,
whereas the clusters are discovered from scratch over the (now updated) grid.
This is a clear difference to our work, where the goal is to incrementally update
the existing clustering (at t − 1) based on the dataset updates at t, so as to
finally derive the new clustering at t. Agrawal et al. [3] extend the idea of CluS-
tream [2] to high dimensional data streams by proposing HPStream, a method
for projected data stream clustering. A summary structure, the so called fading
cluster structure, is proposed which comprises a condensed representation of the
statistics of the points inside a cluster and can be updated effectively as the data
stream proceeds. The input to the algorithm includes the current cluster struc-
ture and the relevant set of dimensions associated with each cluster. When a new
point arrives, it is assigned to the closest cluster structure or if this violates the
limiting radius criteria, a new cluster is created and thus some old cluster should
be deleted in order for the total number of clusters to not exceed the maximum
number k. In each case, the cluster structure and the relevant dimensions for
each cluster are dynamically updated. Although HPStream is a subspace clus-
tering method and we propose an incremental subspace clustering method in this
work, there are core differences between the two approaches and their scopes. In
particular, HPStream is targeted to stream data and thus works upon summaries
and provides an approximation solution to the clustering problem. On the other
hand, our incPreDeCon method works upon dynamic data, requires access
to raw data (although this access is restricted to only a subset of the original
dataset) and provides exact solution to the clustering problem (i.e., we obtain
the same results with those obtained by applying the static PreDeCon over
the acumulated dataset Dt).

392 H.-P. Kriegel et al.

2.5 Contributions

None of the existing methods can be applied to the scenario of massive, high
dimensional databases that are updated over time like in a data warehouse en-
vironment. In this work, we propose an incremental version of the density based
subspace preference clustering algorithm PreDeCon [6] which comprises a first
step towards an integrated approach to the above listed challenges. We choose
the algorithm PreDeCon because it already addresses the problem of high di-
mensional data (for static scenarios) and it relies on a well-known and established
clustering model. Let us note that we do not discuss nor evaluate benefits and
limitations of different cluster models in this paper but solely propose concepts
to adapt an existing model to the various challenges of today’s data.

The methods for finding subspace clusters in data streams mentioned above
are to some degree related to the incremental subspace clustering in data ware-
houses. Both methodologies aim at providing the user with up-to-date infor-
mation on subspace clusters very quickly in a dynamic, high dimensional en-
vironment. However, data streams impose different requirements on clustering
algorithms and the entire data mining process. In particular, in a data ware-
house, the clustering algorithm has access to all points currently in the database
and not necessarily only to the most recently inserted points or to summaries
of the raw data as for stream data. In addition, when clustering stream data,
the algorithm for updating the summaries is restricted to sequential access to
newly inserted objects and the clustering is then re-computed on the summary
information only. This restriction does not apply to algorithms for incremental
clustering in a data warehouse environment. Our solutions are therefore different
from the data stream clustering context in these two aspects.

3 The Algorithm PreDeCon

PreDeCon [6] adapts the concept of density based clusters, introduced in DB-
SCAN [11], to the context of subspace clustering. The notion of subspace prefer-
ences for each point defines which dimensions are relevant to cluster the point.
Roughly speaking, a dimension is relevant to cluster a point if its neighbor-
hood along this dimension has a small variance. Intuitively, a subspace preference
cluster is a density connected set of points associated with a similar subspace
preference vector.

