
Multilevel Secure Data Stream Processing

Raman Adaikkalavan1,�, Indrakshi Ray2, and Xing Xie2

1 Computer and Information Science, Indiana University South Bend
raman@cs.iusb.edu

2 Computer Science, Colorado State University
{iray,xing}@cs.colostate.edu

Abstract. With sensors and mobile devices becoming ubiquitous, situation mon-
itoring applications are becoming a reality. Data Stream Management Systems
(DSMSs) have been proposed to address the data processing needs of such appli-
cations that require collection of high-speed data, computing results on-the-fly,
and taking actions in real-time. Although a lot of work appears in the area of
DSMS, not much has been done in multilevel secure (MLS) DSMS making the
technology unsuitable for highly sensitive applications such as battlefield moni-
toring. An MLS DSMS should ensure the absence of illegal information flow in a
DSMS and more importantly provide the performance needed to handle continu-
ous queries. We investigate the issues important in an MLS DSMS and propose an
architecture that best meets the goals of MLS DSMS. We discuss how continuous
queries can be executed in such a system and sharing across queries accomplished
for maximum performance benefits.

Keywords: Multilevel Security, DSMS, Continuous Query Processing.

1 Introduction

With the advancement of smart technologies and ubiquitous availability of sensor and
mobile devices, situation monitoring applications are becoming a reality. Such ap-
plications require collecting high-speed data, processing them, computing results on-
the-fly, and taking actions in real-time. Data Stream Management Systems (DSMSs)
[7,14,4,9,1,5,16] have been proposed for such applications that allow processing of
streaming data and execution of continuous queries. One potential use of this technol-
ogy is for military applications where DSMS receives information from various devices
and sensors, not all of which belong to the same security level. In such applications,
users and information are classified into the various security levels and mandatory rules
govern the information flow across security levels. DSMSs need to execute queries
based on live streaming data classified at various levels in response to request from
users at different security levels without causing illegal information flow. Our work
attempts to extend an existing DSMS to support such capabilities.

Researchers have worked on secure data and query processing in the context of
DSMSs. However, almost all of these works focus on providing access control [15,11]
to streaming data [21,13,22,12,3]. However, controlling access is not enough to prevent

� This work was supported, in part, by IU South Bend Research Grant.

Y. Li (Ed.): Data and Applications Security and Privacy XXV, LNCS 6818, pp. 122–137, 2011.
c© IFIP International Federation for Information Processing 2011

Multilevel Secure Data Stream Processing 123

security breaches in the above mentioned applications where illegal information flow
can occur across security levels. For instance, the existence of covert and overt chan-
nels can cause information to be passed from a more sensitive level to a lesser one.
Multilevel security (MLS) not only prevents unauthorized access but also ensures the
absence of such illegal information flow.

Designing an MLS DSMS requires us to address several research issues. We need
to provide a continuous query language for expressing real-world MLS DSMS queries.
The formalization of such a language will allow us to determine query equivalence and
facilitate query optimization. Note that, traditional notions of query equivalence will
not work because the same query issued by users at different security levels will re-
turn different results. Moreover, query processing should be efficient to meet the QoS
requirements of a DSMS. This necessitates sharing query plans of multiple queries to
reduce query execution time without causing illegal information flow. In order to pro-
cess MLS continuous queries in a secure manner, it is therefore necessary to completely
redesign or make major modifications to the components of a DSMS.

In this work, we propose a suitable architecture for processing MLS continuous
queries. We also formalize MLS continuous query processing and discuss how such
queries can be executed in our proposed architecture. We discuss how query plans can
reuse plans from existing queries. We augment the approaches proposed by the Stanford
STREAM [4], Aurora [9], and Borealis [1] projects and allow sharing of query plans
submitted by different users not all of which have been submitted at the same time. This
not only allows good resource utilization but also helps achieve the quality-of-service
(QoS) critical to stream processing applications.

The rest of the paper is organized as follows. In Section 2, we define a MLS formal-
ization model for stream data applications where data sources, data streams, queries,
and other components in DSMS are assigned with security levels with proper access-
ing rules. In Section 3, we propose a replicated architecture to address MLS stream
applications. In order to accelerate processing rates, we explore different sharing ap-
proaches between continuous queries in Section 4. We discuss related work in section
5. In Section 6, conclusions and future work are discussed.

