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Message from the General Chair

Welcome to the proceedings of the 23rd International Conference on Scientific
and Statistical Database Management held in Portland, Oregon, where it cele-
brated its 30th birthday. The first incarnation of SSDBM (then called the Work-
shop on Statistical Database Management) took place in Menlo Park, California,
in December 1981. Since that time, SSDBM added a second ‘S,’ for “Scientific,”
then switched the orders of the ‘S’s, and upgraded “Workshop” to “Working
Conference” to “Conference.” Initially held roughly every other year, SSDBM
now convenes annually, alternating between North America and Europe or Asia.
It remains an intimate conference, where one has a chance to interact with all
the other attendees.

This year marked the return of SSDBM to the Pacific Northwest, having
previously been held in Olympia, Washington (1997). The shift of the conference
time from winter to summer may have deprived attendees of enjoying the famous
Portland rain, but I hope that lack was compensated by the other attractions of
the city: its brewpubs and baristas; the urban parks and gardens; the wineries
and farmers markets; and the nearby natural wonders of the Columbia River
Gorge, the Oregon Coast and Mount St. Helens.

SSDBM is an independent conference, and succeeds by the efforts of its all-
volunteer Organizing Committee. On the technical side, I thank Judy Cushing
and Jim French for their recruitment of the Program Committee and oversight of
the review process. Shawn Bowers excelled as Proceedings Editor and EasyChair
wrangler. Thanks as well to the PC members and ancillary reviewers. In the fi-
nancial realm, Len Shapiro and Michael Grossniklaus set up SSDBM 2011 as an
Oregon Corporation, and Michael oversaw our budget and banking. Bill Howe
ran the registration site and was instrumental in arranging our sponsorships.
Locally, Laura Bright and Kristin Tufte managed our arrangements within the
hotel, as well as doing tireless research on a suitable restaurant for our dinner.
Dave Hansen oversaw all the student volunteers. Thanks as well to Stephanie
Lewis and the staff of University Place. For conference communications, Pete
Tucker maintained our website and David Chiu coordinated announcements and
information for SSDBM participants. I also thank the SSDBM Steering Com-
mittee, particularly Ari Shoshani for his corporate memory, and Michael Gertz
for information on the Heidelberg conference (and surplus funds!).

I thank our Gold Sponsor, Microsoft Research, and Silver Sponsors, the
eScience Institute at the University of Washington, The Gordon and Betty
Moore Foundation and Paradigm4 for their support of this year’s conference.



VI Message from the General Chair

Their generous contributions helped support discounted registration for stu-
dents, the keynote speaker, and social events for student volunteers. Also, I
express our gratitude to Springer, for their continuing role as our proceedings
publisher. Finally, I thank all those who submitted papers and proposed panels.
Their interest and participation is what keeps the quality of SSDBM high and
the topics timely.

July 2011 David Maier



Message from the Program Co-chairs

We were pleased at the high quality of work presented at SSDBM 2011. In
addition to our keynote speaker, Michael Stonebraker who inaugurated the
conference with his talk “The Architecture of SciDB,” we had two excellent
panels “Data-Intensive Science: Moving Towards Solutions” chaired by Terence
Critchlow and “Data Scientists, Data Management and Data Policy” chaired by
Sylvia Spengler. These “hot topics” within the main themes of the conference
were selected to promote fruitful discussion on directions of the field.

As always, however, the “main course” of the conference was in the research
presented. In response to the call for papers, we received 80 submissions. As
in prior years, there was solid Praxis and Theoria—papers ranging from the
practical or applied Applications and Models, and Architectures and Privacy,
Workflows and Provenance to theoretical areas that provide fundamentals for the
field Clustering and Data Mining, Ranked Search, Temporal Data and Queries,
and Graph Querying.

The number of paper submissions for the conference was about average for
SSDBM, which given the poor global economic climate boded well for the field
and future SSDBM conferences. There were 80 submissions, 67 as long papers
and 13 as short papers. Each was carefully reviewed by at least three Program
Committee members and, in some cases, electronically discussed by reviewers.
The Program Co-chairs, after reading each review and considering the ratings,
accepted 23 of the 67 (34%) long papers and 3 of the 13 (23%) short papers. We
also accepted 9 long submissions as short papers, for a total of 12 short papers
in the conference.

In addition to research paper publication and presentations, we had a lively
poster and demo session. As Program Co-chairs, we adopted a strict policy
to assure high-quality research papers, but in accepting submissions as posters
sought to engage broadly. Where we saw promise, value for the field, as well
as the possibility that authors would benefit from attending the conference,
listening to talks, and presenting the work as a poster, we accepted the work as
posters. Our objective here was to provide a mechanism for improving the overall
quality of submissions to the conference in subsequent years, and to increase
active participation in the present conference. We thus included 15 posters in
the conference. After the conference proceedings went to press, we invited all
accepted authors to present demonstrations during the poster session; a list of
demos was available in the conference program and on the website.

The Program Committee thanks all those who submitted papers and posters
to the conference, as the high-quality program reflects the viability of the
field and this conference. As Program Co-chairs, we also express our sincere



VIII Message from the Program Co-chairs

appreciation to the 65 members of the Program Committee as well as to 32 addi-
tional reviewers (recruited for specialized expertise by members of the Program
Committee) for their hard work and dedication during the electronic interactions
during the review process.

July 2011 Judith Bayard Cushing
James French
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Le, Wangchao
Lin, Yimin

Liu, Haishan
Malaverri, Joana
Nguyen, Kim
Papadopoulos, Apostolos
Rheinlaender, Astrid
Scheers, Bart
Tang, Mingwang
Tiakas, Eleftherios
Valkanas, Georgios
Vilar, Bruno
Wang, Shiyuan
Wu, Xiaoying
Yao, Bin
Zhang, Chongsheng
Zhang, Jilian
Zhu, Yuanyuan



XII SSDBM 2011 Conference Organization

SSDBM Steering Committee

Michael Gertz University of Heidelberg, Germany
Bertram Ludäscher University of California, Davis, USA
Nikos Mamoulis University of Hong Kong, SAR China
Arie Shoshani Lawrence Berkeley National Laboratory (Chair),

USA
Marianne Winslett University of Illinois, USA

SSDBM 2011 Conference Sponsors

Microsoft Research
eScience Institute
Gordon and Betty Moore Foundation
Paradigm4 Inc.



Table of Contents

Keynote Address

The Architecture of SciDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman

Ranked Search

Location-Based Instant Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Shengyue Ji and Chen Li

Continuous Inverse Ranking Queries in Uncertain Streams . . . . . . . . . . . . 37
Thomas Bernecker, Hans-Peter Kriegel, Nikos Mamoulis,
Matthias Renz, and Andreas Zuefle

Finding Haystacks with Needles: Ranked Search for Data Using
Geospatial and Temporal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

V.M. Megler and David Maier

Using Medians to Generate Consensus Rankings for Biological Data . . . . 73
Sarah Cohen-Boulakia, Alain Denise, and Sylvie Hamel

A Truly Dynamic Data Structure for Top-k Queries on Uncertain
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Manish Patil, Rahul Shah, and Sharma V. Thankachan

Temporal Data and Queries

Efficient Storage and Temporal Query Evaluation in Hierarchical Data
Archiving Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Hui (Wendy) Wang, Ruilin Liu, Dimitri Theodoratos, and
Xiaoying Wu

Update Propagation in a Streaming Warehouse . . . . . . . . . . . . . . . . . . . . . . 129
Theodore Johnson and Vladislav Shkapenyuk

Efficient Processing of Multiple DTW Queries in Time Series
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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Sven Köhler, Sean Riddle, Daniel Zinn, Timothy McPhillips, and
Bertram Ludäscher
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Jonida Kopper

Finding Closed MEMOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Htoo Htet Aung and Kian-Lee Tan

Density Based Subspace Clustering over Dynamic Data . . . . . . . . . . . . . . . 387
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The Architecture of SciDB 

Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman 

Paradigm4, Inc.  
186 Third Avenue 

Waltham, MA 02451 

Abstract. SciDB is an open-source analytical database oriented toward the data 
management needs of scientists. As such it mixes statistical and linear algebra 
operations with data management ones, using a natural nested multi-
dimensional array data model. We have been working on the code for two 
years, most recently with the help of venture capital backing. Release 11.06 
(June 2011) is downloadable from our website (SciDB.org). 

This paper presents the main design decisions of SciDB. It focuses on our 
decisions concerning a high-level, SQL-like query language, the issues facing 
our query optimizer and executor and efficient storage management for arrays. 
The paper also discusses implementation of features not usually present in 
DBMSs, including version control, uncertainty and provenance.  

Keywords: scientific data management, multi-dimensional array, statistics, 
linear algebra. 

1   Introduction and Background 

The Large Synoptic Survey Telescope (LSST) [1] is the next “big science” astronomy 
project, a telescope being erected in Chile, which will ultimately collect and manage 
some 100 Petabytes of raw and derived data. In October 2007, the members of the 
LSST data management team realized the scope of their data management problem, 
and that they were uncertain how to move forward. As a result, they organized the 
first Extremely Large Data Base (XLDB-1) conference at the Stanford National 
Accelerator Laboratory [2]. Present were many scientists from a variety of natural 
science disciplines as well as representatives from large web properties. All reported 
the following requirements: 

 
Multi-petabyte amounts of data. In fact a recent scientist at a major university 
reported that 20 research groups at his university had more than a quarter of a 
petabyte each [3]. 

 
A preponderance of array data. Geospatial and temporal data such as satellite 
imagery, oceanographic data telescope data, telematics data and most simulation data 
all are naturally modeled as arrays. Genomics data generated from high throughput 
sequencing machines are also naturally represented as arrays.  
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Complex analytics. Traditional business intelligence has focused on simple SQL 
aggregates or windowing functions. In contrast, scientists need much more 
sophisticated capabilities.  For example, satellite imagery can be reported at various 
resolutions and in different co-ordinate systems. As a result, earth scientists need to 
regrid such imagery in order to correlate the data from multiple satellites. In addition, 
most satellites cannot see through cloud cover. Hence, it is necessary to find the 
“best” cloud-free composite image from multiple passes of the satellite. These are 
representative of the complex operations required in this application area. 

 
A requirement for open source code. Every scientist we have talked to is adamant 
about this requirement.  Seemingly, the experience of the Large Hadron Collider 
(LHC) project [4] with one proprietary DBMS vendor has “poisoned the well”. 
Hence, scientists require the option of fixing bugs and adding their own features, if 
the vendor of their chosen solution is unable, unwilling, or just slow to respond. In 
effect, only open source software is acceptable. 

 
A requirement for no overwrite. Scientists are equally adamant about never 
throwing anything away. For example, large portions of the earth are currently not 
very interesting to earth scientists. However, that could change in the future, so 
discarding currently uninteresting data is not an option. Also, they wish to keep 
erroneous data that has been subsequently corrected. The reason for this is to redo 
analyses on the data as it existed at the time the original analysis was done, i.e. they 
want auditability for their analyses. This is related to the provenance discussion 
below, and requires that all data be kept indefinitely. 

 
A requirement for provenance. If a data element looks suspicious, then scientists 
want to be able to trace backward through its derivation to find previous data that 
appears faulty. In other words, trace the error back to its source. Similarly, they would 
then want to find all of the derived data that came from this faulty item. In other 
words, they want the ability to do forward and backward derivation efficiently.  

One reason for this requirement is assistance in the error correction noted above. A 
second reason is to facilitate sharing. Different scientists generally cannot make use of 
derived data unless they know the algorithm that was used to create it. For example, 
consider the “best” cloud free image discussed above. There is no universal way to 
choose the best composite image, and any scientist who wants to use a composite 
image must know what algorithm was used to construct it. They want to find this 
information by exploring the provenance of the data of interest.  

 
A requirement for uncertainty. After all, every bit of scientific data comes with 
error bars. Current DBMSs were written to support the business market, and assume 
the data is perfect. Obviously, enterprises must know accurate salaries, in order to 
write pay checks. Essentially all information collected from sensors (nearly 100% of 
science data) does not have this property.  Furthermore, scientists may want to 
propagate error data through a sequence of calculations. 
 
A requirement for version control. There is no universal agreement on the cooking 
algorithms, which turn raw data into derived data sets. Hence, scientists would like to 
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re-cook raw data for their study areas, retaining the conventional derivations for the 
rest of the data set. Although they can construct a complete copy of the data, with  
the required characteristics, it is wildly more efficient to delta their copies off of the 
conventional one, so the common data only appears once. Version control software 
has been supporting this functionality for years. 

At XLDB-1, there was a general feeling that RDBMSs would never meet the above 
requirements because they have: 

 
• The wrong data model, 
• The wrong operators, and 
• Are missing required capabilities. 

Moreover, the RDBMS vendors appear not to be focused on the science market, 
because the business enterprise market is perceived to be larger. Hence, there was 
skepticism that these shortcomings would ever be addressed. 

A second theme of the meeting was the increasing difficulty of meeting big science 
requirements with “from the bare metal up” custom implementations. The software 
stack is simply getting too large. Several of the web properties indicated the scope of 
their custom efforts, and said “we are glad we have sufficient resources to move 
forward”. Also, there was frustration that every big science project re-grows the 
complete stack, leading to limited shared infrastructure. The Sloan Digital Sky Survey 
[5] was also noted as a clear exception, as they made use of SQLServer. 

In effect, the community was envious of the RDBMS market where a common set 
of features is used by nearly everybody and supported by multiple vendors. In 
summary, the mood was “Why can’t somebody do for science what RDBMS did for 
business?” 

As a result, Dave Dewitt and Mike Stonebraker said they would try to build a 
from-the-ground-up DBMS aimed at science requirements.  Following XLDB-1, there 
were meetings to discuss detailed requirements and a collection of use cases written, 
leading to an overall design. This process was helped along by the LSST data 
management team who said, “If it works, we will try to use it”.  

We began writing code in late 2008, with a pick-up team of volunteers and 
research personnel.  This led to a demo of an early version of SciDB at VLDB in 
Lyon, France in Sept 2009 [6]. We obtained venture capital support for the project, 
and additional assistance from NSF in 2010. This has allowed us to accelerate our 
efforts. We have recently released SciDB 11.06 and are working toward a full 
featured high performance system in late 2011. We have been helped along the way 
by the subsequent annual XLDB meetings [7, 8, 9] where SciDB issues have been 
discussed in an open forum. 

This paper reports on the SciDB design and indicates the status of the current 
system. 

2   SciDB Design 

In this section we present the major design decisions and our rationale for making 
them the way we did. We start with system assumptions in Section 2.1, followed by a 
data model discussion in Section 2.2. The query language is treated in Section 2.3. 



4 M. Stonebraker et al. 

The optimizer and storage management components are treated respectively in 
Section 2.4 and 2.5. Other features, such as extensibility, uncertainty, version control 
and provenance are discussed at appropriate times. 

2.1   System Assumptions 

It was pretty obvious that SciDB had to run on a grid (or cloud) of computers. A 
single node solution is clearly not going to make LSST happy. Also, there is universal 
acceptance of Linux in this community, so the OS choice is easy. Although we might 
have elected to code the system in Java, the feeling was that C++ was a better choice 
for high performance system software.  

The only point of contention among the team was whether to adopt a shared-disk 
or a shared-nothing architecture. On the one hand, essentially all of the recent parallel 
DBMSs have adopted a shared nothing model, where each node talks to locally 
attached storage. The query optimizer runs portions of the query on local data. In 
essence, one adopts a “send the query to the data” model, and strives for maximum 
parallelism. 

On the other hand, many of the recent supercomputers have used a shared-disk 
architecture. This appears to result from the premise that the science workload is 
computation intensive, and therefore the architecture should be CPU-focused rather 
than data focused. Also, scientists require a collection of common operations, such as 
matrix multiply, which are not “embarrassingly parallel”. Hence, they are not 
obviously faster on a shared-nothing architecture. 

Since an important goal of SciDB is petabyte scalability the decision was made 
that SciDB would be a shared nothing engine. 

2.2   Data Model 

It was clear that we should select an array data model (rather than a table one) as 
arrays are the natural data object for much of the sciences. Furthermore, early 
performance benchmarks on LSST data [10] indicated that SciDB is about 2 orders of 
magnitude faster than an RDBMS on a typical science workload. Finally, most of the 
complex analytics that the science community uses are based on core linear algebra 
operations (e.g. matrix multiply, covariance, inverse, best-fit linear equation solution). 
These are all array operations, and a table model would require a conversion back and 
forth to arrays. As such, it makes sense to use arrays directly. 

Hence, SciDB allows any number of dimensions for an array. These can be 
traditional integer dimensions, with any starting and ending points or they can be 
unbounded in either direction. Moreover, many arrays are more natural with  
non-integer dimensions. For example, areas of the sky are naturally expressed in polar 
co-ordinates in some astronomy projects. Hence, dimensions can be any user-defined 
data type using a mechanism we presently describe. 

Each combination of dimension values defines a cell of an array, which can hold 
an arbitrary number of attributes of any user-defined data type. Arrays are uniform 
in that all cells in a given array have the same collection of values. The only real 
decision was whether to allow a nested array data model or a flat one. Many use 
cases, including LSST, require nested arrays, so the extra complexity was deemed 
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well worth it. Also, nested arrays support a mechanism for hierarchical decomposition 
of cells, so that systematic refinement of specific areas of an array can be supported, a 
feature often cited as useful in HDF5 [11]. 

 
Hence, an example array specification in SciDB is: 
CREATE ARRAY example <M: int, N: float> [I=1:1000, J=1000:20000] 
Here, we see an array with attributes M and N along with dimensions I and J. 

2.3   Query Language 

SciDB supports both a functional and a SQL-like query language.  The functional 
language is called AFL for array functional language; the SQL-like language is called 
AQL for array query language.   AQL is compiled into AFL. 

AFL, the functional language includes a collection of operations, such as filter and 
join, which a user can cascade to obtain his desired result. For example, if A and B 
are arrays with dimensions I and J, and c is an attribute of A, then the following 
utterance would be legal: 
 

temp = filter (A, c = value) 
result = join (B, temp: I, J) 

Or the composite expression: result = join (B, filter (A, c = value), I, J) 

Such a language is reminiscent of APL [12] and other functional languages and array 
languages [13, 14].  

For commercial customers more comfortable with SQL, SciDB has created an 
array query language, AQL, which looks as much like SQL as possible. Hence, the 
above example is expressed as: 

 
select * 
from A, B 
where A.I = B.I and A.J = B.J and A.c = value 

We have had considerable discussion concerning two aspects of the semantics of 
AQL, namely joins and non-integer dimensions, and we turn to these topics at this 
time. 

Consider the arrays A and B from above, and suppose A has attributes c and d, 
while B has attributes e and f. The above example illustrated a dimension join, i.e., 
one where the dimensions indexes must be equal. The result of this operation has 
dimensions I and J, and attributes c, d, e and f. In essence this is the array version of a 
relational natural join. It is also straightforward to define joins that match less than all 
dimensions.  

Non equi-dimensional joins are also reasonably straightforward. For example the 
following join result must be defined as a three dimensional array, I (from A), I (from 
B) and J. 

select * 
from A, B 
where A.I > B.I and A.J = B.J and A.c = value 

The problem arises when we attempt to define attribute joins, e.g., 
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select * 
from A, B 
where A.c = B.e and A.d = B. f 

In effect, we want to join two arrays on attribute values rather than dimensions. This 
must be defined as a four dimensional result: I (from A), J (from A), I (from B), and J 
(from B). 

To understand array joins, it is useful to think of an array as having a relational 
representation, where the dimensions are columns as are the cell values. Then any 
array join can be defined as a relational join on the two argument tables. This 
naturally defines the semantics of an array join operation, and SciDB must produce 
this answer. In effect, we can appeal to relational semantics to define array joins. 

A second semantic issue is an offshoot of the first one. It is straightforward to 
change attribute values in AQL with an update command. For example, the following 
command increments a value for a specific cell: 
 
update A set (d = d+1) 
where A.I = value and A.J = value 

 
Obviously, it must be possible to manipulate SciDB dimensions, and an update 
command is not the right vehicle. Hence, SciDB has included a new powerful 
command, transform, to change dimension values. The use cases for transform 
include: 

• Bulk changes to dimensions, e.g. push all dimension values up one to make a slot 
for new data, 

• Reshape an array; for example change it from 100 by 100 to 1000 by 10,  
• Flip dimensions for attributes, e.g. replace dimension I in array A with a dimension 

made up from d.  
• Transform one or more dimension, for example change I and J into polar  

co-ordinates.  

Transform can also map multiple dimension or attribute values to the same new 
dimension value. In this case, transform allows an optional aggregation function to 
combine the multiple values into a single one for storage. In the interest of brevity we 
skip a detailed discussion of the transform command and the interested reader is 
referred to the online documentation on SciDB.org, for a description of this 
command.  

Non-integer dimensions are supported by an index that maps the dimension values 
into integers. Hence, an array with non-integer dimensions is stored as an integer 
array mapping index.  

2.4   Extensibility 

It is well understood that a DBMS should not export data to an external computation 
(i.e. move the data to the computation), but rather have the code execute inside the 
DBMS (move the computation to the data). The latter has been shown to be wildly 
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faster, and is supported by most modern day relational DBMSs. The norm is to use 
the extension constructs pioneered by Postgres more than 20 years ago [15]. 

Since science users often have their own analysis algorithms (for example 
examining a collection of satellite passes to construct the best cloud-free composite 
image) and unique data types (e.g. 7 bit sensor values), it is imperative to support 
user-defined extensibility. There are four mechanisms in SciDB to support user 
extensions. 

First, SciDB supports user-defined data types. These are similar to Postgres user 
defined types as they specify a storage length for a container to hold an object of the 
given type. User-defined types allow a (sophisticated) user to extend the basic SciDB 
data types of integer, float, and string. Hence, the attribute values in a SciDB cell can 
be user-defined. 

Second, a user must be able to perform operations on new data types. For example, 
a user could define arbitrary precision float as a new data type and then would want to 
define operations like addition and subtraction on this type. User-defined functions 
are the mechanism for specifying such features. These are scalar functions that accept 
one or more arguments of various data types and produce a result of some data type. 
Again, the specification is similar to Postgres, and right now such functions must be 
written in C++. 

Third, SciDB supports user-defined aggregates, so that conventional aggregates 
can be written for user-defined types.  As well, science-specific aggregates can be 
written for built-in or user-defined data types. An aggregate requires four functions, 
along the lines of Postgres [16]. Three of the functions are the standard Init (), 
Increment (), and Final () that are required for any single node user-defined aggregate 
calculation. Since SciDB is a multi-node system, these three functions will be run for 
the data at each node. Subsequently, a rollup () must be specified to pull the various 
partial aggregates together into the final answer.  

The last extension mechanism in SciDB is user-defined array operators. These 
functions accept one or more arrays as arguments and usually produce an array as an 
answer. Although Join is a typical example, the real use case is to support linear 
algebra operations, such as matrix multiply, curve fitting, linear regression, equations 
solving and the like. Also in this category are data clustering codes and other machine 
learning algorithms. 

There are two wrinkles to array functions that are not present in standard Postgres 
table functions. As will be discussed in Section 2.6 SciDB decomposes storage into 
multi-dimensional chunks, which may overlap. Some array functions are 
embarrassingly parallel, i.e. they can be processed in parallel on a collection of 
computing nodes, with each node performing the same calculation on its data. 
However, some array functions can only be run in parallel if chunks overlap by a 
minimum amount, as discussed in more detail in Section 2.6. Hence, a user-defined 
array function must specify the minimum overlap for parallel operation. 

Second, many array operations are actually algorithms consisting of several steps, 
with conditional logic between the steps. For example, most algorithms to compute 
the inverse of a matrix proceed by iterating a core calculations several times. More 
complex operations may perform several different kinds of core operations, 
interspersed with conditional logic. Such logic may depend on the size or composition 
of intermediate results (e.g. an array column being empty). As such, a user-defined 
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array operation must be able to run other operations, test the composition of 
intermediate results and control its own parallelism. To accomplish this objective, 
SciDB has a system interface that supports these kinds of tasks. 

It should be noted that writing user-defined array operations is not for the faint of 
heart. We expect experts in the various science disciplines to write libraries to our 
interface that other scientists can easily use in AQL, without understanding their 
detailed composition. This is similar to ScaLAPACK [17], which was written by 
rocket scientists and widely used by mere mortals. 

2.5   Query Processing 

Users specify queries and updates in AQL, and the job of the optimizer and executor 
is to correctly solve such queries. We have several guiding principles in the design of 
this component of SciDB. 

First, we expect a common environment for SciDB is to run on a substantial 
number of nodes. As such, SciDB must scale to large configurations. Also, many 
science applications are CPU intensive. Hence, the user-defined functions that 
perform the complex analytics usually found in this class of problems are often CPU 
bound. Also, many are not “embarrassingly parallel”, and entail moving substantial 
amounts of data if one is not careful. Thus, the three guiding principles of query 
processing in SciDB are: 
 
Tenet 1: aim for parallelism in all operations with as little data movement as possible.  
 
This goal drives much of the design of the storage manager discussed in Section 2.6.  
Also, if an operation cannot be run in parallel because the data is poorly distributed, 
then SciDB will redistribute the data to enable parallelism. Hence, SciDB is 
fundamentally focused on providing the best response time possible for AQL 
utterances. 

Second, the optimizers in relational DBMSs often choose poor query plans because 
their cost functions entail predicting the size of intermediate results. If a query has 
three or four cascading intermediate results, then these size estimates become wildly 
inaccurate, resulting in a potentially poor choice of the best query plan. Because 
SciDB queries are expected to be complex, it is imperative to choose a good plan. 

To accomplish this goal, the SciDB optimizer processes the query parse tree in two 
stages. First, it examines the tree for operations that commute.  This is a common 
optimization in relational DBMSs, as filters and joins are all commutative. The first 
step in the SciDB optimizer is to push the cheaper commuting operation down the 
tree. In our world, we expect many user defined array operations will not commute.  
For example, re-gridding a satellite imagery data set will rarely, if ever, commute 
with operations above or below it in the tree.  Hence, this tactic may be less valuable 
than in a relational world. 

The next step is to examine the tree looking for blocking operations. A blocking 
operation is one that either requires a redistribution of data in order to execute, or 
cannot be pipelined from the previous operation, in other words it requires a 
temporary array to be constructed. Note that the collection of blocking operations 
separates a query tree into sub-trees.  
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Tenet 2: Incremental optimizers have more accurate size information and can use this 
to construct better query plans.  
 
The SciDB optimizer is incremental, in that it picks the best choice for the first sub-
tree to execute. After execution of this sub-tree, SciDB has a perfect estimate for the 
size of the result, and can use this information when it picks the next sub-tree for 
execution.  

Of course, the downside is that SciDB has a run-time optimizer. Such run-time 
overhead could not be tolerated in an OLTP world; however, most scientific queries 
run long enough that optimizer overhead is insignificant.  
 
Tenet 3: Use a cost-based optimizer.  

 
This third principle is to perform simple cost-based plan evaluation. Since SciDB only 
plans sub-trees, the cost of exhaustive evaluation of the options is not onerous.  

Right now the optimizer is somewhat primitive, and focuses on minimizing data 
movement and maximizing the number of cores that can be put to work, according to 
tenet 1.  

In summary, the optimizer/execution framework is the following algorithm: 
 
Until no more { 

Choose and optimize next sub-plan 
Reshuffle data, if required 
Execute a sub-plan in parallel on a collection of local nodes 
Collect size information from each local node 

} 

2.6   Storage of Arrays 

Basic Chunking 
 

It is apparent that SciDB should chunk arrays to storage blocks using some (or even 
all) of the dimensions. In other words, a stride is defined in some or all of the 
dimensions, and the next storage block contains the next stride in the indicated 
dimensions. Multiple dimension chunking was explored long ago in [18] and has been 
shown to work well.  Equally obviously, SciDB should chunk arrays across the nodes 
of a grid, as well as locally in storage. Hence, we distribute chunks to nodes using 
hashing, range partitioning, or a block-cyclic algorithm.  

In addition, chunks should be large enough to serve as the unit of I/O between the 
buffer pool and disk. However, CPU time can often be economized by splitting a 
chunk internally into tiles as noted in [19]. In this way, subset queries may be able to 
examine only a portion of a chunk, and economize total time. Hence, we support a 
two level chunk/tile scheme. 

One of the bread-and-butter operations in LSST is to examine raw imagery looking 
for interesting celestial objects (for example, stars). Effectively this is a data 
clustering problem; one is looking for areas of imagery with large sensor amplitude. 
In other areas of science, nearest neighbor clustering is also a very popular operation. 
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For example, looking for islands in oceanographic data or regions of snow cover in 
satellite imagery entails exactly the same kind of clustering.  

To facilitate such neighborhood queries, SciDB contains two features. First, 
chunks in SciDB can be specified to overlap by a specific amount in each of several 
dimensions. This overlap should be the size of the largest feature that will be searched 
for. In this way, parallel feature extraction can occur without requiring any data 
movement. As a result, unlike parallel RDBMSs, which use non-overlapping 
partitions, SciDB supports the more general case.  

At array creation time, stride and overlap information must be specified in the 
create array command. Hopefully, overlap is specified to be the largest size required 
by any array function that does feature extraction. Also, every user-defined array 
operation specifies the amount of overlap it requires to be able to perform parallel 
execution. If insufficient overlap is present, then SciDB will reshuffle the data to 
generate the required overlap.  

Fixed or Variable Size Chunks 
 
A crucial decision for SciDB was the choice of fixed or variable size chunks. One 
option is to fix the size of the stride in each dimension, thereby creating logically 
fixed size chunks. Of course, the amount of data in each chunk can vary widely 
because of data skew and differences in compressibility. In other words, the first 
option is fixed logical size but variable physical size chunks.  

The second option is to support variable logical size chunks. In this case, one fills a 
chunk to a fixed-size capacity, and then closes it, thereby a chunk encompasses a 
variable amount of logical array real estate. 

Variable chunk schemes would require an R-tree or other indexing scheme to keep 
track of chunk definitions. However, chunks would be a fixed physical size, thereby 
enabling a simple fixed size main memory buffer pool of chunks. On the other hand, 
fixed size logical chunks allow a simple addressing scheme to find their containers; 
however, we must cope with variable size containers. 

We have been guided by [19] in deciding what to do. The “high level bit” concerns 
join processing. If SciDB joins two arrays, with the same fixed size chunking, then 
they can be efficiently processed in pairs, with what amounts to a generalization of 
merge-sort. If the chunking of the two arrays is different, then performance is much 
worse, because each chunk in the first array may join to several chunks in the second 
array. If chunking is different, then the best strategy may be to rechunk one array to 
match the other one, a costly operation as noted in [19].  

This argues for fixed chunking, since frequently joined arrays can be identically 
chunked. That will never be the case with variable chunking. Hence, SciDB uses 
fixed logical size chunks. Right now, the user executing the Create Array command 
specifies the size of these chunks. Obviously, a good choice makes a huge difference 
in performance. 

In summary, chunks are fixed (logical) size, and variable physical size. Each is 
stored in a container (file) on disk that can be efficiently addressed. The size of a 
chunk should average megabytes, so that the cost of seeks is masked by the amount of 
data returned. 
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There are several extensions to the above scheme that are required for good 
performance. These result from our implementation of versions, our desire to perform 
skew management, and our approach to compression. These topics are addressed in 
the next three sections. 

Version Control 
 

There are three problems which SciDB solves using version management. First, there 
is a lot of scientific data that is naturally temporal. LSST, for example, aims its 
telescope at the same portion of the sky repeatedly, thereby generating a time series. 
Having special support for temporal data seems like a good idea.  

Second, scientists never want to throw old data away. Even when the old data is 
wrong and must be corrected, a new value is written and the old one is retained. 
Hence, SciDB must be able to keep everything.  

The third problem deals with the “cooking” of raw data into derived information. 
In LSST, raw data is telescope imagery, and feature extraction is used to identify stars 
and other celestial objects, which constitute derived data. However, there is no 
universal feature extraction algorithm; different ones are used by different 
astronomers for different purposes. As such, LSST supports a “base line” cooking 
process, and individual astronomers can recook portions of the sky that they are 
interested in. Hence, astronomers want the base line derived information for the 
whole sky, except for the portions they have recooked. Such versioning of data should 
be efficiently supported. 

To support the no overwrite model, all SciDB arrays are versioned. Data is loaded 
into the array at the time indicated in the loading process. Subsequent updates, inserts 
or bulk loads add new data at the time they are run, without discarding the previous 
information. As such, new information is written at the time it becomes valid. Hence, 
for a given cell, a query can scan particular versions referenced by timestamp or 
version number. 

We now turn to the question: “How are array versions stored efficiently?” As 
updates or inserts occur to a chunk, we have elected to keep the most up-to-date 
version of the chunk stored contiguously. Then, previous versions of the chunk are 
available as a chain of “deltas” referenced from the base chunk. In other words, we 
store a given chunk as a base plus a chain of “backwards deltas”. The rationale is 
that users usually want the most current version of a chunk, and retrieval of this 
version should be optimized. The physical organization of each chunk contains a 
reserved area, for example 20% additional space, to maintain the delta chain.  

Arrays suffixed with a timestamp can be used in scan queries. Since we expect 
queries of the state of the array at a specific time to be very popular, we allow the 
select arrayname@T shorthand popularized in Postgres.  If no specification is made, 
the system defaults to select arrayname@now.  

We turn briefly to support for named versions. A user can request a named version 
to be defined relative to a given materialized array at time T. At this point, no storage 
is allocated, and the time T is noted in the system catalogs. As updates to the named 
version are performed, new containers for stored chunks are allocated and updates 
recorded in the new chunks. Multiple updates are backwards chained, just like in 
normal arrays. Over time, a branch is constructed, which is maintained as a chain of 
deltas based on the base array at time T. Clearly a tree of such versions is possible.  
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Query processing must start with the named version looking for data relevant to a 
given query. If no object exists in the version, its parent must be explored, ultimately 
leading back to the stored array from which the version was derived. This architecture 
looks much like configuration management systems, which implement similar 
functionality. A more elaborate version management solution is described in [20], and 
we may incorporate elements of this system into SciDB in the future. 

Skew Management 
 
Data in SciDB arrays may be extremely skewed for two reasons. As noted above, 
update traffic may be skewed. In addition, the density of non-null data may also be 
skewed. For example, consider a population database with geographic co-ordinates. 
The population density of New York City is somewhere around 1000000 times that of 
Montana. 

There are two skew issues which we discuss in this section: what to do with chunks 
that have too little data, and what to do with chunks that have too much data. 

Decades of system design experience dictates that it is advantageous to move data 
from disk to main memory in fixed size blocks (pages) versus variable size blocks 
(segments). The universal consensus was that fixed size blocks were easier to manage 
and performed better. Hence, SciDB has a fixed-size block model, where the main 
memory buffer pool is composed of a collection of fixed size slots containing 
“worthy” fixed size disk blocks. As noted above, this block size must be at least 
several megabytes. 

If the user specifies a chunk size that results in a chunk containing more than B 
bytes, then the chunk must be split. We cycle through the chunking dimensions, 
splitting each in turn. As such, actual chunks will be some binary tree refinement of 
the user-specified chunk size. Unlike [19] which reports experiments on two chunk 
sizes, SciDB supports an arbitrary number of splits to keep the chunk size below B. 

If a chunk is too small, because it is sparsely populated with data, then it can 
accommodate many updates before it fills. In the meantime, it can be co-located in a 
disk block of size B with neighboring sparse chunks. The storage manager current 
performs this “bin packing”. 

Compression 
 

All arrays are aggressively compressed on a chunk-by-chunk basis. Sparse arrays can 
be stored as a list of non-null values with their dimension indexes, followed by prefix 
encoding. Additionally, value encoding of many data types is also profitable. This can 
include delta encoding, run-length encoding, subtracting off an average value, and LZ 
encoding. The idea is that the compression system will examine a chunk, and then 
choose the appropriate compression scheme on a chunk-by-chunk basis. 

In addition, if the chunk is subject to intensive update or to small geographic 
queries, then it will spend much overhead decompressing and recompressing chunks 
to process either modest queries or updates. In this case, it makes sense to divide a 
chunk into tiles, and compress each tile independently. In this way, only relevant tiles 
need to be decompressed and recompressed to support these kinds of queries and 
updates. Hence, tiling will result in better performance on workloads with many small 
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updates and/or small geographic queries. On a chunk-by-chunk basis, the 
compression system can optionally elect to tile the chunk.  

Also, we have noted that some SciDB environments are CPU limited, and 
compressing and decompressing chunks or tiles is the “high pole in the tent”. In this 
case, SciDB should switch to a lighter weight compression scheme. 

The compression system is inside the storage manager and receives a new chunk or 
tile to encode. After encoding, the result is obviously variable sized, so the 
compression engine controls the splitting of chunks described above as well as the 
packing of small chunks into storage blocks mentioned in the previous section.  

Uncertainty 
 
Essentially all science data is uncertain. After numerous conversations with scientists, 
they pretty much all say:  

Build in the common use case (normal distributions) to handle 80% of my data 
automatically. 

My other 20% is specific to my domain of interest, and I am willing to write error 
analysis code in my application to handle this. 

As such we have implemented both uncertain and precise versions of all of the 
common data types. Operating on precise data gives a precise answer; operating on 
uncertain data yields an uncertain answer. The uncertain versions of SciDB operations 
“do the right thing” and carry along errors in the internal calculations being 
performed. Moreover, a challenge to the compression system is to be smart about 
uncertainty. Specifically, most uncertain values in a chunk will have the same or 
similar error information. Hence, uncertainty information can be aggressively 
compressed 

Notice that SciDB supports uncertain cell values but not uncertain dimensions. 
That functionality would require us to support approximate joins, which is a future 
extension. 

Provenance 
 
A key requirement for most science data is support for provenance. The common use 
case is the ability to point at a data value or a collection of values and say “show me 
the derivation of this data”. In other words, the data looks wrong, and the scientist 
needs to trace backwards to find the actual source of the error. Once, the source has 
been identified, it should be fixed, of course using the no-overwrite processing model. 
Then, the scientist wants to trace forward to find all data values that are derived from 
the incorrect one, so they can also be repaired. 

In other words, SciDB must support the ability to trace both backward and 
forward. Some systems support coarse provenance (for example at the array level) 
that allow this functionality only for arrays, not cells. Since SciDB expects some very 
big arrays, this granularity is unacceptable. Other systems, e.g. Trio [21] store 
provenance by associating with each output value the identifier of all input values that 
contributed to the calculation. This approach will cause the data volumes to explode. 
For example, matrix multiply generates a cell from all the values in a particular source 
row and source column. If an array is of size M, then the provenance for matrix 
multiply will be of size M **3. This is obviously not an engineering solution. 
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Our solution is to allow database administrators to specify the amount of space 
they are willing to allocate for provenance data.  The SciDB provenance system 
chooses how to best utilize this space, by varying the granularity of provenance 
information, on a command-by-command basis. The details of this system are 
discussed in [22]. 

Discussions with LSST personnel indicate a willingness to accept approximate 
provenance, if that can result in space savings or run time efficiency.  For example, 
many LSST operations are “region constrained”, i.e. the cell value that results from an 
operation comes from a constrained region in the input array. If true, approximate 
provenance can be supported by just recording the centroid of this region and its size. 
Often, the centroid is easily specified by a specific mapping from input to output, 
thereby further reducing the amount of provenance information that must be kept. The 
details of our approximate provenance are also discussed in [22]. 

In-situ Data 
 
Most of the scientists we have talked to requested support for in-situ data. In this way, 
they can use some of SciDB’s capabilities without having to go through the effort of 
loading their data. This would be appropriate for data sets that are not repeatedly 
accessed, and hence not worth the effort to load. 

We are currently designing an interface (wrapper) that will allow SciDB to access 
data in other formats than SciDB natively understands.  The details of how to do this 
as well as how to make the optimizer understand foreign data are still being worked 
out. 

3   Summary, Status Performance, and Related Work  

3.1   Related Work 

SciDB is a commercial, open-source analytical database oriented toward scientific 
applications.  As such, it differs from RDBMSs, which must simulate arrays on top of 
a table data model. The performance loss in such a simulation layer may be extreme 
[6]. The loss of performance in linear algebra operations may be especially daunting 
[23]. Also, most RDBMSs have trouble with complex analytics, because they are 
expressed on arrays, not tables. SciDB implements such operations directly, whereas 
RDBMSs, such as GreenPlum and Netezza, must convert a table to an array inside 
user-defined functions, then run the analytic code, and convert the answer back to a 
table to continue processing.  Such out-and-back conversion costs do not need to be 
paid by SciDB.  A similar comment can be made about interfaces between R [24] and 
RDBMSs. In addition, RDBMSs do not support multi-dimensional chunked storage, 
overlapping chunks, uncertainty, versions or provenance. 

MonetDB [25] has an array layer [26], implemented on top of its column store 
table system. All of the comments in the previous paragraph apply to it. Similarly 
RasDaMan [27] is an array DBMS. However, it is implemented as an application 
layer that used Postgres for blob storage. As such, it is implementing multi-dimension 
chunking in an application layer external to the DBMS. It also lacks overlapping 
chunks, version control, uncertainty and provenance. 
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There are a myriad of statistical packages, including R [24], S [28], SAS [29], 
ScaLAPACK [17], and SPSS [30]. All of these perform complex analytics, often on a 
single node only, but perform no data management. SciDB is an integrated system to 
provide both data management and complex analytics. 

Status and Summary 

At the time of the SSDBM conference, SciDB version 11.06 will be available for 
download. SciDB development is backed by the commercial company Paradigm4 
who will provide support as well as offer extensions for the commercial marketplace 
(monitoring tools, proprietary function libraries, etc.) 

Development is proceeding with a global team of contributors across many time 
zones. Some are volunteers but at this early stage, most are employees of Paradigm4, 
including the engineering manager and chief architect. QA is being performed by 
volunteers in India and California.  User-defined extensions are underway in Illinois, 
Massachusetts, Russia, and California.  
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Location-Based Instant Search

Shengyue Ji and Chen Li�

University of California, Irvine

Abstract. Location-based keyword search has become an important
part of our daily life. Such a query asks for records satisfying both a
spatial condition and a keyword condition. State-of-the-art techniques
extend a spatial tree structure by adding keyword information. In this
paper we study location-based instant search, where a system searches
based on a partial query a user has typed in. We first develop a new
indexing technique, called filtering-effective hybrid index (FEH), that ju-
diciously uses two types of keyword filters based on their selectiveness to
do powerful pruning. Then, we develop indexing and search techniques
that store prefix information on the FEH index and efficiently answer
partial queries. Our experiments show a high efficiency and scalability of
these techniques.

1 Introduction

Location-based services have become an important part of our daily life. We use
online maps to search for local businesses such as stores and movie theaters; we
use Yelp.com to search for restaurants; and we use Twitter to search for nearby
tweets. On the back-end of these systems there are spatial records with keyword
descriptions. For instance, Figure 1 shows an example data set that includes
business listings in Manhattan, New York, such as museums, schools, and hos-
pitals. Each record has a Name value (e.g., Metropolitan Museum of Art) and a
Location value including the latitude and longitude of the entity (e.g., 〈40.7786,
-73.9629〉). The entities are also shown as points on the map in the figure. These
applications need to answer location-based keyword queries, a.k.a. spatial key-
word search. A query includes a location, such as the point P or the area R in
Figure 1. The query also includes keywords, and asks for answers that match the
keywords and are close to the spatial location. Example queries include “finding
movie theaters close to downtown New York” and “finding Japanese restaurants
near the Disneyland in California.”

Instant keyword search has become popular in recent years. It returns the
search results based on partial query keywords as a user is typing. Users of an
instant search system can browse the results during typing. In this paper, we
study location-based instant search, a search paradigm that combines location-
based keyword search with instant search. Figure 2 shows an interface of location-
based instant search on our example data set. As the user types a query letter
by letter, the system responds to the partial queries and returns the results to
� The authors have financial interest in Bimaple Technology Inc., a company currently

commercializing some of the techniques described in this publication.

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 17–36, 2011.
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Fig. 1. Spatial keyword records of business listings. The map on the right shows the
listings as well as a query area R and a query point P .

Fig. 2. Location-based instant search

the user, listing them and plotting them on the map. When the system receives
the partial query “Metropolitan Mus”, it returns businesses that are nearest
to Manhattan (represented as a point returned by the geo-coder), having the
keyword Metropolitan and a keyword with Mus as a prefix.

In these systems, it is critical to answer queries efficiently in order to serve
a large amount of query traffic. For instance, for a popular map-search service
provider, it is not uncommon for the server to receive thousands of queries per
second. Such a high query throughput requires the search process to be able to
answer each search very fast (within milliseconds). Instant search would further
increase the server workload. Therefore, we focus on searching using in-memory
index in this paper to achieve a high efficiency for instant search. There are
recent studies on supporting location-based keyword queries. A common solution
is extending a spatial tree structure such as R-tree or R*-tree by adding keyword
information on the tree nodes. For example, Figure 3 in Section 2 shows such
an index structure, in which each node has a set of keywords and their children
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with these keywords. We can use the keyword information to do efficient pruning
during the traversal of the tree to answer a query, in addition to the pruning
based on the spatial information in the tree.

In this paper we first present an index structure called “filtering-effective
hybrid” (FEH) index. It judiciously uses two types of keyword filters in a node
of a spatial tree based on the selectiveness of each keyword. One filter, called
child filter, maps keywords and their corresponding children nodes. Another
filter, called “object filter”, maps keywords to their corresponding records in the
subtree of the node. During a traversal of the FEH index tree, the object filter at
each node allows us to directly retrieve records for these keywords in the filter,
thus bypassing those intermediate nodes in the subtree. Next we study how to
answer location-based instant queries on spatial data, i.e., finding answers to
a query as the user is typing the keywords character by character. We utilize
existing indexing techniques and FEH to answer queries. We develop a technique
to store prefix filters on spatial-tree nodes using a space-efficient representation.
In addition, we develop a method to compress the representation in order to
further reduce the index size.

We show that our techniques can be applied to efficiently support both range
queries (where the user specifies a spatial area) and nearest-neighbor queries
(where the user wants to find objects closest to a location). Our techniques can
also reduce the index size. Such reduction can minimize the hardware cost. We
have conducted a thorough experimental study to evaluate these techniques.
The results show that, our techniques can support efficient instant search on
large amounts of data. For instance, we are able to index a data set of 20 million
records in memory on a commodity machine, and answer a location-based instant
keyword search in microseconds.

The rest of the paper is organized as follows. In Section 2 we give the prob-
lem formulation of location-based instant search, and describe a state-of-the-art
approach for answering location-based keyword queries. In Section 3, we present
our FEH index. In Section 4, we study how to efficiently answer location-based
instant queries, using existing index techniques and FEH. We report our exper-
imental results in Section 5, and conclude in Section 6.

1.1 Related Work

Location-based keyword search received a lot of attention recently. Early
studies utilize a keyword index (inverted lists) and a spatial index (such as R-
tree [10] or R*-tree [4]) separately [22,7,18]. These proposed methods answer a
query by using the keyword and spatial indexes separately. A main disadvantage
of these approaches is that filtering on the spatial and keyword conditions is not
achieved at the same time. Therefore, the pruning power cannot be fully utilized.

There are recent studies on integrating a spatial index with a keyword in-
dex [11,9,8,20,21,19,14]. The proposed methods add a keyword filter to each
node in the spatial tree node that describes the keyword information in the sub-
tree of that node. (More details are explained in Section 2.) This structure allows
keyword-based pruning at the node. A filter can be implemented as an inverted
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list, a signature file [9], or a bitmap of the keywords in the subtree. The work
in [11] constructs a global inverted index to map from keywords to tree nodes
that have these keywords. These studies consider the problem of range search,
nearest neighbor search [12,17], or top-k search [8]. The work in [8] proposed
two ideas to improve the performance of searching with this type of indices: us-
ing object similarities to influence the structure of the tree index, and creating
clusters for similar objects and indexing on them. The work in [20,21] studied
how to find records that are close to each other and match query keywords. The
work in [19,1] studied approximate keyword search on spatial data. The results
in [11,9,8] show that these “integrated” index structures combining both condi-
tions outperform the methods using two separate index structures. Therefore, in
this paper, we focus on the “integrated” index structure as the baseline approach
to show the improvement of our techniques.

Instant keyword search (a.k.a. interactive search, auto-complete search, or
type-ahead search) has become in many search systems. Bast et al. [3,2] proposed
indexing techniques for efficient auto-complete search. The studies in [13,6] in-
vestigated how to do error-tolerant interactive search. Li et al. [15] studied type-
ahead search on relational databases with multiple tables. These studies did not
focus on how to answer location-based queries. Some online map services, such as
Yelp and Google Maps, recently provide location-based instant search interfaces.
To our best knowledge, there are no published results about their proprietary
solutions.

2 Preliminaries

In this section we formulate the problem of location-based instant search, and
present a state-of-the-art approach for answering location-based keyword queries.

2.1 Data

Consider a data set of spatial keyword records. Each record has multiple at-
tributes, including a spatial attribute AS and a keyword attribute AW . For
simplicity, we assume that the data set has one keyword attribute, and our tech-
niques can be extended to data sets with multiple keyword attributes. The value
of the spatial attribute AS of a record represents the geographical location of
the record. The value can be a rectangle, or a point with a latitude and a longi-
tude. The keyword attribute AW is a textual string that can be tokenized into
keywords. Figure 1 shows an example data set, and we will use it to explain the
related techniques throughout this paper.

2.2 Location-Based Instant Search

A location-based instant search combines spatial search with keyword search
using the AND semantics. That is, we want to retrieve records that satisfy both
spatial and keyword conditions. We consider the following types of queries.

Range query: An instant range query consists of a pair 〈R, W 〉, where R is a
geographical area (usually represented as a rectangle or a circle), and W is a set
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of keywords W = 〈w1, w2, . . . , wl〉. The answer to the query is the set of records
whose spatial attributes AS geographically overlap with R, and whose keyword
attributes AW contain w1, w2, . . . , wl−1 and a keyword with wl as a prefix1. For
example, if we define a rectangle R = 〈40.776, 40.783, −73.976, −73.956〉 using
latitudes and longitudes (shown in the map of Figure 1 as the dashed rectangle),
the query 〈R, {Christ, Chu}〉 is to ask for entities located within R that have
the keyword Christ and the prefix Chu in their name (e.g., record 7).

kNN query: An instant k-nearest-neighbor (kNN) query for a positive integer
k is a pair 〈P, W 〉, where P is a geographical point (e.g., the current loca-
tion of the user), and W is a set of keywords. The answer to the query is the
set of top-k records that are geographically closest to P , having the keywords
w1, w2, . . . , wl−1 and a keyword with wl as a prefix in their AW value. For in-
stance, the 2-NN query 〈P, {Muse}〉 asks for top-2 entities that are nearest to
P = 〈40.786,−73.957〉 (shown in the map of Figure 1), having the keyword Muse
as a prefix in their name value (e.g., records 3 and 9).

2.3 Baseline Approach for Location-Based Keyword Search

We describe a baseline approach for answering location-based keyword queries
presented in previous studies [11,9,8,20]. It uses an index that extends a spatial
tree index such as an R*-tree, by adding keyword filters to the tree nodes. A
keyword filter at a node is a summary of the keywords in the records in the
subtree of the node. We say an R*-tree node n and a keyword w are consistent
if there exists at least one record in the subtree of node n that has keyword
w. The purpose of using filters is to prune inconsistent branches at this node
when traversing the tree to answer queries with keyword conditions. We can
implement filters using multi-maps2 from keywords to their consistent children
(for this purpose, the “children” of a leaf node are its records). In the literature,
the multi-values associated with a keyword w are also referred as the inverted
list of w or the posting list of w.

Figure 3 presents the baseline index built on our data set. The minimum
bounding rectangles (MBRs) of the tree nodes and the locations of the records
are shown on the top-left map. Each node stores a multi-map from the keywords
to their sets of consistent children. Notice that the multi-map is not necessarily
stored in the node. For instance, in our in-memory implementation, the multi-
map is stored in a separate buffer, linked to the node through a pointer. When
we visit the node p when answering the query 〈R, {Church}〉, we only need to
traverse the consistent children nodes (leaf c), as indicated by the keyword filter
on node p. Record 7 is then retrieved from the leaf c using the keyword filter on
the node, as an answer to this query. The main advantage of using this index is
that we can do pruning on both the spatial condition and the keyword condition
simultaneously during a search.

1 Our techniques can also be extended to treat all query keywords as prefixes.
2 A multi-map is a generalized associative array that maps keys to values. In a multi-

map, multiple values can be associated for a key.
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Fig. 3. A tree-based index to support location-based keyword search. The map shows
the locations of the records and minimum bounding rectangles (MBRs) of the nodes.

3 Filtering-Effective Indexing

In this section we present an index that improves the baseline index for both
complete queries (in which each keyword is treated as a complete keyword)
and instant queries, by using more effective filtering3. We first show the index
and search technique for complete queries in this section, and then adapt it for
instant queries in Section 4. We use an R*-tree as an example to explain the
algorithms, since it is one of the state-of-the-art indices for geographical data.
Our techniques can also be used in other tree-based indices.

3.1 Keyword Selectiveness

Our index is called filtering-effective hybrid (FEH) index. The main idea is to
treat the keywords at a tree node differently when creating the filters, so that
we can do direct access to records for those very selective keywords during a
traversal of the R*-tree. Specifically, we define the following selectiveness es of a
keyword w on a node n:

Record selectiveness: The keyword w is record selective on the node n, when
there are only a few records in the subtree of n that have w. We use a threshold
tr to determine whether w is considered to be record selective on n, i.e., there are
at most tr records in the subtree of n that have w. In the example of Figure 3,
let tr be 1. Since there is only one record (record 7) that has the keyword Church
in the subtree of node p, Church is record selective on p.

Child selectiveness: The keyword w is child selective on the node n, if n has
at least one child that is inconsistent with w. When n is traversed to answer a
3 This technique is orthogonal to and can be applied to the work in [8]. For simplicity

we present it by improving the baseline index.
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query with w, only those consistent children need to be visited, and the rest can
be pruned. For example, the keyword Hospital is child selective on the node p
in Figure 3, because only the child node b of p is consistent with the keyword,
and the other two children a and c can be pruned.

Non-selectiveness: The keyword w is not selective on the node n, if w is
neither record nor child selective. In this case, the baseline index would gain
no additional pruning power on n by adding w to the filter. For instance, in
Figure 3, the keyword Museum is not selective on p, since all the children of p are
consistent with the keyword (not child selective), and there are many records in
the subtree of p that have the keyword (not record selective).

3.2 FEH Index

Based on the analysis above, we construct an FEH index by introducing two
types of keyword filters on each tree node for record-selective keywords and child-
selective keywords. An object filter (“O-filter” for short) on an internal node n in
the R*-tree is a multi-map from some record-selective keywords directly to the
records that have these keywords. We say that such keywords are bypassing at
node n in the subtree of n. Using an O-filter we can directly retrieve records for
these record-selective keywords without traversing the subtree. The multi-values
of a keyword in an O-filter can be stored as an array of the record ids with this
keyword. Note that we build O-filters only on those internal nodes.

A child filter (“C-filter” for short) on a node n is a multi-map from some
child-selective keywords to their consistent children. The C-filter is used to prune
inconsistent children of n for child-selective keywords. Considering that the total
number of children of n is bounded by the maximum branching factor of the node,
which is often relatively small, the multi-values of the multi-map can be stored
as a bit vector, in which each bit in the vector of a keyword indicates whether the
corresponding child is consistent with the keyword. Notice that a non-selective
keyword is absent from both filters, which implies that all children of n need
to be visited. Figure 4 shows an example FEH index. On the internal node p,
for instance, the C-filter contains the keywords Hospital and School, which
are mapped to their consistent children nodes. The O-filter has the keywords
Christ, Church, and History, with lists of records that have these keywords.

In the FEH index, a keyword w is added to the O-filter and the C-filter
on a node n, based on its selectiveness on n. (1) If the keyword w is record
selective and not bypassing in n’s ancestors, then it is added to the O-filter on
n. (2) Otherwise, if w is child selective, then it is added to the C-filter on n. (3)
Otherwise, w is absent in both filters on n. For instance, Museum is absent in the
filters of node p in Figure 4, since it is not selective.

3.3 Searching with FEH Index

We present a search algorithm using an FEH index on a range query 〈R, W 〉. The
search algorithm for a kNN query 〈P, W 〉 is similar by replacing the depth-first
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Fig. 4. An FEH index based on the tree structure of Figure 3

traversal with a priority-queue driven traversal. Using minimum distance to P
as the priority.

Using a global vocabulary to check query keywords: We use a vocabulary
to keep all the keywords in the data set. For each query, we first check if each
of its keywords appears in the vocabulary. The search continues only if all the
query keywords are found in the vocabulary. We can also use the vocabulary to
map query keywords from strings to integer ids.

Range search: We show how to do a range search with the FEH index. We
recursively access tree nodes and return records that satisfy the query conditions
R and W using the O-filter and the C-filter on the input node. (1) We first try to
find a query keyword of W in the O-filter. If such a query keyword can be found
in the O-filter, we retrieve all the records on the inverted list of this keyword,
and verify whether they satisfy the keyword and spatial conditions. For those
that pass the verification, we add them to the result. If we can successfully use
the O-filter, we prune the whole subtree of the current node without any further
processing. (2) Otherwise, if the keyword appears in the C-filter, for the current
node’s children that are spatially consistent with R, we prune them using the
keyword’s consistent children. The resulting set of children are those consistent
with both the spatial condition and the keyword condition. (3) If none of the
keywords in W is found in the O-filter and the C-filter, we consider all children
of the current node that satisfy the spatial condition R. If the current node is an
internal node, we then recursively visit its survived children nodes and retrieve
answers from them; otherwise, we add all the survived records to the result.

Advantages: Compared to the baseline index, FEH can not only reduce the
query time, but also reduce the index size. Specifically, (1) it can effectively
prune an entire subtree if a query keyword is record selective on the root of the
subtree. In Figure 4, the number of churches in the subtree of p is relatively
small. When processing the query 〈R, {Church}〉 on node p, with the O-filter on
p we can directly answer the query from the list of record Ids of the keyword
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Church (i.e., record 7) without visiting the subtree of p. (2) FEH reduces storage
space at a node n by ignoring the keywords that are bypassing in an ancestor of
n or are not selective. For example, on node p in Figure 4, Museum is not selective
as it is consistent with all the children of p, and appears in many records in the
subtree of p. We save space by not storing it in the filters on p.

4 Answering Location-Based Instant Queries

In this section we study answering location-based instant queries using the base-
line index and the FEH index. We present a technique that represents the prefix
filters efficiently in Section 4.1. Then we study how to compress the prefix filters
in Section 4.2.

We extend the baseline index and the FEH index to answer instant queries.
We first use the baseline index as an example to illustrate the techniques. The
goal is to support pruning of branches that will not give answers satisfying the
keyword conditions. During the search, we need to utilize a filter so that only
children nodes that have a record with the query prefix are visited. We extend
the baseline index by building the filters on the consistent prefixes as prefix
filters. We say a keyword w′ extends a string w, if w is a prefix of w′. A string
w is a consistent prefix of an R*-tree node n if there exists a consistent keyword
w′ in the subtree of n that extends w. The prefix filter on node n maps from n’s
consistent prefixes to their lists of n’s consistent children. For instance, on the
node p in our running example, its children nodes a and c are consistent with
the prefix Sch. To answer a query with Sch, only nodes a and c are traversed.

By building filters on prefixes we can use the baseline index and the FEH
index to efficiently answer instant queries, since pruning on prefix and spatial
conditions happens at the same time during the search. A main challenge here is
that, as prefixes (in addition to complete keywords) are added to the filters, the
size of the index could dramatically increase. Like most instant search systems,
it is crucial to make the index reside in memory in order to achieve a high query
performance. Therefore, reducing the index size is important. Next we present
techniques that efficiently store the prefix filters.

4.1 Representing Prefix Filters Efficiently

In this section we present an efficient representation of the prefix filters. A
straightforward approach is to add all consistent prefixes into a prefix filter.
This approach requires a lot of space. For instance, the consistent prefixes of the
keyword Hospital on node p in Figure 3 are H, Ho, Hos, Hosp, Hospi, Hospit,
Hospita, and Hospital.

Next, we show that many prefixes can be combined with each other using a
radix tree [16]. The radix tree is built on all the keywords in the data set, with
each edge of the tree labeled with one or more characters. Each node of the
radix tree represents one or more prefixes in the data set. For example, Figure 5
shows the radix tree on the keywords Christ$, Church$, History$, Hospital$,
Museum$, Scheme$, and School$. The character $ is appended to the end of each
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Fig. 5. Radix tree built on the global vocabulary

keyword to distinguish it from the same string as a prefix, assuming it is not
in the alphabet. The leftmost leaf node represents prefixes Chr, Chri, Chris,
Christ, and Christ$. We can see that all the prefixes represented by a radix
tree node have the same set of extended keywords in the dataset. Therefore,
they have the same set of consistent children of an R*-tree node and records.
For instance, the prefixes Mus and Museu, represented by the same radix tree
node, have the same set of consistent children of p (nodes a, b, and c). We first
illustrate our technique using the baseline index. Instead of adding all consistent
prefixes to the filter, our technique adds consistent radix tree nodes to the prefix
filter, where each radix tree node can represent multiple prefixes.

To efficiently store the prefix filter on each R*-tree node, we assign numerical
ids to all the keywords sorted in their lexicographical order. A prefix in the
data set can then be represented as an interval [Idmin, Idmax], where Idmin

is the minimum id of the keywords that extend the prefix, and Idmax is their
maximum id. This representation has the following benefits. (1) All the prefixes
represented by a radix tree node have the same interval. For instance, prefixes
C and Ch, represented by the same node in Figure 5, have the same interval
[1, 2]. Therefore, we can use an interval to represent a radix tree node to be
stored in the prefix filter, instead of storing all the prefixes that share the same
interval. (2) It is easy to test whether the node represented by one interval I1 is
an ancestor of the node represented by another interval I2, by simply checking
if I1 contains I2. For instance, the radix tree node for [3, 4] (H) is an ancestor
of that for [3, 3] (History$), since the former interval contains the latter. We
also say “[3, 4] is a prefix of [3, 3]”, or “[3, 3] extends [3, 4]” interchangeably.
This property is used later in the compressed prefix filter, where we need to test
whether a prefix in the filter is a prefix of a query string. (3) The lexicographical
order of the prefixes is defined as follows. For two intervals I1 = [Idmin1, Idmax1]
and I2 = [Idmin2, Idmax2], we define:⎧⎪⎪⎨⎪⎪⎩

I1 < I2, if Idmin1 < Idmin2 ∨ (Idmin1 = Idmin2

∧Idmax1 > Idmax2);
I1 = I2, if Idmin1 = Idmin2 ∧ Idmax1 = Idmax2;
I1 > I2, otherwise.
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For example, [3, 4] < [3, 3], because they tie on Idmin, and [3, 4] has a bigger
Idmax. This order allows us to store the intervals in a sorted array. It also allows
us to use a binary search to efficiently locate the longest prefix of the query
string in the array.

Within an R*-tree node, we store all its consistent prefixes in a sorted array
using their interval representations and their corresponding consistent children.
Figure 6 shows the prefix filter stored as sorted intervals on the R*-tree node
p. The interval [3, 4] for the prefix H is stored in the prefix filter, with its set of
consistent children (nodes b and c). To answer a prefix query using the prefix
filters, we can first lookup from the global vocabulary (the radix tree) to convert
the query prefix to its interval representation. When accessing an R*-tree node
n, we locate the corresponding interval in the prefix filter on n by performing a
binary search on the sorted array of intervals, and then retrieving the consistent
children nodes to visit.
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Fig. 6. The prefix filter on the R*-tree node p

FEH prefix filters: The techniques presented in Section 4.1 can be applied to
the FEH index as well. Figure 7 shows the prefix filters with intervals on node p in
the FEH prefix index in our running example. For instance, the record-selective
prefix Ch is added to the O-filter on node p. It is stored as its corresponding
interval [1, 2], with the list of the records that have the prefix (record 7). The
intervals added to a filter on the node p form a radix forest (a set of disjoint
radix trees), shown on the left side of the filter in the figure.

When traversing an R*-tree node to answer a query, we first lookup the query
interval from the O-filter. If the query interval is found in the O-filter, we verify
the records from its list without accessing this subtree. Otherwise, we lookup the
query interval from the C-filter, and visit the consistent R*-tree children. For
instance, to answer the query with the prefix Ch, we lookup its corresponding
interval [1, 2] from the global vocabulary. When visiting the R*-tree node p, we
lookup [1, 2] from the O-filter, and then directly retrieve the records without
visiting any other children nodes of p.
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Fig. 7. Filters on node p in the FEH prefix index

4.2 Compressing Prefix Filters

In this section we present a technique for further compressing the prefix filters.
An interesting property of the prefix filters is the following: For two prefixes w1

and w2 in the same filter, if w1 is a prefix of w2, then the consistent set of children
or records of w1 is a superset of that of w2. This property allows us to compress
the prefix filter by removing w2 from the filter, since we can use the superset of
w1 to answer a query of w2, with possible false positives. Formally, we require
an interval to hold the following condition in order to remain in a compressed
filter on node n: the interval does not extend another interval in the same prefix
filter. Otherwise, the interval can be removed from the prefix filter. For example,
Figure 8(a) shows the radix forest of record-selective prefixes. [1, 1] and [2, 2] are
removed from the compressed O-filter, as they extend another interval [1, 2] in
the same filter. The O-filter is physically stored as in Figure 8(b).
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7
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Fig. 8. Compressed O-filter on node p

The technique of compressing prefix filters discussed in Section 4.2 can be
utilized on both C-filters and O-filters. Here we focus on compressing the O-
filters, as experiments show that the size of O-filters is much larger compared to
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that of C-filters. Another reason is that the performance penalty is large when
the compression method is applied on the C-filters, since a traversal of a query
would go to branches not consistent with the query.

We can apply this technique on O-filters by enforcing the condition on some
instead of all intervals to support flexible size reduction. Our experimental results
show that the performance penalty on O-filters is very small even if the condition
is enforced on all prefixes.

After we remove some prefixes from the filters, we need to modify the search
algorithm for answering the query 〈R, W 〉. The existence test of the query key-
word w in the O-filter is replaced with finding a prefix w′ of w in the O-filter.
It can be achieved by doing a binary search on the interval array for w. Either
w is returned, or the largest string w′ that is smaller than w is returned. The
returned w′ is a prefix of w if w has a prefix in the filter. For instance, a binary
search for [2, 2] (Church$) on the interval array of the O-filter on node p returns
[1, 2] (Ch). We verify that [1, 2] is a prefix of [2, 2], since [1, 2] contains [2, 2]. We
use the records for [1, 2] (record 7) to answer the query. The verification is per-
formed on the records that have w′ as a prefix, by checking whether they have
w as a prefix. Since the set of records with w′ as a prefix is a superset of the
records with w as a prefix, retrieving and verifying records from the list of w′

guarantees to retrieve all the answers. False positives can be eliminated by the
verification. As the size of the list for w′ is bounded by the record-selectiveness
threshold tr, we can answer queries using compressed O-filters with limited per-
formance penalty, especially when tr is selected properly. This fact is shown in
our experimental evaluations.

5 Experimental Evaluation

In this section, we report our experimental results of the proposed techniques.
All the algorithms (including the R*-tree) were implemented using GNU C++
and run on a Dell PC with 3GB main memory, and a 2.4GHz Dual Core CPU
running a Ubuntu operating system. Our indices were created in memory using
R*-trees with a branching factor of 32. The multi-map filters of all indices were
implemented either using keyword ids, or prefix intervals (for instant queries). We
evaluated the index size and construction time, as well as the query performances
of the baseline index, and the FEH indices with various record-selectiveness
thresholds tr (denoted by FEH-tr), for answering complete and instant queries.

5.1 Data Sets

We used two data sets in our experiments:

Business listings (Businesses). It consists of 20.4 million records of businesses
in the USA from a popular directory website. We built the indices on the name,
the latitude, and the longitude attributes of each business. The size of the raw
data was around 4GB. The entire data set was used in the scalability tests. Since
the baseline index can only handle around 5 million records in memory in some
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of the experiment settings, we used 5 million records of the data set for most of
the experiments.

Image posts (CoPhIR) [5]. This image data set was extracted from the user
posts on flickr.com. We selected 3.7 million posts that have a geographical loca-
tion in the USA, and used their textual and spatial attributes. The indices were
built on the title, description, tags, latitude, and longitude attributes. The size
of the data was about 500MB.

We observed similar performance in our experiments on the two data sets.
Due to space limitation, we mainly present the results on the Businesses data set
unless otherwise noted.

5.2 Complete Keyword Search

Index Construction. We constructed the baseline index and the FEH in-
dices with different record-selectiveness thresholds tr. The baseline index on the
Business data set took 3 minutes to build, and FEH-16 took 7 minutes. The
construction of FEH-16 on the Business data set used a maximum of 400MB
memory.

Figure 9 shows the sizes of indices decomposed to different components on
the two data sets. Indices of the same data set had the same R*-tree size as they
extend the same R*-tree (e.g., 154MB for the Businesses data set). The total sizes
of the filters in the FEH indices were smaller than that of the baseline index for
each data set. For instance, the total size of the baseline index for Businesses was
474MB, while the total size of FEH-16 was 279MB. We also noticed that the
sizes of the C-filters on the FEH indices were much smaller compared to that
of the O-filters, which included the keywords as well as their corresponding lists
of record ids. For both data sets, the C-filter size of FEH decreased from 48MB
to 5MB as we increased the record-selectiveness threshold tr from 4 to 64. The
reason is as we increased the threshold, more keywords were qualified as record
selective and bypassing and they were not added to the C-filters.

Search Performance. We created query workloads by combining spatial loca-
tions with query keywords to evaluate the search performance of different indices.
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Fig. 9. Index size for complete keyword search
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We manually selected 10 populous geographical areas. Each area spans 0.2 lati-
tudes and longitudes, resulting in a 20km by 20km rectangle approximately (the
exact size depends on the latitude). These areas were used as the rectangles in
the range queries. The centers of these areas were used as the query points in
the kNN queries, which ask for the top 10 results. To generate the queries, for
each area we selected a set of keywords from its local vocabulary, a vocabulary
for the businesses within the area, to avoid the situation where a range query
returns no answer. To study the performance of queries with different keyword
frequencies, we partitioned each local vocabulary into groups. For a frequency
f , we used “G-f” to represent the group of keywords that appear in at least f
records and in at most 4f − 1 records. We randomly selected 100 keywords from
each group, and generated 1000 location-based keyword queries for this group.

Figure 10 presents the query performance using different indices for answering
range queries and kNN queries on the Businesses data set. Within each group,
the query time is normalized against the time of using the baseline index. From
the figures we can see that FEH indices can achieve a good speedup (up to 60%)
over the baseline index for both range queries and kNN queries. The speedup
was especially significant for range queries of all the groups, and for kNN queries
with less frequent keywords. We can also see that the search became faster as
we increased the record-selectiveness threshold from 4 to 16, and started to
slow down from 16 to 64. This trend can be explained by the trade off between
reduction in the number of visited nodes and increase in the number of candidate
records to be verified. We observed similar trends for multi-keyword queries, due
to space limitation we do not show the details.
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Fig. 10. 1-keyword query performance for complete keyword search. The absolute
search time using the baseline index is shown on the corresponding bar in ms.

Scalability. We used the Businesses data to study scalability. Figure 11(a) shows
the index sizes of the baseline and FEH-16 indices when we increased the number
of records from 5 million to 20 million. The size of both indices increased linearly,
and FEH-16 had a smaller index size compared to the baseline index.

We conducted a scalability test of the query performance by selecting
keywords from the local vocabulary for each geographical area. We randomly
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selected 100 keywords based on their frequencies for each geographical area, and
generated 1000 queries for each setting. We also compared the performance of
our techniques to the technique in [9]. Figure 11(b) shows the average search
time on range queries, using the signature-file index, the baseline index, and the
FEH-16 index, as we increased the number of records. We created the signature-
file indices to have the same size as their corresponding baseline indices. We can
see that the search time increased sub-linearly for all the queries. The results
showed that the baseline index and FEH-16 outperformed the signature-file in-
dex. This was due to the fact that the signature-file index could identify a lot
of consistent children nodes as false positives, resulting in unnecessary traversal.
Further, the results showed that FEH-16 is faster than the baseline index. The
average search time for the baseline index increased from 0.085 ms to 0.116 ms,
while that for FEH-16 increased from 0.053 ms to 0.058 ms.
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Fig. 11. Scalability for complete keyword search

5.3 Instant Keyword Search

Index Construction. We evaluated the construction and update of the base-
line index and FEH for instant search. The baseline prefix index on the Business
data set took 3 minutes to build, and FEH-16 on prefixes took 6 minutes. The
construction of FEH-16 on prefixes used a maximum of 400MB memory on the
Business data set.

Figure 12 presents the sizes of the prefix indices on the two data sets. We
use “FEHc-tr” to denote the FEH index with compressed O-filters using record-
selectiveness threshold tr. Similar trends are observed as in Figure 9. In addition,
the filters on the prefix baseline indices are significantly larger compared to the
filters on the non-prefix baseline indices, due to the cost of adding prefixes to the
filters. We noticed that FEH and FEHc indices can significantly reduce index
size. For instance, on the Businesses data set, FEH-16 reduced the index size by
half (from 1.6GB to 800MB), while FEHc-16 further reduced the size by roughly
half from FEH-16 (to 440MB).

Search Performance 1-keyword queries: We evaluated the search perfor-
mance of the prefix indices for instant queries. We used the same methods to
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Fig. 12. Index size for instant search
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Fig. 13. 1-keyword query performance for instant search. The absolute search time
using the baseline index is shown along the corresponding line in ms.

generate the query keywords as in Section 5.2. We generated 1000 keywords
for each setting. To test prefix query performance, all prefixes of a query key-
word were individually combined with the location to form the prefix queries,
simulating the case where a user types character by character. We measured the
performance of the queries with different prefix lengths. We only reported results
for prefixes that appeared in at least 500 queries for each setting.

Figure 13 shows the query performance of different prefix indices for answer-
ing range queries and kNN queries. The query time was normalized against the
time of using the baseline prefix index for each prefix length. The range queries
with short prefix lengths were more expensive for all the indices due to the large
number of results that need to be retrieved. We retrieved the top-10 results for
the kNN queries. We noticed that the search-time variance for different prefix
lengths was small on kNN queries compared to range queries. FEH prefix indices
can improve performance of both range and kNN queries, for all the prefix lengths
compared to the baseline prefix index, for up to 60%. Due to space limitation we
only plotted the results FEHc-16 for FEH prefix index with compressed O-filters.
The query performance penalty for compressing the O-filter was small (around
10% less improvement over the baseline index). The performance improvement
of FEH indices over the baseline index on kNN queries is relatively small, due
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Fig. 14. 2-keyword query performance for instant search. The absolute search time
using the baseline index is shown along the corresponding line in ms.
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Fig. 15. Scalability for instant search. “FEH” is the index for complete keywords with
tr = 16.

to the fact that kNN queries only retrieve the top-k answers, where k is usually
very small, leaving little room for FEH to improve.

Multi-keyword queries: We also evaluated the performance of multi-keyword
instant queries. To generate multi-keyword instant queries, we first randomly
selected 100 sets of keywords based on their frequencies from the local co-
occurrence vocabulary for each geographical area. To test the multi-keyword
instant query performance, all prefixes of the last query keyword in a set were
individually combined with the rest keywords as well as the location to gen-
erate the prefix queries. Figure 14 presents the performance of the 2-keyword
range and kNN instant queries for different prefix lengths. Similar improvements
were observed. We observed similar trends for 3+-keyword queries, due to space
limitation we do not show the details.

Scalability. Figure 15 shows the scalability on the Businesses data set. The base-
line technique on prefixes was not able to index more than 10 million records
due its large index size. Similarly, FEH-16 could not index more than 15 million
records. We scaled FEHc-16 all the way up to 20 million records, with the in-
dex size around 1.8GB. We also plotted the size of the FEH-16 index built on
complete keywords (denoted as “FEH” in the figure) for a comparison with the
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prefix index sizes. It is clear that the index size increased a lot by building FEH
on prefixes instead of on complete keywords, as many prefixes need to be added
to the filters. Our compression technique greatly alleviated this problem.

We also studied the average kNN query performance for all prefix lengths
from 1 to 7. Results in Figure 15(b) showed that the performance of FEHc-16
scaled well when we increased the data size from 5 million to 20 million.

6 Conclusion

In this paper we studied location-based instant search. We first proposed an
filtering-effective hybrid index (FEH) that judiciously uses two types of keyword
filters based on their selectiveness to do powerful pruning. We then developed
indexing and search techniques that utilize the FEH index and store prefix in-
formation to efficiently answer instant queries. Our experiments demonstrated
the high efficiency and scalability of our techniques.
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Abstract. This paper introduces a scalable approach for continuous inverse rank-
ing on uncertain streams. An uncertain stream is a stream of object instances with
confidences, e.g. observed positions of moving objects derived from a sensor. The
confidence value assigned to each instance reflects the likelihood that the instance
conforms with the current true object state. The inverse ranking query retrieves
the rank of a given query object according to a given score function. In this paper
we present a framework that is able to update the query result very efficiently,
as the stream provides new observations of the objects. We will theoretically and
experimentally show that the query update can be performed in linear time com-
plexity. We conduct an experimental evaluation on synthetic data, which demon-
strates the efficiency of our approach.

1 Introduction

Recently, it has been recognized that many applications dealing with spatial, tempo-
ral, multimedia, and sensor data have to cope with uncertain or imprecise data. For
instance, in the spatial domain, the locations of objects usually change continuously,
thus the positions tracked by GPS devices are often imprecise. Similarly, vectors of
values collected in sensor networks (e.g., temperature, humidity, etc.) are usually inac-
curate, due to errors in the sensing devices or time delays in the transmission. Finally,
images collected by cameras may have errors, due to low resolution or noise. As a con-
sequence, there is a need to adapt storage models and indexing/search techniques to
deal with uncertainty.

Special formulations of queries are required in order to take the uncertainty of the
data into account. In this paper, we focus on the probabilistic inverse ranking (PIR)
query on uncertain streaming data, i.e. the data change with elapsing time. While PIR
queries have been studied for static data [1], to the best of our knowledge, there is no
previous work in the context of dynamic data or data streams. Given a stream of uncer-
tain objects, a user-defined score function S that ranks the objects and a user-defined
(uncertain) query object q, a PIR query computes all the possible ranks of q associated
with a probability. The PIR query is important for many real applications including fi-
nancial data analysis, sensor data monitoring and multi-criteria decision making where
one might be interested in the identification of the rank (significance) of a particular
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Confi
dence

Analyst I
(50 %)

Analyst II
(30 %)

Analyst III
(20 %)

Stock I (10; 6) (12; 8) (10; 9)

Stock II (5; 4) (4; 4) (6; 5)

Stock III (4; 1) (5; 2) (5; 1)

(chances; risk)

(a) Stock example values. (b) Stock example chart.

Fig. 1. Chances and risk predictions by three analysts for three stocks

object among peers. Consider the exemplary application illustrated in Figure 1(a): A fi-
nancial decision support system monitors diverse prognostic attributes of a set of three
stocks, e.g. predicted market trend (chances) and volatility (risk), which are used to rate
the profitability of the stocks according to a given score function. As it can be observed,
the chance and risk estimations are not unique among different analysts and each ana-
lyst is given a different confidence level. Figure 1(b) shows graphically the three stocks
with their respective analyst predictions and the query object q. Here we assume that
we are given a score function defined as S = (Chances − Risk). The dotted line in
Figure 1(b) denotes all points x where S(x) = S(q), i.e. all points with the same score
as q. Any instance located to the right of this line has a higher score than q, while any
instance to the left has a lower score. Therefore, we can safely assume that Stock II has
a lower score than q while Stock III certainly has a higher score than q. However, the
relative ranking of Stock I with respect to q is uncertain. While two of three analysts
(with a total confidence of 80%) would rank Stock I higher than q, the third analyst
would rank it lower. Thus, the PIR query for q returns that q is on rank two with a
probability of 20%, on rank three with a probability of 80% and definitely not on rank
one or four. This result can be used to answer questions like “Given a score function,
what is the likelihood that a query stock q is one of the global top-3 best stocks?”. The
problem we study in this paper is how to efficiently update these likelihoods when the
analysts release new estimations on a ticker stream.

As another example (taken from [2]), for a newborn, we may be interested in his/her
health compared with other babies, in terms of height, weight, and so on. In this case,
we can infer the newborn’s health from his/her rank among others. Note that data of
newborn babies in a hospital are confidential. Thus, for the sake of privacy preserva-
tion, such information is usually perturbed by adding synthetic noise or generalized
by replacing exact values with uncertain intervals, before releasing them for research
purposes. Thus, in these situations, we can conduct a PIR query over uncertain data
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(perturbed or generalized) in order to obtain all possible ranks that a newborn may have
with high confidence. In addition, we may want the distribution of possible ranks of
the baby to be dynamically updated, as new data arrive, in order to be confident that
the baby’s status remains good compared to new cases. Therefore, rank updates for the
query (baby) have to be applied, as new measurements arrive from a stream.

The rest of the paper is organized as follows: In the next section, we survey existing
work in the field of managing and querying uncertain data streams. In Section 3, we for-
mally define the problem of probabilistic inverse ranking on data streams. Our approach
for solving the problem efficiently is described in Section 4. In Section 5, we generalize
the problem by additionally considering uncertain queries. We experimentally evaluate
the efficiency of our approach in Section 6 and conclude the paper in Section 7.

2 Related Work

In this paper, we focus on inverse similarity ranking of uncertain vector data. A lot of
work was performed in the direction of ranking among uncertain data [3,4,5,6,7], but
there is limited research on the inverse variant of ranking uncertain data [1]. In a nut-
shell, there are two models for capturing uncertainty of objects in a multi-dimensional
space. In the continuous uncertainty model, the uncertain values of an object are rep-
resented by a continuous probability density function (pdf) within the vector space.
This type of representation is often used in applications where the uncertain values are
assumed to follow a specific probability density function (pdf), e.g. a Gaussian distribu-
tion [5]. Similarity search methods based on this model involve expensive integrations
of the pdf’s, thus special approximation techniques for efficient query processing are
typically employed [8]. In the discrete uncertainty model, each object is represented
by a discrete set of alternative values, and each value is associated with a probability.
The main motivation of this representation is that, in most real applications, data are
collected in a discrete form (e.g., information derived from sensor devices). The uncer-
tain stream data, as assumed in this paper, correspond to the discrete uncertainty model
which also complies with the x-relations model used in the Trio system [9].

In order to deal with massive datasets that arrive online and have to be monitored,
managed and mined in real time, the data stream model has become popular. Surveys
of systems and algorithms for data stream management are given in [10] and [11]. A
generalized stream model, the probabilistic stream model, was introduced in [12]. In
this model, each item of a stream represents a discrete probability distribution together
with a probability that the element is not actually present in the stream. There has been
interesting work on clustering uncertain streams [13], as well as on processing more
complex event queries over streams of uncertain data [14]. [15] presents algorithms that
capture essential features of the stream, such as quantiles, heavy-hitters, and frequency
moments. To the best of our knowledge, this paper is the first addressing the processing
of inverse ranking queries on uncertain streams.

The inverse ranking query on static data was first introduced by Li [2]. Chen et al. [1]
apply inverse ranking to probabilistic databases by introducing the probabilistic inverse
ranking query (PIR). Apart from considering only static data, their PIR query definition
varies from ours, since its output consists of all possible ranks for a query object q, for
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which q has a probability higher than a given threshold. Another approach for answering
PIR queries has been proposed by [16] which computes the expected inverse rank of an
object. The expected inverse rank can be computed very efficiently, however, it lacks
from a semantic point of view. In particular, an object that has a very high chance to
be on rank one, may indeed have a expected rank far from one, and may not be in the
result using expected ranks. Thus, no conclusion can be made about the actual rank
probabilities if the expected rank is used, since the expected rank is an aggregation that
drops important information.

3 Problem Definition

In this work, we adopt the discrete x-relation model proposed in the TRIO system [9],
in which an uncertain database D consists of n uncertain objects which are each mod-
elled by exactly one x-tuple. Each x-tuple T includes a number of tuples, which we
call (possible) instances, as its alternatives. Each tuple t ∈ T is associated with a prob-
ability p(t), representing a discrete probability distribution of T . Thus, an x-tuple T
is a set of a bounded number of instances, subject to the constraint that

∑
t∈T p(t) ≤

1. Independence is assumed among the x-tuples. For simplicity, we also assume that∑
t∈T p(t) = 1.1 Following the popular possible worlds semantics, D is instantiated

into a possible world with mutual independence of the x-tuples. An uncertain database
D is instantiated into a possible world as follows:

Definition 1 (Possible Worlds). LetD = {T1, ..., Tn} and let W = {t1, ..., tn} be any
subset of tuples appearing in D such that ti ∈ Ti. The probability of this world W
occurring is P (W ) =

∏n
j=1 p(tj). If P (W ) > 0, we say that W is a possible world,

and we denote byW the set of all possible worlds.

Without loss of generality, we consider uncertain vector objects L in a d-dimensional
vector space. That is, each object is assigned to m alternative locations l associated with
a probability value. For example, the m alternative positions of an uncertain object are
associated with observations derived from m sources of information (sensors). In our
stock example the sources correspond to the assessments of the analysts and in the baby
ranking example, the sources correspond to m uncertain values uniformly sampled from
the corresponding uncertain measurement range.

Definition 2 (Probabilistic Stream). We define an uncertain data stream, analogously
to [12]. A probabilistic stream is a data stream A = [x0, . . . , xt, . . . ] in which each
item xt encodes a random variable reported at time t from the stream, corresponding
to an object update. In particular, each xt has the form 〈O, L〉, where O is an object
ID and L is a location vector of length |L|. Each element l ∈ L contains a location
l.loc ∈ Rd and a probability l.p. In addition, we assume that

∑
l∈L l.p = 1, i.e. we

assume that the object have no existential uncertainty. i.e. that object O is existentially
certain.

1 For the problem of inverse ranking, this assumption means no loss of generality, since ex-
istential uncertainty can be modelled by simply adding to T an additional instance with a
probability 1 −∑t∈T p(t) and a score of −∞ (that is a distance of ∞ to the query).
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Definition 3 (Probabilistic Stream Database). A probabilistic stream database is an
uncertain database connected to at least one probabilistic stream. Each stream item
xt = 〈O, L〉 at time t denotes an update of the uncertain object O ∈ DB.2 Therefore,
at time t, the x-relation describing object O is replaced by the new location distribution
L coming from the stream.

This probabilistic stream database model is very general and can be easily adapted to
simulate popular stream models:

The sliding window model of size m can be simulated by imposing the following
constraint to the probabilistic stream: For any two stream items xt = 〈O, Lt〉, xs =
〈O, Ls〉, t < s, of the same object O, it holds that if there no other stream items between
time t and s concerning the same object, it holds that Lt+1 is derived from Lt by

– adding exactly one new instance to Lt, and
– removing the oldest instance of Lt if |Lt| > m

The probabilities p(l), l ∈ Lt are often set to p(l) = 1
|Lt| , but other distributions can be

used. In particular, more recently observed instances can be given a higher probability
to obtain the weighted sliding window model. Additionally, the infinite sliding window
model is obtained by setting k = ∞. In this work, the stream model is left abstract, as
the proposed solutions are applicable for any such model.

Next we define the problem to be solved in this work.

Definition 4 (Probabilistic Inverse Ranking Query). Given an uncertain databaseD
of size n, a query object q and a score function

S : D → R+
o .

Assuming that only the top-k ranks are of interest, a probabilistic inverse ranking query
PIR(q) returns for each i ∈ [1, ..., k] the probability P t

q (i) that q is on rank i w.r.t. S,
i.e. the probability that there exist exactly i − 1 objects o ∈ D such that S(o) > S(q)
at time t.

Given a set of n uncertain objects and a probabilistic stream A as defined above, our
problem is to compute and update, for a given query object q and a given score function
S the result of PIR(q) at each time t, i.e. after each object update. The challenge is to
ensure that this can be done correctly in terms of the possible world semantics, and
highly efficiently to allow online processing of the probabilistic stream A. Since the
number of possible worlds at a time t is exponential in the number n of uncertain stream
objects at time t, these two challenges are conflicting. In the following we will propose
an approach to compute PIR(q) in O(n2) from scratch, and to update it in O(n) when
a new update is fetched from the stream. In addition, we will show how the result of
PIR(q) can be efficiently updated, if the query object q is itself a stream object that
changes frequently.

2 O may also be a new object.
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Table 1. Table of notations used in this work

Table of Notations
D An uncertain stream database.
n The cardinality of D.
q A query vector in respect to which a probabilistic inverse ranking is computed.
k The ranking depth that determines the number of ranking positions of the inverse rank-

ing query result.
ox An uncertain stream object corresponding to a finite set of alternative vector point in-

stances.
pt

o The probability that object o has a higher score than q at time t.
P t(i) The result of the inverse ranking at time t: The probability that q is at rank i at time t.
P t

i,j The probability that, out of j processed objects, exactly i objects have a higher score
than q at time t.

P t
PBR(i) The result of the Poisson binomial recurrence at time t: The probability that i objects

have a higher score than q at time t, if all objects o for which pt
o = 1 are ignored.

P̂ t
PBR(i) The adjusted result of the Poisson binomial recurrence at time t: Identical to P t

PBR(i)
except that the effect of the object that changes its position at time t + 1 is removed
from the calculation.

Ct The number of objects o at time t for which pt
o = 1.

4 Probabilistic Inverse Ranking

Consider an uncertain stream database D of size n, a query object q, a score function S
and a positive integer k. Our algorithm basically consists of two modules:

– The initial computation of the probabilistic inverse ranking that computes for each
rank i ∈ [1, ..., k] the probability P t(i) that q is ranked on position i at the initial
time t, when the query is issued. We show how this can be performed in O(k · n)
time.

– The incremental stream processing that updates PIR(q) at time t + 1, given the
probabilistic inverse ranking at time t. Therefore, the probabilities P t+1(i) that Q
is ranked on position i at time t + 1 have to be computed given the P t(i). We show
how this update can be done in O(k) time.

4.1 Initial Computation

For each object oj ∈ D let pt
oj

be the probability that oj has a higher rank than q at
time t, i.e. pt

oj
= P (S(oj) > S(q)). These probabilities can be computed in a single

database scan. We can process the pt
oj

successively by means of the Poisson binomial
recurrence [17], as proposed in [18]. Therefore, let P t

i,j be the probability that, out
of the j objects processed so far, exactly i objects have a higher score than q. This
probability depends only on the two following events:

– i− 1 out of the first j − 1 processed objects have a higher score than q and oj has
a higher score than q.

– i out of the first j − 1 processed objects have a higher score than q and oj does not
have a higher score than q.



Continuous Inverse Ranking Queries in Uncertain Streams 43

This observation and the assumption of independence between stream objects can be
used to formulate the following Poisson binomial recurrence:

P t
i,j = P t

i−1,j−1 · pt
oj

+ P t
i,j−1 · (1− pt

oj
) (1)

with P t
0,0 = 1 and P t

i,j = 0 for i < 0 or i > j.

When the last object of the database is processed, i.e. j= n, then P t
i,j = P t

i,n

Definition
=

P t(i + 1).3 Computing the P t
q (i + 1) for 0 ≤ i ≤ k− 1 yields the probabilistic inverse

ranking. In each iteration, we can omit the computation of any P t
i,j where i ≥ k, since

we are not interested in any ranks greater than k, and thus, are not interested in the cases
where at least k objects have a higher score than q. In total, for each 0 ≤ i < k and
each 1 ≤ j ≤ n, P t

i,j has to be computed resulting in an O(k · n) time complexity.
Equation 1 is only required for objects oj for which 0 < pt

oj
< 1. Objects oj for

which pt
oj

= 0 can safely be ignored in the initial computation, since they have no
effect on the P t(i). For objects oj for which pt

oj
= 1, we use a counter Ct that denotes

the number of such objects. Thus, when oj is encountered in the initial computation,
the Poisson binomial recurrence is avoided and Ct is incremented. The probabilities
obtained from the Poisson binomial recurrence by ignoring objects for which pt

oj
= 1

are denoted as P t
PBR(i), 0 ≤ i ≤ k.

The probabilistic inverse ranking can be obtained from the P t
PBR(i), 0 ≤ i ≤ k and

Ct as follows:

P t(i) = P t
PBR(i− 1− Ct), for Ct + 1 ≤ i ≤ Ct + 1 + k (2)

P t(i) = 0 otherwise

Example 1. Assume that a database containing objects o1, ..., o4 and an inverse ranking
query with query object q and k = 2. Assume that pt

o1
= 0.1, pt

o2
= 0, pt

o3
= 0.6 and

pt
o4

= 1. To compute the initial inverse ranking, we first process o1 using Equation 1:

P t
0,1 = P t

−1,0 · pt
o1

+ P t
0,0 · (1− pt

o1
) = 0 · 0.1 + 1 · 0.9 = 0.9

P t
1,1 = P t

0,0 · pt
o1

+ P t
1,0 · (1− pt

o1
) = 1 · 0.1 + 0 · 0.9 = 0.1

Next we process o2, but notice that pt
2 = 0, so o2 can be skipped. Then, object o3

requires an additional iteration of Equation 1:

P t
0,2 = P t

−1,1 · pt
o3

+ P t
0,1 · (1− pt

o3
) = 0 · 0.6 + 0.9 · 0.4 = 0.36

P t
1,2 = P t

0,1 · pt
o3

+ P t
1,1 · (1− pt

o3
) = 0.9 · 0.6 + 0.1 · 0.4 = 0.58

P t
2,2 does not need to be computed since 2 = i ≥ k = 2.
Next we process o4. Since pt

o4
= 1, only Ct has to be incremented to 1. At this point,

we are done. We have obtained:

P t
PBR(0) = 0.36 and P t

PBR(1) = 0.58
3 The event that i objects have a higher score than q corresponds to the event that q is ranked

on rank i + 1.
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To get the final inverse ranking at time t, we use Equation 2 to obtain

P t(1) = P t
PBR(1 − 1− 1) = P t

PBR(−1) = 0

P t(2) = P t
PBR(2− 1− 1) = P t

PBR(0) = 0.36

4.2 Incremental Stream Processing

A naive solution would apply the Poisson binomial recurrence (cf. Equation 1) when-
ever a new object location ox is fetched from the stream. However, the expensive up-
date which is linear in the size of the database would make online stream processing
impractical for large databases. In the following, we show how we can update P t+1(i)
for 1 ≤ i ≤ k in constant time using the results of the previous update iteration.

Without loss of generality, let ox be the object for which a new position information
is returned by the stream at time t+1. pt

ox
(pt+1

ox
) denotes the old (new) probability that

ox has a higher score than q.
Our update algorithm uses two phases:

– Phase 1: Removal of the effect of the old value distribution of the uncertain object
ox. That is, removal of the effect of the probability pt

ox
from the result P t

PBR(i), 0 ≤
i < k. This yields an intermediate result P̂ t+1

PBR(i), 0 ≤ i < k.
– Phase 2 Incorporation of the new value distribution of the uncertain object ox.

That is including the probability pt+1
ox

in the intermediate result P̂ t+1(i), 0 ≤ i < k
obtained in Phase 1.

Phase 1. The following cases w.r.t. pt
ox

have to be considered:

Case I: pt
ox

= 0. This case occurs if ox is a new object or if it is certain that ox

has a lower score than q at time t. Thus nothing has to be done to remove the effect of
pt

ox
= 0: P̂ t

PBR(i) = P t
PBR(i).

Case II: pt
ox

= 1, i.e. if it is certain that ox has a higher score than q at time t.
In this case we just have to decrement Ct by one to remove the effect of pt

ox
. Thus

P̂ t
PBR(i) = P t

PBR(i) and Ct+1 = Ct − 1.
Case III: 0 < pt

ox
< 1, i.e. it is uncertain whether ox has a higher score than q at

time t. To remove the effect of pt
ox

on all P t
PBR(i) (1 ≤ i ≤ k) we look at the last

iteration of Equation 1, that was used to obtain P t
PBR(i), 0 ≤ i ≤ k. Let ol be the

object that was incorporated in this iteration:

P t
PBR(i) = P t′

PBR(i− 1) · pt
ol

+ P t′
PBR(i) · (1− pt

ol
),

where P t′
PBR(i) describes the probability that i objects have a score higher than q,

if (in addition to all objects oi for which pt
oi

= 1) ol is ignored. Now we observe
that the P t

PBR(i)’s (1 ≤ i ≤ k) are not affected by the order in which the objects
are processed within the recursion. In particular, the P t

PBR(i)’s do not change, if the
objects are processed in an order that processes ox last, thus we obtain:

P t
PBR(i) = P̂ t

PBR(i− 1) · pt
ox

+ P̂ t
PBR(i) · (1− pt

ox
),
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This can be resolved to

P̂ t
PBR(i) =

P t
PBR(i)− P̂ t

PBR(i− 1) · pt
ox

1− pt
ox

. (3)

With i = 0 we obtain

P̂ t
PBR(0) =

P t
PBR(0)
1− pt

ox

, (4)

because the probability P̂ t
PBR(−1) that exactly -1 objects have a higher score than q

is zero. Since the P t
PBR(i)’s for 0 ≤ i ≤ k − 1 are known from the previous stream

processing iteration, P̂ t
PBR(0) can be easily computed using Equation 4. Now we can

inductively compute P̂ t
PBR(i + 1) by using P̂ t

PBR(i) for any i and exploiting Equa-
tion 3.

Phase 2. In Phase 2, the same cases have to be considered:
Case I: pt+1

ox
= 0: Object ox has no influence on the result at time t+1. Nothing has

to be done. Thus P t+1
PBR(i) = P̂ t

PBR(i).
Case II: pt+1

ox
= 1: Object ox certainly has a higher score than q. Thus Ct+1 = Ct+1

and P t+1
PBR(i) = P̂ t

PBR(i).
Case III: 0 < pt+1

ox
< 1: We can incorporate the new probability for ox to be

ranked higher than q, i.e. pt+1
x , to compute the new probabilistic inverse ranking by an

additional iteration of the Poisson binomial recurrence:

P t+1
PBR(i) = P̂ t

PBR(i− 1) · pt+1
ox

+ P̂ t
PBR(i) · (1− pt+1

ox
).

Example 2. Reconsider Example 1 where, at time t, we obtained Ct = 1, P t
PBR(0) =

0.36 and P t
PBR(1) = 0.58. Now, assume that at time t + 1 object o3 changes its prob-

ability from 0.6 to 0.2, i.e. pt
o3

= 0.6 and pt+1
o3

= 0.2. Phase 1 starts using Case III.
Using Equation 4 we get:

P̂ t
PBR(0) =

P t
PBR(0)
1− pt

o3

=
0.36
0.4

= 0.9

Using Equation 3 we also get:

P̂ t
PBR(1) =

P t
PBR(1)− P̂ t

PBR(0) · pt
o3

1− pt
o3

=
0.58− 0.9 · 0.6

0.4
= 0.1

This completes Phase 1. In Phase 2, Case III is chosen and we get:

P t+1
PBR(0) = P̂ t

PBR(−1) · pt+1
o3

+ P̂ t
PBR(0) · (1 − pt+1

o3
) = 0 · 0.2 + 0.9 · 0.8 = 0.72

P t+1
PBR(1) = P̂ t

PBR(0) · pt+1
o3

+ P̂ t
PBR(1) · (1− pt+1

o3
) = 0.9 · 0.2 + 0.1 · 0.8 = 0.26

This completes the update step (Ct remains unchanged, i.e. Ct+1 = Ct). The result is
obtained analogously to Example 1 using Equation 2:

P t+1(1) = P t+1
PBR(1 − 1− 1) = P t+1

PBR(−1) = 0
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P t+1(2) = P t+1
PBR(2− 1− 1) = P t+1

PBR(0) = 0.72

Now assume, that at time t+2 object o4 changes its probability from 1 to 0: In Phase
1, Case II is used and Ct is decremented from 1 to 0 to obtain Ct+1 = 0. In Phase 2,
Case I is used and nothing is done. We get:

P t+2
PBR(0) = P̂ t+1

PBR(0) = P t+1
PBR(0) = 0.72

P t+2
PBR(1) = P̂ t+1

PBR(1) = P t+1
PBR(1) = 0.26

We obtain the result using Equation 2:

P t+2(1) = P t+2
PBR(1− 1− 0) = P t+2

PBR(0) = 0.72

P t+2(2) = P t+2
PBR(2− 1− 0) = P t+2

PBR(0) = 0.36

The latter example shows why we need to maintain k probability values at each
point of time: Even though some of the k probabilities may not be required to obtain
the result, they may be required to obtain the result at a later time.

Regarding the computational complexity, the following holds for both Phase 1 and
Phase 2: Case I and II have a cost of O(1) since either nothing has to be done, or only
Ct has to be incremented or decremented. Case III has a total cost of O(k) leading to a
total runtime of O(k) in the update step.

5 Uncertain Query

In the previous section we have assumed that the query object q is fixed, i.e. has a
certain position in Rd. We now consider the case in which the query is also given as an
uncertain stream object. Similar to the database objects, we now assume that the query
object Qt is represented by a set of m alternative instances Q = {qt

1, ..., q
t
m} at time t.

The probabilistic inverse ranking query PIR(Q) w.r.t. an uncertain query object Q can
be computed by aggregating the probabilistic inverse ranking query results w.r.t. each
instance qj of Q. Formally,

P t
Q(i) =

∑
j=1..m

P t
qj

(i) · p(qj)

for all j ∈ {1, . . . , m}, where p(qj) denotes the probability that the query object is
located at qj and P t

qj
(i) is the probability that instance qj us located at rank i. P t

qj
(i)

can be computed and updated as proposed in Section 4.
In this scenario, the stream may return new position information of the query object

as well. Generally, when the stream returns new position information of the query q,
the probabilities of all objects being ranked before q may change. Consequently, the
inverse ranking result usually needs to be recomputed from scratch, using the technique
shown in Section 4.1. However, in most applications, the position of an object only
changes slightly. Therefore, the probability of other objects to have a higher score than
q normally does not change for most objects. We exploit this property as follows.
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Let Q be the query object with alternative instances qt
1, ..., q

t
m ∈ Q at time t and let

St
min(Q) and St

max(Q) denote the minimum and maximum among all possible scores
derived from the instances of Q at time t. In the following we assume that new query
object instances are reported from the stream at time t + 1:

Lemma 1. If St
min(Q) ≤ St+1

min(Q), then for any object ox with pt
ox

= 0 it holds that
pt+1

ox
= 0 assuming x has not been updated at time t + 1.

Proof
Assumption: St

min(Q) ≤ St+1
min(Q) (5)

Assumption: ∀i : St(xi) = St+1(xi) (6)

Assumption: pt
ox

= 0 (7)

(7)⇔ ∀q ∈ Q, ∀xi ∈ x : St(q) > St(xi) ⇔ ∀xi ∈ ox : St
min(Q) > St(xi) (8)

Def : ∀q ∈ Q, ∀xi ∈ ox : St+1(q) ≥ St+1
min(Q)

5≥ St
min(Q)

8≥ St(xi)

6= St+1(x1)

⇒ ∀q ∈ Q, ∀xi ∈ ox : St+1(q) ≥ St+1(x1)

⇔ pt+1
ox

= 0

Lemma 2. If St
max(Q) ≥ St+1

max(Q), then for any object ox with pt
ox

= 1 it holds that
pt+1

ox
= 1.

Proof. Proof analogous to Lemma 1.

With the above Lemmata we can reduce the number of objects that have to be consid-
ered for re-computation of the inverse ranking at time t + 1. Especially, if St

min(Q) ≤
St+1

min(Q) ∧ St
max(Q) ≥ St+1

max(Q), then we have to compute pt+1
ox

for those objects
ox ∈ D for which pt

ox
/∈ {0, 1}. For the remaining objects o we have to update pt

o and
the inverse ranking probabilities considering the cases outlined in Section 4.2. Let us
note, that the effectiveness of this pruning scheme highly depends on the grade of un-
certainty of the objects. In our experiments, we show that the number of objects pruned
from the computation of the inverse ranking can be very large.

A very drastic change of the position of the query object may, in the worst case,
cause all probabilities pt

ox
, ox ∈ D to change. The incremental computation of Section

4 requires two computations: The removal of the effect of pt
ox

and the incorporation of
pt+1

ox
for any object ox ∈ D that changed its probability of having a higher score than q.

In contrast, a computation from scratch requires only one computation for each ox ∈ D:
the incorporation of pt+1

ox
. Therefore, it is wise to switch to a full re-computation of the

PIR if more than n
2 objects change their probability.
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6 Experiments

In the bigger part of the experimental evaluation, we use a synthetic dataset modelling
a data stream with observations of 2-dimensional objects. The location of an object
ox at time t is modelled by m alternatives of a Gaussian distributed random variable
Xox maintained in an array called sample buffer. For each ox ∈ D, the mean E(Xox)
follows a uniform [−10, 10]-distribution in each dimension. The probabilistic stream A
contains, for each ox ∈ D, exactly 10 alternative positions, that are randomly shuffled
into the stream. Once a new alternative position of an object ox is reported by the
stream, it is stored in the sample buffer of ox by replacing the least recently inserted one.
We tune three parameters to evaluate the performance of the incremental PIR method
described in Section 4: the database size n (default n = 10, 000), the standard deviation
σ of uncertain object instances (default σ = 5), and the sample buffer size m. For the
scalability experiments, we chose m = 3. The evaluation of σ was performed with m =
10. In addition, we experimentally evaluate the influence of the degree of uncertainty
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on the performance of our incremental PIR method (cf. Section 5). Finally, in Section
6.5, we examine the scalability issues on a real-world dataset.

We denote our approach by EISP (Efficient Inverse Stream Processing). For compar-
ison, we implemented the Poisson binomial recurrence based algorithm (abbreviated by
PBR) as proposed by [1] that uses Equation 1, at each point of time where the stream
provides a new observation. In addition, we evaluate the effect of the strategy proposed
in Section 4 to avoid computation of objects ox with a probability pt

ox
∈ {0, 1} of hav-

ing a higher score than q. This strategy will be denoted as 01-Pruning. EISP-01 and
PBR-01 denote the versions of EISP and PBR, respectively, that use 01-Pruning.

6.1 Scalability

In the first experiment, we evaluate the scalability of EISP, PBR, EISP-01 and PBR-01
w.r.t. the database size n. We choose k = n because if k is chosen constant and n is
scaled up, the number of objects that certainly have a higher score than q will eventually
reach k. In this case, 01-Pruning will immediately notice that q cannot possibly be at
one of the first k positions and will prune the computation. Then EISP-01 and PBR-01
have no further update costs. The results of these experiments are shown in Figure 2.

Figures 2(a) and 2(b) evaluate the total time required to process the whole stream, i.e.
all 10 · n object updates. It can be observed that all four algorithms show a superlinear
time complexity to process the whole stream (cf. Figure 2(a)). In addition, the utilization
of 01-Pruning leads to an improvement in the runtime. As the number of uncertain
objects (i.e. the objects in the database for which it is uncertain whether they have a
higher score than q and thus cannot be removed by 01-Pruning) increases as well as the
number of certain objects, we obtain a linear speed-up gain using 01-Pruning.

For a more detailed evaluation of the update cost in each iteration, consider Figures
2(c) and 2(d): Here, the average time required for an update is shown. Note that the up-
date cost of both PBR and PBR-01 grows fast with n. This is explained by the quadratic
cost of O(k ·n) (recall that we chose k = n) of the Poisson binomial recurrence at each
update step. On the other hand, the update cost of O(k) of EISP is linear to the num-
ber of database objects in this experiments (due to k = n). Here, 01-Pruning has high
influence on PBR but smaller effect on EISP especially for n ≤ 5, 000. The effect
of 01-Pruning may seem low for EISP, but note that in our experiments we measured
the total time required for an update: This includes the time required to fetch a new
location from the stream, compute its score, and recompute the total probability that the
respective object has a higher score than q. This overhead is naturally required for any
approach.

6.2 Standard Deviation σ

In the next experiment, we test the effect of the standard deviation σ on the distribution
of location instances. Here, the total time required to process the whole stream was
examined. The results are depicted in Figure 3. As PBR has to process all objects in
each iteration of the inverse ranking, there is no influence of σ when this method is
used (cf. Figure 3(a)). 01-Pruning is able to reduce the runtime complexity having low
values for σ, as many uncertain objects do not overlap with the score function and can
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Fig. 3. Runtime evolution w.r.t. the standard deviation σ

therefore be neglected in each iteration. However, with an increasing value of σ, the cost
of PBR-01 approaches that of PBR, as the uncertainty ranges are spread over a greater
range of the data space. EISP and EISP-01 outperform the other methods by several
orders of magnitude. Figure 3(b) shows that, for a small value of σ, there is a significant
effect of 01-Pruning. This becomes evident considering that the time overhead required
to process the stream is about 7000 ms in this experiment. The reason is that for σ = 0
01-Pruning there exists no uncertainty, and thus all objects always have a probability
of either 0 or 1 of having a higher score than q. Thus, Case I and Case II (cf. Section 4
are used in each update step and the Poisson binomial recurrence is never required. For
σ > 10 most objects ox have a probability 0 < pt

ox
< 1 of having a higher score than

q. Thus, Case III is used in each iteration and Ct approaches zero.

6.3 Sample Buffer Size m

Next, the total stream processing time was evaluated w.r.t. the sample buffer size m.
Figure 4 shows that m has an impact on all inverse ranking methods. Again, using PBR,
the number of considered alternatives only influences the required runtime if we apply
01-Pruning (cf. Figure 4(a)). If m increases, the probability that an object o has both
instances with a higher and smaller score than q increases, i.e. it is uncertain whether
S(q) > S(o). Figure 4(b) shows that even for m = 10, we obtain a relatively high
performance gain using 01-Pruning, since the alternatives remain in the extent of their
probabilistic distribution. Thus, for many objects o, S(q) > S(o) can be decided even
for a large m.

6.4 Uncertain Query

Finally, we evaluate the case that the query q is given as an uncertain stream object, now
denoted by Q. As described in Section 5, the whole inverse ranking has to be recom-
puted by the PBR method if a position update of Q occurs. We test the performance of
our adapted EISP method for this case.
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Fig. 4. Runtime evolution w.r.t. the sample buffer size m

For each time stamp t, we vary a probability value for Q of being updated and com-
pare the versions of PBR with EISP that use 01-Pruning in Figure 5(a). A value of 0
corresponds to the case that Q is certain, whereas a value of 1 assumes an update of Q
in each iteration and thus forces EISP-01 to always recompute the actual inverse rank-
ing. It can be observed that the runtime required for processing the whole stream when
using EISP-01 increases linearly with a growing probability of the query object of be-
ing uncertain. This effect is due to the fact that the number of updates of Q and thus the
number of complete re-computations have to be done according to the chosen probabil-
ity value. As PBR-01 does not depend on the uncertainty of Q because it recomputes
the inverse ranking in each iteration anyway, its curve defines an upper asymptote to the
curve of EISP-01.

6.5 Scalability Evaluation on Real-World Data

For an experimental evaluation of the scalability on real-world data, we first utilize the
International Ice Patrol (IIP) Iceberg Sightings Dataset4. This dataset contains informa-
tion about iceberg activity in the North Atlantic from 2001 to 2009. The latitude and
longitude values of sighted icebergs serve as 2-dimensional values positions up to 6216
probabilistic objects, where each iceberg has been sighted at different positions. The
stream consists of up to 10 positions of each iceberg which are ordered chronologically.
Here again, we chose m = 3. Figure 5(b) indicates that the observations made for syn-
thetic data can be transferred to real-world data. Note that for this dataset, 01-Pruning is
very effective, since the position of an iceberg has a very small variance. Many icebergs
even appear to hold their position over time.

The next set of experiments uses the NBA Dataset5, containing information about
North American basketball players. Each of the 3738 records in this dataset corresponds

4 The IIP dataset is available at the National Snow and Ice Data Center (NSIDC) web site
(http://nsidc.org/data/g00807.html).

5 The NBA dataset was derived from www.databasebasketball.com.
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Fig. 5. Additional experiments

to the performance of one player in one season. In particular, each record contains a to-
tal of 17 dimensions representing the number of games played, the number of points
scored, etc. in one given season between the years 1946 and 2006. For our experiments,
we model players by uncertain stream objects, using a sliding window model of size
m = 3, that is, a player is described by his performance in the last three years. The
probabilistic stream contains all records of the dataset. For simplicity, the score func-
tion s(x) we use is simply the sum of all (normalized) attributes. In this scenario, the
semantic of a PIR query is to compute, for any given time, the rank of player Q with
respect to all NBA players. First, we evaluated the scalability of our PIR algorithm in
Figure 5(c) using all 17 dimensions. It can be observed that the scalability is very sim-
ilar to the IIP dataset, despite of the increased dimensionality. This is further evaluated
in Figure 5(d) where we scale the number of dimensions. For the approach that do not
utilize 01-Pruning, the runtime appears to be constant in the number of dimensions.
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This can be explained by the fact that the dimensionality only affects the computation
of the score of an object. Since we use the sum of all dimensions, we theoretically ex-
pect the algorithm to scale linearly in the number of dimensions, but the impact of this
linear computation can be neglected. It can also be observed that, using 01-Pruning,
the runtime increases for low dimensions, and then becomes constant for higher dimen-
sions. This can be explained by the uncertainty of the individual dimensions: The first
dimension represents the number of games played by a player, which is a variable with
a rather low deviation for each player. Even if a player has a very volatile performance,
the number of games he played may be about the same. Therefore, the one dimensional
dataset has a rather low uncertainty, and thus, a lower runtime (cf. Section 6.2). How-
ever, a bad player may be replaced, and thus not play the full time, which is covered by
the second dimension, that aggregates the number of minutes played in a year and has
a higher deviation. The third dimension has the highest uncertainty, as it describes the
number of points scored by a player in a year. After the third dimension, adding further
dimensions does not significantly increase the total deviation of the sum (i.e. the score)
of a player. In summary, increasing the dimensionality has no significant effect on the
runtime, but may increase the uncertainty of the object, thus indirectly increasing the
runtime.

7 Conclusions

In this paper, we proposed a general solution to efficiently answering probabilistic in-
verse ranking queries on streams. State-of-the-art approaches solving the PIR query
problem for static data are not applicable for stream data due to the O(k ·n) complexity
of the Poisson binomial recurrence. We have shown theoretically and experimentally
that the update cost of our approach is O(k) and thus applicable for stream databases.
Let us note that our framework can be easily adapted to tackle further variants of inverse
ranking/top-k queries on streams: the threshold probabilistic inverse ranking query, that
returns exactly those ranking positions i for which P t

q (i) is greater than a user-specified
parameter τ ∈ [0, 1], as proposed in [1], and the (threshold) probabilistic top-k query,
that returns the probability that q is one of the best k objects in the database. The latter
has many applications in decision-making environments.

One aspect of future work is to develop an approximate approach, which is able
to efficiently cope with continuous data models. The idea is to derive for each database
object O, a lower and an upper bound of the probability that O has a higher score than Q.
Using these approximations, we can apply the concept of uncertain generating functions
[19] in order to obtain an (initial) approximated result of a PIR query, which guarantees
that the true result is bounded correctly. The problem at hand is to update these uncertain
generating functions efficiently when an update is fetched from the stream.
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Abstract. The past decade has seen an explosion in the number and types of 
environmental sensors deployed, many of which provide a continuous stream of 
observations. Each individual observation consists of one or more sensor 
measurements, a geographic location, and a time. With billions of historical 
observations stored in diverse databases and in thousands of datasets, scientists 
have difficulty finding relevant observations. We present an approach that 
creates consistent geospatial-temporal metadata from large repositories of 
diverse data by blending curated and automated extracts. We describe a novel 
query method over this metadata that returns ranked search results to a query 
with geospatial and temporal search criteria. Lastly, we present a prototype that 
demonstrates the utility of these ideas in the context of an ocean and 
coastalmargin observatory.  

Keywords: spatio-temporal queries, querying scientific data, metadata. 

1   Introduction 

In the past decade, the number and types of deployed environmental sensors have 
exploded, with each sensor providing a sequence of observations. Each individual 
observation has one or more sensor measurements and is associated with a geographic 
location and a time.  Almost a decade ago, this explosion was described as “the Data 
Deluge” [14], and continued exponential growth in data volumes was predicted [19]. 
For example, an oceanography observatory and research center with which we 
collaborate (CMOP, http://www.stccmop.org) now has terabytes of observations 
spanning more than a decade, reported by a changing set of fixed and mobile sensors. 
This collection of data provides a rich resource for oceanographic research.   

Scientists now research ecosystem-scale and global problems. Marine biologists 
wish to position their samples within a broader physical context; oceanographers look 
for comparative times or locations similar to (or dissimilar from) their research target. 
They want to search these collections of sensor observations for data that matches 
their research criteria. However, it is getting harder to find the relevant data in the 
burgeoning volumes of datasets and observations, and the time involved in searching 
constrains scientist productivity and acts as a limit on discovery. For example, a 
microbiologist may be looking for “any observations near the Astoria Bridge in June 
2009” in order to place a water sample taken there into physical context. Within the 
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observatory, there are many observation types that the microbiologist needs to search. 
Observations range from a point in space at a point in time, such as a group of water 
samples, through fixed stations, which have a single point in space but may have a 
million observations spanning a decade, to mobile sensors.  The mobile sensors may 
collect millions of observations over widely varying geographic and temporal scales: 
science cruises may cover hundreds of miles in the ocean over several weeks, while 
gliders and autonomic unmanned vehicles (AUVs) are often deployed for shorter time 
periods – hours or days – and a few miles, often in a river or estuary.  Locating and 
scanning each potentially relevant dataset of observations is time-consuming and 
requires understanding each dataset's storage location, access methods and format; the 
scientist may not even be aware of what relevant datasets exist. Once geospatially 
located, fixed sensors can easily be filtered based on location but must still be 
searched on time; identifying whether mobile sensors were close by at the appropriate 
time may require time-consuming individual analyses of each sensor’s observations.   

The scientists have powerful analysis and visualization tools available to them 
(e.g., [16, 25, 27]); however, these tools must be told the dataset and data ranges to 
analyze or visualize.  While these tools allow the scientist to find needles in a 
haystack, they do not address the problem of which haystacks are most likely to 
contain the needles they want. Visualizing a dataset of observations for the desired 
location in June may confirm there is no match. However, potentially relevant 
substitutes “close by” in either time or space (say, from late May in the desired place, 
or from June but a little further away) are not found using current methods, much less 
ranked by their relevance. Even with a search tool that can find data in a temporal or 
spatial range, the scientist may not know how far to set those bounds in order to 
encompass possible substitutes. 

We can meet this need by applying concepts from Information Retrieval. The 
scientists’ problem can be cast as a compound geospatial-temporal query across a 
collection of datasets containing geospatial and temporal data; the search results 
should consist of datasets ranked by relevance. The relevance score for each dataset 
should be an estimate of the dataset content’s geographic and temporal relevance to 
the query.  The desire for real-time response implies that the query be evaluated 
without scanning each dataset's contents.   

This paper describes a method for performing such a ranked search. Our 
contributions are: 

1. An approach, described in Section 2, to scoring and ranking such datasets in 
response to a geospatial-temporal query.  We calculate a single rank across both 
geospatial and temporal distances from the query terms by formalizing an intuitive 
distance concept.  The approach is scalable and light-weight.   

2. An approach, described in Section 3, for creating metadata describing the relevant 
geospatial and temporal characteristics of a collection of scientific datasets to 
support the ranking method.  The metadata supports hierarchical nesting of 
datasets, providing scalability and flexibility across multiple collection sizes and 
spatial and temporal scales. 

3. A loosely-coupled, componentized architecture that can be used to implement 
these approaches (Section 4). 

4. A tool that implements these ideas and demonstrates their utility in the setting of an 
ocean observatory, in Section 5. Figure 5 shows the user interface. 
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We provide additional notes and implications of our approach in Section 6, describe 
related work in Section 7 and conclude with future research (Section 8). 

In devising the details of our approach, we are biased towards identifying 
computationally light-weight approaches in order to achieve speed and scalability; as 
noted in considering the success of Google Maps, “Richness and depth are trumped 
by speed and ease, just as cheap trumps expensive: not always, but often.” [22] We 
are also biased towards exploiting well-studied and optimized underlying functions 
and techniques wherever possible.  We assume that after a successful search the 
scientist (who we also call the user) will access some subset of the identified datasets; 
we generically refer to a “download”, although it may take other forms. 

2   Ranking Space and Time 

The scientist identifies a physical area and a time period he or she wishes to explore, 
which we will refer to as the query; we define the query as consisting of both 
geospatial and temporal query terms.  The scientists have a qualitative intuition about 
which observations they consider a complete geospatial or temporal match, a 
relatively close match, or a non-match for their queries.   

The top of Figure 1 shows a temporal query term, denoted T, with a line 
representing the query time span of “June”.  We consider the temporal query to have a 
center and a radius; here, the center is June 15 and the radius 15 days.  Lines A(t), 
B(t), ..., E(t) represent the time spans of observations stored in datasets A, B, …, E. 
Span A(t) represents a complete match; all observations in this dataset are from June. 
Span C(t)'s observations span the month of May and so is “very close”; similarly, 
Span B(t) is “closer” than Span C(t) but is not a complete match.  Span D(t) is further 
away and Span E(t), with observations in February, is “far” from the June query. 

The bottom section of Figure 1 shows a two-dimensional geospatial query term G 
as drawn on a map, represented by a central point P (in our running example, 
geocoordinate 46.23,-123.88, near the Astoria bridge), and a radius r (½ km) within 
which the desired observations should fall. The marker labeled A(g) represents the 
geospatial extent of observations in dataset A; here, they are at a single location, for 
example a fixed station or a set of observations made while anchored during a cruise. 
Extents B(g), E(g) and F(g) represent single-location datasets further away from the 
query center. Linear Extents C(g) and D(g) represent transects traveled by a mobile 
observation station such as a cruise ship, AUV or glider.  Polygonal Extents J(g) and 
K(g) represent the bounding box of a longer, complex cruise track.  Point Extent A(g) 
falls within the radius of the query and so is a complete match to the geographic query 
term. The qualitative comparison remains consistent across geometry types, with 
marker B(g) and line C(g) both being considered “very close” and polygon K(g) and 
marker F(g) being “too far” from the query to be interesting.  

Intuitively, these qualitative comparisons can be scaled using a multiple of the 
search radius.  For example, if the scientist searches for “within ½ km of P”, then 
perhaps a point 5 km away from P is “too far”.  However, if the scientist searches for 
“within 5 km of P”, then 5 km away from P is a match but 50 km is too far.  In fact, 
the scientist is applying an implicit scaling model that is specific to his task [24]. 
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The same intuitive scaling can be applied across both the temporal and spatial 
query terms; temporal observations at F(t) and spatial observations at marker B(g) 
could be considered equidistant from their search centers.  Further, when considering 
both the temporal and spatial distances simultaneously, the dataset F, with temporal 
observations F(t) (quite close) at location F(g) (too far), is further from the query than 
datasets A (“here” in both time and space), B and C (“quite close” in both time and 
space). These examples illustrate the situation of one dataset dominating another: 
being closer in both time and space. The more interesting case arises in ranking two 
datasets where neither dominates the other, such as D and F: F is temporally closer, 
but D is closer in space. To simplify such comparisons, we propose a numeric 
distance representation that uses the query radii as the weighting method between the 
temporal and geospatial query terms.  For example, had the spatial portion of the 
query been “within 5 km of P”, D(g) and F(g) would both be considered “here” 
spatially, but D would now be dominated by F since it is temporally dominated by F.  
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Fig. 1. Example of qualitative geospatial and temporal ranking: the top section shows a 
temporal query T and the time spans of various observation datasets. Dataset A(t) is a complete 
match, while datasets B(t), C(t), D(t), E(t) and F(t) are at increasing times from the query. The 
bottom section shows a geospatial query G, with the geospatial locations and extents of the 
same observation datasets represented by points (shown by markers), polygons and lines at 
various distances.  In the middle is a qualitative scale that applies to both time and space. 

In essence, the observations within a dataset represent a distribution of both 
temporal and geospatial distances from the query center, with a single point in time or 
space being the most constrained distribution. Each query term itself represents a 
distribution of times and locations. In order to rank the datasets, we need a single 
distance measure to characterize the similarity between the dataset and the query 
terms. There are many options for representing the proximity of two such entities, 
with varying computational complexities [23]. A commonly used surrogate for 
distance between two geographic entities is centroid-to-centroid distance. While it is a 
poor approximation when the entities are large and close together, it is relatively 
simple to calculate, at least for simple geometries.  However, this measure ignores the 
radii of the query terms, and does not directly identify overlaps between the 
geometries. Another well-studied distance measure is minimum (and maximum) 
distance between two entities.  This distance can be estimated by knowing only the 
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bounds of the entities. This latter measure more closely matches our criteria; it can be 
calculated quickly using information (the bounds) that can be statically extracted from 
a dataset. This measure can be used to identify key characteristics that will drive our 
ranking: whether a dataset is within our query bounds and so is a complete match; 
whether the query and dataset overlap or whether they are disjoint, and if so by how 
much.  This discussion applies equally to the one-dimensional “space” of time.  In 
combining the space and time metrics, we will need to “scale” them by the radii of the 
respective query terms. 

To compute these comparisons across a potentially large number of datasets, we 
have formulated a numerical similarity value that takes into account query-term radius 
and dataset distribution and can be cheaply estimated with summary information 
about temporal or spatial distributions, such as the bounds.  

For the temporal term, let QTmin and QTmax represent the lower and upper bounds of 
the query time range. Further let dTmin and dTmax represent the minimum and maximum 
times of observations in dataset d. For calculation purposes, all times are translated 
into a monotonically increasing real number, for example “Unix time”. Equation 1 
below calculates dRmin, the distance of dataset d’s minimum time from the temporal 
query “center”, i.e., the mean of QTmin and QTmax, then scales the result by the size of 
the query “radius”, i.e., half its range.  Similarly Equation 2 calculates dRmax, the 
“scaled time-range distance” of the dataset’s maximum time. Equation 3 calculates an 
overall temporal distance dTdist for the dataset from the query: the first subcase 
accounts for a dataset completely within the query range, the second through fourth 
account for a dataset overlapping the query range above, below, and on both sides, 
and the last subcase accounts for a dataset completely outside of the query range. 

Then, we let s represent a scaling function that converts the calculated distance 
from the query center into a relevance score, while allowing a weighting factor to be 
applied to the distance result; per Montello [24], the implicit scaling factor may 
change for different users or different tasks.  Finally, Equation 4 calculates our overall 
time score dTs for this dataset by applying the scaling function to dTdist.  In our current 
implementation, s is (100 – f * dTdist); that is, when the dataset is a complete match it 
is given a score of 100, whereas if it is f “radii” (currently f = 10) from the query 
center it is considered “too far” and given a score of 0 or less. 

Similarly, let C represent the center location of the geospatial query and r the 
radius. Let the locations of all the observations within a single dataset d be 
represented by a single geometry g. By convention this geometry can be a point, line 
(or polyline) or polygon [12]. Let dGmin and dGmax represent the minimum and 
maximum distances of the geometry from C, using some distance measure such as 
Euclidean distance. Equation 5 calculates the overall distance measure for three 
subcases: the dataset is completely within the query radius; the dataset overlaps the 
query circle, or the dataset is completely outside the query circle. Equation 6 gives a 
geospatial-relevance score dGs for dataset d by again applying the scaling function s to 
the calculated overall distance measure. 

In Equation 7, the geospatial score dGs and the temporal score dTs are composed to 

give an overall score dscore. Combining these two distance measures results in a multi-
component ranking, which are the norm in web search systems today [7, 17, 18, 20].  
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We take a simple average of the two distance scores. Note, however, that each of 
these rankings has been scaled by the radii of the query terms; thus, the user describes 
the relative importance of time and distance by adjusting the query terms.   
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Given a collection of candidate datasets, each dataset’s dscore can be calculated. 

Optionally, datasets with dscore ≤ 0 can be discarded.  Remaining datasets are sorted in 
decreasing order of dscore into a ranked list and become the results of the query.  
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We performed a 40-person user study, asking respondents to rank pairs of datasets 
in response to spatial, temporal, and spatial-temporal queries.  The questions included 
comparisons with different geometries (e.g., polyline to point or polygon). Except for 
a small number of outlier cases, across all categories, when agreement amongst 
respondents is greater than 50% our distance measure agrees with the majority 
opinion. When there is a large disagreement with our distance measure, there is 
generally large disagreement amongst the respondents.  Not surprisingly, these cases 
are correlated with small differences in distance between the two options.  

3   Metadata Representing a Dataset Collection 

The scoring and ranking approach described here assumes availability of suitable 
metadata against which to apply these equations.  This section describes creating this 
metadata from datasets with geospatial and temporal contents, using the collection of 
observation datasets at our oceanography center as examples.  We focus here only on 
inherent metadata [15], that is, information derived from the datasets themselves. 

The base metadata requirements of our ranking and scoring approach are simple: 
the temporal bounds of each dataset, represented as a minimum and maximum time; 
the spatial footprint of each dataset, represented by a basic geometry type such as a 
point, line or polygon; and a dataset identifier.  The temporal bounds can easily be 
extracted by scanning the dataset. Similarly, every dataset’s observations fall within a 
geographic footprint. For a single point location such as a fixed sensor, the dataset’s 
metadata record is created by combining the time range information with the fixed 
geographic location of the sensor. 

Mobile sensors store a series of observations along with the geographic location 
and time for each observation. The overall dataset can be represented by the time 
range and the maximum geospatial bounds of the points within the dataset, that is, a 
rectangle (polygon) within which all points occur. The geospatial bounds can be 
extracted during the scan of the dataset, identifying the lowest and highest x and y 
coordinates found. For mobile sensors that follow a path or a series of transects during 
which the observations are collected (as in our case), a more informative alternative is 
available; the series of points can be translated into a polyline with each pair of 
successive points representing a line segment. If appropriate, the polyline can be 
approximated by a smaller number of line segments. The simplified polyline can be 
compactly stored as a single geometry and quickly assessed during ranking.  

To provide for additional expressiveness across the range of possible dataset sizes 
and scales, we incorporate the idea of hierarchical, nested metadata. Across our 
collection of observations, we have locations where a single water sample was 
collected, locations with millions of sensor observations made over many years, and 
multi-week ocean cruises where millions of observations were collected across 
several weeks with tracks that crossed hundreds of miles.  The hierarchical metadata 
allows us to capture a simple bounding box for a complex cruise, but also drill down 
to the individual cruise segments to identify the subset closest to the query terms. 
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Metadata records are classified 
recursively into parents and children.  
A record with no parent is a root 
record.  A parent record’s bounds 
(both temporal and geospatial) must 
include the union of the bounds of its 
children. The children’s regions might 
not cover all of the parent, for 
example, if there are gaps in a time 
series.  A record with no children is a 
leaf record.  A metadata collection is 
made up a set of root records and their 
children (recursively). The number of 
levels within the hierarchy is not 
limited. For instance, we might 
decompose a cruise temporally by 
weeks and days within weeks, then 
segment each spatially. 

The scoring method is applied 
recursively to the collection of 
metadata records.  We initially retrieve 
and score root metadata records only. 
If an entry is deemed interesting, it is 
added to a list of records whose 
children will be retrieved on the next 
pass.  An entry is deemed interesting if 
the minimum geographic and time 
range distance is not “too far”, and the 
minimum and maximum scaled time 
or geographic range distances are 
different from each other.  The second 
criterion implies that if subdivisions of 
this dataset are available, some of 
these subdivisions may be more highly 
relevant than the parent dataset as a 
whole. We repeat until either the list of 
records to retrieve is empty or no 
interesting records have children. 

Figure 2 demonstrates these 
concepts. It shows a fixed sensor 
station that reports data only during 
some months. Each light-gray block in 
the diagram represents a metadata 
record, showing time duration. In this 
case, three levels of metadata exist: an 
overall lifetime record, a medium level 
for the portion in each year that the 

Fig. 2. Scoring example for intermittent data: the 
right-hand blocks represent downloadable data-
sets; the left-hand blocks represent the metadata
hierarchy and curation choices (one record per
year, plus one for the lifetime). Ovals show the
scores given each dataset relative to the query. 
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station reports data, and a detailed level consisting of a record for each month. Next to 
each metadata record is shown its score for the given query. It can be seen that there 
are two individual months that score 100; datasets on either side score in the 90s. The 
year in which those months occur scores 88, whereas years that do not overlap the 
query range receive negative relevance scores. The overall lifetime record, which 
overlaps the query at both ends, receives a score of 22. Parent and child records are 
returned in the query result, allowing the scientist to choose between accessing only 
the months of interest or the entire year.  

4   Architecture 

As shown in Figure 3, our architecture extends existing observatory repositories.  In 
general, observatories contain several major components: a network of sensors; a set 
of processes that collect observations and normalize them (adjust record formats, 
apply calibrations, etc.); a repository to store the normalized observations; and a set of 
analysis programs that access the stored observations. There may also be a web 
interface that allows the user to view the catalog and download specific subsets of the 
data. To these existing system components, we add four loosely coupled components: 
a metadata-creation component, a metadata repository, a scoring-and-ranking 
component and a user interface. 

The metadata-creation component extracts a minimal set of metadata from the 
contents of the observation repository to represent the source observations, and stores 
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Fig. 3. The combined system and deployment diagram shows existing components and the new 
components added as part of Data Near Here 
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the extract into its own mini-repository. The goal is to support fast query access by 
creating a simple abstraction over a far more complex data repository. The IT staff 
can add new categories of observations (e.g., new types of mobile devices), change 
the number or grouping of hierarchical levels used to represent data, or change the 
representation of a category of observations (e.g., treating cruises solely as lines rather 
than as lines and bounding boxes at different levels of the hierarchy); this activity is a 
data curation process [13]. At present, these changes involve writing or modifying 
scripts; an informal set of patterns is emerging and could be formalized if desired. 

The scoring-and-ranking component receives query terms from the user interface 
and interacts with the metadata.  It scores each candidate metadata record, and returns 
to the user interface a set of ranked records.  The scoring and ranking algorithm is 
loosely coupled with the metadata and is independent of the user interface, allowing 
different algorithms to be easily tested without modifying the other components. 

The user interface is responsible for collecting the geospatial and temporal query 
terms from the user and presenting the search results; it also provides the user with 
some control over the presentation (e.g., the number of search results to return). The 
user interface exploits Google Maps [3] for geospatial representation of the query and 
results. The sole direct interaction between the user interface and the metadata is 
when the user interface requests metadata information to populate the query 
interface’s selections (for example, the ‘Category’ entry field in Figure 5). The search 
results link to the datasets within the repository and optionally to analysis programs. 

The loosely coupled nature of the components allows maximum flexibility in 
altering the internal design or methods used by any component without altering the 
remaining components; the additive nature of the architecture minimizes changes to 
the existing infrastructure necessary to add this capability. 

5   “Data Near Here”: An Implementation 

The approaches described in this paper have been implemented in an internal 
prototype at the Center for Coastal Margin Observation and Prediction (CMOP). This 
center’s rich inventory of over 250 million observations is available for public 
download or direct analysis; additional data can be accessed internally via a variety of 
tools.  The observations and associated metadata are stored in a relational database: 
most datasets are also stored in NetCDF-formatted downloadable files.   

The observational sensors can be loosely grouped by their deployment on fixed or 
mobile platforms. Mobile sensors are deployed in a series of missions, each of which 
may span hours or days or weeks. Observations may be captured many times a 
second, either continuously or according to some schedule; there may be a half 
million or more observations per mission. Hierarchically nested metadata is created at 
multiple scales; for the Astoria Bridge query, a fixed station that is far distant can be 
recognized and ignored by looking at a single lifetime entry for the station. 

A fixed sensor has a single geographic location over time; its dataset can be 
geospatially characterized as a single point. Its continuous observations are, for 
convenience, stored in multiple datasets, each containing a single time range such as a 
month or (for sparser observations) a year. In addition to dataset leaf records, for each 
year’s worth of observations we create a parent record that summarizes that year’s 
data, plus a lifetime record for the overall time duration of the station. 
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Fig. 4. Space metadata records for mobile stations (here, a multi-week cruise) are created by 
creating a line from point observations and simplifying it (middle hierarchy level, on line 2 of 
the table), then splitting the line into detailed line segments for the leaf records and extracting a 
bounding box for the parent record 

 

Fig. 5. Map display of Data Near Here search results for the example query in this paper. The 
map shows a section of the Columbia River near its mouth that includes Highway 101 crossing 
the Astoria Bridge between Oregon and Washington. The search center and radius are shown 
along with a set of markers and lines locating the highest-ranked datasets found for the search. 
The list below the map shows the four highest-ranked results, the first of which is a complete 
match; the next three are close either in time or space, but are not complete matches.  

As is shown in Figure 4, the track for a mobile-sensor mission can be a represented 
by a polyline.  In order to extract the polyline from the observations, we use the 
PostGIS makeline function to convert each day’s worth of observations into a 
polyline, then apply the PostGIS implementation of the Douglas-Peucker algorithm, 
simplify, to create a simplified polyline. The simplified polyline, along with the  
day’s start and end time, is stored as a metadata record.  We create an additional 
metadata record for the lifetime of the mission; this record is simply the bounding box 
of the polylines with the begin and end times of the overall mission. We then 
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programmatically extract each line segment from the simplified polyline, match the 
vertices to the time the mission was at that location, and store each line segment with 
its time range as a leaf metadata record.  This three-level hierarchy for mobile sensors 
can be created quickly, and provides multiple scales of metadata.  

At the end of these processes, we have a consistent metadata format for both fixed 
and mobile sensor observations.  We also have the option of storing multiple sets of 
metadata representing the same (or similar) underlying data, if, for example, 
alternative groupings of the data are more appropriate for specific user groups (for 
example, partitioned by day or by tide).  A varying number of levels can be used for a 
subset of the collection or even a subset of sensors within a specific category; we may 
wish to, for example, add a daily metadata record for specific fixed sensors. In other 
cases, such as water-sample data, we chose to only have one level in the hierarchy. 

Keeping the metadata up-to-date involves adding new metadata records as new 
missions occur or new datasets are created.  For each category of data, this update can 
occur automatically via a set of scripts and triggers that check for new datasets and 
execute the predefined steps. The moment a new metadata record is created, it is 
available to be searched. Setting up a new category of data requires deciding the 
number of hierarchical levels to be defined and the download granularities to support, 
and then setting up the appropriate scripts.  

Figure 5 shows the tool’s user interface. The user interface combines three 
interacting elements: a set of text query entry fields, a Google map that can be used to 
locate the geospatial query and on which the geospatial locations of highly ranked 
results are drawn, and the query results: a table of highly scoring datasets ordered by 
score. All available categories of observational data can be searched, or the scientist 
can limit the search to a subset. Scientists can provide both time and location 
parameters; they can also search for all times in which observations were taken at a 
specific location by leaving the time fields blank, and vice versa.  The top-ranked 
results will be displayed on the map – the scientist can select how many results to 
return and to display. Clicking on a displayed dataset pops up a summary. 

A “data location” field provides access to the data.   Where the data can be directly 
downloaded, this field contains a download link.  This link is built when the metadata 
is created and can contain parameters that subset the complete dataset to the relevant 
portion if the download mechanism allows.  In cases where direct download is not 
currently possible, this field provides the scientist with the dataset location and an 
extract command for the dataset’s access tool; for example, where the data is held 
only in a relational database, this field can contain a SQL Select statement to extract 
the relevant data.  A future version will allow scientists to directly open a selected 
dataset in a visualization and analysis tool. 

The technologies used to implement the shown architecture were selected based on 
existing technologies in use in the infrastructure, to allow for easy integration, 
extension and support.  Metadata creation is performed in a combination of SQL and 
scripts. The repository is a PostGIS/Postgres database and is accessed via dynamic 
SQL; the footprint data is stored in a PostGIS geometry column.  The scoring and 
ranking component is written in PHP.  Geometric functions are performed by PostGIS 
during data retrieval from the repository, with final scoring and ranking performed in 
the PHP module.  The user interface is implemented using Javascript, JQuery and the 
Google Maps API. Current experience leads us to believe these technologies will 
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scale to support the observatory’s repository for some time. For a much larger 
repository, other technology choices would provide greater speed. The architecture 
allows us to easily make these choices per component as needed.  

6   Discussion 

Here we discuss the tradeoff between user performance and the design of the 
metadata hierarchy. The response time seen by the user is driven by several main 
factors: data transfer times between the components (scoring component to user 
interface, metadata repository to scoring component); the number of hierarchical 
levels of metadata; the total number of metadata records to be scored; and the 
complexity of the scoring algorithm.   

The intent of the metadata hierarchy is to bridge the gap between the dataset 
granularity and the footprint of the dataset’s content, within the context of efficient 
real-time user search.  The more hierarchical levels, the more queries must be issued 
to process the children of interesting metadata records; however, the hierarchical 
design should allow fewer metadata records to be scored overall. An alternative is to 
score all metadata records in a single query; however, as many of the roots will have 
an increasing number of descendents over time (e.g., stations that continue to collect 
data month after month), we expect that ruling out descendents by examining only the 
parent record will balance the overhead of multiple queries and allow for greater 
scalability. We expect the user, after a successful search, to download or analyze 
selected datasets from the results presented. Thus, there is an assumed alignment 
between a single metadata record and a single accessible or downloadable unit (such 
as a single dataset).  However, in many cases the capability exists to group multiple 
datasets into a single accessible unit (e.g., by appending them), or alternatively to 
access subsets of a dataset (e.g., by encoding parameters to limit the sections of the 
dataset to access). The data curation process should consider the typical footprint and 
the likely utility to the scientist of different aggregations of that data.  

From a query-performance perspective, the number of leaf metadata records is 
optimal when each dataset is described by a single metadata record and thus there is 
only one record per dataset to score and rank.  Where a single dataset is geospatially 
and temporally relatively homogenous, this arrangement may be a practical choice. 
Where a dataset is geospatially or temporally very diverse or is too large to 
conveniently download, users are best served if a leaf metadata record exists for each 
subcomponent or segment they may wish to download.  The hierarchy provides a 
mechanism for mediating this mismatch; a single metadata record can be created for a 
larger dataset with children for the subcomponents.  The scoring component may be 
able to eliminate the dataset and its children from further consideration based on the 
parent, and only score the children when the parent appears interesting.  

To provide a tangible example of this tradeoff, Table 1 shows summary counts for 
our currently existing metadata records, representing a subset of CMOP’s repository. 
The breakdown by category in Table 2 highlights the different curation choices made 
for different observation categories. At one extreme, the 22 fixed stations have an 
average of 8.2 million observations each, and here a three-level hierarchy has been 
created. At the other extreme is the water-sample collection, with two observations 
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taken per location and time.  The same “cast” data is represented in two forms: one  
is the unprocessed, or “raw”, collection of observations; the same data has also  
been binned to specific depths and averaged into a much smaller collection of 
measurements. Variation in geometric representation is also shown; in cruises, for 
example, the most detailed level is most commonly represented by line segments 
representing specific cruise transects, but is sometimes represented by points when 
the cruise vessel was anchored in a single location for a longer period of time.  These 
different representations are easily discerned programmatically from the data but are 
difficult for a user to identify from the source data without significant effort. 

Table 1. Characterization of Data Near Here Metadata. This table summarizes characteristics of 
the metadata records representing the 225 million observations currently searchable. 

Metadata records 15,516 
Number of observation categories 7 
Records at each hierarchy level  
 Roots without children 6,564 
 Roots with children 60 
 Children with children 800 
 Children with no children 8,092 
Observations represented 225,627,211 

Average observations per metadata 
record 

14,541 

Table 2. Characterization of Existing Metadata Records by Category 

Category Hierarchy 
Level 

Geometry 
Number 

of 
Records 

Number 
with 

Children 

Total 
Observations 
Represented 

Average 
Observations 

per Record 

AUV 
1 

Polygon, 
Line 

22 11 225,757 10,261 

2 Line 29 0 134,841 4,649 
Cast-
Binned 

1 Point 3,066 0 370,967 120 

Cast-Raw 1 Point 2,908 0 33,908,614 11,660 

Cruise 

1 Polygon 20 20 8,064,259 403,212 

2 Line 607 607 8,064,259 13,285 

3 Line, Point 7,125 0 7,615,222 1,068 

Glider 

1 Polygon 7 7 2,237,628 319,661 

2 Line 128 128 2,237,628 17,481 

3 Line 357 0 1,670,470 4,679 

Fixed 
Stations 

1 Point 22 22 180,818,279 8,219,012 

2 Point 65 65 171,903,806 2,644,673 

3 Point 581 0 180,818,239 311,219 
Water 
Samples 

1 Point 579 0 1,707 2 
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The spatial scoring equations were designed to provide a reasonable approximation 
of distance for the three primary cases – polygon, polyline and point – while 
minimizing the number and complexity of spatial calculations needed; the current 
approach uses a total of two spatial calculations (maximum distance and minimum 
distance between two geometries) for each metadata record scored.  Spatial functions 
can be slow, so minimizing the number and complexity of geometries handled is 
beneficial.  A more complex spatial scoring system can easily be devised; what is less 
clear is whether, given the uncertainties in people’s views of distance [24], the 
additional complexity provides a better distance score as perceived by the user.  What 
is clear is that the additional complexity will add to the computation time.   

7   Related Work 

Adapting a definition from Information Retrieval (IR) [20], a dataset is relevant if the 
scientist perceives that it contains data relevant to his or her information need.  In IR 
systems, the user provides query terms, usually a list of words, to be searched for 
against an index representing a library of items (where each item may be, for 
example, a web page). Each item is summarized as index entries of the words found 
in the document, created prior to receiving the user’s query.  In almost all cases, the 
searches are performed against metadata, which itself varies in source and form. In 
ranked retrieval, each item is given a score representing an estimate of the item's 
relevance to the query. The list of items is then ranked by ordering items from highest 
to lowest score. There is much research (e.g., [4, 20, 21]) into ranked relevance of 
unstructured text documents against text queries. We adapt these ideas to searching 
contents of scientific datasets with a query consisting of geospatial-temporal search 
terms which are themselves ranges.  The metadata we extract from the datasets 
performs the role of the index.          

Hill et al. [15] present a system for describing and searching a library's digital 
collection of geographic items. They apply widely accepted collection concepts from 
paper-based archives that are based on a textual description of a map series 
(publisher, title, number in series, etc.) to digital map collections.  A single collection 
may contain a set of maps where each map has a different geographic coverage; 
however, the specific map's geographic coverage is an access or index key to that 
map.  The challenge is how to represent these collections by searchable metadata. 
They differentiate contextual metadata, which is externally provided (e.g., publisher), 
from inherent metadata, derived from automated analysis of the data (e.g., count of 
items included in a collection). This automatic data analysis adds to the metadata but 
does not allow the content itself to be searched.  They do not provide hierarchical 
metadata, nor do they discuss methods for ranked search results. 

Grossner et al. [11] provide a summary of progress in the last decade in developing 
a “Digital Earth”, and identify gaps in efforts so far.  They note that current 
geographic and temporal search responses provide matches only on one level of 
metadata; the contents of cataloged digital objects are not exposed and are not 
searchable.  Goodchild [8] notes that most geographic search systems score items 
based on word matches against metadata without considering the temporal span or 
geographic content of the items returned, and recognizes [9] the issue of containment 
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as an open research question.  That is, a map may be cataloged by the extent of its 
coverage (e.g., “Alaska”) but the search mechanism has no method with which to 
recognize that this map is a match for an item contained within it, (e.g., a search for 
“Fairbanks”).  Goodchild et al. [10] expand on these concerns in the 2007 review of 
Geospatial One-Stop (GOS) [1], a state-of-the-art government portal to geographic 
information.  GOS and similar portals such as the Global Change Master Directory’s 
Map/Date Search [2] now allow searches using both geographic and temporal criteria; 
three spatial tests are supported (the map view intersects, mostly contains, or 
completely contains the dataset), and temporal search appears binary – if items do not 
match the criteria they are not returned.  Only one level of metadata is considered; if a 
relevant item is embedded within a larger item (Fairbanks within Alaska), the relevant 
item is not returned. In contrast, we explicitly rank returned items based on both the 
temporal and geographic “distance” of the dataset contents from the query, and 
address the containment issue with multiple levels of metadata.   

One widely-used geospatial search system is Google Maps [22], which searches for 
a place name or a specified latitude and longitude, and provides nearby points of 
interest (“restaurants near here”). They do not currently expose a temporal search 
capability.  It is possible for a site to explicitly link a dataset to a specific location 
using KML, but it is not currently possible to search ranges within linked datasets. 
Egenhofer [6] describes some desired geographic request semantics but does not 
propose an implementation.    

Addressing a different kind of geographic search problem, Sharifzadeh and 
Shahabi [26] compare a set of data points with a set of query points where both sets 
potentially contain geographic attributes, and identify a set of points that are not 
dominated by any other points. They do not specifically address time, but could 
presumably treat it as another attribute.  Their approach develops the database query 
and algorithm to return the best points, but, unlike our approach, they do not return 
ranked results nor place the queries within the context of a larger application.  

Several researchers [16, 25, 27] have addressed the difficulty scientists have in 
finding “interesting” data — data relevant to the scientist’s research question — 
within the exploding quantity of data now being recorded by sensors by focusing on 
visualization techniques for a specified set of data.  The scientist specifies the dataset 
and range of data within the dataset.  The system then presents a visualization of the 
specified numeric data. The question of how the scientist finds interesting datasets 
and ranges to visualize is not addressed; that question is the subject of this research.  

8   Conclusion 

The rapid expansion of deployed observational sensors has led to collection of more 
observational data than ever before available. The sheer volume of data is creating 
new problems for scientists trying to identify subsets of data relevant to their research. 
Techniques to help scientists navigate this sudden plethora of data are a fruitful area 
for research.  This work is one such contribution, focusing on the problem of finding 
sets of observations “near” an existing location in both time and geospace. 

This paper presents a novel approach to providing compound geospatial-temporal 
queries across a collection of datasets containing geospatial and temporal data; search 
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results consist of datasets ranked by relevance and presented in real time. The 
approach combines hierarchical metadata extracted from the datasets with a method 
for comparing distances from a query across geospatial and temporal extents. This 
approach complements existing visualization techniques by allowing scientists to 
quickly identify which subset of a large collection of datasets they should review or 
analyze. The combination of data represented by its geospatial and temporal footprint, 
using the metadata for search, the metadata hierarchical design and overall loosely-
coupled architecture allows for scalability and growth across large, complex data 
repositories. The prototype described already supports over quarter of a billion 
observations and more are being added.  User response has been very positive.   