Let D be a database of d-dimensional points (D ⊆ Rd), where the set of
attributes is denoted by A = {A1, A2, . . . , Ad}, and dist : Rd × Rd → R is a
metric distance function between points in D. Let Nε(p) be the ε-neighborhood
of p ∈ D, i.e., Nε(p) contains all points q ∈ D with dist(p, q) ≤ ε. The variance
of Nε(p) along an attribute Ai ∈ A is denoted by VarAi(Nε(p)). Attribute
Ai is considered a preferable (relevant) dimension for p if the variance with
respect to Ai in its neighborhood is smaller than a user-defined threshold δ,
i.e., VarAi ≤ δ. All preferable attributes of p are accumulated in the so-called
subspace preference vector. This d-dimensional vector w̄p = (w1, w2, . . . , wd) is
defined such that wi = 1 if attribute Ai is irrelevant, i.e., VarAi(Nε(p)) > δ and

Density Based Subspace Clustering over Dynamic Data 393

wi = κ (κ � 1) if Ai is relevant, i.e., VarAi(Nε(p)) ≤ δ. The subspace preference
vector of points defines the preference weighted similarity function associated

with a point p, distp(p, q) =
√∑d

i=1 wi · (πAi(p) − πAi(q))2, where wi is the
i-th component of w̄p. Using the preference weighted similarity, the preferable
attributes are weighted considerably lower than the irrelevant ones. This distance
is not symmetric. A symmetric distance is defined by the general preference
similarity, distpref (p, q) = max{distp(p, q), distq(q, p)}. The preference weighted
ε−neighborhood of a point p contains all points of D that are within a preference
weighted distance ε from p: N w̄o

ε (o) = {x ∈ D | distpref (o, x) ≤ ε}.
Based on these concepts, the classical definitions of density-based clustering

have been derived:

Definition 1 (preference weighted core points [6]). A point o ∈ D is called
preference weighted core point w.r.t. ε, μ, δ, and λ (denoted by Corepref

den (o)),
if i) the preference dimensionality of its ε-neighborhood is at most λ and ii) its
preference weighted ε-neighborhood contains at least μ points.

Definition 2 (direct preference reachability [6]). A point p ∈ D is di-
rectly preference reachable from a point q ∈ D w.r.t. ε, μ, δ, and λ (denoted
by DirReachpref

den (q,p)), if q is a preference weighted core point, the subspace
preference dimensionality of Nε(p) is at most λ, and p ∈ N w̄q

ε (q).

Definition 3 (preference reachability [6]). A point p ∈ D is preference
reachable from a point q ∈ D w.r.t. ε, μ, δ, and λ (denoted by Reachpref

den (q,p)),
if there is a chain of points p1, . . . , pn such that p1 = q, pn = p and pi+1 is
directly preference reachable from pi.

Definition 4 (preference connectivity [6]). A point p ∈ D is preference
connected to a point q ∈ D, if there is a point o ∈ D such that both p and q are
preference reachable from o.

Definition 5 (subspace preference cluster [6]). A non-empty subset C ⊆ D
is called a subspace preference cluster w.r.t. ε, μ, δ, and λ, if all points in C are
preference connected and C is maximal w.r.t. preference reachability.

As DBSCAN, PreDeCon determines a cluster uniquely by any of its preference
weighted core points. As far as such a point is detected, the associated cluster
is defined as the set of all points that are preference reachable from it.

4 Incremental PreDeCon

Let D be the accumulated data set until the time point t− 1 and let ζ be the cor-
responding clustering at t − 1 (built upon data set D). Let U be a set of update
operations (insertions of new points). Let D∗ be the newly accumulated data set
at time slot t, which is the result of applying U over D, i.e., D∗ = D∪U . The goal
of incremental PreDeCon is to update the so far built clustering ζ (at timepoint

394 H.-P. Kriegel et al.

t − 1) based on the update set U (at timepoint t) and thus, to derive the valid
clustering ζ∗ for time point t. The key observation is that the preference weighted
core member property of an object might change due to the update. As a result,
the existing clustering might change too, e.g., new clusters might arise, old clus-
ters might be abolished or merged into a new cluster and so on. The challenge is
to exploit the old clustering ζ at t − 1 (both clusters and subspaces where these
clusters exist) and to adjust only that part of it which is affected by the update
set U at time point t. Due to the density based nature of the algorithm, such an
adjustment is expected (although not ensured in general) to be restricted to some
(local) part of the clustering instead of the whole clustering.