2 Multilevel Security Formalization Model

We begin by presenting our model for multilevel secure (MLS) DSMS system. An
MLS DSMS is associated with a security structure that is a partial order, (L, <). L
is a set of security levels, and < is the dominance relation between levels. If L1 < L2,
then L2 is said to strictly dominate L1 and L1 is said to be strictly dominated by L2.
If L1 = L2, then the two levels are said to be equal. L1 < L2 or L1 = L2 is denoted
by L1 ≤ L2. If L1 ≤ L2, then L2 is said to dominate L1 and L1 is said to be domi-
nated by L2. Two levels L1 and L2 are said to be incomparable if neither L1 ≤ L2 nor
L2 ≤ L1. We assume the existence of a level U , that corresponds to the level unclassi-
fied or public knowledge. The level U is the greatest lower bound of all the levels in L.
Any data object classified at level U is accessible to all the users of the MLS DSMS.
Each MLS DSMS object x ∈ D is associated with exactly one security level which we

124 R. Adaikkalavan, I. Ray, and X. Xie

denote as L(x) where L(x) ∈ L. (The function L maps entities to security levels.) We
assume that the security level of an object remains fixed for the entire lifetime of the
object.

The users of the system are cleared to different security levels. We denote the security
clearance of user Ui by L(Ui). Consider a setting consisting of two security levels: High
(H) and Low (L), where L < H. The user Jane Doe has the security clearance of High.
That is, L(JaneDoe)= H. Each user has one or more associated principals. The number
of principals associated with the user depends on their security clearance; it equals the
number of levels dominated by the user’s security clearance. In our example Jane Doe
has two principals: JaneDoe.H and JaneDoe.L. During each session, the user logs in as
one of the principals. All processes that the user initiates in that session inherit security
level of the corresponding principal.

Each continuous query Qi is associated with exactly one security level. The level of
the query remains fixed for the entire execution. The security level of the query is the
level of the principal who has submitted the query. For example, if Jane Doe logs in as
JaneDoe.L, all queries initiated by Jane Doe during that session will have the level Low
(L). A continuous query Qi consists of one or more operators OPi, where the operators
inherit the level of the query. We require a query Qi to obey the simple security property
and the restricted �-property of the Bell-LaPadula model [10].

1. An operator OPi with L(OPi) = C can read an object x only if L(x) ≤C.
2. An operator OPi with L(OPi) = C can write an object x only if L(x) = C.

In general, multilevel security can be supported at three granularities: attribute, tuple, or
stream. Though stream level enforcement (i.e., single level streams within the DSMS)
may be the easiest way of supporting multilevel security, it does not work for many
MLS applications. We have analyzed stream applications from various domains (e.g.,
battlefield monitoring, infrastructure security). In such applications, streams containing
tuples having different levels are often input to the DSMS. Thus, providing stream level
security would not be beneficial to such applications. In this research work, we do
security enforcement at tuple level (i.e., we assign level to each tuple). Thus, we do not
consider the security level of the attributes individually, in this paper.

We do not present a separate attack model in this paper. Like all MLS systems, our
goal is to allow information flow only from the dominated levels to the dominating
ones. All other information flow, either overtly or covertly, should be disallowed by our
architecture.

3 Multilevel Stream Processing Architecture

In this section, we begin by discussing a general DSMS architecture and describe how
it can be adapted to process MLS continuous queries.

3.1 General DSMS Architecture

A typical DSMS [7,14,16] architecture (based on the STREAM system [4]) is shown in
Figure 1. A Continuous Query (CQ) can be defined using specification languages [5],

Multilevel Secure Data Stream Processing 125

or as query plans [14]. The CQs defined using specification languages are processed
by the input processor, which generates a query plan. Each query plan is a directed
graph of operators (e.g., Select, Project, Join, Aggregate). Each operator is associated
with one or more input queues1 and an output queue. One or more synopses2 [5] are
associated with each operator (e.g., Join) that needs to maintain the current state of the
tuples for future evaluation of the operator. The generated query plans are then instan-
tiated, and query operators are put in to the ready state so that they can be executed.
Based on a scheduling strategy (e.g., round robin) [16,6], the scheduler picks a query,
an operator, or a path, and starts the execution. The run-time optimizer monitors the
system, and initiates load shedding [16,25,8] as and when required. Both these QoS
delivery mechanisms minimize resource usage (e.g., queue size) and maximize perfor-
mance and throughput. Each stream has a stream shepherd operator in the DSMS which
handles all the tuples arriving in that stream. Seq window operator reads the tuples from
the shepherd operator and propagates to leaf nodes of queries. This operator is shared
by all the queries that use that stream. In the directed graph of operators, the data tuples
are propagated from the leaf operator to the root operator. Each operator produces a
stream (can also be a relation) of tuples. After a processed tuple exits the query plan,
the output manager sends it to the query creators (or users).

Fig. 1. Data Stream Management System (DSMS)

1 Queues are used by the operators to propagate tuples.
2 Synopses are temporary storage structures used by the operators (e.g., Join) that need to main-

tain a state. In this paper, we use synopses and windows, alternatively.