We plan to extend this work in several directions, including characterizing the 
observed environmental variables and supporting more expressive queries. The third 
geospatial dimension, depth, is currently being added.  Contextual metadata [15] – 
ownership, terms and conditions, etc. – will be added as the tool gains wider use.  The 
eventual goal is to combine geospatial-temporal search terms with terms such as 
“with oxygen below 3 mg/liter, where Myrionecta Rubra are present”.  

Finding relevant data is key to scientific discovery.  Helping scientists identify the 
“haystacks most likely to contain needles” out of the vast quantities of data being 
collected today is a key component of reducing their time to discovery. 
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Abstract. Faced with the deluge of data available in biological databa-
ses, it becomes increasingly difficult for scientists to obtain reasonable
sets of answers to their biological queries. A critical example appears
in medicine, where physicians frequently need to get information about
genes associated with a given disease. When they pose such queries to
Web portals (e.g., Entrez NCBI) they usually get huge amounts of ans-
wers which are not ranked, making them very difficult to be exploited.
In the last years, while several ranking approaches have been proposed,
none of them is considered as the most promising.

Instead of considering ranking methods as alternative approaches, we
propose to generate a consensus ranking to highlight the common points
of a set of rankings while minimizing their disagreements. Our work
is based on the concept of median, originally defined on permutations:
Given m permutations and a distance function, the median problem is
to find a permutation that is the closest of the m given permutations.
We have investigated the problem of computing a median of a set of
m rankings considering different elements and ties, under a generalized
Kendall-τ distance. This problem is known to be NP-hard. In this paper,
we present a new heuristic for the problem and we demonstrate the be-
nefit of our approach on real queries using four different ranking methods.

Availability: http://bioguide-project.net/bioconsert

1 Introduction

With the increasing development of high throughput technologies, very high
amounts of data are produced and stored in public databases to make them
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available to the scientific community. Analysing and interpreting any new ex-
perimental result necessitates to compare it to public data. This task thus in-
cludes querying public databases using portals such as Entrez NCBI1 or SRS2.
However, even a simple query such as the search for genes possibly associated
with a given disease may return thousands of answers. The need for ranking so-
lutions, able to order answers is crucial for helping scientists organize their time
and prioritize the new experiments to be possibly conducted. However, ranking
biological data is a difficult task for various reasons: biological data are usually
annotation files (e.g., a SwissProt, EntrezGene, or OMIM entry) which reflect
expertise, they thus may be associated with various degrees of confidence [7];
data are not independent of each other but they are linked by cross-references,
the network formed by these links plays a role in the popularity of the data;
the need expressed by scientists may also be taken into consideration whether
the most well-known data should be ranked first, or the freshest, or the most
surprising [10]... As a consequence, although several ranking methods have been
proposed in the last years [5,16,17,14], none of them has been deployed on sys-
tems currently used by the scientific community.

In this paper, our goal is to make the most of the results obtained using
several ranking methods applied to biological data by generating a consensus
ranking reflecting their common points while not putting too much importance
on elements classified as ”good” by only one or a few rankings. Most importantly,
we want to provide a new method to take into account two specific features of
our framework. First, ranking methods may apply filters on the results provided
to the user to reduce the set of information provided. Ranking methods thus do
not necessarily consider the exact same set of elements. Second, they may rank
several elements at the same position (each ranking thus provides a list of sets);
ties should thus be considered.

Interestingly, while the problem of finding a consensus of a set of rankings
has not been addressed so far in the context of real biological data [5,16,17],
it has been of great and increasing interest to the database community (e.g.,
[9,8]) in particular within the domain of Web querying. When the same set of
elements is considered among rankings, the general problem of finding a median
of rankings with ties is known to be NP-hard. As an answer, approximation
algorithms have been proposed (in particular [9] and [1]). However, this kind of
approaches has never been tested on biological data and is not able to deal with
rankings considering different data sets.

In this paper, we first present a new heuristic for the problem, called BioCon-
sert (for generating Biological Consensus ranking with ties) in order to enable
the generation of a consensus from very large sets and speed-up the generation
of “smaller” consensus. Second, we demonstrate the benefit of our approach on
concrete biological queries using four ranking methods, and we compare our
results with the approximation algorithms by Ailon [1] and Fagin et al. [9].

1 http://www.ncbi.nlm.nih.gov/Entrez
2 http://srs.ebi.ac.uk
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The remainder of this paper is organized as follows. After a description of
our application domain, Section 2 presents the mathematical framework of our
work and in particular introduces the definition of distance and median we have
chosen to follow while motivating our choices by the constraints given by our
framework. Section 3 introduces the heuristic we propose to make it possible to
deal with important data sets while reducing the time necessary to the generation
of consensus. Section 4 presents the methodology we have followed to validate
our approach by providing results obtained on random and biological data ; we
compare our results to results obtained by the approximation algorithms [1,9].
Section 5 discusses related work and draws conclusions.

2 Context and Preliminaries

2.1 Context of the Study

This work has been done in close collaboration with physicians. We have collected
queries daily performed and lists of results obtained by four ranking methods.
More information about the ranking methods chosen and the kind of queries
considered will be provided in Section 5. In this section, our aim is to present
the 3 main requirements we want to answer.

Requirement 1: Comparing different sets. The distance should take into account
the fact that ranking methods may play the role of filters. Two lists obtained by
different ranking methods may not contain the same sets of data: it may be the
case that R1 mentions data #X which is not present in R2. As a consequence,
computing a distance between R1 and R2 implies taking into consideration those
missing elements in rankings.

Requirement 2: Considering ties. The distance should consider the fact that
each ranking method output has the form of a list of sets (or ties) of answers.
For instance, the following line R1Q1 := [{12, 21, 35, 36}, {41}, {3, 22}] indicates
that the ranking method R1 for the query Q1 returns 7 answers and proposes
a ranking in which 4 data objects are ranked equally first (#12,#21,#35,#36),
strictly followed by the data object #41, itself strictly followed by the two data
objects #3 and #22 (equally at the last position). We have associated with each
data objects (answer of a query) arbitrary Ids from 1 to x, x being the total
number of results that can be obtained for a given query.

Requirement 3: Minimizing disagreements. The consensus ranking we want to
design should minimize the disagreements between rankings with ties. The dis-
tance we want to consider should thus be able to penalize two kinds of disagree-
ments: Besides considering as disagreements the classical cases where element i
is ranked before element j in one ranking and after element j in the other, we
need also to consider as disagreements cases where elements i, j are ties in one
ranking (i.e. they are part of the same set such as #3 and #22 in the example
above) but not ties in the other one.

The remainder of this section presents the framework we have chosen to con-
sider based on the requirements exposed above.
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2.2 Unifying Sets of Data

We first present the Unifying preprocess we propose to follow to deal with dif-
ferent sets of data (Requirement 1) while minimizing disagreements between
rankings (Requirement 3). More precisely, our aim is to penalize the fact that
one element is considered in a ranking but not in another one. The following
steps describe the Unifying preprocess which will be applied to all our rank-
ing method outputs to unify the results:

1. Compute the union U of the elements (integers) appearing in each ranking.
2. For each ranking Ri, compute the set of elements contained in U but not in

Ri, denoted here U \Ri,
3. Augment each ranking the following way: add to Ri one new tie at the latest

position with elements from U \Ri.

All the rankings obtained using the Unifying preprocess are thus over the same
sets of elements. Additionally, if any ranking had elements that were not in the
other rankings before these changes it will be penalized by the fact that this
element will be ranked in the last tie in all the other rankings.

Example 1. For instance, let us consider three different ranking methods which
outputs are the following:

R1 = [{1, 7, 8, 15}, {2}, {3, 9}]
R2 = [{2, 4, 5}, {7, 8, 15}, {10, 13}, {3}]
R3 = [{1, 2, 3}, {4, 5}, {6, 8, 10, 12, 13}, {7, 9, 14}, {15}]

Here we have that U = {1, 2, 3, . . . , 15}, U \ R1 = {4, 5, 6, 10, 11, 12, 13, 14},
U \ R2 = {1, 6, 9, 11, 12, 14} and U \ R3 = ∅. The rankings processed using the
Unifying preprocess are then the followings:

R1 = [{1, 7, 8, 15}, {2}, {3, 9}, {4, 5, 6, 10, 11, 12, 13, 14}]
R2 = [{2, 4, 5}, {7, 8, 15}, {10, 13}, {3}, {1, 6, 9, 11, 12, 14}]
R3 = [{1, 2, 3}, {4, 5}, {6, 8, 10, 12, 13}, {7, 9, 14}, {15}]

In the remainder of this paper, the unifying preprocess is applied to our rank-
ings before running the generation of any consensus ranking. The next section
is now dedicated to the description of how to obtain the consensus of a set of
rankings with ties over the same set of integers.

2.3 Kendall-τ and Generalized Kendall-τ Distance

A good dissimilarity measure for comparing two rankings without ties is the
Kendall-τ distance [11] which counts the number of pairwise disagreements be-
tween positions of elements in those rankings. One way to generate a consensus
permutation for a given set of permutations is to find a median for this set i.e a
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permutation that minimizes the sum of Kendall-τ distances between this permu-
tation and all permutations in the given set. The problem of finding the median
of a set of m permutations of {1, 2, 3, . . . , n} under the Kendall-τ distance is a
NP-hard problem (when m ≥ 4) that has been well-studied over the past years
and for which good heuristics exist [2,3,6,8,12,19].

We introduce here more formally the Kendall-τ distance, defined for permu-
tations (rankings without ties). Then we show how it can be generalized to a
distance between rankings with ties [9].

The classical formulation: Apermutation π is a bijection of [n] = {1, 2 . . . , n}
onto itself. It represents a total order of the elements of [n]. The set of all per-
mutations of [n] is denoted Sn. As usual we denote a permutation π of [n] as
π = π1π2 . . . πn. The identity permutation corresponds to the identity bijec-
tion of [n] and is denoted ı = 12 . . . n.

The Kendall-τ distance, denoted dKT , counts the number of pairwise dis-
agreements between two permutations and can be defined formally as follows:
For permutations π and σ of [n], we have that

dKT (π1, π2) = #{(i, j) : i < j and [(π1[i] < π1[j] and π2[i] > π2[j]) or

(π1[i] > π1[j] and π2[i] < π2[j])}
where π[i] denotes the position of integer i in permutation π and #S the cardi-
nality of set S.

Example 2. Let π = [5, 3, 2, 1, 4] and σ = [1, 4, 5, 3, 2] be two permutations of
{1, 2, 3, 4, 5}. We have that dKT (π, σ) = 12 since we have the following disagree-
ments between pairs of elements of π and σ:
1 appears after 2,3 and 5 in π and before 2, 3 and 5 in σ
2 appears before 1 and 4 in π and after 1 and 4 in σ
3 appears before 1 and 4 in π and after 1 and 4 in σ
4 appears after 2,3 and 5 in π and before 2, 3 and 5 in σ
5 appears before 1 and 4 in π and after 1 and 4 in σ

Given any set of permutations A ⊆ Sn and a permutation π, we have

dKT (π, A) =
∑

πa∈A

dKT (π, πa).

The problem of finding a median of a set of permutations under the
Kendall-τ distance can be stated formally as follows:

Given A ⊆ Sn, we want to find a permutation π∗ of [n] such that

dKT (π∗, A) ≤ dKT (π, A), for all π ∈ Sn.
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Generalization to rankings with ties. Following [9], a bucket order on [n]
is a transitive binary relation � for which there are non empty sets B1, . . . ,Bk

(the buckets) that form a partition of [n] such that x � y if and only if there
are i, j with i < j such that x ∈ Bi and y ∈ Bj . Now, a ranking with ties is
defined on [n] as R = [B1, . . .Bk], where R[x] = i if x ∈ Bi. That means that a
ranking with ties is simply a surjective function R : [n] −→ [k], with σ−1(i) = Bi.
The generalized Kendall-τ distance, denoted K(p), is defined according to a
parameter p such that 0 < p ≤ 1. It writes:

K(p)(R1, R2) = #{(i, j) : i < j and [(R1[i] < R1[j] and R2[i] > R2[j]), or
(R1[i] > R1[j] and R2[i] < R2[j]))}

+ p×#{(i, j) : i < j and (R1[i] = R1[j] and R2[i] �= R2[j]), or
(R1[i] �= R1[j] and R2[i] = R2[j])]} ,

In other words, the generalized Kendall-τ distance considers the number of
disagreements between two rankings with ties (answering Requirement 2 ): a
disagreement can be either two elements that are in different buckets in each
ranking, where the order of the buckets disagree, and each such disagreement
counts for 1 in the distance; or two elements that are in the same bucket in one
ranking and in different buckets in the other, and each such disagreement counts
for p (answering Requirement 3 ).

The problem of finding a median of a set of rankings with ties under
the generalized Kendall-τ distance can be stated formally as follows, where
Rankn represents the set of all possible rankings with ties over [n]:

Given a set of rankings with ties R = {R1, . . . Rt}, find a consensus ranking
R∗ of [n] such that

K(p)(R∗,R) ≤ K(p)(R,R), for all R ∈ Rankn.

Complexity of the Problem. The problem of finding a median of a set of
rankings with ties under the generalized Kendall-τ distance is NP-hard since
it contains as a particular case the problem of finding the median of a set of
permutations under the Kendall-τ distance. From a pragmatical point of view,
if Sn,k represents the number of subjective functions from [n] to [k], then Rankn

contains
n∑

k=1

Sn,k =
n∑

k=1

k!
{n

k

}
∼ n! log2(e)

n−1

2

elements, where
{

n
k

}
represent the Stirling numbers of the second kind. (The

asymptotic formula is due to Wilf [18].) To give an idea of how big the set Rankn

may be, it already contains 102 247 563 elements when n = 10. Since we want to
find the median of a sets of rankings of [n], 30 ≤ n ≤ 800, we clearly cannot use
a brute-force algorithm that goes through the whole set Rankn to find a median
ranking.
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Approximation algorithms. Very interestingly, approximation algorithms
have been introduced to this problem.

First, Fagin et al. [9] have introduced a constant ratio approximation algorithm
for finding a consensus for a set of ranking with ties R on the same set of
elements. This means that there is a constant c (depending on p only) such that
the consensus ranking R0 found by the algorithm satisfies

K(p)(R0,R) ≤ c×K(p)(R∗,R)

where R∗ is a median ofR. The approximation ratio, c, depends on the value of p;
for example it is 2 for p = 1/2. The algorithm is based on dynamic programming
and runs in time O(nt+n2) where t is the number of rankings and n the number
of elements.

Second, Ailon [1] have very recently provided solutions for aggregation of par-
tial rankings. They have introduced two approximation algorithms that we will
call 2-Ailon and 3/2-Ailon respectively, based on their approximation ratio. The
consensus (called aggregate ranking by Ailon) provided by the two algorithms
are fully ranked, that is, each tie must contain only one element. In our appli-
cation domain, this very strong requirement is not mandatory (it may be the
case that the consensus ranking places several elements in the same tie without
forcing them to be ordered). We have thus considered the 2-Ailon algorithm
and a variation of it without considering the step responsible for breaking ties
into sets of size one, which we call 2var-Ailon in the following. As for the 3/2-
Ailon algorithm, it involves solving a large linear programming problem, which
is intrinsically highly memory-consuming and may not fit easily with huge data
sets.

In the next section, we will present a new heuristic for the same problem, namely
the BioConsert heuristic, and a way to reduce the data (so to speed up compu-
tations), in the case when we are dealing with huge data sets (several hundreds
of elements in rankings). As we will see in Section 4.1, our heuristic outperforms
the approximation algorithms for all data sets, synthetic or biological, that we
have considered.

3 Heuristic and Data Reduction

As stated above, generating a median is intrinsically costly. In this section we
present two solutions we have adopted to reduce the time necessary to generate
consensus, that will hopefully be close to the real median, and even make it
possible to generate them in case of huge data sets.

The first one is the most important: the BioConsert heuristic which consists in
starting with a given ranking and making elements move around in this ranking
so that it gets closer to a median. The ideas behind the BioConsert heuristic will
be presented more formally in subsection 3.1.

Another solution we propose is to minimize the sets of data taken as input.
Since we will sometimes deal with huge rankings, we want a way to be able to
consider only a portion of those rankings, without loosing too much important
information. This idea is presented in subsection 3.2.
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3.1 The BioConsert Heuristic

Given a set R = {R1, . . . Rt} of rankings with ties, the idea of the BioConsert
heuristic is to apply a series of “good” operations on a starting ranking Rstart,
in order to make it closer to a median. We can then choose different rankings
as possible start rankings and apply our BioConsert heuristic on each of them,
keeping as best consensus the result of the best run.

Here, we present some basic definitions and introduce the BioConsert heuristic
designed to find a consensus of a set R of rankings with ties under a generalized
Kendall-τ distance.

Definition 1. Given R = [B1, . . . ,Bk], a ranking with ties of [n] elements and
initially k buckets. Consider B� = R[i], for 1 ≤ � ≤ k (i.e. i ∈ B�). We define
two operations on the integers i, 1 ≤ i ≤ n:

- changeBucket(i,j) is an operation that removes integer i from its bucket
B� and puts it in bucket Bj, for 1 ≤ j ≤ k. If bucket B� becomes empty after
the removal of i, then it is erased from the result.

- addBucket(i,j) is an operation that removes i from its bucket B�, creates a
new bucket {i} with only i in it and puts it in position j, for 1 ≤ j ≤ k+1. In
the case where B� was already the singleton {i}, addBucket(i,j) corresponds
to moving B� to position j.

It is easy to see that, with these two operations, it is possible to find a sequence
of moves that changes any ranking with ties into any other one. Additionally,
each of these operations can be performed in O(n) time requirement.

Example 3. Given R = [{1, 3, 4}, {5}, {2, 7}, {6, 8, 9}] a ranking with ties on
{1, . . . , 9}, with buckets B1 = {1, 3, 4}, B2 = {5}, B3 = {2, 7} and B4 = {6, 8, 9},
we have

changeBucket(1, 2)(R) = [{3, 4}, {1, 5}, {2, 7}, {6, 8, 9}]
changeBucket(5, 4)(R) = [{1, 3, 4}, {2, 7}, {5, 6, 8, 9}]

addBucket(1, 3)(R) = [{3, 4}, {5}, {1}, {2, 7}, {6, 8, 9}]
addBucket(6, 5)(R) = [{1, 3, 4}, {5}, {2, 7}, {8, 9}, {6}]
addBucket(5, 5)(R) = [{1, 3, 4}, {2, 7}, {6, 8, 9}, {5}]

Definition 2. Given a set R = {R1, . . . Rt} of rankings with ties, we say that
an operation O on Ri is good if it makes Ri closer to the median of R, i.e if

K(p)(O(Ri),R) < K(p)(Ri,R)

It is now time to present the BioConsert heuristic whose pseudo-code is depicted
in Figure 1. The idea is to begin our search for a best consensus from a ranking
Rstart, and to apply good change bucket or add bucket operations to this starting
point till there is no more possible good movement. Each run of the heuristic
will thus provide one consensus (obtained with one given starting ranking). The
heuristic will be run as many times as they are starting rankings. Eventually, the
user will be provided with the best consensus among all the consensus obtained.
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Algorithm BioConsert (Rstart, R)
n ← domain(Rstart)
k ← number of buckets of Rstart

bool ← 0 (will be changed to 1 if there is no more possible “good” operation)
chang ← 0 (will tell us if some operations were made)
WHILE bool <> 1 DO

FOR i from 1 to n DO
FOR j from 1 to k DO

IF changeBucket(i,j) is a good operation THEN

Rstart ← changeBucket(i, j)(Rstart)
chang ← chang +1

END IF
END FOR
FOR j from 1 to k + 1 DO

IF addBucket(i,j) is a good operation THEN

Rstart ← addBucket(i, j)(Rstart)
chang ← chang +1

END IF
END FOR

END FOR
IF chang = 0 THEN

bool ← 1
END IF

END WHILE
RETURN Rstart

Fig. 1. Pseudo-code of the BioConsert heuristic for generating consensus rankings

3.2 Reductions of Rankings to Important Data

To reduce the cost of generating consensus rankings, we have chosen to follow
an alternative but possibly complementary approach which consists in reducing
the data sets to be considered. Instead of considering all the data obtained by
the various ranking methods as input, we propose to consider shortened sets.
The rankings considered here are supposed to have been unified by our Unifying
preprocess described in Section 2.2, so we are dealing with rankings on the same
set of data. Say that we have a small set of elements, denoted Imp, known to
be the most important ones for all rankings. Note that considering Imp has
been done based on the searching process made by scientists who usually have a
very precise idea of part of the results they expect to get and are willing to find
complementary information

For each ranking output, the only elements considered in the reduced sets
are the elements from Imp or appearing in a bucket together with elements
from Imp. More precisely, we follow the three-steps Input Reducing procedure
described below where Imp represents the set of important elements and Ri,
1 ≤ i ≤ t, represent the rankings for which we want to find a consensus:
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1. First we compute for each ranking Ri, 1 ≤ i ≤ t the set of elements from
Imp or appearing in a bucket together with elements from Imp, denoted
Imp(Ri): Let �i be the smallest index such that Imp ⊂ ∪�i

k=1Bk(Ri). Then
Imp(Ri) = ∪�

k=1Bk(Ri).
2. We then compute the reduced domain D of the rankings by taking the union

of the sets obtained in step 1. D = ∪t
i=1Imp(Ri).

3. We finally consider in each ranking Ri only the elements from D i.e. we
remove from Ri all elements not in D.

Example 4. Say that we have the two following unified rankings R1 and R2,
for which the most important elements are Imp = {1, 2, 3}:

R1 = [{1, 7, 8, 15}, {2}, {3, 9}, {4, 5, 6, 10, 11, 12, 13, 14}]
R2 = [{1, 2}, {4, 5}, {3}, {6, 8, 10, 12, 13}, {7, 9, 14}, {15}]

So, here Imp(R1) = {1, 2, 3, 7, 8, 9, 15}, Imp(R2) = {1, 2, 3, 4, 5} and D =
{1, 2, 3, 4, 5, 7, 8, 9, 15}. We obtain the following reduced rankings by reducing R1

and R2 to domain D:

reduced(R1) = [{1, 7, 8, 15}, {2}, {3, 9}, {4, 5}]
reduced(R2) = [{1, 2}, {4, 5}, {3}, {8}, {7, 9}, {15}]

4 Application to Medical Queries

The results presented in this section have been obtained in close collaboration
with oncologists and pediatricians from the Children’s Hospital of Philadelphia
(Pennsylvania, USA) and the Institut Curie (Paris, France). The complete data
sets are available at http://bioguide-project.net/bioconsert and consists
in the output obtained using each ranking methods on each query, and the
consensus and best consensus obtained using all the techniques described in this
paper. Note that this paper presents a generic method able to provide a consensus
ranking given a set of input rankings: while this section will very briefly describe
the ranking methods chosen to give a concrete use case of our approach, more
details on those points are beyond the scope of this paper.

Collected input data. We have collected queries daily performed by scientists,
and sorted lists of expected answers. We will call Gold standard (GS) the list of
ranked answers expected for each input query. In this paper, we consider only
one kind of query, namely, looking for the genes known to be possibly associated
with the disease X where X can take seven alternative values: Breast cancer,
Prostate cancer, Neuroblastoma, Bladder cancer, Retinoblastoma, ADHD (At-
tention Deficit Hyperactivity Disorder), and Long QT syndrome. For each dis-
ease, the gold standard indicates the list of genes currently known by the team
to be associated with the disease. Very interestingly, physicians have associated
each disease with 5 to 30 genes, no more. However, when querying public portals,
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queries about each of the first three diseases (breast and prostate cancers and
Neuroblastoma) several hundreds of answers are returned while queries about
the last four queries provide more reasonable sets of answers.

Ranking methods and accessing data. We have based our choice of ranking meth-
ods on the current approaches available which have been clearly tested on bi-
ological data. Each ranking method described here after exploits the fact that
biological data form a graph in which nodes are data objects (pieces of data like
a database entry) and arcs are cross-references between objects; the target data
objects mentioned below denotes the data objects obtained in the result.

First, PageRank (PR) [15], which has been used for the first time in the
context of biological data in [5,16], computes for each node a score representing
its authority (popularity), based on the probability that a random walk in the
graph stops on the target data after an infinite number of steps. Second and
third, InEdge (IE) and PathCount (PC), which have been introduced in [17,13],
base their ordering on the number of incoming edges pointing to each target
data object and the number of existing paths to reach each target data object,
respectively. Fourth, BIoggle (BI), is a ranking method introduced in [14], and
takes into account the confidence users may have on databases providing data
objects.

Among these methods, the keywords used as input of a query (e.g., the name
of a disease) can be used by the ranking(-filtering) methods to reduce the search
space. Some methods may consider that all the data crossed in a path should
contain the user keyword while others may only consider that some particular
nodes of the path should contain the keyword, resulting in several sets of answers.

Queries have been run against 22 biological databases accessible through the
EBI SRS platform using the BioGuideSRS system [7]. Ranking modules have
been added to BioGuideSRS, each of them made it possible to obtain a list of
(sets of) genes associated with each disease.

Computing consensus rankings and medians. We have implemented a module in
Maple which computes a consensus ranking given a set of input rankings. More
precisely, our module is able to compute the exact median (with the brute-force
approach, only for very small values of n, i.e. for 2 ≤ n ≤ 8), and a best consensus
using the BioConsert heuristic while considering or not reduced inputs. As the
result of our heuristic is obtained using the ranking chosen as the starting point,
we have considered as starting points the rankings given by all the five methods
described above (GS, BI, IE, PR and PC) plus one ranking, called the tie ranking,
denoted Rtie, which is the ranking where all elements are in the same tie, i.e.,
Rtie = [{1, 2, . . . , n}]. Last, we have implemented the approximation algorithms
of Fagin et al. [9] and Ailon [1] and tested them on our data sets to compare
their results with our results.

The next subsection provides quantitative results on the generation of the best
consensus and the use of the heuristic while subsection 4.2 provides qualitative
results on the benefit of using our approach.
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4.1 Quantitative experiments

In this subsection, we present our results concerning the use of the BioConsert
heuristic and methods for reducing data inputs while comparing them to results
obtained by approximation algorithms. By default, the value of p (which deter-
mines how strongly elements which are ties in one ranking but not in the other
should be penalized) is 1 in this subsection, while a discussion about this point
is made in the last part of this subsection.

Benefit of using the heuristic. In this first experiment, we have considered pure
random sets of data (the exact median could not be computed for a number
of elements higher than 8). We have generated 500 different sets of 4 random
rankings of [n] elements, for each n, 4 ≤ n ≤ 8.

For each of these sets, we have computed (1) the exact median, using a brute-
force algorithm that enumerates all candidate consensus and keeps the best one,
(2) the best consensus obtained by the BioConsert heuristic, (3) the approxima-
tion of the median obtained by the approach of Fagin et al, (4) the approximation
given by the 2-Ailon procedure, (5) the approximation given by the 2var-Ailon
procedure, and (6) the approximation given by the 3/2-Ailon procedure.

We have then compared independently the consensus obtained by the non
exact solutions (2) to (6) with the exact median provided by method (1) by
computing the percentage of cases where the consensus provided was equal to
the exact median.

The results obtained (see Table 1) using BioConsert are particularly good
since in almost all configurations, the consensus obtained is the exact median.
In the very rare cases where the percentage is lower than 100% (meaning that
the best consensus found is not the exact median), the distance between the
exact median and the best consensus obtained using the BioConsert heuristic
was 1. Interestingly, results are not as good following Fagin’s approach: for very
small data sets (n = 4), less than half of the consensus obtained are equal to the
exact median and the percentage of cases where the consensus is equal the exact
median decreases even more when n increases. As for the Ailon’s approaches (all
Ailon’s procedures have been considered here), the exact median is never found.

Considering complete and reduced data sets. In all the following experiments,
we have considered both complete and reduced data (following the procedure

Table 1. Percentage of cases where the exact median is found

n BioConsert Fagin′s approach Ailon′s approaches

4 100% 48.6% 0%

5 100% 43.2% 0%

6 100% 37.6% 0%

7 99,8% 24.2% 0%

8 99,6% 18.4% 0%
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described in Section 3.2). Reduced data sets will systematically appear in the
lower part of the tables and will be postfixed by -red.

For the queries concerning diseases for which very various forms exist and/or
which can be studied in very different contexts (Breast cancer, Prostate cancer,
Neuroblastoma), we have considered reduced data sets only to focus on the
genes having the same importance as genes already known by the physicians.
For information, the size of the reduced data sets are provided on Table 2.

Table 2. Length of unified and reduced rankings for all medical queries

Query Length of unified rankings Length of reduced rankings

Long QT Syndrome 35 35

ADHD 45 15

Breast Cancer 930 386

Prostate Cancer 710 218

Bladder Cancer 308 115

Retinoblastoma 402 37

Neuroblastoma 661 431

On the stability of our approach. As seen in section 3.1 our heuristic BioConsert
starts from one ranking Rstart that can either be one of the five rankings de-
scribed above (GS, BI, IE, PR or PC), or the tie ranking Rtie and performs good
moves until obtaining a consensus ranking (when no more good moves are possi-
ble). So, for each query, we can possibly get a set of 6 different consensus, one for
each Rstart rankings considered. As defined in Section 3.1 the best consensus
rankings (provided to the user) will then be the consensus rankings from this set
that minimize the generalized Kendall-τ distance to the set {BI, IE, PR, PC}.
In this part, our aim is to analyze the stability of our approach: how frequent it
is to obtain several best consensus. In this case, we want to know how far from
each other the best consensus may be.

Stability results obtained for BioConsert are provided on Table 3 which indi-
cates the number of different consensus Ci obtained, the number of different best
consensus obtained and the minimum/average and maximum number of moves
performed by the heuristic to find the consensus rankings. The number of moves
is particularly interesting to consider since it is related to the running time.

As for the results obtained by BioConsert with complete data sets, even when
different starting points (rankings) are considered the same consensus can be
obtained (it is the case for each query where #consensus is lower than 6). More
interestingly, the number of best consensus for each query is equal to 1 meaning
that the user will be provided with only one result.

For the reduced data, there is one case where several best consensus are pro-
vided: In the Retinoblastoma query, three different best consensus have been
found by our heuristics. Let us call them BC1, BC2, and BC3. To test the sta-
bility of our heuristic, we have thus computed the pairwise generalized Kendall-τ
distance between these three best consensus to see how far from each other they
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Table 3. Stability of BioConsert, with complete and reduced data sets

# of moves

Query # Consensus # Best Min Max Average

LQT Syndrome 5 1 4 82 33.5

ADHD 5 1 9 124 54.2

Bladder Cancer 4 1 229 3813 1827

Retinoblastoma 5 1 6 1723 696.5

LQT Syndrome-red 5 1 4 82 33.5

ADHD-red 2 1 2 31 12.8

Breast Cancer-red 6 1 322 1890 945.33

Prostate Cancer-red 5 1 148 992 507.83

Bladder Cancer-red 4 1 46 805 388.8

Retinoblastoma-red 3 3 3 12 8.4

Neuroblastoma-red 5 1 224 2980 1349.5

might be. Note that the maximal K(1) between two rankings of length n is given
by n(n+1)

2 . In the reduced data on Retinoblastoma, n = 37, the maximal distance
is thus 703. The results of the pairwise comparisons obtained are particularly
encouraging since we got K(1)(BC1, BC3) = 33, K(1)(BC1, BC2) = 31 and
K(1)(BC3, BC2) = 64. The mean of these distances is thus 42.6 (< 703).

A last conclusion that we can draw from this set of experiments is on the
number of moves performed by the heuristic, which could be in the worst case
equal to n(n+1)

2 and which is systematically lower, showing that our heuristic is
able to provide results pretty fast.

Comparison with approximation algorithms. Table 4 shows the distance between
the best consensus and the set of rankings R given as input, with our heuristic

Table 4. Results of BioConsert and approximation algorithms (p = 1)

K(1) distance to R = {BI, IE, PR,PC}
Query BioConsert Fagin et al. 2-Ailon 2var-Ailon

Long QT Syndrome 352 434 468 422

ADHD 682 1072 1159 998

Bladder Cancer 23 379 38 867 40 908 29 511

Retinoblastoma 75 183 113 242 117 158 103 439

LQT Syndrome-red 352 434 468 422

ADHD-red 48 93 93 56

Breast Cancer-red 79 027 153 617 175 206 120 794

Prostate Cancer-red 26 392 48 734 53 137 39 201

Bladder Cancer-red 3174 7083 7456 3869

Retinoblastoma-red 653 881 1771 1103

Neuroblastoma-red 56 843 126 401 147 059 93 475.5
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and with approximation algorithms. We have considered using Fagin’s approach,
2-Ailon and 2var-Ailon. It was possible to run the 3/2-Ailon procedure only on
our smallest data set, ADHD reduced, due to the too high memory requirement
of this procedure (as introduced in 2.3). For ADHD-red, 3/2-Ailon gave a best
consensus with a distance of 92 to R, which is much higher than the distance 48
of the best consensus obtained with BioConsert.

More generally, the BioConsert heuristic provides best consensus which are
systematically much closer to the set of rankings R than the consensus obtained
by the Fagin’s and Ailon’s approaches. The variation of 2-Ailon algorithm we
have implemented (removing the step that forces ties to be of size one) provides
better results than Fagin’s but it is still farther from the real median than the
results obtained by BioConsert.

On the role of the parameter p. Recalling that the generalized Kendall-τ distance
depends on a parameter p (see Section 2.3) which determines how important we
want to consider the case where two elements are ties in one ranking but not
ties in the other one. In all the previous experiments, we have chosen to consider
to perform our runs with the value of p equals to 1, in accordance with wishes
expressed by the physicians: two elements ordered in one ranking but tied in the
other should be penalized as strongly as two elements not in the same order.

In this last experiment, we have chosen to study the case where p=1/2 (in
which it is twice more important to penalize two elements which order is not the
same in two rankings than the case where these elements are ties in one ranking
and ordered in the other one). This value was considered in some papers (in
particular Fagin’s et al.) as being appropriate for Web users.

Results are provided in Table 5. Although the difference between results ob-
tained using BioConsert and the approximation algorithms are, as expected,
lower when p=1/2 than when p=1, our heuristic still systematically outperforms
all the approximation algorithms.

4.2 Qualitative Study

In this section, we have studied very precisely the results obtained in close col-
laboration with physicians and using the GeneValorization tool [4] to obtain
information related to the publications associated with the genes involved in a
disease. We have considered reduced data sets.

Using our approach offers three kinds of advantages.
First, providing a consensus ranking clearly helps state the common points

of several rankings. For instance, in the ADHD query, while the gold standard
did not mention them initially, two genes namely HTR1B (#31) and SLC6A2
(#41) appear to be ranked in the top-10 elements. A study of those two genes
allowed us to discover that they were respectively associated with 54 and 392
scientific publications stating the fact that the genes were known to be related to
the ADHD disease. The same kind of conclusions has been drawn in the context
of other queries. For instance, while the gene #495 (PRKCA) was not originally
in the gold standard, it is ranked at position 6 by our consensus ranking which
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Table 5. Results of BioConsert and approximation algorithms (p = 1/2)

K(1/2) distance to R = {BI, IE,PR,PC}
Query BioConsert Fagin et al. 2-Ailon 2var-Ailon

LQT Syndrome 205 244 268 244

ADHD 447.5 691.5 686.5 659.5

Bladder Cancer 17013 24281 25364 19665.5

Retinoblastoma 39155.5 65435.5 67492.5 62807.5

LQT Syndrome-red 205 244 268 244

ADHD-red 32.5 54.5 55.5 38.5

Breast Cancer-red 54 060 76 830 103 816 78 810

Prostate Cancer-red 18 139 26 963 33 198 26 176

Bladder Cancer-red 2307.5 4292 4591 2742.5

Retinoblastoma-red 355 442 919 585

Neuroblastoma-red 39 945.5 74 921.5 93 475.5 47 679.5

is an excellent point since it appeared to be mentioned in 40 publications as
associated with Neuroblastoma.

Second, while physicians may consider several genes as equally importantly
related to the disease, the consensus ranking may help to provide a finer ranking
of their implication. Continuing with the ADHD query, the 3 genes TPH2 (#7),
DRD4 (#2), and DRD5 (#3) appeared to be more important than TPH1 (#6)
while they are all at the same level in the gold standard. Interestingly, the number
of publications associated with each of the three genes has been proved to be
clearly higher (each gene is mentioned in more than a hundred of publications as
associated with ADHD) than TPH1 (5 associated publications). We have been
able to draw the same kind of conclusion in the context of all other queries.

Third, providing a consensus ranking avoids users depending on a result ob-
tained by one ranking only. This can be illustrated by results obtained in the
Prostate cancer query, where the gene #219 (GLS) is given in the top-4 answers
by some rankings (here IE) while it is absolutely not the case in other rankings.
The consensus ranking proposes to minimize the impact of this result by placing
this gene in position 36. A quick look at the annotation file associated with this
gene showed that its implication to the disease is not anymore a reliable infor-
mation. We can find similar situations for example in the Neuroblastoma query,
for which the PC ranking has returned gene #641 in the top-20 results while this
information actually relies on no publication at all. Interestingly, the consensus
ranking obtained has not even placed this object in the top-100 answers.

5 Discussion

In this paper, we have designed and implemented a new method providing a
consensus from rankings possibly composed of different elements, with lists of
sets (ties) while minimizing the disagreements between rankings.
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We have proposed a preprocess able to deal with different data sets to then be
able to work on rankings with ties on the same data sets. Then, while the gen-
eral problem of finding a median of a set of rankings with ties is NP hard, we have
proposed to follow two complementary approaches. First, we have introduced a
method to reduce the input data by focusing on data of interest. Second and more
importantly, we have introduced an heuristic and have compared the results it pro-
vides to the approximation algorithms currently available in the literature [1,9].We
have demonstrated the benefit of using our approach on real biological data sets.

We now discuss related work and provide hints for on going work.
As seen in Section 4.1, our heuristic performs very well compared to approx-

imation algorithms [9,1]. However, it is worth noticing that the aim of approx-
imation approaches is to provide an upper bound of the distance between the
consensus generated by a given approximation algorithm and the exact median.
This kind of work is particularly interesting on a general and theoretical point of
view. In a sense, our approach is more practical, since we introduce an heuristic
able to quickly provide a consensus which should be as close as possible to the
exact median. However, although our approach has provided better results than
the approximation algorithms available on our data sets, in the general case,
we are not able to guarantee what could be the maximal distance between the
consensus we generate and the exact median.

We are investigating several directions in ongoing work. We are currently
considering randomized versions of our heuristic. More precisely, our current
heuristic is greedy: at each step it chooses the first possible operation that lowers
the distance to the set of rankings given as input. This way, it might be the case
that sometimes a local minimum is reached and the heuristic stops at that point.
Considering randomized versions of the heuristic, for example by using a Monte
Carlo algorithm would consist in choosing each possible operation randomly with
a suitable probability at each step. The probability of choosing an operation that
increases the distance to the set of rankings given as input can be nonzero, giving
a possibility to exit from a local minimum. More generally, we plan to compare
our approach with other heuristic search strategies, such as simulated annealing
or genetic algorithm.

Other on going work includes testing our approach on new data sets (which in-
volves large amounts of work with physicians), possibly considering new ranking
methods (as the ones we are currently designing in the context of the BioGuide
project [7]) or studying more precisely the impact of modifying the value of the
parameter p (which helps penalize the fact that two elements are in the same tie
or not). We actually plan to test learning functions to find the value of p which
would fit the best with the physician’s expectations.
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Abstract. Top-k queries allow end-users to focus on the most important (top-k)
answers amongst those which satisfy the query. In traditional databases, a user
defined score function assigns a score value to each tuple and a top-k query re-
turns k tuples with the highest score. In uncertain database, top-k answer depends
not only on the scores but also on the membership probabilities of tuples. Several
top-k definitions covering different aspects of score-probability interplay have
been proposed in recent past [20, 13, 6, 18]. Most of the existing work in this
research field is focused on developing efficient algorithms for answering top-
k queries on static uncertain data. Any change (insertion, deletion of a tuple or
change in membership probability, score of a tuple) in underlying data forces
re-computation of query answers. Such re-computations are not practical consid-
ering the dynamic nature of data in many applications. In this paper, we propose
a truly dynamic data structure that uses ranking function PRF e(α) proposed by
Li et al. [18] under the generally adopted model of x-relations [21]. PRF e can
effectively approximate various other top-k definitions on uncertain data based on
the value of parameter α. An x-relation consists of a number of x-tuples, where
x-tuple is a set of mutually exclusive tuples (up to a constant number) called al-
ternatives. Each x-tuple in a relation randomly instantiates into one tuple from
its alternatives. For an uncertain relation with N tuples, our structure can answer
top-k queries in O(k log N) time, handles an update in O(log N) time and takes
O(N) space. Finally, we evaluate practical efficiency of our structure on both
synthetic and real data.

1 Introduction

The efficient processing of uncertain data is an important issue in many application
domains because of the imprecise nature of data they generate. The nature of uncertainty
in data is quite varied, and often depends on the application domain. In response to this
need, much efforts have been devoted to modeling uncertain data [21, 7, 5, 17, 19]. Most
models have been adopted to possible world semantics, where an uncertain relation is
viewed as a set of possible instances (worlds) and correlation among the tuples governs
generation of these worlds.

Consider traffic monitoring application data [20] (with modified probabilities) as
shown in Table 1, where radar is used to detect car speeds. In this application, data

� This work is supported in part by US NSF Grant CCF–1017623 (R. Shah).
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Table 1. Traffic monitoring data: t1 ,{t2, t4}, {t3, t6}, t5

Time Car Location Plate Number Speed Probability Tuple Id
11:55 L1 Y-245 130 0.30 t1
11:40 L2 X-123 120 0.40 t2
12:05 L3 Z-541 110 0.20 t3
11:50 L4 X-123 105 0.50 t4
12:10 L5 L-110 95 0.30 t5
12:15 L6 Z-541 80 0.45 t6

is inherently uncertain because of errors in reading introduced by nearby high voltage
lines, interference from near by car, human operator error etc. If two radars at different
locations detect the presence of the same car within a short time interval, such as tuples
t2 and t4 as well as t3 and t6, then at most one radar reading can be correct. We use
x-relation model to capture such correlations. An x-tuple τ specifies a set of exclusive
tuples, subject to the constraint

∑
ti∈τ Pr(ti) ≤ 1. The fact that t2 and t4 cannot be true

at the same time, is captured by the x-tuple τ1 = {t2, t4} and similarly τ2 = {t3, t6}.
Probability of a possible world is computed based on the existence probabilities of
tuples present in a world and absence probabilities of tuples in the database that are not
part of a possible world. For example, consider the possible world pw = {t1, t2, t3}.
Its probability is computed by assuming the existence of t1, t2, t3, and the absence of
t4, t5, and t6. However since t2 and t4 are mutually exclusive, presence of tuple t2
implies absence of t4 and same is applicable for tuples t3 and t6. Therefore, Pr(pw) =
0.3 × 0.4× 0.2 × (1 − 0.3) = 0.0168. Top-k queries on a traditional certain database
have been well studied. For such cases, each tuple is associated with a single score value
assigned to it by a scoring function. There is a clear total ordering among tuples based
on score, from which the top-k tuples can be retrieved. However, for answering a top-k
query on uncertain data, we have to take into account both, ordering based on scores
and ordering based on existence probabilities of tuples. Depending on how these two
orderings are combined, various top-k definitions with different semantics have been
proposed in recent times. Most of the existing work is focused only on the problem
of answering a top-k query on a static uncertain data. Though the query time of an
algorithm depends on the choice of a top-k definition, linear scan of tuples achieves the
best bound so far. Therefore, recomputing top-k answers in an application with frequent
insertions and deletions can be extremely inefficient. In this paper, we present a truly
dynamic structure of size O(N) that always maintains the correct answer to the top-k
query for an uncertain database of N tuples. The structure is based on a decomposition
of the problem so that updates can be handled efficiently. Our structure can answer the
top-k query in O(k log N) time, handle update in O(log N) time.

Outline: In Section 2 we review different top-k definitions proposed so far and try to
compare them against a parameterized ranking function PRF e(α) proposed by Li et
al. [18]. We choose PRF e(α) over other definitions as it can approximate many of the
other top-k definitions and can handle data updates efficiently. After formally defining
the problem (Section 3), we explain how PRF e(α) can be computed using divide and



A Truly Dynamic Data Structure for Top-k Queries on Uncertain Data 93

conquer approach (Section 4), which forms the basis of our data structure explained in
Section 5. We present experimental study with real and synthetic data sets in Section 6.
Finally we review the related work in Section 7 before concluding the paper.

2 Top-k Queries on Uncertain Data

Soliman et al. [20] first considered the problem of ranking tuples when there is a score
and probability for each tuple. Several other definitions of ranking have been proposed
since then for probabilistic data.

– Uncertain top-k (U-Topk) [20]: It returns a k-tuple set that appears as top-k answer
in possible worlds with maximum probability.

– Uncertain Rank-k (U-kRanks) [20]: It returns a tuple for each i, such that it has
maximum probability of appearing at rank i across all possible worlds.

– Probabilistic Threshold Query (PT-k) [13]: It returns all the tuples with probability
of appearing in top-k greater than a user specified threshold.

– Expected Rank (E-Rank) [6]: k tuples with highest value of expected rank (er(ti))
are returned.

er(ti) =
∑

Pr(pw)rankpw(ti)

where rankpw(ti) denotes rank of ti in a possible world pw. In case ti does not
appear in possible world, rankpw(ti) is defined as |pw|.

– Quantile Rank (Q-Rank) [15]: k tuples with lowest value of quantile rank (qrφ(ti))
are returned. The φ-quantile rank of ti is the value in the cumulative distributive
function (cdf) of rank(ti), denoted as cdf(rank(ti)) that has a cumulative proba-
bility of φ. Median rank is a special case of φ-quantile rank where φ = 0.5.

– Expected Score (E-Score) [6]: k tuples with highest value of expected score (es(ti))
are returned.

es(ti) = Pr(ti)score(ti)

– Parameterized Ranking Function (PRF) [18]: PRF in its most general form is de-
fined as,

Υ (ti) =
∑

r

w(ti, r)× Pr(ti, r) (1)

where w is the weight function that maps a given tuple-rank pair to a complex
number and Pr(ti, r) denotes the probability of a tuple ti being ranked at position
r across all possible worlds. A top-k query returns those k tuples with the highest
Υ values. Different weight functions can be plugged in to the above definition to
get a range of ranking functions, subsuming most of top-k definitions listed above.
A special ranking function PRF e(α) is obtained by choosing w(ti, r) = αr−1,
where α is a constant. Experimental study in [18] reveals that for some value
of α with the constraint α < 1, PRF e can approximate many existing top-k
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definitions. These experiments use Kendall distance [9] between two top-k answers
as a measure to compare the ranking functions. The “uni-valley” nature of the
graphs obtained by plotting Kendall distance versus varying values of α for var-
ious ranking functions in [18] suggests there exists a value of α for which the
distance of a particular ranking function to PRF e is very small i.e. PRF e(α) can
approximate that function quite well.

Algorithms for computing top-k answers using the above ranking functions have been
studied for static data. Any changes in the underlying data forces re-computation of
query answers. To understand the impact of a change on top-k answers, we analyze rel-
ative ordering of the tuples before and after a change, based on these ranking functions.

Let T = t1, t2, .., tN denote independent tuples sorted in non-increasing order of
their score. We choose insertion of a tuple as a representative case for changes in T ,
and monitor its impact on relative ordering of a pair of tuples (ti, tj). For ranking
function U-kRanks ordering of tuples (ti, tj) may or may not be preserved by insertion
and cannot be guaranteed when the score of a new tuple is higher than that of ti and tj .
Consider a database T = t1, t2, t3 with existence probability values 0.1, 0.5, and 0.2
respectively. When all tuples are independent, probability that tuple ti appears at rank 2
across all possible worlds is given by Pr(ti, 2) = pi

∑i−1
x=1(px

∏i−1
y=1,y �=x(1−py)) [20].

Hence Pr(t2, 2) = 0.05 < Pr(t3, 2) = 0.1 and tuple t3 would be returned as an
answer for U-2Ranks query. Insertion of a new tuple t0 with existence probability 0.25
and score higher than that of t1, causes relative ordering of tuples t2, t3 to be reversed as
after insertion Pr(t2, 2) = 0.15 > Pr(t3, 2) = 0.0975. Thus, existing top-k answers
do not provide any useful information for re-computation of query answers making
it necessary to go through all the tuples again for re-computation in the worst case.
Ranking functions PT-k, E-Rank, Q-Rank may also result in such relative ordering
reversal. However, when tuples are ranked using PRF e(α), the scope of disturbance
in the relative ordering of tuples is limited as explained in later sections. This enables
efficient handling of updates in the database. Therefore, this ranking function is well
suited for answering top-k queries on a dynamic collection of tuples.

3 Problem Statement

Given an uncertain relation T of a dynamic collection of tuples, such that each tuple ti ∈
T is associated with a membership probability value Pr(ti) > 0 and a score score(ti)
computed based on a scoring function, the goal is to retrieve the top-k tuples. Without
loss of generality, we assume all scores to be unique and let t1, t2, ..., tN denotes or-
dering of the tuples in T when sorted in descending order of the score (score(ti) >
score(ti+1)).

We use the parameterized ranking function PRF e(α) proposed by [18] in this paper.
PRF e(α) is defined as,

Υ (ti) =
∑

r

αr−1 × Pr(ti, r) (2)
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where α is a constant and Pr(ti, r) denotes the probability of a tuple ti being ranked at
position r across all possible worlds1. A top-k query returns the k tuples with highest
Υ values. We refer to Υ (ti) as the rank-score of tuple ti. In this paper, we adopt the
x-relation model to capture correlations. An x-tuple τ specifies a set of exclusive tuples,
subject to the constraint Pr(τ) =

∑
ti∈τ Pr(ti) ≤ 1. In a randomly instantiated world

τ takes ti with probability Pr(ti), for i = 1, 2, ..., |τ | or does not appear at all with
probability 1 −∑ti∈τ Pr(ti). Here |τ | represents the number of tuples belonging to
set τ . Let τ(ti) represents an x-tuple to which tuple ti belongs to. In x-relation model,
T can be thought of as a collection of pairwise-disjoint x-tuples. As there are total N
tuples in an uncertain relation T ,

∑
τ∈T |τ | = N . From now onwards we represent

Pr(ti) by short notation pi for simplicity.

4 Computing PRF e(α)

In this section, we derive a closed form expression for the rank-score Υ (ti), fol-
lowed by an algorithm for retrieving the top-1 tuple from a collection of tuples. In the
next section we show that this approach can be easily extended to a data structure for
efficiently retrieving top-k tuples from a dynamic collection of tuples. We begin by as-
suming tuple independence and then consider correlated tuples, where correlations are
represented using x-tuples.

4.1 Assuming Tuple Independence

When all tuples are independent, tuple ti appears at position r in a possible world pw
if and only if exactly (r − 1) tuples with a higher score value appear in pw. Let Si,r

be the probability that a randomly generated world from {t1, t2, ..., ti} has exactly r
tuples [22]. Then, probability of a tuple ti being ranked at r is given as

Pr(ti, r) = piSi−1,r−1 (3)

where,

Si,r =

⎧⎨⎩
piSi−1,r−1 + (1− pi)Si−1,r if i ≥ r > 0
1 if i = r = 0
0 otherwise.

Using above recursion for Si,r and equation 2, 3,

Υ (ti) =
∑

r

αr−1Pr(ti, r) =
∑

r

αr−1piSi−1,r−1

Υ (ti)
pi

=
∑

r

αr−1Si−1,r−1 =
∑

r

αrSi−1,r

1 Pr(ti, r) = 0, for r > i.
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Similarly,

Υ (ti+1)
pi+1

=
∑

r

αrSi,r

=
∑

r

αr(piSi−1,r−1 + (1− pi)Si−1,r)

= αpi

∑
r

αr−1Si−1,r−1 + (1− pi)
∑

r

αrSi−1,r

= (1− (1− α)pi)Υ (ti)/pi

We have the base case, Υ (t1) = p1. Therefore,

Υ (ti) = pi

∏
j<i

(1 − (1− α)pj) (4)

Now, we analyze the contribution of a tuple ti towards global ranking over T using
the above formula as follows.

– Tuple ti contributes mi = pi for the computation of its own rank-score.
– Tuple ti contributes ci = 1 − (1 − α)pi of computing rank-score for all tuples

having score less than that of ti.

Theorem 1. When all tuples in T are independent, rank-score of a tuple ti can be
computed as follows,

Υ (ti) = mi

∏
j<i

cj

where mi = pi and cj = 1− (1− α)pj

��
Answering top-1 query:

We use a divide and conquer approach for answering top-1 query on T , which
forms the basis for our data structure in later section. Let the given relation T =
{t1, t2, ..., tN} be partitioned into sub-reltations Tl = {t1, t2, ..., t�N/2�} and Tr =
{t�N/2�+1, t�N/2�+2, ..., tN}. Also let tl and tr represent the top-1 answer for Tl and
Tr with rank-scores ΥTl

(tl) and ΥTr (tr) respectively, where ΥTl
(tl) is computed by

considering only those tuples tj ∈ Tl and ΥTr (tr) is is computed by considering only
those tuples tj ∈ Tr. Therefore, for ti ∈ Tl, ΥTl

(ti) = mi

∏
j<i,tj∈Tl

cj and similarly
for ti ∈ Tr, ΥTr (ti) = mi

∏
j<i,tj∈Tr

cj .

Now when both the relations Tl and Tr are merged to form T , we make the following
observations using the above analysis:

– The contribution of each tuple towards its own rank-score remains unchanged.
– Since all the tuples in Tr have a lower score value than any tuple ti ∈ Tl they do

not contribute towards the rank-score value of ti computed over entire relation
T . Thus Υ (ti) = ΥTl

(ti). Hence tl still has the highest rank-score value Υ (tl)
among the tuples in Tl.



A Truly Dynamic Data Structure for Top-k Queries on Uncertain Data 97

– Since all the tuples in Tl have higher score value than any tuple ti ∈ Tr, each
tj ∈ Tl contributes 1− (1−α)pj towards rank-score value of ti computed over
entire relation T . Let Cl =

∏
tj∈Tl

cj =
∏

tj∈Tl
1 − (1 − α)pj represents overall

contribution of sub-relation Tl. Then Υ (ti) = ClΥTr (ti). Since rank-score value
of every tuple ti ∈ Tr gets scaled by the same factor Cl, tr still has the highest
rank-score value Υ (tr) among the tuples in Tr.

Therefore the top-1 answer over uncertain relation T can be chosen from tl and tr based
on the their rank-score values computed over the entire relation.

4.2 Supporting Correlations

If tuple ti has some preceding alternatives, then equation 4 cannot be used to compute
its rank-score since the event that ti appears at a position r in a possible world, is no
longer independent of the event that exactly r − 1 tuples appear in {t1, t2, ..., ti−1}, as
in equation 3. To overcome this difficulty, we convert the relation T to T̄ i where all the
tuples are independent [22]. For any tuple ti, let τ i be the pruned version of τ such that it
consists of all tuples from τ that have higher score value than that of ti i.e. τ i = {tj|tj ∈
τ, j < i}. For example, let T = {τ1, τ2, τ3} where, τ1 = {t1, t3, t6}, τ2 = {t2, t7} and
τ3 = {t4, t5} then τ5

1 = {t1, t3}, τ5
2 = {t2} and τ5

3 = {t4}. Now for each x-tuple
τ ∈ T , we create an x-tuple τ̄ = {t̄} in T̄ i such that:

Pr(τ̄ ) = Pr(t̄) =
{

Pr(τ i) if τ �= τ(ti)
Pr(ti) otherwise.

This conversion takes into account the fact that only tuples with a score higher than
that of ti contribute to Pr(ti, r) as well as to Υ (ti), and the presence of ti implies ab-
sence of all its related tuples. Combining related tuples into a representative tuple t̄ does
not affect Υ (ti) here, since the probability that t̄ appears is the same as the probability
that any one tuple in τ ∈ T with score higher than score(ti) appears. In other words,
Υ (ti) computed using transformed relation T̄ i is same as Υ (ti) computed using original
relation T . However as all the tuples in T̄ i are independent among themselves, we can
now use equation 4 on T̄ i to compute the rank-score of tuple ti. Therefore,

Υ (ti) = pi

∏
t̄∈T̄ i

τ̄(t̄) �=τ(ti)

(1− (1− α)Pr(t̄))

= pi

∏
τ∈T

τ �=τ(ti)

(1− (1 − α)Pr(τ i))
(5)

Now, we analyze the contribution of an x-tuple towards global ranking over T using the
above formula as follows.

– x-tuple τ contributes mi = pi for computing rank-score of a tuple ti ∈ τ .
– x-tuple τ contributes ci = 1 − (1 − α)Pr(τ i) for computing rank-score of a

tuple ti /∈ τ .
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Answering top-1 query:

Again, we attempt to use a divide and conquer algorithm for answering top-1 query
on T by partitioning relation T = {t1, t2, ..., tN} into sub-relations Tl = {t1, t2, ...,
t�N/2�} and Tr = {t�N/2�+1, t�N/2�+2, ..., tN} and assuming tl, tr represent the top-1
answers for Tl, Tr respectively. If property that tl and tr remains highest rank-score
tuples in their respective sub-relations even after merging of Tl and Tr, holds true then
reporting top-1 for relation T can be done by simply comparing rank-score values of
tl and tr over entire relation T . Unfortunately, this property may not hold true for tr.

To illustrate the problem, consider an uncertain relation T = {t1, t2, t3, t4} with
p1 = 0.35, p2 = 0.3, p3 = 0.4, p4 = 0.45 and tuples t2 and t3 are mutually exclusive.
Using equation 5, rank-scores can be computed as follows (α = 0.8):

Υ (t1) = 0.35
Υ (t2) = 0.3(1− 0.2× 0.35) = 0.28
Υ (t3) = 0.4(1− 0.2× 0.35) = 0.37
Υ (t4) = 0.45(1− 0.2× 0.35)(1− 0.2× (0.3 + 0.4)) = 0.36

Top-1 query on T should return tuple t3 with highest rank-score value 0.37. By
adopting the divide and conquer approach to tackle the problem, we partition the given
relation into Tl = {t1, t2} and Tr = {t3, t4}. Top-1 query is applied to these sub-
relations as follows.

ΥTl
(t1) = 0.35 ΥTl

(t2) = 0.3(1− 0.2× 0.35) = 0.28
ΥTr (t3) = 0.4 ΥTr (t4) = 0.45(1−0.2×0.4) = 0.41

Thus t1 and t4 will be reported from Tl and Tr as top-1 answers respectively. By
simple merge operation, which computes rank-score values for t1, t4 over relation T
and comparing them, t1 will be reported as top-1 answer for T . However actual top-1
answer is tuple t3. The fact that dependance of t2 and t3 was ignored while answering
top-1 over sub-relation Tr is the root cause behind the disturbance in relative ordering
of t3 and t4.

Therefore in order to maintain the relative ordering of tuples based on their rank-
score over entire relation during merge, we redefine the expressions for contributions
as follows. Here we use the notation p̂i for sum of probabilities of all tuples tj which
are related to ti and have score greater than the score of ti (i.e. j < i). In the above
example p̂3 = p2 = 0.3.

p̂i = Pr([τ(ti)]i) =
∑

τ(ti)=τ(tj)
j<i

pj

Now equation 5 can be re arranged as follows,

Υ (ti) =
pi

(1− (1− α)p̂i)

∏
τ∈T

(1− (1− α)Pr(τ i))
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Υ (ti)
mi

=
∏
τ∈T

(1− (1− α)Pr(τ i))

where mi = pi

(1−(1−α)p̂i)

Similarly,

Υ (ti+1)
mi+1

=
∏
τ∈T

(1− (1− α)Pr(τ i+1))

Here note that Pr(τ i) = Pr(τ i+1) for all τ �= τ(ti). From the above two equations,(
Υ (ti+1)
mi+1

)
/

(
Υ (ti)
mi

)
=

1− (1− α)Pr([τ(ti)]i+1)
1− (1− α)Pr([τ(ti)]i)

=
1− (1− α)(p̂i + pi)

1− (1 − α)p̂i

= ci

The base case is Υ (t1) = p1. Therefore we can rewrite equation 5 as follows,

Υ (ti+1)
mi+1

= ci
Υ (ti)
mi

= cici−1
Υ (ti−1)
mi−1

= ... =
∏
j≤i

cj (6)

The result is summarized in following theorem.

Theorem 2. For an uncertain relation T , rank-score of a tuple ti can be computed
as,

Υ (ti) = mi

∏
j<i

cj

where mi = pi

(1−(1−α)p̂i)
, ci = 1−(1−α)(p̂i+pi)

1−(1−α)p̂i
and p̂i =

∑
tr, where ti and tr are

mutually exclusive and r < i. ��
This equation is applicable for dependent as well as independent tuples. Note that here
mi and ci are dependent only on the tuples which are related to ti, hence can be com-
puted/updated efficiently. Moreover, the contribution ci of a tuple ti to the rank-score
of a tuple tj is the same for all j > i. Hence, the relative ordering will not change even
if we use our divide and conquer approach.

Consider the same example as before. We begin by computing values of mi and ci

for each tuple.

m1 = 0.35 m2 = 0.3 m3 = 0.4
(1−0.2×0.3) = 0.43 m4 = 0.45

c1 = (1− 0.2× 0.35) = 0.93 c2 = (1− 0.2× 0.3) = 0.94
c3 = (1−0.2×(0.3+0.4))

(1−0.2×0.3) = 0.91 c4 = (1−0.2×0.45) = 0.91
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Now, we partition T into Tl = {t1, t2} and Tr = {t3, t4} and apply top-1 query to
these sub-relations.

ΥTl
(t1) = m1 = 0.35 ΥTl

(t2) = m2 × c1 = 0.3× 0.94 = 0.28
ΥTr (t3) = m3 = 0.43 ΥTr (t4) = m4× c3 = 0.45× 0.91 = 0.41

It can be seen that t1 and t3 are chosen as top-1 from Tl and Tr respectively. During
next comparison, t3 (Υ (t3) = m3× c1× c2 = 0.37) will be reported as the top-1 tuple,
which is correct.

Table 2. Calculation of rank-scores of tuples in Table 1 (α = 0.9) : t1 ,{t2, t4}, {t3, t6}, t5

Tuple Probability m c Υ

t1 0.30 0.300 0.970 0.300
t2 0.40 0.400 0.960 0.388
t3 0.20 0.200 0.980 0.186
t4 0.50 0.521 0.948 0.475
t5 0.30 0.300 0.970 0.260
t6 0.45 0.459 0.954 0.385

5 Our Data Structure

In the earlier sections, we derived the simple closed form expression for calculating
Υ (ti) for a tuple ti. Now our task is to maintain a dynamic collection of tuples, such
that for a given query k, we retrieve top-k rank-scored tuples efficiently. We use
data structural approach for this problem. Our structure is a balanced binary search
tree Δ (e.g. Red black tree, AVL tree) such that each leaf corresponds to a tuple in
an uncertain relation T . Moreover, leaves in the tree are sorted in decreasing order of
the score i.e. leaves �1, �2, ..., �N of the tree represent tuples t1, t2, ..., tN in the same
order from left to right, such that score(ti) > score(ti+1). Let Tu represents the sub-
relation containing tuples associated with leaves of a subtree rooted at node u. i.e. Tu =
{tu′ , tu′+1, ..., tu′′} and �u′ represents the left-most and �u′′ represents the right-most
leaf of node u. At each node u, we store a triplet (topu, Mu, Cu) such that:

– topu is the tuple (represented by �u∗) with highest rank-score among tuples in
sub-relation Tu. Here u′ ≤ u∗ ≤ u′′.

– Mu is the contribution of all tuples in Tu towards rank-score of tuple topu.

Mu = mu∗
∏

u′≤i<u∗
ci

– Cu is the contribution of all tuples in Tu towards rank-score of tuple ti such that
i > u′′, where �u′′ is the right-most leaf of the subtree rooted at node u.

Cu =
∏

u′≤i≤u′′
ci
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Since our data structure stores only a constant number of information at each node,
and the number of nodes are bounded by O(N), the total space requirement of our data
structure is O(N).

If node u is a leaf node representing the tuple ti, then Mu = mi, topu = ti and
Cu = ci. If u is an internal node, this information can be computed using the MERGE

operation given below. Figure 1 shows an example for the uncertain data in table 2.

MERGE(u):
v = left− child(u), w = right− child(u)
if Mv > Cv ×Mw then topu = topv else topu = topw

Mu = max (Mv, Cv ×Mw)
Cu = Cv × Cw

Theorem 3. The data structure Δ maintains a dynamic collection of tuples such that
top-1 tuple, t1 = toproot and Υ (t1) = Mroot.

Proof by contradiction: Let ta be the actual top-1 and toproot �= ta. Let u be the closest
node from root, such that topu = ta, that means topparent(u) = tb �= ta. This is
because during the merge operation at parent(u), ma

∏
x≤i<a ci < mb

∏
x≤i<b ci ,

where �x is the leftmost leaf of parent(u). Multiplying both the sides of the equation
with

∏
i<x ci, we get Υ (ta) < Υ (tb), which is a contradiction to the statement that ta

is the highest rank-scored tuple. Therefore t1(= ta) will always be at the root and
Mroot = ma

∏
1≤i<a ci = Υ (ta) = Υ (t1). ��

Fig. 1. The data structure for uncertain database in Table 2

In the following subsections, we show how to perform different operations such as
update-leaf, insert-leaf and delete-leaf on this tree. Later, we use these op-
erations for retrieving top-k tuples, insertion and deletion of tuples.

5.1 Update-Leaf

The values mi and ci within a leaf node �i can be changed in constant time. But this will
change the m and c values at all nodes which are in the path from �i to root. Therefore
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we need to perform MERGE operation on all nodes in the path from �i to root, starting
from parent(�i). Since the height of a balanced binary tree is bounded by O(log N),
the total time for update-leaf can also be bounded by O(log N).

Theorem 4. The mi and ci values of a leaf can be updated in O(log N) time.

5.2 Insert-Leaf and Delete-Leaf

We first explain, how a one-to-one correspondence between tree leaves and tuples in
relation T can be maintained during insertion or deletion of a leaf.

– Insert: To insert a new leaf, we begin by carrying out standard insert procedure of
a binary search tree, which would create a new leaf node v. Let w be the parent of
this newly created node. Node w being the leaf prior to insertion of v, represents
a single tuple from T and should remain as a leaf after insertion of v as well. This
can be achieved by creating a new internal node u, which becomes the parent of v
and w.

– Delete: If deletion of a node results in an internal node with only one child, we
perform recursive delete on that internal node.

After insert or delete of a leaf node �i, we need to update the M and C values at each
node along the path of insertion or deletion. This can be achieved by performing MERGE
operation in bottom-up fashion beginning with parent(�i). If tree goes out of balance
after insert or delete, necessary rebalancing may force further re-computation at nodes
whose left or right subtree is changed. However, such nodes are bounded by the height
O(log N) of the tree. Hence Insert-leaf and Delete-leaf operations can be done
O(log N) time.

5.3 Retrieving Top-k Tuples

In theorem 3, we proved that, by MERGE operation the top-1 tuple t1 will be propagated
to root node as toproot. Therefore t1 can be retrieved in constant time. In order to
retrieve the top-2 tuple t2, we use the following strategy. After retrieving t1, we set
Υ (t1) = 0. As a result, the next highest rank-scored tuple t2 will be propagated as
toproot instead of t1. This can be achieved by performing Update-leaf operation on
leaf �j (leaf representing the current toproot = tj), with it mj value set to zero. As
cj remains unchanged, update operation affects only the computation of rank-score
of tj leaving rank-score of all other tuples unchanged. Repeating the same process,
we can retrieve top-k tuples with highest rank-score values. We can revert back the
changes done in data structure for answering top-k query by restoring the m values
for k retrieved tuples using Update-leaf operation. Figure 2 shows an example for
retrieving top-2 tuple from the uncertain data in table 1.

Retrieving Top-k:
for i = 1 to k

tj = toproot

report toproot as top-i tuple
Update-leaf(tj) with mj = 0
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Theorem 5. Top-k rank-scored tuples can be retrieved in O(k log N) time.

Proof: For every tuple tj retrieved for answering top-k query, we performUpdate-leaf

operation twice: once for setting mj = 0 so that tuple with next highest rank-score
can be retrieved and next after reporting top-k answers so as to restore the tree changes.
Since Update-leaf is a O(log N) time operation, total time for top-k retrieval can be
bounded by O(k log N).

Fig. 2. The data structure in Figure 1 after setting m4 = 0 for retrieving top-2

5.4 Insert-Tuple and Delete-Tuple

Whenever a tuple ti gets inserted(deleted) from relation T , we modify our data structure
as follows:

– We begin by carrying out Insert-leaf or Delete-leaf operation as necessary.
If ti is an independent tuple then at this point all nodes in the tree Δ have correct
values for C and M . Hence no further action is necessary.

– If ti is not independent, then its insertion(deletion) will change mj and cj values
for all leaf nodes corresponding to tuples tj such that j > i and τ(ti) = τ(tj).
These changes can be accommodated by performing Update-leaf operation on
each �j .

Figure 3 shows an example of inserting a new tuple t∗(with score(t2) > score(t∗) >
score(t3)) and is mutually exclusive with t5 in the uncertain data in table 2 and figure 4
shows an example for deletion of a tuple. Thus insertion(deletion) of a tuple can result
in one Insert-leaf or Delete-leaf operation and at max |τ(ti)| Update-leaf
operations. Since any x-tuple can have only constant number of tuples, tuple insertion
and deletion can be handled in O(log N) time. We note that updating of tuples can be
simulated by first deleting and then reinserting it with updated values.

We summarize the space requirement and performance of the proposed data structure
in the following theorem.

Theorem 6. A collection of uncertain data (N tuples) can be maintained using a lin-
ear size dynamic data structure, which can retrieve top-k rank-scored tuples in
O(k log N) time, and can support insertion or deletion of a tuple t in O(d log N) time,
where d is the number of tuples which are related to t. ��
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Fig. 3. The data structure in Figure 1 after inserting t*

Fig. 4. The data structure in Figure 1 after deleting t4

6 Experimental Study

In this section, we present an experimental study with both synthetic and real data
evaluating effectiveness of the data structure in handling changes in underlying database
and answering top-k queries. All experiments were conducted on 2.4 GHz Intel Core 2
Duo machine with 2GB memory running MAC OS 10.6.4.

Datasets: We created a synthetic dataset containing 100,000 tuples. Score of a each
tuple is chosen uniformly at random from [0,100000] and it’s probability is uniformly
distributed in (0.5× 10−5, 1.5× 10−5). The number of tuples involved in each x-tuple
follows the uniform distribution (2,10).

Along with synthetic datasets, we also use International Ice Patrol (IIP) Iceberg
Sighting Database 1. Each sighting record in the database contains date, location, num-
ber of days the iceberg has drifted, etc. As it is crucial to detect the icebergs drifting for
long periods, we use the number of days drifted as ranking score. The sighting record
also contains a confidence-level attribute according to the source of sighting: R/V (radar
and visual), VIS (visual only), RAD (radar only), SAT-LOW (low earth orbit satellite),
SAT-MED (medium earth orbit satellite), SAT-HIGH (high earth orbit satellite), and

1 http://nsidc.org/data/g00807.html
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EST (estimated). We converted these seven confidence levels into probabilities 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, and 0.4 respectively. We gathered all records from 1981 to 1991 and
1998 to 2004. Based on it then we created 100,000 tuples dataset by repeatedly select-
ing records randomly.

Results: Experiments in [18] illustrate the effectiveness of ranking function PRF e(α)
at approximating other ranking functions for varying values of α (α = 1 − 0.9i, 0 ≤
i ≤ 200), where normalized Kendall distance [9] is used to evaluate closeness be-
tween the top-100 answers computed using a specific ranking function and PRF e(α).
As revealed by these experiments, ranking functions U-kRanks, PT-k are best ap-
proximated by PRF e(α) for i ≈ 50, hence we choose α = 1 − 0.950 for all of our
experiments. Choice of α only determines the quality of approximation and does not
affect the query performance of our data structure.
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Fig. 5. Top-k query performance on real and synthetic data

We begin by evaluating the query performance of the data structure. We retrieve top-
k tuples from both the datasets for k ranging from 10 to 100. Linear dependance of
query time as obtained in the time bounds is evident from the results show in Figure 5.
Also we can note that, correlations among tuples does not affect the query time of our
data structure.

Next set of experiments conducted shows efficiency of our data structure in handling
tuple insertions and deletions. Time required for inserting and deleting 100 tuples is
measured for datasets of varying sizes. Figure 6 (a) and (b) shows that processing time
per tuple increases slowly with data size. Whenever a tuple is inserted or deleted, to
maintain the correctness of data structure, we also need to update information for leaves
corresponding to its related tuples. As all tuples in real data set are assumed to be
independent, average insertion/deletion time of a tuple is less than in case of synthetic
data having correlations. For synthetic dataset, an x-tuple is selected at random to which
a new tuple is added or from which a existing tuple is deleted. We ensure the x-tuple
probability to be less than 1 to which a new tuple is being inserted. Position of a new
tuple to be inserted in score-sorted ordering of tuples is selected at random whereas
tuple to be deleted is always the highest scored tuple in the victim x-tuple. This results
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Fig. 6. Processing (insert, delete, top-k) cost on (a) real dataset (b) synthetic dataset

in more number of Update-leaf operations per tuple deleted than for tuple inserted
and its effect on tuple insertion/deletion can be seen from figure 6 (b).

The proposed data structure can also be used when data arrives in streaming fashion.
Jin et al. [16] have studied the problem of answering top-k queries on sliding windows.
Our data structure achieves performance comparable to synopses proposed by them in
terms of handling tuple insertion and deletions. Even though our data structure takes
linear size as compared to these space efficient synopses, it can be noted that they rely
on random order stream model used in streams algorithm community [1, 2, 11] and in
worst case would take linear size as well.

7 Related Work

Uncertain data management has attracted a lot of attention in recent years due to an
increase in the number of application domains that naturally generate uncertain data.
These include sensor networks [8], data cleaning [12] and data integration [10, 3].
Several probabilistic data models have been proposed to capture data uncertainty (e.g
TRIO [21], MYSTIQ [7], MayBMS [14], ORION [5], PrDB [19]). Virtually all models
have adopted possible worlds semantics. Each data model captures tuple uncertainty
(existence probabilities are attached to the tuples of the database), or attribute uncer-
tainty (probability distributions are attached to the attributes) or both. Further distinction
can be made among these models based on support for correlations. Most of the work in
probabilistic databases has either assumed independence or supports restricted correla-
tions, mutual exclusion being the most common. Recently proposed approaches [19, 17]
extend the support for any arbitrary correlations.

Efforts have been made in recent times to extend the semantics of “top-k” to un-
certain databases. Soliman et al. [20] defined the problem of ranking over uncertain
databases. They proposed two ranking functions, namely U-Topk and U-kRanks, and
proposed algorithms for each of them. Improved algorithms for the same ranking func-
tions were presented later by Yi et al. [22]. Hua et al. [13] proposed another top-k
definition PT-k (probabilistic threshold queries) and proposed efficient solutions. Cor-
mode et al. [6] defined number of key properties satisfied by “top-k” over deterministic
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data including exact-k, containment, unique-rank, value-invariance, and stability. With
each of the existing top-k definition lacking one or more of these properties, Cormode
at al. [6] proposed yet another ranking function expected- rank. As the list of top-k
definitions continued to grow, Li et al. [18] argued that a single specific ranking function
may not be appropriate to rank different uncertain databases and empirically illustrated
the diverse, conflicting nature of parameterized ranking functions that generalize or can
approximate many know ranking functions.

With most of the work for top-k query processing being focused on “one-shot” top-k
query for static uncertain data, Chen and Yi [4] were the first to address the dynamic
aspect of uncertain data. They proposed a dynamic data structure to support arbitrary
insertions and deletions. For an uncertain relation with N tuples, the structure of [4]
answers top-k queries in O(k + log N) time, handles an update in O(k log k log N)
time and takes O(N) space. However, this structure is tied to a single ranking function
i.e. U-Topk and works only for independent tuples. Moreover, it can be built for some
fixed k value and cannot answer a top-j for j > k. Dependance of time, required for
handling update, on k is also not desirable. Recently, Jin et al. [16] proposed a frame-
work for sliding window top-k queries on uncertain streams supporting several ranking
functions. This framework assumes random-order stream model which significantly re-
duces the space requirement as compared to the worst-case scenario in which any data
structure will have to remember every tuple in the current window.

8 Conclusions

In this paper we present a dynamic data structure, which can retrieve top-k tuples in
O(k log N) time and has update cost of O(log N). We also evaluate efficiency of pro-
posed data structure with experiments using synthetic and real data. It is an open ques-
tion if, we can improve the top-k retrieval time to O(k + log N) without sacrificing
update time or is there any lower bound for this problem?
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Abstract. Data archiving has been commonly used in many fields for data
backup and analysis purposes. Although comprehensive application software,
new computing and storage technologies, and the Internet have made it easier
to create, collect and store all types of data, the meaningful storing, accessing,
and managing of database archives in a cost-effective way remains extremely
challenging. In this paper, we focus on hierarchical data archiving that has been
popularly used in the scientific field and web data management. First, we pro-
pose a novel compaction scheme for archiving hierarchical data. By compacting
both data and timestamps, our scheme substantially reduces not only the amount
of needed storage, but also the incremental archiving time. Second, we design a
temporal query language to support data retrieval from the compact data archives.
Third, as compaction on data and timestamps may bring significant overhead to
query evaluation, we investigate how to optimize such overhead by exploiting
the characteristics of the queries and of the archived hierarchical data. Finally,
we conduct an extensive experimentation to demonstrate the effectiveness and
efficiency of both our efficient storage and query optimization techniques.

1 Introduction

Recent years have witnessed an increasing number of enterprises and organizations
archive their databases. The reasons of such activity include the mandate to comply
with legal and governmental regulations, serving the need for data backup and recovery,
and enabling analytical processing to discover data evolutional patterns. For instance,
from biology to astronomy, it is necessary to keep track of all previous versions of
the scientific data for later verification purposes [8]. However, as increasing volumes
of these data being accumulated, their archives can reach a critical mass. Where once
megabytes and gigabytes of data needed to be managed, now terabytes and petabytes
are a common ground. Although comprehensive application software, new computing
and storage technologies, and the Internet have made it easier to create, collect and
store all types of data, the meaningful storing, accessing, and managing of the archiving
databases in a cost-effective way keeps to be extremely challenging.

In this paper, we focus on archiving hierarchical data in the form of Extensible
Markup Language (XML). XML has been largely used in scientific domains [8] and
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many other domains, for example, Web data management. Unfortunately, DBMS ven-
dors and standard groups have not moved aggressively to extend their systems with
support for hierarchical data archiving databases. The need for an efficient hierarchical
data archiving system is not met and awaits for the development of new techniques.

The management of XML archiving databases involves two fundamental issues:
(1) how to store successive versions of XML databases in an archiving database in a
cost-effective way, and (2) how to efficiently evaluate queries with temporal expres-
sions over the archiving database. A naive approach for storing successive versions of
data consists in storing each version separately. This is undesirable because: (1) the stor-
age can easily grow to be prohibitively expensive as it can become many times larger
than the base data [6,15,22], and (2) evaluating temporal queries over databases stored
in this way is highly inefficient. On the other hand, careless design of techniques that
reduce the storage space may bring significant overhead to the evaluation of temporal
queries over the archiving database.

While there has been previous research on the compact storage of archived hierarchi-
cal data [8,18,21], little effort has been devoted to the efficient evaluation of temporal
queries over the compact storage. To address this problem, we develop an archiving
system for hierarchical databases that combines the compact storage with optimization
techniques for the evaluation of the temporal constraints of the queries.

To the best of our knowledge, this is the first paper to address the problem of opti-
mizing the evaluation of temporal constraints of queries on compacted archiving XML
databases. The main contributions of this paper are:

• We propose a novel compact and updateable storage scheme for XML archiving
databases. We show how our storage scheme supports efficient incremental updates
to the archiving database upon addition of new database instances (Section 3). Com-
pared to the archiving database scheme of [8], we share the same goal of reducing the
storage size. However, in contrast to the timestamp compaction scheme of [8] which
recovers the timestamps through a top-down propagation in the archiving database,
our approach recovers the timestamps through a bottom-up propagation. Our experi-
ments show that our approach outperforms the top-down approach in terms of update
cost (Section 6).

• We design a simple yet expressive language for temporal tree pattern queries in
archiving database systems. In order to support evaluation of temporal constraints
on the compact storage, we define three temporal evaluation annotations, namely
DC, LC, and NC. These annotations cover three situations where the corresponding
constraint: (1) must be validated by recovering timestamps in the archive, (2) can be
validated locally without navigation, and (3) does not need validation at all
(Section 4).

• We formulate the problem of optimizing the evaluation of the temporal constraints.
First, we provide a cost model for these annotations, and formally define the op-
timization problem as finding a minimal annotation for the constraints of a query
by replacing as many annotations as possible with cheaper ones (Section 5.1). Sec-
ond, in order to address this problem, we design inference rules that derive times-
tamp set containment relationships between query nodes (Section 5.2). The inference
rules exploit structural information of the queries and also of the database when a
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database schema is available. Third, we design an optimization algorithm for tem-
poral queries, and show that its cost is polynomial on the size of the input query and
the database schema (Section 5.3).

• We use extensive experimentation to prove both the efficiency and effectiveness of
our techniques on compacting XML databases and incrementally updating XML
archives and on optimizing the evaluation of temporal constraints in queries
(Section 6).

We present preliminary material in Section 2. We discuss related work in Section 7, and
summarize the paper and suggest future work in Section 8.

2 Updating XML databases

Database instances and Archiving databases. An XML database can be modeled as
a tree. The nodes in the tree are labeled by element tags, attributes, or values. The
edges in the tree represent element-subelement, element-attribute, and element-value
relationships. We assume that XML tree nodes are assigned identifiers. The identifier
of a node remains unchanged if the node is not deleted. Every newly inserted node gets
a new identifier. For simplicity, we assume that the XML instance tree contains only
element and value nodes.

The updates on the database create different database instances (versions). Each
instance is identified by a timestamp which is represented by a version number. Multiple
temporal database instances can be merged into a (temporal) XML database, which is
called archiving database.

Note that here we do not deal with the identification of unchanged nodes across
multiple instances [8], or with the detection of changes and the computation of diffs
in hierarchical data [11,13,20,27]. These issues are orthogonal to those dealt with in
this paper. Algorithms for these tasks can be employed prior to applying the techniques
presented in this paper, in order to detect unchanged and new nodes and to assign node
identifiers.

Update operations. We consider any type of update operations on XML trees: insertion
of a tree below a node, deletion of a subtree rooted at a node, and replacement of a
subtree rooted at a node by another tree. An inserted/deleted tree can trivially consist of
a single node. For node identifier assignment reasons, a modification of a tree is viewed
as a deletion of a subtree followed by an insertion of a tree. Therefore, in the following,
an update operation refers to an insertions or a deletion. These operations are denoted
as follows (the XML database D is implicit):

– ins(q, T ): insert a tree T into the database D. All the nodes in T have new identi-
fiers. The root of T becomes a child of node q in the resulting database.

– del(p): delete from D the subtree rooted at node p.

If a DTD is present, we assume that the initial database and any database resulting by
the application of an update operation complies with the DTD.

One can see that the cascading application of a sequence of update operations can be
modeled by the application of a set of deletions followed by the application of a set of
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(a) instance 1 (b) instance 2

(c) instance 3 (d) instance 4

Fig. 1. Four consecutive instances of an extract of the Swiss-Prot Dataset

Fig. 2. The compact storage of the four Swiss-Prot database instances of Figure 1

insertions. Specifically, given a database D and a sequence of update operations whose
cascading application results in a database D′, there is

(a) a set ds of deletion operations del(p1), . . . , del(pn) such that no pi is an ancestor
of a pj, i, j ∈ [1, n], (that is, the subtrees rooted at the pi’s are disjoint), and

(b) a set is of insertion operations ins(q1, T1), . . . , ins(qm, Tm) such that no qi, i ∈
[1, m], is a descendant or self of a pj, j ∈ [1, n].

that satisfy the following property: database D′ can be obtained from D by applying
first the operations in ds and then those of is in any order.

In the following we assume that for any two consecutive instances Di and Di+1 of
the database that are added to the archiving database, the two sets of update operations
dsi and isi used to produce Di from Di+1 are available.

3 Compact Storage of Archiving Databases

A naive approach for storing multiple instances of a database D consists in storing
these instances separately. This is undesirable because: (i) the storage space increases
significantly in the long run especially for databases with frequent updates, and (ii) an-
swering queries across multiple instances may be complex. For example, finding when
a particular data piece first appeared in history or when it was last changed may require
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traversing a very large number of instances. For this reason, XML archiving databases
are designed with compact storage schemes which merge multiple instances and com-
pact timestamps.

Merging instances. Successive instances of the XML database D to be archived share
a significant portion of identical nodes. This suggests merging these versions by storing
the multiple occurrences of the same node only once in the archiving database A. In
this direction, with every node in A, we associate a timestamp set which contains the
timestamps of the instances of D in which this node is valid. The timestamp set of
a node p is denoted ts(p). When the timestamps in a timestamp set are successive,
ts(p) is denoted by a timestamp interval [tl, tu], where (a) tl is the timestamp of the
instance at which node n was first created, and (b) tu is either the timestamp of the
latest instance merged into A or the timestamp of the last instance in which this node is
valid (in the latter case, tu is smaller than the timestamp of the latest merged instance).
If tl = tu, the timestamp set is denoted [tl]. When a new instance of D is inserted
into A, the nodes with the same ID are merged and the corresponding timestamps are
updated accordingly. Note that once a node is inserted into A it is never removed. Its
timestamp set though will be modified. Figure 1 shows four instances of a database.
Node IDs are shown as superscripts of the node labels. Figure 2 shows the archiving
database resulting by merging the four database instances of Figure 1. The timestamp
sets are shown by the nodes preceded by “ts=”.

Timestamp set compaction. An important observation is that in hierarchical databases,
a node is not inserted before or removed after its ancestors. Because of this, a mono-
tonicity property holds between the timestamps of ancestor and descendant nodes in
the archiving database which states that given an XML archiving database A and two
nodes p, q ∈ A such that p is an ancestor of q, it is always true that ts(q) ⊆ ts(p). This
can lead to a large number of repeated timestamps in the archiving database. To avoid
this storage redundancy, we suggest a timestamp set compaction scheme which instead
of storing with every node in A its timestamp set, it assigns to some nodes and stores
only timestamp labels from which the timestamp sets of all the nodes can be computed:
given a node p and its children nodes c1, . . . , cn in A, the timestamp label Lp of p is
Lp = ts(p)−∪n

i=1ts(ci). Intuitively, the timestamp label of a node in A only preserves
the timestamps that are not present within the timestamp sets of any of its children. If
Lp = ∅, no timestamp label is assigned to node p in A. Figure 2 shows an example of
the new timestamp set compaction scheme. Only some nodes have timestamp labels.
They are shown in a gray background by the owning nodes. This is the only timestamp
information stored in the archive.

The new compaction scheme contrasts with the compaction scheme of [8] where a
timestamp is stored at a child node in A only when it is different from the timestamp
of its parent node. In this sense, [8] recovers the timestamp sets of the nodes in A by
propagating timestamps top down as opposed to our approach where timestamp sets
are computed by propagating timestamps bottom up. In the following, we refer to the
compaction scheme in [8] as top-down (TD) and to ours as bottom-up (BU).

Incremental timestamp label computation. When adding a new instance of D into
A, a naive method for updating A merges the new database instance into A first, then
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applies a timestamp set compaction procedure as described above to the merged re-
sult. In this process, the new database instance comes with its timestamp labeling all its
nodes and these timestamps are added to the timestamp sets of the nodes with the same
ID in the resulting archive before applying the compaction process. Since both A and
D may be large, this method may incur a significant amount of unnecessary overhead.
Therefore, we propose below a procedure for adding a new database instance into A,
with the timestamp labels being computed incrementally. Let k − 1 be the timestamp
of the current database instance Dk−1, and Dk be the next database instance obtained
from Dk−1 by applying the set of deletions del(p1), . . . , del(pn) and the set of in-
sertions ins(q1, T1), . . . , ins(qm, Tm) satisfying the properties set forth in Section 2.
Let also Ak−1 be the database archive containing the database instances up to Dk−1,
we construct Ak, the database archive resulting by adding Dk to Ak−1, incrementally
through the process described in Listing 1.

Listing 1. Incremental timestamp label computation
Input: k, del(p1), . . . , del(pn), ins(q1, T1), . . . , ins(qm, Tm), Dk−1, Ak−1

Output: Ak

1 Ak := Ak−1

2 for every node p of Ak such that (∀i ∈ [1, n], p �= pi) and ((p is a leaf node in Dk−1 which
is not a descendant of a pi) or (all of p’s children in Dk−1 are pis)) do

3 Lp := Lp ∪ {k}
4 for every tree Ti, i ∈ [1, m] do
5 for every leaf node q of Ti do
6 Lq := {k}
7 insert the resulting tree into Ak so that its root becomes a child of qi

The incremental process of Listing 1 essentially adds the newly inserted trees T1, . . . ,
Tm to the archive, and also the timestamp k of the latest database instance to all the
archive nodes that are leaf nodes in that instance. Note that the newly inserted trees
come with the timestamp label [k] in all their leaf nodes and therefore the archive does
not need to be accessed for the addition of these timestamps. Only nodes existing in the
previous version Ak−1 of the archive are accessed for the addition of timestamp k.

As we will show later in Section 6, the BU approach exhibits interesting charac-
teristics because it generates a comparable number of timestamp labels in the database
archive as the TD approach [8] (which implies that it consumes approximately the same
space), while incurring substantially less update costs.

4 Temporal Query Language

Temporal queries on archiving databases comprise three types of constraints: structural
constraints that are evaluated over the structural relationships of the nodes, value-based
constraints that restrict the data values of the elements, and temporal constraints that are
evaluated against the timestamp sets of the nodes. The efficient evaluation of queries
with structural and value-based constraints on XML databases has been studied exten-
sively in recent years [7,14,17]. Temporal constraints can be considered as a type of
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value-based constraint, but in this paper, we consider them separately in order to fo-
cus on the optimization of their evaluation, specifically on the compact storage. In this
section, we present our temporal query language and discuss implementation issues.

Besides constraints, temporal queries have temporal evaluation annotations that
support the evaluation of the temporal constraints. We present these concepts below.

Temporal constraints. We identify a set of temporal constraints that are commonly
used in practice.

– includes(t) is satisfied if the relevant timestamp set includes the timestamp t.
– overlaps(ta, tb) is satisfied if the relevant timestamp set overlaps with the temporal

interval [ta, tb].
– before(t) / after(t) is satisfied if the relevant timestamp set precedes / succeeds

the timestamp t.
– contains(ta, tb) / is contained(ta, tb) is satisfied if the relevant timestamp set

contains / is contained in the interval [ta, tb].
– meets(ta, tb) is satisfied if either the first timestamp or the last timestamp of the

relevant timestamp set touches the boundary of the interval [ta, tb].

Other temporal constraints e.g., start(ta), end(tb) etc. can be expressed in terms of the
temporal constraints introduced above.

root

Entry

SpeciesDescr*

DCDC

DC DC

Features

root

Entry

SpeciesDescr*

DCFeaturesNC DC

LC DC NCDC LC

Fig. 3. A TTPQ with temporal evaluation annotations

Temporal queries. We support two types of temporal queries, snapshot queries that
contain point-type temporal constraints and return subtrees of database instances at spe-
cific timestamps, and history trace queries that contain range-type temporal constraints
and return subtrees spanning different instances whose timestamps fall within the query
range. These two types of queries are built by adding temporal expressions to the nodes
of the query structural pattern. These temporal expressions are Boolean expressions of
temporal constraints like those we presented above. Here we assume that the temporal
expressions attached to the query nodes are conjunctions of temporal constraints. We
focus on tree structural patterns with child (/) and descendant (//) relationships. The
resulting queries are called temporal tree pattern queries (TTPQs). Similarly to TPQs,
TTPQs contain a distinguished node corresponding to the answer node. Figure 3 shows
an example of a TTPQ involving descendant relationships. A ‘*’ indicates the answer
node. The answer of a query Q on an archiving database A is defined through embed-
dings of Q to A that satisfy the temporal constraints.
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Temporal evaluation annotations. To evaluate a TTPQ, its temporal constraints must
be examined against the timestamps of the nodes in the XML archiving database. How-
ever, due to the timestamp set compaction scheme, it is possible that in order to compute
the timestamp sets of some nodes, the timestamp labels of descendant nodes need to be
collected (e.g., the Features nodes in Figure 2). On the other hand, for other nodes
their timestamp sets need not be computed as they are equal to their timestamp labels
(e.g., the Species nodes in Figure 2). We also observe that it is also possible that
for some query nodes, the evaluation of their temporal constraints is not needed (de-
tails in Section 5). Based on these observations, we define three temporal evaluation
annotations for the query nodes that have temporal constraints. A temporal evaluation
annotation determines whether the temporal constraints of the node need to be checked
for satisfaction, and if they need how the timestamp set of the image node under an
embedding can be computed. Specifically, for a node p in a query Q, the possible anno-
tations and their meaning are the following (M is an embedding of Q to the archiving
database):

– DC (Descendant Check): compute the timestamp set of M(p) by unionning all the
timestamp labels of those descendant nodes that have one, and check whether the
union satisfies the temporal constraints of p.

– LC (Local Check): use the timestamp label of M(p) to check locally whether the
temporal constraints of p are satisfied.

– NC (No Check): no operation for validating the temporal constraints of p is needed.

The query in Figure 3 shows examples of temporal evaluation annotations.

5 Optimization of the Evaluation of Temporal Constraints

5.1 Problem Definition

When evaluating a query, for every query node that has a temporal constraint, the times-
tamp set of its image nodes in the archiving database needs to be computed. In many
cases (when the node annotation is DC), such timestamp computation needs a recursive
traversal of descendant nodes which is costly, especially for databases with a deep tree
structure. However, we observe that sometimes the expensive DC annotation on a node
is not necessary and can be replaced by cheaper ones. The following example provides
some intuition. Consider the query of Figure 3(a) to be evaluated on an instance of the
Swiss-Prot dataset. First observe that as the DTD of Figure 4(a) suggests, all images of
the Descr node under an embedding to an archiving database whose instances com-
ply with the DTD (e.g. the archiving database of Figure 2) are leaf nodes. Thus, they
always have all their timestamp sets locally specified as timestamp labels. Therefore,
the DC annotation on the Descr node is not necessary and can be replaced by LC. Sec-
ond, due to the monotonicity property of timestamp sets on ancestor and descendant
nodes (mentioned in Section 3), the timestamp set of the image node of Entry under
an embedding should always contain that of Descr. If the image of Descr satisfies
the temporal constraint of Descr (i.e., the timestamp set of the image contains [1,4]),
then the image of Entry also satisfies the temporal constraint includes(2) of Entry.
Thus, the DC annotation on Entry is not needed and can be replaced by NC.
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(a) The DTD Schema (b) The temporal constraint graph

Fig. 4. The temporal constraint graph of the TTPQ of Figure 3 (a)

Cost model. Based on the temporal evaluation annotation DC, LC or NC of a node, we
define the cost for evaluating its temporal constraints. Given a query node q, let � be its
temporal evaluation annotation, and q′ be its image node in the archiving database A
under an embedding of the query to A. Let also |Tq′ | be the number of nodes of the tree
rooted at q′ in A. Then, the cost of evaluating the temporal constraint of q on A is:

C�(q) =

⎧⎨⎩
maxq′ |Tq′ | � = DC;
1 � = LC;
0 � = NC.

In this definition, we consider for DC the worst case scenario and thus define the cost
as the number of nodes of the maximum size tree rooted at an image node of q.

Given a TTPQ Q, let annotation of Q, denoted A, be the vector of annotations in
Q for the the nodes q1, . . . , qn which have temporal constraints. The cost of evaluating
the temporal constraints of Q on the archiving database A is CA(Q) =

∑n
i=1 Cli(qi),

where li ∈ {DC, LC, NC} is the temporal evaluation annotation on the query node qi.

Minimal temporal evaluation annotations. Based on the cost metric above, we define
minimal temporal evaluation annotations. We restrict our attention to the set of annota-
tions that correctly return the answers of Q on any archiving database whose database
instances comply with the given DTD. Given two different annotations A1,A2 of a
TTPQ Q, we say that A1 dominatesA2, denotedA1 ≥ A2, if CA1

(Q) ≥ CA2
(Q) on

any archiving database. An annotationA in a set of annotations S is minimal if there is
no annotation B ∈ S such that A > B.

The problem. Given a TTPQ Q, initially every query node with a temporal constraint is
annotated with the expensive annotation DC. Our optimization goal is to find a minimal
temporal evaluation annotation for Q, i.e., we replace as many DC as possible with the
cheaper LC or even better with the NC annotation.

5.2 Inference Rules and the Temporal Constraint Graph

For the optimization of the temporal constraints of a query, we use the concept of tem-
poral constraint graph which is first defined in this section. A temporal constraint graph
is constructed using inference rules described below.
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Inference Rules. The inference rules have the form P1, . . . , Pk → R meaning that
“if the premises P1, . . . , Pk are true, then the conclusion R is also true”. They infer
containment relationships between (the timestamps of the image nodes of) query nodes.
We formally define next the concept of containment relationship between query nodes.

Definition 1 (Temporal containment). Given a query Q and two nodes p, q ∈ Q,
we say that node p is contained in node q, denoted p ⊆t q, iff for every embedding
of Q to an archiving database, the timestamp set of the image of p is a subset of the
timestamp set of the image of q. We say that node p is equivalent to node q, denoted
p =t q, if p ⊆t q and q ⊆t p. In the presence of a DTD, only archiving databases
whose instances comply with the DTD are considered for this definition.

There are inference rules that depend on the presence of DTD and others not.

Inference rules independent of DTDs. The monotonicity property of the timestamps
in the archiving database between ancestor and descendant nodes naturally allows the
inference of a containment relationship. Let p, q, r be nodes in a TTPQ Q. Let also
Q |= p//q denote the fact that p//q occurs in or can be inferred from Q (e.g., trivially
from p/q, or transitively from p//r and r//q in Q). The following inference rule is
based on the ancestor-descendant (AD) relationship between query nodes:

AD Rule : Q |= p//q → q ⊆t p

Intuitively, the structural constraint p//q in the query forces the images of q to be de-
scendants of the images of p in the archiving database. Thus the monotonicity property
holds.

We can also apply a transitivity inference rule to infer containment relationships
between nodes:

TR Rule : p ⊆t q and q ⊆t r → p ⊆t r

Inference rules dependent on DTDs. In the presence of a DTD for the database in-
stances, additional temporal containment relationships between query nodes can be de-
rived. Given the DTD Δ of a database and a node p of a TTPQ Q, let pΔ denote the
node in Δ which has the same label as p. Let also SinglePath(p, q), denote the fact
that there is a single path from p to q in Δ, and all the edges of this path are labeled by
‘1’ (indicating a single mandatory occurrence of a child node). The following inference
rule is based on the SinglePath (SP) property:

SP Rule : Q |= p//q, SinglePath(pΔ, qΔ)→ p ⊆t q.

The reasoning behind the SP rule is that, since the result of any update operation
(insertion or deletion) to a database instance complies with Δ: (a) any node having the
label of p in a database instance Di added to the archiving database A, has exactly one
descendant node labeled by the label of q in Di, and (b) if (pi, qi) and (pj , qj) are two
such pairs of nodes in two database instances Di and Dj , respectively, added to the
archiving database, if pi = pj , qi = qj . Therefore, any timestamp of the image M(p)
of p under an embedding M to A, is also a timestamp of M(q). That is, p ⊆t q. Since,
because of rule AD, q ⊆t p also holds, we can derive q =t p.
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By combining the SP and AD rules we can derive a temporal containment rela-
tionship between two nodes that are both descendants of a node in Q even when no
descendant relationship can be derived between them in Q:

DC Rule : Q |= p//q, Q |= p//r, SinglePath(pΔ, rΔ) → q ⊆t r
A containment relationship between two nodes that are both descendants of another

node in a query can be derived also when the corresponding nodes are appropriately
restricted by single path constraints in the DTD:

DE Rule : Q |= p//q, Q |= p//r, SinglePath(pΔ, rΔ), SinglePath(qΔ, rΔ) → r ⊆t q

Because of DC rule we can also infer q ⊆t r, that is, r =t q. Note that none of rules
DC and DE require that nodes q and r lie on the same path in query Q.

Temporal Constraint Graph. Given a temporal query Q, we construct a temporal
constraint graph GQ as follows: (a) for every node in Q there is a distinct node in
GQ associated with the label and temporal constraints of the corresponding node in Q,
and (b) there is an edge in GQ from p to q iff the temporal containment relationship
p ⊆t q can be inferred from Q and the DTD (in case there is one) using the inference
rules presented above. Figure 4(b) shows the temporal constraint graph of the query
of Figure 3(a) in the presence of the DTD of Figure 4(a). The edges of the graph are
annotated by the inference rule(s) which derived the relevant containment relationships.

5.3 Optimization Actions

We distinguish two types of optimization actions: replacing DC with LC (DC → LC),
and replacing DC or LC with NC (DC/LC → NC). These optimization actions exploit
also schema information if a DTD is present.

Optimization action DC→ LC. This action is based on our observation that if a node
pΔ in a DTD Δ is a sink node (that is, it has no outgoing edges), all nodes labeled by the
label of pΔ in an archiving database A whose instances comply with Δ are leaf nodes.
Therefore, any node p in the TTPQ Q having the same label as pΔ is mapped by any
embedding M of Q to A to a leaf node whose timestamp set is equal to its timestamp
label. As a consequence, the satisfaction of the temporal constraint of p can be checked
locally at every image node of p under M , and the temporal evaluation annotation DC
of p can be turned into LC.

In summary, if sink(pΔ) denotes the fact that pΔ is a sink node in DTD Δ, the
DC→ LC action can be described as follows:

∀p ∈ Q, sink(pΔ)→ replace DC of p with LC
Coming back to the example TTPQ of Figure 3(a) and the DTD of Figure 4(a), the

DC → LC action replaces the DC annotation of the Desc and the Species nodes by
LC. The resulting TTPQ (after additional optimization actions) is shown in Figure 3(b).

Optimization action DC/LC → NC. Before going into the details, we introduce the
notions of consumed temporal constraint and witness node.

Definition 2 (Consumed Temporal Constraint). We say that a temporal constraint
f1(p) on query node p consumes a temporal constraint f2(q) on query node q if for
every embedding M of the query to an archiving database A such that the image of p
under M satisfies f1, the image of p under M satisfies f2.
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Table 1. Temporal constraint consumption

Consuming temporal Consumed temporal constraint
constraint on p on q

p ⊆t q

includes(t)
includes(t)
overlaps(t1, t2), t ∈ [t1, t2]

contains(t1, t2)
includes(t3), t3 ∈ [t1, t2]
contains(t3, t4), t3 ≥ t1, t4 ≤ t2
overlaps(t3, t4), t1 < t3 < t2
or t1 < t4 < t2

q ⊆t p

is contained(t1, t2) is contained(t3, t4), t3 ≤ t1, t4 ≥ t2
before(t) before(t1), t1 ≥ t

after(t) after(t1), t1 ≤ t

q =t p

meets(t1, t2) meets(t1, t2)

Table 1 shows various cases of temporal constraint consumption for different types of
temporal containment relationships between nodes p and q. The reasoning behind these
statements is straightforward. For example, with the assumption that p ⊆t q, when the
timestamp set of the image of query node p includes t, the timestamp set of the image
of query node q also includes t. Clearly, those statements that are valid for p ⊆t q or
q ⊆t p, are also valid for p =t q. Given a query node p, if there exists another query
node q whose temporal constraints consume all constraints of p, the evaluation of the
constraints on p becomes unnecessary as long as the constraints of q are evaluated. In
this case, the satisfaction of (the constraints of) p is witnessed by the satisfaction of
(those of) q.

Definition 3 (Witness node). Given two nodes p, q in a query Q, we say q is a witness
node of p iff all the temporal constraints of p are consumed by the temporal constraints
of q.

Clearly, the evaluation of the temporal constraints of a witness node makes the evalua-
tion of the constraints on the witnessed query node unnecessary. Therefore, the temporal
evaluation annotation of a witnessed query node can be changed to NC irrespectively
of whether it was DC or LC as long as the temporal evaluation annotation of a witness-
ing query node is not NC. A node can be witnessed by and be a witness of multiple
other nodes, and the witnessing relationship is transitive. The challenge is to partition
the query nodes that participate in witnessing relationships into two sets W and O such
that: (a) every node in O is witnessed by a node in W, and (b) replacing in the query
the annotation of every node in O by NC produces a minimal annotation for the query.
It turns out that in this case, W has a minimal number of nodes. In order to partition
the nodes we introduce the concept of witness graph. Given a query Q, a witness graph
for Q, is a graph WQ such that: (a) the nodes of WQ correspond to the nodes of Q, and
(b) there is an edge from node p to node q in WQ, iff p is a witness node of q in Q.
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A witness graph for a query Q is constructed using the constraint graph of Q and the
consumption relationships of Table 1.

As an example, one can see that the witness graph of the query of Figure 3 (a)
whose constraint graph is shown in Figure 4 (b), comprises exactly two edges Desc
→ Species and Desc→ Entry. The edge Desc→ Species, for instance, exists
because according to the constraint graph in Figure 4 (b), Desc ⊆t Species, and
therefore, as Table 1 indicates, contains(1, 4) on Desc consumes contains(3, 4) on
Species.

Optimization Algorithm. Our temporal constraint optimization algorithm takes as
input a TTPQ Q whose nodes are all annotated with DC. It returns query Q with a new
annotation. Initially, the algorithm applies the DC → LC optimization action to nodes
corresponding to sink nodes in the DTD. Then, it applies exhaustively the inference
rules to construct the constraint graph GQ of Q. Subsequently, it uses GQ and the
consumption relationships of Table 1 to construct the witness graph WQ of Q in order
to apply the optimization action DC/LC → NC. A root node (that is, a node without
incoming edges) in WQ cannot be witnessed by another node. Therefore, such nodes are
chosen as witness nodes, and the annotations of all the nodes in Q that are reachable in
WQ by these nodes are turned into NC. The remaining nodes in WQ all have incoming
edges. In every cycle in WQ, a node with the minimum cost is chosen as a witness
node and the annotations of all the nodes reachable by this node in WQ are turned into
NC. Clearly, this process characterizes every node in WQ as a witness node or as node
annotated with NC in the returned query, and the new annotation of query Q is minimal.

The performance of our optimization algorithm is more significant when the nodes
with the optimized annotations are not close to leaves of the query, and/or the number
of matches of these nodes in the XML archive is important.

The complexity of our optimization algorithm is O(|Δ| × |Q|2), where |Δ| is the
size of the DTD Δ. Note that the optimization result may not be unique. For instance,
if there exist two query nodes p and q in a cycle with the same cost, then either one can
be chosen as a witness node and both resulting annotations have the same minimal cost.

6 Experimental Evaluation

In this section, we report on the empirical evaluation of our approach for compacting
archiving databases and for optimizing the evaluation of the temporal constraints of
queries.

6.1 Experimental Setup

Our experiments were performed on an Intel Core 2 CPU 2.40 GHz processor with
4.00 GB of RAM running Windows 7. We used the JDOM engine [1] to parse the XML
databases, Wutka DTD parser [2] to parse the XML DTD, and Oracle Berkeley DB
XML engine for query evaluation. The algorithms were implemented in Java.

We ran our experiments on both synthetic and real datasets. The synthetic datasets
were generated using the IBM XML generator [3] on the DTD of the XMark bench-
mark [4]. Our real dataset was the Treebank dataset [5]. The details of these datasets
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Dataset Size # of elements Max/Avg. depth
Treebank 22.3MB 491108 36/8.5
XMark 14.6MB 160929 21/20.068

Fig. 5. Datasets used in the experiments

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 5  10  15  20  25  30  35  40  45  50

T
im

e
 (

s
e

c
o

n
d

)

Versions

  Naive
  Top-down
  Bottom-up

Fig. 6. Incremental archiving time
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(a) DT tree insertion
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Fig. 7. Comparison of the total # of timestamp sets in the archive

are summarized in Figure 5. For the XMark and Treebank datasets, we created 50 and
20 consecutive database instances respectively. Each instance was generated from the
previous one by first deleting and then inserting (sub)trees (see Section 2). The trees
represent 10% of the nodes of the database instance. Therefore, the size of the instances
remains relatively stable. The size of the archiving database though increases constantly.
We describe in Section 6.2 the types of trees that are chosen to be inserted/deleted.

6.2 Archiving Overhead

To measure the efficiency of our compaction scheme, we implemented three storage
approaches: (1) the naive approach (NA), which keeps the timestamp sets on every node
in the archiving database, (2) the top-down (TD) approach [8] which eliminates the
timestamp sets on the children nodes when they are identical to those of their parents,
and (3) our bottom-up (BU) approach that eliminates from the timestamp sets of the
parent nodes the timestamps that are present in timestamp sets of their children. For
these three approaches, we compare the incremental archiving time, the space overhead,
the compaction ratio, and the update cost on the XMark archiving database.

Incremental archiving time. We measured the time needed to add a new instance to
the archiving database with each one of the three approaches. The results are shown
in Figure 6. As expected, the incremental archiving time increases as the size (number
of instances) of the archiving database goes up. We observe that the TD approach al-
ways achieves the worst time performance. This is due to the fact that when the TD
approach updates the timestamp sets in the archiving database, it might need to traverse
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ancestors of the updated nodes, which is an expensive operation. This operation is not
necessary for either the NA or the BU approach. As explained in Section 3, in order to
update timestamp sets, the BU approach only accesses nodes in the archiving database
that become leaf nodes in the database instance after the deletion of the subtrees (see
Listing 1). Second, the performance of the TD approach degrades faster than that of the
bottom-up approach; with 50 database versions, the TD approach is almost two times
slower than the BU approach.

Space overhead. All three approaches consume the same space for storing the merged
data, and it is the different approaches employed for compacting (or not compacting)
the timestamp sets that make the difference in the total space consumed by each one of
them. To study under what circumstances the BU approach gets an advantage regarding
the space overhead on storing the timestamp sets of the archiving database, we consider
two database instance update scenarios: (i) insertion of deep & thin (DT) trees, in which
the inserted nodes form a tree of many levels (4 to 8 levels in our experiments) but
with few leaf nodes (1 - 4 nodes in our experiments), and (2) insertion of shallow &
fat (SF) trees, in which the inserted nodes form a tree of few levels (1 to 4 levels in
our experiments) but with many leaf nodes (4 - 8 nodes in our experiments). In both
scenarios, the subtrees to be deleted are picked randomly from the database instance. We
compare the total number of timestamps of the XMark dataset in the three approaches
for both scenarios. The results are shown in Figures 7(a) and (b). First, we observe that
due to timestamp set compaction, the total number of timestamp sets of both the TD and
BU approaches grows much slower than that of the naive approach. However, which
one produces fewer timestamp sets depends on the database instance update scenario:
the TD approach loses in the DT tree scenario (Figure 7(a)), but wins in the SF tree
scenario (Figure 7(b)). We also observe that for both scenarios, the change on the total
number of timestamps by both approaches when the number of instances in the database
archive increases is almost the same. Overall, the space consumed by the BU and the
TD approaches is comparable.

Compaction ratio. We measure the compaction ratio R = (SNA − SX)/SNA, where
SNA is the space consumed by the NA approach and SX is the space consumed by the
BU or the TD approach, of each one of the TD and BU approaches with respect to the
NA approach for 50 instances of the XMark dataset.

Table 2. Compaction ratio

Dataset Bottom-up Top-down
XMark (shallow&fat) 2.15% 2.72%
XMark (deep&thin) 3.09% 2.75%

Table 2 shows the results. Both approaches achieve compaction ratio of over 2.15%.
Furthermore, with both approaches, the SF tree scenario can achieve better compres-
sion ratios than the DT trees scenario. Finally, we observe that the differences in the
compaction ratios between the two approaches are marginal.
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Fig. 8. Comparison of the number of updated timestamp sets in the archive

Update cost. We also measured the update cost in terms of the number of updated
timestamp sets in the archiving database Figure 8 shows the number of updated times-
tamps in the two database instance update scenarios when the number of instances in the
archiving database increases. The update cost of the TD approach grows significantly
with more database instances inserted into the archive. In contrast, the update cost of
both the NA and the BU approaches is almost stable with that of the BU approach be-
ing smaller. This is so because both the NA and BU approaches do not cause much
change on the timestamp sets of the existing nodes in the archiving database, while the
TD approach may need to insert new timestamp sets on the existing nodes. With more
database instances added to the archive, the update cost may become very high.

Summary. Both the TD and BU approaches can substantially reduce the number of
timestamp sets in the archive compared with the NA approach. Depending on the kind
of trees inserted to the database instances one or the other approach can yield a smaller
number of timestamp sets. In any case, the difference between the two is not signifi-
cant. On the other hand, the TD approach always has much worse update cost than the
BU approach. This fact, in conjunction with the resulting poor time performance for
incremental archiving, makes the BU approach more suitable for archiving databases.

6.3 Temporal Constraint Evaluation Optimization

We now examine the performance of our approach for optimizing the evaluation of
the temporal constraints of a query by running a set of TTPQs on archiving databases
built on the XMark and the Treebank datasets. The sizes of the XMark dataset and
the Treebank dataset are 86.14MB and 80.90MB, respectively. Each reported time is
averaged over 5 runs.

We created five TTPQs for both the synthetic XMark and the Treebank dataset. The
queries are implemented in XQuery They all contain child (/) and descendant (//) axes.
Before optimization, each query contains at least four and at most ten temporal evalua-
tion annotations. After optimization, each of them contains only one or two annotations.
The other annotations are eliminated by the optimization process. As an example, Query
3 on the XMark dataset in an XPath-like syntax is /site//person[overlap(2, 5)]
[name[include(4)]] /address[include(4)]/city[overlap(3, 4)] before and
/site//person[name]/address[include(4)]/city after optimization, while
Query 4 on the Treebank dataset is /FILE/EMPTY[include(4)]/S[include(3)]/NP
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Fig. 9. Query evaluation time for different queries

[include(5)][NNP [include(4)]]/RB[contain(3, 6)] before and /FILE/EMPTY/S
/NP[NNP [include(4)]]/RB[contain(3, 6)] after optimization. Note that the Tree-
bank dataset does not come with a DTD. Thus, only inference rules independent of
DTDs are involved in the optimization of the corresponding TTPQs.

We observe that the optimization process in each query does not exceed 10 millisec-
ond. Compared with the query evaluation time (Figure 9), the optimization overhead is
negligible.

The results of the query evaluation time before and after optimization are shown
in Figures 9(a) and (b). As we can see, the optimization process can bring significant
performance improvement. The benefit varies from 0.45 to 0.75 for the XMark dataset,
and from 0.7 to 0.85 for the Treebank dataset.

7 Related Work

There has been considerable work on both the storage and the querying of multiple
versions of semi-structured databases

Storage. A few works have proposed to reduce the storage redundancy by storing mul-
tiple identical nodes/subtrees as single instance in the archives ([8,21,26]). In particular,
Wang et al. [26] consider the nodes that do not change in successive versions as identi-
cal. Buneman et al. [8] and Muller et al. [21] treat the nodes with the same key as iden-
tical according to some pre-defined notion of key. In the same context, Koltsidas et al.
[18] propose an algorithm that sorts hierarchical data in external memory for archiving.
Chapman et al. [9] factorize the archiving database by identifying common portions of
the database. Out of these works, only [8] considers further compaction on timestamps
as in our approach. However, they compact the timestamps in a top-down way, while we
do it in bottom-up manner. We experimentally compare these two approaches in terms
of storage space and incremental update cost in Section 6.

Along a different line, compact storage of multi-version semi-structured databases is
achieved by keeping records of the changes (called deltas) between every pair of con-
secutive versions. For instance, [20,24,28] stores the most current version plus reverse
editing scripts that can be used to retrieve previous versions. [10] detects the changes
of two XML trees as edit scripts that give the sequence of operations needed to trans-
form one tree into another, and stores the scripts as annotations on nodes and edges of
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a graph. Chien et al. [12] store the original version in several physical pages; the ele-
ments in the new versions whose corresponding pages are not useful (depending on a
given usefulness threshold) are copied to new pages, together with new elements. These
delta-based schemes suffer from the same problem: retrieving an old version might in-
volve undoing many deltas from the current version. Likewise, the efficiency of finding
the evolutionary history of an element is also a problem and may require significant
overhead on the inference of deltas.

XML compression [19] shares the goal of reducing the storage of XML database with
ours. However, the compressed XML databases do not support direct query evaluation.
Although XGRIND [16] does support exact and substring querying of the compressed
database, it cannot support the queries that involve temporal and structural constraints,
which are common in XML archiving databases. Note though that these compression
techniques can be applied to the compacted archiving database, if further reduction of
the size is needed.

Query evaluation. There are very few works that address the query evaluation issue
on archiving databases. Wang et al. [25,26] list the types of temporal queries that can
be evaluated on an (uncompacted) database of versions by specifying temporal queries
using XPath and XQuery. Rizzolo et al. [23] store multiple XML databases as graphs,
and introduce TXPath, a temporal query language extending XPath 2.0, that can be
used on the graphs. Unlike [23], we preserve the tree structure of the database, and use
existing XML query engines for the evaluation of temporal queries. Chien et al. [12]
assume that some query workload information is available. Based on this assumption,
they combine multiple queries in the workload into range version retrieval queries, and
propose three index schemes for efficiently evaluating these queries. This technique can
be adapted to our optimization framework and further improve the query performance.
Wong et al. [28] use XQuery as query language to scan the deltas stored in the system
and return the corresponding version(s) that matches the queries. To avoid reconstruct-
ing intermediate versions, they design an index structure that stores all the deltas in a
single structure indexed on the tags that were involved in an update operation. In any
case, the index incurs additional space and update overhead. Finally, Muller et al. [21]
implemented XArch, a management system for storing and querying XML archiving
databases and designed a declarative query language, XAQL, for querying the archives.
None of these approaches addressed the problem of optimizing the evaluation of the
temporal constraints as we did in this paper.

8 Conclusion

To address the need for efficiently archiving hierarchical data, we developed an XML
archiving system that combines the compact storage of data and timestamps with op-
timization techniques for the evaluation of queries with temporal constraints. We pro-
posed a novel, updateable scheme that compacts both the successive database instances
and the timestamp sets. In order to support the efficient evaluation of temporal queries
we introduced three annotations for temporal constraints in queries that can be used
to retrieve timestamps from the compact archiving database. We proposed an efficient
algorithm which computes an optimal annotation by exploiting structural information



Efficient Storage and Temporal Query Evaluation 127

of the query and of the database instances when a DTD is available. We experimentally
validated our compaction scheme and demonstrated its performance benefits compared
to previous ones and the efficiency of our optimization techniques for temporal tree-
pattern queries over compact archiving databases.

Future work includes extending the results in this paper by considering additional
temporal constraints and unrestricted DTDs that may contain cycles. It is then inter-
esting to further extend the inference rules for temporal containment relationships and
the temporal constraint consumption relationships and to design efficient optimization
algorithms that can work in this broader framework.

References

1. JDOM XML parser, http://www.jdom.org
2. Wutka DTD parser, http://www.wutka.com/dtdparser.html
3. IBM XML data generator,

http://www.alphaworks.ibm.com/tech/xmlgenerator
4. XMark XML benchmark project, http://monetdb.cwi.nl/xml/
5. XML Data Repository of University of Washington,

http://www.cs.washington.edu/research/
xmldatasets/www/repository.html

6. Annis, J., Zhao, Y., Vockler, J.-S., Wilde, M., Kent, S., Foster, I.T.: Applying chimera virtual
data concepts to cluster finding in the sloan sky survey. In: Supercomputing (2002)

7. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching.
In: SIGMOD (2002)

8. Buneman, P., Khanna, S., Tajima, K., Tan, W.-C.: Archiving scientific data. ACM Transac-
tions on Database Systems (2004)

9. Chapman, A.P., Jagadish, H., Ramanan, P.: Efficient provenance storage. In: SIGMOD
(2008)

10. Chawathe, S., Garcia-molina, H.: Meaningful change detection in structured data. In: SIG-
MOD (1997)

11. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierar-
chically structured information. In: SIGMOD (1996)

12. Chien, S.-Y., Tsotras, V.J., Zaniolo, C., Zhang, D.: Supporting complex queries on multiver-
sion xml documents. ACM Transactions on Internet Technology (2006)

13. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in xml documents. In: ICDE
(2002)

14. Gou, G., Chirkova, R.: Efficiently querying large XML data repositories: A survey. IEEE
Trans. Knowl. Data Eng. 19(10), 1381–1403 (2007)

15. Groth, P., Miles, S., Fang, W., Wong, S.C., peter Zauner, K., Moreau., L.: Recording and
using provenance in a protein compressibility experiment. In: HPDC (2005)

16. Jayant, P.T., Haritsa, J.R.: Xgrind: A query-friendly xml compressor. In: ICDE (2002)
17. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed XML documents. In:

VLDB (2003)
18. Koltsidas, I., Muller, H., Viglas, S.D.: Sorting hierarchical data in external memory for

archiving. In: PVLDB (2008)
19. Liefke, H., Suciu, D.: XMill: an efficient compressor for XML data. In: SIGMOD (1999)
20. Marian, A., Abiteboul, S., Mignet, L.: Change-centric management of versions in an xml

warehouse. In: VLDB (2001)

http://www.jdom.org
http://www.wutka.com/dtdparser.html
http://www.alphaworks.ibm.com/tech/xmlgenerator
http://monetdb.cwi.nl/xml/
http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.cs.washington.edu/research/xmldatasets/www/repository.html


128 H. Wang et al.

21. Müller, H., Buneman, P., Koltsidas, I.: Xarch: Archiving scientific and reference data. In:
SIGMOD (2008)

22. Pancerella, C., Myers, J.D., Allison, T.C., Amin, K., Bittner, R., Frenklach, M., Green, W.H.,
ling Ho, Y., Hewson, J., Koegler, W., Yang, C.: Metadata in the collaboratory for multi-scale
chemical science. In: Dublin Core Conference (2003)

23. Rizzolo, F., Vaisman, A.A.: Temporal xml: modeling, indexing, and query processing. The
VLDB Journal 17, 1179–1212 (2008)

24. Tichy, W.F.: RCS - a system for version control. Software-Practice & Experience (1985)
25. Wang, F., Zaniolo, C.: Temporal queries in XML document archives and web warehouses.

In: TIME-ICTL (2003)
26. Wang, F., Zaniolo, C.: Temporal queries and version management in XML-based document

archives. Data Knowl. Eng. 65, 304–324 (2008)
27. Wang, Y., DeWitt, D.J., yi Cai, J.: X-Diff: An effective change detection algorithm for XML

documents. In: ICDE (2003)
28. Wong, R., Lam, N.: Managing and querying multi-version xml data with update logging. In:

DocEng. (2002)



J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 129–149, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Update Propagation in a Streaming Warehouse 

Theodore Johnson and Vladislav Shkapenyuk 

AT&T Labs - Research 
{johnsont,vshkap}@research.att.com 

Abstract. Streaming warehouses are used to monitor complex systems such as 
data centers, web site complexes, and world-wide networks, gathering and  
correlating rich collections of events and measurements. Ideally, a streaming 
warehouse provides both historical data, for deep analysis, and real-time data 
for rapid response to emerging opportunities or problems. The highly temporal 
nature of the data and the need to support parallel processing naturally leads to 
extensive use of horizontal partitioning to manage base tables and layers of ma-
terialized views. In this paper, we consider the problem of determining when to 
propagate updates from base tables to dependent views on a partition-wise basis 
using autonomous updates. We provide a correctness theory for propagating 
updates to materialized views, simple algorithms which correctly propagate  
updates, and examples of algorithms which do not.  We extend these results to 
accommodate needs of production warehouses: repartitioning of tables, mutual 
consistency, and merge tables. We measure the update propagation delays in-
curred by two different update propagation algorithms in test and production 
DataDepot warehouses, and find that only those update propagation algorithms 
which impose no scheduling restrictions are acceptable for use in a real-time 
streaming warehouse. 

1   Introduction 

Data Stream Management Systems (DSMS) have developed in response to the need 
for on-line monitoring of complex systems such as communication networks [11], 
financial markets [27], data center management, web transaction logs [46], RFID 
tracking [47], and so on. A DSMS typically provides a real-time response by 
processing events in-memory and over a short time window. However, many applica-
tions benefit from access to both real-time and historical data in a data warehouse 
setting, whether to correlate current events with past events, or to provide a seamless 
warehouse for on-line alerting and analysis as well as deep historical analytics.  We 
term such an information system a stream warehouse.  Recent papers that describe 
stream warehouses include application areas such as data center monitoring [4], RFID 
monitoring [48], web-complex monitoring [46], and very wide scale network moni-
toring [18]. For example, the Darkstar streaming warehouse at AT&T Labs –  
Research, built using our stream warehouse system DataDepot [18], runs applications 
ranging from NICE (deep analysis to find network conditions and events correlated 
with network problems) to the PathMiner troubleshooting tool (real-time reports on 
the status of routers along a problematic path), and supports a wide range of network-
ing research activities [30]. 
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Fig. 1. Partition-wise data flow 

An examination of recent literature (especially our system DataDepot [18] at 
AT&T Labs, Truviso [24] and Everest [46] at Yahoo! Labs but also including Moirae 
[4]) reveals some common features: temporal partitioning, multi-version concurrency 
control, and recomputation of partitions to propagate updates, as we discuss further in 
Section 0. The management of tables in these warehouses has the structure shown in 
Figure 1. This warehouse has tables T1 through T4, with the data flowing from T1 
and T2 to T3 and then T4.  However, our concern is with data flowing through parti-
tions.  For example, a particular partition in T3 (which is defined as a join between T1 
and T2) uses data from particular partitions in T1 and T2. 

In this paper, we present a correctness theory for update propagation in a stream 
warehouse, and algorithms which correctly propagate updates.  We assume that data 
arrives from external sources and is loaded into base tables according to some reason-
able temporal partitioning of the base data.  Updates to base tables are propagated 
through multiple levels of materialized views.  For example, in Figure 1, the partition 
marked with a dot in base table T1 affects a particular partition of T3, and transitively 
a partition in T4. Our goal is to propagate all updates without unnecessarily updating 
a partition of a materialized view. 

Our model of incremental view maintenance is that partitions affected by new 
source data are recomputed entirely, while partitions not affected by new data are left 
untouched. As discussed in Section 0, partition-wise recomputation is generally more 
efficient that in-place incremental maintenance, and often is the only option. The 
problem of incremental table maintenance becomes one of determining which parti-
tions of a derived materialized view are affected by an update to a partition of a 
source table (whether a base table or another materialized view). Methods for  
associating a source partition with its derived partitions include query analysis, join 
dependencies, functional dependencies, or even explicit user specification [14][18]. 

Stream warehouse updates might be scheduled autonomously for real-time perfor-
mance (see Section 1.1), in which case view consistency is best captured by either 
eventual consistency (i.e. convergence [50]) or trailing edge consistency [19][18]. As 
discussed in more depth in Sections 3 and 6, trailing edge consistency – the most 
recent data that is quiescent - is the best stream warehouse analog of  mutual consis-
tency (see [10][51]). The update propagation protocols we present in Section 4 are 
designed to ensure eventual consistency rather than trailing edge consistency. For one, 
many real-time applications need the most recent possible data; one doesn’t want to  
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wait for a router in Atlanta to deliver its data before diagnosing a network problem in 
California (see the examples in Section 3).  For another, many streaming data feeds 
are highly disordered [24][29] - in our experience, data can often arrive days to hours 
late.  However, in Section 6, we provide extensions to the basic update protocols 
which determine the trailing-edge consistency line and which gracefully handle after-
the-fact revisions. 

1.1   Why Is Update Propagation Interesting? 

Given the lengthy literature on materialized view maintenance, one might ask  
why update propagation is still an open problem. The answer is that new large-scale 
data analysis systems need more efficient and more flexible view maintenance  
mechanisms. Much of the existing literature use global orders set by the commit or 
recovery log [9][10][41][49][51] or a message queue [2][50] to determine what up-
dates need to be propagated. However, a stream warehouse does not need a recovery 
log because the sources are append-only, and materialized views can be recomputed 
from their sources.  An alternative is to mark the base tables (or base table partitions) 
that have been updated since the last materialized view refresh, then refresh all views 
in a batch [14]. 

The scheduling of updates to base tables and materialized views is best left to a 
real-time update scheduler [19][26][40]. Therefore, we make no assumptions about 
the ordering of updates to tables, or whether all updates are applied to a table [19]. 
Further, the scheduling restrictions inherent in global-order or batch update view 
maintenance cause excessive update propagation delays for real-time tables, as we 
show in Section 6.   

Autonomous update propagation also simplifies the implementation of a clustered 
warehouse. The difficulties of applying traditional view maintenance algorithms in 
modern large-scale analysis systems lead some implementations to provide only mi-
nimal consistency guarantees [3].   

Our contributions in this paper are: 

• We develop a correctness theory for update propagation in a temporally par-
titioned stream warehouse, which uses a novel form of a vector timestamp. 

• We show that the intuitive algorithm similar to the update propagation in 
make is incorrect under most circumstances. 

• We provide simple and low-overhead algorithms which ensure eventual con-
sistency. 

• We extend these results to account for complications present in actual stream 
warehouses, such as limited-size updates and multi-granularity temporal par-
titioning. 

• We develop algorithms which ensure that queries access mutually consistent 
views under the trailing-edge consistency model. 

• We demonstrate the performance benefit of autonomous update propagation 
with experiments on live stream warehouses. 
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2   Production Warehouse Examples 

The work in this paper was motivated by the Darkstar project [30], which collects a 
variety of network performance and reliability feeds to support tasks ranging  
from deep historical research and data mining to real-time problem resolution. The 
DataDepot stream warehousing tool encouraged the Darkstar developers to push ETL 
and complex application logic, as well as summary reports, into the warehouse as 
materialized views. 
 

 

Fig. 2. ETL for table X, and summary tables Fig. 3. Application logic for M events 

For the first example, Figure 2 shows the DAG of table dependencies related to 
loading table X (names have been mangled), and then computing summaries. The 
edges point from a source to its dependent table(s), and the square boxes are the raw 
data sources.  Approximately 150 million records per day arrive at X_RAW, at five 
minute intervals (about 350 million raw records/day for the warehouse). The critical 
real-time path is X_RAW → X_BASE → X_JOINED → X.  Each of these tables 
uses multi-granularity partitioning: the most recent 1-day’s worth of data is temporal-
ly partitioned into 5-minute buckets, while older data (a 1-year window) is partitioned 
by 1-hour buckets.   

The second example, in  Figure 3, shows the complex application logic generating 
reports related to M data (the names have been mangled), taken from a production 
warehouse outside of AT&T Labs - Research.   

These examples from the Darkstar and other warehouses illustrate the arguments 
we make in Section 1. First, that a multiple-granularity, temporally partitioned stream 
warehouse enables the construction of complex warehouses on high-volume data. 
Second, the mechanism for propagating updates should not constrain the scheduling 
of updates. The updates to the tables dependent on X_JOINED and X in Figure 2 
should not block updates along the critical real-time path from X_RAW to X.  Third, 
a provably correct algorithm for update propagation is critical for the developer to 
have confidence that complex applications, such as the one shown in  Figure 3, will 
be correctly maintained. Fourth, multiple types of consistency are needed: eventual 
consistency for table X, trailing edge consistency for the M application. 
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3   System Model 

Our warehouse model (partition-wise dependencies and update propagation, read-
isolation at query initiation time, and the lack of a recovery log) are motivated by 
common features of stream warehouses: 

Temporal partitioning: Stream data is inherently temporal, often containing one or 
more timestamps [11][18] which are monotone increasing (or nearly so [45]) with 
new data. A method for managing a moving window over temporal data that is  
commonly used [8][12][18][31], well-known in the folklore [22], and supported by 
commercial products [7][14] is to partition the table on one of its timestamp fields. 
New data generally flows into the newest partition; data is expired by dropping the 
oldest partitions.  If the partitions are sized to be the inter-update period, the new data 
will fit into a new partition allowing for very efficient data ingest and index rebuild. 

Multi-version Concurrency Control: The materialized views in a data warehouse 
are generally maintained by a single update process. The single-updater, multiple-
reader access pattern allows for an inexpensive implementation of multi-version con-
currency control [38][44]. MVCC is especially attractive for continuously available 
[12][44][46] real-time warehousing not only because queries are never blocked, but 
also because updates to a real-time fact table aren’t blocked by long-running updates 
to a summary table. DataDepot [18] performs concurrency control at the partition 
level, allowing for very low cost concurrency control and recovery. 

Recomputation of updated partitions: If a warehouse uses temporal partitioning for 
both the source and target materialized view, then it’s generally more efficient to 
recompute the partitions of a view that are affected by an update than to propagate 
incremental updates to them [14] (see [7][34] for an analysis of the optimization  
problem). Furthermore, the materialized views might be the result of queries that are 
difficult to maintain efficiently (group-by queries with a Having clause or holistic 
aggregates [36], non-monotonic queries [20], iceberg queries [42]).  Further, many 
materialized views involve complex analytics not readily expressed in SQL [18][46]. 

Multi-granularity temporal partitioning: A technique for maintaining a real-time 
warehouse that is well-known in the folklore [22] is to use multi-granularity temporal 
partitioning. The most recent data is stored in small time-width partitions to match the 
update interval; the width can be as narrow as a few seconds [31]. Storing a table in 
such small partitions makes multi-year windows impractical, so older data is rolled up 
into longer-duration partitions. DataDepot uses two temporal granularities [18] while 
SWIFT [31] can use three or more.  Re-organizing older data is also desirable because 
access characteristics change: new data is hot with frequent random access, while old 
data is cold with sequential access more common. Therefore, an effective storage 
management strategy is to store recent data on expensive high-RPM disk or SSDs, 
and reorganize older data onto lower performance but less expensive storage [46]. 

Deeply nested materialized views: Stream warehouses generally have many levels 
of materialized views for several reasons.  For one, ETL, data cleaning, and data nor-
malization processes can often be best expressed and optimized as a sequence of que-
ries [15].  After the data is loaded, other materialized views correlate, de-normalize, 
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and analyze the data for user convenience as well as to reduce query response times 
[18][46]. Further materialized views are used to monitor the quality of the data feeds. 
We present examples of deeply nested views from a production real-time warehouse 
in Section 3. 

In the warehouse, there is a collection of base tables which are updated using out-
side data only. All other tables are derived tables (materialized views), which are 
updated from new data loaded into base or derived tables (but never updated with 
outside data). When discussing a particular derived table and its relation to its data 
sources, the derived table is referred to as the dependent table and the tables it de-
pends on are referred to as the source tables. Each partition of a dependent table is 
associated with one or more partitions of its source tables; we refer to these as the 
dependent partition and the source partitions, respectively (see [14][18] for a discus-
sion of how to compute these associations). The contents of a dependent partition can 
be computed via its defining query and its source partitions only. 

In a stream warehouse, the collection of partitions of a table form a sliding win-
dow, extending from the most recent data to some table-dependent time in the past, 
say two years. Each table in the data warehouse has at least one field that is a time-
stamp field – its value generally increases over time. Further, each table is partitioned 
according to a monotonic increasing partitioning function p: if t1<t2, then p(t1)≤p(t2) 
(a table might be partitioned by additional partitioning functions on other fields) The 
source partitions of a dependent partition generally form a contiguous range for each 
source table, and their partition identifiers are computed from the dependent parti-
tion’s identifier using a simple formula. These assumptions are not required for the 
model, but are useful for extensions discussed in Section 5. Highly parallelized sys-
tems such as Everest [46] generally make use of additional dimensions of partitioning. 
Subdivisions from these additional dimensions can be combined for the purposes of 
tracking update dependencies, or treated independently. 

We make several assumptions about how tables are updated and the system  
environment. 

1) A table is updated by a table update program.  Only one instance of a table  
update executes at any time. When the table update starts, the update process 
computes a collection of partitions to update by applying an update propagation 
protocol to the source and dependent table metadata.  The table update process 
may choose to update some or all of the partitions returned by the update propa-
gation protocol. 

2) An update process has read-consistency on its source tables: their contents do not 
change during the execution of the update process, from the perspective of the 
update process. 

3) If the table update process chooses to update a partition, the partition is recom-
puted in whole (no special algorithms for incremental partition update). Incre-
mental updates can be implemented through proper support for differential files, 
but are not the concern of this paper. 

4) The system maintains a timestamp which can provide a total order for all events 
consistent with their actual causal ordering – the system timestamp, e.g. the Unix 
timestamp. A sample of this timestamp is denoted by <time>.   
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5) There is an update manager which invokes updates to tables. The update manag-
er can consult table metadata when determining which table update process to 
schedule. 

6) Each table and each partition is uniquely named, so any set of these names can be 
uniquely sorted (not a strong assumption). 

7) We assume that the collection of (source, destination) dependencies forms a 
DAG. 

In assumption 1, not every stale partition (i.e., selected for update) must necessarily 
be updated. In practice, the ability to partially update a view provides critical flexibili-
ty when managing very large volumes of data.  If a view becomes significantly out of 
date (perhaps because its definition changed) then recomputing the view may take 
longer than the next scheduled downtime or the mean time to failure of the server 
[32][33].  Partial view updates ensure that the updates are committed regularly and 
that the update procedure makes progress.  The partial view update may update parti-
tions out-of-order, e.g. update the most recent partitions first.  In [19], the authors find 
that partial updates are a critical technique for minimizing table staleness in a real-
time warehouse.  Assumption 2 can be satisfied via read/write locks on the 
source/dependent table partitions.  However, multi-version concurrency control is the 
better option, as noted in Section 1.  We do not assume that tables are updated in any 
particular order, nor that any collection of tables are updated simultaneously – deci-
sions better left to the real-time update scheduler [19].  In a centralized server,  
accommodating assumption 4) is simple.  In a clustered warehouse, coordinated time-
stamps can be ensured using, e.g. ntp.  If coordinated timestamps are problematic, we 
recommend using protocols which use local timestamps only, for example the source-
vector protocol in Section 4.2. 

Our goal is to achieve eventual consistency: if the base tables remain quiescent 
then after a sufficient number of updates, every partition of a materialized view con-
verges to the value which reflects the data in the quiescent base tables [50].  While 
eventual consistency is weaker than mutual consistency [10][51], it is usually appro-
priate for a stream warehouse.  For example, table X in Figure 2 is a critical for real-
time diagnostics and needs to be loaded with the most recent possible data regardless 
of mutual consistency concerns.  However, a stream warehouse should provide sup-
port for determining the trailing edge [18], which marks the boundary between quies-
cent and non-quiescent partitions, and leading edge consistency, which indicates the 
partitions with the newest possible data.  In Section 6, we show that general mutual 
consistency is difficult to track, but that trailing edge consistency can be determined 
using a simple protocol. 

3.1   Definitions 

Let D be a dependent table, and let Di be its ith partition. At time ts we denote them by 
D(ts) and Di(ts) respectively.  The generation of Di(ts) is the number of times that 
Di(ts) has been recomputed (i.e., execution of an update protocol).  The generation of 
Di(ts) is denoted g(Di(ts)), and the kth generation of Di is denoted Di[k].  Similarly, the 
generation of D(ts) is the number of times it (i.e., at least one of its partitions) has 
been updated, with corresponding notation g(D(ts)) and D[k] respectively. The table-
generation of a partition is the table generation in which the partition was updated. 
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The table-generation of partition Di(ts) is denoted t(Di(ts)), and the table-generation of 
Di[k] is denoted t(Di[k]). 

Associated with each generation of a partition (table) is its updatestamp, u(Di(ts)).  
The updatestamp of a partition (table) must be a strictly increasing function of the 
partition (table) generation: if j<k, then u(Di[j]) < u(Di[k]) (respectively, u(D[j]) < 
u(D[k])).  There is no necessary correlation between updatestamps of any two parti-
tions, or between a partition and a table, other than that imposed by the update propa-
gation protocol. 

For a dependent table D, its source tables are S(D) = (S1, …, Sk), in sorted order 
(recall assumption 6).  Similarly, for dependent partition Di, its set of source partitions 
are  

S(Di) = (S1,1, … S1,n1, … Sk,nk). 

The vector of generation numbers of the value of Di(ts) is  

G(Di(ts)) = (g(S1,1(ts)), …, g(S1,n1(ts)), …, g(Sk,nk(ts))), 

Where g(Si,j(ts)) is the generation of Si,j used to compute Di(ts) and analogously the 
vector of updatestamps is  

U(Di(ts)) = (u(S1,1(ts)), …, u(S1,n1(ts)), …, u(Sk,nk(ts))). 

Analogously we define G(Di[k]), and G(Di[k]). 
We define B(Di) as follows: recursively gather S(Si,j) and replace the entry of Sij in 

S(Di) with S(Sij) until all partitions are Base table partitions.  For example, suppose 
that S(D5) = (E3,F4), S(E3) = (T2, R2, R3), and S(F4) = (T2, T3, R3) where T and R are 
Base tables.  Then B(D5) = ( (T2, R2, R3),( T2, T3, R3)) – note the repetition.   

Next we define GB(Di(ts)) to be the generations of the partitions in B(Di) used to 
compute Di(ts).  For example, GB(D5(ts)) = ( (g(T2(ts)), g(R2(ts)), g(R3(ts))),( 
g(T2(ts)), g(T3(ts)), g(R3(ts)))).  We define Gb(Di(ts)) as follows : Let S(Di) = (S1,1, 
…, S1,n1, …, Sk,nk). Then  

Gb(Di(ts)) = (GB(S1,1(ts)), …, GB(S1,n1(ts)), …, GB(Sk,nk(ts))). 

We define UB(Di(ts)) and Ub(Di(ts)) similarly, except using the updatestamp in-
stead of the generation number. 

At a specific point in time ts, e.g. during an update we will drop the dependence on 
ts. In this case, GB(Di)  represents the generations of the base table partitions used to 
compute the current value of Di, while Gb(Di) represents the generations of the base 
table partitions used to compute the current values of the source partitions of Di, 
S(Di).  A base table partition may occur multiple times in B(Di), and its repetitions 
may have different generation values in GB(Di).  If so, Di (and perhaps one or more of 
its direct or transitive source tables) was not computed from mutually consistent 
views.   

In this document we will use the usual notion of vector comparison: Let A, B be 
two n-dimensional vectors.  Then A > B if for each i=1..n, Ai≥Bi, and there is some i 
in [1..n] such that Ai > Bi. 
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Def: An update propagation protocol is correct if, when computing partitions of D to 
update, it selects all those partitions Di such that Gb(Di) > GB(Di). 

Def: An update propagation protocol is minimal if it selects only those partitions Di 
such that Gb(Di) > GB(Di). 

Lets consider the example in Figure 4.  Partition D depends on partitions S1 and S2, 
i.e. S(D)=(S1,S2), and in turn S(S1)=(B1, B2) and S(S2)=(B2,B3). When D was last up-
dated at time ts1, S1 and S2 had been computed from the first generation of B1 through 
B3, i.e. GB(S1(ts1))=(1,1) and GB(S2(ts1))=(1,1), and therefore GB(D)=((1,1),(1,1)). 
At time ts2>ts1, B2 was updated, and at time ts3>ts2, S1 was updated. Now, at time 
ts4>ts3, we consider whether D should be selected for update. GB(S1)=(1,2), and 
therefore Gb(D)=((1,2),(1,1)).  Therefore, a correct protocol must select D for update. 
Note however that S1 and S2 are not mutually consistent. Because updatestamps are 
strictly increasing functions of generation numbers, we could also express GB, Gb, 
and the correctness definition in their terms. 

 

Fig. 4. Generation stamps 

We are looking for correct and minimal update propagation protocols.  An update 
protocol should be minimal because otherwise “recompute all partitions” is a correct 
and acceptable protocol.  Note that the update process need not actually perform all of 
the updates recommended by the update propagation protocol, e.g. for update chop-
ping [19].   

A correct update protocol will not by itself ensure the eventual consistency of par-
titions in the streaming warehouse. The servers might not have sufficient resources  
to update all tables, or the scheduler and/or table update process might make poor 
decisions. We assume that the warehouse is maintained by a well-provisioned server 
(or cluster, etc.), and that the update scheduler and update process make good deci-
sions. However, if the update protocol is not correct, even a well-configured system is 
liable to fail to propagate all updates. 

In a streaming warehouse, new partitions are created as the time window of a table 
slides forwards; conversely partitions are deleted as they age out of the window. Parti-
tions that have not been created have a generation number and an updatestamp of zero. 
A trigger for creating a new partition is that a) it is on the advancing side of table’s 
sliding window, and b) it is selected for update.  Deleted partitions can retain their 

D

S1 S2

B1 B3

g(B1)=1 

B2

g(B2)=2 g(B3)=1 

GB(S1)=(1,2) GB(S2)=(1,1) 

Gb(D)=((1,2),(1,1)) 
GB(D)=((1,1),(1,1)) 



138 T. Johnson and V. Shkapenyuk 

generation number / updatestamp, or these can revert to zero.  However, a dependent 
partition that depends on a deleted source partition should not be selected for update, as 
the information to compute its correct value has been discarded.  The warehouse ad-
ministrator can use the distinction described in [16] of expired vs. deleted partitions (an 
expired partition is only deleted after all dependent partitions have reached eventual 
consistency).  The closed-partition protocol (Section 6) can help to determine when 
expired partitions can be safely deleted.  Alternatively, the warehouse administrator 
can generally assume that partitions which have aged out of their table’s window have 
had their final contents propagated and are safe to delete without further checks. 

4   Update Protocols 

In this section, we present a collection of update protocols which are correct and mi-
nimal under various conditions.  We define the level of a table to be 0 if it is a base 
table, or else the longest path from the dependent table to a base table source follow-
ing (source, dependent) table dependencies. Most proofs will use induction on the 
level of the table. 

4.1   Naïve Protocol 

Before we present correct update protocols, let us motivate the problem with an ex-
ample of an incorrect protocol. A first algorithm is motivated by the Unix tool make: 
update a dependent partition if its last-modified timestamp is less than that of any of 
its source partitions.  Next, consider the example in Figure 5. 

 

 

Fig. 5. Propagation by last-modified time fails 

Partitions B1, B2, S1, S2, and D initially have last-update times of 1, 2, 3, 4, and 
5, respectively.  Updates to B1 and B2 occur, ending at times 6 and 7 respectively. At 
time 7, an update to S2 occurs, ending at time 8.  Then, an update to D occurs, starting 
at time 8 and ending at time 11. Concurrently, an update to S1 starts at time 9 and 
ends at time 10 (Recall that the update to D has read-consistency on its sources). After 
these updates occur, D has a larger last-modified time than S1, so the update to B1 
will never propagate to D if the base tables remain quiescent. 
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Update protocols that use only a single timestamp can be made to work, but only 
with significant scheduling restrictions.  In Section 5, we discuss these protocols and 
present in detail the least restrictive one, the Starting-timestamp protocol. 

4.2   Source-Vector Protocol 

The definition of correctness can be used as an update protocol: Store with each parti-
tion Di its value of GB(Di). When the update protocol executes, it computes Gb(Di) 
from the values of GB(Sij), Sij in S(Di), and recommends Di for updating if 
Gb(Di)>GB(Di). 

The problem with such a protocol is the potentially enormous amount of metadata 
For example, consider a table that rolls up 5-minute buckets into 1-day buckets (per-
haps rolling up 5-minute aggregates into 1-day aggregates).  This table requires 288 
metadata entries for each table partition1 – more if the view involves a join.  Since 
large historical tables may contain tens of thousands of partitions, this blowup in 
partition metadata can become unmanageable. 

 We can decrease the amount of per-source table metadata required for an update 
protocol by forcing coordination among the updatestamps of a table’s partitions.  
Recall that the updatestamp of a table is a monotonic increasing function of the gen-
eration of a table.  Since whenever a table partition’s generation increases, the table 
generation increases, the table updatestamp can be used as the partition updatestamp.  
The table updatestamp can be a sample of the system timestamp at some point during 
the execution of the table update. 

Source-vector protocol: 

1) The table maintains an updatestamp, ut, which is incremented before assigning 
any new updatestamp to any partition during a table update. 

2)  Each partition maintains an updatestamp, u, which is the value of ut assigned to 
the table during the table update. 

3) Each partition maintains a source vector, mu = 
 (max(u(S1,1), …, u(S1,n1)). …, max(u(Sk,1), …,  u(Sk,nk))) computed from the source 
table metadata at the time of the partition’s update. 

4) when the update protocol runs, it computes for each partition Di the vector Mu = 
 (max(u(S1,1), …, u(S1,n1)). …, max(u(Sk,1), …,  u(Sk,nk))).  Partition Di is returned 
if Mu(Di) > mu(Di). 

Theorem: The Source-vector Protocol is correct and minimal. 

Proof: by induction on the level.  Since the protocol assigns valid updatestamps to the 
partitions in the Base tables, they are correct and minimal. 

Correct: Suppose that Gb(Di) > GB(Di).  Then there is a partition Sj,k in source table 
Sj that has been updated.  Therefore table Sj was updated, and obtained a larger upda-
testamp than any previous; further this updatestamp was assigned to Sj,k.  As a result 
Mu[j] > mu[j], and therefore Mu > mu. 

                                                           
1 There are 288 5-minute intervals in 1 day. 
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Minimal: Suppose that Mu > mu.  Then there is at least one j such that Mu[j] > mu[j], 
meaning that a partition Sj,k was updated.  By induction, Gb(Sj) > GB(Sj) and there-
fore Gb(Di) > GB(Di).                                                                                                   □ 

 

 

Fig. 6. Source-Vector Prococol 

An example of the Source-vector protocol is shown in Figure 6.  Initially, B1, B2, 
and B3 have updatestamps 1, 2, and 3 respectively. S1 has updatestamp 1 and source 
vector (1,2), while S2 has updatestamp 2 and source vector (2,3); D has updatestamp 1 
and source vector (1,2).  B2 is updated, which propagates to S1, changing its updates-
tamp to 3, and source vector to (1,4). We can detect that D needs to be updated be-
cause S1’s updatestamp is larger than its entry in D’s source vector. 