We consider a dynamic environment where data are coming sequentially either
as: (i) single updates (|U|=1), e.g., in streams, or as (ii) batch updates (|U| =
m > 1), e.g., in data warehouses where updates are collected and periodically
propagated. In case of single updates, each update is treated independently. In
case of batch updates, the idea is to treat the effects of all these updates together
instead of treating each update independently. The rationale is that the batch
might contain updates that are related to each other (e.g., one update might
correspond to an object that belongs to the neighborhood of another object
which is also updated). This is common in many applications, e.g., news data:
when a story arises usually within a small time interval there exists a burst of
news articles all referring to this story.

5 Dealing with Single Updates

Due to the density based nature of PreDeCon, a preference weighted cluster
is uniquely defined by one of its preference weighted core points. The key idea
for the incremental version is to check whether the update operation affects the
preference weighted core member property of some point. If a non-core point
becomes core, new density connections might be established. On the other hand,
if a core point becomes non-core, some density connections might be abolished.
There is also another case in PreDeCon, when a core point remains core but
under different preferences. Such a change might cause either the establishment
of new connections or the abolishment of existing ones.

5.1 Effect on the Core Member Property

The insertion of a point p directly affects the points that are in the ε-neighborhood
of p, i.e., all those points q ∈ D : dist(p, q) ≤ ε. In particular, the neighborhood
of q, Nε(q), might be affected, since the newly inserted object p is now a mem-
ber of this neighborhood. Since Nε(q) might change, the variance of Nε(q) along
some dimension Ai ∈ A might also change causing Ai to turn into a preferable
or non-preferable dimension. This might change the subspace preference dimen-
sionality of q, PDim(Nε(q)). Also, the subspace preference vector of q, w̄q, might
change; this in turn, might result in changes in the preference ε-neighborhood
of q, N w̄

ε (q)q. As a result, the core member property of q might be affected.
According to Def. 1, two conditions should be fulfilled in order for a point q to

Density Based Subspace Clustering over Dynamic Data 395

be core: In terms of condition 1, the preference dimensionality of q must con-
tain at most λ dimensions (i.e., PDim(Nε(q)) ≤ λ). In terms of condition 2, the
preference weighted ε-neighborhood of q should contain at least μ points.

Let p be the new point, and let D∗ = D ∪ {p} be the new data set after
the insertion of p. The addition of p might affect the core member property of
any object q ∈ Nε(p). In particular, since Nε(q) changes, the variance along
some attribute Ai ∈ A, i.e., VarAi(Nε(q)) might also change. (i) If Ai was a
non-preferable dimension (that is, VarAi(Nε(q)) > δ), it might either remain
non-preferable (if still VarAi(Nε(q)) > δ) or it might become preferable (if now
VarAi(Nε(q)) ≤ δ). (ii) If Ai was a preferable dimension, it might either re-
main preferable (if still VarAi(Nε(q)) ≤ δ) or it might become non-preferable
(if now VarAi(Nε(q)) > δ). A change in the preference of Ai might result in
changes in the subspace preference vector of q, w̄q, since some dimension might
swap from preferable to non preferable and vice versa. Thus, we can have more
or less preferable dimensions comparing to the previous state (quantitative dif-
ferences) or we can have the same dimensionality but under different preferred
dimensions (qualitative differences). A change in w̄q, might cause changes in
both PDim(Nε(q)) and in N w̄q

ε (q).
If the subspace preference dimensionality of q, PDim(Nε(q)), changes, the

first condition of Definition 1 (referring to dimensionality) might be violated.
In particular, if |PDim(Nε(q))| > λ, the point q cannot be core. So, if q was
a core point, it now looses this property (core → noncore), whereas if it was
non-core it still remains non-core. This is the first condition to be checked,
and it is quantitative since it is based on the number of preferred dimensions
(whether they exceed δ or not). If after the insertion of p, this condition holds
(that is, |PDim(Nε(q))| ≤ λ), the second condition of Definition 1 (preferred
neighborhood size) is to check assessing whether q is core after the update. (i) If
q was a core point, and now |N w̄