126 R. Adaikkalavan, I. Ray, and X. Xie

Fig. 2. Replicated MLS DSMS Architecture

3.2 MLS DSMS Architecture

In this section, we discuss how we can adapt the general DSMS architecture to process
MLS continuous queries. We focus our attention to the query processor component of
the architecture presented in Figure 1. The query processor of an MLS DSMS can have
various types of architecture depending on how logical isolation is achieved across the
different security levels. We borrow our ideas in this regard from the various archi-
tectures (trusted, kernelized, and replicated) that have been proposed in MLS DBMS
literature [15,18,2]. We choose the replicated architecture as the first step and plan to
propose other alternatives as part of our future work.

Our architecture is based on the replicated model where each level L stores not only
the tuples with classification L but also those whose classification is dominated by L.
We present one example of a replicated query processor in Figure 2, although many
variations are possible.

The query processors are untrusted and replicated at various security levels. Each
query processor runs at a security level (L) and is responsible for executing queries
submitted by the users who have logged on at the same level. The response to a query
may involve data belonging to one or multiple security levels; however, the level of all
the tuples returned in the response must be dominated by the query level.

The stream shepherd operator must be redefined to ensure that only tuples at the
dominated level are passed on to the dominating level. All the other operators are un-
trusted and are replicated at various levels. The input queues carrying data at dominated
levels are replicated at the dominating levels as well. Sequential-Window operators and
synopses used for processing blocking operators such as join and aggregation are cre-
ated as needed for the query processors at that level. In the next section, we discuss
query processing in more details.

Multilevel Secure Data Stream Processing 127

4 Shared Query Processing in Replicated DSMS

In this section, first we discuss MLS CQL queries informally, and then discuss shared
query processing.

4.1 MLS CQL Queries

Consider the following data streams (Vitals and Position) and continuous query Q writ-
ten using the CQL language [5]. Query Q joins tuples from two streams. The sliding
windows maintain the last 100 tuples for computations.

Vitals (soldier id (sid), blood pressure (bp), pulse rate (pr));
Position (soldier id (sid), latitude (lat), longitude (lon));

Q: SELECT AVG(bp), AVG(pr) FROM Vitals[ROWS 100], Position[ROWS 100]
WHERE Vitals.sid = Position.sid

To support MLS, stream and query definitions have to be modified to include secu-
rity levels. Below, we discuss MLS CQL briefly as a complete discussion is outside
the scope of this paper. An MLS CQL query can include the LEVEL attribute in the
WHERE clause, SELECT clause, and window specification. Let us consider the fol-
lowing examples.

SELECT AVG(bp) WHERE LEVEL = "S" FROM Vitals [ROWS 100]
SELECT AVG(bp) FROM Vitals [ROWS 100 LEVEL = "S"]
SELECT AVG(bp) FROM Vitals [ROWS 100] WHERE LEVEL = "S"

In the first query the WHERE clause conditions are applied before a tuple enters a
window. In the second query, the window keeps only tuples based on the condition
specified. In the third query, the window maintains 100 tuples, but the WHERE clause is
applied during AVG calculation. The first and second queries are equivalent. Note that,
for these queries, we have simple selections and we do not have any join conditions. If
the WHERE clause specifies a join condition, this condition can only be checked in the
join operator which is processed after the window selection. Our algorithms, presented
in this paper, address all three types of queries. However, due to space constraints, our
examples are based on the first type of query which processes the WHERE conditions
except the join condition before window selection.

We consider only tuple-based (e.g., query Q) and partitioned by windows [5]. In the
query shown below, the partitioned window maintains two different partitions (as it gets
only tuples with level S or TS), and the average is calculated for each partition.

SELECT AVG(bp) WHERE LEVEL = "S" OR "TS"
FROM Vitals [PARTITIONED BY LEVEL ROWS 100]

Processing each MLS query involves several steps. First, the selection condition of the
query is written in conjunctive normal form. Second, the query must be rewritten to add
a where clause that says the level of tuples returned must be dominated by the level of
the user. Subsequently, we generate the query plan. In this work, we represent a query
plan in the form of a tree which we refer to as an operator tree. Note that, many operator

128 R. Adaikkalavan, I. Ray, and X. Xie

Table 1. Continuous Queries

Query User Login Level Query Specification
Q1/Q′

1 Ann/Bob H SELECT AVG(bp)
FROM Vitals [PARTITIONED BY LEVEL ROWS 20]

Q2 Carl H SELECT AVG(bp) WHERE LEVEL = "L"
FROM Vitals [ROWS 20]