While this protocol requires a moderate amount of metadata, the amount is variable 
depending on the number of source tables.  Ideally, we could just use a pair of num-
bers, as fixed-size metadata generally enables more efficient implementations. 

4.3   Interval-Timestamp Protocol 

As we discuss in Section 5, update propagation protocols that use a single timestamp 
impose significant scheduling restriction.  The least restrictive one, the Starting-
timestamp protocol, does not allow a dependent table to update while a source is  
updating. If we allow two timestamps, we can nearly eliminate all scheduling restric-
tions.  We assume that each update has a read prefix, which is the period of time from 
the start of the update to the release of source table metadata, and a write suffix during 
its commit. 

Interval-timestamp protocol: 

1) Each partition maintains two updatestamps, su and eu. 
2) When the update starts, the table samples updatestamp su(D)=<time> sometime 

during the read prefix, and samples updatestamp eu(D)=<time> sometime during 
the write suffix. 

3) A base or derived partition sets su=su(D) and eu=eu(D) when it commits the 
update (at the end of the write suffix). 

4) For a derived partition, the update protocol selects a partition Di for update if 
su(Di) < max(eu(Sj) | Sj in S(Di)). 

D
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5) The update of a table cannot start during the read prefix or write suffix of its 
source or dependent tables. 

Theorem: the Interval-timestamp protocol is correct and minimal. 

Proof: omitted for brevity. 

Clause 5) is intended to ensure that all updatestamps which might be compared are 
unique.  Other unique-ifying methods such as a global ticket or read/write locks (on 
metadata) can be used.  In the example in Figure 7, updates of S and D are shown on a 
timeline, with the read prefix and write suffix indicated by the hashed boxes. The 
update to D starts at time 7, while an update to S executes concurrently.  Because of 
read consistency, D uses the value of S before its commit – the value of S at time 5. In 
contrast to the starting-timestamp protocol, D will be able to detect the update to S 
since eu(S) = 10 > su(D)=7. 

 

 

Fig. 7. Read prefix and write suffix 

Although the Interval-timestamp protocol uses two updatestamps in comparison to 
the Starting-timestamp protocol’s one, it is a small amount of metadata which is fixed 
in size – simplifying the task of implementing efficient protocols as compared to the 
Source-vector protocol. 

5   Protocols with a Single Timestamp 

In order to reduce the number of metadata variables to one, we will need to make use 
of a global timestamp: the system timestamp <time>.  By comparing these global 
timestamps, we hope to determine when a partition must be updated. It would seem 
obvious that a single timestamp should suffice. It can, but only with restrictions on the 
concurrency of updates.  In Section 6, we find that restrictions on concurrency intro-
duce unacceptable delays into the updates of real-time tables; therefore we cannot 
recommend the use of any single-timestamp protocol. In this Section, we explore 
single-timestamp protocols and their concurrency restrictions. 

The obvious approach is to use an algorithm similar to that used by the Unix tool 
make. As shown in Section 4.1, a naïve implementation is not correct. The max-
source protocol (omitted for brevity) implements this type of algorithm, but it only 
works in a very restrictive setting.  The parallelized version of make, pmake, avoids 
problems by performing a global analysis of the dependency DAG [6] and rebuilding 
objects in a depth-first fashion.  The algorithm described in [14] also makes a global 
analysis, but then tries to optimize concurrency. 

S 

D

5 10

7 12
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5.1   Starting-Timestamp Protocol 

If table updates are protected by read/write locks, then labeling partitions by their last-
updated timestamp is sufficient for a correct update propagation protocol (omitted for 
brevity).  However, this kind of restriction is unacceptable for a real-time or high-
availability warehouse, which is why they generally use some kind of versioning 
[12][18][38][44][46]. 

The scheduling restrictions of the current-timestamp protocol make it unaccepta-
ble for a real-time warehouse.  However, the “no concurrent scheduling” restriction is 
stronger than it needs to be.  The Starting-timestamp protocol relies on the read-
isolation of updates to loosen the scheduling restrictions. 

The Starting-timestamp protocol assumes that update processes have read-
isolation from a last-lock acquisition point until their commit point.  At the commit 
point, the new metadata for the dependent table becomes visible.  The period of time 
from when the update process starts until it releases the read locks on source table 
metadata is the read prefix of the update process execution. 

Starting-timestamp protocol: 

1) Each partition maintains an updatestamp u. 
2) When the update process starts, the table samples an updatestamp u(D) = <time> 

sometime during the read prefix. 
3) A base or derived partition sets u=u(D) when it updates. 
4) For a derived partition, the update protocol selects a partition Di for update if  

u < max(u(Sj) | Sj in S(Di)). 
5) The update of a dependent table cannot start if any of its source tables are updat-

ing.  No update of a source table can start during the read prefix of any of its  
dependent tables. 

Theorem: the Starting-timestamp protocol is correct and minimal. 

Proof: by induction on the level. 

Correct: Suppose that Gb(Di) > GB(Di).  Then some source partition Sj,k must have 
been updated since Di’s last update.  The updatestamp of Sj,k must be larger than u(Di) 
because the a) D will not update while Sj is updating, and b) the Sj update process 
must have started after the read prefix of D’s last update process.  Therefore Di will be 
selected for update. 

Minimal: omitted for brevity. 

The Starting-timestamp protocol blocks the update of sources during the short meta-
data processing period of the update of a dependent table.  However, the update of a 
dependent table is blocked during the update of its sources.  The problem is that with-
out this scheduling restriction, source partition S might start an update at time 5 and 
finish at time 10, while dependent partition D might start an update at time 7 and 
finish at time 12. When comparing timestamps later, no update of D would be trig-
gered even though S has more recent data.  However, the experiments in Section 6 
show that even these restrictions cause unacceptable update propagation delays for 
real-time tables. 



 Update Propagation in a Streaming Warehouse 143 

6   Mutual Consistency 

Two tables are mutually consistent if they were computed from the same base table 
snapshots [10][51].  Since we assume that table updates are autonomous, and might 
not update all stale partitions in a table, we cannot guarantee mutually consistent 
materialized views.  Without any assumptions of the structuring of updates, it is poss-
ible to detect when a partition has been computed from mutually consistent sources, 
and even to determine whether the partitions used for a query are mutually consistent.  
However, the amount of metadata required for this detection can explode.  If we make 
some mild assumptions about the pattern of updates to base table partitions, then we 
can provide a simple and efficient protocol for determining mutual consistency. 

6.1   The Closed Partition Protocol 

If the update patterns in a warehouse are arbitrary, then it seems we cannot ensure 
mutual consistency without either storing an unmanageable amount of metadata,  
or requiring an inflexible update procedure.  Fortunately, the update patterns in a 
streaming warehouse are not arbitrary, but rather follow a particular pattern – new 
data generally has a larger timestamp than older data, and therefore flows into higher 
numbered partitions.   

Previous work in streaming warehouses [18][19] have introduced the notions of 
leading-edge consistency and trailing-edge consistency.  The leading edge of a table 
contains the most recent possible data, while the trailing edge contains all data which 
will not change in the future – meaning that all of its source base partitions are quies-
cent and the partition has reached eventual consistency.  Any two trailing-edge con-
sistent partitions are mutually consistent.  Therefore, a simple protocol which ensures 
mutual consistency is one which detects trailing-edge consistency. 

We assume that there is some mechanism for determining when a base table parti-
tion has become quiescent.  One might receive punctuations [45] in an input stream, 
or one might assume that a partition sufficiently far from the leading edge has become 
quiescent.   

Closed partition protocol 

1. When a new base table partition is created, it is marked open. 
2. When a base table partition becomes quiescent, it is marked closed. 
3. Derived partition Di is marked open if any of its source partitions are marked 

open, and closed if all of its source partitions are marked closed, and Di is 
up-to-date. 

These steps can be performed in conjunction with any of the update propagation pro-
tocols discussed in Section 4.  Queries which require stable source data can be re-
stricted to querying closed partitions, while queries which require the most recent 
possible data can use all partitions. The open/closed status of source partitions can 
also be used to avoid recomputations of dependent partitions for tables which are 
required to provide mutual consistency: only create and compute a dependent parti-
tion if all of its source partitions are closed. 
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In a stream warehouse, the marking of base partitions as closed is often only an 
educated guess – late data arrives [29], existing data is found to be corrupted, etc.  If a 
closed base partition is revised with new contents, one can mark all of its transitively 
dependent partitions open, indicating the loss of mutual consistency until the base 
partition update has been propagated. 

7   Applications and Experiments 

The algorithms in this paper were motivated by the DataDepot project [18].  DataDe-
pot originally used a protocol similar to that of make, since this protocol is simple and 
updates to materialized views were generally done in batch, as in [14].  As DataDepot 
and its warehouses became more complex and real-time, we realized that the update 
propagation algorithm suffered from serious problems – the inability to support  
limited update required for real-time warehousing [19] was a particular motivation. At 
this point, we initiated a study of update propagation in a stream warehouse. 

As the material in Section 5 indicates, the Source-vector protocol most readily 
supports the needs of industrial stream warehouses, most notably its lack of depen-
dence on a coordinated timestamp – a useful property for a clustered warehouse.  An 
examination of several DataDepot warehouses (in addition to Darkstar) indicates that 
the additional metadata required to support the Source-vector protocol is small in 
comparison to the existing metadata – few materialized views involve large joins (see 
Figure 2 and  Figure 3 for examples).  Although DataDepot tables typically use thou-
sands to tens of thousands of partitions, the time to process their metadata for update 
propagation computations is negligible.  In the course of extensive monitoring, we 
found metadata processing to account for less that 1% of the time to perform update 
processing.  The multi-granularity partitioning technique contributes to this efficien-
cy.  Some tables use 1-minute partitions, but are stored for one year.  Since there are 
1440 minutes in a day and 365 days in a year, these tables require more than half a 
million per-minute partitions.  However, per-minute partitions are rolled up into per-
day partitions after two days, reducing the number of partitions used to store the table 
to a manageable level of about 3000. 

Although we recommend the Source-vector protocol over the Interval-timestamp 
protocol, and that over the Starting-timestamp protocol, systems considerations can 
sway implementation decisions.  DataDepot already had a large installed base when 
research for this paper was performed, and required a backwards-compatible protocol. 
Therefore, DataDepot switched to the Starting-timestamp protocol, which could most 
easily integrate the existing table metadata.  However, a detailed monitoring of the 
warehouse showed that the scheduling restrictions of the Starting-timestamp protocol 
introduced unacceptable delays into the real-time processing chain. 

A first example uses the ETL and summary table collection shown in Figure 8. 
The critical real-time update chain is C_RAW → C_BASE → C_JOINED → C. 

We analyzed two days worth of scheduler logs, tracking the time from a first alert 
that new data had arrived for C_RAW to the data being propagated to C. The logs 
were collected on a testing warehouse which used the Starting-timestamp protocol 
and which was tuned to enable updates to propagate as soon as new data had arrived. 
The results are shown in Figure 9. 
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Fig. 8. ETL for table C 

   

Fig. 9. Update delay for C, Starting-
timestamp protocol 

Fig. 10. Update delay for C, Interval-
timestamp protocol 

Most of the time, the update propagation delay is the sum of the update execution 
times at each table. However, there are four outliers.  By tracing through the logs, we 
confirmed that two of the outliers were due to an update of C_POLL_COUNTS 
blocking updates to C_JOINED, and two were due to updated to AGG_60_C block-
ing updates to C.  For a near-real time table with a 5-minute (300 second) periods, 
1300 second (22 minute) propagation delays are unacceptable. 

To eliminate the scheduling delays, we installed a backwards-compatible Interval-
timestamp protocol into the test warehouse, and removed the concurrency restrictions 
from the scheduler.  We ran the updated warehouse for approximately three days, and 
tracked the time to propagate updates from C_RAW to C.  The results are shown in 
Figure 10.  The maximum update delay is now much smaller, reduced to 226 seconds 
– demonstrating the values of asynchronous updates in a real-time warehouse. 

Next, we analyzed the update propagation time from the notification that new data 
has arrived for X_RAW to the data being loaded into X, for the collection of tables 
shown in Figure 2 (in a production warehouse).  We again analyzed about two days 
worth of update propagation delays using both the Starting-timestamp protocol and 
the Interval-timestamp protocol.  The large number of summary tables derived on the 
critical real-time path from X_RAW to X caused a delay of nearly 600 seconds, on 
average, when using the Interval-timestamp protocol, even though the computation 
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time on the critical path is closer to 120 seconds.  When we switched to the Interval-
timestamp protocol, we reduced the update delay to about 120 seconds. These expe-
riments demonstrate the need for an update propagation protocol that does not restrict 
the scheduling of updates in a stream warehouse. 

In the closest relevant literature [14], the authors describe update propagation in a 
DAG of temporally partitioned materialized views.  While the emphasis of their paper 
is on optimizing the update queries, they also describe the update propagation proce-
dure as being akin to that used by the make shell tool: partitions of the base tables are 
marked as “updated” if they receive updates since the last update propagation.  When 
update propagation is initiated, all partitions to be updated in all tables are determined 
from partition dependencies, and all tables are brought fully up-to-date.  While the 
global update procedure enables global optimizations, the update propagation delays 
it would incur would exceed those of the Starting-timestamp protocol, which we al-
ready find to be unacceptable. 

8   Related Work 

The primary topic of this paper relates to propagating updates of base tables to mate-
rialized views. The bulk of materialized view maintenance has focused on incremen-
tal update maintenance using differential update formulas, the earliest reference to 
which appears in [5].  The idea behind these formulas is to describe the increment to a 
materialized Select-Project-Join view that is due to an increment to one or more base 
tables. Formulae extensions for distributive aggregate tables are given in [35].  Non-
distributive aggregate tables can also be incrementally maintained, by recomputing 
only the affected groups [36]. 

There are different formulas for computing the increment to a view, given different 
starting assumptions.  One significant decision to be made is whether one has the 
contents of the base table(s) before or after the updates are applied – if the before-
image is available the formulas are simpler and more efficient.  The attempt to use 
before-image formulas inappropriately led to the recognition of the “state bug”, with a 
variety of solutions for proper synchronization of update propagation [50][9][10][2].    

If all views are not updated together (e.g. during a nightly refresh period), then 
queries across views can lead to inconsistent results (lack of mutual consistency).  
Schemes for defining consistency zones and their maintenance are described in 
[10][51]. By contrast, mutual consistency in a real-time database (not warehouse) 
refers to database reading all being collected within a short recent time window 
[23][1].  Trailing-edge consistency was developed as an easy-to-provide consistency 
model for stream warehouses [18][19], but has precedents in prior work [21].  Some 
very large systems with autonomous view updates explicitly do not provide any table-
level form of mutual consistency [3]. 

The technique of temporally partitioning a warehouse that stores a sliding window 
of historical data is commonly used [8][12][18][31][14] and is well-known in the 
folklore [22].  However, temporal partitioning is little explored in the literature; ex-
ceptions include [39][43] and some of the DSMS literature [17][28]. 

One of the motivations for this work was to be able to provide for autonomous and 
partial updates of materialized views, as is required for a real-time warehouse 
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[18][19]. Some previous work has been oriented towards partial or interrupted up-
dates [25][41]. 

Propagating updates to materialized views generally involves some degree of coor-
dination and ordering.  Previous work has generally relied on the global total ordering 
provided by the commit and recovery log [9][10][41][49][51] or on a message queue 
[2][50].  Update coordination in this paper ultimately depends on Gb and GB, which 
are similar to vector timestamps [13].  However, in GB or Gb, a partition (e.g. site) is 
in general represented more than once to account for multiple dependency paths. 
Previous work which uses vector timestamps for its update propagation modeling 
includes [21].  Previous work which uses multiple timestamps includes [49]. The 
terminology and techniques used in this work resemble that of replicated log propaga-
tion, e.g. [37], but the goals and the specifics greatly differ. 

9   Conclusions 

In this paper, we have presented models and algorithms for update propagation in a 
stream warehouse. To satisfy the needs of a stream warehouse – autonomous, partial, 
and real-time update propagation – we have developed a novel update propagation 
model. We use this model to develop simple, efficient, and provably correct update 
propagation algorithms. In the appendix, we extend these algorithms to handle the 
needs of real-world warehouses: ensuring mutual consistency, enabling merge tables, 
and allowing data repartitioning and multiple-granularity temporal partitioning.  We 
implemented these update propagation algorithms in several production warehouses 
and observed significant improvements in performance. 

Stream warehousing is similar in many respects to data stream management.  Pre-
vious work has argued that efficient DSMS management requires that stream records 
be organized by temporal partition [17][28].  Therefore, this work is also relevant to 
DSMS management. 
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Abstract. Dynamic Time Warping (DTW) is a widely used distance measure
for time series that has been successfully used in science and many other appli-
cation domains. As DTW is computationally expensive, there is a strong need for
efficient query processing algorithms. Such algorithms exist for single queries.
In many of today’s applications, however, large numbers of queries arise at any
given time. Existing DTW techniques do not process multiple DTW queries si-
multaneously, a serious limitation which slows down overall processing.

In this paper, we propose an efficient processing approach for multiple DTW
queries. We base our approach on the observation that algorithms in areas such as
data mining and interactive visualization incur many queries that share
certain characteristics. Our solution exploits these shared characteristics by prun-
ing database time series with respect to sets of queries, and we prove a lower-
bounding property that guarantees no false dismissals. Our technique can be
flexibly combined with existing DTW lower bounds or other single DTW query
speed-up techniques for further runtime reduction. Our thorough experimental
evaluation demonstrates substantial performance gains for multiple DTW queries.

1 Introduction

Time series, i.e., sequences of time-related values, occur in many applications in sci-
ence and business. The task of finding similar patterns in these sequences is known as
Similarity search in time series databases. Dissimilarity measures such as the Euclidean
Distance compare time series values at each point in time. In many domains including
climate research, speech-processing, and gene expression analysis, however, time series
may be “out of sync”; that is, there are local disturbances on the time axis [1,11,17,4].
This is illustrated in Fig. 1: the time series (top blue curve and bottom red curve) con-
tain the same “peak” pattern, only shifted along the time axis. Euclidean Distance (left)
compares only values for identical time points, meaning that differences at each point
in time (thin vertical black lines) are accumulated, and the similar pattern is not cap-
tured. This limitation is overcome by one of the most popular distance measures for
time series, Dynamic Time Warping (DTW). It aligns time series by local stretching
and shifting along the time axis, i.e. the time is warped. This is illustrated in Fig. 1
(right), where DTW (thin black lines) matches more similar values, even if they do not
occur at the exact same point in time.

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 150–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) Euclidean Distance (b) DTW

Fig. 1. The two time series (top blue and bottom red curves) show the same pattern shifted along
the time axis; Euclidean Distance (vertical lines) does not capture this, whereas DTW aligns time
series and computes the distance between the best match

DTW stems from the speech processing community [8] and has since been success-
fully used in many other domains [1,11,17,4]. While DTW is an effective measure,
it suffers from quadratic complexity in the length of the time series. Therefore, fast
query processing approaches have been proposed [18,16,31,24,25,3,5]. All of them tar-
get single ad-hoc queries. In many of today’s applications, however, massive query
amounts need to be processed within limited time. Examples include sensor networks,
data mining applications, and interactive visualization [19,9,10]. Fast response times
are required for timely reaction to events, scalability, and interactiveness.

We propose a novel method for combined processing of multiple DTW queries that
achieves, compared to single-query approaches, substantial speed-up. Our solution is
based on a property of many multiple-query scenarios: queries may be similar or even
share subsequences. As an example from data mining [9], consider density-based clus-
tering where the transitive closure of the neighborhood (near-by objects) is computed
to determine dense regions (clusters), resulting in similar queries for near-by objects.
More examples of related queries can, for example, be found in [9].

Our approach exploits similarity among queries to process groups of queries as one.
This allows for pruning of time series that are irrelevant to the entire group. To further
enhance the pruning power of our concept, we introduce a nested hierarchy of query
subgroups. This hierarchy iteratively splits the query group with respect to mutual simi-
larity in order to continue pruning for smaller and more similar query subsets. As shown
experimentally, this results in substantial efficiency gains. We prove that this does not
incur any false dismissals, i.e. we guarantee completeness of the query results. We show
that our approach is orthogonal in nature to existing single DTW query approaches. We
demonstrate how DTW filters for single query processing can be extended to multiple
query processing and how they can be added to our query hierarchy. We introduce a tree
structure that maintains all information necessary for efficient algorithmic processing
of query (sub-)groups using any number of filters.

This paper is structured as follows: In Section 2, we discuss related work on multi-
ple query processing and DTW computation. Section 3 introduces our method, defining
the multiple DTW query and our general approach in Subsection 3.1. Subsection 3.2
discusses the hierarchy and its representation in our multiple query tree. The combi-
nation with extended single query speed-up techniques is presented in Subsection 3.3.
An algorithmic solution for processing of k nearest neighbor queries is described in
Subsection 3.4, and Subsection 3.5 discusses the special case of range queries with
individual thresholds. Section 4 presents experimental results and Section 5 concludes.
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2 Related Work

Multiple query processing has been studied in the context of query optimization [27],
where the goal is to devise efficient query execution plans. Similar problems have been
studied for density-based clustering [30], continuous queries on data streams [7,28], or
in sensor networks [14]. While the concept of sharing computations among queries is
widely used, these approaches are not designed for time series data.

Dynamic Time Warping (DTW) has been successfully applied in many fields such
as music similarity [31], video copy detection [4], biometric signatures [15], or stream
monitoring [23]. An extensive empirical study of DTW and other time series distance
measures can be found in [12]. Since DTW is an effective measure, but exhibits quadratic
complexity in the length of the time series, much research has focused on speeding up
the computation. A first group of techniques is based on approximating DTW queries,
as e.g. [6]. Here, efficiency gains for single DTW queries come at the cost of accu-
racy. By contrast, our work for multiple DTW queries guarantees correctness of the
result. A second group uses a filter-and-refine architecture with filter functions [13,26].
By showing that the filters indeed lower bound DTW, completeness of the result is en-
sured [18,16,31,24,17,5]. All of these approaches are for single queries, i.e. they devise
a filter-and-refine or approximate search mechanism that processes a single query at a
time. For multiple queries, however, these techniques fail to exploit the potential that
lies in sharing computations among time series queries.

3 Efficient Multiple Query Processing under DTW

A time series is a sequence of values over time, such as temperature measurements
recorded every minute over the period of several years.

Definition 1. A time series t of length n is a temporally ordered sequence t= [t1, ..., tn],
where ti denotes the value related to a point in time i.

Please note that while we define univariate time series here for simplicity of presenta-
tion, our proposed method works for multivariate time series as well (where each ti is
a d-dimensional vector ti = (ti1 , ..., tid

)).
Dynamic Time Warping (DTW) is the distance of the best alignment between time

series stretched along the time axis. Infinite warping of the time axis is typically not
desirable, so warping is usually restricted via bands (global constraints). As shown in
[12], bands can enhance both accuracy and efficiency of computation. DTW with a band
constraint is defined recursively on the length of the sequences.

Definition 2. k-band DTW. The Dynamic Time Warping distance between two time
series s, t of length n, m (w.l.o.g. n ≤ m) w.r.t. a bandwidth k is defined as:

DTW ([s1, ..., sn], [t1, ..., tm]) =

distband(sn, tm) + min

⎧⎨⎩
DTW ([s1, ..., sn−1], [t1, ..., tm−1])
DTW ([s1, ..., sn], [t1, ..., tm−1])
DTW ([s1, ..., sn−1], [t1, ..., tm])
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with distband(si, tj) =
{ |si − tj| if |i− ⌈ j·n

m

⌉ | ≤ k
∞ else

DTW (∅, ∅) = 0, DTW (x, ∅) =∞, DTW (∅, y) =∞
DTW is defined recursively on the minimal cost of possible matches of prefixes shorter
by one element. There are three possibilities: match prefixes of both s and t, match s
with the prefix of t, or match t with the prefix of s. The difference between overall
prefix lengths is restricted to a band of width k in the time dimension by setting the
cost of all overstretched matches to infinity. Besides this Sakoe-Chiba band with fixed
bandwidth [22], our method works for other types such as R-K bands [21].

DTW can be computed via a dynamic programming algorithm in O(k∗max{m, n})
time. To reduce the computational overhead, early stopping (also called early abandon-
ing) checks the minimum value of the current column as the dynamic programming
matrix is being filled [24,17]: if this value exceeds the pruning threshold, DTW compu-
tation can be stopped immediately. We adopt this approach for any DTW computation
in this paper. For the remainder of the discussion we assume that time series are of
length n. Time series of different length can be easily interpolated to uniform length
without degrading the quality of the final result in a statistically significant way [20].

3.1 Multiple DTW Query

We begin by introducing the problem definition of processing multiple DTW queries. In
this subsection, we discuss range queries. The extension to the more complex problem
of kNN queries is presented in Sec. 3.4.

Processing multiple range queries corresponds to computing a result set for each
query of all time series that are within ε DTW distance from the respective query.
Clearly, there might be applications where different thresholds apply per query, and
this aspect is discussed in Sec. 3.5.

Definition 3. Given a set of time series queries Q = {q1, . . . , qc} and a time series
database DB, a Multiple DTW ε-query determines multiple result sets Resi = {t ∈
DB | DTW (qi, t) ≤ ε} for all i = 1, . . . , c.

Each query has an individual result set, i.e. the different results are not merged in any
way. Thus it is possible to process a multiple DTW query simply by dividing Q into c
single, independent queries qi, such that traditional single query processing algorithms
can be applied. This, however, would not exploit the speed-up potential that lies in the
knowledge about the overall query set Q. Our novel approach operates directly on the
whole set Q, i.e. the queries are examined simultaneously. This technique allows for
sharing computations, since pruning of many time series can be done for the entire set
at once, thereby speeding up the overall response time considerably.

We introduce the multiple query distance function, which uses a single calculation
for a set of queries. Using this multiple query distance function, pruning of irrelevant
time series is performed for all queries simultaneously, obtaining a substantial reduction
of the calculations for the individual result sets. As we will see later on, pruning is done
such that false dismissals are avoided, thereby ensuring a complete result set. We then
remove false alarms to guarantee correctness of the results.
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Fig. 2. Multiple DTW query processing
framework

The general processing scheme is illus-
trated in Fig. 2: First, an intermediate result
set based on our multiple DTW query dis-
tance multiDTW is jointly determined for
all queries. This shared set ResQ is the re-
mainder after pruning the database DB and
is an approximation of the final, individual
result sets Resi. By design, we guarantee no
false dismissals of the multiple query distance function: If t /∈ ResQ, then t /∈ Resi

for any result set. Accordingly, to reject a time series t, just a single calculation of the
multiple query distance function is needed, instead of |Q| individual calculations. Since
the queries share some results, but also differ in some, the set ResQ needs to be further
processed: ResQ is split up for each query individually and false alarms are removed,
i.e. further time series are rejected to obtain the results Resi.

To ensure that the final results are indeed complete, i.e. there are no false dismissals,
the intermediate set has to be a superset of each exact result set. More formally, the
condition ResQ ⊇ Resi has to hold for all i = 1, . . . , c. This is the case if the multiple
query distance function fulfills the following property:

Definition 4. A multiple query distance function multiDist fulfills the Shared Lower
Bound Property w.r.t. a distance function dist iff

for all Q, t: ∀q ∈ Q : multiDist(Q, t) ≤ dist(q, t).

For each final result t ∈ Resi we have dist(qi, t) ≤ ε and by Def. 4 multDist(Q, t) ≤
ε; thus, if ResQ = {t ∈ DB |multDist(Q, t) ≤ ε}, completeness is guaranteed.

The tightest multiple query distance function possible for DTW still fulfilling this
property is multiDist(Q, t) = minq∈Q DTW (q, t). This, however, entails the calcu-
lation of |Q| many DTW distance values; a performance gain is not realized. To ensure
an efficient processing, we need a compact, single representation that can efficiently be
processed; therefore we aggregate the set Q by a multiple query bounding box.

Definition 5. Given a query set Q, the Multiple Query Bounding Box is a sequence
[(L1, U1), . . . , (Ln, Un)] = [B1, . . . , Bn] = multiBox(Q) with Li = minq∈Q qi and
Ui = maxq∈Q qi (where qi is the value of time series q at position i).

By using the minimal and maximal values per time step, this bounding box approxi-
mates the whole query set. This approximation has the benefit of being very compact,
while preserving much information to ensure effective pruning. Based on this bounding
box definition, we introduce our novel multiple DTW query distance function.

Definition 6. The Multiple DTW Query Distance function between a multiple query
bounding box [B1, .., Bn] and a time series t w.r.t. a bandwidth k is defined as:

multiDTW (Q, t) = multiDTW ([B1, .., Bn], [t1, .., tm]) =

distband(Bn, tm) + min

⎧⎨⎩
multiDTW([B1, .., Bn−1], [t1, .., tm−1])
multiDTW([B1, .., Bn], [t1, .., tm−1])
multiDTW([B1, .., Bn−1], [t1, .., tm])

with distband(Bi, tj) =
{

dist(Bi, tj) if |i− j| ≤ k
∞ else
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and dist(Bi, tj) = dist((Li, Ui), tj) =

⎧⎨⎩
|tj − Ui| if tj > Ui

|tj − Li| if tj < Li

0 otherwise

multiDTW (∅, ∅) = 0, multiDTW (x, ∅) = multiDTW (∅, y) =∞
Since the distance to the bounding box is used during the DTW calculation, we si-
multaneously consider all queries and the computational complexity is independent of
the actual number of represented queries. We now prove that the shared lower bound
property holds, i.e. using multiDTW distance entails no false dismissals.

Theorem 1. multiDTW fulfills the shared lower bounding property w.r.t. DTW .

Proof. We need to proof that ∀p ∀q ∈ Q : multiDTW (Q, p) ≤ DTW (q, p).
It suffices to show that ∀i, j : dist(Bi, pj) ≤ dist(qi, pj) with q ∈ Q and B =
multiBox(Q). Then, no other alignment can be found by multiDTW that would
break Theorem 1. The proof is done by cases: We distinguish (a) Li ≤ pj ∧ pj ≤ Ui,
(b) pj > Ui, and (c) pj < Li. For (a) it holds since dist(Bi, pj) = 0. For (b) the
following applies: dist(Bi, pj) = |pj − Ui| and dist(qi, pj) = |pj − qi|. Accordingly,
we have to show that |pj − Ui| ≤ |pj − qi|. Since pj > Ui and Ui ≥ qi (Def. 5) this
equals to pj − Ui ≤ pj − qi. By subtracting pj and multiplying with −1 we obtain
Ui ≥ qi, which is true according to Def. 5. The proof of (c) is analogue to (b).

3.2 Hierarchical Multiple DTW Query

Our multiple DTW query achieves a speed-up compared to single query processing by
allowing pruning for a query group. In this section, we explore further pruning through
the creation of several subgroups. A single group implies that only a single multi query
needs to be processed, which helps reducing the number of DTW computations but still
might lead to a relatively large intermediate result set ResQ. To prevent false alarms,
we would need to compare each individual query against this intermediate set. We pro-
pose reducing computations at this point by splitting up the query group into smaller
subgroups for further pruning. This hierarchy of pruning options is based on the ob-
servation that smaller, more similar groups reduce the intermediate result size since the
distances for smaller groups are larger, which is caused by tighter bounding boxes. The
relation of group size and distance is reflected by the following theorem.

Theorem 2. Smaller query sets correspond to a more accurate multiDTW , i.e. the
distances values are larger:

∀Q, Q′ ⊆ Q, p : multiDTW (Q, p) ≤ multiDTW (Q′, p)

Proof. Similar to Theorem 1’s proof, we need to show that ∀i, j : dist(Bi, pj) ≤
dist(B′

i, pj) with B = multiBox(Q) and B′ = multiBox(Q′). This ensures that no
other alignment can be found by multiDTW that would violate the above theorem, i.e.
that the left term in the inequation would be larger than the right term. The proof has
three cases: (a) Li ≤ pj ∧ pj ≤ Ui, (b) pj > Ui, and (c) pj < Li.

For (a) dist(Bi, pj) = 0, dist(Bi, pj) ≤ dist(B′
i, pj) is obviously fulfilled.
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For (b) dist(Bi, pj) = |pj − Ui|. Since Ui ≥ U ′
i (and thus pj > U ′

i ) we also have
dist(B′

i, pj) = |pj − U ′
i |. We have to show that |pj − Ui| ≤ |pj − U ′

i |. Since pj > Ui

and Ui ≥ U ′
i (Def. 5), we obtain pj −Ui ≤ pj −U ′

i . By subtracting pj and multiplying
with −1 we get Ui ≥ U ′

i . According to Def. 5 this yields maxq∈Q qi ≥ maxq∈Q′ qi.
This holds because of Q ⊇ Q′. The proof of (c) is analogue to (b).

Thus, reducing the query set corresponds to increasing the multiDTW distance and
thereby the number of time series that can be pruned.

multiDTW

DB

ResQ

multiDTW multiDTW multiDTW
Q’

Q

Q’’ Q’’’

DTW DTW
q q

......

ResQ’’ResQ’ ResQ’’’

5 7

Fig. 3. Multiple Query Tree

In principle, multiDTW can be used on each
partition of an arbitrary partitioning of the query
set Q. In the most extreme case of |Q| many par-
titions, this procedure degenerates to single query
processing. With fine grained groups we get small
intermediate result sets; however, at high computa-
tional costs since many queries need to be processed.
On the other hand, just one query group is compu-
tationally efficient; however, we get a larger set of
candidate objects. We propose to combine different
granularities through a hierarchical grouping of the
query set. We organize queries in our multiple query tree, where the root node repre-
sents all queries as a single group (cf. Fig. 3), and by descending into the tree we get
more fine grained groups. Eventually, the exact DTW computation for single queries is
represented at leaf level.

Definition 7. Given a query set Q, the Multiple query tree (MQ-tree) is defined as

– the root node stores a multiple query bounding box for all queries Q
– each inner node stores a multiple query bounding box for a query subset P ⊆ Q
– each leaf node stores the time series of a single query q ∈ Q
– all child nodes of a parent represent a complete, disjoint partitioning of their par-

ent, i.e., P =
⋃· P ′∈children(P ) P ′

– the granularity is refined on each level, i.e., ∀P ′ ∈ children(P ) : P ′ ⊂ P

During query processing, each time series t ∈ DB is first checked against the root
node, i.e. the whole query set. If the multiDTW distance is already larger than the
range threshold ε, the time series is pruned. Otherwise the child nodes are analyzed,
i.e. subsets of all queries are considered. Again, t is potentially pruned for some of the
child nodes or passed on to the next level. Eventually, leaf nodes may be reached. If for
the current leaf node/single query the DTW distance is still smaller than ε, t is added to
the corresponding result set. The completeness of this method is ensured because a) for
each query qi there exists only one path from the root node to the corresponding leaf,
b) all query sets along this path contain the query qi, and c) the corresponding distance
function along this path fulfills the shared lower bounding property.

To find query subgroups that are similar and therefore result in many pruned time
series, we use clustering. The hierarchical query groupings of our tree are obtained
with OPTICS [2], a hierarchical extension of the density-based clustering algorithm
DBSCAN. OPTICS requires no knowledge about the number of clusters a priori, en-
abling a flexible fan-out in our tree that adjusts automatically to the mutual similarity



Efficient Processing of Multiple DTW Queries in Time Series Databases 157

Fig. 4. Sequence of traditional filter-
and-refine steps for single queries:
each query (q1, q2, . . .) undergoes
the same filter steps until pruned or
refined completely
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of queries. OPTICS computes a plot of possible clusters at different levels of density.
Any horizontal cut in the plot corresponds to a clustering in this hierarchy. OPTICS
has two parameters: The maximum density neighborhood range ε′, and the minimum
number of objects in this neighborhood minPts. We set ε′ to twice the ε-range of our
multiple DTW query and minPts to two for avoiding single queries in inner nodes.
Since the number of queries is typically small compared to the number of time series in
the database, clustering runtimes are negligible, as our experiments in Sec. 4 confirm.

3.3 Filter-Supported Hierarchical Multiple DTW Query

Our hierarchical multiple DTW technique makes use of similarity among multiple
queries, and can exploit a hierarchy of pruning possibilities that greatly reduce DTW
computations. Existing work for single queries speed up DTW computations using spe-
cific filter functions. In these traditional filter-and-refine algorithms, the idea is to pre-
cede the processing of a single query by a filter distance computation, that might lead
to pruning prior to DTW calculation. If filter functions are lower bounds, i.e. they un-
derestimate the DTW distance, then this filter-and-refine approach is complete [13,26].
Since several lower bounds exist in the literature, one can build a sequence of filters that
a query can be subjected to, as illustrated in Fig. 4.

Clearly, this filter concept is orthogonal to our multiple DTW query. Our approach
prunes based on the combination of multiple queries into a single representation,
whereas the traditional approach uses filters per query. For improved pruning power
and thereby most efficient query processing, we propose a combination of the two con-
cepts, which we call filter-supported hierarchical multiple DTW.

To realize such a combination, the single query lower bound needs to be extended so
that it can serve as a lower bound for a query group, and we go from a traditional filter
distance function distf (q, p) to a multiple query distance function multiDistf(Q, p).
In this work we exemplarily adapt the well-known and effective LBKeogh lower bound-
ing filter to handle multiple queries [16], which is based on the difference to upper and
lower bounds (termed “envelope”) within the band constraint.

Traditionally, LBKeogh between a query q and time series t is defined as

LBKeogh(q, t) =
n∑

i=1

⎧⎨⎩
|ti − Ûi| if ti > Ûi

|ti − L̂i| if ti < L̂i

0 otherwise

with Ûi = max{qi−k, . . . , qi+k} and L̂i = min{qi−k, . . . , qi+k} as lower and upper
bounds w.r.t. the DTW bandwidth k.
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For a query group, we define the multiple query LBKeogh, which computes the up-
per and lower bounds for all queries within the band constraint using the previously
introduced multiple query bounding box.

Definition 8. Given a query set Q, its multiple query bounding box [(L1, U1), . . . ,
(Ln, Un)] and the DTW bandwidth k, then the Multiple Query LBKeogh is defined as

multiLBKeogh(Q, t) =
n∑

i=1

⎧⎨⎩
|ti − Ũi| if ti > Ũi

|ti − L̃i| if ti < L̃i

0 otherwise

with upper bound over all queries Ũi = max{Ui−k, . . . , Ui+k} =
maxq∈Q{max{qi−k, . . . , qi+k}} and
lower bound L̃i = min{Li−k, . . . , Li+k} = minq∈Q{min{qi−k, . . . , qi+k}}.
To show that this multiple query LBKeogh can be used without incurring false dis-
missals, we prove the shared lower bounding property.

Theorem 3. multiLBKeogh fulfills the shared lower bounding property w.r.t. DTW.

Proof. We need to show that for any query set Q and any time series t, we have
multiLBKeogh(Q, t) ≤ DTW (q, t).

According to Def. 5, the upper bound Ũi for query set Q is the maximum of the
upper bounds for all q ∈ Q. Analogously, the lower bound L̃i is the minimum of
the lower bounds for all q ∈ Q. Thus, similar to Theorem 1’s proof, we know that
for an individual query q in Q the bound can only be higher than for the entire set,
i.e. we have that multiLBKeogh(Q, t) ≤ LBKeogh(q, t)∀q ∈ Q. Since LBKeogh is
itself a lower bound to DTW [16], i.e. LBKeogh(q, t) ≤ DTW (q, t), it holds that
multiLBKeogh(Q, t) ≤ DTW (q, t)∀q ∈ Q.

multiDist2
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multiDist2 multiDist2 multiDist2
Q’ Q’’ Q’’’

DTW DTW
q q ......

ResQ’’,d2ResQ’,d2 ResQ’’’,d2
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Fig. 5. Filter supported hierarchical
multiple DTW

Accordingly, our definition of the multiLBKeogh

filter may be safely combined with our hierarchical
multiple DTW approach without jeopardizing com-
pleteness. Fig. 5 gives an overview: as before, we
have different granularities of the query subgroups
Q’, Q”, . . . of the entire query set. Additionally, se-
quential filters, such as distf1 in Fig. 4, extended to
multiple queries as multiDist1 in Fig. 5 are added
(e.g., LBKeogh to multiLBKeogh). In Fig. 5, we
illustrate a complete nesting of both paradigms, i.e.
for each granularity all possible sequential filters are
used. In general, on each level it is possible to select
a certain subset of filter distance functions. For ex-
ample, we could omit the gray highlighted nodes of
the tree and directly propagate the result to the next level. In this manner, it is possible
to flexibly construct a subgroup and filter cascade based on selectivity estimates.

We extend the multiple query tree (Def. 7) to include sequential filters in addition to
grouping of queries. is defined as follows:
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Definition 9. Given a query set Q and a series of multiple query distance functions
multiDisti with i = 1, .., r (fulfilling the shared lower bound property w.r.t. DTW ),
the Filter-supported Multiple Query Tree (FSMQ-tree) is a modified MQ-tree:

– the root node is a tuple [Q, 1] of all queries Q and the distance function multiDist1
– each inner node is a tuple [P, i] representing a query set P ⊆ Q and the distance

function multiDisti
– each leaf node is a tuple [{q}, r + 1] representing a single query {q} ⊆ Q and the

usual distance function DTW
– all child nodes of a parent represent a complete, disjoint partitioning of their par-

ent, i.e., P =
⋃· [P ′,j]∈children([P,i]) P ′

– either the granularity or the distance function is refined, i.e.,
∀[P ′, j] ∈ children([P, i]) : P ′ ⊂ P or j > i

Each node of the tree now represents a query subset and a filter function. The hierarchy
is used to either go to a new granularity by splitting the query group, or to go to a new
lower bounding filter. Since the leafs use DTW itself, and we assume that all filters are
lower bounding, the final result is correct and complete.

1: input: FSMQ-tree with root [Q, 1], ε range, database DB;
2: for each t ∈ DB
3: process-node([Q, 1],t)
4: return result sets Resi, i = 1, . . . , |Q|
5: function process-node(node [P, j], time series t)
6: if( P = {qi} ∧ j = r + 1 )
7: if( DTW (qi, t) ≤ ε )
8: Resi = Resi ∪ {t}
9: else

10: if( multiDistj(P, t) ≤ ε )
11: for each [P ′, l] ∈ children([P, j])
12: process-node([P ′, l],t)
13: end function

Fig. 6. Processing of multiple DTW ε-queries

The query processing is illustrated
in Fig. 6. For a query set Q, a database
DB and an ε-threshold, we begin by
initializing an empty result set for each
query. Query processing for database
time series starts from the tree root,
which represents the entire query set
Q and the first filter distance. While
we are not at leaf level (line 6), we
compare the current multiDist value to
the ε-threshold (line 10). We continue
processing only for child nodes that
cannot be pruned according to this filter (line 12). At leaf level, the final DTW re-
finement determines whether a time series is included in the respective result set of
query qi (line 8). Thus, the FSMQ-tree maintains all information needed on the current
query subset and the respective filter level, making it easy to prune time series that do
not contribute to certain result sets.

3.4 Multiple DTW kNN-Query

In the previous sections we discussed the processing of multiple range queries. In range
queries, the pruning threshold is known to be exactly the ε-range. We now discuss the
case of multiple kNN (k nearest neighbor)-queries, which is more complex in the sense
that such a threshold is not known in advance. The result set consists of the k most
similar time series.

Definition 10. Given a set of time series queries Q = {q1, . . . , qc} and a time series
database DB, a Multiple DTW kNN-query determines multiple result sets Resi(DB),
such that |Resi(DB)| = k and ∀t ∈ Resi(DB)∀s ∈ DB\Resi(DB) :
DTW (qi, t) ≤ DTW (qi, s) for all i = 1, . . . , c.
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In contrast to the ε-query, where the maximal permitted distance ε is known before-
hand, for kNN-queries such a threshold is not given a priori. This threshold, however,
plays a crucial role for the early pruning of time series in our hierarchy. To obtain a
threshold for kNN-queries, query processing typically retrieves k objects that are iter-
atively replaced by closer ones as query processing proceeds. The distance of the kth
best candidate seen so far acts as a moving ε-threshold. At the end of query processing,
it corresponds to the true kth nearest neighbor distance.

For multiple kNN-queries, the question is how to obtain an initial ε-threshold that is
as small as possible. If the threshold is too large, only few objects are pruned resulting
in larger intermediate result sets and thus higher query times.

Naively, one could process k time series for the group of queries, thus obtaining
an initial ε-threshold that corresponds to the maximum kth nearest neighbor distance
for all queries. Then, as more time series are processed, the k nearest neighbors of the
query set could be adjusted to potentially lower the moving threshold for the query
set accordingly. This procedure, however, is not the most efficient one. Since we use
a hierarchical grouping of queries, maintaining only a single moving threshold for the
entire query set is only useful at root level. Descending into the tree, i.e. using more fine
grained partitions, allows calculating tighter thresholds by considering only the queries
represented by the current subtree.

Our solution is to maintain a moving threshold per query subgroup for maximizing
pruning power: each tree node is enriched by an individual ε-value (i.e., the kth nearest
neighbor distance among the time series seen so far).

Definition 11. Given a query set Q and a series of multiple query distance functions
multiDisti with i = 1, . . . , r (fulfilling the shared lower bound property w.r.t. DTW),
the ε-enriched FSMQ-tree for currently completely processed time series subset T ⊆
DB is defined by:

– each node is a 3-tuple [P, i, ε]
– a valid FSMQ-tree (cf. Def. 9) is obtained if the 3-tuples are restricted to the first

two components
– each inner node stores [P, i, ε]with ε = maxqj∈P maxt∈currResj(T ){DTW (qj, t)}

and currResj(T ) is qj’s current kNN query result for subset T ⊆ DB (cf. Def. 10).

The individual moving threshold ε is the maximum among the ε values of its child
nodes, which we use for efficient updating during query processing.

Theorem 4. For each inner node of the ε-enriched FSMQ-tree [P, i, ε] the following
holds: ε = max[P ′,i′,ε′]∈children([P,i,ε]){ε′}.
Proof. By construction of the FSMQ-tree as a modified MQ-tree (Def. 9), it holds that
P =

⋃· P ′∈children(P ) P ′ for all child nodes [P ′, i′, ε′] of node [P, i, ε].
Consequently, ε = maxqj∈P maxt∈currResj(T ){DTW (qj, t)} =
maxqj∈⋃· P ′∈children(P ) P ′ maxt∈currResj(T ){DTW (qj, t)} =
max[P ′,i′,ε′]∈children([P,i,ε]){ε′} since ε′= maxqj∈P ′ maxt∈currResj(T ){DTW (qj, t)}.
(Note that the maximum over the current result set currResj does not change for a
given qj and T .)
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Accordingly, as we process time series and include them in the respective result sets
of individual queries at leaf level, we can propagate the thresholds up the tree by taking
the maximum among child nodes.

1: input: ε-enriched FSMQ-tree with root [Q, 1, ε1],
k, DB;

2: for each t ∈ DB
3: process-node([Q, 1, ε1],t)
4: return result sets Resi, i = 1, . . . , |Q|
5: function process-node(node [P, j, ε], time series t)
6: if( P = {qi} ∧ j = r + 1 )
7: if( DTW (qi, t) < currEpsi )
8: currResi =

currResi\
{argmaxx∈currResi{DTW (qi, x)}}

9: currResi = currResi ∪ {t}
10: currEpsi = maxt∈currResi{DTW (qi, t)}
11: propagate currEpsi

12: else
13: if( multiDistj(P, t) ≤ ε )
14: for each [P ′, l, ε′] ∈ children([P, j, ε])
15: process-node([P ′, l, ε′],t)
16: end function

Fig. 7. Processing of multiple DTW kNN-queries

For a query set Q, a database DB,
and the number of nearest neighbors
k, we begin by initializing with k ran-
domly selected time series from the
database to fill the result sets. After-
wards the current individual ε thresh-
olds are calculated based on these sets
and the ε-enriched FSMQ tree is built.
The overall processing algorithm of
multiple kNN queries on this tree is
shown in Fig. 7. As in the algorithm
in Fig. 6, in inner nodes database time
series are pruned if they exceed the ε
threshold (line 13). There are two ma-
jor differences in the query process-
ing for multiple DTW kNN queries.
First, pruning takes place according
to a subgroup-specific threshold, which is only valid for the query subgroup represented
by this inner node. Second, if a database time series reaches leaf level (line 6) and the
object cannot be pruned by the current individual threshold currEpsi, an update of the
corresponding result list is performed. The time series with the highest DTW distance to
the query is substituted by this more similar time series (lines 8-9). Such an update may
lead to improved pruning for the remaining database time series, because the thresh-
old on the kth neighbor distance among time series seen so far for qi, i.e. currEpsi,
becomes smaller (line 10). Note that the update of thresholds in line 10 is based on
stored values and not on re-computation of the DTW distances. The better threshold is
propagated up the tree by recomputing the maxima according to Theorem 4, improving
pruning on all levels. Additionally, we improve the tree structure by adjusting the query
grouping. As mentioned in the discussion of range queries (cf. Sec. 3.2), OPTICS clus-
tering is used to group queries. If the thresholds change, we refer to the hierarchical plot
that OPTICS has generated to re-group the queries. This ensures that we always group
the queries based on their similarity with respect to the current pruning options.

In the following, we prove that this multiple kNN query processing can be used
without incurring false dismissals, i.e. it ensures completeness of the results.

Theorem 5. Query processing of multiple kNN-queries using the ε-enriched FSMQ-
tree is complete, i.e. there are no false dismissals.

Proof. Time series are only dismissed based on the pruning thresholds in the ε-enriched
FSMQ-tree nodes. False dismissals are prevented if the pruning threshold for any query
is larger than or at most equal to the final kth nearest neighbor distance [13,26]. This
means that completeness is ensured if in all (inner and leaf) nodes of the tree the
subgroup-specific thresholds ε are larger than or equal to the exact thresholds of any
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single query at leaf level in the corresponding subtree. This means that for each node
[P, i, ε] it holds that ε ≥ maxqi∈P {maxt∈Resi(T ){DTW (qi, t)}}∀T ⊆ DB.

Since in the inner nodes, the corresponding ε can be determined by taking the maxi-
mum of the child nodes (cf. Theorem 4), it suffices to prove the above property for the
leaf nodes; then it holds for the entire tree.

In the leaf nodes, the query set consists of a single query qi, i.e. we have ε =
maxt∈currResi(T ){DTW (qi, t)}. Since the currently processed time series are a subset
of the database T ⊆ DB, we have that ε ≥ ε′ := maxt∈Resi(DB){DTW (qi, t)}which
is the final kth nearest neighbor distance.

3.5 Processing of Multiple Range-Queries with Individual Ranges

By augmenting our tree with the concept of individual ε values, we enable the pro-
cessing of multiple kNN queries. Additionally, this allows processing of multiple DTW
range-queries with individual thresholds εi. In this case, the εi value of each leaf node
is fixed, the thresholds in the inner nodes are determined just ones, and there is no dy-
namic change of the result set currResi; it is just filled as database time series fall
below the individual threshold εi (cf. Fig. 6, line 10-11).

4 Experiments

Experiments were run on 3GHz Intel Core 2 CPUs using JAVA implementations. As
mentioned in Section 3, all approaches use early stopping of DTW computations [17,24].
Unless stated otherwise, the following defaults were used: Time series length was
n = 512 and dataset size was 5,000. DTW bandwidth k was 10% of time series length.
The number of nearest neighbors retrieved was 5 per multiple query (i.e., 5 per indi-
vidual query), and for range queries an ε-range was selected that resulted in around 5
nearest neighbors per individual query. As measures we use the wall clock time aver-
aged over 10 multiple queries, the relative number of refinements, i.e. the percentage
of database time series that undergo exact DTW calculations, and the relative improve-
ments of our method compared to the baseline method. A multiple query Q is obtained
by randomly selecting a set S of seed queries from the database. For each seed s ∈ S,
we generate g queries deviating from the seed by a standard deviation of 10%, and a
multiple query Q has the cardinality |Q| = |S| · g. As default, we use 8 seeds and 5
generated queries per seed, resulting in 40 individual queries per multiple query.

We use synthetic random walk (RW) and real world data. For RW, the ti+1th value is
generated by drawing from a normal distribution with parameters μ = 0 , σ = 1 added
to the value of ti : ti+1 = ti + N(0, 1). RW was normalized to an average value of
0. In real data experiments, we used datasets introduced in [16]: From the EEG dataset
we used 5,000 time series of length 512; the smaller datasets consist of 500 (burstin),
272 (lightcurb), and 180 (network) time series of length 100. The largest dataset EEG is
used throughout the evaluation along with RW data, and an overview over the remaining
results is given at the end.

There are no existing solutions for processing multiple DTW queries. As baseline
method for comparison, we sequentially process the queries by employing a single-
query filter-and-refine method, where the queries are processed independently using
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LBKeogh [16]. We chose LBKeogh as the basis of our MultiDTW, but we could also
have used other lower bounds as [24,31], since our approach is orthogonal to the concept
of lower bounds. We use a simple sequential scan in our framework to process database
time series, and our multiple-query technique can also be used with indexing techniques
as [3] and dimensionality reduction to further speed up the overall runtime. It has been
shown that for very high dimensional data such as time series, linear database scans
outperform traditional index structures [29].

The default configuration of our method is FSMQ as introduced in Sec. 3.3. In the
FSMQ-tree, we use multiLBKeogh (cf. Def. 8), the adaption of LBKeogh [16], fol-
lowed by multiDTW (cf. Def. 6).

Query Processing Strategy. We begin our study by comparing the default configuration
(FSMQ-tree) to the earlier variants of our method on RW data in Fig. 8. Shown are
similar results for both range and kNN queries. The refinement percentages in the right
figure validate that both MQ-tree and the FSMQ-tree dramatically reduce the number
of DTW computations as opposed to the multiple DTW query. From the runtimes in
the left figure, we can infer that even though the differences in the number of refine-
ments are small, it is much more efficient to include filter support, as pruning can be
performed much faster. Thus, the FSMQ-tree is an efficient combination of the hierar-
chical refinement of multiple DTW queries with filter techniques.

Query Set Size and Similarity of the Queries. We now analyze how the number of in-
dividual queries per multiple query affects the performance of the FSMQ-tree and the
single query processing method. Fig. 9 shows the corresponding experiments; average
query times (left y-axis) and relative improvements (right y-axis) are measured. Note
that the number of seeds per multiple query remains at the default value of 8. In (a) and
(b) range queries and kNN queries on random walk data (RW) are processed. For both
query types, the average query times of single query LBKeogh increase much faster
than the query times of FSMQ. This is confirmed by the relative improvements: FSMQ
outperforms the single query solution significantly: for both range queries and kNN
queries we have relative improvements between 10 and 75 percent. It can be concluded
that our method performs as intended, i.e. in situations of multiple queries a combined
solution clearly surpasses an independent solution. Similar conclusions can be made for
the real world in Fig. 9(c), where the relative improvements go up to 87%. The corre-
sponding relative numbers of refinements are shown in Fig. 10(a). As we can see, the
percentages are relatively stable for both approaches, but there is a substantial reduction
in DTW computations achieved by the multiple query approach FSMQ.

In Fig. 10(b) and 10(c) we show the effect of query similarity. We vary the number
of similar queries per group, i.e. how many similar queries are generated for each seed

Fig. 8. Comparison of the
three variants of our method:
The FSMQ-tree (Sec. 3.3),
the MQ-tree (Sec. 3.2), and
the simple multiple DTW
query (Sec. 3.1); RW
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(b) RW; kNN Queries
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(c) EEG; kNN Queries

Fig. 9. Varying number of individual queries per multiple query
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(b) RW; Range Queries
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(c) RW; kNN Queries

Fig. 10. (a): Number of refinements, i.e. exact DTW computations, for the experiment in Fig. 9(c).
(b),(c): Varying number of query seeds for a fixed number individual queries.
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Fig. 11. Database Scalability on random walk data

of a multiple query. The absolute number of queries per multiple query is 40. In both
experiments, the query times of our method improve, while the query times of the single
query solutions are stable. The increasing relative improvements highlight this aspect.

Database Size. Fig. 11 shows the performance for database sizes between 1,000 and
25,000 times series for range and kNN queries. FSMQ outperforms single query pro-
cessing for range queries in (a); the relative improvement is stable at around 55%, in-
dependently of the database size. With increasing database size, more time series fall
within the ε-ranges of the queries. Accordingly, more exact DTW computations are nec-
essary, compensating the positive effects of a larger database size. For the kNN queries,
our approach copes with larger database sizes far better than single query processing,
i.e. the relative improvement scales with the database size enabling performance gains
of up to 70%.
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Fig. 12. Varying time series length on random walk and EEG data
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Fig. 13. (a,b): Varying DTW bandwidth k. (c): Varying ε-range and varying number of NN.
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Fig. 14. Performance comparison on real world datasets burstin, lightcurb, and network

Time Series Length. The influence of the time series length is shown in Fig. 12. We
used the random walk and EEG data. For both query types stable improvements of
about 70% are achieved, independently of the time series length. Fig. 12(c) demon-
strates robustness of our approach for scattered values in the time series: the number of
refinements required after applying the filter function LBKeogh goes up to nearly 100%
of the database, which explains the large query times observed in Fig. 12(b). This can
be explained by the large variance in the EEG data: LBKeogh exploits the property that
in most time series successive values are very similar by constructing a bounding box
(envelope) for all values within the bandwidth constraint. Large scattering of the values
leads to large boxes and thereby poor pruning power. Our approach, by contrast is not
affected by this scatter, since queries are grouped by their similarity, and the hierarchy
opens up pruning possibilities for subgroups as well.

Bandwidth. In Fig. 13(a,b) we study the influence of the DTW bandwidth constraint
k on real world data. For both query types, very stable relative improvements of about
70-75% are achieved. While absolute runtimes increase for any approach, since increas-
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ing bandwidth means that more points in time are part of the DTW computation, the
figures show that our approach reduces runtimes regardless of the bandwidth constraint.

Number of Nearest Neighbors and the ε-range. In Fig. 13(c), we analyze how the
parameters epsilon range and number of nearest neighbors of the two query types influ-
ence the performance. As for the bandwidth, it is clear that increasing these parameters
will lead to higher computational cost, as larger result sets are to be expected. For both
query types, FSMQ outperforms the single query processing method. This means that
similar to the bandwidth experiment, while absolute runtimes increase, our FSMQ reli-
ably reduces the runtimes by a considerable margin.

Additional Real World Data Experiments. In Fig. 14 we give an overview over the
performance on other data sets also used in [16]. For range queries, our FSMQ approach
greatly reduces the number of DTW refinements necessary, and for kNN queries, the
performance gain of FSMQ over single query processing is even more pronounced.

5 Conclusion

In this work, we address the problem of multiple Dynamic Time Warping (DTW)
queries. We group similar DTW queries into groups for joint pruning of irrelevant
time series in the database. By introducing a hierarchy of subgroups of multiple DTW
queries, further pruning for iteratively smaller groups is achieved. We show that filter
functions for single DTW queries can be extended to fit our multiple DTW query pro-
cessing approach. All information necessary to manage query groups, filter functions,
and pruning thresholds is compactly represented in our filter supported multiple query
tree (FSMQ-tree). We provide algorithms for processing range queries and k nearest
neighbor queries efficiently on the FSMQ-tree. As our experimental evaluation on syn-
thetic and real world data sets demonstrates, we obtain substantial runtime improve-
ments compared to single DTW query processing.
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Abstract. Recently, the wide usage of inexpensive mobile devices, along with
broad deployment of wireless and positioning technology, has enabled many
important applications such as Delay Tolerant Networks (DTN). In these appli-
cations, the positions of mobile nodes are dynamically changing, and are often
imprecise due to the inaccuracy of positioning devices. Therefore, it is crucial to
efficiently and effectively monitor mobile nodes (modeled as uncertain moving
objects). In this paper, we propose a novel query, called probabilistic time consis-
tent query (PTCQ). In particular, a PTCQ retrieves uncertain moving objects that
consistently satisfy query predicates within a future period with high confidence.
We present effective pruning methods to reduce the search space of PTCQs, and
seamlessly integrate them into an efficient query procedure. Moreover, to facili-
tate query processing, we specifically design a data structure, namely UC-Grid,
to index uncertain moving objects. The structure construction is based on a for-
mal cost model to minimize the query cost. Extensive experiments demonstrate
the efficiency and effectiveness of our proposed approaches to answer PTCQs.

Keywords: probabilistic time consistent query, uncertain moving object database.

1 Introduction

Recently, the wide usage of mobile devices (e.g., mobile phones and PDAs), along with
broad deployment of wireless networks and positioning technology (e.g., GPS), have
given rise to many real applications such as Delay Tolerant Networks (DTN) [1]. Fig.
1 illustrates an example of DTN, in which each mobile node moves around, transmits
replicas of packets to other passing mobile nodes, and eventually relays packets to their
destinations. However, since such packet delivery may incur long delay, static base
stations are usually deployed to speed up the delivery.

When a base station wants to deliver an important message to a destination, it can
distribute the replicas of this message to passing mobile nodes, and then these nodes can
spread the message through their surrounding nodes in the network until the destination
is reached. Due to the limited bandwidth, the base station usually distributes the mes-
sage to a limited number of (e.g., k) mobile nodes nearby. In other words, it is desirable
for the base station to send the message to its k-nearest neighbors (e.g., 2-nearest neigh-
bors, o2 and o3, in Fig. 1(a)). It is important to note that, in the real scenario, it can take
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some time to transfer the message between the base station and mobile nodes. Thus,
the base station may only want to send the message to those passing mobile nodes that
would consistently be the k-nearest neighbors (kNNs) of the base station (query point)
within a future period of time. Here, “consistently” means mobile nodes remain to be
kNNs of the base station for at least T consecutive timestamps, where T is the length
of the time interval needed to deliver a message. Intuitively, these kNN nodes keep to
be closest to the base station, and are thus more robust to receive messages.

(a) Delay Tolerant Networks

(DTN)

(b) Dynamic and uncertain scenario

Fig. 1. Illustration of Applications in Delay Tolerant Networks

There are many challenges to accurately and efficiently answer such a query in a real
DTN environment. For example, positions of mobile nodes in DTN can be obtained by
positioning devices such as GPS. However, due to the imperfect nature of GPS such
as clock errors, ephemeris errors, atmospheric delays, and multipathing and satellite
geometry, GPS data are inherently noisy and uncertain [15]. Thus, as shown in Fig. 1(b),
the collected (uncertain) data can be modeled by uncertainty regions [5] in uncertain
databases. Within an uncertainty region, the actual data can appear anywhere following
any probabilistic distribution. Thus, in practice, we have to find k consistent nearest
mobile nodes with imprecise positional data. It is therefore crucial to guarantee the
accuracy of the returned answers. In addition, in Fig. 1(b), due to the movement of
mobile nodes, we also need to deal with dynamically moving objects [22] rather than
static ones (arrows in the figure indicate moving velocity vectors), which makes efficient
monitoring of time consistent kNNs more challenging.

Inspired by the application above, in this paper, we propose an important and use-
ful problem, namely probabilistic time consistent query (PTCQ), on uncertain moving
objects. Given a query point q, a PTCQ obtains uncertain moving objects that are con-
sistently being kNNs of q with high probabilities for at least T consecutive timestamps
in a future period. PTCQ considers a generic data model that captures both uncertain lo-
cations and moving velocities1 of objects in real applications (e.g., imprecise GPS data
or changing speeds of GPS users). Moreover, the concept of “time consistent” is not
limited to kNN, but can be extended to other query types (e.g., range queries), which
we would like to leave as our future work.

1 Our solution can be extended to the case of uncertain moving directions, which will be dis-
cussed in Section 5.3.
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Different from previous works on continuously monitoring kNNs over moving ob-
jects [25,24,14], PTCQ has its own characteristics specific to applications such as DTN.
First, PTCQ answers should be kNNs for at least T consecutive timestamps, whereas
continuous kNN monitoring does not have this T constraint (i.e., return all possible
kNNs within a period, no matter how long they last). Second, PTCQ provides the ac-
curacy guarantee on uncertain data, whereas the existing works of kNN monitoring on
certain moving objects cannot be directly applied to the uncertain case.

On the other hand, previous works on uncertain moving objects studied 1-nearest
neighbor query (i.e., k = 1) either considering a completely different uncertainty model
[5], or with a strong assumption of object distributions [21]. In contrast, our work fo-
cuses on probabilistic time consistent kNNs for arbitrary integer k (≥ 1), without any
symmetric assumption of object distributions. In addition, Cheng et al. [4] studied k-
nearest neighbor (k ≥ 1) in static uncertain databases, and a static R-tree is built for
efficient query processing, which is not space- and time- efficient for monitoring dy-
namically moving objects with high update rates in our PTCQ problem.

In this paper, we aim to tackle the problem of answering PTCQs efficiently and ef-
fectively. In particular, since PTCQ has to deal with uncertain data, whose computation
involves numerical methods [5] at high cost, we provide effective pruning methods tai-
lored to reducing the PTCQ search space, utilizing the time, velocity, and probabilistic
constraints. Further, we propose a data structure, called UC-Grid, to index uncertain
moving objects, on which we process PTCQ queries. We also give a cost model for the
total PTCQ query cost, which can help determine the parameter of the data structure.

In the paper, we make the following contributions.

1. We formalize probabilistic time consistent kNN queries on uncertain moving ob-
jects in Section 3.

2. We propose effective pruning methods in Section 4 to filter out those false alarms
of PTCQ candidates, considering time, velocity, and probabilistic constraints.

3. We design a data structure, UC-Grid, to index uncertain moving objects in Section
5.1, which is based on a formal cost model in Section 5.3 to achieve low query cost.

4. We integrate pruning methods into an efficient PTCQ procedure in Section 5.2.

Section 2 reviews kNN over certain/uncertain moving objects and uncertain static ob-
jects. Section 6 illustrates the experimental results. Section 7 concludes this paper.

2 Related Work

In spatial databases (with static and certain data), Roussopoulos et al. [17] proposed a
branch-and-bound algorithm to retrieve kNNs of a query point q by traversing the R-tree
[7] in a depth-first manner. Hjaltason and Samet [8] proposed the best-first algorithm to
answer kNN queries on R-tree, which can achieve the optimal performance. Some other
works [11,18] utilize range queries on R-tree to solve the kNN problem. In contrast,
our work considers a different scenario where data uncertainty and object movement
are inovlved, and thus previous methods cannot be directly used.

Many works on kNN query over (certain) moving objects often assume that future
trajectories of objects are known at query time (e.g., expressed by a linear function
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[23,20]). This is the model we use in our PTCQ problem (nonetheless, we also consider
uncertain velocities). A TPR-tree [23] was proposed to index both object positions and
velocities. A predictive kNN query can be answered by traversing the TPR-tree [19,10].
Other works (e.g., YPK-CNN [25], SEA-CNN [24], and CPM [14]) on continuously
monitoring kNNs assume that object velocities are unknown, but object positions can be
frequently updated. Grid index is usually used due to its low update cost compared with
tree-based indexes [25]. In contrast, our PTCQ retrieves probabilistic time consistent
kNNs, rather than kNNs, and we need to handle uncertain data instead of certain ones.

In uncertain databases, probabilistic nearest neighbor query (PNN) [5,12,3] was ex-
tensively studied, which retrieves uncertain objects that are nearest neighbors of a query
point q with probability not smaller than a threshold. Cheng et al. [4] proposed proba-
bilistic kNN queries in static uncertain databases, which obtain sets of k objects with
high probabilities of being kNNs of q. These works consider static uncertain objects
without movement, thus, static indexes such as R-tree can be constructed. In contrast,
our PTCQ is conducted on moving objects, and static tree-based indexes are thus not
space- and time- efficient in the dynamic environment with high update rates.

For uncertain moving objects, Cheng et al. [5] modeled the uncertainty introduced
by the uncertain movement of objects in a future period, where each object is repre-
sented by either a line segment (linear movement) or a circle (free movement). A tree
structure, called VCI, is used to index uncertain moving data. In contrast, our work
distinguishes the spatial uncertainty from the velocity uncertainty. Thus, under a differ-
ent uncertain model, their pruning/indexing methods cannot be directly applied to our
problem. Trajcevski et al. [22] studied range query on uncertain moving objects, which
returns objects being in a region with probabilities either equal to 1 or within (0, 1).
Chung et al. [6] worked on range query over 1D uncertain moving objects under the
Brownian motion model. To our best knowledge, no previous work studied probabilis-
tic time consistent kNN on 2D data, with the confidence guarantee, and with a generic
uncertainty model with any object distributions. Further, Zhang et al. [26] considered
range and top-k NN queries over uncertain moving objects, however, this work studied
snapshot queries at a future query timestamp t, which is quite different from our PTCQ
considering consistent kNNs in a future period. Thus, their proposed techniques for a
particular timestamp cannot be directly applied to handing our PTCQ in a period.

3 Problem Definition

3.1 Data Model for Uncertain Moving Objects

Fig. 2 presents a data model for uncertain moving objects. In an uncertain moving object
database (UMOD)DU , each object o at a timestamp t (e.g., t = 0) is represented by an
uncertainty region [5] UR(o). In this paper, we mainly focus on 2-dimensional spatial
data, which are related to applications such as DTN [1]. The uncertainty region UR(o)
is modeled by a circle centered at Co with radius ro

2, in which object o can reside
anywhere following any probabilistic distribution.

2 Note that, here we simply assume uncertainty region has circle shape. Uncertainty regions of
other shapes can be transformed to circles that tightly bound the regions.
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By adopting the model used for “certain” moving objects [23,16], we assume that
each uncertain object o moves linearly with velocity vector vo = 〈vo[x], vo[y]〉, before
its new position and velocity are received, where vo[x] and vo[y] are the velocities of
object o (projected) on x- and y-axes, respectively. Equivalently, the velocity vector
vo can be also denoted as 〈vo · cosγ, vo · sinγ〉. Here, γ is the angle between vo and
x-axis, showing the moving direction3 of object o; and vo is a random variable within
[v−o , v+

o ] [9], indicating the speed of object o. Note that, v−o and v+
o are the minimum

and maximum possible velocities of object o, respectively, and the probability density
function (pdf), pdfv(vo), of variable vo can be obtained by historical speed data of
moving object o (reported by positioning devices such as GPS).

Fig. 2. Data Model for Uncertain Moving Objects

In the example of Fig. 2, with some possible velocity vo ∈ [v−o , v+
o ], the center of

uncertain object o moves from position Co to position Co(t) during the period [0, t].
The semantic of our uncertain moving object model above has its root from the un-

certainty model in static uncertain databases [12] and moving object model in moving
object databases [10,19,23]. We also noticed other models for uncertain moving ob-
jects such as [15,5] in which the uncertainty of object locations directly results from
the movement of objects within a short period. In contrast, our work distinguishes the
uncertainty of spatial locations (introduced by positioning devices like GPS) from that
of velocities. Based on this fine uncertainty model, we can predict future positions of
objects more accurately, and thus forecast future events (including PTCQs). We would
like to leave PTCQs (defined later) with other uncertain data models as our future work.

3.2 Definition of PTCQs

The novelty of PTCQs is in the concept of “time consistent”, which, to our best knowl-
edge, has not been studied before. That is, a PTCQ obtains objects that time-consistently
satisfy some query predicates in a future time interval. Under different query predicates
(e.g., range predicates), PTCQs can cover a broad family of probabilistic time consis-
tent query types, which are useful for many real applications (e.g., mobile networks)
that involve uncertain moving objects.

3 Here, we consider a fixed moving direction for the ease of illustration. Our solutions can be
easily extended to uncertain moving directions, capturing the case with non-linear moving
trajectories, which will be discussed in Section 5.3.
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Below, we focus on one typical query type, k-nearest neighbor (kNN) query, and
leave other interesting query types as our future work. Specifically, given a UMOD DU

and a query point q, a probabilistic time consistent kNN query retrieves those uncertain
moving objects o that are the kNNs of q with high probabilities, for at least T consec-
utive timestamps in a future period [0, ted]. We first give the definition of probabilistic
k-nearest neighbors (PkNN) in a snapshot database at a specific timestamp ti.

Definition 1. (Probabilistic k-Nearest Neighbors, PkNN) Given a UMOD DU at a
timestamp ti, a query point q, an integer k, and a probabilistic threshold α ∈ (0, 1], a
probabilistic k-nearest neighbor (PkNN) of q is an object o(ti) ∈ DU such that o(ti) is
a kNN of q s with the kNN probability, PrkNN (q, o(ti)), not smaller than α, that is,

PrkNN (q, o(ti)) =

∫
v+

o

v
−
o

pdfv(vo) ·
∫

o′(ti)∈UR(o(ti))
Pr{dist(q, o′(ti)) = r}

·
∑

∀S={p1(ti),...,ps(ti)}∈DU ∧s<k

((
s∏

m=1

Pr{dist(q, pm(ti)) ≤ r}
)

·
⎛⎝ ∏

pn∈DU \(S∪{o})

Pr{dist(q, pn(ti)) ≥ r}
⎞⎠⎞⎠ do′(ti)dvo ≥ α, (1)

where o(ti) = o(0)+vo ·ti and velocity vo (∈ [v−o , v+
o ]) is a variable with pdf pdfv(vo).

In Definition 1, an object o is a PkNN answer at timestamp ti, if and only if its probabil-
ity of being in the kNN set of q (in Inequality (1)) is not smaller than a given threshold
α. In Inequality (1), the outer integral integrates over uncertain velocity, whereas the
inner one integrates on possible positions, o′(ti), of o at timestamp ti. Within the inner
integral, the formula computes the probability that o′(ti) is one of kNNs of q, i.e., the
probability that fewer than k (i.e., s) objects, pm(ti), have distances to q smaller than
o′(ti), and meanwhile the rest objects, pn(ti), having distances to q never smaller than
o′(ti). If the resulting kNN probability of object o is greater than or equal to threshold
α, then o is a PkNN at timestamp ti. Note that, the PkNN definition generalizes the
probabilistic nearest neighbor query (PNN) [5] from k = 1 to k ≥ 1.

After giving PkNNs at a timestamp ti, we are now ready to define the probabilistic
time consistent kNN problem.

Definition 2. (Probabilistic Time Consistent Queries, PTCQ) Denote PkNN(ti) as a
set of PkNN objects at a timestamp ti. Then, given a time constraint T and a future
period [0, ted](ed + 1 ≥ T ), a probabilistic time consistent query (PTCQ) obtains
uncertain moving objects o such that there exists a period [tj , tj + T − 1] ⊆ [0, ted],
and o(ti) is in PkNN(ti) for all consecutive timestamps ti ∈ [tj , tj + T − 1], that is,

PTCQ(ti) =

ted−T+1⋃
tj=0

⎛⎝ tj+T−1⋂
ti=tj

PkNN(ti)

⎞⎠ . (2)

Note that, due to time and probabilistic constraints, the PTCQ in Definition 2 may
not return exactly k answers.
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Challenge. From Definition 2, a PTCQ obtains uncertain moving objects that are PkNNs
for at least T consecutive timestamps within a future period [0, ted]. Clearly, one straight-
forward way to answer PTCQs is to directly calculate PkNN answers (i.e., checking
Inequality (1)) at each timestamp ti in period [0, ted], and then combine the resulting
PkNN answers via Eq. (2) in Definition 2. However, the cost of computing the PkNN

set is very costly (i.e., O
(∑k−1

s=1 (
N
s )
)

for database size N ), involving complex double

integral to compute kNN probabilities (in Inequality (1)) via numerical methods [5].
Thus, one major challenge of our PTCQ problem is to improve the efficiency of retriev-
ing probabilistic time consistent kNNs in a dynamic environment with data uncertainty.

4 PTCQ Search over Uncertain Moving Objects

4.1 T -Pruning

Fig. 3 illustrates the heuristics of our T -pruning method by a simple example. Assume
that at timestamp 0, we can find k uncertain objects p1(0), p2(0), ..., and pk(0) which
are close to a query point q. Since we know the positions and velocities of these k
objects (according to the data model mentioned in Section 3.1), we can obtain the max-
imum possible distance, Rmax, from these k objects to q in the future period [0, ted].

As illustrated in Fig. 3, we draw a circle, denoted as �q, centered at query point
q and with radius Rmax. Clearly, any uncertain object o that is always outside �q in
period [0, ted] cannot be kNN of q (due to the existence of k objects p1 ∼ pk). Thus, in
turn, object o cannot be the PTCQ answer. Further, if the moving path of any object o
passes �q for less than T timestamps, then we can prune object o safely as well.

Fig. 3. Heuristics of T -Pruning Method

In the example of Fig. 3, assume object o is completely outside �q at timestamp 0.
Let θ be the angle between vector Coq and a possible moving path of o which intersects
with �q for exactly T timestamps (at the lowest speed v−o ). As a result, if the actual
moving direction (i.e., velocity vector vo) of object o has the angle, θact, with vector
Coq greater than θ, we can prune object o, which is our basic idea of T -pruning below.

Lemma 1. (T -Pruning) Let ηq be the angle satisfying q[x] = ||q|| · cosηq and q[y] =
||q|| · sinηq, where ||q|| = √q[x]2 + q[y]2. Then, any uncertain object o can be safely
pruned, if it holds that:
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||q|| · cos(ηq − γ) < Co[x] · cosγ + Co[y] · sinγ, or (3)

||q|| · sin(γ − ηq) − (Co[x] · sinγ − Co[y] · cosγ) > (Rmax + ro)2 − (v−
o · T )2/4. (4)

where Rmax + ro > (v−o · T )/2.

From Lemma 1, we can prune objects o that definitely do not satisfy the T constraint.
In the example of Fig. 3, we can safely prune those objects having center trajectories
(i.e., Co) within the shaded region filled with lines (i.e., satisfying θact > θ).

The Computation of Radius Rmax. Up to now, the only issue that remains to be ad-
dressed is how to obtain the radius Rmax of�q. We observe that the maximum distance
from any moving object pi to query point q within a period [0, ted] is always achieved
at timestamp 0 or ted. Therefore, we can obtain Rmax by:

Rmax = max
k
j=1{max{maxdist(q, pj(0)), maxdist(q, pj(ted))}} (5)

where maxdist(·, ·) is the maximum possible Euclidean distance between two objects.

4.2 Period Pruning

After applying T -pruning method, we can obtain a set of PTCQ candidates, we next
propose our second pruning method, period pruning, to further reduce the search space.

Recall that, the PTCQ (given in Definition 2) specifies a future period [0, ted] within
which we need to find probabilistic time consistent kNNs. This period can be a time
slot to repeatedly send the message to passing mobile nodes, in mobile applications.
Different from T -pruning that considers the pruning by only using the moving direc-
tions, our period pruning is to filter out those PTCQ false alarms either due to the cut-off
timestamp ted or due to the initial positions of objects at timestamp 0.

As shown in Figs. 4(a) and 4(b), we consider two cases where uncertain object o
moves (from outside) into �q (case 1) and moves (from inside) out of circle �q (case
2), respectively. Due to the period constraint, if object o cannot reside in circle �q at
the beginning or end of period [0, ted] for at least T timestamps, o can be safely pruned.

Below, we derive the conditions of period pruning for the two cases above. In the first
case where object o is initially outside the circle �q at timestamp 0, we consider the
extreme situation (such that o can stay in�q for T timestamps within period [0, ted]), as

(a) case 1 (b) case 2

Fig. 4. Heuristics of Period Pruning
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shown in Fig. 4(a). That is, object o first moves at its highest speed v+
o until it intersects

with�q, and then switches to its lowest speed v−o to move for T timestamps. After that,
if the timestamp is already after ted, then it indicates that object o cannot stay in �q for
at least T timestamps, and thus o can be safely pruned; otherwise, o is a candidate.

Similarly, in the second case where object o overlaps with circle �q at timestamp 0
(as shown in Fig. 4(b)), we also consider the extreme situation that o moves at its lowest
speed v−o until it does not intersect with �q. If this period has length smaller than T ,
then object o can be also pruned. We summarize the period pruning method below.

Lemma 2. (Period Pruning) Any uncertain object o can be pruned, if it holds that:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
||q|| · cos(ηq − γ) − (Co[x] · cosγ + Co[y] · sinγ) <

v+2
o ·(ted−T )2−(Rmax+ro)2+dist2(q,Co)

2·v+2
o ·(ted−T )

;

if dist(q, Co) > Rmax + ro,

||q|| · cos(ηq − γ) − (Co[x] · cosγ + Co[y] · sinγ) <
v−2

o ·T2−(Rmax+ro)2+dist2(q,Co)

2·v−2
o ·T

,

otherwise.

(6)

Therefore, based on Lemma 2, we can use the period pruning method to prune those
false alarms (which cannot be filtered out by T -pruning) that stay in�q at the beginning
or end of the future period [0, ted] for less than T timestamps.

4.3 Segment Pruning

Up to now, we have discussed T -pruning and period pruning such that objects staying in
circle �q (centered at query point q with radius Rmax) for less than T timestamps. We
further consider reducing the PTCQ search space by proposing the segment pruning.

We have an interesting observation that, the radius Rmax of circle �q is only the
maximum possible distance from k initial objects pi to query point q within the en-
tire period [0, ted] (as given in Eq. (5)). Thus, if we consider each timestamp ti in the
period [0, ted], the maximum possible distance, denoted as Rmax(ti), from these k ob-
jects to q may change over time. As an example in Fig. 5(a), the size of the circle
�q may shrink during the period [0, ted], say radius varying from Rmax(0) (assum-
ing Rmax = Rmax(0) in this example) to Rmax(ted). In this case, although object o
is within the circle �q (with radius Rmax) for at least T timestamps (i.e., cannot be
pruned by T - or period pruning), we may still have chance to prune this object, due to
the shrinking of circle �q. For instance, when o starts to intersect with circle �q (with
radius Rmax(0)) at timestamp ti, the actual radius is shrinking to Rmax(ti) which is
smaller than Rmax(0). Thus, it is possible that object o does not even intersect with the
time-varying circle �q during the entire period [0, ted].

Based on this interesting observation, we design a segment pruning method. Specif-
ically, we divide the future period [0, ted] into segments of equal size (T − 1), that is,
[0, T − 1), [T − 1, 2(T − 1)), ..., and [ted−T +1, ted)4. Then, for each segment period
[tj , tj + T − 1), we can obtain the maximum possible distance, Rmax(tj), from the k
initial objects pi to q, and check whether or not a candidate o is completely outside the
circle centered at q with radius Rmax(tj).

4 Note that, the last segment might have size smaller than (T − 1), which, however, would not
affect the correctness of our proposed segment pruning. For simplicity, in this paper, we always
assume that (ted + 1) is a multiple of (T − 1).
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(a) (b)

Fig. 5. Heuristics of Segment Pruning

As illustrated in Fig. 5(b), if object o is completely outside circle with in a segment,
we say o can be pruned on this segment; otherwise, o cannot be pruned. One interesting
observation is that, if object o cannot be pruned on two consecutive segments (of size
(T − 1) each), then o is a possible PTCQ candidate (since o might be probabilistic
consistent kNN of q during these 2(T − 1) timestamps); otherwise, object o can be
safely pruned. Here, the intuition of the pruning is that, each segment has length (T−1),
whereas the time constraint in PTCQ is at least T . Thus, even if object o cannot be
pruned on a segment, as long as o can be pruned on its adjacent segments, o can still
be pruned by our segment pruning. This way, we can prune object o in the example of
Fig. 5(b), since it cannot be pruned only on a single segment of length < T .

We summarize the segment pruning in the following lemma.

Lemma 3. (Segment Pruning) Assume that we divide [0, ted] into segments, [tj , tj +
T − 1). Then, we say any uncertain moving object o can be pruned on segment [tj , tj +
T − 1), if it holds that, for any vo ∈ [v−o , v+

o ], t ∈ [tj , tj + T − 1):

v2
ot2 − 2 · vo · (||q|| · cos(ηq − γ) − (Co[x] · cosγ + Co[y] · sinγ)) · t + dist2(q, Co)

−(Rmax(tj) + ro)2 > 0. (7)

Thus, any object o can be pruned, if o cannot be pruned on any two adjacent segments.

4.4 Filtering with Velocity Distributions

In this and next subsections, we will use velocity and position distributions of uncertain
moving objects, respectively, to derive the probability upper bound (i.e., β) and filter
out false alarms (if this upper bound is smaller than threshold α). Below, we first discuss
how to utilize the velocity parameter to reduce the search space of PTCQs.

As mentioned in Section 3, the velocity vo of an object o is a random variable within
[v−o , v+

o ], where v−o and v+
o are the minimum and maximum possible velocities of o. The

distribution of velocity variable vo can be obtained via historical data (e.g., a histogram
containing historical velocity data reported by GPS in mobile applications [1]).

To obtain PTCQ answers, we want to find objects o that are PkNNs (given by Defini-
tion 1) with high confidence, for some consecutive timestamps. In other words, at each
of consecutive timestamps, ti, objects o must satisfy Inequality (1), that is, o’s kNN
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probabilities, PrkNN (q, o(ti)), should be greater than or equal to threshold α ∈ (0, 1].
Due to the high cost of computing PrkNN (q, o(ti)) directly (involving integral via nu-
merical methods [5]), we propose a filtering method using velocity information. Our
basic idea is to compute an upper bound, UB PrkNN (q, o(ti)), of the kNN probability
PrkNN (q, o(ti)) at a low cost. This way, as long as it holds that UB PrkNN (q, o(ti))
< α, we can infer PrkNN (q, o(ti)) < α, and thus o can be pruned. We summarize our
filtering method via velocity distributions below, and prove its correctness.

Lemma 4. (Filtering with Velocity Distributions) Let [v1−β
omin, v1−β

omax] be a velocity in-
terval in [v−o , v+

o ], such that:

∫
v
1−β
omax

v
1−β
omin

pdfv(vo)dvo = 1 − β. (8)

Then, for β < α, by using v1−β
omin and v1−β

omax instead of v−o and v+
o , respectively, in pe-

riod and segment pruning (in Lemmas 2 and 3, respectively), we can still prune objects.

Discussions. Lemma 4 shows that we can use the velocity distribution to reduce the
search space. In practice, we can maintain a histogram summarizing historical velocity
data, for example, the velocity distribution of a mobile node in DTN applications [1].
To enable pruning with velocity, we need to compute velocity interval [v1−β

omin, v1−β
omax],

for a given α value. Here, we adopt a simple heuristic to set this interval. That is, if
object o does not intersect with �q, then we let v1−β

omin = v−o and continue to find v1−β
omax

such that Eq. (8) holds for β = α. The intuition is that, by using the velocity interval
containing small values, object o is unlikely to reach �q, and thus has more chance to
be pruned by period or segment pruning method. Similarly, if o intersects with �q, we
let v1−β

omax = v+
o and find v1−β

omin satisfying Eq. (8) for β = α. We use large velocity
values such that o can quickly leave �q and is more likely to be pruned.

4.5 Filtering with Object Distributions

We next derive another upper bound, β, of the kNN probability from position distribu-
tions of objects (orthogonal to velocity distributions in Section 4.4), and prune objects
with β < α. Specifically, we adopt a notion of(1− β) hypersphere proposed in [13].

Definition 3. ((1 − β)-Hypersphere [13]) Given an uncertain object o, a (1 − β)-
hypersphere o1−β is a hypersphere, with center Co and radius r1−β

o such that o resides
in o1−β with probability at least (1− β).

From Definition 3, we have the lemma below for filtering with object distributions.

Lemma 5. (Filtering with Object Distributions) For β < α, by replacing uncertain
object o with (1 − β)-hypersphere, o1−β , we can still use T -, period, and segment
pruning (in Lemmas 1, 2, and 3, respectively) to prune objects safely.
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5 PTCQ Processing

5.1 Data Structure

We next propose a data structure UC-Grid for indexing uncertain moving objects, on
which our probabilistic time consistent kNN queries can be answered. Specifically, as
illustrated in Fig. 6, we divide a 2-dimensional data space [0, 1]2 into 1/δ2 (δ < 1) cells
with side length δ, where the setting of the δ value will be discussed in Section 5.3. For
each uncertain moving object o, we say that o belongs to a cell if its center location Co

is in that cell. Additional information of objects is also stored in cells, which will be
later described. This way, a grid index can be built for uncertain moving objects. Note
that, the reason that we choose grid as a basic indexing structure is that it has O(1)
time complexity for retrieval and update, which is suitable for dynamic scenario with
moving objects. There are also some studies [25] indicating that the grid-based index
can result in better query performance on moving objects than tree-based indexes.

Since PTCQ is over moving and uncertain objects, our UC-Grid, I, has to store
more information. In each cell ci,j , we distribute objects into 4 center lists, NE, NW ,
SW , and SE, based on their moving directions with angles γ ∈ [0, π

2 ), [
π
2 , π), [π, 3π

2 ),
and [3π

2 , 2π), respectively. The 4 center lists naturally represent the 4 quadrants in the
grid, which can be easily checked and reduce the search space. Assuming circle �q is
completely to the top-right direction (NE) of a cell ci,j , we only need to access objects
in its center list NE, and save the cost of visiting the other 3 lists. In each center list,
say NE, we store an object list with objects (oid, Co, ro, vo), where oid is the object
ID, Co is the center of uncertainty region UR(o), ro is the radius of UR(o), and vo is
the velocity vector of o. Moreover, we also maintain statistics for all objects in list NE,
including the minimum/maximum possible velocity vo (vNE

min and vNE
max, respectively),

angle γ (γNE
min and γNE

max, respectively), radius ro (rNE
omin and rNE

omax, respectively), and
other statistics (e.g., min S1 and max S2, discussed later in Section 5.2).

In addition to 4 center lists in cell ci,j , we also keep a cell list with entries in the
form (cell id, count), where cell id is the id of a cell that contains at least one object
intersecting with cell ci,j , and count is the number of such objects (when count=0, the
entry is removed). Since we decide the cell of an object only by its center location, the
cell list of ci,j provides an inverted index of cells containing objects that may overlap

Fig. 6. Illustration of UC-Grid Data Structure
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with cell ci,j , which can be used for PTCQ processing. The dynamic maintenance of
UC-Grid upon insertions and deletions can be found in Appendix A.

Pruning Heuristics for Cells. Similar to pruning methods in Section 4, we can design
pruning rules to prune a group of objects in cells. Please refer to details in Appendix B.

5.2 Query Processing

PTCQ Query Procedure. We next present the procedure of PTCQ processing. We
propose a concept of influence region (IR), having the property that only those cells
intersecting with IR are possible to contain PTCQ answers. In particular, as illustrated
in Fig. 7, the influence region is defined as a circle centered at query point q and with
radius (Rmax + Vmax · (ted − T + 1)), where Vmax is the maximum speed for all the
uncertain moving objects in the data space. In the lemma below, we prove that objects
o that are completely outside IR at timestamp 0 cannot be PTCQ answers.

Lemma 6. (Influence Region) Any uncertain moving object o that does not intersect
with influence region at timestamp 0 cannot be PTCQ answer in future period [0, ted].

Fig. 7. Illustration of Influence Region

From Lemma 6, PTCQ processing only needs to access a subset of cells in UC-Grid.
Fig. 8 illustrates the pseudo code of our PTCQ query procedure PTCQ Processing,
which consists of three steps, initialization, pruning, and refinement steps. In the initial-
ization step, we first find k uncertain objects pi (1 ≤ i ≤ k) at timestamp 0 which have
centers closest to query point q (line 1). The radius Rmax of �q is set to the maximum
possible distance from pi to q in future period [0, ted] (given by Eq. (5); line 2). Then,
in the pruning step, we first retrieve all cells that intersect with the influence region (as
defined above), which may contain PTCQ candidates (guaranteed by Lemma 6; line 3).
For each retrieved cell, we apply the T -pruning, period, and segment pruning rules for
cells given in Section 4 (line 4). Next, we start to check objects within candidate cells by
using the pruning methods mentioned in Section 4 (lines 5-7). Finally, in the refinement
step, we refine all the remaining candidates by calculating their actual kNN probability
(given in Inequality (1) at every timestamp, and obtaining the PTCQ results based on
Definition 2. Actual PTCQ answers are reported as the output of PTCQ Processing.

Refinement Step. In line 8 of procedure PTCQ Processing, we have to refine can-
didates by computing the kNN probability PrkNN (q, o(ti)) in Inequality (1) at each
timestamp ti in the period [0, ted]. This is clearly inefficient due to the double integral
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Procedure PTCQ Processing {
Input: an uncertain moving object database DU , a UC-Grid I , a query point q, a time constraint T , a future period

[0, ted], and a probabilistic threshold α ∈ (0, 1]
Output: a set of probabilistic time consistent kNN answers
// initialization step
(1) retrieve k objects pi that are closest to query point q
(2) let Rmax be the maximum distance from pi to query point q in period [0, ted]
// pruning step
(3) retrieve all the cells intersecting with the influence region // Lemma 6;
(4) apply T -, period, and segment pruning rules to prune each retrieved cell ci,j // Section 4;
(5) for each remaining cell ci,j

(6) for each object o ∈ ci,j

(7) apply pruning methods to prune object o // Lemmas 1 ∼ 5
// refinement step
(8) refine the remaining candidates based on PTCQ definition
(9) return the actual PTCQ answers

}

Fig. 8. Procedure of Probabilistic Time Consistent Query

(via numerical methods [5]) in Inequality (1). In addition, we also have to enumerate
(
∑k−1

s=1 (
N
s )) object combinations (i.e., pm(ti)) in Inequality (1), which requires high

cost. Therefore, we give a recursive method below to compute kNN probabilities with
only linear cost (i.e., O(N)).

We denote G(W, k, r) as the probability that among W objects we have seen, there
are fewer than k objects with distances to q smaller than r and the rest objects with
distances never smaller than r. We then rewrite PrkNN (q, o(ti)) in Inequality (1) as:

PrkNN (q, o(ti)) =

∫ v+
o

v
−
o

pdfv(vo) ·
(∫

o′(ti)∈UR(o(ti))
Pr{dist(q, o′(ti)) = r} · G(N − 1, k, r)do′(ti)

)
dvo (9)

where G(W, k, r) = G(W −1, k, r) ·Pr{dist(q, pW (ti)) ≥ r}+G(W −1, k−1, r) ·
Pr{dist(q, pW (ti)) < r} (base case: G(W, 1, r) =

∏W
j=1 Pr{dist(q, pj(ti)) ≥ r}

and G(k − 1, k, r) = 1). Thus, the time complexity of computing recursive function
G(N − 1, k, r) in Eq. (9) is O(N).

Optimization. We can further reduce the cost of computing G(N − 1, k, r), by not
considering those objects pW (ti) that definitely have distances to q greater than r (since
in this case G(W, k, r) = G(W −1, k, r)). To achieve this goal, let maxdistcand be the
maximum possible distance from all the candidates to q, and let Srfn be a set containing
objects having minimum distances to q smaller than maxdistcand. Then, our problem
of computing G(N − 1, k, r) can be reduced to the one of calculating G(Srfn, k, r),
which only requires O(|Srfn|) time complexity, where |Srfn| � N .

5.3 Cost Model

Up to now, we always assume that our PTCQ processing is conducted on UC-Grid with
cells of size δ × δ. However, it is not discussed how to set the parameter δ. Below, we
will propose a cost model to formalize PTCQ processing cost, and aim to set appropriate
value of parameter δ such that the query cost can be as low as possible.

In particular, the pruning cost in PTCQ procedure consists of two parts, the pruning
of the retrieved cells and that of candidates in cells. Since we retrieve those cells inter-
secting with the influence region (line 3 of procedure PTCQ Processing), in the worst
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case, we need to retrieve π·(Rmax+Vmax·(ted−T+1)+rmax
o +δ)2

δ2 cells, where rmax
o is the max-

imum possible radius ro of any uncertain object o. Further, in these cells, the number
of object centers in them, nb, can be estimated by the power law [2], considering the
correlation fractal dimension D2 of object centers in the 2D data space. In particular,
we have nb = (N − 1) · (π · (Rmax + Vmax · (ted − T + 1) + rmax

o + δ)2)D2/2. Note
that, we use the power law for estimating the number of object centers, since this law
is applicable not only to uniform data but also to many other nonuniform data in real
applications (e.g., Zipf ) [2]. As a result, we can obtain the worst-case pruning cost,
costcon-kNN , of PTCQ processing below.

costcon-kNN =
π · (C + δ)2

δ2
+ (N − 1) · (π · (C + δ)

2
)
D2/2

. (10)

where C = Rmax + Vmax · (ted − T + 1) + rmax
o . Moreover, since Rmax is the

radius of �q containing k objects with centers closest to q, by applying the power law
again, we have: (N − 1) · (π · (Rmax − rmax

o )D2/2 = k. Thus, Rmax can be given by√
( k

N−1 )
2/D2 · 1

π + rmax
o .

We aim to find appropriate δ value for UC-Grid which can achieve low costcon-kNN

in Eq. (10). Thus, we take the derivative of costcon-kNN with respect to δ, and let it
equal to 0, i.e., ∂costcon-kNN

∂δ = 0, which can be simplified as:

(C + δ)
D2−2 · δ

3
=

2π1−D2/2 · C

N − 1
(11)

Thus, we can collect statistics (e.g., C and D2 in Eq. (11)) from historical data and
query logs to estimate appropriate value of δ such that Eq. (11) holds. The resulting δ
can achieve low query processing cost, based on our cost model. In the case where we
do not have such statistics, we can only assume that data are uniform with D2 = 2, and

thus, from Eq. (11), we have δ = 3

√
2C

N−1 . Then, after statistics are collected, we can

reconstruct UC-Grid by using appropriate δ according to the available statistics.

Discussions on Uncertain Directions. Our solutions can be easily extended to prune
objects with uncertain moving directions. Please refer to details in Appendix C.

6 Experimental Evaluation

In this section, we test PTCQ performance on real and synthetic data sets. Specifically,
for synthetic data sets, we generate each uncertain moving object o at timestamp 0 as
follows. First, we pick up a point in a data space [0, 1]× [0, 1] as center, Co, of object
o. Then, we generate the radius, ro ∈ [rmin, rmax], of its uncertainty region, UR(o),
for object o. Next, we produce its velocity vector vo, by randomly selecting an interval,
[v−o , v+

o ], of moving velocity vo within [Vmin, Vmax], and generating a moving angle
(between moving direction and x-axis), γ ∈ [0, 2π), where Vmin and Vmax are the min-
imum and maximum velocity of moving objects, respectively. Here, we consider center
location Co following either Uniform or Skew (with skewness 0.8) distribution (denoted
as lU and lS, respectively), and radius ro following either Uniform or Gaussian (with
mean (rmin + rmax)/2 and variance (rmax − rmin)/5) distribution (denoted as rU
and rG, respectively). Thus, we obtain four types of synthetic data sets, lUrU , lUrG,
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lSrU , and lSrG. For each object o in these data sets, we generate 20 random samples
to represent its position distribution in UR(o), and 10 velocity samples within [v−o , v+

o ]
to represent its velocity distribution. Note that, for data sets with other distributions or
parameters (e.g., mean, variance, skewness, or sample size), the query results have sim-
ilar trend, and thus we do not report all of them here. For the real data, we test a 2D
spatial data set, CA, which contains nodes of California Road Network obtained from
Digital Chart of the World Server [http://www.maproom.psu.edu/dcw/ ]. We consider
each data point in CA as the center Co of an uncertain moving object o at timestamp
0, and simulate the uncertainty region UR(o) (note: in real DTN applications [1], this
uncertainty may come from the inaccuracy of GPS), as well as the moving velocity vo,
resulting in two data sets, CA rU and CA rG, with Uniform and Gaussian distribu-
tions of ro, respectively. For each of the real/synthetic data sets above, we construct a
UC-Grid structure (mentioned in Section 5.1) over the uncertain moving objects. Then,
we also randomly generate 50 query points in the data space to evaluate the PTCQ query
performance within a future period [0, ted].

To our best knowledge, no previous work has studied PTCQ in uncertain moving
databases. Thus, we compare the performance of our PTCQ approach, con-kNN , with
a straw-man, Basic, discussed in Section 3.2, which first computes PkNN answers at
each timestamp and then combines results. For fair comparisons, instead of scanning the
entire database, Basic computes PkNN answers via UC-Grid by retrieving candidate
objects intersecting with the influence region. We measure the PTCQ performance, in
terms of filtering time and speed-up ratio. The filtering time is the running time of our
pruning methods (mentioned in Section 4), whereas the speed-up ratio is defined as the
total time cost of Basic divided by that of our con-kNN approach.

Table 1 depicts our parameter settings, where numbers in bold font are default val-
ues of parameters. In the sequel, we only present results with default future period
[0, ted]=[0, 20] and radius range [rmin, rmax]=[0, 0.0005]. We omit similar results with
other settings due to the space limitation. Each time we vary one parameter, while set-
ting other parameters to default values. All experiments are conducted on a Pentium IV
3.2GHz PC with 1G memory. The reported results are the average of 50 queries.

Table 1. The Parameter Settings

Parameters Values

α 0.1, 0.2, 0.5, 0.8, 0.9
[Vmin, Vmax] [0, 0.0005], [0, 0.0008], [0,0.001], [0, 0015], [0, 002]
k 5, 8, 10, 15, 20
T 4, 6, 8, 10, 12
N 10K, 20K, 30K, 40K, 50K

Comparison of the Filtering Effect. We first compare the filtering effect of Basic
and con-kNN in Fig. 9 over 6 real/synthetic data sets (note: here velocity or object
distribution is not used to facilitate the pruning, whose effect will be reported in the next
set of experiments), in terms of the number of PTCQ candidates to be refined. Recall
from Section 5.2 that, con-kNN applies T -, period, and segment pruning methods on
cells and objects, which can greatly reduce the search space; in contrast, Basic has
to refine all objects overlapping with the influence region. In the figure, con-kNN



184 X. Lian and L. Chen

Fig. 9. Filtering Effect vs. Data Sets

has much fewer candidates to be refined, compared with Basic, where the difference
between the two shows better filtering power of our con-kNN approach.

Performance vs. Probabilistic Threshold α. Fig. 10 illustrates the effect of threshold
α on real and synthetic data, where α varies from 0.1 to 0.9. From experimental re-
sults, we find that the filtering time remains low (i.e., about 10−4 second). Moreover,
the speed-up ratio increases with the increasing α value. This is because PTCQ answers
are those objects with kNN probabilities not smaller than α for T consecutive times-
tamps, and our pruning methods can utilize velocity and object distributions to filter out
false alarms via α constraint (i.e., with probabilities < α for at least one out of any T
consecutive timestamps). Thus, larger α would result in fewer candidates to be refined,
and in turn higher speed-up ratio. In subsequent experiments, since the trend of results
on real data is similar to that on synthetic ones, we only report results on synthetic data.

(a) lU (b) lS (c) CA

Fig. 10. Performance vs. Probabilistic Threshold α

Performance vs. Velocity Range [Vmin, Vmax]. Fig. 11 presents the PTCQ perfor-
mance, where [Vmin, Vmax] varies from [0, 0.0002] to [0, 0.001]. In figures, the filtering
time of con-kNN slightly increases when the range becomes wider. This is reasonable,
since the wider range results in larger influence region and more candidates to be pro-
cessed. Meanwhile, the speed-up ratio compared with Basic also increases, because
con-kNN uses effective filtering methods and Basic has more candidates to refine.
We also did experiments by varying k (from 5 to 20) and the time constraint T (from 4
to 12) with the trends similar to that in Figs. 11 and 10, respectively.

Performance vs. N . Fig. 12 tests the scalability of con-kNN and Basic against data
sizes N from 10K to 50K , where other parameters are set to default values. In fig-
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(a) lU (b) lS

Fig. 11. Performance vs. Velocity Range [Vmin, Vmax]

(a) lU (b) lS

Fig. 12. Performance vs. Data Size N

ures, the filtering time smoothly increases with the increasing data size. Moreover, the
speed-up ratio also increases for larger N . This is because for large N , Basic has to re-
fine more candidates, whereas con-kNN has effective filtering methods to prune false
alarms, which confirms good scalability of con-kNN .

7 Conclusions

In this paper, we formulate and tackle a query, namely probabilistic time consistent
query (PTCQ), on uncertain moving object database. Specifically, we consider one im-
portant query type, probabilistic time consistent kNN queries. We provide effective
pruning methods utilizing different query constraints, and use them to greatly reduce the
search space. To facilitate efficient query processing, we design a data structure, namely
UC-Grid, to index uncertain moving objects with low update and retrieval costs, whose
grid size is determined by our cost model to minimize the query cost. We demonstrate
through extensive experiments the efficiency and effectiveness of our approaches.

Acknowledgment. Funding for this work was provided by RGC NSFC JOINT Grant
under Project No. N HKUST61 2/09 and NSFC Grant No. 60736013, 60803105,
60873022, and 60903053.



186 X. Lian and L. Chen

References

1. Banerjee, N., Corner, M.D., Towsley, D., Levine, B.N.: Relays, base stations, and meshes:
enhancing mobile networks with infrastructure. In: MobiCom (2008)

2. Belussi, A., Faloutsos, C.: Self-spacial join selectivity estimation using fractal concepts. Inf.
Syst. 16(2) (1998)

3. Beskales, G., Soliman, M., Ilyas, I.F.: Efficient search for the top-k probable nearest neigh-
bors inuncertain databases. In: VLDB (2008)

4. Cheng, R., Chen, L., Chen, J., Xie X.: Evaluating probability threshold k-nearest-neighbor
queries over uncertain data. In: EDBT (2009)

5. Cheng, R., Kalashnikov, D., Prabhakar, S.: Querying imprecise data in moving object envi-
ronments. TKDE 16(9) (2004)

6. Chung, B.S.E., Lee, W.-C., Chen, A.L.P.: Processing probabilistic spatio-temporal range
queries over moving objects with uncertainty. In: EDBT (2009)

7. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD (1984)
8. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. TODS 24(2) (1999)
9. Huang, Y.-K., Liao, S.-J., Lee, C.: Evaluating continuous k-nearest neighbor query on mov-

ing objects with uncertainty. Inf. Syst. 34(4-5) (2009)
10. Iwerks, G.S., Samet, H., Smith, K.: Continuous k-nearest neighbor queries for continuously

moving points with updates. In: VLDB (2003)
11. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast nearest neighbor

search in medical image databases. In: VLDB (1996)
12. Kriegel, H.-P., Kunath, P., Renz, M.: Probabilistic nearest-neighbor query on uncertain ob-

jects. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 337–348. Springer, Heidelberg (2007)

13. Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases.
TKDE (2008)

14. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: an efficient
method for continuous nearest neighbor monitoring. In: SIGMOD (2005)

15. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In:
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Appendix
A. Dynamic Maintenance of UC-Grid Upon Updates

To insert an uncertain moving object o into UC-Grid, we first find the cell ci,j where Co

resides, and then add o to a center list of ci,j based on its direction, which requires O(1)
cost. In addition, we also need to find those cells that intersect with object o, and add o

to their cell lists (i.e., increasing the counter, count, by 1), which requires O(π(ro+δ)2

δ2 )
cost in the worst case. Similarly, to delete an object o from UC-Grid, we first find its
location, cell ci,j , with O(1) cost, and then remove it from the center list. Finally, for
those cells intersecting with o, we decrease their counters (i.e., count) in cell lists by 1.
In case the counter becomes 0, we remove the entry (ci,j , 0). Thus, the time complexity

of deletion is O(π(ro+δ)2

δ2 ).

B. Pruning Heuristics for Cells

As mentioned in Section 5.1, each cell of UC-Grid I contains 4 center lists, NE, NW ,
SW , and SE, corresponding to 4 types of moving directions. Thus, each list main-
tains some statistics, for example, [γmin, γmax] (note: we omit superscript like NE for
brevity), which is the interval of angles γ (between moving directions and x-axis) for all
the objects in each list. Similarly, each list also keeps the minimum (maximum) veloc-
ities vmin (vmax), as well as the minimum (maximum) radii ro, romin (romax). Thus,
our goal is to derive pruning rules such that: a cell ci,j can be safely pruned, if the prun-
ing conditions (given by pruning methods in Section 4) hold for any uncertain moving
object o ∈ ci,j with γ ∈ [γmin, γmax], vo ∈ [vmin, vmax], and ro ∈ [romin, romax].

For T -pruning in Lemma 1, we have its corresponding pruning rule for cells below.

Lemma 7. (T -Pruning Rule for Cells) Any center list in a cell, ci,j , of UC-Grid I with
[γmin, γmax], [vmin, vmax], and [romin, romax] can be safely pruned, if it holds that:

||q|| · maxγ∈[γmin,γmax]{cos(ηq−γ)} < min S1, or (12)

||q|| · minγ∈[γmin,γmax]{sin(γ − ηq)} − max S2 > (Rmax + romax)2 − (vmin · T )2/4.

(13)

where min S1 = min∀o in center list{Co[x] · cosγ + Co[y] · sinγ} and max S2 =
max∀o in center list {Co[x] · sinγ − Co[y] · cosγ}.

Note that, each object o has constants (Co[x]·cosγ+Co[y]·sinγ) and (Co[x]·sinγ−
Co[y] · cosγ). Thus, in Lemma 7, min S1 and max S2 are the min/max aggregates of
these two constants, respectively.

In Inequality (12), to compute maxγ∈[γmin,γmax]{cos(ηq−γ)}, we consider 2 cases:
1) ηq /∈ [γmin, γmax], and 2) ηq ∈ [γmin, γmax]. From the cosine curve, we can obtain:

maxγ∈[γmin,γmax]{cos(ηq − γ)}

=
{

max{cos(γmax − ηq), cos(γmin − ηq)} if ηq /∈ [γmin, γmax],
1 otherwise.

(14)

Similarly, for minγ∈[γmin,γmax]{sin(γ − ηq)} in Inequality (13), we have:
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minγ∈[γmin,γmax]{sin(γ−ηq)}

=

⎧⎨⎩
min{sin(γmin − ηq), sin(γmax − ηq)}

if −π
2
, 3π

2
/∈ [γmin − ηq, γmax − ηq ],

−1 otherwise.
(15)

For the period pruning in Lemma 2, we have the following pruning rule for cells.

Lemma 8. (Period Pruning Rule for Cells) Any center list in the cell, ci,j , of UC-Grid
I with [γmin, γmax], [vmin, vmax], and [romin, romax] can be safely pruned, if it holds
that: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

||q||·maxγ∈[γmin,γmax]{cos(ηq−γ)}
−min S1 <

v2
max·(ted−T )2−(Rmax+romax)2+mindist2(q,ci,j)

2·v2
max·(ted−T )

if mindist(q, ci,j) > Rmax + romax,
||q|| · maxγ∈[γmin,γmax]{cos(ηq−γ)}

−min S1 <
v2

min·T2−(Rmax+romax)2+mindist2(q,ci,j)

2·v2
min·T ,

if mindist(q, ci,j) ≤ Rmax + romin.

(16)

where maxγ∈[γmin,γmax]{cos(ηq − γ)} and min S1 refer to Eq. (14) and Lemma 7,
respectively.

For the segment pruning, the pruning rule for cell, ci,j , considers whether each seg-
ment can be pruned (Lemma 3) for any object in ci,j . That is, we check whether or not
the minimum value of LHS of Eq. (7) for any γ, v, ro, and t values within their ranges
is greater than 0 (RHS of Eq. (7)). If the answer is yes, the cell can be pruned.

C. Discussions on Uncertain Directions.

In Section 3, we assume that objects are moving towards a fixed direction (i.e., with
angle γ) in a future period [0, ted]. For uncertain directions of velocities, we can also
model them by direction variables γ ∈ [γ−, γ+]. Note that, this representation is equiv-
alent to [26] which used a 2D velocity histogram to inherently record uncertain direc-
tions. Our solutions can be easily extended by considering the pruning with uncertain
directions the same as that for cells (in Lemmas 7 and 8). That is, we replace γmin and
γmax in pruning conditions with γ− and γ+, respectively. This model with uncertain
directions can capture real-world scenarios such as objects with non-linear motions or
other motion patterns. Thus, our approach is expected to efficiently process consistent
queries for objects with these motion patterns.
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Abstract. Scientific research products are the result of long-term col-
laborations between teams. Scientific workflows are capable of helping
scientists in many ways including collecting information about how re-
search was conducted (e.g., scientific workflow tools often collect and
manage information about datasets used and data transformations).
However, knowledge about why data was collected is rarely documented
in scientific workflows. In this paper we describe a prototype system built
to support the collection of scientific expertise that influences scientific
analysis. Through evaluating a scientific research effort underway at the
Pacific Northwest National Laboratory, we identified features that would
most benefit PNNL scientists in documenting how and why they conduct
their research, making this information available to the entire team. The
prototype system was built by enhancing the Kepler Scientific Work-
flow System to create knowledge-annotated scientific workflows and to
publish them as semantic annotations.

Keywords: Scientific Workflows, Knowledge Annotations, Kepler.

1 Introduction

When scientists work collaboratively to conduct scientific research there are
many factors that have a direct impact on how research is performed, much
of it implicit in the actual process used. For example, when exploring a data set,
scientists may use their expertise to select data points and their experience may
guide a scientist to impose a certain constraint on the entire dataset. Unfortu-
nately, these decisions are poorly documented and may not be presented to the
current research team, much less reflected in any published work. Nonetheless,
this knowledge is crucial for conducting research and is the basis for innovation,
something that is often needed for scientific research [13].

Scientific workflow tools enable scientists to describe, execute and preserve
a research process. In addition, they can be used to annotate data and collect
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provenance about how scientific artifacts were created [8]. However, the knowl-
edge implicit in a workflow reaches beyond its execution, including, for example,
the many decisions made to choose algorithms, parameters and datasets that are
undocumented in current scientific workflow engines. If that information could
be captured in scientific workflows, the associated tools are in a unique posi-
tion to play an instrumental role in organizing and preserving the implicit and
explicit knowledge that is shared among scientists during a research effort.

Similar to many active scientific research projects, the subsurface flow and
transport analysis projects at the Pacific Northwest National Laboratory (PNNL),
is a collaborative effort where scientists with different knowledge domains, e.g.,
data collection, model building, and simulation expertise, are working together
to perform groundwater modeling. We evaluated the scientific process being used
by the groundwater modeling team to understand how collaborative teams con-
duct scientific research, share knowledge, and produce scientific products. As
observed with other teams affiliated with the Cyber-ShARE Center of Excel-
lence1, we observed that scientists of a highly collaborative team are dependent
on the decisions, expertise and results of their colleagues during a research ef-
fort, because assumptions made during one scientist’s analysis directly affects
other scientists on the team. Unfortunately, these decisions and assumptions
are often not well documented and their justifications may fade over the course
of the project. Providing mechanisms to help scientists manage this knowledge
would be a great benefit to assure that the entire team remains aware of relevant
research assumptions, constraints and decisions.

This paper explores the process of documenting the implicit side of scien-
tific research using an extension to the Kepler Workflow Management System
[10]. Although Kepler has been used to represent groundwater modeling work-
flows previously, the tool was not able to support documenting the implicit
aspects of the research collaboration. In order to represent these decisions and
assumptions, Kepler, similar to other executable workflow systems, needed to
be extended. To this end, a prototype system was built over Kepler to produce
knowledge-annotated scientific workflows. The collected information is published
as semantic annotations in RDF [9] with the goal of enabling reuse and integra-
tion with related information [14].

In the remainder of this paper, we present a preliminary research prototype
designed to address the current limitations of workflow systems and enable doc-
umentation of the entire scientific process from initial discussions to executable
workflow. Section 2 will provide background information on a subsurface flow
and transport project that motivated this prototype as well as technologies that
affected our implementation, including Kepler. Section 3 presents the details
of our implementation while Section 4 discusses current issues with this pro-
totype and outlines future work for knowledge-annotated scientific workflows,
including a comprehensive user study. Finally, Section 5 presents our concluding
thoughts.

1 http://cybershare.utep.edu



Knowledge Annotations in Scientific Workflows 191

2 Subsurface Flow and Transport Analysis Case Study

PNNL has extensive research and development capabilities and expertise in the
scientific field of subsurface flow and transport, which focuses on the ”study
of chemical reactions in heterogeneous natural material, with an emphasis on
soil and subsurface systems[1].” Some of these capabilities are centered on the
construction and application of a PNNL-developed predictive subsurface flow
and transport simulator known as STOMP (Subsurface Transport Over Multi-
ple Phases)[16]. Using STOMP along with other subsurface model development
software, PNNL groundwater scientists are modeling subsurface flow and trans-
port on a wide variety of internal and external projects.

Fig. 1. A high-level workflow describing a groundwater modeling project conducted at
PNNL

A groundwater modeling project typically comprises a project manager and
several team members. Scientists take on roles within the overall research effort
based on their expertise. The groundwater modeling process follows a general
data flow pattern of steps that have been summarized as a high-level workflow
shown in Figure 1. Each step of the process requires the knowledge and ex-
pertise of the scientist performing it, as well as collaboration between steps to
understand details about the overall process. The groundwater process starts
with the Gather Data step, where data is initially collected by a geoscientist.
This geoscientist gathers the data from the field or while running experiments.
Next a scientist performs the Conceptual Modeling step where the initial data
is analyzed to create a conceptual model (a conceptual understanding of the
subsurface geology). The conceptual model is represented in a series of files that
are used in the Model Input step. Within the Model Input step a scientist builds
a numerical model of the data and annotates it. This numerical model is an im-
plementation of the conceptual model into a discretized, numerical framework.
The simulation is executed in the Run Simulator step after which the data is
post-processed into target data images and reports.

Throughout the groundwater modeling process, scientists use their expertise
to interpret and analyze data, interpolate new data models, run scripts and
executables (some of which they have written themselves), visualize data and
results, and build and annotate data sets. They must understand details about
the overall project and must make simplifying assumptions to account for a lack
of data or to take into consideration computational limitations, e.g., available
hardware, and project time constraints. Their research is an iterative process,
where they might run a series of steps over and over, changing parameters and
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analysis details, to produce the best results. The collaborative team continuously
reviews the results of different steps, makes suggestions, and formulates new
assumptions that could alter the overall modeling process: that is, the changes
to the process might require that steps be performed again. Sometimes, having to
perform steps over could be avoided if each scientist was aware of assumptions or
constraints that other team members have made. In many cases, scientists keep
journals and notes of what worked and what did not as well as the decisions,
assumptions or constraints used to find results. Team discussions normally occur
in meetings, via email or by phone. Documentation of these discussions does not
always occur.

We found that many of the needs of these scientists are consistent with the
needs of other scientists in other domains such as geoinformatics or environ-
mental science. Namely, once an artifact or analysis product is available either
during the research process or after, scientists seek to understand not only the
”hows” but the ”whys” of its creation. Currently, the data and knowledge of
running these models are collected in a final report and result data sets. Going
back to review and understand the original process requires understanding the
final report, visualizing the final results, if they are available, and talking to sci-
entists involved in the initial research and analysis. A scientist’s recollection of a
specific past project would require that they too have access to their notes and
the details of how they conducted scientific analysis and performed the specific
steps of a specific process.

2.1 Current Approaches for Collecting the Scientists’ Knowledge

One common method that scientists have used to collect their scientific notes is
paper-based journals, where scientists can sketch and write the ideas and conclu-
sions of their research. Electronic Laboratory Notebooks (ELNs) provide similar
functionality to paper-based journals but with added benefits like electronically
organizing scientific notes, relating notes to data, viewing and manipulating re-
lated electronic data and multi-user support. More recently, ELNs have been
enhanced to function over the Web and to provide interoperable semantic an-
notations so they can be integrated with other data producing and consuming
systems [15]. On a more collaborative front, tools like email, chat tools, and
more recently social networking tools like Facebook2 have been used to elicit
discussions and social interactions. These tools support the ability to link data
to specific comments, e.g., through attachments, and to talk directly to individ-
uals as well as groups. Although both ELNs and social networking tools promote
collaboration and enable the collection of social and scientific information, they
are limited in documenting the ongoing research process conducted by scien-
tists. For example, they do not directly support the process definition that is
inherently captured in scientific workflow tools.

Executable scientific workflows are beneficial to scientific research and the
management of scientific data [8] because their main goal is to collect suffi-
cient information so a process can be executed. As a result, they can capture
2 http://facebook.com
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hardware details, user details, operating system details and execution details
that can be used to annotate an artifact. Furthermore, the graphical represen-
tation that many scientific workflow tools create enables scientists to see the
steps in the process and the flow of data. Through this representation, scien-
tists can understand how an artifact was created. As scientific research efforts
become more collaborative, scientific workflow environments must consider how
they will evolve to support collaborative teams. myExperiment, for example, is
a research effort where scientific workflows and other research objects can be
published to the myExperiment Portal [7]. The goal of this portal is to sup-
port the sharing of scientific research and the reproduction of scientific results.
Through myExperiment, users can rate, download and tag workflows as well as
maintain discussions about published workflows. The documentation occurs after
the workflow is published, thus knowledge annotations occur after the scientific
research is completed.

Another benefit of scientific workflows is the ability they provide in repro-
ducing results. The Kepler Scientific Workflow System, for example, publishes
workflows and its corresponding data as Kepler Archive (KAR) files. KAR files
are encapsulated workflows including all components needed to run the workflow
[2]. As a result, KAR files are objects that can be published on myExperiment
and then downloaded for other scientists to execute. WDOIT! [12] is a scientific
workflow tool that publishes all workflow information as semantic annotations
on the Semantic Web. With these annotations, a WDOIT! workflow can classify
data with common terminology and link workflows to data and resources on
the Web. This open environment enables interoperability and reuse with other
semantic-based tools [14].

2.2 Kepler Scientific Workflow System

Kepler is a scientific workflow tool used to build and execute scientific workflows.
Kepler provides graphical abstractions to enable scientists to build workflows.
For example, scientists describe the steps of a process by adding actors to a
canvas (a graphical window); they add ports for data input and output of an
actor; and they connect ports between actors to specify a flow of information.
Actors can be chosen from a list of available actors; there are menu entries to
add ports and actor details, and workflows can further be described by specifying
parameters, global values, and execution instructions. Kepler workflows can be
described at multiple levels of detail using composite actors. A composite actor
is a nested canvas where a scientist can define a subworkflow. The purpose of a
composite actor is to hide process details until there is a need to see them, e.g., a
scientist chooses to open it. Once all the details for execution have been specified
in a workflow canvas, including actors, ports, parameters, and connections, the
workflow is ready for execution.

As shown earlier, Figure 1 presents a Kepler workflow representing the ground-
water modeling steps identified by groundwater scientists. Building an executable
workflow can be quite involved and in some cases distracting, particularly if sci-
entists work in an ad hoc, exploratory framework where they are not certain of
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the steps they will take to conduct their research. Furthermore, scientists may
need to describe a process but not execute it, e.g., if they use their own scripts,
programs or manual steps not found in Kepler. Nevertheless, the ability within
Kepler for describing processes at different levels of abstraction provides a mech-
anism for annotating the internal components, e.g., actors and connections, in
the workflow with knowledge annotations.

3 Knowledge-Annotated Scientific Workflows

The goal of this research effort was to help the groundwater scientists manage
collaborative data that is traditionally generated but not collected during a
research effort. Three design principles were incorporated into this prototype.
First design principle: the prototype needed to enable scientists to primarily
describe their research; thus, any workflow construction needed to be a byproduct
of the information provided by the scientist, requiring execution details only
when necessary. Second design principle: the prototype needed to align with the
way scientists conducted research and limit the duplication of information and
the number of menus and windows needed to document their research. Third
design principle: the prototype needed to leverage the workflow to manage the
annotations, i.e., annotations had to directly relate to steps and connections
that the scientist added to their research process, which would in turn enable
the prototype to present and publish the result data with a close relation to
the process. The prototype enables scientists to build workflows by focusing on
scientific analysis and ad hoc scientific exploration. The following sections will
work through the prototype system, highlighting the features that were added
to support groundwater scientists in documenting the decisions and knowledge
behind their research.

3.1 Building Workflows

To enable the groundwater scientists to focus on their research and avoid focusing
on executable workflow details, the Kepler interface was modified by adding
menu entries, buttons and panels to collect and display the implicit knowledge
related to steps scientists take to conduct scientific research. Figure 2 shows the
overall prototype interface. The left side of the interface displays the Research
Hierarchy panel, which is a tree view of all the process steps defined in a project,
and the bottom right displays the Process View panel which shows a graphical
representation of the steps in a process. These two panels are always visible, but
their content changes based on a scientist’s interaction with the tool. The top
right displays various tabs that collect annotations related to specific process
details, e.g., steps, inputs, outputs. Workflows in the prototype are managed
within a project. A project is created by opening up the prototype interface
and entering the project details. The Project Description tab is shown at the
top of Figure 2. Here a title, description, and the project’s team members are
specified. When team members are selected for a project, a project manager
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Fig. 2. The prototype interface showing the different panels added to support scientists
in annotating their workflows as they describe their research

enters the name and contact information for each team member. In this way,
the team has a single place to identify who is actively on the team. Steps can be
added to describe the analysis steps that will be performed within a process. As
steps are added, a step actor is added to the Process View panel. For example, a
subsurface flow and transport project would conduct some variation of the steps
defined in the case study found in Section 2. The Process View panel in Figure 2
shows steps for gathering data, building the conceptual model, building the input
model, and running the simulation. A scientist can add steps as needed to allow
for an ad hoc, exploratory collection of scientific analysis steps. In turn, the
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Fig. 3. The Research Specs tab. This tab collects general comments affecting the entire
project and provides buttons to help scientists describe their research and annotate
process components.

workflow system is collecting annotations, relating them to specific components
of the workflow and providing a mechanism for a team of scientists to view the
information as it relates to their ongoing research.

Throughout a project, decisions and notes are made that affect the entire
project. This information is collected in the Research Specs tab shown in Fig-
ure 3. The Research Specs tab has a scrollable entry pane where a project man-
ager or other team member, can enter details about known constraints based
on the research proposal, administrative comments as to how the group will
function, or ongoing comments about what the group is doing. This tab also
has buttons to support the annotation and workflow building process, e.g., Add
Step, Add Assumption, and Add Deliverable.

The prototype leverages Kepler’s ability to describe processes at multiple
levels of abstraction by annotating workflow components, e.g., steps, at the dif-
ferent levels. The Process View panel in Figure 4 describes in more detail the
RunSimulator step conducted by a groundwater modeling scientist. At the top of
Figure 4 is the Research Notes tab. When a step is created, a Research Notes tab
is created with an associated workflow. The Research Notes tab has a scrollable
entry pane where scientists can capture their notes about the research, e.g., the
decisions they made, what processes worked and why. Scientists can also add
more process details that will be reflected as changes to the workflow, e.g., Add
Steps, Add Input, Add Output. Scientists can then choose to refine steps to any
level of granularity. Figure 5 describes a more detailed level of granularity of
the STOMP step, where the groundwater scientist models and annotates the
execution of a STOMP actor, an executable actor used at PNNL. This method
of defining and refining steps allows scientists to define a hierarchical definition
of research where steps are refined if the scientist needs to describe more detail.
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More importantly, the process exhibits the integration of annotating a com-
pletely abstract process shown in Figure 2 down to a more detailed executable
model shown in Figure 5, where scientists can add comments concerning the
success or failure of parameters or executed processes.

Fig. 4. The knowledge data and workflow of the Run Simulator step. Scientists can
refine the details of their research by describing a process, adding research notes and
entering details about the inputs and outputs of their research.

As steps are added at any level of the process, the Research Hierarchy panel,
shown in Figure 2 is updated with branches added to the appropriate hierarchy
tree. When a step is opened (by double-clicking its icon in the Research Hierar-
chy tree or from the Process View panel), the step’s Research Notes panel and
Process View panel are displayed. When other scientists need to understand the
details about a particular step, they can open the step and see the annotations.

To identify data that will be used or produced in a scientific step, scientists
can add inputs or outputs that are displayed as icons on the Process View panel.
The Process View panel in Figure 4 shows several input and output icons, e.g.,
NumericalModel as an input and simulationreport as an output. A scientist can
add more knowledge about a specific input or output by opening its Input Details
dialog or Output Details dialog, respectively. Figure 6 shows the Input Details
dialog for the NumericalModel input from the RunSimulator step. Using this
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Fig. 5. The Process View panel for the STOMP step. The Process View panel has
execution details for running the simulator, e.g. a director, actor, inputs and outputs.

Fig. 6. Input details dialogs for the NumericalModel input of the RunSimulator step.
This input is dependent on Outputfiles output of the ModelInput step. Comments from
the Outputfiles output can be see here as well.

dialog, scientists can specify what data is needed and from what step, specifying
the flow of information and the dependencies between steps. The Output Details
dialog (not shown here) allows a scientist to enter similar details related to the
outputs produced within a scientific step. These dialogs collect assumptions,
constraints, and general comments about the data. Collecting this information
as the scientist is conducting research can provide insight to other scientists
that depend on it. To make this knowledge more visible, the knowledge data of
connected input and output ports are displayed in the respective Input or Output
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Fig. 7. This workflow was built in the prototype system by collecting knowledge about
the research performed by each scientist

Details dialogs. For example, the comment section in Figure 6 also shows the
comment from the connected step’s (ModelInput) data. Scientists who view a
details dialog can review existing details and add their own.

As a result of specifying data dependencies in the details dialogs, connections
are made on the Process View panels that contain those actors, building the
workflow automatically. Figure 7 shows the complete project workflow after the
different steps were opened by the corresponding scientist and research knowl-
edge was collected in them. Notice that the NumericalModel input to the Run-
Simulator step is connected to the NumericalModel output from the ModelInput
step. This information was specified in the Input Details dialog in Figure 6.

3.2 A View of the Data

Having scientists enter research notes and knowledge details to describe their
research is useful for data capture but not sufficient for understanding the data.
For scientists to understand a step within the data collection windows provided
in the prototype, they would have to open up different tabs and dialogs. By
managing this information within the workflow tool, the prototype can help
provide this information in a more organized format. The scientists in our case
study specifically referenced a need to understand the flow of the data that
was coming into their research step and the ability to summarize the details of
the step they were viewing. Furthermore, the scientists are often called on to
provide the same details that are collected in this prototype for a final project
report. To support these needs, we added the ability for scientists to backup or
move forward through step connections, build a full summary report and access
summary views that can be seen at any level within the research hierarchy.

The backward and forward traversal functionality was added to enable quick
jumps between steps. With a single click, a scientist can choose to step back or
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move forward from a port to the step that it is connected to, which displays
the connected step’s Research Notes and Process View panels. For example,
performing a backward traversal from the NumericalModel input for the Run-
Simulator step would open up the Research Notes and display the workflow for
the ModelInput step. The advantage to this feature is that it makes it easier for
scientists to see the research notes and process view of related steps and then
jump back if needed.

To help scientists understand the entire research effort, a full research sum-
mary report can be created. The details of scientific research can be quite in-
volved and the goal of this prototype system is to help collaborative groups
document and understand the process behind their research. Building a full
summary is useful because it summarizes all the details of the scientific process
in one document. Another benefit of this feature is that it could facilitate writing
documentation, e.g. a research paper or publication, about the scientific process
and the accompanying knowledge data. Figure 8 shows the first page of a sum-
mary report for the Regional Groundwater Flow and Transport Investigation
(RGFTI) project, which is a specific groundwater modeling project currently
being performed at PNNL. Understanding what should be in this summary and
how it should look is dependent on the group working with the data as well as
the needs of each scientist. Further evaluation should help with understanding
the appropriate configurations and structure of such a summary.

To help scientists understand the factors that are contributing to the current
state of a step, a scientist can view the step’s status. This feature will give a
summary of steps, connections and connection details from the different levels
of refinement of the current step. If the step has several sub-steps and they in
turn have sub-steps, the sub-steps are included in the summary.

3.3 The Knowledge-Annotated Data Model

The Kepler source code3 and the prototype system are Java implementations.
The knowledge-annotated data model for the Kepler prototype is stored in a set
of five classes, as shown in Figure 9. The CollaborativeProject class is the focal
point for a project: it stores project details, MemberInfo objects, JournalEntry
objects and StepInfo objects. There is one StepInfo object for each step defined in
a project. The StepInfo class stores JournalEntry objects and PortInfo objects.
There is one PortInfo object for each input and each output defined in a step.
The PortInfo class stores the annotations (assumptions, constraints, and com-
ments) for an input or output defined in a step. The JournalEntry class stores
the annotations entered within the project notes or a step’s research notes. The
MemberInfo class stores information about the team members of a project. Fig-
ure 9 also describes the canvasMap variable. When Kepler opens up composite
actors, their interface and environment are created in a new process space. For
the prototype, this caused difficulty in managing the overall annotations within
a project. As a result, the canvasMap variable was added to manage the different
contexts that would be annotated within a project.
3 https://code.kepler-project.org/code/kepler/trunk/modules/build-area
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Fig. 8. The first page of a summary report for the RGFTI project. This report gives a
summary of the entire project, including project information, e.g., title, team members,
process information, steps, and the corresponding knowledge data. This information is
provided in a single document.

Most workflow tools store their workflows in tool-specific formats, e.g., Kepler
stores all workflow information in KAR files. The issue with tool-specific formats
is that they limit interoperability and reuse of workflows; e.g., the encapsulated
contents of a KAR file would only be readable by KAR-compatible tools. Al-
though we believe it would be unrealistic that all workflow tools conform to the
same representational formats, there is no reason why the annotations collected
by the prototype can’t be more open to sharing and interoperability. In an ef-
fort to enable others to understand what was done and why, the annotations
are stored in the Semantically Interlinked Online Communities (SIOC) [5] for-
mat. SIOC is an RDF-based OWL model [11]. With this data model, we were
able to represent all the annotations collected for a knowledge-annotated scien-
tific workflow project. Our expectation is that this knowledge information, when
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Fig. 9. The knowledge data model for knowledge-annotated scientific workflows in the
Kepler prototype. There are five classes used to store all the collected data related to
a project.

Fig. 10. An RDF graph representation of an SIOC-based description of a comment
made in the Run Simulator step. The Run Simulator step is shown in Figure 2

published on the Web, can be linked with different discussions and comments
made by other scientists.

Using the unique identifiers for steps, inputs, and outputs in a Kepler workflow
as topic resources within the SIOC model (this is how the SIOC model specifies
what the annotation is about) the prototype writes a project’s annotations to a
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single SIOC file. Figure 10 shows an RDF graph of the SIOC representation of a
comment made about the RunSimulator step’s Numerical Model input. The defi-
nition of the workflow’s SIOC model is contained in the RGFTIworkflow sioc.xml
RDF OWL document. There is an entry in this document for each comment,
assumption or constraint related to the workflow, a step or a step’s input and
output. Following the graph in Figure 10, there is a comment called RGFTI-
workflow soic.xml#RGFTIworkflowRunSimulator20101020094425 that was cre-
ated by Tom about the NumericalModel input in the RunSimulator step. This
comment is found in the RGFTIworkflow sioc.xml container. The RGFTIwork-
flow sioc.xml container has comments about the workflow in RGFTIworkflow.xml.
The SIOC model can be used to describe a variety of details about a comment,
including the text in the comment and the creation date.

4 Discussion

Leveraging scientific workflows to document scientific research is enhanced by
allowing implicit knowledge annotations to be made during the research process
because these annotations reflect why the research was conducted in a specific
manner. The prototype presented in this paper has enhanced Kepler by mod-
ifying the interface and adding concepts for recording and sharing annotations
about the ongoing research. This section discusses issues with the prototype as
well as our intentions for future work.

An overriding concernwith all information system designs is ensuring that users
find the resulting capabilities worth the cost of learning, using, and maintaining
information within the system. As with most scientists, the PNNL groundwater
scientists are often extremely busy and thus they are hesitant to use technology
if it will slow down their work, make them repeat their work, or impose a rigid
process that might limit their work. Our main focus while building this proto-
type was understanding their process and needs. In fact, an executable workflow
is not required to capture process and experimental knowledge for our knowledge-
annotation system to be useful. Nevertheless, once a scientist focuses on an exe-
cutable process and specific data sets, significant complexity cannot be avoided.
Because Kepler workflows are executable, the prototype extended the framework
to include abstract concepts. Through discussing these extensionswith the ground-
water scientists we were able to confirm that these features and abstractions align
with their researchmethodology. It is our intention to conduct a more formal eval-
uation of this tool; taking into account different types of scientific scenarios will
help us add characteristics to support a more general scientific audience. This
evaluation will also help us understand the details in reporting, collaboration and
semantic annotations that will make the collection of this data more useful. For
example, currently the knowledge annotations are captured as natural language
annotations, yet imposing a controlled vocabulary was considered there was a
concern with how much additional work would be required by scientists in con-
forming to a predefined structure. Understanding the most fitting vocabularies
requires further evaluation. Moreover, understanding how to capture knowledge
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annotations and take advantage of their content without distracting scientists is
future work for this research.

Mapping the knowledge annotations to a semantic model, i.e. SIOC, has bene-
fits that we must highlight. For one, the knowledge annotations can be leveraged
for reasoning within the existing knowledge of a workflow. Bowers and Ludäscher
discuss algorithms for propogating semantic annotations through the knowledge
of a workflow in order to infer new annotations [4]. Furthermore, integration
of knowledge annotations with the process captured by workflows can be inte-
grated with provenance knowledge that has already been used in semantic based
workflow tools [6]. Given the content of the knowledge annotations and the de-
scriptions within the SIOC model, software agents can further evaluate the SIOC
content for patterns in terminology or collaborative relationships between scien-
tists. By using semantic structures and publishing them on the Semantic Web,
the knowledge annotations have the potential for distribution and integration
with the Linked Open Data cloud [3]. As a result, software agents from future
research efforts could leverage knowledge annotations from one workflow project
as supplemental research data.

5 Conclusions

Understanding the needs of the groundwater scientists involved in the RGFTI
project highlighted some key facts for this prototype. First, systems that an-
notate scientific research should also capture the ongoing implicit knowledge
associated with this research. Simply collecting comments and discussions af-
ter research is conducted or only capturing executable based knowledge, loses
important information. Second, by leveraging executable scientific workflow sys-
tems to add annotations, scientists can embed their notes within an existing
framework already built to describe scientific research. However, the workflow
environment must be flexible in its ability to collect these annotations. Many
scientists must work in an exploratory mode where their process is ad hoc and
the tools must support this. Moreover, scientists do not always know the exact
steps they will take to conduct their research beforehand and they do not always
have the tools they need instrumented as workflow components. Finally, scien-
tists do not always leverage executable components to describe their process:
for example, in some cases they construct data models by hand-picking values.
What they do use is expertise, and their expertise is important when they are
performing research steps and crucial in understanding how and why research
was conducted to produce scientific results.

Executable scientific workflow tools have an advantage when it comes to doc-
umenting research; because they are already documenting the execution of sci-
entific analysis, their definition can be leveraged to manage implicit knowledge
collected from scientists conducting the research. Unfortunately, current work-
flow techniques can be confusing and distracting because scientists are forced
into a fixed scientific process before they achieve results. This prototype al-
lows for an ad hoc mode of defining scientific process where scientists focus on
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documenting research through research notes and workflows through abstract
concepts such as steps, inputs and outputs. Furthermore, allowing scientists to
see comments about data at strategic points within the research process, gives
scientists a process-based and team-driven environment for understanding and
describing their work.

Collaborations are characterized not just by a sharing of data but also by
the entire process and culture by which scientific research is conducted, data
is collected, and knowledge is shared, understood, and reused. One barrier to
successful, long-term collaborations is the inability to make specific research ar-
tifacts and details available. For example, once data has been collected scientists
must decide, amongst other details, how to annotate and publish their data so
that it can be used by other scientists. Through knowledge-annotated scientific
workflows, scientists are documenting the steps they took to perform their re-
search, the correlation between steps, and why the data was created. Publishing
this data to a semantic structure means that the structure of the data is well-
defined and enabled for reuse. Knowledge annotated scientific workflows simplify
the process of annotating scientific workflows with the scientist’s notes - knowl-
edge that is necessary for understanding research but not normally collected.
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Improving Workflow Fault Tolerance through

Provenance-Based Recovery

Sven Köhler, Sean Riddle, Daniel Zinn,
Timothy McPhillips, and Bertram Ludäscher
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Abstract. Scientific workflow systems frequently are used to execute
a variety of long-running computational pipelines prone to premature
termination due to network failures, server outages, and other faults.
Researchers have presented approaches for providing fault tolerance for
portions of specific workflows, but no solution handles faults that ter-
minate the workflow engine itself when executing a mix of stateless
and stateful workflow components. Here we present a general framework
for efficiently resuming workflow execution using information commonly
captured by workflow systems to record data provenance. Our approach
facilitates fast workflow replay using only such commonly recorded prove-
nance data. We also propose a checkpoint extension to standard prove-
nance models to significantly reduce the computation needed to reset
the workflow to a consistent state, thus resulting in much shorter re-
execution times. Our work generalizes the rescue-DAG approach used
by DAGMan to richer workflow models that may contain stateless and
stateful multi-invocation actors as well as workflow loops.

1 Introduction

Scientific workflow systems are increasingly used to perform scientific data anal-
yses [1,2,3]. Often via a graphical user interface, scientists can compose, easily
modify, and repeatedly run workflows over different input data. Besides automat-
ing program execution and data movement, scientific workflow systems strive to
provide mechanisms for fault tolerance during workflow execution. There have
been approaches that re-execute individual workflow components after a fault
[4]. However, little research has been done on how to handle failures at the level
of the workflow itself, e.g., when a faulty actor or a power failure takes down
the workflow engine itself. Circumstances that lead to (involuntary) workflow
failures—for example software errors, power outages or hardware failures—are
common in large supercomputer environments. Also, a running workflow might
be aborted voluntarily so that it can be migrated to another location, e.g., in
case of unexpected system maintenance.

Since typical scientific workflows often contain compute- and data-intensive
steps, a simple “restart-from-scratch”strategy to recover a crashedworkflow is im-
practical. In this work, we develop two strategies (namely replay and checkpoint)
that allow workflows to be resumed while mostly avoiding redundant re-execution

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 207–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Example workflow with stateful actors. To recover the workflow execution after
a fault, unconsumed tokens inside workflow channels and internal states of all actors
except the stateless Align have to be restored.

of work performed prior to the fault. The necessary book-keeping information to
allow these optimizations is extracted from provenance information that scientific
workflow systems often already record for data lineage reasons, allowing our ap-
proach to be deployed with minimal additional runtime overhead.

Workflows are typically modeled as dataflow networks. Computational en-
tities (actors) perform scientific data analysis steps. These actors consume or
produce data items (tokens) that are sent between actors over uni-directional
FIFO queues (channels). In general, output tokens are created in response to in-
put tokens. One round of consuming input tokens and producing output tokens
is referred to as an actor invocation. For stateful actors, the values of tokens
output during an invocation may depend on tokens received during previous
invocations. The execution and data management semantics are defined by the
model of computation (MoC).

Commonly used models for provenance are the Read/Write model [5], and
the Open Provenance Model (OPM) [6]. In both provenance models, events are
recorded when actors consume tokens (read or used by events) and produce
tokens (write or generated by events). Thus, the stored provenance data effec-
tively persists the tokens that have been flowing across workflow channels. We
show how this data can be used to efficiently recover faulty workflow executions.

Example. Consider the small scientific pipeline shown in Fig. 1, which carries
out two tasks automated by the WATERS workflow described in [1]. As in the
full implementation of WATERS, streaming data and stateful multi-invocation
actors make an efficient recovery process non-trivial.

The actor SequenceSource reads DNA sequences from a text file, emitting
one DNA sequence token via the top-right port per invocation. The total num-
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ber of invocations of SequenceSource is determined by the contents of the input
file. On the group done port, it outputs a ‘true’ token when the sequence output
is the last of a predefined group of sequences, and ‘false’ otherwise. Align con-
sumes one DNA sequence token per invocation, aligns it to a reference model,
and outputs the aligned sequence. The ChimeraFilter actor receives the in-
dividually aligned sequences from Align and the information about grouping
from the SequenceSource. In contrast to Align, ChimeraFilter accumulates
input sequences, one sequence per invocation, without producing any output to-
kens until the last sequence of each group arrives. ChimeraFilter then checks
the entire group for chimeras (spurious sequences often introduced during bio-
chemical amplification of DNA), outputs the acceptable sequences, and clears
its accumulated list of sequences.

All actors but Align are stateful across invocations: SequenceSource and
Display maintain as state the position within the input file and the output pro-
duced thus far, respectively. ChimeraFilter’s state is the list of sequences that
it has seen so far in the current group. If a fault occurred in the execution of the
workflow, the following information will be lost: (1) the content of the queues
between actors, i.e., tokens produced by actors but not yet consumed; (2) the
point in the workflow execution schedule as observed by the workflow engine;
and (3) the internal states of all actors. Correctly resuming workflow execution
requires reconstructing all of this information. In many workflow systems, such
as Kepler and Taverna it can be challenging to (1) recorde the main-memory
actor-actor data transport, i.e. data flowing within the workflow engine without
persistent storage1; (2) resume workflows that use non-trivial scheduling algo-
rithms for multiple actor invocations based on data availability; and (3) capture
the state of stateful actors that are invoked multiple times. In this paper, we
show how to do so efficiently with low runtime overhead.
In particular, we make the following contributions:

– We present a general architecture for recovering from workflow crashes, and
two concrete strategies (replay and checkpoint) that provide a balance be-
tween recovery speed and required provenance data.

– Our approach is applicable to workflows that can contain both stateful and
stateless black-box actors. To the best of our knowledge, this is the first work
to consider stateful actors in a fault tolerance context.

– Our approach is applicable to different models of computation commonly
used in scientific workflow systems (namely DAG, SDF, PN, and DDF). We
achieve this generality by mapping the different models of computations to
a common model.

– Our replay strategy significantly improves performance over the näıve strat-
egy (77% in our preliminary evaluation). Since this strategy is based on
provenance data that is already recorded routinely for data lineage purposes,
it adds no runtime overhead.

1 Even if data is persisted to disk due to large data sizes, data handles are usually
kept in main memory.
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– Finally, we propose an extension to commonly used provenance models, i.e.,
to record actor states at appropriate points in time. This not only adds
information valuable from a provenance point of view, but also enables our
checkpoint strategy to recover workflows in a very short time span (98%
improvement over a näıve re-execution) independent of the amount of work
performed prior to the workflow crash.

The rest of the paper is organized as follows. Section 2 presents the fundamentals
of our workflow recovery framework. In Section 3, we describe two recovery
strategies and how to apply them to different models of computation. Section
4 reports on our prototypical implementation and preliminary evaluation. In
Section 5, we provide a brief discussion of related work, and we conclude in
Section 6.

2 Fault Tolerance Approach

Our approach generalizes the rescue-DAG method [7,8,9], which is used to re-
cover DAGMan workflows after workflow crashes. DAGMan is a single-invocation
model of computation, i.e., all actors are invoked only once with a “read-input—
compute—write-output” behavior. The rescue-DAG is a sub-graph of the work-
flow DAG containing exactly those actors that have not yet finished executing
successfully. After a crash, the rescue-DAG is executed by DAGMan, which com-
pletes the workflow execution.

To facilitate the execution of workflows on streaming data, several models of
computation (e.g., Synchronous DataFlow (SDF) [10], Process Networks (PN)
[11], Collection Oriented MOdeling and Design (COMAD) [12] and Taverna [13])
allow actors to have multiple invocations.

If the rescue-DAG approach were applied directly to workflows based on these
models of computation, i.e., if all actors that had not completed all of their in-
vocations were restarted, then in many cases a large fraction of the actors in
a resumed workflow would be re-executed from the beginning. Instead, our ap-
proach aims to resume each actor after its last successful invocation. The diffi-
culties of this approach are the following: (1) The unfolded trace graph (which
roughly corresponds to the rescue-DAG) is not known a priori but is implicitly
determined by the input data. (2) Actors can maintain internal state from in-
vocation to invocation. This state must be restored. (3) The considered models
of computation (e.g., SDF, PN, COMAD, Taverna) explicitly model the flow
of data across channels, and the corresponding workflow engines perform these
data transfers at run time. A successful recovery mechanism in such systems
thus needs to re-initialize these internal communication channels to a consistent
state. In contrast, data movement in DAGMan workflows is handled by the ac-
tors opaquely to the DAGMan scheduler (e.g., via naming conventions) or by a
separate system called Stork [14]; materializing on disk all data passing between
actors simplifies fault tolerance in these cases.

In the following, we present a simple relational model of workflow definitions
and provenance information. We employ this model to define recovery strategies
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using logic rules. Due to space restrictions, we concentrate here on the SDF and
PN models of computation. SDF represents a model that is serially executed
according to a statically defined schedule, while PN represents the other extreme
of a parallel schedule only synchronized through the flow of data.

2.1 Basic Workflow Model

Scientific workflow systems use different languages to describe workflows and
different semantics to execute them. However, since most scientific workflow
systems are based on dataflow networks [15,11], a common core that describes
the basic workflow structure can be found in every model of computation.

Core Model. Many workflow description languages allow nesting, i.e., embed-
ding a sub-workflow within a workflow. The relation subworkflow(W,Pa) sup-
ports this nesting in our schema and stores a tuple containing the sub-workflow
name W and the parent workflow name Pa. Each workflow in this hierarchy is
associated with a model of computation (MoC) using the relation moc(W,M) that
assigns the MoC M to the workflow W.

Actors represent computational functions that are either implemented using
the language of the workflow system or performed by calling external programs.
The separation of computations in multiple invocations sometimes requires that
an actor maintains state across invocations.

Stateless Actor. The values of tokens output during an invocation depend only
on tokens input during this invocation.

Stateful Actor. The values of tokens output during an invocation may depend
on tokens received during previous invocations.

The predicate actor(A,W,S) embeds an actor with unique name A into the
workflow W. The flag S specifies whether the actor is stateful or stateless.

Although the data shipping model is implemented differently in various work-
flow systems, it can be modeled uniformly as follows: Each actor has named
ports, which send and receive data tokens. One output port can be connected
to many input ports. In this situation, the token is cloned and sent to all re-
ceivers. Connecting multiple output ports to one channel is prohibited due to
the otherwise resulting write conflicts. Ports are expressed with the predicate
port(A,P,D) in our schema. The port with name P is attached to actor A. D
specifies the direction in which data is sent, i.e., in or out. Ports are linked
through the relation link(A,P,L) by sharing the same link identifier L (the
third parameter of the link relation). A link from the port p of actor a to the
port q of actor b is encoded as link(a,p,l) and link(b,q,l).