ε (q)q| < μ, then q loses its core member property
(core → noncore). Otherwise, it remains core. (ii) If q was not a core point, and
now |N w̄

ε (q)q| ≥ μ then q becomes core (noncore → core). Otherwise, it remains
non core. (iii) There is also another case of change for q, where it still remains
core (core → core) but under different preferences (this might happen e.g., when
there are qualitative changes in w̄q). Note that, although q might remain core
its neighborhood might change due to different preferred dimensions.

Note again that the objects with a changed core member property are all
located in Nε(p), since such a change is due to the insertion of p.

5.2 Affected Objects

So far, we referred to the objects in Nε(p) that are directly affected by the in-
sertion of p and we discussed when and how their core member property might
change. Note however, that a change in the core member property of an ob-
ject q might cause changes in the objects that are preference reachable from q
(indirectly affected). If q was a core point before the insertion and it becomes
non-core after the insertion, then any density connectivity that relied on q is
destroyed. On the other hand, if q was a non-core point before the insertion and

396 H.-P. Kriegel et al.

it turns into core after the insertion, then some new density connectivity based
on q might arise.

We denote by AffectedD(p) the set of points in D that might be affected
after the insertion of p. This set contains both directly affected points (those
located in Nε(p), which might change their core member property after the
update) and indirectly affected objects (those that are density reachable by some
point in Nε(p), which might change their cluster membership after the update).

Definition 6 (Affected objects). Let D be a data set and let D∗ = D ∪ {p}
be the new data set after the insertion of object p. We define the set of objects
in D affected by the insertion of p as:
AffectedD(p) = Nε(p) ∪ {q|∃o ∈ Nε(p) : Reachpref

den (o, q) in D∗}
The update of p might cause changes in the cluster membership of only some
objects q ∈AffectedD(p). A naive solution would be to reapply the static
PreDeCon over this set in order to obtain the new clustering for the set of
affected data. This way however, although one would restrict reclustering over
only this subset of the data, one actually ignores any old clustering information
for this set and build it from scratch. Our solution is based on the observation
that any changes in AffectedD(p), are exclusively initiated by objects that
change their core member property, i.e., those in Nε(p). So, instead of examining
all objects in AffectedD(p), we can start searching from objects in Nε(p)
and discover the rest of the affected objects on the road (those objects would
belong to AffectedD(p) though). Note also that there is no need to examine
each q ∈ Nε(p) since some objects might have not changed their core member
property so related density connections from the previous clustering would be
still valid. So, we need to examine only those objects in Nε(p) that change their
core member property after the insertion of p, instead of all objects in Nε(p), so
as to avoid rediscovering density connections. As already described, a possible
change in the core member property of an object after the insertion of p falls
into one of the following cases: (i) core → non-core, (ii) non-core → core and,
(iii) core → core but under different preferences.

When the core member property of a point q ∈ Nε(p) changes, we should
consider as seed points for the update any core point q′ ∈ Nε(q). That is, the
update process starts from core points in the neighborhood of the objects with
changed core member property (which, in turn are all located in Nε(p)).

Definition 7 (Seed objects for the update). Let D be a data set and let
D∗ = D ∪ {p} be the new data set after the insertion of p. We define the seed
objects for the update as:
UpdSeed = {q is core in D∗|∃q′ : q ∈ Nε(q′) and q′ changes its core property}

5.3 Updating the clustering

After the insertion of a new object p, new density connections might be es-
tablished whereas existing connections might be abolished or modified. We can