Q3 Dan H SELECT AVG(bp) WHERE bp > 50

FROM Vitals [PARTITIONED BY LEVEL ROWS 5]
Q4 Dan H SELECT AVG(pr)

WHERE V.sid = P.sid AND bp > 120 AND lon = "4E"
FROM Vitals [ROWS 10] V, Position [ROWS 10] P

Q5 Ellen H SELECT V.sid,pr
WHERE V.sid = P.sid AND bp > 120 AND lon ="4E"
FROM Vitals [ROWS 10] V, Position [ROWS 10] P

Q6 Frank H SELECT sid,bp WHERE bp > 120

FROM Vitals

Q7 Gail H SELECT sid,bp,pr WHERE LEVEL = "L" AND bp > 120

FROM Vitals

Q8 John H SELECT sid WHERE pr > 100

FROM Vitals

trees may be associated with a query corresponding to the different plans. However, we
show just one such tree for each query. The formal definition of an operator tree appears
below.

Definition 1. [Operator Tree] An operator tree for a query Qx is represented in the
form of OPT (Qx) consists of a set of nodes NQx and a set of edges EQx . Each node Ni

corresponds to some operator in the query Qx. Each edge (i, j) in this tree connecting
node Ni with node Nj signifies that the output of node Ni is the input to node Nj. Each
node Ni is labeled with the name of the operator Ni.op, its parameters Ni.parm, the
synopses Ni.syn (for blocking operators), and input queues Ni.inputQueue which are
used for its computation. The label of node Ni also includes the output produced by the
node, denoted by Ni.out putQueue, that can be used by other nodes or sent as response
to the users.

Operator trees for queries Q6 and Q7 defined in Table 1 appear in Figures 3(a) and
3(b), respectively. An operator tree has all the information needed for processing the
query. Specifically, the labels on the node indicate how the computation is to be done
for evaluating that operator, where an operator is the basic unit of data processing in
a DSMS. The name component specifies the type of the operator, such as, SELECT ,
PROJECT , AVG, etc. The parameter is denoted as a set. For the SELECT operator,
parameter is the set of conjuncts in the selection condition. For the PROJECT operator
it is the set of attributes. The synopsis is needed for the blocking operators, such as, join
and aggregate operations and has type (e.g., tuple-based, partitioned by) and size as its
attributes. The input queues are derived from the streams (or relations) needed by the
operator.

Multilevel Secure Data Stream Processing 129

We use the streams (Vitals and Position) and continuous queries shown in Table 1
to discuss query processing. We also assume the tuples sent by soldiers involved in a
highly classified mission to be classified as high (H) and other missions to be classified
as low (L). Medics or users can login in at different levels and submit queries. Also note
that in Table 1 all queries are issued in high (H) level. The main reason to choose one
level is that all queries issued by a user logged in at that level is processed by a query
processor running at that level. Hence we use examples from H level to introduce and
discuss various sharing methods. All these queries are executed by one query processor
at level high, shown in Figure 2.

Queries Q1 and Q′
1, issued by Ann and Bob respectively, compute the average blood

pressure of the last 20 tuples at each level in Vitals stream. Query Q2 computes the
average blood pressure of the last 20 tuples having level L. Query Q3 computes the
average blood pressure for the last 5 tuples at each level where the pressure is greater
than 50. In queries Q4 and Q5, the last 10 tuples that satisfy the selection conditions are
maintained in the synopses and are joined. Average and projection are computed over
the results from the join. In queries Q6 to Q8, there are only selection conditions and
projection (duplicate preserving) operations. Query Q7 selects level L tuples that have
bp > 120 and projects three attributes.

4.2 Query Sharing

Typically, in a DSMS there can be several queries that are being executed concurrently.
Query sharing will increase the efficiency of these queries. Query sharing obviates the
need for evaluating the same operator(s) multiple times if different queries need it. In
such a case, the operator trees of different queries can be merged. Figure 3(c) shows
the merging of operator trees of queries Q6 and Q7 shown in Figures 3(a) and 3(b),
respectively. In the Figure 4, we show how the operator trees of Q4 and Q5 can be
merged. Later we will formalize how such sharing can be done.

In our replicated MLS DSMS query processing architecture, we focus on sharing
queries to save resources such as CPU cycles and memory usage. In our architecture,
we share queries that are submitted by users with the same principal security level as
all these queries run in the same query processor. Since queries shared have the same
security level, our replicated MLS DSMS query processor avoids security violations
like covert channel during sharing.

We next formalize basic operations that are used for comparing the nodes belong-
ing to different operator trees. Such operations are needed to evaluate whether sharing
is possible or not between queries. We begin with the equivalence operator. If nodes
belonging to different operator trees are equivalent, then only one node needs to be
computing for evaluating the queries corresponding to these different operator trees.