Application to Process Networks with Firing. A Process Network (PN),
as defined by [15], is a general model of computation for distributed systems.
In Kahn PN, actors communicate with each other through unbounded unidirec-
tional FIFO channels. Workflows of the model PN with firings [11], a refinement
of Kahn PN, can be described with the four core relations Subworkflow, Actor,
Port, and Link. The PN execution semantics allow a high level of parallelism,
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i.e., all actors can be invoked at the same time. After an invocation ends, the
actor will be invoked again, consuming more data. This procedure stops either
when the actor explicitly declares completion or by reaching the end of the work-
flow execution. A PN workflow ends when all remaining running invocations are
deadlocked on reading from an input port.

Application to Synchronous DataFlow (SDF). Besides the data captured
by the four core relations (Subworkflow,Actor,Port, and Link), workflowmodels
can provide additional information. As an example, SDF workflow descriptions
require annotations on ports. In SDF, output ports are annotated with a fixed
token production rate and input ports have a fixed token consumption rate. Both
rates are associated with ports using the predicate token transfer(A,P,N) in
our model. During an invocation, each actor A is required to consume/produce N
tokens from the input/output port P.

Another extension is the firing count of an actor that specifies the maxi-
mum number of actor invocations during a workflow execution. The predicate
firing count(A,N) provides this number (N) for an actor A.

Unlike in PN, where the actors synchronize themselves through channels, the
execution of SDF is based on a static schedule that is repeatedly executed in
rounds. The number of firings of each actor per round is determined by solving
balance equations based on token production and consumption rates [10].

2.2 Review of Provenance Model

Another critical part of our approach is the definition of a simple, prototypi-
cal provenance model. It defines which observables are recorded during runtime.
The Open ProvenanceModel (OPM) [6] captures the following basic observables:
(1) artifact generation, i.e., token production; (2) artifact use, i.e., token con-
sumption; (3) control-flow dependencies, i.e., was triggered by relation; and
(4) data dependencies, i.e., was derived from relation. A more comprehensive
provenance schema was defined by Crawl et al. in [16]. It captures the OPM ob-
servables in more detail, e.g., it provides timestamps for the beginning and end
of invocations. In addition, it records metadata about the workflow execution as
well as the evolution of the workflow. All provenance information is recorded by
the workflow system transparently without modifications to actors.

Our provenance model uses the basic observables from OPM and adds addi-
tional details about events that occurred during an invocation cycle. As soon as
an invocation starts, the actor name A and its corresponding invocation number
N are stored in the relation invocation(I,A,N,Z) with the status attribute Z
set to running. A unique identifier I is assigned to each invocation. Some models
of computation allow an actor to indicate that all invocations are completed,
for instance if the maximum firing count in SDF is reached. This information
is captured in our provenance model as well. When an actor successfully com-
pletes an invocation and indicates that it will execute again, the status attribute
in the corresponding provenance record is updated to iterating. Otherwise, this
attribute status is set to done.
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Fig. 2. Input queues with history and token state. Each token produced during work-
flow execution can be in one of five states. Events on the producing and consuming
actors trigger transitions between token states, shown on the left. The right graph
shows three views of a channel: (1) the current content of the queue during an execu-
tion in the first row, (2) the history of all tokens passed through this channel associated
with their state in the middle row, and (3) the rescue sequence of tokens that needs to
be restored in the third row.

The second observable process in our model is the flow of tokens. Many work-
flow engines treat channels that define the dataflow as first-class citizens of the
model. The dependencies between data tokens are of general interest for prove-
nance. They can be inferred from the core workflow model in combination with
the token consumption (read) and production (write) events.

Our model stores read and write events in the event(Y,T,I,Po,N) relation.
The first entry Y determines the event type, i.e., token production events are
indicated by the constant w while consumption events are encoded with the value
r. T is the data token to be stored. The following two attributes specify which
actor invocation I triggered this event and on which port Po it was observed.
The last element N in the tuple is an integer value that is used to establish an
order of events during the same actor invocation on the same port. Establishing
an order using timestamps is not practical because of limited resolution and time
synchronization issues.

Based on the event relation, the queues of all channels can be reconstructed
for any point in time. Figure 2 shows a queue at the time of a workflow failure.
Using provenance we can restore the whole history of this queue (shown in the
middle right). Based on this history, we can determine the rescue sequence of
tokens that are independent of failed invocations, i.e., tokens in state S2 and S4.

3 Recovery Strategies

Depending on the model of computation and the available provenance data,
different recovery approaches can be used. We will now present our two strategies
replay and checkpoint .

3.1 The Replay Strategy: Fast-Forwarding Actors

Re-running the entire workflow from the beginning is a näıve recovery strat-
egy, which is often impractical, especially when a long-running workflow fails a
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significant period of time into its execution. The role of provenance in restoring
a workflow execution is similar to that of log files used in database recovery.

Stage 1. In the first stage of the replay strategy, the point of a failure is de-
termined using provenance information. Invocations of actors that were running
when the fault occurred are considered faulty and their effects have to be undone.
Query (1) retrieves the invocation identifiers I of faulty invocations.
faulty invoc(I) :- invocation(I, , ,running). (1)

Actors with invocation status done are not recovered, since they are not
needed for further execution. All other actors A are retrieved by query (2) and
they need to be recovered.
finished actors(A) :- invocation( ,A, ,done).
restart actors(A) :- actor(A, , ), not finished actors(A). (2)

Stage 2. If an actor is stateless, it is ready to be resumed without further
handling. However, if an actor is stateful, its internal state needs to be restored
to its pre-failure state, i.e., the state after the last successful invocation. Each
actor is executed individually by presenting it with all input data the actor
received during successful invocations. This input data is retrieved from the
provenance log, where it is readily available. The replay(A,I) query (3) extracts
the identifiers of all actor invocations that need to be replayed. The tokens needed
for those re-invocations are provided by (4). This query retrieves for each port P
of actor A the tokens T that are needed to replay invocation I. N is the sequence
number of token T at input port (queue) P. The replay does not need to be
done in the same order as in the original workflow schedule. All actors can be
re-executed in parallel using only the input data recorded as provenance. The
actor output can either be discarded or checked against the recorded provenance
to verify the workflow execution.
replay(A,I) :- actor(A, ,stateful), invocation(I,A, , ), (3)

not faulty invoc(I).
replay token(A,P,I,T,N) :- replay(A,I), event(r,T,I,P,N). (4)

In order to correctly recover a workflow execution, the problem of side-effects
still needs to be addressed. Either stateful actors should be entirely free of side-
effects or side-effects should be idempotent. That is, it must not matter whether
the side-effect is performed once or multiple times. Examples of side-effects in
scientific workflows include the creation or deletion of files, or sending emails.
Deleting a file (without faulting if the file does not exist) is an idempotent
operation. Further, creating a file is idempotent if an existing file is overwritten.
Sending an email is, strictly speaking, not idempotent, since if done multiple
times, multiple emails will be sent.

Stage 3. Once all actors are instantiated and in pre-failure state, the queues
have to be initialized with the restore sequence, i.e., all valid tokens that were
present before the execution failed. Tokens created by faulty invocations must
be removed, and those consumed by a failed invocation are restored. This infor-
mation is available in basic workflow provenance and can be queried using (5).
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For each port Po of an actor A the query retrieves tokens T with the main order
specified by the invocation order N1. However, if multiple tokens are produced
in one invocation, the token order N2 is used for further ordering.

The auxiliary view invoc read(A,P,T) contains all actors A and the corre-
sponding ports P that read token T. The view connect(A1,P1,C,A2,P2) returns
all output ports P1 of actor A1 that are connected to actor A2 over input port
P2 through channel C. The auxiliary rule (5.1) computes the queue content in
state S2 (see Fig. 2), i.e., tokens that were written by another actor but not yet
read by actor A2 on port P2. The second rule (5.2) adds back the queue content
in state S4, i.e., tokens that were read by a failed invocation of actor A2.
current queue(A2,P2,T,N1,M1) :- queue s2(A2,P2,T,N1,M1). (5)

current queue(A2,P2,T,N1,M1) :- queue s4(A2,P2,T,N1,M1).

queue s2(A2,P2,T,N1,M1) :- connect(A1,P1,C,A2,P2), (5.1)
invocation(I1,A1,N1, ), event(w,T,I1,P1,M1),
not invoc read(A2,P2,T), not faulty invoc(I1).

queue s4(A2,P2,T,N1,M1) :- connect(A1,P1,C,A2,P2), (5.2)
invocation(I1,A1,N1, ), event(w,T,I1,P1,M1),
invocation(I2,A2, , ),event(r,T,I2,P2, ),
faulty invoc(I2).

Stage 4. After restoring actors and recreating the queues, faulty invocations
of actors that produced tokens which were in state S3 have to be repeated in a
“sandbox”. This ensures that tokens in state S3 are not sent to the output port
after being produced but are discarded instead. If these tokens are sent, then
invocation based on them are duplicated. Rule (6) determines tokens T that were
in state S3 and it returns the invocation ID I, the port P this token was sent
from, and the sequence number in which the token was produced. Query (7)
determines which invocations produced tokens in state S3 and therefore have to
be repeated in a sandbox environment.
queue s3(I,P,T,N) :- invocation(I,A1, , ), (6)

faulty invoc(I), event(w,T,I,P,N),
connect(A1,P,C,A2,P2), invocation(I2,A2, , ),
not faulty invoc(I2), event(r,T,I2,P2, ).

invoc sandbox(I) :- faulty invoc(I), queue s3(I, , , , ). (7)
After executing the sandbox, the workflow is ready to be resumed. The recov-

ery system provides information about where to begin execution (i.e., the actor
at which the failure occurred) to the execution engine (e.g., the SDF scheduler)
and then the appropriate model of computation controls execution from that
point on.

To summarize, the most expensive operation in the replay strategy is the re-
execution of stateful actors, which is required to reset the actor to its pre-failure
state. Our checkpoint strategy provides a solution to avoid this excessive cost.
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3.2 The Checkpoint Strategy: Using State Information

Many existing workflow systems are shipped with stateful actors or new actors
are developed that maintain state. Because actors in scientific workflows usually
have complex and long-running computations to perform, the replay strategy
can be very time-consuming.

Current provenance models, such as the one used in [16], either do not include
the state of actors or record limited information about state as in [17]. The Read-
Write-Reset model (as presented in [18]), e.g., records only state reset events,
which specify that an actor is in its initial state again. This can be seen as a
special case of the checkpoint strategy we will present, where states are only
recorded when they are equal to the initial state.

To support a faster recovery, we propose to make the actor’s state a distinct
observation for provenance. Recording state information not only helps to recover
workflows, but also makes provenance traces more meaningful: Instead of linking
an output token of a stateful actor to all input tokens across its entire history,
our model links it to the state input and the current input only.

An actor’s state can be recorded by the workflow engine at any arbitrary
point in time when the actor is not currently invoked. To integrate checkpoint-
ing into the order of events, we store state information immediately after an
invocation, using the invocation identifier as a reference for the state. The pred-
icate state(I,S) stores the actor’s state S together with the identifier of the
preceding invocation I of that actor. The information required to represent an
actor state depends on the workflow system implementation.

Given this additional state information the workflow recovery engine can speed
up the recovery process. The checkpoint strategy is based on the replay strategy
but extends it with checkpointing.

Stage 1. When normally executing the workflow, state is recorded in prove-
nance. In case of a fault, the recovery system first detects the point of failure.
Then the provenance is searched for all checkpoints written for stateful actors.
Rule (8) retrieves the state S of each invocation I of a given actor A. If no state
was recorded then the invocation will not be contained in this relation:
restored state(A,I,N,S) :- actor(A, ,stateful), (8)

invocation(I,A,N, ),state(I,S), not faulty invoc(I).

If states were stored for an actor, this actor is updated with the latest avail-
able state. Rule (9) will determine the latest recoverable invocation I and the
restorable pre-failure state S captured after that invocation.
restored stateGTN(A,I,N2) :- restored state(A,I,N, ), N > N2.
latest state(A,I,S) :- restored state(A,I,N,S), (9)

not restored stateGTN(A,I,N).

Stage 2. Now only those successfully completed invocations that started after
the checkpoint have to be replayed. This will use the same methods described
above for the replay strategy.

Stage 3 and 4. Same as in the replay strategy.
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Fig. 3. SDF workflow example with state annotations on the left and a correspond-
ing schedule on the right. The schedule describes the execution order. The red circle
indicates the failure during the second invocation of B.

If provenance information is kept only for fault tolerance, not all data needs
to be stored persistently. Only data tokens representing the active queues or
consumed by stateful actors after the last checkpoint need to be persisted. All
other data can be discarded or stored in a compressed representation.

3.3 Recovering SDF and PN Workflows

The SDF example in Figure 3 demonstrates our checkpoint strategy. Below, we
explain the differences when dealing with PN models.

Synchronous Dataflow (SDF). Figure 3 shows a sample SDF workflow with
ports annotated with consumption and production rates for input and output
ports, respectively. Actors A and E are stateless while all other actors maintain
state. A is a source and will output one data item (token) each time the actor
is invoked. A also has a firing count of two, which limits the total number of its
invocations. Actors B and C consume one token on their input ports and output
three tokens per invocation. Outputs are in a fixed, but distinguishable, order,
so that an execution can fail between the production of two tokens. Actor D will
receive two tokens in each invocation from both B and C and will output one
new token.

The schedule in Fig. 3 was computed, as usual, before the workflow execu-
tion begins, based on the token production and consumption rates in the model.
Actors were then invoked according to the schedule until the workflow crash
occurred. All invocations up to the second invocation of A (A:2) completed suc-
cessfully, invocation B:2 was still running and all other invocations were sched-
uled for the future. The failed workflow execution, together with checkpointing
and data shipping, is summarized in Fig. 4. For recovery, the workflow descrip-
tion as well as the recorded provenance is used by our checkpoint strategy. In the
following, we will describe the details of the recovery process (shown in Figure 4).

Stateless actors are in the correct state (i.e., pre-failure state) immediately after
initialization. That is why actor E is in its proper state after simple initialization
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Fig. 4. Workflow execution up to failure in B:2. The states of actors B and D are stored,
but no checkpoint exists for C. Token t1 is only send once, but is duplicated by link
to both actors B and C. Tokens t4 and t7 are never read. Token t9 is read by a faulty
invocation, and t10 is written by a faulty invocation.

{
{
{

{

Fig. 5. Individual stages to recover the sample workflow with checkpoint strategy. Note
how only a small amount of invocations are repeated (compared to Figure 4).

and actorA is identified as done and will be skipped. Both actorsB andD are state-
ful and a checkpoint is found in the provenance. Therefore, the recovery system
instantiates these actors and restores them to the latest recorded state. The state
at this point in the recovery process is shown in Fig. 5 above the first horizontal
line. Second, stateful actors that either have no checkpoints stored (e.g., actor C)
or that have successful invocations after the last checkpoint need to have those
invocations replayed. To do this for actor C:1, the input token t1 is retrieved from
the provenance store. In the next stage, all queues are restored. Since the second
invocation of actor B failed, the consumed token t9 is restored back to the queue.
Additionally, all tokens that were produced but never consumed (e.g., t4 and t7)
are restored to their respective queues. After all queues are rebuilt, the recovery
system has to initialize the SDF scheduler to resume execution. This entails setting
B as the next active actor, since its invocation was interrupted by the crash. After
setting the next active actor, the recovery system can hand over the execution to
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the workflow execution engine. This final recovery state is shown in Fig. 5. The
recovery time is significantly improved compared to the original runtime shown
in Fig. 4.

Process Networks (PN). The example SDF workflow shown in Fig. 3 can
also be modeled using PN. Since actors under PN semantics have variable token
production and consumption rates, these constraints cannot be leveraged to
narrow the definition of a faulty invocation. Additionally, repeated invocations
are not necessarily required for actors to perform their function. For instance,
actor D can be invoked only once, while actor B is invoked multiple times. All
invocations in PN run concurrently, and tokens on a port have to be consumed
after they are produced and only in the order they were produced. Finally, there
are no defined firing limits. Many systems allow an actor to explicitly declare
when it is done with all computations, which is recorded in provenance. Actors
without that information are invoked until all actors in the workflow are waiting
to receive data.

These characteristics have some implications on the recovery process. First,
since all actors are executed in parallel, a crash can affect all actors in a work-
flow. Since actors are invoked in parallel during workflow execution, the recovery
engine can safely restore actors in parallel. All actors are instantiated simultane-
ously at the beginning of the workflow run, in contrast to Fig. 4. Long-running
actor invocations reduce the availability of checkpoints and cause longer replay
times. Finally, PN uses deadlock detection to define the end of a workflow, which
makes it difficult to determine whether a particular actor is actually done (un-
less it explicitly says so) or just temporary deadlocked. Anything short of all
actors being deadlocked by blocking reads (meaning the workflow is done) gives
no useful information about which actors will exhibit future activity.

4 Evaluation

To evaluate the performance of the different recovery strategies, we implemented
a prototype of our proposed approach in Kepler [19]. The current implementation
adds fault tolerance to non-hierarchical SDF workflows.

Implementation. Our fault tolerance framework implements all features nec-
essary for the checkpoint recovery strategy (as well as the replay strategy) in
a separate workflow restore class that is instrumented from the director. We
used the provenance system of Crawl et al. [16], which was altered to allow the
storage of actor states and tokens. Instead of storing a string representation of
a token, which may be lossy, we store the whole serialized token in the prove-
nance database. When using the standard token types, this increases the amount
of data stored for each token only slightly. Actors can be explicitly marked as
stateless using an annotation on the implementing Java class. Thus, we avoid
checkpointing and replay for stateless actors.

During a normal workflow execution, the system records all tokens and ac-
tor invocations. Currently, checkpoints for all stateful actors are saved after each
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execution of the complete SDF schedule. An actor’s state is represented by a se-
rialization of selected fields of the Java class that implements the actor. There
are two different mechanisms that can be chosen: (1) a blacklist mode that checks
fields against a list of certain transient fields that should not be serialized, and (2)
a whitelist mode that only saves fields explicitly annotated as state. The serial-
ized state is then stored together with the last invocation id of the actor in the
state relation of Kepler’s provenance database. The serialization process is based
on Java’s object serialization and also includes selected fields of super classes.

During a recovery, the latest recorded checkpoint of an actor is restored. All
stored actor fields are deserialized and overwrite the actor’s fields. This leaves
transient member fields intact and ensures that the restored actor is still properly
integrated into its parent workflow. Successful invocations completed after a
checkpoint or where no checkpoint exists are replayed to restore the correct
pre-failure state. For the replay, all corresponding serialized tokens are retrieved
from the provenance database. Then, the input queues of an actor are filled with
tokens necessary for one invocation and the actor is fired. Subsequently, input
and output queues are cleared again before the next invocation of an actor is
replayed. The current implementation replays actors serially.

Next, all the queues are restored. For each actor, all tokens are retrieved that
were written to an input port of the actor and not read by the actor itself before
the fault. These tokens are then placed in the proper queues, preserving the
original order. Finally, the scheduling needs modifications to start at the proper
point. This process is closely integrated with the normal execution behavior of
the SDF director. The schedule is traversed in normal order, but all invocations
are skipped until the failed invocation is reached. At this stage, the normal SDF
execution of the schedule is resumed.

Preliminary Experimental Evaluation. For an initial evaluation of the prac-
ticality of a provenance-based recovery, we created the synthetic workflow shown
in Fig. 6. This model simulates a typical scientific workflow with long-running
computations and a mix of stateless and stateful actors. We ran this workflow to
its completion to measure the running time for a successful execution. We then
interrupted the execution during the third invocation of actor C. After this, we
loaded the workflow again and resumed its execution using the three different
strategies: re-execution from the beginning, replay and checkpoint .

We ran the experiments ten times for each strategy. In a typical scientific
workflow with computation time domination over the data transfer time, prove-
nance recording adds an overhead of 139 milliseconds (with a standard devia-
tion σ of 157.22ms) to the workflow execution time of 80.7 seconds (σ = 0.16s).
The näıve approach of re-running the whole workflow takes about 80.8 seconds
(σ = 0.017s), repeating 55.8 seconds (σ = 0.037s) of execution time from before
the crash. The replay strategy based on standard provenance already achieves
a major improvement. The total time for a recovery using this strategy of ap-
proximately 12.8 seconds (σ = 0.17s) is dominated by replaying two invocations
of stateful actor C in 10 seconds. The remaining 2.8 seconds are the accumu-
lated overhead for retrieving and deserializing tokens for the replay as well as
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Fig. 6. Synthetic SDF workflow. Actor
A is a stateful actor generating a se-
quence of increasing numbers starting
from 0. B is a stateless actor that has a
running time of 15 seconds. C is state-
ful and needs 5 seconds for each invoca-
tion. D is fast running stateless actor.
E is a stateful “Display” actor.
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Fig. 7. Performance evaluation of different
recovery strategies.

for restoring the queue content. After the recovery, the workflow execution fin-
ishes in 25.8 seconds (σ = 0.02s). The replay strategy reduced the recovery cost
from 55.8 seconds to 12.8 seconds, or by 77%, in this workflow. The checkpoint
strategy reduced the recovery time to only 1.3 seconds (σ = 0.03s), including the
time for the deserialization process of state as well as the queue restoration. This
strategy reduces the recovery time of the synthetic workflow by 97.6% compared
to the näıve strategy. Checkpointing is so efficient because it does not scale lin-
early with the number of tokens sent like the näıve and replay strategies. This
strategy also benefits from invocation runtimes that are significantly longer than
the checkpointing overhead.

5 Related Work

In DAGMan [9], a basic fault tolerance mechanism (rescue-DAG) exists. Jobs are
scheduled according to a directed graph that represents dependencies between
those jobs. Initially the rescue-DAG contains the whole DAG but as jobs execute
successfully, they are removed from the rescue-DAG. If a failure occurs, the
workflow execution can thus be resumed using the rescue-DAG, only repeating
jobs that were interrupted.

Feng et al. [17] present a mechanism for fault management within a simulation
environment under real time conditions. Starting from a “checkpoint” in the
execution of an actor, state changes are recorded incrementally and can then be
undone in a “rollback”. This backtracking approach allows to capture the state
of an actor through a preprocessing step that adds special handlers for internal
state changes wherever a field of an actor is modified. However, this solution
can only be used during runtime of the workflow system. It does not provide
checkpoints that cover the full state, and, more importantly, no persistent state
storage is available for access after a workflow crash.

Dan Crawl et al. [16] employed provenance records for fault tolerance. Their
Kepler framework allows the user to model the reactions upon invocation fail-
ures. The user can either specify a different actor that should be executed or
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that the same actor should be invoked again using input data stored in prove-
nance records. However, they don’t provide a fast recovery of the whole workflow
system. Neither is the approach applicable for stateful actors.

Fault tolerance in scientific workflows has often been addressed using caching
strategies. While still requiring a complete restart of the workflow execution,
computation results of previous actor invocations are stored and reused. Swift
[20] extends the rescue-DAG approach by adding such caching. During actor
execution, a cache is consulted (indexed by the input data), and if an associ-
ated output is found, it will be used, avoiding redundant computation. Swift
also employs this strategy for optimizing the re-execution of workflow with par-
tially changed inputs. Conceptually, this can be seen as an extension of the
rescue-DAG approach. Podhorszki et al. [3] described a checkpoint feature im-
plemented in the ProcessFileRT actor. This actor uses a cache to avoid redundant
computations. A very similar approach was implemented by Hartman et al. [1].
Both techniques are used to achieve higher efficiency for computation and allow
a faster re-execution of workflows. However, these implementations are highly
customized to their respective use cases and integrated in one or several actors
rather being a feature of the framework. Also, [3] assumes that only external
programs are compute intensive, which is not always the case, as can be seen
in [1], where actors perform compute intensive calculations within the workflow
system. Furthermore, caching strategies can only be applied to stateless actors,
making this approach very limited. In contrast, our approach aims to integrate
fault tolerane mechanisms into the workflow engine. Stateless actors are not re-
executed during a recovery, since input and corresponding outputs are available
in provenance, and the actor state does not need to be restored.

Wang et al. [21] presented a transactional approach for scientific workflows.
Here, all effects of arbitrary subworkflows are either completed successfully or in
case of a failure undone completely (the dataflow-oriented hierarchical atomicity
model is described in [21]). In addition, it provides a dataflow-oriented prove-
nance model for those workflows. The authors assumed that actors are white
boxes, where data dependencies between input and output tokens can be ob-
served. They describe a smart re-run approach similar to those presented by
Podhorszki et al. and Hartman et al. [1]. Input data of actors is compared to
previous inputs, and if an actor is fired with the same data, the output can easily
be restored from provenance information rather than re-executing the actor. This
white box approach differs from our black box approach that requires setting the
internal state of stateful actors. Our system is more generally applicable, as not
all actors are available in a white box form that allows for the direct observation
of dependencies.

6 Conclusion

We introduced a simple relational representation of workflow descriptions and
their provenance information in order to improve fault-tolerance in scientific
workflow systems. To the best of our knowledge, our approach is the first to
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handle not only individual actor failures, but (i) failures of the overall work-
flow, where workflows (ii) can have a stream-oriented, pipeline-parallel execu-
tion model, and (iii) can have loops, and where (iv) actors can be stateful and
stateless. Another unique feature of our approach is that the workflow system
itself, upon “smart resume” can handle the recovery, i.e., unlike other current
approaches, neither actors nor the workflow are burdened with implementing
parts of the recovery logic, since the system takes care of everything. To allow
for checkpointing of internal state from stateful actors, we have developed an ex-
tension to the standard OPM-based provenance models. Information necessary
to recover a failed execution of a scientific workflow is extracted from the rela-
tional representation via logic rules, allowing our approach to be easily deployed
on various provenance stores. We defined and demonstrated a replay strategy
that speeds up the recovery process by only re-executing stateful actors. Our
checkpoint strategy improves on replay by using the saved checkpoints to signif-
icantly reduce actor re-execution. We implemented our approach in the Kepler
system. In a preliminary evaluation, we compared our strategies to a näıve re-
execution. Here, replay and checkpoint could reduce recovery times by 77% and
98%, respectively. This highlights the advantage of checkpointing in scientific
workflows with compute intensive stateful actors.We plan to add support for
other models of computation, e.g. dynamic dataflow (DDF) [22] to our Kepler
implementation, in order to add fault tolerance to specific complex workflows
[3]. We also plan to port our approach to other systems, e.g., RestFlow [23]. An-
other enhancement will be to parameterize the time between checkpoint saving
as either a number of invocations, or in terms of wall-clock time to balance the
overhead of provenance recording and recovery time.

Acknowledgments. Work supported through NSF grant OCI-0722079 and
DOE grant DE-FC02-07ER25811.

References

1. Hartman, A., Riddle, S., McPhillips, T., Ludäscher, B., Eisen, J.: Introducing
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Abstract. Data provenance, i.e., the lineage and processing history of data, is be-
coming increasingly important in scientific applications. Provenance information
can be used, e.g., to explain, debug, and reproduce the results of computational
experiments, or to determine the validity and quality of data products. In collabo-
rative science settings, it may be infeasible or undesirable to publish the complete
provenance of a data product. We develop a framework that allows data publishers
to “customize” provenance data prior to exporting it. For example, users can spec-
ify which parts of the provenance graph are to be included in the result and which
parts should be hidden, anonymized, or abstracted. However, such user-defined
provenance customization needs to be carefully counterbalanced with the need to
faithfully report all relevant data and process dependencies. To this end, we pro-
pose PROPUB (Provenance Publisher), a framework and system which allows the
user (i) to state provenance publication and customization requests, (ii) to specify
provenance policies that should be obeyed, (iii) to check whether the policies are
satisfied, and (iv) to repair policy violations and reconcile conflicts between user
requests and provenance policies should they occur. In the PROPUB approach,
policies as well as customization requests are expressed as logic rules. By using
a declarative, logic-based framework, PROPUB can first check and then enforce
integrity constraints (ICs), e.g., by rejecting inconsistent user requests, or by re-
pairing violated ICs according to a given conflict resolution strategy.

1 Introduction

A scientific workflow is an executable specification of a computational science exper-
iment. It represents, automates, and streamlines the steps from dataset selection and
integration, computation and analysis, to final data product storage, presentation, and
visualization [1, 2, 3]. An important advantage of using workflow systems over tra-
ditional scripting approaches is that the former provides the ability to automatically
capture provenance information [4, 5, 6, 7] about final and intermediary data products.
Scientific workflow provenance can be used, e.g., to facilitate reproducibility, result in-
terpretation, and problem diagnosis [8] of computational experiments. However, even
in collaborative science settings (e.g., [9,10,11]), it may be infeasible or undesirable to
publish the complete lineage of a data product. Reasons for a customizable provenance
publication mechanism include:

– Some provenance information can be far too detailed for the intended audience. For
example, workflows often use data from different databases and tools, all requiring

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 225–243, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



226 S. Dey, D. Zinn, and B. Ludäscher

inputs in a distinct format. The resulting low-level formatting steps can be useful for
someone debugging a faulty workflow, but they may not be relevant for someone
trying to understand the “big picture” [12].

– The disclosure of certain information may violate privacy and security policies [13].
– Data publishers might need to protect critical parts of their intellectual property and

reveal those parts only later (e.g., after first publishing their findings).

However, simply omitting arbitrary parts of the provenance graph (e.g., by deleting
nodes) or changing the graph (e.g., by modifying edges), seems to defeat the purpose of
publishing provenance in the first place, i.e., one can no longer trust that the published
lineage information is “correct” (e.g., there are no false dependencies) or “complete”
(e.g., there are no false independencies). What seems to be needed is a mechanism that
allows a data publisher to provide a high-level specification that describes the parts of
the provenance graph to be published and the parts to be anonymized, abstracted, or
hidden, while guaranteeing that certain general provenance policies are still observed.

To this end, we propose PROPUB (Provenance Publisher), a framework and system
which allows the user (i) to state provenance publication and customization requests,
(ii) to specify provenance policies that should be obeyed, (iii) to check whether the
policies are satisfied, and (iv) to repair policy violations and reconcile conflicts between
user requests and provenance policies should they occur. A unique feature of PROPUB

is that it allows the user to reconcile opposing requests to publish customized lineage
information. For example, in our provenance model (which is derived from OPM, the
Open Provenance Model [14]), provenance graphs cannot have cycles. Intuitively, edges
can be understood as a (weak) form of causal links. Since the effect of an action can-
not precede its cause, provenance graphs, like causality graphs, are acyclic. Another
structural constraint in OPM and in our model is that the provenance graph is bipar-
tite, i.e., there are no edges between nodes of the same type (no artifact-to-artifact or
process-to-process edges).

Provenance vs. Lineage. In the context of scientific workflows and databases, the term
provenance usually means the processing history and lineage of data [3,15]. Provenance
data may include, e.g., metadata like execution date and time, details of participating
users, even information about hardware and software versions used to run the work-
flow. By data lineage we mean provenance information that captures the dependencies
between data artifacts and processes. Since our work concentrates on data lineage, we
often use the terms data lineage and provenance synonymously in this paper.

Example. Consider the example in Figure 1: The provenance graph1 in Figure 1(a)
shows data nodes (circles) and invocation nodes (boxes), indicating, e.g., that d15 was
generated by some (actor/process) invocation s1 and that invocation c1 used d15, de-

noted by, respectively s1
gby←− d15 and d15

used←− c1. Now assume the user wants to
publish the lineage of d18 and d19. A simple recursive query can be used to retrieve all
data and invocation nodes upstream from those nodes. Note that this already eliminates
all nodes and edges from data node d20 to invocation s3 from further consideration, so
these nodes and edges are absent in Figures 1(b) to 1(d). Before publishing the lineage

1 A simplified version of the provenance graph of the First Provenance Challenge [16].
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(a) Provenance graph PG and publish request. (b) User-selected PG′ ⊆ PG and customization
requests anonymize, abstract, hide.

(c) Intermediate provenance graph PG′′ with
violations of the NC, NFI, and NFS policies.

(d) Resulting customized provenance
graph CG with policy guarantees.

Fig. 1. In (a) the user wants to publish the lineage of d18 and d19, while anonymizing, abstracting,
and hiding certain parts in (b). The direct conflict on d18 is resolved by the user, stating that
hide{d18, c1} should override the publish request in (a). The resulting intermediate graph PG′′

in (c) induces several provenance policy violations, which are repaired by conflict resolution
strategies, leading to the final provenance graph with provenance guarantees in (d).

of the two selected nodes, the user also requests certain customizations in Figure 1(b):
First, data nodes d11 and d12 should be anonymized, i.e., while the existence of those
data items can be revealed, the contents of that data should not be accessible. The user
also wants to abstract a set of nodes {m1, d14, s1}, i.e., “zoom out” (cf. [17]) and create
a new abstract node which represents (and thus hides) all the abstracted nodes. Finally,
the user indicates a number of nodes to be individually hidden, i.e., they should not be
in the published provenance graph.

Repairing Conflicts. First, note that the user has created an immediate conflict on d18:
that node cannot both be published and hidden at the same time. Such direct conflicts
are of course easily detectable from the original user request. However, more subtle
constraint violations can be caused when generating the consequences of user requests,
and when taking provenance policies (modeled as integrity constraints) into account:
Figure 1(c) shows various policy violations when applying the induced changes ΔPG′

(generated from the original user requests) to the provenance graph PG′, obtaining an-
other intermediate graph PG′′: e.g., by abstracting the three nodes from Figure 1(b) into
a single component, a cyclic dependency between d13 and the new abstract node g1 is
introduced, violating the acyclicity constraint for provenance graphs. Here, the reason
lies in the “non-convex” nature of the user’s abstraction request: the node d13 is both
generated by a node in the abstract group (m1), and another node (s1) in that group uses
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d13. In other words, there is a dependency path that starts in the to-be-abstracted group
at (s1), then leaves the group (d13) and then returns back into the group (m1). One way
to guarantee that the acyclicity constraint is satisfied is to close the user’s abstraction
request by computing its convex hull, then abstracting all nodes in the now closed set
into the new abstract node g1. Figure 1(d) shows the resulting final provenance graph:
the node d13 has been “swallowed” by the new abstract node g1, thus eliminating the
problematic cyclic dependency. The edge g1 ← s2 creates a type error in Fig. 1(c):
similar to OPM graphs, our graphs are bipartite, so edges between nodes of the same
type (invocation to invocation or data to data) are not allowed. This conflict can also be
resolved by “swallowing” the problematic node. Finally, the user’s request to hide c2
would result in a false independence of d16 and d19, which is why the user’s request to
hide c2 is overridden by the policy in the final customized provenance graph CG.

Dealing with Ramifications. When repairing a constraint violation using a certain
strategy (e.g., swallowing additional nodes when abstracting nodes into a new abstract
component), new unintended constraint violations can result from the repair action.
For example, false dependencies can be introduced that way. In general it is difficult
to foresee all possible ramifications of complex rules and strategies interacting with
one another. The advantage of the rule-based logic approach employed by PROPUB

is that well-established declarative semantics can be used to compute the effects and
ramifications in complex settings.2

Contributions and Outline. We present PROPUB, a framework and system that al-
lows a user to declaratively specify provenance publication and customization requests.
In PROPUB, provenance policies are expressed as logic rules. The user specifies high-
level provenance publication requests, including “customizations” to anonymize, ab-
stract, hide, or retain certain parts of the provenance graph. By employing a logic-based
framework, the system can determine implied actions, e.g., to abstract additional nodes
that the user did not directly specify, but that any consistent request has to include. Some
implied actions will result in conflicts with user requests or consequences of those re-
quests. In that case, conflict resolution strategies can be applied: e.g., a user request
may override a provenance policy, or vice versa, a policy may override a user request.
A unique feature of our approach is that it allows the user to publish not only cus-
tomized provenance information, but at the same time, guarantees can be given about
which policies are satisfied and violated for a published provenance graph (see Fig. 1).

The remainder of this paper is organized as follows. In Section 2, we first present
our extensions to the OPM [14] and the overall architecture of our PROPUB frame-
work. Section 3 describes how user requests and provenance policies are modeled as
logic queries and constraints. Section 4 then presents a more detailed exposition of the
key components of our system, in particular: direct conflict detection and lineage selec-
tion; composition of user requests and provenance policies; and handling of conflicts
between those. Related work is discussed in Section 5, and Section 6 presents some
concluding remarks and suggestions for future work.

2 For example, one can model the conflicts between user requests and provenance policies as a
“game” between two players, arguing whether or not a certain action should be executed [18].
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2 Overview and Architecture of Provenance Publisher (PROPUB)

At the core of the PROPUB framework are logic rules (Datalog with negation) that act as
a declarative specification of user requests (queries), implied actions (Δ-relations that
insert, or delete nodes or edges), provenance policies (modeled as integrity constraints),
and conflict resolution strategies. These rules are also executable by a Datalog engine,
yielding a prototypical implementation of the PROPUB system. Before describing the
PROPUB architecture in more detail, we first introduce our provenance model.

2.1 Provenance Model

Our starting point is OPM, the Open Provenance Model [14] and our earlier work [19]:
A provenance (or lineage) graph is an acyclic graph G = (V, E), where the nodes
V = D∪I represent either data items D or actor invocations I. The graph G is bipartite,
i.e., the edges E = Euse ∪ Egby are either used edges Euse ⊆ I × D or generated-by
edges Egby ⊆ D × I. Here, a used edge (i, d) ∈ E means that invocation i has read d
as part of its input, while a generated-by edge (d, i) ∈ E means that d was output data,
written by invocation i. An invocation can use many data items as input, but a data item
is written by exactly one invocation.

To facilitate anonymization, we use opaque identifiers for data and invocation nodes,
i.e., the IDs provided by D and I can not be used to retrieve the actual data or identify
the actual function (actor) being used for an invocation. For access to the actual data or
actors, we use explicit lookup functions data: D → R, and actor: I → A, with data
references R and actor references A, respectively. In this way, e.g., data anonymization
can be expressed simply as a deletion from the lookup table data(D, R). In our logical
formulation, we use the following relations to represent provenance information:

used(I,D) % invocation I used data item D
gen_by(D,I) % data item D was generated by invocation I
actor(I,A) % invocation I was executed by actor A
data(D,R) % data item D can be retrieved using reference R

We also use auxiliary relations, e.g., a general dependence relation dep, which describes
that node X depends on node Y , irrespective of the node types of X and Y :

dep(X,Y) :- used(X,Y).
dep(X,Y) :- gen_by(X,Y).

2.2 Framework Architecture

Figure 2 depicts the overall architecture of the PROPUB framework. The user submits a
set of publication requests U0, to publish the lineage of certain nodes, while abstracting
or anonymizing parts of the provenance graph as described via customization requests.
The first component of PROPUB detects direct conflicts within the given user-requests.
For example, a data item that was explicitly selected for publication can accidentally be
part of an abstraction request, which would cause the data item to not be published—
an obvious conflict. The module Direct-Conflict-Detection materializes these conflicts.
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Fig. 2. PROPUB Architecture: First, direct conflicts in the user requests are removed and rele-
vant lineage is computed. Then, user requests and policy constraints are combined, and possible
implied conflicts are eliminated. Finally, the customized provenance graph is published together
with the satisfied policies.

Based on this data, the user can update her original requests until all direct conflicts are
resolved, resulting in a direct conflict-free user request U. In the subsequent Lineage-
Selection step, a subgraph PG′ is computed, which contains all to-be-published data
items together with their complete provenance. The Request & Policy Evaluation mod-
ule is central to PROPUB and performs important inferences: First, a set of candidate
updates ΔPG′ is created that when applied to PG′ will create a customized provenance
graph CG that satisfies the user requests. However, as already demonstrated in the in-
troductory example in Figure 1, user requests need to be completed or “closed” and
take into account policy constraints. As a consequence, graph update actions may be
triggered that create new, implied conflicts. In a final conflict resolution step using the
module Implied-Conflict-Detection-Resolution, the system first detects all such implied
conflicts, and then finds user requests and policies that can be satisfied together. Our cur-
rent prototype uses a greedy search, based on an initial user-defined preference ordering
of user requests and policies. Other strategies are also possible, e.g., user-interactive
“what-if” scenario management, or automatic approaches that systematically generate
multiple “stable solutions” [20].

The result of the PROPUB framework is a customized provenance graph, a list of
guaranteed (and also violated) policies, as well as a list of honored and ignored user
requests. The user will typically publish the customized graph together with the
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lineage(D). % publish the provenance for data item D
anonymize(N). % scrub the actor identity or the data reference from the node N
hide(N). % do not show the invocation or data node N
hide_dep(N1,N2). % do not show the dependency edge from N1 to N2
abstract(N,G). % zoom-out all nodes N mapped to the same abstract group G
retain(N). % definitely keep the node N in the customized provenance
retain_dep(N1,N2). % definitely keep the dependency edge (N1,N2)

Fig. 3. Schema for user publication requests and user customization requests to remove or to keep
nodes and/or edges from a provenance graph

guaranteed policies. The original provenance graph together with the honored user re-
quests can be kept private, to be optionally published at a later point in time when it is
safe to do so.

3 Logical Formulation of User Requests and Policies

3.1 User Requests

The user requests supported by the PROPUB framework are summarized in Figure 3.
PROPUB expects user requests to be formulated as relations (or facts). We envision that
in the future these relations are created by graphical user-interfaces, based on prove-
nance browsing tools (such as [5]), extended with capabilities to mark sets of edges and
nodes that are then used to populate the relations associated with the user requests.

In the following, we explain the various user requests via examples.

Publish Lineage. This request allows the user to select a set of data products which
should be published along with their provenance information. The selected data items
and their provenance yield PG′(⊆ PG), the relevant sub-graph of the original graph
PG. All other requests and policies are then applied to PG′. Note that a provenance-
browser that supports provenance selection and navigation can be easily adapted to
create input for such lineage requests.

Example. Assume the provenance as shown in Fig. 1(a) to be the complete prove-
nance as recorded by the scientific workflow tool. If the user wants to publish the data
product d18 along with its lineage, she inserts d18 into the lineage relation. This can
either be done with the help of a GUI tool, or by stating the fact lineage(d18). The
selected provenance graph PG′, containing all items that d18 depends on, is shown in
Fig. 4(a). The user may wish to publish multiple data products together by stating mul-
tiple lineage facts. The system then combines the lineage of all individual requests
into a single, combined lineage graph. For example, if the user wants to publish the
data products d18 and d19, she would state the requests shown in Fig. 4(c), resulting in
a PG′ as shown in Fig. 4(d). �
Anonymize. A publisher may like to share all data products used and generated by
an invocation, but may not want to reveal the actor. The anonymize user request can
be used to achieve this requirement by anonymizing an invocation i. Applying this
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(a) Lineage of d18 (b) Lineage of d19

lineage(d18).

lineage(d19).

(c) User Request (d) Combined lineage of d18 and d19

Fig. 4. User publication request lineage in action: Selecting data items from PG will include
them and their lineage in PG′, which is then used for further refinement

(a) User request to hide a set of data products and in-
vocation edges

(b) Resulting provenance graph

hide(d9). hide(d10). hide(d11). hide(d12). hide(m1).
hide_dep(d9,m1). hide_dep(d10,m1).
hide_dep(d11,m1). hide_dep(d12,m1).

(c) Issued user request.

Fig. 5. Hiding nodes and edges

user request, the system removes the reference actor(i, name), but does not remove the
selected nodes nor adjacent edges in the provenance graph. In a similar way, a publisher
may anonymize a data product d by removing the tuple data(d, r) and with it the data
value or reference (URL) r, which otherwise could be used to obtain the data value.

Hide. The provenance graph PG′ may still have some data or invocation nodes which
are sensitive or not relevant for publication. A publisher can remove such nodes and
edges using the hide user request. The system will remove the selected node and all
adjacent edges or the selected edges. An example is shown in Fig. 5.

Abstract. This user request allows the user to replace a set of nodes (either data
or invocation or a combination thereof) from PG′ and replace them by an abstract
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(a) Request (b) Result

abstract(s1,g1). abstract(s2,g1). abstract(d15,g1).
abstract(c1,g1). abstract(c2,g1). abstract(d16,g1).

(c) Issued user request.

Fig. 6. Abstracting Structural Properties

place-holder node. Several abstraction requests can be used to create different abstract
nodes. The user requests are given in the binary relation abstract(N, G). All nodes that
are associated with the same group id are collapsed into one abstract node, resulting in
as many new abstract nodes as there are distinct G values in abstract. An example
with only one group is given in Fig. 6.

Retain. This user request can be used to explicitly mark nodes or edges in the prove-
nance graph PG′ to be retained in the to-be-published provenance graph. To fix prove-
nance policies, PROPUB may automatically apply deletions to existing nodes and edges
in PG′. A retain user request will create an implied conflict if the marked node or
associated edges are to be removed from PG′, notifying the user either to relax the
provenance policy or to remove the retain user request.

3.2 Provenance Policies

Now, we briefly explain the provenance policies (PP) considered by PROPUB. Prove-
nance policies are observed using a set of integrity constraints (IC) via witness relations.
The witness relations are defined in Fig. 14.

NWC (No-Write Conflict). A write conflict occurs when there are multiple generated
by edges for a single data product. This situation can arise if a set of multiple data
nodes is selected for abstraction (resulting in a grouped data node) and at least two of
the selected data nodes have generated by in-edges (see Fig. 7). We use the wc(X,Y)
witness relation to observe if invocations X and Y have created the same data artifact.

NC (No-Cycle). Provenance graphs are directed acyclic graphs since they record the
causal relationship between invocations and data products. However, when multiple
nodes are contracted to a group node by an abstract request, cycles can be introduced.
An example was already given in Fig. 1(b): the user requests to abstract m1, d14, and
s1 into an abstraction node g1. Fig. 1(c) shows the cycle between nodes g1 and d13
after the abstract request has been executed. We use the cycle(X,Y) witness relation to
observe if there is a cycle between nodes X and Y.
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(a) User request to abstract d15 and d16 (b) Resulting provenance graph

Fig. 7. A Write Conflict. In Fig. 7(b) a new node g is introduced with generated by dependencies
on invocations s1 and s2. This is a write conflict as any data product can only be created by one
invocation.

(a) User request to abstract d15 and d16 (b) Resulting provenance graph

Fig. 8. False Dependency: In (b) d18 depends on d16, which does not exist in the original graph as
shown in (a)

NFS (No-False Structure). Provenance graphs are bipartite, i.e., data nodes are con-
nected with invocation nodes and vice versa. A false structure (type mismatch) is when
there is a node dependent on another of the same type. In Fig. 1(b) the user requests
to abstract m1, d14, and s1 into an abstraction node g1. Fig. 1(c) shows that there is a
structural conflict between nodes g1 and s2 should the abstract request be executed. We
use the fs(X,Y) witness relation to observe if nodes X and Y are of same type.

While the previous policies (NWC, NC & NFS) describe structural properties of the
customized provenance graphCG itself, the following two criteria relate the customized
provenance graph CG with the actually recorded provenance PG. Thus, these policies
add information to the published provenance graph for a collaborator that has access
only to CG but not to PG.

NFD (No-False Dependency). A customization from PG to CG exhibits a false de-
pendency, if two concrete (i.e., non-abstracted) nodes n1 and n2 in CG are transitively
dependent on each other but the corresponding nodes in the original provenance graph
PG are not. For example, our framework can introduce false dependencies if an ab-
straction request contains nodes from two independent paths, i.e., paths that do not
share common nodes. This case is illustrated in Fig. 8. The user requests to abstract
invocation nodes c1 and c2. In the resulting provenance graph, d18 depends on d16—
a dependency that did not exist in the original provenance graph. We use the fd(X,Y)
witness relation to observe if there is a false dependence between nodes X and Y.
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NFI (No-False Independency). A customization from PG to CG exhibits a false inde-
pendency if two concrete nodes n1 and n2 are not transitively dependent on each other in
CG, but there exists a transitively dependency between d1 and d2 in the original graph
PG. For example, a honored hide request may create false independencies. In Fig. 1(b)
the user requests to hide c2. The resulting graph in Fig. 1(c) shows there would be no
dependency between nodes d19 and d16, although d19 dependents on d16 in PG. We use
the fi(X,Y) witness relation to observe if nodes X and Y are independent.

4 PROPUB Modules

We now describe the PROPUB system, based on its individual modules and their inter-
actions with each other.

4.1 Direct Conflict Detection and Lineage Selection

The first step of PROPUB is to detect obvious conflicts among all user requests. These
can occur if some user requests that require nodes or edges (i.e., lineage, retain) to
be carried over to CG from PG but some other user requests (i.e., hide, or abstract)
require the same model elements to be deleted in CG.

We detect direct conflicts via the logic rules given in Fig. 9. If a conflict(X), a
conflict dep(X, Y), or a conflict abst(X) has been derived, we show its derivation
tree (including the URs that lead to this conflict) to the user. The user has then the
opportunity to prioritize one of the conflicting requests in order to resolve the conflict.
Once the user has converged to a set of user requests that do not have direct conflicts,
the Lineage-Selection step computes the subgraph PG′ based on a reachability query
as shown in Fig. 10.

4.2 Evaluating and Reconciling User Requests and Provenance Policies

The core work of the PROPUB framework is to combine user requests and provenance
policies that can be satisfied simultaneously. That is, given the selected provenance

keep(X) :- lineage(X). remove(X) :- anonymize(X).
keep(X) :- retain(X). remove(X) :- hide(X).

remove_dep(X,Y) :- hide(X), dep(X,Y).
remove_dep(X,Y) :- hide(Y), dep(X,Y).

keep_dep(X,Y) :- remove_dep(X,Y) :- hide_dep(X,Y).
retain_dep(X,Y). remove(X) :- abstract(X,_).

remove_dep(X,Y) :-
abstract(X,_), dep(X,Y).

remove_dep(X,Y) :-
abstract(Y,_), dep(X,Y).

conflict(X) :- remove(X), keep(X).
conflict_dep(X,Y) :- remove_dep(X,Y), keep_dep(X,Y).
conflict_abst(X) :- abstract(X,G1), abstract(X,G2), not G1=G2.

Fig. 9. Detection of conflicts
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dep’(X,Y) :- lineage(X), dep(X,Y). % initialize with selected set
dep’(Y,Z) :- dep’(X,Y), dep(Y,Z). % copy (not a transitive closure) all

% dependent edges
node’(X) :- dep’(X,_). % auxiliary relation containing all nodes of PG′,
node’(X) :- dep’(_,X). % which is used to subset all subsequent relations in PG
used’(X,Y) :- used(X,Y), dep’(X,Y).
gen_by’(X,Y) :- gen_by(X,Y), dep’(X,Y).
actor’(I,A) :- actor(I,A), node’(I).
data’(D,R) :- data(D,R), node’(D).

Fig. 10. The provenance graph (PG′) derived after applying the publication user requests
(lineage) on PG

{ NWC } � { NFD } � { NC } � { NFI } � { NFS }
� { abstract(m1,g1), abstract(d14,g1), abstract(s1,g1) }
� { hide(c1) } � { hide(d18) } � { hide(c2) }

Fig. 11. Preference order for user requests and provenance policies for introductory example in
Fig. 1

graph PG′ from the Lineage-Selection step and a set of user requests and provenance
policies, PROPUB ideally should return a customized graph CG that reflects the applied
user requests and conforms to the provenance policies. Unfortunately, as discussed ear-
lier, applying user requests can invalidate provenance policies. Here, PROPUB tries to
apply basic repairs for violated policies. However, these repairs in turn may undo certain
user requests. To automatically select a subset of user requests and provenance policies
that can be satisfied, we propose that the user specifies a ranking among user requests
and provenance policies representing a preference order. A greedy algorithm can then be
used to find a balance between honored user requests, and satisfied provenance policies.
In the following, we detail this process further. In particular, after presenting our encod-
ing of user-preferences and the overarching algorithm, we detail the logic formulation
of its sub-routines for applying user requests, checking policy violations, applying basic
repairs, and detecting implied conflicts.

User Preferences. In PROPUB, user preferences are declared via an ordered partition
of the set of all provenance policies and user requests. An example for such a preference
order is given in Fig. 11. Here, satisfying the provenance policies is valued higher than
the abstract request, which in turn is preferred over honoring hide requests. Note that
all abstract requests with a group identifier (here, g1) are contained in one subset since
these rules form a logic unit that should be honored together as a group. The proposed
static preference schema is only one possibility to automatically guide user request
and provenance policy reconciliation. A more interactive approach where conflicts are
visualized based on the participating user requests and policies is also possible. To
reduce the specification burden posed to the user, preferences can also be declared based
on request classes (relations) rather than on concrete request facts; e.g., the user might
specify: policies� abstract� hide � retain.
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Algorithm: CUSTOMIZE PROVENANCE

INPUT: User-selected provenance graph PG′,
user customization requests U and provenance policies PP.
Let X1∪̇X2∪̇ . . . ∪̇Xn be a partition (disjoint union) of U ∪ PP,
such that X1 � X2 � . . . � Xn is a user-defined order (by importance).

OUTPUT: Customized provenance graph CG,
honored user requests U+ and satisfied provenance policies PP+

BEGIN:
1 FOR k = n, n − 1, . . . , 1: // try to satisfy as many requests as possible
2 Xk :=

⋃
i≤k Xi // select the k most important user-requests and policies

3 U+ := Xk ∩ U // user requests that should be honored
4 PP+ := Xk ∩ PP // provenance policies that should be satisfied
5 ΔPG′ := apply(U+, PG′) // inserts and deletes to PG′ induced by U+ (see Fig. 13)
6 PG′′ := PG′ ± ΔPG′ // result after applying the changes (inserts and deletes)
7 ImpliedConflicts := false
8 DO

9 IF PG′′ |= PP+ // policies are satisfied (see Fig. 14)
10 CG := PG′′; PP+ := PP+ ∪ {p ∈ PP \ PP+ | CG |= p} // (see Fig. 14)
11 RETURN

12 ΔPG′′ := apply(PP+, PG′′) // extend abstract requests to satisfy PP+ (see Fig. 15)
13 ImpliedConflicts := true if ΔPG′ and ΔPG′′ have conflicts (see Fig. 9)
14 PG′′ := PG′′ ± ΔPG′′ // apply the fixes
15 UNTIL ImpliedConflicts
16 ENDFOR

17 ABORT Not even the most important set X1 could be satisfied!
END

Fig. 12. Greedy algorithm to select a subset of user requests and provenance policies that can be
fulfilled without implied conflicts

Customization Algorithm. Figure 12 shows the greedy algorithm to compute the cus-
tomized provenance graph. Given the selected provenance graph PG′, together with
prioritized user requests U and provenance policies PP, the algorithm computes the
customized provenance graph CG together with the honored user requests U+ and sat-
isfied policies PP+. The main for-loop (lines 1–16) starts with selecting all user re-
quests and policies trying to satisfy them together. Whenever no solution can be found
for a specific subset Xk of requests and policies, the least important request (or policy)
is dropped in the next iteration of the for-loop. Within one iteration, the following steps
are performed to find a possible customized graph: First, a set of direct consequences
ΔPG′ (or changes to PG′) from applying the user requests U+ to PG′ are computed
(line 5). These are then applied to PG′, yielding PG′′. Now, the provenance policies
are tested and repaired if necessary. If PG′′ already satisfies the selected provenance
policies PP+ (line 9), then PG′′ is returned as customized graph CG together with the
honored user requests U+ and the satisfied policies PP+. We check if any further (of
the previously removed) provenance policies are also satisfied by CG and add these to
the list of satisfied policies. If PG′′ does not satisfy the selected policies, then—as a
last resort—we determine repairs ΔPG′′ that, when applied to PG′′ would satisfy the
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% updates for anonymize user request:
del_node(N) :- anonymize(N).
ins_actor(N,A) :- anonymize(N), actor’(N,_), A=anonymized.
ins_data(N,R) :- anonymize(N), data’(N,_), R=anonymized.

% updates for hide user request:
del_node(N) :- hide(N).
del_dep(X,Y) :- hide(X), dep’(X,Y).
del_dep(X,Y) :- hide(Y), dep’(X,Y).
del_dep(X,Y) :- hide_dep(X,Y).

% updates for retain user request:
ins_actor(I,A) :- retain(I), actor’(I,A).
ins_data(D,R) :- retain(D), data’(D,R).
ins_dep(X,Y) :- retain_dep(X,Y).

% updates for abstract user request:
del_node(N) :- abstract(N,_).
ins_actor(I,A) :- abstract(_,I), A=abstracted.
del_dep(X,Y) :- abstract(X,_), dep’(X,Y).
del_dep(X,Y) :- abstract(Y,_), dep’(X,Y).
int_dep(X,Y) :- abstract(X,G), abstract(Y,G), dep’(X,Y).
ins_dep(G,Y) :- abstract(X,G), dep’(X,Y), not int_dep(X,Y).
ins_dep(X,G) :- abstract(Y,G), dep’(X,Y), not int_dep(X,Y).

Fig. 13. Direct consequences ΔPG′ of user requests U

provenance policies (line 12). However, before we apply these repairs to PG′′, we need
to check whether these repairs conflict with explicit user requests or their consequences
(ΔPG′). If there is a conflict, then the currently chosen set of user requests and policies
cannot be satisfied due to implied conflicts, and the do-until-loop will finish to start
the next iteration of the outer for-loop. In case there are no implied conflicts, changes
ΔPG′′ are applied to PG′′ (line 14). Since these changes could violate other policies,
we go back to line 8 to test this, and possibly repair violations again, etc. The algorithm
returns either with a customized graph CG in line 11, or aborts in line 17 if even the
partition that is top-priority for the user cannot be satisfied as a whole.

The termination of the do-until-loop is guaranteed since we repair policy violations
by abstracting more nodes into existing abstraction nodes, a process that necessarily
terminates due to the finiteness of PG′′.

We now detail the algorithm’s major sub-routines:

Handling of User Requests. User requests are expressed as Datalog rules that repre-
sent updates to the selected provenance graph PG′. The rules, which are computing the
changes ΔPG′ for all our user requests, are given in Fig. 13.

Detecting Policy Violations. The provenance policies as described in Section 3.2 can
be modeled as integrity constraints over provenance graphs. We use the rules given in
Fig. 14 to check if there are nodes that violate any provenance policy.



PROPUB: Towards a Declarative Approach 239

Policy Repairs. To fix the three structural policy (i.e., NWC, NC, and NFS) violations,
we “swallow” the violating nodes into the adjacent abstraction group. To do so, we
create an equivalence relation same group for the nodes in PG′′ (see Fig. 15). Nodes
that are not taking part in an abstract user request will have their “own” equivalence
class. All nodes n that are mapped to the same group id g will be in the same class
[g] = {n | same group(n, g)}. When applying the ΔPG′′ updates (containing the
same group relation) to PG′′, we proceed as follows: A class with only a single mem-
ber, is replaced by the member itself. Classes that contain more than one member are
replaced by the group ID that represents this class.

tcdep’’(X,Y) :- dep’’(X,Y). % transitive closure of dependencies in PG’’
tcdep’’(X,Y) :- tcdep’’(X,Z), tcdep’’(Z,Y).
tcdep(X,Y) :- dep(X,Y). % transitive closure of dependencies in PG
tcdep(X,Y) :- tcdep(X,Z), tcdep(Z,Y).

% Provenance policy witness relations:
wc(X,Y) :- gen_by’’(D,X), gen_by’’(D,Y), not X=Y.
fs(X,Y) :- dep’’(X,Y), data’’(X), data’’(Y).
fs(X,Y) :- dep’’(X,Y), actor’’(X), actor’’(Y).
cycle(X,Y) :- tcdep’’(X,Y), tcdep’’(Y,X), not X=Y.
fi(X,Y) :- tcdep’’(X,Y), not tcdep(X,Y).
fd(X,Y) :- tcdep(X,Y), not tcdep’’(X,Y).

Fig. 14. Detecting policy violations in the graph PG′′ using the witness relations

Implied Conflicts. Implied conflicts are checked like direct conflicts (see Fig. 9); we
test whether any retain requests are violated due to the additional abstract requests
we introduced via the same group relation.

5 Related Work

Scientific workflows have become increasingly popular in recent years as a means to
specify, automate, and share the computational parts of scientific experiments [2, 1, 21,
22]. One of the advantages of using a workflow approach is the ability to capture, store,
and query data lineage and provenance information. Provenance can then be used, e.g.,
to interpret results, diagnose errors, fix bugs, improve reproducibility, and generally
to build trust on the final data products and the underlying processes [23, 24, 8, 25].
In addition, provenance can be used to enhance exploratory processes [6, 26, 27], and
techniques have been developed to deal with provenance efficiently [28, 29].

While provenance information is immensely useful, it often carries sensitive
information causing privacy concerns, which can be tied to data, actors, and workflow
specifications. Without required access privileges the value of a data product, the func-
tionality (being able to guess the output of the actor given a set of inputs) of an actor
(module), or the execution flow of the workflow should not be revealed to a user [13].
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same_group(X,Y) :- cycle(X,Y). % adding NC policy violators
same_group(X,Y) :- fs(X,Y). % adding NFS policy violators
same_group(X,Y) :- wc(X,Y). % adding NWC policy violators
same_group(X,X) :- same_group(X,_). % reflexive
same_group(X,X) :- same_group(_,X). % reflexive
same_group(X,Y) :- same_group(Y,X). % symmetric
same_group(X,Y) :- same_group(X,Z), same_group(Z,Y). % transitive

smaller(X,Y) :- same_group(X,Y), X < Y. % relation is within one group
minimum(X) :- node(X), not smaller(_,X). % minima for each group
abstract(X,G) :- same_group(X,G), minimum(G), % add abstract

same_group(X,Y),X!=Y. % request when more than one member in same group

Fig. 15. Resolving policy violations by creating (or extending existing) new abstract relations to
abstract violated nodes. The updates ΔPG′′, which will be applied on PG′′, is calculated using
the rules shown in Fig. 13 for the abstract user request.

The security view approach [8] provides a partial view of the workflow through a
role-based access control mechanism, and by defining a set of access permissions on
actors, channels, and input/output ports as specified by the workflow owner at design
time. The provenance information is limited by the structure of the workflow and the
security specifications.

To avoid “information overload”, the ZOOM∗UserViews approach [17] provides a
partial, zoomed-out view of a workflow, based on a user-defined distinction between
relevant and irrelevant actors. Provenance information is restricted by the definition of
that partial view of the workflow. This is somewhat similar to our abstract operation,
where the user wishes to abstract away certain details. However, ours appears to be the
first work that studies the problem of publishing custom provenance while simultane-
ously satisfying a set of given publication policies.

6 Conclusions

We have presented PROPUB, a logic-based framework for publishing customized prove-
nance in the presence of publication policies that should be observed when abstracting
or otherwise hiding data lineage information. We believe that our ongoing work is but
the first step to a new line of provenance research that aims to reconcile the inherently
opposing goals of publishing detailed provenance information on one hand, and keeping
parts of that information private and secure, on the other. Indeed, there is a nascent but
rapidly growing area of secure provenance which focuses on this trade off. For example,
the authors of [30] state that:

“There is thus an inherent tradeoff between the utility of the information pro-
vided in response to a search/query and the privacy guarantees that authors/own-
ers desire.”

In this paper, we have made first steps to a more comprehensive treatment of “cus-
tom provenance” by employing the well-studied machinery of logic rules. Our future
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work is aimed, e.g., at navigation operators as described in [31] that can handle nested,
collection-oriented models of computation and provenance. The navigation along dif-
ferent axes (e.g., horizontally, corresponding to time, and vertically, corresponding to
the collection structure) provides an elegant way to view the provenance graph at differ-
ent granularities and levels of detail. In future work, we also plan to investigate how a
logic-based framework like ours could be extended to handle collection-oriented mod-
els of data, and how one could employ the workflow structure directly (e.g., for series-
parallel graphs) when customizing provenance, and when trying to resolve inherent
logical conflicts. We also expect this work to be relevant for large-scale data and tool
collaborators such as DataONE3. For example, the DataONE provenance workgroup
has developed a prototype for publishing interoperable provenance information in a
collaborative environment [10]. That prototype currently publishes the complete prove-
nance graph. An improved system can be obtained by incorporating PROPUB, thereby
allowing scientists to reveal as much (or as little) information to the wider commu-
nity as they want. Our framework has the advantage that it is possible to test whether
a subsequent, more complete publication of provenance information is consistent with
an earlier provenance publication by the same user(s). This is another area of future
research.
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Abstract. Scientists are increasingly being called upon to publish their
data as well as their conclusions. Yet computational science often nec-
essarily occurs in exploratory, unstructured environments. Scientists are
as likely to use one-off scripts, legacy programs, and volatile collections
of data and parametric assumptions as they are to frame their investiga-
tions using easily reproducible workflows. The ES3 system can capture
the provenance of such unstructured computations and make it avail-
able so that the results of such computations can be evaluated in the
overall context of their inputs, implementation, and assumptions. Addi-
tionally, we find that such provenance can serve as an automatic “check-
list” whereby the suitability of data (or other computational artifacts)
for publication can be evaluated. We describe a system that, given the
request to publish a particular computational artifact, traverses that ar-
tifact’s provenance and applies rule-based tests to each of the artifact’s
computational antecedents to determine whether the artifact’s prove-
nance is robust enough to justify its publication. Generically, such tests
check for proper curation of the artifacts, which specifically can mean
such things as: source code checked into a source control system; data
accessible from a well-known repository; etc. Minimally, publish requests
yield a report on an object’s fitness for publication, although such reports
can easily drive an automated cleanup process that remedies many of the
identified shortcomings.

Keywords: provenance, publishing, curation.

1 Introduction and Background

In computing environments there is often tension between freedom of expression
and exploration on the one hand, and constraint and assertion on the other.
More precisely, the creation of a computational artifact may require creativity
and freeform exploration, but at some end point the environment requires that
certain assertions be true. The question is, where, when, and how should those
assertions be enforced?

1.1 Programming Environments

Programming languages provide a familiar example for many. Creating a pro-
gram is a fundamentally creative activity, but in the end, the computational
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environment requires that the program be syntactically and semantically valid1

to be executed. Different programming environments have take different ap-
proaches to enforcing program validity. At the flexibility-maximizing end of the
spectrum, many environments allow programs to be created with near-complete
freedom using text editors. Assertion checking about programs is then deferred to
a compilation step (for compiled languages) and/or to execution time (for inter-
preted languages). Other environments, particularly “visual” or GUI-based en-
vironments, provide syntax-aware and even limited-semantics-aware editors that
constrain expressions during creation. These environments attempt to maintain
the assertion that the program is at least syntactically correct during its cre-
ation. In a kind of reductio ad absurdum, we might imagine an environment that
requires that a program be valid at every step of its construction, thus obviating
the need for any later assertion checking. But this is a direction that program-
ming environments have not gravitated toward. Even in the visual programming
environments, there is a recognized need that programmers be allowed to create
expressions that violate language rules and semantics, at least temporarily. Code
may be sketched out initially; there may be references to entities that don’t exist
yet; test code insertions may create deliberate errors; and so forth.

1.2 Scientific Programming

The creation of science data products is analogous. In the end, we require that
a data product be of sufficient quality, and that it have been produced using
sufficiently rigorous and repeatable methods, that it is worthy of entering the
scientific record. But creating the product requires experimentation and creativ-
ity, particularly in the formative stages, and many assertions that we would like
to be true at the end will not be true during the entire process of creation. We
may, for example, use false or test data, shortcut production steps out of expe-
diency, and many other things of that nature. Moreover, computational science
data is produced by software, so the points in the preceding section regarding
software creation apply as well.

Scientific workflow environments provide assertion support similar to syntax-
aware programming language editors in that desirable end assertions are main-
tained through the whole process of development. However, we argue that much
data production is done outside workflow systems, and even for those scientists
working in workflow systems, the flexibility scientists require means that they
may drop out of the environment to perform one-off experiments.

1.3 Publishing Science Data Products

By “data publication” we mean the packaging and distribution of scientific
datasets. As in traditional publication of scientific literature, data publication
involves selecting and formatting content; naming and attributing the resulting
artifact, and then making it available via well-known distribution channels.
1 Semantically valid only in the sense that all language requirements are satisfied; we

consider no deeper semantics here.
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Significantly, only the first step–selection–is an intrinsic result of scientific
computation, namely as the computation’s result set, and thus happens au-
tomatically. The remaining steps are often an added burden at publish time.
Publication standards often dictate a specific format (e.g., GeoTIFF2 or KML3

for Earth science array and vector data, respectively) that differs from that used
internally in a scientific computation environment. Similarly, published data ob-
jects must often adhere to naming conventions (e.g., DOIs for datasets or persis-
tent URIs for data granules or services) that differ from more convenient internal
names (e.g., filenames or database queries). These formats in turn often dictate
or enable specific distribution mechanisms (e.g., geospatial web services4.)

In addition to requiring specific formats and naming conventions, data pub-
lication requires the availability of additional descriptive information. Much of
this metadata is available as an automatic consequence of the computational
environment (e.g., array dimensions, creation datetimes, etc.), but much tra-
ditionally is not (e.g., descriptive text, names of responsible parties, etc.) and
must be discovered or supplied as part of the publication process. These meta-
data collectively serve the attribution role analogous to authorship in traditional
publishing. Historically, a key missing piece of this attribution has been the con-
nections between a data object and its antecedents, such as can now be supplied
by provenance.

2 Provenance-Enabled Automatic Data Publishing

We believe that provenance can greatly simplify the transition between exper-
imental and published products by simplifying the assembly and validation of
the metadata necessary to publish a science data object. Key to our approach
is exploiting the ES3 system, which captures the necessary provenance without
imposing restrictions on relatively unstructured experimental environments. In
this section we define provenance as ES3 implements it, describe the ES3 sys-
tem, and then describe how ES3-collected provenance can help automate the
publication process.

2.1 Computational Provenance

Computational provenance refers to knowledge of the origins and processing his-
tory of a computational artifact such as a data product or an implementation of
an algorithm [1]. Provenance is an essential part of metadata for Earth science
data products, where both the source data and the processing algorithms change
over time. These changes can result from errors (e.g., sensor malfunctions or in-
correct algorithms) or from an evolving understanding of the underlying systems
and processes (e.g., sensor recalibration or algorithm improvement). Occasion-
ally such changes are memorialized as product or algorithm “versions,” but more
2 http://trac.osgeo.org/geotiff
3 http://opengeospatial.org/standards/kml
4 http://ogcnetwork.net/services

http://trac.osgeo.org/geotiff
http://opengeospatial.org/standards/kml
http://ogcnetwork.net/services
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often they manifest only as mysterious differences between data products that
one would otherwise expect to be similar. Provenance allows us to better under-
stand the impacts of changes in a processing chain, and to have higher confidence
in the reliability of any specific data product.

2.2 Transparent Provenance Collection with ES3

ES3 is a software system for automatically and transparently capturing, manag-
ing, and reconstructing the provenance of arbitrary, unmodified computational
sequences [3]. Automatic acquisition avoids the inaccuracies and incompleteness
of human-specified provenance (i.e., annotation). Transparent acquisition avoids
the computational scientist having to learn, and be constrained by, a specific
language or schema in which their problem must be expressed or structured in
order for provenance to be captured.

Unlike most other provenance management systems [1,6,9], ES3 captures
provenance from running processes, as opposed to extracting or inferring it from
static specifications such as scripts or workflows. ES3 provenance management
can thus be added to any existing scientific computations without modifying or
re-specifying them.

ES3 models provenance in terms of processes and their input and output files.
We use “process” in the classic sense of a specific execution of a program. In
other words, each execution of a program or workflow, or access to a file, yields
new provenance events.

Relationships between files and processes are observed by monitoring read
and write accesses. This monitoring can take place at multiple levels: system
calls (using strace), library calls (using instrumented versions of application
libraries), or arbitrary checkpoints within source code (using automatically in-
voked source-to-source preprocessors for specific environments such as IDL5).
Any combination of monitoring levels may be active simultaneously, and all are
transparent to the scientist-programmer using the system. In particular, system
call tracing allows ES3 to function completely independently of the scientist’s
choice of programming tools or execution environments.

An ES3 provenance document is the directed graph of files and processes
resulting from a specific invocation event (e.g., a “job”). Nested processes (pro-
cesses that spawn other processes) are correctly represented. In addition to re-
trieving the entire provenance of a job, ES3 supports arbitrary forward (descen-
dant) and/or reverse (ancestor) provenance retrieval, starting at any specified
file or process.

ES3 is implemented as a provenance-gathering client and a provenance-
managing server (Figure 1). The client runs in the same environment as the
processes whose provenance is being tracked.

The client is a set of logger processes that intercept raw messages from the
various monitoring modes (plugins) and write them to log files. A common trans-
mitter client asynchronously scans the log files, assembles the provenance events

5 http://www.ittvis.com/idl

http://www.ittvis.com/idl
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Fig. 1. ES3 architecture

into a time-ordered stream, assigns UUIDs to each file and process being tracked,
and submits a raw provenance report to the ES3 core (server).

The ES3 core is an XML database with a web service middleware layer that
supports insertion of file and provenance metadata, and retrieval of provenance
graphs. File metadata allows ES3 to track the one-to-many correspondence be-
tween external file identifiers (e.g., pathnames) and internal (UUID) references
to those files in provenance reports. Provenance queries cause the ES3 core to
assemble a provenance graph (by linking UUIDs) starting at a specified process
or file and proceeding in either the ancestor or descendant direction. The graphs
are returned serialized in various XML formats (ES3 native, GraphML [2], etc.),
which can be rendered by graph visualization clients (e.g., Graphviz6; yEd7).

ES3’s native provenance model is a proper subset of the Open Provenance
Model (OPM) [7]. ES3 processes and files correspond to OPM processes and
artifacts, respectively. ES3 does not support OPM’s notion of agent, since this
entity role cannot be transparently determined from the events ES3 monitors.

2.3 Using Provenance to Drive Publication Decisions

The provenance collected by ES3 represents the complete processing history of
a digital object and its antecedents (assuming those antecedents were likewise
generated under ES3’s observation, or have provenance provided by a similarly
capable environment). While extremely valuable as metadata [6] in its own right,

6 http://graphviz.org
7 http://yworks.com/yed

http://graphviz.org
http://yworks.com/yed
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this provenance can also be exploited to help determine an object’s fitness for
publication.

Our basic assumption is that a large part of what determines an object’s
fitness for publication is the process by which that object was produced, and
the components which were combined or transformed in order to produce it. An
object produced by scientific codes with known significant bugs, or from source
datasets with known errors, may not be suitable for publication, regardless of
how well formatted, documented, and presented it is. Or, even if the codes and
data used to produce an object are demonstrably acceptable, they may not be
suitably curated, and this lack of a guaranteed level of future availability to users
of the object may be sufficient to disqualify it for publication.

A provenance-driven publication process thus involves traversing a candidate
object’s provenance to some suitable depth and evaluating whether the object’s
antecedents justify a decision to publish the object. We envision, and are now
prototyping, this decision process as assertion-based, with different sets of asser-
tions applied to different categories of antecedents (e.g., programs vs. data files).
Managing the assertions separately from the provenance allows us to tailor the
assertions to differing levels of rigor—for example, publishing data to a small
community of experts may impose fewer constraints on the data’s antecedents
than publishing to a public repository.

2.4 Comparable Work

One of the primary rationales for collecting provenance information is to enable
reproducibility of a process [4]. Our approach to data publication implies that
objects that satisfy our publication criteria are more likely (albeit not guaran-
teed) to be reproducible. An alternative would be to attempt to recreate the
entire environment in which a process executed, in order to enable its precise
reproduction.

We are aware of two unpublished systems which take this approach. CDE
[5] uses system call tracing to package the executable code, input data, and
Linux environment (system libraries, language interpreters, etc.) necessary to
run a process into a single distributable object, runnable on any Linux system.
lbsh [8] uses command-line scraping to determine a process’ inputs and outputs,
and optionally prepare a (less comprehensive than CDE) package intended to
facilitate the process’ re-execution.

Our approach is less concerned with immediate reproducibility, and more
with long term reproducibility. Instead of immediately preparing a package that
will guarantee an object’s reproducibility, we strive to ensure, through our pub-
lishability assertions, that such a package could be prepared as needed at some
arbitrary future time.

3 Worked Example: Publishing Global Ocean Color Data

To illustrate our proposed approach, let us consider a sample computational
process, in this case a process that derives an ocean color product from an an-
tecedent product. Figure 2 is a greatly simplified (i.e., many inputs and outputs
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have been elided) version of an automatically gathered ES3 provenance trace.
It depicts a shell script (the outer box) invoking an IDL interpreter (the inner

Fig. 2. provenance trace

box), which in turn executes an IDL program, which in turn does the real work:
reads an input data file, writes an HDF output file, reads the HDF file back in,
and finally produces a PNG preview file.

This type of provenance trace is entirely typical and there is nothing in its
structure to indicate its purpose: it could be producing a product to be published,
or it could be any manner of test or experiment. Our assertion checking process
is initiated only when an output is identified by the scientist as a candidate for
publishing. That is, many such traces may be automatically captured by ES3,
and most at some point culled, and it is only the act of publishing that triggers
any deeper examination of the traces.

There are no fixed assertions to be checked, as the assertions are configurable
and will depend greatly on the context. Generally, however, assertions fall into
two categories:

– Provenance, or, What did we do? Do we have sufficient information describ-
ing the processing that would allow a reader to unambiguously re-create the
processing, in principle if not in actuality?

– Confirmation, or, Did we really do what we think we did? It is all too easy to
mistakenly operate on the “wrong” file, because the file has the same name
as the correct file or because the file’s contents have changed without our
knowledge. We believe that a publishing system should be able to catch such
mistakes.

Returning to our sample process in Fig. 2, the provenance assertions include:

– Does the input data file have a provenance statement? Does it have, for
example, ES3 or OPM metadata or another, less structured statement of its
source?
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– Is the IDL code held in a source code repository, and do the versions of
the code used in the processing correspond to committed (i.e., registered)
versions in that repository?

– Has information about the computational environment been recorded, e.g.,
the version of IDL?

The confirmation assertions include:

– If a checksum of the input data file’s contents was recorded at the time of its
download from an external source, does the checksum match the checksum
at the time of the file’s use?

– If a correspondence has been made between source code versions and the
overall data product version, were the “correct” versions of the source code
used?

Notice how the preceding assertions are relevant only when publishing a data
product. During development and experimentation there are any number of rea-
sonable reasons why they may be violated.

Implementing such publish-time assertion checking in ES3 requires that we
be able to distinguish and characterize different kinds of files participating in
the computational process. In a raw ES3 trace, all files referenced during the
process are equivalent in ES3’s view, being distinguished only as inputs or out-
puts. But the types of publish-time assertions we want to make depend on the
different roles files play in the computational process. What distinguishes an
input data file from a source code file in Fig. 2 is that the former was obtained
from an external source and is expected to have a provenance statement, while
the latter was locally developed and is managed in a source code system, and
thus the assertions to be checked are correspondingly different. In our proposed
framework, such distinctions can be made ad hoc and on a file-by-file basis, but
we expect that general configuration rules will obviate the need for most such
fine-grained specification. For example, input data files may be defined to be
any files residing in a designated directory. Residency in source code systems
can be determined opportunistically, by interrogating source code repositories
(e.g., the local CVS server) and by looking for repository artifacts (e.g., RCS
and Mercurial repository directories).

A generic restriction on the publication process is the accessibility of the
published object’s antecedents. We assume that any files we wish to check against
our publication rules are either directly accessible to the publication process, or
have sufficiently complete and trustworthy provenance that assertion checking
can be based on metadata alone.

4 Conclusion

Our provenance-driven data publication scheme is a work-in-progress. We are
implementing it as a stand-alone publish service that, given a digital object,
will proceed as follows:
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1. Request the object’s provenance from ES3.
2. For each antecedent object, test that object against the appropriate publi-

cation assertions.
3. List which assertions were violated.
4. If additionally directed, and where possible, take automatic actions (e.g.,

check code into a repository) to remedy assertion violations.

Of course there will be situations where step 4 fails to automatically render an
object fit for publication—for example, publication may require the availability
of antecedent files or programs that have been deleted since the object was
created. In such cases, we believe the “fitness report” generated by publish
will be invaluable documentation, especially if, lacking suitable alternatives, the
objects must be published anyway.
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A Panel Discussion on Data Intensive Science:  
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Over the past several years, a number of groups, including the National Academy of 
Engineering, have identified grand challenge problems facing scientists from around 
the world [1]. While addressing these problems will have global impact, solutions are 
years away at best – and the next set of challenges are likely to be even harder to 
solve. Because of the complexity of questions being asked, meeting these challenges 
requires large, multi-disciplinary teams working closely together for extended periods 
of time. Enabling this new type of science, involving distributed teams that need to 
collaborate despite vastly different backgrounds and interests, is the cornerstone of 
Data Intensive Science. 

As noted by books such as The Fourth Paradigm  [2] and Scientific Data 
Management: Challenges, Technology, and Deployment  [3], our ability to collect and 
analyze data is providing new and exciting opportunities to extract new knowledge 
from, and in fact perform novel scientific experiments on, these large data sets. 
Simply collecting this data, however, is only the beginning. We envision a future 
where scientists will be able to easily interact with colleagues around the world to 
identify, search for, acquire and manipulate useful scientific data as easily as they 
currently work with collaborators down the hall on data generated in their own lab.  
Only in an environment that supports this type of highly collaborative science will 
solutions to the grand challenge problems be possible.  

Unfortunately, while there has been a lot of excitement in the area of Data 
Intensive Science over the past couple of years, including some impressive scientific 
results, much of this potential has remained untapped. In part, this is because the 
community remains fractured along traditional discipline lines, without a coherent 
vision of what needs to be done or how it can best be accomplished.   

The purpose of this panel is for several leaders in Data Intensive Science to briefly 
present their views of this future and the key technological breakthroughs that will 
allow it to be realized. To that end, the panel brings together Malcolm Atkinson 
(Director of the e-Science Institute), Stefan Heinzel (Rechenzentrum Garching der 
Max-Plank-Gesellschaft), Tony Hey (Microsoft Research), and Kerstin Kleese Van 
Dam (Pacific Northwest National Laboratory) and asks them to envision what 
scientific collaboration could look like in 20 years, as well as identify the technology 
breakthroughs that need to happen for that vision to be realized.   

In particular, the panelists have been asked to answer 3 questions:  

               What will scientific collaborations look like in 20 years?  
               What will the role of technology be in facilitating this vision?  
               What are the biggest breakthroughs required to realize this vision? 



Given the diverse backgrounds, expertise, and experiences represented on this panel, 
it is expected that both the individual presentations and the subsequent discussions 
should provide an insightful look into how the technology behind Data Intensive 
Science may transition from its current state into a form that will truly enable a  new 
age of science.  
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Abstract. Shortest paths and shortest path distances are important primary
queries for users to query in a large graph. In this paper, we propose a new ap-
proach to answer shortest path and shortest path distance queries efficiently with
an error bound. The error bound is controlled by a user-specified parameter, and
the online query efficiency is achieved with prepossessing offline. In the offline
preprocessing, we take a reference node embedding approach which computes
the single-source shortest paths from each reference node to all the other nodes.
To guarantee the user-specified error bound, we design a novel coverage-based
reference node selection strategy, and show that selecting the optimal set of refer-
ence nodes is NP-hard. We propose a greedy selection algorithm which exploits
the submodular property of the formulated objective function, and use a graph
partitioning-based heuristic to further reduce the offline computational complex-
ity of reference node embedding.

In the online query answering, we use the precomputed distances to provide a
lower bound and an upper bound of the true shortest path distance based on the
triangle inequality. In addition, we propose a linear algorithm which computes
the approximate shortest path between two nodes within the error bound. We
perform extensive experimental evaluation on a large-scale road network and a
social network and demonstrate the effectiveness and efficiency of our proposed
methods.

1 Introduction

Querying shortest paths or shortest path distances between vertices in a large graph
has important applications in many domains including road networks, social networks,
biological networks, the Internet, and so on. For example, in road networks, the goal
is to find shortest routes between locations or find nearest objects such as restaurants
or hospitals; in social networks, the goal is to find the closest social relationships such
as common interests, collaborations, citations, etc., between users; while in the Inter-
net, the goal is to find the nearest server in order to reduce access latency for clients.
Although classical algorithms like breadth-first search (BFS), Dijkstra’s algorithm [1],
and A∗ search algorithm [2] can compute the exact shortest paths in a network, the
massive size of the modern information networks and the online nature of such queries
make it infeasible to apply the classical algorithms online. On the other hand, it is space
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inefficient to precompute the shortest paths between all pairs of vertices and store them
on disk, as it requires O(n3) space to store the shortest paths and O(n2) space to store
the distances for a graph with n vertices.

Recently, there have been many different methods [3,4,5,6,7,8,9,10,11,12] for es-
timating the shortest path distance between two vertices in a graph based on graph
embedding techniques. A commonly used embedding technique is reference node em-
bedding, where a set of graph vertices is selected as reference nodes (also called land-
marks) and the shortest path distances from a reference node to all the other nodes in a
graph are precomputed. Such precomputed distances can be used online to provide an
estimated distance between two graph vertices. Although most of the above mentioned
methods follow the same general framework of reference node embedding, they differ
in the algorithmic details in the following aspects: (1) reference node selection – some
(e.g., [6,7,10,11,12]) select reference nodes randomly, while others (e.g., [3,4,8,9]) pro-
pose heuristics to select reference nodes; (2) reference node organization – [8,10,11,12]
proposed a hierarchical embedding where reference nodes are organized in multiple
levels, while most of the other methods use a flat reference node embedding; and (3) an
error bound on the estimated shortest path distances – [6,10] analyzed the error bound
of the estimated distances with random reference node selection, while most of the other
methods have no error bounds or guarantees of the estimated distances.

A theoretical error bound can guarantee the precision of the estimated distance, but
the derivation of an error bound is closely related to the reference node selection strat-
egy. Random selection [6,7] or heuristic selection strategies (e.g., based on degree or
centrality) [9] cannot derive an error bound to control the precision of the estimated
distance. In this paper, we propose a reference node embedding method which provides
a distance estimation within a user-specified error bound ε. Specifically, we formulate a
coverage-based reference node selection strategy, i.e., every node in a graph should be
“covered” by some reference node within a radius c = ε/2. The coverage property will
lead to a theoretical error bound of ε. Importantly, allowing a user-specified error bound
increases the flexibility of our method in processing queries at different error tolerance
levels – when a user specifies an error bound ε he can tolerate, we can compute the
corresponding radius c for coverage and then the number of reference nodes that are
necessary to ensure the error bound. On the other hand, if a user specifies the number
of reference nodes he selects, we can find the corresponding value of c and the error
bound. We will also show through experimental study that by adjusting the radius c, we
can achieve a tradeoff between the theoretical error bound and the offline computational
time of the reference node embedding process.

Our main contributions are summarized as follows.

– We take the reference node embedding approach and formulate the optimal refer-
ence node set selection problem in a coverage-based scheme. The coverage-based
strategy leads to a theoretical error bound of the estimated distance. We show that
selecting the minimum set of reference nodes is an NP-hard problem and then pro-
pose a greedy solution based on the submodular property of the proposed objective
function.

– The reference node embedding can be used to compute an upper bound and a lower
bound of the true shortest path distance between any two vertices based on the
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triangle inequality. We show that the estimated distance is within a user-specified
error bound of the true distance. To further reduce the offline computational com-
plexity of the embedding approach, we propose a graph partitioning-based heuristic
for reference node embedding with a relaxed error bound.

– Based on the estimated distances, we propose a linear algorithm to compute the ap-
proximate shortest path between two vertices. This algorithm improves the shortest
path query efficiency of A∗ search by three to five orders of magnitude, while the
distance of the approximate shortest path is very close to the exact shortest distance.

– We performed extensive experiments on two different types of networks including
a road network and a social network. Although these two types of networks exhibit
quite different properties on vertex degree distribution, network diameter, etc., our
methods can achieve high accuracy and efficiency on both types of networks.

The rest of the paper is organized as follows. Section 2 introduces preliminary concepts
and formulates the distance estimation problem. Section 3 presents our proposed algo-
rithms for reference node selection, shortest path distance estimation and approximate
shortest path search. A graph partitioning-based heuristic technique for reference node
embedding with a lower offline complexity is proposed in Section 4. Section 5 presents
extensive experimental results. We survey related work in Section 6 and conclude in
Section 7.

2 Preliminaries and Problem Statement

The input is an edge weighted graph G = (V, E, w), where V is a set of vertices, E is
a set of edges, and w : E → R+ is a weighting function mapping an edge (u, v) ∈ E
to a positive real number w(u, v) > 0, which measures the length of (u, v). We denote
n = |V | and m = |E|. For a pair of vertices s, t ∈ V , we use D(s, t) to denote the true
shortest path distance between s and t. If (s, t) ∈ E, D(s, t) = w(s, t). In this work,
we focus on undirected graphs. Our problem can be formulated as follows.

Problem 1 (Distance Estimation with a Bounded Error). Given a graph G and a user-
specified error bound ε as input, for any pair of query vertices (s, t), we study how to
efficiently provide an accurate estimation of the shortest path distance D̂(s, t), so that
the estimation error |D̂(s, t)−D(s, t)| ≤ ε.

To efficiently provide a distance estimation, the basic idea is to use a reference node
embedding approach. Consider a set of vertices R = {r1, . . . , rl} (R ⊆ V ), which
are called reference nodes (also called landmarks). For each ri ∈ R, we compute the
single-source shortest paths to all vertices in V . Then for every node v ∈ V , we can use
a l-dimensional vector representation as

−→
D(v) = 〈D(r1, v), D(r2, v), . . . , D(rl, v)〉

This approach is called reference node embedding. This embedding can be used to
compute an upper bound and a lower bound of the true shortest path distance between
two vertices (s, t). In the rest of the paper, we will discuss the following questions:
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1. Given a graph G and an error bound ε, how to select the minimum number of
reference nodes to ensure the error bound ε in the distance estimation?

2. How to estimate the shortest distance with an error bound given a query (s, t)?
3. How to efficiently compute an approximate shortest path P given a query (s, t)?

3 Proposed Algorithm

The quality of the estimated shortest path distance is closely related to the reference
node selection strategy. Given a graph G and an error bound ε, we will first formulate a
coverage-based reference node selection approach to satisfy the error bound constraint.
We will then define an objective function over a set of reference nodes and discuss how
to select the minimum set of reference nodes according to the objective function.

3.1 Reference Node Selection

Definition 1 (Coverage). Given a graph G = (V, E, w) and a radius c, a vertex v ∈ V
is covered by a reference node r if D(r, v) ≤ c.

The set of vertices covered by a reference node r is denoted as Cr, i.e., Cr = {v|v ∈
V, D(r, v) ≤ c}. In particular, we consider a reference node r is covered by itself, i.e.,
r ∈ Cr, since D(r, r) = 0 ≤ c. Here we formulate the problem of optimal reference
node selection.

Problem 2 (Coverage-based Reference Node Selection). Given a graph G = (V, E, w)
and a radius c, our goal is to select a minimum set of reference nodes R∗ ⊆ V , i.e.,
R∗ = argminR⊆V |R|, so that ∀v ∈ V − R∗, v is covered by at least one reference
node fromR∗.

Given a user-specified error bound ε, we will show in Section 3.3, when we set
c = ε/2, the coverage-based reference nodes selection method can guarantee that the
error of the estimated shortest path distance is bounded by ε.

 

1r  

2r  

3r  

Fig. 1. Coverage-based Reference Node Selection
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Example 1. Figure 1 shows a graph with three reference nodes r1, r2 and r3. The three
circles represent the area covered by the three reference nodes with a radius c. If a
vertex lies within a circle, it means the shortest path distance between the vertex and
the corresponding reference node is bounded by c. As shown in the figure, all vertices
can be covered by selecting the three reference nodes.

Besides the coverage requirement, a reference node set should be as compact as
possible. To evaluate the quality of a set of reference nodesR, we define a gain function
overR.

Definition 2 (Gain Function). The gain function over a set of reference nodes R is
defined as

g(R) = |
⋃

r∈R
Cr| − |R| (1)

In Figure 1, g({r1}) = 5, g({r2}) = 3, g({r3}) = 2 and g({r1, r2, r3}) = 8.
The gain function g is a submodular function, as stated in Theorem 1.

Definition 3 (Submodular Function). Given a finite set N , a set function f : 2N → R
is submodular if and only if for all sets A ⊆ B ⊆ N , and d ∈ N \ B, we have
f(A ∪ {d})− f(A) ≥ f(B ∪ {d})− f(B).

Theorem 1. For two reference node sets A ⊆ B ⊆ V and r ∈ V \B, the gain function
g satisfies the submodular property:

g(A ∪ {r})− g(A) ≥ g(B ∪ {r})− g(B)

Proof. According to Definition 2, we have

g(A ∪ {r})− g(A) = |CA ∪ Cr| − (|A|+ 1)− |CA|+ |A|
= |CA ∪ Cr| − |CA| − 1
= |Cr − CA| − 1

where Cr − CA represents the set of vertices covered by r, but not by A.
Since A ⊆ B, we have Cr − CB ⊆ Cr − CA, hence |Cr − CB| ≤ |Cr − CA|.

Therefore, the submodular property holds. �

As our goal is to find a minimum set of reference nodes R∗ to cover all vertices in
V , it is equivalent to maximizing the gain function g:

max
R

g(R) = max
R

(|
⋃

r∈R
Cr| − |R|) = |V | −min

R
|R| = g(R∗)

In general, maximizing a submodular function is NP-hard [13]. So we resort to a greedy
algorithm. It starts with an empty set of reference nodes R0 = ∅ with g(R0) = 0.
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Then it iteratively selects a new reference node which maximizes an additional gain, as
specified in Eq.(2). In particular, in the k-th iteration, it selects

rk = arg max
r∈V \Rk−1

g(Rk−1 ∪ {r})− g(Rk−1) (2)

The algorithm stops when all vertices in V are covered by the reference nodes. The
greedy algorithm returns the reference node setR.

Continue with our example. According to the greedy selection algorithm, in the
first step, we will select r1 as it has the highest gain. Given R1 = {r1}, we have
g({r1, r2}) − g({r1}) = 1 and g({r1, r3}) − g({r1}) = 2. So we will select r3 in
the second step. Finally we will select r2 to cover the remaining vertices. Note that to
simplify the illustration, we only consider selecting reference nodes from r1, r2, r3 in
this example. Our algorithm actually considers every graph vertex as a candidate for
reference nodes.

To effectively control the size of R, we can further relax the requirement to cover
all vertices in V . We observe that such a requirement may cause |R| unnecessarily
large, in order to cover the very sparse part of a graph or the isolated vertices. So we
set a parameter Cover Ratio (CR), which represents the percentage of vertices to be
covered. The above greedy algorithm terminates when a fraction of CR vertices in V
are covered byR.

3.2 Shortest Path Distance Estimation

Given R, we will compute the shortest path distances for the node pairs {(r, v)|r ∈
R, v ∈ V }. This is realized by computing the single-source shortest paths for every
r ∈ R. Given a query node pair (s, t), we have

|D(s, r) −D(r, t)| ≤ D(s, t) ≤ D(s, r) + D(r, t)

for any r ∈ R, according to the triangle inequality. Figure 2 shows an illustration of
the shortest path distance estimation between (s, t), where the circle represents the area
covered by a reference node r with a radius c. In this example, s is covered by r, while
t is not.

By considering all reference nodes, we have tighter bounds

D(s, t) ≤ min
r∈R

(D(s, r) + D(r, t)) (3)

and
D(s, t) ≥ max

r∈R
|D(s, r) −D(r, t)| (4)

 

r  

c≤  

s  

t  

Fig. 2. Distance Estimation
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Both the upper boundminr∈R(D(s, r)+D(r, t)) and the lower boundmaxr∈R |D(s, r)
−D(r, t)| can serve as an approximate estimation for D(s, t). We denote them as D̂U

and D̂L, respectively. However, [4] reported that the upper bound achieves very good
accuracy and performs far better than the lower bound in the internet network. We con-
firmed this observation on both a social network and a road network in our experiments.
Thus we adopt the shortest path distance estimation as

D̂U (s, t) = min
r∈R

(D(s, r) + D(r, t))

3.3 Error Bound Analysis

In this section, we will show that, given a query (s, t), when s or t is covered within
a radius c by some reference node fromR, the estimated distance D̂U (s, t) is within a
bounded error of the true distance D(s, t).

Theorem 2. Given any query (s, t), the error of the estimated shortest path distance
D̂U (s, t) can be bounded by 2c with a probability no smaller than 1−(1−CR)2, where
c is the coverage radius and CR is the cover ratio.

Proof. Given a query (s, t) and a reference node set R, assume s is covered by a ref-
erence node, denoted as r∗, i.e., D(s, r∗) ≤ c. Without loss of generality, we assume
D(s, r∗) ≤ D(r∗, t). Note that the following error bound still holds if D(s, r∗) >
D(r∗, t). The error of the estimated shortest path distance between (s, t) is bounded by

err(s, t) = D̂U (s, t)−D(s, t)
= min

r∈R
(D(s, r) + D(r, t)) −D(s, t)

≤ D(s, r∗) + D(r∗, t)−D(s, t)
≤ D(s, r∗) + D(r∗, t)− |D(s, r∗)−D(r∗, t)|
= 2D(s, r∗)
≤ 2c

The first inequality holds because minr∈R(D(s, r) + D(r, t)) ≤ D(s, r∗) + D(r∗, t);
and the second inequality holds because we have the lower bound property D(s, t) ≥
|D(s, r∗)−D(r∗, t)|.

The error bound holds when either s or t, or both are covered by some reference
nodes. When neither s nor t is covered by some reference nodes within a radius c,
err(s, t) is unbounded. The probability for this case is (1 − CR)2. However, in this
case, if a reference node r happens to lie on the shortest path from s to t, we have the
estimated distance D̂U (s, t) = D(s, t), i.e., the error is still bounded by 2c. Therefore,
the probability that the error of an estimated distance is unbounded is at most (1−CR)2.
Thus we have P (err(s, t) ≤ 2c) ≥ 1− (1− CR)2. �

Given a user-specified error bound ε, we will have P (err(s, t) ≤ ε) ≥ 1− (1−CR)2,
when we set c = ε/2.
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3.4 Approximate Shortest Path Computation

With the shortest distance estimation, we propose a heuristic algorithm SPC to compute
an approximate shortest path P for a query (s, t). The SPC algorithm works as follows:
let r = argminv∈R(D(s, v)+D(v, t)). We use such r to break down the path into two
segments as P (s, t) = SP (s, r)+SP (r, t). Here, SP (s, r) represents the exact shortest
path from s to r. To compute SP (s, r) in linear time, we can follow the criterion

next(s) = arg min
v∈N(s)

(D(s, v) + D(v, r))

where N(s) denotes the the neighbor set of s and next(s) denotes the successive neigh-
bor of s that lies on the shortest path from s to r. Here we determine next(s) based on
the exact shortest distances D(s, v) and D(v, r). We iteratively apply the above crite-
rion to find every vertex on the shortest path from s to r. Similarly, to compute SP (r, t),
we can follow the criterion

prev(t) = arg min
v∈N(t)

(D(r, v) + D(v, t))

where prev(t) is the preceding neighbor of t that lies on the shortest path from r to t.
The SPC algorithm computes an approximate shortest path whose distance equals

D̂U (s, t). The time complexity is O(|R| + deg · |P |), where O(|R|) is the time for
finding the reference node r to break down the path, and deg is the largest vertex degree
in the graph.

4 Graph Partitioning-Based Heuristic

For the reference node embedding method we propose above, the offline complexity is
O(|E| + |V | log |V |) to compute the single-source shortest paths for a reference node
v ∈ R. It can be simplified as O(n log n) (n = |V |) when the graph is sparse. There-
fore, the total embedding time is O(|R|n log n), which could be very expensive when
|R| is large. In this section, we propose a graph partitioning-based heuristic for the
reference node embedding to reduce the offline time complexity with a relaxed error
bound. To distinguish the two methods we propose, we name the first method RN-basic
and the partitioning-based method RN-partition.

4.1 Partitioning-Based Reference Node Embedding

The first step of RN-partition is reference node selection, which is the same as described
in Section 3.1. In the second step, we use KMETIS [14] to partition the graph into K
clusters C1, . . . , CK . As a result, the reference node set R is partitioned into these K
clusters. We use Ri to denote the set of reference nodes assigned to Ci, i.e., Ri =
{r|r ∈ R and r ∈ Ci}. It is possible that Ri = ∅ for some i. For a cluster Ci with
Ri = ∅, we can select the vertex from Ci with the largest degree as a within-cluster
reference node, to improve the local coverage within Ci. Note that the number of such
within-cluster reference nodes is bounded by the number of clusters K , which is a small
number compared with |R|.
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The idea of the partitioning-based reference node embedding is as follows. For the
cluster Ci, we compress all reference nodes inRi as a supernode SNi and then compute
the single-source shortest paths from SNi to every vertex v ∈ V . The reference node
compression operation is defined as follows.

Definition 4 (Reference Node Compression). The reference node compression oper-
ation compresses all reference nodes in Ri into a supernode SNi. After compression,
for a vertex v ∈ V \Ri, (SNi, v) ∈ E iff ∃r ∈ Ri, s.t. (r, v) ∈ E, and the edge weight
is defined as w(SNi, v) = minr∈Ri w(r, v).

Then the shortest path between SNi and v is actually the shortest path between a
reference node r ∈ Ri and v with the smallest shortest path distance, i.e.,

D(SNi, v) = min
r∈Ri

D(r, v)

and we denote the closest reference node r ∈ Ri to v as rv,i, which is defined as

rv,i = arg min
r∈Ri

D(r, v)

Note D(SNi, v) = D(rv,i, v) = minr∈Ri D(r, v). In the following, we will use
D(SNi, v) and D(rv,i, v) interchangeably.

The time complexity for computing shortest paths from the supernodes in each of the
K clusters to all the other vertices in V is O(Kn logn). In addition, we compute the
shortest path distances between every pair of reference nodes within the same cluster.
The time complexity of this operation is O(|R|n/K logn/K), if we assume the nodes
are evenly partitioned into K clusters. We further define the diameter d for a cluster as
follows.

Definition 5 (Cluster Diameter). Given a cluster C, the diameter d is defined as the
maximum shortest distance between two reference nodes in C, i.e.,

d = max
ri,rj∈C

D(ri, rj)

where D(ri, rj) is the shortest distance between ri and rj .

Then the diameter of the partitioning C1, . . . , CK is defined as the maximum of the
K cluster diameters, i.e.,

dmax = max
i∈[1,K]

di

4.2 Partitioning-Based Shortest Path Distance Estimation

Given a query (s, t), for the supernode SNi representing a cluster Ci, based on the
triangle inequality we have

D(s, t) ≤ D(s, SNi) + D(rs,i, rt,i) + D(t, SNi)
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Fig. 3. Distance Estimation in RN-partition

Figure 3 shows an illustration of the shortest path distance estimation between (s, t)
in RN-partition, where the circle represents a cluster Ci. Note that in general s and rs,i

may not necessarily belong to the same cluster, and the shortest path distance D(s, rs,i)
may not necessarily be bounded by the radius c. But these factors will not affect the
distance estimation strategy.

By considering all K clusters, we have a tighter upper bound

D(s, t) ≤ min
i∈[1,K]

(D(s, SNi) + D(rs,i, rt,i) + D(t, SNi))

We denote this estimated distance upper bound as D̂P
U (s, t).

4.3 Error Bound Analysis

In the following theorem, we will show that, when s or t is covered within a radius c
by some reference node from a cluster Ci for some i, the estimated distance D̂P

U (s, t)
is within a bounded error of the true distance D(s, t).

Theorem 3. Given any query (s, t), the error of the estimated shortest path distance
D̂P

U (s, t) by RN-partition can be bounded by 2(c+dmax) with a probability no smaller
than 1− (1−CR)2, where c is the coverage radius, CR is the cover ratio and dmax is
the maximum cluster diameter.

Proof. Given a query (s, t), assume s is covered by at least one reference node fromR
within a radius c. Without loss of generality, assume such a reference node is from the
cluster Ci for some i and denote it as rs,i. According to the triangle inequality, we have

D(rs,i, t)−D(s, t) ≤ D(s, rs,i) ≤ c

By adding D(s, rs,i) on both sides, we have

D(s, rs,i) + D(rs,i, t)−D(s, t) ≤ 2D(s, rs,i) ≤ 2c (5)

Denote the closest reference node in Ci to t as rt,i. Then we have

D(rt,i, t)−D(rs,i, t) ≤ D(rs,i, rt,i) ≤ dmax

Since rs,i, rt,i belong to the same cluster, their distance is bounded by dmax. By adding
D(rs,i, rt,i) on both sides, we have

D(rs,i, rt,i) + D(rt,i, t)−D(rs,i, t) ≤ 2D(rs,i, rt,i) ≤ 2dmax (6)
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By adding Eq.(5) and Eq.(6), we have

D(s, rs,i) + D(rs,i, rt,i) + D(rt,i, t)−D(s, t) ≤ 2(c + dmax)

As we have defined D̂P
U (s, t) = mini∈[1,K](D(s, SNi) + D(rs,i, rt,i) + D(t, SNi)),

the error of the estimated shortest path distance between (s, t) is bounded by

errP (s, t) = D̂P
U (s, t)−D(s, t)

≤ D(s, rs,i) + D(rs,i, rt,i) + D(rt,i, t)−D(s, t)
≤ 2(c + dmax)

The error bound holds when either s or t, or both are covered by some reference
nodes with a radius c. When it happens that neither s nor t is covered by some reference
nodes, Eq.(5) does not hold in general, thus errP (s, t) is unbounded. The probability
for this case is (1 − CR)2. For a similar reason as explained in Theorem 2, i.e., even
when neither s nor t is covered, if there are reference nodes rs,i, rt,i, for some i, on
the shortest path from s to t, we can still have an accurate estimation which satisfies
the error bound. Therefore the probability that the error of an estimated distance is
unbounded is at most (1 − CR)2. Thus, we have P (errP (s, t) ≤ 2(c + dmax)) ≥
1− (1− CR)2 �

Compared with RN-basic, RN-partition reduces the offline computational complexity
to O(Kn logn + |R|n/K logn/K). As long as we choose a reasonably large K such
that |R|/K ≤ K , the complexity of RN-partition is dominated by O(Kn logn). As
a tradeoff, the error bound is relaxed from 2c to 2(c + dmax). The cluster diameter
dmax is determined by the size of the graph and the number of clusters K . Table 1
compares RN-basic and RN-partition on time/space complexity and the error bound. In
experimental study, we will study the relationship between K , the offline computation
time and the accuracy of the estimated distances.

Table 1. Comparison between RN-basic and RN-partition

RN-basic RN-partition
Offline Time Complexity O(|R|n log n) O(Kn log n + |R|n/K log n/K)

Offline Space Complexity O(|R|n) O(Kn + |R|2/K)

Distance Query Complexity O(|R|) O(K)

Error Bound 2c 2(c + dmax)

5 Experiments

We performed extensive experiments to evaluate our algorithms on two types of net-
works – a road network and a social network. The road network and the social network
exhibit quite different properties on: (1) degree distribution, i.e., the former roughly fol-
lows a uniform distribution while the latter follows a power law distribution; and (2)
network diameter, i.e., the social network has the shrinking diameter property [15] and
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the small world phenomenon, which, however, do not hold in the road network. All
experiments were performed on a Dell PowerEdge R900 server with four 2.67GHz six-
core CPUs and 128GB main memory running Windows Server 2008. All algorithms
were implemented in Java.

5.1 Comparison Methods and Evaluation

We compare our methods RN-basic and RN-partition with two existing methods:

– 2RNE [8] by Kriegel et al. uses a two level reference node embedding which ex-
amines K nearest reference nodes for both nodes in a query to provide a distance
estimation. We select reference nodes uniformly and set K = 3.

– Centrality [9] by Potamias et al. selects reference nodes with low closeness central-
ity. According to [9], the approximate centrality measure is computed by selecting
a sample of S random seeds, where we set S = 10, 000 in our implementation.

For a node pair (s, t), we use the relative error to evaluate the quality of the estimated
distance

rel err(s, t) =
|D̂U (s, t)−D(s, t)|

D(s, t)

As it is expensive to exhaustively evaluate all node pairs in a large network, we ran-
domly sample a set of 10, 000 node pairs in the graph as queries and evaluate the aver-
age relative error on the sample set.

5.2 Case Study 1: Road Network

We use the New York City road network, which is an undirected planar graph with
264, 346 nodes and 733, 846 edges. A node here represents an intersection or a road
endpoint while the weight of an edge represents the length of the corresponding road
segment. The data set can be downloaded from http://www.dis.uniroma1.it/∼
challenge9/.

The degrees of most nodes in the road network fall into the range of [1, 4] and the
network has no small world phenomenon. For the 10, 000 random queries we generate,
we plot the histogram of the shortest path distance distribution in Figure 4. The average
distance over the 10, 000 queries is davg = 26.68KM. So if we set the radius c =
0.8KM, the average relative error can be roughly bounded by 2c/davg = 0.06.

Parameter Sensitivity Test on CR. In this experiment, we vary the cover ratio CR
and compare the average error, the reference node set size and offline index time by
RN-basic and RN-partition with K = 100, 250, 500, respectively. We fix the radius
c = 0.8KM.

Figure 6 shows the average error of RN-basic and RN-partition with different K
values. The average error of RN-basic is below 0.01 and slightly decreases as CR in-
creases. The average error of RN-partition decreases very sharply when the number of
partitions K increases and becomes very close to that of RN-basic when K = 500.
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Figure 7 shows that the number of reference nodes |R| increases linearly with CR.
As RN-basic and RN-partition have the same reference node selection process, the num-
ber is the same for both methods. When CR = 1.0, we need 9, 000 reference nodes to
cover the road network with 264, 346 nodes.

Figure 8 shows the offline index time in logarithmic scale for RN-basic and RN-
partition to compute the single-source shortest paths from every reference node. RN-
partition reduces the index time of RN-basic by one order of magnitude. In addition, as
the number of reference nodes |R| increases linearly with CR, the index time of RN-
basic also increases linearly with CR, because the time complexity is O(|R|n log n).
On the other hand, the index time of RN-partition remains quite stable as CR increases,
because RN-partition only computes the shortest paths from each of the K clusters as
the source.
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Parameter Sensitivity Test on c. In this experiment, we vary the radius c and compare
the average error, the reference node set size and offline index time by RN-basic and
RN-partition with K = 100, 250, 500, respectively. We fix the cover ratio CR = 1.0.

Figure 9 shows the average error of RN-basic and RN-partition with different K
values. We can make the following observations from the figure: (1) RN-partition (K =
500) achieves an average error very close to that of RN-basic when c ≥ 0.8KM; (2) The
average error of RN-basic monotonically increases with c, which is consistent with the
theoretical error bound of 2c; and (3) Different from RN-basic, the average error of
RN-partition shows a decreasing trend with c. When c is very small, the number of
reference nodes is very large. So RN-partition may choose suboptimal reference nodes
for distance estimation, which leads to a larger error.

Figure 10 shows that the number of reference nodes |R| decreases with c. When
c < 0.4KM, |R| decreases sharply with c. Figure 11 shows the offline index time of
RN-basic and RN-partition in logarithmic scale. As |R| decreases with c, the index time
of RN-basic also decreases with c. RN-partition reduces the index time of RN-basic by
two orders of magnitude or more when c < 0.2KM but the difference becomes smaller
as c increases. RN-basic cannot finish within 10 hours when c ≤ 0.08KM. On the other
hand, the index time of RN-partition increases moderately when c decreases to 0.2KM
or below.

Comparison with 2RNE and Centrality. We compare our approaches with 2RNE [8]
and Centrality [9] in terms of average error, index time and average query time, as we
vary the number of reference nodes. For our methods, we set CR = 1.0. From Figure 12
we can see that both RN-basic and RN-partition (for most cases) outperform 2RNE and
Centrality by a large margin in terms of average error. Figure 13 shows that RN-partition
reduces the index time of the other three methods by up to two orders of magnitude. The
index time of RN-basic, 2RNE and Centrality increases linearly with |R|, as they all
have the same time complexity of O(|R|n log n), while RN-partition slightly increases
the index time. Figure 14 shows that the query time of RN-partition and 2RNE remain
almost constant, while that of RN-basic and Centrality increase linearly with the number
of reference nodes.

Shortest Path Query Processing. In this experiment, we evaluate the efficiency and
quality of the SPC procedure for computing the shortest paths. For comparison, we
implemented A∗ algorithm using D̂L as the h function, since it provides a lower bound
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Table 2. Comparison between SPC and A∗ on Road Network

Average Error Average Query Time (millisec)
SPC 0.012 0.19
A∗ 0 141.79

distance estimation. We evaluate both methods on the 10, 000 random queries. We set
|R| = 20, 000. Table 2 shows that SPC finds approximate shortest paths with an average
error of 0.012 while A∗ computes the exact shortest paths. But SPC is about 750 times
faster than A∗, since it is a linear algorithm.

5.3 Case Study 2: Social Network

We download the DBLP dataset from http://dblp.uni-trier.de/xml/ and construct an undi-
rected coauthor network, where a node represents an author, an edge represents a coau-
thorship relation between two authors, and all edge weights are set to 1. This graph has
several disconnected components and we choose the largest connected one which has
629, 143 nodes and 4, 763, 500 edges. The vertex degree distribution follows the power
law distribution.

We randomly generate 10, 000 queries and plot the histogram of the shortest path
distance distribution in Figure 5. The average distance between two nodes over the
10, 000 queries is davg = 6.34, which conforms with the famous social networking rule
“six degrees of separation”. Given 2c/davg as a rough estimation of the relative error
bound, if we set c = 3, the relative error bound is 2 × 3/6.34 = 94.64%. Therefore,
we only test our methods given c ∈ {1, 2}, to control the relative error bound in a
reasonably small range. Note that c = 1 defines the coverage of a node based on the
number of its neighbors, i.e., degree; while c = 2 measures the coverage based on the
number of neighbors within two hops.

Parameter Sensitivity Test on CR. We vary the cover ratio CR and compare the
average error, the reference node set size and offline index time by RN-basic and RN-
partition with K = 100, 200, 300, respectively. We fix the radius c = 1.
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Fig. 20. Average Query Time
vs. |R| on Social Network

Figure 15 shows that the average error of RN-basic is in the range of [0.009, 0.04]
and it decreases quickly as CR increases. The average error of RN-partition is slightly
higher than that of RN-basic and it decreases as K increases.

Figure 16 shows the number of reference nodes |R| as we vary CR in the range of
[0, 1.0]. Different from the road network which shows a linear relationship between |R|
and CR, we observe that |R| increases slowly when CR is small, but much faster when
CR is large. This is due to the power law degree distribution in the social network –
we first select the authors with the largest number of collaborators as reference nodes;
but in the later stage, with the decrease of node degrees, we need to use more reference
nodes to achieve the same amount of coverage.

Figure 17 shows the offline index time for RN-basic and RN-partition. We observe
that the index time of RN-basic increases quickly when CR increases. When CR = 0.6,
RN-basic is about 10 times slower than RN-partition. We also observe that the index
time of RN-partition slightly increases with CR when K = 100. This is because a large
portion of time is spent on computing the shortest path distances between all pairs of
reference nodes within the same partition. When CR increases, the number of reference
nodes falling into the same partition is larger, which causes the time increase.

Parameter Sensitivity Test on c. In this experiment, we vary the radius c ∈ {1, 2}
and compare the average error, the reference node set size and offline index time by
RN-basic and RN-partition (K = 300). We fix CR = 0.6. Table 3 shows that the
number of reference nodes is reduced by 100 times when c is increased to 2. As a result,
the offline index time for RN-basic is also reduced by 100 times with the increase of c
because the time complexity is O(|R|n log n). The index time for RN-partition is seven
times smaller than RN-basic when c = 1, but slightly higher when c = 2 due to the
within partition computational overhead. The average error of RN-partition is slightly
higher than that of RN-basic, and the error of both methods increases with c, which is
consistent with the theoretical error bound.

Table 3. Parameter Sensitivity Test on Radius c on Social Network

RN-basic RN-partition
Radius c |R| Average Error Index Time (sec) Average Error Index Time (sec)

1 3653 0.009 3778.17 0.030 485.88
2 31 0.138 30.70 0.144 65.71
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Comparison with 2RNE and Centrality. We compare our approaches with 2RNE
and Centrality in terms of average error, index time and average query time, as we vary
the number of reference nodes. For our methods, we set c = 1. Figure 18 shows that
RN-basic achieves the smallest error, followed by Centrality and RN-partition. 2RNE
performs the worst, because it selects reference nodes uniformly, rather than selecting
reference nodes with large degrees. Figure 19 shows that the index time of RN-partition
remains stable when |R| increases, while the time of the other three methods increases
linearly with |R|. Figure 20 shows that the query time of RN-partition and 2RNE remain
almost constant, while that of RN-basic and Centrality increase linearly with the number
of reference nodes.

Shortest Path Query Processing. We compare SPC with A∗ on shortest path query
on the 10, 000 random queries on the DBLP network. We set |R| = 4, 000. Table 4
shows that SPC finds approximate shortest paths with an average error of 0.008 while
A∗ computes the exact shortest paths. But SPC is about 100, 000 times faster than A∗.

Table 4. Comparison between SPC and A∗ on Social Network

Average Error Average Query Time (millisec)
SPC 0.008 0.046
A∗ 0 4469.28

6 Related Work

Dijkstra’s algorithm [1] computes the single-source shortest path in a graph with non-
negative edge weights with a time complexity of O(|E| + |V | log |V |). The Floyd-
Warshall algorithm [16] computes the shortest paths between all pairs of vertices with
a dynamic programming approach. Its time complexity is O(|V |3). The A∗ search al-
gorithm [2,17] uses some heuristics to direct the search direction.

In the literature, graph embedding techniques have been widely used to estimate the
distance between two nodes in a graph in many applications including road networks
[5,8], social networks and web graphs [7,9,11,12] and the Internet [3,4]. Kriegel et al.
[8] proposes a hierarchical reference node embedding algorithm for shortest distance
estimation. Potamias et al. [9] formulates the reference node selection problem to se-
lecting vertices with high betweenness centrality. [3] proposes an architecture, called
IDMaps which estimates the distance in the Internet and a related work [4] proposes
a Euclidean embedding approach to model the Internet. [6] defines a notion of slack
– a certain fraction of all distances that may be arbitrarily distorted as a performance
guarantee based on randomly selected reference nodes. [10] and its follow up studies
[11,12] provide a relative (2k − 1)-approximate distance estimation with O(kn1+1/k)
memory for any integer k ≥ 1. A limitation of many existing methods is that, the
estimated shortest path distance has no error bound, thus it is hard to guarantee the
estimation quality. In contrast, our approach provides an absolute error bound of the
distance estimation by 2c in RN-basic or by 2(c + dmax) in RN-partition.
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Computing shortest paths and processing k-nearest neighbor queries in spatial net-
works have also received a lot of attention. Papadias et al. [18] propose to use the
Euclidean distance as a lower bound to prune the search space and guide the network
expansion for refinement. [19] uses first order Voronoi diagram to answer KNN queries
in spatial networks. Hu et al. [20] propose an index, called distance signature, which
associates approximate distances from one object to all the other objects in the net-
work, for distance computation and query processing. Samet et al. [21] build a shortest
path quad tree to support k-nearest neighbor queries in spatial networks. [22] proposes
TEDI, an indexing and query processing scheme for the shortest path query based on
tree decomposition.

7 Conclusions

In this paper, we propose a novel coverage-based reference node embedding approach
to answer shortest path and shortest path distance queries with a theoretical error bound.
Our methods achieve very accurate distance estimation on both a road network and a
social network. The RN-basic method provides very accurate distance estimation, while
the RN-partition method reduces the offline embedding time of RN-basic by up to two
orders of magnitude or more with a slightly higher estimation error. In addition, our
methods outperform two state-of-the-art reference node embedding methods in pro-
cessing shortest path distance queries.
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Abstract. In many applications, for example, in data integration sce-
narios, strings must be matched if they are similar. String similarity joins,
which match all pairs of similar strings from two datasets, are of partic-
ular interest and have recently received much attention in the database
research community. Most approaches, however, assume a global similar-
ity threshold; all string pairs that exceed the threshold form a match in
the join result. The global threshold approach has two major problems:
(a) the threshold depends on the (mostly unknown) data distribution,
(b) often there is no single threshold that is good for all string pairs.

In this paper we propose the PG-Join algorithm, a novel string simi-
larity join that requires no configuration and uses an adaptive threshold.
PG-Join computes a so-called proximity graph to derive an individual
threshold for each string. Computing the proximity graph efficiently is
essential for the scalability of PG-Join. To this end we develop a new and
fast algorithm, PG-I, that computes the proximity graph in two steps:
First an efficient approximation is computed, then the approximation
error is fixed incrementally until the adaptive threshold is stable. Our
extensive experiments on real-world and synthetic data show that PG-I
is up to five times faster than the state-of-the-art algorithm and suggest
that PG-Join is a useful and effective join paradigm.

1 Introduction

String data is ubiquitous and represents textual information in relational
databases, Web resources, data archives, etc. Finding similar matches for a given
string has received much attention from different research communities and is
widely applied in data cleaning, approximate query answering, and information
retrieval. String similarity joins, which match all pairs of similar strings from
two datasets, are of particular interest. They are used, for example, to join ta-
bles on string attributes that suffer from misspellings, typographical errors, or
inconsistent coding conventions [1,2,3,4]. In data cleaning scenarios, a similarity
join matches misspellings to their correct counterparts, and the misspelling is
replaced.

An example are tables with a street name attribute. Street names are often
spelled differently in different databases [5]. One database may call a street ‘via

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 274–292, 2011.
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Fig. 1. Proximity Graph for the String ‘paulina’

Maso d. Pieve’, an other database calls the same street ‘via M. della Pieve’. An
exact join fails to match the two streets. The similarity join matches two strings
if they are similar enough.

A key challenge of similarity joins is the choice of a good similarity threshold,
i.e., fixing the degree of similarity that allows a pair of strings to match. Most
approaches require the user to fix a global threshold, and the same threshold
is used for all string pairs. This approach has two major problems: (a) The
threshold depends on the underlying data distribution, which is often unknown
to the user. Further, the numeric value of the threshold depends on the similarity
function in use and may be hard to interpret, e.g., does 0.8 match the user’s
intuition of “similar”? (b) In many cases there is no single threshold that matches
all string pairs that should match. A high similarity threshold may prevent many
good pairs from matching; but if the threshold is decreased to include these pairs,
also many bad pairs are included.

In this paper we introduce a new join paradigm and develop PG-Join, a string
similarity join algorithm that does not require configuration and uses adaptive
thresholds. PG-Join computes proximity graphs to derive an individual threshold
for each string. Proximity graphs where developed by Mazeika and Böhlen [6] to
automatically detect the cluster borders in their GPC clustering algorithm.

The proximity graph is computed for a center string and shows, for each
similarity threshold τ , the number of dataset strings within the threshold from
the center, i.e., the number of strings sharing τ q-grams (substrings of length
q) with the center. Figure 1 shows the proximity graph for the center string
paulina in a dataset with eight strings. The x-axis shows similarity threshold
τ , the y-axis the number of strings within the respective neighborhood. The
neighborhoods are computed from right to left, i.e. from the greatest similarity
threshold to the smallest one. After each neighborhood computation the cluster
center is adjusted.

The adaptive join threshold for a string is derived from its proximity graph.
Intuitively, the threshold is increased until further increasing it does not increase
the number of strings in the neighborhood. More precisely, the threshold is de-
fined by the rightmost endpoint of the longest horizontal line in the proximity
graph. In Figure 1, the threshold is τ = 5 and the center string paulina is matched
to pauline, paulinne, and paulene, but not to the other strings.
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PG-Join computes a proximity graph for each string in both datasets and its
performance critically depends on an efficient proximity graph algorithm. The
original algorithm by Mazeika and Böhlen [6] has been considerably improved in
recent works [7,8]. All these works compute the neighborhoods in the proximity
graph in isolation and do not make use of previously computed results. The
reason is that the center is adjusted after each neighborhood computation such
that the neighborhoods are not directly comparable.

We take a radically different approach. In a first step we compute a fast ap-
proximation of the proximity graph that assumes a constant center. In a second
step we fix the error introduced by our assumption. We show that this can done
incrementally from right to left and we can stop early when the join threshold
is stable. Together with an incremental update of the center this leads to, PG-I,
a highly efficient algorithm for the proximity graph computation. Our experi-
ments show that our algorithm is up to five times faster then the fastest known
algorithms.

Problem definition. Our goal is a new string similarity join that

– is based on q-gram similarity,
– does not require a predefined similarity threshold,
– adapts the threshold dynamically to the underlying data distribution,
– and is computed efficiently.

Contribution Summarizing, we make the following contributions:

– We propose PG-Join, a new string similarity join algorithm. PG-Join is dif-
ferent from other algorithms in that it uses an adaptive similarity threshold
instead of a global threshold, leading to better join results.

– We develop PG-I, an efficient algorithm for computing the proximity graph,
which is used in PG-Join. PG-I also improves the efficiency of other proximity
graph based algorithms, for example, the GPC clustering algorithm [6].

– In our experimental evaluation on synthetic and real-world datasets we eval-
uate the effectiveness of PG-Join with respect to the global threshold join
and show that PG-I is up to five times faster than the fastest known algo-
rithm for proximity graphs.

Overview. The remaining paper is organized as follows. We present background
material in Section 2, introduce PG-Join in Section 3, and present the PG-I
algorithm for efficient computing of the proximity graph in Section 4. We discuss
related work in Section 5. After the experimental evaluation of our solutions in
Section 6 we conclude in Section 7.

2 Background

In this section we give a short introduction to proximity graphs and their use
for detecting cluster borders. In our join algorithm, proximity graphs are used
to compute an adaptive threshold for each string.
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2.1 Proximity Graph

Let s be a string, and the extended string s̄ be s prefixed and suffixed with q−1
characters dummy ‘#’. The profile P (s, q) of s is the bag of all substrings of s̄ of
length q, called q-grams. The overlap of two profiles P (s′, q) and P (s′′, q) is the
cardinality of their intersection, i.e., o(P (s′, q), P (s′′, q)) = |P (s′, q) � P (s′′, q)|.
The q-gram overlap measures the similarity between two strings; the higher the
overlap value, the more similar the strings are.

Let D be a set of strings, and P be a profile. The neighborhood of P in D for
similarity threshold τ (τ -neighborhood) is the subset of all strings of D that have
an overlap of at least τ with P , N(D, P, τ) = {s ∈ D : o(P, P (s, q)) ≥ τ}; we
denote the τ -neighborhood as Nτ if P and D are clear from the context. The cen-
ter Pc(Nτ , q) of the neighborhood Nτ is the profile that consists of the K most
frequent q-grams in Nτ , i.e., in

⊎
s∈Nτ

P (s, q), where K =
∑

s∈Nτ
|P (s, q)|/|Nτ |

is the average profile size in Nτ .
The proximity graph of string s is defined as PG(s, D, q) = ((1, |N1|),

(2, |N2|), . . . , (m, |Nm|)), m = |P (s, q)|, where Nτ is recursively defined as fol-
lows:

Nτ =

{
{s} if τ = |P (s, q)|,
N(D, Pc(Nτ+1, q), τ) ∪Nτ+1 otherwise.

(1)

The proximity graph maps similarity thresholds τ , 1 ≤ τ ≤ |P (s, q)|, to the
size of the respective neighborhood Nτ (Figure 1) and is computed from the
largest to the smallest threshold. The neighborhood corresponding to the great-
est threshold is defined to be {s}. For the remaining thresholds the neighborhood
is computed around the center of the previous neighborhood.

2.2 Automatic Border Detection

Let PG = {(1, |N1|), (2, |N2|), . . . , (m, |Nm|)} be a proximity graph. We de-
fine the horizontal lines in the proximity graph by their endpoints. The set
of all horizontal lines in the proximity graph PG is defined as H(PG) =
{(i, j)| (i, |Ni|), (j, |Nj |) ∈ PG, |Ni| = |Nj |, i ≤ j}. The length of a horizontal
line (i, j) is j − i.

The border, border(PG) = {j| (i, j) ∈ H(PG), ∀(x, y) ∈ H(PG) : y − x ≤
j − i}, is the right endpoint of the rightmost horizontal line of maximal length.
The GPC cluster of s is the neighborhood Nb for the similarity threshold
b = border(PG).

Example 1. Consider the proximity graph presented in Figure 1. For the center
string s =paulina, the cluster border is the rightmost endpoint b = 5 of the
horizontal line (3, 5), and the GPC cluster is C = N5 = {paulina, pauline,
paulinne, paulene}.

3 Proximity Graph Join

In this section we present our string similarity join algorithm, PG-Join, that relies
on a new join paradigm. Instead of joining string pairs based on a user defined
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threshold, an individual threshold is computed for each string. The algorithm
is based on proximity graphs that have successfully been used by the GPC
clustering algorithm to detect cluster borders automatically.

Intuitively, for each string s in one dataset we compute a GPC cluster in
the other dataset with the cluster center s. The strings in the cluster are the
matching partners of s in the similarity join. Thus the cluster border of the GPC
cluster is the individual threshold for string s. This is a major improvement
over a global, user defined threshold, since the threshold adapts to the string
distribution around each string. In the following we formally define the matches
of a string s in a dataset D.

Definition 1 (Similarity Matches of a String). Let s be a string, D a set of
strings, PG(s, D∪{s}) the proximity graph of s in D∪{s}, and Nb the respective
GPC cluster. The similarity matches of string s in the dataset D are defined as
M(s, D) = {(s, m)|m ∈ Nb ∩D}.

For the strings of two datasets D and D′, the similarity matches are not
necessarily symmetric, e.g., a pair (s, s′) ∈ D × D′ might be in M(s, D′) but
not in M(s′, D). The reason is that the proximity graphs are not symmetric.
For GPC clusters this means that the choice of the cluster centers influences the
clustering result. This is, however, not the case for our PG-Join. We compute
the proximity graph for each string in both sets D and D′, leaving no room
for randomness. The join result is the union of all matches in both directions,
leading to a symmetric join operator. Next we formally define the PG-Join.

Definition 2 (PG-Join). The PG-Join M(D, D′) between two sets of strings D
and D′ is defined as the union of the matches of all strings in both directions,

M(D, D′) =
⋃

s∈D

M(s, D′) ∪
⋃

s′∈D′
M−1(s′, D).

The PG-Join between two string sets D and D′ is symmetric modulo the order
of the output pairs, i.e., M(D, D′) = M−1(D′, D). The symmetry of the join is
important to guarantee a unique join result and to allow optimizations when the
join appears in a larger query.

An alternative definition of the PG-Join, that favors precision over recall,
could use the intersection between left and right matches instead of the union.
However, our empirical analysis showed that an intersection based join typically
misses too many correct matches and the small increase in precision is punished
with a large drop in recall, leading to overall worse results.

Algorithm 1 shows the pseudo-code for PG-Join. The input are two sets of
strings D and D′, and the q-gram size q. The output is the join result M(D, D′) ⊆
D×D′. PG-Join computes an inverted list index for each string set. In the two
loops over the string sets D and D′, the matches in the respective other set
are computed (Lines 4-9). For each string s ∈ D, a proximity graph in the
other dataset, D′, is computed such that the resulting GPC cluster consists
of s ∈ D and strings from D′. The center string s is matched to all strings
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Algorithm 1. PG-Join(D,D′,q)
Data: D, D′: sets of strings; q: size of q-grams;
Result: PG-join result M(D, D′) ⊆ D × D′

1 begin
2 IL ← getInvertedIndex(D, q); IL′ ← getInvertedIndex(D′, q);

3 M: empty list of string pairs from D × D′;
4 foreach s ∈ D do
5 C ← PG-I(s, IL′, q); // compute the GPC cluster of s ∈ D in D′

6 if |C| > 1 then M ← M ∪ ({s} × (C \ {s}));
7 foreach s ∈ D′ do
8 C ← PG-I(s, IL, q); // compute the GPC cluster of s ∈ D′ in D
9 if |C| > 1 then M ← M ∪ ((C \ {s}) × {s});

10 return M;

Fig. 2. The PG-Join Algorithm

in its cluster (except itself). The same procedure is symmetrically applied to
each string s′ ∈ D′. The algorithm for the computation of the proximity graphs
and the respective GPC clusters uses the inverted lists and will be discussed in
Section 4.

4 Fast and Incremental Proximity Graph Computation

PG-Join computes a proximity graph for each string in both datasets to derive
the individual thresholds. Fast proximity graph algorithms are the key to an ef-
ficient evaluation of PG-Join. The fastest algorithm in literature is PG-Skip [8].
This algorithm substantially improves over previous approaches by avoiding
neighborhood computations that are not relevant for detecting the threshold.

A key problem of the proximity graph computation is the center that is up-
dated for each neighborhood. This imposes an order on the neighborhood com-
putations (right to left), and a neighborhood can be computed only after all the
neighborhoods to its right are known. This forces proximity graph algorithms to
compute each neighborhood from scratch and limits the optimization options.

Our approach is different from previous attempts. Instead of recomputing each
neighborhood from scratch we proceed in two steps. In the first step we assume
that the center is never updated and compute an approximation for the proximity
graph (Section 4.1). Our assumption allows us to compute the whole proximity
graph by a single scan of the inverted lists that represent the constant center. The
effort of this step is comparable to a single neighborhood computation. In the
second step we fix the error introduced by the approximation (Section 4.2). We
proceed from right to left and carefully update the neighborhoods with respect
to the moving center. The updates are much smaller than the neighborhoods
and can be performed fast. Following the pruning criterion of PG-Skip, we stop
the updates as soon as the cluster border is detected.

The cluster center of a neighborhood Nτ is a function of neighborhood Nτ+1.
All state-of-the-art algorithms compute this function from scratch for each neigh-



280 M. Kazimianec and N. Augsten

borhood. We propose a new algorithm that leverages the deltas that fix the ap-
proximation error to incrementally update the cluster center (Section 4.3). This
leads to a major improvement in the overall runtime. In Section 4.4 we combine
all components into our new and incremental proximity graph algorithm, PG-I.

4.1 Quick and Dirty: A Fast Proximity Graph Approximation

In this section we present a fast algorithm that computes an approximation of
the proximity graph and assumes a constant center. The center for all neighbor-
hood computations is the profile of the string, for which the proximity graph is
computed, i.e., for a proximity graph PG(s, D, q) the center is P (s, q).

The approximation algorithm is based on an inverted q-gram index, IL(D, q),
that indexes all strings s ∈ D. The inverted index is an array of inverted q-gram
lists, L(κ, D) = (s | s ∈ D, κ ∈ P (s, q)), where the list for q-gram κ lists all
string IDs that contain κ. In a preprocessing step we assign consecutive integer
IDs to both q-grams and strings and use them as array indexes.

Example 2. Let D = {s1, s2, . . . , s8} = {paulina, pauline, linda, paulene, irvin,
austen, paulinne, piper}, and q=2. The inverted list index of D consists of 29
inverted lists. The inverted lists of P = {#p, pa, au, ul, li, in, na, a#} are

L(#p, D) = (s1, s2, s4, s7, s8)
L(pa, D) = (s1, s2, s4, s7)
L(au, D) = (s1, s2, s4, s6, s7)
L(ul, D) = (s1, s2, s4, s7)

L(li, D) = (s1, s2, s3, s7)
L(in, D) = (s1, s2, s3, s5, s7)
L(na, D) = (s1)
L(a#, D) = (s1, s3)

The approximation algorithm further uses the following global data structures
to compute the proximity graph of a string s with profile P :

– Proximity Graph PG[1..|P |]: PG[τ ] stores the size of the τ -neighborhood,
i.e., the number of strings that have overlap at least τ with the center P ,
PG[τ ] = |{r | o(P, P (r, q)) ≥ τ}|. The array is initialized with zeros.

– Counter AC[1..|D|]: AC[r] stores the overlap between the profile of string r
and the center P . AC is initialized with zeros.

– Dirty List DL: List of all strings that ever changed their count in the counter
AC. Initialized with an empty list.

We compute the proximity graph for a string s with a single scan of the inverted
lists L(κ, q), κ ∈ P . For each string r on a scanned list, (a) the counter AC[r] is
incremented to c = AC[r] + 1, (b) r is appended to the dirty list DL, and (c)
PG[c] is incremented. When all inverted lists of P are processed, PG stores the
(approximate) proximity graph and N the respective neighborhoods.

The algorithm is fast and computes the approximate proximity graph in a
single scan over the inverted q-gram lists of the center profile. Since the center is
assumed to be constant, the resulting proximity graph is an approximation and
may differ from the exact one.

Example 3. We continue Example 2 and compute the approximate proximity
graph for the center P = {#p, pa, au, ul, li, in, na, a#}. We scan the inverted
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Fig. 3. Proximity Graph for the Constant Center ‘paulina’

lists of P (see Example 2) one by one. For each string on the inverted list, we
increment its count in AC by 1. Then we use the updated count of this string
as the index value in the array PG and also increment by 1 the respective count
in PG. After processing all inverted lists of P , the arrays AC and PG are:

Array of Counts, AC
value: 8 6 3 4 1 1 6 1

id: s1 s2 s3 s4 s5 s6 s7 s8

Proximity Graph, PG
value: 8 5 5 4 3 3 1 1

id: 1 2 3 4 5 6 7 8

The neighborhoods are the following: N8 = N7 = {s1}, N6 = N5 = {s1, s2, s7},
N4 = {s1, s2, s4, s7}, N3 = N2 = {s1, s2, s3, s4, s7}, and N1 = {s1, s2, s3, s4,
s5, s6, s7, s8} = D. The respective proximity graph is illustrated in Figure 3. It
is different from the exact one in Figure 1.

4.2 Cleaning Up: Fixing the Approximation Error

In this section we present the algorithm Update-N that corrects the error that
the approximation algorithm introduces. The approximation algorithm uses the
center of the rightmost neighborhood, e.g., paulina in Figure 3, to compute all
neighborhoods in the proximity graph, whereas the correct center to be used is
the center of the previous neighborhood, e.g., the center of N5 for the computa-
tion of N4 (see Eq. 1).

The approximation algorithm computes the neighborhoods for a (possibly)
wrong center. Update-N fixes this error based on the differences (Δ+ and Δ−)
between the wrong and the correct center, thus avoiding to compute the neigh-
borhood from scratch. This approach is based on the observation that the deltas
are typically much smaller than the center. Often they are empty or contain only
very few q-grams.

Update-N receives the deltas and the threshold τ , for which the neighborhood
must be updated. It traverses the inverted lists of only those q-grams that are in
the deltas. For each string r on a scanned list, we decrease/increase the overlap
AC[r]. Since the overlap of the strings changes, we also update the sizes of the
respective neighborhoods in PG.

The proximity graph is a cumulative function, i.e., the strings that appear
in a neighborhoods of overlap o > τ must also appear in the neighborhood
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Nτ . We prevent the change of the overlap value of a string r that appears in a
neighborhood No by setting its overlap AC[r] to the negative value −o.
In addition to the global data structures defined in Section 4.1 we define:

– Pseudo-Neighborhoods S[1..m], m = |P (s, q)|. For given τ , the list S[τ ] con-
tains those strings of D that satisfy the condition ∀r ∈ S[τ ] : o(P, P (r, q)) =
τ . The neighborhood Nτ can be computed as

⋃m
i=τ S[i].

– Difference Counter AD[1..|D|]. AD[r] stores the change of the overlap be-
tween the string r and the new center P , and is initialized with zeros.

The pseudo code for Update-N is shown in Algorithm 2. For each q-gram κ of
Δ+ and Δ−, Update-N traverses its inverted list and for each string r of the list
either increments (if κ ∈ Δ+) or decrements (if κ ∈ Δ+) the counter AD[r]. The
dirty list DL remembers all strings for which the count has changed. Whenever
the counter AD is incremented or decremented, also the proximity graph PG
is updated respectively. The overlap of r with the center (computed so far) is
o = AC[r]+AD[r]. If AD[r] is incremented, then PG[o] is incremented, otherwise
PG[o + 1] is decremented (Lines 5-11).

After AD and PG are updated, Update-N scans the dirty list DL, i.e., the
strings r for which the overlap has changed, and updates the respective overlap
AC[r] (Lines 12-18). If the overlap AC[r] is greater/equal to τ , the string is
added to the pseudo-neighborhood S[τ ]. The string r is marked as appearing in
the neighborhood Nτ by setting AC[r] = −τ . String r is not added to any S[o],
o > τ , since these neighborhoods have already been corrected in an earlier step.

Finally, Update-N checks the overlap of strings, for which the counts were not
updated but which have τ common q-grams with the correct center. For that
it scans the pseudo-neighborhood S[τ ] and marks the strings with overlap τ by
assigning AC[r] = −τ (Lines 19-20).

Note that it is possible that a string is added more than once to S[τ ]. Further,
since we only add but never delete, S[τ ] may contain strings that no longer
share τ q-grams with the center. We call these strings false-positives. The exact
τ -neighborhood is the union of all strings in the pseudo-neighborhoods S[x],
x ≥ τ , for which AC[x] = −x.

Example 4. Let us update the neighborhood for τ = 5 of the proximity graph
shown in Figure 1 and the dataset D given in Example 2. The current arrays
AC and AD are as follows:

Array of Differences, AD
value: 0 0 0 0 0 0 0 0

id: s1 s2 s3 s4 s5 s6 s7 s8

Array of Counts, AC
value: -8 -6 3 4 1 1 -6 1

id: s1 s2 s3 s4 s5 s6 s7 s8

The lists of S are the following: S[8] = {s1}, S[7] = ∅, S[6] = {s2, s7},
S[5] = ∅, S[4] = {s4}, S[3] = {s3}, S[2] = ∅, S[1] = {s5, s6, s8}.

Let P = {#p, pa, au, ul, li, in, ne, e#}. Let Δ+ = {ne, e#}, and Δ− =
{na, a#}. The according inverted lists are: L(ne) = {s2, s4, s7}, L(e#) = {s2,
s4, s7}, L(na) = {s1}, and L(a#) = {s1, s3}. We traverse the lists and update
the arrays:
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Algorithm 2. Update-N(τ, Δ+, Δ−)
Data: τ : similarity threshold; Δ+, Δ−: diffs between wrong and correct center (q-gram sets);
Result: fixes neighborhood Nτ

1 begin

2 if Δ+ = ∅ ∨ Δ− = ∅ then
3 DL: empty list of string IDs;
4 AD[1..|D|]: difference counter initialized with 0’s;

5 foreach r ∈ IL[κ], κ ∈ Δ+ do
6 if AD[r] = 0 then DL.add(r);
7 AD[r] ← AD[r] + 1; o = AC[r] + AD[r];
8 if AC[r] ≥ 0 ∧ o ≤ τ then PG[o] = PG[o] + 1;

9 foreach r ∈ IL[κ], κ ∈ Δ− do
10 AD[s] ← AD[r] − 1; o = AC[r] + AD[r];
11 if AC[r] ≥ 0 ∧ o < τ then PG[o + 1] = PG[o + 1] − 1;

12 foreach r ∈ DL do
13 if AC[r] ≥ 0 then
14 AC[r] ← AC[r] + AD[r];
15 if AC[r] ≥ τ then
16 S[τ ].add(r); AC[r] ← −τ ;

17 else
18 if AC[r] = 0 then S[AC[r]].add(r);

19 foreach r ∈ S[τ ] do
20 if AC[r] = τ then AC[r] ← −τ ;

Fig. 4. Neighborhood Update

Array of Differences, AD
value: -2 2 -1 2 0 0 2 0

id: s1 s2 s3 s4 s5 s6 s7 s8

Array of Counts, AC
value: -8 -6 2 -5 1 1 -6 1

id: s1 s2 s3 s4 s5 s6 s7 s8

The array AD records the change of the overlap of strings after the lists are
processed. We compute new overlap values for AC by summing up the respective
values in AC and AD. The strings s1, s2, and s7 are marked as strings appearing
in the resulting neighborhood (are assigned with a negative number in AC),
therefore we do not update their counts. The lists of S are the following after
the update: S[8] = {s1}, S[7] = ∅, S[6] = {2, 7}, S[5] = {s4}, S[4] = {s4},
S[3] = {s3}, S[2] = {s3}, S[1] = {s5, s6, s8}. Note that the same string may
appear in different lists. However, this does not affect the final neighborhood
since we can always retrieve the real list ID of the string from the array AC .

4.3 Optimizing for Speed: Incremental Cluster Center Updates

In this section we present Adjust-C, an algorithm that incrementally updates
the cluster centers based on the differences between adjacent neighborhoods.

Remember that the center of a neighborhood Nτ consists of its k most frequent
q-grams, where k is the average size of the string profiles, and the neighborhood
Nτ is computed around the center of Nτ+1 (see Section 2.1). The state-of-the-
art algorithms use a straight forward approach and compute the center of each
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Algorithm 3. Adjust-C(τ,num)
Data: τ : compute center for neighborhood Nτ ; num: number of q-grams in Nτ+1;
Result: heap: center of Nτ ; num: number of q-grams in Nτ

1 begin
2 N+ ← ∅;
3 foreach r ∈ S[τ ] do
4 if AC[r] = −τ then

5 N+ ← N+ ∪ {r};
6 num ← num + |r| + q − 1;

7 k ← num/PG[τ ];
8 kd ← k − |heap|;
9 if kd > 0 then

10 K ← set of kd most frequent q-grams in hist that are not in heap;
11 foreach κ ∈ K do push(heap, (hist[κ], κ), addr);

12 else for 1 to kd do pop(heap, addr);

13 foreach κ ∈ P (s, q), r ∈ N+ do
14 hist[κ] ← hist[κ] + 1; // increment the frequency of κ in the histogram
15 if |heap| < k or hist[κ] > top(heap) then
16 if addr[κ] = −1 then // κ not in the heap
17 push(heap, (hist[κ], κ), addr);
18 else // update frequency of κ in heap
19 update(heap, addr[κ], (hist[κ], κ), addr);

20 if |heap| > k then pop(heap, addr);

21 return (heap, num);

Fig. 5. Incremental Computation of the Neighborhood Center

neighborhood from scratch. Our Adjust-C algorithm uses the new strings N+ =
Nτ \Nτ+1 in Nτ to incrementally update the center of Nτ+1 to Nτ .

The pseudo code of Adjust-C is shown in Algorithm 3. The algorithm proceeds
in two steps. In the first step, the new strings N+ are computed, in the second
step the center is updated with respect to the q-grams in N+.

(1) Computation of the new strings N+. Computing the set difference N+ =
Nτ \Nτ+1 is almost as expensive as computing the neighborhood from scratch.
Fortunately we can do much better. We use the global array S maintained by
Update-N (Section 4.2) to compute N+ efficiently. S[τ ] points to a list of strings
that contains N+ and some false positives. We remove the false positives with a
single scan of S[τ ]. A string is in N+ iff AC[τ ] = −τ (Lines 3-5).

(2) Center Update. We compute the center of Nτ from the center of Nτ+1.
The difference between the two centers results from the q-grams of the strings
in N+. The center update maintains two global data structures, the center heap
and the q-gram histogram. The center heap for neighborhood N is a min-heap of
(count, q-gram)-pairs that stores the k most frequent q-grams, i.e., the q-grams
that belong to the center. The top of the heap is the least frequent q-gram. The
histogram stores the frequency of each q-gram in the neighborhood. Initially,
center heap and histogram store the values for neighborhood Nτ+1.

The size of the center of Nτ may differ from Nτ+1. The number of q-grams in
Nτ is computed by adding the profile sizes of the strings in N+ to the number
of q-grams in Nτ+1. The center size k is the average profile size (Lines 6-7).
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Algorithm 4. PG-I(s, IL,q)
Data: s: center string; IL: inverted index list of q-grams; q: gram size
Result: GPC cluster around the center string s

1 begin
2 initialize global data structures (see Sections 4.1 and 4.2);
3 compute approximate proximity graph (see Section 4.1),
4 lmax ← 0; l ← 0; // lengths of the longest and current horizontal lines
5 m ← |P (s, q)|; // rightmost similarity threshold
6 b ← m; // cluster border
7 for τ = m − 2 downto 1 do
8 P [τ + 1] ← Adjust-C(τ, num);

9 Δ+ ← P [τ + 1] \ P [τ + 2]; Δ− ← P [τ + 2] \ P [τ + 1];

10 if |Δ+| + |Δ−| ≤ |P [τ + 1]| then
11 Update-N(τ, Δ+, Δ−);

12 else compute Nτ from scratch for the center P [τ + 1];
// compute cluster border

13 if PG[τ ] = PG[τ + 1] then l ← l + 1 ; // increase current horizontal line
14 else l ← 0; // start new horizontal line
15 if l > lmax then lmax ← l; b ← τ + l;

// stop proximity graph computation if possible
16 if (b = τ + l ∧ τ − 2 ≤ lmax) ∨ (τ − 1 + l ≤ lmax) then break;

// retrieve cluster for border b
17 C ← ∅;
18 foreach r ∈ S[b] ∪ S[b + 1] ∪ · · · ∪ S[m − 1] do
19 if −b ≥ AC[r] then C ← C ∪ {r};
20 return C;

Fig. 6. Proximity Graph Computation Algorithm

If k is larger than the current heap size, the k− |heap| most frequent q-grams
that are not yet in the center heap are pushed; otherwise |heap|−k elements are
popped. We maintain a auxiliary heap with the most frequent q-grams that are
not in the center heap to avoid a scan of the histogram. The auxiliary heap is of
size max− |heap|, where max is the size of the largest profile in D (Lines 8-12).

Finally we produce the q-grams of all strings in N+ and update the frequencies
in the histogram. If the frequency of a q-gram κ grows larger than the key on
top of the center heap, two cases must be distinguished: (a) if κ is already in
the heap, its frequency is updated, (b) otherwise the top of the heap is replaced
(Lines 13-20). In order to update the frequency of an element in the heap it must
be located. To avoid scanning the heap we maintain an array addr that stores
the position of the q-grams in the center heap and is −1 for all other q-grams.

After all q-grams of N+ are processed, the histogram stores the frequencies
of the q-grams in Nτ and the q-grams of the heap are the center of Nτ .

Example 5. We continue Example 4 and compute the center of the neighborhood
Nτ = 5. Before the update the heap elements are: (3,#p), (3, pa), (3, au), (3, ul),
(3, li), (3, in), (2, ne), (2, e#). S[5] = {s4} = {paulene}, and the center size is
8. After processing the q-grams of s4, the heap elements are: (4,#p), (4, pa),
(4, au), (4, ul), (3, li), (3, in), (3, ne), (3, e#); the center did not change.
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4.4 Putting It All Together: The Incremental Proximity Graph
Algorithm

In this section we combine the algorithms of the previous subsections into our
new proximity graph algorithm PG-I. The input is a string s, the inverted list
index IL of a string set D, and the q-gram size q; the output is the GPC cluster
around s in D (which is used by PG-Join to find matches for the string s).

The approximation algorithm computes all neighborhoods around the center
P (s, q) of the rightmost neighborhood m = |P (s, q)|. This is correct for τ = m−1,
but the other neighborhoods need to be updated to reflect the center changes.