Density Based Subspace Clustering over Dynamic Data 397

algorithm incPreDeCon(D, U , ε, μ, λ, δ)

for each p ∈ U do

1. D∗ = D ∪ p;
2. compute the subspace preference vector w̄p;
// update preferred dimensionality and check core member property in Nε(p)
3. for each q ∈ Nε(p) do
4. update w̄q ;
5. check changes in the core member property of q and if change exists, add q to Affected;
6. compute UpdSeed based on Affected
7. for each q ∈ UpdSeed do
8. expandCluster(D∗, UpdSeed, q, ε, μ, λ);

end;

Fig. 1. Pseudo code of the algorithm incPreDeCon

detect these changes starting with the seed objects in UpdSeed. As in PreDe-
Con, the cluster is expanded starting from objects in UpdSeed and considering
the results of the so far built clustering. The pseudo code of the algorithm is
displayed in Figure 1. The existing database D, the update set U and the Pre-
DeCon parameters (namely, the distance threshold ε, the neighborhood size
threshold μ and the dimensionality threshold λ) are the input to the algorithm.
The updated clustering ζ∗ is the output of the algorithm.

The algorithm works as follows: After the insertion of a point p (line 1), its
subspace preference vector is computed (line 2), and its neighborhood Nε(p) is
updated (lines 3–6). In particular, for each object q ∈ Nε(p) (line 3), we first
update its subspace preference vector (line 4) and then check for any changes
in the core member property of q (line 5). If the core member property of q is
found to be affected, q is added to the Affected set. After the Affected set
is computed, we derive the seed objects for the update (line 6). Based on these
objects, the reorganization of the old clustering starts, which involves some call
to the expandCluster() function of PreDeCon. This is a generic solution that
works on every effect caused by the update of p. Of course, there are simpler
cases where we can deal with the update without invoking the expandCluster()
procedure of PreDeCon. For example, if the update of p does not affect the core
member property of its neighborhood and its neighborhood belongs to exactly
one cluster before the update, then p is also added to this cluster (absorption).
However there are many such special cases, since, as already stated, the update of
p might both destroy old density connections and create new density connections
depending on the changes in the core member property of its neighborhood. The
proposed method is lossless, that is the incrementally updated model ζ∗ at t
(which is based on the clustering model ζ at t− 1 and on the update set U at t)
is identical to the one we would obtain if we applied from scratch the traditional
PreDeCon over the accumulated data set D∗ at time point t.

6 Dealing with Batch Updates

We now consider the case of batch updates where m (m > 1) points are inserted
at each time point. The rationale behind this alternative is that it is possible for

398 H.-P. Kriegel et al.

the batch data to be related to each other instead of independent (Consider for
example an earthquake in some place and Twitter response to such an event; a
flow of tweets would appear referring to that event.). Hence, instead of updating
the clustering for each operation independently (as in the single update case,
c.f. Section 5.3), one should consider the accumulative effect of all these batch
operations on the clustering and treat them together. This way, the objects that
might be affected by more than one single update operations are examined only
once. Otherwise, such objects should be examined after each single operation
(multiple checks).

The algorithm is similar to the algorithm for the single update case (c.f.
Figure 1). The key difference is that instead of inserting objects one by one,
examining the side effects of each single insert and updating the clustering based
on each single insert, we now insert the whole batch (all m objects), we examine
how the database is affected by the whole batch and we update the clustering
model based on the whole batch. In more detail, we first insert the m objects of
the batch in the existing database. Then, we continue the same rationale as with
the single update case: First, we update the subspace preference vector of each
of the inserted objects in the batch. Next, we check for objects with affected
core member property. Recall (Section 5.1) that any objects with affected core
member property lie in the neighborhood of some inserted point. Note also, that
the points of the batch are all inserted into the database, so these operations also
consider the newly inserted points. The Affected set now contains the objects
that might be affected due to the whole batch of points. Based on the Affected
set, the UpdSeed set is constructed which also refers to the whole batch. The
points in UpdSeed serve as the starting points for the cluster reorganization.