Definition 2. [Equivalence of Nodes] Node Ni ∈ NQx is said to be equivalent to node
Nj ∈NQy , denoted by Ni ≡Nj, where Ni, Nj are in the operator trees OPT (Qx), OPT (Qy)
respectively, if the following condition holds: Ni.op = Nj.op∧Ni.parm = Nj.parm∧
Ni.syn = Nj.syn∧Ni.inputQueue = Nj.inputQueue

In some cases, for evaluating node Ni belonging to operator tree OPT (Qx), we may
be able to reuse the results of evaluating node Nj belonging to operator tree OPT (Qy).

130 R. Adaikkalavan, I. Ray, and X. Xie

Fig. 3. Operator Tree for Q6, Q7, and Loose Partial Sharing of Q6 and Q7

Fig. 4. Strict Partial Sharing Operator Tree for Q4 and Q5

This is possible if the nodes are related by the subsumes relationship defined below.
Such relationship is possible when the operators match and are non-blocking and the
operator parameters are related by a subset relation.

Definition 3. [Subsume Relation of Nodes] Node Ni ∈ NQx is said to be subsumed by
node Nj ∈ NQy , denoted by Ni ⊆ Nj, where Ni, Nj are in the operator trees OPT (Qx),

Multilevel Secure Data Stream Processing 131

OPT (Qy) and are referred to as subsumed node, subsuming node respectively, if the
following conditions hold:

1. Condition 1:
– Case 1 [Ni.op = PROJECT]:

Ni.op = Nj.op∧Ni.parm ⊆ Nj.parm∧Ni.inputQueue = Nj.inputQueue.

– Case 2 [Ni.op = SELECT]:
Ni.op = Nj.op∧Nj.parm ⊆ Ni.parm∧Ni.inputQueue = Nj.inputQueue.

2. Condition 2: Ni.op is a non-blocking operator.

Consider the SELECT nodes of the operator trees of queries Q6 and Q7 shown in
Figure 3, where the SELECT node of Q7 is subsumed by the SELECT node of Q6.
We have different forms of sharing that are possible in our architecture which we now
discuss.

Complete Sharing
The best form of sharing is complete sharing where no additional work is needed for
processing a new query. However, in order to have complete sharing, the two queries
must have equivalent operator trees. The notion of equivalence of operator trees is given
below.

Definition 4. [Equivalence of Operator Trees] Two operator trees OPT (Qx) and
OPT (Qy) are said to be equivalent, denoted by OPT (Qx) ≡ OPT (Qy) if the follow-
ing conditions hold.

1. for each node Ni ∈ NQx , there exists a node Nj ∈ NQy , such that Ni ≡ Nj.
2. for each node Np ∈ NQy , there exists a node Nr ∈ NQx , such that Np ≡ Nr.

The formal definition of complete sharing appears below.

Definition 5. [Complete Sharing] Query Qx can be completely shared with an ongoing
query Qy submitted by a user at the same security level only if OPT(Qi) ≡ OPT (Q j).

Complete sharing is possible only when the queries are equivalent. For example, queries
Q1 and Q′

1 have identical operator trees and can be completely shared. In such cases,
we do not need to do anything else for processing the new query. However, this may
not happen often in practice.

Partial Sharing
We next define partial sharing which allows multiple queries to share the processing of
one or more nodes, if they are related by the equivalence or subsume relation.

Definition 6. [Partial Sharing] Query Qx can be partially shared with an ongoing
query Qy submitted at the same security level only if the following conditions hold

1. OPT (Qx) 	≡ OPT (Qy)
2. there exists Ni ∈ NQx and Nj ∈ NQy , such that one of the following holds: Ni ≡ Nj,

Ni ⊆ Nj or Nj ⊆ Ni.

132 R. Adaikkalavan, I. Ray, and X. Xie

We have two forms of partial sharing which we describe below. The main motivation is
the sharing of blocking operators have to be handled differently from non-blocking op-
erators. The sharing of blocking operators is more restrictive in which the conditions for
join operator, for example, must exactly match the other query’s join operator. On the
other hand, with non-blocking operators they can be subsumed. The formal definition
of these two forms of sharing appears below.

Definition 7. [Strict Partial Sharing] Query Qx can be strict partially shared with an
ongoing query Qy submitted at the same security level only if the following conditions
hold

1. OPT (Qx) 	≡ OPT (Qy)
2. there exists Ni ∈ NQx and Nj ∈ NQy , such that Ni ≡ Nj

3. there does not exist Ni ∈ NQx and Nj ∈ NQy , such that Ni ⊆ Nj or Nj ⊆ Ni.