The neighborhoods are updated in the loop in Lines 7-11 (Algorithm 4). In
each iteration with similarity threshold τ the following holds: the neighborhoods
N1, .., Nτ+1 are correct with respect to the center of neighborhood Nτ+2. Since
a neighborhood must be computed around the center of the neighborhood to
its right, Nτ+1 is correct, but Nτ needs to be updated. This is done in three
steps: (1) Compute the center of Nτ+1 using the incremental center update in
Section 4.3, (2) compute the deltas Δ+ and Δ− for the new center, (3) use the
deltas to update the neighborhood Nτ with Update-N of Section 4.2. The delta
Δ+ stores the q-grams that must be added to the center, Δ− the q-grams that
must be removed.

If the added sizes of Δ+ and Δ− are greater than the size of the center of Nτ+1,
the incremental update is not beneficial and we compute the neighborhood Nτ

from scratch (Line 12). This amounts to computing the approximate proximity
graph for the remaining of thresholds (≤ τ) around the center of Nτ+1.

We keep track of the longest horizontal line lmax in the proximity graph and
maintain the current cluster border b. We stop the computation when further
computations can not change the border (Lines 13-16). Intuitively, the algorithm
stops when the remaining neighborhoods cannot result in a horizontal line longer
than lmax. This approach has been shown to be correct and optimal [8].

The GPC cluster for s is the neighborhood Nb in the proximity graph. PG-
I retrieves C = Nb by taking the union of all pseudo-neighborhoods for the
threshold τ ≥ b and filtering false-positives from each list S[τ ] (Lines 18-19).

5 Related Work

Similarity joins have been intensively studied by the database research commu-
nity and are closely related to fuzzy string matching [9], record linkage [10,11],
and near-duplicate detection [12,13]. For strings, a number of similarity mea-
sures based on q-grams [14,15] or edit distances [16] have been proposed that
may be used in the predicate of a similarity join. In our approach, the overlap
between the q-grams of two strings is used as a similarity measure.

Gravano et al. [1] propose a q-gram based string similarity join for an off-
the-shelf databases system that makes use of the capabilities of the underlying
relational engine. In addition, in a filter-and-verify approach the result for the q-
gram based join may be used as candidates for a join based on the edit distance.
The Ed-Join algorithm proposed by Xiao et al. [2] employs additional filters for
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the similarity join with edit distance constraints and improves the performance.
These methods use q-grams as an efficient lower bound for the edit distance,
while our q-gram based PG-Join uses the overlap of q-grams as a similarity mea-
sure. In a recent work, Ribeiro and Härder [17] improve the efficiency of the
candidate generation phase at the cost of the verification phase and show that
they overall outperform approaches that focus on reducing the runtime for the
verification phase. Chaudhuri et al. [3] propose an operator for set similarity
joins, which can also be used for string joins based on q-grams. All these ap-
proaches assume a global, user specified threshold. Our PG-Join algorithm uses
an adaptive threshold which is automatically computed for each string.

Jestes et al. [4] develop a probabilistic string similarity join. They introduce
the probabilistic string-level and character-level models to capture string prob-
abilities and defines the expected edit distance as a similarity measure. In our
work we do not assume that probabilities for strings are given.

PG-Join is based on proximity graphs, which where developed by Mazeika
and Böhlen [6] for the Proximity Graph Cleansing (GPC) algorithm. GPC is
a self-tuning clustering algorithm and uses proximity graphs to automatically
detect cluster borders. Our join algorithm uses the same technique to define an
individual threshold for each string.

The efficient computation of the proximity graph is crucial for both GPC
and our PG-Join algorithm. Mazeika and Böhlen [6] proposed an approximation
algorithm based on sampling. Kazimianec and Augsten [7] presented the first
efficient algorithm, PG-DS, for computing the exact proximity graph. PG-DS
is based on a solution for the τ -occurrence problem developed by Li et al. [18]
and outperforms the sampling technique. A recent development, PG-Skip [8],
prunes unnecessary neighborhood computations to improve the efficiency. All
these algorithms compute the neighborhoods of the proximity graph in isolation.
Our PG-I algorithm uses the results for smaller neighborhoods to compute larger
ones incrementally. The efficiency of PG-I is shown in our experiments.

6 Experiments

In this section we evaluate the effectiveness of our PG-Join on real-world datasets
and compare it to the standard string similarity join that uses a global threshold.
We further evaluate the efficiency of our incremental proximity graph algorithm,
PG-I, and compare it to the fastest state-of-the-art algorithm, PG-Skip [8].

6.1 Experimental Setup

In our experiments we use six real-world datasets with different characteristics:

– Bozen: 1313 street names of Bozen in 403 clusters (4–35 characters; average:
12 characters);1

1 http://www.inf.unibz.it/~augsten/publ/tods10
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Fig. 7. Distribution of String Length for Real-World Datasets

– Oxford: a natural language collection of unique misspellings of the Oxford
text archives with 39030 strings in 6003 clusters (1–18 characters; average:
8 characters);2

– Wikipedia: 4153 unique misspellings found on Wikipedia in 1917 clusters
(1–19 charaters; average: 9 characters);2

– Restaurants: a joint collection of 864 restaurant records from the Fodor’s
and Zagat’s restaurant guides in 752 clusters (48–119 characters; average: 69
characters);3

– DBLP: 10000 article titles (up to 280 characters; average: 61 characters);4

– Delicious: 48397 bookmark tags (10–40 characters; average: 15).5

The string length distribution for all datasets is shown in Figure 7. The first four
datasets are clustered, and the ground truth is known. We produce from each of
these datasets two new datasets, A and B, that we join. The join datasets are
produced by splitting clusters, and the correct join result, Mgt ⊆ A×B, follows
from the clusters in the original dataset, A ∪B. We use the well-established F-
measure [19] to assess the quality of a join result, M, with respect to the ground
truth, Mgt. The F-measure is the harmonic mean of precision and recall, F = 2 ·
precision·recall
precision+recall , where precision = |M∩Mgt|/|M|, and recall = |M∩Mgt|/|Mgt|.
If the clustering of a dataset is unknown, we randomly partition the dataset into
two subsets of similar size for the join experiments.

6.2 Evaluation of Effectiveness

We compare the quality of PG-Join with the standard string similarity join that
uses a global threshold. Both algorithms run on real-world datasets with known
ground truth and different string length distributions. The standard similarity
join uses the normalized q-gram distance [5] between two strings s and r,

d(s, r) =
|P (s, q)|+ |P (r, q)| − 2 · o(P (s, q), P (r, q))
|P (s, q)|+ |P (r, q)| − o(P (s, q), P (r, q))

,

2 http://www.dcs.bbk.ac.uk/~roger/corpora.html
3 http://www.cs.utexas.edu/users/ml/riddle/data.html
4 http://www.informatik.uni-trier.de/~ley/db
5 http://www.delicious.com/
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Fig. 8. Effectiveness: PG-Join vs. Threshold Matching

where o(P (s, q), P (r, q)) is the overlap between the profiles of s and r (see Section
2.1). The normalization accounts for the difference in the string length and
results in values between zero and one. For the standard approach, we observed
better results on our test datasets for the normalized distance rather than for
the non-normalized distance or the q-gram similarity based on overlap.

The standard approach uses a global threshold τ that depends on the dataset,
in particular on the distances between pairs of objects that should match vs. the
distance between objects that should not match. We expect a poor choice of the
threshold to significantly reduce the quality of the join result. PG-Join needs no
configuration parameters and uses an adaptive threshold.

We test the standard join for a large range of thresholds. Figure 8 shows the
results for the short, middle, and long strings of Wikipedia, Bozen, and Restau-
rant, respectively. We use q = 2 for all datasets except Restaurant, for which
q = 3 gives better results since the strings are longer. We compare the standard
join to PG-Join, which does not require a global threshold and is based on the
overlap similarity (see Section 2). The results confirm that the threshold join
performs well only for well chosen thresholds. The values of the good thresholds
vary substantially between the datasets, i.e., it is not straightforward to choose
a good threshold. For Bozen and Restaurant, PG-Join is as good as the thresh-
old matching with the best threshold. For the short strings of Wikipedia, the
threshold approach wins for some thresholds and looses for others.

6.3 Evaluation of Efficiency

We evaluate the efficiency of our proximity graph algorithm, PG-I, and compare
it to the fastest state-of-the-art algorithm, PG-Skip [8].

In our first experiment we plug both algorithms into our PG-Join. We run the
experiment on three real-world datasets with different characteristics: Oxford,
Delicious, and DBLP (see Section 6.1). Figure 9 shows the runtime for subsets
of different size. PG-I outperforms PG-Skip for all datasets. The advantage in-
creases with the average string length in the dataset: On short and medium
length strings (Oxford and Delicious), PG-I is approximately 1.5-2 times faster
than PG-Skip; on the long DBLP paper titles, PG-I is 2.5 times faster.
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Fig. 9. PG-Join Runtime on Real-World Data: PG-I vs. PG-Skip
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Fig. 10. Proximity Graph Computation

In Figure 10 we analyze the impact of the string length on the runtime of the
proximity graph algorithms. We group the strings by their length and measure
the runtime for each string length separately. The graphs show the cumulative
average of the runtime. The cumulative average is more informative than a per-
length average since for many length values no strings or very few strings exist.

PG-I is faster than PG-Skip for most string lengths. The runtime difference
typically grows with the string length, i.e., the advantage of PG-I is greater
for longer strings. For some strings PG-Skip is as fast or slightly faster. The
proximity graphs of these strings have a long horizontal line and the clusters are
very small, i.e., the proximity graph computation is fast for both algorithms. In
this case, the overhead of PG-I for computing an approximation in the first step
does not pay off (cf. the computational time of the approximate proximity graph,
Figure 10(b)-10(c)). On average, PG-I is substantially faster (see Figure 10).

6.4 Scalability on Synthetic Data

We perform a controlled experiment on synthetic data and generate a dataset of
random strings. From each string we produce noisy strings by randomly renam-
ing, inserting, and deleting characters in order to get clusters of similar strings.
We further produce two join datasets, A and B, by splitting each cluster of the
original dataset into two subclusters of equal size.

In Figure 11(a) we vary the length of the strings, while the number of strings
and the size of the clusters remain constant. PG-I outperforms PG-Skip, and
the advantage increases with the string length. For strings of length 20, PG-I is
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Fig. 11. PG-Join Runtime on Synthetic Data: PG-I vs. PG-Skip

two times faster, and more than five times for strings of length 40. PG-I scales
better with the number of strings (Figure 11(b)). The runtime of both methods
changes slightly with the cluster size (Figure 11(c)) since the PG-Join algorithm
computes one proximity graph for each string, and the cluster size has no serious
impact on the runtime. PG-I is faster for all cluster sizes.

6.5 Summary

The quality of the PG-Join is encouraging, in particular on middle-length and
long strings. PG-Join uses an adaptive threshold and needs no data dependent
configuration. This opens a new perspective on similarity joins of datasets, for
which little is known about the data distribution. Our incremental proximity
graph algorithm, PG-I, outperforms the fastest known algorithm, PG-Skip, in
almost all settings. PG-I substantially improves the runtime of our PG-Join.

7 Conclusions

In this work we proposed the PG-Join algorithm, a new string similarity join that
uses so-called proximity graphs to compute an adaptive similarity threshold. We
developed the PG-I algorithm to compute the proximity graph efficiently. PG-I
is up to five times faster than the best proximity graph algorithms in literature.
We evaluated effectiveness and efficiency of our solution on a variety of datasets.
Our experiments suggest that our approach is both useful and scalable.

References

1. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-
vastava, D.: Approximate string joins in a database (almost) for free. In: Proceed-
ings of the 27th Int. Conf. on Very Large Data Bases, VLDB 2001, pp. 491–500.
Morgan Kaufmann Publishers Inc., San Francisco (2001)

2. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. In: Proc. VLDB Endow., vol. 1, pp. 933–944 (2008)

3. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: Proceedings of the 22nd Int. Conf. on Data Engineering, ICDE
2006, p. 5. IEEE Computer Society, Los Alamitos (2006)



292 M. Kazimianec and N. Augsten

4. Jestes, J., Li, F., Yan, Z., Yi, K.: Probabilistic string similarity joins. In: Proceed-
ings of the 2010 Int. Conf. on Management of Data, SIGMOD 2010, pp. 327–338.
ACM, New York (2010)
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Abstract. In recent years, pattern matching has been an important graph anal-
ysis tool in various applications. In previous existing models, each edge in the
query pattern represents the same relationship, e.g., the two endpoint vertices
have to be connected or the distance between them should be within a certain
uniform threshold. However, various real world applications may require edges
representing different relationships or distances, some may be longer while oth-
ers may be shorter. Therefore, we introduce the flexible pattern matching model
where a range [mine, maxe] is associated with an edge e in the query pattern,
which means that the minimum distance between the matched endpoints of e is
in the range of [mine, maxe]. A novel pattern matching algorithm utilizing two
types of indices is devised. In addition to the traditional pattern matching scheme,
a top-k matches generation model is also proposed. Extensive empirical studies
have been conducted to show the effectiveness and efficiency of our indices and
methods.

1 Introduction

Graphs are natural representations of relationships between objects in many domains,
and they are amenable to computational analysis. Accordingly, graph data is increas-
ingly important in a variety of scientific and engineering applications. For example,
graphs are used to represent molecular and biological networks of various kinds, social
networks, computer networks, power grids, and computer software. Many types of com-
putational tools, e.g., subgraph search, frequent subgraph mining are used to analyze the
graph data. The pattern matching query [19,2,13] is one of the most important and pop-
ular analysis tools. In the general format, a pattern Q is a graph with m vertices. An
edge (v1, v2) in Q represents a relationship between v1 and v2. The relationship could
be in various forms, e.g., connected, shortest distance within a parameter δ, etc. Given
a database G and a query pattern Q with m vertices, a match of Q is a subset of m
vertices in G satisfying the following conditions: (1) these m vertices in G have the
same labels as the corresponding vertices in Q, and (2) for any two adjacent vertices vi

and vj in Q, the corresponding vertices ui and uj in G satisfy the relationship specified
on the edge (vi, vj). In previous work, the relationship is uniform across all edges in
Q. For example, in [2], an edge represents that the two endpoint vertices are connected
in G while in [19], an edge indicates that the corresponding endpoint vertices in G are
within a distance of δ and δ is uniform for all edges.

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 293–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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These models have been proven useful in many applications. However, in some ap-
plications, a more general model is needed. The following are two example applications.

In a protein interaction network (PIN), a vertex represents a protein while an edge
between two proteins indicates that two proteins interact with each other. A signaling
traduction pathway may pass a signal from one protein to another via a set of inter-
mediate proteins. The number of intermediate proteins may vary in different species.
Therefore, biologists may be interested in a pattern involving several of important pro-
teins. However, since in different species the intermediate proteins may be different, it
is impossible to specify all proteins. Thus, the query can only be expressed as a graph
where each vertex is a protein and the edge between two proteins indicate the possible
distance between these corresponding proteins in the PIN.

In object-oriented programming, developers and testers handle multiple objects of
the same or different classes. The object dependency graph of a program run, where
each vertex is an object and each edge is an interaction between two objects through
a method call or a field access, helps developers and testers understand the flow of the
program and identify bugs. A software bug may involve several objects. However, since
multiple objects may have similar functions, object invocations may not go through the
same chain of objects. As a result, a bug can be represented as a graph g where each
vertex is an object and an edge between objects v and u represents that there exists a
chain of invocations from v to u with various length. [11].

Based on these examples, we propose a flexible pattern matching framework. In [19],
an edge (v1, v2) in a query pattern represents that the matches of v1 and v2 should be
within the δ distance and this δ is the same for all edges. While in our framework, there
is a range [mine, maxe] associated for each edge e. Different edges may have different
ranges. The range specifies the shortest distance between the matches of the endpoints
(vertices) should be at least mine and at most maxe. To the best of our knowledge, our
flexible patterns is the first attempt to model different relationships in a single pattern,
which previous models cannot represent.

Although existing methods can be modified to find the matches of our flexible pat-
terns, the resulting algorithms are not efficient. The work most related to ours is the
Distance Join (D-Join) [19]. With the D-Join method, k sets of vertices (S1, S2, . . . , Sk)
in G are randomly chosen as anchors. Each vertex u′ in G is mapped into a k dimen-
sional space as a vector. The ith value of the vector is the minimum shortest distance
from u′ to any vertex in Si. By using the triangle inequality, the lower bound of the
shortest distance between any two vertices in G can be estimated based on the values
in the k dimensional space, which is much cheaper than directly computing the shortest
distance in G. Thus, for an edge (v1, v2) in Q with a range [min1,2, max1,2], we can
know whether the shortest distance of u1 (v1’s match) and u2 (v2’s match) is larger
than max1,2. If so, this pair of vertices can be pruned. However, this method suffers
from the following shortcomings. (1) The number of sets of vertices has to be large for
an accurate estimate, which would require a large amount of space and time. (2) It can
only be used for the estimation of the upper bound, but not for the lower bound. (3) The
estimated results may not be tight.

We design a new distance (global) index method, which would give an estimate on
the shortest distance between every pair of vertices. Since the number of vertices in the
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database graph G could be very large, it is practically infeasible to store all pair-wise
distances. In the global index, G is partitioned into m clusters. The shortest distance be-
tween any two clusters and the diameter of each cluster are stored. The shortest distance
between two vertices can be estimated by using the cluster-wise distance and diameters
of clusters.

The global index can give an estimate on the shortest distance between two vertices.
The estimate tends to be more accurate when the two vertices are far away. However, in
real applications, it is much more common for a user to specify a close relationship than
a far-away relationship. For instance, in a biological motif, a user is more interested in
patterns with clustered proteins. Therefore, it is beneficial to design a more accurate
index for close neighbors of a vertex. In this paper, a local index is designed to capture
the surrounding vertices for each vertex in the database graph. For each vertex u, the
vertices and labels within a certain distance are considered as in the neighborhood of
u. The neighborhood of u is divided into ring structures so that it is easy to have an
accurate estimation on the distance of two vertices.

Another issue is that in real applications, people may not be interested to analyze
thousands of matches returned during a query. A top-k matches generation scheme is
designed. The matches are evaluated by some scoring function and during a query, only
k matches with the highest(lowest) scores are returned.

The following is a list of contributions of this work. (1) A flexible pattern matching
model is proposed. (2) An index based pattern matching algorithm is devised, which
includes the following innovations: (i) The query graph Q is preprocessed to obtain
more implicit and tighter relationships on edges. (ii) Two types of indices, the global
and local indices, are constructed for fast match pruning. (3)A top-k matches generation
scheme is proposed to quickly retrieve the top ranked matches. (4) A large number of
real and synthetic data sets are used to show the effectiveness and efficiency of our
model comparing to alternative methods.

The remainder of this paper is organized as follows. The related work is briefly dis-
cussed in Section 2. Section 3 presents some preliminaries and the problem statement.
The global and local indexing structures are presented in Section 4 and 5, respectively.
We present the query matching algorithm and the top-k pattern discovery algorithm in
Section 6 and 7. The empirical studies are presented in Section 8. Final conclusions are
drawn in Section 9.

2 Related Work

Graph database research has attracted a great amount of attention recently. Related work
on graph matching can be divided into the following categories: the subgraph isomor-
phism test, graph and subgraph indexing, approximate graph matching, and graph pat-
tern matching.

The subgraph isomorphism test is an NP-Complete problem and several algorithms
have been proposed over the past few decades. Ullmann’s method [14], probably the
earliest one, uses backtracking to reduce the state search space, which is very ex-
pensive for querying on a large graph. Christmas’s algorithm [3] is efficient but non-
deterministic, thus cannot guarantee to find the correct solution. Cordella [5] proposed



296 W. Jin and J. Yang

a new subgraph isomorphism algorithm for large graphs with the help of a set of feasi-
bility rules during the matching process. All these algorithms perform the query directly
on the database graph without any indexing structure.

Graph indexing is used in many applications, e.g., biological networks, social net-
works, etc. Many index-based graph matching and searching frameworks have been
proposed. Under such frameworks, the database consists of many small or medium
sized graphs, and the goal is to find the set of database graphs that contain or are
contained by the query graph. In some works, substructures are extracted to index the
graphs, e.g., tree-pi [16], tree-Delta [17], g-Index [15]. The authors of Closure-tree [9]
use the closure to represent a set of graphs and then a data structure similar to R-tree
is used to organize these closures. Some other work deals with subgraph indexing on
a very large database graph, e.g. GADDI [16], Graphgrep [8], SPath [18]. The sub-
graph indexing problem is to locate all matches of a query graph. The index usually
captures the information of the database graph in terms of paths, neighborhoods etc.,
and accelerates the query process.

Overall, the above approaches are designed for subgraph search and cannot be di-
rectly applied on the graph pattern query problem. Recently, two schemes were pro-
posed for the graph pattern matching. One is R-Join [2], which handles the connectivity
query on each edge of the graph pattern. The matches to two vertices of an edge in the
query pattern graph must be connected in the database graph. A more general version,
D-Join [19], allows setting a uniform upper bound on every edge of the graph pattern.
The shortest distance of the matches in the database graph must be no larger than the
uniform upper bound. We generalize D-Join further so that users can specify various
degree of relationships of two vertices in the query pattern graph.

3 Preliminaries

In this section, the formal definitions and the problem statement are presented. We in-
vestigate the flexible pattern matching problem on a large undirected and connected
database graph with weighted edges and labeled vertices. Without the loss of general-
ity, it is easy to extend the model and method developed in this work to directed and
unweighted-edge graphs.

Definition 1. A labeled database graph G is a five element tuple G = (VG, EG, ΣVG

, LV , WE) where VG is a set of vertices and EG ⊆ VG × VG is a set of edges. ΣVG

is the set of vertex labels. LV is a labeling function that defines the mapping from
VG → ΣVG and WE maps each edge in EG to a positive weight. For an unweighted
graph, WE(e) ≡ 1 for every edge e.

Definition 2. The query pattern graph Q = (VQ, EQ, LV , Δ), where VQ and EQ are
the vertex and edge sets, LV maps each vertex in VQ to a label, and Δ maps each edge
e into a range [mine, maxe] satisfying 1 ≤ mine ≤ maxe.

Definition 3. Given a database graph G and a query graph Q with vertices v1, v2, ..., vy ,
a match of Q in G is a set of y distinctive vertices u1, u2, ..., uy in G such that:(1)
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Fig. 1. The Problem and Matches

Each vertex vi in Q has the same label as its matched counterpart vertex ui in G, i.e.
LV (vi) = LV (ui);(2) For each edge (vi, vj) in Q, the shortest distance between ui

and uj in G is within the range of Δ(vi, vj) in Q.

For query Q with vertices (v1, v2, v3, v4, v5) in Figure 1(b), there are two matches of
Q: (u1, u4, u5, u7, u6) and (u2, u4, u5, u7, u6) in Figure 1(a).

Problem Statement: Given a large database graph G, and a query graph Q, we want to
efficiently find all the matches of Q in G with the help of the indexed information.

4 Global Index

The global indexing structure is similar to the highway system. The database graph G is
first partitioned into K overlapping clusters. Vertices in a cluster are close to each other
while vertices in different clusters are farther apart. On average, a vertex belongs to A
clusters. The global index consists of two parts. The first part is the highway distance
between any two clusters. There is a center ci in each cluster Ci. The highway distance
between clusters Cx and Cy (Dxy) is the shortest distance between cx and cy . The
second part includes the following information. Let’s assume that a vertex v belongs to
clusters C1, C2, . . . , CA. The shortest distance from v to the centers of these A clusters
are also recorded. The overall space of the global index is O(K2 + A|V |). Since K is
usually in thousands while A is often less than 10, the overall space complexity is well
under control.

With this global index, the shortest distance between any two vertices can be esti-
mated in the following manner. Suppose that vertices vi and vj belong to clusters Cx

and Cy , respectively, then the shortest distance between vi and vj is within interval
[Dxy − d(x, vi) − d(y, vj), Dxy + d(x, vi) + d(y, vj)] where d(x, vi) is the short-
est distance from vi to the center of cluster Cx. The interval can be further refined
(tightened) if vi or vj belongs to multiple clusters. Thus, the lower bound is max∀x,∀y

(Dxy−d(x, vi)−d(y, vj)) and the upper bound is min∀x,∀y (Dxy+d(x, vi), d(y, vj)).
For example, in Figure 2(a), we have four clusters. Four highways connect the clus-

ters and their lengths are shown in the figure. Vertex v1 belongs to C1 and C2, and
v2 belongs to C3 and C4. Suppose d(c1, v1) = 2, d(c2, v1) = 2, d(c4, v2) = 3 and
d(c3, v2) = 2. To estimate the shortest distance between v1 and v2, clusters C1 and
C4 would yield an interval of [4, 14]. We can also obtain three other intervals [3, 11],
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Fig. 2. Global and Local Indices

[3, 13], and [1, 9] from cluster pairs C1 and C3, C2 and C4, and C2 and C3. The final
estimated interval would be [4, 9].

4.1 Graph Partition

Two important parameters control the clustering process: the total number of clusters
K and the average number of A clusters that one vertex belongs to. A variation of the
k-medoids algorithm is devised to partition the database graph. To avoid the expensive
pairwise shortest distance calculation, a heuristic algorithm is employed. K vertices are
randomly generated as seeds and each one is expanded to form a cluster by the best-
first search [6]. Since we know that the expected number of vertices ev in a cluster
is V × A/K , the search terminates until ev vertices are visited. After K clusters are
generated, there may exist some vertices that are not included in any cluster. These
vertices are assigned to A closest seeds. Thus, the real average number of vertices in a
cluster is slightly higher than ev. The seed of a cluster can be considered as the center
of the cluster. The highway distance can be discovered via Dijkstra Algorithm. The
distance from a vertex to a center has also been obtained during the cluster formation
step, thus no more computation is needed for this. Moreover, a table, which maps a
vertex to a list of clusters that the vertex belongs to, is also generated. The formal
description of this index building process is shown in Algorithm 1.

Algorithm 1. Building the Global Index
Input: Database Graph G, K, A
Output: highway distance for each pair of clusters Cx and Cy ; shortest distances between a
vertex to its centers; a table that maps a vertex to a list of clusters

1: randomly generate K vertices as seeds;
2: grow each seed to a cluster by the best-first search until V × A/K vertices are reached;
3: assign the unvisited vertices to its closest seed;
4: calculate Dxy , and the mapping table
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4.2 Analysis of Global Index

Our objective is to produce an accurate estimation, i.e., the width of the estimation
interval is small. For any fixed value A, larger K will generate a larger number of
clusters and lead to smaller clusters. In this case, the distance from a vertex to its center
will be small. As a result, the estimation interval will be tight. However, large K means
large index size and building time. On the other hand, for a given fixed value of K , it
is uncertain whether large A or small A would yield a better estimation. With large A,
a vertex resides in more clusters and there exist multiple highways connecting vertices,
in turn, the distance estimation interval would be tighter. However, in this case, each
cluster is large and the distance from a vertex to its center is also large. Therefore, it
is very difficult to determine whether large or small A will yield a better estimation
interval. This depends on many factors: distance distribution function, connectivity, etc.
Therefore, we empirically analyze the effects of A and K .

A 100k-vertex graph with average degree of 5 is randomly generated by the gen-
graph win [21]. The weight of each edge is randomly assigned to a value between 1
and 1000. After building the global index, we randomly draw 500 pairs of vertices to
estimate their shortest distance. Figure 3 (a) shows the average width of the estimation
interval with various of K and A. It is evident that there is a turning point for the in-
terval width with respect to A, i.e., when A = 3, the estimation interval has a smallest
width. This is mainly due to the fact that when A is too large, each vertex belongs to
too many clusters. On the other hand, if A belongs to too few clusters, the intersection
of interval effects would not take place.

In general, larger K will produce tighter interval width. However, this effect dimin-
ishes when K is larger than a few thousand. On the other hand, the global index building
time is linear with respect to K , as shown in Figure 3 (b). Therefore, in real applica-
tions, A should be set to 3 while and K is set to a few thousand based on available
computation resources.

(a) Average Width (b) Index Building Time

Fig. 3. Effects of parameters on the Global Index

In the global index, the width of the estimation interval on the shortest distance be-
tween u1 and u2 can be considered as the degree of inaccuracy of the estimation, which
is depended on the distance between u1 or u2 to their respective centers and is indepen-
dent on the true shortest distance between u1 and u2 (dist). We use a ratio (width/dist)
to represent the estimation accuracy. If the shortest distance dist is large, the inaccuracy
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ratio is small. On the other hand, the inaccuracy ratio tends to be larger when u1 and u2

is closer. In many applications, users are likely to specify closer relationship. Thus, it is
necessary to create a local index structure for the neighborhood close to a vertex. The
local index structure is described in the next section.

5 Local Index

In this paper, a local index is used to capture the information of the neighborhood around
a vertex u, e.g., which set of vertices and labels are close to u. To match a query vertex v
to a database vertex u, the set of vertex labels in u’s neighborhood should be a superset
of those in v’s neighborhood. Thus, it is beneficial to index the labels first for fast
pruning. After this pruning, a large amount of false positives still remain since multiple
vertices may share the same label. Next, the vertices in the each neighborhood are also
indexed.

When building the local index, two thresholds are employed: Max Dist and
Num Interv. Max Dist is the maximum radius of the neighborhood of u. To ac-
commodate the lower bound of a range, the neighborhood is partitioned into a set of
rings. The parameter Num Interv controls the number of rings in the neighborhood. A
ring is defined by the interval [min dist, max dist], which means that vertices whose
shortest distance to u is within the interval are associated with the ring. For example, if
Max Dist = 1000, and Num Interv = 10, then the ten rings are [1, 100], [101, 200],
. . . , [901, 1000].

Given a database graph G and two thresholds, two types of local indices, vertex
and label indices, are constructed. Specifically, the vertex index on a vertex u is con-
structed as the following. u’s neighborhood is searched up to Max Dist by a shortest
path discovery algorithm, e.g., Dijkstra algorithm [6], and Num Interv buckets are
constructed as the vertex index, each of which is for one of the rings. Vertices whose
shortest distance to u between min dis and max dis are inserted into the bucket as-
sociated with interval [min dis, max dis]. Similarly, for the label index, instead of
vertices, the labels of these vertices are added into the buckets. Clearly, the label in-
dex is smaller than the vertex index since multiple vertices may share the same label.
Figure 2(b) shows the general structure of the indices.

The local index can naturally support the lower bound distance edge query, which
could not be modeled by existing methods. For example, for an edge (vi, vj) in Q with
a range [150, 300], we want to determine whether (ui, uj) in G is a candidate match for
(vi, vj). If Max Dist = 1000 and Num Interv = 10, we can simply search whether
uj is in one of ui’s bucket associated with rings [101, 200] and [201, 300] since these
two rings fully cover the range [150, 300]. If not, then the pair (ui, uj) could not be a
candidate for (vi, vj).

Searching whether or not a vertex or a label exists in a bucket is an essential operation
and could be performed many times during a search. Thus, it is very important that the
operation can be performed efficiently. In this paper, the bloom filter data structure is
used to implement the buckets in the local index. A bloom filter B contains an m-bit
vector and a set of k independent hash functions [1]. It is used to determine whether
an element x is a member of a set X . Initially, all bits in B are 0s. Each of the k hash
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functions maps an element into an integer between 1 and m and then the corresponding
k bits in B are set to 1. To build a bloom filter for the set X , every member of X is
mapped and the corresponding bits are set. Later, to determine whether an element x is
in X , x is mapped and we check whether all the corresponding bits are 1. If at least one
of these bits is 0, then x is not a member of X . Otherwise x is a member of X with a
high confidence. There is no false negative in the bloom filter. However, there could be
false positives, i.e., if all mapped bits of x are 1 in B, then there is still a chance that x
is not a member of X . The false positive rate α depends on m, n (number of elements
in X), and k [12], which is

α ≈ (1− e−kn/m)k (1)

Obviously, larger m or smaller n would decrease the false positive rate. Given m
and n, the value of k that minimizes the probability of false positive is around 0.7m/n.
According to equation (1), to maintain a false positive rate of 1%, m should be set
to approximately 9.6n, which means that it takes 9.6 bits to encode an element. The
number of the hash functions is 7.

The Max Dist and Num Interv are two important parameters that determine the
total size of the indexing structures. Let d and w be the average degree of G and the
average weight on each edge of G. The average radius (in number of edges) of the
indexed region of a vertex is Max Dist

w and the total number of vertices in the region

is d
Max Dist

w . Assume that l bits are used to encode a vertex. l can be determined by
the false positive rate allowed for the bloom filters. Therefore, the total size of vertex
index for one vertex is l × d

Max Dist
w , which means that the total size of vertex index is

|V |× l×d
Max Dist

w where |V | is the number of vertices in G. The size of the label index
is less than that of the vertex index since multiple vertices may have the same label.
Thus, with the available space for indices, we can estimate the value of Max Dist.
With the larger value Num Interv, the neighborhood will be partitioned into more
rings and in turn more accurate results will be found. When the ring width is set to w,
it is equivalent to the width of each ring being 1.

The space complexity of the local index is O(|V (G)| × N(Max Dist)), where
N(Max Dist) is the average number of vertices in a neighborhood of radius
Max Dist.

6 Query Algorithm

In this section, we present the query algorithm. Given a database graph G with the
global and local indices, and a query graph pattern Q, our goal is to retrieve all matches
from G that satisfy the conditions specified in Q according to Definition 3. The query al-
gorithm have the following major steps: 1. Processing the query graph to obtain implicit
relationships among vertices; 2. Generating candidate vertex matches by the local label
index; 3. Generating candidate pattern matches via the local vertex index and global
index; 4. Verifying the candidate matches to eliminate false positives and processing
edges that are not captured by indices.
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6.1 Query Preprocessing

An edge in Q represents a restriction on the shortest distance relationship between
two vertices. Some relationships are explicit, i.e., specified by users. Others are im-
plicit which can be inferred from the explicit relationships. For each vertex v in Q, the
matches for v can be pruned if more restrictions on the relationships between v and
other vertices in Q are present. Therefore, we infer the implicit relationships based on
the triangle inequality.

Q can be considered as a complete graph. Some of edges have user specified ranges
while others are virtual edges which are not specified by the user. Initially, the range
on these virtual edges (v1, v2) are [0,∞] which represents that any distance between
v1 and v2 will satisfy the requirement. Let the range on edges (v1, v2) and (v2, v3)
be r1,2 = [min1, max1] and r2,3 = [min2, max2]. The upper bound of the range
r1,3 on edge (v1, v3) will be max1 + max2. The lower bound of the range on edge
(u, w) is 0 if r1 and r2 overlap. Otherwise, the lower bound is min2−max1 assuming
min2 ≥ max1. For example, if r1 = [30, 50], r2 = [70, 100], then r3 = [20, 150].

The upper bounds on all virtual edges in Q can be obtained by the all-pair shortest
path discovery algorithm, e.g., Floyd-Warshall algorithm [7]. In this algorithm, only the
upper bound of a range is concerned. The initial upper bound on a virtual edge is set
to infinity. After obtaining the upper bounds, we will update the lower bounds in the
following manner. Initially, the lower bound of a virtual edges is 0. The lower bound
updating algorithm is a dynamic programming method similar to that of Floyd-Warshall
algorithm. When updating the lower bound of a range on an edge, we compare the
existing lower bound with all possible lower bounds computed with the above method,
the highest lower bound is retained. The ranges on the real edges may be updated also
if a tighter range can be obtained. The complexity of this step is O(|V (Q)|3) where
|V (Q)| is the number of vertices in Q. Since Q usually consists of a smaller number of
vertices, the query preprocessing step can be performed efficiently. Figure 4 shows an
example of the pre-processing.

It is possible that on some virtual edge, the lower bound of the range is larger than the
upper bound. For example, ranges on (v1, v2), (v2, v3) and (v1, v3) are [10, 20], [35, 40],
and [10, 14], respectively. After applying the range updating algorithm, the lower bound
in the range of the third edge is 15 which is larger than its upper bound. In this case, the
query pattern is invalid and there could not be any match for this pattern. Therefore, we
will not process the query further and report that this query is invalid.

[70,100][30,50]

[40,60] [90,200]

[600,700]

[70,100][30,50]

[40,60]

[600,700]

[90,200]

[1,Inf]
[1,Inf][1,Inf]

[1,Inf]

[70,100][30,50]

[40,60]

[600,700]

[90,200]

[1,110]
[1,810][1,150]

[500,900]

[1,760]

[70,100][30,50]

[40,60]

[600,700]

[90,200]

[1,110]
[490,810][30,150]

[500,900]

[540,760]

(a) Original Q (b) Add virtual edges (c) Update upper bounds (d) Update lower bounds

[500,Inf]
[500,Inf]

Fig. 4. Pre-Processing Query Pattern Graph Q
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6.2 Candidate Vertex Match Generation Based on Local Label Index

For each vertex vi in Q, a candidate set CLi is constructed. CLi contains all vertices
in G that share the same label as vi. These vertices are potential matches of vi. Assume
there is a table that maps vertex labels to vertices. CLi can be obtained by searching
the table.

After obtaining CL for each vertex in Q, these candidate sets can be pruned by the
label index. The neighbors of vi in Q are used to prune CLi. Since Q is a complete
graph after the pre-processing, neighbors of vi contain all other vertices in Q. If the
range rij on edge (vi, vj) is within [0, Max Dist], then the label of vj is used to prune
CLi. For each vertex u ∈ CLi, we find the bloom filters of u that covers the rij . If the
label of vj does not appear in any of these bloom filters, then u cannot be a candidate
for vi and thus it can be removed from CLi. On the other hand, if rij is not within
[0, Max Dist], then there does not exist any set of Bloom filters that can cover rij and
thus the label of vj could not be used to prune CLi. After all vertices in Q are applied to
prune CLi based on the label indices (some vertices may not be useful), the candidate
pattern matches are generated based on the vertex index.

6.3 Candidate Pattern Match Generation via Local Vertex Index and Global
Index

A match M of Q consists of m vertices in G (assuming Q has m vertices). Each vertex
in M is from one of the CL sets. Thus, there are potentially

∏m
1 |CLi| matches if

not considering false positives. Each pair of (ui, uj) where ui ∈ CLi and uj ∈ CLj

matches an edge in Q. The match discovery process can be considered as a repeated
join process.

Each edge in Q is processed as a join. For example, let (v1, v2) be an edge in Q. For
each vertex u1 in CL1, we need to find all vertices u2 in CL2 such that the shortest
distance of u1 and u2 is within the specified range r12 on the edge. This join could be
very expensive if it has been done on G directly. In this work, the global index and local
vertex index will be utilized to reduce the search time. To find the matches of (v1, v2),
for each vertex u1 in CL1, the local vertex index is employed if r12 intersects with
[0, Max Dist]. Let rings B1, B2, . . . , By of u1 be these covering the range r12. We
want to find which vertices in CL2 are in these bloom filters. If there does not exist any
vertex in CL2 that is in one of these filters, then u1 would not be a candidate match
of v1 and can be removed from CL1. Otherwise, let u1

2 ∈ CL2 and u2
2 ∈ CL2 be

the vertices in one of the filters in B1, B2, . . . , By . Then (u1, u
1
2) and (u1, u

2
2) are two

potential matches of (v1, v2).
The local vertex index can only be used for these edges whose ranges intersect with

[1, Max Dist]. For other edges whose range exceeds Max Dist, the global index is
used. When the global index is used, we obtain all clusters contain v1 or v2 by the
mapping table. Then the distance interval between v1 and v2 is estimated through the
method described in the previous section. There are three possible relationships between
the interval reported by the index and the range of an edge. If the interval is contained
within the range, it is definitely a match. If they intersect, there is a potential match.
Otherwise, it is not a match.
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The range of a virtual edge is derived from the ranges on real edges, and thus it is
redundant. However, the virtual edges are still used in this step due to the following
reason. The bloom filters of a local vertex index have false positives. By performing the
joins on the virtual edges, some false positives can be pruned. Since directly calculating
the exact distance between two vertices on a database graph is much more expensive
than checking the bloom filters, the additional computation of performing joins on vir-
tual edges would be beneficial. For example, for a triangle (v1, v2, v3), where (v1, v2),
(v2, v3) are real edges and (v2, v3) is an inferred virtual edge, the false positives pro-
duced by the bloom filters of a match of v2 when checking whether the matches of v3

are qualified may be removed by the join processing of the virtual edge (v1, v3). The
goal of this step is to prune the candidates with low computation costs.

The cost of processing an edge (v1, v2) in Q is O(|CL1| × |CL2|) where CL1 and
CL2 are the set of candidate matches of v1, v2. Thus, the joins are performed in the
order of the processing cost. The edge with the lowest cost is performed first. After
processing edge (v1, v2), a ”link” is used to represent a match. For instance, there is
a match (u1, u2) for (v1, v2), a link is set between u1 and u2. It is possible that an
element in CL1 is linked to multiple elements in CL2, and vice versa. There could
be some unlinked elements u′ in CL1. This means that there does not exist any match
of v2 within r12 of u′ and thus u′ could not be a match of v1. Therefore, all unlinked
elements of CL1 and CL2 are pruned. Then the processing costs of edges adjacent to
v1 and v2 are updated. Next the edge with the new lowest processing cost is chosen and
processed. This procedure terminates when all edges in Q are processed.

For example, suppose Max Dist = 800 and the pre-processed Q is shown in Fig-
ure 5(a). Figure 5(b) presents a partial matching process. A column under vi represents
the candidate set CLi for vi and uik represents the kth vertex in the column under vi.
Suppose edge (v3, v4) has the lowest processing cost and is chosen to be matched first.
u33 (marked as X) will be pruned since no link is attached to it. Next edge (v2, v3) is
processed and links are generated for the matches of this edge. Then the edge (v2, v4) is
processed. u42 cannot be matched to any vertex in CL2 and thus it is removed. This is
due to a false positive reported by the bloom filters associated with u32, and u42 cannot
be matched to any vertex in CL2 during the double check when processing the virtual
edge (v2, v4). This ensures a low false positive rate, which is smaller than the one of
the bloom filter. Figure 5(c) shows the result, a graph R, after processing all the edges
in Figure 5(a).

The candidate pattern matches can be obtained based on the graph R guided by Q
in the following manner. First a candidate set CLi is chosen as the starting point. For
each vertex uij in CLi, a breadth-first traversal is performed via the ”links”. For each
edge adjacent to vi, (vi, vk), in Q, if there does not exist any link between uij to any
vertex in CLk, then uij could not be in any match of Q and the search will start from
a new vertex in CLi. On the other hand, assume there are x links to vertices in CLk.
Each of these links (uij , ukl) corresponds to a match of Q. The search continues on
each matched vertex ukl (through the links) in CLk. This process continues until all
matches of Q are generated.

For instance, assume that we start from CL1. There are two vertices u11 and u12 in
CL1. u11 is chosen to start first. Three edges are adjacent to v1 in Q, which connect v1
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[70,100][30,50]

[40,60]

[600,700]

[90,200]

[1,110]
[30,150]

[540,760]

(a) Q After Removing Edges

v1

v2

v3

v4
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v2 v3 v4
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(b)A Partial Matching Process

v5

(c) After Matching Process (d) Candidate  Pattern Matches

(u11, u21, u31, u41, u51)

(u12, u21, u31, u41, u51)

(u12, u22, u31, u41, u51)[500,900]

Fig. 5. Candidate Pattern Match Generation via Vertex Index

Algorithm 2. Candidate Pattern Match Generation via Vertex Index
Input: the PreProcessed Query Pattern Graph Q
Output: Candidate Pattern Matches

1: Generate candidate sets, each of which corresponds to a vertex in Q;
2: Prune the vertices in each candidate set by label vertex;
3: repeat
4: Choose an edge e from Q with lowest processing cost;
5: Perform a join for e over the two candidate sets, and place a link between any two vertices

that satisfy the range of e according to one vertex’s bloom filters or the highway-like index,
which results a new graph R;

6: Remove any vertex without any link;
7: Update the edge cost;
8: until all edges in Q are processed
9: Traverse the graph R in a breadth first manner to generate the candidate pattern matches

10: return a set of candidate pattern matches

to v2, v3, and v4. Thus, we will check whether u11 has links to CL2, CL3, and CL4. In
this example, u11 has links connecting u11 to u21, u31, and u41, respectively. Then we
check u21, it has links to u11, u31, u41, and u51. Next vertex u31 is checked and so on.
The candidate pattern matches generated from Figure 5(c) are shown in Figure 5(d).
The formal description of the candidate pattern generation algorithm is presented in
Algorithm 2.

6.4 Match Verification

After obtaining the set of candidate pattern matches in the previous step, it is neces-
sary to further verify these candidates due to the following reasons. (1) If the interval
reported by the global index intersects with the range of an edge but is not contained,
it is not guaranteed that the shortest distance falls into the range. (2) There are false
positives in the local label and vertex indices.

Due to the above reasons, a final verification step has to be performed on the database
graph G. Since this step could be expensive, it is only applied on the original real edges
of Q, but not the virtual edges since these virtual edges are inferred from real edges. To
verify a pair of vertices in the candidate patterns from G are indeed a match of an edge,
we compute the shortest distance of the two vertices from a candidate pattern by the
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2-hop labeling technique [4]. Each vertex u in G is assigned with two sets Lin(u) and
Lout(u) that are subsets of V (G). Members of the two sets are called centers and the
shortest distance between the vertex and any center are pre-computed and stored. Then
the shortest distance of u1 and u2 can be obtained by

D(u1, u2) = minw∈Lout(u1)∩Lin(u2) {D(u1, w) + D(w, u2)}
The space complexity is O(|V (G)| |E(G)|1/2) for storing the pre-computed results and
the time complexity is O(|E(G)|1/2) for computing the shortest distance between any
two vertices.

7 Top-k Matches Generation

In many real-world applications, it may not be useful to analyze tens of thousands of
matches. Thus, a top-k matches generation scheme is designed such that matches are
evaluated by a scoring function, and during a query, only k matches with the high-
est(lowest) scores are returned. In this paper, the score of a match is defined as the sum
of the shortest distances on all edges in the match. Without a loss of generality, lower
score matches are preferred since they represent more close relationships. We made the

Algorithm 3. A Top-k Matches Generation Scheme
Input: Database Graph G, k, and the indices
Output: The top-k matches with k lowest scores

1: Traverse the candidate list graph and place qualified links by a depth first search until k
complete matches are reached;

2: insert partial matches to Qh;
3: insert complete matches to Qk;
4: th ← Score(End(Qk));
5: repeat
6: WorkingMatch ← Dequeue(Qh)
7: M ← expand WorkingMatch one more edge;
8: if Score(M) > th then
9: prune M ;

10: end if
11: if M is a complete match then
12: Enqueue(Qk, M);
13: Remove(End(Qk)) and update th;
14: else
15: Enqueue(Qh, M);
16: end if
17: until IsEmpty(Qh) or Score(WorkingMatch) > th
18: return the matches in Qk;

following observation that once k matches are generated, the score of the kth match
can be used as a threshold to prune other partial matches. For example, if the score of
a partial match already exceeds the threshold, then we can simply discard it and do not
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need match it further. Based on the observation, a hybrid searching algorithm to gen-
erate the top-k matches is presented. Two priority queues are maintained. One queue
Qk is for the current top-k matches with size k, the other queue Qh stores the current
partial matches. At the first phase, we traverse the candidate list graph and place links
in a depth first fashion until top-k complete matches are generated and stored in Qk.
The shortest distance of a link can be calculated by the 2-hop labeling technique. The
highest overall distance of any match in Qk is obtained as the threshold th. Next, we
extend partial matches in Qh. The match with the smallest score is extended first and
links are inserted in a breadth first style. New resulting partial matches with a higher
score than th are removed, and others are inserted back to Qh. If a new complete match
M is generated with a score lower than th, then the highest score match in Qk is re-
placed by M and the threshold th is updated. The algorithm terminates when Qh is
empty. The formal description is shown in Algorithm 3.

8 Experimental Results

To empirically evaluate the performance of our flexible graph pattern framework (FGP),
FGP is compared with D-Join, the most related work in this field, on a set of real and
synthetic data. The original D-Join only allows a uniform upper bound assigned on each
edge of the query graph. Thus, we extend the D-Join method to handel both bounds.
There are four innovations in FGP: global index, local index, query preprocessing, and
Top-K query. To analyze each innovation of FGP, four versions of FGP are designed:
FGP-global (only consisting of the global index), FGP-both (consisting of global and
local vertex indices), FGP (the full version containing both indices and the query pre-
processing), and FGP-topK. All the methods are implemented with C++ and running
on a PC with 2.6 GHz dual-core CPUs and 2 GB main memory.

8.1 Experiments on a Real Data Set

A protein interaction network for homo sapiens is used here. Each vertex is a protein
and the label of the vertex is its gene ontology term from [20]. An edge in the graph

Fig. 6. Query Performances on a Protein Interaction Network
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represents an interaction between the two proteins. The graph contains 6410 vertices,
27005 edges, and 632 distinct labels. The average degree of a vertex is 8.4. The weight
on each edge is 1.

The local index of a vertex v includes the neighborhood with a radius of two, which
covers 20% of the entire graph on average. The parameters for the global index are:
K = 600, A = 3. FGP spends 174 seconds to build 1.4MB indices while it takes 238
seconds for D-Join to build a 3.9MB LLR embedding based index. Four known signal
transduction pathways from the KEGG database [10] are used as the query pattern Q.
The pathways are from species other than homo sapiens, e.g., yeast, fly. To obtain a
more flexible query pattern Q, we remove some vertices in Q to represent missing
information and set the range on each edge to [1,4]. The number of edges on the four
pathways are 7, 9, 11, 13. When using top-k matching, k is set to 100. The query times
with respect to the number of edges are shown in Figure 6.

FGP takes about half time of that of D-Join on average, and the acceleration is more
evident when the number of edges of the query pattern graph increases because more
edges means more joins need to be done. The bloom filter based local index can achieve
99% accuracy, when the shortest distance of a pair vertices is within Max Dist, they
can be quickly identified. Otherwise the global index is used to further prune the candi-
date vertices. While D-Join’s pruning power is much lower than that of the FGP method.
Moreover, by using the preprocessing and the label index of the local index, initially the
candidate sets can be shrunk 15% to 30%. The top-k query time grows mildly.

8.2 Experiments on Synthetic Data Sets

The performances of the FGP and D-Join methods are analyzed on a set of randomly
generated connected graphs. The graphs are obtained from a tool called gengraph win
[21]. The labels are randomly generated from 1 to 1000. We use four parameters, the
number of vertices in G, the average degree of G, Max Dist, and Num Interv to
analyze the performance of FGP. The default values for the four parameters are 50K,
7.5, 1000, and 10. Each time one parameter is varied while others remain as the default
values.

Results of the indexing (including index size and building time) are shown in Fig-
ure 7. The space complexity of the local index is O(|V (G)| ×N(Max Dist)), where
N(Max Dist) is the average number of vertices in a neighborhood of radius Max Dist,
depending on the average degree of the graphs. The space for the global index is O(A×
|V |+ K2). In D-Join, each vertex u is mapped into a k-dimensional space, where k is
equal to log2 |V (G)|. Thus, the space complexity of D-Join is O(|V (G)|∗log2 |V (G)|).

When the average degree of the database graph is fixed, the size of the FGP indices
mainly depends on the number of vertices and K . In our configuration, A is set to 3 and
K is set to 1k, 2.5k, 5k, 10k, and 10k on the 5 graphs. As shown in Figure 7(a), because
for each vertex u in G, the number of vertices in Max Dist neighborhood does not
vary significantly, the size and building time of the FGP index (both global and local)
grows approximately linearly with respect to |V (G)|. The size of D-Join’s index grows
much faster. Next the average degree of G is varied from 5 to 20. Figure 7(c) shows
the size of the FGP’s local index increases with the average degree since many more
vertices are within a neighborhood with denser graphs. When the average degree is no
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more than 20, FGP index is smaller than D-Join. Many real world application graphs
fall into this range, e.g., biological networks and system dependence graphs. The index
size of D-Join is not affected by the average degree. Figure 7(e) gives the index size
growing trend with respect to Max Dist. It can be seen that the index size of the FGP
is smaller than that of the D-Join until the local index captures vertices three hops away
on average. Num Interv does not affect the size because when the number of elements
in the bloom filters and the false positive rate are fixed, the total length of the bit vector
of the bloom filters are fixed. Large Num Interv means more bloom filters, each of
which is shorter. Overall, the index size of FGP is more sensitive to the density of the
graph while the one of the D-Join is more affected by the number of vertices in the
graph. Considering the graphs in real applications are usually sparse with small average
degree, the FGP index is more scalable.

For the index construction time, FGP needs to explore the neighborhood of a vertex
and calculate the pairwise shortest distances between each pair of K centers, while
D-Join needs to perform the shortest distance computation for every vertex in G to
log2(|V (G)|) anchors. Thus, the FGP method has a much smaller index construction
time especially when the graph is large and dense as shown in Figure 7 (b), (d). When
we increase Max Dist, more vertices need to be visited, the time grows moderately as
shown in Figure 7 (g). The time is slightly affected by Num Interv since more bloom
filters are created and maintained during the index construction process.

(a) Various |V (G)| (b) Various |V (G)| (c) Various deg(G)

(d) Various deg(G) (e) Various Max Dist (f) Various Max Dist

Fig. 7. Index Construction Comparison on Synthetic Data Sets

To analyze the query time of the FGP methods and the D-Join method, we use a
default query chain graph with five vertices and four edges. The label of a vertex in
the query graph is randomly generated. The default range on each edge is randomly
generated as a subset of [1, 2000].
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(a) Various |V (G)| (b) Various deg(G) (c) Various Max Dist

Fig. 8. Query Time Comparison on Synthetic Data Sets

The scalability is measured with respect to the number of vertices and average degree
of the database graphs and the results are shown in Figure 8 (a) and (b). FGP-Global
outperforms D-Join, especially in large and dense graphs due to the following reasons.
Large and dense graphs lead to a large number of possible matches and also more time
is needed for the verification step. The global index reduces the number of candidate
matches based on the intersection results to avoid the unnecessary and costly verifica-
tion computation while D-Join’s embedding index is not as powerful as FGP’s global
index. The difference between FGP-GLOBAL and FGP shows the effects of the local
index. The local index of FGP ensures an efficient and accurate pruning of unquali-
fied matches within Max Dist. In addition, compared with other curves, FGP-TOPK
grows much more slowly with respect to the size of the graph, which does not discover
all matches.

Next the effects of Max Dist is analyzed and shown in Figure 8 (c). The local
index depends on this parameter. With the growth of Max Dist from 1000 to 1600,
more vertices can be covered by the local index. The acceleration effect of the local
index for FGP is shown as the decrease of the execution time. However, this comes at
the price of the increase of the index size and construction time.

Next we analyze the effect of Num Interv on the query time. With the larger value
of Num Interv, each bloom filter covers shorter intervals and the estimates of the
shortest distance within Max Dist could be more accurate. However, more bloom
filters also need to be checked. Thus, it has a mix effect and our experiments reflect this
fact. Considering the cost of longer index construction time with large Num Interv, a
moderate value of Num Interv would be more appropriate.

Overall, in this set of experiments, the efficiency of our FGP method is demonstrated
with various number of database graphs and query graphs. FGP outperforms the D-Join
method with a wide margin especially with larger and denser graphs due to the pruning
power of the local and global indices.

9 Conclusions

In this work, we presented a flexible pattern matching model. The main differences be-
tween our model and exiting models are that each edge of the query pattern is associated
with a range which specifies the lower and upper bounds of distance on the endpoint
vertices. This gives the flexibility on specifying various relationships on the vertices
in the pattern. To facilitate these pattern matching queries, two types of indices: local
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and global index, are constructed. A novel matching algorithm is devised to efficiently
retrieve the matches for a given pattern with the help of these indices. In addition, we
also provide a top-k matching scheme for the pattern discovery process. The efficiency
of our method has been demonstrated on both real and synthetic data sets.
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Abstract. Due to the wide applications, subgraph queries have attracted lots of
attentions in database community. In this paper, we focus on subgraph queries
over a large graph G. Different from existing feature-based approaches, we pro-
pose a bitmap structure based on edges to index the graph. At run time, we de-
compose Q into a set of adjacent edge pairs (AEP). We develop edge join (EJ)
algorithms to address AEP subqueries. The bitmap index can reduce both I/O and
CPU cost. More importantly, the bitmap index has the linear space complexity in-
stead of the exponential complexity in feature-based approaches, which confirms
its good scalability. Extensive experiments show that our method outperforms
existing ones in both online and offline performances significantly.

1 Introduction

As an alterative to relational database, graph database utilizes graph as the underly-
ing model, which represents and stores information by nodes and connecting edges.
The key feature in graph databases is that query processing is optimized for structural
queries, such as shortest-path queries [4,1,7,3], reachability queries [4,14,12,2], and
subgraph queries [9,15]. In this paper, we focus on subgraph queries. Due to the wide
applications, subgraph queries have attracted lots of attentions in database community
[9,15,6,10,11,19,17]. Generally speaking, there are two scenarios of graph database
models in these literatures. The first scenario is that graph database has a large number
of small-size connected data graphs. Given a query Q, subgraph query retrieves all data
graphs containing Q. In the second scenario, there is a single large graph (may not be
connected) G, such as biological networks. Given a query Q, subgraph query needs
to locate all embeddings of Q in G. For example, given a biological network G and a
structural motif Q, we want to locate all embeddings of Q.

In this paper, we focus on the second scenario, i.e., finding all embeddings of Q over
a single large graph G. The hardness of this problem lives in its exponential search
space. Obviously, it is impossible to employ some subgraph isomorphism algorithm,
such as ULLMANN [13] and VF2 [5] algorithms, to find all embeddings on the fly. In
order to speed up query processing, we need to create indexes for large graphs and rely
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c© Springer-Verlag Berlin Heidelberg 2011



Subgraph Search over Massive Disk Resident Graphs 313

these indexes to reduce the search space. To be an efficient index, its space cost should
be as small as possible.

In this paper, we propose an index that can meet the above requirement. Firstly, we
classify edges according to their endpoint labels. Then, for each cluster, we assign two
bit strings to summarize all edges. Given a large graph G, the space complexity of the
indexing structure is O(|E(G)|), where |E(G)| is the number of edges in G.

At run time, given a query Q, based on the cost model, we first decompose it into a
set of adjacent edge pairs (AEP) subqueries. Then, we develop a kind of edge join algo-
rithms to address AEP subqueries. In this algorithms, the search space can be reduced
significantly with the help of the bitmap index. To summarize, in this work, we have
made the following contributions:

1) We propose a novel bitmap index for a large graph G, which has both linear space
cost and light maintenance overhead.

2) We decompose a subgraph query into a set of AEP subqueries. Based on our pro-
posed bitmap index, we develop an efficient Edge Join (EJ) algorithm to answer AEP
subqueries. We propose a cost model and a histogram-based cost estimation method to
guide query decomposition.

3) Finally, we conduct extensive experiments over both real and synthetic datasets to
evaluate our proposed approaches.

2 Related Work

Recently, subgraph search over a single large graph has began to attract researchers’ at-
tentions, such as GADDI [16], Nova [18] and SPath [17]. All of these methods construct
some indexes to prune the search space of each vertex to reduce the whole search space.
GADDI proposes an index based on neighboring discriminating substructure (NDS)
distances, which needs to count the number of some small discriminating substructures
in the intersecting subgraph of each two vertices. Nova proposes an index named nIn-
dex, which is based on the label distribution and is integrated into a vector domination
model. Both GADDI and Nova are memory-based algorithm, meaning that they cannot
scale to very large graphs. SPath constructs an index by neighborhood signature, which
utilizes the shortest paths within the k-neighborhood subgraph of each vertex. Because
the index is built based on the k-neighborhood subgraph of each vertex, the index build-
ing time is very expensive, especially for a large graph. Distance-join [19] is our earlier
work, in which, we propose a distance join algorithm for pattern match query over a
single large graph. The match definition in [19] is not subgraph isomorphism. Thus, the
method in [19] cannot be used to answer subgraph query.

3 Background

In this section, we review the terminology that we will use in this paper, and formally
define our problem. In this work, we study subgraph search over a large directed vertex-
labeled graph (Definition 1). In the following, unless otherwise specified, the term
“graph” refers to a directed vertex-labeled graph. Note that, it is easy to extend this
method to large “undirected” graph by specifying the edge an unique direction using a
fixed rule.
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Fig. 1. Graph G and Query Q

Definition 1. A directed vertex-labeled graph G is denoted as G={V (G), E(G), L, F},
where (1) V (G) and E(G) are set of vertices and directed edges, respectively; (2) L is a
set of vertex labels, and (3) the labeling function F defines the mapping F : V (G)→ L.
Furthermore, according to the alphabetical order, we can define the total order for all
distinct vertex labels in L.

Figure 1(a) shows a running example of a directed vertex-labeled graph. Note that, the
numbers inside the vertices are vertex IDs that we introduce to simplify description of
the graph; and the letters beside the vertices are vertex labels. An directed edge from v1

to v2 is denoted as −−→v1v2.

Definition 2. A labeled graph G = {V (G), E(G), LV , F} is isomorphic to another
graph G′ = {V ′(G′), E′(G′), L′

V , F ′}, denoted by G ≈ G′, if and only if there exists
a bijection function g : V (G)→ V ′(G′) s.t.

1)∀v ∈ V (G), F (v) = F ′(g(v)); 2)∀v1, v2 ∈ V (G),−−→v1v2 ∈ E ⇔ −−−−−−−→
g(v1)g(v2) ∈ E′

Given two graphs Q and G, Q is subgraph isomorphic to G, denoted as Q ⊆ G, if
Q is isomorphic to at least one subgraph G′ of G, and G′ is a match of Q in G.
Definition 3. (Problem Statement) Given a large data graph G and a query graph Q,
where |V (Q)| � |V (G)|, the problem that we conduct in this paper is defined as to
find all matches of Q in G, where matches are defined in Definition 2.

4 Index

Definition 4. Given vertex labels l1 and l2 in graph G,
F−1(l1) is defined as F−1(l1) = {v|F (v) = l1 ∧ v ∈ V (G)}. Furthermore, we

order all vertices in F−1(l) in the ascending order of the vertex IDs.
F−1(〈l1, l2〉) = {(v1, v2)|F (v1) = l1∧F (v2) = l2∧−−→v1v2 ∈ E(G)} and F−1(〈l1, l2〉)

|l1 = {v1|(v1, v2) ∈ F−1 (〈l1, l2〉)}, where F−1(〈l1, l2〉) denotes all directed edges
with two ending points are l1 and l2, respectively.

Take graph G in Figure 1 for example. F−1(A) = {1, 6, 10} denotes all vertices
whose labels are ‘A’, and F−1(〈A, B〉) = {(6, 9), (10, 5), (1, 11), (10, 4)} denotes
all edges whose labels pair is 〈A, B〉. Obviously, F−1( 〈A, B〉)|A = {1, 6, 10} and
F−1(〈A, B〉)|B = {4, 5, 9, 11}.

In order to index edges of each labels pair, we propose the following indexing struc-
tures.
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Definition 5. Given a labels pair 〈l1, l2〉, F−1(l1) = {v1, ..., vm} and F−1(l2) =
{v′1, ..., v′n}, its start signature and end signature (denoted as SB(〈l1, l2〉) and
EB(〈l1, l2〉)) are defined as follows:

SB(〈l1, l2〉) is a length-m bit-string, denoted as SB(〈l1, l2〉) = [a1, ..., am], where
each bit ai (i = 1, .., m) corresponds to one vertex vi ∈ F−1(l1), and ∀i ∈ [1, m]
ai = 1⇔ vi ∈ F−1(〈l1, l2 〉)|l1 .

EB(〈l1, l2〉) is a length-n bit-string, denoted as EB(〈l1, l2〉) = [b1, ..., bn], where
each bit bi (i = 1, .., n) corresponds to one vertex v′i ∈ F−1(l2), and ∀i ∈ [1, n]
bi = 1⇔ v′i ∈ F−1(〈l1, l2 〉)|l2 .

Let us recall the shaded area corresponding to labels pair 〈A, B〉. Since F−1(A) =
{1, 6, 10} and F−1(B) = {4, 5, 8, 9, 11}, thus, |SB(〈A, B〉)|=3 and |EB(〈A, B〉)|=
5. Since F−1(〈A, B 〉)|A = {1, 6, 10}, thus, SB(〈A, B〉) = [111]. Since F−1(〈A, B
〉)|B = {4, 5, 9, 11}, thus, EB(〈A, B〉) = [11011].

Besides start and end signatures, for each labels pair, we also define start and end
lists as follows.

Definition 6. Given a labels pair 〈l1, l2〉, F−1(l1) = v1, ..., vm and F−1(l2) =
v′1, ..., v

′
n,

its start list is defined as follows:

SL(〈l1, l2〉) = {[i, (−−→vivj)]|−−→vivj ∈ F−1(〈l1, l2〉)}
where [i, (−−→vivj)] denotes one edge −−→vivj ∈ F−1(〈l1, l2〉) and i is called start index,
which denotes the i-th bit that corresponds to vi in SB(〈l1, l2〉).

its end list is defined as follows:

EL(〈l1, l2〉) = {[j, (−−→vivj)]|−−→vivj ∈ F−1(〈l1, l2〉)}
where [j, (−−→vivj)] denotes one edge −−→vivj ∈ F−1(〈l1, l2〉) and j is called end index,
which denotes the j-th bit that corresponds to vj in EB(〈l1, l2〉).

There are four edges
−→
6, 9,

−−→
10, 5,

−−→
1, 11,

−−→
10, 4 with the label labels pair 〈A, B〉. Since

1, 6 and 10 correspond to the 1-st, 2-nd and 3-rd bit in SB(〈A, B〉), respectively,
thus, SL(〈A, B〉) = {[1, (−−→1, 11)], [2, (

−→
6, 9)], [3, (

−−→
10, 5)], [3, (

−−→
10, 4)]}. Analogously, EL

(〈A, B〉) = {[1, (−−→10, 4)], [2, (
−−→
10, 5)], [4, (

−→
6, 9)], [5, (

−−→
1, 11)]}.

Besides, we use SL(〈l1, l2〉)|i = {(vi, vj)|[i,−−→vivj ] ∈ SL(〈l1, l2〉)} and EL(〈l1, l2〉)
|j = {(vi, vj)|[j,−−→vivj ] ∈ EL(〈l1, l2〉)} to denote the projection on the list, where i (j)
denotes the bit position that corresponds to vi (vj) in SB(〈l1, l2〉) (EB(〈l1, l2〉). For

example, SL(〈A , B〉)|3 = {−−→10, 4,
−−→
10, 5}, since vertex 10 corresponds to the 3-rd bit in

SB(〈A, B〉).
As discussed above, for each labels pair 〈l1, l2〉, we assign it four associated data

structures to it, that are start signature, end signature, start list and end list.
In order to access the start and end lists efficiently, we can build clustered B+-trees

over these lists to save I/O cost by avoiding the sequential scan. Besides, in order to
save the space cost of bitmap index, we propose to use the compression version of
bitmap index, i.e., only recording the non-zero bit positions in start and end signatures.
It is straightforward to know there are 2 × |E(G)| non-zero bits in all start and end
signatures in total, and there are 2× |E(G)| edges in all start and end lists in total.
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5 AEP-Based Query Evaluation

In this section, we discuss how to evaluate a subgraph query over a large graph G.
Firstly, we propose an edge join algorithm to answer an adjacent edge pair query (AEP
query, Definition 7) in Section 5.1. Given a general query Q having more than 2 edges,
we decompose Q into a set of AEP queries, and find matches of Q by joining all AEP
query results. In order to optimize query Q, we propose a cost model to guide the
decomposition over Q. The cost model and the general subgraph query algorithm will
be discussed in Section 5.2 and 5.3, respectively.

5.1 Edge Join

Definition 7. Given a query Q having two edges e1 and e2, if e1 is adjacent to e2, Q is
called an adjacent edge pair (AEP for short) query.

Let us recall an AEP query Q1 in Figure 1, which has two adjacent edges e1 = −−→u1u2

and e2 = −−→u2u3 with one common vertex u2. The labels pairs of e1 and e2 are 〈A, B〉
and 〈B, C〉, respectively. Considering labels pair 〈A, B〉, all edges in F−1(〈A, B〉) are
matches of e1, i.e., M(e1) = F−1(〈A, B〉) (defined in Definition 4). Due to the same
reason, M(e2) = F−1(〈B, C〉). The baseline algorithm is to perform a natural join
between M(e1) and M(e2) based on the common column u2. Therefore, the join cost
can be modeled as follows:

Cost = CIO × (|M(e1)|+ |M(e2)|)/Pdisk + Ccpu × (|M(e1)| ∗ |M(e2)|)
= 8× CIO/Pdisk + 16× Ccpu

(1)

where CIO is the average I/O cost for one disk page access, and (|M(e1)|+|M(e2)|)
/Pdisk is the number of disk pages for storing M(e1) and M(e2), and Ccpu is the
average CPU cost.

Algorithm 1. Edge Join (EJ) Algorithm
Require: Input: Given a AEP query p with two adjacent edges e1 = −−→u1u2 and e2 = −−→u2u3.

Their labels pairs are 〈l1, l2〉 and 〈l2, l3〉, respectively. Assume that e1 and e2 are ES joined.
Output: M(e1 ∪ e2).

1: According to HT index, we load EB(〈l1, l2〉) and SB(〈l2, l3〉) into memory.
2: Let b = EB(〈l1, l2〉) ∧ SB(〈l2, l3〉).
3: if b is a bit-string in which all bits are 0 then
4: M(e1 ∪ e2) = φ.
5: else
6: for i=1,...,|b| do
7: if b[i] = 1 then
8: M(e1 ∪ e2) = M(e1 ∪ e2) ∪ (EL(〈l1, l2〉)|i �� SL(〈l2, l3〉)|i)
9: Return M(e1 ∪ e2).

In order to speed up query processing, we need to reduce the cost in Equation 1.
Actually, it is not necessary to join the whole M(e1) and M(e2). Instead, we can reduce



Subgraph Search over Massive Disk Resident Graphs 317

M(e1) and M(e2) to M ′(e1) and M ′(e2), respectively. Then, the matches of (e1 ∪
e2) (denoted as M(e1 ∪ e2)) can be obtained by performing M ′(e1) �� M ′(e2). The
following lemma shows the pruning strategy. We can prove that Lemma 1 satisfies no-
false-negative requirement.

Lemma 1. Given two edges e1 = −−→u1u2 and e2 = −−→u2u3 in query Q, where F (u1) = l1,
F (u2) = l2 and F (u3) = l3, the matches of (e1 ∪ e2) can be found as follows:
1) if EB(〈l1, l2〉) ∧ SB(〈l2, l3〉) is a bit-string in which each bit is 0, then M(e1 ∪
e2) =NULL;
2) if EB(〈l1, l2〉) ∧ SB(〈l2, l3〉) is a bit-string in which the Ii-th bit is 1, i = 1, ..., n,
then M(e1 ∪ e2) can be evaluated by the following equation:

M(e1 ∪ e2) =
⋃i=n

i=1
(EL(〈l1, l2〉)|Ii �� SL(〈l2, l3〉)|Ii)

Based on Lemma 1, we propose Edge Join algorithm in Algorithm 1. For example,
the labels pairs of two adjacent edges in Q1 are 〈A, B〉 and 〈B, C〉. EB(〈A, B〉) ∧
SB(〈B, C〉)= [11010]. The non-zero bit positions are I1 = 1, I2 = 2, I3 = 4. Actually,
these non-zero bit positions correspond to vertices 4, 5, 9 in G. According to Lemma 1,
we can find M(e1 ∪ e2) as follows:

M(e1 ∪ e2) = (EL(〈A, B〉)|1 �� SL(〈B, C〉)|1) ∪ (EL(〈A, B〉)|2 �� SL(〈B, C〉)|2)
∪(EL(〈A, B〉)|4 �� SL(〈B, C〉)|4) = (10, 4) �� (4, 2) ∪ (10, 5) �� (5, 2) ∪ (6, 9) ��
(9, 7) = {(10, 4, 2), (10, 5, 2), (6, 9, 7)}

In this case, the join cost can be evaluated as follows:

Cost(e1, e2) = δ + CIO × (
∑i=n

i=1 (|EL(e1)|Ii |+ |SL(e2)|Ii |)/Pdisk

+Ccpu ×
∑i=n

i=1 (|EL(e1)|Ii | × |SL(e2)|Ii |)
= δ + 6× CIO + 3× Ccpu

(2)

where δ is the average cost for bitwise AND operation, which is small enough to be
neglected. Obviously, the cost in Equation 2 is less than that in Equation 1.

As discussed early, due to the clustered B+-tree over the start and end lists, we can
save I/O cost in the selections over these lists and employ the merge join instead of the
nested loop join.

5.2 Cost Estimation

In this subsection, we propose a method to estimate the join cost in EJ algorithm, which
will be used in Section 5.3 to answer subgraph query. Let us recall the cost model
in Equation 2. It is easy to estimate δ, Pdisk and CIO and CCPU from the collected
statistics of query data. The key issue is how to estimate |EL(e1)|Ii | and |SL(e2)|Ii |.
In order to address this problem, we propose a histogram-based approach. For each
labels pair 〈l1, l2〉, we build two histograms, denoted as SH(〈l1, l2〉) and EH(〈l1, l2〉).
Definition 8. Given a labels pair 〈l1, l2〉, the start histogram for 〈l1, l2〉 is a length-
n number array, denoted as SH(〈l1, l2〉) = [h1, ..., hn], and each number hi (i =
1, ..., n) corresponds to one vertex vi in F−1(l1), and ∀i ∈ [1, n], hi = |SL(〈l1, l2〉)|i|.
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The end histogram for 〈l1, l2〉 is a length-m number array, denoted as EH(〈l1, l2〉) =
[h1, ..., hm], and each bit hi (i = 1, ..., m) corresponds to one vertex vi in F−1(l2), and
∀i ∈ [1, m], hi = |EL(〈l1, l2〉)|i|.

Given two ES join edges e1 = −−→u1u2 and e2 = −−→u2u3. We first compute r =
EB(e1) ∧ SB(e2). For i-th bit in r (i = 1, ..., |r|), if it is a non-zero bit, we can esti-
mate |EL(e1)|i| and |SL(e2)|i| according to the i-th element in EH(e1) and SH(e2),
respectively. Finally, we estimate the join cost by Equation 2.

5.3 AEP-based Query Algorithm
In order to answer a subgraph query Q (|E(Q)| > 2), we first decompose Q into a set
of AEP (Definition 7) queries. Then, for each AEP (ei ∪ ej), we employ EJ algorithm
to find M(ei1 ∪ ei2) and estimate Cost(pi) by Equation 2. For ease of presentation, we
use pi to denote an AEP (ei1 ∪ ei2). Finally, we join all of M(pi) and get the results.

Definition 9. Given a set of AEP, denoted as AS = {pi = (ei1 ∪ ei2)} in Q, we say
that AS covers Q if and only if

⋃ {pi} = Q.
We say that AS is a minimal cover over Q, if and only if AS satisfies the following

two conditions: (1)AS covers Q; and (2)Removing any AEP from AS will lead that AS
cannot cover Q.

Obviously, we only need to decompose Q into a minimal cover and answer the AEP
queries of it. Hence, The cost of answering Q can be evaluated by the sum of all edge
joins. Thus, we use Cost(AS) =

∑
Cost(pi) to estimate the cost for answering Q,

where pi = (ei1 ∪ ei2) ∈ AS.
Given a query Q, there may exist more than one minimal cover over Q. In order to

optimize subgraph query processing, we need to find the optimal minimal cover, which
is the cover that has minimal cost. Unfortunately, finding the optimal minimal cover
over Q is at least NP-hard. We can prove the hardness of finding the optimal decom-
position by reducing the minimal set cover problem (MSC). Practically, we propose an
approximate solution to find the decomposition of query Q.

In our algorithm, we adopt the similar greedy strategy in MSC problem. Initially,
we set Q′ =NULL. Let S be the set of all possible AEPs in query Q. We select one
AEP p with the minimal estimation cost from S. Then, we employ EJ algorithm to
find matches M(p), and insert p into Q′ and remove it from S. Iteratively, we select
one AEP p (in S) with the minimal estimation cost among all AEPs (in S) adjacent
to Q′.We also employ EJ algorithm to find M(p).Then, according to the topological
relationship between Q′ and p, we perform the corresponding natural join, meaning
that we update M(Q′) = M(Q′) �� M(p) and Q′ = Q′ ∪ p. The above steps are
iterated until Q′ = Q.

Now, we illustrate AEP query by Q2 in Figure 1(b). There are three AEP queries
in Q2, i.e., S = {p1, p2, p3}, where p1 = 〈A, B〉 ∧ 〈B, A〉, p2 = 〈A, B〉 ∧ 〈B, C〉,
p3 = 〈B, A〉 ∧ 〈B, C〉. According to cost estimation, we can know Cost(p1) = 4 ×
CIO/Pdisk + 2× CCPU , Cost(p2) = 6× CIO/Pdisk + 3× CCPU , Cost(p3) = 6×
CIO/Pdisk +3×CCPU . Therefore, we first select p1 and evaluate p1 by EJ algorithm,
since Cost(p1) is minimal. The result set is RS(p1) = {(6, 9, 10), (10, 5, 6)}. Then,
S = S − {p1} and Q′ = Q′ + p1. Since Cost(p2) = Cost(p3) and both p2 and p3

are adjacent to Q′, we randomly select p2 and insert p2 into Q′. We also evaluate p2
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by EJ algorithm and obtain RS(p2) = {(6, 9, 7), (10, 5, 2), (10, 4, 2)}. Now, Q′ = Q.
We join RS(p1) and RS(p2) based on the common vertices u1 and u2, i.e., RS(Q) =
RS(p1) ��u1,u2 RS(p2)= {(6, 9, 10, 7), (10, 5, 6, 2)}.

6 Experiments

In this section, we evaluate our method AEP over both synthetic and real data sets, and
compare them with some state-of-the-art algorithms, such as GADDI [16], Nova[18]
and SPath [17]. Our method has been implemented using standard C++. The exper-
iments are conducted on a P4 2.0GHz machine with 2Gbytes RAM running Linux.
Furthermore, GADDI and Nova’s softwares are provided by authors. We use best-effort
re-implementation according to [17]. Since all competitor are designed for undirected
graphs, thus, we extend our method for undirected graphs in the following experiments.
Further details about the extension can be found in our technical report [8].

Data Sets. a) Erdos Renyi Model: This is a classical random graph model. It defines a
random graph as N vertices connected by M edges, chosen randomly from the N(N −
1)/2 possible edges. In experiments, we vary N from 10K to 100K. The default average
degree is set to be 5 and the default number of vertex labels (denoted as |L|) is 250. This
dataset is denoted ER data.

b) Yago dataset is a RDF dataset. We build a RDF graph, in which vertices corre-
sponds to subjects and objects, and edges correspond to properties. For each subject or
object, we use its corresponding class as its vertex label. We ignore the edge labels in
our experiments. There are 368, 587 vertices, 543, 815 edges and 45, 450 vertex labels
in Yago graph.
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Fig. 2. Performance VS. |V (G)|

Experiment 1.(Performance VS. |V (G)|) This experiment is to study the scalability of
our methods with increasing of |V (G)|. In this experiment, we use ER datasets and fix
|V (Q)| (i.e., the number of vertices in query Q) to be 10. Figure 2(a) shows that our
method (AEP) have the linear index building time, which outperforms Nova, GADDI
and SPath by orders of magnitude. Figures 2(b) shows that our method (AEP) have
much smaller index sizes than those in Nova and SPath. Note that, GADDI cannot finish
index building in reasonable time (within 24 hours) when |V (G)| ≥ 60K . Besides, the
GADDI software provided by authors cannot report index size, thus, we ignore the
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comparison with GADDI in index sizes. We also report the average query response
times in Figure 2(c), which show that AEP does not increase greatly when varying
|V (G)| from 10K to 100K, which confirms the good scalability of our method. Note
that, our methods are faster than other methods by at least 2 orders of magnitude in
query processing.

Experiment 2.(Performance versus |V (Q)|) In this experiment, we evaluate the perfor-
mance of our methods with the increasing of query size, i.e.|V (Q)|. In this experiment,
we fix |V (G)| to be 100K. Figure 3(a) shows that query response time are increasing
in all methods when varying |E(Q)| from 10 to 100. Our method (AEP) has the best
performance.

Experiment 3.(Performance over Real Datasets) We also test our methods in a real
dataset Yago. Note that Nova and GADDI cannot work on Yago dataset due to running
out of memory. Therefore, we only compare our method with SPath. Obviously, The
online processing in our method is faster, as shown in 3(b). In Yago dataset, we can
finish index building in less than 3 minutes, which is much faster than that in SPath.

7 Conclusions

In order to address subgraph query over a single large data graph G, in this paper, we
propose a novel bitmap structure to index G. At run time, we propose a subgraph query
algorithm in this paper. Aimed by the bitmap index, we can reduce the search space and
improve the query performance significantly. Extensive experiments over both real and
synthetic data sets confirm that our methods outperforms existing ones in both offline
and online performances by orders of magnitude.
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Abstract. Subgraph indexing, i.e., finding all occurrences of a query graph Q in
a very large connected database graph G, becomes an important research problem
with great practical implications. To the best of our knowledge, most of subgraph
indexing methods focus on the static database graphs. However, in many real ap-
plications, database graphs change over time. In this paper, we propose an indexing
structure, BR-index, for large dynamic graphs. The large database graph is parti-
tioned into a set of overlapping index regions. Features (small subgraphs) are ex-
tracted from these regions and used to index them. The updates toGcan be localized
to a small number of these regions. To further improve the efficiency in updates
and query processing, several novel techniques and data structures are invented,
which include feature lattice, maximal features, and overlapping regions. Experi-
ments show that the BR-index outperforms alternatives in queries and updates.

1 Introduction

With the emergence of applications in social networks, software engineering, and com-
putational biology, more data are represented as graphs. The size of these graphs can be
in excess of millions of vertices and edges. Finding occurrences of a subgraph pattern
in these large graphs becomes an important research problem with great practical appli-
cations. The problem studied in this paper is the subgraph indexing, which is to find all
occurrences of a given query graph in a very large database graph G changing over time.

There is a large body of work in graph indexing and matching areas. Related work in-
cludes subgraph search and matching [1,4,6,7,8,14,15,18,19,21], approximate subgraph
matching, and similar graph search [3,5,9,12,13,16]. However, the amount of work in
subgraph indexing is still relatively small, e.g., Graphgrep[4], TALE[9], GADDI[19],
SAPPER[20], etc. In addition, these work only deals with static database graphs, i.e., the
database graph does not change over time. To the best of our knowledge, there does not
exist any work on subgraph indexing for large evolving graphs. In many applications,
the large database graph changes over time. For example, a social network may consist
of millions of persons (as vertices). Each edge may represent a relationship between
persons. The average degree of a vertex can be in the range of scores. Users may want
to find occurrences of some special pattern (e.g., a student who has a sibling working as
a doctor, etc.) for targeted marketing, homeland security, etc. The social network could
change frequently with new persons and relationships added to the network. Since the
graph is very large, it may not be feasible to rebuild the entire indexing structure once
the network changed. Therefore, it is necessary to devise a dynamic indexing structure
that can be efficiently updated and maintained.

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 322–331, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



BR-Index: An Indexing Structure for Subgraph Matching 323

Since our targeted database graph is very large, the only feasible dynamic indexing
structure should be built on local information. In such a case, during an update only a
small portion of the indexing structure needs to be modified. In this paper, we propose
a partition-based indexing structure. The database graph G is partitioned into a set of
(possibly overlapping) regions. When an edge or vertex is inserted or deleted, only a
small number of these regions needs be modified. In previous research, e.g., [19], it
has been proven that feature based indexing has been very useful. Thus, in this paper,
a set of small features (subgraphs) are extracted from all these regions and are used
to represent them. During the query processing, the features in the query graph Q are
identified and used to find the index regions containing some of these features. Finally
the occurrences of Q are assembled from these index regions.

There exist several challenges on designing such a dynamic indexing structure. First,
a feature may occur on the boundary of two regions and may not be fully contained in
one of the regions, which would lead to missing occurrences. To avoid this problem, the
bounding region property is identified. Second, there are potentially a very large num-
ber of features. We need to search which of these features are in the query graph and
an index region may contain many these features. It is necessary to design an efficient
and systematic method to search these features. In this paper, several novel techniques
are used here, including the concept of maximal features and the feature lattice data
structure The third challenge relies on the selectivity of features. We identify the over-
lapping region property to perform further pruning by using overlapping index regions
for overlapping feature occurrences. Then the selectivity can be improved dramatically.
Overall, the BR-index data structure is proposed for indexing large dynamic graphs,
which utilizes the techniques above.

The remainder of this paper is organized as follows. We present the preliminaries
and properties in Section 2. Section 3 shows the BR-index structure. In Section 4, we
present the algorithms to construct and maintain the BR-index. Section 5 shows the
query/match algorithms with the BR-index. Empirical results are shown in Section 6.
Final conclusions are shown in Section 7.

2 Preliminaries

Definition 1. Given a vertex v in a graph G and an integer k, we define the k-
neighborhood of v, denoted as Nk(G, v), as a set of vertices in G such that Nk(G, v) =
{v′|d(G, v′, v) ≤ k} where d(G, v′, v) is the shortest distance between vertices v′ and
v in graph G.

Definition 2. Given a subset of vertices V1 ⊆ V of graph G, an induced subgraph of
V1 is the subgraph composed of V1 and any edge whose both endpoints belong to V1.
We denote the induce subgraph of V1 as S(V1).

Definition 3. A core region CR is an induced subgraph of a vertex set V ′ in G. A
partition of a graph G is a set of core regions {CR1, CR2,..., CRn}, which have the
vertex set {VCR1, VCR2, . . . , VCRn} respectively such that
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1. V =
⋃n

i=1 VCRi, and
2. ∀i, j ≤ n, i �= j, VCRi

⋂
VCRj = ∅.

Given a core region CR, an k-index region, IRk, is an extension of CR. Let the vertex
set V k

IR be the union of the k-neighborhoods of all vertices in the vertex set, VCR, of the
core region CR, i.e., V k

IR =
⋃

Nk(G, v), ∀v ∈ VCR. The k-index region IRk is equal
to S(V k

IR) which is an induced subgraph of vertex set V k
IR in graph G. k is called the

extension to the core region in the index region.

Problem Statement: Given a large database graph G, we want to build an index struc-
ture of G such that for any query graph Q, the index structure can be used to find all
occurrences of Q in G efficiently. In addition, the indexing structure should be able to
efficiently handle the incremental updates of the graphs, e.g., insertion and deletion of
edges and vertices.

Note that index regions can overlap with other index regions while core regions do
not. To clarify the notation in this paper, the term vertices is used to refer to the vertices
in the database and query graphs while the term nodes is employed to refer to the nodes
in the indexing structure.

Next, we introduce two very important properties used in this paper. To clearly
present the bounding region property, we first define the center of a graph.

Definition 4. The eccentricity of a vertex v, ecc(v), in a connected graph G is the
maximum shortest distance from v to any other vertex. The radius of G, radius(G), is
the minimum eccentricity among all vertices in G. The center of G, center(G), is the
set of vertices with the eccentricity equal to the radius.

The database graph G is partitioned into a set of non-overlapped core regions SCR. The
set of k-index regions SIRk which are obtained by extending from each core region in
SCR, has the bounding region property. Two subgraphs in a graph g are overlapping
if these subgraphs share at least one common vertex in g.

Property 1. For any subgraph g of G (radius(g) ≤ k), there exists at least one index
region IRk

i in any partition of G, such that g is a subgraph of IRk
i .

Property 2. Let o1 and o2 be the overlapping occurrences of features f1 and f2, respec-
tively. For any occurrence o of Q in the database graph G, let IR1 and IR2 be the two
index regions that contain o1 and o2 in o. IR1 and IR2 must overlap in G.

The proofs of these two properties are omitted due to the space limitation.

3 BR-Index Data Structure

Armed with the bounding region property, we invent a novel subgraph indexing struc-
ture, called BR-index. A BR-index consists of three parts: a vertex lookup table, a set
of features F , and a set of index regions I. First, the vertex lookup table is a hash table
that maps a vertex v into two elements: (1) the index region whose core region con-
tains v and (2) the set of index regions that contain v. The vertex and index regions are
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identified by their IDs. The vertex lookup table is used for inserting and removing a
vertex.

Second, a feature is a small subgraph with the radius at most r. Let f1 and f2 be two
distinct features and f2 is a supergraph of f1, then every index region that contains f2

must also contain f1. Thus, there exists a large amount of redundant information. As a
result, in the BR-Index, we use the concept of maximal features. A feature f ∈ F is a
maximal feature of an index region IR if IR contains f and there does not exist another
feature f ′ ∈ F such that f ′ is a proper supergraph of f and IR contains f ′ also.

For a given query graph Q, we need to find all maximal features in F contained in
Q. Thus, the features are organized in a lattice which would provide an efficient way
to find maximal features in Q. Each feature in F is represented as a node. There exists
an edge between two nodes f1 and f2 if f1 is an immediate supergraph of f2. f1 is
an immediate supergraph of f2 if (1) f1 is a proper supergraph of f2 and (2) there does
not exist another feature f3 ∈ F such that f1 ⊃ f3 ⊃ f2. Each feature f is associated
with a list of index region IDs (ir) where these index regions contain f as a maximal
feature. Therefore, if we want to find all index regions that contain the feature f , then
we need to take the union of all ir fields of f and f ’s descendants.

Third, there are five fields in an index region IR : ID, core vertices (cv), index region
subgraph (irs), overlapping index region IDs (oir), and feature IDs (fid). The ID is a
unique integer assigned to each index region. The cv are those vertices in the core region
of IR. The parameters cmax and cmin control the maximum and minimum number of
vertices in a core region. The irs is the induced graph of vertices in the index region of
IR. The adjacency list is used to represent the irs since it is more space compact and
time efficient to manipulate. The oir of IR contains the IDs of these index regions that
are overlapping with IR. The IDs of the maximal features of IR are stored in the fid
field.

4 BR-index Construction and Maintenance

Vertex Insertion. At the beginning, the BR-index BR contains a null graph. Then all
vertices and edges in the database graph are inserted into BR sequentially. When a
vertex v is inserted into BR, we first check whether v already exists. If so, the insertion
is invalid and will be rejected. Otherwise, v is put into a special index region IV which
stores all isolated vertices. The vertex lookup table is updated to reflect the existence of
v. Assume that the label of the newly inserted vertex is lv. Let fv be the feature with
only one vertex of label lv. If fv does not exist in the feature set, it will be created. IV
is added into the set of index regions that contain fv as a maximal feature.

Edge Insertion. Vertex InsertionWhen an edge (u, v) is inserted into BR-index, we
first check whether u and v exist or not. If not, these vertices are inserted first. Next, the
core regions containing u and v can be found via the vertex lookup table. There are four
cases for vertices u and v. (1) Both u and v are isolated vertices. They will be removed
from the IV and put into the core region with the fewest vertices. (2) One vertex is in
IV and the other is in some other core region. Without a loss of generality, let’s assume
that u is in IV while v is in another core region CR. u will be moved to CR and
connected to v. (3) u and v are in the same core region. We need update the irs of all
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index regions containing both u and v to include the newly inserted edge. (4) u and v
are in different core regions. Let IRv and IRu be the index regions that contain v and
u as a core vertex, respectively. u is inserted into IRv while v is inserted into IRu. The
irs field of all index regions containing both u and v needs to be updated to include the
new edge. In addition, IRv and IRu become overlapping so that the oir field of IRv

and IRu needs to be updated. Adding a new edge into an index region IR may lead to
the change of features contained in IR. For each maximal feature f contained in IR,
we search whether any super feature f ′ of f is contained in IR. If so, f is replaced by
f ′ in IR.fid. In the case that the number of vertices in a core region exceeds cmax, a
split of the core region will be invoked and this procedure is described later.

Edge Deletion. To remove an edge (u, v), we first determine the index regions that
contain both vertices u and v, and then the edge (u, v) is removed from the irs of these
index regions. For the index region IRu, v and all its adjacent edges will be removed
from IRu if v is not connected with any other core vertex. In this case, since IRu is no
longer containing v, we need check whether IRu still overlaps with these index regions
containing v. If not, the oir field of the respective index regions will be updated. The
same process will be applied to the index region IRv. After deleting the edge, we need
check whether u or v becomes isolated. If so, they will be moved to the special index
region IV . Deleting an edge may also affect the current maximal features contained in
the index regions. If a maximal feature does not exist in the index region any longer, we
check its ancestors in the feature lattice (sub-features) to determine the new maximal
features associated with these index regions. In the case that the number of vertices in
a core region falls below cmin, a core region merge process will be invoked, which will
be explained below.

Vertex Deletion. If the vertex v is in the IV region, we simply delete it. Otherwise, we
locate all regions that contain v by the lookup table. First all the edges attached to v are
deleted, and next v is deleted. If the number of vertices in the core region CRv falls
below cmin, then CRv will be merged with the the index region that has the highest
connectivity with CRv .

Core Region Merge. The vertices in two core regions are merged into one core region
and then the core region is grown to an index region. If the number of vertices in the
new core region exceeds cmax, we invoke the core region split procedure to produce
two new core regions. Otherwise, the maximal features in the new index region are
rebuilt since we may have larger maximal features. In other words, we extend previous
maximal features in the two original index regions and see if they exist in the new index
region.

Core Region Split. The goal is to split a big core region into two smaller balanced
core regions. First the min-cut algorithm is applied on the set of vertices to create two
partitions. If the partitions are not balanced, then border vertices are moved from the
group with more vertices to the group with less vertices. When the two groups have the
same number of vertices, then they become two core regions. Finally these two core
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regions are extended to form two index regions. The maximal feature sets for these two
new index regions are recomputed.

Feature Maintenance. Features are organized in a lattice. Initially, after adding all
isolated vertices, we have L single-vertex maximal features, where L is the number of
distinct labels. During the updates of G, more index regions are associated with each
feature. Denote X to be the total number of index regions in G. Assuming we have
sufficient working memory to store the feature lattice, if a feature f is associated with
s × X index regions where s is a small fraction, then f needs to be updated, e.g.,
extending f to several super features. (s can be chosen in various manners. Without a
loss of generality, s is set to 0.01 in this paper.)

Since there exists a large number of super features with one more edge for a sub-
feature, we require that features be small graphs of radius one. Assume that f has l
edges. In theory, an l edge feature could have O(l2 + l ∗ |L|) super features with l + 1
edges, where |L| is the number of distinct labels. It is infeasible to generate all these
super features since it could take too much memory. Thus, f is only extended to p super
features with l + 1 edges. The p super features are generated randomly chosen. After
the new features are generated, for each of those new features, we first check whether
it is contained by at least one index region. If not, the new feature is discarded. The
remaining features are added into the lattice. For each index region IR associated with
f , if IR includes one super feature (f ′) of f , then IR is removed from f.ir and added
to f ′.ir. Also IR.fid is updated to reflect that f ′ is the maximal feature instead of f .

5 Subgraph Query

During the query, a set of features in the query graph Q are identified and these fea-
tures are used to find the set of candidate regions that may contain a partial occurrence
(match) of Q. These partial occurrences are finally assembled to obtain the matches of
Q. The query process consists of three phases: (1) feature extraction, (2) index region
pruning, and (3) occurrence discovery.

We assume that there exists a lexicographical order among all vertex labels. The
search starts with the highest lexicographical order label in Q. Let’s assume that l is
such a label. In the feature set F , the feature f of a single vertex with label l is located.
Next, a depth-first search process is used to find the maximal features as a subgraph
of Q by traversing the feature lattice from f . Suppose that f1 is a maximal feature of
Q. The index regions of G containing occurrences of f1 is the union of ir fields of f1

and f1’s descendants in the feature lattice. The process terminates when all maximum
features containing f have been identified. Next we start searching the maximal features
involving the second highest lexicographical order label l′ and so on. The entire feature
extraction procedure terminates after we have found all maximal features starting from
all vertex labels in Q. By the end of this phase, we have the index regions containing
all occurrences of maximal features in Q.

Based on the overlapping region property, the index regions can be pruned in the
following manner. Let oij be the jth occurrence of feature i in Q. First, a graph repre-
senting the overlapping occurrences of features is constructed for all maximal features
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of Q. Each occurrence is a node in the graph and there is an edge between two occur-
rences if they share at least one vertex in Q. At the beginning, each node oij in the
overlapping graph is associated with a set of index regions containing the maximal fea-
ture fi. Next, the index regions associated on each node in the overlapping graph are
pruned. We start from the node oi1 with the least number of index regions. A depth-
first traversal is invoked to prune the index regions on the two ending points of an edge.
When processing an edge (oik, ojl), the set of index regions on ojl (Ijl) is used to prune
the index regions associated with oik (Iik). For each index region IR in Iik , we check
whether one of IR’s overlapping regions is in Ijl. If so, IR can remain in Iik . Oth-
erwise, IR is removed from Iik. The same process is performed on all index regions
in Iik .

In the occurrence discovery step, we assemble the occurrences of the maximal fea-
tures in index regions to form the matches of the query graph. A depth first traversal is
performed on the overlapping features graph staring from the node with the least num-
ber of index regions. A match of Q is generated as the following. The first step is to
locate the occurrence of a maximal feature f in an index region IR, this can be done
very efficiently since the feature is a small graph of radius one. It is possible that f may
have multiple occurrences in IR, and these occurrences will be processed sequentially.
After obtaining one occurrence of f in IR, we find the matches of f1 (which is adjacent
to f in the overlapping feature graph) in IR1 (where IR is overlapping with IR), and
furthermore, verify the overlapping vertex (vertices) in G between the occurrences of f
and f1. This process continues until all the maximal features in the overlapping feature
graph are matched and connected. It is possible that some vertices in Q are not covered
by the maximal features, and thus not matched. The final step is to extend the current
occurrences of all the features to these uncovered vertices.

6 Experimental Results

In this section, we empirically analyze the performance of the BR-index. Since there
are several innovations of BR-index, several versions of BR-index are implemented to
show the effects of each individual innovation. BR-index is the full version. BR-index1
only uses index regions: G is partitioned into a set of index regions and each region
is indexed by a set of features. BR-index2 uses index regions and the overlapping re-
gion information for better pruning power, but without the maximal feature technique,
i.e. in the feature lattice, each feature is associated with IDs of all index regions that
contain this feature, rather than IDs of index regions that contain this feature as a maxi-
mal feature. We compare various versions of BR-index with Closure-Tree (C-tree) [5].
Although TALE [9], GADDI [19] and GraphGrep [4] can also be used for subgraph in-
dexing, they are not designed to handle very large graphs, and TALE is an approximate
subgraph indexing method which may not find all occurrences of a subgraph. C-tree is
a graph indexing technique to find all graphs that contain a given query subgraph. It
introduces the concept of graph closure which is a structural union of the underlying
database graphs. It organizes graphs hierarchically to build a C-tree where each node
summarizes its descendants by a graph closure. In this experiment, C-tree is modified
for subgraph indexing. As a result, a leaf node of C-tree is an index region. BR-index
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and C-tree are implemented with C++. All experiments are conducted on a Dell Pow-
erEdge 2950, with two 3.33GHZ quad-core CPUs and 32GB main memory, using Linux
2.6.18.

We use the query time, index construction time, index update time and index size to
empirically analyze these methods. After building the index, we add 500 edges to the
graph and then randomly delete 500 edges. The processing time is recorded as the index
update time. The query graphs are obtained directly from the database graph.

6.1 Parameter Settings

There are two important parameters for BR-index: the maximum number of vertices in
a core region Cmax and the branch factor of a node p in the feature lattice. We test BR-
index with various Cmax and p against query time and index update time. With higher
Cmax, less core regions will be formed but each index regions will be larger. Less index
regions lead to faster traversal of BR-index while larger index regions equate to a longer
time to match a feature. Large p results in more features included in the lattice, which
will accelerate the query in general. However, it comes at the price of larger space for
the lattice and longer index construction time and update time because at each level of
the lattice, more features need to be tested.

Figure 1 (a) and (b) show the index update time and query time with various Cmax

and p on the flickr graph. When varying Cmax (p = 20), 30 seems to be a break point
since after it, both update and query time grows dramatically. For p (Cmax = 30), the
query time decrease slowly since although the query graph may contain more features,
essentially, the determining factor is the maximal feature. While the index update time
grows quickly after 30. Therefore, in all experiments, Cmax is set to 30 and p to 25. To
improve the disk utilization, Cmin is set to half of Cmax, which is 15.

6.2 Experiment on a Real Data Set

The real-world graph is generated from user account information obtained by crawling
the flickr website. A user account denotes a vertex, and there is an edge between two
user accounts if they have added each other as friends. The flickr graph has 1,286,641
vertices and the average degree is 25.1. The label for each vertex is randomly assigned
between 1 to 1000.

(a) Various Cmax (b) Various p (c) Various E(Q)

Fig. 1. Experiments on a Real Data Set



330 J. Yang and W. Jin

Table 1. Index Comparisons on flickr

Construction Time(s) Update Time(s) Size(GB)
BR-index 7310 22 2.5

BR-index1 6782 12 2.2
BR-index2 18210 77 2.9

C-tree 8235 112 2.7

Table 1 shows the index construction time, update time, and size of BR-index and C-
tree. BR-index has a similar size to C-tree but has a shorter index construction time. The
main computation of BR-index are graph partition, feature generation and matching.
C-tree needs to compute the graph closures for its internal nodes, which is a very time-
consuming process. The index update time of BR-index is much smaller than C-tree.
For BR-index, the updates are only applied on a set of index regions, which are small
graphs. But C-tree has to recompute the graph closure from leaf nodes along the path to
the root. BR-index1 is a simplified version of BR-index without the overlapping region
information. Thus, it has the smallest index construction time, update time, and size.
BR-index2, without the maximal feature innovation, needs to maintain every feature
and its associated index regions, and vice versa. Thus, it has the longest index size,
construction time, and update time.

Figure 1 (c) shows the query time of different versions of BR-index against C-Tree
on the flickr graph. Q is extracted from the flickr graph. We vary the size of Q in terms
of vertices. The average degree of Q is around 3.5. The query time of all methods in-
creases as the size of Q grows since large query graphs usually contain more features,
which need to be connected to form final matches of Q. Overall, BR-index outperforms
C-tree due to the following reasons. Most of the query time is spent on the final ver-
ification by extending matches of the connected features to the occurrences of Q. By
using the overlapping region property, BR-index only needs to load the overlapping in-
dex regions. C-tree, however, employs a Pseudo Subgraph Isomorphism test to traverse
the database graph, which is much more time consuming.

7 Conclusions

In this paper, we addressed the problem of indexing large dynamic graphs. The large
database graph is partitioned to a set of overlapping index regions. Features are ex-
tracted from these regions. A feature lattice is constructed to maintain and search these
features. By utilizing the maximal feature mechanism, the space for storing the fea-
tures can be reduced. When processing query graph Q, the set of maximal features in Q
are extracted, and the index regions containing these features are identified. A feature
occurrence/overlapping graph is constructed to capture the overlap of these features
in Q. The index regions are pruned based on these overlapping relationship. Finally,
the matches of Q are located. According to our knowledge, this is the first attempt on
indexing a very large dynamic graph.
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Abstract. The problem of efficient and high-quality clustering of extreme scale
datasets with complex clustering structures continues to be one of the most chal-
lenging data analysis problems. An innovate use of data cloud would provide
unique opportunity to address this challenge. In this paper, we propose the Cloud-
Vista framework to address (1) the problems caused by using sampling in the
existing approaches and (2) the problems with the latency caused by cloud-side
processing on interactive cluster visualization. The CloudVista framework aims
to explore the entire large data stored in the cloud with the help of the data struc-
ture visual frame and the previously developed VISTA visualization model. The
latency of processing large data is addressed by the RandGen algorithm that gen-
erates a series of related visual frames in the cloud without user’s intervention,
and a hierarchical exploration model supported by cloud-side subset processing.
Experimental study shows this framework is effective and efficient for visually
exploring clustering structures for extreme scale datasets stored in the cloud.

1 Introduction

With continued advances in communication network technology and sensing technol-
ogy, there is an astounding growth in the amount of data produced and made available
throughout cyberspace. Cloud computing, the notion of outsourcing hardware and soft-
ware to Internet service providers through large-scale storage and computing clusters,
is emerging as a dominating technology and an economical way to host and analyze
massive data sets. Data clouds, consisting of hundreds or thousands of cheap multi-core
PCs and disks, are available for rent at low cost (e.g., Amazon EC2 and S3 services).
Powered with distributed file systems, e.g., hadoop distributed file system [26], and
MapReduce programming model [7], clouds can provide equivalent or better perfor-
mance than traditional supercomputing environments for data intensive computing.

Meanwhile, with the growth of data volume, large datasets1 will often be generated,
stored, and processed in the cloud. For instance, Facebook stores and processes user
activity logs in hadoop clusters [24]; Yahoo! used hadoop clusters to process web doc-
uments and generate web graphs. To explore such large datasets, we have to develop

1 The concept of “large data” keeps evolving. with existing scales of data, roughly, we consider
< 103 records to be small, 103 − 106 to be medium, 106 − 109 to be large, and > 109 to be
extreme scale.

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 332–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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novel techniques that utilize the cloud infrastructure and its parallel processing power.
In this paper we investigate the problem of large-scale data clustering analysis and vi-
sualization through innovative use of the cloud.

1.1 Challenges with Clustering Extreme Scale Data

A clustering algorithm tries to partition the records into groups with certain similarity
measure [15]. While a dataset can be large in terms of the number of dimensions (di-
mensionality), the number of records, or both, a “large” web-scale data usually refer
to those having multi-millions, or even billions of records. For example, one-day web
search clickthrough log for a major commercial web search engine in US can have tens
of millions of records. Due to the large volume of data, typical analysis methods are
limited to simple statistics based on linear scans. When high-level analysis methods
such as clustering are applied, the traditional approaches have to use data reduction
methods.

Problems with Sampling
The three-phase framework, sampling/summarization→ data analysis on sample data
→ postprocessing/validation is often applied to clustering large data in the single work-
station environment (as shown in Figure 1).

Sampling/
summarization

Clustering
Cluster

Evaluation

Iterative Cluster Analysis

Labeling
entire dataset

Anomalies

Fig. 1. Three phases for cluster analysis of large datasets

This framework can temporarily address some problems caused by large datasets in
limited scale. For instance, dealing with complex clustering structures (often the case
in many applications) may need clustering algorithms of nonlinear complexity or visual
cluster analysis, which cannot be applied to the entire large dataset. With data reduction,
the most costly iterative analysis is on the reduced data in the second phase, while we
assume the number of iteration involving the three phases is small.

Due to the sampling or summarization phase there is a mismatch between the clus-
tering structure discovered on the sample dataset and that on the entire dataset. To fully
preserve the clustering structure, the sampling rate has to be higher than certain lower
bound that is determined by the complexity of the clustering structure and the size of the
dataset [11]. While the size of entire dataset keeps growing rapidly, the amount of data
that the second phase can handle stays limited for a typical workstation, which implies
a decreasing sample rate. The previous work in the three-phase visual cluster analysis
framework [4] has addressed several problems in extending the clustering structure to
the entire dataset under low sample rate, such as missing small clusters, abnormal visual
cluster patterns, cluster boundary extension, and unclear secondary clustering structure.
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These problems become more severe with lower sample rate. Therefore, new processing
strategies are needed to replace the three-phase framework for extreme scale datasets.

Problems with Visual Cluster Exploration
Previous studies have shown that visual cluster exploration can provide unique advan-
tages over automated algorithms [3,4]. It can help user decide the best number of clus-
ters, identify some irregular clustering structures, incorporate domain knowledge into
clustering, and detect errors.

However, visual cluster exploration on the data in the cloud brings extra difficulties.
First, the visualization algorithm should be parallelizable. Classical visualization meth-
ods such as Principal Component Analysis and projection pursuit [13] involve complex
computation, not easy to scale to large data in the parallel processing environment.
Second, cloud processing is not optimized for low-latency processing [7], such as in-
teractive visualization. It would be inappropriate to respond to each user’s interactive
operation with a cloud-based processing procedure, because the user cannot tolerate
long waiting time after each mouse click. New visualization and data exploration mod-
els should be developed to fit the cloud-based data processing.

1.2 Scope and Contributions

We propose the cloud-based interactive cluster visualization framework, CloudVista,
to address the aforementioned challenges for explorative cluster analysis in the cloud.
The CloudVista framework aims to eliminate the limitation brought by the sampling-
based approaches and reduce the impact of latency to the interactivity of visual cluster
exploration.

Our approach explores the entire large data in the cloud to address the problems
caused by sampling. CloudVista promotes a collaborative framework between the data
cloud and the visualization workstation. The large dataset is stored, processed in the
cloud and reduced to a key structure “visual frame”, the size of which is only subject
to the resolution of visualization and much smaller than an extreme scale dataset. Vi-
sual frames are generated in batch in the cloud, which are sent to the workstation. The
workstation renders visual frames locally and supports interactive visual exploration.

The choice of the visualization model is the key to the success of the proposed
framework. In the initial study, we choose our previously developed VISTA visualiza-
tion model [3] for it has linear complexity and can be easily parallelized. The VISTA
model has shown effectiveness in validating clustering structures, incorporating domain
knowledge in previous studies [3] and handling moderately large scale data with the
three-phase framework [4].

We address the latency problem with an automatic batch frame generation algo-
rithm - the RandGen algorithm. The goal is to efficiently generate a series of mean-
ingful visual frames without the user’s intervention. With the initial parameter setting
determined by the user, the RandGen algorithm will automatically generate the param-
eters for the subsequent visual frames, so that these frames are also continuously and
smoothly changed. We show that the statistical properties of this algorithm can help
identify the clustering structure. In addition to this algorithm, we also support a hierar-
chical exploration model to further reduce the cost and need of cloud-side processing.



CloudVista: Visual Cluster Exploration for Extreme Scale Data in the Cloud 335

We also implement a prototype system based on Hadoop/MapReduce [26] and the
VISTA system [3]. Extensive experiments are conducted to study several aspects of the
framework, including the advantages of visualizing entire large datasets, the performance
of the cloud-side operations, the cost distribution between the cloud and the applica-
tion server, and the impact of frame resolution to running time and visualization quality.
The preliminary study on the prototype has shown that the CloudVista framework works
effectively in visualizing the clustering structures for extreme scale datasets.

2 CloudVista: the Framework, Data Structure and Algorithms

CloudVista works differently from existing workstation-based visualization.
Workstation-based visualization directly processes each record and renders the visu-
alization after the visual parameters are set. In the CloudVista framework, we clearly
divide the responsibilities between the cloud, the application server, and the client (Fig-
ure 2). The data and compute intensive tasks on large datasets are now finished in the
cloud, which will generate the intermediate visual representations - the visual frames
(or user selected subsets). The application server manages the visual frame/subset infor-
mation, issues cloud processing commands, gets the results from the cloud, compresses
data for transmission, and delivers data to the client. The client will render the frames,
take care of user interaction, and, if the selected subsets are small, work on these small
subsets directly with the local visualization system.

Hadoop Nodes AppServer

Run MR

algorithms

Frames/subsets Compressed 

Frames/subsets

Requests/

parameters

In the cloud

Client

Fig. 2. The CloudVista framework

We describe the framework in three components: the VISTA visualization model,
the key data structure “visual frame”, and the major data processing and visualization
algorithms. We will also include a cost analysis on cloud-side operations at the end of
this section.

2.1 The VISTA Visualization Model

The CloudVista framework uses our previously developed VISTA visualization model
[3] for it has linear complexity and can be easily parallelized. To make the paper
self-contained, we describe the definition of this model and its properties for cluster
visualization.
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VISTA visualization model is used to map a k-dimensional point to a two dimen-
sional point on the display. Let si ∈ R2, i = 1, . . . , k be unit vectors arranged in a “star
shape” around the origin on the display. si can be represented as si = (cos(θi), sin(θi)),
θi ∈ [0, 2π], i.e., uniquely defined by θi. Let a k-dimensional normalized data point
x = (x1, . . . xi, . . . , xk), xi ∈ [−1, 1] in the 2D space and u = (u1, u2) be x’s
image on the two dimensional display based on the VISTA mapping function. α =
(α1, . . . , αk), αi ∈ [−1, 1] are dimensional weights and c ∈ R+ (i.e., positive real) is a
scaling factor. Formula 1 defines the VISTA model:

f(x, α, θ, c) = c

k∑
i=1

αixisi. (1)

αi, θi, and c provide the adjustable parameters for this mapping. For simplicity, we
leave θi to be fixed that equally partitions the circle, i.e., θi = 2iπ/k. Experimental
results showed that adjusting α in [−1, 1], combined with the scaling factor c is effective
enough for finding satisfactory visualization [3,4].

G(x) = Ax+b

Fig. 3. Use a Gaussian mixture to describe the clusters in the dataset

This model is essentially a simple linear model with dimensional adjustable param-
eters αi. The rationale behind the model is

Proposition 1. If Euclidean distance is used as the similarity measure, an affine map-
ping does not break clusters but may cause cluster overlapping.

Proof. Let’s model arbitrary shaped clusters with a Gaussian mixture [8]. Let μ be the
density center, and Σ be the covariance matrix of the Gaussian cluster. A cluster Ci can
be represented with

Ni(μi, Σi) =
1

(2π)k/2|Σi|1/2
exp{−(x− μi)′Σ−1(x − μi)/2}

Geometrically, μ describes the position of the cluster and Σ describes the spread of the
dense area. After an affine transformation, say G(x) = Ax+b, the center of the cluster
is moved to Aμi + b and the covariance matrix (corresponding to the shape of dense
area) is changed to AΣiA

T . And the dense area is modeled withNi(Aμi+b, AΣiA
T ).

Therefore, affine mapping does not break the dense area, i.e., the cluster. However, due
to the changed shapes of the clusters, AΣiA

T , some clusters may overlap each other.
As the VISTA model is an affine model, this proposition also applies to the VISTA
model. �
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Since there is no “broken cluster” in the visualization, any visual gap between the
point clouds reflects the real density gaps between the clusters in the original high-
dimensional space. The only challenge is to distinguish the distance distortion and
cluster overlapping introduced by the mapping. Uniquely different from other mod-
els, by tuning αi values, we can scrutinize the multidimensional dataset visually from
different perspectives, which gives dynamic visual clues for distinguishing the visual
overlapping2.

In addition, since this model is a record-based mapping function, it is naturally paral-
lel and can be implemented with the popular parallel processing models such as MapRe-
duce [7] for large scale cloud-based data processing. Therefore, we use the VISTA
model in our framework. Note that our framework does not exclude using any other
visualization model if it can efficiently implement the functionalities.

2.2 The Visual Frame Structure

A key structure in CloudVista is the visual frame structure. It encodes the visualization
and allows the visualization to be generated in parallel in the cloud side. It is also a
space-efficient data structure for passing the visualization from the cloud to the client
workstation.

Since the visual representation is limited by display size, almost independent of the
size of the original dataset, visualizing data is naturally a data reduction process. A
rectangle display area for a normal PC display contains a fixed number of pixels, about
one thousand by one thousand pixels3. Several megabytes will be sufficient to represent
the pixel matrix. In contrast, it is normal that a large scale dataset may easily reach
terabytes. When we transform the large dataset to a visual representation, a data reduc-
tion process happens, where the cloud computation model, e.g., MapReduce, can nicely
fit in.

We design the visual representation based on the pixel matrix. The visual data reduc-
tion process in our framework is implemented as an aggregation process. Concretely,
we use a two dimensional histogram to represent the pixel matrix: each cell is an aggre-
gation bucket representing the corresponding pixel or a number of neighboring pixels
(which is defined by the Resolution). All points are mapped to the cells and then ag-
gregated. We name such a 2-D bucket structure as “visual frame”. A frame can be
described as a list of tuples 〈u1, u2, d〉, where (u1, u2) is the coordinate of the cell and
d > 0 records the number of points mapped to the cell. The buckets are often filled
sparsely, which makes the actual size of a frame structure is smaller than megabytes.
Low resolution frame uses one bucket representing a number of neighboring pixels,
which also reduces the size of frame.

Such a visual frame structure is appropriate for density-based cluster visualization,
e.g., those based on the VISTA model. The following MapReduce code snippet de-
scribes the use of the visual frame based on the VISTA model.

2 A well-known problem is that the VISTA model cannot visually separate some manifold struc-
tures such nested spherical surfaces, which can be addressed by using spectral clustering [19]
as the preprocessing step.

3 Note that special displays, such as NASA’s hyperwall-2, needs special hardware, which are
not available for common users, thus do not fit our research scope.
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1: map(i, x)
2: i: record id, x: k-d record.
3: (u1, u2) ← f(x, α, θ, c);
4: EmitIntermediate((u1, u2), 1)

1: reduce((u1, u2), v)
2: (u1, u2): coordinate, v: list of counts.
3: d ← 0;
4: for each vi in v do
5: d ← d + vi;
6: end for
7: Emit(〈u1, u2, d〉);

The VISTA visualization model maps the dense areas in the original space to sepa-
rated or overlapped dense areas on the display. With small datasets, clusters are visu-
alized as dense point clouds, where point-based visualization is sufficient for users to
discern clustering structures. With large datasets, all points are crowded together on the
display. As a result, point-based visualization does not work. We can use the widely
adopted heatmap method to visualize the density information - the cells with high den-
sity are visualized with warmer colors. With the heatmap method, we can still easily
identify clusters from the visualization. We will see some visualization results based on
this design in Section 3.

2.3 Algorithms Improving Interactivity

In this section, we describe two major algorithms addressing the latency caused by
cloud-side data processing. The first algorithm, RandGen, randomly generates a batch
of related frames based on the first frame. The user can then explore the batch of frames
locally with the workstation. To further reduce the effect of latency and the need of
cloud-side operations, we also develop the algorithms supporting the hierarchical ex-
ploration model.

RandGen: Generating Related Frames in Batch. Visualization and dimension re-
duction techniques inevitably bring distance distortion and cause overlapped clusters
in lower dimensional space. While it is possible to use algorithms to generate a set of
“best” candidate visualization results as projection pursuit [5] does, it is often too costly
for large data. Another approach is to allow the user to tune the visual parameters and
observe the data in different perspectives to find the possible visual overlapping, which
was employed by the VISTA system [3].

In the single workstation mode for medium-size data, the workstation can quickly
respond to user’s interactive operation and re-generate the visualization by applying the
VISTA model to the entire dataset or sample data. However, this interactive model is
not realistic if the data processing part is in the cloud. In this section, we develop the
RandGen algorithm that can automatically generate a batch of related frames in the
cloud based on the parameter setting for the first frame. The collection of frames are
passed to the client and the user can spend most time to understand them locally in the
workstation. We also prove that the batch of frames generated with RandGen can help
users identify the clustering structure.
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The RandGen algorithm is a random perturbation process that generates a collection
of related frames. Starting from the initial α values that are given by the user, RandGen
applies the following small stochastic updates to all dimensional weights simultane-
ously, which are still limited to the range -1 to +1. Let αφ

i represent the α parameter for
dimension i in frame φ, the new parameter αφ+1

i is defined randomly as follows.

δi = t×B,

αφ+1
i =

⎧⎪⎨⎪⎩
1 if αφ

i + δi > 1
αφ

i + δ if αφ
i + δi ∈ [−1, 1]

−1 if αφ
i + δi < −1,

(2)

where t is a predefined step length, often set to small, e.g., 0.01 ∼ 0.05, and B is a
coin-tossing random variable - with probability 0.5 it returns 1 or -1. δi is generated
independently at random for each dimension. αφ+1

i is also bounded by the range [-1,1]
to minimize the out-of-bound points (those mapped out of the display). This process
repeats until the α parameters for a desired number of frames are generated. Since the
adjustment at each step is small, the change between the neighboring frames is small
and smooth. As a result, sequentially visualized these frames will create continuously
changing visualization. The following analysis shows why the RandGen algorithm can
help identify visual cluster overlapping.

Identifying Clustering Patterns with RandGen. We formally analyze why this ran-
dom perturbation process can help us identify the clustering structure. The change of
visualization by adjusting α values can be described by the random movement of each
visualized point. Let v1 and v2 be the images of the original data record x for the two
neighboring frames, respectively. Then, the point movement is represented as

Δu = c

k∑
i=1

δixisi.

By definition of B, we have E[δi] = 0. Since δi are independent of each other, we
derive the expectation of δiδj

E[δiδj ] = E[δi]E[δj ] = 0, for i �= j.

Thus, it follows the expectation of point movement is zero: E[Δu] = 0. That means the
point will randomly move around the initial position. Let the coordinate si be (si1, si2).
We can derive the variance of the movement var(Δu) =

c2t2var(B)

( ∑k
i=1 x2

i s
2
i1

∑k
i=1 x2

i si1si2∑k
i=1 x2

i si1si2

∑k
i=1 x2

i s
2
i2

)
(3)

There are a number of observations based on the variance. (1) The larger the step length
t, the more actively the point moves; (2) As the values six and siy are shared by all
points, the points with larger vector length

∑k
i=1 x2

i tends to move more actively.
Since we want to identify cluster overlapping by observing point movements, it is

more interesting to see how the relative positions change for different points. Let w1
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and w2 be the images of another original data record y for the neighboring frames,
respectively. With the previous definition of x, the visual squared distance between the
pair of points in the initial frame would be

Δ(1)
w,v = ||w1 − v1||2 = ||c

k∑
i=1

αi(xi − yi)si||2. (4)

Then, the change of the squared distance between the two points is

Δw,v = 1/c2(Δ(2)
w,v −Δ(1)

w,v)

= (
∑
i=1

δi(xi − yi)si1)2 + (
∑
i=1

δi(xi − yi)si2)2

+ 2(
∑
i=1

δi(xi − yi)si1)(
∑
i=1

αi(xi − yi)si1)

+ 2(
∑
i=1

δi(xi − yi)si2)(
∑
i=1

αi(xi − yi)si2).

With the independence between δi and δj for i �= j, E(δi) = 0, s2
i1 + s2

i2 = 1, and
E2[δi] = t2var(B) = 0.25t2, it follows the expectation of the distance change is

E[Δw,v] =
k∑

i=1

E2[δi](xi − yi)2 = 0.25t2
k∑

i=1

(xi − yi)2

where , i.e., the average change of distance is proportion to the original distance be-
tween the two points. That means, if points are distant in the original space, we will
have higher probability to see them distant in the visual frames; if the points are close in
the original space, we will more likely observe them move together in the visual frames.
This dynamics of random point movement helps us identify possible cluster overlapping
in a series of continuously changing visual frames generated with the RandGen method.

Bootstrapping RandGen and Setting the Number of Frames. One may ask how to deter-
mine the initial set of α parameters for RandGen. We propose a bootstrapping method
based on sampling. In the bootstrapping stage, the cloud is asked to draw a number
of samples uniformly at random (μ records, defined by the the user according to the
client side’s visual computing capacity). The user then locally explores the small subset
to determine an interesting visualization, the α parameters of which are sent back for
RandGen. Note that this step is used to explore the sketch of the clustering structure.
Therefore, the problems with sampling we mentioned in Introduction are not important.

Another question is how many frames are appropriate in a batch for the RandGen
algorithm. The goal is to have sufficient number of frames so that one batch is sufficient
for finding the important cluster visualization for a selected subset (see the next sec-
tion for the extended exploration model), but we also do not want to waste computing
resources to compute excessive frames. In the initial study, we found this problem is so-
phisticated because it may involve the proper setting of the step length t, the complexity
of the clustering structure, and the selection of the initial frame. In experiments, we will
simply use 100 frames per batch. Thorough understanding of this problem would be an
important task for our future work.
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Supporting Hierarchical Exploration. A hierarchical exploration model allows the
user to interactively explore the detail of any part of the dataset based on the current
visual frame. Such an exploration model can also exponentially reduce the data to be
processed and the number of operations to be performed in the cloud side.

We develop algorithms to support such an exploration model. Figure 4 shows the
flowchart how the client interacts with the cloud side in this exploration model. De-
pending on the size of the selected subset of data (ν records), the cloud side may have
different processing strategies. If the selected data is small enough to fit in the client’s
visualization capacity, i.e., μ records, the cloud will return the subset directly (Case 1).
If the rate μ/ν > ξ, where ξ is an acceptable sampling rate set by the user, e.g., 5%,
a uniform sampling is performed on the selected subarea in the cloud to get μ sample
records (Case 2). In Case 1 and 2, the subsequent operations on the subset will be han-
dled locally at the client side. Otherwise, if the rate μ/ν < ξ that sampling is not an
appropriate option, the cloud side will start the RandGen algorithm (Case 3). We will
formally analyze the cloud-related cost based on this exploration model in Section 2.4.

Batch Frame 

Generation

Subset

Processing

Data
(3) large 

subset

Local Visual

Exploration

Frames

Selected

subarea

(1) Entire small subset

(2) Sampled subset

In the cloud Client

Fig. 4. Interactions between the client and the
cloud

State i State i+1

1 RG

SS

Backtracking

1 RG

Fig. 5. State transition in terms of
operations

The key operation, subset selection and sampling, should be supported in the cloud.
The definition of the selected subset is derived based on the user selected subarea on
the current visual frame, and then passed to the cloud together with other visualization
parameters. We design a MapReduce algorithm to filter out the selected records based
on the area definition. The sampling step can also be appropriately integrated into this
step. The details of the algorithms are skipped due to the space limitation.

2.4 A Cost Model for CloudVista

In cloud computing, an important problem is resource provisioning [1]. To understand
the interactivity of the system, it is also important to estimate how frequently an ex-
ploration will be interrupted for getting results from the cloud. In this section, we will
model the exploration process with a Markov chain and derive an estimate to the num-
ber of cloud-side operations. The average cost of each operation will be studied in
experiments.

The cloud-client interaction can be roughly represented with a Markov chain. Figure
5 shows two sample states of the chain; other states are similarly modeled. The user’s
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interactive exploration can be described as a number of drill-downs on the interested
visual areas. Thus, the length of the chain is correlated the number of cloud operations.
If the user starts with the state i, she/he may require a RandGen (RG) operation for
which the size of data keeps unchanged - let’s denote it Ni. Or, she/he can perform a
subset selection (SS) to drill down, which moves to the state i+1 and the size of dataset
is changed to Ni+1, correspondingly. This chain extends until the subset can be fully
handled locally.

We estimate the length of the chain as follows. Assume a visualization covers n
cells, i.e., the aggregation buckets, on the display area on average, and thus the average
density of the cells is Ni/n for state i. We also assume the area the user may select for
subsect exploration is about λ percentage of the n cells. So the size of data at state i+1
is Ni+1 ≈ λNi. It follows Ni+1 = λi+1N0. We have defined the client’s visualization
capacity μ and the acceptable sampling rate ξ. For Ni+1 records to be handled fully
locally by the client, the boundary condition will be Ni > μ/ξ and Ni+1 ≤ μ/ξ.
Plugging Ni+1 = λi+1N0 into the inequalities, we get

logλ

μ

ξN0
− 1 ≤ i < logλ

μ

ξN0
,

i.e., i = !logλ
μ

ξN0
". Let the critical value be ρ = i + 1. Assume only one RandGen

with sufficient number of frames is needed for each state. Since the number of interest-
ing subareas for each level are quite limited, denoted by κ, the total number of cloud
operations is O(κρ).A concrete example may help us better understand the number
ρ. Assume the client’s visualization capacity is 50,000 records, there are 500 million
records in the entire dataset, the acceptable sampling rate is 5%, and each time we se-
lect about 20% visual area, i.e., λ = 0.2, to drill down. We get ρ = 4. Therefore, the
number of interrupts caused by cloud operations can be quite acceptable for an extreme
scale dataset.

3 Experiments

The CloudVista framework addresses the sampling problem with the method of explor-
ing whole dataset, and the latency problem caused by cloud data processing with the
RandGen algorithm and the hierarchical exploration model. We conduct a number of
experiments to study the unique features of the framework. First, we show the advan-
tages of visualizing the entire large data, compared to the visualization of sample data.
Second, we investigate how the resolution of the visual frame may affect the quality of
visualization, and whether the RandGen can generate useful frames. Third, we present
the performance study on the cloud operations. The client-side visual exploration sys-
tem (the VISTA system) has been extensively studied in our previous work [3,4]. Thus,
we skip the discussion on the effectiveness of VISTA cluster exploration, although the
frame-based exploration will be slightly different.

3.1 Setup

The prototype system is setup in the in-house hadoop cluster. This hadoop cluster has 16
nodes: 15 worker nodes and 1 master node. The master node also serves as the applica-
tion server. Each node has two quad-core AMD CPUs, 16 GB memory, and two 500GB
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hard drives. These nodes are connected with a gigabit ethernet switch. Each worker
node is configured with eight map slots and six reduce slots, approximately one map
slot and one reduce slot per core as recommended in the literature. The client desktop
computer can comfortably handle about 50 thousands records within 100 dimensions
as we have shown [4].

To evaluate the ability of processing large datasets, we extend two existing large
scale datasets to larger scale for experiments. The following data extension method is
used to preserve the clustering structure for any extension size. First, we replace the
categorical attributes (for KDD Cup data) with a sequence of integers (starting from
0), and then normalize each dimension4. For a randomly selected record from the nor-
malized dataset, we add a random noise (e.g., with normal distribution N(0, 0.01)) to
each dimensional value to generate a new record and this process repeats for sufficient
times to get the desired number of records. In this way the basic clustering structure is
preserved in the extended datasets. The two original datasets are (1) Census 1990 data
with 68 attributes and (2)KDD Cup 1999 data with 41 attributes. The KDD Cup data
also includes an additional label attribute indicating the class of each record. We denote
the extended datasets with Censusext and KDDext respectively.

3.2 Visualizing the Whole Data

In this experiment, we perform a comparative study: analyzing the visualization results
generated with the original VISTA system and the CloudVista framework, on sam-
ple datasets and on the entire dataset, respectively. The experiment uses two Census
datasets: a sample set of 20,000 records for the VISTA system and an extended dataset
of 25 million records (5.3 GB in total) for the CloudVista.

Figure 6 shows the clustering structure with the VISTA system5. There are three ma-
jor clusters - the dense areas in the visualization. This result has been validated with
the BestK plot method [4]. Since the Census dataset has been discretized, i.e., all con-
tinuous domains are partitioned and discretized, categorical clustering analysis is also
applicable. We apply the categorical cluster validation method: BestK plot method to
find the best clustering structure [4], which confirms the result visualized in Figure 6.
The BestK plot on 1,000 samples shows that the optimal clustering structure has three
clusters and a secondary structure has two (these two clustering structures is a part of the
hierarchical clustering structure, i.e., two of the three clusters are more similar (closer)
to each other than to the third cluster).

Correspondingly, the visualization result in Figure 6 also shows a hierarchical struc-
ture based on density: there are three clusters C1, C2.1, and C2.2, while C2.1 and C2.2
are close to each other to form the secondary clustering structure. Except for these major
clustering structures, on Figure 6 we have questions about other structural features: (1)
Can we confirm that C1 consists of many small clusters? (2) Are there possibly small
clusters or outliers between C1 and C2.2? (3) How closely are C2.1 and C2.2 related?
These questions are unclear under the visualization of the sample data.

4 The commonly used methods include max-min normalization or transforming to standard nor-
mal distribution.

5 The dark circles, lines, and annotations are not a part of the visualization (for both Figure 6
and 7). They are manually added to highlight the major observations.
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Fig. 7. Visualization and Analysis of 25 Mil-
lion Census records (in 1000x1000 resolu-
tion)

To compare the results, we use the same set of α parameters as the starting point
and generate a series of frames with small step length (0.01) on the 25 million records
with the CloudVista framework. Figure 7 shows one of these frames. We can answer
the above question more confidently with the entire dataset. (1) C1 indeed consists of
many small clusters. To further understand the relationship between them, we may need
to drill down C1. (2) Small clusters are clearly observed between C1 and C2.2. (3) C2.1
and C2.2 are closed related, but they are still well separated. It is also confirmed that
the margin between C1 and C2.x is much larger and clearer than that between C2.1
and C2.2, which is consistent with the secondary structure identified by BKPlot. In
addition, we also find some small sub-clusters inside C2.2, which cannot be observed in
Figure 6.

We summarize some of the advantages of visualizing entire large data. First, it can
be used to identify the small clusters that are often undetectable with sample dataset;
Second, it helps identifying delicate secondary structures that are unclear in sample
data. Sample data has its use in determining the major clustering structure.

3.3 Usefulness of Frames Generated by RandGen

We have shown the statistical properties of the RandGen algorithm. In a sufficient num-
ber of randomly generated frames by RandGen, the user will find the clustering pattern
in the animation created by playing the frames and distinguish potential visual cluster
overlaps. We conduct experiments on both the Censusext and KDDext datasets with
the batch size set to 100 frames. Both the random initial frame and the bootstrapping
initial frame are used in the experiments. We found in five runs of experiments, with
this number of frames, we could always find satisfactory visualization showing the most
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detailed clustering structure. The video at http://tiny.cc/f6d4g shows how the visual-
ization of Censusext (with 25 millions of records) changes by playing the 100 frames
continuously.

3.4 Cost Evaluation on Cloud-Side Data Processing

In this set of experiments, we study the cost of the two major cloud operations: the
RandGen algorithm and subset processing. We also analyze the cost distribution be-
tween the cloud and the app server.

Lower resolution can significantly reduce the size of the frame data, but it may miss
some details. Thus, it represents a potential tradeoff between system performance and
visual quality. Figure 7 in previous discussion is generated with 1000x1000 resolution,
i.e., 1 aggregation cell for 1 pixel. Comparing with the result of 250x250 resolution,
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we find the visual quality is slightly reduced, but the major clustering features are well
preserved for the Censusext data. Reducing resolution could be an acceptable method
to achieve better system performance. We will also study the impact of resolution to the
performance.

RandGen: Figure 8 demonstrates the running time of MapReduce RandGen algorithm
with different settings of map slots for the extended census data. We control the number
of map slots with Hadoop’s fair scheduler. We set 100 reduces corresponding to 100
frames in a batch for all the testing cases6. Note that each number in the figures is
the average of 5 test runs. The variance is small compared to the average cost and thus
ignored in the figures. The running time shows that the MapReduce RandGen algorithm
is about linearly scalable in term of data size. With increasing number of map slots, the
cost also decreases proportionally. Figure 9 shows the cost also increases about linearly
within the range of 100 frames.

We then study the cost distribution at the server side (cloud + application server).
The total cost is split into three parts: cloud processing, transferring data to app server
from the cloud, and compressing. The following settings are used in this experiment.
For RandGen of 100 frames, we compare two extended datasets: 25 million records
of Census (Censusext) data and 40 million records of KDD Cup (KDDext) data on 15
worker nodes. The results are generated in two resolutions: 1000x1000 (aggregation
bucket is 1x1 pixel) and 250x250 (aggregation bucket is 4x4 pixels), respectively. Since
the cloud processing cost dominates the total cost, we present the costs in two figures.
Figure 10 shows the cost of cloud processing. KDDext takes more time since its data
size is much larger. Also, lower resolution saves a significant amount of time. Figure 11
shows the cost breakdown at the app server, where the suffixes of the x-axis names: “-L”
and “-H” mean low and high resolutions, respectively. Interestingly, although KDDext

data takes more time in cloud processing, it actually returns less data in frames, which
implies a smaller number of cells are covered by the mapped points. By checking the
high-resolution frames, we found there are about 320 thousands of covered cells per
frame for census data, while only 143 thousands for KDD cup data, which results in the
cost difference in app server processing.

Table 1 summarizes the statistics for different resolutions. We use the amount of data
generated by the cloud to represent the communication cost between the cloud and the
client (the “compressed data” in Table 1). “Frame size” represents the average number
of covered aggregation buckets in each frame; “total time” is the sum of times for cloud
processing, transferring from the cloud to the app server, and compressing data. It shows
low resolution will have significant cost saving. Low resolution visualization will be
very appropriate for exploring higher level clustering structure, where details are less
important.

Subset Processing: Subset exploration results in three possible operations: subset Rand-
Gen, subset fetching and subset sampling. We have analyzed the number of cloud
operations based on the hierarchical exploration model. In this experiment, we let a
trained user interactively select interested high-density spots in the frames generated

6 We realized this is not an optimal setting, as only 90 reduce slots available in the system, which
means 100 reduce processes need to be scheduled in two rounds in the reduce phase.
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Table 1. Summary of the RandGen experiment.

resolution frame size compressed frames total time(sec)

Censusext
High 320K 100MB 247
Low 25K 9.7MB 141

KDDext
High 143K 45MB 265
Low 12K 4.6MB 188

with RandGen and then evaluate how many each of the three operations may be trig-
gered. In each round, 100 frames are generated in each batch with 15 worker nodes on
5.3GB Censusext data or 13.5GB KDDext data in high resolution. The user browses the
frames and randomly selects the high-density subarea to drill down. Totally, 60 drill-
down operations are recorded for each dataset.

We summarize the result in Table 2. “Size of Selected Area” represents the average
size of the selected area with ± representing the standard deviation. “Direct” means
the number of subsets that will be fully fetched. “Sampling” means the number of sub-
sets that can be sampled. “SS-RG” means the number of subsets, the sizes of which
are too large to be sampled - the system will perform a subset RandGen to preserve
the structure. “D&S Time” is the average running time (seconds) for each “Direct” or
“Sampling” operation in the cloud side processing, excluding the cost of SS-RG, since
we have evaluated the cost of RandGen in Table 1.

Table 2. Summary of the subsect selection experiment

Size of Selected Area
# of Cloud Operations

D&S Time(sec)
Direct Sampling SS-RG

Censusext 13896 ± 17282 4 34 22 36
KDDext 6375±9646 9 33 18 43

Interestingly, the selected areas are normally small: on average about 4% of the entire
covered area for both datasets. Most selections, specifically, 63% for Censusext and
70% for KDDext data, can be handled by “Direct” and “Sampling” and their costs are
much less than RandGen.

4 Related Work

Most existing cluster visualization methods cannot scale up to large datasets due to their
visual design. Parallel Coordinates [14] uses lines to represent multidimensional points.
With large data, the lines are stacked together, cluttering the visual space. Its visual
design also does not allow a large number of dimensions to be visualized. Scatter plot
matrix and HD-Eye [12] are based on density-plots of pairwise dimensions, which are
not convenient for finding the global clustering structure and are not scale to the number
of dimensions. Star Coordinates [16] and VISTA [3] models are point-based models
and have potential to be extended to handle really large datasets - the work described
in the paper is based on the VISTA visualization model. IHD [27] and Hierarchical
Clustering Explorer [23] are used to visualize the clustering structures discovered by
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clustering algorithms, which are different from our purpose of using the visualization
system to discover clusters.

Cluster visualization is also a dimensionality reduction problem in the sense that it
maps the original data space to the two dimensional visual space. The popularly used
dimensionality reduction algorithms such as Principal Component Analysis and Mul-
tidimensional Scaling [6] have been applied in visualization. These methods, together
with many dimensionality reduction algorithms [21,22], are often costly - nonlinear to
the number of records and thus they are not appropriate for large datasets. FastMap
[9] addresses the cost problem for large datasets, but the choice of pivot points in the
mapping may affect the quality of the result. Random projection [25] only preserves
pairwise distances approximately on average and the precision is subject to the number
of projected dimensions - the lower projected dimensions the worse precision. Most
importantly, all of these dimensionality reduction methods do not address the common
problems - how to detect and understand distance distortion and cluster overlapping.
The projection-based methods such as Grand Tour and Projection Pursuit [5] allow the
user to interactively explore multiple visualizations to discover possible distance distor-
tion and cluster overlapping, but they are too costly to be used for large datasets. The
family of star coordinates systems [16,3] address the visual distortion problem with a
more efficient way, which is also the basis of our approach. The advantage of stochas-
tic animation in finding patterns, as we do with RandGen, is also explored in graph
visualization [2]

The three-phase framework “sampling or summarization – clustering/cluster analysis
– disk labeling” is often used to incorporate the algorithms of high time complexity
in exploring large datasets. As the size of data grows to very large, the rate between
the size of the sampled or summarized dataset to the original size becomes very small,
affecting the fidelity of the preserved clustering structure. Some clustering features such
as small clusters and the connection between closely related clusters are not easy to be
discovered with the sample set [4]. Therefore, there is a need to explore the entire large
dataset.

Recently, several data mining algorithms have been developed in the cloud, show-
ing that the hadoop/MapReduce [7] infrastructure is capable to reliably and efficiently
handle large-scale data intensive problems. These instances include PLANET [20] for
tree ensemble learning, PEGASUS [17] for mining peta-scale graphs, and text mining
with MapReduce [18]. There is also an effort on visualizing scientific data (typically,
low dimensional) with the support of the cloud [10]. However, none has been reported
on visualizing multidimensional extreme scale datasets in the cloud.

5 Conclusion

The existing three-phase framework for cluster analysis on large scale data has reached
its limits for extreme scale datasets. The cloud infrastructure provides a unique oppor-
tunity to address the problem of scalable data analysis - terabytes or even petabytes of
data can be comfortably processed in the cloud. In this paper, we propose the Cloud-
Vista framework to utilize the ability of scalable parallel processing power of the cloud,
and address the special requirement of low-latency for user-centered visual analysis.
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We have implemented the prototype system based on the VISTA visualization model
and Hadoop/MapReduce. In experiments, we carefully evaluate the unique advantages
of the framework for analyzing the entire large dataset and the performance of cloud-
side algorithms. The initial results and the prototype system have shown this framework
works effectively for exploring large datasets in the cloud. As a part of the future work,
we will continue to study the setting of the batch size for RandGen and experiment with
larger hadoop cluster.
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Abstract. Modern databases have to cope with multi-dimensional
queries. For efficient processing of these queries, query optimization relies
on multi-dimensional selectivity estimation techniques. These techniques
in turn typically rely on histograms. A core challenge of histogram con-
struction is the detection of regions with a density higher than the ones
of their surroundings. In this paper, we show that subspace clustering
algorithms, which detect such regions, can be used to build high qual-
ity histograms in multi-dimensional spaces. The clusters are transformed
into a memory-efficient histogram representation, while preserving most
of the information for the selectivity estimation. We derive a formal cri-
terion for our transformation of clusters into buckets that minimizes the
introduced estimation error. In practice, finding optimal buckets is hard,
so we propose a heuristic. Our experiments show that our approach is
efficient in terms of both runtime and memory usage. Overall, we demon-
strate that subspace clustering enables multi-dimensional selectivity es-
timation with low estimation errors.

1 Introduction

Query optimization is an essential component of every database management
system. The optimizer relies on accurate size estimates of sub-queries. To this
end, the optimizer estimates the selectivity of query predicates, i.e., the number
of tuples that satisfy the predicate. A predicate can refer to several attributes. If
these attributes are correlated, statistics on their joint distribution are essential
to come up with a good estimate. Multi-dimensional histograms are a promi-
nent class of such multi-attribute statistics [15,23,12,1,7,9,26,11,19]. However,
with increasing number of dimensions they fall prey to the so-called “curse of
dimensionality” [8]. The construction costs of the histogram increase, and the
precision decreases. In particular, memory efficiency is a major challenge, as
histograms need to fit in a few disk pages [23,9,26].

Self-tuning histograms are state-of-the-art methods for selectivity estimation.
They use the query execution results (feedback) to refine themselves [9,26,11,19].
They focus on the refinement steps during query processing to achieve high pre-
cision, arguing that even a good initial configuration provides only a short-term
benefit. Thus, a central hypothesis with self-tuning histograms has been that
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their refinement techniques are enough to ensure high precision, while initial-
ization is a minor tweak. We show that this is only one side of the coin: Doing
without initialization techniques has a serious drawback. First, histograms need
many queries in order to adapt to the data set. Second, even given a large number
of queries to train, the uninitialized histogram still cannot match the precision
of our initialized version.

Another problem with multi-dimensional histograms is that they focus on
capturing correlated data regions in full-dimensional space. This can be waste-
ful, because in different regions of the data space only a small set of attributes
may be correlated, while additional attributes only add noise. Thus, traditional
selectivity estimation methods spend too much memory and achieve only low es-
timation quality. Similar challenges have been observed for traditional clustering
and solved by recent subspace clustering techniques.

In this paper we focus on pre-processing steps to initialize a self-tuning his-
togram based on subspace clustering. Having detected high density regions (dense
subspace clusters) with many objects we build memory-efficient histograms based
on this. We make use of subspace clustering as a novel data mining paradigm.
As highlighted by a recent study [21], subspace clustering can detect groups of
objects in any projection of high-dimensional data. In particular, the resulting
subspace clusters represent dense regions in projections of the data and cap-
ture the local correlation of attribute sets for each cluster individually. Thus,
our hypothesis is that these dense subspace regions can be utilized to initialize
the histogram and enable good selectivity estimations. Our experiments confirm
this hypothesis. In order to initialize a histogram with dense subspace regions
we have to transform subspace clusters into efficient histogram structures, in
order to meet the memory constraints of the histogram. There are various ways
to do this, but any transformation introduces some estimation error. We need
to minimize this error. To this end, we formally derive a criterion which lets
us compare different transformations and choose the better one. We also define
special classes of transformations with interesting properties. For these classes,
we are able to compute the transformation which is best according the afore-
mentioned criterion. We show however that finding the optimal solution is too
expensive in the general case. We propose an efficient heuristic with high quality
estimation.

As mentioned above, a central hypothesis with self-tuning histograms has been
that initialization yields only a short-term benefit [26,9]. We use six subspace
clustering algorithms [21] to initialize a histogram, and use the uninitialized
version as a baseline. We make the following important observations:

1. Good initialization makes a difference. One out of the six methods we tried
has shown consistent improvement of estimation precision over the uninitial-
ized version, even after a significant number of training queries.

2. Self-tuning histograms can achieve high precision using refinement. Namely,
an uninitialized self-tuning histogram was able to catch up with the remain-
ing five initialized histograms, each based on different subspace clustering
paradigm.
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A related observation is that initialized histograms need less memory to provide
similar or even better estimation quality. Through different evaluation settings,
they need about 1/4 to 1/8 of the memory required in uninitialized histograms
to produce estimates of the same precision.

2 Related Work

Static Selectivity Estimation
Multi-dimensional histograms capture the joint distribution of attributes for
selectivity estimation [23,12,7,27,22]. The MHist histogram [23] recursively par-
titions the data set, starting with one bucket which represents the whole data
set. In each iteration it splits an existing bucket into two, until the storage space
is exhausted. The bucket to split and the split dimension are chosen greedily,
based on one-dimensional histograms. HiRed histograms [7] split each bucket
into half across all dimensions, then compute an error measure for the split. If
it does not exceed a certain threshold, the split is discarded, otherwise it be-
comes permanent. GENHIST [12] partitions the data set into a fine-grained grid
structure, identifies the dense parts in the data set, and assigns them to buckets.
Then it removes those data points and starts over again. GENHIST provides
good selectivity estimates but is expensive to construct and store. [7] shows
that given a fixed memory budget, the simpler HiRed histogram can outperform
GENHIST. A problem which all static histograms share is that they need to be
rebuilt regularly to reflect changes in the data set.

Self-Tuning Selectivity Estimation
Self-tuning histograms [9,1,26] address this problem by using the query work-
load to adjust themselves. This leads to histograms which are more sensitive
to the query workload. If the user accesses parts of the data set frequently, the
histogram automatically becomes more detailed for this part. However, infor-
mation about previously unaccessed regions remains coarse. We introduce the
general idea of [9] in Section 3. Some significant improvements of this “base”
version have been proposed, but they are orthogonal to our work. For instance,
[19] provides a method which enhances the estimation precision near histogram-
bucket boundaries, using interpolation methods. [11] shows how the histogram
can be compressed significantly by aligning buckets and quantizing coordinates
relative to parent bucket coordinates. Finally, [26] introduces a possibly more
efficient selectivity estimation procedure which relies less on feedback and uses
information-theoretic measures such as entropy to compute tuple densities.

As [9] shows, if enough queries to adapt to the data set are given, the self-
tuning histograms will perform as well as the best static histograms. From here,
an implicit assumption is made that initializing a self-tuning histogram would
merely provide a short-term benefit. However, we show that this is not always
the case. Initialized histograms based on subspace clustering provide better esti-
mates even after a large number of queries have been executed. This is because
self-tuning histograms construct and compress buckets greedily, and greedy al-
gorithms are often sensitive to initial values. However, it has never be confirmed
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due to the strong belief in the refinement step in self-tuning approaches. In
contrast to this, we will show in the following sections how some subspace clus-
tering algorithms can provide significant quality improvements by initialization
of self-tuning histograms.

Overall, all of these traditional selectivity estimation techniques have missed
the detection of locally relevant attributes. Histograms should have been adapted
to the local correlation of objects in each of the dense regions. In particular, since
initialization techniques have been a topic of minor interest, we observe limited
quality improvement in today’s self-tuning methods. They are unable to capture
the intrinsic structure of the data by their histogram construction.

Clustering Algorithms
Clustering is an unsupervised data mining task for grouping of objects based on
mutual similarity [14]. As an unsupervised task, it reveals the intrinsic struc-
ture of a data set without prior knowledge about the data. Clusters share a
core property with histograms, as they represent dense regions covering many
objects. However, the detection of meaningful clusters in high-dimensional data
spaces is hindered by the “curse of dimensionality” as well [8]. Irrelevant at-
tributes obscure the patterns in the data. Global dimensionality techniques such
as Principle Components Analysis (PCA) try to reduce the number of attributes
[16]. However, the reduction may yield only a clustering in one reduced space.
With locally varying attribute relevance, this means that clusters that do not
show up in the reduced space will be missed.

Recent years have seen increasing research in subspace clustering, which aims
at identifying locally relevant attribute sets for each cluster. Subspace cluster-
ing was introduced in the CLIQUE approach, which detects dense grid cells in
subspace projections [3]. In the past decade, several approaches have extended
this clustering paradigm [25,24,28]. Furthermore, traditional clustering, such as
the k-medoid and DBSCAN algorithm, have been extended to cope with sub-
space projections [2,17]. For example, density-based subspace clustering detects
arbitrarily-shaped clusters in projections of the data space [17,5,6,20]. Overall,
various cluster definitions focusing on different objective functions have been
proposed.

In the following we will show how these clusterings can be transformed into a
memory-efficient histogram and provide high quality initializations for selectivity
estimation. As a common property, we use the ability of subspace clustering to
detect high density regions in projections of high-dimensional data. We abstract
from specific clustering models, focusing on compactness, density-connected and
arbitrarily shaped clusterings. This makes our general transformation of sub-
space clusters into histograms applicable to a wide range of subspace clustering
algorithms.