The benefit of the batch method is that some computations might take place
only once, instead of after each single update as is the case for the single update
method. For example, let p be an object in the database which is part of the
neighborhood of both points p1, p2 in the batch. According to the single update
case, this object should be examined twice, i.e., after each single insert, for any
changes in its core member property. According to the batch update case though,
this object should be examined only once.

7 Experiments

Since incPreDeCon computes the same results as PreDeCon, we compare
their performances in terms of efficiency. For massive data sets, the bottleneck
of PreDeCon and incPreDeCon is the number of range queries in arbitrary
(possibly 2d different) subspaces that cannot be supported by index structures.
We report the speed-up factor defined as the ratio of the cost of PreDeCon (ap-
plied to the accumulative data set D∗) and the cost of incPreDeCon (applied
to the initial data set D plus the updates U).

We used a synthetic data generated according to a cluster template that de-
scribes the population of the corresponding cluster, the generating distribution,
and range of dimension values for each dimension. In addition, we report a case

Density Based Subspace Clustering over Dynamic Data 399

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

sp
ee

d
up

 fa
ct

or

number of updates

1.000 5.000 10.000 15.000

Fig. 2. Speed-up factors w.r.t. data set size

study of incrementally keeping track of clusters in real-world data. Let us again
note that we do not compare different clustering models here, since the main fo-
cus of our paper is to provide a solution for incremental density-based subspace
clustering in a high dimensional, dynamic environment.

7.1 Experiments on Single Updates

Varying the data set population. Four synthetic data sets of varying size
between 1.000 and 15.000 objects were generated. From each data set, 100 objects
were randomly extracted and used as the update set. The number of required
range queries was computed after each insertion.

Figure 2 displays the speed-up factors w.r.t. the different data set sizes. in-
cPreDeCon outperforms PreDeCon with the speed-up factors of 2–100. As
expected, with increasing number of updates the gain for incPreDeCon is
higher. Analogously, the bigger the data set population is, the greater are the
benefits of using incPreDeCon instead of PreDeCon.

Varying the number of generated clusters. Five data sets with varying
number of clusters but constant dimensionality and fixed population of each
cluster were used next. From each data set, 100 objects were randomly extracted
and used as the update set. Figure 3 displays the speed-up factors for all data
sets. Again, incPreDeCon outperforms PreDeCon for all datasets with the
speed-up factors increasing with the number of updates and lying in the range
[1–100]. Comparing the different data sets, however, we cannot draw some clear
conclusion regarding whether more generated clusters result in greater gainings
for incPreDeCon or no. This is intuitive since we generate random updates
that do not necessarily correlate with the cluster structure. Thus, the number
of clusters does not have a significant impact on the performance.

Varying the number of dimensions. Five data sets with varying dimensions
but constant number of clusters and fixed population of each cluster were used
next. From each data set, 100 objects were randomly extracted and used as
the update set. Figure 4 displays the speed-up factors for all data sets. Again,

400 H.-P. Kriegel et al.

60

70

80

90

100

p
fa

ct
or

10Clusters 20Clusters 30Clusters

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

sp
ee

d
up

number of updates

Fig. 3. Speed-up factors w.r.t. the number of generated clusters

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

sp
ee

d-
up

fa

ct
or

number of updates

2D 3D 4D 5D 10D

Fig. 4. Speed-up factors w.r.t. data dimensionality

incPreDeCon outperforms PreDeCon with the speed up factors lying in the
range 2–100. A comparison of the different data sets remains inconclusive w.r.t.
whether or not more dimensions result in greater gain for incPreDeCon. This
was expected since the dimensionality of the data should not have a different im-
pact on the performances (in terms of required range queries) of PreDeCon and
incPreDeCon.

7.2 Experiments on Batch Updates

100 random updates were performed in a batch way (with batch sizes of 5, 10,
15, 20 updates) on a data set of 1.000 objects. Figure 5 displays the speed-
up factors for the different batch sizes (the single update case is also partially
depicted). incPreDeCon outperforms PreDeCon for all different batch sizes.
The highest gain exists for the single update case. As the batch size increases,
the gain decreases.