Definition 8. [Loose Partial Sharing] Query Qx can be loose partially shared with an
ongoing query Qy submitted at the same security level only if the following conditions
hold

1. OPT (Qx) 	≡ OPT (Qy)
2. there exists Ni ∈ NQx and Nj ∈ NQy , such that Ni ⊆ Nj.

In the loose partial sharing, we will have a node on the ongoing query that subsumes
a node of an incoming query. When nodes are related by subsume relation, then it is
possible to decompose the subsumed nodes. The decomposition tries to make use of
operator evaluation of the subsuming node in order to evaluate the subsumed node. The
decomposition is formalized below.

Definition 9. [Decomposition of Subsumed Nodes] Let Ni ⊆ Nj where Ni ∈ OPT (Qx)
and Nj ∈ OPT (Qy). Node Ni can be decomposed into two nodes N′

i and N′′
i in the

following manner.

Node N′
i

1. N′
i .op = Nj.op

2. N′
i .inputQueue = Nj.inputQueue

3. N′
i .parm = Nj.parm

Node N′′
i

1. N′′
i .op = Ni.op

2. N′′
i .inputQueue = N′

i .out putQueue
3. N′′

i .parm = Ni.parm−N′
i .parm(i f Ni.op = SELECT)

N′′
i .parm = N′

i .parm−Ni.parm(i f Ni.op = PROJECT)

Consider the SELECT nodes of the operator trees of query Q6 and Q7 shown in
Figure 3. In this case, the SELECT node of Q7 is subsumed by the SELECT node
of Q6. Select node of Q7 which is the subsumed by the select node of Q6 can be decom-
posed into two select nodes. One of these new nodes mirror Q6 and the other is also
a select node that checks for the additional select condition. Partial sharing is possible
because of the overlap of operator trees.

Multilevel Secure Data Stream Processing 133

Algorithm 1. Merge Operator Trees

INPUT: OPT (Qx) and OPT (Qy)
OUTPUT: OPT (Qxy) representing the merged operator tree
Initialize NQxy = {}
Initialize EQxy = {}
foreach node Ni ∈ NQx do

NQxy = NQxy ∪Ni

end
foreach edge (i, j) ∈ EQx do

EQxy = EQxy ∪ edge (i, j)
end
foreach node Ni ∈ NQy do

if 	 ∃Nj ∈ NQx such that Ni ≡ Nj then
NQxy = NQxy ∪Ni

end
end
foreach edge (i, j) ∈ EQy do

if edge (i, j) 	∈ EQxy then
EQxy = EQxy ∪ edge (i, j)

end
end

Definition 10. [Overlap of Operator Trees] Two operator trees OPT (Qx) and OPT (Qy)
are said to overlap if OPT (Qx) 	≡ OPT (Qy) and there exists a pair of nodes Ni and Nj

where Ni ∈ NQx and Nj ∈ NQy such that Ni ≡ Nj.

When operator trees corresponding to two queries overlap, we can generate the merged
operator tree using Algorithm 1. The merged operator tree signifies the processing of
the partially shared queries.

Figure 4 illustrates the strict sharing of OPT (Q4) and OPT (Q5). As shown, we share
select and join operators. The result of the join is processed by duplicate preserving
project and aggregation operators. On the other hand, seq-window operator is common
to all queries using a stream. Figures 3 (a) and (b) show the OPT (Q6) and OPT (Q7),
respectively. Figure 3 (c) illustrates the OPT (Q67) which shares both the query opera-
tions using the loose partial sharing approach. In this case, the query Q7 is subsumed
by Q6 according to subsume relation definition. Based on Definition 9 (decomposition
of subsumed nodes), we split Q7 select condition into two (bp > 120 and level = “L”)
nodes and then share the bp > 120 node with Q6.

5 Related Work

Though there has been a lot of research on multilevel security, to the best of our knowl-
edge, ours is the first work in multilevel secure data stream processing systems. In this
section, we will discuss works from closely related areas: DSMS, DSMS security, and
MLS in real-time systems.

134 R. Adaikkalavan, I. Ray, and X. Xie

Data Stream Management Systems (DSMSs): Most of the works carried out in
DSMSs address various problems ranging from theoretical results to implementing
comprehensive prototypes on how to handle data streams and produce near real-time
response without affecting the quality of service. There have been lots of works on de-
veloping QoS delivery mechanisms such as scheduling strategies [16,6] and load shed-
ding techniques [16,25,8]. Some of the research prototypes include: Stanford STREAM
Data Manager [7,4], Aurora [9], Borealis [1,17], and MavStream [20].