3 Selectivity Estimation Overview

We now briefly describe the state-of-the-art selectivity estimation technique
STHoles [9], on which our work is based on. In general, selectivity estimation
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tries to estimate the number of objects satisfying the query predicate. Following
[15,9,26,12,23] we consider conjunctive query predicates which refer to several at-
tributes of the relation. Given a relation R = (A1, A2, . . . , Ad) in a d-dimensional
data space, a range query on this relation has the form

SELECT <attr-list>
FROM R
WHERE l1 <= A1 <= h1 AND ... ld <= Ad <= hd

The WHERE condition of the query is an axis-aligned hyper-rectangle in the
attribute value space.

Histogram structure
Buckets in STHoles are rectangular, can be nested into each other, but cannot
overlap partially. Thus, the histogram divides the data space hierarchically, sim-
ilar to an R+-tree. Figure (1) shows a 2-dimensional histogram with 3 buckets.
b0 is the root bucket, it includes the the whole attribute value space. b1 and b2

are children of b0, and b3 is a child of b2.

Fig. 1. Histogram with 3 buckets

Each bucket b stores the number of tuples in it, denoted count(b). It does not
include the tuples contained in child buckets; so count(b2) in Figure (1) can be
less than count(b3). Accordingly, the volume of bucket b2, vol(b2), is the volume
of the bounding box of b2 minus the volume of the box of b3. An equivalent
notion is the tuple density, defined as dens(b) = count(b)/vol(b).

An essential property of STHoles is its ability to store regions of arbitrary
dimensionality. The histogram can have buckets which are lower dimensional
than the data space. In Figure (1) the bucket b1 is in fact 1-dimensional, because
vertically it spans the whole attribute value range. One of the reasons we chose
STHoles as the underlying histogram for our approach is that it natively supports
lower-dimensional buckets.

Subspace Clustering and Selectivity Estimation
Subspace clusters provide groups of objects with locally relevant attribute com-
binations. Similarly to the bucket b1, irrelevant attributes simply span the com-
plete data range in these dimensions. Thus, a histogram should store only the
relevant dimensions. Only these attributes provide the information required for
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selectivity estimation. In contrast to traditional clustering techniques that focus
on all dimensions, subspace clustering can assist histogram construction also in
the detection of relevant attribute sets. This approach has a high potential for
memory-efficient and high quality selectivity estimation.

Fig. 2. Histogram with 3 buckets and a query (dashed rectangle)

Selectivity Estimation based on Histograms.
Based on the histogram one can estimate the selectivity of the query using the
uniform spread assumption. It states that tuples are distributed uniformly inside
the bucket, and allows us to limit the stored information to the overall object
count instead of a complex data distribution function inside each bucket.

est(q) =
∑

b

dens(b) · vol(q ∩ b)
vol(b)

(1)

Here, q is the query, and the sum iterates over all histogram buckets. Thus, ac-
cording to the uniform spread assumption, each bucket which intersects with the
query region contributes tuples proportionally to the volume of the intersection
and the density of that bucket. Figure (2) shows the histogram with a query (the
dashed rectangle).

Self-Tuning During Query Processing
In addition to the calculation of selectivity estimates, STHoles uses the query
processing for self-tuning. The result stream is used to update/create new buck-
ets in the histogram. We present the so-called bucket drilling step [9] in the
following.

Fig. 3. Drilling buckets using feedback
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Algorithm 1. Obtaining rectangular buckets candidates from non-rectangular
intersection
1: c ← q ∩ b
2: pp ← {bi ∈ children(b)|c ∩ bi �= ∅ ∧ bi � c}
3: while pp �= ∅ do
4: Select bucket bi ∈ pp and dimension j such that shrinking c along j by excluding

bi results in the smallest reduction of c
5: Shrink c along dimension j
6: Update pp
7: end while
8: return c

Figure (3) (left) shows a histogram with 2 buckets and a query (dashed).
After the query is executed, the intersections with b0 and b1 are calculated.
The intersection with b0 is not rectangular, so it is shrunk across one of the
dimensions, to bring it to rectangular shape (cf. Algorithm 1). After the bucket
candidates are created, the actual number of tuples falling into them can be
approximated or calculated directly using the query feedback. Thus, buckets
can be updated/created. Furthermore, when the number of buckets exceeds the
allowed maximum, a compression step takes place (cf. [9]).

Evaluation of Estimation Quality
To measure the quality of selectivity estimates we use the normalized absolute
error (NAE) metric, which is a standard metric for assessing selectivity estimates.
Let Q be the query workload, and real(q) be the real selectivity of the query,
then the NAE is

err =
1
|Q|
∑
q∈Q

|real(q)− est(q)|
real(q)

(2)

4 Cluster Transformation

The goal of histogram construction is to have a concise summary of data which
enables precise selectivity estimates. Clustering algorithms in turn may report
clusters in different ways, often by simply listing all elements. Furthermore,
clusters can have different shapes, depending on the definition.

In order to make clusters usable for selectivity estimations, we need to trans-
form clusters into memory-efficient histogram structures. The goal of such a
transformation is to obtain a histogram which produces estimation error as small
as possible. In this section, we address this issue first from a theoretical and then
from a practical point of view. Namely, we

– formalize the transformation of a cluster to a bucket
– define classes of transformations with useful properties
– show that strictly optimal transformations are overly expensive
– introduce heuristics which find good representations
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Histogram buckets usually have a strict form, e.g., are axis-aligned and rectan-
gular. Our goal is to transform the output of the clustering algorithm to a set
of rectangles. We call these rectangles Representative Rectangles, or RRs.

One seemingly straightforward idea is to use minimal bounding rectangles
as RRs. However, as our theoretical analysis shows, such RRs can be far from
optimal or even useless. This emphasizes the importance of choosing RRs care-
fully. We formalize the notion of quality of transformation and optimality in
Section 4.1 and present several formal results regarding optimal RRs. We use
these results in 4.2 when we calculate RRs.

4.1 The Optimal RR for Selectivity Estimation

Histogram buckets span (axis-aligned hyper-)rectangles in attribute-value space.
A cluster is a set of points: our aim is to transform it to a rectangle while making
sure that the transformation “falsifies” the cluster as little as possible.

Fig. 4. A cluster and a candidate RR

We denote the set of all rectangles in the data space as #. # can be finite
or infinite, depending on the data domain. The transformed rectangles serve as
histogram buckets. In the histogram we essentially substitute the cluster C with
RR. Figure (4) shows a cluster C and a candidate RR. We now look at clusters
not as a discrete set of points but as regions with an extent in space and density,
to bring rectangles and clusters into the same domain.

Definition 1. Given a cluster C, we denote by |C| the volume of its extent. The
density of the cluster, dens(C), is the number of objects in the cluster divided by
|C|.
Because C �= RR in general, substituting C with RR introduces an estimation
error. Suppose that the density of the cluster is dens(C), and outside of the
cluster it is roughly 0, and the density of RR is dens(RR). Then, as a result of
substituting C with RR, the following density changes occur:

– RR− C has density 0, but instead we estimate its density to be dens(RR)
– C −RR has density dens(C), instead we estimate its density to be 0.
– C∩RR has density dens(C), instead we estimate its density to be dens(RR).
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The overall estimation error resulting from the substitution of a fixed C with
RR is given by the function ε(RR, dens(RR)). It is the sum of errors of the three
regions mentioned above:

ε(RR, dens(RR)) =
∫

RR∪C

|est(u)− real(u)| du =∫
RR∩C

|dens(RR)− dens(C)| du +
∫

RR−C

dens(RR)du +
∫

C−RR

dens(C)du =

(|dens(RR)− dens(C)|) |RR ∩ C|+ dens(RR) |RR− C|+ dens(C) |C −RR|
(3)

Definition 2. A rectangle RR with density dens(RR) is called optimal
(w.r.t. #), denoted by RR = opt(#) if

ε(RR, dens(RR)) = min
r∈�

ε(r, dens(r))

We first prove that the density of opt(#) is upper-bounded by the density of the
cluster:

Lemma 1. For any cluster C with density dens(C), if RR = opt(#),
then dens(RR) ≤ dens(C)

Proof. Let us assume that the opposite is true, for some α > 0
dens(RR) = dens(C) + α, RR is optimal, which means

ε(RR, dens(R)) = α |RR ∩ C|+ dens(C) |C −RR|+ (dens(C) + α) |RR− C|
is minimal. Take dens′(RR) = dens(C)− α,

ε′(RR, dens′(R)) = α |RR ∩ C|+ dens(C) |C −RR|+ (dens(C)− α) |RR− C|
ε′(RR, dens′(R)) < ε(RR, dens(R)), which contradicts the assumption that ε is
minimal. ��
Figure (4) illustrates why dens(RR) should not exceed dens(C). RR possibly
contains regions which are not in C, and does not necessarily cover all of C.
So instead of some part of C with high density, RR contains a part which has
density 0.

Using Lemma (1), we can simplify Equation (3)

ε(RR, dens(RR)) =dens(C) · |C|+ dens(RR) · (|RR− C| − |RR ∩ C|) (4)

We can now find the expression for the optimal value of dens(RR).

Lemma 2. For a fixed rectangle RR, the value of dens(RR) which minimizes
ε(RR, dens(RR)) is given by:

dens(RR) =

{
dens(C) if |RR ∩ C| > |RR− C|
0 otherwise
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Proof. In Equation (4), the part depending on dens(RR) is

dens(RR) · (|RR− C| − |RR ∩ C|)

In case |RR− C| > |RR ∩ C|, it is positive. To minimize it, we put dens(RR) =
0. In case |RR ∩ C| > |RR− C|, it is negative, and we put dens(RR) = dens(C),
which is the largest value for dens(RR) according to Lemma (1). ��
The first implication from this lemma is that if |RR− C| > |RR ∩ C| then
the rectangle RR is not useful and can be omitted. RR is useless when the
space contained in RR not belonging to C is larger than the common part
of C and RR (Figure (4)). However, when |RR ∩ C| > |RR− C|, then the
best strategy is to minimize the estimation for the region |RR ∩ C|. This is
achieved by putting dens(RR) = dens(C). Below, we always consider RRs with
|RR ∩ C| > |RR− C|, and their density = dens(C). Finding the optimal RR is
not straightforward, however. Before turning to optimal RRs, we discuss some
“obvious” RRs, such as minimal bounding rectangle.

Definition 3. We denote the set of all rectangles which enclose C by #+
C .

#+
C = {R|R ∈ #, C ⊆ R} (5)

Obviously, the minimal bounding rectangle of C is in #+
C .

Definition 4. We denote the set of all rectangles enclosed in C by #−
C

#−
C = {r|r ∈ #, r ⊆ C} (6)

The maximal inbound rectangle of a cluster is in #−
C .

Lemma 3. #+ contains a unique optimal RR or is empty.

Proof. We construct a rectangle R0 such that ∀R ∈ #+
C , R0 ⊆ R. For dimen-

sion j, project all points on j, find the minimum and maximum – those would be
the sides of the rectangle parallel to dimension j. Repeating this for all dimen-
sions we will obtain the rectangle. Obviously, any rectangle in #+

C contains R0.
If R0 satisfies the condition |R0 ∩ C| > |R0 − C| then R0 = opt(#+

C), otherwise
#+

C does not contain any RRs.

Consider again Figure (4) for an example in 2-dimensional space. To find the
minimal rectangle in #+, take the up-most point of the cluster and draw a line
parallel to the x-axis, do the same with the lowest point. Now, take the rightmost
point and draw a line parallel to the y-axis, same with the leftmost point. The
rectangle which is bounded by those 4 lines is R0.

We now proceed as follows: We first present an algorithm which finds opt(#−
C).

It constructs a convex hull of the cluster and fits the largest RR into it. In
practice, this approach has limitations. In particular, it is too expensive for
large clusters. As an alternative, we describe a heuristic which is both fast and
effective.
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4.2 Cluster-to-Bucket Transformation

Finding opt(#−
C)

As a first step, we compute the convex hull of the cluster. The complexity of this
is O(n · log(n)), where n is the number of data points [10]. Given the convex hull
of the cluster, we fit the largest axis-aligned rectangle into it. The algorithm in
[4] transforms this problem to a convex optimization problem. The complexity
is O(2d · h), where h where h is the number of vertices of the polygon, and d is
the dimensionality of the data space. The complexity of the overall procedure is
O(n · log(n) + 2d · h). This does not scale well against the dimensionality or the
number of data objects.

Fig. 5. A cluster with rectangles RR (solid) and RR′ (dashed)

Heuristic
We propose an alternative heuristic which is computationally affordable. It starts
with a rectangle that fulfills the condition |RR ∩ C| > |R − C| and expands it
iteratively. Figure (5) shows a rectangle RR which is expanded along the y-axis
downwards. The expanded rectangle RR′ is dashed. RR′ is a better bucket than
RR if ε(RR′) < ε(RR), i.e., it approximates the cluster with less error than RR.
Given Equation (4), this is equivalent to computing

λ(RR, RR′) = |RR′ ∩C| − |RR ∩ C|+ |RR− C| − |RR′ − C| (7)

and comparing it to 0. In order to compute λ, we have to compute |R ∩ C| and
|R−C| for a rectangle R. This is not straightforward because C has an arbitrary
shape. We compute R∩C using the following idea: if we generate M data points
uniformly distributed inside R, then the expected number of points m that will
fall inside R ∩ C will be proportional to its area:

E[m]
M

=
|R ∩ C|
|R|

From here we obtain

|R ∩C| = |R| · E[m]
M

(8)

Now we can compute λ(RR′, RR), using Equation (8) and the fact that |R−C| =
|R| − |R ∩ C|.

In Line 1, we initialize bestRR with some RR. In our implementation, we do
this as follows: The center of the rectangle is the median. To compute the length
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Algorithm 2. Greedy algorithm for finding a RR

1: bestRR ← initial()
2: repeat
3: best ← ∞
4: RR ← bestRR
5: for all possible expansions e do
6: RR′ ← expand(RR,e)
7: if λ(RR,RR′) > best then
8: best ← λ(RR,RR′)
9: bestRR ← RR′

10: end if
11: end for
12: until best = ∞

of the projection of the rectangle on dimension i, we first project all points of the
cluster to dimension i, let this be Ci. We define diam(Ci) = max(Ci)−min(Ci).
We took 1/10-th of diam(Ci) as the length of dimension i.

5 Experiments

In the experiments we compare how different subspace clustering algorithms
(MineClus [28], PROCLUS [2], CLIQUE [3], SCHISM [25], INSCY [6] and DOC
[24]) perform as histogram initializers. Implementations were used out of the
OpenSubspace repository [21]. We first run each clustering algorithm against a
data set, obtain the output, transform it into a bucket set and then measure the
selectivity estimation error. We look at the following issues:

– Precision. We measure the estimation error of various clustering algorithms.
We vary the number of tuples, the dimensionality of the dataset and the
number of histogram buckets allowed.

– Memory consumption. For a fixed estimation error threshold, we measure
how much memory can be saved if we use initialized histograms vs. non-
initialized STHoles.

– Scalability. The runtime cost of initialization depending on dimensionality.

5.1 Setup

We used synthetic multi-dimensional data sets, consisting of multiple overlapping
Gaussian bells. Such data sets are used both for selectivity estimation experi-
ments [9] and to assess the quality of clustering algorithms [13,18]. We conducted
two sets of experiments – for accuracy and for scalability. We generated 20 to 50
Gaussian bells with standard deviation = 50 in the data domain [0, . . . , 1000]d.
The number of tuples t, the dimensionality d and the number of histogram
buckets B are the main parameters to vary. This is because both clustering
and selectivity estimation algorithms are sensitive to these parameters. In order
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to obtain clusters of different size, we generated tuple counts for each cluster
according to a Zipfian distribution with skew = 1. Thus, we assign different
numbers of tuples to each cluster. Table 1 gives an overview of parameter values
for the accuracy and scalability experiments.

Table 1. Parameters values of experiments

Experiment Parameter Value

Accuracy
d: dimensionality 2 to 10
t: tuple count 10,000 to 50,000
B: buckets 25 to 200

Scalability
d: dimensionality 10 to 20
t: tuple count 500,000 to 1,000,000
B: buckets 200

We used 2,000 queries in the experiments. The query centers are uniformly
distributed, and each query spans 1% of the volume of the data set. We used the
first 1,000 queries for the algorithms to learn, this is the number from [9] and is
considered enough for STHoles to fully adapt to the data set. Essentially, 1,000
random queries having 1% of the volume of the dataset means the whole data
set is being accessed 1000 · 0.01 = 10 times. This should be more than enough
to provide good quality estimations. Thus, we start calculating the estimation
error only after 1,000 queries have have run and all algorithms have learned. The
error measure is the normalized absolute error, see Equation (2).

5.2 Estimation Precision

We first look at the selectivity estimation error for traditional STHoles compared
to our initialized histograms. Figures 6, 7, 8 show the dependency of the average
normalized error on the number of histogram buckets, for different algorithms.
Each figure consists of two parts, one for 10,000 tuples and one for 50,000. We
varied the dimensionality d, so each figure is for a different d. Comparing the
underlying clustering algorithms for our transformation, we observe one clear
winner in all figures, namely the MineClus algorithm. MineClus clearly provides
a high quality initialization particularly robust w.r.t. the dimensionality of the
data space. While other clustering approaches show highly varying precision,
MineClus is the only algorithm with low estimation errors in all data sets.

More specifically, looking at the plots for d ≥ 4 (Figures 7, 8), we can see
MineClus in the lower end of the graph, with other algorithms (STHoles in-
cluded) in the upper part. PROCLUS is interesting: It is the best of this worse-
performing pack for d = 4 and d = 5, t = 10, 000. Starting with d = 5, t = 50, 000
it becomes better and for d = 10 actually joins MineClus. In all experiments
MineClus outperformed STHoles, while SCHISM and INSCY where consistently
worse. Furthermore, a general observation from the figures is that adding more
buckets increases the quality of histograms. However, the estimation quality
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Fig. 6. Error vs bucket count for 2- and 3-dimensional space

highly depends on the type of initialization. MineClus is the best method in all
settings we have tried.

Looking at the methods which performed worse, we can see that STHoles is
usually in the middle of the pack. This shows that:

– Not every initialization is good or meaningful. After 1,000 queries for learn-
ing, STHoles performs about as good as most of the initialized methods.
This confirms the statement in the original STHoles paper [9].

– However, the underlying clustering methods make the difference between
good and best. MineClus is the winner. It provides a high quality initializa-
tion that yields better estimations than the original STHoles method.

With increased dimensionality of the data space, MineClus continues to per-
form better compared to STHoles, tackling the challenges of high-dimensional
data better than the traditional selectivity estimation techniques. Further ex-
periments with various high-dimensional data sets are required to find out how
persistent this effect is throughout different application domains. Overall, we
can see that initialization based on subspace clustering algorithms shows a clear
benefit in terms of estimation precision.

5.3 Memory-Efficiency w.r.t. Different Initializations

Table 2 shows a different perspective on the previous experiments. It highlights
the memory-efficiency of our initialization compared to the relatively high mem-
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Fig. 7. Error vs bucket count for 4- and 5-dimensional space

ory consumption of STHoles. For each combination of parameter values, it shows
how many buckets MineClus needs to be at least as accurate as STHoles. For
instance, for 10,000 tuples, 2-dimensional data set and 200 buckets allocated for
STHoles, MineClus needs only 100 buckets to produce estimates of equal or bet-
ter quality. We can obtain this from the upper-left plot on Figure (6), by drawing
a horizontal line at about 0.2, which is the error of STHoles for this setting and
200 buckets. This horizontal line intersects the MineClus curve between 50 and
100 buckets. So 100 buckets is a conservative estimate of the buckets needed for
MineClus to match the precision of STHoles with 200 buckets. The table shows
that when the dimensionality of the data set d ≥ 3, 50 buckets for MineClus are
enough to match the precision of STHoles with 200 buckets. Even more surpris-
ingly, out of 24 rows in the table (rows corresponding to d ≥ 3) only in two cases
MineClus needs 50 buckets, otherwise only 25 suffice to match the precision of
STHoles with 100-200 buckets. This means that our initialization reduces the
memory consumption by a factor of up to 8 in most cases.

5.4 Scalability w.r.t. Data Dimensionality

In general, the key parameter for subspace clustering is the dimensionality of
the data space [21]. It affects the runtime performance of the clustering algo-
rithm and thus is essential for our transformation as well: We fix the number of
buckets to 200 and evaluate the influence of the dimensionality. Subspace clus-
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Fig. 8. Error vs bucket count for 10-dimensional space

Table 2. Description of data sets

Tuples Dim ST Buckets MineClus Buckets Tuples Dim MaxBucketNr Buckets Needed

10,000

2
100 50

50,000

2
100 25

150 50 150 100
200 100 200 100

3
100 25

3
100 25

150 25 150 25
200 50 200 25

4
100 25

4
100 25

150 25 150 25
200 25 200 25

5
100 25

5
100 25

150 25 150 25
200 25 200 25

10
100 25

10
100 25

150 25 150 25
200 50 200 25

Fig. 9. Execution time against the dimensionality
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tering algorithms have been designed for efficient pruning in high-dimensional
data. Thus, most of them show efficient and scalable runtime results (cf. Fig-
ure (9)). We also ran the algorithms against data sets with 500,000 to 1,000,000
tuples; experiments finished within reasonable time, and we have not observed
any serious scalability issues with this number of tuples.

6 Conclusions and Future Work

Uninitialized self-tuning histograms need an excessively large number of queries
to learn the data set. In this paper we studied initialization of self-tuning his-
tograms using subspace clustering results. With our transformation of subspace
clusters to memory-efficient histogram buckets, we could achieve significant im-
provement over traditional self-tuning selectivity estimators. In contrast to the
traditional assumption that self-tuning can compensate the benefits of initializa-
tion, we show that our initialization is of clear benefit. Combining initialization
with self-tuning results in a high quality histogram with low estimation errors.

In this work, our intention has been to use subspace clustering algorithms as
a black box, without modifications. Future work will strive for more customized
subspace clustering techniques. Based on the best performance of MineClus,
we will work on improved sampling techniques inside the clustering algorithm.
Namely, MineClus could be adapted in its choice of subspace clusters to fit the
desired objective function in selectivity estimation.
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Finding Closed MEMOs�
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Abstract. Current literature lacks a thorough study on the discovery of
meeting patterns in moving object datasets. We (a) introduced MEMO, a
more precise definition of meeting patterns, (b) proposed three new algo-
rithms based on a novel data-driven approach to extract closed MEMOs
from moving object datasets and (c) implemented and evaluated them
along with the algorithm previously reported in [6], whose performance
has never been evaluated. Experiments using real-world datasets revealed
that our filter-and-refinement algorithm outperforms the others in many
realistic settings.

1 Introduction

We will start our discussion with a motivating example. Suppose a commander
is laying out a battle plan through computer simulation, which is a common
practice. If he knows that the enemy possesses a tactical weapon, a single strike
of which takes w minutes to (aim and) fire and is capable of destroying all ships
within its circular target area of radius r meters, he may want to ensure that his
battle plan is not vulnerable to such a strike, which would destroy a significant
portion of his fleets, say m ships – i.e. he may want to ensure that his battle
plan has no instance, in which m ships gather in a circular area smaller than
that of a radius r meters for more than w minutes (so that the enemy can aim
and fire). Such instances he is looking for (and trying to eliminate) in his battle
plan are the meeting patterns, the subject of this paper.

Informally, a meeting is formed when a group of objects comes to and stays
in a fixed area for a while. Information of meeting patterns can be analyzed to
discover knowledge on trends of meeting places (and times), in which the meet-
ings are formed. For instance, meetings of mobile users show trends in popular
places, those of students show seasonal preference of campus facilities used for
group activities and those of wild-animals show changes in their natural habi-
tats. Such information can be used by market-researchers, school administrators
and scientists to plan advertisements, facilities and further researches etc.

The information of meeting places can be used in planning the deployment
of mobile service centers. For example, in developing countries, the concept of
a mobile library becomes very popular as it allows library resources (books,
personnel etc) to be shared by patrons residing in different geographic areas. In
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order to maximize the utilization of a mobile library, it should be deployed in
such a way that it is available (within r meters) to a number of (say m) patrons.
To match a stationary library’s service as close as possible, a mobile library must
be accessible for a sufficient amount of time (say w hours) for each patron so
that he can come to the library at his convenience (e.g during lunch hour, after
work etc). On the other hand, if the mobile library is not accessible long enough
(e.g. the patron can only glimpse it while he is rushing to work), the patron may
choose not to visit the mobile library in favor of his tight schedule, reducing the
utility of the mobile library. Knowledge of the past meetings formed by patrons
can assist in efficient planning of the deployment of mobile libraries and other
similar services like mobile medical centers and mobile Internet cafe.

To discover meetings, one may opt to count objects using proximity sensors
(RFID readers) at the potential meeting places rather than mining moving ob-
ject datasets like GPS traces. However, this approach has several drawbacks.
Firstly, proximity sensors have limited ranges, thus, it often requires to aggre-
gate data from multiple sensors to discover a single meeting. Since an object
can be detected by multiple sensors, resulting in duplicate readings, aggrega-
tion is not a straight-forward task. Secondly, as the sensors need to be deployed
at potential meeting places, meetings formed in unexpected places will not be
discovered. Moreover, tokens (RFID tags) must be attached to the objects in
advance, which is highly impractical. On the other hand, many people are ac-
customed to sharing their GPS traces with friends and businesses (or mobile
libraries) through location-sharing services like Google Latitude.

To the best of our knowledge, there has been only a limited amount of studies
on discovery of meeting patterns and no implementation (experimental eval-
uation) exists. Our contributions include a) introducing a more accurate and
realistic definition of meeting patterns b) developing three new algorithms to
discover meeting patterns from moving object datasets and c) experimenting
them along with our adaptation of the algorithm proposed in [6].

2 Problem Definition

Definition 1. For a given set of objects O = {o1, o2, ..., on}, time-stamps T =
{t1, t2, ..., tτ} and a two-dimensional spatial-space R2, a moving object dataset
D is a set of records of the form 〈o, t, loc〉 where o ∈ O, t ∈ T and loc ∈ R2.

In a moving object dataset, a pair of o and t uniquely determines loc. However, a
given moving object datasetD may have missing 〈o, t, loc〉 for some pairs of o and
t due to limitations in real-life settings. Although time is presented as discrete
steps, generality of Def. 1 is not undermined since the inter-step interval can be
arbitrarily small.

Definition 2. For given parameters: m > 1, r > 0 and w ≥ 1, a set of objects
M forms a MEeting of Moving Objects, or a MEMO, during the time-interval
I(M) at the circular region loc(M) if (i) M has at least m objects, (ii) I(M)
spans for at least w consecutive time-stamps, (iii) loc(M) has a minimal radius
r(M) ≤ r and (iv) all objects o ∈M reside in loc(M) in each t ∈ I(M).
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Fig. 1. An example of (a) a MEMO, (b) an accurate meeting place and (c) two over-
lapping closed MEMOs

Definition 2 defines a MEMO formed by m or more objects. In order to form
a MEMO, the participating objects must stay in a circle, whose radius is not
larger than r, for at least w time-stamps. In Fig. 1a, which shows movement
of five objects for three time-stamps and a circle (drawn in dotted lines) with
radius r, M = {o1, o2, o3, o4} forms a MEMO from t1 to t3 for parameters :
m = 3 and w = 2. The meeting place of M is the circular region loc(M), whose
radius is r(M) ≤ r and in which all objects in M stay.

Our definition of the meeting pattern, MEMO, is more precise than the one
given in [6] as it explicitly defines the meeting place as the smallest possible circle
in contrast to a circle of fixed radius r. As a result, it can report more accurate
and non-ambiguous meeting places. For example, for the meeting pattern formed
by three animals in Fig. 1b, the most accurate place of their habitat (the shaded
circle), rather than a larger, less accurate circular regions of radius r (three
shown as dotted circles), can be reported.

Definition 3. A MEMO M is a closed MEMO if and only if there is no other
MEMO M ′ �= M such that M ′ contains all members of M and the life-span of
M ′ completely covers that of M .

Definition 3 formally defines the concept of a closed MEMO of maximal in-
terval and maximal set of members. For example, in Fig. 1a, for parameters :
m = 3 and w = 2, M ′

1 = {o1, o2, o3} from t1 to t3 and M ′
2 = {o1, o2, o3, o4} from

t1 to t2 are non-closed MEMOs as there is a closed MEMO M = {o1, o2, o3, o4}
from t1 to t3 covering them.

Overlaps between closed MEMOs are possible and, in fact, necessary. Consider
two docks, dock F serving class-F ships and dock Y serving class-Y ships as shown
in Fig. 1c. For parameters m = 3 and w = 30 minute, both M = {o1, o2, o3} from
0 to 45 minute and another MEMO N = {o1, o2, o3, o4, o5} from 15 to 45 minute
are closed MEMOs as one does not cover the other. This result intuitively agrees
with the observation that the commander must be informed of both meetings
because changes made to eliminate one does not necessarily eliminate another.
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Definition 4. Given a moving object dataset D and parameters : m > 1, r >
0 and w ≥ 1, the task of Finding closed MEMOs is to list the complete
information of all closed MEMOs formed in D according to m, r and w.

3 Related Works

Given a moving object dataset D, a set of objects M containing k ≥ m objects
and a time-interval I(M) spanning at least w time-stamps, whether M forms a
MEMO according to the given parameters:m, w and r can be verified by checking
if the minimum circle loc(M) which covers the set of points P = {p|〈o, t, p〉 ∈ D,
o ∈ M and t ∈ I(M)}, is smaller than a circle having radius r. The earliest
algorithm to calculate the smallest circle enclosing a finite set of points is found
in the translated text [13]. It starts with an arbitrarily large circle and shrinks
(and move) the circle until no more shrinking is possible. Since it is difficult
to implement on computers, Elzinga and Hearn [4] proposed a new algorithm
called Euclidean Messenger Boy algorithm (EMB) that monotonously increases
the radius until all points are covered. The studies in [3] reveals that, for a set
of points P , its smallest enclosing circle C(P ) is unique and always exists.

In order to discover all closed MEMOs in a dataset D containing movement
records of a set of objects O, we need to check each subset O′ ⊆ O if O′ forms a
MEMO. Apriori algorithm, the first data-driven algorithm to traverse the power
set P(O) of a given set O having the apriori-properties – if M ⊆ O is interesting,
then its subset M ′ ⊆ M must be interesting – appears in [1]. Starting with all
the interesting sets with exactly one member each, it systematically builds up
interesting sets containing (k + 1) members from those containing k members.

Since the Apriori algorithm requires a large amount of memory, Zaki [15] pro-
posed Equivalence CLAss Transformation (ECLAT). Using ECLAT, the power
set P(O) of a given set O = {o1, o2, o3, ..., on} can be divided into n equiva-
lent classes C1, C2, C3, ..., Cn. The kth equivalent class Ck is defined as Ck =
{M |ok ∈ M and if oi ∈ M then ok $ oi} for an arbitrary partial-order $
on O. Each equivalent class Ck, which is a lattice of 2k sets following apri-
ori-properties, is recursively divided into sub-classes unless it fits entirely into
the memory for processing by the Apriori-algorithm. It limits the memory re-
quirement of frequent-itemset-mining at the expense of redundant processing.
FP-growth, a dialect of ECLAT algorithm, is proposed in [7].

One of the earliest studies on extracting aggregate spatial-temporal patterns
formed by multiple objects was RElative MOtion (REMO) framework [10], which
worked on speed and direction of objects in each snapshot to uncover complex
patterns. REMO framework was later extended in [11] to include location and
was capable of discovering more complex patterns like encounter pattern, which
is a meeting pattern that last exactly a single time-stamp. Gudmundsson et al.
[5] proposed a better algorithm to discover encounter patterns. Popular place,
which is an extension to another REMO pattern, convergence, is discussed in [2].
Unlike the meeting pattern we present in this paper, entities visiting a popular
place need not be present simultaneously.
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A fixed flock, a relaxed version of the meeting pattern, is defined as a set F of
m or more objects, which are within a (moving) circle of radius r > 0 in each of
the w or more consecutive time-stamps (r, m and w are given). Gudmundsson
and Kreveld [6] reported computing longest-duration fixed flocks is NP-Hard.
They also reported that computing the longest-duration meeting patterns from
a given dataset is O(n4τ2log(n)+n2τ2), where n is the number of unique objects
and τ is the number of trajectory segments. They did not provide experimental
evaluations for their algorithms.

Hwang et al. [8] proposed an Apriori based algorithm and an FP-growth based
algorithm to find frequent moving groups, which is related to the flock pattern.
These algorithms are extended to find maximal groups in [14].

4 Algorithms for Finding Closed MEMOs

We developed three new algorithms to discover closed meetings of moving objects
(closed MEMOs). The first algorithm uses the apriori-properties of MEMOs,
while the second employs ECLAT partitioning to divide the search space into
partitions, achieving practical efficiency. The last algorithm introduces a filtering
step for the first and second algorithms. We will present some preliminaries
before a detailed discussion on our algorithms.

Definition 5. A set of objects containing exactly k members will be called a
k-object-set.

Definition 6. For given parameters: r > 0 and w ≥ 1, a k-object-set Ok forms
a k-MEMO Mk during the time-interval I(Mk) at the circular region loc(Mk)
if (i) I(Mk) spans for at least w consecutive time-stamps, (ii) loc(Mk) has a
minimal radius r(Mk) ≤ r and (iii) all objects o ∈ Ok resides in loc(Mk) in each
t ∈ I(Mk).

Definition 7. A k-object-set Ok forms a k-closed MEMO Mk if and only if Ok

does not form another k-MEMO M ′
k �= Mk such that the life-span of M ′

k covers
that of Mk.

Definition 8. For a given k-object-set Ok, the set of all its k-closed MEMOs
L(Ok) = {Mk1, Mk2, Mk3, ..., Mkj} is called the MEMO-List (M-List) of Ok.

Definition 5 defines a k-object-set, which can form zero or more k-MEMOs in
a given dataset D. Definition 6 is a relaxed version of Def. 2. A k-MEMO has
exactly k participants (in contrast to the fact that a MEMO must have at least
m participants). For k ≥ m, a k-MEMO is a MEMO. Following Def. 7, a k-closed
MEMOs cannot be covered by another MEMO having k (or fewer) members.
Therefore, all closed MEMO having k participants are k-closed MEMO (the
reverse is not always true). Definition 8 defines a MEMO-List, which groups all
k-closed MEMO formed by a single k-object-set.
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4.1 An Apriori-Based Closed MEMO Miner (A-Miner)

Lemma 1. If a set of points P is covered by a minimum covering circle C, the
minimum covering circle C′ of its subset P ′ ⊆ P is not larger than C.

Proof. For any set of points P ′, the minimum covering circle C′ always exists
and is unique [3]. Therefore, for any circle D, which covers P ′, r(C′) ≤ r(D),
where r(X) is the radius of circle X. Since C covers P ′ ⊆ P , r(C′) ≤ r(C). ��

Using Lemma 1, we can derive the apriori-properties of MEMOs as follow:
for a given time-interval I, if a set of objects M forms a MEMO, there is a circle
loc(M) having a radius r(M) ≤ r and enclosing the set of locations (points)
L = {loc|〈o, t, loc〉 ∈ D, o ∈ M and t ∈ I}. The corresponding set of locations
L′ = {loc|〈o, t, loc〉 ∈ D, o ∈ M ′ and t ∈ I} of M ′ ⊆ M is, by Lemma 1, covered
by a circle loc(M ′) not larger than loc(M), i.e. r(M ′) ≤ r(M). Thus, r(M ′) ≤ r
and M ′ forms a MEMO during the interval I. Therefore, all subsets of a MEMO
are MEMOs. In other words, for any time-interval, M does not form a valid
MEMO if any of its subset does not.

The Apriori-based closed MEMOminer (A-miner), adapted from the Apriori-
algorithm in [1], exploits the apriori-properties of the MEMOs to systematically
discover the MEMOs formed by (k + 1)-object-sets only when those formed by
its subsets, k-object-sets, exist. An outline of the A-miner is given in Algorithm
1. The function Closed-MEMO(D, w, r, Ok) returns the sorted list (M-List) of
k-closed MEMOs formed by Ok.

Algorithm 1. Apriori-based closed MEMO Miner.
Input: D, r, m and w.
Output: A set of closed MEMO M.
1: The set of 1-object-sets C1 ← ∅, M ← ∅ and k ← 1
2: for all o ∈ O do
3: Object set O1 ← {o} and M-List L(O1) ←Closed-MEMO(D, w, r, O1)
4: if L(O1) is not empty then
5: C1 ← C1 ∪ {O1}
6: while Ck �= ∅ do
7: for all Ok ∈ Ck do
8: if k ≥ m then
9: M ← M∪ L(Ok)

10: The set of (k + 1)-object-sets Ck+1 ← ∅
11: for all Ok, O′

k ∈ Ck such that |Ok ∩ O′
k| = k − 1 do

12: Ok+1 ← Ok ∪ O′
k and L(Ok+1) ← Closed-MEMO(D, w, r, Ok+1)

13: if L(Ok+1) is not empty then
14: Ck+1 ← Ck+1 ∪ {Ok+1}
15: k ← k + 1
16: M ← M−{M |M is not a closed-MEMO}.

The A-miner initializes the M-Lists of 1-object-sets, which are likely to form
larger MEMOs (lines 2-5). Starting with k = 1, the M-List of each k +1-object-
set is built only if two of its subset k-object-sets have non-empty M-Lists (lines



Finding Closed MEMOs 375

Table 1. A trace of A-miner

k Ck M
1 {{a}, {b}, {c}, {d}} ∅
2 {{a, b}, {a, c}, {b, c}, {b, d}} {{a, b}, {a, c}, {b, c}, {b, d}}
3 {{a, b, c}} {{a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}}
4 ∅ {{a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}}

10-15). In doing so, if k ≥ m, the MEMOs in the M-Lists of the k-object-sets are
potential closed MEMOs, thus, they are put into the result set M (lines 7-9),
which is finally filtered (line 16).

Figure 2a shows an example of moving object dataset containing four objects.
For parameters: m = 2 and w = 3, the lattice, which represent the corresponding
search space is shown in Fig. 2b, while Table 1 shows the corresponding trace
of execution of Algorithm 1. A-miner starts at the bottom of the lattice with
1-object sets C1 = {{a}, {b}, {c}, {d}}, each of which are attached with its corre-
sponding M-List in the lattice. For example, since, during each of the intervals
[t1, t3] and [t4, t6], the locations of b is covered by a circle, {b} is attached with
two entries, 1-3 and 4-6. From 1-object-sets, 2-object-sets are extracted in the
first iteration k = 1. For example, from Fig. 2a, we can see a and b are together
in t1, t2 and t3. Therefore, {a, b} is put into C2. However, a and d never met
(never were inside the same small circle with) each other, therefore, C2 does not
contain {a, d}. In the next iteration k = 2, the 2-MEMOs in the M-Lists of each
2-object-set in C2 are put into potential result set M. The 3-object-set {a, b, c}
is put intoM in the last iteration k = 3, in which no 4-object-set has non-empty
M-List. A-miner will finally remove {b, c} from M as the k-MEMO it forms is
covered by the one formed by {a, b, c} and, hence, is not a closed-MEMO.
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1 - 6

{b}

1 –3, 4 - 6
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2 - 4
{d}

3 - 6

(b)

Fig. 2. An example of (a) movement of four objects and (b) its corresponding lattice
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Definition 9. For a set of objects S ⊆ O containing at least k objects and an
order ≺ defined on O, the list Pk(S) containing the first k elements of S sorted
according to ≺ is called a k-prefix of S. 0-prefix is always an empty set.

In A-miner, finding pairs of k-object-sets sharing k − 1 objects to build the M-
Lists of (k+1)-object-sets (line 11) is an expensive operation. Moreover, for each
k + 1-object-set, Ok+1, there are k2 + k possible pairs of Ok, O′

k ∈ Ck such that
|Ok ∩O′

k| = k−1, Ok ⊂ Ok+1 and O′
k ⊂ Ok+1 leading to redundant calculations

of its M-List L(Ok+1). Therefore we use an order among the moving objects in
order to have a canonical form of each object set. If two k-object-sets, Ok and
O′

k, share the same k − 1-prefix, then we build the M-List of Ok+1 = Ok ∪ O′
k,

ignoring other pairs of the subsets of Ok+1.

Building M-List of Ok+1. A frequent component in A-Miner is calculating
the M-List of (k + 1)-object-set (line 12). A naive method to do so is to check
if Ok+1 forms a MEMO in each maximal time-interval I spanning w or more
time-stamps as outlined in Algorithm 2. For each potential start-time start,
the minimum covering circle C of all locations of o ∈ Ok+1 from start to ts
is calculated (lines 5-6); ts is increased until the minimum circle C becomes
larger than that of radius r — if the interval spans w or more time-stamps, the
algorithm finds a k-closed MEMO in the maximal interval spanning from start
to ts− 1 at location C′ and appends it to the result L(Ok+1 (lines 7-10).

Algorithm 2. Closed-MEMO.
Input: D, w, r and Ok+1.
Output: A sorted list of (k + 1)-closed MEMO L(Ok+1).
1: start ← min({t|〈o, t, loc〉 ∈ D and o ∈ Ok+1})
2: end ← max({t|〈o, t, loc〉 ∈ D and o ∈ Ok+1})
3: ts ← start, L ← ∅, C′ ← null
4: while ts ≤ end do
5: P ← {loc|〈o, t, loc〉 ∈ D, o ∈ Ok+1 and tstart ≤ t ≤ ts}
6: C′ ← C, C ← Min-Covering-Circle(P )
7: if radius(C) > r and ts − start ≥ w then
8: members(M) ← Ok+1, loc(M) ← C′, tstart(M) ← start, tend(M) ← ts − 1
9: Append M to L(Ok+1), start ← start + 1

10: ts ← ts + 1
11: if end − start + 1 ≥ w then
12: members(M) ← Ok+1, loc(M) ← C, tstart(M) ← start, tend(M) ← end
13: Append M to L(Ok+1)

We introduced two optimizations to Algorithm 2. In the first optimization,
we further exploited the apriori-properties of MEMOs. For a given interval I,
if Ok+1 forms a valid (k + 1)-closed MEMO, a k-object-set Ok ⊂ Ok+1 and
Ok′ ⊂ Ok+1 such that |Ok′ − Ok| = 1 must have valid k-closed MEMO(s) and
k′-closed MEMO(s) covering I. Therefore, we utilized the M-Lists of Ok and
O′

k, which are readily available in memory, to compute the M-List of Ok+1.
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Our implementation applies Algorithm 2 only on the intervals covered by the
k-closed MEMOs Mi ∈ L(Ok) and M ′

j ∈ L(O′
k). Since k-closed MEMOs cannot

cover each other, each M-List can be sorted in the temporal order, enabling us
to utilize a simple sort-merge-join algorithm to efficiently check such intervals.
We only use the naive approach to calculate the (sorted) M-List of 1-object-sets.

In Algorithm 2, calculating the minimum covering circle (line 6) from scratch
using the Euclidean Messenger Boy algorithm (EMB) described in [3] dominates
a substantial amount of runtime during our initial tests. Therefore, as the second
optimization, we developed an incremental version of EMB 1 that can derive the
new circle C from C′ (and P ′) to introduce further improvements to A-Miner.

4.2 An ECLAT-Based Closed MEMO Miner (E-Miner)

In the worst case scenario, the Apriori-based closed MEMO miner (A-miner)
needs

(
n
k

)
= n!

k!(n−k)! M-Lists of k-object-sets in memory in order to calculate
those of (k+1)-object-sets. For datasets containing records of a large number of
moving objects (large n values), the memory requirements of A-miner is tremen-
dous even for modern workstations equipped with several gigabytes of physical
memory. Therefore, Equivalent CLAss Transformation (ECLAT), proposed in
[15], is used to partition the search space in our ECLAT-based close MEMO
Miner (E-miner).

Definition 10. A k-equivalent-class, denoted as C(Qk, k) contains all object-
sets, each of which has at least k objects and has Qk as their k-prefix, i.e.
C(Qk, k) = {S|Pk(S) = Qk and |S| ≥ k}.
Definition 10 defines the equivalent-class C(Qk, k), which contains all object-sets
(not necessarily of the same size) having the same k-prefix, Qk. For example, for
the moving objects shown in Fig. 2a, {b}, {b, c}, {b, d} and {b, c, d} belong to the
1-equivalent-classC({b}, 1) as they all have the same 1-prefix, {b}. All object-sets
having more than k objects in C(Pk, k) can be divided into (k + 1)-equivalent-
classes, each of which having one of the (k + 1)-object-sets in C(Pk, k) as its
(k+1)-prefix. For example, C({b}, 1) has two 2-object-sets {b, c} and {b, d} and,
thus, the object-sets having more than 1 object, i.e. {b, c}, {b, d} and {b, c, d},
can be divided into two 2-equivalent-classes, C({b, c}, 2) = {{b, c}, {b, c, d}}
and C({b, d}, 2) = {{b, d}}. Algorithm 3 shows an outline of E-miner, which,
starting with 0-equivalent-class (the whole search space), recursively divides the
k-equivalent-class into (k + 1)-equivalent-classes until each can fit in memory.
E-miner maintains a stack of equivalent-classes that needs further partitioning.

E-miner starts by pushing the 0-equivalent-class, represented by C(∅, k), onto
the stack (line 1). For each top-most k-equivalent-class C(Qk, k) popped out
from stack, E-miner checks if its prefix Qk forms a k-MEMO first and maintains
the result list M accordingly (lines 3-6). Then, E-miner checks if the C(Qk, k)
can fit into the memory (line 7). If so, it is processed in the same fashion as
1 Since it is fairly straight-forward to derive incremental EMB from original EMB, we

omit its details to preserve space.
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Algorithm 3. ECLAT-based Closed MEMO Miner.
Input: D, r, m, w and an order ≺ on O
Output: A set of closed MEMO M.
1: M ← ∅ and Push 0-equivalent-class C(∅, 0) to stack.
2: while Stack is not empty do
3: Pop k-equivalent-class C(Qk, k) from stack
4: M-List L(Qk) ← Closed-MEMO(D, w, r, Qk)
5: if L(Qk) is not empty then
6: M ← M∪ L(Qk)
7: if C(Qk, k) fits in memory then
8: Prefix Q ← Qk, k ← k + 1 and Ck ← ∅
9: for all Ok ∈ {Q ∪ {oi}| if oj ∈ Q then oj ≺ oi or oj = oi} do

10: Ck ← Ck ∪ {Ok}
11: while Ck �= ∅ do
12: for all Ok ∈ Ck do
13: if k ≥ m then
14: M ← M∪ L(Ok)
15: The set of (k + 1)-object-sets Ck+1 ← ∅
16: for all Ok, O′

k ∈ Ck s.t |Ok ∩ O′
k| = k − 1 do

17: Ok+1 ← Ok ∪ O′
k and L(Ok+1) ← Closed-MEMO(D, w, r, Ok+1)

18: if L(Ok+1) is not empty then
19: Ck+1 ← Ck+1 ∪ Ok+1

20: k ← k + 1
21: else
22: for all Qk+1 ∈ {Qk ∪ {oi}| if oj ∈ Qk then oj ≺ oi} do
23: Push C(Qk+1, k + 1) to stack
24: M ← M−{M |M is not a closed-MEMO}.

in A-miner (lines 8-20). Otherwise, the k-equivalent-class is divided into k + 1-
equivalent-classes (lines 22-23).

Table 2 shows a partial trace of E-miner on the search space shown in Fig.
2b for the same set of parameters: m = 2 and w = 3. Let us assume the mem-
ory can only hold two object-sets (and their M-Lists). In step 1, it checks the
whole search space lattice, C(∅, 0), and, since it cannot fit into the memory (it
contains 16 object-sets), pushes four 1-equivalent-classes, C({a}, 1), C({b}, 1),
C({c}, 1) and C({d}, 1) onto the stack. In steps 2 and 3, C({d}, 1) = {{d}}
and C({c}, 1) = {{c}, {c, d}} are popped and, since these equivalent-classes can
fit into the memory, their members are examined (but nothing is put into the
result set, M since {c}, {d} and {c, d} does not form any MEMO for the given
parameters). In step 4, C({b}, 1) = {{b}, {b, c}, {b, d}, {b, c, d}} is popped from
the stack. Since it has four object-sets and cannot fit in the memory, it is di-
vided into two 2-equivalent-classes C({b, c}, 2) and C({b, d}, 2), which are pushed
onto the stack for later processing. In steps 5 and 6, C({b, d}, 2) = {{b, d}} and
C({b, c}, 2) = {{b, c}, {b, c, d}} are popped out, checked and {b, d} and {b, c} are
inserted into the result set M. In the next steps, the equivalent-class C({a}, 1)
containing eight object-sets will be divided and processed.
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Table 2. A partial trace of E-miner

Step C(Qk, k) Stack M
1 C(∅, 0) {C({a}, 1), C({b}, 1), C({c}, 1), C({d}, 1)} ∅
2 C({d}, 1) {C({a}, 1), C({b}, 1), C({c}, 1)} ∅
3 C({c}, 1) {C({a}, 1), C({b}, 1)} ∅
4 C({b}, 1) {C({a}, 1), C({b, c}, 2), C({b, d}, 2)} ∅
5 C({b, d}, 2) {C({a}, 1), C({b, c}, 2)} {{b, d}}
6 C({b, c}, 2) {C({a}, 1)} {{b, d}, {b, c}}
... ... ...

In E-Miner, calculating M-List of the k-Prefix Qk popped out from the stack
(line 4) is a frequent component. Since it is costly to use the naive computation
described in Algorithm 2, in our implementation, their M-Lists are computed
before they are pushed onto the stack. We maintain the M-List of all 2-object-
sets and, for any Qk+1 about to be pushed onto the stack, its M-List L(Qk+1) is
computed from the M-List of Qk and any 2-object-set O′

2 such that |O′
2−Qk| = 1.

4.3 A Filter-And-Refinement Closed MEMO Miner (FAR-Miner)

In A-miner and E-miner, the dataset is referred for the locations of moving ob-
jects in calculating the minimum covering circles to verify if the objects actually
form a MEMO for the given parameters. Those queries (and computation of
the circle) are often wasted when the objects do not form a MEMO (when the
radius of the circle is larger than the given r). In Filter-And-Refinement-based
Closed MEMO Miner (FAR-miner), we introduced a filtering step, which needs
less access to the dataset, to avoid computation of minimum covering circles.

Lemma 2. If a set of points P is covered by a minimum covering circle C,
whose radius r(C) ≤ r, then two points p, q ∈ P cannot be further apart than 2r.

Proof. No two points p, q ∈ P , which are either inside or on the edge of C, can
be further apart than the length of its diameter, i.e. distance(p, q) ≤ 2r(C), and
2r(C) ≤ 2r. Therefore, distance(p, q) ≤ 2r. ��

Lemma 2 claims that if the distance between two points p, q ∈ P is more
than 2r, the minimum covering circle C of P must have a radius larger than r.
In other words, if the distance between location of object oi at tj and that of
object o′i at t′j is further than 2r, oi and o′i do not form a MEMO at interval I
containing tj and t′j.

Definition 11. For given parameters : m, w and r, a subset of the dataset
D′ ⊆ D, which contains all movement records of a set of objects O′ in an interval
I(D′) is termed as a potential-MEMO if (i) O′ has at least m objects, (ii) I(D′)
spans for at least w consecutive time-stamps and (iii) all locations the objects
o ∈ O′ visited during I(D′) are not further than 2r from each other.
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Definition 11 defines a potential-MEMO, which is likely to form a MEMO for
the given parameters. Closed potential-MEMO, k-potential-MEMO and k-closed
potential-MEMO can be defined in ways similar to Def. 3, 6 and 7, respectively.
It is also apparent that potential-MEMOs also have apriori-properties. FAR-
miner consists of two steps (i) the Filtering step, which finds the set of all
closed potential-MEMOs M′ = {D′|D′ is a closed potential-MEMO} and (ii)
the Verification step, which, for each potential-MEMO D′ ∈ M′, verifies if
the objects actually form a MEMO.

To perform the filtering step, we use A-miner (or E-miner), using a slightly
modified version of Algorithm 2 as its subroutine, since potential-MEMOs also
have the apriori-properties. Therefore for the filtering step, instead of building
minimum covering circles and checking their radii (lines 6-7), the modified algo-
rithm would simply check the distance between all p, q ∈ P . It is easy to show
that, if no two points in each of the sets, A∪B, A∪C and B∪C are further than
2r, no two points in the set A∪B∪C are. Therefore, when Ok and O′

k (such that
Ok − O′

k = {oi} and O′
k − Ok = {oj}) are known to form potential-MEMOs in

interval I, whether Ok+1 = Ok ∪O′
k forms a potential-MEMO in I can be easily

derived by checking if all the locations of oi and oj in I are within distance 2r
of each other. In other words, by maintaining all 2-closed potential-MEMOs in
memory, when k ≥ 2, the potential-MEMOs formed by Ok+1 object-sets can be
derived without referring the dataset for the actual locations of the objects. To
perform the verification step, we directly apply A-miner (or E-miner) discussed
in Sect. 4.1 (4.2) on D′ with the given parameters.

Since it is possible to perform the filtering and verification using either A-
miner or E-miner dialects, there are four possible flavors of FAR-miner. However,
in Sect. 5, we report the performance of filtering and verification steps, both using
A-miner dialect, as all flavors show similar performance during our initial tests.

As a hindsight, we noted that, due to the apriori-properties of the MEMOs,
intermediate mining results (k-MEMOs and potential k-MEMOs) obtained using
parameters : m, w and r can be easily reused for subsequent runs on the same
dataset using different parameters : m′, w′ and r′, bounded by the criterion:
r′ ≤ r and w′ ≥ w. However, it is not practical to save all intermediate results
of each previous run. Therefore, we recommend to save only the intermediate
results obtained using a short w and/or a large r as they are more likely to be
reused. The intermediate results in question can be further trimmed down to its
subsets based on the domain knowledge. For example, in an application where
meetings of 3 objects are common, only k-MEMOs for k ≥ 4 are to be saved for
reuse. In our experiments in Sect. 5, we do not reuse any intermediate result.

5 Experiments

5.1 Experiment Setup

We implemented the algorithms in Java and conducted all the experiments on a
Red-Hat Enterprise Linux server equipped with Intel Xeon X5365 CPU running
at 3.00GHz and a physical memory capped at 8GB. We copied the whole dataset
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Table 3. A summary of the datasets

Name Object Count Covers No. of Records

Statefair 19 3hr 17,545
Orlando 41 14hr 133,076
New York 39 22hr 118,584
NCSU 35 21hr 128,417
KAIST 92 23hr 404,981
SF-Cab21 482 8hr 1,156,458
SF-Cab22 477 8hr 1,236,497

into physical memory prior to the experiments although our algorithms (A-
miner, E-miner and FAR-miner) can also work on disk-based datasets.

We adapted the column-sweeping algorithm (CS-miner) proposed in [6] for
reference because it is the only work in the literature, which, theoretically, can
report all closed MEMOs accurately. However, in practice, it is impossible to
continuously rotate a 3D-column, whose base (height) represents place (dura-
tion) of a meeting, around each location an object visited in each time-stamp
(and check the order, in which the objects enter/leave the column) as specified.
Therefore, we decided to rotate the column discreetly by a user-defined angular
step, θ, which, in our experiments, is set to 1◦ unless otherwise stated. CS-miner
reports less accurate results 2 when θ becomes larger (relative to r).

We used five datasets – Statefair, Orlando, New York, NCSU and KAIST –
of human movement [9] and larger datasets, SF-Cab21 and SF-Cab22, of taxi
movement extracted from [12]. New York consists of traces of the volunteers
commuting by subways, by buses and on foot, while NCSU and KAIST consist of
traces of students on campuses. SF-Cab21 (SF-Cab22) consists of taxi movement
from 8AM to 4PM in San Francisco Bay Area on 21-Apr-08 (22-Apr-08). The
time interval between each pair of consecutive time-stamps is 10 seconds in
all datasets. We pre-processed all datasets to eliminate missing records in gaps
shorter than an hour.

5.2 Results and Analysis

The outcome of the first set of experiments, comparing the performance of the
algorithms on human movement datasets, is shown in Fig. 3a (note that the y-
axis is in log-scale). We were looking for meetings of at least two people (m = 2)
lasting for at least 15 minute (w = 15 minute), which were reasonable choices of
parameters for the corresponding datasets. In NCSU and KAIST, we even dis-
covered meetings of up to 3 and 5 students. Our proposed data-driven algorithms,
A-miner and E-miner, run faster than CS-miner to find the closed MEMOs as
they ignore the fast-moving objects in building M-List of 1-object-sets while

2 CS-Miner often has missing results (false-negatives) as well as reports several over-
lapping (non-closed) MEMOs in place of a single MEMOs.
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Dataset A-Miner, CS-Miner
E-Miner and
FAR-Miner

Statefair 5 5
Orlando 15 15
New York 16 16
NCSU 48 46
KAIST 126 123

(b)

Fig. 3. Comparison of (a) the performance of the algorithms and (b) the number of
MEMOs they found on human-movement datasets using m = 2, w = 15 minutes and
r = 10 meters

CS-miner attempts to build MEMOs containing them in vain. FAR-miner out-
performs A-miner and E-miner by a large order of magnitude due to its cheap
pruning mechanism. We also noted that, even using a reasonably low θ value of
1◦, CS-miner still missed some results for NCSU and KAIST (see Fig. 3b).

In the next set of experiments, whose outcome is plotted in Fig. 4a and 4b,
we assessed the scalability of the algorithms on different sizes of datasets. We
randomly picked 30, 60 and 90 moving objects from the largest human-movement
dataset, KAIST, and 150, 300, 450 moving objects from SF-Cab21 for these
experiments. We set the value of r to 30 meters in order to find MEMOs in
smaller subsets of KAIST. For executions on subsets of SF-Cab21, we intuitively
chose parameters (m = 5, w = 30 minute and r = 25 meter) to reflect taxis
waiting in taxi queues and severe traffic jams. We noticed that the larger value of
r we set, the smaller value of θ we should use to maintain accuracy for CS-miner
since it reports inaccurate results, when we set its internal parameter θ = 1◦

in KAIST. Therefore, for experiments on SF-Cab21, we used a θ value of 0.5◦.
Our algorithms (A-Miner, E-Miner and FAR-Miner) scale well on the increasing
dataset size but CS-Miner does not – exceeding eight hours to process data
of 90 moving objects in KAIST. Among our proposed algorithms, FAR-miner
performs better than the others except in the largest subset of KAIST, when
the very large value of r = 30 meters increased the number of potential MEMOs
to nearly three thousand and A-miner outperforms FAR-miner.

Analyzing the run-time statistics of FAR-miner in previous experiments given
in Table 4, we found that run-time is dominated by the verification step as the
filtering step took only a few seconds regardless of the dataset. The verifica-
tion time is not dependent on the size of the dataset but on the number of
potential results (D′). To verify this claim, we conducted another experiment on
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Fig. 4. Impact of the size of the dataset on performance of the algorithms (a) for
m = 2, w = 15 minutes and r = 30 meters on subsets of KAIST and (b) for m = 5,
w = 30 minutes and r = 25 meters on subsets of SF-Cab21

SF-Cab22, which is comparable in size to SF-Cab21, using the same set of pa-
rameters: m = 5, w = 30 minutes and r = 25 meters. It turns out that there are
fewer MEMOs for the given parameters in SF-Cab22 as well as fewer potential
results. Subsequently, verification time (and total running time) of SF-Cab22
is significantly smaller than that of SF-Cab21. Since, in typical circumstances,
the number of meetings formed in a dataset are supposed to be few, we noted
that FAR-miner will give reasonable performance regardless of the size of input
dataset. Even when there are many meetings formed in a dataset, FAR-miner
outperforms A-miner and E-miner as they take longer to complete in SF-Cab21
for the same parameters (see Fig. 4b).

Table 4. Run-time decomposition of FAR-miner for verification and filtering steps

Dataset Filtering Verification Total No. of No. of
(seconds) (seconds) (seconds) MEMOs D′

Statefair 0.2 0.2 0.4 5 3
Orlando 1.2 0.6 1.8 15 18
New York 17.5 284.1 301.6 16 19
NCSU 6.2 452.1 458.3 48 64
KAIST 9.9 356.6 365.5 126 182
SF-Cab21 18.4 3110.3 3128.7 561 1230
SF-Cab22 19.8 1139.8 1159.6 10 129

In the subsequent sets of experiments, we studied the impact of parameter
values on the performance of the algorithm. Figure 5a and 5b show the im-
pact of value of r on the performance of the algorithms. Increasing r relaxes
the conditions by allowing MEMOs with larger meeting places and increases the
number of closed MEMO in a dataset. Thus, it, in turn, increases the run-time of
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Fig. 5. Impact of r on performance of the algorithms for m = 2 and w = 15 minutes
on (a) New York and (b) KAIST

 7200
 10800
 14400
 18000
 21600
 25200
 28800
 32400
 36000
 39600
 43200
 46800
 50400
 54000
 57600
 61200

2 3 4 5

R
un

ni
ng

 T
im

e 
(s

ec
on

ds
)

m

A-Miner
E-Miner

FAR-Miner
CS-Miner

Fig. 6. Impact of m on performance of the algorithms for w = 15 minutes and r = 30
meters on KAIST

all algorithms. However, performance of CS-miner degraded rapidly (especially
in KAIST) as r increases while our algorithms’ performance were stable. Most
of the time, FAR-miner significantly outperforms the rest except in KAIST at
r = 30 meters. In this peculiar instance, there was nearly three thousand poten-
tial MEMOs to verify and, since verification time dominates the run-time and
depends on the number of potential MEMOs as we noted earlier, FAR-miner
took a few minutes more than A-miner to complete.

Figure 6 shows the impact of value of m on the performance of algorithms. We
used a lower value of θ = 0.5◦ to improve CS-miner’s accuracy (r = 30 meter).
Increasing m reduces the number of MEMOs found in a particular dataset.
Therefore, CS-miner finishes faster than A-miner and E-miner when m = 5
as there are a very few meetings of 5 or more students in KAIST. FAR-miner
still performs better than the others due to its powerful filtering step. All our
algorithms’ performance are stable regardless the value of m given.

Figure 7a and 7b shows the impact of value of w on the performance of the
algorithms. Increasing w puts more restriction by demanding participants to stay
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Fig. 7. Impact of w on performance of the algorithms for m = 2 and r = 30 meters on
(a) New York and (b) KAIST

still longer and decreases the number of closed MEMO in a dataset. Thus, it, in
turn, decreases the run-time of all algorithms. Our data-driven algorithms still
outperform CS-miner in all cases and, most of the time, FAR-miner significantly
performs better than the rest.

From our experiments, we concluded that our proposed data-driven algo-
rithms, A-miner and E-miner, performed better than CS-miner in many realistic
settings. Although E-miner took slightly longer to complete than A-miner, it can
limit its memory needs and is suitable for larger datasets. In real-life scenarios,
where few MEMOs are expected, we recommend to use FAR-miner as its fast
filtering step would improve performance significantly.

6 Conclusion

In this paper, we introduced a more precise definition of meeting patterns called
MEMO, taking the accuracy of reported meeting place into account. We devel-
oped three novel algorithms to discover closed MEMOs. Experiments on real-life
datasets showed that our proposed algorithms can perform better than the ex-
isting one. A general framework to discover all aggregate movement patterns is
considered as future research goal.
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Abstract. Modern data are often high dimensional and dynamic.
Subspace clustering aims at finding the clusters and the dimensions of
the high dimensional feature space where these clusters exist. So far,
the subspace clustering methods are mainly static and cannot address
the dynamic nature of modern data. In this paper, we propose a dy-
namic subspace clustering method, which extends the density based
projected clustering algorithm PreDeCon for dynamic data. The pro-
posed method efficiently examines only those clusters that might be af-
fected due to the population update. Both single and batch updates are
considered.

1 Introduction

Clustering is the unsupervised classification of data into natural groups (called
clusters) so that data points within a cluster are more similar to each other than
to data points in other clusters. Due to its broad application areas, the clustering
problem has been studied extensively in many contexts and disciplines, including
Data Mining. As a result, a large number of clustering algorithms exists in the
literature (see [16] for a thorough survey). However, modern data impose new
challenges and requirements for the clustering algorithms due to their special
characteristics. First of all, a huge amount of data is collected nowadays as a
result of the wide spread usage of computer devices. This possibility of cheaply
recording massive data sets may also be the reason for another new character-
istic of modern data; the high dimensionality of objects. While years ago, data
recording was more expensive and, thus, the relevance of features was carefully
evaluated before recording, nowadays, people tend to measure as much as they
can. As a consequence, an object might be described by a large number of at-
tributes. Many of these attributes may be irrelevant for a given application like
cluster analysis and there might be correlations or overlaps between these at-
tributes. In addition to their quantity and high dimensionality, today’s data is
often highly dynamic, i.e., new data records might be inserted and existing data
records might be deleted, as time goes by.

As an example, consider the data derived from the Bavarian newborn screen-
ing program [20]. For each newborn in Bavaria, Germany, the blood concentra-
tions of 43 metabolites are measured in the first 48 hours after birth producing
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a vast amount of high dimensional data that is highly dynamic (new individ-
uals are added usually in a batch on a daily or weekly basis). The analysis of
these data shall help doctors in the diagnosis the exploration of known and new
metabolic diseases. Clustering the data is a crucial step in this process. How-
ever, for different diseases, it is very likely that different metabolites are relevant.
Thus, clusters representing groups of newborns with a homogeneous phenotype,
e.g. suffering from a similar disease, can usually only be found in subspaces of
the data. As batches of new individuals are coming in every day or week, the de-
tected clustering structure needs to be updated as well. Due to the huge amount
of data, the update of the clustering structure should be done incrementally only
for the changing part of the structure, rather than re-computing the complete
structure from scratch. Let us note that such screening projects are implemented
in a large number of states/countries so that there are many data sets having
similar characteristics that need to be analyzed.

The scenario described above represents a general data warehouse environ-
ment. With this term, we do not associate a certain architecture, but describe
an environment in which changes in the transactional database are collected
over some period (e.g. daily) and the data warehouse is updated using batch
operations. Beside data originating from scientific experiments, also many com-
panies store terabytes of corporate data in such an environment. Applications
like scientific data analysis or industrial decision support systems in such envi-
ronments require not only high accuracy from data analysis methods but also
fast availability of up-to-date knowledge — a prohibitive demand for many data
mining algorithms which are able to gain knowledge only from scratch using
highly complex operations. Rather, to cope with the problem of updating mined
patterns in a data warehouse environment, algorithms preferably should perma-
nently store the acquired knowledge in suitable data structures and facilitate an
efficient adaptation of this stored knowledge whenever the raw data changes.

Lately, a lot of work has been carried out on adapting traditional clustering
algorithms in order to meet the requirements of modern systems or on proposing
new algorithms that are specialized on handling data with the above features. In
particular, several methods have been proposed for each of the aforementioned
problems separately, like for clustering of large amounts of data, e.g. [22,11,5],
for clustering over data streams, e.g. [15,2], for change detection and monitoring
over evolving data, e.g. [1,21], as well as for clustering high dimensional data
(see [19] for a survey). Less work though has been done to tackle the complete
list of challenges in a single, unified approach.

We propose a new algorithm, based on the density based subspace clustering
algorithm PreDeCon [6] providing a solution to the problem of high dimension-
ality by finding both clusters and subspaces of the original feature space where
these clusters exist. The original PreDeCon works upon static datasets. In this
work, we propose an incremental version of PreDeCon, which also deals with
the issue of dynamic data.1 The new algorithm can also serve as a framework for

1 A preliminary version of this paper has been discussed at the StreamKDD 2010
workshop [18].
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monitoring clusters in a dynamic environment. We choose the algorithm Pre-
DeCon [6] because it already addresses the problem of high dimensional data
(for static scenarios) and it relies on a density-based clustering model such that
updates usually do not affect the entire clustering structure but rather cause
only limited local changes. This is important to explore update procedures for
dynamic data.

The rest of the paper is organized as follows. In Section 2, we discuss the
related work and our contribution. In Section 3, we present the basic notions
of PreDeCon which are necessary for the understanding of the incremental
method. In Section 4, we present the incremental algorithm, incPreDeCon.
We distinguish between a single update scenario and a batch update scenario
(Section 5 and 6, respectively). Experimental results are reported in Section 7.
Section 8 concludes our work.

2 Related Work and Contributions

2.1 Subspace Clustering

The area of subspace clustering has lately emerged as a solution to the problem
of the high dimensionality of the data. Its goal is to simultaneously detect both
clusters (i.e.,, sets of objects) and subspaces of the original feature space where
these clusters exist. This is in contrast to the traditional clustering that searches
for groups of objects in the full dimensional space [16]. Also this is in contrast to
global dimensionality reduction techniques like Principal Component Analysis
(PCA) that search for clusters in the reduced (though full) dimensional space. In
subspace clustering different features might be relevant for different clusters and
the goal is to find both the clusters and the features that form these clusters.

Recent work on subspace clustering (see e.g. [19] for a review) so far focus
on finding clusters in different subspaces of the original feature space in static
data. None of these methods are suitable to efficiently keep track of changes of
the clustering structure over time. Rather, the clustering structure can only be
updated by computing the entire clustering from scratch.

2.2 Incremental Clustering

Traditional incremental clustering methods rely on the old clustering at time
point t− 1 (based on dataset Dt−1) and on the update operations at time point
t in order to derive the new clustering at t. In this category belong methods
like incDBSCAN [10] which is the incremental version of the density based algo-
rithm DBSCAN [11] and incOPTICS [17] which is the incremental version of the
density based hierarchical clustering algorithm OPTICS [5]. Both incDBSCAN
and incOPTICS methods exploit the fact that, due to the density based nature
of the corresponding static algorithms, an update operation affects only some
part of the old clustering instead of the whole clustering. The update process
works directly upon raw data. Both methods produce the same results with the
corresponding static methods when the latest are applied over the accumulative
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dataset Dt. Charikar et al.[8] present an incremental K–Means method which
maintains a collection of k clusters as the dataset evolves. When a new point is
presented, it is either assigned to one of the current k clusters, or it starts a new
cluster while two existing clusters are merged into one, so as the total number of
clusters does not exceed the threshold k. Chen et al. [9] propose the incremen-
tal hierarchical clustering algorithm GRIN which is based on gravity theory in
physics. In the first phase, GRIN constructs the initial clustering dendrogram,
which is then flattened and its bottom levels are pruned in order to derive the so
called tentative dendrogram. For each cluster, the tentative histogram keeps the
centroid, the radius and the mass of the cluster. In the second phase, new data
instances are inserted one by one and it is decided whether they belong to leaf
nodes of the tentative dendrogram or are outliers. If the tentative outlier buffer
exceeds some threshold, a new tentative dendrogram is reconstructed. Both [8]
and [9] are approximate methods, by means that the resulting clustering after
the update is not assured to be identical to the one we would obtain if we ap-
plied from scratch the static versions of the algorithms over the accumulative
dataset Dt. This is due to the fact, that the update process works upon cluster
summaries rather than upon raw data; the new data at t are actually “mapped”
to the closer cluster of the existing clustering (from timepoint t− 1).

2.3 Stream Clustering

Data streams impose new challenges for the clustering problem since “it is usu-
ally impossible to store an entire data stream or to scan it multiple times due to
its tremendous volume” [14]. As a result, several methods have been proposed
that first summarize the data through some summary structure and then apply
clustering over these summaries instead of the original raw data. With respect to
the clustering quality, these summaries might be either lossy (that is, they cor-
respond to some approximation of the raw data) or lossless (that, is they exactly
maintain the information contained in the original raw data). Agrawal et al. [2]
propose the CluStream framework for clustering of evolving data streams. The
clustering process is split into an online and an offline part: The online com-
ponent periodically stores summary statistics (the so called, micro–clusters),
whereas the offline component uses these micro–clusters for the formation of the
actual clusters (the so called, macro–clusters) over a user–defined time horizon.
No access to raw data is required in this method, since the clustering takes place
over the microclusters, which correspond to a lossy representation of the origi-
nal data. The incremental part in this case is the online component which up-
dates the micro–clusters, whereas the clustering process is applied from scratch
over these updated summaries. DenStream [7] follows the online–offline rationale
of CluStream [2] but in contrast to CluStream that is specialized to spherical
clusters, it can detect clusters of arbitrary shapes. In the context of their DE-
MON framework, Ganti et al. [12] present BIRCH+, an incremental extension
of BIRCH [22]. The original BIRCH [22] first summarizes the data into sub-
clusters and then it clusters those subclusters using some traditional clustering
algorithm. The subclusters are represented very concisely through cluster fea-
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tures. In BIRCH+, the cluster features are maintained incrementally as updates
occur, and then the clustering step takes place as in BIRCH over those (now
updated) summaries. So, the incremental part is that of summary structure up-
date, whereas clustering is then applied from scratch over the updated summary
structure. The incremental version produces the same results as the static version
when applied on the accumulative dataset Dt.

2.4 High Dimensional Stream Clustering

Gao et al. [13], propose DUCStream, an incremental data stream clustering al-
gorithm that applies the idea of dense units introduced in CLIQUE [4] to stream
data. As in CLIQUE [4], the data space is split into units and a cluster is defined
as a maximal set of connected dense units. Their method relies on incrementally
updating, according to the update operation, the density of these units and
on detecting units that change from dense to non-dense and the inverse. After
the grid update phase, they identify the clusters using the original procedure
of CLIQUE. DUCStream does not require access to the raw data of the past
time points, but only over the summary grid structure. The incremental version
produces the same results as the static version when applied to the accumulative
dataset Dt. Note that although CLIQUE is a subspace clustering algorithm, the
proposed method [13] updates incrementally only the grid summary structure,
whereas the clusters are discovered from scratch over the (now updated) grid.
This is a clear difference to our work, where the goal is to incrementally update
the existing clustering (at t − 1) based on the dataset updates at t, so as to
finally derive the new clustering at t. Agrawal et al. [3] extend the idea of CluS-
tream [2] to high dimensional data streams by proposing HPStream, a method
for projected data stream clustering. A summary structure, the so called fading
cluster structure, is proposed which comprises a condensed representation of the
statistics of the points inside a cluster and can be updated effectively as the data
stream proceeds. The input to the algorithm includes the current cluster struc-
ture and the relevant set of dimensions associated with each cluster. When a new
point arrives, it is assigned to the closest cluster structure or if this violates the
limiting radius criteria, a new cluster is created and thus some old cluster should
be deleted in order for the total number of clusters to not exceed the maximum
number k. In each case, the cluster structure and the relevant dimensions for
each cluster are dynamically updated. Although HPStream is a subspace clus-
tering method and we propose an incremental subspace clustering method in this
work, there are core differences between the two approaches and their scopes. In
particular, HPStream is targeted to stream data and thus works upon summaries
and provides an approximation solution to the clustering problem. On the other
hand, our incPreDeCon method works upon dynamic data, requires access
to raw data (although this access is restricted to only a subset of the original
dataset) and provides exact solution to the clustering problem (i.e., we obtain
the same results with those obtained by applying the static PreDeCon over
the acumulated dataset Dt).
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2.5 Contributions

None of the existing methods can be applied to the scenario of massive, high
dimensional databases that are updated over time like in a data warehouse en-
vironment. In this work, we propose an incremental version of the density based
subspace preference clustering algorithm PreDeCon [6] which comprises a first
step towards an integrated approach to the above listed challenges. We choose
the algorithm PreDeCon because it already addresses the problem of high di-
mensional data (for static scenarios) and it relies on a well-known and established
clustering model. Let us note that we do not discuss nor evaluate benefits and
limitations of different cluster models in this paper but solely propose concepts
to adapt an existing model to the various challenges of today’s data.

The methods for finding subspace clusters in data streams mentioned above
are to some degree related to the incremental subspace clustering in data ware-
houses. Both methodologies aim at providing the user with up-to-date infor-
mation on subspace clusters very quickly in a dynamic, high dimensional en-
vironment. However, data streams impose different requirements on clustering
algorithms and the entire data mining process. In particular, in a data ware-
house, the clustering algorithm has access to all points currently in the database
and not necessarily only to the most recently inserted points or to summaries
of the raw data as for stream data. In addition, when clustering stream data,
the algorithm for updating the summaries is restricted to sequential access to
newly inserted objects and the clustering is then re-computed on the summary
information only. This restriction does not apply to algorithms for incremental
clustering in a data warehouse environment. Our solutions are therefore different
from the data stream clustering context in these two aspects.

3 The Algorithm PreDeCon

PreDeCon [6] adapts the concept of density based clusters, introduced in DB-
SCAN [11], to the context of subspace clustering. The notion of subspace prefer-
ences for each point defines which dimensions are relevant to cluster the point.
Roughly speaking, a dimension is relevant to cluster a point if its neighbor-
hood along this dimension has a small variance. Intuitively, a subspace preference
cluster is a density connected set of points associated with a similar subspace
preference vector.

Let D be a database of d-dimensional points (D ⊆ Rd), where the set of
attributes is denoted by A = {A1, A2, . . . , Ad}, and dist : Rd × Rd → R is a
metric distance function between points in D. Let Nε(p) be the ε-neighborhood
of p ∈ D, i.e., Nε(p) contains all points q ∈ D with dist(p, q) ≤ ε. The variance
of Nε(p) along an attribute Ai ∈ A is denoted by VarAi(Nε(p)). Attribute
Ai is considered a preferable (relevant) dimension for p if the variance with
respect to Ai in its neighborhood is smaller than a user-defined threshold δ,
i.e., VarAi ≤ δ. All preferable attributes of p are accumulated in the so-called
subspace preference vector. This d-dimensional vector w̄p = (w1, w2, . . . , wd) is
defined such that wi = 1 if attribute Ai is irrelevant, i.e., VarAi(Nε(p)) > δ and
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wi = κ (κ & 1) if Ai is relevant, i.e., VarAi(Nε(p)) ≤ δ. The subspace preference
vector of points defines the preference weighted similarity function associated

with a point p, distp(p, q) =
√∑d

i=1 wi · (πAi(p)− πAi(q))2, where wi is the
i-th component of w̄p. Using the preference weighted similarity, the preferable
attributes are weighted considerably lower than the irrelevant ones. This distance
is not symmetric. A symmetric distance is defined by the general preference
similarity, distpref (p, q) = max{distp(p, q), distq(q, p)}. The preference weighted
ε−neighborhood of a point p contains all points of D that are within a preference
weighted distance ε from p: N w̄o

ε (o) = {x ∈ D | distpref (o, x) ≤ ε}.
Based on these concepts, the classical definitions of density-based clustering

have been derived:

Definition 1 (preference weighted core points [6]). A point o ∈ D is called
preference weighted core point w.r.t. ε, μ, δ, and λ (denoted by Corepref

den (o)),
if i) the preference dimensionality of its ε-neighborhood is at most λ and ii) its
preference weighted ε-neighborhood contains at least μ points.

Definition 2 (direct preference reachability [6]). A point p ∈ D is di-
rectly preference reachable from a point q ∈ D w.r.t. ε, μ, δ, and λ (denoted
by DirReachpref

den (q,p)), if q is a preference weighted core point, the subspace
preference dimensionality of Nε(p) is at most λ, and p ∈ N w̄q

ε (q).

Definition 3 (preference reachability [6]). A point p ∈ D is preference
reachable from a point q ∈ D w.r.t. ε, μ, δ, and λ (denoted by Reachpref

den (q,p)),
if there is a chain of points p1, . . . , pn such that p1 = q, pn = p and pi+1 is
directly preference reachable from pi.

Definition 4 (preference connectivity [6]). A point p ∈ D is preference
connected to a point q ∈ D, if there is a point o ∈ D such that both p and q are
preference reachable from o.

Definition 5 (subspace preference cluster [6]). A non-empty subset C ⊆ D
is called a subspace preference cluster w.r.t. ε, μ, δ, and λ, if all points in C are
preference connected and C is maximal w.r.t. preference reachability.

As DBSCAN, PreDeCon determines a cluster uniquely by any of its preference
weighted core points. As far as such a point is detected, the associated cluster
is defined as the set of all points that are preference reachable from it.

4 Incremental PreDeCon

Let D be the accumulated data set until the time point t− 1 and let ζ be the cor-
responding clustering at t − 1 (built upon data set D). Let U be a set of update
operations (insertions of new points). Let D∗ be the newly accumulated data set
at time slot t, which is the result of applying U over D, i.e., D∗ = D∪U . The goal
of incremental PreDeCon is to update the so far built clustering ζ (at timepoint
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t − 1) based on the update set U (at timepoint t) and thus, to derive the valid
clustering ζ∗ for time point t. The key observation is that the preference weighted
core member property of an object might change due to the update. As a result,
the existing clustering might change too, e.g., new clusters might arise, old clus-
ters might be abolished or merged into a new cluster and so on. The challenge is
to exploit the old clustering ζ at t − 1 (both clusters and subspaces where these
clusters exist) and to adjust only that part of it which is affected by the update
set U at time point t. Due to the density based nature of the algorithm, such an
adjustment is expected (although not ensured in general) to be restricted to some
(local) part of the clustering instead of the whole clustering.

We consider a dynamic environment where data are coming sequentially either
as: (i) single updates (|U|=1), e.g., in streams, or as (ii) batch updates (|U| =
m > 1), e.g., in data warehouses where updates are collected and periodically
propagated. In case of single updates, each update is treated independently. In
case of batch updates, the idea is to treat the effects of all these updates together
instead of treating each update independently. The rationale is that the batch
might contain updates that are related to each other (e.g., one update might
correspond to an object that belongs to the neighborhood of another object
which is also updated). This is common in many applications, e.g., news data:
when a story arises usually within a small time interval there exists a burst of
news articles all referring to this story.

5 Dealing with Single Updates

Due to the density based nature of PreDeCon, a preference weighted cluster
is uniquely defined by one of its preference weighted core points. The key idea
for the incremental version is to check whether the update operation affects the
preference weighted core member property of some point. If a non-core point
becomes core, new density connections might be established. On the other hand,
if a core point becomes non-core, some density connections might be abolished.
There is also another case in PreDeCon, when a core point remains core but
under different preferences. Such a change might cause either the establishment
of new connections or the abolishment of existing ones.

5.1 Effect on the Core Member Property

The insertion of a point p directly affects the points that are in the ε-neighborhood
of p, i.e., all those points q ∈ D : dist(p, q) ≤ ε. In particular, the neighborhood
of q, Nε(q), might be affected, since the newly inserted object p is now a mem-
ber of this neighborhood. Since Nε(q) might change, the variance of Nε(q) along
some dimension Ai ∈ A might also change causing Ai to turn into a preferable
or non-preferable dimension. This might change the subspace preference dimen-
sionality of q, PDim(Nε(q)). Also, the subspace preference vector of q, w̄q, might
change; this in turn, might result in changes in the preference ε-neighborhood
of q, N w̄

ε (q)q. As a result, the core member property of q might be affected.
According to Def. 1, two conditions should be fulfilled in order for a point q to
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be core: In terms of condition 1, the preference dimensionality of q must con-
tain at most λ dimensions (i.e., PDim(Nε(q)) ≤ λ). In terms of condition 2, the
preference weighted ε-neighborhood of q should contain at least μ points.

Let p be the new point, and let D∗ = D ∪ {p} be the new data set after
the insertion of p. The addition of p might affect the core member property of
any object q ∈ Nε(p). In particular, since Nε(q) changes, the variance along
some attribute Ai ∈ A, i.e., VarAi(Nε(q)) might also change. (i) If Ai was a
non-preferable dimension (that is, VarAi(Nε(q)) > δ), it might either remain
non-preferable (if still VarAi(Nε(q)) > δ) or it might become preferable (if now
VarAi(Nε(q)) ≤ δ). (ii) If Ai was a preferable dimension, it might either re-
main preferable (if still VarAi(Nε(q)) ≤ δ) or it might become non-preferable
(if now VarAi(Nε(q)) > δ). A change in the preference of Ai might result in
changes in the subspace preference vector of q, w̄q, since some dimension might
swap from preferable to non preferable and vice versa. Thus, we can have more
or less preferable dimensions comparing to the previous state (quantitative dif-
ferences) or we can have the same dimensionality but under different preferred
dimensions (qualitative differences). A change in w̄q, might cause changes in
both PDim(Nε(q)) and in N w̄q

ε (q).
If the subspace preference dimensionality of q, PDim(Nε(q)), changes, the

first condition of Definition 1 (referring to dimensionality) might be violated.
In particular, if |PDim(Nε(q))| > λ, the point q cannot be core. So, if q was
a core point, it now looses this property (core → noncore), whereas if it was
non-core it still remains non-core. This is the first condition to be checked,
and it is quantitative since it is based on the number of preferred dimensions
(whether they exceed δ or not). If after the insertion of p, this condition holds
(that is, |PDim(Nε(q))| ≤ λ), the second condition of Definition 1 (preferred
neighborhood size) is to check assessing whether q is core after the update. (i) If
q was a core point, and now |N w̄

ε (q)q| < μ, then q loses its core member property
(core → noncore). Otherwise, it remains core. (ii) If q was not a core point, and
now |N w̄

ε (q)q| ≥ μ then q becomes core (noncore → core). Otherwise, it remains
non core. (iii) There is also another case of change for q, where it still remains
core (core → core) but under different preferences (this might happen e.g., when
there are qualitative changes in w̄q). Note that, although q might remain core
its neighborhood might change due to different preferred dimensions.

Note again that the objects with a changed core member property are all
located in Nε(p), since such a change is due to the insertion of p.

5.2 Affected Objects

So far, we referred to the objects in Nε(p) that are directly affected by the in-
sertion of p and we discussed when and how their core member property might
change. Note however, that a change in the core member property of an ob-
ject q might cause changes in the objects that are preference reachable from q
(indirectly affected). If q was a core point before the insertion and it becomes
non-core after the insertion, then any density connectivity that relied on q is
destroyed. On the other hand, if q was a non-core point before the insertion and
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it turns into core after the insertion, then some new density connectivity based
on q might arise.

We denote by AffectedD(p) the set of points in D that might be affected
after the insertion of p. This set contains both directly affected points (those
located in Nε(p), which might change their core member property after the
update) and indirectly affected objects (those that are density reachable by some
point in Nε(p), which might change their cluster membership after the update).

Definition 6 (Affected objects). Let D be a data set and let D∗ = D ∪ {p}
be the new data set after the insertion of object p. We define the set of objects
in D affected by the insertion of p as:
AffectedD(p) = Nε(p) ∪ {q|∃o ∈ Nε(p) : Reachpref

den (o, q) in D∗}
The update of p might cause changes in the cluster membership of only some
objects q ∈AffectedD(p). A naive solution would be to reapply the static
PreDeCon over this set in order to obtain the new clustering for the set of
affected data. This way however, although one would restrict reclustering over
only this subset of the data, one actually ignores any old clustering information
for this set and build it from scratch. Our solution is based on the observation
that any changes in AffectedD(p), are exclusively initiated by objects that
change their core member property, i.e., those in Nε(p). So, instead of examining
all objects in AffectedD(p), we can start searching from objects in Nε(p)
and discover the rest of the affected objects on the road (those objects would
belong to AffectedD(p) though). Note also that there is no need to examine
each q ∈ Nε(p) since some objects might have not changed their core member
property so related density connections from the previous clustering would be
still valid. So, we need to examine only those objects in Nε(p) that change their
core member property after the insertion of p, instead of all objects in Nε(p), so
as to avoid rediscovering density connections. As already described, a possible
change in the core member property of an object after the insertion of p falls
into one of the following cases: (i) core → non-core, (ii) non-core → core and,
(iii) core → core but under different preferences.

When the core member property of a point q ∈ Nε(p) changes, we should
consider as seed points for the update any core point q′ ∈ Nε(q). That is, the
update process starts from core points in the neighborhood of the objects with
changed core member property (which, in turn are all located in Nε(p)).

Definition 7 (Seed objects for the update). Let D be a data set and let
D∗ = D ∪ {p} be the new data set after the insertion of p. We define the seed
objects for the update as:
UpdSeed = {q is core in D∗|∃q′ : q ∈ Nε(q′) and q′ changes its core property}

5.3 Updating the clustering

After the insertion of a new object p, new density connections might be es-
tablished whereas existing connections might be abolished or modified. We can
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algorithm incPreDeCon(D, U , ε, μ, λ, δ)

for each p ∈ U do

1. D∗ = D ∪ p;
2. compute the subspace preference vector w̄p;
// update preferred dimensionality and check core member property in Nε(p)
3. for each q ∈ Nε(p) do
4. update w̄q ;
5. check changes in the core member property of q and if change exists, add q to Affected;
6. compute UpdSeed based on Affected
7. for each q ∈ UpdSeed do
8. expandCluster(D∗, UpdSeed, q, ε, μ, λ);

end;

Fig. 1. Pseudo code of the algorithm incPreDeCon

detect these changes starting with the seed objects in UpdSeed. As in PreDe-
Con, the cluster is expanded starting from objects in UpdSeed and considering
the results of the so far built clustering. The pseudo code of the algorithm is
displayed in Figure 1. The existing database D, the update set U and the Pre-
DeCon parameters (namely, the distance threshold ε, the neighborhood size
threshold μ and the dimensionality threshold λ) are the input to the algorithm.
The updated clustering ζ∗ is the output of the algorithm.

The algorithm works as follows: After the insertion of a point p (line 1), its
subspace preference vector is computed (line 2), and its neighborhood Nε(p) is
updated (lines 3–6). In particular, for each object q ∈ Nε(p) (line 3), we first
update its subspace preference vector (line 4) and then check for any changes
in the core member property of q (line 5). If the core member property of q is
found to be affected, q is added to the Affected set. After the Affected set
is computed, we derive the seed objects for the update (line 6). Based on these
objects, the reorganization of the old clustering starts, which involves some call
to the expandCluster() function of PreDeCon. This is a generic solution that
works on every effect caused by the update of p. Of course, there are simpler
cases where we can deal with the update without invoking the expandCluster()
procedure of PreDeCon. For example, if the update of p does not affect the core
member property of its neighborhood and its neighborhood belongs to exactly
one cluster before the update, then p is also added to this cluster (absorption).
However there are many such special cases, since, as already stated, the update of
p might both destroy old density connections and create new density connections
depending on the changes in the core member property of its neighborhood. The
proposed method is lossless, that is the incrementally updated model ζ∗ at t
(which is based on the clustering model ζ at t− 1 and on the update set U at t)
is identical to the one we would obtain if we applied from scratch the traditional
PreDeCon over the accumulated data set D∗ at time point t.

6 Dealing with Batch Updates

We now consider the case of batch updates where m (m > 1) points are inserted
at each time point. The rationale behind this alternative is that it is possible for
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the batch data to be related to each other instead of independent (Consider for
example an earthquake in some place and Twitter response to such an event; a
flow of tweets would appear referring to that event.). Hence, instead of updating
the clustering for each operation independently (as in the single update case,
c.f. Section 5.3), one should consider the accumulative effect of all these batch
operations on the clustering and treat them together. This way, the objects that
might be affected by more than one single update operations are examined only
once. Otherwise, such objects should be examined after each single operation
(multiple checks).

The algorithm is similar to the algorithm for the single update case (c.f.
Figure 1). The key difference is that instead of inserting objects one by one,
examining the side effects of each single insert and updating the clustering based
on each single insert, we now insert the whole batch (all m objects), we examine
how the database is affected by the whole batch and we update the clustering
model based on the whole batch. In more detail, we first insert the m objects of
the batch in the existing database. Then, we continue the same rationale as with
the single update case: First, we update the subspace preference vector of each
of the inserted objects in the batch. Next, we check for objects with affected
core member property. Recall (Section 5.1) that any objects with affected core
member property lie in the neighborhood of some inserted point. Note also, that
the points of the batch are all inserted into the database, so these operations also
consider the newly inserted points. The Affected set now contains the objects
that might be affected due to the whole batch of points. Based on the Affected
set, the UpdSeed set is constructed which also refers to the whole batch. The
points in UpdSeed serve as the starting points for the cluster reorganization.

The benefit of the batch method is that some computations might take place
only once, instead of after each single update as is the case for the single update
method. For example, let p be an object in the database which is part of the
neighborhood of both points p1, p2 in the batch. According to the single update
case, this object should be examined twice, i.e., after each single insert, for any
changes in its core member property. According to the batch update case though,
this object should be examined only once.

7 Experiments

Since incPreDeCon computes the same results as PreDeCon, we compare
their performances in terms of efficiency. For massive data sets, the bottleneck
of PreDeCon and incPreDeCon is the number of range queries in arbitrary
(possibly 2d different) subspaces that cannot be supported by index structures.
We report the speed-up factor defined as the ratio of the cost of PreDeCon (ap-
plied to the accumulative data set D∗) and the cost of incPreDeCon (applied
to the initial data set D plus the updates U).

We used a synthetic data generated according to a cluster template that de-
scribes the population of the corresponding cluster, the generating distribution,
and range of dimension values for each dimension. In addition, we report a case
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Fig. 2. Speed-up factors w.r.t. data set size

study of incrementally keeping track of clusters in real-world data. Let us again
note that we do not compare different clustering models here, since the main fo-
cus of our paper is to provide a solution for incremental density-based subspace
clustering in a high dimensional, dynamic environment.

7.1 Experiments on Single Updates

Varying the data set population. Four synthetic data sets of varying size
between 1.000 and 15.000 objects were generated. From each data set, 100 objects
were randomly extracted and used as the update set. The number of required
range queries was computed after each insertion.

Figure 2 displays the speed-up factors w.r.t. the different data set sizes. in-
cPreDeCon outperforms PreDeCon with the speed-up factors of 2–100. As
expected, with increasing number of updates the gain for incPreDeCon is
higher. Analogously, the bigger the data set population is, the greater are the
benefits of using incPreDeCon instead of PreDeCon.

Varying the number of generated clusters. Five data sets with varying
number of clusters but constant dimensionality and fixed population of each
cluster were used next. From each data set, 100 objects were randomly extracted
and used as the update set. Figure 3 displays the speed-up factors for all data
sets. Again, incPreDeCon outperforms PreDeCon for all datasets with the
speed-up factors increasing with the number of updates and lying in the range
[1–100]. Comparing the different data sets, however, we cannot draw some clear
conclusion regarding whether more generated clusters result in greater gainings
for incPreDeCon or no. This is intuitive since we generate random updates
that do not necessarily correlate with the cluster structure. Thus, the number
of clusters does not have a significant impact on the performance.

Varying the number of dimensions. Five data sets with varying dimensions
but constant number of clusters and fixed population of each cluster were used
next. From each data set, 100 objects were randomly extracted and used as
the update set. Figure 4 displays the speed-up factors for all data sets. Again,
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incPreDeCon outperforms PreDeCon with the speed up factors lying in the
range 2–100. A comparison of the different data sets remains inconclusive w.r.t.
whether or not more dimensions result in greater gain for incPreDeCon. This
was expected since the dimensionality of the data should not have a different im-
pact on the performances (in terms of required range queries) of PreDeCon and
incPreDeCon.

7.2 Experiments on Batch Updates

100 random updates were performed in a batch way (with batch sizes of 5, 10,
15, 20 updates) on a data set of 1.000 objects. Figure 5 displays the speed-
up factors for the different batch sizes (the single update case is also partially
depicted). incPreDeCon outperforms PreDeCon for all different batch sizes.
The highest gain exists for the single update case. As the batch size increases,
the gain decreases.
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The gain is expected to be even higher when the updates are not random but
reflect the clustering structure. To verify this, we used an update set of objects
extracted from 2 clusters in the generated data set (50 objects per cluster). As
expected, the speed-up factors (cf. Figure 6) are higher compared to the random
update case (cf. Figure 5).

The experiments showed the benefit of incPreDeCon versus PreDeCon.
The gain was very high for the single update case, whereas for the batch case the
larger the batch size was, the lower the gain was. For example, in Figures 7, and
8 we can see the actual number of range queries required by PreDeCon and
incPreDeCon for two synthetic data sets. It can be observed that in the sin-
gle update case (denoted by batch size = 1 in these figures), incPreDeCon
(right bar) requires considerably less number of range queries comparing to
PreDeCon (left bar). As the batch size increases however, the gainings for
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incPreDeCon are decreased. Note that we run random updates in these exper-
iments (Figure 7 and Figure 8). Greater savings are expected for “local updates”,
i.e., updates that correspond to a specific subcluster/ area of the population,
since the batch method performs better when the update set contains related
updates (recall our previous discussion on Figure 5 and Figure 6).

7.3 A Case Study on Real-World Data

We applied the original PreDeCon on a small sample of 1,000 objects of the
Bavarian newborn screening data, added batches of 200 objects and updated the
cluster structure using incPreDeCon. Sample results from different time slots
are sketched in Figure 9. Cluster 1 representing newborns suffering PKU refines
the set of relevant attributes over time. This indicates that the attributes that
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Fig. 9. Clusters on Bavarian newborn screening data evolving over time

have been evaluated as relevant for that cluster in the beginning might be false
positives or might be relevant only for a subset of cluster members. The latter
might indicate an interesting subtype of the PKU disease. In any case, these re-
sults might trigger the medical doctors to initiate further investigations on this
issue. Cluster 2 representing a subset of the control group (healthy newborns)
disappears over time since the clear subspace structure is absorbed by full di-
mensional noise. In fact, the attribute that is preferred by members of Cluster 2
at the beginning turns out to be not discriminative later on. Let us note that this
phenomenon could not have been found by a full dimensional clustering method
(e.g. by DBSCAN [11]) because the disappearance of that cluster is only possible
when considering relevant projections of the feature space.

8 Conclusions

In this paper, we presented the incremental density based subspace clustering al-
gorithm incPreDeCon. The algorithm can handle several prevalent challenges
posed by today’s data, including massive, dynamic, and high dimensional data
sets. The update strategy, exploits the density based nature of clusters and, thus.
manages to restructure only that part of the old clustering that is affected by
the update. Both a single and a batch update method have been proposed. Our
experimental results demonstrate the efficiency of the proposed method against
the static application of PreDeCon. As future work, we plan to examine sub-
space clustering methods over data streams where access to raw data is usually
not provided for efficiency reasons.

Acknowledgments. Irene Ntoutsi is supported by an Alexander von Humboldt
Foundation fellowship for postdocs (http://www.humboldt-foundation.de/).



404 H.-P. Kriegel et al.

References

1. Aggarwal, C.C.: On change diagnosis in evolving data streams. IEEE TKDE 17(5),
587–600 (2005)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proc. VLDB (2003)

3. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering
of high dimensional data streams. In: Proc. VLDB (2004)

4. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace cluster-
ing of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)

5. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points
to identify the clustering structure. In: Proc. SIGMOD (1999)
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Abstract. In stream data mining, stream clustering algorithms provide
summaries of the relevant data objects that arrived in the stream. The
model size of the clustering, i.e. the granularity, is usually determined by
the speed (data per time) of the data stream. For varying streams, e.g.
daytime or seasonal changes in the amount of data, most algorithms have
to heavily restrict their model size such that they can handle the minimal
time allowance. Recently the first anytime stream clustering algorithm
has been proposed that flexibly uses all available time and dynamically
adapts its model size. However, the method exhibits several drawbacks,
as no noise detection is performed, since every point is treated equally,
and new concepts can only emerge within existing ones. In this paper we
propose the LiarTree algorithm, which is capable of anytime clustering
and at the same time robust against noise and novelty to deal with
arbitrary data streams.

1 Introduction

There has been a significant amount of research on data stream mining in the
past decade and the clustering problem on data streams has been frequently
motivated and addressed in the literature. Recently the ClusTree algorithm has
been proposed in [3] as the first anytime algorithm for stream clustering. It
automatically self-adapts its model size to the speed of the data stream. Anytime
in this context means that the algorithm can process an incoming stream data
item at any speed, i.e. at any time allowance, without any parameterization
by the user. However, the algorithm does not perform any noise detection, but
treats each point equally. Moreover, it has limited capabilities to detect novel
concepts, since new clusters can only be created within existing ones. In this
paper we build upon the work in [3] and maintain its advantages of logarithmic
time complexity and self-adaptive model size. We extend it to explicitly handle
noise and improve its capabilities to detect novel concepts. While we improve
the approach and add new functionality, it stays an anytime algorithm that is
interruptible at any time to react to varying stream rates.

Due to a lack of space we will not repeat the motivation for stream clustering
and anytime algorithms here. Neither can we recapitulate related work, especially
the ClusTree presented in [3]. However, we stress that a good understanding of
the work in [3] is indispensable for understanding the remainder of this paper.
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We refer to [3] for motivation, related work and, most importantly, the ClusTree
algorithm as a prerequisite for the following.

2 The LiarTree

In this section we describe the structure and working of our novel LiarTree. In
the previously presented ClusTree algorithm [3] the following important issues
are not addressed:

– Overlapping: the insertion of new objects followed a straight forward depth
first descent to the leaf level. No optimization was incorporated regarding
possible overlapping of inner entries (clusters).

– Noise: no noise detection was employed, since every point was treated equal
and eventually inserted at leaf level. As a consequence, no distinction be-
tween noise and newly emerging clusters was performed.

We describe in the following how we tackle these issues and remove the draw-
backs of the ClusTree. Section 2.6 briefly summarizes the LiarTree algorithm
and inspects its time complexity.

2.1 Structure and Overview

The LiarTree summarizes the clusters on lower levels in the inner entries of the
hierarchy to guide the insertion of newly arriving objects. As a structural differ-
ence to the ClusTree, every inner node of the LiarTree contains one additional
entry which is called the noise buffer.

Definition 1. LiarTree. For m ≤ k ≤ M a LiarTree node has the structure
node = {e1, . . . , ek, CF

(t)
nb }, where ei = {CF (t), CF

(t)
b }, i = 1 . . . k are entries as

in the ClusTree and CF
(t)
nb is a time weighted cluster feature that buffers noise

points. The amount of available memory yields a maximal height (size) of the
LiarTree.

The noise buffer consists of a single CF which does not have a subtree underneath
itself. We describe the usage of the noise buffer in Section 2.3.

Algorithm 1 illustrates the flow of the LiarTree algorithm for an object x
that arrives on the stream. The variables store the current node, the hitchhiker
(h) and a boolean flag indicating whether we encourage a split in the current
subtree (details below). After the initialization (lines 1 to 1) the procedure enters
a loop that determines the insertion of x as follows: first the exponential decay
is applied to the current node in line 1. If nothing special happens, i.e. if none
of the if -statements is true, the closest entry for x is determined (line 1) and
the object descends into the corresponding subtree (line 1). As in the ClusTree,
the buffer of the current entry is taken along as a hitchhiker (line 1) and a
hitchhiker is buffered if it has a different closest entry (lines 1 to 1). Being an
anytime algorithm the insertion stops if no more time is available, buffering
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Algorithm 1. Process object (x)
currentNode = root; encSplit = false;1

h = empty; // h is the hitchhiker2

while (true) do /* terminates at leaf level latest */3

update time stamp for currentNode;4

if (currentNode is a liar) then5

liarProc(currentNode, x); break;6

end  if7

ex = calcClosestEntry(currentNode, x, encSplit);8

eh = calcClosestEntry(currentNode, h, encSplit);9

if (ex �= eh) then10

put hitchhiker into corresponding buffer;11

end if12

if (x is marked as noise) then13

noiseProc(currentNode, x, encSplit); break;14

end if15

if (currentNode is a leaf node) then16

leafProc(currentNode, x, h, encSplit); break;17

end if18

add object and hitchhiker to ex;19

if (time is up) then20

put x and h into ex’s buffer; break;21

end if22

add ex’s buffer to h;23

currentNode = ex.child;24

end while25

x and h in the current entry’s buffer (line 1). The issues listed in Section 2
are solved in the procedures calcClosestEntry (line 1), liarProc (line 1) and
noiseProc (line 1). We detail these methods in the following subsection and
start by describing how we descend and reduce overlapping of clusters using the
procedure calcClosestEntry.

2.2 Descent and Overlap Reduction

The main task in inserting an object is to determine the next subtree to descend
into, i.e. finding the closest entry. Besides determining the closest entry, the
algorithm checks whether the object is classified as noise w.r.t. the current node
and sets an encSplit flag, if a split is encouraged in the corresponding subtree.

First we check whether the current node contains an irrelevant entry. This is
done as in [3], i.e. an entry e is irrelevant if it is empty (unused) or if its weight
n

(t)
e does not exceed one point per snapshot (cf. [3]). In contrast to [3], where

such entries are only used to avoid split propagation, we explicitly check for
irrelevant entries already during descent to actively encourage a split on lower
levels, because a split below a node that contains an irrelevant entry does not
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Fig. 1. Look ahead and reorganization

cause an increase of the tree height, but yields a better usage of the available
memory by avoiding unused entries. In case of a leaf node we return the irrelevant
entry as the one for insertion, for an inner node we set the encSplit flag.

Second we calculate the noise probability for the insertion object and mark
it as noise if the probability exceeds a given threshold. This noiseThreshold
constitutes a parameter of our algorithm and we evaluate it in Section 3.

Definition 2. Noise probability. For a node node and an object o, the noise
probability of o w.r.t. node is np(o) = minei∈node {{dist(o, μei)/rei} ∪ {1}} where
ei are the entries of node, rei the corresponding radius (standard deviation in
case of cluster features) and dist(o, μei) the euclidean distance from the object
to the mean μei .

Finally we determine the entry for further insertion. If the current node is
a leaf node we return the entry that has the smallest distance to the insertion
object. For an inner node we perform a local look ahead to avoid overlapping, i.e.
we take the second closest entry e2 into account and check whether it overlaps
with the closest entry e1. Figure 1 illustrates an example.

If an overlap occurs, we perform a local look ahead and find the closest entries
e1∗ and e2∗ in the child nodes of candidates e1 and e2 (dashed circles in Figure
1 left). Next we calculate the radii of e1 and e2 if we would swap e1∗ and e2∗. If
they decrease, we perform the swapping and update the cluster features on the
one level above (Figure 1 right). The closest entry that is returned is the one
containing the closest child entry, i.e. e1 in the example.

The closest entry is calculated both for the insertion object and for the hitch-
hiker (if any). If the two have different closest entries, the hitchhiker is stored in
the buffer CF of its closest entry and the insertion objects continues alone (cf.
Algorithm 1 line 1).

2.3 Noise

From the previous we know whether the current object has been marked as
noise with respect to the current node. If so, the noise procedure is called. In
this procedure noise items are added to the current noise buffer and it is regularly
checked whether the aggregated noise within the buffer is no longer noise but a
novel concept. Therefore, the identified object is first added to the noise buffer
of the current node. To check whether a noise buffer has become a cluster, we
calculate for the current node the average of its entries’ weights n(t), their average
density and the density of the noise buffer.
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Definition 3. Density. The density ρe = n
(t)
e /Ve of an entry e is calculated

as the ratio between its weighted number of points n
(t)
e and the volume Ve that

it encloses. The volume for d dimensions and a radius r is calculated using the
formula for d-spheres, i.e. Ve = Cd · rd with Cd = πd/2/Γ (d

2 + 1) where Γ is the
gamma function.

Having a representative weight and density for both the entries and the noise
buffer, we can compare them to decide whether a new cluster emerged. Our
intuition is, that a cluster that forms on the current level should be comparable
to the existing ones in both aspects. Yet, a significantly higher density should
also allow the formation of a new cluster, while a larger number of points that
are not densely clustered are further on considered noise. To realize both criteria
we multiply the density of the noise buffer with a sigmoid function, that takes
the weights into account, before we compare it to the average density of the
node’s entries. As the sigmoid function we use the Gompertz function [2]

gompertz(nnb, navg) = e−b(e−c·nnb)

where we set the parameters b (offset) and c (slope) such that the result is close
to zero (t0 = 10−4) if nnb is 2 and close to one (t1 = 0.97) if nnb = navg by

b =
ln(t0)

1
1.0−(2.0/navg )

ln(t1)
2

navg−2
c = − 1

navg
· ln(− ln(t1)

b
)

Definition 4. Noise-to-cluster event. For a node node = (e1, . . . , ek, CF
(t)
nb )

with average weight navg = 1
k

∑
n

(t)
ei and average density ρavg = 1

k

∑
ρei the

noise buffer CF
(t)
nb becomes a new entry, if

gompertz(n(t)
nb , navg) · ρn ≥ ρavg

We check whether the noise buffer has become a cluster by now, if the encourage
split flag is set to true. Note that a single inner node on the previous path with
an irrelevant entry, i.e. old or empty, suffices for the encourage split flag to be
true. Moreover, the exponential decay (cf. [3]) regularly yields outdated clusters.
Hence, a noise buffer is likely to be checked.

If the noise buffer has been classified as a new cluster, we create a new entry
from it and insert this entry into the current node. Additionally we create a new
empty node, which is flagged as liar, and direct the pointer of the new entry to
this node. Figure 2 a-b) illustrate this noise to cluster event.

2.4 Novelty

In [3] new nodes were only created at the leaf level, such that the tree grew
bottom up and was always balanced. The LiarTree allows noise buffers to trans-
form to new clusters, i.e. we get new entries and, more importantly, new nodes
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Fig. 2. The liar concept: a noise buffer can become a new cluster and the subtree below
it grows top down, step by step by one node per object

Algorithm 2. liarProc (liarNode, x) .
// refines the model to reflect novel concepts

create three new entries with dim dimensions enew[ ];1

for (d = 1 to dim) do2

enew [d mod 3].LS[d] = (eparent.LS[d])/3 + offsetA[d];3

enew [(d + 1) mod 3].LS[d] = (eparent.LS[d])/3 + offsetB [d];4

enew [(d + 2) mod 3].LS[d] = (eparent.LS[d])/3 + offsetC [d];5

enew [d mod 3].SS[d] = F [d] + (3/eparent.N) · (enew [d mod 3].LS[d])2 ;6

enew [(d+1)mod3].SS[d] = F [d]+(3/eparent.N) ·(enew [(d+1)mod3].LS[d])2 ;7

enew [(d+2)mod3].SS[d] = F [d]+(3/eparent.N) ·(enew [(d+2)mod3].LS[d])2 ;8

end for9

insert x into the closest of the new entries;10

if (liarNode is a liar root) then11

insert new entries into liarNode;12

else13

remove eparent in parent node;14

insert new entries into parent node;15

split parent node (stop split at liar root);16

end if17

if (non-empty liar nodes reach leaf level) then18

remove all liar flags in correspond. subtree ;19

else20

create three new empty liar nodes under enew[ ] ;21

end if22

within the tree. To avoid getting an increasingly unbalanced tree through noise-
to-cluster events, we treat nodes and subtrees that represent novelty differently.
The main idea is to let the subtrees underneath newly emerged clusters (entries)
grow top down step by step with each new object that is inserted into the sub-
tree until their leaves are on the same height as the regular tree leaves. We call
leaf nodes that belong to such a subtree liar nodes, the root is called liar root.
When we end up in a liar node during descend (cf. Algorithm 1), we call the liar
procedure which is listed in Algorithm 2.

Definition 5. Liar node. A liar node is a node that contains no entry. A
liar root is an inner node of the liar tree that has only liar nodes as leafs in its
corresponding subtree and no other liar root as ancestor.
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Figure 2 illustrates the liar concept, we will refer to the image when we de-
scribe the single steps. A liar node is always empty, since it has been created
as an empty node underneath the entry eparent that is pointing to it. Initially
the liar root is created by a noise-to-cluster event (cf. Figure 2 b)). To let the
subtree under eparent grow in a top down manner, we have to create additional
new entries ei (cf. solid (red) entries in Figure 2). Their cluster features CFei

have to fit the CF summary of eparent, i.e. their weights, linear and quadratic
sums have to sum up to the same values. We create three new entries (since
a fanout of three was shown to be optimal in [3]) and assign each a third of
the weight from eparent. We displace the new means from the parent’s mean by
adding three different offsets to its mean (a third of its linear sum, cf. lines 2 to
2). The offsets are calculated per dimension under the constraint that the new
entries have positive variances. We set one offset to zero, i.e. offsetA = 0. For
this special case, the remaining two offsets can be determined using the weight
nt

e and variance σ2
e [i] of eparent per dimension as follows

offsetB[i] =

√
1
6
· (1 −

(
1
3

)4

) · (nt
e)

·σ2
e [i], offsetC [i] = −offsetB[i]

The zero offset in the first dimension is assigned to the first new entry, in the
second dimension to the second entry, and so forth using modulo counting (cf.
lines 2 to 2). If we would not do so, the resulting clusters would lay on a line, not
representing the parent cluster well. The squared sums of the three new entries
are calculated in lines 2 to 2. The term F [d] can be calculated per dimension as

F [d] =
nt

e

3
·
(

σe[d]
3

)4

Having three new entries that fit the CF summary of eparent, we insert the
object into the closest of these and add the new entries to the corresponding
subtree (lines 2 to 2). If the current node is a liar root, we simply insert the
entries (cf. Figure 2 c)). Otherwise we replace the old parent entry with the
three new entries (cf. Figure 2 d)). We do so, because eparent is itself also an
artificially created entry. Since we have new data, i.e. new evidence, that belongs
to this entry, we take this opportunity to detail the part of the data space and
remove the former coarser representation. After that, overfull nodes are split (cf.
Figure 2 d-e)). If an overflow occurs in the liar root, we split it and create a new
liar root above, containing two entries that summarize the two nodes resulting
from the split (cf. Figure 2 e)). The new liar root is then put in the place of the
old liar root, whereby the height of the subtree increased by 1 and it grew top
down (cf. Figure 2 e)).

In the last block we check whether the non empty leaves of the liar subtree
already reach the leaf level. In that case we remove all liar flags in the subtree,
such that it becomes a regular part of the tree (cf. line 2 and Figure 2 f)). If the
subtree does not yet have full height, we create three new empty liar nodes (line
2), one beneath each newly created entry (cf. Figure 2 c)).
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2.5 Insertion and Drift

Once the insertion object reaches a regular leaf, it is inserted using the leaf proce-
dure (cf. algorithm 1 line 1). If there is no time left, the object and its hitchhiker
are inserted such that no overflow, and hence no split, occurs. Otherwise, the
hitchhiker is inserted first and, if a split is encouraged, the insertion of the hitch-
hiker can also yield an overflowing node. This is in contrast to the ClusTree,
where a hitchhiker is merged to the closest entry to delay splits. In the LiarTree
we explicitly encourage splits to make better use of the available memory (cf.
Definition 1). After inserting the object we check whether an overflow occurred,
split the node and propagate the split.

Three properties of the LiarTree help to effectively track drifting clusters. The
first property is the aging, which is realized through the exponential decay of
leaf and inner entries as in the ClusTree (cf. [3]), a proof of invariance can be
found in [3]). The second property is the fine granularity of the model. Since
new objects can be placed in smaller and better fitting recent clusters, older
clusters are less likely to be affected through updates, which gradually decreases
their weight and they eventually disappear. The third property stems from the
novel liar concept, which separates points that first resemble noise and allows
for transition to new clusters later on. These transitions are more frequent on
levels close to the leaves, where cluster movements are captured by this process.

2.6 Summary

To insert a new object, the closest entry in the current node is calculated. While
doing this, a local look ahead is performed to possibly improve the clustering
quality by reduction of overlap through local reorganization. If an object is
classified as noise, it is added to the current node’s noise buffer. Noise buffers
can become new clusters (entries) if they are comparable to the existing clusters
on their level. Subtrees below newly emerged clusters grow top down through
the liar concept until their leaves reach the regular leaf level.

Obviously the LiarTree algorithm has time complexity logarithmic in its model
size, i.e. the number of entries at leaf level, since the tree is balanced (logarithmic
height), the loop has only one iteration per level (cf. Alg. 1) and any procedure
is maximally called once followed directly by a break statement.

3 Experiments

We compare our performance to the ClusTree algorithm [3] and to the well
known CluStream algorithm from [1] using synthetic data as in [3]. To compare
to the CluStream approach we used a maximal tree height of 7 and allowed
CluStream to maintain 2000 micro clusters. We calculate precision and recall
using a Monte Carlo approach, i.e. for the recall we generate points inside the
ground truth and check whether these are included in the found clustering, for
the precision we reverse this process, i.e. we generate points inside the found
clustering and check whether they are inside the ground truth. Figure 3 shows
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Fig. 3. Left: F1 measure and resulting radii for LiarTree, ClusTree and CluStream for
different noise levels. Middle: Varying the data stream’s number of clusters and their
radius. Rigth: Varying the drift speed for LiarTree, ClusTree and CluStream

the resulting F1 measure and the resulting average radii of the clusters for the
three approaches. In the left graphs we see that the LiarTree outperforms both
competing approaches in the presence of noise, proving its novel concepts to be
effective. Varying the parameters of the data stream (cf. remaining graphs) does
not impair the dominance of the LiarTree.

4 Conclusions

In this paper we presented a novel algorithm for anytime stream clustering called
LiarTree, which automatically adapts its model size to the stream speed. It con-
sists of a tree structure that represents detailed information in its leaf nodes and
coarser summaries in its inner nodes. The LiarTree avoids overlapping through
local look ahead and reorganization and incorporates explicit noise handling on
all levels of the hierarchy. It allows the transition from local noise buffers to
new entries (micro clusters) and grows novel subtrees top down using its liar
concept, which makes it robust against noise and changes in the distribution of
the underlying stream.
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Abstract. Energy consumption in datacenters has recently become a
major concern due to the rising operational costs and scalability issues.
Recent solutions to this problem propose the principle of energy pro-
portionality, i.e., the amount of energy consumed by the server nodes
must be proportional to the amount of work performed. For data paral-
lelism and fault tolerance purposes, most common file systems used in
MapReduce-type clusters maintain a set of replicas for each data block. A
covering set is a group of nodes that together contain at least one replica
of the data blocks needed for performing computing tasks. In this work,
we develop and analyze algorithms to maintain energy proportionality
by discovering a covering set that minimizes energy consumption while
placing the remaining nodes in low-power standby mode. Our algorithms
can also discover covering sets in heterogeneous computing environments.
In order to allow more data parallelism, we generalize our algorithms so
that it can discover k-covering sets, i.e., a set of nodes that contain at
least k replicas of the data blocks. Our experimental results show that
we can achieve substantial energy saving without significant performance
loss in diverse cluster configurations and working environments.

Keywords: Energy Management, Data Parallel Computing, Covering
Subset, Node Heterogeneity.

1 Introduction

Energy consumption in scientific and commercial datacenters has increased dra-
matically with the introduction of high-performance, power-hungry components,
such as multicore processors, high capacity memories, and high rotational speed
disks. Therefore, the mounting costs of energy in datacenters has recently be-
come a major concern. It is now estimated by EPA that in 2011 datacenters
will consume up to 3% of the total energy in the U.S., while their energy con-
sumption is doubling every 5 years [19]. Despite the technological progress and
the amount of capital invested, there are significant inefficiencies in datacen-
ters with server utilization measured at around 6% [17]. In this paper, we focus
on optimizing energy consumption of compute clusters in datacenters, such as
MapReduce clusters [10] often used in scientific computation [11]. The key idea is

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 414–431, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Energy Proportionality and Performance 415

to achieve this by placing underutilized components in lower power consumption
states (i.e., standby mode).

Optimizing energy consumption in datacenters introduces several challenges.
As pointed out in [21,13,4], heterogeneity of cluster nodes may be inevitable due
to gradual replacement or addition of hardware over time. The replaced or added
hardware should be “brand-new” rather than the same as the old one. Cluster
heterogeneity can also be a result of a design choice. For example, the authors
of [7] presented a hybrid datacenter model with two-class nodes that have dif-
ferent performance capabilities and power requirements for energy efficiency. In
a recent work [21], heterogeneity in a MapReduce cluster was considered for
job scheduling and performance improvement. There are several recent research
efforts dealing with energy management for MapReduce clusters [16,15], but
heterogeneity in such clusters has not been considered yet. In this paper, we ex-
amine how energy consumption can be further optimized by taking into account
the different power requirements of the nodes in the cluster.

Another important requirement for energy management is energy proportion-
ality, i.e., the ability to adjust energy consumption in proportion to the given
workload. As mentioned in [2], server systems consume a substantial amount of
energy even in idle mode (over 50% of the peak), although it could be ideally
zero. Thus, a datacenter cluster still needs to consume a great deal of energy
even under a very low load (e.g., at midnight), since the cluster nodes require
substantial power even when no real work is done. Energy-proportionality can
be a great benefit in conserving energy especially in clusters with a high degree
of load variation, such as the one described in [6] where variations of over a fac-
tor of three between peak loads and light loads have been observed. This paper
focuses on those two challenges, cluster heterogeneity and energy proportionality
in data parallel computing clusters.

One known approach for cluster energy saving is achieved by powering on/off
nodes in response to the current workload. For example, we could use cluster
nodes in part to handle light loads, and save energy by deactivating the rest
of the nodes not in use. In this work, we study the problem of determining
which nodes should be activated or deactivated whenever it is determined that
workload characteristics have changed.

More specifically, this work focuses on identifying a set of nodes that min-
imizes energy costs while satisfying immediate data availability for a data set
required in computing. This is important since the cost of demand-based power
state transitions of nodes for missing data blocks is significant in terms of both
energy and performance due to the long latency needed to transition back from
standby to active mode. For example, dehibernating (transitioning from standby
to active mode) may require 129W for a duration of 100 seconds [15], for a node
consuming 114W in idle mode. In a heterogeneous setting, such power require-
ments can be different from one node to another. To address this, we establish
a power consumption profile for each node, and use this information in locating
an optimal node set. In this paper, we refer to a group of nodes that together
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contain at least one replica of the data blocks needed for performing computing
tasks as a CS (covering subset).

For high performance computing, the degree of data availability has a critical
role in determining the degree of data parallelism. To consider this, we extend
our node discovery algorithms to guarantee a certain degree of data availability.
In its simplest form, our node discovery algorithm searches for a node set holding
a single replica of the data. However, we may need a node set that has more
than a single replica for each data item for certain situations. For example, for
satisfying performance dictated by service level requirements we may need to
activate a node set containing two replicas for supporting intermediate loads,
rather than using a node set with a single replica.

Our key contributions are summarized as follows:

– We provide mathematical analysis of minimal CS size under the assumption
of a uniform data layout as a function of the number of data blocks. We also
show the validity of the theoretical model by simulation.

– We present node set discovery algorithms that find an energy-optimized node
set with data availability for all required data items, for homogeneous and
heterogeneous settings.

– We extend our discovery algorithms to identify a node set with any required
degree of data availability, as a means of energy-proportional cluster recon-
figuration.

– We present our evaluation results with respect to energy consumption and
performance with a rich set of parameter settings. The results show that our
techniques can achieve substantial energy saving without significant per-
formance loss in most light workload environments. Also, we show that
our power-aware technique can exploit heterogeneity successfully, yielding
greater energy saving.

The paper is organized as follows. We first briefly introduce several closely related
studies in the next section. In Sections 3 and 4 we present our algorithms for
node set discovery for data availability and energy proportionality. In Sections 5
and 6, evaluation setup and results are presented with a rich set of parameters in
diverse working environments. We finally conclude our presentation in Section 7.
Additional analysis and experimental results are also available in our extended
report [14].

2 Related Work

The initial work for MapReduce cluster energy management was performed
in [16] based on covering subset (CS). In that work, the CS nodes are man-
ually determined, and one replica for each data item is then placed in one of the
CS nodes. Under a light load, it would be possible save energy by running the
cluster with only the CS nodes activated. To enable this, the authors modified
the existing replication algorithm, such that the CS nodes contain a replica of
each data item. Failure of CS nodes was not considered, and as a result, any
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single node failure can make this scheme ineffective. Also, there was no notion
of energy proportionality with gradual adjustment; rather the cluster is in either
full performance mode with the entire set of nodes activated or in energy mode
with only the CS nodes activated.

AIS (All-in Strategy) [15] is a different approach. AIS runs given jobs em-
ploying the entire set of nodes in the cluster to complete them as quickly as
possible. Upon completion of the jobs, the entire set of nodes are deactivated to
save energy until the next run. This makes sense since data parallel clusters are
often used for batch-oriented computations [9]. One potential drawback can be
that even with small (batched) jobs, AIS still needs to wake up the entire clus-
ter, possibly wasting energy. Both studies (static CS and AIS) did not consider
cluster heterogeneity, as we do in this work.

Rabbit [1] provides an interesting data placement algorithm for energy propor-
tionality in MapReduce clusters. The key idea is to place data items in a skewed
way across the nodes in the cluster. More specifically, node k needs to store b/k
data items, where b is the total number of data items. Thus, a lower-indexed
node has a greater number of data items, and it makes it possible to deactivate a
higher-indexed node safely without losing data availability. Energy proportion-
ality is also provided by allowing one-by-one node deactivation. Our approach
provides energy management for clusters with the existing data layout, while
Rabbit introduces its own method of data placement for energy management.
Rabbit also does not consider possibility of cluster heterogeneity.

Cardosa et al. considered energy saving in a VM (Virtual Machine)-based
MapReduce cluster [5]. Their approach is to place VMs in a timely balanced
way, and find a way to minimize the number of nodes to be utilized, so as
to maximize the number of nodes that can be idle. Subsequently, idle nodes
can be considered as candidates for deactivation to save energy. One essential
assumption in this work, that may not be practical, is the availability of a tool
for accurate running time estimation for VMs.

3 Node Set Discovery Algorithms

In this section, we present our node discovery algorithms for a set of nodes
that minimizes energy consumption subject to data availability constraints. As
in [16], we refer to this node set as CS (Covering Subset). We assume that the
data set statistics for the next round of computation is readily available and
therefore discover the CS based on that information. This leads to a slightly
different definition of CS as compared with the definition in [16]. The CS used
here is not a static node set, rather it is discovered on demand based on a
given list of data blocks required for computation. Thus, our CS must contain
a replica for required data items instead of the entire set of data blocks in the
cluster. Since data parallel computing platforms are often used for batch-style
processing [9,15], the data set can be available for the next operational time
window.

In this section, we first present a basic algorithm for node discovery that
searches a minimal number of nodes for data availability, and then extend it
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Table 1. Notations

Symbol Description

N Cluster node set

CS CS node set (CS ⊆ N)

NCS non-CS node set (NCS ⊆ N)

n Cluster size

b Number of data blocks

r Replication factor

f Fraction of low-power nodes

P (i)/T (i) Idle power/time

P (a)/T (a) Active power/time

P (p)/T (p) Peak power/time

P (s)/T (s) Standby power/time

P (u)/T (u) Activating power/time

P (d)/T (d) Deactivating power/time

with an energy metric for heterogeneous settings. Table 1 summarizes notations
we used in this paper.

3.1 A Basic Method for CS Discovery

By definition, CS maintains at least one replica of the required data blocks.
Locating such a set is NP-complete as it can be reduced to the well known set
cover problem [8], as described in the following proposition.

Proposition 1. A minimum CS discovery problem CS(B, S) with B required
blocks and a set of servers S is NP-complete, the reduction is from a minimum
set cover problem SC(U, F ), where U is a universe of elements and F is a family
of subsets of U .

Proof. We omit the proof since it is trivial.

Figure 1 plots the size of CS for a cluster with size n = 1024 under two replicated
environments with r = 3 and r = 5, as a function of the number of required data
blocks. As the number of data blocks increases, the CS size also increases. For
example, with n data blocks, the CS size ranges 20–30% of the cluster for the
two replication settings. This implies that it would be possible to have energy
saving of up to 70–80% in this setting. The CS size grows to 60–80% of the
cluster for the case where the number of data blocks is 32n, which is ∼ 2TB
with the default data block size in MapReduce [10] and Hadoop [12].

We briefly discuss the theoretical analysis for the minimal CS size as a function
of the number of data blocks in a uniform data distribution.

Assume that r copies of each data block are uniformly distributed on n nodes
with each node holding at most one of the r copies. As previously defined, CS is
a node set that contains at least one replica of each of the given b data items.
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Fig. 1. CS size with respect to the number of data blocks

Lemma 1. Let P be the probability that a randomly selected set of m nodes out

of n nodes is CS. Then, P is equal to
(
1−∏m−1

i=0

(
1− r

n−i

))b

.

Proof. The total number of ways for selecting r nodes from the available n nodes
to hold the r replicas is

(
n
r

)
. From these possible selections, exactly

(
n−m

r

)
do

not place a copy in the randomly selected m nodes. We can then calculate the
probability that the selected m nodes do not have any replica of a data item d1 as

P ′ = (n−m
r )
(n

r)
= (n−m)!(n−r)!

n!(n−m−r)! =
∏m−1

i=0 (1− r
n−i ). Due to the fact that the r replicas

for each of the b data items are placed independently, we get P = (1 − P ′)b, or
P = (1 −∏m−1

i=0 (1− r
n−i ))

b.

Theorem 1. The minimal m such that we can expect at least one CS from any

given uniform data layout satisfies:
(

n

m

)(
1−

m−1∏
i=0

(
1− r

n− i

))b

≥ 1.

Proof. Let M = {M1, M2, · · ·, M�} be the collection of all sets of size m selected
from n nodes. Thus � =

(
n
m

)
. By Lemma 1, we know that the probability of each

Mi to be a CS is P . Let Xi be a random variable where,

Xi =

{
1 if Mi is a CS,
0 otherwise.

Then, the expected value of Xi, E(Xi), is equal to P . The expected number
of CS is thus,

l∑
i=0

E(Xi) =
(

n

m

)
P



420 J. Kim, J. Chou, and D. Rotem

 0

 20

 40

 60

 80

 100

n 64n 256n 512n 1024n

C
S

 S
iz

e 
(%

)

Number of data blocks (n=20)

Impact of number of data blocks (95% confidence interval < 0.5)

r=3 (by prob)
r=3 (by sim)

r=5 (by prob)
r=5 (by sim)

Fig. 2. Minimal CS size

Note that this is true even though the Xi’s are not independent. Therefore,
the minimal m that ensures existence of at least one CS must satisfy

(
n
m

)
P ≥ 1.

Figure 2 shows the minimal CS size as a function of the number of data blocks in
a small system with n = 20. The figure compares the analytical results based on
our probabilistic model and simulation results, and we can see that they agree
with each other. Also, the sub-linear shape of CS size increase over the number
of blocks agrees with the mathematical work studied in [20]. Note that we used
rack-unaware replication for simulation to assume the equivalent setting.

As described above, the problem of our node set discovery is simply mapped
to the set cover problem, and the solution is to locate a set with the minimal size
covering the data items in question. However, in a heterogeneous environment
where nodes may have different power metrics, locating a minimal-size set would
not be sufficient. We present a power-aware discovery algorithm as a solution
for identifying an optimal node set in a heterogeneous cluster next.

3.2 Power-aware Discovery for Heterogeneous Clusters

Let us illustrate a heterogeneous cluster with a realistic example. Suppose there
are 20 nodes in a cluster with 10 Xeons and 10 Atoms with power profiles as in
Table 2. We can see that Xeons consume ten times more energy than Atoms.
In such an environment, a CS with two Xeon nodes as a minimal subset may
require a greater power level than a CS with ten Atom nodes. The former power
requirement is 2 ·315W+8 ·18W +10 ·2W = 794W at peak, while the latter only
requires 10 · 33.8W + 10 · 18W = 518W . At the idle state, the former requires
683W and the latter does 436W.

However, any technique that naively selects low-power nodes for CS discovery
may not work that well. For example, in the above example, if Xeons consume
only half watts than that in the table, i.e., P (p) = 315/2W = 157.5W and
P (s) = 18/2W = 9W , where P (p) stands for peak power and P (s) does standby
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power, then the power requirement for a CS with two Xeons becomes 2·157.5W+
8 ·9W +10 ·2W = 407W , which is smaller than the energy requirement for a CS
with ten Atom nodes. Hence, we need a more sophisticated approach to locate
an optimal CS in heterogeneous settings, as discussed next.

Formally, CS power requirement is P
(a)
CS + P

(s)
NCS , where P

(a)
CS is power for CS

in active state and P
(s)
NCS is power for non-CS nodes in standby. The energy

consumption (E) for a given period of time (T ) is then simply E = (P (a)
CS +

P
(s)
NCS) × T . If we assume that T is fixed, our objective in identifying CS is to

minimize P
(a)
CS + P

(s)
NCS . In other words, what we want to do here is to discover

nodes for CS whose aggregated energy consumption can be minimized during
time period T . This can be rewritten as follows for power P :

P = P
(a)
CS + P

(s)
NCS

=
∑

x∈CS

P (a)
x +

∑
y∈NCS

P (s)
y

=
∑

x∈CS

(
P (a)

x + P (s)
x − P (s)

x

)
+
∑

y∈NCS

P (s)
y

=
∑

x∈CS

(
P (a)

x − P (s)
x

)
+
∑

x∈CS

P (s)
x +

∑
y∈NCS

P (s)
y

=
∑

x∈CS

(
P (a)

x − P (s)
x

)
+
∑
y∈N

P (s)
y (1)

Since the second part in Equation 1 is a constant, we can then map the node
set discovery problem in a heterogeneous setting to a weighted set cover problem
with an energy metric (P (a)

i − P
(s)
i ) as the weight associated with each node i.

More precisely, the goal of the node set discovery problem can be cast as follows.
Let G be the set of all possible covering subsets for a required set of data blocks.
For covering subset g ∈ G, we define its weight w(g) as the sum of weights of its
nodes, i.e.,:

w(g) =
∑
x∈g

(
P (a)

x − P (s)
x

)
(2)

Then, our goal is to find a covering subset q, such that w(q) ≤ w(g) for all g ∈ G.

Proposition 2. A minimum CS discovery problem CS(B, S) in a heterogeneous
setting is NP-complete, and it can be reduced to a minimum weighted set cover
problem WSC(U, F ), where U is a universe and F is a family of subsets of U .

Proof. As in Proposition 1, given a CS problem CS(B, S), we can construct
a corresponding set cover problem SC(U, F ), where for each set fk ∈ F , we
set its weight to P

(a)
k − P

(s)
k . Let C ⊂ F be the minimum weighted set cover of

SC(U, F ). Define C′ = {si|ui ∈ C}, then it is easy to see C′ is also the minimum
weighted set of nodes covering all blocks in B. Reversely, weighted set cover can
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Fig. 3. Comparison of basic and power-aware CS discovery

be reduced to the heterogeneous CS discovery problem, and the reduction is in
polynomial time.

For an active node, its power consumption can scale from idle to peak based on
workloads. That is, P (a) can vary over time depending on jobs running on the
node. Thus, it is difficult to estimate P

(a)
i for a given time period. In this work, we

simply chose the mean between these two extreme values, P (ā)
i = (P (i)

i +P
(p)
i )/2,

and use this for weight wi for node i. However, this can be replaced with any
other relevant measure.

Figure 3 compares the power-aware CS discovery algorithm with the basic CS
algorithm. As above, we considered two classes of nodes, low-power (LP) and
high-power (HP), based on Table 2. The two figures show CS size (Figure 3(a))
and percentage of LP nodes (Figure 3(b)) in the resulted CS, as a function of
fraction of LP nodes in the cluster. In this experiment, we set the number of
data blocks b = n and replication factor r = 3. We can see that the power-aware
algorithm yields a slightly bigger set for CS, but not that significant (the max
gap is smaller than 4%). Figure 3(b) shows the power-aware algorithm takes a
greater number of LP nodes for CS. Even with 0.25 for LP fraction, around 50%
of nodes in the CS are LP nodes, while it is 25% with the basic algorithm. This
power-optimized CS technique can significantly reduce energy consumption over
the basic CS technique in heterogeneous settings, as we will show in Section 6.1.

3.3 Incremental CS Reorganization for Node Failure

Here, we briefly discuss the issue of CS reorganization in case of cluster configu-
ration changes due to node failure. We assume that a new CS set is constructed
periodically or on demand. Thus, any configuration change can be accounted at
every construction time. However, there may be node failures, and as a result,
some data blocks can be unavailable from the CS set. To deal with such failure
cases, it is possible to reorganize CS incrementally by adding some nodes to keep
the CS effective. Upon detection of any failure that affects the CS set, we can
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perform the CS discovery algorithm with inputs of the missing data blocks from
the CS set and a set of non-CS nodes (i.e., NCS). The resulting set can then be
added to the CS set. The incremented set may not be optimal, but still effective
with required data availability. At the end of the time window for which the
current CS is effective, a full reorganization is initiated to find an optimal node
set for the new set of data blocks.

Figure 4 shows an example of CS reorganization over time under a node failure
environment. We assumed that node failure probability is 0.005 for each node
at every time unit. Probabilistically, at each time unit around 5 nodes suffer a
failure in a cluster with n = 1024. Thus, at each time step, there would be an
incremental reorganization if any CS node suffers a failure. We assume that a
failed node is recovered after a deterministic amount of time (10 time units),
and that a full reorganization takes place at every 10 time units. In the figure,
the upper plot shows the number of nodes that do not experience failure, while
the bottom plot shows CS size changes over time. In the upper plot, we can
see that nodes fail and recover back, and the CS size varies accordingly in the
bottom plot. As shown in the figure, CS size varies up and down over time
with incremental reorganizations (increasing CS size) and full reorganizations
(minimizing CS size) from the bottom one.

In this section, we have discussed node set discovery for CS that provides a
single replica availability for data blocks in requirement. This can be extended to
guarantee a higher degree of data availability, e.g., two replicas for each required
data block. In the next section, we discuss how we can achieve this, and show
how this idea can be used to provide energy proportionality in a cluster.

4 Multi-level Node Set Discovery

Here we discuss how it is possible to provide energy proportionality in this frame-
work. In [15], the authors considered several strategies for node deactivation for
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non-CS nodes to support the CS approach. By deactivating (and activating)
nodes one by one according to the current load, it is possible to get energy pro-
portionality, but as the authors indicated, there may be load inequality between
nodes because the number of replicas for each data block may be different for a
certain time. For example, if we deactivate one node (and all the other nodes are
active), there will remain r−1 blocks for the data blocks kept in that node, while
the other blocks are maintained based on replication factor (r). This implies a
possibility of load imbalance. For these types of complications, we do not rely on
a node selection strategy for achieving energy proportionality. Instead, we pro-
pose a multi-level CS discovery that gives different degrees of data availability
based on performance requirements for the given workload.

In our multi-level CS approach, different CS levels provide different degrees
of data availability. For example, a CS set in level 2 in our framework gives
2-replica availability for the required data blocks (we call it CS-2 ). Therefore,
there can be a series of CS sets from CS-1 to CS-r (usually equivalent to n). In
this section, we describe how we can discover such CS sets for a certain degree
of data availability.

The problem of identifying CS-k can be mapped to the set multicover problem
with coverage factor k, where k denotes the minimal number of times each object
in question appears in the resulting set.

Proposition 3. The CS-k(B,S) problem is NP-complete, the reduction is from
the set multicover problem SMC(U, F, k), where U is a universe, F is a family
of subsets of U , and a required coverage factor k.

Proof. The reduction algorithm is the same as proof 2. Since there is a one-to-
one mapping between the block bi ∈ B and the element ui ∈ U , any element
that is covered k times in SMC(U, F, k) also appears k times in the result set
of CS-k(B,S), and vice versa. Also, the reduction remains in polynomial time.

In [3], the authors presented an O(k|U ||F |) time greedy heuristic for the
SMC(U, F, k) problem with an approximation factor of (1 + ln a) from opti-
mal where a = maxi |Fi|.

The greedy heuristic makes a selection of a new set in each iteration. The
selected set must include the max number of elements that have not been covered
k times yet. We employ this greedy heuristic for our multi-level CS discovery.

Figure 5 shows the CS size compared to the cluster size, as a function of
the number of data blocks in two replicated environments (r = 3 and r = 5).
As shown in the figure, CS-1 and CS-2 have different sizes. For example with
b = 4n and r = 3, the CS size is around 50% and 80% of the cluster for CS-1
and CS-2, respectively. From those sets, we can select the one with a desired
data availability while considering the (expected) workload. By doing so, our
multi-level CS technique can be used for achieving energy-proportionality in the
cluster.
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Table 2. Power model: SPECpower results from [7] and node hibernation costs from
[15]

Platform P (i) P (p) P (s) T (d) T (u) MaxThread Capacity

HP (Xeon) 259.5W 315.0W 18.0W 11s 100s 8 1

LP (Atom) 25.6W 33.8W 2.0W 11s 100s 4 0.36

5 Evaluation Methodologies

For evaluation, we developed a simulator based on OMNeT++ [18] providing a
discrete event simulation framework. Our simulator performs with power mea-
sures from [7,15] shown in Table 2. In the table, MaxThread is the max number
of threads that can be concurrently run in the node, and Capacity refers to
processing capacity. Thus in the table, we can see that an Atom node can ac-
commodate 4 concurrent tasks at max, and its processing capacity is 0.36 of that
of a Xeon. For example, if a Xeon node can run 100 instructions in a unit time,
an Atom node can perform 36 instructions for that moment.

We conducted experiments extensively with a diverse set of parameters sum-
marized in Table 3. We assume data placement follows the basic MapReduce
replication properties (hence, almost close to a uniform data layout). We then
inject a series of jobs to the simulator based on job arrival rate (λ). We assume
λ follows an exponential distribution. Since we are more interested in light loads
for energy saving, we use λ = 0.5 by default in our experiments.

Each job requires χ parallel tasks, and the processing time is defined by τ
and node capacity. The task processing time (τ) consists of computation time
(c) and additional time for networking for data transfer (d), and is described as
τ = distribution(c, d). We assume that the computation time is deterministically
calculated based on c and node capacity by the equation of computation time =
c/Capacity, whereas the data transfer time is determined by a probabilistic
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Table 3. Parameters

Symbol Description Default value

n Cluster size 1,024

b Number of data blocks 16n

r Replication factor 3

f Fraction of low-power nodes 0.5

ξ Number of jobs 1000

λ Job arrival rate 0.5

χ Number of tasks n

τ Task processing time Normal(300,0.1)

distribution. Since no previous work identified distributions for data transfer
time in data parallel computing clusters, we employed two distribution mod-
els, normal and exponential, in this study. For example, τ = Normal(300, 0.1)
implies 300s for computation time, and a positive random value (v) from a
normal distribution Normal(0, 0.1) determines the additional time for data
transfer, with an equation of download time = v × c/Capacity. Thus, the
overall task completion time is (1 + v) × c/Capacity. For exponential distri-
butions, we randomly choose a value from the given exponential distribution
with mean = d× c/Capacity, and we use the chosen value as the data transfer
time.

We compare the following techniques in terms of energy consumption and
average turnaround time: (1) NPS without reconfiguration (hence no energy
management); (2) AIS (All-in Strategy); (3) Basic CS; and (4) Power-aware CS.
NPS fully utilizes nodes in the cluster, and nodes are in idle after jobs are com-
pleted. AIS also utilizes entire nodes for jobs, but keeps the cluster deactivated
as soon as completing jobs until the next job comes. The Basic CS technique
constructs CS dynamically without considerations of node heterogeneity, while
the power-aware CS technique takes heterogeneity into account in construction.

Initially, the entire cluster is “on” for NPS and AIS, while only CS nodes
selected by each algorithm are active for our CS-based techniques. After com-
pleting all injected jobs (i.e., ξ), we measured aggregated energy consumption
and average turnaround time for each technique, and compared the measured
results. We repeated experiments and provide 95% confidence intervals for sta-
tistical consideration.

6 Experimental Results

6.1 Impact of Fraction of Low-power Nodes

In this experiment, we explore the impact of the LP fraction in the cluster. We
moved LP fraction from 0 to 1 for this. By definition, the two extremes (i.e.
f = 0 and f = 1) refer to homogeneous settings (i.e., f = 0 for all high-power
node setting and f = 1 for all low-power node setting), while the others mixes
both classes of nodes based on the fraction.
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Fig. 6. Impact of fraction of low-power nodes in the cluster
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Fig. 7. Impact of the number of data blocks

As shown in Figure 6, the power-aware technique yields the same results as the
basic CS technique for the both extremes, showing around 30% energy saving.
However, we can see that the power-aware technique further improves energy
saving in any heterogeneous setting. With f = 0.75, the power-aware technique
improves energy saving over 50%, as shown in Figure 6(a). For turnaround time,
no significant deviations for the techniques were observed, as in Figure 6(b).
This indicates that our power-aware technique enables to improve energy saving
with little performance loss by exploiting cluster heterogeneity.

6.2 Impact of the Number of Data Blocks

Next, we investigate the impact of the number of data blocks since the CS size
has strong correlation with this parameter. To see this, we used a diverse set
of the number of data blocks, from b = n (i.e., 64GB) to b = 32n (i.e., 2TB).
Figure 7 shows the results with respect to both energy and performance. We
can see linear increases of energy consumption as the number of blocks increases
for CS techniques, since a greater number of data blocks results in a larger
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Fig. 8. Impact of job arrival rate

CS. environment. The basic technique shows 30–60% energy saving, while the
power-aware yields 40–70% saving with no noticeable performance degradation.

6.3 Impact of Job Arrival Rate

By default, we used job arrival rate λ = 0.5, since we are interested more in
light load environments. In this experiment, we discuss the experimental results
under varied job arrival rates. We employed a multiple set of job arrival rates
from λ = 0.25 (for light load) to λ = 2 (for heavy load) in this experiment.

Figure 8 shows energy and performance as a function of λ. We see no sig-
nificant changes for our CS techniques, except that power-aware CS somewhat
degraded in a heavy workload environment λ = 2. Interestingly, AIS could save
energy with very small job arrival rates. This is because very light loads can help
to reduce the number of cluster power transition and can lengthen deactivation
period at the same time. In this experiment, AIS yielded around 30% energy
saving when λ = 0.25. However, little energy saving has been observed with
greater job arrival rates than that with AIS.

6.4 Impact of Data Transfer Distributions

In this experiment, we employ several distribution models to consider data trans-
fer times in the cluster. As mentioned, we consider normal and exponential dis-
tributions. For the normal distribution, we used three standard deviation values,
0.05, 0.1, and 0.25. For the exponential distribution, we used the same values
as above but for the mean for the distribution. Again, these values are used
to determine data transfer time according to the given distribution model, as
described in Section 5.

Figure 9 shows the results. In the figure, Norm(σ) represents a normal dis-
tribution with standard distribution σ, while Exp(μ) is for an exponential dis-
tribution with mean μ. For a diverse set of distribution models, we can see that
our CS-based techniques consistently save energy around 30% for Basic and 40%
for power-aware CS, but without any significant performance loss.
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Fig. 10. Impact of CS level

6.5 Evaluation of Multi-level CS

Finally, we present the impact of multi-level CS sets. To see the impact more
clearly, we used a greater replication factor r = 5 and a smaller data blocks
b = n, in this experiment. There can thus be four CS sets from CS-1 to CS-4 in
addition to the entire cluster. For those CS sets, we varied λ to see how the CS
sets respond to different loads.

Figure 10 shows the results. From the figure, we can see that each CS level
gives a different degree of energy saving. For λ = 1, even with CS-4, it saves 20%
of energy compared to NPS on average. The figure also shows that CS-3 achieves
50% energy saving in the same setting, while CS-2 and CS-1 further increase
saving to 70%. With respect to performance, we can see that a lower level CS
shows a greater turnaround time. Thus, any appropriate CS can be chosen based
on load intensity to maximize energy saving with performance guarantees.
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7 Conclusions

Energy consumption in commercial and scientific datacenters has recently be-
come a major concern due to the rising operational costs and scalability issues.
For data parallelism and fault tolerance purposes, most common file systems
used in MapReduce-type clusters maintain a set of replicas for each data block.
Our basic idea in this work is to identify a subset of nodes, called a covering
subset, that can provide a required degree of data availability for a given set
of data blocks. In this work, we developed algorithms to maintain energy pro-
portionality by discovering a covering set that minimizes energy consumption
while placing the remaining nodes in low-power standby mode. In particular,
we consider heterogeneity in determining a power-optimized covering set. For
evaluation, we conducted experiments with a variety of parameters, such as
job arrival rate and data transfer distribution. The experimental results show
that power management based on our covering set algorithms can significantly
reduce energy consumption, up to 70% compared to a non-power saving con-
figuration, with little performance loss. In particular, the experimental results
show that our algorithms can enhance energy saving in a heterogeneous envi-
ronment by considering power metrics of individual nodes in the construction of
a covering set. The results also show that our extended algorithm can be used
to provide a coarse-grained level of energy proportionality based on covering
sets with different degrees of data availability (thus providing different degrees
of data parallelism). In the future we plan to also work on efficient scheduling
algorithms for activating/deactivating nodes based on anticipatory analysis of
future workloads.
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Abstract. The problem of privacy preserving record linkage is to find
the intersection of records from two parties, while not revealing any pri-
vate records to each other. Recently, group linkage has been introduced
to measure the similarity of groups of records [19]. When we extend the
traditional privacy preserving record linkage methods to group linkage
measurement, group membership privacy becomes vulnerable – record
identity could be discovered from unlinked groups. In this paper, we in-
troduce threshold privacy preserving group linkage (TPPGL) schemes,
in which both parties only learn whether or not the groups are linked.
Therefore, our approach is secure under group membership inference at-
tacks. In experiments, we show that using the proposed TPPGL schemes,
group membership privacy is well protected against inference attacks
with a reasonable overhead.

Keywords: Group linkage, privacy, secure multi-party computation.

1 Introduction

Record linkage (RL), also known as the merge-purge [12] or object identity [24]
problem, is one of the key tasks in data cleaning [10] and integration [9]. Its
goal is to identify related records that are associated with the same entity from
multiple databases. When we extend the concept of “records” to “groups of
records”, it becomes the group linkage (GL) problem [19], which is to determine
if two or more groups of records are associated with the same entity.

RL and GL problems occur frequently in inter-database operations, in which
privacy is a major concern, especially in the presence of sensitive data. In both
record and group linkage, data owners need to reveal identifiable attributes to
others for record-level comparison. However, in many cases, data owners are not
willing to disclose any attributes unless the records are proven to be related.
Here we present two GL examples, in which private attributes should not be
revealed.

Example 1: As an international coordination to combat against gang violence,
law enforcement units from different countries collaborate and share information.
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Two countries will only share data when they confirm that they both possess
information about the same gang group, which is represented as a set of records
of gang members. Two gangs are regarded as the same when a large number of
their members’ records match. �
In this example, each party holds groups (i.e. gangs) of records (i.e. members)
that are identified by primary keys (i.e. names). Two records “match” only if
they have identical primary keys. This scenario represents privacy preserving
group linkage with exact matching (PPGLE) problem, in which the similarity
between two inter-group members takes value from {0, 1}.
Example 2: Two intelligence agencies (e.g. FBI and CIA) each obtains several
pieces of intelligence documents. They would like to share the pieces if they are
about the same case. Hence, the agencies need to verify that the similarity of their
pieces are “very similar”, in a way that does not reveal the document content in
the verification process. �
In this case, each record (e.g. a document) is represented as a vector in a term
space shared by both participants. Record-level similarity is measured by a sim-
ilarity function sim(r, s), and takes value in [0, 1]. If the similarity between two
group members is smaller than a preset record-level cut-off, it is considered as
“noise” and set to 0. The group-level similarity is defined as a function of record-
level similarity (e.g. sum()). This scenario represents privacy preserving group
linkage with approximate matching (PPGLA) problem.