Density Based Subspace Clustering over Dynamic Data 401

15

20

25

fa
ct

or

Single Batch_5 Batch_10 Batch15 Batch_20

0

5

10

0 10 20 30 40 50 60 70 80 90 100

sp
ee

d
up

number of updates

Fig. 5. Speed-up factors for random batch updates

15

20

25

fa
ct

or

Single Batch_5 Batch_10 Batch15 Batch_20

0

5

10

0 10 20 30 40 50 60 70 80 90 100

sp
ee

d
up

number of updates

Fig. 6. Speed-up factors for “local” batch updates

The gain is expected to be even higher when the updates are not random but
reflect the clustering structure. To verify this, we used an update set of objects
extracted from 2 clusters in the generated data set (50 objects per cluster). As
expected, the speed-up factors (cf. Figure 6) are higher compared to the random
update case (cf. Figure 5).

The experiments showed the benefit of incPreDeCon versus PreDeCon.
The gain was very high for the single update case, whereas for the batch case the
larger the batch size was, the lower the gain was. For example, in Figures 7, and
8 we can see the actual number of range queries required by PreDeCon and
incPreDeCon for two synthetic data sets. It can be observed that in the sin-
gle update case (denoted by batch size = 1 in these figures), incPreDeCon
(right bar) requires considerably less number of range queries comparing to
PreDeCon (left bar). As the batch size increases however, the gainings for

402 H.-P. Kriegel et al.

181,071

35,947

17,907

10,796 9,036

2,388 2,207 2,448 2,986 2,987

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

1 5 10 15 20

ra
ng

e
qu

er
ie

s

batch size

PreDeCon incPreDeCon

Fig. 7. Range queries for PreDeCon and incPreDeCon (data set size 5.000)

1,872,400

192,322 187,803

112,309 93,622

19,376 20,035 20,805 22,559 24,018

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

1 5 10 15 20

ra
ng

e
qu

er
ie

s

batch size

PreDeCon incPreDeCon

Fig. 8. Range queries for PreDeCon and incPreDeCon (data set size 10.000)

incPreDeCon are decreased. Note that we run random updates in these exper-
iments (Figure 7 and Figure 8). Greater savings are expected for “local updates”,
i.e., updates that correspond to a specific subcluster/ area of the population,
since the batch method performs better when the update set contains related
updates (recall our previous discussion on Figure 5 and Figure 6).

7.3 A Case Study on Real-World Data

We applied the original PreDeCon on a small sample of 1,000 objects of the
Bavarian newborn screening data, added batches of 200 objects and updated the
cluster structure using incPreDeCon. Sample results from different time slots
are sketched in Figure 9. Cluster 1 representing newborns suffering PKU refines
the set of relevant attributes over time. This indicates that the attributes that

Density Based Subspace Clustering over Dynamic Data 403

Fig. 9. Clusters on Bavarian newborn screening data evolving over time

have been evaluated as relevant for that cluster in the beginning might be false
positives or might be relevant only for a subset of cluster members. The latter
might indicate an interesting subtype of the PKU disease. In any case, these re-
sults might trigger the medical doctors to initiate further investigations on this
issue. Cluster 2 representing a subset of the control group (healthy newborns)
disappears over time since the clear subspace structure is absorbed by full di-
mensional noise. In fact, the attribute that is preferred by members of Cluster 2
at the beginning turns out to be not discriminative later on. Let us note that this
phenomenon could not have been found by a full dimensional clustering method
(e.g. by DBSCAN [11]) because the disappearance of that cluster is only possible
when considering relevant projections of the feature space.