DSMS Sharing: In general DSMSs like STREAM [7,4], Aurora [9], and Borealis
[1,17], queries issued by the same user at the same time can share the Seq-window
operators and synopses. In the STREAM system, Seq-window operators are reused by
queries. Instead of sharing plans, Aurora research focus on providing better scheduling
of large number queries, by batching operators as atomic execution unit. In the Borealis
project, information on input data criteria from executing queries can be shared and
modified by new incoming queries. Here the execution of operators will be the same
but the input data criteria can be revised. Even though many approaches target on better
QoS in terms of scheduling and revising, sharing execution and computation among
queries submitted at different times by the same user or at the same time between dif-
ferent users are not supported in general DSMS. Besides sharing common source Seq-
window operators, sharing intermediate computations will result in big performance
gains.

DSMS Security: There has been several recent works on securing DSMSs
[21,13,22,12,3] by providing role-based access control. Though these systems support
secure processing they do not prevent illegal information flows. In addition, in MLS
systems we need to classify each component of the DSMS as opposed to access con-
trol support. Punctuation-based enforcement of RBAC over data streams is proposed
in [22]. Access control policies are transmitted every time using one or more security
punctuations before the actual data tuple is transmitted. Query punctuations define the
privileges for a CQ. Both punctuations are processed by a special filter operator (stream
shield) that is part of the query plan. Secure shared continuous query processing is pro-
posed in [3]. The authors present a three-stage framework to enforce access control
without introducing special operators, rewriting query plans, or affecting QoS deliv-
ery mechanisms. Supporting role-based access control via query rewriting techniques
is proposed in [13,12]. To enforce access control policies, query plans are rewritten and
policies are mapped to a set of map and filter operations. When a query is activated,
the privileges of the query submitter are used to produce the resultant query plan. The
architecture proposed in [21] uses a post-query filter to enforce stream level access con-
trol policies. The filter applies security policies after query processing but before a user
receives the results from the DSMS.

MLS in Real Time Systems: In MLS real-time database system, research focuses
on designing a DBMS where transactions having timing constraint deadlines executes
in serialization order without data conflicts and security violations. Issues like secu-
rity breach and task scheduling are similar to our MLS DSMS. Covert channel issues
must be addressed due to sharing data among transactions from different levels in real-
time DBMS. Many concurrent control protocols, like 2PL high priority, OPT-Sacrifice,
and OPT-WAIT [19], deal with the high level transactions by suspending or restarting

Multilevel Secure Data Stream Processing 135

them if they conflict with low level transactions. However, the starvation on high level
transactions becomes serious if there are too many conflicts in the system. S2PL [24]
provides a better way on balancing the security and performance among conflicting
transactions: high level transactions should wait for the commit of conflicting low level
transactions only once then executed. Real-time DBMSs also need proper scheduling
strategy in order to satisfy the various transaction deadlines. There are many priority
selection algorithms like arrival timestamp, early-deadline-first, least-slack-time-first,
etc [23], which impact the scheduling strategies in DSMS research. Although a large
number of theories have been proposed on real-time system design, we cannot use them
directly into MLS DSMS because of the differences between real-time and data stream
systems. For the execution unit in the system, real-time DBMS uses transient trans-
actions while DSMS handles continuous queries. In order to cause a security breach,
transactions might set up inference or covert channel via accessing the same data item
while continuous queries try to manipulate the response time. Scheduling strategy in
MLS real-time transaction processing must address security, serialization and transac-
tion deadlines, whereas scheduling in CQ must address security and query response
time and throughput.

6 Conclusions and Future Work

Data Stream Management Systems (DSMSs) have been developed to address the data
processing needs of situation monitoring applications. However, many situation moni-
toring applications, such as battlefield monitoring, emergency threat and resource man-
agement, involve data that are classified at various security levels. Existing DSMSs
must be redesigned to ensure that illegal information flow do not occur in such appli-
cations. Towards this end, we developed an architecture for MLS DSMS and showed
how MLS continuous queries can be executed in such systems. We have also shown
how query plans can be shared across queries submitted by possibly different users to
maximize resource utilization and improve performance. Our approach does not have
security violations and can be used to process MLS data streams.

We plan to implement a prototype and study the overhead that is being caused due to
MLS processing. We plan to investigate MLS DSMS query processing for kernelized
and trusted architectures as well and develop prototypes. In the trusted architecture, it
may be possible to share query plans across security levels and the performance im-
proved. We plan to do a comparative study of the different architectures to find out
which approach is the most suitable for processing MLS DSMS queries.

Currently, we have used simple extensions to CQL to express MLS continuous-
queries. In future, we plan to extend CQL completely so that we can express more
complex MLS continuous queries. In our work, when a user submits a query, we check
whether the plans for the existing queries can be reused to improve the performance.
Note that, such verification must be carried out dynamically. Towards this end, we plan
to see how existing constraint solvers can be used to check for query equivalences. We
also plan to evaluate the performance impact of dynamic plan generation and equiva-
lence evaluation. We also plan to investigate more on building other components such
as scheduling and load shedding for MLS DSMS.