Privacy preserving group linkage (PPGL) extends privacy preserving record
linkage (PPRL) such that participants hold groups instead of records. However,
directly applying PPRL solutions to group linkage problems will suffer from
group membership inference attacks. In such an attack, adversaries participate
in the protocol with forged groups so that they can learn the group formation
information of other parties, even though their groups are determined to be dif-
ferent in the end. To tackle this problem, we propose threshold privacy preserving
group linkage (TPPGL) protocols for both exact matching (TPPGLE) and ap-
proximate matching (TPPGLA). The group similarity is no longer revealed to
participating parties. Instead, only the result that the similarity is above or be-
low a preset threshold is notified. In this way, private information about group
membership is protected against inference attacks.

2 Problem Statement

Group linkage considers the problem of matching groups of records from mul-
tiple parities. For ease of presentation, hereafter, we use “Alice” and “Bob” to
represent the two participants. In this scenario, Alice and Bob each holds a
set of groups, identified as R = {R1, ..., Ru} and S = {S1, ..., Sv}, respectively.
Two groups are considered similar (i.e. linked) if and only if SIM(Ri, Sj) ≥ θ,
where SIM() is an arbitrary group similarity function and θ is a pre-negotiated
threshold. In this paper, we follow the original group linkage definition [19] to
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use Jaccard similarity [15] as the group-level similarity measurement (see Sec-
tion 3.2 for details). In real-world applications, the number of elements in groups
is usually small (e.g. tens), while the number of groups tends to be large (e.g.
hundreds).

In the case of exact matching, a record (i.e., group member) is identified by
a primary key, e.g. R = {r1, ..., rm} and S = {s1, ..., sn}, where rp and sq are
primary keys. Two records are regarded similar if and only if their primary keys
are identical, i.e. sim(rp, sq) = 1, iff ri = sj . Note that, for ease of presentation,
we use R instead of Ri to denote a group.

In the case of approximate matching, each record is represented as a vector in
a shared vector space: R = {r1, ..., rm}, and S = {s1, ..., sn}, where rp and sq are
vectors. Two records are regarded similar if and only if their similarity is greater
than a pre-negotiated record-level cut-off ρ, i.e., sim(rp, sq) > ρ. Here, sim() is
an arbitrary vector-space similarity function (e.g. cosine similarity or Euclidean
distance). In this paper, we adopt the cosine similarity that is a popular similarity
measure for text documents: sim(rp, sq) = (rp · sq)/(|rp||sq|).
Privacy preserving group linkage (PPGL): Both Alice and Bob follow a
protocol to match two groups R from Alice and S from Bob. In the end, they
learn |R|, |S|, and the group-level similarity SIM(R, S), based on which they
decide whether or not to share R and S. When exact matching or approximate
matching is employed at the record level, the problem is further denoted as
PPGLE or PPGLA, respectively.

The PPGL problem could be solved by existing privacy preserving set inter-
section protocols [1,4,11]. However, in the case where Bob holds a large number
of groups with overlapping records, and Alice needs to check each of her groups
against all Bob’s groups, the existing solutions suffer from group membership
inference problem, as shown in the following example.

Example 3. As shown in Figure 1 (a), Alice has a group of four records, where
each record is identified by a primary key of last names. Bob has a set of three
groups. Alice checks her group against Bob’s three groups (using primary keys for
exact matching), but fails to find a similar group (assume Jaccard similarity [15]

(a) (b)

Fig. 1. (a) Privacy preserving group similarity with inference problem; (b) privacy
preserving group linkage without inference problem
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is used at group-level and θ is set to 0.5). In the three comparisons, both Alice and
Bob learn the other’s group sizes and the three similarities. Bob could easily infer
the records in Alice’s group via a simple derivation: (1) Alice’s group should not
have “Dow”, “Du”, “Luo”, or “Doe” since its similarity with B2 is 0; (2) Alice’s
group should have “Li” and “Lee” since its similarity with B1 is 0.33 (which
means the intersection size is 2); and (3) Alice’s group should have “Chen” and
“Liu” since its similarity with B3 is also 0.33. Therefore, Alice’s group is {Li,
Lee, Chen, Liu} since the group size is known as 4. �
In this example, Bob does not learn the content of Alice’s records (i.e. at-
tributes other than the primary keys), since the comparisons are assumed pri-
vacy preserving. However, the group membership privacy, i.e. the identities of
group members, is disclosed. In the example, Bob infers Alice’s group mem-
bers by providing partially overlapped groups. An adversary may intensionally
manipulate his groups in a way that group-wise similarity is always below the
threshold so that he does not need to share his groups, but he is able to in-
fer the other party’s group membership privacy. To tackle such a problem, we
need to develop a secure protocol that only provides a verdict of “yes” or “no”
for each group-wise comparison. Hence, Bob only learns three “no”s in the
above example (as shown in Figure 2 (b)), and the inference attack becomes
impossible.

Threshold privacy preserving group linkage (TPPGL): Alice and Bob
negotiate a threshold θ, and then follow a protocol to match two groups R
and S. In the end, they only learn |R|, |S|, and a boolean result B, where
B=true when SIM(R, S) ≥ θ, and B=false otherwise. When exact matching
or approximate matching is employed at the record level, the problem is further
denoted as TPPGLE or TPPGLA, respectively.

3 Preliminaries

3.1 Cryptographic Primitives

The protocols proposed in the paper adopt two special classes of cryptography
algorithms for secure computation: commutative and homomorphic encryption.

Commutative Encryption. An encryption algorithm has the commutative
property when we encrypt a message twice (with two different keys) and the
resulting ciphertext is independent of the order of encryptions. Mathematically,
an encryption scheme E() is commutative if and only if, for any two keys e1 and
e2 and any message m: (1) Ee1(Ee2(m)) = Ee2(Ee1(m)); (2) Encryption key ei

and its corresponding decryption key di are computable in polynomial time; and
(3) Eei() has the same value range.

The commutative property applies to the decryption phase too. If a message is
encrypted with keys e1 and e2, then it can be recovered by either decrypting the
cipher using d1, followed by decryption using d2; or decrypting using d2, followed
by d1. Here, di is the corresponding secret key of ei. Several encryption algo-
rithms are commutative, e.g. Pohlig-Hellman, ECC, etc. In this work, we adopt
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SRA encryption scheme, which is essentially RSA, except that the encryption
exponent e is kept private.

Homomorphic Encryption. Homomorphic encryption represents a group of
semantically-secure public/private key encryption methods, in which certain al-
gebraic operations on plaintexts can be performed with cipher. Mathematically,
given a homomorphic encryption scheme E(), ciphertexts E(x) and E(y), we are
able to compute E(x � y) without decryption, i.e. without knowing the plain-
text or private keys. � represents an arithmetic operation such as addition or
multiplication.

Well-known homomorphic encryption schemes include: RSA, El Gamal [5],
Paillier [20], Naccache-Stern [18], Boneh-Goh-Nissim [2], and etc. The Paillier
cryptosystem [20,21] is additively homomorphic; the El Gamal [5] cryptosystem
is multiplicatively homomorphic; and the Boneh-Goh-Nissim cryptosystem ap-
proach [2] supports one multiplication between unlimited number of additions. A
more recent approach provides full support of both addition and multiplication
at higher computation costs [6,25]. We omit further mathematical details in this
paper, since they are out of our scope.

3.2 Related Work

The problem of privacy preserving group linkage originates from secure two-
party computation and group linkage (which succeeds record linkage). We briefly
summarize the literature in these areas.

Group linkage. The record linkage or merge-purge problem has been inten-
sively studied in database, data mining, and statistics communities [27,3]. Group
linkage [19] extends the scenario to take groups of records into consideration.
Group-wise similarity [19] is calculated based on record-level similarity. When
exact matching is enforced at the record level, Jaccard similarity[15] is em-
ployed at the group level: similarity of two groups (R and S) is defined as:
SIM(R, S) = |R ∩ S|/|R ∪ S|. When approximate matching is applied at the
record level, bipartite matching similarity is employed at the group level [19].
For two groups of records R = {r1, ..., rm} and S = {s1, ..., sn}, BMsim,ρ is the
normalized weight of M :

BMsim,ρ(S, R) = (
∑

(ri,sj)∈M

sim(ri, sj)) / (|R|+ |S| − |M |)

where M indicates the maximum weight matching in the bipartite graph (N =
R ∪ S, E = R × S). It contains all the edges whose weight is greater than ρ, i.e.
(ri, sj) ∈M iff. sim(ri, sj) ≥ ρ.

Privacy preserving record linkage. The original problem of secure two/
multi-party computation was introduced in [28]. In this problem, multiple par-
ties compute the value of a public function on private variables, without revealing
the values of the variables to each other. Zero-knowledge proof [8] addresses the
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Protocol 1. AES approach for set intersection [1]
Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}.
Result: They both learn the size of intersection: |R ∩ S|, and nothing else.
1: Both Alice and Bob apply hash function to their group elements to obtain: h(R) =

{h(r1), ..., h(rm)} and h(S) = {h(s1), ..., h(sn)}.
2: Both Alice and Bob encrypt their hashed group elements to obtain: Er(h(R)) =

{Er(h(r1)), ..., Er(h(rm))} and Es(h(S)) = {Es(h(s1)), ..., Es(h(sn))}.
3: Alice and Bob exchange their group, with group elements reordered.
4: Bob encrypts what he got from Alice to obtain: Es(Er(h(R))) =

{Es(Er(h(r1))), ..., Es(Er(h(rn)))}, and return to Alice.
5: Alice encrypts what she got from Bob in Step 3, to obtain: Er(Es(h(S))).
6: Alice finds out the size of intersection of the encrypted groups, Es(Er(h(S))) (step

4) and Er(Es(h(R))) (step 5), and shares with Bob.

problem of proving the veracity of a statement to other parties without revealing
anything else. They are the earliest ancestors of privacy preserving multi-party
computing. Privacy preserving record linkage with exact matching is very simi-
lar to privacy preserving set intersection: to identify the intersection of two sets
of records without revealing private records. Surveys could be found at [26,11].
Among the more popular approaches, solutions based on homomorphic encryp-
tion (e.g. [4,16]) or commutative encryption (e.g. [1]) require higher computa-
tional overhead. Sanitization-based approaches (e.g. [14]) modify sensitive data
so that they are not identifiable among others, but they are not suitable when
there are a small number of records or the participants require perfect privacy
protection. A hybrid approach [13] combines sanitization and crypto-based tech-
niques to provide a balance among privacy, accuracy and computation (cost).
In the context of approximate matching, there have been proposals on privacy
preserving similar document detection (e.g. [22,17]).

3.3 Privacy Preserving Group Linkage: Baseline Solutions

Privacy preserving record linkage protocols match related records shared by two
parties, without revealing any private records. This requires encrypting records
so that computations (or comparisons) can be conducted on the ciphertexts.
Agrawal et al. proposed a commutative encryption based solution in [1], which
we refer as the AES protocol, and Freedman et al. presented a homomorphic
encryption based scheme in [4], which we refer as the FNP protocol. We briefly
introduce the protocols in Protocol 1 and 2. For more details, please refer to
their papers [4,1].

These protocols serve as the baseline approaches for PPGLE, in which group-
wise similarities are revealed to participants, but record information (for both
shared and private records) is kept private. However, as we have described in
Section 2, such solutions suffer from group membership inference attacks.
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Protocol 2. FNP approach for set intersection size [4]
Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}.
Result: They both learn the size of intersection: |R ∩ S|, and nothing else.
1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice constructs R(x) =

∏
(x−ri), and computes all the coefficients αu that R(x) =∑u=m

u=0 αuxu. Therefore, the m degree polynomial R(x) has roots {r1, ..., rm}.
3: Alice encrypts the coefficients and sends them ({E(α0), E(α1), ..., E(αm)) to Bob.
4: For each sj , Bob evaluates the polynomial (without decryption) to get E(R(sj)).
5: Bob chooses a random value γ, and a pre-negotiated spacial value ν. For each

E(R(sj)), he further computes E(γ ∗ R(sj) + ν).
6: Bob permutes his set of E(γ ∗ R(sj) + ν), and return them to Alice.
7: Alice decrypts all E(γ ∗ R(sj) + ν). For each sj ∈ S ∩ R, she gets ν; otherwise, she

gets a random value. Alice counts the number of ν values, and output.

4 TPPGL with Exact Matching

4.1 TPPGLE Using Commutative Encryption

In threshold privacy preserving group linkage, Alice and Bob first negotiate a
group-level threshold θ: two groups are regarded similar if and only if SIM(R, S)
≥ θ. With exact matching at record-level, sim(ri, sj) ∈ {0, 1}. Let k be the
minimum number of identical records from two groups for them to be linked, we

have: SIM(R, S) =
k

|R|+ |S| − k
≥ θ. Note that we employ Jaccard similarity

at group level.
If |R| = m, |S| = n, we have k = '(m + n)θ/(1 + θ)(; i.e. k is the smallest

integer that is greater than or equal to (m+n)θ/(1+θ). Therefore, the TPPGLE
problem is to securely compare the actual intersection size (|R ∩ S|) with k in a
way that |R ∩ S| should not be revealed to either Alice or Bob1. Please
note that although group sizes are revealed, it is acceptable since they could
not be used to infer record identity. Similarly, privacy preserving record linkage
solutions also share the number of records among participants.

To extend the AES scheme to tackle the TPPGLE problem, we enumerate all
k-combinations of Alice’s and Bob’s elements and compare the k-combinations
in privacy preserving manner. If at least one of the pairwise comparisons of k-
combinations yields a positive result, we conclude that k or more elements from
two groups match, so that the Jaccard similarity of the two groups has reached
the threshold, and Alice and Bob should share the groups. The detailed process
is shown in Protocol 3.

Figure 2 gives an example of Protocol 3. In this example, Alice and Bob each
hold groups of records identified by names. Figure 2 (a) shows Alice’s group
of four records and Bob’s group of three records. A threshold θ = 0.7 is pre-
negotiated. In step 1, both Alice and Bob get k = '0.7(7)/(1+0.7)( = 3. In step

1 This requirement makes the problem different from the well-know Yao’s millionaire
problem [28].
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Protocol 3. K-combination approach for TPPGLE
Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}. They

negotiate a similarity threshold θ.
Result: Both Alice and Bob learn whether or not the similarity between R and S is

greater than θ, i.e. if SIM(R, S) > θ, and nothing else; especially, not SIM(R,S).
1: Alice and Bob both compute k = �(m + n)θ/(1 + θ)�, i.e. the smallest integer that

is not less than (m + n)θ/(1 + θ).
2: Alice and Bob each gets all the k-combinations of her/his own elements. There are

Cm
k k-combinations from Alice and Cn

k k-combinations from Bob.
3: For each k-combination, sort the elements using a pre-negotiated order, and seri-

alize them into a string, with a special separator between elements.
4: Both Alice and Bob follow the AES approach (Protocol 1) to find the intersection

of the k-combinations. If at least one k-combination is found in the intersection,
the two groups are matched, i.e. SIM(R, S) is guaranteed to be greater than θ.

(a) (b)

Fig. 2. (a) Alice and Bob’s groups; (b) privacy preserving set intersection of k-
combinations extracted from groups

2, Alice gets C4
3 3-combinations from her records and Bob gets C3

3 3-combinations
from his records. In step 3, Alice sorts the elements in each 3-combination in
ascending order, serializes the primary keys into a string, with “&” as the sep-
arator. As shown in Figure 2 (b), Alice and Bob continue to use AES approach
to find the intersections of the strings, in a privacy preserving manner. In this
example, one intersection is found, which means the two groups are considered
to be matched at the threshold of 0.7. On the other hand, if we replace Alice’s
record “J.Doe” with another record “Z.Doe”, follow the above procedures, then,
none of the strings serialized from 3-combinations would match. In this case,
two groups are not linked, and both Alice and Bob learn nothing about other’s
group.

In this approach, we avoid homomorphic encryption, which requires heavy
computation. However, when Alice generates Cm

k k-combinations and Bob gen-
erates Cn

k k-combinations, the value of Cm
k and Cn

k could be too large to manip-
ulate. Therefore, this approach is preferable when k = '(m+ n)θ/(1 + θ)( is (1)
very small, or (2) very close to m and n. In real-world applications, k is usually
close to m and n.
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4.2 TPPGLE Using Homomorphic Encryption

In FNP approach, Alice and Bob pre-negotiate a special value ν, which represents
a matching record. After decryption, Alice counts the number of ν values, which
represents the number of records in R ∩ S. In TPPGLE, this number should
not be revealed to either party. Instead, they should only learn a Boolean value:
|R ∩ S| > k. To tackle this problem, we modify FNP approach starting from
step 6. Before permuting Enc(γ ∗R(sj) + ν), Bob injects a random number (kb)
of Enc(ν) elements into the result set. We assume there is k′ = |R ∩ S|, which
generates k′ number of Enc(ν) elements in the original Enc(γ ∗ R(sj) + ν) set.
After the random injection, Alice decrypts the polluted set to obtain (kb + k′)
ν values. She has no knowledge about either kb or k′, as long as kb is selected
from a good range.

Now the problem is converted to Yao’s Millionaire Problem: Alice knows kb+k′

while Bob knows kb+k (the new threshold), and they want to compare two values
without leaking them to each other. In our settings, kb + k′ � N, kb + k � N2.
We may assume that the product of (k′−k) and a random number r′ is much less
than N . In our solition, Bob first generates Enc(k′−k) from Enc(kb+k′) (obtained
from Alice) and Enc(kb + k). Hence, we are to find out whether k′ − k > 0 or
not, without revealing the actual value. Bob further randomizes the result with
two positive random numbers γ′ � N and ν′ < γ′, obtaining Enc(γ′× (k′−k)+
ν′). Then Alice gets the cipher from Bob and decrypts it. Based on previous
assumption, we may infer that (γ′ × (k′ − k) + ν′) > 0 iff. (k′ − k) > 0, and vice
versa. Meanwhile, due to the cryptographic properties of Paillier cryptosystem,
the decryption result should be the least positive residues of plain text modulus
N . Hereby, if γ′ × (k′ − k) + ν′ < N/2, we have k′ − k > 0 and thus the two
groups are linked. Otherwise, if N/2 < γ′ × (k′ − k) + ν′ < N , the two groups
are not linked.

5 TPPGL with Approximate Matching

In previous section, group members (records) are identified by primary keys.
Therefore, two records are either “identical” or “different”. In this section, we
consider the problem with approximate matching. In this scenario, Alice and
Bob pre-negotiate a vector space, and represent their records as vectors in this
space. Since our research is more focused on group-level linkage, we adopt a
simple cosine similarity function, which employs private scalar product [7], for
document-level vector-space similarity.

First, in Protocol 5, we revisit the privacy preserving inner-product (scalar
product) approach presented in [7]. In the protocol, z represents the dimen-
sionality of the vector space, while μ denotes the normalized modulus of space
vectors.
2 k is no larger than the group size. In our assumptions, typical group size is small

(e.g. tens). On the other hand, in our experiments, N is the product of two 256-bit
prime numbers.
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Protocol 4. Homomorphic encryption approach for TPPGLE
Data: Alice has a group R = {r1, ..., rm}; and Bob has a group S = {s1, ..., sn}. They

negotiate a similarity threshold θ.
Result: Both Alice and Bob learn whether or not the similarity between R and S is

greater than θ, i.e. if SIM(R, S) > θ, and nothing else; especially, not SIM(R,S).

1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice constructs R(x) =

∏
(x−ri), and computes all the coefficients αu that R(x) =∑u=m

u=0 αuxu. Therefore, the m degree polynomial R(x) has roots {r1, ..., rm}.
3: Alice encrypts the coefficients and sends them ({E(α0), E(α1), ..., E(αm)) to Bob.
4: For each sj , Bob evaluates the polynomial (without decryption) to get E(R(sj)).
5: Bob chooses a random value γ, and a pre-negotiated spacial value ν. For each

E(R(sj)), he further computes E(γ ∗ R(sj) + ν).
6: Bob gets a random number kb. He injects kb number of E(ν) values into the set

he obtained from the previous step. Meanwhile, he also injects random number of
random values into this set.

7: Bob permutes his polluted set of Enc(γ ∗ R(sj) + ν), and returns them to Alice.
8: Alice decrypts all items in the polluted set. She then count number of ν values.
9: Assume k′ = |R∩S|, Alice now knows kb + k′, but not kb; Bob knows kb, and thus

kb + k. Neither of them knows k′.
10: Alice encrypts kb + k′, and sends it to Bob.
11: Bob gets E(kb +k′). With the homomorphic properties of E(), he calculates E((kb +

k′) − (kb + k)) = E(k′ − k).
12: Bob creates two random numbers γ′ � N and ν′ < γ′ . Bob randomizes E(k′ − k)

to E(γ′ × (k′ − k) + ν′).
13: Bob return Enc(γ′ × (k′ − k) + ν′) to Alice. Alice decrypts it to m, output “Yes”

if m < N/2, or “No” if m > N/2.

We assume Alice has a group: R = {r1, r2, ..., rm}, and Bob has a group
S = {s1, s2, ...sn}. In simple PPGLA, we conduct pairwise comparison between
Alice’s and Bob’s vectors, and all sim(ri, sj) are counted towards group simi-
larity. Being simple in calculation, however, this approach does not provide best
result, since many sim(ri, sj) values are very small that they should be consid-
ered as “noise”. Therefore, a better solution is to have a record-level “cut-off” ρ
such that: edge is created in the bipartite graph iff. the similarity between two
vertexes is larger than ρ (i.e. sim(ri, sj) > ρ). On the other hand, also to elimi-
nate noises, we only consider an unlabeled bipartite graph – when two records are
linked, we use “1”, instead of sim(ri, sj) in group-level similarities. With a binary

bipartite graph, group-wise similarity becomes: BMsim,ρ(R, S) =
k

|R|+ |S| − k
,

where k = |M |. To get BMsim,ρ(R, S) > θ, we need to have: k > (m+n)θ/(1+θ).
Therefore, Alice and Bob need to pre-compute kmin based on θ, then securely

compute k, and compare k with kmin. However, this approach is again flawed –
an advisory could break the protocol by faking his groups. Let us assume that
Alice and Bob each has a group of three members, while only r1 and s1 match
(sim(r1, s1) > ρ). Bob could fake a group with (repeated) members: {s1, s′1, s

′′
1},
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Protocol 5. Privacy preserving inner-product [7].

Data: In a shared vector space Zz
μ, μ <

√
N/2z, Alice has her vector r; and Bob has

his vector s.
Result: Alice and Bob both learn the inner-product r · s.
1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice encrypts each ri in r = [r1, ..., rz] to obtain Enc(r) = [E(r1), E(r2), ..., E(rz)].
3: Alice sends E(r) to Bob.
4: With the homomorphic properties of E(), Bob computes the inner-product (without

decryption): E(r · s) = E(r1s1 + r2s2 + ... + rzsz).
5: Bob sends E(r · s) back to Alice, Alice decrypts and publishes the result.

in which s′i is a slightly modified version of si. In this way, the manufactured
group is highly likely to be linked with R. To tackle this problem, we measure
the “degree of participation” from Alice and Bob, instead of using the total
number of linked records. In other words, we count the number of elements from
Alice that are linked to at least one element from Bob (m′), and vice versa. If
we obtain m′ and n′ from the count, we then compare min(m′, n′) with kmin to
make the decision.

To implement such operations in a privacy preserving manner, we present
TPPGLA in Protocol 6 (on the last page). In the protocol, Alice and Bob will
use an encrypted similarity matrix M to store the intermediate results. The
content of M should be private throughout the group linkage procedure. Bob
first generates E(ri · sj) with the private-preserving scalar product protocol, and
subtract them by the record-level cut-off ρ. In the matrix M , each positive value
(in plaintext) indicate a link at the record level (or an edge in the bipartite
marching graph). If a row i has at least one positive value, it indicates that
Alice’s record si has participated in the linkage (i.e. linked with at least one
record from Bob). To measure m′ is to count number of rows that have at least
one positive value, and to measure n′ is to count number of columns that has at
least one positive element.

To conduct such operations securely, Bob randomizes each pairwise record
similarity into a encrypted “Boolean” value, with meaningful information only
in the sign digit of the plain text. Before sending the cipher back to Alice, Bob
injects two groups of positive and negative values with random sizes into each
row and column, expanding the size of M into a larger range. If Alice counts all
the positive values in row i, of M , she cannot infer whether ri shares any similar
records in Bob’s set (i.e. the number of links between ri and Bob’s items, cri),
if she doesn’t how many positive values Bob has injected.

Further more, to protect m′ and n′ from been learned by either party, Bob per-
forms another injection-permutation operation after Alice returns (encrypted)
sum of each row. He injects cbr non-zero values into the set of cri, and make
sure that Alice can only learn m′ + cbr instead of m′. Similarly, Alice can obtain
n′ + cbr, where n′ denotes the number of shared items from Bob.

In approximate matching, if Alice shares m′ records with Bob, and Bob
shares n′ records with Alice, the maximum bipartite matching cardinality is



Privacy Preserving Group Linkage 443

Protocol 6. TPPGLA with record-level cut-off
Data: Alice has a group R = {r1, ..., rm}; Bob has a group S = {s1, ..., sn}. They

negotiate a record-level cut-off threshold ρ and a similarity threshold θ.
Result: Alice and Bob both learn if similarity between R and S is greater than θ, i.e.

if BMsim(R,S) > θ, and nothing else; especially, not BMsim,ρ(R,S).
1: Alice creates keys for homomorphic encryption and publishes her public key.
2: Alice and Bob negotiate a shared space Zz

μ. They represent their vectors ri and sj

in the space. All vectors are normalized to μ <
√

N/2z.
3: Alice and Bob both compute k = �(m + n)θ/(ρ + θ)�.
4: For each pair ri, sj , they follow protocol 5 to compute E(ri · sj). Instead of sending

E(ri ·sj) to Alice, Bob chooses a random value γ > 0 to compute E(γ ∗ (ri ·sj −ρ)).
The result set forms a m × n matrix M = (E(γ ∗ (ri · sj − ρ))m×n.

5: Bob creates two random vectors cb+ and cb−, where cb+ = (cb1+, cb2+, ..., cbm+)
and cb− = (cb − cb1+, cb − cb2+, ..., cb − cbm+). For each row of M , Bob injected cbi+

encrypted random positive values and cbi− encrypted random negative values and
gets Mr = [M ]m×(n+cb). He then permutes each row of Mr and sends it to Alice.

6: Alice decrypts Mr into Vr. She counts the number of ν < N/2 for each row, and
obtains cri + cbi+, where cri denotes the number of records in S that are supposed
to be similar with ri. Alice now knows cri + cbi+ and Bob knows cbi+. Neither of
them knows whether ri is similar with any record in S.

7: Alice encrypts [cr1 + cb1+, cr2 + cb2+, ..., crm + cbm+] to [E(cr1 + cb1+), E(cr2 +
cb2+), ..., E(crm + cbm+)] and sends them to Bob.

8: Bob creates two positive random numbers γ and υ. He randomizes E(cri + cbi+ −
cbi+) and gets [Enc(γ ∗ cr1 + ν),E(γ ∗ cr2 + ν), ...Enc(γ ∗ crm + ν)].

9: Bob creates a random number cbr of different random integers 0 < dinject < m. He
injects cbr number of Enc(dinject) values into [E(γ ∗cr1 +υ),E(γ ∗cr2 +ν), ...Enc(γ ∗
crm + ν)], permutes the set and sends the result to Alice.

10: Alice decrypts all items in the polluted set. Assume Rm′ is the largest subset of
Rm, ∀ri ∈ Rm′ , ∃sj ∈ S , s.t. sim(ri, sj) > ρ. She then count number of non-zero
values and gets m′ + cbr.

11: Similarly, Alice learns n′ + cbr if we conduct the above operations in columns.
12: Now Alice knows m′ + cbr and n′ + cbr, and Bob knows k + cbr. They can proceed

with protocol 4 from step 9 to compare min(m′, n′) with k. If intersection threshold
k is smaller than min(m′, n′), the SIM(R,S) is guaranteed to be greater than θ.

min(m′, n′). Alice and Bob both compute the group intersection threshold k;
now Alice knows {m′ + cbr, n

′ + cbr} and Bob knows k′ + cbr, and they want to
learn if k′ < min(m′, n′). They can follow Protocol 4 from step 9 to get the final
decision.

6 Security Analysis

6.1 Attacker Models

The goal of the proposed TPPGL protocols is to guarantee that (1) in the
protocol, each party learns only the fact whether the groups are similar or not;
and (2) no content or similarity measurement at the record level is disclosed
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to any party; no similarity measurement at the group-level (other than (1)) is
disclosed to any party. Please note that in privacy preserving record linkage, it
is convention that numbers of records from all participants are revealed. In our
scenario, it is also acceptable that both parties disclose the sizes of their groups.
Unlike group similarity information, group size information cannot be used to
infer record identities.

In secure two-party computation problems, communication between the par-
ties is usually assumed to be authenticated and encrypted. Therefore, our pro-
tocol is secure against outsider adversaries that passively monitor the network
traffic but have no access to the inputs or the outputs. Hence, we further con-
sider two types of insider adversaries, semi-honest (a.k.a. honest-but-curious)
and augmented semi-honest adversaries, in our attacker model: (1). Semi-honest
model describes a passive insider attack: both parties are assumed to properly
follow protocol (so that they are “honest”); meanwhile, each party keeps all the
accessible intermediate results and outputs, and tries to infer private data (so
that they are “curious”). (2). In augmented semi-honest attacker model, the ad-
versary can further change the input and output of one party, without tampering
the protocol, to affect the views of the others’.

Due to space limitations, we only evaluate the correctness and security of
Protocol 3, i.e. TPPGL with commutative encryption. With the same method-
ology, we can extend our proofs to all other protocols presented in the paper.

6.2 TPPGLE Using Commutative Encryption

First, we classify the two parties as client and server based on their roles in the
protocol. The client (e.g. Alice) initiates the secure computation and gets the
output, and the server (e.g. Bob) responds to the inputs from the client. The
protocol is correct if it evaluates the similarity function with high probability.

Statement 1. In Protocol 3, assuming there are no hash collisions, the client
learns a Boolean output, where 1 for SIM(R, S) > θ, and 0 otherwise.
Proof. For any k ≤ min(|R|, |S|), assume the hash function h has no collisions
on Rk ∪ Sk. Since Es and Er are bijective and commutative, we have

υ ∈ Rk ∩ Sk iff υ ∈ Rk and Er(Es(h(υ))) = Es(Er(h(υ))),
which means the same concatenated set of elements is constructed by both the
client and the server. Since k is calculated from θ, we have SIM(R, S) > θ iff
∃υ ∈ Rk ∩ Sk. �
The security of the protocol is to preserve the privacy of the data of both client
and server. Then, we have

Statement 2. TPPGLE-Commutative is secure if both parties are semi-honest
or augmented semi-honest. From the protocol, the client learns the Boolean out-
put and the size |S|, and the server only learns the size |R|.
Proof. We use the similar proof methodology as in [1]: it assumes a simulation
using the knowledge that the client (and the server) is supposed to have according
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to the protocol, and the client (and the server) should not be able to distinguish
the simulated view and the real view.

First, let us construct the simulator for the server. The server receives no
output from the protocol, but C

|R|
k encrypted messages from the client at step

4. Each message is the hash of the concatenation of k elements from set R,
encrypted by commutative key Er. The simulator generates k random values
zi ∈ �, where � is the message space, and then concatenates them in a ran-
dom sequence. Assume the hash h(||z1||...||zk||) is uniformly distributed (“||”
denotes concatenation), the real view and the simulated view for the server are
indistinguishable.

Then, let us construct the simulator for the client. The simulator will use R,
|S|, and Rk ∩ Sk. To simulate the view for the client, the simulator selects a
commutative key Eh to encrypt ||z1||...||zk|| for zi ∈ R ∩ S, 1 ≤ i ≤ k. Then
the simulator generates |S| − |S ∩ R| random k-concatenations, and encrypts
them with Eh. In real view, the |S| concatenations are all encrypted by Es.
Since Eh and Es are randomly chosen from the same key space, their distri-
butions are identical. For the client, the real view and the simulated view are
indistinguishable. �

7 Experiments

We perform our experiments on three data sets, which were adopted in [23].
As summarized in Table 1, two data sets, co-author network (shortly AN) and
paper citation network (shortly CN), are extracted from academia search sys-
tem Arnetminer, and the last one, movie network (shortly MN), is crawled from
Wikipedia category “English-language films”. AN represents author names as
vertices and the coauthor relationships as edges, while in CN, the vertices are a
set of 2,329,760 papers and the edges denote the citation relationships between
the papers. Since both AN and CN are homogeneous networks, we treat each
1-neighborhood subgraph (e.g. an author and all the co-authors) as a group, and
use author name and citation name as key attributes for exact matching. MN is
a heterogeneous network with 142,426 relationships between the heterogeneous
nodes of films, director, actors, and writers. In our experiments, we treat a het-
erogeneous subnet (of a selected number of nodes) as a “group”, and extract the
label from each node to form the content of “records”. Textual similarity (e.g.
cosine similarity with TF/IDF weighting) between two labels is calculated as
pairwise record-level similarity.

Then, we quantitatively evaluate the performance of the proposed TPPGL
protocols (Protocol 3, 4 and 6) on the three data sets. Since our focus is on
the viability and performance of these approaches in privacy preserving group
linkage, we measure the end-to-end execution time under different group sizes and
thresholds θ to assess the efficiency of each protocol. To meet the computational
requirements of the cryptographic operations, we implement our own Big Integer
class in C# under .NET framework 3.5.
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Fig. 3. Experimental results of TPPGLE

Table 1. A summary of three data sets

Data Set Key Record

AN Author name Authors and coauthors.

CN Paper name Paper and citations.

MN - Attributes (labels) of actors, writers, singers, etc.

7.1 TPPGLE

To evaluate the performance of TPPGLE, we first generate synthetic groups
from AN and CN data sets. To form a group, we randomly pick a seed node,
and follow its edges to add more members to the group. For instance, when a
seed (3, J. Doe(15), 203) is selected, the next node 203 should be added to the
group. We evaluate the protocol under different group sizes (e.g. each group has
5, 10, and 15 records) and different thresholds (e.g. θ ∈ {0.3, 0.5, 0.7, 0.9}). For
each θ, we generate 50 pairs of linked groups, and 50 pairs of unrelated groups.

Following the TPPGLE protocol using commutative encryption, we first hash
each record (of Alice and Bob) into a 160-bit value, and then encrypt it with
a commutative encryption function. Here, we adopt the famous SRA scheme.
The average end-to-end execution time for Protocol 3 under different group
sizes are shown in Figures 3(a)-(c). In each figure, the lower portion (denoted
as TPPGLE-C) of the tacked bars represents the average execution time under
different thresholds, and the upper portion represents network latency delay,
which is estimated as the average one-hop network latency (i.e. 100ms) times the
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Fig. 4. Computation cost of TPPGL protocols

rounds for data exchange between Alice and Bob. From the results, we see that
the performance of Protocol 3 highly depends on the preset similarity threshold,
especially when group size becomes large. It is easy to understand: a larger
similarity threshold θ, which means k is closer to the group size, introduces less
computation overhead due to the combination calculations. In real group linkage
cases, it is also reasonable to select a large similarity threshold since there is no
need to link two groups that are not similar.

Then, we use the same group settings to evaluate the performance of the
TPPGLE protocol using homomorphic encryption (TPPGLE-H). We adopt the
Paillier encryption scheme to encrypt the coefficients used in Protocol 4. The
average end-to-end execution time under different group sizes are shown in Fig-
ures 3(e)-(g). The results show that the performance does not change much under
different thresholds, but is greatly affected by different group sizes.

Therefore, we run another experiment to evaluate the efficiency of two TPP-
GLE protocols over larger groups. We set the threshold to θ = 0.7, and generate
100 pairs of groups with different sizes (5, 10, 15, 20, and 25). Figure 4(a) shows
the average end-to-end execution time for both commutative encryption based
approach and homomorphic encryption based approach. Apparently, when the
group size increases, computation cost of the TPPGLE-H protocol shows a linear
increasing trend, while in the TPPGLE-C protocol it grows almost exponentially.
This is because in TPPGLE-H protocol, the computational complexity increases
along with the degree of the group’s polynomial representation, and thus in-
creases linearly with the group size. In TPPGLE-C protocol, its computational
complexity depends on the k-combination function: Cost(n) = Cn

k × E(∗). For
a given k, the computation cost increases with n in a manner slower than expo-
nential but faster than polynomial.

7.2 TPPGLA

We evaluate the validity and efficiency of TPPGLA protocol (Protocol 6) on
the movie network data set. To form the group, we randomly extract a subset of
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1000 records from MN, and calculate pairwise record-level similarities between
the records. For a given record-level cut-off ρ (a preset value negotiated between
Alice and Bob), we divide the records into two parts, according to whether record
pairs are similar or not.

We first select k pairs of different records from the similar set as input, where
k is the set-intersection threshold, and apply Protocol 6 on the k pairs. The
output is “Yes”, which verify the validity of the protocol. Then, we select random
group pairs from MN to evaluate the efficiency of the protocol, and show the
computation cost of TPPGLA under different group sizes (from 3 to 11) in
Figure 4(b). From the results, we see that the computation cost increases greatly
with the group size. This is because the computation cost is proportionate to
group size m × n and the dimensionality of vector space, while the latter also
increases with the group size. Overall, TPPGLA introduces a comparably large
overhead in end-to-end execution time , however, it is the price we pay for
extreme cases with strong needs for privacy protection.

8 Conclusion and Future Works

In this paper, we have presented privacy preserving group linkage, in which
groups of records from two parties are compared in a way that no record content
is revealed. Simple PPGL (in which both parties learn the group similarity) suf-
fers from the group membership inference problem, which could be employed to
learn the member records of the other party’s groups, even though the groups
are not linked. To tackle the problem, we propose threshold privacy preserving
group linkage, in which both parties only learn the verdict on whether the two
groups are matched or not, instead of the value of group similarity. We imple-
mented and tested TPPGL protocols for both exact matching and approximate
matching scenarios. From the experiments, we can see that TPPGL pays a price
in computation in order to protect the participants’ privacy.

Although our approach demonstrates strong privacy protection, the computa-
tion overhead is relatively high. In its current form, the approaches are suitable
for exchanging highly sensitive information. Our future work is to further explore
cryptographic methods to reduce the overall computation of our approaches.
Meanwhile, we are also optimizing our existing implementations, and planning
to test it over large datasets.
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Abstract. Marginal publication is one of important techniques to help
researchers to improve the understanding about correlation between pub-
lished attributes. However, without careful treatment, it’s of high risk of
privacy leakage for marginal publications. Solution like ANGEL has been
available to eliminate such risks of privacy leakage. But, unfortunately,
query accuracy has been paid as the cost for the privacy-safety of AN-
GEL. To improve the data utility of marginal publication while ensuring
privacy-safety, we propose a new technique called dynamic anonymiza-
tion. We present the detail of the technique and theoretical properties
of the proposed approach. Extensive experiments on real data show that
our technique allows highly effective data analysis, while offering strong
privacy guarantees.

Keywords: privacy preservation, marginal publication, dynamic
anonymization, m-invariance.

1 Introduction

In recent year, we have witnessed the tremendous growth of the demand to
publish personal data, which posed great challenges for protecting the privacy
in these data. For example, medical records of patients may be released by a
hospital to aid the medical study. Suppose that a hospital wants to publish
records of Table 1, called microdata (T ). Since attribute Disease is sensitive, we
need to ensure that no adversary can accurately infer the disease of any patient
from the published data. For this purpose, unique identifiers of patients, such
as Name should be anonymized or excluded from the published data. However,
it is still possible for the privacy leakage if adversaries have certain background
knowledge about patients. For example, if an adversary knows that Bob is of
age 20, Zipcode 12k and Sex M, s/he can infer that Bob’s disease is bronchitis
since the combination of Age, Zipcode and Sex uniquely identify each patient in
Table 1. The attribute set that uniquely identify each record in a table is usually
referred to as a quasi-identifier (QI for short) of the table.
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Table 1. Microdata Table 2. Generalization T ∗

             Age  Zip  Sex   Disease 
    Bob     20  12k   M   bronchitis
    Alex    19  20k   M   flu
    Jane    20  13k   F   pneumonia 
    Lily    24  16k   F   gastritis
   Jame    29  21k   F   flu
   Linda   34  24k   F   gastritis
   Sarah   39  19k   M   bronchitis
   Mary    45  14k   M   flu
   Andy    34  21k   F   pneumonia 

GID  Age  Zip  Sex Disease
1  [19-20]  [12k-20k]  M  bronchitis
1  [19-20]  [12k-20k]  M  flu
2  [20-24]  [13k-16k]  F  pneumonia
2  [20-24]  [13k-16k]  F  gastritis
3  [29-34]  [21k-24k]  F  flu
3  [29-34]  [21k-24k]  F  gastritis
4  [34-45]  [14k-21k]  *  bronchitis
4  [34-45]  [14k-21k]  *  flu
4  [34-45]  [14k-21k]  *  pneumonia

Table 3. Marginal 〈Zip, Disease〉 Table 4. GT Table 5. BT

Zip Disease
 [12k-13k] bronchitis
 [12k-13k] pneumonia
 [14k-16k] gastritis
 [14k-16k] flu
 [19k-20k] flu
 [19k-20k] bronchitis
 [21k-24k] gastritis
 [21k-24k] flu
 [21k-24k] pneumonia

GID Zip   Batch-ID 
1  [12k-13k] 1
1  [12k-13k] 2
2  [14k-16k] 4
2  [14k-16k] 2
3  [19k-20k] 1
3  [19k-20k] 4
4  [21k-24k] 3
4  [21k-24k] 3
4  [21k-24k] 4

Batch-ID  Disease Count
1  bronchitis 1
1  flu 1
2 pneumonia 1
2  gastritis 1
3  flu 1
3  gastritis 1
4  bronchitis 1
4  flu 1
4 pneumonia 1

To protect privacy against attack guided by background knowledge, gener-
alization has been widely used in privets anonymization solutions [1, 2, 3, 4, 5].
In a typical generalization solution, tuples are first divided into subsets (each
subset is referred to as a QI-group). Then, QI-values of each QI-group are gen-
eralized into less specific forms so that tuples in the same QI-group cannot be
distinguished from each other by their respective QI-values. As an example, we
generalize Table 1 into Table 2 such that there exists at least two records in
each QI-group. After generalization, the age(=20) of Bob has been replaced by
an interval [19-20]. As a result, even if an adversary has the exact QI values of
Bob, s/he can not exactly figure out the tuple of Bob from the first QI-group.

Motivation 1: Privacy leakage of marginal publication. Privacy preser-
vation of generalization comes at the cost of information loss. Furthermore, gen-
eralization generally loses less information when the number of QI attributes is
smaller [6]. Hence, to enhance the understanding about the underlying correla-
tions among attributes, the publisher may further release a refined generaliza-
tion of the projection on attributes of interest. This approach is referred to as
marginal publication. For example, a researcher may request refined correlations
of Zipcode and Disease several weeks later after the publication of Table 2. To
satisfy the request, the publisher further publish Table 3, which is a more ac-
curate generalization of 〈Zipcode, Disease〉 compared to that in Table 2, hence
capturing the correlations between Zipcode and Disease better.

However, it is of possible risk of privacy leakage in solutions of marginal pub-
lication. Continue the above example. Suppose an adversary knows Bob’s QI-
values. Then, by Table 2 s/he infers that Bob’s disease is in the set {bronchitis,
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flu}. By Table 3, s/he infers that Bob has contracted the disease either pneumo-
nia or bronchitis. By combining the above knowledge, the adversary makes sure
that Bob have contracted bronchitis.

Motivation 2: Information loss of existing solutions. To overcome the
privacy leakage of marginal publication, Tao et al. [5] propose an anonymization
technique ANGEL (illustrated in Example 1), which releases each marginal with
strong privacy guarantees. Many QI-groups of the anonymized table released by
ANGEL may contain a large number of sensitive values. The number of these
values in the worst case is quadratic to the number of tuples in the QI-group.
As a result, there will exist significant average error when answering aggregate
queries. To give a clear explanation, assume that a researcher wants to derive
an estimation for the following query:

Select Count(∗) From Table GT and BT Where ZipCode ∈ [12k, 24k] And
Disease=’Penumonia’.

By estimating from Table 4 and 5, we can only get an approximate answer 4,
which is much larger than the actual query result 2(see Table 1). Then, we may
wonder whether there exists an approach that can protect privacy for marginal
publication while ensuring the data utility of the published data. This issue is
addressed in this paper.

Example 1. Suppose that the publisher need to release a marginal containing
〈Zipcode, Disease〉. If the privacy principle is 2-unique, the parameter k of AN-
GEL will be 2. After running ANGEL under this parameter, the result will be
two tables GT (shown in Table 4 which is 2-anonymity) and BT (shown in Table
5 which is 2-unique).

Related Work. Although improving the data utility of marginal publication
is desired, rare works can be found to solve this problem. We give a brief re-
view on the previous works about marginal publication. It was shown in that
when the set of marginals overlap with each other in an arbitrarily complex
manner, evaluating the privacy risk is NP-hard [7, 8]. The work of [7], on the
other hand, is applicable only if all the marginals to be published form a decom-
posable graph. The method in [8] requires that, except the first marginal, no
subsequent marginal released can have the sensitive attribute. The work of [8]
shows that, checking whether a set of marginals violates k-anonymity is a com-
putationally hard problem. The method in the paper [9] requires that, except the
first marginal, no subsequent marginal released can have the sensitive attribute.
For example, after publishing Table 3(Marginal 〈Zip, Disease〉), the publisher
immediately loses the option of releasing any marginal which contains the at-
tribute Disease. This is a severe drawback since the sensitive attribute is very
important for data analysis. The work that is closest to ours is ANGEL that
is proposed by Tao et al. [5]. ANGEL can release any marginals with strong
privacy guarantees, which however comes at the cost of information loss. Please
refer to Section 1 for details.
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Contributions and paper organization. To reduce the information loss of
marginal publication, we propose a dynamic anonymization technique, whose
effectiveness is verified by extensive experiments. We systematically explored the
theoretic properties of marginal publication, and proved that the generalization
principle m-invariance can be employed to ensure the privacy safety of marginal
publication.

The rest of the paper is organized as follows. In Section 2, we give the pre-
liminary concepts and formalize the problem addressed in this paper. In Section
3, we present the dynamic anonymization technique as our major solution. In
Section 4, experimental results are evaluated. Finally, the paper is concluded in
Section 5.

2 Problem Definition

In this section, we will formalize the problem addressed in this paper and explore
some theoretic property of marginal publication.

Marginal Publication. Let T be a microdata table, which has d QI-attributes
A1, ..., Ad, and a sensitive attribute (SA) S. We consider that S is categorical,
and every QI-attribute Ai(1 ≤ i ≤ d) can be either numerical or categorical. For
each tuple t ∈ T, t.Ai(1 ≤ i ≤ d) denotes its value on Ai, and t.As represents its
SA value. We first give the fundamental concepts. A QI-group of T is a subset
of the tuples in T . A partition of T is a set of disjoint QI-groups whose union
equals T .

Now, we will formalize the key concepts in marginal publication. In the fol-
lowing texts, without loss of generality, we assume that all marginals released
contain the sensitive attribute. A marginal published without the sensitive at-
tribute is worthless for the QI-conscious adversary.

Definition 1 (Marginal). Marginal Mj is a generalized version of certain pro-
jection on microdata T . The correspondent schema of the projection is referred to
as the schema of the marginal. A trivial marginal is the marginal that contains
no QI-attributes. Any other marginals are non-trivial.

Given a microdata T , the number of its possible non-trivial marginals can be
quantified by the following lemma. In following texts, without explicit statement,
a marginal is always non-trivial.

Lemma 1. There are 2d−1 different non-trivial marginals, where d is the num-
ber of QI-attributes.

Given multiple marginals of a microdata, it is possible for an adversary to infer
privacy of a victim by combining knowledge obtained from different marginals.
This implies that the intersection of the sensitive sets obtained from differ-
ent marginals must cover sufficiently large number of values so that the ad-
versaries can not accurately infer the sensitive information of a victim. One
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principle achieving this objective is m-invariance. We first give the definition
of m-invariance and two basic concepts to define m-invariance: signature and
m-unique. The privacy guarantee of m-invariance is established by Lemma 3 in
the paper [4].

Definition 2 (Signature, m-Unique [4,10]). Let P be a partition of T , and
t be a tuple in a QI-group G ∈ P . The signature of t in P is the set of distinct
sensitive values in G. An anonymized version T ∗ is m-unique, if T ∗ is generated
from a partition, where each QI-group contains at least m tuples, each with a
different sensitive value.

Definition 3 (m-Invariance [4, 10]). A set S of partitions is m-invariant if
(1) Each partition in S is m-unique; (2) For any partitions P1, P2 ∈ S, and any
tuple t ∈ T , t has the same signature in P1 and P2.

In this paper, we adopt the normalized certainty penalty (NCP [3]) to measure
the information loss. Now, we are ready to give the formal definition about the
problem that will be addressed in this paper.

Definition 4 (Problem Definition). Given a table T and an integer m, we
need to anonymize it to be a set of marginals Mj(1 ≤ j ≤ r) such that (1)Exis-
tence: these marginals are m-invariant; (2)Optimality: and the information loss
measured by NCP is minimized.

Existence of m-Invariant marginals. Given a table T and an integer m, is
it possible to generate a set of marginals Mj(1 ≤ j ≤ r) that is m-invariant?
The answer is positive. We will show in Theorem 1 that if a table T is m-eligible,
there exists a set of marginals Mr(1 ≤ j ≤ r) that is m-invariant. A table T is
m-eligible if it has at least one m-unique generalization. Then, to determine the
existence of m−invariant marginals for a table, we only need to find a sufficient
and necessary condition to characterize m-eligibility of a table, which is given in
Theorem 2.

Theorem 1. If a table T is m-eligible, then there exists a set of marginals
{M1, M2, · · · , Mr} that is m-invariant.

Theorem 2. A table T is m-eligible, if and only if the number of tuples that
have the same sensitive attribute values is at most |T |

m , where |T | is the number
of tuples in table T .

3 Dynamic Anonymization Technique

In this section, we will present our the detail of our solution: dynamic anonymiza-
tion, which contains three steps: partition, assign and decomposition. Each step
will be elaborated in following texts.

The Partitioning Step. The partitioning step aims to partition tuples of T
into disjoint sub-tables Ti such that each Ti is m-eligible. The detailed procedure
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is presented in Figure 1. Initially, S contains T itself (line 1); then, each G ∈ S is
divided into two generalizable subsets G1 and G2 such that G1 ∪G2 = G, G1 ∩
G2 = ∅ (line 5-7). Then for each new subset, we check whether G1(G2) satisfies
m-eligible (line 8). If both are generalizable, we remove G from S, and add
G1, G2 to S; otherwise G is retained in S. The attempts to partition G are
tried k times and tuples of G are randomly shuffled for each time (line 3-4). Our
experimental results show that most of G can be partitioned into two m-eligible
sub-tables by up to k = 5 tries. The algorithm stops when no sub-tables in S
can be further partitioned.

In the above procedure, the way that we partition G into two subsets G1 and
G2 is influential on the information loss of the resulting solution. To reduce infor-
mation loss, we distribute tuples sharing the same or quite similar QI-attributes
into the same sub-tables. For this purpose, we artificially construct two tuples
t1, t2 ∈ G with each attribute taking the maximal/minimal value of the corre-
sponding domains, and then insert them G1 and G2 separately (line 6). After
this step, for each tuple w ∈ G we compute Δ1 = NCP (G1 ∪ w) − NCP (G1)
and Δ2 = NCP (G2 ∪w)−NCP (G2), and add tuple w to the group that leads
to lower penalty (line 7). After successfully partitioning G, remove the artificial
tuples from G1 and G2 (line 8).

Input: A microdata T , integers k and m
Output: A set S consisting of sub-tables of T ;
/* the parameter k is number of rounds to partition G*/
1. S = {T};
2. While(∃G ∈ S that has not been partitioned)
3. For i = 1 to k
4. Randomly shuffle the tuples of G;
5. Set G1 = G2 = ∅;
6. Add tuple t1 (t2) of extremely maximal (minimal) value to G1 (G2);
7. For any tuple w

compute Δ1 and Δ2.
If(Δ1 < Δ2) then Add w to G1, else add w to G2;

8. If both G1 and G2 are m−eligible
remove G from S, and add G1 − {t1}, G2 − {t2} to S, break;

9.Return S;

Fig. 1. The partitioning step

The Assigning Step. After the partitioning step, we enter into the assigning
step, which is accomplished by the assign algorithm proposed in paper [4]. Given
a set of sub-tables Ti passed from the previous phase, the assigning step is to
divide each Ti into buckets such that each bucket constitutes a bucketization.
The concepts about bucket and bucketization are given by following definitions.

Definition 5 (Bucket [10],Bucketization). Given T and T ∗, a bucket B is a
set of tuples in T whose signatures in T ∗ are identical. The signature of a bucket
B is the set of sensitive values that appear in B. A bucketization U is a set of
disjoint buckets, such that the union of all buckets equals T .
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The Decomposition Step. In real applications, a publisher may want to re-
lease a set of marginals {M1, M2, · · · , Mr} that overlap with each other in an
arbitrary manner. To help publishers accomplish this, we use the third step:
decomposition step to produce a set of marginals {M1, M2, · · · , Mr} that are m-
invariant. Depending on marginals of different attribute sets, the bucketization
U is decomposed differently. Each decomposition of U is a partition of the mi-
crodata T . All the partitions constitute an m-invariant set while offering strong
privacy guarantees.

Definition 6 (Decomposition [10]). Let B be a bucket with signature K. A
decomposition of B contains |B|

|K| disjoint QI-groups whose union is B, and all
of them have the same signature K.

The decomposition algorithm runs iteratively and maintains a set bukSet of
buckets. Let B ∈ U be a bucket with a signature containing s ≥ m sensi-
tive values {v1, v2, ..., vs}. The decomposition phase starts by initializing a set
bukSet= {B}. Then, we recursively decompose each bucket Bi in bukSet that
contains more than s tuples into two buckets B1 and B2 until each bucket in
bukSet contain exactly s tuples. The final bukSet is returned as the QI-groups
for generalization. The resulting decomposition is guaranteed to be m-invariant,
which is stated in Theorem 3.

Now, we elaborate the detailed procedure to decompose a single bucket B ∈ U
with the signature K = { v1, v2, · · · , vs} into B1, B2. Suppose the schema of
marginal Mj(1 ≤ j ≤ r) is 〈A1, A2, ..., At〉. We first organize B into s groups
such that the i-th (1 ≤ i ≤ s) group denoted by Qi contains only the tuples
with the sensitive value vi. Then, by one attribute Ai, we can sort the tuples in
each group into the ascending order of their Ai values. After sorting by Ai, we
assign the first |Qi|

2 (1 ≤ i ≤ s) tuples to B1, and the remaining tuples to B2.
In this way, we get a decomposition of B by Ai. Similarly, we can get another
t − 1 decompositions by Aj with j �= i. Among all the t decompositions, we
pick the one that minimizes the sum of NCP (B1) and NCP (B2) as the final
decomposition.

Theorem 3. Given the bucketization U , the marginals Mj(1 ≤ j ≤ r) produced
by the decomposing algorithm are m-invariant.

Since our marginals Mj(1 ≤ j ≤ r) enforce m-invariance, we can guarantee the
privacy preservation of marginals produced by above decomposition, which is
given in following corollary. The computation of above decomposition is also
efficient enough (see Theorem 4).

Corollary 1. A QI-conscious adversary has at most 1
m confidence in inferring

the sensitive value of any individual in Mj(1 ≤ j ≤ r), even if s/he is allowed
to obtain all versions of Mj(1 ≤ j ≤ r).

Theorem 4. For a single bucket B, the decomposition algorithm can be accom-
plished in O(|B| · log2(|B|) · t), where t is the size of attributes of the required
marginal, and |B| is the cardinality of bucket B.
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4 Experimental Evaluation

In this section, we experimentally evaluate the effectiveness and efficiency of the
proposed technique. We utilize a real data set CENSUS (http://ipums.org) that
is widely used in the related literatures. We examine five marginals M1, M2 ...
M5, whose dimensionalities are 2, 3, ..., 6, respectively. Specifically, M1 includes
attributes Age and Occupation, M2 contains attributes of M1 and Gender(for
simplicity, we denote M2 = M1 ∪ {Gender}), M3 = M2 ∪ {Education}, M4 =
M3 ∪{Marital}, and M5 = M4 ∪{Race}. We run all experiments on a PC with
1.9 GHz CPU and 1 GB memory. For comparisons, the results of the state-of-art
approach: ANGEL will also be given.

Utility of the Published Data. Since data utility of ANGEL can’t be mea-
sured by NCP , for the fairness of comparison, we evaluate the utility of the
published data by summarizing the accuracy of answering various aggregate
queries on the data, and has been widely accepted in the literature [3, 4, 10, 11].
Specifically, each query has the form: select count(*) from Mj where A1 ∈ b1 and
A2 ∈ b2 and · · · and Aw = bw, where w is query dimensionality. A1, ..., Aw−1

are w − 1 arbitrary distinct QI-attributes in Mj , but Aw is always Occupation.
Each bi(1 ≤ i ≤ w) is a random interval in the domain of Ai. The generation of
b1, · · · , bw is governed by a real number s ∈ [0, 1], which determines the length
of range bi(1 ≤ i ≤ w) as !|Ai| ·s1/w". We derive the estimated answer of a query
using the approach explained in [11]. The accuracy of an estimation is measured
by its relative error, which is measure by |act−est|/act where act and est denote
the actual and estimated results, respectively.

We conduct the first set of experiments to explore the influence of m on
data utility. Towards this, we vary m from 4 to 10. Figure 2 plots the error as a
function m. Compared to ANGEL that produces about 50%-200% average error,
the published data produced by our algorithm is significantly more useful. It is
quite impressive to see that the error of our algorithm is consistently below 11 %
despite of the growth of m. Figure 3 shows the error as a function of Mi(2 ≤ i ≤
5)(ANGEL is omitted due to its high query error). We can see that the accuracy
increases as the number of QI-attributes of the marginal decreases, which can
be attributed to the fact that Mi is more accurate than Mi+1(2 ≤ i ≤ 4).

We evaluate the influence of parameter s on the query error. The result is
shown in Figure 4. Evidently, the accuracy is improved for larger s, which can
be naturally explained since larger s implies larger query intervals, which in
return reduce the query error.

Efficiency. We evaluate the overhead of performing marginal publication. Figure
5 shows the cost of computing marginals (M1, · · · , M5) for m varying from 4 to
10. We can see that the cost drops as m grows. However, the advantages of
our method in data utility do not come for free. From figure 5, we can see that
the time cost of our algorithm is 115% to 143% of ANGEL, however, which is
acceptable especially for those cases where query accuracy is the critical concern.
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5 Conclusion

In this paper, we systematically investigate characteristics of marginal publica-
tions. We propose a technique called dynamic anonymization to produce a set of
anonymized marginals for a given schema of marginals. As verified by extensive
experiments, the marginals produced by our approach not only guarantees the
privacy safety of published data but also allows high actuary of query estimation.
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Abstract. Modern scientific computing generates petabytes of data in
billions of files that must be managed. These files are often organized, by
name, in a hierarchical directory tree common to most file systems. As
the scale of data has increased, this has proven to be a poor method of file
organization. Recent tools have allowed for users to navigate files based
on file metadata attributes to provide more meaningful organization. In
order to search this metadata, it is often stored on separate metadata
servers. This solution has drawbacks though due to the multi-tiered archi-
tecture of many large scale storage solutions. As data is moved between
various tiers of storage and/or modified, the overhead incurred for main-
taining consistency between these tiers and the metadata server becomes
very large. As scientific systems continue to push towards exascale, this
problem will become more pronounced. A simpler option is to bypass
the overhead of the metadata server and use the metadata storage inher-
ent to the file system. This approach currently has few tools to perform
operations at a large scale though. This paper introduces the prototype
for Pantheon, a file system search tool designed to use the metadata
storage within the file system itself, bypassing the overhead from meta-
data servers. Pantheon is also designed with the scientific community’s
push towards exascale computing in mind. Pantheon combines hierar-
chical partitioning, query optimization, and indexing to perform efficient
metadata searches over large scale file systems.

1 Introduction

The amount of data generated by scientific computing has grown at an extremely
rapid pace. This data typically consists of experimental files that can be gigabytes
in size and potentially number in the billions. Tools for managing these files are
built upon the assumption of a hierarchical directory tree structure in which files
are organized. Data within this tree are organized based on directory and file
names. Thousands of tools, such as the POSIX API, have been developed for
working with data within this hierarchical tree structure.

The POSIX API allows for navigation of this hierarchical structure by al-
lowing users to traverse this directory tree. While the POSIX API is sufficient
for directory tree navigation, its ability to search for specific files within the
directory tree is limited. Within the confines of the POSIX API, there are three
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basic operations that one is able to use to search a directory hierarchy for de-
sired information: grep, ls, and find. Each one of these operations searches for
data in their own way, and come with their own requirements and limitations.
The grep operation performs a näıve brute force search of the contents of files
within the file system. This approach presents an obvious problem, namely its
lack of scalability. A single grep search would need to be performed over giga-
bytes, or even terabytes of information. As grep is not a realistic solution for
data at current scale, it clearly will not be a solution for future scale. A better
possible route is to use the POSIX operation ls, that is instead based on file
names. The ls operation simply lists all files that are within a given directory.
In order to facilitate a more efficient file search, scientists used ls in conjunction
with meaningful file names. These files names would contain information such
as the name of experiments, when such experiments were run, and parameters
for the experiment. By using such names, along with the wild-card(*) operator,
one would perform a search for desired information based on file names. This
solution also had its own problems. First, this technique is dependent on a con-
sistent application of conventions between file names. Even something such as
parameters being in different orders could prevent such a search from return-
ing the needed information. Second, as experiments grow in complexity, more
parameters must be maintained, resulting in long file names that are difficult
to remember and work with. The POSIX operation find allows navigation of
files via metadata informaiton, a much more attractive file search option than
either grep or ls. Metadata represents information about the file, as opposed to
information within the file. Such information includes items such as file owner,
file size, and time of last modification. Unfortunately, the find is not sufficient
for the large scale searches needed for the scientific computing community.

To solve the limitations imposed by simple POSIX commands, research began
to develop full featured metadata search tools at an enterprise (e.g. Google [1],
Microsoft [2], Apple [3], Kazeon [4]) as well as the academic level (e.g. Spy-
glass [5]). These tools added to the richness of current metadata searching capa-
bilities, but also possessed their own limitations. Enterprise solutions typically
index their data by using a standard database management system. This stores
all metadata information as flat rows, thus losing the information that can be
inferred from the directory hierarchy itself. Also, the need for a single metadata
server can cause scalability problems in large, distributed computing systems.
Relationships between files based on their location in the hierarchy are lost. Spy-
glass [5] exploited these hierarchical structure relationships, but at the expense
of losing the query optimization and indexing powers of a database management
system.

In this paper, we present the prototype of the Pantheon system. Pantheon
is a file system search tool designed for the large scale systems used within
the scientific computing community. Pantheon combines the query optimization
and indexing strategies of a database management system with the ability to
exploit the relationships between files based on locality used in current file system
search. For our initial prototype, we focused on the effects of basic database style
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query optimization and indexing when implemented over a more tailored file
system partitioning scheme. To this end, we implemented a detailed partitioning
algorithm with simple query optimization and indexing built on top.

Pantheon’s core is separated into three primary components: partitioning,
query optimizer, and indexing. The partitioning component is responsible for
separating the directory hierarchy into disjoint partitions. We present a general
partitioning algorithm, but any custom algorithm may be used. Partitioning is
needed in order to avoid a system-wide bottleneck. Without partitioning, all
searches would be forced to go through a single set of indexes. This would create
an obvious bottleneck that would severely limit the scalability of the system.
Query optimization is a well known technique from database management sys-
tems [6]. The Pantheon optimizer collects statistics on a per-partition basis, and
evaluates query plans using a basic cost model. This strategy selects predicates
that will prune the largest number of possible files from the result. This simple
technique results in a significant performance boost over picking predicates at
random. The indexing component maintains B+-Tress and hash tables, also on
a per-partition basis. A single index is kept for every metadata attribute that
can be searched. Taking this approach gives Pantheon two distinctive advan-
tages. First, this indexing method ties in very well with our query optimization.
Second, the use of individual indexes allows Pantheon to quickly adapt should
attributes be added to the system, as could be the case with extended attributes.

The rest of the paper is organized as follows. Section 2 discusses work related
to Pantheon. Section 3 gives a high level overview of the Pantheon system.
Section 4 details the partitioning system used in Pantheon. Section 5 discusses
the Pantheon query optimizaer and interface. Section 6 gives an overview of the
indexing system used in Pantheon. Section 7 looks at the experimental evaluation
of the Pantheon system. The paper is concluded with Section 8.

2 Related Work

At an enterprise level, numerous products have been developed allowing for
metadata search [1–4]. At an academic level, the closest work to Pantheon is
Spyglass [5]. Spyglass uses a technique known as hierarchical partitioning [7],
which is based on the idea that files that are close to each other within the di-
rectory tree tend to be searched together often. Pantheon presents an algorithm
that exapnds upon this idea in two primary ways. First, many modern large
scale systems use storage architectures that involve multiple tiers of storage. In
such systems, data is moved between multiple layers of storage in a dynamic
fashion. From the standpoint of the file system, this results in sudden changes
to the directory hierarchy that must be accounted for. Pantheon’s partitioning
algorithm is able to adapt to data being migrated into the directory hierarchy.
Second, Pantheon monitors query patterns and allows for the partition struc-
ture to be changed based on changes to query loads. For indexing, Spyglass uses
a single KD-Tree [8] built over each partition. This approach to indexing has
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several drawbacks. First, using a multi-dimensional index limits the performance
scalability of the system if the number of attributes being indexed were to grow
very large. By splitting attributes into multiple indexes Pantheon is able to
adapt in the case that additional attributes are introduced to the system more
gracefully. Second, having a single index per partition means that Spyglass is
unable to take advantage of the attribute distribution of a partition. Spyglass also
lacks any form of a query optimizer. Using query optimization, in conjunction
with a richer set of indexing structures, Pantheon is able to make intelligent
decisions when dealing with queries to the file system.

3 System Architecture

Figure 1 gives the architecture for the Pantheon system. Partitions exist over
the storage layer of the system, and within each partition we have the query op-
timizer, where distribution statistics are stored, as well as the partition indexes.
The figure also gives the basic flow of a query within the Pantheon system. The
query begins at the partition map. This map simply determines which parti-
tions must be accessed in order to respond to the query. Each required partition
produces the result of the query, which is then passed back to the user.

Pantheon also uses a modular design in its operations. Each of the three pri-
mary components are totally independent of one another. Only basic interfaces
must remain constant. We believe this to be important for two primary reasons.
First, by modularizing the design, we give scientists the ability to quickly add
custom features based on their individual needs. Such examples of this could
include a custom partitioning module or a different indexing structure that may
be more suited to their data and querying properties. Second, a modular design
will make it easier for additional components to be added to the system to adapt
to new storage and architecture paradigms.

Pantheon

.  .  .
Indexes

Partitions Over Storage

Indexes Indexes

Partition Query Optimizer Partition Query Optimizer Partition Query Optimizer

Partition Partition Partition

Partition Map

Storage

Long Term 
Storage

USER

Fig. 1. Pantheon System Architecture
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4 Partitioning

The partitioner is the heart of the Pantheon system. Without the partitioner, we
would be forced to construct a single set of indexes over the data space that we
wish to search. This will create a massive bottleneck that would slow down all
aspects of the system, and severely limit system scalability. Similar techniques
can be seen in distributed file systems [9–12].

A common pattern found in studies on metadata [5, 13–15] is that of spatial
locality of metadata. Spatial locality is the general concept that files that are
located close to one another in the directory hierarchy tend to have significantly
more similarities in metadata values and tend to be queried together more often.
This is typically the result of how files tend to be organized by users within the
directory hierarchy. So, files that are owned by a user u will tend to reside close
to one another in the directory tree, i.e. they will tend to reside in u’s home
directory. When lookinging possible algorithms for partitioning our directory
tree we explored works that looked into disk page based tree partitioning [16].
The general idea of our partitioning algorithm is as follows. We begin with the
root of the directory tree R and proceed to find all leaves of the directory tree.
From this point we place each leaf into its own partition and mark it as being
processed. We then proceed up the tree processing all interior nodes such that
all of their children have been marked as processed. If the interior, parent, node
is able to be merged into a partition with all of its children, we merge them. In
the event that there is not enough room, we create a new partition with only this
interior node. Following this step, the interior node is marked as processed. This
work continues all the way up the tree until we get to the root node. For more
specifics about this process, refer to the pseudocode presented in Algorithm 1.

Initially, the entire directory tree must be partitioned in this manner. Since
this process may take some time, it is run as a background process so that normal
system function may continue.

5 Query Optimizer

Query optimization is a well studied problem in the field of database manage-
ment systems. Database systems typically use a cost based model [6] to estimate
optimal query plans. The gain in bringing the idea of the query optimizer from
databases to file systems is significant. Query optimization research is on of the
primary reasons that database systems have been able to perform so well in real
world environments.

Formally, the job of Pantheon’s query optimizer is a follows: Given a query
Q and a series of predicates P1, . . . , Pn, the query optimizer finds a plan for
evaluation of these predicates that is efficient. Using the query optimizer, indexes
are used to prune the possible result set. From there a scan can be performed
over this pruned data space. If done properly, this pruned data space will be
significantly smaller than the original. This results in a scan that can be done
very quickly. More so, this scan can be performed as a pipelined process that is
done as results are being returned from the index.
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Algorithm 1. Pantheon Partitioning Algorithm
1: Pantheon-Tree-Partition(T )
2: Input: A tree rooted at T
3: Output: A mapping from nodes in T to partitions
4: while There are nodes in T not yet processed do
5: Choose a node P that is a leaf or one where all children have been processed
6: if P is a leaf node then
7: Create a new partition C containing node P
8: else
9: Let P1, . . . , Pn be the children of P

10: Let C1, . . . , Cn be the partitions that contain P1, . . . , Pn.
11: if Node P and the contents of the partitions C1, . . . , Cn can be merged into

a single partition then
12: Merge P and the contents of C1, . . . , Cn into a new partition C, discarding

C1, . . . , Cn.
13: else
14: Create a new partition C containing only P
15: end if
16: end if
17: end while

For Pantheon’s query optimization, the decisions is based primarily on the
selectivity of a given predicate. The selectivity represents how effective that
predicate is at reducing the overall data set. A predicate will low selectivity
percentage will prune more extraneous items, while a predicate with high selec-
tivity percentage will prune less such values. This distinction is important, as
not choosing the proper index when evaluation a query can lead to a significant
decrease in query response time.

To track the selectivity, we need to keep basic statistics about the files on a per
partition basis. For each attribute within a partition, we construct a histogram.
Given an input value, these histograms quickly return an estimate as to the
percentage of values that will satisfy that query.

6 Indexing

The initial indexing implementation uses simple and well known indexing struc-
tures as a baseline evaluator. We use multiple single dimensional indexes over
the attributes in conjunction with query optimization. In the event that a new
attribute is added to the file system, we simply construct an index over that new
attribute, and continue operation as normal.

The metadata attributes being indexed are those typically found in a standard
file system including: file mode, file owner, file group, time of last access, time of
last modification, time of last status change, and file size. These attributes are
then separated into two groups. One group represents those attributes for which
range queries make sense. This includes all of the time attributes as well as file
size. The remaining attributes are those where only equivalence queries make
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Fig. 2. Query Response Time vs Selectivity

sense. These include file mode, owner, and group. Each attribute that has been
deemed an equivalence attribute is indexing using hash table. Each attribute
that will be searched over a range is indexed using a B+-Tree. These indexes
were chosen due to the fact that each handle their own respective query types
very well.

7 Experimental Evaluation

Experimental evaluation is meant to provide us a baseline for which future work
may be compared. There are two other techniques that we test Pantheon against.
The first is the POSIX operation find. This is simply to show Pantheon’s viability
over the näıve method. The second is testing Pantheon’s processing over that
of a KD-Tree. This is the indexing used by the Spyglass system, and provides a
good competitor to examine Pantheon’s strengths and weaknesses.

Pantheon is implemented as a FUSE module [17] within a Linux environment
over an ext4 file system. For the default partition cap size we used 100,000. This
was the same cap used in [5] and we see no reason to change this for experiments
where partition size is held constant. The default selectivity used is 20% unless
otherwise noted. The default number of attributes indexed was 8.

Experimentation was done over two different system configurations. The first
of which is refered to as the nondistributed configuration. This was done on a
single node system consisting of a dual-core 3 GHz Pentium 4 with 3.4 GB of
RAM. The distributed tests were done on a 128 node cluster. Each node in the
cluster consisted of two processors at 2.6 GHz with 4 GB of RAM.

In Figure 2 we see the effect on query response time when we vary the selec-
tivity of a single query predicate. First, It shows that find is not any competition
to Pantheon. As such, it will not be considered in future experiments. Second, it
shows that using selectivity as a metric for the query optimizer is a good idea. In
both cases we see that if Pantheon evaluates based on the most selective index,
there is an improvement in query response time over that of a KD-Tree.
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Figure 3 relates query response time to the number of attributes being in-
dexed. Here is where Pantheon shows significant improvement over a KD-Tree
based approach. As the number of dimensions increases without the partition
size changing, the performance of the KD-Tree suffers greatly. Due to the fact
that Pantheon indexes attributes separately, it does not show any noticeable
change as the number of attributes increases.

Figure 4 displays how the Pantheon query optimizer is able to improve query
performance as the number of predicates increases. Here, we generated query
predicates for random attributes with random values. These results strengthen
the case for using query optimization. If predicates are chosen at random, we
see is significant increase in the overall time needed to response to queries.

8 Conclusion

Here we have presented the foundational work for the Pantheon indexing sys-
tem. Pantheon represents a combination of ideas from both file system search
and database management systems. Using these ideas Pantheon plays on the
strength of each of the two fields to accomplish its goal. We have shown through
experimentation that Panteon is either competitive or outperforms current file
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system indexing strategies. We intend to use this prototype as a test bed for
future work in aspects of partitioning, query optimization, and indexing within
the context of file system search.
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Abstract. The Resource Description Framework (RDF) is a popular
data model for representing linked data sets arising from the web, as
well as large scientific data repositories such as UniProt. RDF data in-
trinsically represents a labeled and directed multi-graph. SPARQL is a
query language for RDF that expresses subgraph pattern-finding queries
on this implicit multigraph in a SQL-like syntax. SPARQL queries gener-
ate complex intermediate join queries; to compute these joins efficiently,
this paper presents a new strategy based on bitmap indexes. We store
the RDF data in column-oriented compressed bitmap structures, along
with two dictionaries. We find that our bitmap index-based query evalu-
ation approach is up to an order of magnitude faster the state-of-the-art
system RDF-3X, for a variety of SPARQL queries on gigascale RDF data
sets.

Keywords: semantic data, RDF, SPARQL query optimization, com-
pressed bitmap indexes, large-scale data analysis.

1 Introduction

The Resource Description Framework (RDF) was devised by the W3C consor-
tium as part of the grand vision of a semantic web1. RDF is now a widely-
used standard for representing collections of linked data [3]. It is well-suited
for modeling network data such as socio-economic relations and biological net-
works [11,13]. It is also very useful for integrating data from dynamic and hetero-
geneous sources, in cases where defining a schema beforehand might be difficult.
Such flexibility is key to its wide use. However, the same flexibility also makes
it difficult to answer queries quickly. In this work, we propose a new strategy
using bitmap indexes to accelerate query processing.

A record in the RDF data model is a triple of the form 〈subject, predicate,
object〉. If these records are stored in a data management system as a three-
column table, then all queries except a few trivial ones would require self-joins,
and this would be inefficient in practice. The most commonly used query lan-
guage on RDF data is called SPARQL [10]. To speed up the SPARQL query
answering process, there have been a number of research efforts based on mod-
ifying existing data base systems and developing specialized RDF processing
1 More information about RDF can be found at http://www.w3.org/RDF/
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systems. For example, popular commercial database systems (DBMS) such as
ORACLE have added support for RDF [7]. A number of research database man-
agement systems have also been applied to RDF data [1, 12]. Special-purpose
RDF storage systems include Virtuoso RDF2, Jena3, and hyperGraphDB4.

The most common indexing techniques in database systems are variants of
B-Trees or bitmap indexes. The techniques for indexing RDF data generally
follow these two prototypical methods as well. Among existing B-Tree indexing
methods, RDF-3X is one of the best performers in terms of SPARQL query
processing speed [8].

Two recent bitmap indexing methods, BitMat and RDFJoin, have demon-
strated performance on par with RDF-3X [2,5]. The BitMat index creates a 3D
bit-cube with the three dimensions being subject, predicate, and object. This
cube is compressed and loaded into memory before answering any queries. This
technique has been shown to be quite efficient, but due to its reliance on the
whole bit-cube to be in memory, it is difficult to scale to larger datasets.

The RDFJoin technique breaks the 3D bit-cube used by BitMat into six sep-
arate bit matrices. Each of these bit matrices can be regarded as a separate
bitmap index, and therefore can be used independently from each other. Thus,
the RDFJoin approach is more flexible and can be applied to larger datasets [6].

Our work significantly improves on the above bitmap index-based strate-
gies. We create a space-efficient representation of the RDF data (discussed in
Section 2). By utilizing a compute-efficient bitmap compression technique and
carefully engineering the query evaluation procedure (Section 3), we dramati-
cally reduce the query processing time compared to the state-of-the-art RDF-3X
processing system.

2 Bitmap Index Construction

We first explain the data structures used in our work. We describe them as
bitmap indexes here, because each of them consists of a set of key values and a
set of compressed bitmaps, similar to the bitmap indexes used in database sys-
tems [9,14]. However, the key difference is that each bitmap may not necessarily
correspond to an RDF record (or a row), as in database systems.

For RDF data, one can construct the following sets of bitmap indexes:

Column Indexes. The first set of three bitmap indexes are for three columns
of the RDF data. In each of these indexes, the key values are the distinct values
of subjects, predicates, or objects, and each bitmap represents which record (i.e.,
row) the value appears in. This is the standard bitmap index used in existing
database systems [9, 14].

Unlike conventional bitmap indexes, our indexes for subject and object share
the same dictionary. This strategy is taken from the RDFJoin approach [6]. It

2 http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF
3 http://openjena.org/
4 http://www.hypergraphdb.org/

http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF
http://openjena.org/
http://www.hypergraphdb.org/
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eliminates one dictionary from the three bitmap indexes, and allows the self-join
operations to be computed using integer keys instead of string keys. This is a
trick used implicitly in many RDF systems.

Composite Indexes. We can create three composite indexes, each with two
columns as keys. The keys are composite values of predicate-subject, predicate-
object, and subject-object. This ordering of the composite values follows the
common practice of RDF systems. As in normal bitmap indexes, each composite
key is associated with a bitmap. However, unlike the normal bitmap index where
a bitmap is used to indicate which rows have the particular combination of values,
our bitmap records values the other column has. For example, in a composite
index for predicates and subjects, each bitmap represents what values the objects
have.

In a normal bitmap index, there are many columns not specified by the index
key. Therefore, it is useful for the bitmap to point to rows containing the speci-
fied key values, so that any arbitrary combination of columns may be accessed.
However, in the RDF data, there are only three columns. If the index key con-
tains information about two of the three columns already, directly encoding the
information about the third column in the index removes the need to go back
the data table and is a more direct way of constructing an index data structure.

To effectively encode the values of the third column in a bitmap, we use a
bitmap that is as long as the number of distinct values of the column. In the ex-
ample of a predicate-subject index, each bitmap has as many bits as the number
of distinct values in objects. Since we use a unified subject-object dictionary, the
bitmap has as many bits as the number of entries in the dictionary. To make it
possible to add new records without regenerating all bitmap indexes, our dic-
tionary assigns a fixed integer to each known string value. A new string value
will thus receive the next available integer. When performing bitwise logical op-
erations, we automatically extend the shorter input bitmap with additional 0
bits. This allows us to avoid updating existing bitmaps in an index, which can
reduce the amount of work needed to update the indexes when new records are
introduced in a RDF data set.

Join Indexes. A normal join index represents a cross-product of two tables
based on an equality join condition. Because the selection conditions in SPARQL
are always expressed as triples, the join operations also take on some special prop-
erties, which we can take advantage of when constructing the join indexes. Note
that for SPARQL queries, joins are typically across properties. Thus, the most
commonly-used join indexes for RDF data would map two property identifiers
to a corresponding bitmap, and there can be three such indexes based on the
positions of the variable. In the current version of our RDF processing system,
we chose not to use construct join indexes due to the observation that most of
the test queries could be solved efficiently with just composite indexes. We will
investigate use of join indexes for query answering in future work.
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3 Query Evaluation and Optimization

SPARQL is a query language that expresses conjunctions and disjunctions of
triple patterns. Each conjunction, denoted by a dot in SPARQL syntax, nom-
inally corresponds to a join. A SPARQL query can also be viewed as a graph
pattern-matching problem: the RDF data represents a directed multigraph, and
the query corresponds to a specific pattern in this graph, with the possible de-
grees of freedom expressed via wildcards and variables. Figure 1 gives an example
SPARQL query. Informally, this query corresponds to the question “produce a
list of all scientists born in a city in Switzerland who have/had a doctoral advisor
born in a German city”. This query is expressed with six triple patterns, and
each triple pattern can either have a variable or a literal in the three possible
positions. The goal of the query processor is to determine all possible variable
bindings that satisfy the specified triple patterns.

select ?p where {
?p <type> ‘‘scientist’’ .
?city1 <locatedIn> ‘‘Switzerland’’ .
?city2 <locatedIn> ‘‘Germany’’ .
?p <bornInLocation> ?city1 .
?adv <bornInLocation> ?city2 .
?p <hasDoctoralAdvisor> ?adv .

}

Fig. 1. An example SPARQL query (left) and a graph representation of the query
triple patterns (right). The rectangular nodes in the graph represent triple patterns.
The labels (a)-(f) correspond to the ordering of the patterns in the query.

To understand how the constructed bitmap indexes can be utilized to answer
a SPARQL query, consider the “graph” representation of the query shown in
Figure 1. Each triple pattern is shown as a rectangular node. Two triple nodes
are connected via query variables they may share, and these variables are rep-
resented using circular nodes. Further, the triple patterns are colored based on
the number of variable positions in the pattern. The light blue-colored blocks
have one variable and one literal in their pattern, whereas the dark blue blocks
represent patterns with two variables. Similarly, the dark brown circular node
represents the output variable, and the nodes in light brown color are other vari-
ables in the query. Such a query graph succinctly captures the query constraints,
and forms the basis for a possible query evaluation approach.

For query evaluation, consider representing each variable using a bitmap. For
instance, the variable p can be initialized to a bitmap of size nSO (where nSO is
the cardinality of the combined subject-object dictionary), with all subject bits
set to 1. Observe that triple patterns that have only one variable in them can be
resolved by composite index (in our case, PSIndex and POIndex) lookups. For
instance, the key corresponding to predicate<type> and object “scientist” can be
determined using dictionary lookups, and then a bit vector corresponding to all
possible subjects that satisfy the particular condition can be obtainedwith a single
composite index lookup. Performing a conjunction just translates to performing
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a bitmap logical “AND” operation with the initialized bitmap. Similarly, we can
initialize and update bitmaps corresponding to city1 and city2 in the figure. The
other triples (d), (e), and (f) have two variables in their pattern, and so we are
required to perform joins. The bit vectors give us a sorted list of index values, and
so we employ the nested loop merge join to determine the final binding.

The key primitives in our query processing system are dictionary lookups,
composite index lookups, bit vector AND and OR operations, and nested loop
merge joins after decompressing bit vectors. We were able to express all the
benchmark queries, some with as many 15 triple patterns, compactly using these
primitives. The query required less than 20 lines of source code in almost all cases.
In most cases, the lookup operations are performed with integer identifiers of
the string values obtained through the dictionaries. These integer identifiers are
directly used as indices into arrays of bitmaps in the bitmap indexes.

4 Experimental Evaluation and Analysis

4.1 Experimental Setup

Data sets. We choose a variety of data sets and test instances to test our
new query evaluation scheme. First, we experiment with synthetic data sets of
different sizes using the Lehigh University Benchmark suite LUBM [4]. LUBM
is a popular benchmark for evaluating triple-stores, with a recommended list
of fourteen queries that stress different aspects related to query optimizations.
We use large subsets of two datasets: the Billion Triples Challenge5 data and
the UniProt6 collection. The Billion Triples dataset encapsulates public domain
web crawl information, whereas UniProt is a proteomics repository. We imple-
ment three sample queries for each of these datasets. Both these datasets are
significantly more complex, noisy, and heterogeneous compared to LUBM. We
use queries recommended by the UniProt RDF data publishers, and ones sim-
ilar to prior RDF-3X query instances. We also present query results with the
Yago [13] dataset, which is comprised of facts extracted from Wikipedia. This
dataset contains about 40 million triples, and the number of distinct predicates
(337,000) is significantly higher than LUBM. We use here a set of queries that
were previously used to evaluate RDF-3X.

Test Systems and Software. Our primary test machine data5 is a Linux work-
station with a quad-core Intel Xeon processor with a clock speed of 2.67 GHz,
8 MB L2 cache, and 8 GB RAM. The disk system used to store the test data is
a software RAID concatenating two 1TB SATA disks in RAID0 configuration.
The second test machine named euclid is a shared resource at NERSC7. It is a
Sunfire x4640 SMP with eight 6-core Opteron 2.6 GHz processors and 512 GB of
shared memory. On this system, the test files are stored on a GPFS file system

5 http://challenge.semanticweb.org/
6 http://www.uniprot.org/downloads
7 More information about NERSC and euclid can be found at http://www.nersc.gov

http://challenge.semanticweb.org/
http://www.uniprot.org/downloads
http://www.nersc.gov
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Table 1. Data, Index, and Database sizes in GB for different data sets

Data set LUBM LUBM LUBM Yago UniProt BTC
# triples 1M 50M 500M 40M 220M 626M

Raw data 0.125 6.27 62.30 3.56 30.58 65.19
FastBit Dictionaries 0.032 0.79 8.22 1.30 3.05 2.48
FastBit Indexes 0.016 1.59 15.41 1.20 6.30 15.03
RDF-3X DB 0.058 2.83 33.84 2.75 — —

shared by thousands of users. Therefore, we may expect more fluctuations in
I/O system performance.

We use FastBit v1.2.2 for implementing our bitmap index-based RDF data
processing approach. We built the codes using the GNU C++ compiler v4.4.3
on data5 and the PGI C++ compiler v10.8 on euclid. For parsing the data, we
use the Raptor RDF parser utility (v2.0.0).

There are numerous production and prototype research triple-stores available
for comparison, a majority of which are freely available online8. In this paper,
we chose to compare our bitmap index strategies against version 0.3.6 of RDF-
3X [8]. RDF-3X is a production-quality RDF-store widely used by the research
community for performance studies, and prior work shows that it is significantly
faster, sometimes by up to two orders of magnitude, than alternatives such as
MonetDB and Jena-TDB. We also experimented with the bitmap indexing-based
approach BitMat [2], but found that RDF-3X consistently outperforms BitMat
for a variety of queries, including high selectivity queries.

For all the queries, we present cold cache performance results, which corre-
spond to the first run of the query, as well as “warm cache” numbers, which are
an average of ten consecutive runs, excluding the first.

4.2 Results and Discussion

Index construction and sizes.Table 1 lists the sizes of the FastBit dictionaries
and indexes after the construction phase. We observe that the cumulative sum
of the dictionary and index sizes is substantially lower than the raw data size
for all the data sets. As a point of comparison, we present the size of the RDF-
3X B-tree indexes (which internally stores six compressed replicas of the triples
compactly) for these datasets. For the data sets studied, our approach requires
slightly lower disk space than RDF-3X.

The dictionary and index construction times range from 20 seconds on data5
for the 1M triple LUBM data set, to nearly four hours for the BTC 626M triple
data set on euclid. These index construction times were comparable to RDF-3X’s
construction times.

LUBM Query Performance. We next evaluate query performance of our
bitmap index-based approach for LUBM data sets of different sizes. In Table 2,

8 Please see http://semanticweb.org/wiki/Tools for a list of tools.

http://semanticweb.org/wiki/Tools
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Table 2. LUBM benchmark SPARQL query evaluation times (in milliseconds) for a
50 million triple data set on data5-sata

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Cold caches
FastBit 0.30 1320 1.26 0.65 0.34 139 0.643
RDF-3X 0.43 572 2.9 0.75 2.1 4150 4.62

Warm caches
FastBit 0.167 1311 0.92 0.40 0.19 135 0.46
RDF-3X 0.31 544 0.193 0.70 1.95 4021 1.52
Speedup 1.86× 0.42× 0.21× 1.75× 10.26× 29.8× 3.30×

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Cold caches
FastBit 7.85 9457 0.313 0.263 2.61 0.36 636
RDF-3X 55.6 1431 1.65 0.41 17.2 3.9 14190

Warm caches
FastBit 6.34 9288 0.179 0.148 2.34 0.34 467
RDF-3X 50.4 1369 0.336 0.35 7.44 1.7 13770
Speedup 7.95× 0.15× 1.87× 2.36× 3.17× 5.0× 29.5×

we compare the cold and warm caches performance of queries for the LUBM-
50M data set. We do not observe a substantial difference between the cold and
warm cache times (i.e., the difference is not as pronounced as RDF-3X), which
may indicate that the indexes may be already cached in main memory and I/O
activity is minimal. Overall, we observe that our strategy outperforms RDF-3X
by a significant margin in the warm cache case, particularly for the 5M dataset.
Studying the queries individually, we observe that the speedup is higher for
simple two or three triple pattern queries (such as queries 5, 10, and 14). The
results for the slightly more complex queries (queries 2, 8, 9) are mixed: RDF-3X
is faster on queries 2 and 9, whereas our bitmap index-based approach is faster
for query 8. We surmise that this may be because we picked a non-optimal join
ordering when executing queries 2 and 9. Table 3 presents performance results for
the same set of queries on a 500M data set, but on the euclid system. Interestingly,
RDF-3X query 2 performance is significantly slower, and our test harness times
out for this particular instance. Another trend apparent on investigating the
relative performance is that the average speedup remains the same as the data
size increases.

Performance on Multi-pattern Complex SPARQL Queries. We next
present results for three additional fixed-size datasets. In Table 4, we summarize
performance achieved for sample queries on the large-scale UniProt and Billion
Triple data sets. The compressed bitmap composite indexes are very useful in
case of the UniProt queries, where there are several triple patterns sharing the
same join variable. They help prune the tuple space significantly, and the query
execution times are comparable to previously-reported RDF-3X numbers.
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Table 3. LUBM benchmark SPARQL query evaluation times (in milliseconds) for a
500 million triple data set on euclid

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Cold caches
FastBit 1.92 17481 17.2 3.2 0.62 2560 1.75
RDF-3X 1.58 — 85.9 199.6 1.25 91300 560.6

Warm caches
FastBit 1.73 8344 7.81 1.21 0.41 2344 1.21
RDF-3X 0.875 — 0.984 2.344 1.11 80039 3.47
Speedup 0.51× — 0.13× 2.71× 2.68× 34.1× 2.87×

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Cold caches
FastBit 9.43 278.1 1.27 2.44 15.7 5.32 11231
RDF-3X 204.2 41.2 870.1 30.2 1051.12 15082.3 —

Warm caches
FastBit 7.23 140.4 0.38 1.52 11.51 2.53 10682
RDF-3X 71.8 28.1 1.01 0.94 124.2 18.5 —
Speedup 9.93× 0.2× 2.66× 0.62× 10.79× 7.31× —

Table 4. UniProt and Billion Triple datasets SPARQL query evaluation times (in
milliseconds) on euclid

UniProt Billion Triples
Q1 Q2 Q3 Q1 Q2 Q3

Warm caches time 1.71 262 30.4 12.35 443.42 378.21

Table 5. FastBit query evaluation performance improvement achieved (geometric
mean of individual query speedup) over RDF-3X for various data sets. † Speedup on
euclid.

LUBM-5M LUBM-50M LUBM-500M† YAGO

Speedup 12.96× 2.62× 2.81× 1.38×

Table 5 gives the overall performance improvement achieved for queries us-
ing FastBit versus RDF-3X, when taking the geometric mean of the execution
times into consideration. We observe that FastBit outperforms RDF-3X for both
LUBM data sets of various sizes, as well as queries on the Yago data set.

5 Conclusions and Future Work

This paper presents the novel use of compressed bitmaps to accelerate SPARQL
queries on large-scale RDF repositories. Our experiments show that we can
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efficiently process queries with as many as 10 to 15 triple patterns, and query
execution times compare very favorably to the current state-of-the-art results.
Bitmap indexes are space-efficient, and bitvector operations provide an intuitive
mechanism for expressing and solving ad-hoc queries. The set union and inter-
section operations that are extensively used in SPARQL query processing are
extremely fast when mapped to bitvector operations.

We plan to extend and optimize our RDF data processing system in future
work. We will speed up data ingestion by exploiting parallel I/O capabilities and
distributed memory parallelization. Our current dictionary and index creation
schemes provision for incremental updates to the data. We intend to study the
cost of updates, both fine-grained as well as batched updates. We do not yet
support a full SPARQL query parser, and the join ordering steps in our query
optimization scheme can be automated; we plan to research these problems in
future work.
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Abstract. Database technology remains underused in science, espe-
cially in the long tail — the small labs and individual researchers that
collectively produce the majority of scientific output. These researchers
increasingly require iterative, ad hoc analysis over ad hoc databases but
cannot individually invest in the computational and intellectual infras-
tructure required for state-of-the-art solutions.

We describe a new “delivery vector” for database technology called SQL-
Share that emphasizes ad hoc integration, query, sharing, and visualiza-
tion over pre-defined schemas. To empower non-experts to write complex
queries, we synthesize example queries from the data itself and explore
limited English hints to augment the process. We integrate collaborative
visualization via a web-based service called VizDeck that uses automated
visualization techniques with a card game metaphor to allow creation of
interactive visual dashboards in seconds with zero programming.

We present data on the initial uptake and usage of the system and re-
port preliminary results testingout new features with the datasets
collected during the initial pilot deployment. We conclude that the
SQLShare system and associated services have the potential to increase
uptake of relational database technology in the long tail of science.

1 Introduction

Relational database technology remains remarkably underused in science, espe-
cially in the long tail — the large number of relatively small labs and individual
researchers who, in contrast to “big science” projects [22,25,30], do not have
access to dedicated IT staff or resources yet collectively produce the bulk of
scientific knowledge [5,24]. The problem persists despite a number of prominent
success stories [7,18,19] and an intuitive correspondence between exploratory hy-
pothesis testing and the ad hoc query answering that is the “core competency” of
an RDBMS. Some ascribe this underuse to a mismatch between scientific data
and the models and languages of commercial database systems [9,17]. Our ex-
perience (which we describe throughout this paper) is that standard relational
data models and languages can manage and manipulate a significant range of
scientific datasets. We find that the key barriers to adoption lie elsewhere:

1. Setup. Local deployments of database software require too much knowledge
of hardware, networking, security, and OS details.

J.B. Cushing, J. French, and S. Bowers (Eds.): SSDBM 2011, LNCS 6809, pp. 480–489, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2. Schemas. The initial investment required for database design and loading
can be prohibitive. Developing a definitive database schema for a project
at the frontier of research, where knowledge is undergoing sometimes daily
revision, is a challenge even for database experts. Moreover, the corpus of
data for a given project or lab accretes over time, with many versions and
variants of the same information and little explicit documentation about
connections between datasets and sensible ways to query them.

3. SQL. Although we corroborate earlier findings on the utility of SQL for
exploratory scientific Q&A [30], we find that scientists need help writing
non-trivial SQL statements.

4. Sharing. Databases too often ensconce one’s data behind several layers of
security, APIs, and applications, which complicate sharing relative to the
typical status quo: transmitting flat files.

5. Visualization. While SQL is appropriate for assembling tabular results, our
collaborators report that continually exporting data for use with external
visualization tools makes databases unattractive for exploratory, iterative,
and collaborative visual analytics.

As a result of these “S4V” challenges, spreadsheets and ASCII files remain the
most popular tools for data management in the long tail. But as data volumes
continue to explode, cut-and-paste manipulation of spreadsheets cannot scale,
and the relatively cumbersome development cycle of scripts and workflows for ad
hoc, iterative data manipulation becomes the bottleneck to scientific discovery
and a fundamental barrier to those without programming experience.

Having encountered this problem in multiple domains and at multiple scales,
we have released a cloud-based relational data sharing and analysis platform
called SQLShare [20] that allows users to upload their data and immediately
query it using SQL — no schema design, no reformatting, no DBAs. These
queries can be named, associated with metadata, saved as views, and shared with
collaborators. Beyond the basic upload, query, and share capabilities, we explore
techniques to partially automate difficult tasks through the use of statistical
methods that exploit the shared corpus of data, saved views, metadata, and
usage logs.

In this paper, we present preliminary results using SQLShare as a platform
to solve the S4V problems, informed by the following observations:

– We find that cloud platforms drastically reduce the effort required to erect
and operate a production-quality database server (Section 2).

– We find that up-front schema design is not only prohibitively difficult, but
unnecessary for many analysis tasks and even potentially harmful — the
“early binding” to a particular fixed model of the world can cause non-
conforming data to be overlooked or rejected. In response, we postpone or
ignore up-front schema design, favoring the “natural” schema gleaned from
the filenames and column headers in the source files (Section 2).

– We find that when researchers have access to high-quality example queries,
pertinent to their own data, they are able to self-train and become produc-
tive SQL programmers. The SQL problem then reduces to providing such
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examples. We address this problem by deriving “starter queries” — auto-
matically — using the statistical properties of the data itself (as opposed to
the logs, the schema, or user input that we cannot assume access to.) More-
over, we analyze the corpus of user-provided free-text metadata to exploit
correlations between English tokens and SQL idioms (Section 3).

– We find that streamlining the creation and use of views is sufficient to facil-
itate data sharing and collaborative analysis (Section 2).

– We find the awkward export-import-visualize cycle can be avoided by eager
pre-generation of “good” visualizations directly from the data (Section 4).

Fig. 1. Screenshot of SQLShare

Number of uploaded datasets 772
Number of non-trivial views 267
Number of queries executed 3980

Number of users 51
Max datasets, any user 192
Total size of all data 16.5 GB

Size of largest table, in rows 1.1M

Fig. 2. Early usage for the SQLShare
system during a 4-month pilot period.
We use data collected during the pi-
lot to perform preliminary evaluation
of advanced features.

2 SQLShare: Basic Usage and Architecture

The SQLShare platform is currently implemented as a set of services over a
relational database backend; we rely on the scalability and performance of the
underlying database. The two database platforms we use currently are Microsoft
SQL Azure [28] and Microsoft SQL Server hosted on Amazon’s EC2 platform.

The server system consists of a REST API managing access to database and
enforcing SQLShare semantics when they differ from conventional databases.
The “flagship” SQLShare web client (Figure 1) exercises the API to provide
upload, query, sharing, and download services. The following features highlight
key differences between SQLShare and a conventional RDBMS.

No Schema. We do not allow CREATE TABLE statements or any other DDL;
tables are created directly from the columns found in the uploaded files. Just
as a user may place any file on his or her filesystem, we intend for users to put
any table into the SQLShare “tablesystem.” By identifying patterns in the data
(keys, union relationships, join relationships, attribute synonyms) and exposing
them to users through views, we can superimpose a form of schema post hoc,
incrementally — a schema later approach (Section 3).
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Tolerance for Structural Inconsistency. Files with missing column head-
ers, columns with non-homogeneous types, and rows with irregular numbers of
columns are all tolerated. We find that data need not be pre-cleaned for many
tasks (e.g., counting records), and that SQL is an adequate language for many
data cleaning tasks.

Append-Only. We claim that science data should never be destructively up-
dated. We therefore do not support tuple-level updates; errors can be logically
replaced by uploading a new version of the dataset. This approach allows ag-
gressive caching and materialization to improve performance.

Simplified Views. Despite their utility, we find views to be underused in
practice. We hypothesize that the solution may be as simple as avoiding the
awkward CREATE VIEW syntax. View creation in SQLShare is a side effect of
querying — the current results can be saved by simply typing a name. This simple
UI adjustment appears sufficient to encourage users to create views (Table 2).

Metadata. Users can attach free-text metadata to datasets; we use these meta-
data to support keyword search and to inform simple query recommendations
by mining correlations between English tokens and SQL idioms (Section 3).

Unifying Views and Tables. Both logical views and physical tables are pre-
sented to the user as a single entity: the dataset. By erasing the distinction, we
reserve the ability to choose when views should be materialized for performance
reasons. Since there are no destructive updates, we can cache view results as
aggressively as space will allow. However, since datasets can be versioned, the
semantics of views must be well-defined and presented to the user carefully. We
find both snapshot semantics and refresh semantics to be relevant, depending
on the use case. Currently we support only refresh semantics.

3 Automatic Starter Queries

When we first engage a new potential user in our current SQLShare prototype,
we ask them to provide us with 1) their data, and 2) a set of questions, in En-
glish, for which they need answers. This approach, informed by Jim Gray’s “20
questions” requirements-gathering methodology for working with scientists [18],
has been remarkably successful. Once the system was seeded with these exam-
ples, the scientists were able to use them to derive their own queries and become
productive with SQL. The power of examples should not be surprising: Many
public databases include a set of example queries as part of their documentation
[15,30]. We adopt the term starter query to refer to a database-specific example
query, as opposed to examples that merely illustrate general SQL syntax. In
our initial deployment of SQLShare, starter queries were provided by database
experts, usually translated from English questions posed by the researchers. In
this section we show preliminary results in generating a set of starter example
queries from a set of tables by analyzing their statistical properties only — no
schema, no query workload, and no user input is assumed to exist.
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Our approach is to 1) define a set of heuristics that characterize “good” ex-
ample queries, 2) formalize these heuristics into features we can extract from
the data, 3) develop algorithms to compute or approximate these features from
the data efficiently, 4) use examples of “starter queries” from existing databases
to train a model on the relative weights of these features, and 5) evaluate the
model on a holdout test set. In this context, we are given just the data itself: In
contrast to existing query recommendation approaches, we cannot assume access
to a query log [21] , a schema [31], or user preferences [2].

We are exploring heuristics for four operators: union, join, select, and group by.
In these preliminary results, we describe our model for joins only. Consider the
following heuristics for predicting whether two columns will join: (1) A foreign
key between two columns suggests a join. (2) Two columns that have the same
active domain but different sizes suggest a 1:N foreign key and a good join
candidate. For example, a fact table has a large cardinality and a dimension
table has a low cardinality, but the join attribute in each table will have a
similar active domain. (3) Two columns with a high similarity suggest a join. (4)
If two columns have the same active domain, and that active domain has a large
number of distinct values, then there is evidence in favor of a join.

Join heuristics 1-4 above all involve reasoning about the union and intersection
of the column values and their active domains, as well as their relative cardinal-
ities. We cannot predict the effectiveness of each of these heuristics a priori, so
we train a model on existing datasets to determine the relative influence fo each.
For each pair of columns x, y in the database, we extract each feature in Table
1 for both set and bag semantics.

Table 1. Features used to predict
joinability of two columns, calcu-
lated for set and bag semantics

Join card. estimate |x|b|y|b
max(|x|,|y|)

max/min card. max/min(|x|, |y|)
card. difference abs(|x| − |y|)

intersection card. |x ∩ y|
union card. |x ∪ y|

Jaccard |x∩y|
|x∪y|

Table 2. Number of occurrences of the top 8
pairs of co-occurring tokens between English
and SQL, for 4 users

u1 u2 u3 u4 all
(join,join) 5 6 3 2 4

( thaps@phaeo,join) - - 1 - 18

(counts,join) 7 7 5 6 13

(flavodoxin,readid) 1 - - - 16

(tigr,gene) 7 - - 4 16

(cog@kog,gene) 7 - - 6 18

Preliminary Results We train a decision tree on the Sloan Digital Sky Survey
logs (SDSS) [30], and then evaluate it on the queries collected as examples from
the pilot period of SQLShare. To determine the class of a specific instance, we
traverse the ADTree and sum the contributions of all paths that evaluate to
true. The sign of this sum indicates the class.

For the SDSS database, we have the database, the query logs, and a set of
curated example queries created by the database designers to help train users in
writing SQL. We use the log to train the model, under the assumption that the
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joins that appear in the logs will exemplify the characteristics of “good" joins we
would want to include in the starter queries.

For the SQLShare dataset, we use the same model learned on the SDSS data
and see if it can be used to predict the example queries written for users. The
key hypothesis is that the relative importance of each of these generic features
in determining whether a join will appear in an example query do not vary
significantly across schemas and databases. In this experiment, we find that the
model classifies 10 out of 13 joins correctly, achieving 86.0% recall. To measure
precision, we tested a random set of 33 non-joining pairs. The model classified
33 out of 37 of these candidates correctly, achieving 86.4% precision.

We observe that the model encoded several intuitive and non-intuitive heuris-
tics. For example, the model found, unsurprisingly, that the Jaccard similarity
of the active domains of two columns is a good predictor of joinability. But the
tree also learned that similar columns with high cardinalities were even more
likely to be used in a join. In low-similarity conditions, the model learned that
very high numbers of distinct values in one or both tables suggests a join may
be appropriate even if the Jaccard similarity is low. Overall, this simple model
performed well even on a completly unrelated schema.

To improve this score, we are also exploring how to exploit the English queries
provided by users as part of the 20 questions methodology. Natural language
interfaces to databases typically require a fixed schema and a very clean training
set, neither of which we have. However, we hypothesize that term co-ocurrence
between metadata descriptions of queries and the SQL syntax provides a signal
that can be incorporated to our ranking function for starter queries. To test
this hypothesis using the full set of queries saved in SQLShare, we first pruned
examples with empty or automatically generated descriptions, as well as all
descriptions that included the word “test.” Second, we tokenized the SQL and
English descriptions into both single words and pairs of adjacent words. Finally,
we computed the top k pairs of terms using a modified tf-idf measure. The
support for these co-occurences appear in the cells of Table 2. We see that some
term pairs refer to structural elements of the SQL (join,join). This rules may
help improve our example queries for all users by helping us prune the search
space. Other frequent co-occurring terms are schema dependent, which may help
personalize query recommendations, or help determine which science domain is
relevant to the user.

4 VizDeck: Semi-automatic Visualization Dashboards

VizDeck is a web-based visualization client for SQLShare that uses a card game
metaphor to assist users in creating interactive visual dashboard applications
without programming. VizDeck generates a “hand” of ranked visualizations and
UI widgets, and the user plays these “cards” into a dashboard template, where
they are syncronized into a coherent web application. By manipulating the hand
dealt — playing one’s “good” cards and discarding unwanted cards — the sys-
tem learns statistically which visualizations are appropriate for a given dataset,
improving the quality of the hand dealt for future users.
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Figure 4 shows a pair of screenshots from the vizdeck interface. VizDeck oper-
ates on datasets retrieved from SQLShare; users issue raw SQL or select from a
list of public datasets. After retrieving the data, VizDeck displays 1) a dashboard
canvas (Figure 3 (left)) and 2) a hand of vizlets (Figure 3 (right)). A vizlet is
any interactive visual element — scatter plots and bar charts are vizlets, but
drop down boxes are also vizlets.

Fig. 3. Screenshots from the VizDeck application. (left) A VizDeck dashboard with
three scatter plots and one multi-select box for filtering data. (right) A “hand” of vizlets
that can be “played” into the dashboard canvas. The green arrow appears when hovering
over a vizlet, allowing promotion to the dashboard with a click.

By interacting with this ranked grid, a user can promote a vizlet to the dash-
board or discard it. Once promoted, a vizlet may be demoted back to the grid.
Promoted vizlets respond to brushing and linking effects; items selected in one
vizlet control the items displayed in the other vizlets. Multiple filtering widgets
are interpreted as a conjunctive expression, while multiple selections in a single
widget (as in Figure 3 (left)) are interpreted as a disjunction. By promoting vi-
sualizations and widgets, simple interactive dashboards can be constructed with
a few clicks. Crucially, the user can see the elements they are adding to the
dashboard before they add them — we hypothesize that this “knowledge in the
world” [29] will translate into more efficient dashboard construction with less
training relative to other visualization and mashup systems [11,23]. The user
study to test this hypothesis is planned for future work.

Ranking. VizDeck analyzes the results of a query to produce the ranked list
of vizlets heuristically. For example, a scatter plot is only sensible for a pair of
numeric columns, and bar charts with too many bars are difficult to read [26].

As part of ongoing work, we are incorporating user input into the ranking
function. We interpret each promote action as a “vote” for that vizlet, and each
discard action as a vote against that vizlet, then assign each vizlet a score and
train a linear model to predict this score from an appropriate feature vector. We
are currently collecting data to evaluate our preliminary model.

Preliminary Results. A potential concern about our approach is that the
number of potential vizlets is either too large (as to be overwhelming) or too
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small (making a ranking-based approach unnecessary). To test the feasibility of
the approach, we applied VizDeck to all public datasets in the SQLShare system.

Figure 4 (left) shows the elapsed time to both retrieve data and generate
(but not render) the vizlets for each public query, where each query is assigned
a number. Most queries (over 70%) return in less than one second, and 92%
return in less than 8.6 seconds, the target response time for page loads on the
web [8]. Figure 4 (right) shows the number of vizlets generated by each query.
Most queries (73 out of 118) generated a pageful of vizlets or less (30 vizlets fit
on a page at typical resolutions). Of the remaining 45 queries, 29 return more
than 90 vizlets, suggesting that a ranking-based approach is warranted.

Fig. 4. Two experiments using VizDeck with the public queries in the SQLShare
system. At left, we see the elapsed time for executing the query and generating the
vizlets. The total time is dominated by query execution rather than VizDeck analysis.
At right, we see the number of vizlets generated for each query.

5 Related Work

Other database-as-a-service platforms either do not support full SQL [4,14] or
provide a conventional schema-oriented database interface [3,28].

The VizDeck system builds on seminal work on automatic visualization of
relational data using heuristics related to visual perception and presentation
conventions [26]. More recent work on intelligent user interfaces attempts to
infer the user’s task from behavior and use the information to recommend vi-
suaizations [16]. Dork et al. derive coordinated visualizations from web-based
data sources [11]. Mashup models have been studied in the database commu-
nity [12,1], but do not consider visualization ensembles and assume a pre-existing
repository of mashup components.

Query recommendation systems proposed in the literature rely on informa-
tion that we cannot assume access to in an ad hoc database scenario: a query log
[21], a well-defined schema [31], or user history and preferences [2]. The concept
of dataspaces [13] is relevant to our work; we consider SQLShare an example of
a (relational) Dataspace Support Platform. The Octopus project [10] provides
a tool to integrate ad hoc data extracted from the web, but does not attempt
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to derive SQL queries from the data itself. The generation of starter queries is
related to work on schema mapping and matching [6,27]: both problems involve
measuring the similarity of columns.
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Abstract. Continuous balancing of energy demand and supply is a fun-
damental prerequisite for the stability and efficiency of energy grids. This
balancing task requires accurate forecasts of future electricity consump-
tion and production at any point in time. For this purpose, database
systems need to be able to rapidly process forecasting queries and to pro-
vide accurate results in short time frames. However, time series from the
electricity domain pose the challenge that measurements are constantly
appended to the time series. Using a naive maintenance approach for
such evolving time series would mean a re-estimation of the employed
mathematical forecast model from scratch for each new measurement,
which is very time consuming. We speed-up the forecast model mainte-
nance by exploiting the particularities of electricity time series to reuse
previously employed forecast models and their parameter combinations.
These parameter combinations and information about the context in
which they were valid are stored in a repository. We compare the current
context with contexts from the repository to retrieve parameter com-
binations that were valid in similar contexts as starting points for fur-
ther optimization. An evaluation shows that our approach improves the
maintenance process especially for complex models by providing more
accurate forecasts in less time than comparable estimation methods.

Keywords: Forecasting, Energy, Maintenance, Parameter Estimation.

1 Introduction

In the energy domain, the balancing of energy demand and supply is of ut-
most importance. Especially, the integration of more renewable energy sources
(RES) poses additional requirements to this balancing task. The reason is that
RES highly depend on exogenous influences (e.g., weather) and thus, their en-
ergy output cannot be planned like traditional energy sources. In addition, RES
cannot be stored efficiently and must be used when available.

Several research projects such as MIRACLE [1], and MeRegio [2] address the
issues of real-time energy balancing and improved utilization of RES. Current
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approaches in this area have in common that they require accurate predictions
of energy demand and energy supply from RES at each point in time. For this
purpose, mathematical models so called forecast models are used to model the
behavior and characteristics of historic energy demand and supply time series.
The most important classes of forecast models are: autoregressive models [3],
exponential smoothing models [4] and models that apply machine learning [5].
Forecast models from all classes employ several parameters to express different
aspects of the time series such as seasonal patterns or the current energy output.
To exactly describe the past behavior of the time series, these parameters are esti-
mated on a training data set by minimizing the forecast error (i.e., the difference
between actual and predicted values) that is measured in terms of an error metric
like the Mean Square Error (MSE) [3] or the (Symmetric) Mean Average Per-
centage Error ((S)MAPE) [6]. The so created forecast model instances are used
to predict future values up to a defined horizon (e.g., one day). To allow efficient
forecast calculations as well as the transparent reuse of forecast models, fore-
casting increasingly gains direct support by database systems. Besides research
prototypes such as the Fa system [7] or the Forecast Model Index [8], forecasting
has also been integrated into commercial products like Oracle OLAP DML [9]
or Microsoft SQL Server Data Mining Extension [10]. However, the forecasting
process remains inherently expensive, due to a large number of simulations in-
volved in the parameter estimation process that can increase exponentially with
the number of parameters when using a naive estimation approach.

Todays optimization algorithms used for parameter estimation can be divided
into two classes: (1) Algorithms that need derivable objective functions and (2)
algorithms that can be used with arbitrary objective functions. We focus on al-
gorithms of the second class, because they can be used with any forecast models
and error metrics and are hence more general. We can further classify algorithms
of this class into local and global optimization algorithms. Global optimization
algorithms such as Simulated Annealing [11] consider the whole solution space
to find the globally optimal solution at the cost of slow convergence speed. In
contrast, local optimization algorithms such as Nelder-Mead simplex search [12]
follow a directed approach and converge faster at the risk of starving into local
optima. These algorithms also highly depend on the provision of good start-
ing points. Due to the limitations of local and global optimization algorithms,
we enhance the parameter estimation by an approach that exploits knowledge
about the time series context to store and reuse prior parameter combinations
as starting points. This paper makes the following contributions:

First, we outline our general forecast model maintenance approach in Section 2.
Second, we introduce our Context-Aware Forecast Model Repository (CFMR)
and define basic operations to preserve old parameter combinations in Section 3.
Third, we describe how to retrieve parameter combinations efficiently from the
CFMR and how to revise them to yield the final parameters in Section 4.
Fourth, we evaluate our approach and demonstrate its advantages over compa-
rable parameter estimation strategies in Section 5.
Finally, we present related work in Section 6 and conclude the paper in Section 7.
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2 Context-Aware Forecast Model Maintenance

The core idea underlying our approach is to store previously used forecast models
and in particular their parameter combinations in conjunction with information
about the time series context during which they were valid (i.e., produced ac-
curate forecasts) into a Context-Aware Forecast Model Repository (CFMR). As-
suming that similar contexts lead to similar model parameters, we retrieve ben-
eficial starting values for further optimization from the repository by comparing
the current time series context with previous contexts stored in the CFMR.

The term context has been coined in machine learning to describe the conglom-
erate of background processes and influence factors, which drives the temporal
development of data streams [13]. Regarding electricity demand and supply time
series, we identify influences from meteorological (e.g., weather), calendar (e.g.,
seasonal cycles, public holidays) and economic (e.g., local law) factors. While
each of these factors takes an individual state at each point in time, they form
in their entirety a specific time series context. Since electricity demand and sup-
ply time series are regularly updated with new measurements, the state of the
influence factors changes over time, and hence the entire context. Such context
drifts can modify the behavior and characteristics of the subjacent time series in
unanticipated ways. We adopt the classification of Zliobaite [14] and distinguish
three types of context drift based on their duration and number of re-occurrences.
Figure 1 illustrates the different types of context drifts:

 

 

  

(a) Abrupt Drift.
 

 

  

(b) Persistent Drift.
 

 

 

    

   

(c) Cyclic Drift.

Fig. 1. Different Types of Context Drift

Abrupt Drift. A new context abruptly replaces the current context and causes a
disruptive change within a short time frame. Example: power outages.
Persistent Drift. The old context slowly transforms into a new context that estab-
lishes permanently. Examples: gradual production changes, wind turbine aging.
Cyclic Drift. Old contexts re-appear and alternate. Examples: seasonal patterns
(daily, weekly, yearly season), public holidays.

Context drifts can decrease the forecast accuracy, if the forecast model is not
able to reflect the new situation and adapt to the changed time series charac-
teristics. The reason is that changing contexts often lead to changing optimal
forecast model parameters. Figure 2(a) illustrates the development of such opti-
mal values for three example parameters of the electricity-tailored forecast model
EGRV [15]. It can be seen that the optimal parameters greatly fluctuate over
time, which we ascribe to context drift. In addition, the stationary parameter
search space for a single parameter often exhibits multiple local minima for some
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(a) Parameter Changes Over Time
(EGRV, sMAPE, Data Set D1)

(b) Stationary Search Space
(TSESM, sMAPE, Data Set S1)

Fig. 2. Illustration: Temporal and Stationary Parameter Spaces
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Fig. 3. Context-Aware Forecast Model Maintenance Process

error metrics as shown in Figure 2(b), which greatly decreases the probability of
finding global optima using pure local or global searching. This clearly motivates
a context-aware adaptation strategy of forecast model parameters to modified
contexts from suitable starting points. In the following, we describe our general
approach to maintain continuously accurate forecasts in the face of context drift.

Figure 3 illustrates the general forecasting process. First, new measurements
are simply appended to the time series and the state of the forecast model is
incrementally updated. This step is computational inexpensive and therefore
not in the focus of the paper. Second, we continuously observe the forecast accu-
racy and the development of the current context using different model evaluation
techniques. The recognition of context drifts requires enhanced model evaluation
capabilities since changing contexts can increase the forecast error at arbitrary
times. Evaluation techniques that regularly trigger model adaptations after fixed
intervals turn out to be insufficient due to the difficulty of defining suitable adap-
tation intervals. If the interval is too long, context drifts and increasing errors
occurring between adaptations are missed and lead to worse forecasts. Con-
versely, too short intervals may trigger unnecessary adaptations. We overcome
these problems by a threshold-based model evaluation strategy that continuously
checks the current forecast error against a defined threshold to ensure a maxi-
mal forecast error. The forecast model is adapted as soon as the forecast error
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surpasses the threshold. While this strategy guarantees that a maximal forecast
error is not exceeded, it shares the major drawback with fixed interval model
adaptation as it also depends on the definition of suitable thresholds. To this
end, we propose an ensemble strategy that combines several individual evaluation
strategies. Compared to using only one evaluation technique, such combinations
of multiple maintenance strategies reduce the dependence on single adaptation
criteria and make it easier to determine suitable values for them.

Third, our model adaptation approach is inspired by an artificial intelligence
technique called case-based reasoning (CBR) [16]. The idea of CBR is to solve
new problems from solutions of previously encountered problems similarly to the
way humans reason by preserving, retrieving and revising previous experiences
in the face of new problems. We apply the CBR paradigm to forecast model
adaptation by preserving old parameter combinations and information about
their context (i.e., when they produced accurate forecasts) in a Context-Aware
Forecast Model Repository (CFMR) to solve later adaptation problems (Fig-
ure 3: context=C1,C12,...; parameters=α, β, γ). Upon triggering model adapta-
tions, we first retrieve promising parameter combinations from the CFMR that
were valid in a context similar to the new context. These parameter combinations
are revised by using them as input for optimization algorithms. This approach
is not limited to the energy domain, CBR-based techniques can be applied to
arbitrary forecasting applications where similar models are periodically reused.

3 Preserving Forecast Models Using Time Series Context

The Context-Aware Forecast Model Repository (CFMR) allows to store and re-
trieve previous parameter combinations based on context information. When a
forecast model is invalidated, the CFMR is searched for parameter combinations
that produced accurate forecasts in similar past contexts. The retrieved parame-
ters then serve as starting points for subsequent local optimization. Consider for
example a cloudy and rainy day. The meteorological state influences the context
and hence, the shape of the time series. Provided the weather conditions change
to a similar state on a later occasion, we can search the CFMR for parameter
combinations that were valid during such weather conditions.

3.1 Model History Tree

The CFMR is organized as a binary search tree named Model History Tree:

Definition 1 (Model History Tree). A model history tree mht, defined
over the similarity attributes a1, . . . , an, a maximum leaf node capacity cmax

and a parameter vector size V ∈ N, is a decision tree whose nodes are either
decision nodes or leaf nodes.

– Decision nodes contain a splitting attribute ȧi ∈ {a1, . . . , an}, a splitting
value ṡ ∈ ȧi and references to the left and right successor nodes. Splitting
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weekend weekday 
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<10 ≥ 10 

≥11.3 <8 
hour 

≥ 8 
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<5 ≥ 5 

<2004 ≥ 2004 

year 

<2005 ≥ 2005 

mean 

<500 ≥ 500 

Parameters  End Index  

   

Solution1 0.38 0.52 16 

Solution2 0.57 0.13 104 

Solution3 0.3 0.81 573 

Solution4 0.29 0.77 692 

Fig. 4. Example Model History Tree

attributes are different influence factors (compare Section 2) of the time
series and divide the stored parameter combinations into several classes.

– Leaf nodes contain a list [ai] of similarity attribute values, at most c ≤ cmax

parameter vectors p = [pi|i = 1, . . . , P ], and for each vector an end index K
representing the last time the parameters were used.

Figure 4 shows an exemplary model history tree, built over the similarity at-
tributes daytype, temperature, hour, year and mean. The highlighted leaf node
stores four parameter vectors, each of which contains two parameter combina-
tions. The tree essentially forms a recursive partitioning of the parameter space
into a set of disjoint subspaces whereas splitting attributes can be thought of as
(n−1)-dimensional, axially parallel hyperplanes. At each decision node, the tree
branches the parameter space into parameter combinations with attribute values
smaller than the splitting attribute and those with attribute values greater or
equal than the splitting attribute. Leaf nodes store the actual parameter combi-
nations along with the corresponding end indices.

We generally distinguish numerical, nominal and cyclic similarity attributes ai,
which can take values within a domain [amin

i , amax
i ]. Cyclic attributes are nu-

merical or nominal attributes, whose instance values repeat every c indexes, i.e.,
ai = ai+c. Accordingly, they are typically connected with seasonal cycles. Table
1 presents an example selection of possible splitting attributes.

The similarity attributes guide the search in the CFMR for promising pa-
rameter combinations. That way, the parameter space is initially restricted and
the majority of old parameter vectors can quickly be excluded from further

Table 1. Similarity Attributes for Electricity Demand and Supply

Numerical Nominal Cyclic Example

Temporal Year 2000 2020 2005
Month 1 12 Apr (4)
Day 1 7 Tue (2)
Special Day 0 1 False (0)

Exogenous Temperature -30 40 27.4
Wind Speed 0 30 15 m/s
Electricity Price 0 100 70.38 €/MWh

Statistical Mean 0 40000 12435.5 MW
Variance 0 10000 1719.6 MW2
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Fig. 5. Time Series Subsequences

processing. However, searching the tree may still result in a large number of
results. To this end, we further restrict the solutions by comparing the shapes of
corresponding past time series subsequences with the most current subsequence.
For each parameter combination we save the time series index K the parameters
were used the last time and compare the similarity between the most recent
and past subsequences. The parameter combinations with the highest similarity
score are finally chosen as starting values for subsequent optimization.

Figure 5 illustrates the subsequences of the time series. The parameter combi-
nations (αi, βi, γi) were used to forecast during the corresponding subsequence.
The time frame of the current subsequence is marked with indices from N’ to N.

3.2 Inserting Models into the Model History Tree

Algorithm 1 defines how parameter combinations are inserted into the Model
History Tree. The algorithm first traverses from the root node to the leaf node

Algorithm 1. mhtInsert().
input : currContext, paramComb, endIndex
if treeSize() = 0 then makeLeafNode() // Create tree if necessary
curr_node ←− getRoot() // Traverse to leaf node;
repeat

// i is index of splitting attribute*/ ;
if curr_node.ṡi < currContext[i] then curr_node ←− curr_node.left();
else curr_node ←− curr_node.right();

until isLeafNode(curr_node);
curr_node.add(currContext, paramComb, endIndex);
if nodeSize(curr_node) > cmax then

(ȧi, ṡi) ←− computeSplittingAttributeAndValue();
curr_node.setSplittingAttributeAndValue(ȧi, ṡi);
(left, right) ←− makeLeafNodes();
curr_node.setSuccessors(left, right);
foreach context, paramComb, endIndex in curr_node do

if context[i] < ṡi then left.add(context, paramComb, endIndex);
else right.add(context, paramComb, endIndex);

makeDecisionNode(curr_node);
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that represents the most similar context by comparing the similarity attributes.
Afterwards, the new vector is added to the node. If the number of stored vectors c
exceeds the maximum node capacity cmax, the leaf node is split into two leaf
nodes and subsequently converted into a decision node with references to the
new successors (divide-and-conquer strategy). The new splitting attribute ȧi

and split value (cut-point) ṡi ∈ ȧi is determined from the models stored in the
node. We could potentially rotate the splitting attribute and use the average
over all values in the node. This strategy however suffers from the fact that for
some attributes we cannot assign unambiguous values (e.g., the attribute values
’hour’ 4, 6, 7, 10 yield an average of 6.75, which has no corresponding hour
attribute). Thus, using the simple average of all values, especially of nominal
or cyclic splitting attributes, is not possible in all cases. For this reason, we use
the median which works on numerical as well as nominal and cyclic attributes.
The basic idea behind the median is to choose a central value that partitions
the possible values [ai] for attribute a with i = N ′, . . . , N in even halves. A
prerequisite for the median is to first sort the attribute values in ascending
order, leading to a list [aj ] with j ∈ {N ′, . . . , N} ∧ aj ≤ aj+1. For attributes
that do not have a natural order, we apply an artificial order. However, such
attributes are very seldom in the energy domain.

Definition 2 (Median). Provided amin and amax are the minimum and max-
imum attribute values in the ordered list [aj ], the median ã over [aj ] is defined
as follows:

ã =

{
amin+ max−min

2
, if N ′ −N even

1
2

(
amin+ max−min−1

2
+ amin+ max−min−1

2 +1

)
, else.

(1)

Example 1. Consider the numerical attribute temperature with ai=7 = ’13.5’,
ai=8 = ’12.3’, ai=9 = ’15.6’ and ai=10 = ’14.2’. Sorting in ascending ordering
gives [ai=8/j=7, ai=7/j=8, ai=10/j=9, ai=9/j=10]. Because N ′ −N = 10− 7 = 3 is
uneven, we apply the second formula on the ordered list [aj ] and obtain:

ã =
1
2
(aj=7+ 10−7−1

2
+aj=7+ 10−7−1

2 +1) =
1
2
(aj=8+aj=9) =

1
2
(ai=7+ai=10) = ’13.25’

Using the median as defined above to partition the parameter combinations
ensures that selecting any of the attributes as splitting attribute results in the
same number of models in both successors. However, the median does not dis-
tinguish homogeneously and heterogeneously spread attributes (compare Figure
6) and thus, cannot be used to choose an appropriate splitting attribute. We can
assume that attributes with higher density towards the ends constitute better
spliting attributes, as the median value separates both halves more clearly. For
this reason, we additionally apply the (Percental) Inter-quartile Range ((P)IQR)
as a measure of dispersion within attributes values and therefore as a measure
for the suitability of the attribute as splitting attribute.
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Definition 3 (Inter-quartile Range / Percental Inter-quartile Range).
The inter-quartile range (IQR), defined over the list of attribute instances
[ai|i = 1, . . . , N ], denotes the average of the first and third quartiles:

IQR =
ã3 − ã1

2
with ã1 = l̃ and l = {ai ≤ ã} 1st quartile (median of left half)

with ã3 = r̃ and r = {ai ≥ ã} 3rd quartile (median of right half)

To ensures that attributes with a homogenous distribution, but large total range
and thus large IQR, are not preferred over those with a heterogeneous distribution
and a small range the IQR is normalized by the total range of attribute values
leading to: PIQR = IQR

2(aN−a1) .

The attribute with the highest PIQR-value, i.e., the one with the lowest disper-
sion, is chosen as splitting attribute.

 

  

(a) Homogeneously Spread Attribute.
 

 

(b) Heterogeneously Spread Attribute.

Fig. 6. Attribute Spread

Balancing of the Model History Tree

Although the median and PIQR guarantee an equal distribution of parameter
combinations for single nodes, model history trees can still degenerate to imbal-
anced, list-like trees when new parameter combinations are always added to one
side of the splitting value. The reason is that the employed median heuristics
makes local decisions only, i.e., the models in the node considered for splitting
represent only a small subregion of the whole tree. In order to keep the tree
globally balanced, we supplement it with a global balancing strategy which is
based on measuring the heights of subtrees:

Definition 4 (Node Height / Balanced Node)
The height h(n) of a node n is defined as

h(n) =
{

0 , if n is a leaf node
1 + max(h(n.left, n.right))) , if n is a decision node.

If a node n is B(max)-balanced if its balance factor B(n) meets the following
criteria: B(n) = |h(n.left)− h(n.right)| ≤ Bmax.
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B(max)-balanced nodes possess the property that the heights of their left and
right subtrees differ at most by the predefined maximal balance factor Bmax

(e.g., Bmax = 3). Global balance of the tree can then be assured by regularly
checking the balancing condition. In case of imbalance the model history tree
is regenerated, which means to re-build the tree from scratch, although other
balancing strategies such as AVL-tree-like rotation [17] are conceivable in future
work. When the tree is regenerated, the splitting decisions made at upper inter-
mediate nodes is based on all models below that node. As we employ the median
as splitting rule, it is guaranteed that the resulting tree is balanced again.

4 Retrieving and Revising Parameters from the CFMR

After introducing and defining the model history tree of the CFMR to preserve
forecast model parameter combinations, we now show how to use the CFMR to
quickly retrieve promising parameter combinations and conduct further revision.

4.1 Retrieving Forecast Models

Algorithm 2 defines how forecast model parameter combinations are retrieved
from the model history tree. We provide the current context currContext (i.e.,
the state of the similarity attributes at time N) and an auxiliary variable best.
The algorithm is an adapted k-nearest neighbor search and based on the principle
of backtracking, which means that it first descents to a leaf node and gradually
adds solutions on its way back to the root. The k most similar models with
respect to the current situation are obtained using the following process:

Algorithm 2. mhtRetrieve().
input : currContext, currNode, best

if isLeafNode(currNode) then
foreach (context, paramComb, endIndex) in currNode do

dist ←− getEuclidDist(currContext, context)
if dist < getMaximumDist(best) then

best.update( context, paramComb, endIndex, dist )
distanceComputation(paramComb,endIndex)

else
if currNode.ṡi < currContext[i] then

best,maxDist ← mhtRetrieve(currContext, currNode.left, best)
if bobTest(currContext, currNode, maxDist) then

best,maxDist ← mhtRetrieve(currContext, currNode.right, best)

else
best,maxDist ← mhtRetrieve(currContext, currNode.right, best)
if bobTest(currContext, currNode, maxDist) then

best,maxDist ← mhtRetrieve(currContext, currNode.left, best)

return best
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1. Traverse from the root to the leaf node that corresponds best to the provided
situation (repeatly execute second if-branch).
2. Compute the Euclidian distance at the leaf node between the provided context
currContext(v) and any old context(w) stored in the leaf node. The Euclidean
distance yields small distances for models which agree in important attributes
(vi/wi represent the single attributes of context1 and context2).

getEuclidDist(context1(v), context2(w)) =

√√√√ n∑
i=l

(vi − wi)2

Save results in best, calculate subsequence similarity for each intermediate result.
3. Ascend to the root node. Perform a ball-overlap-bounds (bob) test at each
intermediate node to evaluate the existence of additional solutions in opposite
branches by checking for points closer than the worst point in best. Test by
intersecting a n-dimensional ball with radius getMaximumDist(best) and the
splitting hyperplane: getMaximumDist(best) ≥ |currContext[i]−node.ṡi|. The
bob-test evaluates whether the ball around the worst intermediate result overlaps
the hyperplane. If true, descend into other branch to search for better solutions.

Example 2. Figure 7 illustrates the execution of Algorithm 2. Attribute a1 is
non-cyclic and attribute a2 is cyclic.

1. Descent to leaf node corresponding best to provided context and compute
the Euclidean distance to all models in the node(O and P ). Save results to
best. Start subsequence similarity calculation.

2. Ascent and perform bob-test at predecessor. Negative — continue ascent.
3. Perform bob-test at next node. Positive bob-test. Find R as nearest neighbor.

Update best. Start subsequence similarity calculation.
4. Perform bob-test at root. Negative — algorithm finishes. Result: R.

In the worst case, the k-nn-search evaluates all nodes in the tree. While this
misbehavior is very unlikely, we avoid long runtimes by further processing the
intermediate results in parallel (subsequence similarity, optimization) and using
them as temporary parameter combinations for forecasting. This procedure is
feasible because even the first intermediate results were found in a node that
at least is a good approximation of the current situation. Later results are only
accepted if they improve upon the currently known worst intermediate result.

Fig. 7. Example: Model Retrieval in a 2-Dimensional Model History Tree
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4.2 Comparing Time Series Similarity

In addition to comparing the contexts, we also compare the shapes of the most
current time series values and past subsequences corresponding to found param-
eter combination candidates to identify the most promising parameter combi-
nations. A high degree of coincidence between current and past load curves is
regarded as sign for the similarity of the corresponding contexts. The distance
between recent and past subsequences is expressed in terms of the Pearson cross-
correlation coefficient Rzz′(τ):

Rzz′(τ) =

N−τ∑
i=1

(zi − z)(z′i+τ − z′)√
σ2

zσ2
z′

.

High cross-correlation values entail strong similarity of the involved subsequences.
Other distance measures such as Dynamic Time Warping [18] can be used as
well. The main side condition imposed by the aforementioned definition, is that
both subsequences have to be equally long. To ensure equally long time series, we
chose a fixed length of the subsequence from a corresponding point of the time
series and hence obtain as past and current subsequences. However, the cross-
correlation will be low for phase-shifted subsequences (i.e., different start/end
indices), even though their shapes are similar. We overcome this difficulty by
shifting one sequence past the other through the specification of an lag τ . The
lag τ is denoted with respect to the ending indexes K (end of former situation)
and N (end of current situation) and the (known) period s of a seasonal cy-
cle: τ = |K mod s − N mod s|. This lag specification aligns the subsequences
by cutting the outer values of both sequences. Altogether, the cross-correlation
can be applied to time series which changes at most its amplitude, offset and
level over time, but not its periods. This makes it a good choice for electricity
demand time series, which possess comparatively stable seasonal cycles. As a
result the similarity search provides the parameter combinations that yield the
most similar subsequences.

4.3 Revising Forecast Models

A re-estimation of forecast model parameters serves as further refinement of the
retrieved parameter combinations. We concurrently perform a local (e.g., Nelder-
Mead) and a global optimization (e.g., Simulated Annealing). The starting points
for the local search are the parameter combination candidates provided by the
CFMR. Due to the continuous adaptation of the forecast model to drifting con-
text, we assume that the parameters changed gradually only with respect to the
old and current situation. For this reason, we find the global optimal parameter
combination with high probability close to the provided starting point. However,
it is still advisable to check for regions not covered by local search. The employed
global search runs in parallel to the local search, because it is independent of
starting values. We continue the global search even after the local search found
its optimal solution. Thus, we consider all areas of the solution space. Due to the
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long run time of the global search, the search runs asynchronously in the back-
ground, while the solution found by the local search is used as an intermediate
parameter combination. If the global search finds a better solution, we use this
solution as an additional starting point for the global optimization.

5 Evaluation

In this evaluation we proof the claims of our approach and show that with the
help of the CFMR we can increase the parameter estimation efficiency by means
of delivering more accurate forecasts in a shorter time frame compared to other
approaches. Our evaluation compares the accuracy and the time necessary to
gain the accuracy and is based on two forecast models and three electricity data
sets from different parts of the European electricity market.
Data Set D1: National Grid Electricity Demand from National Grid (publicly
available [19]). Electricity demand of the United Kingdom. Measures used: INDO,
January 1st 2002 to December 31st 2009, 30min resolution.
Data Set D2: EnBW MeRegio Household Energy Demand from MIRACLE part-
ner EnBW. Energy demand from 86 anonymized customers — We used cus-
tomers 7 (D2a, more predictable behavior) and 40 (D2b, hardly predictable
behavior). Measures used: November 1st 2009 to June 30th 2010, 1h resolution.
Data Set S1: CRES Photo-Voltaic Energy Supply from MIRACLE partner CRES.
Supply of a 22kW photovoltaic panel. Measures used: January 11th 2008 to De-
cember 16th 2008, 1min resolution aggregated to 30min resolution.

The evaluation was conducted on a AMD Athlon 4850e with 4 GB RAM,
Microsoft Windows 7 64bit and Microsoft Visual Studio C++ 2010.

For our evaluation we employed two forecast models tailor-made for the fore-
casting of energy demand and supply. The first model is Triple Seasonal Expo-
nential Smoothing (TSESM) [20]. TSESM involves five forecast model param-
eters with values from 0 to 1, which lead to a five-dimensional solution space
for the parameter estimation. The second model is named EGRV model and
defines a separate model for each hour of the day to avoid the explicit modeling
of the complex daily season [15]. In addition, different influences such as the cur-
rent day and month are included as separate variables. Thus, one hourly model
involves around 31 parameters, depending on the incorporated influences.

To contrast our approach, we used the following four common local and global
parameter estimation approaches:

– Monte-Carlo: Iteratively evaluate random solutions.
– Simulated Annealing: Global search without starting values.
– Random-Restart Nelder-Mead : Iterated local searching with starting values

obtained by random search.
– Single Nelder-Mead : Local search with current parameters as starting values

The forecast models were optimized for one-step ahead forecasts and using the
sMAPE error metric [6]. We traced the lowest sMAPE obtained during optimiza-
tion every two seconds and averaged over four runs per approach. For EGRV,
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(a) UKDemand - D1 (b) MeRegio7 - D2a

(c) MeRegio40 D2b (d) CRES-PV S1

Fig. 8. Time vs. Accuracy - Triple Seasonal Exponential Smoothing

the random-restart Nelder-Mead strategy was budgeted at five minutes, because
unsuitable starting points led to a very slow convergence. The presented results
illustrate a single point in time only and are based on threshold-based model
adaptations. In detail, we used data-set specific error thresholds/sliding win-
dows sizes of 6%/12 D1,20%(30%)/3 D2a(D2b) and 30%/2 S1, which lead to
about 100 models stored into the tree at the time the model was re-estimated.
We repeated our evaluation at other points in time and achieved similar results.

Figure 8 illustrates the results for the Triple Seasonal Exponential Smoothing
model. We observe that our approach in general quickly reaches good accura-
cies on all data sets. However, the subsequent global search does not find better
parameter combinations. The reason could be that the parameters found by
local searching are very good and with a high probability already the global
optimal solution. For the datasets D1 and D2b our approach achieved the best
results regarding accuracy and time for the entire test period. There, the single
simulated annealing approach achieved the worst results for data set D1 and
the Monte-Carlo approach performed worse for data set D2b. For data set D2a
and S1 our approach also achieved good results but performed not as well as
other approaches. Regarding data set D2a our approach had a good start, but
both local search approaches that involve the Nelder-Mead algorithm achieved
better results at the start. Simulated annealing and the Monte-Carlo approach
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performed worse at the start. With further progression all approaches achieved
similar results and differ by less than 0.5% SMAPE. However, our approach per-
formed worst on this data set. For dataset S1, our approach converged slower
than all approaches except the Monte-Carlo sampling, but at the end it achieved
the second best result. Only simulated annealing performed better by less than
a half percent. We blame the results to the sequential execution of the local
searches which are occasionally supplied unfavorable starting values in the be-
ginning and the best starting values in the end. All other approaches differ by
a more significant amount of two or more percent. Overall we can state that for
the triple seasonal exponential smoothing our approach achieved good results
on all data sets. In two cases it performed worse than other approaches, but
however the other approaches have a larger divergence concerning their results,
e.g. simulated annealing performed worse for data set D1 and best for data set
S1. In contrast, our approach constantly achieved very good results, which leads
to the educated guess that it is useable for all data sets from the energy domain
without prior evaluation. We furthermore observed only small overhead from
using the tree. Depending on the data set, the context computation, model in-
sertion and model retrieval took together always less than 4 msec. We also tested
scalability of these operations for trees with up to 20,000 models and obtained a
joint worst case insertion and access time of less than 0.6 sec, which is negligible
in comparison to the overall re-estimation time.

Figure 9 illustrates the results for the EGRV forecast model. In general, due
to a much higher number of parameters, these models are more challenging to
update than the previously discussed seasonal exponential smoothing models. In
addition, we can observe that the differences in the reached maximal accuracy
between the best and worst strategy are larger than for smoothing models which
means that the choice of a good re-estimation strategy is hence more critical.
Our approach achieved the best results for all evaluated data sets by means
of both accuracy and time. All strategies obtained improvements particularly
quickly within the first minute of execution, but with further progression they
were not able to reach the accuracy of our approach. For data set D1 and D2a
the accuracy gap between our approach and its competitors is comparatively
large. For data set D2b the local search strategies at the end achieved similar
but slightly worse results. In contrast, the produced accuracies of the global
search strategies were far off. Regarding the supply data set S1 four out of five
approaches converged to a similar result and except for Nelder-Mead with Last
Starting Value the difference in accuracy is rather small. The results produced
by Simulated Annealing are also at least as good or better than the results
found by Monte-Carlo, which confirms our choice of simulated annealing as our
global coverage strategy. In addition the random-restart Nelder-Mead strategy
shows only slow convergence in average, but it often finds good results after some
minutes. This demonstrates the need to start optimization from suitable starting
parameters. Again, the run-time overhead for inserting and retrieving models
from the CFMR depends on the data set, but was less than 5 msec in the worst
case. Further experiments with 20,000 EGRV models in the tree still show access
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(a) UKDemand - D1 (b) MeRegio7 - D2a

(c) MeRegio40 D2b (d) CRES-PV S1

Fig. 9. Time vs. Accuracy - EGRV

times of less than 1.1 sec which suggests that the tree scales also for large history
bases. Overall, our approach achieved better results when used in conjunction
with a more complex forecast model. For all data sets the CFMR outperformed
all other estimation approaches, which makes it the most suitable approach
for models that involve a large number of parameters. An interesting effect we
observed during evaluation was the steadily improving capability of the tree
to provide parameters that were already optimal without further optimization.
For later stages of the demand data sets, optimization was fully redundant and
improved the result only on special days such as Christmas. However, to ensure
the optimality of the result, the parallel optimization should still be conducted.

6 Related Work

Approaches that use aspects similar to our approach exist in various domains:
Kohara et al. described a system that uses prior knowledge and information
about events manually extracted from newspapers in conjunction with neural
networks to improve stock market predictions [21]. In the domain of concep-
tual modeling Becker et al. proposed the reuse of knowledge from other mod-
elers or former projects by using context-based modeling that combines reuse
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mechanisms like aggregation, restriction and specialization of previous models.
Context-base modeling exploits the context of a conceptual model to for example
restrict available constructs and their relations [22]. Breitman et al. proposed a
similar solution that stores conceptual models created by expert designers in a
repository that is used by less experienced designers to later create new concep-
tual models [23]. Luan Ou et al. introduced an approach for process models in
the business intelligence domain. They store process models in a model base and
use CBR and rule-based reasoning techniques to quickly find the right process
for a given task. For new data mining tasks they retrieve the most similar model
from the model base and present it to the user for confirmation. The similarity
measures base on domain knowledge about the process models [24]. Compared
to our approach, all presented solutions utilize similar basic ideas, especially, (1)
the creation of a case base for later reuse and (2) the usage of context or domain
knowledge to efficiently find suitable solutions. However, they are applicable in
their specific domain only and cannot directly be applied to the forecasting do-
main. Our approach is the first adaptation of CBR that exploits the context of
time series, for which reason it involves specific aspects like the utilization of a
decision tree, a similarity measurement and a subsequent optimization.

7 Conclusion

In this paper, we presented a novel parameter estimation approach that ex-
ploits the context of a time series to quickly find starting parameters for further
optimization. There, we used our Context-Aware Forecast Model Repository
(CFMR) to store the parameter combinations in conjunction to their associ-
ated context. Besides basic definitions, we described the preservation, retrieval
and revision of forecast models within our repository. Our evaluation on four
datasets showed that our solution provides an efficient way to estimate param-
eters, especially when dealing with complex forecast models. In most cases we
were superior to all evaluated competitors in providing more accurate forecasts
in less time. There is plenty of future work, which includes the context-aware
estimation of parameters, an experimental investigation of influences between
different context components and a even better parallelization of our approach.
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Abstract. Large multi-terabyte numerical simulations of different phys-
ical systems consist of billions of particles or grid points and hundreds to
thousands of snapshots. Increasingly these data sets are stored in large
object-relational databases. Most statistical analyses involve extracting
various spatio-temporal subsets. Existing built-in spatial indexes in com-
mercial systems lack essential features required for many applications in
the physical sciences. We describe a library that we have implemented in
several languages and platforms (Java/Oracle, C#/SQL Server) based
on generic space-filling curves, implemented as plug-ins. The index pro-
vides a mapping of higher dimensional space into the standard linear
B-tree index of any relational database. The architecture allows inter-
sections with different geometric primitives. The library has been used
for cosmological N-body simulations and isotropic turbulence, providing
sub-second response time over datasets exceeding several tens of ter-
abytes. The library can also address complex space-time challenges, like
temporal look-back into past light-cones of cosmological simulations.

Keywords: spatial indexing, numerical simulations, relational databases.

1 Introduction

Astronomical data is doubling every year. Much of the growth in observational
data is due to the emergence of ever larger detectors, CCD mosaic cameras. The
raw images from optical surveys in astronomy are starting to reach the PB/year
data rates. The resulting object catalogs are placed in large databases, a trend
started with the Sloan Digital Sky Survey (SDSS)[17,18]. These databases are
usually publicly available both through open SQL interfaces, and various web
services. There is a standardization effort under way, to define a set of atomic,
or core services, that can be used to build a system that federates all astronomy
data into a Virtual Observatory1. The astronomy community has been very
quick in embracing SQL as a new way to access and analyze these observational
1 See http://www.ivoa.net
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data sets. Sharable user databases placed server side emerged as a convenient
collaborative environment[12].

However, not only observational data are growing exponentially. In order to
interpret the observations, astronomers have traditionally been running large
numerical simulations on all astronomical scales, from the formation of black
holes to stellar evolution, the formation of galaxies and the large-scale structure
of the Universe. Traditionally the simulations were analyzed as they were ran. At
most a few (up to about 100) checkpoints were saved for subsequent analyses. As
simulations grow in size, writing the checkpoints becomes harder and harder, not
to mention their long-term archival and public access. Over the last ten years
the typical cardinality of state-of-the-art cosmological simulations has grown
from about 100 million to 300 billion. These simulations are run on the world’s
largest supercomputers, accessible only to a small fraction of the astronomy
community. Yet, there is a growing need by astronomers to be able to compare
observations to first-principle simulations. It is difficult today to publish a paper
related to statistical analyses of large extragalactic surveys without comparing
the results to large simulations. There is a set of reference simulations, like the
Millennium[15,3,1], Aquarius[16], Via Lactea-2[4], Coyote[8], and many others,
that represent the state of the art.

As a result, there is a growing need and pressure not only to make the data
from these simulations public, but also accessible. The expectations for data
access and interfaces are now set by the standards of the large on-line databases,
like SDSS. Traditionally, the public interface to these simulations was through
downloading the snapshot files from a central location to the users and analyzing
it at their local facility. As the simulation sizes are growing very rapidly (for the
Millennium XXL simulation[1] a single snapshot is 7 TB) this is no more feasible.
Furthermore, each simulation code has its own proprietary data format. The
users need to learn the subtle details of each simulation, customize I/O libraries,
and have non-trivial amounts of storage and processing at their location in order
to even get started.

Consequently, there is a substantial ongoing effort to bring a good fraction of
the available reference simulations on-line, in the form of publicly queryable rela-
tional or object-relational databases, and the International Virtual Observatory
Alliance is in the process of defining service interfaces2.

There are several different types of data in these simulations. In CFD we
have the data on a structured grid, with the physical parameters, like velocity,
density, pressure, dissipation, magnetic fields (for MHD), etc. For particle based
simulations we have discrete particles at the lowest level, representing the dark
matter, which are then aggregated into friends-of-friends groups, then to halos
and subhalos and finally into observable galaxies. These higher level objects are
the observable ones, but by linking them to the individual dark matter particles
we can build up the so-called merger-trees, the formation history of halos and
galaxies over cosmic time.

2 http://www.ivoa.net/theory

http://www.ivoa.net/theory
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The typical queries astronomers want to run against the data are related
to various spatial and temporal extractions of a set of galaxies, halos or dark
matter particles. Some of the search patterns are quite simple, like finding all
objects in a given spherical region of space at a given time, others can be much
more complicated, like building up a virtual observation of a past light-cone (see
Section 4.2).

The scale of the largest simulations is growing extremely fast. The currently
ongoing Silver River will have 50 billion dark matter particles. Even if only the
minimal information is stored (particle label, position and velocity), a single
snapshot is 3.2TB. The current plan is to generate 800 snapshots, for a total
of 2.6PB of output data. Over the years we found that open source databases
have yet to scale to such data sizes, and as a result most production sites have
used commercial database platforms when it came to a large scale deployment.
However, it is also clear that the spatial libraries and features offered by these
platforms are far from satisfactory for the kinds of spatio-temporal queries men-
tioned above.