8 Conclusions

In this paper, we presented the incremental density based subspace clustering al-
gorithm incPreDeCon. The algorithm can handle several prevalent challenges
posed by today’s data, including massive, dynamic, and high dimensional data
sets. The update strategy, exploits the density based nature of clusters and, thus.
manages to restructure only that part of the old clustering that is affected by
the update. Both a single and a batch update method have been proposed. Our
experimental results demonstrate the efficiency of the proposed method against
the static application of PreDeCon. As future work, we plan to examine sub-
space clustering methods over data streams where access to raw data is usually
not provided for efficiency reasons.

Acknowledgments. Irene Ntoutsi is supported by an Alexander von Humboldt
Foundation fellowship for postdocs (http://www.humboldt-foundation.de/).

404 H.-P. Kriegel et al.

References

1. Aggarwal, C.C.: On change diagnosis in evolving data streams. IEEE TKDE 17(5),
587–600 (2005)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proc. VLDB (2003)

3. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering
of high dimensional data streams. In: Proc. VLDB (2004)

4. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace cluster-
ing of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)

5. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points
to identify the clustering structure. In: Proc. SIGMOD (1999)

6. Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with
local subspace preferences. In: Proc. ICDM (2004)

7. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: Proc. SDM (2006)

8. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and
dynamic information retrieval. SICOMP 33(6), 1417–1440 (2004)

9. Chen, C.Y., Hwang, S.C., Oyang, Y.J.: An incremental hierarchical data clustering
algorithm based on gravity theory. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD
2002. LNCS (LNAI), vol. 2336, p. 237. Springer, Heidelberg (2002)

10. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering
for mining in a data warehousing environment. In: Proc. VLDB (1998)

11. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. KDD (1996)

12. Ganti, V., Gehrke, J., Ramakrishnan, R.: DEMON: Mining and monitoring evolv-
ing data. IEEE TKDE 13(1), 50–63 (2001)

13. Gao, J., Li, J., Zhang, Z., Tan, P.N.: An incremental data stream clustering al-
gorithm based on dense units detection. In: Ho, T.-B., Cheung, D., Liu, H. (eds.)
PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 420–425. Springer, Heidelberg (2005)

14. Garofalakis, M., Gehrke, J., Rastogi, R.: Querying and mining data streams: you
only get one look. A tutorial. In: Proc. SIGMOD (2002)

15. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data
streams: Theory and practice. IEEE TKDE 15(3), 515–528 (2003)

16. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM CSUR 31(3),
264–323 (1999)

17. Kriegel, H.P., Kröger, P., Gotlibovich, I.: Incremental OPTICS: efficient computa-
tion of updates in a hierarchical cluster ordering. In: Proc. DaWaK (2003)

18. Kriegel, H.P., Kröger, P., Ntoutsi, I., Zimek, A.: Towards subspace clustering on
dynamic data: an incremental version of PreDeCon. In: Stream KDD 2010 (2010)

19. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. IEEE
TKDD 3(1), 1–58 (2009)

20. Liebl, B., Nennstiel-Ratzel, U., von Kries, R., Fingerhut, R., Olgemöller, B., Zapf,
A., Roscher, A.A.: Very high compliance in an expanded MS-MS-based newborn
screening program despite written parental consent. Preventive Medicine 34(2),
127–131 (2002)

21. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: modeling and
monitoring cluster transitions. In: Proc. KDD (2006)

22. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering
method for very large databases. In: Proc. SIGMOD, pp. 103–114 (1996)

	Density Based Subspace Clustering over Dynamic Data
	Introduction
	Related Work and Contributions
	Subspace Clustering
	Incremental Clustering
	Stream Clustering
	High Dimensional Stream Clustering
	Contributions

	The Algorithm PreDeCon
	Incremental PreDeCon
	Dealing with Single Updates
	Effect on the Core Member Property
	Affected Objects
	Updating the clustering

	Dealing with Batch Updates
	Experiments
	Experiments on Single Updates
	Experiments on Batch Updates
	A Case Study on Real-World Data

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