136 R. Adaikkalavan, I. Ray, and X. Xie

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J., Lindner,
W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the
borealis stream processing engine. In: Proc. of the CIDR, pp. 277–289 (2005)

2. Abrams, M.D., Jajodia, S.G., Podell, H.J. (eds.): Information Security: An Integrated Col-
lection of Essays, 1st edn. IEEE Computer Society Press, Los Alamitos (1995)

3. Adaikkalavan, R., Perez, T.: Secure Shared Continuous Query Processing. In: Proc. of the
ACM SAC (Data Streams Track), Taiwan, pp. 1005–1011 (March 2011)

4. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivas-
tava, U., Widom, J.: Stream: The stanford data stream management system. Technical Report
2004-20, Stanford InfoLab (2004)

5. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. VLDB Journal 15(2), 121–142 (2006)

6. Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator scheduling in data
stream systems. VLDB Journal 13(4), 333–353 (2004)

7. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: Proc. of the PODS, pp. 1–16 (June 2002)

8. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over data
streams. In: Proc. of the ICDE, pp. 350–361 (March 2004)

9. Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Cherniack, M., Convey, C.,
Galvez, E., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik, S.B.: Retrospective on
aurora. VLDB Journal: Special Issue on Data Stream Processing 13(4), 370–383 (2004)

10. Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and MULTICS In-
terpretation. Technical Report MTR-2997 Rev. 1 and ESD-TR-75-306, rev. 1, The MITRE
Corporation, Bedford, MA 01730 (March 1976)

11. Bishop, M.: Computer Security: Art and Science. Addison-Wesley, Reading (2002)
12. Cao, J., Carminati, B., Ferrari, E., Tan, K.: Acstream: Enforcing access control over data

streams. In: Proc. of the ICDE, pp. 1495–1498 (2009)
13. Carminati, B., Ferrari, E., Tan, K.L.: Enforcing access control over data streams. In: Proc. of

the ACM SACMAT, pp. 21–30 (2007)
14. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,

M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data Management Ap-
plications. In: Proc. of the VLDB, pp. 215–226 (August 2002)

15. Castano, S., Fugini, M.G., Martella, G., Samarati, P.: Database Security (ACM Press Book).
Addison-Wesley, Reading (1994)

16. Chakravarthy, S., Jiang, Q.: Stream Data Processing: A Quality of Service Perspective Mod-
eling, Scheduling, Load Shedding, and Complex Event Processing. Advances in Database
Systems 36 (2009)

17. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y.,
Zdonik, S.B.: Scalable distributed stream processing. In: Proc. of the CIDR (2003)

18. Committee on Multilevel Data Management Security, Air Force Studies Board, Commis-
sion on Engineering and Technical Systems. National Research Council, National Academy
Press, Washington D.C. (March 1983); Multilevel data management security

19. George, B., Haritsa, J.R.: Secure Concurrency Control in Firm Real-Time Databases. Dis-
tributed and Parallel Databases 5, 275–320 (1997)

20. Jiang, Q., Chakravarthy, S.: Anatomy of a Data Stream Management System. In: ADBIS
Research Communications (2006)

21. Lindner, W., Meier, J.: Securing the borealis data stream engine. In: IDEAS, pp. 137–147
(2006)

Multilevel Secure Data Stream Processing 137

22. Nehme, R.V., Rundensteiner, E.A., Bertino, E.: A security punctuation framework for en-
forcing access control on streaming data. In: Proc. of the ICDE, pp. 406–415 (2008)

23. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: A survey. IEEE Knowl-
edge and Data Engineering 7(4), 513–532 (1995)

24. Son, S.H., David, R.: Design and analysis of a secure two-phase locking protocol. In: Proc.
of the CSAC, pp. 374–379 (November 1994)

25. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load Shedding in
a Data Stream Manager. In: Proc. of the VLDB, pp. 309–320 (September 2003)

A Query Sharing

Table 2 shows the ways in which queries Q1 to Q8 defined in Table 1 can be shared. For
example, when Q5 is executing and Q4 is the newly issued query then they both can be
strict shared.

Table 2. Query Sharing

	Multilevel Secure Data Stream Processing
	Introduction
	Multilevel Security Formalization Model
	Multilevel Stream Processing Architecture
	General DSMS Architecture
	MLS DSMS Architecture

	Shared Query Processing in Replicated DSMS
	MLS CQL Queries
	Query Sharing

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