In this paper we describe a framework for indexing and searching such
databases based on space filling curves, that is capable of representing these
search patterns, has excellent performance, and has been implemented and used
extensively in two of the most popular commercial database environments,
Oracle and Microsoft SQL Server, in deployments reaching tens of terabytes.

2 Methodology

2.1 The Problem: Fast Spatial Querying of Points in a Box

Consider the results from a large-scale cosmological N-Body simulation stored in
a relational database, containing tens of billions of particles. These particles are
represented as points, stored in a table with positions over a finite, cubic subvol-
ume L3 of 3D space. The coordinates of the points are floating point numbers,
stored in columns (X, Y, Z). In general, the points also have a (discrete) time
coordinate T and a velocity vector. This is not important for our main argument,
but the fact that e.g. Oracle Spatial (version 11g2) can not mix ordinary and
spatial columns in a single index makes that solution not relevant.

Typical spatial queries require finding points (at a given time) that are in some
way near to each other in space, or are located inside a region of a certain shape.
For the simplest applications in astronomy the subvolumes will be boxes, spheres
or cones, although our framework is able to deal with more complex shapes as
well. See Fig. 1 for an illustration in 2 dimensions. An important feature of many
of these simulations is that they assume periodic boundary conditions. We want
this fact to be reflected in our query results, see Fig.1-b. If a query volume crosses
a boundary, we want to retrieve also the points that we would find if the box
were truly replicated.
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Fig. 1. (a) shows a typical spatial query. Objects are searched which fall in a query
shape, here a circle. (b) shows a spatial query volume that crosses the boundary of
the simulation volume (black boundary). Due to the periodic boundary conditions the
query should also retrieve objects in the replicated boxes (red boundaries).

2.2 Space-Filling Curves and Octrees

The naive implementation of these spatial queries scans the complete table,
checking for each point whether it falls in the subvolume. For typical tables with
billions of rows that algorithm is too inefficient. Standard database indexes built
on existing columns, such as B-Trees, are also useless, since they do not preserve
three-dimensional coherence.

Our solution to this problem depends on a discretization of the spatial coor-
dinates, following classical techniques, based on octrees and space-filling curves
[2,6,7,10,13,14]. Space filling curves have the property that they map a set of
cells in a higher dimensional volume to the unit interval [0, 1]. The space filling
curves have the property that points close to each other in the embedding space
are also typically close to each other along the curve. This property is extremely
important for accessing large spatial data sets stored on external storage (hard
disks). Due to advances in the density of modern hard disk drives, sequential I/O
performance has become increasingly faster, while random seeks have remained
almost constant over the last ten years. As a result, sequential I/O patterns are
essential to deal with data sets measured in terabytes or larger.

In our approach we create a hierarchical partitioning of the L3 volume of
the simulation into a set of regular grid cells, organized into an octree of a
predetermined depth. Each point is assigned to the leaf node on the octree it
lies in. The tree nodes are labeled by the mapping provided by the particular
space filling curve used (z-index, Peano, Hilbert, etc). This label, stored as an
unsigned integer is represented as a column in the database. Since points in the
same cell will have the same address, a standard B-tree index defined on this
address alone will already speed up queries for points in the same cell.

As illustrated in Fig.2, space (assumed square) is subdivided in 2D child cells,
these cells are again subdivided and so on until an preset recursion level B is
reached. The total number of cells in D-dimensional space will be 2BD. Integer
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Fig. 2. A simulation box is recursively subdivided into 2B×D cells where B is the
maximum recursion level. At each level indexes are assigned to cells based on the index
of their parent cells as indicated in the bottom row. This assures that child cells are
consecutively numbered and provides an ordering of the cells along a space-filling curve,
in this example z z-curve.

indexes are assigned to the cells recursively as well. A cell at level N with index i
will be subdivided in 2D cells at level N+1 with indexes in [2D×i, 2D×(i+1)−1].
Clearly if a grid cell high in the hierarchy is contained in the volume, so will all
of its children. Moreover, all these children will have consecutive index values,
which implies that points organized according to this index can be retrieved very
efficiently. This fact is an important factor in our query algorithm.

Precisely how the child indexes are subdivided over the child cells is a further
detail that has some consequences for the performance. There are many different
space filling curves known[13]. The algorithm in Fig.2 uses a constant orientation
of the cells, corresponding to a Z-Curve, for our implementation we use a Hilbert
curve ([13], Ch. 2).

The advantage of the Hilbert curve is that two cells adjacent on the index are
also adjacent in the grid. The various families of space-filling curves have slightly
different statistical properties, which have been quantified using their correlation
function[11], finding the Hilbert curve to have the best clustering properties for
spatio-temporal indexes such as our implementation (see also [5]). Nevertheless,
our library is implemented in such a way that different space filling curves can
be easily added as plug-ins.

2.3 The Query Algorithm

Our algorithm for finding points in a given query shape makes use of the nested
hierarchy of grid cells. As illustrated in Fig. 3 it recurses into the simulation
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volume at the highest level, keeping boxes that are completely contained and
recursing down into the children of boxes that partially intersect, or completely
contain the query volume. Thus we iterate until some maximum resolution level
which should be no larger than the level at which the points are stored in the
database. At the end of the recursion we are left with a collection of boxes
that are fully contained within the query volume, and a number with a partial
overlap.

In pseudo code this can be written as follows:

1. initialize FULL list

2. initialize PARTIAL list

3. set currentlevel = 0

4. add SIMULATION_BOX to PARTIAL

5. while currentlevel < MAX_LEVEL do

6. initialize TEMP_PARTIAL list

7. foreach box on PARTIAL do

8. if(QUERY_VOLUME contains box) then

9. add box to FULL

10. else if(QUERY_VOLUME intersects box) then

11. add children of box to TEMP_PARTIAL

12. set PARTIAL = TEMP_PARTIAL

13. currentlevel++

Points in boxes in the FULL list are all contained in the volume, points in the
PARTIAL need to be checked individually whether they lie in the query volume.
To find the points in these boxes we need to translate each box to a range query
over the index column. At the deepest recursion level boxes have a single address,
at higher levels they correspond to consecutive ranges as explained above.

To minimize the number of disjoint ranges, a simplification step may be taken
that joins consecutive ranges from neighboring cells together. For the PARTIAL
lists this simplification may join ranges that are not direct neighbors, across
cells not in the PARTIAL lists. The maximum fraction of cells thus included
is parametrized by a tolerance, which we have set to 1/3, but needs further
experimenting.

The algorithm above does not yet take into account the periodic boundary
conditions. To do so, we modify steps 3. and 4. in the pseudo-code above. The
first step now is to check whether the query volume is completely contained in
the simulation box. If so, we continue as before. If not, we iteratively replicate the
box in the directions in which the query volume extends beyond the boundaries
of the box. This inverse recursion stops when a replicated box is created that
completely contains the query volume. In the example in Fig. 1-b this is the
outer box consisting of 4 copies of the original box as children.

This box now takes the role of the simulation box at the start of the recur-
sion down, its children consisting of translated copies of the original simulation.
These translation vectors must be taken into account when returning the final
results, so that point positions can be suitably adjusted. For more details see
the implementation notes in the next section.
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Fig. 3. The recursion from the simulation box down to leaf nodes is shown. The goal
is to find an approximation to the query volume with boxes drawn from different levels
in the hierarchy. The left side panel displays 4 recursion steps, in clock-wise direction
from level 0 to 3. Pink cells indicate those that overlap the query region, but are not
contained in it. Blue cells are fully contained and white cells are outside the volume. As
soon as a cell is colored blue or white, the recursion stops. On the right panel the final
result is shown, at level 4, with stars indicating the points that are the target of the
query. Note, that we find blue cells from different levels and that the remaining pink
cells will trace the boundary of the volume with arbitrary precision if the maximum
recursion level is increased.

3 Query Shapes

Scientific questions on N-Body simulations often translate to a series of geomet-
ric constraints on the distribution of points. To accommodate a wide variety of
studies, we formally introduce query shapes that users can create, store and man-
age within the same RDBMS, where the data reside. We implement routines and
custom data types that make these shapes first-class citizens in the database and
enable efficient spatial searching by connecting them to the relational engine’s
B-tree indexing mechanism. An expandable framework is implemented that de-
fines the fundamental geometric primitives. From these simple shapes, the users
can build more complex, custom query shapes that possess the same functional
qualities.

3.1 Geometric Primitives

The usual suspects for the most basic building blocks in 3D include boxes,
spheres and ellipsoids, cylinders, cones and frustums. Our collection of primi-
tives is currently limited to the most basic ones but continuously growing with
the demand of every new project. Among these, the most important is the axis-
parallel box that plays a major role in the organization of the data. For example,
a simulation has a bounding box, which in turn is recursively divided into smaller
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boxes down to the grid cells. This Box is also central to the space filling curve
and the indexing.

The primitives implement a simple, yet, sufficiently versatile interface that is
primarily used to describe their topological relation to other 3D objects. It is
formally defined as

public interface IShape

{

TopoPoint Contains(Point p);

TopoShape GetTopo(Box box);

Box GetBoundingBox();

}

The simplest is the containment test of a given point. Although this is concep-
tually a yes or no problem, it becomes a three-valued logic in the presence of
numerical imprecisions. A point can be inside or outside of a shape, or so close to
its boundary that a decisive answer is impossible. The TopoPoint enum captures
this distinction and replaces a boolean return type. It becomes important when
checking the containment of a grid cell. One can quickly test the vertices of a
Box against a shape to draw conclusions about their relation to the given shape.
For example, if all vertices of a box are inside a convex but one is outside, we
know there is a partial overlap. If the outside point close to the boundary within
the numerical imprecision, a full coverage can be established.

Similarly, the topological relation of shapes are formally enumerated in the
definition of the TopoShape. They can be identical, touching, intersecting, dis-
joint, or contain each other. This interface is sufficient to enable the use of spatial
indexing. As described in sec. 2.3, an IShape is intersected with successively more
refined axis-aligned boxes (the octree nodes), using the TopoShape relation to
determine which boxes are considered further. These boxes are mapped to a
range on the space filling curve.

In addition to the normal TopoShape relations, we also find it useful to dis-
tinguish certain cases as inconclusive. This can also occur when an approximate
algorithm is used for overlap calculations instead of a possibly more expensive
exact test. When this happens for spatial indexing, we can still proceed assum-
ing the worst case scenario and let the precise containment test decide for every
point separately. This only costs us in performance but not in accuracy.

3.2 Building Composites

Our library supports the building of composite shapes from the primitives in a
recursive manner. We implement the Boolean algebra via binary intersection,
union and difference operations that are generic composite shapes. Figure 4
illustrates these composites on different primitives along with the results of their
queries.

These generic composites implement the same IShape interface as the prim-
itives. They do so by recursively using its member’s identical interface. For ex-
ample, a point is inside a union of two shapes, if it is inside any of them. Or a
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Fig. 4. Generic composite shapes implement Boolean operators to enable advanced
querying. We show the union, intersection and difference of a box and a sphere. A
composite of composites is defined recursively.

box is fully covered by an intersection if it is covered by all/both shapes. And
so on recursively all the way down the binary tree to the primitives.

With the composite shapes there is only a practical limit to the queries that
users can execute. We note, however, that even the most complicated query
shapes will translate to a set of ranges on the space filling curve, hence the
pre-filtering using the B-tree of the RDBMS will be unaffected. Performance
penalty is only seen on the exact geometrical containment tests on a tiny subset
of the data.

We have defined a simple grammar for representing composite query shapes
as strings to facilitate their use in SQL. Examples are shown in section 5.1 below.

4 Representing Physics

A cosmological simulation evolves a model of the universe from early times to
the present. It produces outputs at discrete points in time, called snapshots. In
our database we need to have explicit representations of these simulations. We
need to enumerate the simulation domain, the particles describing the matter
in the universe, and the cosmological background within which they evolved.
We also need some of the numerical artifacts such as the discrete time steps
and the (periodic) boundary conditions. Here we briefly describe how these are
represented in the software and describe some of the functions.
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4.1 Simulations and Cosmology

A Simulation is a rectangular PeriodicBox, often a cube of size L. It contains
particles which are represented as 3D Point objects with coordinates (X, Y, Z).
We assume the simulation’s box to be subdivided into an octree grid with max-
imum depth B, with 23B cells. The cells are indexed using a space filling curve.
The type of curve is used is optional, but we have mainly tested the Hilbert
curve, which we will use from now on. We will refer to the cell’s index as PHKey.
The simulation box can calculate for each Point what cell is it in.

A simulation is run in a specific cosmological background, represented by
a Cosmology. The cosmology determines how internal units are translated to
physical ones, what the physical time is corresponding to a particular discrete
output snapshot, and can transform from time to redshift and to different possi-
ble cosmological distance measures. These features are especially important for
light-cone calculations, see next section.

4.2 Light Cones

A typical simulation produces a large number of output snapshots at differ-
ent time steps. Under the assumption of periodic boundary conditions, one can
mimic real observations in the universe in so-called “light-cones”. Due to the
finite speed of light looking far in space requires to look back in time as well. In
order to create such a light-cone observation we use snapshots at progressively
earlier times, as well as replicated volumes. Fig. 5 shows such a query configu-
ration. Here the yellow and blue parts of the cone represent different snapshots

Fig. 5. A light-cone traversing a large number of replicated volumes. These have to
be ”observed” at different consecutive times, indicated by the yellow and blue cone
segments.
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in time, while the small cubes show the replicated simulation volumes. Further-
more, for a more precise calculation the positions at a look-back time in between
snapshots could be properly interpolated, using the velocities.

Fig. 6 shows how the individual segments roughly cover the fundamental
simulation box.

Fig. 6. The wrapped covering of a light-cone such as the one in Fig. 5 inside the
fundamental box itself. Care must be taken that the simulation box is covered as
completely as possible, with possibly minimal overlap of different segments.

A light cone is a Cone in the periodically replicated simulation box, where
the depth of the cone represents not just a distance form an observer, but also
a different time of the simulation. A LightCone is modeled therefore as a col-
lection of cone segments, one corresponding to each snapshot that the light cone
intersects, with minimum and maximum depth defined by the corresponding
snapshot interval.

To calculate the sequence of segments we need a listing of the snapshots for a
simulation and a translation of cosmic time to distance in the box. The snapshots
will generally be stored in the database. The translation of time to distance is
implemented using a Cosmology class [19].

A light-cone observation is now a spatial query using the collection of seg-
ments, but since the query needs to take into account the time for each segment,
a LightCone is not a composite shape as defined above. The segments them-
selves are a primitive, ConeSegment, built from a Cone with an extra property,
minDepth. Instead each segment is treated separately, leading to a typical cover
as in Fig. 7.
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Fig. 7. Covers for consecutive cone segments from a light-cone. The red cells are com-
pletely contained in a segment, the partial cells are green. Each segment corresponds
to a different time, hence we can not combine the segments into a composite shape,
and partial cells appear on the separators between them.

5 The Implementation

Our first choice of programming language was C# for several reasons. Besides
the rapid development cycles of the .NET programming model, special consid-
eration was given to its integration with Microsoft’s SQL Server. The RDBMS
is tightly coupled with the runtime, which enables elegant (and fast) implemen-
tation of advanced extensions. Our solution decidedly follows a pattern that is
straightforward to port to other architectures, operating systems or database en-
gines. Recently we have completed a Java port on the Linux platform to enable
similar functionalities in Oracle.

A modular design has been followed from the beginning of the project to
provide programming interfaces at all levels. Dynamic libraries contain the core
routines to deal with the 3D geometry and query shapes. On top of that there is
an assembly for space filling curves and their related functionalities. Building on
these packages a lightweight wrapper of SQL routines is added. Here we focus on
the SQL extension that provides high-level access to the shapes and the indexes,
which facilitate the efficient queries.
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5.1 New Types in SQL

Our SQL Server API makes extensive use of User-Defined Types (hereafter
UDTs) written in C#. These custom types can encapsulate the objects of our li-
braries, and directly expose the relevant methods to SQL users. While the shape
primitives such as Sphere, Box, Cone, ConeSegment are directly made available
for the advanced users, a high-level shape UDT is also provided for convenience.
To create a sphere object in SQL with center (X, Y, Z)=(1, 2, 3) and radius 10,
one can simply write

DECLARE Sphere @s = Sphere::New(1,2,3,10)

or alternatively access it though the generic Shape type that wraps an IShape
instance, see Section 3, as

DECLARE Shape @s = Shape::NewSphere(1,2,3,10)

The Shape UDT also provides access to composite shapes and implements the
Boolean operations. For example, the union of two shapes is another shape that
is constructed as

DECLARE Shape @u = Shape::Union(@s1,@s2)

A flexible string representation is also introduced to describe the shapes in a
human readable format. A sphere is defined as SPHERE[1,2,3,10], a box would
be BOX[1,1,1,2,2,2] or their union as UNION[BOX[..],SPHERE[..]]; see the
project website for the full grammar. Using the strings we can create a union by
just an assignment,

DECLARE Shape @u = ’UNION[SPHERE[1,2,3,10],SPHERE[1,2,5,9]]’

All shape UDTs implement the method ContainsPoint(@x,@y,@z) just like the
underlying objects implement it as part of the IShape interface. It returns 1 if
the given point is contained in the shape, and 0 otherwise. Also these shapes do
not take into account periodic boundary conditions.

Other UDTs are specific to the simulations and their cosmological hypotheses.
A Simulation is primarily defined by the box of its volume and the cosmological
model. The Cosmology UDT captures the physics. It is instantiated with model
parameters, e.g., Ω, Ωbaryon, ΩΛ and the Hubble constant. It has methods for
calculus in space-time, e.g., the co-moving distance of an object at given redshift.
Functions like these are necessary to determine the apparent properties if objects,
when comparing to real observations. In addition, we also define the resolution
of the space filling curves.

5.2 New Spatial Index in SQL

A query shape is approximated by the union of cells along the space filling
curve, see Section 2. Such covers are returned by custom SQL routines as a
table. Each row represents an interval along the space filling curve. A User-
Defined Function (hereafter UDF) is introduced to make this more convenient
fSimulationCover(@sim Simulation, @query Shape). The function returns
a table of the following columns:
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KeyMin bigint, KeyMax bigint, FullOnly bit,
ShiftX real, ShiftY real, ShiftZ real

The KeyMin and KeyMax columns define the range of grid cells. The value of
FullOnly indicates whether the cells in the range are known to be completely
contained in the shape (1) or not (0). The Shift* columns represent a transla-
tion vector to be applied to the resulting points and allows periodic boundary
conditions to be taken into account as described in sec. 2.3. Particles found in a
cell in the range should be translated by this vector before they can be assumed
to be in the query volume. To quickly select some particles within a shape @shp
from a simulation @sim, one could just use the inner cover, FullOnly=1. The
following query runs exceptionally fast and only uses the B-tree index on the
PHKey to fetch the results.

SELECT p.ID -- Return the particle IDs

FROM Spatial3D.fSimulationCover(@sim,@shp) AS c

INNER JOIN Particles AS p

ON p.PHKey BETWEEN c.KeyMin AND c.KeyMax

WHERE c.FullOnly = 1 -- Inner cover

To select all the particles we have to include the cells on the boundary, the
PARTIAL cells from the pseudo-code in sec. 2.3. These are given by FullOnly=0,
and to perform the precise geometry cut we need to include the shape’s
ContainsPoint() method

SELECT p.ID -- Return the particle IDs

FROM Spatial3D.fSimulationCover(@sim,@shp) AS c

INNER JOIN Particles AS p

ON p.PHKey BETWEEN c.KeyMin AND c.KeyMax

WHERE c.FullOnly = 0 -- Boundary cover

AND @shp.ContainsPoint( p.X+c.ShiftX,

p.Y+c.ShiftY,

p.Z+c.ShiftZ ) = 1

We note the use of the shift vector when testing the particles’ positions for
containment.

The division in the FULL and PARTIAL lists of key ranges is currently being
investigated. The potential drawback to this approach is that the boundary
volume can become fragmented and, hence, require lots of short intervals in the
PARTIAL list to be represented. This could slow down the query more than the
speed obtained by the reduction in the number of explicit particle containment
tests. Getting the best possible performance is a delicate balancing act that
seems to depend on the actual problem. Often, however, whichever method is
selected, the queries run very fast. The performance of our solution is discussed
later in Section 6.

5.3 Remote Deployment through SQL

One of the most attractive features of Microsoft’s SQL Server has been its exten-
sibility. Since the release in 2005 the engine hosts a Common Language Runtime
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(CLR) and stores managed code as part of the database. The .NET assemblies
are created from the DLLs of the intermediate language. We encapsulate all re-
quired libraries into SQL scripts using hexadecimal representation. This way we
can deploy the spatial infrastructure across any SQL connection even remotely.
Our software package also comes with batch scripts that execute SQL installers
with parameterized target, which enables seamless deployment to a cluster of
databases. While we can easily deploy our solution to all production databases,
the first use cases such as the Millennium Database use a dedicated database
called fSpatial3D where all the code was deployed once. Users explicitly ref-
erence the routines in that database in all queries, which simplifies the update
process of the library and allows multiple version to coexist.

5.4 Application to the Millennium Database

The Spatial3D library was first deployed in the ”Millennium Database”3[9].
That database contains data products derived from the Millennium simula-
tions [15,3]. The Millennium simulation contained 10 billion particles in a box
of 685 Mpc on the side. Altogether 64 snapshots were calculated and stored,
for a total of O(20) TB. The database contains currently only derived products
such as halo and galaxy catalogs, the tables contain O(700-1000) million objects
each.

For spatial queries the relevant columns are (snapnum,phkey,x,y,z) and
these have been combined in a B-Tree index. The Spatial3D library is loaded in
a separate database, fSpatial3D and to have access to the UDTs, users have
to either connect directly to that database, or start all queries that make use of
these types explicitly with a use fSpatial3D statement.

The schema spatial3d contains the UDTs along with various cover func-
tions, and sims holds several utilities for the different simulations stored in
the database. For example, parameters of the Millennium simulation are conve-
niently returned by the following function,

CREATE FUNCTION sims.Millennium()

RETURNS spatial3d.Simulation AS

BEGIN

RETURN spatial3d.Simulation::New(’BOX[0,0,0,500,500,500]’,

spatial3d.Cosmology::New(0.25,0.75,0,0.73,0.04,-1),8)

END

Queries typically look for co-located galaxies, e.g., in spheres of 10Mpc radii
around the 10 most massive groups. The following command selects objects from
Guo database’s Millennium table using separate friends-of-friends collections in
a table FoF. This real-life example is written using a Common Table Expression
(CTE) to dynamically create set of query shapes around the groups.

3 See http://www.mpa-garching.mpg.de/millennium and in particular
http://www.g-vo.org/Millennium

http://www.mpa-garching.mpg.de/millennium
http://www.g-vo.org/Millennium
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WITH QueryShapes(FoFID,Sph) AS

(

SELECT TOP 10 FoFID,

spatial3d.Shape::NewSphere(x,y,z,10)

FROM MField.dbo.FoF

WHERE snapnum = 63

ORDER BY m_tophat200 DESC

)

SELECT DISTINCT s.FoFID, g.GalaxyID, g.x+r.ShiftX AS x,

g.y+r.ShiftY AS y,

g.z+r.ShiftZ AS z

FROM QueryShapes s

CROSS APPLY spatial3d.fSimulationCover

(sims.Millennium(), s.Sph, 8) r

INNER JOIN Guo2010a.dbo.MR g

ON g.PHKey BETWEEN r.KeyMin and r.KeyMax

WHERE g.snapnum = 63 -- Specific snapshot

AND ( (r.fullonly=1) -- Inner cover

OR

(r.fullonly=0 -- Boundary cover

AND s.sph.ContainsPoint( g.x+r.ShiftX,

g.y+r.ShiftY,

g.z+r.ShiftZ ) = 1)

)

The query returns in a few seconds delivering about 85,000 galaxies out of more
than 1 billion objects in the database and renders a web page with the new
results. Most of this time is actually spent in transferring the results over the
web to the browser.

6 Discussion

The Spatial3D library presented in this paper has so far been successfully de-
ployed in MS SQLServer databases containing very large simulations of cosmo-
logical systems as well as homogeneous turbulence. SQLServer does not have
native support for spatial queries in three and four dimensional spaces, hence
building our own library was the only option. This was greatly facilitated by the
Common Language Runtime, which provides an almost seamless integration of
complex procedural code and the T-SQL query language.

The performance has been satisfactory. Queries for objects in a rectangular
box in a table with 600 million objects see response times < 0.1 sec, allowing
support for an interactive graphical ”click-and-query” interface. It is possible
to tune the performance in a number of ways. Space filling curves other than
the Hilbert curve can be plugged in to the code without great problems. The
simplification step, in which cell ranges are merged, sometimes across outer cells
can be modified using a tolerance parameter, decreasing the number of seeks
on the disk drives. The desired recursion depth down to which a query shape
should be approximated can be explicitly set. The optimal choice of these settings
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depends on the hardware characteristics of the system under consideration, and
the details of the typical query workload.

The main issue with our framework is that it is external to the main database
engine. The reliance on user defined functions backed by procedural code makes
it difficult for the database engine to incorporate statistics on the spatial dis-
tribution of the points in the design of optimal query plans. Particularly when
columns from outside the B-Tree index with spatial columns are requested, the
default query plans can be very inefficient. It is often possible however to fix them
with simple changes to the query, such as substituting a forced LEFT OUTER JOIN
for an INNER JOIN.

A smaller issue, at least for SQLServer is the lack of support for table-valued
methods or polymorphism of function arguments. This makes for a slightly less
elegant interface than a proper object-oriented approach would offer.

An initial port to Java for deployment in Oracle (version 11g2) has been
undertaken. Oracle’s Spatial solution has support for 3D queries, but turns out
to be unsuitable for time dependent simulations, where a time coordinate must
be constrained together with the spatial columns. The required mixed indexes
are not supported. Furthermore, periodic boundary conditions need separate
coding, as do light-cone queries. The integration of Java in Oracle is not as
elegant as the CLR solution in SQLServer. Nevertheless initial tests indicate
that performance is comparable, showing that the main time is spent in the disk
I/O rather than the in-memory calls to the library.

We will publish our solution to the community under a BSD license. We plan
to extend it with more query shape primitives, such as frustums, cylinders and
ellipsoids and to querying for more general shapes than point objects.

Notes and Comments. We thank Volker Springel for providing us with the C-
version of the Hilbert library. AS and TB are supported by a grant from the
Gordon and Betty Moore Foundation, and NSF grants ITR-AST-0428325, OCI-
104114 and OCI-106256. The Millennium Simulation databases used in this pa-
per and the web application providing online access to them were constructed
as part of the activities of the German Astrophysical Virtual Observatory.
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Abstract. Wireless Sensor Networks (WSNs) are typically used to col-
lect values of some phenomena in a monitored area. In many applications,
users are interested in statistical summaries of the observed data, e.g.,
histograms reflecting the distribution of the collected values. In this pa-
per we propose two main contributions: (1) an efficient algorithm for
answering Histogram queries in a WSN, and (2) how to efficiently use
the obtained histogram to also process other types of aggregate queries.
Our experimental results show that our proposed solutions are able to
substantially extend the lifespan of the WSN.

1 Introduction

A typical Wireless Sensor Network (WSN) consists of nodes, equipped with
sensors, distributed in an area and connected, via a tree-like topology, to a
base station. Typically, WSN nodes have limited resources in terms of power,
CPU and memory. The base station is a full-fledged computer system with light
limitations on memory, CPU, or bandwidth. Battery lifetime is considered the
most important resource in WSN nodes as the required power for transmission
is significantly higher than the required power for data processing in a WSN
node [7]. Thus, it is vital that query processing algorithms for WSN are energy-
efficient.

WSNs are typically used to observe some phenomena about a monitored area
and are becoming common in many applications domains [4,2]. Simple aggregate
queries like Max, Average and Sum are sufficient for a large number of applica-
tions where a high-level (summary) view of the data suffices, e.g., when looking
for abnormal behavior. However, more complex aggregates queries such as His-
togram provide a broader picture and are mandatory for many applications. For
example, in the Electronic Nose project [2], any single value is not important by
itself, but, the distribution of the sensor values is used as a chemical signature
to classify the material as being safe or unsafe.

We assume that a WSN has N nodes sj ∈ S (1 ≤ j ≤ N) spread in a
monitored area. Each node sj in S periodically measures a value vj . In fact,
every value has an associated timestamp, however in order to lighten the notation
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we do not denote it unless necessary. Nodes are connected to the base station
by a routing tree, where the base station is the root and, they can reach the
base station by multi-hop routing through other nodes. We assume that the
connection between nodes are reliable (no link failure), and we focus on the data
aggregation problem only. Users are connected to the WSN through the base
station where they can submit queries and collect the respective answers.

We define a Histogram query as: Q = (Lb, Ub, b1, b2, b3, ...bB, epoch), where
epoch is the time lapse between any two consecutive histogram answers. The
lower and upper bound values of the measured phenomena are Lb and Ub. Each
bi is one of B bins in the Histogram query and it is defined as bi = [Lbi, Ubi[ ∀1 ≤
i < B and bB = [LbB, UbB]. Furthermore, Ubi ≤ Lbj ∀i < j and

⋃
1≤i≤B{bi} =

[Lb, Ub] and Lb1 = Lb and UbB = Ub. The answer for a Histogram query is
H = (h1, h2, ..., hB), where hi = | {(sj , vj) | Lbi ≤ vj < Ubi, sj ∈ S} |. Naturally,
a sensor’s value vj may change at any epoch and so does the query answer.

This paper presents two main contributions. The first is an efficient distributed
algorithm to answer Histogram queries in WSNs. This algorithm requires less
than half amount of energy used by the classical TAG algorithm [6]. Our second
contribution is to show how to answer other aggregate queries using histogram
at the cost of a very small overhead on the WSN.

The rest of this paper is organized as follows: Section 2 reviews how TAG
answers a Histogram query and details our proposed algorithm. How to com-
pute approximate as well as exact answers for other aggregate queries using a
histogram as a starting point is discussed in Section 3. Section 4 presents our
experiments and Section 5 discusses briefly the related work . Finally, Section 6
concludes the paper and presents a few future directions for further research.

2 In-Network Algorithms for Histogram Queries

A straightforward technique to build a histogram is to periodically gather all
values from all sensors at the base station and then build a histogram. The
classical TAG algorithm decreases the number of required messages extensively
comparing to the straightforward technique [6]. The authors define a model to
answer aggregate queries in WSNs using an in-network approach. The process
can be visualized as a routing tree where the base station is the root and nodes
send their aggregate answer as messages up the tree towards that root. This
process continues until the base station receives all aggregate answers and can
construct the query answer.

TAG works for a Histogram query as follows. Each sensor should send exactly
one message on every epoch but the message sizes (in bits) are different depend-
ing on the node type. The size of a message from a leaf node is log2 B + log2 N
bits (bin id + number of values in a bin), whereas the size of a message from
a non-leaf node depends on the values distribution on the histogram and is
bounded by O(log2 N ×B) bits.
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2.1 Histogram Incremental Updates (HIU) Algorithm

A value does not change a histogram answer if its change was within its current
bin’s lower and upper bounds. This histogram property motivates us to look
closer into the histogram construction process. Instead of sending its data every
epoch, a sensor can build an update message based on the previous round’s
data. In our algorithm, sensors receive incremental histogram updates, merge
them together and then forward to their parents, and so forth. The process
continues until the histogram in the base station is updated.

We assume that each sensor node’s data consists of two objects: its value vj

and the histogram summarizing its subtree Hj . In-node caching is an essential
component in the HIU algorithm. Thus, each node also caches its value and its
subtree’s histogram from the previous round in ṽj and H̃j , respectively.

The HIU algorithm works as follows. Every round, each node sj caches its
value and its histogram by copying vj into ṽj and Hj into H̃j . Then, each leaf
node updates its histogram Hj based on its value vj while an intermediate node
updates its histogram Hj based on its value and also based on the other mes-
sages received from its children. If the updated histogram in Hj is different than
cached histogram H̃j in any node, this node should send a single message. There
are three message types in HIU: (1) A leaf node may send its value only. An
intermediate node sends either (2) its updated histogram Hj , or (3) an update
message Uj summarizing the difference between Hj and H̃j , whichever smaller
bitwise. A more complex compression could be implemented for this function,
e.g., [9,10]. A detailed discussion about compression algorithms in WSN, how-
ever, is beyond the scope of this paper.

The update message Uj is a set of pairs (k, uk), where k is a bin id and uk =
hk − h̃k ∀hk ∈ Hj and h̃k ∈ H̃j . Recall that a histogram H = (h1, h2, ..., hB).
An update value, uk, could be positive or negative but cannot equal zero. If an
update value equals zero because this bin was not changed, it is automatically
removed from the update message.

Received update-messages in any non-leaf node may cancel each other in which
case nothing is sent forward. For example, consider an intermediate node C that
has two subtrees, A and B. Subtree A has x nodes where their value moved from
bin bk to bl. On the other hand, the subtree B has x−1 nodes where their values
moved from bin bl to bk. If these two updates are merged together, then subtree
C has only one value moved from bk to bl. Moreover, if node C’s value moved
from bl to bk, then C should not send any update to its parent at all.

3 Other Aggregate Queries

A histogram provides a broad picture for values in the WSN and is a start-
ing point for more statistical analysis. Occasionally, a user might like to know
more specific information (e.g. Max or Average) about those values represented
by the histogram. We can compute approximate and exact answers for several
aggregate queries using a previously obtained histogram in the base station.
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The approximate solutions have bounded accuracy levels [1] and the exact solu-
tions can be computed with very low extra overhead on the WSN.

Communication devices in some WSN mandate the sensor to send messages
of fixed size only [8]. In this case, sending less information will not decrease the
energy consumption because all buckets should have the same size. These idle
bytes can be used to send extra information, with no extra cost, in order to
facilitate computing the exact answer. We use this strategy to compute exact
answers for Max, Min, Sum, and Average queries.

While obtaining a histogram answer, each node can collect required informa-
tion and aggregate them to facilitate computing the exact answer in the base
station. The only change to the previously described HIU algorithm is that, if
an exact answer is required, leaf nodes values should be sent even if Hj = H̃j .
The kind of required information depends on the required aggregate query. For
example, in case of Max (or Min) queries, all intermediate nodes who construct
a histogram, Hj , should also report information about the maximum (or mini-
mum) value in their subtree.

Because the base station (and all intermediate nodes) knows the exact answer
for Count, it can compute the exact result for Average if the exact Sum is
available. The exact answer for Sum can be computed if each intermediate node
sends the total sum of its subtree while leaf nodes send their own values only.

4 Performance Evaluation

For our simulations we implemented TAG and HIU assuming both of them
are using a Shortest Path (logical) Tree (SPT) for the underlying routing tree.
We make the following assumptions about the required storage: (1) an ob-
served/sensed node value consumes 2 bytes, (2) a complete histogram size de-
pends on the number of bins, i.e., it requires 2×B bytes, where B is the number
of the bins in the histogram, and (3) a pair in an update message requires 3
bytes, 1 for the bin id and 2 for the update value.

We investigate our algorithms with respect to five parameters (Radio range
R, histogram size in terms of number of bins B, average amount of change in
sensor’s value δ, the probability that a sensor’s value change ρ, and number of
nodes in the WSN N). Table 1 has a list of all tested values for all parameters.
While testing one parameter, we use the default value (denoted in bold) of all
other parameters.

We used two datasets, a synthetic and a real one. Due to space constraints
we do not show the results obtained using the real dataset1. Nonetheless, the
results we obtained using the real dataset are available in an extended version
of this paper [1].

Our synthetic dataset consists of N nodes uniformly distributed in an area of
200m× 200m. The values of all sensors are initialized uniformly between 1 and
216. In each round, a sensor’s value could change with a probability ρ. In case of
change, a sensor value is increased by an exponential random variable (equally
1 http://www.select.cs.cmu.edu/data/labapp3/index.html



Histogram and Other Aggregate Queries in Wireless Sensor Networks 531

Table 1. Studied parameters and their values (default values in Bold)

Parameter Used Values

R (WSN node’s radio range) 20, 30, 40, 50, 60
B (Histogram size in terms of number of bins) 5, 10, 20, 40, 60
δ (Average amount of change) 1%, 25%, 50%, 75%, 100%
ρ (Probability of change) 1%, 25%, 50%, 75%, 100%
N (Number of Sensors) 1000, 2000, 3000, 4000, 5000

likely to be negative or positive). The average of the exponential random variable
is δ% of 216. We assume that all sensors capable of sensing values between 0 and
216 only. If a value exceeds that range in either direction, it is assumed to be
either 0 or 216, respectively. All Figures show the average values obtained over
20 runs. During each run, the sensor locations are randomly distributed and the
base station is randomly selected among one of the sensors. In order to ensure a
fair comparison, both TAG and HIU use exactly the same setup.

Since the main typical goal within the realm of WSN research is the mini-
mize energy consumption we use network lifetime as the performance indicator.
Network lifetime is counted in number of rounds until the first node dies. In all
our experiments we assume that each battery’s initial budget is 30mJ . Energy
consumption is calculated after [5], i.e., Et = S+ t×b×d2 and Er = r×b, where
S = 50 nJ is the setup cost to send any message, t = 10 pJ and r = 50 nJ are the
required amount of energy to send or receive one bit for one meter, respectively.
The message size in bits is b, while the euclidean distance (in meters) between
the sender and the receiver is d.

4.1 Histogram Queries

Figure 1 shows the HIU and TAG performance when changing δ, ρ, R and
B. Because TAG performance does not depend on changes in sensors’ values,
a network using TAG algorithm died after about 2700 rounds regardless of the
change probability (ρ) or amount of change per round (δ). Figures 1(a) and 1(b)
show that HIU performs better when the changes of nodes’ values happen less
frequently because it caches the result of the previous round and send updates
only, if required. For higher update frequencies (ρ) or update with large changes
(δ), HIU performance becomes stable. The reason for that is two fold. First,
HIU selects whether to send an update message or a histogram message. This
arbitration guarantees a worst case scenario if more than half of the bins are
changed. Second, because the node’s histogram is constructed in network, many
of these changes are not forwarded as they can cancel each other in the early
stages of the routing tree.

Figure 1(c) shows that both TAG and HIU perform better when the radio
range is small. This seems to contradict the following intuition: the smaller the
radio range the more hops are required from leaf nodes to reach the base station,
the more messages and then the shorter network lifetime. In reality, each node
sends a message to reach all the other nodes within its range regardless of the
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Fig. 1. Network Lifetime analysis

real distance between the sender and the receiver. The larger the radio range the
larger the energy consumed, because energy consumption is based on how far a
message can reach and is not based on the euclidean distance between the sender
and receiver. The Figure shows that even though the performance of both HIU
and TAG is better when the radio range is smaller, HIU multiplies the network
lifetime three or four times comparing to TAG.

Figure 1(d) is an evidence that HIU can still multiply the network lifetime
by at least a factor of two as the number of bins increases. A larger number of
bins means a higher probability that the number of changed bins increases and
then HIU performs deteriorates. However, TAG requires all intermediate nodes
to send their partial state regardless of number of bins, i.e., TAG also performs
worse when increasing number of bins.

More experiments on [1] show that HIU can scale efficiently and handle
WSNs with large number of nodes better than TAG. We basically increase the
network density with N. HIU has the same performance regardless of the number
of sensors in the field. TAG’s performance decreased dramatically because the
more sensors in the field the higher probability of occupying all histogram bins.
Recall that TAG sends the bin’s count if the bin is occupied by one or more
values. On the other hand, because of our encoding, the values distribution does
not influence HIU performance. The key factor is the how frequent values change
and by how much.

4.2 Exact Answers for Other Aggregate Queries

Regardless of the algorithm used to construct a histogram in the base station,
a histogram allows computing approximate answers for several other aggregate
queries without any overhead (as discussed in Section 3).
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Because the main target of our experiment now is to study the HIU overhead
cost for computing an exact answer, we now use the average amount of bytes
sent per sensor per round as our performance indicator. Every round, the total
number of sent bytes from all nodes during all previous rounds are calculated
and then divided by number of sensors. For brevity we constrain our presentation
to a particular type of query, namely Max queries.

Based on [6], every sensor should, due to in-network aggregation, send ex-
actly 2 bytes to collect the maximum value using TAG. HIU collects the Max
information while constructing the histogram. HIU’s performance depends on
the amount of changes in the network because it uses in-network caching and
send data to update this cache. Initially HIU requires more bytes to be sent, but
as time goes, the average total number of sent bytes per round is decreased and
eventually reaches a steady state. Recall that the first round in HIU consumes
a large amount of energy due to sending the largest amount of bytes comparing
to other rounds because there is no cached information.

Figure 2 shows the amortized analysis for TAG and HIU algorithms in com-
puting the exact Max using four parameters: δ,ρ, R and B. The main goal is to
show that HIU can outperform TAG in the long run, after a few rounds.

Figure 2(a) shows the influence of change probability on HIU. If the proba-
bility is 100% then HIU needs one extra byte from each sensor (on average) per
round. As the probability gets smaller, the overhead decreases. The figure shows
that lower values of ρ leads to a smaller HIU cost but TAG’s performance stay
the same. If the probability is 1% only, not shown in the figure, HIU outper-
forms TAG by about 1.8 bytes which means 90% less bytes than TAG. It is worth
mentioning that HIU’s cost includes, also, constructing an accurate histogram in
the base station while TAG (in this experiment) computes the maximum value
only. The histogram in the base station offers computing approximate answers
for many other aggregate queries. This means, if the target is computing the
Max query only, then HIU is better only if sensors change their values not very
often (ρ ≤ 40%).

In Figure 2(b) we assume that ρ = 50% and investigate the influence of the
amount of change (δ). If δ is very small (1%) HIU will outperform TAG after 3
rounds only. If δ is very large (100%), HIU ties with and slightly outperforms
TAG. Recall that a sensor can sense a specific range of values. If the value is
bigger than the maximum value, a sensor will report its maximum limit. If the
average amount of change is 100% then there is a high probability that all sensors
end up detecting only the maximum or minimum limits because the change could
be positive or negative. It is clear that, in the long term, the amount of change
does not have a significant influence on the results in Figure 2(b). Regardless of
the value of the amount of change δ, the average number of bytes is very close
to 2.05. The exception for this conclusion is when δ is very small, e.g., δ = 1%
because changing a sensor value by 1% on average will unlikely change its bin
in the histogram (assuming the bin’s width is resonable) and then unlikely to
cause a sensor to send any data.



534 K. Ammar and M.A. Nascimento

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50

A
vg

. #
B

yt
es

/S
en

so
r

Round #

ρ = 100%
ρ = 50%
ρ = 25%

TAG

(a) Probability a value changes (ρ)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50

A
vg

. #
B

yt
es

/S
en

so
r

Round #

δ = 100%
δ = 50%
δ = 1%

TAG

(b) Average amount of change (δ)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50

A
vg

. #
B

yt
es

/S
en

so
r

Round #

R = 50
R = 30
R = 20

TAG

(c) Radio Range (R)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50
A

vg
. #

B
yt

es
/S

en
so

r
Round #

B = 60
B = 20
B = 10

TAG

(d) Histogram Size (B)

Fig. 2. Cost of running exact-Max (X-axis is number of rounds)

HIU performance depends on the bin size (number of bins) because the num-
ber of values in smaller bins is more likely to change every epoch. Although the
error bound of all approximate answers get worse when bin size increase, the
HIU algorithms perform better while computing exact Max. Figure 2(d) shows
that decreasing number of bins can make HIU outperforms TAG very early,
round = 3, even if the probability of change and amount of change are both
50%. TAG outperforms HIU when δ or ρ equals 50% but if we decrease number
of bins, e.g. B=10, HIU wil outperform TAG. The major fraction of the HIU
cost is paid to construct the histogram. Decreasing histogram size decreases the
histogram overhead but increases the Max overhead (log(Ubi −Lbi)). However,
this overhead is already very small comparing to the Histogram cost.

The sensor’s radio range influences the logical tree structure. A short radio
range requires the WSN to build a logical tree with larger depth than a long
radio range. Increasing the average number of hops for sensors to reach the base
station does not have any influence on TAG because every sensor will send a
single message of fixed size (2 bytes) any way. In HIU, the message size is usually
bigger than TAG. It also depends on the values and sensors distribution. The
shorter the radio range, the more the number of hops which requires HIU to
send more bytes. Figure 2(c) shows that increasing the radio range makes HIU’s
total cost less than TAG’s total cost after only 3 rounds.

Even though a graph is not shown we also investigated the influence on the
number of nodes. Network density depends on the number of sensors and it has
no influence on the TAG algorithm to compute Max. In all cases, each sensor
should report its value. In the case of HIU, the more sensors available in the
area the more opportunities to save and decrease the amount of sent messages.
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5 Related Work

There has been not much work done in the literature to construct a histogram
of WSN values since Madden et. al. proposed TAG algorithm in 2002 [6]. Chow
et.al. proposed an algorithm to construct a spatio-temporal histogram [3]. The
main idea is to construct an approximate spatio histogram that is updated with
every time any sensor reading reaches the base station. This approximate His-
togram is used for location monitoring. The authors proposed a basic and adap-
tive approach to construct an approximate histogram in the base station. The
main idea is collecting values at the base station and then construct the his-
togram. The energy saving comes from constructing an efficient approximate
histogram instead of an exact one. Since our algorithm construct an exact his-
togram using an in-network algorithm and we do not require all values to be
sent to the base station, we did not compare their approach with HIU.

6 Conclusions and Future Work

In this paper we proposed a new algorithm (HIU) that uses in-network aggre-
gation and in-node caching to reduce the energy consumption for constructing
a Histogram query. Obtaining a histogram in the base station helps in com-
puting bounded approximate answers for other aggregate queries. Moreover, we
proposed algorithms that use HIU to compute exact answers for these aggregate
queries. HIU outperforms the TAG algorithm (current state-of-the-art to answer
a Histogram query) multiplying the network lifetime, on average, about three
times. In the long term, HIU outperforms TAG’s algorithm in computing the
Max query if the amount and/or probability of changes in observed values are
low. Nonetheless, we have shown that a small histogram size can compute an
exact answer for a Max query less expensively than TAG.

We would like to develop a cost model for computing the cost of Histogram
queries. Moreover, in our work, we assume that network communication between
sensors is perfect with no losses. In real world applications, this is not very
realistic. In-node caching can be useful to help reduce the impact of any network
failure. How to make HIU able to reduce the impact of any network failure is
another issue that we would like to address in the future.
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Abstract. Forecasting is an important analysis task and there is a need
of integrating time series models and estimation methods in database
systems. The main issue is the computationally expensive maintenance
of model parameters when new data is inserted. In this paper, we ex-
amine how an important class of time series models, the AutoRegressive
Integrated Moving Average (ARIMA) models, can be maintained with re-
spect to inserts. Therefore, we propose a novel approach, on-demand es-
timation, for the efficient maintenance of maximum likelihood estimates
from numerically implemented estimators. We present an extensive ex-
perimental evaluation on both real and synthetic data, which shows that
our approach yields a substantial speedup while sacrificing only a limited
amount of predictive accuracy.

Keywords: AutoRegressive Integrated Moving Average Models,
Parameter Estimation, Integrated Forecasting.

1 Introduction

Time series can be encountered in many domains like business (e.g. sales or
inventory), industry (e.g. yield rates or power consumption) and science (e.g.
sunspot activity or ambient temperature). One important time series analysis
task is forecasting, which can be achieved by creating a model of the time series.
A suitable model represents the process that generated the time series in question
and reproduces the dynamics of the time series, e.g. deterministic or stochastic
trend or seasonal patterns. Forecasts of the time series can then be derived from
the model.

A widely used class of time series models are the AutoRegressive Integrated
Moving Average (ARIMA) models [2] that are able to model a wide range of
real-world time series from various domains [6,8]. A key task in the creation
of time series models is parameter estimation, which is the determination of
values of the model parameters that provide an optimal fit to a time series. Op-
timality can be determined through different optimization criterion, e.g. a least
squares approach. However, the best parameter values can usually be obtained
through the maximum likelihood approach that uses the model specific likelihood
function as optimization criterion [2]. The maximization of this function is of-
ten implemented through computationally expensive numerical procedures, e.g.
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Quasi-Newton algorithms, where the parameter values are iteratively adjusted
until the likelihood becomes maximal.

There has been a rising research interest in integrating forecasting function-
ality in database management systems [3,5,1] and there are also first practical
implementations, e.g. in the analysis services in SQL Server 2008 [9]. Integrated
forecasting offers the key advantage of reusing models to answer repeated or
similar queries [4]. The expensive parameter estimation is performed only once
and its costs amortize through using the model for answering many queries.

What has not been considered so far is the issue of maintenance, i.e. how
to update parameter estimates when real time passes and new data becomes
available. Simply ignoring the new time series elements will cause the model
to become outdated and not reflect the true process any more. Reestimation of
the parameters after every update guarantees that model parameters are always
based on all available information, but it is also the most expensive possible
maintenance procedure. A simple approach to maintenance is periodic reestima-
tion, where parameters are reestimated after a certain number of new tuples
have been inserted. This is less expensive, but omitting estimation without any
consideration of the impact of the new tuples on the estimated parameters can
still increase the forecast error arbitrarily [10].

In this paper, we propose on-demand estimation, a novel approach for effi-
ciently maintaining maximum likelihood parameter estimates acquired through
numerical optimization. We focus our presentation on ARIMA models, but the
approach is in principal applicable to any estimation scheme using numerical
optimization.

To make maintenance more efficient, on-demand estimation involves con-
structing a boundary synopsis around a found optimum on the likelihood func-
tion. The boundary helps to decide whether updates will change the optimum
and thereby the estimated parameters significantly. Note that we can decide on
the impact of the update without actually estimating the parameters anew. If
the update will not change the optimum we can skip the expensive reestimation
and we perform it otherwise.

2 On-Demand Estimation

Parameter estimation is the task to find parameter values ζ that provide the
optimal fit to a given time series x1:t. Updates to a time series expand it, e.g.
an update xt to a time series x1:t yields x1:t+1. Parameter estimation using
numerical procedure involves the evaluation of a function on each element of
the time series at least once, but normally several times. Hence, estimating
parameters is computationally expensive and becomes more expensive with each
update.

We focus our discussion on parameter estimation for ARIMA(p, d, q) models.
The structural parameters p, d and q are set a priori and can not be estimated.
Only p and q have an influence on the likelihood function, while d controls the
preprocessing step differencing (not relevant for this paper). We employ one
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Fig. 1. Example evolution of ARIMA(2, 0, 0) estimates

variant of the likelihood function of ARIMA models, the conditional likelihood [2].
Maximization of it can be realized by minimizing the conditional sum of squares
cSS(φ, θ), where φ and θ form the parameter vector ζ to be estimated:

cSS(φ, θ) =
t∑

i=p

(ai(φ, θ, x1:t))2 =
t∑

i=p

⎛⎝xi −
p∑

j=1

φjxi−j −
q∑

k=1

θkai−k(φ, θ, x1:t)

⎞⎠2

An ai(φ, θ, x1:t) term is the difference of xi, the prediction from the autore-
gressive part of the model that uses a linear combination of the past xi−p:i−1

and the prediction from the moving average part that uses a linear combina-
tion of the past ai−q:i−1. Hence, the cSS can be interpreted as the sum of the
one-step-ahead prediction errors. An important property of the cSS is that we
can incrementally maintain it for fixed parameter values (φ, θ): cSSt+1(φ, θ) =
cSSt(φ, θ)+(at+1(φ, θ, xt+1))2. Note that incremental maintenance of the objec-
tive function for fixed parameter values can be derived for many other parameter
estimation tasks, e.g. for any numerical least squares estimator. Therefore, our
approach could be applied there as well.

Overview. The basic idea of on demand estimation is to decide whether an
update xt, to a time series x1:t−1 is influential enough to change the location
of the optimum on the objective function significantly and hence justifies the
use of estimation on the expanded time series x1:t to get the current parameter
estimates. Hence, for ARIMA models we need to assess how heavily an update
changes the distribution of the cSS.

We introduce our approach using an example. Figure 1(a) shows how the es-
timates of the parameters φ1 and φ2 of an AR(2) process change after successive
updates. The contour lines represent the cSS distribution after nine updates
were applied and the filled square marks the minimum cSS after these nine up-
dates. We see how nearly all earlier estimates varied heavily after updates, which
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Algorithm 1. On-Demand Estimation
cv: center vector; vvi: vertex vector; tol: tolerance

1: for each update tuple xt do
2: if exists(syn) then
3: cSScv,t ← cSScv,t−1 + calculate cSS(cv, xt)
4: for each vv in syn do
5: cSSvv,t ← cSSvv,t−1 + calculate cSS(vv, xt)
6: if cSSvv,t < cSScv,t then
7: syn ← build synopsis(estimate parameters(x1:t), tol)
8: end if
9: end for

10: else
11: syn ← build synopsis(estimate parameters(x1:t), tol)
12: end if
13: end for

requires reestimation. However, after the ninth update, the next four updates
result only in small changes.

To decide on the impact of the next update we construct a boundary synopsis
that consists of the four vertex vectors vv (empty squares in Figure 1(a)) around
the center vector cv (filled square). The center vector is the minimum of the
cSS found by the last estimation, while the vertex vectors represent acceptable
tolerance in the parameter estimates. Figure 1(b) shows a projection of the cSS
depending only on φ2 with φ1 ≈ 0.57, i.e. a vertical cut through the cSS from
top to bottom. The continuous line with squares is a scaled version of the cSS
after nine updates and with the center vector at the minimum. After each of
the next four updates, estimates change only slightly as can be seen in Figure
1(b) where the cSS after the four updates (dash-dotted line with triangles)
still has its minimum inside of the boundaries, although the true minimum is
not at the cv any more. A significant change happens after the next update.
We can see in Figure 1(b) that the minimum of the dashed line with circles is
now outside the boundary. When we look at the left vertex vector, we notice
that cSS is now smaller than at the center vector. This is our indication that
the minimum has shifted and that we must apply estimation to find the new
minimum. This approach is efficient since we can maintain the cSS incrementally
at all parameter vectors, requiring to evaluate the objective function only on the
update and adding it to the stored cSS.

Formal Definition. Algorithm 1 formalizes these considerations. On the first run
of on-demand estimation we have no synopsis yet. It stores center and vertex
vectors as well as the cSS at these vectors. The synopsis is constructed from
a parameter estimate yielded by estimate parameters(x1:t) and a user defined
tolerance tol (line 11).

For any successive update, we update cSScv,t for the center vector (line 3).
Since cSS can be updated incrementally, we need to evaluate the objective func-
tion calculate cSS for a parameter vector (cv and the vv) only on the update
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xt. We also update cSSvv,t for each vertex vector (line 5) and stop if we find
a vertex vector where cSSvv,t < cSScv,t, i.e. when we have an indication of a
significant change. We then proceed as in the initial construction of the synopsis.
If we update all vertex vectors without detecting a significant change, we can
stop processing the update, since the old estimate is still good with respect to
the tolerance.

Form of the Boundary. We propose two boundary structures: Hypercube and
Simplex. While the hypercube offers absolute uniform coverage of all dimensions
of the parameter space, the simplex is the structure with the smallest possi-
ble number of vertices to bound the center vector in all dimensions [11]. The
hypercube can simply be constructed from a new parameter estimate, i.e. the d-
dimensional center vector cv = (cv1, . . . , cvd) and tolerance tol by creating a pair
of new vectors vpi = {(cv1, . . . , cvi+tol, . . . , cvd), (cv1, . . . , cvi−tol, . . . , cvd)} for
each dimension i = {1, . . . , d}. The boundary is the union

⋃d
i=1{vpi} and con-

sists of 2d vectors.
A simplex in d dimensions is composed of d + 1 vectors. For example, in two

dimensions the simplex is a triangle. The boundary is looser than with the hyper-
cube, since we have fewer vertices at which to check for a shift. A simplex can be
constructed from a center vector cv = (cv1, . . . , cvd) by creating a new vector vi

for each dimension i = {1, . . . , d}: vi = {(cv1, . . . , cvi + tol ∗ o, . . . , cvd)}, where
o = 1 if cvi > 0 and o = −1 if cvi < 0. This yields d vectors with an orientation
o away from the coordinate origin. The last vector is acquired by scaling cv in
the direction of the origin in a way that the new vector vd+1 has a distance of
tol to cv. The simplex is made up of

⋃d+1
i=1 {vi}.

Adaptation. We now introduce an approach for the hypercube that adapts the
boundary to the variance of the parameter estimates. We achieve this by increas-
ing the tolerance for parameters that vary heavier than others, i.e. by construct-
ing vertex vectors that are further away from the center vector, and vice versa. An
adapted hypercube can be constructed from a center vector cv = (cv1, . . . , cvd),
tolerance tol and a vector of scale factors fi with i = 1, . . . , d by creating a pair of
new vectors vpi = {(cv1, . . . , cvi+fi∗tol, . . . , cvd), (cv1, . . . , cvi−fi∗tol, . . . , cvd)}
for each dimension. To determine the fi, we calculate the empirical variance V ari

per dimension i from the elements of the parameter estimates cv1,i, . . . , cvm,i in
that dimension i. The scale factor fi is defined as:

fi = d ∗ V ari(cv1,i, . . . , cvm,i)∑d
j=1 V arj(cv1,j , . . . , cvm,j)

Hence, the scale factor fi is a measure of the variance in dimension i relative
to the overall variance of the estimates. We normalize the fraction by multiplying
with d and gain a factor fi that is larger than one if the variance is above average
and vice versa. If all dimensions vary equal, all scale factors are fi = 1.

Internal Estimation. Internal estimation is a heuristic that seeks to improve on
the base strategy of using the center point as a fixed parameter estimate. We
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introduce it for the hypercube. The basic idea is to shift our parameter estimate
from the center vector cv in the likely direction of the true cSS minimum. Our
shifted estimate ζ is determined as:

ζ = cv +
2d∑

i=1

di∑2d
i=1 di

(vvi − cv)

where di = (cSSvvi − cSScv)
−1, i.e. the reciprocal of the cSS difference between

vertex and center. This gives the most weight to vertices that have a relative low
cSS which is an indication that the true estimate lies in the direction of that
vertex. We normalize the di to sum to one and multiply the resulting weights
with the directional vectors (vvi − cv). The weighted sum of all 2d directional
vectors gives the final estimate.

3 Evaluation

We implemented all presented maintenance approaches in the R programming
language. Our evaluation consists of a series of simulations to evaluate run time
behavior and accuracy. A simulation run is composed of an initial batch estima-
tion on a starting window x1:S of the time series at hand. S is set large enough
to give a first parameter estimate (e.g. S = p + 1 for ARIMA(p, 0, 0)). We then
expand the time series to x1:S+1, x1:S+2 and so on until the end of the series
and we call the maintenance procedure after each expansion.

The baseline approach consists in using estimation for each update. We also
report results for periodic estimation for specific rates of estimation. In the fig-
ures, periodic x means that after each x tuples parameters were estimated. We
measured accuracy and runtime behavior and we present the latter as speedup
in terms of the average estimation time in comparison to the baseline.

We used both real and synthetic data for our evaluation. The synthetic set
is composed of several simulated time series of different length that behave ac-
cording to given ARIMA models of different order and parameterization. The first
real dataset are the 645 yearly time series from the M3 competition [8], an ex-
tensive empirical evaluation of the predictive performance of a large number of
forecasting methods. The second real data set is derived from the half hourly
measured electricity demand in Great Britain, which is published by National
Grid [7]. We used the Initial Demand Outturn of 2008 and aggregated it to the
sum per day yielding a 347 element time series with seasonal patterns per week
as well as over the year.

Synthetic Data. To evaluate the loss in accuracy caused by skipping estimation
we present the deviation of estimates for periodic and on-demand estimation
with respect to the estimates yielded by the baseline. As can be seen from Figure
2(a), the mean deviation, as root mean squared error, lies well inside the bounds
of the used tolerance. We can see that the Hypercube estimators have tighter
bounds. Note that the internal estimation (IE), the adaptation (A) and the
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Fig. 2. Experimental Results on Synthetic Data

combination (A+IE) of these two modifications each reduce the mean deviation.
Because we can only check cSS values at the vertex vectors, the boundary is not
strict. Figure 2(b) shows the percentage of estimates that varied larger than the
set tolerance. The ratio is relatively large for very small tolerances because the
covered parameter space is equally small. The percentage of boundary violations
sinks with increasing tol, but rises again for those approaches that do not adapt
the boundary.

We see from Figure 2(c) where tol = 0.05 that the speedup increases as ex-
pected with the length of the overall simulated time series. The reason is that
the benefit for each skipped update is larger for larger time series. Speedup also
increases with increasing tolerance (Figure 2(d), length = 500), whereby we see
an speedup of about 50 for the Simplex and about 40 for the static Hypercube
estimators at tol = 0.05. Looking at Figures 2(a) and 2(d) conjointly, we see
that for a given tolerance, e.g. tol = 0.05, the variants of on-demand estimation
in comparison to periodic estimation can offer a smaller error, e.g. adapted Hy-
percube vs. periodic 25, a greater speedup, e.g. Simplex vs. periodic 10, or
both e.g. adapted Hypercube with internal estimation vs. periodic 10.
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Fig. 4. Experimental Results on Energy Demand Data

Real Data. We used the time series from the M3 competition to test the robust-
ness of our approach under adverse conditions. These series are very short with
a minimum length of only 28 elements. Hence, there is little that can be gained
from omitting estimation and the estimates on such short time series may vary
strongly with each update. However, there are still inserts that do not change
the parameters significantly and on-demand estimation identifies these updates.
As can be seen form Figure 3(b), even on this adverse data set we are never
slower than the baseline and can even achieve speedups, e.g. a speedup of about
6 for the Hypercube approach with tol = 0.05.

We evaluated accuracy using a series of one-step-ahead forecasts x̂t+1 from
the models and measuring the error to the real value xt+1 using the symmetric
mean absolute percentage error SMAPE = 100∗t−1

∑t
i=1(|xt − x̂t|)(|xt|+|x̂t|)−1

(range: 0% to 100%). We can see from Figure 3(a) that on-demand and periodic
estimation yield a slightly worse but acceptable SMAPE than the baseline. The
variation between approaches is small, but for larger tolerances the speedup
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of on-demand estimation is higher than that of periodic estimation with only
slightly greater error.

Figure 4(a) shows the SMAPE of the energy dataset. Note that the SMAPE
for nearly all of our approaches is lower than the SMAPE of the baseline. This can
occur in real world data, where skipping an update might decrease the forecast
error. We can also see an outlier for the two static Hypercube approaches at
tolerance tol = 0.01 which does not show up in the adaptive approaches that
perform better. The speedup on this data set is huge for all our approaches
e.g. about 250 for the Simplex at tol = 0.025 (Figure 4(b), logarithmic scale).
Periodic estimation has a smaller speedup and greater error.

4 Conclusion

We proposed on-demand estimation, a maintenance strategy that uses expensive
estimation only when necessary and we presented several on-demand estimators.
With these estimators we achieved a considerable speedup over the baseline ap-
proach on synthetic and real data with only little impact on predictive accuracy.
Our approaches also outperform periodic reestimation by offering either a smaller
error or a greater speedup.
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Abstract. Large-scale N-body simulations play an important role in advancing
our understanding of the formation and evolution of large structures in the uni-
verse. These computations require a large number of particles, in the order of
10-100 of billions, to realistically model phenomena such as the formation of
galaxies. Among these particles, black holes play a dominant role on the forma-
tion of these structure. The properties of the black holes need to be assembled in
merger tree histories to model the process where two or more black holes merge
to form a larger one. In the past, these analyses have been carried out with cus-
tom approaches that no longer scale to the size of black hole datasets produced by
current cosmological simulations. We present algorithms and strategies to store,
in relational databases (RDBMS), a forest of black hole merger trees. We imple-
mented this approach and present results with datasets containing 0.5 billion time
series records belonging to over 2 million black holes. We demonstrate that this
is a feasible approach to support interactive analysis and enables flexible explo-
ration of black hole forest datasets.

1 Introduction

The analysis of simulation-produced black hole datasets is vital to advance our under-
standing of the effect that black holes have in the formation and evolution of large-scale
structures in the universe. Increasingly larger and more detailed cosmological simula-
tions are being used to gain insight on the evolution of massive black holes (Sec. 2).
The simulations store the data in a format that is not readily searchable or easy to ana-
lyze. Purpose-specific custom tools have often been preferred over standard relational
database management systems (RDBMS) for the analysis of datasets in computational
sciences (Sec. 3). The assumption has been that the overhead incurred by the database
will be prohibitive. Previous studies of black holes have used custom tools. However,
this approach is inflexible as these tools often need to be re-developed for carrying out
new studies and answering new questions. As part of our goal of reducing the time
to science, we developed an approach that leverages RDBMS to analyze black hole
datasets (Sec. 4). This approach enables fast, easy and flexible data analysis. A major
benefit of the database approach is that now the astrophysicists are able to interactively
ask ad-hoc questions about the data and test hypotheses by writing relatively simple
queries and processing scripts. We present: (1) A set of algorithms and approaches
for processing, building and querying black hole merger tree datasets. (2) A compact
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database representation of the merger trees. (3) An evaluation of the feasibility and rel-
ative performance of the presented approaches. Our evaluation (Sec. 5) shows that it is
feasible to support the analysis of current black hole datasets using a database approach.
An extended version of the results presented here is also available [13].

2 Motivation: Black Holes and the Structures in the Universe

Black holes play an important role in the process by which structures, such as galaxies,
are organized in the universe. To understand these phenomena, large-scale cosmological
numerical simulations are used. They cover a vast dynamic range of spatial and time
scales with an extremely large number of particles, in excess of 1010 in principle.

Black Hole Datasets. The simulations produce three types of datasets: snapshots, group
membership and black holes. Snapshots contain complete information for all the parti-
cles in the simulation at a given time step. In recent simulations, snapshots require close
to 100 TB of storage. The group files contain the membership of particles to groups,
such as dark matter halos. The black hole files contain the black hole data with high
temporal resolution. They contain two main types of records. (1) Black hole property
records contain the id, simulation time, mass, and other properties. (2) Merger events
records indicate when a pair of black holes merge with one another and contain the
ids and masses of the two black holes, as well as the time when the event occurred. A
black hole merger tree comprises the set of merger event records along with the detailed
property records for the black holes involved in the mergers.

Eddington

Fig. 1. Sample black holes. This figure shows the gas distribution around two large black holes
and their respective light curves and accretion rate history for the most massive one.

Analysis of Black Hole Datasets. Recent observations imply that black holes with bil-
lion solar masses are already assembled when the universe is only 800 million years old.
An objective of the analyses of simulation-generated black hole datasets is to explain
the formation of these objects. There are two types of analyses we want to perform on
black hole datasets. The first type requires queries based on a specific redshift (i.e., sim-
ulation time), often selecting a subset according to their mass and growth rate. These
analyses aim to characterize the properties of black hole properties that exist at a spe-
cific time, including the number and density of black holes as a function of mass [6] or
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luminosity [4], how they cluster and the correlation between black holes and the galax-
ies in which they are found [3,6,5]. The second type of analyses requires processing the
detailed growth history of individual black holes. An example is shown in Fig. 1. These
histories help us understand how black holes grow, the relative importance of black hole
mergers vs. gas accretion.

3 Background and Related Work

Database techniques have been adopted to manage and analyze datasets in a variety of
science fields such as medical imaging [2], bioinformatics [15] and seismology [16].
In astronomy, RDBMS have been used to manage the catalogs of digital telescope sky
surveys such as the Sloan Sky Digital Survey (SSDS) [1,9]. Database techniques have
been used in observational astronomy to perform anomaly detection [10] among oth-
ers, and data-intensive approaches have been used for spatial clustering [7,11]. RDBMS
have not been as widely used for the analysis of cosmological simulations, in part due to
the challenge posed by the massive multi-terabyte datasets generated by these simula-
tions. The German Astrophysical Virtual Observatory (GAVO) has led in this aspect by
storing the Millenium Run dataset in an RDBMS and enabling queries to the database
through a web interface [12]. GAVO researchers proposed a database representation for
querying the merger trees of galactic halos. We are using RDBMS to support interac-
tive analysis of cosmological simulation datasets. We present techniques for building
and querying the merger trees of black holes, along with a compact database represen-
tation for these trees.

4 Building and Querying Black Forest Databases

Database Design. To support the queries needed for the analysis of BH datasets, we
transform the the simulation output into RDBMS tables. The database comprises two
main tables as shown in Fig. 2: BlackHoles (BH), MergerEvents (ME). Querying this
database consists of two steps: (1) building the merger tree from the ME table to obtain
the ids of the black holes in the tree; (2) querying the BH table to retrieve the associated
history for the black holes. The input for a query is the id of a black hole of interest
(qbhid). The desired output for step 1 is the ids of all the black holes in the same
merger tree as qbhid. Notice that the ME records do not have explicit links to other ME
records that belong to the same merger tree. The approaches for building and querying
the merger trees are presented below.

Approach 1: Recursive DB Queries. Given a qbhid, this approach finds the root of the
tree by repeatedly querying the ME table. Once the root is found, it recursively queries
the ME table for each of the root’s children (left, right) as shown in the BuildTree
procedure. This simple approach works well when only a small number of merger trees
are being queried and the resulting trees have few records.

Approach 2: In-Memory Queries. This approach consists in using a single database
query for loading all the records from the ME table into a set in memory (MESet) and
then looking up in MESet the events that belong to a tree. The algorithm is the following.
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Fig. 2. (a) Black hole merger tree. Leaf nodes (at the top) correspond to black holes. Interior
nodes correspond to black holes that merge. (b) DB representation: only the interior nodes of
the tree, i.e., merger events, are stored, the dashed circles, corresponding to the leaf nodes, are
not explicitly stored. (c) Basic schema for main tables in the black holes database: mergerevents
(ME) and blackholes (BH).

Given a query qbhid, add it to a queue pq of pending black holes. For each element bh
in the queue, fetch from MESet the records that match bh (i.e., r.bh1 = bh). For each
matching record r, add the corresponding r.bh2 to the pq queue. Repeat this process
until every element of pq has been processed (i.e., the end of the queue is reached). At
the end of the procedure, pq contains the ids belonging to the corresponding tree.

Approach 3: In-Memory Forest Queries. This approach builds on the previous one.
The basic idea is to build all the merger trees in the dataset with a single scan of the ME
table, instead of building a single tree as in the previous approach. This approach incurs
extra work to build all the trees. However, this cost is amortized when a large number of
queries need to be processed. This approach is based on the Union-Find algorithm [8]
and adjusted to handle the peculiarities of the merger events representation. The process
is described in the procedure BuildForestInMemory.

Approach 4: ForestDB. The ForestDB approach builds on the techniques used in the
In-Memory Forest approach. The basic idea is to build the black hole forest in the same
way as in the in-memory case. Then tag each tree with an identifier (tid). The forest can
be written back into a table in the database that we will call merger events forest (MF).
This is done as a one-time pre-processing step. The schema for this table is the same as
the ME’s schema (see Fig. 2), with the addition of the tid field. Two conceptual steps
are performed at query time to extract a merger tree for a given qbhid. First, search the
MF table for a record matching qbhid. The tid field can be obtained from the record
found in this step. Second, retrieve from the MF table all the records that have the same
tid. These two steps can be combined in a single SQL query. Moreover, the detailed
history for the black holes in the tree can be retrieved from the BH table using a single
query that uses tid as the selection criteria and joins the MF and BH tables. Indices on
the bh1, bh2 and tid fields are required to speed up these queries. Alternatively, the
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Procedure BuildTree(bhroot, ctime): Recursively build a merger tree rooted at bhroot

// Find all the records that have the bh1 field = bhroot
1 type TreeNode {id, time, left, right }
2 TreeNode node = NULL, pnode = NULL
3 qresult = SELECT bh2, time FROM ME WHERE bh1 = bhroot AND time ≤ ctime

ORDER BY time DESC
4 for (bh2, time) in qresult do
5 node = new TreeNode(id, time)
6 node.right = BuildTree(bh2, time)
7 if pnode is not null then
8 pnode.left = node // set left child for previous node in the result

9 pnode = node

10 return node // node is the latest event (tree root), it may be null

Procedure BuildForestInMemory(db)
input : DB with the ME table
output : A forest containing all the merge trees in ME

1 cursor = SELECT bh1, bh2, time FROM ME // Scan over all ME records
2 for (bh1, bh2, time) in cursor do
3 node = new TreeNode(bh1, time, bh2)
4 bh2Map.put(bh2, node) // Map from bh2 to this node
5 bh1Map.addToList(bh1, node) // Map from bh1 to a node list

6 for node in bh2Map do
7 node.right = bh1Map.get(node.bh2) // Create link for right-side child, it may be null

8 forest = emptySet()
9 for lst in bh1Map do

10 sortbytime(lst)
11 createLinkOnBh1(lst) // Create links from lst[n-1].left to lst[n]
12 findRootAndAddToForest(lst, forest)

13 return (forest, bh1Map, bh2Map)

indices on bh1 and bh2 can be replaced by an additional auxiliary indexed table to map
from bhid to tid.

The MF table only stores the membership of the merger event records to a particular
tree. Notice that the MF table does not explicitly store the tree structure, i.e., the parent-
child relationships. Also, the MF table only stores the internal nodes of the merger tree.
The leaves are not explicitly stored. Instead the relevant data (such as the leaf’s bhid)
is stored in the parent node. This makes for a more compact representation as it requires
fewer records in the MF table.

5 Evaluation

We implemented the approaches described above using Python and SQLite. Our evalu-
ation aims to characterize the relative performance of these approaches and determine
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the feasibility of using RDBMSs in the analysis of black holes datasets. For this pur-
pose, we ran a set of experiments using a dataset produced by the largest published
cosmology simulation to date.

Workload. The dataset was produced by a cosmological simulation using the GADGET-
3 [14] parallel program. The simulation contained 66 billion particles. At the end of
the simulation, there are 2.4 million black holes. The size of the resulting black holes
dataset is 84 GB. The black hole history table contains 420 million records correspond-
ing to 3.4 million unique black holes and 1 million merge events. Figure 3 shows the
distribution of tree sizes in number of merger events in the ME table. The storage re-
quirements for the tables and associated indexes is shown in the table in Figure 3.
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Fig. 3. Left: Distribution of tree sizes in the black holes dataset. The X axis is the size of a merger
tree measured as the number of events in a tree. The Y axis is the number of trees of that size in
log10 scale. Right: Sizes of tables and indexes in the BH database.

Performance. To characterize the performance of the developed approaches, we con-
ducted a series of micro benchmark experiments that correspond to the steps involved in
answering queries for the detailed time history of merger trees. The experiments were
run on a server host with 2 GHz CPUs, 24 GB of memory and a SATA disk.

Building Merger Trees. The first set of micro benchmark experiments corresponds to
the steps needed to build the merger trees for a set of query black holes (qbhs). We
compared three of the approaches explained in Sec. 4: (a) Recursive DB – RDB, (b) In-
memory – IM, and (c) Forest DB – FDB. The In-memory Forest approach was only used
to build the tables for FDB. For these experiments we selected black holes (qbhs) that
belonged to merger trees in the ME table. We timed the process of satisfying a request
to build one or more merger trees specified by the requested qbhs. The processing time
includes the time required to issue and execute the database query, retrieve and post-
process the result to build the trees.

In the first experiment, we kept the tree size fixed at 5 and varied the number of
black holes for which a tree is requested (number of qbhs). The results for the different
approaches are shown in Fig. 4. The X axis is the qbh count varying from 1 to 10K. The
Y axis shows the processing time (seconds) in log scale. For qbh counts less than 1K,
both the RDB and FDB approaches are faster than the In-Memory approach. The RDB
approach is not as expensive as we originally thought for small queries, either in the



552 J. López et al.

0.1

1

10

100

1 10 100 1000 10000P
ro

ce
ss

in
g

 t
im

e 
(s

ec
o

n
d

s)

Number of query black holes

In-Memory
Recursive DB
ForestDB

(a) Cold OS cache

0.001

0.01

0.1

1

10

1 10 100 1000 10000

P
ro

ce
ss

in
g

 t
im

e 
(s

ec
o

n
d

s)

Number of query black holes

In-Memory
Recursive DB
ForestDB

(b) Warm OS cache

Fig. 4. Running time to obtain the merger trees for the different approaches. These results corre-
spond to a tree of size 5. The X axis is the number of trees being queried at once in a batch. The
Y axis is the elapsed time in seconds (log scale) to retrieve the corresponding records from the
ME table. The cases with cold (a) and warm (b) OS caches are shown.

number of qbhs or the requested tree size. It was surprising to find out that for the cold
OS cache setup (Fig. 4a), the processing time for RDB and FDB does not differ sig-
nificantly. For the warm OS cache, there is a (constant in log scale) difference between
RDB and FDB. The IM approach pays upfront a relatively large cost of 15 seconds to
load the entire ME table, then the processing cost per requested qbh is negligible, and
thus can be amortized for a large number of qbhs.
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Fig. 5. Processing time for building the merger trees using various approaches. This experiment
was performed with a warm OS cache and a cold DB cache. The X axis is the size of the resulting
tree; (a) and (b) show the time to process 250 qbhs and 2 qbhs per request respectively. The Y
axis is the elapsed time to build the number of trees of each size.

Figure 5 shows the effect of the merger tree size on the request processing time. In
this experiment the requests were grouped by tree sizes (X axis = 1, 5, 10, 15, 20).
This experiment was performed with a warm OS cache and cold database cache. The
initial load time for the IM approach is not included in the processing time shown in
the graphs, only the time to build the tree in memory. The running time for the RDB
approach increases as the trees get larger. This is due to the larger number of queries to
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the ME table needed to process each tree in the recursive approach. The FDB approach
requires a single query to the ME table per requested tree.

Retrieving the Time History for Merger Trees. In the second set of experiments, we
retrieved the detailed time history for a set of trees retrieved in the previous step. This
entails retrieving from the BH table all the records for the corresponding BH in a given
merger tree. For each tree size (1, 5, 10, 15), we retrieved the BH histories for 100 trees
of that size. Figure 6a shows the elapsed time in seconds to retrieve the detail records
from the BH table. The times are shown for an unsorted indexed BH table and a BH
table sorted by the black hole id. As expected for this query pattern, sorting by the BH
id is beneficial. Figure 6b shows the elapsed time according to the number of records
that were retrieved from the BH table. Each data point corresponds to a merger tree that
resulted in retrieving the number of BH records shown in the X axis. The Y axis is the
elapsed time in seconds for the unsorted and sorted BH tables.
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Fig. 6. Time to retrieve the detail BH history from the BH table for merger trees of various sizes.
The running times for queries to sorted and unsorted BH tables are shown. Figure (a) shows the
elapsed time grouped by tree size. Figure (b) shows the same data grouped by the number of BH
records comprising the merger trees.

6 Conclusion

Rapid, flexible analysis of black hole datasets is key to enable advances in astrophysics.
We presented a set of algorithms for processing these data using a database approach.
The database approach is not only flexible, but also exhibits good performance to sup-
port interactive analysis.
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Abstract. Managing and understanding the growing volumes of scientific data
is one of the most challenging issues scientists face today. As analyses get more
complex and large interdisciplinary groups need to work together, knowledge
sharing becomes essential to support effective scientific data exploration. While
science portals and visualization Web sites have provided a first step towards
this goal, by aggregating data from different sources and providing a set of pre-
designed analyses and visualizations, they have important limitations. Often,
these sites are built manually and are not flexible enough to support the vast
heterogeneity of data sources, analysis techniques, data products, and the needs
of different user communities. In this paper we describe CrowdLabs, a system
that adopts the model used by social Web sites, allowing users to share not only
data but also computational pipelines. The shared repository opens up many new
opportunities for knowledge sharing and re-use, exposing scientists to tasks that
provide examples of sophisticated uses of algorithms they would not have access
to otherwise. CrowdLabs combines a set of usable tools and a scalable infrastruc-
ture to provide a rich collaborative environment for scientists, taking into account
the requirements of computational scientists, such as accessing high-performance
computers and manipulating large amounts of data.

Keywords: Computational Sciences, Cyberinfrastructure, Visualization.

1 Introduction

The infrastructure to design and conduct scientific experiments has not kept pace with
our collective ability to gather data. This has led to an unprecedented situation: data
analysis and visualization are now the bottleneck to discovery. This problem is com-
pounded as interdisciplinary groups collaborate and need to perform a wide range of
analyses targeted to multiple audiences.

We posit that by facilitating the social analysis of scientific data, we can overcome
many of these challenges. When users share their analyses and visualizations, they can
benefit from the collective wisdom: by querying analysis specifications which make
sophisticated use of tools, along with data products and their provenance, users can
learn by example from the reasoning and/or analysis strategies of experts; expedite their
scientific training in disciplinary and inter-disciplinary settings; and potentially reduce
the time lag between data acquisition and scientific insight.

In this paper, we describe CrowdLabs , a system that adopts the model used by social
Web sites and integrates a set of usable tools and a scalable infrastructure to provide a
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rich collaborative environment for scientists. Similar to social Web sites, CrowdLabs
aims to foster collaboration, but unlike these sites, it was designed to support the needs
of computational scientists, including the ability to access high-performance comput-
ers and manipulate large volumes of data. By providing mechanisms that simplify the
publishing and use of analysis pipelines, it allows IT personnel and end users to col-
laboratively construct and refine portals. Thus, CrowdLabs lowers the barriers for the
use of scientific analyses and enables broader audiences to contribute insights to the
scientific exploration process, without the high costs incurred by traditional portals. In
addition, it supports a more dynamic environment where new exploratory analyses can
be added on-the-fly.

Another important feature of CrowdLabs is the support for provenance [5, 8]. Pub-
lishing scientific results together with their provenance—the details of how the results
were obtained—not only makes the results more transparent, but it also enables oth-
ers to reproduce and validate the results. CrowdLabs leverages provenance information
(e.g., workflow/pipeline specifications, libraries, packages, users, datasets and results)
to provide a richer sharing experience: users can search and query this information. In
addition, provenance is made accessible through the Web site and an API. This allows
users to connect results published in an article or wiki page to the pipelines and data
served by CrowdLabs, greatly simplifying the creation of provenance-rich publications.

The remainder of the paper is organized as follows. We review related work in Sec-
tion 2. In Section 3, we describe the main components of CrowdLabs. Information on
deploying CrowdLabs at www.crowdlabs.org is given in Section 4. In Section 5, we
describe the different ways of sharing content and of making reproducible documents
using CrowdLabs. We conclude in Section 6, where we outline directions for improve-
ments and future work.

2 Related Work

While there have been several efforts focused on sharing scientific data, relatively little
work has gone into sharing analysis and visualization specifications (pipelines). To this
end, closely related to our approach is myExperiment [13], a collaborative environment
for sharing pipelines and other digital objects. myExperiment supports versioning of
pipelines and can execute certain types of pipelines. However, because its focus is on
pipelines that integrate bioinformatics-related Web services, myExperiment does not
support data- and compute-intensive pipelines.

Recently, a number of sites have come online which aim to support social analy-
sis and visualization of small, tabular data. Tableau Public1 provides infrastructure for
users to publish interactive visualizations on the Web. Many Eyes [18] and Swivel [17]
(no longer available) are public social data analysis Web sites, where users can upload
data, create visualizations of that data, and leave comments on either visualizations or
datasets. Built upon Many Eyes is Many Eyes Wikified, which is based on Dashiki [11],
a wiki-based Web site for collaboratively building visualization dashboards.

The ability to run and interact with compute-intensive pipelines or simulation
jobs is rapidly becoming essential for most scientists. The HUBzero Platform for

1 http://www.tableausoftware.com/public
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Fig. 1. CrowdLabs system architecture

Scientific Collaboration [12] allows researchers to access and share scientific simu-
lation and modeling tools. It was created to support nanoHUB.org [16], an online com-
munity for the Network for Computational Nanotechnology (NCN). To publish a tool,
developers have to connect to a special workspace machine, where they compile their
code and use NCN’s open source toolkit Rappture to create friendly GUIs. End users
access the resulting tools using an ordinary Web browser and launch simulation runs on
the national Grid infrastructure using virtual machines, without having to download or
compile any code. Similar to HUBzero, CrowdLabs enables the use of HPC resources
and is flexible enough to be deployed on the cloud. But the use of the pipeline com-
putation model allows it to provide additional functionality: besides the support for
provenance and queries over this information [15], it is possible to deploy customized
(and easy-to-use) Web applications [14].

3 System Overview

The CrowdLabs infrastructure is general and can be integrated with any workflow man-
agement system that runs in server mode and exposes an API. In this paper we describe
how the CrowdLabs infrastructure is used with the VisTrails [2,9] and VisMashup [14]
systems. VisTrails is an open-source provenance management and scientific workflow
system that was designed to support the scientific discovery process. VisTrails provides
unique support for data analysis and visualization, a comprehensive provenance infras-
tructure, and a user-centered design. The system combines and substantially extends
useful features of visualization and scientific workflow systems. For more details about
VisTrails, please refer to [2, 9]. VisTrails was modified to provide access to workflow
provenance in a client-server mode.

The VisMashup [14] system simplifies the creation, maintenance, and use of cus-
tomized, workflow-based applications (or mashups). It supports the tasks required in
the construction of custom applications: from querying and mining workflow collec-
tions and their provenance (for finding relevant workflows and parameters that should
be exposed in the application) to automatic generation of the application and associated
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user interface, that can be deployed as a desktop or Web application. For use within
CrowdLabs, VisMashup was extended to support a Web-based user interface for inter-
acting with workflows.

The CrowdLabs architecture consists of two main components: CrowdLabs Web
Server, which provides the Social Web Site, and a Client API and the VisTrails Server,
which handles workflow-related tasks. The CrowdLabs architecture is depicted in Fig-
ure 1 and a description of each component follows.

3.1 CrowdLabs Web Server

Client API. CrowdLabs provides a Web-based interface for sharing workflows and
provenance. The system includes a repository of workflow results (e.g., visualizations),
datasets, and libraries, and while the CrowdLabs Web site provides a useful platform
for sharing and collaboration, the social and provenance data can be useful in other con-
texts. In order to expose CrowdLabs resources to a diverse set of clients, the site em-
ploys a RESTful HTTP API [6]. This API identifies visualization and social resources,
providing uniform resource identifiers (URIs) for clients to retrieve, add, update and
delete them.

The data analysis and visualization resources defined by the system are vistrails,
workflows, vismashups, packages, and datasets, while the social resources include pro-
files, projects, groups, and blogs. Adhering to the RESTful architecture, each of these
resources has various different representations associated with them. Visualization re-
sources might include provenance data, meta-data (modules, documentation, etc.), ap-
plication files (vistrails, data files), as well as visualization results. Social resources
might include blog posts, discussion topics, and notices, along with ratings, tags, and
comments, which are linked to the visualization resources. For example, for a client to
access the XML representation corresponding to the workflow with id 117, they would
use the URI http://www.crowdlabs.org/vistrails/workflows/get xml/117/.

The RESTful API enables basic CrowdLabs functionality to be integrated into the
VisTrails desktop application and other extensions. Users can login, add, and update
vistrails and datasets to CrowdLabs through the Web Repository Options dialog from
within the VisTrails desktop application. The LATEX extension described in Section 5
also uses the RESTful API for embedding workflows in PDF documents.

Following the example of myExperiment’s Google Gadget and Facebook App [13],
providing an API encourages developers to extend functionality and creates an open
development environment.

Social Web Site. To foster user interaction, CrowdLabs incorporates a social Web site
that is based around user-created content and social networking tools. Users can make
friends, join groups, write blogs, and create projects, topics, and wikis. In addition, they
can add, edit, and delete VisTrails related data such as vistrails, workflows, vismashups,
packages, and datasets. Tied to each of these VisTrails related objects are ratings, tags,
comments, and projects. This social data not only encourages an environment of user
discussions and interaction, but enables the use of crowd sourcing to find good-quality
visualizations through user ratings, better categorize datasets and workflows by user
tagging, and troubleshoot problems through comments and discussion topics. We also
let users share their work off-site by providing syntax to embed interactive vismashups
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on Web sites as well as static visualization results on the Web, wikis, and within LATEX
documents (see Section 5).

Cache. CrowdLabs is set up to generate content dynamically. This creates potential
efficiency issues, since some workflows can take a long time to run. It is important to
avoid delays when presenting pages to users, otherwise they can get discouraged and
avoid using the site. We use different forms of caching to speed up common operations.

In the CrowdLabs Web server there are two caches: the results cache and the prove-
nance cache. The results cache is used to store images and other files generated by
workflows and vismashups. When there is a request for a workflow execution result,
for instance when a vismashup run, the system first checks if that workflow has been
executed before. If so, it uses the files already in the cache, otherwise it will forward the
request to the proper VisTrails server instance.

The provenance cache stores information about the workflows and vistrails uploaded
to the CrowdLabs Web site. This information currently includes the named workflows in
a vistrail, who created them and the packages and modules referenced in the workflows
together with their documentation. The system takes advantage of the fact that VisTrails
change-based provenance model records information about workflow evolution [9]: all
the workflows are versioned.

3.2 VisTrails Server

The VisTrails server is one of the most important components of CrowdLabs. It provides
the link between the workflow provenance and the rest of the system. The VisTrails
server is a multi-threaded server that uses the XML-RPC protocol to answer client
requests. The most common requests are: execute a workflow or a vismashup, add or
remove a vistrail or a vismashup from the database, get the packages and modules used
in a vistrail or workflow and other information associated with the workflows.

The CrowdLabs Web server communicates with VisTrails server instances via XML-
RPC requests, enabling communication with multiple remote VisTrails servers. Scien-
tific teams can thus host their own VisTrails servers as a way to meet their computing
and data storage needs.

Another key feature of the VisTrails server is that it maintains its own cache (sep-
arate from CrowdLabs results cache) for keeping the results of executed workflows
or vismashups. When both components are in the same machine, CrowdLabs can be
configured to use the VisTrails server cache to avoid redundant storage. The VisTrails
server also has the ability to start and communicate with other VisTrails server instances
using the same XML-RPC protocol. This allows the creation of clusters of servers that
work transparently with the rest of CrowdLabs.

4 Deploying CrowdLabs

Depending on the particular application, it is possible to use different deployment
configurations for CrowdLabs (see Figure 2). Here we will describe the current system
deployment at www.crowdlabs.org and explain some of its key capabilities. We encour-
age readers to access the site, but bear in mind that it is constantly under
development.
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Fig. 2. Different configurations of deploying CrowdLabs. (a) All the components are located on
the same machine. (b) VisTrails servers execute on dedicated machines.

System configuration. CrowdLabs is currently deployed as shown in Figure 2(a). The
core system and the four instances of the VisMashup server share a 8-core Intel Xeon
2.66 GHz machine with 24 GBs of RAM running Linux. The CrowdLabs webserver
cache and social data along with VisMashup workflow specifications and provenance
are stored in MySQL databases. The CrowdLabs Web site is implemented using the
Python Web framework Django and the VisTrails server is implemented in Python.

Projects and servers. It is possible that users would like to organize their content into
different projects. An example is the ALPS [1] project, which contains all the vistrails,
vismashups, workflows and the information they use together with the discussions and
blog posts created about them. This allows for defining different levels of visibility:
Groups can have discussions and upload workflows that are only visible to the people
involved in the project. The ability to selectively disclose information for people outside
the group is extremely important for scientists, who may work for many years before
deciding to release certain types of data. Another advantage is that a project can have
its own dedicated VisTrails server. This creates the possibility of having specialized
servers for different types of workflows. For example, for the ALPS project, we are
in the process of deploying a VisTrails server on one of their machines so users on
the CrowdLabs Web site can execute workflows and vismashups that access all the
required resources on ALPS’s file servers for running the simulations. These different
servers allow the system to grow in functionality without compromising the overall
performance.

5 Sharing Content and Supporting Reproducible Research

An important motivation for us to create CrowdLabs was to make it easier for scien-
tists to publish provenance-rich, reproducible results. While it is widely accepted that
scientific publications should include detailed provenance so that others can both re-
producte and validate the results, in practice, doing so is challenging, both for authors
and reviewers. Even when authors provide data sets and computer code, reviewers must
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configure their systems so that they can compile and run the code; they must also nav-
igate between code, data and text, identify important parameters and manually enter
the values specified in the text. Recently, the renewed interest on this subject in dif-
ferent communities has led to different scientific publishing approaches (see [7] for an
overview). CrowdLabs simplifies the process of packaging workflows and results for
publication. Authors can create documents whose digital artifacts (e.g., figures) include
a deep caption: detailed provenance information which contains the specification of the
computational process (or workflow) and associated parameters used to produce the
artifact. CrowdLabs supports the publication on wikis, other Web sites, and scientific
documents. Readers need not install any special software and can interact with the re-
sults through a Web interface. Next, we briefly describe the different mechanisms that
CrowdLabs supports for sharing content.

Interactive versus static content. CrowdLabs supports the generation of static content
(e.g., images, animations, tables, XML pages) as well as interactive ones. Static content
is generated directly from the workflow specification. In particular, we use VisTrails’
flexible spreadsheet infrastructure to generate the different types of output. Anything
that can be displayed in a spreadsheet cell can be re-routed through CrowdLabs. Due to
limitations of current browsers, it is hard to provide fully interactive content, in partic-
ular, for 3-D visualizations. Instead, we use the capabilities of VisMashup to allow for
interactive widgets to be placed next to an output on a browser (see Figure 3). As the
user modifies the exposed inputs, the system computes the resulting visualization, and
makes it available.

Publishing on the Web. To publish workflows onto other Web sites, the CrowdLabs
site provides embeddable HTML of either a static image linking back to the workflow
page or an embeddable vismashup object. CrowdLabs also integrates with Wikis by
extending the wiki markup language. Users can embed either static visualizations or
VisMashups onto Wiki pages by including <vistrail /> or <vismashup />
tags (provided through the Embed this Workflow in a Wiki link present on the workflow
pages of CrowdLabs Web site). When using these tags on a CrowdLabs-enabled Wiki,
they are replaced with images generated from XML-RPC execution requests submitted
to a VisTrails server. Not only does this create an easy way to share workflow results, it
provides versioning of scientific results to Wiki technology lacking such possibilities.

Publishing scientific documents. We believe that one of the most interesting applica-
tions of a system like CrowdLabs is the impact that it can have on printed media. Often
we see published scientific results and wonder how they were generated or would like
to compute new results using different data. Currently this is nearly impossible. Every
time an image is cut and pasted from a workflow or visualization tool to a paper, most
of the lineage information is lost. In CrowdLabs, we advocate a direct linkage from im-
ages and workflows results presented in documents to their provenance. To make this
possible, CrowdLabs uses a technique analogous to the one used to extend the wiki.
We defined a \vistrail command that takes in the information necessary to identify
and execute the workflow and include the images produced in-place. A LATEX style file
parses the information inside the command, sends it to a python script that builds and
makes a HTTP request to CrowdLabs. The images are then downloaded and included
as a hyperlinked regular \includegraphics command.



562 P. Mates et al.

Fig. 3. Interacting with the visualization of a binary star system simulation using VisMashup.
Users change parameters on the left and see the resulting visualization on the right. Available at
http://www.crowdlabs.org/vistrails/medleys/details/5/.

Sharing content from other tools. The techniques presented here are easily extensible
to any other system that supports provenance and is capable of producing result im-
ages or files. For instance, ParaView running with the VisTrails Provenance Explorer
plugin [3] could be easily extended to to share visualizations on CrowdLabs.

6 Conclusions and Future Work

The CrowdLabs system builds on infrastructure that our group has been working on
since early 2005, and it provides the “last mile” to the scientists. For its most basic use,
it does not require any installation of tools in the user’s machine, and we see this as an
enormous advantage. The barrier of entry is quite small, and it is possible for users to
perform a wide range of data analysis and visualization tasks without ever having to in-
stall any tools. Besides being deployed on www.crowdlabs.org and on the VisTrails Wiki
(www.vistrails.org), the system is also being used at the CMOP [4] site at the Oregon
Health & Science University and the ALPS [1] site at ETH in Zurich. We believe many
small research groups that do not have all the resources and infrastructure needed for
data analysis and visualization tasks can benefit from CrowdLabs. In order to accom-
modate a growing community, we expect the need for the following new functionality:

Provenance querying and analytics. By mining the data in the CrowdLabs prove-
nance repository, we will be able discover of patterns that can potentially simplify the
notoriously hard and time-consuming process of designing and refining scientific work-
flows [10]. Also useful are advanced querying capabilities that allow users to better
explore the workflow, provenance and data.

Improved Web-enabled interfaces and graphics. Although it is possible to use
CrowdLabs completely from a Web browser, some advanced functionality, such as

http://www.crowdlabs.org/vistrails/medleys/details/5/
http://www.crowdlabs.org/vistrails/medleys/details/5/
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interaction with 3D visualization, is not currently supported. One of the big challenges
is that Web 3-D graphics are not standardized at this moment, creating a major obstacle
in supporting high-end visualization over the Web. Due to some data being remote, we
believe that we will need to also add streaming and multi-resolution techniques to our
data analysis and visualization workflows.

System improvements. There are a number of system improvements that are needed,
including improved scalability in terms of the size of provenance information and data;
and a more sophisticated security model.
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Abstract. High dimensional index structures are used to efficiently answer range
queries in large databases. Visualization of such index structures helps in: (a) vi-
sualization of the data set in a hierarchical format of the index structure, (b)
“explorative querying” on the data set, similar to explorative browsing on the
web, (c) index structure diagnostics: visualizing the structure along with its per-
formance statistics enables the user to make changes to structure for better per-
formance. To the best of our knowledge, there is no such visualization for high
dimensional index structures.

1 Heidi Visualization of R-Trees

R-Tree visualization for high dimensional data is addressed by [2], which uses Parallel
co-ordinates and Star co-ordinates for hyperbox details (number of children and region
bounding it). Heidi [5] is a system to visualize high dimensional data clusters. Heidi is a
2-D matrix oriented data visualization, the rows and columns along the matrix reflect the
data points. The data points are grouped and ordered according to the clusters provided.
Heidi displays a n×n image, each pixel and its color denotes the closeness of a pair of
points in various subspaces.

In this paper, Heidi is extended to visualize index structures by changing the point-
ordering as per the index structure hierarchy. The visualization would reflect on the
index structure characteristics. R-Tree [3] structure is a hierarchical structure defined
over the points; points grouped into Minimum Bounding Boxes (MBBs) and MBBs
are again grouped into larger MBBs. A multi-dimensional rectangle is referred to as a
Minimum Bounding Box (MBB1) and it bounds a set of objects that are located within
its boundaries. R*-Trees [1] is a variant of R-Tree and objective of the R*-Trees is to
minimize the area covered by MBB, overlap between MBBs, MBB margins and storage
utilization.

The MBBs are like the clusters having groups of points within a bounding box and
Heidi brings forth the various subspace overlaps between the MBBs. The hierarchy of
the index structure is restored by grouping points based on the MBBs to which they
belong and then ordering the MBBs with respect to the corresponding parent MBBs
and so on. In this work, Heidi is customized for the R-Tree and R*-Tree structures;
though, other structures also could be viewed if given in a specific hierarchical format
to the system.

1 For 2-D data, a MBB is referred to as Minimum Bounding Rectangle (MBR).
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2 Data Analytics for R-Tree and R*-Tree Index Structures

In Heidi visualization, the pixel color reflects the closeness between a pair of points in
various subspaces. The color histogram of the Heidi visualization image gives subspace
data analytics. The histogram is obtained for each cluster block; this reflects on the
extent of an MBB-MBB overlap and the subspace in which it is maximal. As dimen-
sionality of the data increases, there is a high likelihood of subspace overlaps; points
within a MBB can share kNN relationships with points in another MBB in a lower
subspace. The extent of kNN relationships reflect on the prominence of the subspace.

The following analytics are presented to the user along with the visualization: (i)
Number Of MBBs, (ii) depth of each MBB in the hierarchy (length of the path from the
root to the MBB), (iii) MBB density (calculated as the fraction of points present in the
MBB) and (iv) Inter MBB overlaps (statistics for each subspace and in which subspace
is the overlap maximum).

3 Explorative Querying

The most common operation performed over an R-Tree index is a range query, which
finds all objects that a query region intersects. The problem of finding kNNs from R-
trees has been introduced by Roussopoulos [4]. Given a point range-query (mentioned
by a point in the data set and the k to compute the kNNs), the query result is displayed
in the Heidi visualization. The points satisfying the query are highlighted in red. The
spread of the red color in the matrix helps the user in understanding which MBBs are
checked for the query. If the MBBs are present in different branches of the structure, it
implies that there is scope for improvement in re-organizing the structure. If the query
result falls within one MBB, then the data is structured properly. The query points high-
lighted could be selected (by clicking) to perform a new range query. This process of
generating queries on the fly by observing the data is termed “explorative querying”;
where in the user has no specific query in mind, but after looking at the visualization
and the patterns, the user tries to identify interesting sets of points satisfying a query
criteria.

Future work includes building a R-Tree Diagnostics Tool which overlays the R-Tree
performance statistics with the Heidi Visualization; visually aiding the user to identify
frequent page faults and MBB overlaps to amend the structure iteratively. An intuitive
interactive user interface needs to be built to realize the concept of “explorative query-
ing” over the data set (performance enhanced with a R-Tree).
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1 Introduction

The new generation of telescopes under construction return to the same area
of the sky with sufficient frequency to enable tracking of moving objects such
as asteroids, near-earth objects, and comets [4,5]. To detect these moving ob-
jects, one image may be subtracted from another (separated by several days or
weeks) to differentiate variable and moving sources from the dense background
of stars and galaxies. Moving sources may then be identified by querying against
a database of expected positions of known asteroids. At a high-level, this task
maps onto executing the query: “Return all known asteroids that are expected
to be located within a given region at a given time.” We consider the problem
of querying for asteroids in a specified interval in space and time, specifically as
applied to populating the simulations of the data flow from the Large Synoptic
Survey Telescope (LSST).

Spatio-temporal databases have been well studied[3], however this problem
introduces new challenges. (1) Number of Objects : A characteristic Solar System
model1 contains over 11 million asteroids[2]. (2) Complex Trajectory Models: An
asteroid’s trajectory can be calculated precisely2 at any given point in time, but
evaluation of the model describing its position is prohibitively expensive at query
time. (3) Accuracy Constraints: The LSST simulated images require accuracy
within 5 milliarcseconds3 (mas), precluding the use of coarse statistical approxi-
mation methods. Additional requirements include 30-second query response time
for a 9.6 sq. degree circular search area and a 10TB storage limit.

Within this context, we develop and evaluate two approaches. (1) Model each
trajectory with a bounding envelope, use a spatial index to reduce the search
space, and evaluate the exact positions of the asteroids at the given epoch using
the ephemeris calculation code. (2) Model each trajectory by a set of positions
sampled frequently enough to interpolate their positions within a given accuracy

1 Representing the asteroids potentially observable by LSST and Pan-STARRS.
2 From its orbital elements - six variables that completely describe an orbit.
3 For comparison, 1 milliarcsecond (mas) corresponds to the apparent diameter of a

dime about 3700 kilometers away.
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threshold at runtime. We implement all solutions in a relational database and
evaluate them on a dataset of asteroid trajectories. Please refer to our technical
report for details[1].

2 Evaluation

We find that the bounding envelope method provides exact accuracy and tun-
able storage requirements, but at the cost of lengthy query times. Total re-
sponse time is extended by the necessary calculation of exact positions within
the returned envelopes. The interpolation method can drastically reduce query
time, but at the expense of either accuracy or storage space. With third de-
gree polynomial interpolation, a sampling rate meeting the accuracy require-
ments exceeds our available storage. Table 1 summarizes a subset of the storage,
accuracy and query time tradeoffs for “worst-case” searches in the densest re-
gion of the sky (returns 20K objects per 9.6 sq. deg. search area). This dense
region forms a narrow strip across the sky. Typical searches in less dense re-
gions (at least 20◦ from the ecliptic) return <1000 objects in under 2s for both
methods.

Table 1. Preliminary Evaluation Summary

Storagea Accuracy Response Time
Error Queryb Evaluate positionsc

(billion rows) (mas) (s) (s)
Bounding Envelope Biweeklyd 45 exact 20 +15

Dailye 80 exact 20 +4
Interpolation Inaccurate 200 <1000 3 -

Accurate 900 <5 3 -

a Storage required to support queries over a 10yr range.
b Bounding env. uses MS Spatial Index; interpolation a hierarchical triangular mesh.
c Time to evaluate 20K exact positions with ephemeris calculation code.
d Store daily bounding envelopes and biweekly orbital elements.
e Store daily bounding envelopes and daily orbital elements.

The challenge of predicting the positions of sources extends beyond the ques-
tion of tracking asteroids. In general, our techniques are applicable to a class
of spatio-temporal trajectory search problems, where the true positions of the
objects can be predicted by the evaluations of complex, often non-linear models
that are extremely accurate but computationally expensive.

Acknowledgments. This work is funded by the NSF Cluster Exploratory
(CluE) grant (IIS-0844580) and NSF CAREER award (IIS-0845397).
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1 Introduction

Keyword search is indispensable for locating relevant documents the web. Yet, at the
same time, we have also grown aware of its limitations. It is often difficult to reach
esoteric information obscured deep within various domains. For example, consider an
earth science student who needs to identify how much a certain area in a nearby park
has eroded since 1940 for a school project. Certainly, if this exact erosion information
had previously been published onto a web page, a search engine could probably locate
it effortlessly. But due to the exactness of this query, the likelihood that such a web
page exists is slim. However, avenues for obtaining this information exist in the form of
scientific workflows, which can be implemented using web service composition.

The maturation of the semantic web has prompted, if not already produced, the mass
sharing of scientific web services and data sets. Keyword-based search engines like
seekda! (http://webservices.seekda.com) and GeoPortal (http://www.geowebportal.org)
are sites where users can publish and search data sets and web services. Woogle [2], a
similarity search engine for services, can aid users in identifying relevant services for
composition. myExperiment [3] is an online social networking community for users
to share, customize, and execute scientific workflow plans. However, workflow plan-
ning (and web service composition) still requires intrinsic knowledge from end-users in
terms of which data sets and services to use and domain-level expertise.

We describe our system, Auspice, which can perform on-demand, automatic work-
flow planning given a set of keywords. Web services and data sets are indexed on their
user-defined tags and metadata. Given this index and a search query, Auspice not only
returns previously defined workflows, but also identifies and composes any known ser-
vices together with appropriate data sets to derive the information sought by the query.
This strategy is in contrast to previously mentioned works which search predefined
plans and services. We further propose and evaluate a relevance model that ranks the
retrieved composed plans.

2 System Overview

We have developed keyword querying support for generating service-based workflow
plans on the fly. These plans may or may not be previously developed by other users, and
we have created an IR-based retrieval model which attempts to capture each workflow’s
relevance to the submitted keywords. Particularly, the workflows are ranked according
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to a score computed as a function of the number of scientific concepts relative to the
query. In our system, scientific web services and data sets are assumed to represent (or
derive) certain virtual objects simply referred to as concepts. In a previous effort, we
proposed an ontology to capture these concept derivation relationships [1]. This recur-
sive concept derivation is analogous to composing services. Given a targeted domain
concept, c, it may be derived using a data set, d, or a web service operation s, whose
input parameters, (x1, . . . , xp) may again be substantiable by respective scientific con-
cepts (c(x1), . . . , c(xp)).

This chaining process contin-

Workflow Results
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"t1"
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Service- and Data-Oriented 
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Workflow Execution
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User Select for Execution

Share/Register Geospatial
Data and Web Services

Expert Users

Fig. 1. Auspice Interface and Concept

ues until a terminal element (ei-
ther a service without input or a
data file) has been reached on all
paths. One can envision then, that
when given a target concept along
with attributes like date, location,
etc., that applying this technique
can yield a set of workflow plans
by considering all derivation paths
from the originating concept. Our
system is depicted in Figure 1.
Auspice maps a set of keywords
to concepts within a predefined
domain ontology, which captures
the concept derivation relation-
ships. Once the set of concepts
has been identified, it is sent to
the workflow planner, which com-
poses services together with data files automatically and returns a ranked list of work-
flow candidates to the user. The user can then select a suitable workflow plan to execute
over the service-enabled compute environments.

An evaluation over a geoinformatics case study has been conducted using our IR
metrics. Our collaborators from Department of Geodetic Sciences at Ohio State Uni-
versity performed a blind relevance feedback over six queries, and we are observing
agreeable precision values: 78%, 77.3%, and 76.2% for the Top 3, 5, and 10 retrieved
workflows respectively. We will present our methods and preliminary results in detail
in the poster.
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Introduction. Modern scientific applications are producing vast amounts of data[2].
In many cases, the essential information needed for understanding scientific processes
is stored in a relatively small number of data records. Efficiently locating the interest-
ing data records is indispensable to the overall analysis procedure. The data structures
most effective at performing these search operations is known as indices [2]. This work
implements a flexible way of applying such an index to a range of different scientific
data.

Instead of requiring the users to place their data into centralized data management
system (DBMS), we propose to build indices alongside of the existing data outside of
DBMS. To demonstrate the effectiveness of this approach, we have chosen to use an
indexing software called FastBit [3]. In a number of earlier studies, FastBit has been
demonstrated to support scientific applications well. We have worked in the past on
applying this indexing software to a small class of well-defined HDF5 files; the resulting
system was called HDF5-FastQuery [1]. FastQuery is a complete redesign of HDF5-
FastQuery to support a generic I/O layer. Furthermore, it has significantly improved
usability and performance as we describe next.

FastQuery Architecture. The overall FastQuery system is illustrated in Fig. (a). This
generic design allow arbitrary array data to be mapped into the relational data model
supported by FastBit indexing system. The core of this design is a dynamic variable
table that groups arrays and subarrays with the same number of elements into a logical
table required by the relational data model. On top of this data structure, we implement
the query processing and index building functions. To insulate the naming schemes used
by scientific data formats and naming scheme acceptable to FastBit, we implement a
parser which is responsible for understanding the subarray syntax.

To separate FastQuery from any specific scientific format, we abstracted out the re-
quired I/O operations into a File I/O interface. This allows us to implement a handful
of functions to adapt FastQuery into any array-based scientific data format.

Performance Measurements. To illustrate the effectiveness of the new FastQuery de-
sign, in Fig. (b), we show its performanance with a set of synthetic data on a workstation

� This work was supported by the Director, Office of Science, Office of Advanced Scien-
tific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. The authors would also like to thank Allen Sanderson, John Shalf, Quincey
Koziol and Wes Bethel for the helpful discussions leading up to the design and specification
of FastQuery API.
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with 2.67 GHz Intel processor, 4 GB of memory and a commodity SATA disk. The set
of queries use the same variable, but have different range conditions so that they select
different number of records. With FastQuery, we further select the subarray that covers
a specified percentage which we call coverage in Fig. (b).

With 75% coverage, the new implementation of FastQuery is at least 2.5 times faster
than the previous version of HDF5-FastQuery and is on average 5.5 times faster. With
25% coverage, the new implementation is on average 13 times faster.

Conclusions. We have designed and implemented FastQuery, a general indexing and
querying system for scientific data. FastQuery utilizes the FastBit bitmap indexing tech-
nology to support semantic query on common data format, such as HDF5 and NetCDF.
We significantly extended our previous work, HDF5-FastQuery, by addressing the us-
ability, applicability and flexibility issues of the indexing and querying system. Through
the evaluations, we demonstrated that the FastQuery implementation is significantly
more efficient than the previous version.
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Abstract. In this paper, we introduce a novel framework for estimat-
ing OLAP queries over uncertain and imprecise multidimensional data
streams, along with three relevant research contributions: (i) a probabilis-
tic data stream model, which describes both precise and imprecise mul-
tidimensional data stream readings in terms of nice confidence-interval-
based Probability Distribution Functions (PDF); (ii) a possible-world
semantics for uncertain and imprecise multidimensional data streams,
which is based on an innovative data-driven approach that exploits
“natural” features of OLAP data, such as the presence of clusters and
high correlations; (iii) an innovative approach for providing theoretically-
founded estimates to OLAP queries over uncertain and imprecise multi-
dimensional data streams that exploits the well-recognized probabilistic
estimators theory.

1 Introduction

Modern data stream applications and systems are more and more characterized
by the presence of uncertainty and imprecision that make the problem of dealing
with uncertain and imprecise data streams a leading research challenge. This
issue has recently attracted a great deal of attention from both the academic
and industrial research community, as confirmed by several research efforts done
in this context [4,9,5,2]. Uncertain and imprecise data streams arise in a plethora
of actual application scenarios ranging from environmental sensor networks to
logistic networks and telecommunication systems, and so forth.

While some recent papers have tackled the problem of efficiently representing,
querying and mining uncertain and imprecise data streams [4,9,5,2], to the best
of our knowledge, there does not exist in the literature research initiatives that
deal with the problem of efficiently OLAPing [6] uncertain and imprecise mul-
tidimensional data streams, with explicit emphasis over multidimensionality of
data [1,11,10,7]. In order to fulfill this relevant gap, we first introduce the prob-
lem of estimating OLAP queries over uncertain and imprecise multidimensional
data streams, which can be reasonably considered as the first research attempt
towards the definition of OLAP tools over uncertain and imprecise multidimen-
sional data streams exposing complete OLAP functionalities, such as on-the-fly
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data summarization and indexing. In particular, we propose a framework that
is able of effectively and efficiently provide theoretically-founded estimates to
OLAP queries over uncertain and imprecise multidimensional data streams, as
a first step towards building more complex OLAP tools.

The framework for OLAPing uncertain and imprecise multidimensional data
streams proposed in our research builds on some previous results that have been
provided by recent efforts. Particularly, [3], which focuses on static data, in-
troduces a nice Probability Distribution Function (PDF) [8]-based model that
allows us to capture the uncertainty of OLAP measures. Furthermore, impre-
cision of OLAP data with respect to OLAP hierarchies available in the multi-
dimensional data stream model is meaningfully captured by means of the so-
called possible-world semantics [3]. This semantics allows us to evaluate OLAP
queries over uncertain and imprecise static data, while also ensuring some well-
founded theoretical properties, namely consistency, faithfulness and correlation-
preservation [3]. The possible-world semantics [3] is exploited and significantly
extended in our research, and specialized to the more challenging issue of deal-
ing with uncertain and imprecise multidimensional data streams, along which
several original and innovative research contributions.
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Abstract. Domain-specific query languages (DSQL) let users express
custom business logic. Relational databases provide a limited set of op-
tions to execute business logic. Usually, stored procedures or a series
of queries with some glue code. Both methods have drawbacks and of-
ten business logic is still executed on application side transferring large
amounts of data between application and database, which is expensive.
We translate a DSQL into a hybrid data-flow execution plan, containing
relational operators mixed with procedural ones. A cost model is used
to drive the translation towards an optimal mixture of relational and
procedural plan operators.

1 Introduction

Relational databases provide with SQL a standardized and powerful query lan-
guage. Although, SQL can be considered as a domain-specific language (DSL),
its scope is broad and generic. To keep the user within confined boundaries of
specific application domains a domain-specific query language (DSQL) is better
suited to the task. Stored procedures incorporate procedural and declarative ele-
ments and can be used to express business logic. But they are pre-compiled into
native C programs with embedded SQL commands. Hence, execution is driven
by procedural C-code interspersed with SQL statements. This makes it difficult
to optimize the entire procedure.

2 Contribution

We propose a mechanism to translate a procedural DSQL into the data-flow
execution model of the underlying database. Normally, a database execution
plan contains relational operators and the graph describes the execution in a
declarative way. To overcome the mismatch between an imperative language
and the declarative plan, we introduce a hybrid execution plan incorporating
both aspects in one plan. Different, to typical stored procedure translation, we
translate into a data-flow graph interspersed with procedural elements.
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The goal is to translate into a plan with as few procedural elements as possible.
Because we express procedural logic by declarative means, we benefit from well-
known optimizations and the data-flow graph representation allows the easy
exploitation of parallelism. Although, there are many cases where procedural
statements can be expressed entirely by relational operators, for others it is
impossible. In other cases, both translation variants are possible and we provide
a cost model that drives the translation process towards an optimal plan in terms
of execution time. We identified procedural patterns that can be expressed in a
purely declarative way using a combination of relational operators.

Figure 1 shows evaluation results for an example script translated into a hybrid
plan based on our cost model and depending on the input size. The prediction
by the cost model are included as well. The shaded areas specify the type of
plan that was selected. Our setting is an industrial setup, where an existing
DSQL for business planning is used and most complex data processing is done
on application side. We see a demand, that the database layer has to provide
means to handle business logic from various domains in order to process the
tasks closer to the data. To provide an insight, how how typical customer scripts
can be translated, we did a survey of custom scripts from over 50 customers,
classifying them into translatable to a purely declarative plan, a hybrid plan or
only procedural. The results shown in Table 2 suggest that a large percentage of
typical scripts can be translated into a hybrid plan with only relational operators.

3 Conclusion

We proposed a translation of a domain-specific query language (DSQL) into
a data-flow execution graph that contains relational and procedural operators.
Furthermore, we devised a cost model that guides the selection between proce-
dural and relational operators to find an optimal hybrid plan based on the size
of the input data.
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Abstract. The simulation of large-scale complex systems, such as mod-
eling the effects of hurricanes or storms in coastal environments, typically
requires a large amount of computing resources in addition to data stor-
age capacity. To make an efficient prediction of the potential storm surge
height for an incoming hurricane, surrogate models, which are computa-
tionally cheap and can reach a comparable level of accuracy with simu-
lations, are desired. In this paper, we present a scalable and automated
workflow for surrogate modeling with hurricane-related simulation data.

Keywords: automated workflow, scalability, severe-storm simulation,
data mining, surrogate model.

As today the cyberinfrastructure development keeps progressing in many re-
search organizations across the world, the abundance of high-performance com-
puting resources brings new possibilities to domain scientists and engineers in
terms of large-scale parallel simulations for complex phenomena. A typical ap-
plication scenario with high significance comes from severe storms such as hur-
ricanes. A 6-day storm surge simulation can take more than 2,000 CPU hours,
which means a 35-hour run on a cluster with 64 cores. Deterministic physics-
based simulations are the primary way as a guide for decision makers but become
time-consuming and inflexible for real-time predictions. Simulation data, espe-
cially for a set of simulations with designed input parameter space, can be ana-
lyzed and knowledge can be extracted from them. As an effort to simulation data
mining [1], we focus on surrogate modeling from storm simulation data, which
leads to lightweight models mimicking the behavior of simulations on points of
interest (POI).

In the paper, we first describe the surrogate modeling approaches with large-
scale simulation data, where each simulation generates values on multiple POIs.
In this way, to make predictions on a target variable at a point or location in
the simulation, we use functional data analysis for storm simulations with de-
signed parameter space in two circumstances: the prediction of maximum storm
surge height as scalar response and the time-series prediction of surge profile

� Corresponding author: Gabrielle Allen (216 Johnston Hall, Baton Rouge, LA 70803).
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as functional response. It is needed to train a different model for each point of
interest. Also, for complex systems with dynamics on the response surface at a
single point, it is desired to dig out more information. Spatio-temporal causal
links [2] can be constructed for the same simulation output variable between
locations or across variables. As links are contingent upon the simulation in-
put, like hurricane tracks in our scenario, a granger causality test is performed
ahead of regression in order to detect the links that tend to be invariant. Such
a modeling framework can thereby supply confidence level and measurements of
uncertainty to time-critical predictions.

A scalable and automated workflow is then important to facilitate the data
mining process. Our workflow combines parallel simulation, distributed data
archive, and high-performance data mining in the same framework. We exploit
task-level parallelism to achieve scalability. Two modes in data processing are
involved: i) a piece of data from each simulation is needed for modeling and those
from multiple simulations are assembled for a modeling task, namely Task As-
sembling; and ii) the processing can be separately performed for each simulation
and finally the results are to be reduced for generalization (Map-Reduce [3]).
Then, in the implementation, several components are included: simulation data
archive [4], parameter space, pattern space, data mining job pool and model
base. Besides scalability, it also ensures that modeling process is automatically
handled with continuously increasing data in the archive.

In the demonstration at the SSDBM 2011 conference, we show the workflow
performance as well as some surrogate modeling results. Future directions of the
work include creating a generic workflow for more data sources and the surrogate
models themselves can also be further elaborated.
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1 Introduction

Cardinality estimation is crucial for query optimization. The optimizer uses cardinality
estimates to compute the query-plan costs. Histograms are one of the most popular data
structures used for cardinality estimation [2]. Because histograms compress the data
set, the cardinality estimates issued are not exact. We model these estimates as random
variables, and denote the cardinality of query q by card(q). For a query-plan with a cost
function v(·), the plan cost is:

cost = E[v(card(q))] (1)

It is the expected value of the cost function applied to the random variable card(q). Con-
ventionally, the optimizers assume the cost is close to linear and use the approximation

cost ≈ v(E[card(q)]) (2)

The reason why (2) is easier to use is that it requires estimating the expected value of the
cardinality; in contrast, (1) needs the probability distribution of cardinalities to compute
the expected cost. However, non-linear costs are commonplace, meaning that (2) often
does not yield accurate cost estimates. In order to overcome this we propose estimating
the cardinality distribution and use (1). This is challenging because we need to start
issuing an accurate cardinality distribution instead of just the expected value. Ideally,
we would like to use existing data structures such as histograms for this purpose. To
this end, we propose a method which uses the previously executed query results (query
feedback) as a sample and builds the cardinality distribution from this sample. As the
underlying data structure we use STHoles [1] which is a multi-dimensional self-tuning
histogram.

2 The STHoles Histogram

STHoles organizes the muldi-dimensional data space into rectangular buckets, like an
R+ tree. The buckets cannot partially overlap but can be nested. The histogram estimates
the number of tuples in a query using the uniformity assumption. For the query q and
histogram S,

n(q) = ∑
b∈S

n(b) · vol(b∩q)
vol(b)

(3)
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where n(·) is the number of tuples, vol(·) is the volume of a region, and b ∈ S are the
buckets.

3 The Sample-Based Method

In order to approximate the random variable card(q), we use the past query execution
results as a sample. The cumulative distribution of the random variable X is approxi-
mated by

Fm(z) =
1
m

m

∑
i=1

I(xi ≤ z) (4)

where {x1, . . . ,xm} is the sample and I(P) is the indicator function. Let the histog-
ram bucket b enclose the query q, with child buckets {b1, . . . ,bm}. We use the al-
ready observed selectivities within the region of b to approximate the distribution of
selectivities. These are a) the selectivities of child buckets {sel(b1), . . . ,sel(bm)}, b)
the selectivity which corresponds to the region covered by b, excluding child buckets:
s = (n(b)−∑n(bi))/(vol(b)−∑vol(bi)).

Using {s,sel(b1), . . . ,sel(bm)} as a sample, we approximate the cumulative distri-
bution of selectivities inside the bucket. We weight the bucket selectivities with the
volume of the intersection, to reflect the fact that larger intersections should have more
weight. For the selectivity s this is (1−∑vol(bi)/vol(b)), for a child bucket bi this is
vol(bi)/vol(b). The formula for the cardinality distribution becomes:

Pr(sel(q)≤ x) = (1−
m

∑
i=1

vol(bi)
vol(b)

) · I(s≤ x)+
m

∑
i=1

vol(bi)
vol(b)

· I(sel(bi)≤ x) (5)

Given a cost function v(·), the query-plan cost is:

cost =
M

∑
x=0

v(x)Pr(card(q) = x)

where M is the maximal possible value of the cardinality, and

Pr(card(q) = x) = Pr(sel(q) = x · vol(q)) =
Pr(sel(q)≤ x · vol(q))−Pr(sel(q)≤ x · vol(q)−1)

(6)

The sample-based method enables us to obtain cardinality distributions instead of
point cardinalities. The method is computationally inexpensive; moreover, it uses only
the information already contained in a histogram.
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1 Introduction

Scientists today are able to generate and collect data at an unprecedented scale [1]. Af-
terwards, scientists analyze and explore these datasets. Composing SQL queries, how-
ever, is a significant challenge for scientists because most are not database experts.

In this work, we leverage the collaborative environment that many scientists work in,
which often includes a shared database with many scientists asking queries over it. As
such, we utilize the collective knowledge of all the users by providing new users with
access to a log of past queries, which can be used as starting points for writing new
queries. However, navigating a large log of queries can be difficult and overwhelming.

In this paper, we introduce the Smart Query Browser (SQB) system. SQB supports
efficient retrieval of relevant queries using what we call session-based browsing. We
also show results from a user study where we investigated whether SQB speeds up the
query formulation by supporting better query reuse. 1

2 SQB Overview

To start, SQB provides keyword search over a query log. Instead of simply listing all
matching queries, it presents the results as a set of query sessions. A query session, as
introduced in our previous work [3], is a set of queries written by a user to achieve a
single task. For example, an astronomer who wants to find, in the Sloan Digital Sky Sur-
vey database [5], all the stars of a certain brightness in the r-band within 2 arc minutes
of a known star, is likely to write multiple SQL queries before completing this task.

SQB thus allows users to view each result query in the context of the task that it
aimed to complete. With this approach, SQB helps the user to more rapidly identify
relevant queries because the user can decide on the relevance of entire sessions. It also
helps users see how simple queries evolved into more complex ones. Finally, query ses-
sions enable users to discriminate between high-quality and low-quality queries: queries
that appear near the end of a session tend to be of higher quality because the author has
spent time to edit and improve the query.

� This work was partially supported by NSF CAREER award IIS-0845397 and IIS-0627585.
1 We invite the reader to read our technical report for more details on SQB and the user study [4].
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Fig. 1. Mean task completion time per interface, grouped by task

3 Evaluation

We performed a user study with 16 participants to investigate whether SQB speeds
up the query formulation through query reuse. We find that, on average, SQB allows
users to complete their tasks 2.3 times faster compared to having no access to a query
browser.

The evaluation dataset consists of all SQL queries written by students in an under-
graduate database class, offered at the University of Washington in 2008. These queries
were logged as students worked on nine different problems for an assignment that used
the IMDB database [2]. For the user study, we used a subset of this query log with 492
queries. Each participant in the user study was asked to translate four English sentence
questions into four SQL queries.

Figure 1 presents the average completion time per task across the users. Note that
a smaller completion time is better. We see that the SQB interface greatly outperforms
the interface with no-browser for three of the tasks. Task 1 is a select-from-where query
that can be written easily, and thus there is no benefit from SQB. In contrast, Task 4
is both difficult to write (i.e. requires a GROUP BY and either TOP or a NOT EXISTS

subquery) but is not similar to any past query. The most similar query requires the user
to make structural changes to the query before achieving the goal. Despite this heavy
editing, SQB still helps users complete the task in less than half the time compared to
no browser. The queries for Tasks 2 and 3 are also complex, requiring a GROUP BY and
a self-join, respectively. However, there are similar queries in the query log. Therefore,
we see a more than 3-fold improvement in speed with SQB.

4 Conclusion

We presented SQB, a tool for browsing through past SQL queries. The key insight
behind SQB’s design is the concept of query sessions. We showed that query sessions
help speed up query composition by organizing queries in a large repository in a manner
that facilitates the identification of relevant, high-quality queries to use as example.
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Abstract. This paper presents ETLMR, a parallel Extract–Transform–
Load (ETL) programming framework based on MapReduce. It has built-
in support for high-level ETL-specific constructs including star schemas,
snowflake schemas, and slowly changing dimensions (SCDs). ETLMR
gives both high programming productivity and high ETL scalability.

There is an ever-increasing demand for ETL tools to process very large amounts
of data efficiently. Parallelization is a key technology to achieve the needed per-
formance. Therefore, the “cloud computing” technology MapReduce [2] offering
flexibility and scalability is interesting to apply to ETL parallelization. How-
ever, MapReduce is a general framework and lacks direct support for high-level
ETL-specific constructs such as star schemas, snowflake schemas and SCDs. It is
thus still very complex to implement a parallel ETL program with MapReduce
and the ETL programmer’s productivity is low. This paper presents the parallel
ETL framework ETLMR [1] which directly supports high-level ETL constructs
on MapReduce. The complexity of MapReduce is hidden from the user who only
has to specify the transformations to apply and declarations of source data and
destination tables. This makes it very easy to develop a highly scalable ETL
program as only few lines of code and configuration are required.

Fig. 1. The ETLMR framework

ETLMR uses and extends the framework
pygrametl [3] for code-based ETL and fur-
ther uses Disco [4] as MapReduce platform.
Fig 1 shows the architecture. An ETL flow
in ETLMR comprises two sequential phases:
dimension processing and fact processing,
each of which runs as a separate job on the
MapReduce platform. A job consists of a
number of MapReduce instances (or tasks)
running in parallel on several nodes in a clus-
ter. An instance reads data from input files
in a distributed file system (DFS) and processes the data and inserts it into
dimension tables and/or fact tables in the DW.

Configuration. ETLMR facilitates parallel ETL implementation by using a
configuration file which defines dimension tables and fact tables. An object is
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created for each of the target tables in a single statement where table name,
attribute names, etc. are given. ETLMR supports different types of dimen-
sions including slowly changing dimensions and snowflaked (i.e., normalized)
dimensions. All the dimension classes have a common interface offering dimen-
sion operations such as insert, lookup, etc. In addition, the configuration file
specifies the transformations to apply to the data and the number of map
and reduce tasks to use (i.e., the level of parallelization). It is thus extremely
easy to scale up/scale down an ETLMR-based program by only changing these
numbers.

Dimension processing. During the dimension processing, ETLMR uses the
(parallel instances of) MapReduce’s map function to apply user-defined trans-
formations to the source data. Further, the map function is used to find (i.e.,
project) the attributes that are relevant for the different dimensions. These sub-
sets of the data are then processed by the (parallel instances of) MapReduce’s
reduce function to be inserted into the dimension tables. ETLMR offers several
methods for doing this. The simplest method is one dimension one task (ODOT).
With ODOT, there is one, and only one, reduce instance for each dimension ta-
ble. This makes it easy to avoid duplicated data, duplicated key values, etc. as
all insertions to a given dimension table is done by one instance. Obviously, this
method does, however, not scale well. Another supported method is one dimen-
sion all tasks (ODAT) in which all reduce instances (of which there can be any
number) process data for all dimensions. This can, however, lead to problems
with duplicated values (one reducer cannot see what another is about to insert)
and duplicated key values. To remedy this, ETLMR, features the novel tech-
nique post-fixing where such problematic data autmatically is corrected when
all data has been processed. Further, ETLMR offers dimension processing meth-
ods specialized for snowflaked dimensions. By processing the participating di-
mension tables in safe orders which respect foreign key relationships between
tables, post-fixing can be avoided with these methods. Finally, ETLMR offers
“offline” dimensions. With these, ETLMR does not communicate directly with
the DW DBMS but instead stores data locally in the nodes. This leads to better
performance.

Fact processing. In the fact processing, ETLMR looks up dimension keys in
the (now processed) dimensions, does aggregation of fact data if needed, and
bulk-loads the fact data into the DW. Several tasks do this in parallel.

Scalability. We have evaluated the scalability of the different processing meth-
ods on realistically sized datasets. The experiments [1] show that ETLMR
achieves a nearly linear speedup in the number of tasks and compares favourably
with other MapReduce data warehousing tools. To load a simple snowflake
schema required 14 statements in ETLMR. In the MapReduce data process-
ing frameworks Hive and Pig, the same schema required 23 and 40 statements,
respectively. For a more complex schema with SCDs, ETLMR still only requires
14 statements, while Pig and Hive are not able to handle SCDs at all.



588 X. Liu, C. Thomsen, and T.B. Pedersen

References

1. http://www.cs.aau.dk/~xiliu/etlmr/ as of (April 13 ,2011)
2. Dean, J., Ghemawat, S.: MapReduce: A Flexible Data Processing Tool.

CACM 53(1), 72–77 (2010)
3. Thomsen, C., Pedersen, T.B.: pygrametl: A Powerful Programming Framework for

Extract-Transform-Load Programmers. In: Proc. of DOLAP, pp. 49–56 (2009)
4. http://www.discoproject.org as of (April 13 ,2011)

http://www.cs.aau.dk/~xiliu/etlmr/
http://www.discoproject.org


Top-k Similarity Search on Uncertain Trajectories �

Chunyang Ma1, Hua Lu2, Lidan Shou1, Gang Chen1, and Shujie Chen1

1 Department of Computer Science, Zhejiang University, China
mcy@cs.zju.edu.cn, {should,cg}@zju.edu.cn, pzbcsj@gmail.com

2 Department of Computer Science, Aalborg University, Denmark
luhua@cs.aau.dk

Abstract. Similarity search on uncertain trajectories has a wide range of appli-
cations. To the best of our knowledge, no previous work has addressed similarity
search on uncertain trajectories. In this paper, we provides a complete set of tech-
niques for spatiotemporal similarity search on uncertain trajectories.

1 Introduction

Large amounts of trajectory data have been and are continuously being collected. In real
applications the trajectories often are uncertain due to various factors, e.g., hardware
limits and privacy concerns.

Motivated in a way akin to a broad range of applications on certain trajectories, e.g.,
traffic control and movement pattern mining, similarity search is also of interest and im-
portance on uncertain trajectories. A key issue in the uncertain context is an appropriate
distance function to measure the dissimilarity between two uncertain trajectories. The
majority of existing metrics such as Discrete Time Warping, Longest Common Subse-
quences, etc. are focused on certain time series analysis only. Euclidean distance is not
a reliable indicator of similarity in uncertain context [5]. The only technique combining
both spatial distance and probabilities together [4,3,1] suffers from the problem that
users have to specify parameters of ranking function to get the desirable results.

We in this paper propose a novel and effective metric, p-distance, to measure the dis-
similarity between two uncertain trajectories. Based on the p-distance metric, we define
a top-k similarity query (KSQ) on uncertain trajectories. To facilitate processing KSQs,
we propose a novel index structure called UTgrid to manage all uncertain trajectories.
The results of an extensive experimental study show that UTgrid based KSQ algorithms
are efficient and scalable.

2 Problem Statement

In a 2D space, an uncertain trajectory X is represented as {(R1, t1), . . . , (Rn, tn), pdf},
where Ri is the uncertain range at time ti, associated with the corresponding pdfi.

We define the p-distance of an uncertain trajectory as the quantity of all other trajec-
tories in the database that may be nearer than it to a query trajectory Q during the query
time interval.
� This work is supported in part by the National Science Foundation of China (NSFC Grant No.

60803003, 60970124).
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Given a query trajectory Q and an integer K , a top-k similarity query (KSQ) retrieves
from the database k trajectories with the smallest p-distances with respect to the query
trajectory. KSQs give users considerable convenience in that they do not need to specify
any ranking functions for the trajectories.

3 Processing KSQs

To process KSQs efficiently we design UTgrid, a practical index for spatiotemporal
uncertain trajectories based on grid partitioning techniques. In particular, UTgrid first
partitions the spatial dimensions (the space domain) into a set of non-overlapping cells
for spatial comparison, and then creates a temporal index within each spatial partition
(cell) to help temporal elimination.

We also develop detailed algorithms for processing KSQs by exploiting the UTgrid.

4 Experiments

All the experiments are run on a desktop PC with a 2.66GHz CPU and 4GB RAM. The
page size is 4096 bytes. We use a real dataset, the Geolife GPS trajectory dataset [2].

We compare UTgrid with two simple approaches, namely BoundPruning and se-
quential scan. The BoundPruning method uses only the boundaries of uncertain ranges
of trajectories but no probability information to prune unqualified trajectories. We vary
the value of k from 1 to 80 to see its impact on the query performance. As shown in
Figure 1 UTgrid always outperforms both other techniques in terms of pruning power,
total query processing time and the number of disk page accesses (I/O).

(a) Objects computed (b) Time (c) I/O

Fig. 1. Effect of k on real datasets

5 Conclusion

In this paper we address top-k similarity search on uncertain trajectories. We introduce
p-distance to measure the dissimilarity between two uncertain trajectories and define
top-k similarity query (KSQ) based on it. We design UTgrid for indexing uncertain
trajectories and develop query processing algorithms. We also conduct an extensive
experimental study to demonstrate the efficiency of our proposals.



Top-k Similarity Search on Uncertain Trajectories 591

References
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Abstract. Trajectory data streams are huge amounts of data pertaining
to time and position of moving objects. They are continuously generated
by different sources exploiting a wide variety of technologies (e.g., RFID
tags, GPS, GSM networks). Mining such amounts of data is challenging,
since the possibility to extract useful information from this peculiar kind
of data is crucial in many application scenarios such as vehicle traffic
management, hand-off in cellular networks, supply chain management.
Moreover, spatial data streams poses interesting challenges both for their
proper definition and acquisition, thus making the mining process harder
than for classical point data. In this paper, we address the problem of
trajectory data streams clustering, that revealed really challenging as we
deal with data (trajectories) for which the order of elements is relevant.

1 Introduction

Data Clustering is one of the challenging mining techniques exploited in the
knowledge discovery process[3]. Clustering huge amounts of data is a difficult
task since the goal is to find a suitable partition in a unsupervised way (i.e.
without any prior knowledge) trying to maximize the similarity of objects be-
longing to the same cluster and minimizing the similarity among objects in dif-
ferent clusters. Many different clustering techniques have been defined in order
to solve the problem from different perspective, i.e. partition based clustering
(e.g. K-means [6]), density based clustering (e.g. DBScan[1]), hierarchical meth-
ods (e.g. BIRCH [10]) and grid-based methods (e.g. STING [9]). In this paper we
deal with trajectory data streams that collect data pertaining to time and the
position of moving objects (or groups of objects). Trajectory data carry informa-
tion about actual positions and timestamps of moving objects at a detail level
often unnecessary. Indeed, many proposals split the search space in regions hav-
ing the suitable granularity and represent them as areas tagged by an annotated
symbol. The sequence of regions define the trajectory traveled by a given object.
Based on the above representation of trajectory data (i.e. region based instead
of a sequence of multidimensional points) mining steps are performed based on
proper techniques. Thus, regioning is a common assumption in trajectory data
mining [4,2]. Since, in many application scenarios we need to work on the orig-
inal data points, we propose in this work an approach that works directly on
the original two dimensional trajectory representation. Moreover, few proposal
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address the trajectory clustering in an incremental way, thus many approaches
are not suitable for datastreams except the one presented in [5]. As trajectories
flow into the system we perform a data pre-elaboration based on a proper fil-
tering of the multidimensional points based on Lifting Schemes [8]. The aim of
lifting is to represent a spatial signal (i.e. the whole trajectory) using a shorter
sequence by a proper filtering step that allow prediction and update of proper
coefficients. We define a clustering strategy based on multidimensional Fourier
Analysis in order to catch “structural” dissimilarities between trajectories. The
basic intuition exploited is that a trajectory has a “natural” interpretation as a
time series (namely, a discrete-time signal), in which numeric values summarize
some relevant features of the elements belonging to the trajectory. In a sense,
the analysis of the way the signal shapes differ can be interpreted as the detec-
tion of different locations crossed by the trajectories. Moreover, the analysis of
the frequencies of common signal shapes can be seen as repeated crossing of the
same location. In this context, the proposed approach is an efficient technique,
which can satisfactorily evaluate how much two trajectories are similar w.r.t. the
structural features previously discussed. Indeed, the exploitation of Non Separa-
ble Fourier Transforms (in particular we use Discrete Fourier Transform - DFT
[7]) allows to abstract from minor details which, in most application contexts,
should not affect the similarity estimation (e.g., multiple occurrences of the same
location due to simple traffic problems). Thus, the comparison is less sensitive
to minor mismatches. Moreover, a frequency based approach allows to estimate
the similarity through simple measures (e.g., vector distances) which are com-
putationally less expensive than techniques based on the direct comparison of
the original trajectory structures.
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Abstract. OLAP is a popular technology to query scientific and statis-
tical databases, but their success heavily depends on a proper design of
the underlying multidimensional (MD) databases (i.e., based on the fact
/ dimension paradigm). Relevantly, different approaches to automati-
cally identify facts are nowadays available, but all MD design methods
rely on discovering functional dependencies (FDs) to identify dimensions.
However, an unbound FD search generates a combinatorial explosion and
accordingly, these methods produce MD schemas with too many dimen-
sions whose meaning has not been analyzed in advance. On the contrary,
i) we use the available ontological knowledge to drive the FD search and
avoid the combinatorial explosion and ii) only propose dimensions of
interest for analysts by performing a statistical study of data.

1 Introduction

i) Our approach avoids generating too much results by mixing data mining and
OLAP technologies. The purpose of this work is to demonstrate the feasibility
and benefits of performing a statistical study of data to filter and prioritize the
dimensional concepts found in the sources for a given fact, so that the designer
can focus on these to decide and define his/her requirements for an OLAP ap-
plication. ii) Furthermore, we tackle the usual assumption that a RDBMS is the
most common kind of data sources we may find, by benefiting from a concep-
tual formalization of the domain (in our case, an OWL DL ontology) to avoid a
combinatorial explosion of the statistical study.

Eventually, our approach identifies, for each fact, all the dimensional concepts
and uses statistical evidences to filter out those of no relevance for data analysis.

2 Sketched Idea

Essentially, instead of blindly looking for FDs, our approach only tests combina-
tion of concepts likely to be interesting dimensional concepts for a given fact and
its measures. We address the reader to [1] for further details on how to exploit
the ontological knowledge available and the well-known FD theory to generate
multi-concept FDs in a smart way.

Here, we extend our previous work with a statistical study to filter out those
combinations of interest for the user. In [2] we can see how to perform an analysis
of variance (ANOVA). This is a test designed to decide whether the difference in
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the means of several samplings are due to differences in the populations or can
be reasonably attributed to chance fluctuations alone. We propose to measure
the importance when an attribute partitions a fact measure. Based on this ob-
jective evidence, we should choose the dimensional attributes based on the gain
of entropy on partitioning each measure of interest. In our ANOVA tests, the
hypothesis of “no difference” in the population of the different subsets is the null
hypothesis. If this is rejected in our statistical analysis with a given confidence
level, we will propose this attribute (or set of attributes) as an Interesting
Dimension (ID from here on).
The interesting Dimension Function: This function is called whenever a
combination of attributes is likely to be an ID (see [1]). Up to this step every-
thing has been verified at the conceptual level. Then, we verify whether this
combination of dimensional concepts is interesting to analyze a given measure
by querying data. Prior to perform the statistical analysis, we first disregard
candidate IDs with too many instances, since the end-user will be overwhelmed
by the amount of values. Indeed, statisticians consider that useful categorical
variables should have, at most, some tens of values. Relevantly, in case of query-
ing a RDBMS, this pruning rule disregards combinations by just querying the
catalog. Those combinations satisfying this rule are still candidates to be an ID,
and we verify it by performing a one-way ANOVA test over data, as explained
in [2], with the following query:
SELECT (SUM(gr.s)/(#distinct-1))/(SUM(POWER(A-grAvg,2))/(#tuples-#distinct)) AS fFisher
FROM t, (SELECT attrSet AS id, avg(A) AS grAvg, POWER(AVG(A)-(SELECT avg(A) FROM t ),2) AS s

FROM t WHERE joinConds GROUP BY attrSet) gr
WHERE attrSet=gr.id;

Where attrSet are the attributes conforming the feasible ID to be verified, t
the table or tables containing those attributes (join conditions should be added
if necessary), #distinct is the number of different values for setAttr and #tuples
the number of tuples in the fact table. Then, the credibility of the null hypothesis
is obtained by placing the result of this query in a Fisher distribution with the
corresponding degrees of freedom.

However, this is not enough to decide whether this combination of attributes
is an ID or not, because we could detect an ID due to the influence of another
ID. Thus, once we detect an ID, we perform a two-way ANOVA test involving
it and any other ID detected before (by means of a similar query) to discard
the possibility that this is an ID just because another one is and there is some
relationship between them (e.g., a multivalued dependency). Importantly, our
approach can be used for other kind of data sources, as we would only need to
adapt these SQL queries to the available data sources technology.
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Abstract. This work presents an adaptive outlier detection technique for data 
streams, called Automatic Outlier Detection for Data Streams (A-ODDS), 
which identifies outliers with respect to all the received data points (global 
context) as well as temporally close data points (local context) where local 
context are selected based on time and change of data distribution.  

1   Introduction 

An outlier is a data point which is significantly different from other data points [1]. 
Although outliers are interesting to the user, a handful of techniques are available for 
data streams, which are adopted from existing outlier detection techniques for regular 
data with ad-hoc modifications. A number of those techniques use sliding window 
and detect outliers inside the window [2]; but an outlier for a particular window may 
appear as an inlier in another window; hence the notion of outlier in a data stream 
window is not very concrete. Auto-regression based techniques construct a model and 
compute a metric for each data point [3] where a data point is an outlier if the 
corresponding metric is beyond a certain cut-off limit. However finding a proper auto-
regression model and cut-off limit is a not a trivial task and requires expert 
knowledge. Statistics based techniques [1] assume a fixed data distribution while data 
streams have varying distribution. In this work we present A-ODDS to detect outliers 
based on the deviations of a data point with respect to global and local contexts. 

2   The Proposed Technique: A-ODDS and Experimental Results 

Our approach is based on two deviation factors for the global and local contexts, 
called Global Deviation Factor (GDF) and Local Deviation Factor (LDF), 
respectively. GDF represents the deviation of a data point with respect to the entire 
history data points; and LDF represents the deviation of a data point with respect to 
the recent data points; both deviation factors are calculated from neighbor density.  

GDF of a data point is the relative distance from the average neighbor density of 
the entire history data points to its neighbor density; and LDF of a data point is the 
relative distance from the average neighbor density of the recent data points to its 
neighbor density. A data point is identified as an outlier if either its GDF or LDF goes 
beyond three standard deviations away from its respective average. The choice of 
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three standard deviation dispersion ensures a significant dispersion of a data point 
from other data points [1] and does not require the user to select cut-off limits. 

Our local context selection scheme for LDF is based on two intuitive criteria: first, 
data points in local context have to be temporally close and second, they have to 
follow similar distribution. We choose data points in between two consecutive 
concept drifts as local context as they are close temporally and expected to follow 
similar distribution; hence LDF finds outliers non-conformist to the recent trend. GDF 
and LDF use the dynamically adaptive data distribution function for neighbor density 
computation that we presented in [5]. 

We conducted simulation experiments using a real dataset collected from 
California Irrigation Management [4] to compare A-ODDS with the three existing 
algorithms: auto-regression based algorithm ART [3], sliding window based 
algorithm ODTS [2] and distance-based outlier detection algorithm DBOD-DS [5], in 
terms of outlier detection accuracy (Jaccard Coefficient (JC) [2]) and execution time. 
On average, as shown in Table 1, A-ODDS gives the best accuracy among all the 
techniques; however, when measuring execution time, while A-ODDS requires less 
time than DBOS-DS, it takes more time than ART and ODTS.  

Table 1. Average JC and Execution Time 

 Average accuracy (JC) Average execution time (ms) 
A-ODDS 0.7095 1.3656 
DBOD-DS 0.1585 1.8485 
ODTS 0.1467 0.0405 
ART 0.1373 0.3005 

3   Conclusions and Future Work 

This paper presents an overview of A-ODDS and its accuracy and efficacy compared 
to existing algorithms. For future work, we will perform extensive empirical studies 
and extend it to multi-dimensional and multiple heterogeneous data streams.  
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Abstract. Energy consumption has become a first-class optimization
goal in computing system design and implementation. Database systems,
being a major consumer of computing resources (thus energy) in mod-
ern data centers, also face the challenges of going green. In this position
paper, we describe our vision on this new direction of database system
research, and report the results of our recent work on this topic. We de-
scribe our ideas on the key issues in designing a power-aware DBMS and
sketch our solutions to such issues. Specifically, we believe that the ability
for the DBMS to dynamically adjust various knobs to satisfy energy (and
performance) goals is the main technical challenge in this paradigm. To
address that challenge, we propose dynamic modeling and tuning tech-
niques based on formal feedback control theory. Our preliminary data
clearly show that the energy savings can be significant.

Keywords: Power-aware DBMS, feedback control, energy profile iden-
tification, system modeling, power cost estimation.

1 Introduction

The steep increase of energy consumption of computers have made power man-
agement a critical issue in system design and implementation. As shown in our
previous work [2], a basic design of P-DBMS introduces multiple control knobs
that enable real-time adjustment of system behavior. A typical database system
bears many uncertainties in its workload and environment therefore the problem
of DBMS control for energy-saving purposes cannot be mapped into a conven-
tional optimization problem. Our proposal to tackle this problem is to view it as
an optimal control problem and utilize rigorous control-theoretical analysis and
system design techniques to accomplish energy saving and performance goals.
Our control-based solution, in contrast to ad hoc heuristics that are widely used
in solving similar tuning problems, has the advantage of providing guaranteed
performance and resistance to system/environmental dynamics.
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2 Overview of P-DBMS Design

Our vision of building an energy-efficient DBMS is to enhance current DBMS
components with energy-related functionalities, rather than building these com-
ponents from scratch. This allows us to minimize the impacts on the current
DBMS architecture that is well-designed for performance-driven query process-
ing. The design goal of the system is as follows:
Problem 1. Given a performance bound, the power consumption of the
database system should be minimized.

The above design goal reflects the idea that performance is the most critical
issue, while saving energy cost is a best-effort requirement based on a tolerance
level of performance degradation.

3 Feedback Control for Power Optimization

Traditionally, solutions to adaptive power management problems, as well as those
in self-tuning databases, heavily rely on heuristics. Recently, however, feedback
control theory has been successfully applied to power control in servers and
database tuning [1]. The benefit of having control theory as a theoretical foun-
dation is that we can have (1) standard approaches to choosing the right control
parameters so that exhaustive iterations of tuning and testing are avoided; (2)
theoretically guaranteed control performance such as accuracy, stability, short
settling time, and small overshoot; and (3) quantitative control analysis when
the system is suffering unpredictable workload variations. This rigorous design
methodology is in sharp contrast to heuristic-based adaptive solutions that rely
on extensive empirical evaluation and manual tuning.

Intuitively, the power mode of hardware should be set to a level such that the
system performance converges to the tolerance bound mentioned in Problem 1.
This is because making the performance better than the bound is not necessary
and also implies less energy saving. We are developing a feedback control loop to
satisfy the runtime power and performance requirements set in Problem 1.

4 Conclusions

In this paper, we elaborated on the issues in building such a PDBMS system
and how such issues can be resolved. Our idea was to utilize formal feedback
control theory to achieve effective modeling and system control. We conclude
that power-aware DBMS is a meaningful and interesting approach for tackling
the problem of energy-efficient database systems.
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